content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List from typing import Dict def delete_nodes_list( nodes: List[str], credentials: HTTPBasicCredentials = Depends( check_credentials ), # pylint: disable=unused-argument ) -> Dict[str, str]: """Deletes a list of nodes (that are discoverables with lldp) to the db. Exple of simplest call : curl -X DELETE --user u:p -H "Content-type: application/json" \ http://127.0.0.1/api/nodes \ -d '["node1", "node2", "node3"]'""" for node in nodes: delete_node(node) return {"response": "Ok"}
1b7d4e25e67f1a0d2a5eec23b12b1ca87242a066
3,643,400
def index(): """ Application Home page """ module_name = settings.modules[c].get("name_nice") response.title = module_name return {"module_name": module_name, }
527aa4b19eff87bb5c6fde6c0578ced5e876f59b
3,643,401
import os import requests def download_abstruse_goose(program_abs_path, abstruse_page_num): """Downloads latest Abstruse Goose comics.""" # Create/change appropriate comic folder. comic_folder = os.path.join(program_abs_path, "abstruse") if os.path.exists(comic_folder): os.chdir(comic_folder) else: os.mkdir(comic_folder) os.chdir(comic_folder) while True: # Create the comic URL. url = 'https://abstrusegoose.com/' + str(abstruse_page_num) try: # Get the comic page. res = requests.get(url) res.raise_for_status() # Extract the image src. soup = bs4.BeautifulSoup(res.text, 'html.parser') match1 = soup.select("img[src*='/strips/']") if not match1: # If img element is not found, no futher new comics can be downloaded. return abstruse_page_num comic_url = match1[0].get("src") # Get the comic image. res = requests.get(comic_url) res.raise_for_status() # Download the comic image. image_file = open('abstruse' + str(abstruse_page_num) + '.jpg', 'wb') for chunk in res.iter_content(100000): image_file.write(chunk) image_file.close() # Increment the latest comic num. abstruse_page_num += 1 except requests.exceptions.HTTPError: return abstruse_page_num
06381d566168a997e6ff6deaf8cb55c68a9ea09f
3,643,402
def is_CW_in_extension(G): """ Returns True if G is 'CW in expansion', otherwise it returns False. G: directed graph of type 'networkx.DiGraph' EXAMPLE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> G=nx.DiGraph() e_list = [(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)] G.add_edges_from(e_list) plt.figure(1) nx.draw_circular(G,with_labels=True) plt.show() print("is_CW_in_extension(G):",is_CW_in_extension(G)) G.remove_edge(0,1) plt.figure(1) nx.draw_circular(G,with_labels=True) plt.show() print("is_CW_in_extension(G):",is_CW_in_extension(G)) G.remove_edge(0,3) plt.figure(1) nx.draw_circular(G,with_labels=True) plt.show() print("is_CW_in_extension(G):",is_CW_in_extension(G)) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< """ assert type(G) is nx.DiGraph, "'G' has to be of type 'networkx.DiGraph'." nodes = list(G.nodes) m = len(nodes) nr_beaten_list = np.zeros(m) #nr_beaten_list[i] is the number of nodes v with an edge i->v in G if i is NOT beaten by any other node. Otherwise its -1 for i in range(0,m): for j in range(0,m): if i != j and G.has_edge(nodes[i],nodes[j]) and nr_beaten_list[i] != -1: nr_beaten_list[i]+=1 if i != j and G.has_edge(nodes[j],nodes[i]): nr_beaten_list[i]=-1 #print(nr_beaten_list) if len(np.where(nr_beaten_list==m-1)[0]) >0: #G has a CW return(True) buf = np.where(nr_beaten_list==m-2)[0] if len(buf)==2: [i0,i1] = buf if not G.has_edge(i0,i1) and not G.has_edge(i1,i0): # There exist i0, i1 which are connected to every other node and i0 is not connected to i1 return(True) return(False)
3a1af65be274d23de16cdc15253185a0bbeda0ec
3,643,403
from typing import Callable from typing import Iterable from typing import List def get_index_where(condition: Callable[..., bool], iterable: Iterable) -> List[int]: """Return index values where `condition` is `True`.""" return [idx for idx, item in enumerate(iterable) if condition(item)]
6f99086730dfc2ab1f87df90632bc637fc6f2b93
3,643,404
def geom_crossbar(mapping=None, *, data=None, stat=None, position=None, show_legend=None, sampling=None, tooltips=None, fatten=None, **other_args): """ Display bars with horizontal median line. Parameters ---------- mapping : `FeatureSpec` Set of aesthetic mappings created by `aes()` function. Aesthetic mappings describe the way that variables in the data are mapped to plot "aesthetics". data : dict or `DataFrame` The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot. stat : str, default='identity' The statistical transformation to use on the data for this layer, as a string. Supported transformations: 'identity' (leaves the data unchanged), 'count' (counts number of points with same x-axis coordinate), 'bin' (counts number of points with x-axis coordinate in the same bin), 'smooth' (performs smoothing - linear default), 'density' (computes and draws kernel density estimate). position : str or `FeatureSpec` Position adjustment, either as a string ('identity', 'stack', 'dodge', ...), or the result of a call to a position adjustment function. show_legend : bool, default=True False - do not show legend for this layer. sampling : `FeatureSpec` Result of the call to the `sampling_xxx()` function. Value None (or 'none') will disable sampling for this layer. tooltips : `layer_tooltips` Result of the call to the `layer_tooltips()` function. Specifies appearance, style and content. fatten : float, default=2.5 A multiplicative factor applied to size of the middle bar. other_args Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color='red', fill='blue', size=3 or shape=21. They may also be parameters to the paired geom/stat. Returns ------- `LayerSpec` Geom object specification. Notes ----- `geom_crossbar()` represents a vertical interval, defined by `x`, `ymin`, `ymax`. The mean is represented by horizontal line. `geom_crossbar()` understands the following aesthetics mappings: - x : x-axis coordinates. - ymin : lower bound for error bar. - middle : position of median bar. - ymax : upper bound for error bar. - alpha : transparency level of a layer. Understands numbers between 0 and 1. - color (colour) : color of a geometry lines. Can be continuous or discrete. For continuous value this will be a color gradient between two colors. - fill : color of geometry filling. - size : lines width. - width : width of a bar. - linetype : type of the line. Codes and names: 0 = 'blank', 1 = 'solid', 2 = 'dashed', 3 = 'dotted', 4 = 'dotdash', 5 = 'longdash', 6 = 'twodash'. Examples -------- .. jupyter-execute:: :linenos: :emphasize-lines: 10 from lets_plot import * LetsPlot.setup_html() data = { 'x': ['a', 'b', 'c', 'd'], 'ymin': [5, 7, 3, 5], 'middle': [6.5, 9, 4.5, 7], 'ymax': [8, 11, 6, 9], } ggplot(data, aes(x='x')) + \\ geom_crossbar(aes(ymin='ymin', middle='middle', ymax='ymax')) | .. jupyter-execute:: :linenos: :emphasize-lines: 14-15 import numpy as np import pandas as pd from lets_plot import * LetsPlot.setup_html() n = 800 cat_list = {c: np.random.uniform(3) for c in 'abcdefgh'} np.random.seed(42) x = np.random.choice(list(cat_list.keys()), n) y = np.array([cat_list[c] for c in x]) + np.random.normal(size=n) df = pd.DataFrame({'x': x, 'y': y}) err_df = df.groupby('x').agg({'y': ['min', 'median', 'max']}).reset_index() err_df.columns = ['x', 'ymin', 'ymedian', 'ymax'] ggplot() + \\ geom_crossbar(aes(x='x', ymin='ymin', middle='ymedian', ymax='ymax', fill='x'), \\ data=err_df, width=.6, fatten=5) + \\ geom_jitter(aes(x='x', y='y'), data=df, width=.3, shape=1, color='black', alpha=.5) """ return _geom('crossbar', mapping=mapping, data=data, stat=stat, position=position, show_legend=show_legend, sampling=sampling, tooltips=tooltips, fatten=fatten, **other_args)
27f1faf1dea99b033e9ac5ab4dbc52ea2865934c
3,643,405
from typing import Union def chess_to_coordinate(pos: str) -> Union[Coordinate, Move]: """ Arguments: """ if len(pos) == 2: return Coordinate(int(pos[1]) - 1, file_dict[pos[0]]) else: if len(pos) == 5: if pos[4] == 'n': return Move(Coordinate(int(pos[1]) - 1, file_dict[pos[0]]), Coordinate(int(pos[3]) - 1, file_dict[pos[2]]), False, MoveType.N_PROMO) elif pos[4] == 'b': return Move(Coordinate(int(pos[1]) - 1, file_dict[pos[0]]), Coordinate(int(pos[3]) - 1, file_dict[pos[2]]), False, MoveType.B_PROMO) elif pos[4] == 'r': return Move(Coordinate(int(pos[1]) - 1, file_dict[pos[0]]), Coordinate(int(pos[3]) - 1, file_dict[pos[2]]), False, MoveType.R_PROMO) elif pos[4] == 'q': return Move(Coordinate(int(pos[1]) - 1, file_dict[pos[0]]), Coordinate(int(pos[3]) - 1, file_dict[pos[2]]), False, MoveType.Q_PROMO) else: return Move(Coordinate(int(pos[1]) - 1, file_dict[pos[0]]), Coordinate(int(pos[3]) - 1, file_dict[pos[2]]))
f55e8c4d349419a5477d5fc3c5390d133b89cdf7
3,643,406
def get_db_session(): """ Get the db session from g. If not exist, create a session and return. :return: """ session = get_g_cache('_flaskz_db_session') if session is None: session = DBSession() set_g_cache('_flaskz_db_session', session) return session
1254a99c3c1dd3fe71f1a9099b9937df46754c33
3,643,407
def make_tril_scale( loc=None, scale_tril=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None): """Creates a LinOp representing a lower triangular matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to the LinOp. The upper triangular elements above the diagonal are ignored. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinOp. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinOp should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return control_flow_ops.with_dependencies([ check_ops.assert_positive( array_ops.matrix_diag_part(x), message="diagonal part must be positive"), ], x) return control_flow_ops.with_dependencies([ check_ops.assert_none_equal( array_ops.matrix_diag_part(x), array_ops.zeros([], x.dtype), message="diagonal part must be non-zero"), ], x) with ops.name_scope(name, "make_tril_scale", values=[loc, scale_diag, scale_identity_multiplier]): loc = _convert_to_tensor(loc, name="loc") scale_tril = _convert_to_tensor(scale_tril, name="scale_tril") scale_diag = _convert_to_tensor(scale_diag, name="scale_diag") scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier") if scale_tril is not None: scale_tril = array_ops.matrix_band_part(scale_tril, -1, 0) # Zero out TriU. tril_diag = array_ops.matrix_diag_part(scale_tril) if scale_diag is not None: tril_diag += scale_diag if scale_identity_multiplier is not None: tril_diag += scale_identity_multiplier[..., array_ops.newaxis] scale_tril = array_ops.matrix_set_diag(scale_tril, tril_diag) return linalg.LinearOperatorLowerTriangular( tril=_maybe_attach_assertion(scale_tril), is_non_singular=True, is_self_adjoint=False, is_positive_definite=assert_positive) return make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, shape_hint=shape_hint, validate_args=validate_args, assert_positive=assert_positive, name=name)
137a0ac84e7b2fab71f1630ae1bd1b0b24fe8879
3,643,408
def remove_punctuation(word): """Remove all punctuation from the word (unicode). Note that the `translate` method is used, and we assume unicode inputs. The str method has a different `translate` method, so if you end up working with strings, you may want to revisit this method. """ return word.translate(TRANSLATION_TABLE)
46476b6e4480a2f067c2370fd378778b452a1a3e
3,643,409
def prepare_filter_weights_slice_conv_2d(weights): """Change dimension order of 2d filter weights to the one used in fdeep""" assert len(weights.shape) == 4 return np.moveaxis(weights, [0, 1, 2, 3], [1, 2, 0, 3]).flatten()
2b6ca65d68d4407ac0a7744efe01a90dc5423870
3,643,410
async def hello(request): """Hello page containing sarafan node metadata. `version` contains sarafan node version. `content_service_id` — contains service_id of content node :param request: :return: """ return web.json_response(await request.app['sarafan'].hello())
4a8b82a525082a03009d087a18042574e19c1796
3,643,411
import shutil import os def missing_toolchain(triplet: str) -> bool: """ Checks whether gcc, g++ and binutils are installed and in the path for the current triplet :param triplet: a triplet in the form riscv64-linux-gnu :return: True if some part of the toolchain is missing, False otherwise """ toolchain_expected = {"ar", "as", "gcc", "g++", "ld", "ranlib", "strip"} retval = False for tool in toolchain_expected: retval |= shutil.which(cmd=triplet + "-" + tool, mode=os.X_OK) is None return retval
9fafae1a4bd5ce781183f28d098580624b6ba1ef
3,643,412
import yaml def load_capabilities( base: str = "docassemble.ALWeaver", minimum_version="1.5", include_playground=False ): """ Load and return a dictionary containing all advertised capabilities matching the specified minimum version, and optionally include capabilities that were advertised from a namespace matching docassemble.playground*. The local capabilities will always be the default configuration. """ current_package_name = _package_name() this_yaml = path_and_mimetype( f"{current_package_name}:data/sources/configuration_capabilities.yml" )[0] weaverdata = DAStore(base=base) published_configuration_capabilities = ( weaverdata.get("published_configuration_capabilities") or {} ) try: with open(this_yaml) as f: this_yaml_contents = f.read() first_file = list(yaml.safe_load_all(this_yaml_contents))[0] capabilities = {"Default configuration": first_file} except: capabilities = {} for key in list(published_configuration_capabilities.keys()): # Filter configurations based on minimum published version if isinstance(published_configuration_capabilities[key], tuple) and Version( published_configuration_capabilities[key][1] ) < Version(minimum_version): log( "Skipping published weaver configuration {key}:{published_configuration_capabilities[key]} because it is below the minimum version {minimum_version}. Consider updating the {key} package." ) del published_configuration_capabilities[key] # Filter out capability files unless the package is installed system-wide if not include_playground and key.startswith("docassemble.playground"): del published_configuration_capabilities[key] for package_name in published_configuration_capabilities: # Don't add the current package twice if not current_package_name == package_name: path = path_and_mimetype( f"{package_name}:data/sources/{published_configuration_capabilities[package_name][0]}" )[0] try: with open(path) as f: yaml_contents = f.read() capabilities[package_name] = list(yaml.safe_load_all(yaml_contents))[0] except: log(f"Unable to load published Weaver configuration file {path}") return capabilities
3bb12fdbf4fc4340a042f0685a4917a7b1c1ed85
3,643,413
def build_graph( config, train_input_fn, test_input_fn, model_preprocess_fn, model): """Builds the training graph. Args: config: Training configuration. train_input_fn: Callable returning the training data as a nest of tensors. test_input_fn: Callable returning the test data as a nest of tensors. model_preprocess_fn: Image pre-processing that should be combined with the model for adversarial evaluation. model: Callable taking (preprocessed_images, is_training, test_local_stats) and returning logits. Returns: loss: 0D tensor containing the loss to be minimised. train_measures: Dict (with string keys) of 0D tensors containing training measurements. test_measures: Dict (with string keys) of 0D tensors containing test set evaluation measurements. init_step_fn: Function taking (session, initial_step_val) to be invoked to initialise the global training step. """ global_step = tf.train.get_or_create_global_step() optimizer = _optimizer(config.optimizer, global_step) model_with_preprocess = _model_with_preprocess_fn( model, model_preprocess_fn) # Training step. loss, train_logits, train_adv_logits, train_labels = _train_step( config.train, model_with_preprocess, global_step, optimizer, train_input_fn()) train_measures = { 'acc': _top_k_accuracy(train_labels, train_logits), } if config.train.adversarial_loss_weight > 0.: train_measures.update({ 'adv_acc': _top_k_accuracy(train_labels, train_adv_logits), }) # Test evaluation. with tf.name_scope('test_accuracy'): test_logits, test_adv_logits, test_labels = _test_step( config.train, model_with_preprocess, test_input_fn()) test_measures = { 'acc': _top_k_accuracy(test_labels, test_logits), 'adv_acc': _top_k_accuracy(test_labels, test_adv_logits), } initial_step = tf.placeholder(shape=(), dtype=tf.int64) init_global_step_op = tf.assign(global_step, initial_step) def init_step_fn(session, initial_step_val): session.run(init_global_step_op, feed_dict={initial_step: initial_step_val}) return loss, train_measures, test_measures, init_step_fn
4eff7555b2383db0870d5e63467e2d68a3336ece
3,643,414
import functools import traceback import time def execli_deco(): """ This is a decorating function to excecute a client side Earth Engine function and retry as many times as needed. Parameters can be set by modifing module's variables `_execli_trace`, `_execli_times` and `_execli_wait` :Example: .. code:: python from geetools.tools import execli_deco import ee # TRY TO GET THE INFO OF AN IMAGE WITH DEFAULT PARAMETERS @execli_deco() def info(): # THIS IMAGE DOESN'E EXISTE SO IT WILL THROW AN ERROR img = ee.Image("wrongparam") return img.getInfo() # TRY WITH CUSTOM PARAM (2 times 5 seconds and traceback) @execli_deco(2, 5, True) def info(): # THIS IMAGE DOESN'E EXISTE SO IT WILL THROW AN ERROR img = ee.Image("wrongparam") return img.getInfo() :param times: number of times it will try to excecute the function :type times: int :param wait: waiting time to excetue the function again :type wait: int :param trace: print the traceback :type trace: bool """ def wrap(f): ''' if trace is None: global trace trace = _execli_trace if times is None: global times times = _execli_times if wait is None: global wait wait = _execli_wait try: times = int(times) wait = int(wait) except: print(type(times)) print(type(wait)) raise ValueError("'times' and 'wait' parameters must be numbers") ''' @functools.wraps(f) def wrapper(*args, **kwargs): trace = _execli_trace times = _execli_times wait = _execli_wait r = range(times) for i in r: try: result = f(*args, **kwargs) except Exception as e: print("try n°", i, "ERROR:", e) if trace: traceback.print_exc() if i < r[-1] and wait > 0: print("waiting {} seconds...".format(str(wait))) time.sleep(wait) elif i == r[-1]: raise RuntimeError("An error occured tring to excecute"\ " the function '{0}'".format(f.__name__)) else: return result return wrapper return wrap
c245cd30f372e6d00895f42ba26936f2fb92c257
3,643,415
import uuid def lstm_with_backend_selection(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Call the LSTM with optimized backend kernel selection. Under the hood, this function will create two TF function, one with the most generic kernel and can run on all device condition, and the second one with cuDNN specific kernel, which can only run on GPU. The first function will be called with normal_lstm_params, while the second function is not called, but only registered in the graph. The Grappler will do the proper graph rewrite and swap the optimized TF function based on the device placement. Args: inputs: Input tensor of LSTM layer. init_h: Initial state tensor for the cell output. init_c: Initial state tensor for the cell hidden state. kernel: Weights for cell kernel. recurrent_kernel: Weights for cell recurrent kernel. bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias is used in this case. mask: Boolean tensor for mask out the steps within sequence. An individual `True` entry indicates that the corresponding timestep should be utilized, while a `False` entry indicates that the corresponding timestep should be ignored. time_major: Boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. zero_output_for_mask: Boolean, whether to output zero for masked timestep. Returns: List of output tensors, same as standard_lstm. """ params = { 'inputs': inputs, 'init_h': init_h, 'init_c': init_c, 'kernel': kernel, 'recurrent_kernel': recurrent_kernel, 'bias': bias, 'mask': mask, 'time_major': time_major, 'go_backwards': go_backwards, 'sequence_lengths': sequence_lengths, 'zero_output_for_mask': zero_output_for_mask, } def gpu_lstm_with_fallback(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Use cuDNN kernel when mask is none or strictly right padded.""" if mask is None: return gpu_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def cudnn_lstm_fn(): return gpu_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def stardard_lstm_fn(): return standard_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths, zero_output_for_mask=zero_output_for_mask) return tf.cond( gru_lstm_utils.is_cudnn_supported_inputs(mask, time_major), true_fn=cudnn_lstm_fn, false_fn=stardard_lstm_fn) if gru_lstm_utils.use_new_gru_lstm_impl(): # Chooses the implementation dynamically based on the running device. (last_output, outputs, new_h, new_c, runtime) = tf.__internal__.execute_fn_for_device( { gru_lstm_utils.CPU_DEVICE_NAME: lambda: standard_lstm(**params), gru_lstm_utils.GPU_DEVICE_NAME: lambda: gpu_lstm_with_fallback(**params) }, lambda: standard_lstm(**params)) else: # Each time a `tf.function` is called, we will give it a unique # identifiable API name, so that Grappler won't get confused when it # sees multiple LSTM layers added into same graph, and it will be able # to pair up the different implementations across them. api_name = 'lstm_' + str(uuid.uuid4()) supportive_attribute = { 'time_major': time_major, 'go_backwards': go_backwards, } defun_standard_lstm = gru_lstm_utils.generate_defun_backend( api_name, gru_lstm_utils.CPU_DEVICE_NAME, standard_lstm, supportive_attribute) defun_gpu_lstm = gru_lstm_utils.generate_defun_backend( api_name, gru_lstm_utils.GPU_DEVICE_NAME, gpu_lstm_with_fallback, supportive_attribute) # Call the normal LSTM impl and register the cuDNN impl function. The # grappler will kick in during session execution to optimize the graph. last_output, outputs, new_h, new_c, runtime = defun_standard_lstm(**params) gru_lstm_utils.function_register(defun_gpu_lstm, **params) return last_output, outputs, new_h, new_c, runtime
4c45709265de5385399a7b9bff0aeb4e9a4d7b17
3,643,416
def _build_stack_from_3d(recipe, input_folder, fov=0, nb_r=1, nb_c=1): """Load and stack 3-d tensors. Parameters ---------- recipe : dict Map the images according to their field of view, their round, their channel and their spatial dimensions. Only contain the keys 'fov', 'r', 'c', 'z', 'ext' or 'opt'. input_folder : str Path of the folder containing the images. fov : int Index of the fov to build. nb_r : int Number of round file to stack in order to get a 5-d tensor. nb_c : int Number of channel file to stack in order to get a 4-d tensor. Returns ------- tensor_5d : np.ndarray, np.uint Tensor with shape (r, c, z, y, x). """ # load and stack successively channel elements then round elements tensors_4d = [] for r in range(nb_r): # load and stack channel elements (3-d tensors) tensors_3d = [] for c in range(nb_c): path = get_path_from_recipe(recipe, input_folder, fov=fov, r=r, c=c) tensor_3d = read_image(path) tensors_3d.append(tensor_3d) # stack 3-d tensors in 4-d tensor_4d = np.stack(tensors_3d, axis=0) tensors_4d.append(tensor_4d) # stack 4-d tensors in 5-d tensor_5d = np.stack(tensors_4d, axis=0) return tensor_5d
6cb4e567324cb3404d6e373b3f9a00d3ccdd51ef
3,643,417
def view_menu(request): """Admin user view all the reservations.""" menus = Menu.objects.all() return render(request, "super/view_menu.html", {'menus': menus})
7b8244a315f2da0794a80f71cf73517e81f614e0
3,643,418
def _get_hdfs_dirs_by_date(physical_table_name, date): """ 根据日期获取指定日期的hdfs上数据目录列表 :param physical_table_name: 物理表名称 :param date: 日期 :return: hdfs上的数据目录列表 """ return [f"{physical_table_name}/{date[0:4]}/{date[4:6]}/{date[6:8]}/{hour}" for hour in DAY_HOURS]
6581f81ebcf9051ccf97ade02fc80eeba46e0e78
3,643,419
import json def indeed_jobs(request, category_id): """ Load Indeed jobs via ajax. """ if request.is_ajax() and request.method == 'POST': per_page = 10 page = 1 html = [] if category_id == '0': all_jobs = IndeedJob.objects.all() else: all_jobs = IndeedJob.objects.filter(category=category_id) paginator = Paginator(all_jobs, per_page) page = request.GET.get('page') try: jobs = paginator.page(page) except PageNotAnInteger: jobs = paginator.page(1) except EmptyPage: jobs = paginator.page(paginator.num_pages) for job in jobs: html.append(render_to_string('indeed-job.html', {'job': job})) context = { 'html': u''.join(html), 'page': jobs.number, } if jobs.has_next(): context.update({'next_page': jobs.next_page_number()}) return HttpResponse(json.dumps(context), content_type='application/json') raise Http404
12cf21f9ecad672e78715ef9687ad2e69d5ea963
3,643,420
def iinsertion_sort(arr, order=ASCENDING): """Iterative implementation of insertion sort. :param arr: input list :param order: sorting order i.e "asc" or "desc" :return: list sorted in the order defined """ operator = SORTING_OPERATORS.get(order.lower(), GREATER_THAN) for i in range(1, len(arr)): position = i - 1 value = arr[i] while position >= 0 and operator(arr[position], value): arr[position + 1] = arr[position] position -= 1 arr[position + 1] = value return arr
8698fbb500bfad3cb2e6964112d46ef8151c1e89
3,643,421
def actor_files_paths(): """ Returns the file paths that are bundled with the actor. (Path to the content of the actor's file directory). """ return current_actor().actor_files_paths
2ec9505eceb2da78aee668ff044e565374aa3a1c
3,643,422
import struct def parse_table(data: bytes, fields: list) -> dict: """Return a Python dictionary created from the bytes *data* of an ISIS cube table (presumably extracted via read_table_data()), and described by the *fields* list and *records*. Please be aware that this does not perform masking of the ISIS special pixels that may be present in the table, and simply returns them as the appropriate int or float values. The *fields* list must be a list of dicts, each of which must contain the following keys: 'Name', 'Type', and 'Size'. The 'Name' key can be any string (and these will end up being the keys in the returned dict). 'Size' is the size in bytes of the field, and 'Type' is a string that must be one of 'Integer', 'Double', 'Real', or 'Text'. If you are using the pvl library, the get_table() function will be easier to use. """ row_len = 0 for f in fields: row_len += data_sizes[f["Type"]] * int(f["Size"]) if len(data) % row_len != 0: raise ValueError( f"The total sizes of each field ({row_len}) do not evenly divide " f"into the size of the data ({len(data)}), so something is off." ) # Parse the binary data results = {f["Name"]: [] for f in fields} offset = 0 while offset < len(data): for f in fields: if f["Type"] == "Text": field_data = data[offset : offset + int(f["Size"])].decode( encoding="latin_1" ) else: data_fmt = data_formats[f["Type"]] * int(f["Size"]) f_data = struct.unpack_from(data_fmt, data, offset) if len(f_data) == 1: field_data = f_data[0] else: field_data = list(f_data) results[f["Name"]].append(field_data) offset += data_sizes[f["Type"]] * int(f["Size"]) return results
3727a37d619c77c6789e1d11479ecfd67b814766
3,643,423
import scipy def gridtilts(shape, thismask, slit_cen, coeff2, func2d, spec_order, spat_order, pad_spec=30, pad_spat = 5, method='interp'): """ Parameters ---------- tilt_fit_dict: dict Tilt fit dictioary produced by fit_tilts Returns ------- piximg: ndarray, float Image indicating how spectral pixel locations move across the image. This output is used in the pipeline. """ # Compute the tilts image nspec, nspat = shape xnspecmin1 = float(nspec-1) xnspatmin1 = float(nspat-1) spec_vec = np.arange(nspec) spat_vec = np.arange(nspat) # JFH This histogram method is not preferred, since it basically does NGP. It is however super fast, so for big images # it is useful to have it if 'hist2d' in method: oversamp_spec=5 oversamp_spat=3 spec_ind, spat_ind = np.where(thismask) min_spec = spec_ind.min() - pad_spec max_spec = spec_ind.max() + pad_spec num_spec = max_spec - min_spec + 1 min_spat = spat_ind.min() - pad_spat max_spat = spat_ind.max() + pad_spat num_spat = max_spat - min_spat + 1 spec_lin = np.linspace(min_spec,max_spec,num = int(np.round(num_spec*oversamp_spec))) spat_lin = np.linspace(min_spat,max_spat,num = int(np.round(num_spat*oversamp_spat))) spat_img, spec_img = np.meshgrid(spat_lin, spec_lin) # Normalized spatial offset image (from central trace) slit_cen_lin = (scipy.interpolate.interp1d(np.arange(nspec),slit_cen,bounds_error=False,fill_value='extrapolate'))(spec_lin) slit_cen_img = np.outer(slit_cen_lin, np.ones(spat_img.shape[1])) # center of the slit replicated spatially dspat_img_nrm = (spat_img - slit_cen_img)/xnspatmin1 spec_img_nrm = spec_img/xnspecmin1 # normalized spec image tracepix = spec_img + xnspecmin1*utils.func_val(coeff2, spec_img_nrm, func2d, x2=dspat_img_nrm, minx=0.0, maxx=1.0, minx2=-1.0, maxx2=1.0) norm_img, spec_edges, spat_edges = np.histogram2d(tracepix.flatten(), spat_img.flatten(), bins=[np.arange(nspec+1), np.arange(nspat+1)], density=False) weigh_img, spec_edges, spat_edges = np.histogram2d(tracepix.flatten(), spat_img.flatten(), bins=[np.arange(nspec+1), np.arange(nspat+1)], weights = spec_img.flatten(),density=False) piximg =(norm_img > 0.0)*weigh_img/(norm_img + (norm_img == 0.0)) inmask = thismask & (norm_img > 0) & (piximg/xnspecmin1 > -0.2) & (piximg/xnspecmin1 < 1.2) # This is the defulat method although scipy.interpolate.griddata is a bit slow elif 'interp' in method: spec_vec_pad = np.arange(-pad_spec,nspec+pad_spec) spat_vec_pad = np.arange(-pad_spat,nspat+pad_spat) spat_img, spec_img = np.meshgrid(spat_vec, spec_vec) spat_img_pad, spec_img_pad = np.meshgrid(np.arange(-pad_spat,nspat+pad_spat),np.arange(-pad_spec,nspec+pad_spec)) slit_cen_pad = (scipy.interpolate.interp1d(spec_vec,slit_cen,bounds_error=False,fill_value='extrapolate'))(spec_vec_pad) thismask_pad = np.zeros_like(spec_img_pad,dtype=bool) ind_spec, ind_spat = np.where(thismask) slit_cen_img_pad= np.outer(slit_cen_pad, np.ones(nspat + 2*pad_spat)) # center of the slit replicated spatially # Normalized spatial offset image (from central trace) dspat_img_nrm = (spat_img_pad - slit_cen_img_pad)/xnspatmin1 # normalized spec image spec_img_nrm = spec_img_pad/xnspecmin1 # Embed the old thismask in the new larger padded thismask thismask_pad[ind_spec + pad_spec,ind_spat + pad_spat] = thismask[ind_spec,ind_spat] # Now grow the thismask_pad kernel = np.ones((2*pad_spec, 2*pad_spat))/float(4*pad_spec*pad_spat) thismask_grow = scipy.ndimage.convolve(thismask_pad.astype(float), kernel, mode='nearest') > 0.0 # Evaluate the tilts on the padded image grid tracepix = spec_img_pad[thismask_grow] + xnspecmin1*utils.func_val(coeff2, spec_img_nrm[thismask_grow], func2d, x2=dspat_img_nrm[thismask_grow], minx=0.0, maxx=1.0, minx2=-1.0, maxx2=1.0) ## TESTING STARTS """ ikeep = np.isfinite(tracepix) sigma = np.full_like(spec_img_pad[thismask_grow], 10.0)/xnspecmin1 fitxy = [spec_order, spat_order] fitmask, coeff2_tilts = utils.robust_polyfit_djs(tracepix/xnspecmin1, spec_img_pad[thismask_grow]/xnspecmin1, fitxy, x2=spat_img_pad[thismask_grow]/xnspatmin1, sigma=sigma, upper=5.0, lower=5.0, maxdev=10.0/xnspecmin1, inmask=ikeep, function=func2d, maxiter=20, minx=0.0, maxx=1.0, minx2=0.0, maxx2=1.0, use_mad=False) ## TESTING ENDS # values(points) \equiv spec_pos(tilt,spat_pos) which is the piximg that we want to create via griddata interpolation """ ikeep = np.isfinite(tracepix) points = np.stack((tracepix[ikeep], spat_img_pad[thismask_grow][ikeep]), axis=1) values =spec_img_pad[thismask_grow][ikeep] piximg = scipy.interpolate.griddata(points, values, (spec_img, spat_img), method='cubic') inmask = thismask & np.isfinite(piximg) & (piximg/xnspecmin1 > -0.2) & (piximg/xnspecmin1 < 1.2) # Now simply do a 2d polynomial fit with just rejection of crazy behavior, i.e. 10 pixels fitxy = [spec_order, spat_order] sigma = np.full_like(spec_img,10.0)/xnspecmin1 fitmask, coeff2_tilts = utils.robust_polyfit_djs(spec_img.flatten()/xnspecmin1, piximg.flatten()/xnspecmin1, fitxy, x2=spat_img.flatten()/xnspatmin1, sigma = sigma.flatten(), upper=5.0, lower=5.0, maxdev = 10.0/xnspecmin1, inmask=inmask.flatten(), function=func2d, maxiter=20, minx=0.0, maxx=1.0, minx2=0.0,maxx2=1.0,use_mad=False) irej = np.invert(fitmask) & inmask.flatten() msgs.info('Rejected {:d}/{:d} pixels in final tilts image after gridding'.format(np.sum(irej),np.sum(inmask))) # normalized tilts image tilts = utils.func_val(coeff2_tilts, spec_img/xnspecmin1, func2d, x2=spat_img/xnspatmin1,minx=0.0, maxx=1.0, minx2=0.0, maxx2=1.0) tilts = np.fmax(np.fmin(tilts, 1.2),-0.2) # Added this to ensure that tilts are never crazy values due to extrapolation of fits which can break # wavelength solution fitting return coeff2_tilts, tilts
55dd6ddd065e4f4bfefdc30bef27dc6e6541190b
3,643,424
import functools def exp_t(u, t): """Compute exp_t for `u`.""" def _internal_exp_t(u, t): return tf.nn.relu(1.0 + (1.0 - t) * u) ** (1.0 / (1.0 - t)) return tf.cond( tf.math.equal(t, 1.0), lambda: tf.math.exp(u), functools.partial(_internal_exp_t, u, t))
27fe729ea55bc8933d6ccd41c5ae96657b4426ad
3,643,425
def max_matching(G, method="ilp"): """Return a largest matching in *G*. Parameters ---------- G : NetworkX graph An undirected graph. method: string The method to use for finding the maximum matching. Use 'ilp' for integer linear program or 'bf' for brute force. Defaults to 'ilp'. Returns ------- set A set of edges comprising a maximum matching in *G*. See Also -------- max_matching """ max_matching_func = {"bf": max_matching_bf, "ilp": max_matching_ilp}.get(method, None) if max_matching_func: return max_matching_func(G) raise ValueError('Invalid `method` argument "{}"'.format(method))
34407865678e46d7d042fa94852b66ebc22787d6
3,643,426
def hasEdgeFlux(source, edgeDistance=1): """hasEdgeFlux Determine whether or not a source has flux within `edgeDistance` of the edge. Parameters ---------- source : `scarlet.Component` The source to check for edge flux edgeDistance : int The distance from the edge of the image to consider a source an edge source. For example if `edgeDistance=3` then any source within 3 pixels of the edge will be considered to have edge flux. If `edgeDistance` is `None` then the edge check is ignored. Returns ------- isEdge: `bool` Whether or not the source has flux on the edge. """ if edgeDistance is None: return False assert edgeDistance > 0 # Use the first band that has a non-zero SED flux = scarlet.measure.flux(source) if hasattr(source, "sed"): band = np.min(np.where(flux > 0)[0]) else: band = np.min(np.where(flux > 0)[0]) model = source.get_model()[band] for edge in range(edgeDistance): if ( np.any(model[edge-1] > 0) or np.any(model[-edge] > 0) or np.any(model[:, edge-1] > 0) or np.any(model[:, -edge] > 0) ): return True return False
2fd924c20cb89b3728ef3a24f92b89eb0b136fe5
3,643,427
def biswas_robustness(data_scikit, data_mm): """ summary stats on consensus peaks """ CV = find_CV(th=0.0001, ca=0.5, sd=1) CV_th001 = find_CV(th=0.001, ca=0.5, sd=1) CV_th01 = find_CV(th=0.01, ca=0.5, sd=1) CV_th00001 = find_CV(th=0.00001, ca=0.5, sd=1) CV_sd15 = find_CV(th=0.0001, ca=0.5, sd=1.5) CV_sd05 = find_CV(th=0.0001, ca=0.5, sd=0.5) CV_ca09 = find_CV(th=0.0001, ca=0.9, sd=0.5) CV_ca01 = find_CV(th=0.0001, ca=0.1, sd=0.5) biswas_df = pd.DataFrame(columns=['ORF', 'corr_th001', 'corr_th01', 'corr_th00001', 'corr_sd15', 'corr_sd05', 'corr_ca09', 'corr_ca01']) list_orfs = list( data_scikit.keys() ) for ix, orf in enumerate(list_orfs): output = np.zeros(( 7 )) coef = 0 p = 1 current_data = data_scikit[orf] current_mm = data_mm[orf] if np.shape(current_data)[1] == len(current_mm): current_data[:,~current_mm] = 0 # after, for false consensus (i.e. multimapping), set to 0 current_cons, current_peaks = run_mc(current_data, CV) current_cons_th001, current_peaks_th001 = run_mc(current_data, CV_th001) current_cons_th01, current_peaks_th01 = run_mc(current_data, CV_th01) current_cons_th00001, current_peaks_th00001 = run_mc(current_data, CV_th00001) current_cons_sd15, current_peaks_sd15 = run_mc(current_data, CV_sd15) current_cons_sd05, current_peaks_sd05 = run_mc(current_data, CV_sd05) current_cons_ca09, current_peaks_ca09 = run_mc(current_data, CV_ca09) current_cons_ca01, current_peaks_ca01 = run_mc(current_data, CV_ca01) output[0], p = stats.spearmanr(current_cons, current_cons_th001) output[1], p = stats.spearmanr(current_cons, current_cons_th01) output[2], p = stats.spearmanr(current_cons, current_cons_th00001) output[3], p = stats.spearmanr(current_cons, current_cons_sd15) output[4], p = stats.spearmanr(current_cons, current_cons_sd05) output[5], p = stats.spearmanr(current_cons, current_cons_ca09) output[6], p = stats.spearmanr(current_cons, current_cons_ca01) output = np.around(output,3) biswas_df.loc[len(biswas_df)] = ( orf, output[0], output[1], output[2], output[3], output[4], output[5], output[6] ) print(ix, orf, output[0], output[1], output[2], output[3], output[4], output[5], output[6] ) return biswas_df
70ecee0baa60a5b06c785dd172bc9d0719840903
3,643,428
def get_click_offset(df): """ df[session_key] return a set of session_key df[session_key].nunique() return the size of session_key set (int) df.groupby(session_key).size() return the size of each session_id df.groupby(session_key).size().cumsum() retunn cumulative sum """ offsets = np.zeros(df[session_key].nunique() + 1, dtype=np.int32) offsets[1:] = df.groupby(session_key).size().cumsum() return offsets
c8caed25899f71549a9333e64452f8eed9cf1029
3,643,429
def delete_enrichment(): """ Controller to delete all existing GO enrichments :return: Redirect to admin main screen """ CoexpressionCluster.delete_enrichment() flash('Successfully removed GO enrichment for co-expression clusters', 'success') return redirect(url_for('admin.controls.index'))
9cface0783929581f3e6076f43a461ef815c0d2b
3,643,430
from typing import Counter import logging def evaluate_agent(agent, env, alpha, num_users=100, deterministic=False, softmax_temperature=1.0, scatter_plot_trajectories=False, figure_file_obj=None, risk_score_extractor=violence_risk, plot_histogram=False, plot_trajectories=True, stepwise_plot=False, only_evaluate_pool=None, reward_health_distribution_plot=False, debug_log=False): """Runs an agent-env simulation to evaluate average reward and safety costs. Args: agent: rnn_cvar_agent.SafeRNNAgent object. env: Recsim environment that returns responses with reward and health score. alpha: The alpha used as the level for VaR/CVaR. num_users: Number of users to sample for the evaluation. deterministic: Whether the agent chooses the argmax action instead of sampling. scatter_plot_trajectories: Whether to evaluate figure_file_obj: File object to store the plot. risk_score_extractor: A function which takes an observation and returns a risk score. Returns: Dictionary with average reward, health score, cvar, var for num_users sampled. """ results = {} if hasattr(env._environment, 'set_active_pool'): # pylint: disable=protected-access pools = ['train', 'eval', 'test'] if only_evaluate_pool: pools = [only_evaluate_pool] else: pools = ['all'] for pool in pools: tf.keras.backend.set_learning_phase(0) if hasattr(env._environment._user_model._user_sampler, 'set_active_pool'): # pylint: disable=protected-access env._environment.set_active_pool( pool) # pylint: disable=protected-access else: assert pool == 'all' or only_evaluate_pool if plot_histogram or plot_trajectories: recs_histogram = Counter({}) recs_histogram_keys_list = {} if debug_log: user_rec_log = [] ratings = [] ratings_health_user_map = {} health = [] rewards = [] max_episode_length = agent.max_episode_length if stepwise_plot: stepwise_ratings = [[] for _ in range(max_episode_length)] stepwise_healths = [[] for _ in range(max_episode_length)] agent.epsilon = 0.0 # Turn off any exploration. env._environment._user_model._user_sampler.reset_sampler() # Set the learning phase to 0 i.e. evaluation to not use dropout. # Generate num_users trajectories. for _ in range(num_users): # TODO(): Clean the logged variables by making a data class. curr_user_reward = 0.0 curr_user_health = 0.0 curr_user_rating = 0.0 if plot_histogram or plot_trajectories: current_trajectory = [] reward = 0 observation = env.reset() curr_user_vector = env.environment.user_model._user_state.topic_affinity user_id = observation['user']['user_id'] if debug_log: user_rec_log.append((user_id, [])) for step_number in range(max_episode_length): slate = agent.step(reward, observation, eval_mode=True, deterministic=deterministic, temperature=softmax_temperature) observation, reward, _, _ = env.step(slate) rating = observation['response'][0]['rating'] if plot_histogram or plot_trajectories: current_trajectory.append(slate[0]) if slate[0] in recs_histogram: recs_histogram[slate[0]] = recs_histogram[slate[0]] + 1 else: recs_histogram[slate[0]] = 1 recs_histogram_keys_list[slate[0]] = len( recs_histogram.keys()) if stepwise_plot: # print(reward, risk_score_extractor(observation)) stepwise_ratings[step_number].append(rating) stepwise_healths[step_number].append( 1-risk_score_extractor(observation)) curr_user_rating += rating curr_user_reward += reward curr_user_health += 1-risk_score_extractor(observation) if debug_log: user_rec_log[-1][1].append((slate[0], rating, 1-risk_score_extractor(observation), reward)) agent.end_episode(reward, observation, eval_mode=True) ratings.append(curr_user_rating/float(max_episode_length)) health.append(curr_user_health/float(max_episode_length)) ratings_health_user_map[str(curr_user_vector)] = (ratings[-1], health[-1]) rewards.append(curr_user_reward/float(max_episode_length)) if plot_trajectories: plot_current_trajectory( current_trajectory, observation, recs_histogram_keys_list) plt.show() agent.empty_buffer() health_risks = 1-np.array(health) var = np.percentile(health_risks, 100*alpha) cvar = compute_cvar(health_risks, var) logging.info('Average Reward = %f, Average Health = %f, ' 'Average Ratings = %f,VaR = %f, CVaR = %f', np.mean(rewards), np.mean(health), np.mean(ratings), var, cvar) if plot_histogram: plot_recs_hists(recs_histogram, pool) plt.show() if stepwise_plot: plot_stepwise_ratings(stepwise_ratings, stepwise_healths) # Set the learning phase back to 1. tf.keras.backend.set_learning_phase(1) if scatter_plot_trajectories: plot_trajectories(ratings, health, figure_file_obj) results[pool] = { 'rewards': np.mean(rewards), 'health': np.mean(health), 'ratings': np.mean(ratings), 'var': var, 'cvar': cvar } if plot_histogram: results[pool]['unique_recs'] = len(recs_histogram.keys()) if reward_health_distribution_plot: results[pool]['ratings_health_user_map'] = ratings_health_user_map plot_reward_vs_health_distribution(ratings, health) if debug_log: save_user_rec_log() results[pool]['user_rec_log'] = user_rec_log if len(results) == 1: # No train/eval/test split, just return one value. return results[only_evaluate_pool] if only_evaluate_pool else results['all'] # Promote the eval results to the top-level dictionary. results.update(results['eval']) return results
9bf9413eb49a7fb635ded6b665ce7e3f45a0413b
3,643,431
from typing import Sequence def argmax(sequence: Sequence) -> int: """Find the argmax of a sequence.""" return max(range(len(sequence)), key=lambda i: sequence[i])
58cc1d0e952a7f15ff3fca721f43c4c658c41de1
3,643,432
def read_data_from_device(device, location): """ Reads text data from device and returns it as output Args: location ('str'): Path to the text file Raises: FileNotFoundError: File Does not Exist Returns: Data ('str'): Text data read from the device """ # IMPORTANT # ========= # This API does not require the device to have network connection # copy_from_device is the other API that behaves similar to this one, # but it requires network connection since it uses SCP try: return device.execute("cat {}".format(location)) except Exception: # Throw file not found error when encounter generic error raise FileNotFoundError("File {} does not exist.".format(location))
f6895d25f9f9e68ec33bb2d8f693999a7e3a2812
3,643,433
import os def get_credentials() -> tuple: """Gets bot auth credentials from environment variables defined in the local .env file""" load_dotenv() irc_token = os.environ.get('TWITCH_OAUTH_PASS') client_id = os.environ.get('TWITCH_CLIENT_ID') channel = os.environ.get('TWITCH_CHANNEL') return irc_token, client_id, channel
df1c8e998d27f4fec7574fb10dd7022b284680f0
3,643,434
from typing import Dict def postman_parser(postman_info: dict, environment_vars: Dict = None) -> APITest: """ Get a parser collection, in JSON input format, and parser it :param postman_info: JSON parsed info from Postman :type postman_info: dict :param environment_vars: variables to replace :type environment_vars: dict :return: a Postman object :rtype: APITest :raise ApitestValueError: when an invalid Postman format was received """ assert isinstance(postman_info, dict) assert len(postman_info) > 0 # Try to find Postman variables in the JSON info from Postman Project variables_from_postman_file = extract_postman_variables(postman_info) # If variables was found, replace with the values if variables_from_postman_file: if not environment_vars: raise ApitestMissingDataError( "The Postman collections need some environment variables. " "Please specify these variables and try again: " ",".join(x for x in variables_from_postman_file)) else: postman_info = replace_postman_variables(postman_info, variables_from_postman_file, environment_vars) collections = [] try: # Get all collections for collection in postman_info.get("item"): end_points = [] # Get each end-point for endpoint in collection.get("item"): # -------------------------------------------------------------------------- # APITestRequest info # -------------------------------------------------------------------------- query_info = endpoint.get("request") # APITestRequest headers request_headers = [] for header in query_info.get("header"): request_headers.append(APITestHeader(key=header.get("key"), value=header.get("value"))) # APITestRequest body request_body_content_type = from_http_content_type_get_type(request_headers, query_info.get("body").get("mode")) request_body = APITestBody(content_type=request_body_content_type, value=from_raw_body_get_python_object(data_type=request_body_content_type, data=query_info.get("body").get("formdata"))) # Build request _request_url = query_info.get("url") \ if query_info.get("url").startswith("http") \ else "http://{}".format(query_info.get("url")) request = APITestRequest(url=_request_url, method=query_info.get("method"), headers=request_headers, body=request_body) # -------------------------------------------------------------------------- # APITestResponse info # -------------------------------------------------------------------------- response_list = endpoint.get("response") responses = [] if response_list: for response_info in response_list: # APITestResponse headers response_headers = [] for header in response_info.get("header"): response_headers.append(APITestHeader(key=header.get("key"), value=header.get("value"))) # APITestResponse APITestBody response_body_content_type = from_http_content_type_get_type(response_headers, None) response_body = APITestBody(content_type=response_body_content_type, value=from_raw_body_get_python_object(data_type=response_body_content_type, data=response_info.get("body"))) # APITestResponse cookie response_cookies = [] for cookie in response_info.get("cookie"): response_cookies.append(APITestCookie(expires=cookie.get("expires"), host_only=cookie.get("hostOnly"), http_only=cookie.get("httpOnly"), domain=cookie.get("domain"), path=cookie.get("path"), secure=cookie.get("secure"), session=cookie.get("session"), value=cookie.get("value"))) # Build response responses.append(APITestResponse(code=response_info.get("code"), status=response_info.get("status"), headers=response_headers, body=response_body, cookies=response_cookies)) end_points.append(APITestEndPoint(name=endpoint.get("name"), description=endpoint.get("description"), request=request, response=responses)) collections.append(APITestCollection(name=endpoint.get("name"), description=endpoint.get("description"), end_points=end_points)) except Exception as exc: raise ApitestInvalidFormatError from exc data = APITest(title=postman_info.get("info").get("name"), description=postman_info.get("info").get("description"), collections=collections) return data
1e3c351c3b7ee37d438edeb9e64e70d67b45e1b9
3,643,435
def allOPT2 (routes, dists, maxtime=float("inf")): """ A simpler way to make the 2-OPT optimization on all the provided routes. :param routes: The routes to optimize. :param dists: The matrix of distances. :param maxtime: The maximum time the optimization can go on. :return: The optimised routes and the overall respective cost. """ optimized_routes = [None] * len(routes) total_cost = 0 for i, route in enumerate(routes): oproute, cost = OPT2(route, dists, maxtime) optimized_routes[i] = oproute total_cost += cost return optimized_routes, total_cost
ec7a2e337371cf806b7fa32661185b7400e774a0
3,643,436
def getScoreByName(name): """ This function will search for the name and will, if found, return the scores """ for idx, val in enumerate(names): if val == name: return scores[idx]
77074b360c2e35ae30053e1b00b3270166f27ada
3,643,437
def count_dict(dict_): """ Count how many levels the dict has """ if not isinstance(dict_, dict): raise Dict_Exception("dict_ must be a dict") return max(count_dict(v) if isinstance(v, dict) else 0 for v in dict_.values()) + 1
b608469d67f050b366cb5b97a7d686bdf8347616
3,643,438
def __draw_tick_labels(scales, chart_height, chart_width): """Draws the numbers in both axes.""" axis_values = [0, 0.25, 0.5, 0.75, 1] axis_df = pd.DataFrame({"main_axis_values": axis_values, "aux_axis_position": 0}) x_tick_labels = ( alt.Chart(axis_df) .mark_text( yOffset=Scatter_Axis.label_font_size * 1.5, tooltip="", align="center", fontSize=Scatter_Axis.label_font_size, color=Scatter_Axis.label_color, fontWeight=Scatter_Axis.label_font_weight, font=FONT, ) .encode( text=alt.Text("main_axis_values:Q"), x=alt.X("main_axis_values:Q", scale=scales["x"], axis=no_axis()), y=alt.Y("aux_axis_position:Q", scale=scales["y"], axis=no_axis()), ) ) axis_df.drop(0, inplace=True) y_tick_labels = ( alt.Chart(axis_df) .mark_text( baseline="middle", xOffset=-Scatter_Axis.label_font_size * 1.5, tooltip="", align="center", fontSize=Scatter_Axis.label_font_size, fontWeight=Scatter_Axis.label_font_weight, color=Scatter_Axis.label_color, font=FONT, ) .encode( text=alt.Text("main_axis_values:Q"), x=alt.X("aux_axis_position:Q", scale=scales["x"], axis=no_axis()), y=alt.Y("main_axis_values:Q", scale=scales["y"], axis=no_axis()), ) ) return x_tick_labels + y_tick_labels
85107e3255953af667e43374927299a5a55b6809
3,643,439
import os def HIP_to_HD(name): """Convert an HIP name in *Hipparcos Catalogue* to HD name in *Henry Draper Catalogue*. Args: name (str or int): Name of star in *Hipparcos Catalogue*. """ hip = _get_HIP_number(name) filename = os.path.join(xindex_path, 'HIP-HD.csv') f1 = lambda row: int(row.split(',')[0]) f2 = lambda row: 'HD '+row.split(',')[1].strip() if hip<100: HDname = find_sortedfile(hip, filename, f1, f2) else: HDname = quickfind_sortedfile(hip, filename, f1, f2) if HDname == None: return None else: return [HDname]
a1a7d965ae93043a1b1905a4396484dc1005de99
3,643,440
import torch import sys from io import StringIO def convert_torchscript_module_to_torch_backend_contract_mlir(program: torch.nn.Module): """Perform common lowering from TorchScript to Torch MLIR Returns an MLIR module that satisfies the Torch backend contract. """ mb = ModuleBuilder() scripted = torch.jit.script(program) class_annotator = ClassAnnotator() extract_annotations(program, scripted, class_annotator) # TODO: Find a way to make each of these calls own its own # "debuggable error report" situation. try: original_stderr = sys.stderr sys.stderr = StringIO() # Import the TorchScript module to MLIR mb.import_module(scripted._c, class_annotator) except Exception as e: raise Exception(f""" PyTorch TorchScript module -> torch-mlir Object Graph IR import failed with: Exception: {e} Diagnostics: {sys.stderr.getvalue()} """) from None finally: sys.stderr = original_stderr run_pipeline_with_repro_report( mb.module, "torchscript-module-to-torch-backend-pipeline", "Lowering TorchScript Object Graph IR -> Torch Backend IR") return mb.module
a3e162dd9cea71d7492d626257a81929565dc128
3,643,441
def thread_profile(D,P,inset,internal=True,base_pad=0.1): """ISO thread profile""" H = P*np.sqrt(3)/2 Dm = D - 2*5*H/8 Dp = D - 2*3*H/8 if internal: return np.array([ (-P/2,D/2+H/8+base_pad+inset), (-P/2,D/2+H/8+inset), (-P/8,Dm/2+inset), (P/8,Dm/2+inset), (P/2,D/2+H/8+inset), (P/2,D/2+H/8+base_pad+inset), ]) else: return np.array([ (-P/2,Dm/2-H/4-base_pad-inset), (-P/2,Dm/2-H/4-inset), (-P/16,D/2-inset), (P/16,D/2-inset), (P/2,Dm/2-H/4-inset), (P/2,Dm/2-H/4-base_pad-inset), ])
abea6e4f234f4176a385b3abc2ca6f1de0c93a1b
3,643,442
import os import json from datetime import datetime def mock_session(monkeypatch, data): """ Mocked out sqlalchemy session """ if data: dirname = os.path.dirname(os.path.realpath(__file__)) filename = os.path.join(dirname, data) with open(filename) as data_file: json_data = json.load(data_file) predictions = json_data['predictions'] geometry = json_data['geometry'] prediction_model = PredictionModel( id=1, name='name', abbreviation='abbrev', projection='projection') def mock_get_session(*args): mock_session = UnifiedAlchemyMagicMock() return mock_session def mock_get_most_recent_model_run(*args) -> PredictionModelRunTimestamp: timestamp = '2020-01-22T18:00:00+00:00' return PredictionModelRunTimestamp(id=1, prediction_model=prediction_model, prediction_run_timestamp=datetime.fromisoformat(timestamp)) def mock_get_model_run_predictions(*args): shape = shapely.wkt.loads(geometry) grid = PredictionModelGridSubset( id=1, prediction_model_id=prediction_model.id, prediction_model=prediction_model, geom=from_shape(shape) ) result = [] for prediction in predictions: prediction['prediction_timestamp'] = datetime.fromisoformat( prediction['prediction_timestamp']) result.append( (grid, ModelRunGridSubsetPrediction(**prediction))) return result monkeypatch.setattr(app.db.database, 'get_session', mock_get_session) monkeypatch.setattr(app.db.crud, 'get_most_recent_model_run', mock_get_most_recent_model_run) monkeypatch.setattr(app.db.crud, 'get_model_run_predictions', mock_get_model_run_predictions)
d855097df6e4f472027958fa5cfb2600b7d12589
3,643,443
def get_service(hass, config, discovery_info=None): """Get the HipChat notification service.""" return HipchatNotificationService( config[CONF_TOKEN], config[CONF_ROOM], config[CONF_COLOR], config[CONF_NOTIFY], config[CONF_FORMAT], config[CONF_HOST])
1d6b7e5d53084bd91de307a162c4710aac84be24
3,643,444
from typing import List def connect_with_interior_or_edge_bulk( polygon: Polygon, polygon_array: GeometryArray ) -> List[bool]: """ Return boolean array with True iff polys overlap in interior/edge, but not corner. Args: polygon (Polygon): A shapely Polygon polygon_array (GeometryArray): The other shapely Polygons in a geopandas geometry array Returns: List[bool]: Boolean array with value True, iff `polygon` and the polygon in `polygon_array` at the given location overlap in their interior/edge. """ patterns = polygon_array.relate(polygon) return [ de9im_match(pattern, EDGE_ONLY_PATTERN) or de9im_match(pattern, OVERLAP_PATTERN) for pattern in patterns ]
852a43d1782ae85dbb2d2adb70feb59ace7a6a44
3,643,445
import pickle def get_history(kmodel=None): """ returns a python dict with key = metric_id val = [metric each epoch ] """ # get kmodel object from input str if the input is a string if isinstance(kmodel,str): try: kmodel = KModel.objects.get(id=kmodel) except ObjectDoesNotExist: # object with name doesn't exist return None except ValidationError: # input string isn't a valid uuid return None elif isinstance(kmodel, KModel): # awesome! proceed pass else: raise ValueError("call get_history with etiher a str uuid for model or a db model instance") # get the history object and load history if kmodel.artifacts.filter(descriptor="history").exists(): artifact_path = kmodel.artifacts.get(descriptor="history").path return pickle.load(open(artifact_path,"rb")) else: return None
da2886f565ca2f96e49a38b458368de2e4216c01
3,643,446
def get_neighbor_v4_by_search(search=None): """Return a list of NeighborV4's by dict.""" try: objects = NeighborV4.objects.filter() search_dict = search if search else dict() object_map = build_query_to_datatable_v3(objects, search_dict) except FieldError as e: raise api_rest_exceptions.ValidationAPIException(str(e)) except Exception as e: raise api_rest_exceptions.NetworkAPIException(str(e)) else: return object_map
6893c32014d6b2a8871825744a1953024fe3a289
3,643,447
def load_clean_data(): """funcion that loads tuberculosis file and preprocesses/cleans the dataframe""" df = pd.read_csv('tb.csv') # drop columns 'fu' and 'mu' since they only contain missing values and would mess up the following processing steps df = df.drop(columns = ['fu', 'mu']) # define row and column length initial_rows = len(df.index) initial_col = len(df.columns) # melt the gender-age columns of the df df = pd.melt(df, id_vars=['country', 'year'], var_name='variable', value_name='value') melted_row = len(df.index) # assert that (initial col-number - id_var_no) * rows = length of rows afterwards assert (initial_col - 2)*initial_rows == melted_row # the column 'variable' needs to be split into two columns 'gender' and 'age', delete column 'variable' df['gender'] = df.variable.str[0] df['age'] = df.variable.str[1:3] df = df.drop(columns = 'variable') # transform age into an integer df['age'] = pd.to_numeric(df['age'], errors='coerce') # transform gender into category in order to store memory df['gender'] = df['gender'].astype('category') return df #print(df.info()) #print(df.head()) #print(df.loc[df['country'] == 'AD']) # the transformation seems to be correct. The columns age and gender have no missing values (which would have been # suspicious)
2430bb61705f95c77f68eabbcda535e7d0f443ea
3,643,448
def is_anagram_passphrase(phrase): """ Checks whether a phrase contains no words that are anagrams of other words. >>> is_anagram_passphrase(["abcde", "fghij"]) True >>> is_anagram_passphrase(["abcde", "xyz", "ecdab"]) False >>> is_anagram_passphrase(["a", "ab", "abc", "abd", "abf", "abj"]) True >>> is_anagram_passphrase(["iiii", "oiii", "ooii", "oooi", "oooo"]) True >>> is_anagram_passphrase(["oiii", "ioii", "iioi", "iiio"]) False """ return not any( any( first_word == "".join(permutated_word) for permutated_word in permutations(second_word) ) for first_word, second_word in combinations(phrase, 2) )
aa7a95cda82317a41d8c4f2765a4706896135f45
3,643,449
def _client_ip(client): """Compatibility layer for Flask<0.12.""" return getattr(client, 'environ_base', {}).get('REMOTE_ADDR')
1bd110563c5e7165ec795d16e0f0d7be6d053db1
3,643,450
def findtrapezoidfunc( thexvals, theyvals, thetoplength, initguess=None, debug=False, minrise=0.0, maxrise=200.0, minfall=0.0, maxfall=200.0, minstart=-100.0, maxstart=100.0, refine=False, displayplots=False, ): """ Parameters ---------- thexvals theyvals thetoplength initguess debug minrise maxrise minfall maxfall minstart maxstart refine displayplots Returns ------- """ # guess at parameters: risestart, riseamplitude, risetime if initguess is None: initstart = 0.0 initamp = np.mean(theyvals[-10:-1]) initrisetime = 5.0 initfalltime = 5.0 else: initstart = initguess[0] initamp = initguess[1] initrisetime = initguess[2] initfalltime = initguess[3] p0 = np.array([initstart, initamp, initrisetime, initfalltime]) if debug: for i in range(0, len(theyvals)): print(thexvals[i], theyvals[i]) plsq, dummy = sp.optimize.leastsq( trapezoidresiduals, p0, args=(theyvals, thexvals, thetoplength), maxfev=5000 ) # except ValueError: # return 0.0, 0.0, 0.0, 0 if ( (minrise <= plsq[2] <= maxrise) and (minfall <= plsq[3] <= maxfall) and (minstart <= plsq[0] <= maxstart) ): return plsq[0], plsq[1], plsq[2], plsq[3], 1 else: return 0.0, 0.0, 0.0, 0.0, 0
239f6d7edf2b99e631c7787ed6370685ff897e1d
3,643,451
def extractRecords(getRecordsResponse): """Returns a list of etrees of the individual records of a getRecords response""" recs = getRecordsResponse.xpath( '/csw:GetRecordsResponse/csw:SearchResults//csw:Record', namespaces={'csw': ns_csw}) return recs
3de69fc99f77c4d06346aa82121cc936e16a06b4
3,643,452
from typing import Set def tagify(tail=u'', head=u'', sep=u'.'): """ Returns namespaced event tag string. Tag generated by joining with sep the head and tail in that order head and tail may be a string or a list, tuple, or Set of strings If head is a list, tuple or Set Then join with sep all elements of head individually Else join in whole as string prefix If tail is a list, tuple or Set Then join with sep all elements of tail individually Else join in whole as string suffix If either head or tail is empty then do not exhibit in tag """ if isinstance(head, (list, tuple, Set)): # list like so expand parts = list(head) else: # string like so put in list parts = [head] if isinstance(tail, (list, tuple, Set)): # listlike so extend parts parts.extend(tail) else: # string like so append parts.append(tail) return sep.join([part for part in parts if part])
ddebdc0c4224db428a4338fd1e4c61137ac2d5c5
3,643,453
def get_fn_data(src_db, fn_table, year=None): """Get the data and fields from the query in the src database for the fish net table specified by fn_table. Returns list of dictionaries - each element represents a single row returned by the query. Arguments: - `src_db`: full path the source database. - `fn_table`: the name of the stored query that returns the data for the specified fish net table """ if year: sql = "execute get_{} @yr='{}'".format(fn_table, year) else: sql = "execute get_{}".format(fn_table) constring = "DRIVER={{Microsoft Access Driver (*.mdb, *.accdb)}};DBQ={}" with pyodbc.connect(constring.format(src_db)) as src_conn: src_cur = src_conn.cursor() rs = src_cur.execute(sql) data = rs.fetchall() flds = [x[0].lower() for x in src_cur.description] records = [] for record in data: records.append({k: v for k, v in zip(flds, record)}) return records
60d48e0b7727ccd25e4b91bf59f1f505ddbc3127
3,643,454
import collections def convert_example_to_feature(example, tokenizer, max_seq_length=512, doc_stride=384, max_query_length=125, is_training=True, cls_token_at_end=False, cls_token='[CLS]', sep_token='[SEP]', pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=0, pad_token_segment_id=0, mask_padding_with_zero=True, sequence_a_is_doc=False): """Convert a single QuacExample to features (model input)""" query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[-max_query_length:] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 assert max_tokens_for_doc >= 384, max_tokens_for_doc # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. # we set the doc_stride to 384, which is the max length of evidence text, # meaning that each evidence has exactly one _DocSpan _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) assert len(doc_spans) == 1, (max_tokens_for_doc, example) # if len(doc_spans) > 1: # print(len(doc_spans), example) # doc_spans = [doc_spans[0]] for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # Original TF implem also keep the classification token (set to 0) (not sure why...) p_mask = [] # CLS token at the beginning if not cls_token_at_end: tokens.append(cls_token) segment_ids.append(cls_token_segment_id) p_mask.append(0) cls_index = 0 # XLNet: P SEP Q SEP CLS # Others: CLS Q SEP P SEP if not sequence_a_is_doc: # Query tokens += query_tokens segment_ids += [sequence_a_segment_id] * len(query_tokens) p_mask += [1] * len(query_tokens) # SEP token tokens.append(sep_token) segment_ids.append(sequence_a_segment_id) p_mask.append(1) # Paragraph for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) if not sequence_a_is_doc: segment_ids.append(sequence_b_segment_id) else: segment_ids.append(sequence_a_segment_id) p_mask.append(0) paragraph_len = doc_span.length if sequence_a_is_doc: # SEP token tokens.append(sep_token) segment_ids.append(sequence_a_segment_id) p_mask.append(1) tokens += query_tokens segment_ids += [sequence_b_segment_id] * len(query_tokens) p_mask += [1] * len(query_tokens) # SEP token tokens.append(sep_token) segment_ids.append(sequence_b_segment_id) p_mask.append(1) # CLS token at the end if cls_token_at_end: tokens.append(cls_token) segment_ids.append(cls_token_segment_id) p_mask.append(0) cls_index = len(tokens) - 1 # Index of classification token input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(pad_token) input_mask.append(0 if mask_padding_with_zero else 1) segment_ids.append(pad_token_segment_id) p_mask.append(1) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length span_is_impossible = example.is_impossible start_position = None end_position = None if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 span_is_impossible = True else: if sequence_a_is_doc: doc_offset = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and span_is_impossible: start_position = cls_index end_position = cls_index if False: logger.info("*** Example ***") logger.info("unique_id: %s" % (example.example_id)) logger.info("example_id: %s" % (example.example_id)) logger.info("qid of the example: %s" % (example.qas_id)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join(tokens)) logger.info("token_to_orig_map: %s" % " ".join([ "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and span_is_impossible: logger.info("impossible example") if is_training and not span_is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logger.info("start_position: %d" % (start_position)) logger.info("end_position: %d" % (end_position)) logger.info("retrieval_label: %d" % (example.retrieval_label)) logger.info( "answer: %s" % (answer_text)) feature = InputFeatures( unique_id=example.example_id, example_id=example.example_id, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, cls_index=cls_index, p_mask=p_mask, paragraph_len=paragraph_len, start_position=start_position, end_position=end_position, is_impossible=span_is_impossible, retrieval_label=example.retrieval_label) return feature
1db90a014da443e143411276cbbf0e29a9872b7f
3,643,455
def make_pickle(golfed=False): """Returns the pickle-quine. If "golfed" is true, we return the minimized version; if false we return the one that's easier to understand. """ part_1 = b''.join(PART_1) part_2 = b''.join(GOLFED_PART_2 if golfed else PART_2) # We tack the length onto part 1: length = len(part_1) + 1 + len(part_2) part_1 = part_1 + b'%c' % length # Now glue everything together. the_string = part_1 + part_2 return part_1 + the_string + part_2
79fdc182ef3487090a8acd61c44b46d4b7cc5493
3,643,456
def classify_design_space(action: str) -> int: """ The returning index corresponds to the list stored in "count": [sketching, 3D features, mating, visualizing, browsing, other organizing] Formulas for each design space action: sketching = "Add or modify a sketch" + "Copy paste sketch" 3D features = "Commit add or edit of part studio feature" + "Delete part studio feature" - "Add or modify a sketch" mating = "Add assembly feature" + "Delete assembly feature" + "Add assembly instance" + "Delete assembly instance" visualizing = "Start assembly drag" + "Animate action called" browsing = Opening a tab + Creating a tab + Deleting a tab + Renaming a tab other organizing = "Create version" + "Cancel Operation" + "Undo Redo Operation" + "Merge branch" + "Branch workspace" + "Update version" :param action: the action to be classified :return: the index of the action type that this action is accounted for; if the action does not belong to any category, return -1 Note: "Add or modify a sketch" is special (+1 for sketching and -1 for 3D features), return -10 """ # Creating a sketch is special as it affects both the sketching and the 3D features counts if action == "Add or modify a sketch": return -10 # Sketching elif action == "Copy paste sketch": return 0 # 3D features elif action in ["Commit add or edit of part studio feature", "Delete part studio feature"]: return 1 # Mating elif action in ["Add assembly feature", "Delete assembly feature", "Add assembly instance" "Delete assembly instance"]: return 2 # Visualizing elif action in ["Start assembly drag", "Animate action called"]: return 3 # Browsing elif "Tab" in action and ("opened" in action or "created" in action or "deleted" in action or "renamed" in action): return 4 # Other organizing elif action in ["Create version", "Cancel Operation", "Undo Redo Operation", "Merge branch", "Branch workspace", "Update version"]: return 5 # Not classified (Optional: print out the unclassified actions) else: return -1
22dc68aa23258691b0d4b9f1b27a9e8451b275d9
3,643,457
import hashlib def get_sha256_hash(plaintext): """ Hashes an object using SHA256. Usually used to generate hash of chat ID for lookup Parameters ---------- plaintext: int or str Item to hash Returns ------- str Hash of the item """ hasher = hashlib.sha256() string_to_hash = str(plaintext) hasher.update(string_to_hash.encode('utf-8')) hash = hasher.hexdigest() return hash
79735973b8ad73823662cc428513ef393952b681
3,643,458
def get_bit_coords(dtype_size): """Get coordinates for bits assuming float dtypes.""" if dtype_size == 16: coords = ( ["±"] + [f"e{int(i)}" for i in range(1, 6)] + [f"m{int(i-5)}" for i in range(6, 16)] ) elif dtype_size == 32: coords = ( ["±"] + [f"e{int(i)}" for i in range(1, 9)] + [f"m{int(i-8)}" for i in range(9, 32)] ) elif dtype_size == 64: coords = ( ["±"] + [f"e{int(i)}" for i in range(1, 12)] + [f"m{int(i-11)}" for i in range(12, 64)] ) else: raise ValueError(f"dtype of size {dtype_size} neither known nor implemented.") return coords
6400017e47506613cf15162425843ce2b19eed3e
3,643,459
from klpyastro.utils import obstable def create_record(user_inputs): """ Create a ObsRecord from the informations gathered from the users. :param user_inputs: Dictionary with all the values (as strings) required to fully populate a ObsRecord object. :type user_inputs: dict :rtype: ObsRecord object """ record = obstable.ObsRecord() record.targetname = user_inputs['targetname'] record.rootname = user_inputs['rootname'] record.band = user_inputs['band'] record.grism = user_inputs['grism'] record.datatype = user_inputs['datatype'] record.applyto = user_inputs['applyto'] record.filerange = user_inputs['filerange'] record.exptime = float(user_inputs['exptime']) record.lnrs = int(user_inputs['lnrs']) record.rdmode = user_inputs['rdmode'] return record
8fc1a31a24ac7663b405074410d1c025fbcd7d62
3,643,460
import itertools def best_wild_hand(hand): """best_hand но с джокерами""" non_jokers = list(filter(lambda x: x[0] != '?', hand)) jokers = filter(lambda x: x[0] == '?', hand) jokers_variations = itertools.product( *[joker_variations(joker) for joker in jokers] ) best_hands = [] for variations in jokers_variations: full_hand = itertools.chain(variations, non_jokers) best_hands.append(best_hand(full_hand)) return max((hand_rank(h), h) for h in best_hands)[1]
86cb58dba0338c481ce516657118cdc20260ebf3
3,643,461
def GetTestMetadata(test_metadata_file=FAAS_ROOT+"/synthetic_workload_invoker/test_metadata.out"): """ Returns the test start time from the output log of SWI. """ test_start_time = None with open(test_metadata_file) as f: lines = f.readlines() test_start_time = lines[0] config_file = lines[1] invoked_actions = int(lines[2][:-1]) print('Invocations by Workload Invoker: ' + str(invoked_actions)) try: return int(test_start_time[:-1]), config_file[:-1] except: logger.error("Error reading the test metadata!") return None, None
668e214452bb100885a8631b5d900eb7ca90e43b
3,643,462
import torch def gen_geo(num_nodes, theta, lambd, source, target, cutoff, seed=None): """Generates a random graph with threshold theta consisting of 'num_nodes' and paths with maximum length 'cutoff' between 'source' adn target. Parameters ---------- num_nodes : int Number of nodes. theta : float Threshold of graph. lambd : float Weights of graph are generated randomly from exp(lambd) distribution. source : int Origin of path. Must be in range(0, num_nodes). target : int Destination of path. Must be in range(0, num_nodes). cutoff : int Maximum path length. seed : int Set random seed if not None. Returns ------- object of type graph Generated graph. """ file_name = './saved_items/graph_N' + str(num_nodes) + '_cutoff' + str(cutoff) if seed != None: np.random.seed(seed) rand.seed(seed) torch.manual_seed(seed) weights = { node: rand.expovariate(lambd) for node in range(num_nodes)} graph = geo_thresh(num_nodes, theta, weight=weights) for (ni, nj) in graph.edges(): graph.edges[ni,nj]['weight'] = weights[ni] + weights[nj] plt.figure(figsize=(10,5)) nx.draw(graph, with_labels=True, font_weight='bold') plt.savefig('./figures/graph_N' + str(num_nodes) + str(".png"), dpi=500) plt.show() save_obj(graph, file_name) paths = nx.all_simple_paths(graph, source=source, target=target, cutoff=cutoff) paths = list(paths) save_obj(paths, file_name + '_paths') print('Paths length: ', len(paths)) return graph
5d3363aab4e13dd8690277453f603fe707c00d41
3,643,463
import re def FilterExceptions(image_name, errors): """Filter out the Application Verifier errors that have exceptions.""" exceptions = _EXCEPTIONS.get(image_name, []) def _HasNoException(error): # Iterate over all the exceptions. for (severity, layer, stopcode, regexp) in exceptions: # And see if they match, first by type. if (error.severity == severity and error.layer == layer and error.stopcode == stopcode): # And then by regexpr match to the trace symbols. for trace in error.trace: if trace.symbol and re.match(regexp, trace.symbol): return False return True filtered_errors = filter(_HasNoException, errors) error_count = len(filtered_errors) filtered_count = len(errors) - error_count if error_count: suffix = '' if error_count == 1 else 's' filtered_errors.append( 'Error: Encountered %d AppVerifier exception%s for %s.' % (error_count, suffix, image_name)) if filtered_count: suffix1 = '' if filtered_count == 1 else 's' suffix2 = '' if len(exceptions) == 1 else 's' filtered_errors.append( 'Warning: Filtered %d AppVerifier exception%s for %s using %d rule%s.' % (filtered_count, suffix1, image_name, len(exceptions), suffix2)) return (error_count, filtered_errors)
37b5febe4da731a426c2cd3ef9d6aeb1f28a802c
3,643,464
from typing import Optional def dim(text: str, reset_style: Optional[bool] = True) -> str: """Return text in dim""" return set_mode("dim", False) + text + (reset() if reset_style else "")
cb180649913760b71b2857b61e264b6a17207433
3,643,465
import sys import os def want_color_output(): """Return ``True`` if colored output is possible/requested and not running in GUI. Colored output can be explicitly requested by setting :envvar:`COCOTB_ANSI_OUTPUT` to ``1``. """ want_color = sys.stdout.isatty() # default to color for TTYs if os.getenv("NO_COLOR") is not None: want_color = False if os.getenv("COCOTB_ANSI_OUTPUT", default="0") == "1": want_color = True if os.getenv("GUI", default="0") == "1": want_color = False return want_color
bda881ef70cfdb9bbb1eb1b81958f837f8bd92ed
3,643,466
def jaccard(list1, list2): """calculates Jaccard distance from two networks\n | Arguments: | :- | list1 (list or networkx graph): list containing objects to compare | list2 (list or networkx graph): list containing objects to compare\n | Returns: | :- | Returns Jaccard distance between list1 and list2 """ intersection = len(list(set(list1).intersection(list2))) union = (len(list1) + len(list2)) - intersection return 1- float(intersection) / union
1056c3d5a592bea9a575c24e947a91968b931000
3,643,467
def default_argument_preprocessor(args): """Return unmodified args and an empty dict for extras""" extras = {} return args, extras
2031dde70dbe54beb933e744e711a0bf8ecaed99
3,643,468
from typing import List from typing import Tuple import os def expand_site_packages(site_packages: List[str]) -> Tuple[List[str], List[str]]: """Expands .pth imports in site-packages directories""" egg_dirs: List[str] = [] for dir in site_packages: if not os.path.isdir(dir): continue pth_filenames = sorted(name for name in os.listdir(dir) if name.endswith(".pth")) for pth_filename in pth_filenames: egg_dirs.extend(_parse_pth_file(dir, pth_filename)) return egg_dirs, site_packages
065c08f772440e2c2626fb785e4b89197fbf429c
3,643,469
import random def early_anomaly(case: pd.DataFrame) -> pd.DataFrame: """ A sequence of 2 or fewer events executed too early, which is then skipped later in the case Parameters ----------------------- case: pd.DataFrame, Case to apply anomaly Returns ----------------------- Case with the applied early anomaly """ case = case.reset_index(drop=True) timestamps = case['timestamp'] sequence_size = random.choice([1, 2]) if sequence_size == 1: original_position = random.choice(range(1, len(case))) activities = case.iloc[[original_position]] case = case.drop(original_position) if original_position == 1: anomaly_position = 0 else: anomaly_position = random.choice(range(0, original_position-1)) description = activities['activity'].values[0] + ' was originally executed at position ' + str(original_position+1) + ' and changed to position ' + str(anomaly_position+1) else: original_position = random.choice(range(1, len(case)-1)) activities = case.iloc[original_position:original_position+2] case = case.drop([original_position, original_position+1]) if original_position == 1: anomaly_position = 0 else: anomaly_position = random.choice(range(0, original_position-1)) description = activities['activity'].values[0] + ' and ' + activities['activity'].values[1] + ' were originally executed at positions ' + str(original_position+1) + ' and ' + str(original_position+2) + ' and changed to positions ' + str(anomaly_position+1) + ' and ' + str(anomaly_position+2) case = pd.concat([case.iloc[:anomaly_position], activities, case.iloc[anomaly_position:]], sort=False).reset_index(drop=True) case['timestamp'] = timestamps case['label'] = 'early' case['description'] = description return case
0c5f0b0fb3336331737bd9f80712176476110ac9
3,643,470
import os from sys import version def get_package_version(): """ :returns: package version without importing it. """ base = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(base, "gotalk/__init__.py")) as initf: for line in initf: m = version.match(line.strip()) if not m: continue return ".".join(m.groups()[0].split(", "))
8dafe13f12d9c4c50139250aacef92ab406bfe76
3,643,471
def parse_cmd(script, *args): """Returns a one line version of a bat script """ if args: raise Exception('Args for cmd not implemented') # http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/cmd.mspx?mfr=true oneline_cmd = '&&'.join(script.split('\n')) oneline_cmd = 'cmd.exe /c "%s"' % oneline_cmd return oneline_cmd
b3355b20af2ca1ab2e996643ae0918a2d387760f
3,643,472
def expected_inheritance(variant_obj): """Gather information from common gene information.""" manual_models = set() for gene in variant_obj.get('genes', []): manual_models.update(gene.get('manual_inheritance', [])) return list(manual_models)
29bf223249e29942803cef8468dbd8bd04979e81
3,643,473
def player_stats_game(data) -> defaultdict: """Individual Game stat parser. Directs parsing to the proper player parser (goalie or skater). Receives the player_id branch. Url.GAME Args: data (dict): dict representing JSON object. Returns: defaultdict: Parsed Data. """ # if the stats dict is empty it means they're scratched if not data['stats']: return None if data['position']['abbreviation'] == 'G': return goalie_stats_game(data['stats']['goalieStats']) else: return skater_stats_game(data['stats']['skaterStats'])
e39e4e9fb4a3d06421639e9466d29724318484ef
3,643,474
def about(request): """ View function for about page """ return render( request, 'about.html', )
5bf7a52de1218718041ec7a05a749c623e19074e
3,643,475
def getTimeDeltaFromDbStr(timeStr: str) -> dt.timedelta: """Convert db time string in reporting software to time delta object Args: timeStr (str): The string that represents time, like 14:25 or 15:23:45 Returns: dt.timedelta: time delta that has hours and minutes components """ if pd.isnull(timeStr): return dt.timedelta(seconds=0) elif not(':' in timeStr): print('could parse time string {0}'.format(timeStr)) return dt.timedelta(seconds=0) else: try: timeSegs = timeStr.split(':') timeSegs = timeSegs[0:2] return dt.timedelta(hours=int(timeSegs[0]), minutes=int(timeSegs[1])) except: print('could parse time string {0}'.format(timeStr)) return dt.timedelta(seconds=0)
66a78192e6cbe5240a9131c2b18e4a42187a6024
3,643,476
def colorBool(v) -> str: """Convert True to 'True' in green and False to 'False' in red """ if v: return colored(str(v),"green") else: return colored(str(v),"red")
8c196bccc5bb1970cc752a495117bcc74ed4f8f6
3,643,477
from typing import List def bootstrap( tokens: List[str], measure: str = "type_token_ratio", window_size: int = 3, ci: bool = False, raw=False, ): """calculate bootstrap for lex diversity measures as explained in Evert et al. 2017. if measure='type_token_ratio' it calculates standardized type-token ratio :param ci: additionally calculate and return the confidence interval returns a tuple :param raw: return the raw results """ results = [] measures = dict( type_token_ratio=type_token_ratio, guiraud_r=guiraud_r, herdan_c=herdan_c, dugast_k=dugast_k, maas_a2=maas_a2, dugast_u=dugast_u, tuldava_ln=tuldava_ln, brunet_w=brunet_w, cttr=cttr, summer_s=summer_s, sichel_s=sichel_s, michea_m=michea_m, honore_h=honore_h, entropy=entropy, yule_k=yule_k, simpson_d=simpson_d, herdan_vm=herdan_vm, hdd=hdd, orlov_z=orlov_z, mtld=mtld, ) # tl_vs: txt_len, vocab_size # vs_fs: vocab_size, freq_spectrum # tl_vs_fs: txt_len, vocab_size, freq_spectrum # tl_fs: txt_len, freq_spectrum # t: tokens classes = dict( tl_vs=( "type_token_ratio", "guiraud_r", "herdan_c", "dugast_k", "maas_a2", "dugast_u", "tuldava_ln", "brunet_w", "cttr", "summer_s", ), vs_fs=("sichel_s", "michea_m"), tl_vs_fs=("honore_h", "herdan_vm", "orlov_z"), tl_fs=("entropy", "yule_k", "simpson_d", "hdd"), t=("mtld",), ) measure_to_class = {m: c for c, v in classes.items() for m in v} func = measures[measure] cls = measure_to_class[measure] for i in range(int(len(tokens) / window_size)): chunk = tokens[i * window_size : (i * window_size) + window_size] txt_len, vocab_size, freq_spectrum = preprocess(chunk, fs=True) if cls == "tl_vs": result = func(txt_len, vocab_size) elif cls == "vs_fs": result = func(vocab_size, freq_spectrum) elif cls == "tl_vs_fs": result = func(txt_len, vocab_size, freq_spectrum) elif cls == "tl_fs": result = func(txt_len, freq_spectrum) elif cls == "t": result = func(chunk) results.append(result) if raw: return results if ci: return (np.mean(results), _sttr_ci(results)) return np.mean(results)
d86cff5edd61698b1adee14a5c2fb800b4b76608
3,643,478
def by_label(move_data, value, label_name, filter_out=False, inplace=False): """ Filters trajectories points according to specified value and collum label. Parameters ---------- move_data : dataframe The input trajectory data value : The type_ of the feature values to be use to filter the trajectories Specifies the value used to filter the trajectories points label_name : String Specifes the label of the column used in the filtering filter_out : boolean, optional(false by default) If set to True, it will return trajectory points with feature value different from the value specified in the parameters The trajectories points with the same feature value as the one especifed in the parameters. inplace : boolean, optional(false by default) if set to true the original dataframe will be altered to contain the result of the filtering, otherwise a copy will be returned. Returns ------- move_data : dataframe or None Returns dataframe with trajectories points filtered by label. """ try: filter_ = move_data[label_name] == value if filter_out: filter_ = ~filter_ return move_data.drop(index=move_data[~filter_].index, inplace=inplace) except Exception as e: raise e
3d772f741539009b756744539f4a524e6ad402ea
3,643,479
import numpy def make_pyrimidine(residue, height = 0.4, scale = 1.2): """Creates vertices and normals for pyrimidines:Thymine Uracil Cytosine""" atoms = residue.atoms names = [name.split("@")[0] for name in atoms.name] idx=names.index('N1'); N1 = numpy.array(atoms[idx].coords) idx=names.index('C2'); C2 = numpy.array(atoms[idx].coords) idx=names.index('N3'); N3 = numpy.array(atoms[idx].coords) idx=names.index('C4'); C4 = numpy.array(atoms[idx].coords) idx=names.index('C5'); C5 = numpy.array(atoms[idx].coords) idx=names.index('C6'); C6 = numpy.array(atoms[idx].coords) N1_C2 = C2-N1 N1_C6 = C6-N1 C2_C6 = height*norm(C6-C2) normal = height*numpy.array(crossProduct(N1_C2, N1_C6, normal=True)) center = (N1+C2+N3+C4+C5+C6)/6.0 vertices = numpy.zeros((14,3), float) vertices[0] = scale*(C2 - normal - center) + center vertices[1] = scale*(N3 - normal - center) + center vertices[2] = scale*(C4 - normal - center) + center vertices[3] = scale*(C5 - normal - center) + center vertices[4] = scale*(C6 - normal - center) + center vertices[5] = scale*(C2 + normal - center) + center vertices[6] = scale*(N3 + normal - center) + center vertices[7] = scale*(C4 + normal - center) + center vertices[8] = scale*(C5 + normal - center) + center vertices[9] = scale*(C6 + normal - center) + center vertices[10] = scale*(N1 - C2_C6 - normal - center) + center vertices[11] = scale*(N1 - C2_C6 + normal - center) + center vertices[12] = scale*(N1 + C2_C6 + normal - center) + center vertices[13] = scale*(N1 + C2_C6 - normal - center) + center faces = numpy.array([[13,4,3,2,1,0,10], [11,5,6,7,8,9,12], [0,5,11,10,10,10,10], [1,6,5,0,0,0,0,], [2,7,6,1,1,1,1], [3,8,7,2,2,2,2], [4,9,8,3,3,3,3], [13,12,9,4,4,4,4]]) return vertices, faces
eac8e9bd0cc6abeefa5b8a6bad299ff6a0c6b9d8
3,643,480
def get_props(filepath, m_co2=22, m_poly=2700/123, N_A=6.022E23, sigma_co2=2.79E-8, sort=False): """ Computes important physical properties from the dft.input file, such as density of CO2 in the CO2-rich phase, solubility of CO2 in the polyol-rich phase, and specific volume of the polyol-rich phase. The dft.input file is structured as: p \t gsrho1b \t gsrho1a \t 10^-gsrho2b \t gsrho2a. PARAMETERS ---------- filepath : string Filepath to file containing densities and pressures (usually dft.input) m_co2 : float mass of one bead of CO2 in PC-SAFT model [amu/bead] (= Mw / N) m_poly : float mass of one bead of polyol in PC-SAFT model [amu/bead] (= Mw / N) N_A : float Avogadro's number (molecules per mol) sigma_co2 : float sigma parameter for co2 [cm] sort : bool If True, sorts solubility data in terms of increasing pressure RETURNS ------- p : list of floats pressures corresponding to the solubilities [MPa] props : tuple of lists of floats Tuple of physical properties calculated (lists of floats): rho_co2 : density of CO2 in CO2-rich phase [g/mL] solub : solubility of CO2 in polyol-rich phase [w/w] spec_vol : specific volume of polyol-rich phase [mL/g] """ # loads data data = np.genfromtxt(filepath, delimiter='\t') # extracts pressure [MPa] from first column p = data[:,0] # extracts the density of CO2 in the co2-rich phase [beads/sigma^3] rho_co2_v = data[:,1] # extracts the density of CO2 in the polyol-rich phase [beads/sigma^3] rho_co2_l = data[:,2] # extracts the density of polyol in the polyol-rich phase [beads/sigma^3] rho_poly_l = data[:,4] # conversions from beads/sigma^3 to g/mL conv_co2 = m_co2/N_A/sigma_co2**3 conv_poly = m_poly/N_A/sigma_co2**3 # computes density of CO2 in the CO2-rich phase [g/mL] rho_co2 = rho_co2_v*conv_co2 # computes solubility of CO2 in the polyol-rich phase [w/w] solub = rho_co2_l*conv_co2 / (rho_co2_l*conv_co2 + rho_poly_l*conv_poly) # computes specific volume of the polyol-rich phase [mL/g] spec_vol = 1 / (rho_co2_l*conv_co2 + rho_poly_l*conv_poly) # sorts data if requested if sort: inds_sort = np.argsort(p) p = p[inds_sort] rho_co2 = rho_co2[inds_sort] solub = solub[inds_sort] spec_vol = spec_vol[inds_sort] props = (rho_co2, solub, spec_vol) return p, props
2aec573795a40c6c95e19ea9ae531abca47128e8
3,643,481
def get_genotype(chrom, rsid): """ """ geno_path = ('/home/hsuj/lustre/geno/' 'CCF_1000G_Aug2013_Chr{0}.dose.double.ATB.RNASeq_MEQTL.txt') geno_gen = pd.read_csv(geno_path.format(str(chrom)), sep=" ", chunksize = 10000) for i in geno_gen: if rsid in i.index: break else: pass return(i)
6269aace777e5870e827152158ab70b73a44f401
3,643,482
import time def task_dosomething(storage): """ Task that gets launched to handle something in the background until it is completed and then terminates. Note that this task doesn't return until it is finished, so it won't be listening for Threadify pause or kill requests. """ # An important task that we want to run in the background. for i in range(10): print(i, end="") time.sleep(1) return False
9eabf3977c53932de8d775c21e4a1209003e0892
3,643,483
def highway(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu, scope='Highway'): """Highway Network (cf. http://arxiv.org/abs/1505.00387). t = sigmoid(Wy + b) z = t * g(Wy + b) + (1 - t) * y where g is nonlinearity, t is transform gate, and (1 - t) is carry gate. """ with tf.variable_scope(scope): for idx in xrange(num_layers): g = f(linear(input_, size, scope='highway_lin_%d' % idx)) t = tf.sigmoid(linear(input_, size, scope='highway_gate_%d' % idx) + bias) output = t * g + (1. - t) * input_ input_ = output return output
dd90cd6107d5d69596c18d46bbef990cec8b1112
3,643,484
import functools def convert_to_entry(func): """Wrapper function for converting dicts of entries to HarEnrty Objects""" @functools.wraps(func) def inner(*args, **kwargs): # Changed to list because tuple does not support item assignment changed_args = list(args) # Convert the dict (first argument) to HarEntry if isinstance(changed_args[0], dict): changed_args[0] = HarEntry(changed_args[0]) return func(*tuple(changed_args), **kwargs) return inner
a5be9b430a47cb9c0c448e8ba963538fd6a435dc
3,643,485
def transform(record: dict, key_ref: dict, country_ref: pd.DataFrame, who_coding: pd.DataFrame, no_update_phrase: pd.DataFrame): """ Apply transformations to OXCGRT records. Parameters ---------- record : dict Input record. key_ref : dict Reference for key mapping. country_ref : pd.DataFrame Reference for WHO accepted country names. who_coding : pd.DataFrame Reference for WHO coding. no_update_phrase : pd.DataFrame Reference for "no update" phrases. Returns ------- dict Record with transformations applied. """ # 1. generator function of new record with correct keys (shared) new_record = utils.generate_blank_record() # 2. replace data in new record with data from old record using column # reference (shared) record = utils.apply_key_map(new_record, record, key_ref) # 3. Assign unique ID (shared) # record = utils.assign_id(record) if record["prov_measure"] == "H8_Protection of elderly people": return None # 4. Handle date formatting record = utils.parse_date(record) # 8. replace sensitive country names record = utils.replace_sensitive_regions(record) # shift areas that should be countries. record = utils.replace_country(record, 'United States', 'Virgin Islands') # 7. Make manual country name changes record = utils.replace_conditional(record, 'country_territory_area', 'Virgin Islands', 'US Virgin Islands') record = utils.replace_conditional(record, 'country_territory_area', 'United States Virgin Islands', 'US Virgin Islands') record = utils.replace_conditional(record, 'country_territory_area', 'Eswatini', 'Swaziland') record = utils.replace_conditional(record, 'country_territory_area', 'South Korea', 'Korea') # 9. assign ISO code record['iso'] = countrycode(codes=record['country_territory_area'], origin='country_name', target='iso3c') # 10. check missing ISO check.check_missing_iso(record) # Remove records where there is no data in prov_subcategory if record['prov_subcategory'] == 0: return(None) # Removes information in flag variables for now record['prov_subcategory'] = int(record['prov_subcategory']) # 11. Join WHO accepted country names (shared) record = utils.assign_who_country_name(record, country_ref) record = financial_measures(record) # 12. Join who coding from lookup (shared) record = utils.assign_who_coding(record, who_coding) # 13. check for missing WHO codes (shared) check.check_missing_who_code(record) # 16. Add WHO PHSM admin_level values record = utils.add_admin_level(record) record = utils.remove_tags(record) # 17. Remove update records record = assign_comment_links(record) # Filter out records with "no update" phrases record = label_update_phrase(record, list(no_update_phrase['phrase'])) return(record)
2d115f8d64731c5ca88807845d09085b4f07acfd
3,643,486
def hc_genes( input_gene_expression: "gene expression data filename (.gct file) where rows are genes and columns are samples", clustering_type: "single or consensus -- Only single is suported at the moment", distance_metric: "the function to be used when comparing the distance/similarity of the rows in the " "input_gene_expression dataset", file_basename: "the name to use when naming output files" = 'HC_out', clusters_to_highlight: "how many clusters to highlight in the dendrogram" = None): """ Perform hierarchical clustering to group genes with similar expression profile. :param input_gene_expression: str; gene expression data filename (.gct file) where rows are genes and columns are samples :param clustering_type: str; single or consensus :param distance_metric: str; the function to be used when comparing the distance/similarity of the rows in the input_gene_expression dataset :param file_basename: str; the name to use when naming output files :param clusters_to_highlight: int; how many clusters to highlight in the dendrogram :return: object; Sklearn's AgglomerativeClustering fitted model """ print("Currenty clustering_type is being ignored, only 'single' is supported.") pwd = '.' gct_name = input_gene_expression col_distance_metric = 'No_column_clustering' output_distances = False row_distance_metric = distance_metric clustering_method = 'average' output_base_name = file_basename row_normalization = False col_normalization = False row_centering = 'Mean' col_centering = 'Mean' custom_plot = 'Genes' show = True # print("This are the parameters to be used (for debugging purposes)") # print(""" # pwd = '.' # gct_name = {gct_name} # col_distance_metric = {col_distance_metric} # output_distances = {output_distances} # row_distance_metric = {row_distance_metric} # clustering_method = {clustering_method} # output_base_name = {output_base_name} # row_normalization = {row_normalization} # col_normalization = {col_normalization} # row_centering = {row_centering} # col_centering = {col_centering} # """.format( # gct_name=gct_name, col_distance_metric=col_distance_metric, # output_distances=str(output_distances), # row_distance_metric=row_distance_metric, clustering_method=clustering_method, # output_base_name=output_base_name, # row_normalization=str(row_normalization), col_normalization=str(col_normalization), # row_centering=row_centering, col_centering=col_centering # ) # ) print("Now we will start performing hierarchical clustering, this may take a little while.") col_model, row_model = HierarchicalClustering(pwd, gct_name, col_distance_metric, row_distance_metric, clustering_method, output_base_name, row_normalization, col_normalization, row_centering, col_centering, output_distances, custom_plot, clusters_to_highlight, show) print("Done with Hierarchical Clustering!") return row_model
3c0a6345f21a6387e215e15b72a2e933d2586fd3
3,643,487
from google.cloud import vision import io def detect_text(path): """Detects text in the file.""" client = vision.ImageAnnotatorClient() with io.open(path, 'rb') as image_file: content = image_file.read() image = vision.Image(content=content) response = client.text_detection(image=image) texts = response.text_annotations for text in texts: return text.description if response.error.message: raise Exception( '{}\nFor more info on error messages, check: ' 'https://cloud.google.com/apis/design/errors'.format( response.error.message))
6dea35d84f538322eed74c9c7c1f9d7a4882dd33
3,643,488
def file_util_is_ext(path, ext): """判断是否指定后缀文件,ext不包含点""" if file_util_get_ext(path) == ext: return True else: return False
27389af32333036b998a421ed35952705092ade6
3,643,489
def load_tract(repo, tract, patches=None, **kwargs): """Merge catalogs from forced-photometry coadds across available filters. Parameters -- tract: int Tract of sky region to load repo: str File location of Butler repository+rerun to load. patches: list of str List of patches. If not specified, will default to '0,0'--'7,7'. Returns -- Pandas DataFrame of merged catalog """ butler = Butler(repo) if patches is None: # Extract the patches for this tract from the skymap skymap = butler.get(datasetType='deepCoadd_skyMap') patches = ['%d,%d' % patch.getIndex() for patch in skymap[tract]] merged_tract_cat = pd.DataFrame() for patch in patches: this_patch_merged_cat = load_patch(butler, tract, patch, **kwargs) merged_tract_cat.append(this_patch_merged_cat) return merged_tract_cat
f989c947dec96426b15219ab224364c96f65d1fb
3,643,490
from datetime import datetime def calculate_delta(arg1, arg2): """ Calculates and returns a `datetime.timedelta` object representing the difference between arg1 and arg2. Arguments must be either both `datetime.date`, both `datetime.time`, or both `datetime.datetime`. The difference is absolute, so the order of the arguments doesn't matter. """ if arg1 > arg2: arg1, arg2 = arg2, arg1 if isinstance(arg1, datetime.date) and isinstance(arg1, datetime.date): return ( datetime.datetime(arg2.year, arg2.month, arg2.day) - datetime.datetime(arg1.year, arg1.month, arg1.day) ) if isinstance(arg1, datetime.time) and isinstance(arg1, datetime.time): return ( datetime.datetime(1, 1, 1, arg2.hour, arg2.minute, arg1.second) - datetime.datetime(1, 1, 1, arg1.hour, arg1.minute, arg1.second) ) if isinstance(arg1, datetime.datetime) and isinstance(arg1, datetime.datetime): return arg2 - arg1 raise TypeError( f'Cannot calculate delta between values of types ' f'{type(arg1)} and {type(arg2)} because they are not equivalent' )
f6b3f0b86bd73be7d1702ba8893cd70d99b0b321
3,643,491
import yaml def create_model_config(model_dir: str, config_path: str = None): """Creates a new configuration file in the model directory and returns the config.""" # read the config file config_content = file_io.read_file_to_string(root_dir(config_path)) # save the config file to the model directory write_model_config(model_dir, config_content) # load config config = yaml.safe_load(config_content) return config
c695ee36b6dec24ef17179adbf40e81aff708082
3,643,492
def get_deployment_physnet_mtu(): """Retrieves global physical network MTU setting. Plugins should use this function to retrieve the MTU set by the operator that is equal to or less than the MTU of their nodes' physical interfaces. Note that it is the responsibility of the plugin to deduct the value of any encapsulation overhead required before advertising it to VMs. Note that this function depends on the global_physnet_mtu config option being registered in the global CONF. :returns: The global_physnet_mtu from the global CONF. """ return cfg.CONF.global_physnet_mtu
161e7f87e2a68643f81e2b62061d65251a1249de
3,643,493
def _path(path): """Helper to build an OWFS path from a list""" path = "/" + "/".join(str(x) for x in path) return path.encode("utf-8") + b"\0"
d38937deb459bb9bf393402efc31a90a285d4a6d
3,643,494
import time def current_milli_time(): """Return the current time in milliseconds""" return int(time.time() * 1000)
66605d2e23df2c428c70af75247e2b22a2795363
3,643,495
def function_exists(function_name, *args, **kwargs): """ Checks if a function exists in the catalog """ # TODO (dmeister): This creates an SQL injection, but it should not # be a problem for this purpose. function_exists_text_count = PSQL.run_sql_command( "SELECT 'function exists' FROM pg_proc WHERE proname='%s'" % (function_name), *args, **kwargs).count("function exists") return function_exists_text_count == 2
bf351461b4110349eea1734ef9b482435e946a4e
3,643,496
from typing import Callable from typing import Sequence from typing import Dict from typing import Optional def _loo_jackknife( func: Callable[..., NDArray], nobs: int, args: Sequence[ArrayLike], kwargs: Dict[str, ArrayLike], extra_kwargs: Optional[Dict[str, ArrayLike]] = None, ) -> NDArray: """ Leave one out jackknife estimation Parameters ---------- func : callable Function that computes parameters. Called using func(*args, **kwargs) nobs : int Number of observation in the data args : list List of positional inputs (arrays, Series or DataFrames) kwargs : dict List of keyword inputs (arrays, Series or DataFrames) Returns ------- ndarray Array containing the jackknife results where row i corresponds to leaving observation i out of the sample """ results = [] for i in range(nobs): items = np.r_[0:i, i + 1 : nobs] args_copy = [] for arg in args: if isinstance(arg, (pd.Series, pd.DataFrame)): args_copy.append(arg.iloc[items]) else: args_copy.append(arg[items]) kwargs_copy = {} for k, v in kwargs.items(): if isinstance(v, (pd.Series, pd.DataFrame)): kwargs_copy[k] = v.iloc[items] else: kwargs_copy[k] = v[items] if extra_kwargs is not None: kwargs_copy.update(extra_kwargs) results.append(func(*args_copy, **kwargs_copy)) return np.array(results)
83e39e97e08ef4d16f2c48a084c5ed40d0fbc0ad
3,643,497
from Bio.SeqIO.QualityIO import solexa_quality_from_phred def _fastq_illumina_convert_fastq_solexa(in_handle, out_handle, alphabet=None): """Fast Illumina 1.3+ FASTQ to Solexa FASTQ conversion (PRIVATE). Avoids creating SeqRecord and Seq objects in order to speed up this conversion. """ # Map unexpected chars to null mapping = "".join([chr(0) for ascii in range(0, 64)] + [chr(64 + int(round(solexa_quality_from_phred(q)))) for q in range(0, 62 + 1)] + [chr(0) for ascii in range(127, 256)]) assert len(mapping) == 256 return _fastq_generic(in_handle, out_handle, mapping)
06422e23bb005756742207e63ec1d8dc603ba5b2
3,643,498
def pull_branch(c: InvokeContext, repo: Repo, directory: str, branch_name: str) -> CommandResult: """ Change to the repo directory and pull master. :argument c: InvokeContext :argument repo: Repo the repo to pull :argument directory: str the directory to change to :argument branch_name: str the branch to pull """ project_path = _generate_path(directory, repo.folder_name) cmd = f"cd {project_path} && git checkout {branch_name} && git pull" return _run_command(c, cmd)
5c21bdbbe91f5f82b40645a3449d373f6c464717
3,643,499