content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def verifica_cc(numero): """verifica_cc(numero): int -> tuple Funcao que verifica o numero do cartao, indicando a categoria e a rede emissora""" numero_final = str(numero) if luhn_verifica(numero_final) == True: categor = categoria(numero_final) rede_cartao = valida_iin(numero_final) if rede_cartao == "": return "cartao invalido" else: return (categor, rede_cartao) else: return "cartao invalido"
f6d3501b8154c05058006575f8aa33c228b9ade6
3,642,200
def create_security_group(stack, name, rules=()): """Add EC2 Security Group Resource.""" ingress_rules = [] for rule in rules: ingress_rules.append( SecurityGroupRule( "{0}".format(rule['name']), CidrIp=rule['cidr'], FromPort=rule['from_port'], ToPort=rule['to_port'], IpProtocol=rule['protocol'], ) ) return stack.stack.add_resource( SecurityGroup( '{0}SecurityGroup'.format(name), GroupDescription="{0} Security Group".format(name), SecurityGroupIngress=ingress_rules, VpcId=Ref(stack.vpc), ))
e4d2b81fc1c3b0b3231725aa8757ea644d2efdf6
3,642,201
from typing import List import tqdm def features_targets_and_externals( df: pd.DataFrame, region_ordering: List[str], id_col: str, time_col: str, time_encoder: OneHotEncoder, weather: Weather_container, time_interval: str, latitude: str, longitude: str, ): """ Function that computes the node features (outflows), target values (next step prediction) and external data such as time_encoding and weather information Args: df (pd.DataFrame): [description] region_ordering (List[str]): [description] id_col (str): [description] time_col (str): [description] time_encoder (OneHotEncoder): [description] weather (Weather_container): [description] Returns: [type]: [description] """ id_grouped_df = df.groupby(id_col) lat_dict = dict() lng_dict = dict() for node in region_ordering: grid_group_df = id_grouped_df.get_group(node) lat_dict[node] = grid_group_df[latitude].mean() lng_dict[node] = grid_group_df[longitude].mean() grouped_df = df.groupby([time_col, id_col]) dt_range = pd.date_range(df[time_col].min(), df[time_col].max(), freq=time_interval) node_inflows = np.zeros((len(dt_range), len(region_ordering), 1)) lat_vals = np.zeros((len(dt_range), len(region_ordering))) lng_vals = np.zeros((len(dt_range), len(region_ordering))) targets = np.zeros((len(dt_range) - 1, len(region_ordering))) # arrays for external data weather_external = np.zeros((len(dt_range), 4)) num_cats = 0 for cats in time_encoder.categories_: num_cats += len(cats) time_external = np.zeros((len(dt_range), num_cats)) # Loop through every (timestep, node) pair in dataset. For each find number of outflows and set as feature # also set the next timestep for the same node as the target. for t, starttime in tqdm(enumerate(dt_range), total=len(dt_range)): for i, node in enumerate(region_ordering): query = (starttime, node) try: group = grouped_df.get_group(query) node_inflows[t, i] = len(group) except KeyError: node_inflows[t, i] = 0 lat_vals[t, i] = lat_dict[node] lng_vals[t, i] = lng_dict[node] # current solution: # The target to predict, is the number of inflows at next timestep. if t > 0: targets[t - 1, i] = node_inflows[t, i] time_obj = group[time_col].iloc[0] time_external[t, :] = time_encoder.transform( np.array([[time_obj.hour, time_obj.weekday(), time_obj.month]]) ).toarray() start_time_dt = pd.Timestamp(starttime).to_pydatetime() weather_dat = weather.get_weather_df(start=start_time_dt, end=start_time_dt + timedelta(hours=1)) weather_dat = np.nan_to_num(weather_dat, copy=False, nan=0.0) weather_external[t, :] = weather_dat time_external = time_external[:-1, :] # normalize weather features weather_external = (weather_external - weather_external.mean(axis=0)) / (weather_external.std(axis=0) + 1e-6) weather_external = weather_external[:-1, :] X = node_inflows[:-1, :, :] lng_vals = lng_vals[:-1, :] lat_vals = lat_vals[:-1, :] feature_scaler = StandardScaler() feature_scaler.fit(X[:, :, 0]) target_scaler = StandardScaler() target_scaler.fit(targets) return X, lat_vals, lng_vals, targets, time_external, weather_external, feature_scaler, target_scaler
c9fc9fc210407ec596facda1bc43952ce9c6b98a
3,642,202
def main(argv=None): """ Execute the application CLI. Arguments are taken from sys.argv by default. """ args = _cmdline(argv) config.load(args.config) results = get_package_list(args.search_term) results = sorted(results, key=lambda a: sort_function(a[1]), reverse=True) results_normalized = list() last_result = None for result in results: if result[0] == last_result: continue results_normalized.append(result) last_result = result[0] print('\n'.join(["%s - %s" % (_[0], _[1]) for _ in results_normalized])) return 0
1bfa7c6bc8181b32859089b0ac2be8b231882ec5
3,642,203
def transform_child_joint_frame_to_parent_inertial_frame(child_body): """Return the homogeneous transform from the child joint frame to the parent inertial frame.""" parent_joint = child_body.parent_joint parent = child_body.parent_body if parent_joint is not None and parent.inertial is not None: h_p_c = parent_joint.homogeneous # from parent to child link/joint frame h_c_p = get_inverse_homogeneous(h_p_c) # from child to parent link/joint frame h_p_pi = parent.inertial.homogeneous # from parent link/joint frame to inertial frame h_c_pi = h_c_p.dot(h_p_pi) # from child link/joint frame to parent inertial frame return h_c_pi
0ab8761ef40101368fb3f2b657c329cd8cf5cf2b
3,642,204
def team_to_repos(api, no_repos, organization): """Create a team_to_repos mapping for use in _add_repos_to_teams, anc create each team and repo. Return the team_to_repos mapping. """ num_teams = 10 # arrange team_names = ["team-{}".format(i) for i in range(num_teams)] repo_names = ["some-repo-{}".format(i) for i in range(num_teams)] for name in team_names: organization.create_team(name, permission="pull") for name in repo_names: organization.create_repo(name) team_to_repos = { team_name: [repo_name] for team_name, repo_name in zip(team_names, repo_names) } return team_to_repos
390da146c3f96c554f9194f8551a066eec535533
3,642,205
def box_minus(plus_transform: pin.SE3, minus_transform: pin.SE3) -> np.ndarray: """ Compute the box minus between two transforms: .. math:: T_1 \\boxminus T_2 = \\log(T_1 \\cdot T_2^{-1}) This operator allows us to think about orientation "differences" as similarly as possible to position differences, but mind the frames! Its formula has two use cases, depending on whether the common frame :math:`C` between the two transforms is their source or their target. When the common frame is the target, denoting by :math:`T_{CP}` the transform from frame :math:`P` (source) to frame :math:`C` (target), the resulting twist is expressed in the target frame: .. math:: {}_C \\xi_{CM} = T_{CP} \\boxminus T_{CM} When the common frame is the source frame, denoting by :math:`T_{MC}` the transform from frame :math:`C` (source) to frame :math:`M` (target), the resulting twist is expressed in the target frame of the transform on the right-hand side of the operator: .. math:: -{}_M \\xi_{M} = T_{PC} \\boxminus T_{MC} Args: plus_transform: Transform :math:`T_1` on the left-hand side of the box minus operator. minus_transform: Transform :math:`T_2` on the right-hand side of the box minus operator. Returns: In the first case :math:`T_{CP} \\boxminus T_{CM}`, the outcome is a spatial twist :math:`{}_C \\xi_{CM}` expressed in the common frame :math:`C`. In the second case :math:`T_{PC} \\boxminus T_{MC}`, the outcome is a body twist :math:`-{}_M \\xi_{CM}` (mind the unitary minus). Note: Prefer using :func:`pink.tasks.utils.body_box_minus` to calling this function in the second use case :math:`T_{PC} \\boxminus T_{MC}`. """ diff_array = plus_transform.act(minus_transform.inverse()) twist: np.ndarray = pin.log(diff_array).vector return twist
838f5e8b4f91450c311c72d4526e4c8fd3c9d6f7
3,642,206
import struct def padandsplit(message): """ returns a two-dimensional array X[i][j] of 32-bit integers, where j ranges from 0 to 16. First pads the message to length in bytes is congruent to 56 (mod 64), by first adding a byte 0x80, and then padding with 0x00 bytes until the message length is congruent to 56 (mod 64). Then adds the little-endian 64-bit representation of the original length. Finally, splits the result up into 64-byte blocks, which are further parsed as 32-bit integers. """ origlen = len(message) padlength = 64 - ((origlen - 56) % 64) # minimum padding is 1! message += b"\x80" message += b"\x00" * (padlength - 1) message += struct.pack("<Q", origlen * 8) assert (len(message) % 64 == 0) return [ [ struct.unpack("<L", message[i + j:i + j + 4])[0] for j in range(0, 64, 4) ] for i in range(0, len(message), 64) ]
ea06a3fc91e19ed0dbea6ddcc2ee6d554fb5a40f
3,642,207
import requests def base_put(url_path, content): """ Do a PUT to the REST API """ response = requests.put(url=settings.URL_API + url_path, json=content) return response
dde94c1dba0d8a931a0eae0e8f5ce63d1f5a62a1
3,642,208
def inverse_rotation(theta: float) -> np.ndarray: """ Compute inverse of the 2d rotation matrix that rotates a given vector by theta without use of numpy.linalg.inv and numpy.linalg.solve. Arguments: theta: rotation angle Return: Inverse of the rotation matrix """ rotation_matrix(theta) m = np.zeros((2, 2)) m[0, 0] = (np.cos(theta_rad)) / (diag - offDiag) m[0, 1] = (np.sin(theta_rad)) / (diag - offDiag) m[1, 0] = -(np.sin(theta_rad)) / (diag - offDiag) m[1, 1] = (np.cos(theta_rad)) / (diag - offDiag) return m
732183f7577969a1ecbbd0ee5ed86342c65991fc
3,642,209
import functools def _config_validation_decorator(func): """A decorator used to easily run validations on configs loaded into dicts. Add this decorator to any method that returns the config as a dict. Raises: ValueError: If the configuration fails validation """ @functools.wraps(func) def validation_wrapper(*args, **kwargs): config_dict = func(*args, **kwargs) validate_dict(config_dict) return config_dict return validation_wrapper
1a63254e43c2920d6952105d9860138c395cbf2b
3,642,210
import functools def image_transpose_exif(im): """ https://stackoverflow.com/questions/4228530/pil-thumbnail-is-rotating-my-image Apply Image.transpose to ensure 0th row of pixels is at the visual top of the image, and 0th column is the visual left-hand side. Return the original image if unable to determine the orientation. As per CIPA DC-008-2012, the orientation field contains an integer, 1 through 8. Other values are reserved. Parameters ---------- im: PIL.Image The image to be rotated. """ exif_orientation_tag = 0x0112 exif_transpose_sequences = [ # Val 0th row 0th col [], # 0 (reserved) [], # 1 top left [Image.FLIP_LEFT_RIGHT], # 2 top right [Image.ROTATE_180], # 3 bottom right [Image.FLIP_TOP_BOTTOM], # 4 bottom left [Image.FLIP_LEFT_RIGHT, Image.ROTATE_90], # 5 left top [Image.ROTATE_270], # 6 right top [Image.FLIP_TOP_BOTTOM, Image.ROTATE_90], # 7 right bottom [Image.ROTATE_90], # 8 left bottom ] try: seq = exif_transpose_sequences[im._getexif()[exif_orientation_tag]] except Exception: return im else: return functools.reduce(type(im).transpose, seq, im)
4f166ea59c097e4306bd43db7165e56e8d289b6a
3,642,211
import os def GetFileList(folder, surfixs=".xls,.xlsx"): """ 遍历文件夹查找所有满足后缀的文件 """ surfix = surfixs.split(",") if type(folder) == str: folder = folder.decode('utf-8') p = os.path.abspath(folder) flist = [] if os.path.isdir(p): FindFileBySurfix(flist, p, surfix) else: raise "folder param(%s) is not a real folder" % str(folder) utf8list=[] for it in flist: utf8list.append(it.encode('utf-8')) return utf8list
4b4def62c47335474fe2a4b3e4b6bce341e05bf9
3,642,212
def opt_pore_diameter(elements, coordinates, bounds=None, com=None, **kwargs): """Return optimised pore diameter and it's COM.""" args = elements, coordinates if com is not None: pass else: com = center_of_mass(elements, coordinates) if bounds is None: pore_r = pore_diameter(elements, coordinates, com=com)[0] / 2 bounds = ( (com[0]-pore_r, com[0]+pore_r), (com[1]-pore_r, com[1]+pore_r), (com[2]-pore_r, com[2]+pore_r) ) minimisation = minimize( correct_pore_diameter, x0=com, args=args, bounds=bounds) pored = pore_diameter(elements, coordinates, com=minimisation.x) return (pored[0], pored[1], minimisation.x)
f75a7c4246bc2ad096de309795d61afea78f7c3e
3,642,213
def animate_operators(operators, date): """Main.""" results = [] failures = [] length = len(operators) count = 1 for i in operators: try: i = i.encode('utf-8') except: i = unicode(i, 'utf-8') i = i.encode('utf-8') print(i, count, "/", length) try: output = animate_one_day(i, date) results.append(output) print("success!") output.to_csv("sketches/{}/{}/data/indiv_operators/{}.csv".format(OUTPUT_NAME, DATE, i)) except Exception: failures.append(i) print("failed:") count += 1 return results, failures
d8dd6afdd4a13ab62a4c821bb43050af07fdc455
3,642,214
import warnings import os import json import time def random_sampler(vocs, evaluate_f, executor=None, output_path=None, chunk_size=10, max_samples=100, verbose=None): """ Makes random samples based on vocs """ if verbose is not None: warnings.warn('xopt.cnsga verbose option has been deprecated') toolbox = Toolbox() toolbox.register('evaluate', sampler_evaluate, evaluate_f=evaluate_f) # Logo logger.info(sampler_logo) if not executor: executor = DummyExecutor() logger.info('No executor given. Running in serial mode.') # Setup saving to file if output_path: path = full_path(output_path) assert os.path.exists(path), f'output_path does not exist {path}' def save(data): file = new_date_filename(prefix='sampler-', path=path) with open(file, 'w') as f: json.dump(data, f, ensure_ascii=True, cls=NpEncoder) # , indent=4) logger.info(f'Samples written to: {file}') else: # Dummy save def save(data): pass # Initial batch futures = [executor.submit(toolbox.evaluate, random_settings(vocs)) for _ in range(chunk_size)] # Continuous loop ii = 0 t0 = time.time() done = False results = [] all_results = [] while not done: if ii > max_samples: done = True # Check the status of all futures for ix in range(len(futures)): # Examine a future fut = futures[ix] if not fut.done(): continue # Future is done. results.append(fut.result()) all_results.append(fut.result()) ii += 1 # Submit new job, keep in futures list future = executor.submit(toolbox.evaluate, random_settings(vocs)) futures[ix] = future # output if ii % chunk_size == 0: t1 = time.time() dt = t1 - t0 t0 = t1 logger.info(f'{chunk_size} samples completed in {dt / 60:0.5f} minutes') data = {'vocs': vocs} # Reshape data for k in ['inputs', 'outputs', 'error']: data[k] = [r[k] for r in results] save(data) results = [] # Slow down polling. Needed for MPI to work well. time.sleep(0.001) # Cancel remaining jobs for future in futures: future.cancel() data = {'vocs': vocs} # Reshape data for k in ['inputs', 'outputs', 'error']: data[k] = [r[k] for r in all_results] return data
ff93cd2fabe3b769975645a7f2335727702a079f
3,642,215
import torch def get_span_encoding(key, zero_span_rep=None): """ Input: document key Output: all possible span tuples and their encodings """ instance = reader.text_to_instance(combined_json[key]["sentences"]) instance.index_fields(model.vocab) generator = iterator(instances=[instance]) batch = next(generator) if type(get_map_loc().index) == int: batch = move_to_device(batch, get_map_loc().index) if zero_span_rep is not None: # for debugging assert ( zero_span_rep % 2 == 0 ), "zero_span_rep must be even as it corresponds to concat(endpoint, attended)" shape = list(batch["spans"].shape) shape[-1] = int(zero_span_rep / 2) zeros = torch.zeros(shape) return { "original_text": batch["metadata"][0]["original_text"], "all_spans": batch["spans"], "endpoint_span_embeddings": zeros, "attended_span_embeddings": zeros, "roberta_embeddings": zeros, } output = model.forward(tensor_batch=batch, task_name="coref", for_training=False) reps = { "original_text": batch["metadata"][0]["original_text"], "all_spans": output["all_spans"], "endpoint_span_embeddings": output["endpoint_span_embeddings"], "attended_span_embeddings": output["attended_span_embeddings"], } if include_bert: reps["roberta_embeddings"] = get_bert_reps( combined_json[key]["sentences"], output["all_spans"][0] ) return reps
feff6b3a31471fe31cd2481d3ffcad5a87107371
3,642,216
def add_stocks(letter, page, get_last_page=False): """ goes through each row in table and adds to df if it is a stock returns the appended df """ df = pd.DataFrame() res = req.get(BASE_LINK.format(letter, page)) soup = bs(res.content, 'lxml') table = soup.find('table', {'id': 'CompanylistResults'}) stks = table.findAll('tr') stocks_on_page = (len(stks) - 1) / 2 for stk in stks[1:]: deets = stk.findAll('td') if len(deets) != 7: continue company_name = deets[0].text.strip() ticker = deets[1].text.strip() market_cap = deets[2].text.strip() # 4th entry is blank country = deets[4].text.strip() ipo_year = deets[5].text.strip() subsector = deets[6].text.strip() df = df.append(pd.Series({'company_name': company_name, 'market_cap': market_cap, 'country': country, 'ipo_year': ipo_year, 'subsector': subsector}, name=ticker)) if get_last_page: # get number of pages lastpage_link = soup.find('a', {'id': 'two_column_main_content_lb_LastPage'}) last_page_num = int(lastpage_link['href'].split('=')[-1]) return df, total_num_stocks, last_page_num return df, stocks_on_page
ce86ef68a107fbae8d0028486bef8567dc24c43e
3,642,217
def available_parent_amount_rule(model, pr): """ Each parent has a limited resource budget; it cannot allocate more than that. :param ConcreteModel model: :param int pr: parent resource :return: boolean indicating whether pr is staying within budget """ if model.parent_possible_allocations[pr]: return sum(model.PARENT_AMT[pr, i] for i in model.parent_possible_allocations[pr]) <= model.avail_parent_amt[pr] else: return Constraint.Skip
e1ccc7e9ad4941bfffebefd34217cd58c5bc18e5
3,642,218
def extract_coords(filename): """Extract J2000 coordinates from filename or filepath Parameters ---------- filename : str name or path of file Returns ------- str J2000 coordinates """ # in case path is entered as argument filename = filename.split("/")[-1] if "/" in filename else filename # to check whether declination is positive or negative plus_minus = "+" if "+" in filename else "-" # extracting right acesnsion (ra) and declination(dec) from filename filename = filename.split("_")[0].strip("J").split(plus_minus) ra_extracted = [ "".join(filename[0][0:2]), "".join(filename[0][2:4]), "".join(filename[0][4:]), ] dec_extracted = [ "".join(filename[1][0:2]), "".join(filename[1][2:4]), "".join(filename[1][4:]), ] coordinates = " ".join(ra_extracted) + " " + plus_minus + " ".join(dec_extracted) # return coordinates as a string in HH MM SS.SSS format return coordinates
57f0ca79223116caa770a1dbea2eda84df146855
3,642,219
def exponential(mantissa, base, power, left, right): """Return the exponential signal. The signal's value will be `mantissa * base ^ (power * time)`. Parameters: mantissa: The mantissa, i.e. the scale of the signal base: The exponential base power: The exponential power left: Left bound of the signal right: Rright bound of the signal Returns: ndarray[float]: The values of the signal ndarray[int]: The interval of the signal from left bound to right bound """ n = np.arange(left, right+1, 1) x = mantissa * (base ** (power * n)) return x, n
a2fbd76b6426f600d19eb9caeb4edac88dea9a9c
3,642,220
def get_features(features, featurestore=None, featuregroups_version_dict={}, join_key=None, online=False): """ Gets a list of features (columns) from the featurestore. If no featuregroup is specified it will query hopsworks metastore to find where the features are stored. It will try to construct the query first from the cached metadata, if that fails it will re-try after reloading the cache Example usage: >>> # The API will default to version 1 for feature groups and the project's feature store >>> features = featurestore.get_features(["pagerank", "triangle_count", "avg_trx"], >>> featurestore=featurestore.project_featurestore()) >>> #You can also explicitly define feature group, version, feature store, and join-key: >>> features = featurestore.get_features(["pagerank", "triangle_count", "avg_trx"], >>> featurestore=featurestore.project_featurestore(), >>> featuregroups_version_dict={"trx_graph_summary_features": 1, >>> "trx_summary_features": 1}, join_key="cust_id") Args: :features: a list of features to get from the featurestore :featurestore: the featurestore where the featuregroup resides, defaults to the project's featurestore :featuregroups: (Optional) a dict with (fg --> version) for all the featuregroups where the features resides :featuregroup_version: the version of the featuregroup, defaults to 1 :join_key: (Optional) column name to join on :online: a boolean flag whether to fetch the online feature group or the offline one (assuming that the feature group has online serving enabled) Returns: A dataframe with all the features """ # try with cached metadata try: return core._do_get_features(features, core._get_featurestore_metadata(featurestore, update_cache=update_cache_default), featurestore=featurestore, featuregroups_version_dict=featuregroups_version_dict, join_key=join_key, online=online) # Try again after updating cache except: return core._do_get_features(features, core._get_featurestore_metadata(featurestore, update_cache=True), featurestore=featurestore, featuregroups_version_dict=featuregroups_version_dict, join_key=join_key, online=online)
03cfc250bd921b291ac38fce5beddac3144e65ba
3,642,221
def get_flex_bounds(x, samples, nsig=1): """ Here, we wish to report the distribution of the subchunks 'sample' along with the value of the full sample 'x' So this function will return x, x_lower_bound, x_upper_bound, where the range of the lower and upper bound expresses the standard deviation of the sample distribution, the mean of which is often not aligned with x. """ mean=np.mean(samples); sig=np.std(samples) return [x, nsig*sig+x-mean, nsig*sig+mean-x]
0fb4120307f61aafce902e92a32c66fd9aad91bf
3,642,222
def _parse_multi_header(headers): """ Parse out and return the data necessary for generating ZipkinAttrs. Returns a dict with the following keys: 'trace_id': str or None 'span_id': str or None 'parent_span_id': str or None 'sampled_str': '0', '1', 'd', or None (defer) """ parsed = { "trace_id": headers.get("X-B3-TraceId", None), "span_id": headers.get("X-B3-SpanId", None), "parent_span_id": headers.get("X-B3-ParentSpanId", None), "sampled_str": headers.get("X-B3-Sampled", None), } # Normalize X-B3-Flags and X-B3-Sampled to None, '0', '1', or 'd' if headers.get("X-B3-Flags") == "1": parsed["sampled_str"] = "d" if parsed["sampled_str"] == "true": parsed["sampled_str"] = "1" elif parsed["sampled_str"] == "false": parsed["sampled_str"] = "0" if parsed["sampled_str"] not in (None, "1", "0", "d"): raise ValueError("Got invalid X-B3-Sampled: %s" % parsed["sampled_str"]) for k in ("trace_id", "span_id", "parent_span_id"): if parsed[k] == "": raise ValueError("Got empty-string %r" % k) if parsed["trace_id"] and not parsed["span_id"]: raise ValueError("Got X-B3-TraceId but not X-B3-SpanId") elif parsed["span_id"] and not parsed["trace_id"]: raise ValueError("Got X-B3-SpanId but not X-B3-TraceId") # Handle the common case of no headers at all if not parsed["trace_id"] and not parsed["sampled_str"]: raise ValueError() # won't trigger a log message return parsed
2ac3d0cbee196385e970bcc85827c1a467b5bb3b
3,642,223
import numpy def get_tgimg(img): """ 处理提示图片,提取提示字符 :param img: 提示图片 :type img: :return: 返回原图描边,提示图片按顺序用不同颜色框,字符特征图片列表 :rtype: img 原图, out 特征图片列表(每个字), templets 角度变换后的图 """ imgBW = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) h, w = imgBW.shape _, imgBW = cv2.threshold(imgBW, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img2 = cv2.erode(imgBW, None, iterations=3) img2 = cv2.dilate(img2, None, iterations=3) out = numpy.full((20 + h, 20 + w), 255, numpy.uint8) copy_image(out, 10, 10, img2) out, cnts, hierarchy = cv2.findContours(out, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) rects = [] # cnts[-1] 边框 for cnt in cnts[:-1]: cnt -= 10 x1 = cnt[:, :, 0].min() y1 = cnt[:, :, 1].min() x2 = cnt[:, :, 0].max() y2 = cnt[:, :, 1].max() x1 = 0 if x1 < 0 else x1 y1 = 0 if y1 < 0 else y1 x2 = w - 1 if x2 > w - 1 else x2 y2 = h - 1 if y2 > h - 1 else y2 rects.append((x1, y1, x2, y2)) cv2.drawContours(img, cnt, -1, [0, 0, 255]) # cv2.rectangle(img, (x1, y1), (x2, y2), [0, 0, 255]) rects.sort() out = numpy.full(imgBW.shape, 255, numpy.uint8) x0 = spacing = 3 templets = [] for x1, y1, x2, y2 in rects: imgchar = numpy.full((30, 30), 255, numpy.uint8) tmpl = imgBW[y1:y2 + 1, x1:x2 + 1] if value2 != (max_value2 // 2): tmpl = rotate_image(tmpl, (max_value2 // 2 - value2) * 10) templets.append(tmpl) copy_image(imgchar, 0, (30 - y2 + y1 - 1) // 2, tmpl) copy_image(out, x0, 0, imgchar) x0 += x2 - x1 + 1 + spacing out = cv2.cvtColor(out, cv2.COLOR_GRAY2BGR) i = 0 x0 = spacing for x1, y1, x2, y2 in rects: cv2.rectangle(out, (x0, 0), (x0 + x2 - x1 + 1, 29), COLORS[i]) x0 += x2 - x1 + 1 + spacing i += 1 return img, out, templets
5f48e2b639dd3027e6463b1a99a8b7c13c043f88
3,642,224
def brand_profitsharing_order_query(self, transaction_id, out_order_no, sub_mchid): """查询连锁品牌分账结果 :param transaction_id: 微信支付订单号,示例值:'4208450740201411110007820472' :param out_order_no: 商户分账单号,只能是数字、大小写字母_-|*@,示例值:'P20150806125346' :param sub_mchid: 子商户的商户号,由微信支付生成并下发。示例值:'1900000109' """ if sub_mchid: path = '/v3/brand/profitsharing/orders?sub_mchid=%s' % sub_mchid else: raise Exception('sub_mchid is not assigned.') if transaction_id and out_order_no: path = '%s&transaction_id=%s&out_order_no=%s' % (transaction_id, out_order_no) else: raise Exception('transaction_id or out_order_no is not assigned.') return self._core.request(path)
cb1af072f2b4f94f632817baff6cdfea66110873
3,642,225
def get_controller_from_module(module, cname): """ Extract classes that inherit from BaseController """ if hasattr(module, '__controller__'): controller_classname = module.__controller__ else: controller_classname = cname[0].upper() + cname[1:].lower() + 'Controller' controller_class = module.__dict__.get(controller_classname, None) return controller_class
b450105f6ec38a03fe461c5d9c07c4652da0efd3
3,642,226
def exp(d: D) -> NumDict: """Compute the base-e exponential of d.""" return d.exp()
a4d5baf6bdfadb48add80096bb4d167f01572b69
3,642,227
def Main(operation, args): """Supports 2 operations 1. Consulting the existing data (get) > get ["{address}"] 2. Inserting data about someone else (certify) > certify ["{address}","{hash}"] """ if len(args) == 0: Log('You need to provide at least 1 parameter - [address]') return 'Error: You need to provide at least 1 parameter - [address]' address = args[0] if len(address) != 20: Log('Wrong address size') return 'Error: Wrong address size' if operation == 'get': return get_certs(address) elif operation == 'certify': # Caller cannot add certifications to his address if CheckWitness(address): Log('You cannot add certifications for yourself') return 'Error: You cannot add certifications for yourself' if 3 != len(args): Log('Certify requires 3 parameters - [address] [caller_address] [hash]') return 'Error: Certify requires 3 parameters - [address] [caller_address] [hash]' caller_address = args[1] # To make sure the address is from the caller if not CheckWitness(caller_address): Log('You need to provide your own address') return 'Error: You need to provide your own address' content = args[2] return add_certification(address, caller_address, content) else: Log('Invalid Operation') return 'Error": "Invalid Operation'
0dac2ddb4dc3d259e30f5a3c100a39ff8d7b940d
3,642,228
def get_latest_file_list_orig1(input_list, start_time, num_files): """ Return a list of file names, trying to get one from each index file in input_list. The starting time is start_time and the number of days to investigate is num_days. """ out = [] for rind in input_list: # Create time_list time_list = time_list(start_time, rind.get_hours() * 3600, num_files) # print "rind: dir", rind.get_base_dir(), rind.get_index_date() line_list, index_date_list = rind.readlines_list_rev(time_list, 1) flist = get_files(line_list) if flist != []: out.append("%s/%s/%s" % (rind.get_base_dir(), index_date_list[0], flist[0])) else: out.append("None") print out return out
744b5392d136129a1135cea3ad577817798ef582
3,642,229
def get_ogheader(blob, url=None): """extract Open Graph markup into a dict The OG header section is delimited by a line of only `---`. Note that the page title is not provided as Open Graph metadata if the image metadata is not specified. """ found = False ogheader = dict() for line in blob.split('\n'): if line == '---': found = True break if line.startswith('image: '): toks = line.split() assert len(toks) == 2 ogheader['image'] = toks[1] if not found: ogheader = dict() # Ignore any matches as false positives return ogheader if url is not None: assert 'url' not in ogheader ogheader['url'] = url for line in blob.split('\n'): if line.startswith('# '): ogheader['title'] = line[2:] return ogheader
4edd7c5545ddef241ee2bfd5e316e47a336aaa3f
3,642,230
def list_ingredient(): """List all ingredients currently in the database""" ingredients = IngredientCollection() ingredients.load_all() return jsonify(ingredients=[x.to_dict() for x in ingredients.models])
d3275dba18922b9f4558f23eedda3ae25d8a25d9
3,642,231
import re def ParseSavedQueries(cnxn, post_data, project_service, prefix=''): """Parse form data for the Saved Queries part of an admin form.""" saved_queries = [] for i in xrange(1, MAX_QUERIES + 1): if ('%ssavedquery_name_%s' % (prefix, i)) not in post_data: continue # skip any entries that are blank or have no predicate. name = post_data['%ssavedquery_name_%s' % (prefix, i)].strip() if not name: continue # skip any blank entries if '%ssavedquery_id_%s' % (prefix, i) in post_data: query_id = int(post_data['%ssavedquery_id_%s' % (prefix, i)]) else: query_id = None # a new query_id will be generated by the DB. project_names_str = post_data.get( '%ssavedquery_projects_%s' % (prefix, i), '') project_names = [pn.strip().lower() for pn in re.split('[],;\s]+', project_names_str) if pn.strip()] project_ids = project_service.LookupProjectIDs( cnxn, project_names).values() base_id = int(post_data['%ssavedquery_base_%s' % (prefix, i)]) query = post_data['%ssavedquery_query_%s' % (prefix, i)].strip() subscription_mode_field = '%ssavedquery_sub_mode_%s' % (prefix, i) if subscription_mode_field in post_data: subscription_mode = post_data[subscription_mode_field].strip() else: subscription_mode = None saved_queries.append(tracker_bizobj.MakeSavedQuery( query_id, name, base_id, query, subscription_mode=subscription_mode, executes_in_project_ids=project_ids)) return saved_queries
5db4ecdf22eb61c1c43914f00042862142664590
3,642,232
def label_anchors(anchors, anchor_is_untruncated, gt_classes, gt_bboxes, background_id, iou_low_threshold=0.41, iou_high_threshold=0.61): """ Get the labels of the anchors. Each anchor can be labeled as positive (1), negative (0) or ambiguous (-1). Truncated anchors are always labeled as ambiguous. """ n = anchors.shape[0] k = gt_bboxes.shape[0] # Compute the IoUs of the anchors and ground truth boxes tiled_anchors = np.tile(np.expand_dims(anchors, 1), (1, k, 1)) tiled_gt_bboxes = np.tile(np.expand_dims(gt_bboxes, 0), (n, 1, 1)) tiled_anchors = tiled_anchors.reshape((-1, 4)) tiled_gt_bboxes = tiled_gt_bboxes.reshape((-1, 4)) ious, ioas, iogs = iou_bbox(tiled_anchors, tiled_gt_bboxes) ious = ious.reshape(n, k) ioas = ioas.reshape(n, k) iogs = iogs.reshape(n, k) # Label each anchor based on its max IoU max_ious = np.max(ious, axis=1) max_ioas = np.max(ioas, axis=1) max_iogs = np.max(iogs, axis=1) best_gt_bbox_ids = np.argmax(ious, axis=1) labels = -np.ones((n), np.int32) positive_idx = np.where(max_ious >= iou_high_threshold)[0] negative_idx = np.where(max_ious < iou_low_threshold)[0] labels[positive_idx] = 1 labels[negative_idx] = 0 # Truncated anchors are always ambiguous ignore_idx = np.where(anchor_is_untruncated==0)[0] labels[ignore_idx] = -1 bboxes = gt_bboxes[best_gt_bbox_ids] classes = gt_classes[best_gt_bbox_ids] classes[np.where(labels<1)[0]] = background_id max_ious[np.where(anchor_is_untruncated==0)[0]] = -1 max_ioas[np.where(anchor_is_untruncated==0)[0]] = -1 max_iogs[np.where(anchor_is_untruncated==0)[0]] = -1 return labels, bboxes, classes, max_ious, max_ioas, max_iogs
39dc4d29f5a2491c2f818e7af2c01e1824afff56
3,642,233
import hashlib def make_hash_md5(obj): """make_hash_md5 Args: obj (any): anything that can be hashed. Returns: hash (str): hash from object. """ hasher = hashlib.md5() hasher.update(repr(make_hashable(obj)).encode()) return hasher.hexdigest()
c8c0f0202f171e2557eba6a3824ac2f9a07dada9
3,642,234
def fbx_data_bindpose_element(root, me_obj, me, scene_data, arm_obj=None, mat_world_arm=None, bones=[]): """ Helper, since bindpose are used by both meshes shape keys and armature bones... """ if arm_obj is None: arm_obj = me_obj # We assume bind pose for our bones are their "Editmode" pose... # All matrices are expected in global (world) space. bindpose_key = get_blender_bindpose_key(arm_obj.bdata, me) fbx_pose = elem_data_single_int64(root, b"Pose", get_fbx_uuid_from_key(bindpose_key)) fbx_pose.add_string(fbx_name_class(me.name.encode(), b"Pose")) fbx_pose.add_string(b"BindPose") elem_data_single_string(fbx_pose, b"Type", b"BindPose") elem_data_single_int32(fbx_pose, b"Version", FBX_POSE_BIND_VERSION) elem_data_single_int32(fbx_pose, b"NbPoseNodes", 1 + (1 if (arm_obj != me_obj) else 0) + len(bones)) # First node is mesh/object. mat_world_obj = me_obj.fbx_object_matrix(scene_data, global_space=True) fbx_posenode = elem_empty(fbx_pose, b"PoseNode") elem_data_single_int64(fbx_posenode, b"Node", me_obj.fbx_uuid) elem_data_single_float64_array(fbx_posenode, b"Matrix", matrix4_to_array(mat_world_obj)) # Second node is armature object itself. if arm_obj != me_obj: fbx_posenode = elem_empty(fbx_pose, b"PoseNode") elem_data_single_int64(fbx_posenode, b"Node", arm_obj.fbx_uuid) elem_data_single_float64_array(fbx_posenode, b"Matrix", matrix4_to_array(mat_world_arm)) # And all bones of armature! mat_world_bones = {} for bo_obj in bones: bomat = bo_obj.fbx_object_matrix(scene_data, rest=True, global_space=True) mat_world_bones[bo_obj] = bomat fbx_posenode = elem_empty(fbx_pose, b"PoseNode") elem_data_single_int64(fbx_posenode, b"Node", bo_obj.fbx_uuid) elem_data_single_float64_array(fbx_posenode, b"Matrix", matrix4_to_array(bomat)) return mat_world_obj, mat_world_bones
9d205cd3c7a0242dbfaad42d1e7f0b9b3b81eb75
3,642,235
def partitioned_rml_estimator(y, sigma2i, iterations=50): """ Implementation of the robust maximum likelihood estimator. Parameters ---------- y : :py:class:`~numpy.ndarray`, (n_replicates, n_variants) The variant scores matrix sigma2i : :py:class:`~numpy.ndarray`, (n_replicates, n_variants) The score variance matrix iterations : `int` Number of iterations to perform. Returns ------- `tuple` Tuple of :py:class:`~numpy.ndarray` objects, corresponding to ``betaML``, ``var_betaML``, ``eps``. Notes ----- @book{demidenko2013mixed, title={Mixed models: theory and applications with R}, author={Demidenko, Eugene}, year={2013}, publisher={John Wiley \& Sons} } """ # Initialize each array to be have len number of variants max_replicates = y.shape[0] betaML = np.zeros(shape=(y.shape[1],)) * np.nan var_betaML = np.zeros(shape=(y.shape[1],)) * np.nan eps = np.zeros(shape=(y.shape[1],)) * np.nan nreps = np.zeros(shape=(y.shape[1],)) * np.nan y_num_nans = np.sum(np.isnan(y), axis=0) for k in range(0, max_replicates - 1, 1): # Partition y based on the number of NaNs a column has, # corresponding to the number of replicates a variant has # across selections. selector = y_num_nans == k if np.sum(selector) == 0: continue y_k = np.apply_along_axis(lambda col: col[~np.isnan(col)], 0, y[:, selector]) sigma2i_k = np.apply_along_axis( lambda col: col[~np.isnan(col)], 0, sigma2i[:, selector] ) betaML_k, var_betaML_k, eps_k = rml_estimator(y_k, sigma2i_k, iterations) # Handles the case when SE is 0 resulting in NaN values. betaML_k[np.isnan(betaML_k)] = 0.0 var_betaML_k[np.isnan(var_betaML_k)] = 0.0 eps_k[np.isnan(eps_k)] = 0.0 betaML[selector] = betaML_k var_betaML[selector] = var_betaML_k eps[selector] = eps_k nreps[selector] = max_replicates - k return betaML, var_betaML, eps, nreps
b4ec6ad8af85cdf29470fa132d7f6008617b3a66
3,642,236
import math def inv_kinema_cal_3(JOINT_ANGLE_OFFSET, L, H, position_to_move): """逆運動学を解析的に解く関数. 指先のなす角がηになるようなジョイント角度拘束条件を追加して逆運動学問題を解析的に解く 引数1:リンク長さの配列.nd.array(6).単位は[m] 引数2:リンク高さの配列.nd.array(1).単位は[m] 引数3:目標位置(直交座標系)行列.nd.array((3, 1)).単位は[m] 戻り値(成功したとき):ジョイント角度配列.nd.array((6)).単位は[°] 戻り値(失敗したとき):引数に関係なくジョイント角度配列(90, 90, 90, 90, 90, 0).nd.array((6)).単位は[°]を返す ※戻り値のq_3,q_4はサーボの定義と異なる """ final_offset = 0.012 #final_offset = 0 # position_to_move(移動先位置)の円筒座標系表現 r_before = math.sqrt(position_to_move[0, 0] ** 2 + position_to_move[1, 0] ** 2) + 0.03 r_to_move = math.sqrt(r_before ** 2 + final_offset ** 2) # [m] #r_to_move = math.sqrt(r_before ** 2) # [m] #theta_to_move = np.arctan2(position_to_move[1, 0], position_to_move[0, 0]) # [rad] theta_to_move = np.arctan2(position_to_move[1, 0], position_to_move[0, 0]) - np.arcsin(final_offset / r_before) # [rad] #theta_to_move = np.arccos(position_to_move[0, 0] / r_to_move) - np.arcsin(final_offset / r_before) # [rad] z_to_move = position_to_move[2, 0] # [m] print('移動先の円筒座標系表現は\n', r_to_move, '[m]\n', int(theta_to_move * 180 / np.pi), '[°]\n', z_to_move, '[m]') # 計算のため定義する定数 A = L[2] B = L[3] # 逆運動学解析解計算 #old1 = time.time() deta = np.pi / 180 # ηの刻み幅.i[°]ずつ実行 eta = np.arange(0, np.pi + deta, deta, dtype = 'float64') # 全ηの配列 print('etaの形は', eta.shape) # パターンa q_2_a = np.arcsin((A ** 2 - B ** 2 + (r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2) \ / (2 * A * np.sqrt((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2))) \ - np.arctan((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) / (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta))) # [rad] qlist_a_1 = np.concatenate([[eta], [q_2_a]], 0) # 縦に連結 qlist_a_2 = np.delete(qlist_a_1, np.where((np.isnan(qlist_a_1)) | (qlist_a_1 < 0) | ((np.pi * (1 - JOINT_ANGLE_OFFSET[1] / 180)) < qlist_a_1))[1], 1) # q_2_aがNAN,またはジョイント制限外の列を削除 q_3_a = np.arcsin((r_to_move - (L[4] + L[5] + L[6]) * np.cos(qlist_a_2[0, :]) - H[0] * np.sin(qlist_a_2[0, :])- A * np.cos(qlist_a_2[1, :]) + z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(qlist_a_2[0, :]) - H[0] * np.cos(qlist_a_2[0, :]) - A * np.sin(qlist_a_2[1, :])) \ / (np.sqrt(2) * B)) - qlist_a_2[1, :] + np.pi / 4 # [rad] qlist_a_3 = np.concatenate([qlist_a_2, [q_3_a]], 0) # 縦に連結 qlist_a_4 = np.delete(qlist_a_3, np.where((np.isnan(qlist_a_3)) | (qlist_a_3 < (np.pi * (JOINT_ANGLE_OFFSET[2] / 180))) | (np.pi < qlist_a_3))[1], 1) # q_3_aがNAN,またはジョイント制限外の列を削除 q_4_a = -qlist_a_4[0, :] + np.pi - qlist_a_4[1, :] - qlist_a_4[2, :] qlist_a_5 = np.concatenate([qlist_a_4, [q_4_a]], 0) # 縦に連結 qlist_a_6 = np.delete(qlist_a_5, np.where((qlist_a_5 < (np.pi * (JOINT_ANGLE_OFFSET[3] / 180))) | (np.pi < qlist_a_5))[1], 1) # q_4_aがジョイント制限外の列を削除 #print('qlist_a_6の形は', qlist_a_6.shape) #print('qlist_a_6 = ', qlist_a_6) # パターンb q_2_b = np.arcsin((A ** 2 - B ** 2 + (r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2) \ / (2 * A * np.sqrt((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2))) \ - np.arctan((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) / (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta))) # [rad] qlist_b_1 = np.concatenate([[eta], [q_2_b]], 0) # 縦に連結 qlist_b_2 = np.delete(qlist_b_1, np.where((np.isnan(qlist_b_1)) | (qlist_b_1 < 0) | ((np.pi * (1 - JOINT_ANGLE_OFFSET[1] / 180))< qlist_a_1))[1], 1) # q_2_bがNAN,またはジョイント制限外の列を削除 q_3_b = np.pi - np.arcsin((r_to_move - (L[4] + L[5] + L[6]) * np.cos(qlist_b_2[0, :]) - H[0] * np.sin(qlist_b_2[0, :])- A * np.cos(qlist_b_2[1, :]) + z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(qlist_b_2[0, :]) - H[0] * np.cos(qlist_b_2[0, :]) - A * np.sin(qlist_b_2[1, :])) \ / (np.sqrt(2) * B)) - qlist_b_2[1, :] + np.pi / 4 # [rad] qlist_b_3 = np.concatenate([qlist_b_2, [q_3_b]], 0) # 縦に連結 qlist_b_4 = np.delete(qlist_b_3, np.where((np.isnan(qlist_b_3)) | (qlist_b_3 < (np.pi * (JOINT_ANGLE_OFFSET[2] / 180))) | (np.pi < qlist_b_3))[1], 1) # q_3_bがNAN,またはジョイント制限外の列を削除 q_4_b = -qlist_b_4[0, :] + np.pi - qlist_b_4[1, :] - qlist_b_4[2, :] qlist_b_5 = np.concatenate([qlist_b_4, [q_4_b]], 0) # 縦に連結 qlist_b_6 = np.delete(qlist_b_5, np.where((qlist_b_5 < (np.pi * (JOINT_ANGLE_OFFSET[3] / 180))) | (np.pi < qlist_b_5))[1], 1) # q_3_bがジョイント制限外の列を削除 #print('qlist_b_6の形は', qlist_b_6.shape) #print('qlist_b_6 = ', qlist_b_6) # パターンc q_2_c = np.pi - np.arcsin((A ** 2 - B ** 2 + (r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2) \ / (2 * A * np.sqrt((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2))) \ - np.arctan((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) / (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta))) # [rad] qlist_c_1 = np.concatenate([[eta], [q_2_c]], 0) # 縦に連結 qlist_c_2 = np.delete(qlist_c_1, np.where((np.isnan(qlist_c_1)) | (qlist_c_1 < 0) | ((np.pi * (1 - JOINT_ANGLE_OFFSET[1] / 180))< qlist_a_1))[1], 1) # q_2_cがNAN,またはジョイント制限外の列を削除 q_3_c = np.arcsin((r_to_move - (L[4] + L[5] + L[6]) * np.cos(qlist_c_2[0, :]) - H[0] * np.sin(qlist_c_2[0, :])- A * np.cos(qlist_c_2[1, :]) + z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(qlist_c_2[0, :]) - H[0] * np.cos(qlist_c_2[0, :]) - A * np.sin(qlist_c_2[1, :])) \ / (np.sqrt(2) * B)) - qlist_c_2[1, :] + np.pi / 4 # [rad] qlist_c_3 = np.concatenate([qlist_c_2, [q_3_c]], 0) # 縦に連結 qlist_c_4 = np.delete(qlist_c_3, np.where((np.isnan(qlist_c_3)) | (qlist_c_3 < (np.pi * (JOINT_ANGLE_OFFSET[2] / 180))) | (np.pi < qlist_c_3))[1], 1) # q_3_cがNAN,またはジョイント制限外の列を削除 q_4_c = -qlist_c_4[0, :] + np.pi - qlist_c_4[1, :] - qlist_c_4[2, :] qlist_c_5 = np.concatenate([qlist_c_4, [q_4_c]], 0) # 縦に連結 qlist_c_6 = np.delete(qlist_c_5, np.where((qlist_c_5 < (np.pi * (JOINT_ANGLE_OFFSET[3] / 180))) | (np.pi < qlist_c_5))[1], 1) # q_3_cがジョイント制限外の列を削除 #print('qlist_c_6の形は', qlist_c_6.shape) #print('qlist_c_6 = ', (qlist_c_6 * 180 / np.pi).astype('int64')) # パターンd q_2_d = np.pi - np.arcsin((A ** 2 - B ** 2 + (r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2) \ / (2 * A * np.sqrt((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) ** 2 + (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta)) ** 2))) \ - np.arctan((r_to_move - (L[4] + L[5] + L[6]) * np.cos(eta) - H[0] * np.sin(eta)) / (z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(eta) - H[0] * np.cos(eta))) # [rad] qlist_d_1 = np.concatenate([[eta], [q_2_d]], 0) # 縦に連結 qlist_d_2 = np.delete(qlist_d_1, np.where((np.isnan(qlist_d_1)) | (qlist_d_1 < 0) | ((np.pi * (1 - JOINT_ANGLE_OFFSET[1] / 180))< qlist_a_1))[1], 1) # q_2_dがNAN,またはジョイント制限外の列を削除 q_3_d = np.pi - np.arcsin((r_to_move - (L[4] + L[5] + L[6]) * np.cos(qlist_d_2[0, :]) - H[0] * np.sin(qlist_d_2[0, :])- A * np.cos(qlist_d_2[1, :]) + z_to_move - L[0] - L[1] + (L[4] + L[5] + L[6]) * np.sin(qlist_d_2[0, :]) - H[0] * np.cos(qlist_d_2[0, :]) - A * np.sin(qlist_d_2[1, :])) \ / (np.sqrt(2) * B)) - qlist_d_2[1, :] + np.pi / 4 # [rad] qlist_d_3 = np.concatenate([qlist_d_2, [q_3_d]], 0) # 縦に連結 qlist_d_4 = np.delete(qlist_d_3, np.where((np.isnan(qlist_d_3)) | (qlist_d_3 < (np.pi * (JOINT_ANGLE_OFFSET[2] / 180))) | (np.pi < qlist_d_3))[1], 1) # q_3_dがNAN,またはジョイント制限外の列を削除 q_4_d = -qlist_d_4[0, :] + np.pi - qlist_d_4[1, :] - qlist_d_4[2, :] qlist_d_5 = np.concatenate([qlist_d_4, [q_4_d]], 0) # 縦に連結 qlist_d_6 = np.delete(qlist_d_5, np.where((qlist_d_5 < (np.pi * (JOINT_ANGLE_OFFSET[3] / 180))) | (np.pi < qlist_d_5))[1], 1) # q_3_dがジョイント制限外の列を削除 #print('qlist_d_6の形は', qlist_d_6.shape) #print('qlist_d_6 = ', qlist_d_6) #print('ベクトル化で計算', time.time() - old1,'[s]') qlist_abcd_6 = np.concatenate([qlist_a_6, qlist_b_6, qlist_c_6, qlist_d_6], 1) # パターンa,b,c,dの実行結果を横に連結 print(qlist_abcd_6) qlist_q2norm = np.abs(np.pi / 2 - qlist_abcd_6[1, :]) # π/2 - q_2の絶対値 print(qlist_q2norm) qlist_abcd_62 = np.concatenate([qlist_abcd_6, [qlist_q2norm]], 0) # 縦連結 print(qlist_abcd_62) k = np.where(qlist_abcd_62[4, :] == np.min(qlist_abcd_62[4, :])) # 最もq_2がπ/2に近い列のタプルを取得 print(k) print(qlist_abcd_62[:, k]) # サーボ指令角度への変換とint化(pyFirmataのpwmは整数値指令しか受け付けない) q_1_command = int(np.round(theta_to_move * 180 / np.pi)) # [°] q_2_command = int(np.round(qlist_abcd_62[1, k] * 180 / np.pi)) # [°] q_3_command = int(np.round(qlist_abcd_62[2, k] * 180 / np.pi)) # [°] q_4_command = int(np.round(qlist_abcd_62[3, k] * 180 / np.pi)) # [°] q_5_command = int(np.round(np.pi / 2 * 180 / np.pi)) # [°] q_6_command = int(np.round(0 * 180 / np.pi)) # [°] z = np.array([q_1_command, q_2_command, q_3_command, q_4_command, q_5_command, q_6_command]) print(z) return z
4368c847b9918f3682e2ca0336008af49f0823cf
3,642,237
import time import os def get_log_filename(log_directory, device_name, name_prefix=""): """Returns the full path of log filename using the information provided. Args: log_directory (path): to where the log file should be created. device_name (str): to use in the log filename name_prefix (str): string to prepend to the start of the log file. Returns: str: Path to log filename using the information provided. """ log_timestamp = time.strftime("%Y%m%d-%H%M%S") if name_prefix: log_file_name = "{}-{}-{}.txt".format(name_prefix, device_name, log_timestamp) else: log_file_name = "{}-{}.txt".format(device_name, log_timestamp) return os.path.join(log_directory, log_file_name)
48c0540c9717e54ab4389a2c9f6a5e31696c4595
3,642,238
def delete_voting(request, slug): """Delete voting view.""" if request.method == 'POST': poll = get_object_or_404(Poll, slug=slug) if poll.automated_poll and Bug.objects.filter(id=poll.bug.id): # This will trigger a cascade delete, removing also the poll. Bug.objects.filter(id=poll.bug.id).delete() else: poll.delete() messages.success(request, 'Voting successfully deleted.') statsd.incr('voting.delete_voting') return redirect('voting_list_votings')
bd604104fe17321b7a66a6b742134734d196d8c8
3,642,239
import time import requests def http_delete_request( portia_config: dict, endpoint: str, payload: dict=None, params: dict=None, optional_headers: dict=None ) -> object: """Makes an HTTP DELETE request. Arguments: portia_config {dict} -- Portia's configuration arguments endpoint {str} -- endpoint to make the request to Keyword Arguments: payload {dict} -- payload to send to the service (default: {None}) params {dict} -- params to send to the service (default: {None}) optional_headers {dict} -- dictionary with other headers (default: {None}) Returns: object -- response object """ headers = { 'Authorization': 'Bearer {0}' \ .format(portia_config.get('authorization')) } if optional_headers is not None: headers = {**headers, **optional_headers} start = time.time() response = requests.delete( '{0}{1}'.format(portia_config.get('baseurl'), endpoint), headers=headers, params=params, json=payload ) end = time.time() if portia_config.get('debug') == True: print( '[portia-debug]: status: {0} | {1:.4f} sec. | {2}' \ .format(response.status_code, end - start, response.url.encode('utf8')) ) return response
86096d2fbfd950cafdbb9689f48d7078ed1c545c
3,642,240
from django.contrib.auth import authenticate, login def http_basic_auth(func): """ Attempts to login user with u/p provided in HTTP_AUTHORIZATION header. If successful, returns the view, otherwise returns a 401. If PING_BASIC_AUTH is False, then just return the view function Modified code by: http://djangosnippets.org/users/bthomas/ from http://djangosnippets.org/snippets/1304/ """ @wraps(func) def _decorator(request, *args, **kwargs): if getattr(settings, 'PING_BASIC_AUTH', PING_BASIC_AUTH): if request.META.has_key('HTTP_AUTHORIZATION'): authmeth, auth = request.META['HTTP_AUTHORIZATION'].split(' ', 1) if authmeth.lower() == 'basic': auth = auth.strip().decode('base64') username, password = auth.split(':', 1) user = authenticate(username=username, password=password) if user: login(request, user) return func(request, *args, **kwargs) else: return HttpResponse("Invalid Credentials", status=401) else: return HttpResponse("No Credentials Provided", status=401) else: return func(request, *args, **kwargs) return _decorator
fd99ce1464acb88bd9f68b6b85233dd44cb81bfd
3,642,241
def stats_to_df(stats_data): """ Transform Statistical API response into a pandas.DataFrame """ df_data = [] for single_data in stats_data['data']: df_entry = {} is_valid_entry = True df_entry['interval_from'] = parse_time( single_data['interval']['from']).date() df_entry['interval_to'] = parse_time( single_data['interval']['to']).date() for output_name, output_data in single_data['outputs'].items(): for band_name, band_values in output_data['bands'].items(): band_stats = band_values['stats'] if band_stats['sampleCount'] == band_stats['noDataCount']: is_valid_entry = False break for stat_name, value in band_stats.items(): col_name = f'{output_name}_{band_name}_{stat_name}' if stat_name == 'percentiles': for perc, perc_val in value.items(): perc_col_name = f'{col_name}_{perc}' df_entry[perc_col_name] = perc_val else: df_entry[col_name] = value if is_valid_entry: df_data.append(df_entry) return pd.DataFrame(df_data)
d77d3ee46c68c737ce8274458d8564256f8121a7
3,642,242
def make_risk_metrics( stocks, weights, start_date, end_date ): """ Parameters: stocks: List of tickers compatiable with the yfinance module weights: List of weights, probably going to be evenly distributed """ if mlfinlabExists: Var, VaR, CVaR, CDaR = generate_risk_stats( stocks, weights, start_date=start_date, end_date=end_date ) else: Var, VaR, CVaR, CDaR = 0,0,0,0 return [ { "value": Var, "name": "Variance", "description": "This measure can be used to compare portfolios" \ " based on estimations of the volatility of returns." }, { "value": VaR, "name": "Value at Risk", "description": "This measure can be used to compare portfolios" \ " based on the amount of investments that can be lost in the next observation, assuming the returns for assets follow a multivariate normal distribution." }, { "value": CVaR, "name": "Expected Shortfall", "description": "This measure can be used to compare portfolios" \ " based on the average amount of investments that can be lost in a worst-case scenario, assuming the returns for assets follow a multivariate normal distribution." }, { "value": CDaR, "name": "Conditional Drawdown at Risk", "description": "This measure can be used to compare portfolios" " based on the average amount of a portfolio drawdown in a worst-case scenario, assuming the drawdowns follow a normal distribution." } ]
8a24d542a8b7475a66c0c914866ee4225564b8ed
3,642,243
def decrypt(bin_k, bin_cipher): """decrypt w/ DES""" return Crypto.Cipher.DES.new(bin_k).decrypt(bin_cipher)
fa8331b792ae4003c2fc14fd84b2ac82306bc7b2
3,642,244
import subprocess def remove_app(app_name, app_path): """Remove an application.""" # usage: mbl-app-manager remove [-h] app_name app_path print("Remove {} from {}".format(app_name, app_path)) command = [MBL_APP_MANAGER, "-v", "remove", app_name, app_path] print("Executing command: {}".format(command)) return subprocess.run(command, check=False).returncode
2d939608db40731ce4c20d0c587a8b99c04d864b
3,642,245
from ucscsdk.mometa.vnic.VnicIScsiLCP import VnicIScsiLCP from ucscsdk.mometa.vnic.VnicVlan import VnicVlan def lcp_iscsi_vnic_add(handle, name, parent_dn, addr="derived", admin_host_port="ANY", admin_vcon="any", stats_policy_name="global-default", admin_cdn_name=None, cdn_source="vnic-name", switch_id="A", pin_to_group_name=None, vnic_name=None, qos_policy_name=None, adaptor_profile_name="global-default", ident_pool_name=None, order="unspecified", nw_templ_name=None, vlan_name="default", **kwargs): """ Adds iSCSI vNIC to LAN Connectivity Policy Args: handle (UcscHandle) parent_dn (string) : Dn of LAN connectivity policy name name (string) : Name of iscsi vnic admin_host_port (string) : Admin host port placement for vnic admin_vcon (string) : Admin vcon for vnic stats_policy_name (string) : Stats policy name cdn_source (string) : CDN source ['vnic-name', 'user-defined'] admin_cdn_name (string) : CDN name switch_id (string): Switch id pin_to_group_name (string) : Pinning group name vnic_name (string): Overlay vnic name qos_policy_name (string): Qos policy name adaptor_profile_name (string): Adaptor profile name ident_pool_name (string) : Identity pool name order (string) : Order of the vnic nw_templ_name (string) : Network template name addr (string) : Address of the vnic vlan_name (string): Name of the vlan **kwargs: Any additional key-value pair of managed object(MO)'s property and value, which are not part of regular args. This should be used for future version compatibility. Returns: VnicIScsiLCP : Managed Object Example: lcp_iscsi_vnic_add(handle, "test_iscsi", "org-root/lan-conn-pol-samppol2", nw_ctrl_policy_name="test_nwpol", switch_id= "A", vnic_name="vnic1", adaptor_profile_name="global-SRIOV") """ mo = handle.query_dn(parent_dn) if not mo: raise UcscOperationError("lcp_iscsi_vnic_add", "LAN connectivity policy '%s' does not exist" % parent_dn) if cdn_source not in ['vnic-name', 'user-defined']: raise UcscOperationError("lcp_iscsi_vnic_add", "Invalid CDN source name") admin_cdn_name = "" if cdn_source == "vnic-name" else admin_cdn_name mo_1 = VnicIScsiLCP(parent_mo_or_dn=mo, addr=addr, admin_host_port=admin_host_port, admin_vcon=admin_vcon, stats_policy_name=stats_policy_name, cdn_source=cdn_source, admin_cdn_name=admin_cdn_name, switch_id=switch_id, pin_to_group_name=pin_to_group_name, vnic_name=vnic_name, qos_policy_name=qos_policy_name, adaptor_profile_name=adaptor_profile_name, ident_pool_name=ident_pool_name, order=order, nw_templ_name=nw_templ_name, name=name) mo_1.set_prop_multiple(**kwargs) VnicVlan(parent_mo_or_dn=mo_1, name="", vlan_name=vlan_name) handle.add_mo(mo_1) handle.commit() return mo_1
6d87f8f3adebaa56850dfb14137fe049ff6e01ee
3,642,246
def fixture_ecomax_with_data(ecomax: EcoMAX) -> EcoMAX: """Return ecoMAX instance with test data.""" ecomax.product = ProductInfo(model="test_model") ecomax.set_data(_test_data) ecomax.set_parameters(_test_parameters) return ecomax
4f496342d461eb39e4689ed266471b11bdf3f1f5
3,642,247
import os import io def _get_cached_setup(setup_id): """Load a run from the cache.""" cache_dir = config.get_cache_directory() setup_cache_dir = os.path.join(cache_dir, "setups", str(setup_id)) try: setup_file = os.path.join(setup_cache_dir, "description.xml") with io.open(setup_file, encoding='utf8') as fh: setup_xml = xmltodict.parse(fh.read()) setup = _create_setup_from_xml(setup_xml) return setup except (OSError, IOError): raise openml.exceptions.OpenMLCacheException("Setup file for setup id %d not cached" % setup_id)
4cb89eab27e0c9a0c5da050a8e2f8b88494ca243
3,642,248
async def request_get_stub(url: str, stub_for: str, status_code: int = 200): """Returns an object with stub response. Args: url (str): A request URL. stub_for (str): Type of stub required. Returns: StubResponse: A StubResponse object. """ return StubResponse(stub_for=stub_for, status_code=status_code)
f4c4f9a0610e8d95f920ddee76c4264e23c08283
3,642,249
import torch def single_gpu_test(model, data_loader, rescale=True, show=False, out_dir=None): """Test with single GPU. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. show (bool): Whether show results during infernece. Default: False. out_dir (str, optional): If specified, the results will be dumped into the directory to save output results. Returns: list: The prediction results. """ model.eval() results = [] seg_targets = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): if 'gt_semantic_seg' in data: target = data.pop('gt_semantic_seg') for gt in target: gt = gt.cpu().numpy()[0] # 1*h*w ==> h*w seg_targets.append(gt) with torch.no_grad(): result = model(return_loss=False, rescale=rescale, **data) if isinstance(result, list): results.extend(result) else: results.append(result) if show or out_dir: img_tensor = data['img'][0] img_metas = data['img_metas'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] ori_h, ori_w = img_meta['ori_shape'][:-1] img_show = mmcv.imresize(img_show, (ori_w, ori_h)) if out_dir: out_file = osp.join(out_dir, img_meta['ori_filename']) else: out_file = None model.module.show_result( img_show, result, palette=dataset.PALETTE, show=show, out_file=out_file) batch_size = data['img'][0].size(0) for _ in range(batch_size): prog_bar.update() if seg_targets: return [results, seg_targets] return results
0e548186e5909b1a7b72d6fd6ed16c80e233e0b6
3,642,250
def readAllCarts(): """ This function responds to a request for /api/people with the complete lists of people :return: json string of list of people """ # Create the list of people from our data return[CART[key] for key in sorted(CART.keys())]
7ec9b25b36c238a6bfae3963482d610ed09d1d75
3,642,251
import random import logging def build_encapsulated_packet(select_test_interface, ptfadapter, tor, tunnel_traffic_monitor): """Build the encapsulated packet sent from T1 to ToR.""" _, server_ipv4 = select_test_interface config_facts = tor.get_running_config_facts() try: peer_ipv4_address = [_["address_ipv4"] for _ in config_facts["PEER_SWITCH"].values()][0] except IndexError: raise ValueError("Failed to get peer ToR address from CONFIG_DB") tor_ipv4_address = [_ for _ in config_facts["LOOPBACK_INTERFACE"]["Loopback0"] if is_ipv4_address(_.split("/")[0])][0] tor_ipv4_address = tor_ipv4_address.split("/")[0] inner_dscp = random.choice(range(0, 33)) inner_ttl = random.choice(range(3, 65)) inner_packet = testutils.simple_ip_packet( ip_src="1.1.1.1", ip_dst=server_ipv4, ip_dscp=inner_dscp, ip_ttl=inner_ttl )[IP] packet = testutils.simple_ipv4ip_packet( eth_dst=tor.facts["router_mac"], eth_src=ptfadapter.dataplane.get_mac(0, 0), ip_src=peer_ipv4_address, ip_dst=tor_ipv4_address, ip_dscp=inner_dscp, ip_ttl=255, inner_frame=inner_packet ) logging.info("the encapsulated packet to send:\n%s", tunnel_traffic_monitor._dump_show_str(packet)) return packet
e7776a602eeb0dbe9bcd8707b71dacfe4ac36338
3,642,252
def index(): """ Renders the index page. """ return render_template("index.html")
cc7630c3bbaf32c3be705a7205df715f959a5683
3,642,253
import re def condense_colors(svg): """Condense colors by using hexadecimal abbreviations where possible. Consider using an abstract, general approach instead of hard-coding. """ svg = re.sub('#000000', '#000', svg) svg = re.sub('#ff0000', '#f00', svg) svg = re.sub('#00ff00', '#0f0', svg) svg = re.sub('#0000ff', '#00f', svg) svg = re.sub('#00ffff', '#0ff', svg) svg = re.sub('#ff00ff', '#f0f', svg) svg = re.sub('#ffff00', '#ff0', svg) svg = re.sub('#ffffff', '#fff', svg) svg = re.sub('#cc0000', '#c00', svg) svg = re.sub('#00cc00', '#0c0', svg) svg = re.sub('#0000cc', '#00c', svg) svg = re.sub('#00cccc', '#0cc', svg) svg = re.sub('#cc00cc', '#c0c', svg) svg = re.sub('#cccc00', '#cc0', svg) svg = re.sub('#cccccc', '#ccc', svg) svg = re.sub('#999999', '#999', svg) svg = re.sub('#808080', 'grey', svg) return svg
413f1d7c69a52384fc21ee6f8eda6f2a63833e66
3,642,254
import attr def install_pytest_confirmation(): """Ask if pytest should be installed""" return f'{fg(2)} Do you want to install pytest? {attr(0)}'
b81da35d4eb7e755f7780cf0b6da056096613549
3,642,255
def dense_nopack(cfg, data, weight, bias=None, out_dtype=None): """Compute dense without packing""" debug = True if debug: print("bias", bias) print("data_dtype", data.dtype) print("weight_dtype", weight.dtype) print("out_dtype", out_dtype) if out_dtype is None: out_dtype = data.dtype M, K = get_const_tuple(data.shape) N, _ = get_const_tuple(weight.shape) if debug: print("data", M, K) print("weight", N, _) print("bias", bias) # create tuning space # cfg.define_split("tile_y", 32 if isinstance(M, tvm.tir.Var) else M, num_outputs=2) # cfg.define_split("tile_x", 32 if isinstance(N, tvm.tir.Var) else N, num_outputs=2) # cfg.define_split("tile_k", 32 if isinstance(K, tvm.tir.Var) else K, num_outputs=2) # if cfg.is_fallback: # _default_dense_nopack_config(cfg, M, N, K) # # vec = cfg["tile_k"].size[-1] # k = te.reduce_axis((0, K // vec), "k") # CC = te.compute( # (M, N, vec), # lambda z, y, x: te.sum( # data[z, k * vec + x].astype(out_dtype) * weight[y, k * vec + x].astype(out_dtype), # axis=k, # ), # ) # # kk = te.reduce_axis((0, vec), "kk") # C = te.compute((M, N), lambda y, x: te.sum(CC[y, x, kk], axis=kk), tag="dense_nopack") # if bias is not None: # C = te.compute((M, N), lambda i, j: C[i, j] + bias[j].astype(out_dtype), tag=tag.BROADCAST) out = te.placeholder((M,N,), name="out", dtype=out_dtype) CC = te.extern( (M, N), [data, weight], lambda ins, outs: tvm.tir.call_packed("tvm.contrib.xilinx_matmul_pynq", ins[0], ins[1], outs[0]), dtype=out_dtype, name="matmul_pynq", ) # kk = te.reduce_axis((0, vec), "kk") # C = te.compute((M, N), lambda y, x: te.sum(CC[y, x, kk], axis=kk), tag="dense_nopack") if bias is not None: C = te.compute((M, N), lambda i, j: CC[i, j] + bias[j].astype(out_dtype)) return C return CC
8b7c9101afce8bc6f89f9eca8a103082e2448c9c
3,642,256
def rgb(r=0, g=0, b=0, mode='RGB'): """ Convert **r**, **g**, **b** values to a `string`. :param r: red part :param g: green part :param b: blue part :param string mode: ``'RGB | %'`` :rtype: string ========= ============================================================= mode Description ========= ============================================================= ``'RGB'`` returns a rgb-string format: ``'rgb(r, g, b)'`` ``'%'`` returns percent-values as rgb-string format: ``'rgb(r%, g%, b%)'`` ========= ============================================================= """ def percent(value): value = int(value) if value < 0: value = 0 if value > 100: value = 100 return value if mode.upper() == 'RGB': return "rgb(%d,%d,%d)" % (int(r) & 255, int(g) & 255, int(b) & 255) elif mode == "%": # see http://www.w3.org/TR/SVG11/types.html#DataTypeColor # percentage is an 'integer' value return "rgb(%d%%,%d%%,%d%%)" % (percent(r), percent(g), percent(b)) else: raise ValueError("Invalid mode '%s'" % mode)
563b8fe8273ce4534567687df01cebe79b9f58dc
3,642,257
def load_csv_translations(fname, pfx=''): """ Load translations from a tab-delimited file. Add prefix to the keys. Return a dictionary. """ translations = {} with open(fname, 'r', encoding='utf-8-sig') as fIn: for line in fIn: line = line.strip('\r\n ') if len(line) <= 2 or line.count('\t') != 1: continue key, value = line.split('\t') key = pfx + key translations[key] = value return translations
e8b4707fe5eeb0f0f4f4859bd9a5f2272387a022
3,642,258
def compute_bleu_rouge(pred_dict, ref_dict, bleu_order=4): """ Compute bleu and rouge scores. """ assert set(pred_dict.keys()) == set(ref_dict.keys()), \ "missing keys: {}".format(set(ref_dict.keys()) - set(pred_dict.keys())) scores = {} bleu_scores, _ = Bleu(bleu_order).compute_score(ref_dict, pred_dict) for i, bleu_score in enumerate(bleu_scores): scores['Bleu-%d' % (i + 1)] = bleu_score rouge_score, _ = Rouge().compute_score(ref_dict, pred_dict) scores['Rouge-L'] = rouge_score f1_exact = f1_exact_eval() pred_list, ref_list = [], [] for k in pred_dict.keys(): pred_list.append(pred_dict[k][0]) ref_list.append(ref_dict[k][0]) f1_score, exact_score = f1_exact.compute_scores(pred_list, ref_list) meter_score = compute_meter_score(pred_list, ref_list) scores['f1'] = f1_score scores['exact'] = exact_score scores['meter'] = meter_score return scores
b000f97208fc8254e28ebc85501912e568c7b2d7
3,642,259
from datetime import datetime def check_upload_details(study_id=None, patient_id=None): """ Get patient data upload details """ participant_set = Participant.objects.filter(patient_id=patient_id) if not participant_set.exists() or str(participant_set.values_list('study', flat=True).get()) != study_id: Response('Error: failed to get upload details for Patient %s'%patient_id, mimetype='text/plain') user = participant_set.get() upinfo = user.get_upload_info() sorted_dates = sorted(upinfo.keys()) dates = [str(datetime.now())[:10]] if sorted_dates: first_date = datetime.strptime(sorted_dates[0], '%Y-%m-%d') today_date = datetime.strptime(dates[0], '%Y-%m-%d') day = first_date dates = [] while day <= today_date: dates += [str(day)[:10]] day += timedelta(days=1) dev_settings = user.study.device_settings.as_dict() checkable_states = [[f, ('black' if f in ALLOW_EMPTY_FILES else 'red') if dst else 'lightgray'] for f in CHECKABLE_FILES for dst in [dev_settings.get(UPLOAD_FILE_TYPE_MAPPING[f], False)]] return render_template( 'upload_details.html', dates=dates, upinfo=upinfo, checkables=checkable_states, patient=user )
6611e9235a6085635e19a9cad8e1920adb757a87
3,642,260
def crc32c_rev(name): """Compute the reversed CRC32C of the given function name""" value = 0 for char in name: value ^= ord(char) for _ in range(8): carry = value & 1 value = value >> 1 if carry: value ^= CRC32_REV_POLYNOM return value
0aea3d45c0efc136be56bac2ee44ba8e08945de3
3,642,261
def sils_cut(T,f,c,d,h): """solve_sils -- solve the lot sizing problem with cutting planes - start with a relaxed model - add cuts until there are no fractional setup variables Parameters: - T: number of periods - P: set of products - f[t]: set-up costs (on period t) - c[t]: variable costs - d[t]: demand values - h[t]: holding costs Returns the final model solved, with all necessary cuts added. """ Ts = range(1,T+1) model = sils(T,f,c,d,h) y,x,I = model.data # relax integer variables for t in Ts: y[t].vtype = "C" # compute D[i,j] = sum_{t=i}^j d[t] D = {} for t in Ts: s = 0 for j in range(t,T+1): s += d[j] D[t,j] = s EPS = 1.e-6 cuts = True while cuts: model.optimize() cuts = False for ell in Ts: lhs = 0 S,L = [],[] for t in range(1,ell+1): yt = model.getVal(y[t]) xt = model.getVal(x[t]) if D[t,ell]*yt < xt: S.append(t) lhs += D[t,ell]*yt else: L.append(t) lhs += xt if lhs < D[1,ell]: # add cutting plane constraint model.addCons(quicksum([x[t] for t in L]) +\ quicksum(D[t,ell] * y[t] for t in S) >= D[1,ell]) cuts = True model.data = y,x,I return model
ca689370fe928b38cdd96cdd7b227699f0979a1c
3,642,262
def progressive_fixed_point(func, start, init_disc, final_disc, ratio=2): """Progressive fixed point calculation""" while init_disc <= final_disc * ratio: start = fixedpoint.fixed_point(func, start, disc=init_disc) init_disc *= ratio return start
d46d325bdc3ddb1c5627e231f9659e992a9a0748
3,642,263
import json async def create_new_game(redis: Redis = Depends(redis.wrapper.get)): """Create a new game with an unique ID.""" game = get_new_game() handle_score(game) game_dict = game_to_dict(game) game_id = token_urlsafe(32) await redis.set(game_id, json.dumps(game_dict)) return GameState(gameId=game_id, **handle_hidden_cards(game_dict))
45de279daba553d4e722f64d0ccb921f90332112
3,642,264
def _write_reaction_lines(reactions, species_delimiter, reaction_delimiter, include_TS, stoich_format, act_method_name, ads_act_method, act_unit, float_format, column_delimiter, sden_operation, **kwargs): """Write the reaction lines in the Chemkin format Parameters ---------- reactions : list of :class:`~pmutt.reaction.ChemkinReaction` objects Chemkin reactions to write in surf.inp file species_delimiter : str Delimiter to separate species when writing reactions reaction_delimiter : str Delimiter to separate reaction sides act_method_name : str Name of method to use to calculate activation function act_unit : str Units to calculate activation energy float_format : str String format to print floating numbers stoich_format : str String format to print stoichiometric coefficients column_delimiter : str Delimiter to separate columns kwargs : keyword arguments Parameters needed to calculate activation energy and preexponential factor Returns ------- reaction_lines : str Reactions represented in Chemkin format """ max_reaction_len = _get_max_reaction_len( reactions=reactions, species_delimiter=species_delimiter, reaction_delimiter=reaction_delimiter, stoich_format=stoich_format, include_TS=include_TS) float_field = '{:%s}' % float_format reaction_lines = [] for reaction in reactions: # Get reaction string reaction_str = reaction.to_string( species_delimiter=species_delimiter, reaction_delimiter=reaction_delimiter, stoich_format=stoich_format, include_TS=include_TS).ljust(max_reaction_len) # Calculate preexponential factor and determine activation energy method if reaction.is_adsorption: A = reaction.sticking_coeff Ea_method = getattr(reaction, ads_act_method) else: # If using delta_G, take out entropic contribution in A if act_method_name in ('get_GoRT_act', 'get_G_act', 'get_delta_GoRT', 'get_delta_G'): include_entropy = False else: include_entropy = True A = reaction.get_A(include_entropy=include_entropy, sden_operation=sden_operation, **kwargs) Ea_method = getattr(reaction, act_method_name) if act_method_name != 'get_EoRT_act' and \ act_method_name != 'get_E_act': kwargs['activation'] = True A_str = float_field.format(A) # Format beta value beta_str = float_field.format(reaction.beta) # Calculate activation energy kwargs['units'] = act_unit try: Ea = _force_pass_arguments(Ea_method, **kwargs) except AttributeError: Ea = 0. Ea_str = float_field.format(Ea) reaction_line = '{0}{4}{1}{4}{2}{4}{3}'.format(reaction_str, A_str, beta_str, Ea_str, column_delimiter) if reaction.is_adsorption: reaction_line = '{}\nSTICK'.format(reaction_line) reaction_lines.append(reaction_line) return reaction_lines
9787279dee81cd97922657739975c93fcbed8249
3,642,265
def refines_constraints(storage, constraints): """ Determines whether with the storage as basis for the substitution map there is a substitution that can be performed on the constraints, therefore refining them. :param storage: The storage basis for the substitution map :param constraints: The constraint list containing the expressions to be substituted. :return: True if the substitution would change the constraint list. """ storage_names = ["storage[" + str(key) + "]" for key, _ in storage.items()] for name in storage_names: for constraint in constraints: if name in constraint.slot_names: return True return False
de82087c41d95240ee9d15bd51810b7c5594ef0f
3,642,266
def dot_fp(x, y): """Dot products for consistent scalars, vectors, and matrices. Possible combinations for x, y: scal, scal scal, vec scal, mat vec, scal mat, scal vec, vec (same length) mat, vec (n_column of mat == length of vec) Warning: No broadcasting! There are special functions for that! Args: x: scalar, vector, or matrix (fixed point or float) y: scalar, vector or matrix (fixed point or float) """ # If both inputs are np.ndarray we can use np.dot if _np_instance(x, y): return np.dot(x, y) optype = _operation_type(x, y) if optype == 'scal_scal': return x * y elif optype == 'vec_vec': return _vec_vec_dot_fp(x, y) elif optype in ['mat_mat_dot', 'mat_mat_all']: return _mat_mat_dot_fp(x, y) elif optype in ['mat_vec_dot', 'mat_vec_all']: return _mat_vec_dot_fp(x, y) elif optype in ['vec_scal', 'mat_scal']: return _scal_dot_fp(x, y) elif optype in ['scal_vec', 'scal_mat']: return _scal_dot_fp(y, x) else: raise ValueError("Dot not possible for {}".format(optype))
d1bf8bd32727973ebb65ead39921202bfd842973
3,642,267
def add_one(num: int) -> int: """Increment arg by one.""" return num + 1
72d8ff69fa5766e813f637f9796753ae51e493b9
3,642,268
def normalize(data, train_split): """ Get the standard score of the data. :param data: data set :param train_split: number of training samples :return: normalized data, mean, std """ mean = data[:train_split].mean(axis=0) std = data[:train_split].std(axis=0) return (data - mean) / std, mean, std
cfc45ac5bd6ae7a30169253a1ae3ed64c1bd1118
3,642,269
def lemma(name_synsets): """ This function return lemma object given the name. .. note:: Support only English language (*eng*). :param str name_synsets: name of the synset :return: lemma object with the given name :rtype: :class:`Lemma` :Example: >>> from pythainlp.corpus.wordnet import lemma >>> >>> lemma('practice.v.01.exercise') Lemma('practice.v.01.exercise') >>> >>> lemma('drill.v.03.exercise') Lemma('drill.v.03.exercise') >>> >>> lemma('exercise.n.01.exercise') Lemma('exercise.n.01.exercise') """ return wordnet.lemma(name_synsets)
84a9ae7dbb1679477257ff03557afa75f950a542
3,642,270
def export_cookies(domain, cookies, savelist=None, sp_domain=None): """ Export cookies used for remembered device/other non-session use as list of Cookie objects. Only looks in jar matching host name. Args: domain (str) - Domain to select cookies from cookies (requests.cookies.RequestsCookieJar) - Cookie jar object savelist (list(str)) - (Optional) List of cookies to export Returns: list(Cookie) - restorable using set_device_cookies() function """ if savelist is None: savelist = DEFAULT_COOKIE_SAVELIST # Pulling directly from internal data structure as there is # no get_cookies method. cookies_dict = cookies._cookies.get(domain, {}).get('/', None) # if they exist, add sp cookies to idp cookies if 'sp_domain' in locals() and sp_domain is not None: cookies_dict.update(cookies._cookies.get(sp_domain, {}).get('/', None)) if cookies_dict is None: return [] return [c for c in [cookies_dict.get(si) for si in savelist] if c is not None]
7609ac6452ed49dae5cd66f280bbeb4b27b17034
3,642,271
from typing import Tuple from typing import OrderedDict def adaptive_crossover(parents: Tuple[AbstractSolution, AbstractSolution], variables_number: int, crossover_pattern: int) -> ChildrenValuesTyping: """ Adaptive crossover function. Crossover is performed according to a pattern that determines which gene (decision variable) value should be picked from which parent. :param parents: Pair of parent solution that provides genes for a new pair of children. :param variables_number: Number of decision variables (genes). :param crossover_pattern: Pattern of crossover to be used. :return: Pair of children data sets. """ parents_values = list(parents[0].decision_variables_values.items()), \ list(parents[1].decision_variables_values.items()) child_1_values: OrderedDict = OrderedDict() child_2_values: OrderedDict = OrderedDict() for i in range(variables_number): pattern_value = (crossover_pattern >> i) & 1 child_1_values.update([parents_values[pattern_value][i]]) child_2_values.update([parents_values[pattern_value ^ 1][i]]) return child_1_values, child_2_values
76446c9c35739dddd9bfb797379b44616c552bbd
3,642,272
def get_type_dict(kb_path, dstc2=False): """ Specifically, we augment the vocabulary with some special words, one for each of the KB entity types For each type, the corresponding type word is added to the candidate representation if a word is found that appears 1) as a KB entity of that type, """ type_dict = {'R_restaurant':[]} kb_path_temp = kb_path fd = open(kb_path_temp,'r') for line in fd: if dstc2: x = line.replace('\n','').split(' ') rest_name = x[1] entity = x[2] entity_value = x[3] else: x = line.split('\t')[0].split(' ') rest_name = x[1] entity = x[2] entity_value = line.split('\t')[1].replace('\n','') if rest_name not in type_dict['R_restaurant']: type_dict['R_restaurant'].append(rest_name) if entity not in type_dict.keys(): type_dict[entity] = [] if entity_value not in type_dict[entity]: type_dict[entity].append(entity_value) return type_dict
cd35054505c429cc1ad17eabe1cafb1aa6b38a1f
3,642,273
def parse_time(duration: str, minimum: int = None, maximum: int = None, error_on_exceeded: bool = True) -> int: """Function that parses time in a NhNmNs format. Supports weeks, days, hours, minutes and seconds, positive and negative amounts and max values. Minimum and maximum values can be set (in seconds), and whether a error should occur or the max / min value should be used when these are exceeded.""" last, t_total = 0, 0 t_frames = {"w": 604800, "d": 86400, "h": 3600, "m": 60, "s": 1} for index, char in enumerate(duration): # For every character in time string. if char.lower() in t_frames.keys(): if duration[last:index] != "": t_total += int(duration[last:index]) * t_frames[char.lower()] last = index + 1 elif char not in ["+", "-", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]: # Valid characters. raise ValueError("Invalid character encountered during time parsing.") if minimum and t_total < minimum: # If total time is less than minimum. if error_on_exceeded: raise ValueError("Time too short.") t_total = minimum if maximum and t_total > maximum: # If total time is more than maximum. if error_on_exceeded: raise ValueError("Time too long.") t_total = maximum return t_total
9878d744cd9cc60696d414a31ff121e384e261a9
3,642,274
import logging import array def correl_align(s_orig, align_phases=False,tol=1e-4,indirect_dim='indirect', fig_title='correlation alignment',signal_pathway = {'ph1':0,'ph2':1}, shift_bounds=False, avg_dim = None, max_shift = 100., sigma=20.,direct='t2',fl=None): """ Align transients collected with chunked phase cycling dimensions along an indirect dimension based on maximizing the correlation across all the transients and repeat alignment until the calculated signal energy remains constant to within a given tolerance level. Parameters ========== s_orig: nddata A nddata object which contains phase cycle dimensions and an indirect dimension. align_phases: boolean tol: float Sets the tolerance limit for the alignment procedure. indirect_dim: str Name of the indirect dimension along which you seek to align the transients. fig_title: str Title for the figures generated. signal_pathway: dict Dictionary containing the signal pathway. shift_bounds: boolean Keeps f_shift to be within a specified limit (upper and lower bounds given by max_shift) which should be around the location of the expected signal. avg_dim: str Dimension along which the data is being averaged. max_shift: float Specifies the upper and lower bounds to the range over which f_shift will be taken from the correlation function. Shift_bounds must be True. sigma: int Sigma value for the Gaussian mask. Related to the line width of the given data. fl: boolean fl=fl to show the plots and figures produced by this function otherwise, fl=None. Returns ======= f_shift: array The optimized frequency shifts for each transient which will maximize their correlation amongst each other, thereby aligning them. sigma: float The width of the Gaussian function used to frequency filter the data in the calculation of the correlation function. """ logging.debug(strm("Applying the correlation routine")) if avg_dim: phcycdims = [j for j in s_orig.dimlabels if j.startswith('ph')] indirect = set(s_orig.dimlabels)-set(phcycdims)-set([direct]) indirect = [j for j in s_orig.dimlabels if j in indirect] avg_dim_len = len(s_orig.getaxis(avg_dim)) s_orig.smoosh(indirect) for j in signal_pathway.keys(): assert not s_orig.get_ft_prop(j), str(j)+" must not be in the coherence domain" signal_keys = list(signal_pathway) signal_values = list(signal_pathway.values()) ph_len = {j:ndshape(s_orig)[j] for j in signal_pathway.keys()} N = ndshape(s_orig)[indirect_dim] sig_energy = (abs(s_orig)**2).data.sum().item() / N if fl: fl.push_marker() fig_forlist, ax_list = plt.subplots(1, 5, figsize=(7,7)) fl.next("Correlation Diagnostics") fig_forlist.suptitle(" ".join(["Correlation Diagnostic"] + [j for j in [fl.basename] if j is not None])) fl.image(s_orig.C.setaxis(indirect_dim,'#').set_units(indirect_dim,'scan #'),ax=ax_list[0],human_units=False) ax_list[0].set_title('before correlation\nsig. energy=%g'%sig_energy) energy_diff = 1. i = 0 energy_vals = [] this_E = (abs(s_orig.C.sum(indirect_dim))**2).data.sum().item() / N**2 energy_vals.append(this_E / sig_energy) last_E = None for_nu_center =s_orig.C for_nu_center.ft(list(signal_pathway)) for x in range(len(signal_keys)): for_nu_center = for_nu_center[signal_keys[x],signal_values[x]] nu_center = for_nu_center.mean(indirect_dim).C.argmax(direct) logging.debug(strm("Center frequency", nu_center)) for my_iter in range(100): i += 1 logging.debug(strm("*** *** ***")) logging.debug(strm("CORRELATION ALIGNMENT ITERATION NO. ",i)) logging.debug(strm("*** *** ***")) s_orig.ift(direct) s_copy = s_orig.C if align_phases: ph0 = s_orig.C.sum(direct) ph0 /= abs(ph0) s_copy /= ph0 s_copy.ft(direct) this_mask = exp(-(s_copy.fromaxis(direct)-nu_center)**2/(2*sigma**2)) s_copy *= this_mask s_copy.ift(direct) s_copy2 = s_orig.C for k,v in ph_len.items(): ph = ones(v) s_copy *= nddata(ph,'Delta'+k.capitalize()) s_copy.setaxis('Delta'+k.capitalize(),'#') correl = s_copy * 0 for k,v in ph_len.items(): for ph_index in range(v): s_copy['Delta%s'%k.capitalize(),ph_index] = s_copy['Delta%s'%k.capitalize(), ph_index].run(lambda x, axis=None: roll(x, ph_index, axis=axis), k) for j in range(1,N): correl += s_copy2 * s_copy.C.run(lambda x, axis=None: roll(x,j,axis=axis), indirect_dim).run(conj) correl.reorder([indirect_dim,direct],first=False) if my_iter ==0: logging.debug(strm("holder")) if fl: fl.image(correl.C.setaxis(indirect_dim,'#').set_units(indirect_dim,'scan #'), ax=ax_list[1]) ax_list[1].set_title('correlation function (t), \nafter apod') correl.ft_clear_startpoints(direct) correl.ft(direct, shift=True, pad=2**14) for k,v in signal_pathway.items(): correl.ft(['Delta%s'%k.capitalize()]) correl = correl['Delta'+k.capitalize(),v]+correl['Delta'+k.capitalize(),0] if my_iter ==0: logging.debug(strm("holder")) if fl: fl.image(correl.C.setaxis(indirect_dim,'#').set_units(indirect_dim,'scan #'), ax=ax_list[2],human_units=False) ax_list[2].set_title('correlation function (v), \nafter apod') if shift_bounds: f_shift = correl[direct:(-max_shift,max_shift)].run(real).argmax(direct) else: f_shift = correl.run(real).argmax(direct) s_copy = s_orig.C s_copy *= exp(-1j*2*pi*f_shift*s_copy.fromaxis(direct)) s_orig.ft(direct) s_copy.ft(direct) if my_iter == 0: logging.debug(strm("holder")) if fl: fl.image(s_copy.C.setaxis(indirect_dim,'#').set_units(indirect_dim,'scan #'), ax=ax_list[3],human_units=False) ax_list[3].set_title('after correlation\nbefore ph0 restore') logging.debug(strm('signal energy per transient (recalc to check that it stays the same):',(abs(s_copy**2).data.sum().item() / N))) this_E = (abs(s_copy.C.sum(indirect_dim))**2).data.sum().item() / N**2 energy_vals.append(this_E / sig_energy) logging.debug(strm('averaged signal energy (per transient):', this_E)) if last_E is not None: energy_diff = (this_E - last_E)/sig_energy logging.debug(strm(energy_diff)) if abs(energy_diff) < tol and my_iter > 4: break last_E = this_E if fl is not None: fl.next('correlation convergence') fl.plot(array(energy_vals),'x') gca().yaxis.set_major_formatter(to_percent) if fl is not None: fl.image(s_copy.C.setaxis(indirect_dim,'#').set_units(indirect_dim,'scan #'),ax=ax_list[4]) ax_list[4].set_title('after correlation\nph0 restored \nsig. energy=%g'%sig_energy) fl.pop_marker() if avg_dim: s_orig.chunk(avg_dim,[avg_dim,'power'],[avg_dim_len,-1]) s_orig.reorder(['ph1',avg_dim,'power',direct]) return f_shift, sigma, this_mask
73235551904db27b639d04a66140d3f07c5dfa3e
3,642,275
def get_fragment_mz_dict(pep, fragments, mod=None): """ :param pep: :param fragments: :param mod: :return: """ mz_dict = dict() for each_fragment in fragments: frag_type, frag_num, frag_charge = rapid_kit.split_fragment_name(each_fragment) mz_dict[each_fragment] = calc_fragment_mz( pep, frag_type, frag_num, frag_charge, mod) return mz_dict
ffc79c35111548471a3a98f5999dee013975752d
3,642,276
def merge_dicts(iphonecontrollers, ipadcontrollers): """Add ipad controllers to the iphone controllers dict, but never overwrite a custom controller with None!""" all_controllers = iphonecontrollers.copy() for identifier, customclass in ipadcontrollers.items(): if all_controllers.get(identifier) is None: all_controllers[identifier] = customclass return all_controllers
10638e775d6578e2553ff5b2b47aff8a17051c7e
3,642,277
def perimRect(length,width): """ Compute perimiter of rectangle >>> perimRect(2,3) 10 >>> perimRect(4, 2.5) 13.0 >>> perimRect(3, 3) 12 >>> """ return 2*(length+width)
50fdd92430352f443d313d0931bab50ad5617622
3,642,278
def h_search(endpoint, query, sort, order, per_page, page): """ - Executes search.search and returns a dictionary of results `return {headers,status_code,items}` """ current_search_params = { "query": query, "sort": sort, "order": order, "per_page": per_page, "page": page, } logger.debug(f"current_search_params = {current_search_params}") status_code, items, headers = search.search( endpoint, query, sort=sort, order=order, page=page, per_page=per_page, strict=True, ) results = {"headers": headers, "status_code": status_code, "items": items} logger.debug(f"status_code = {status_code} num_items = {len(items)}") return results
6b0ee993b2baf440f1e6c835a003bebe06dc448a
3,642,279
import asyncio import traceback import functools import inspect def async_wrapper(fn): """ Wraps an async function or generator with a function which runs that generator on the thread's event loop. The wrapped function requires an 'xloil_thread_context' argument which provides a callback object to return a result. xlOil will pass this object automatically to functions declared async. This function is used by the `func` decorator and generally should not be invoked directly. """ @functools.wraps(fn) def synchronised(xloil_thread_context, *args, **kwargs): ctx = xloil_thread_context async def run_async(): _async_caller.set(ctx.caller) try: # TODO: is inspect.isasyncgenfunction expensive? if inspect.isasyncgenfunction(fn): async for result in fn(*args, **kwargs): ctx.set_result(result) else: result = await fn(*args, **kwargs) ctx.set_result(result) except (asyncio.CancelledError, StopAsyncIteration): ctx.set_done() raise except Exception as e: ctx.set_result(str(e) + ": " + traceback.format_exc()) ctx.set_done() ctx.set_task(asyncio.run_coroutine_threadsafe(run_async(), ctx.loop)) return synchronised
a2929f74d12b153d0cd0720effb618b376bed56f
3,642,280
def add_deprecated_species_alias(registry, ftype, alias_species, species, suffix): """ Add a deprecated species alias field. """ unit_system = registry.ds.unit_system if suffix == "fraction": my_units = "" else: my_units = unit_system[suffix] def _dep_field(field, data): if not isinstance(data, FieldDetector): issue_deprecation_warning( ('The "%s_%s" field is deprecated. ' + 'Please use "%s_%s" instead.') % (alias_species, suffix, species, suffix) ) return data[ftype, "%s_%s" % (species, suffix)] registry.add_field( (ftype, "%s_%s" % (alias_species, suffix)), sampling_type="local", function=_dep_field, units=my_units, )
2782079c908227d11780f66fb2d809b69680a31a
3,642,281
def docker_client(): """ Return the current docker client in a manner that works with both the docker-py and docker modules. """ try: client = docker.from_env(version='auto', timeout=3600) except TypeError: # On older versions of docker-py (such as 1.9), version isn't a # parameter, so try without it client = docker.from_env() client = client if not hasattr(client, 'api') else client.api return client
7761299ea845577d67815df9fdd98dd74e828454
3,642,282
import typing import copy def bulk_generate_metadata(html_page: str, description: dict=None, enable_two_ravens_profiler=False ) -> typing.List[typing.List[dict]]: """ :param html_page: :param description: :param es_index: :return: """ successed = [] hp = HTMLProcesser(html_page) html_meta = hp.extract_description_from_meta() for text, href in hp.generate_a_tags_from_html(): try: cur_description = copy.deepcopy(description) or {} if not Utils.validate_url(href): continue if not cur_description.get('title'): black_list = set(text.lower().split()).intersection(TITLE_BLACK_LIST) if not black_list: cur_description['title'] = text.strip() if not cur_description.get('description'): cur_description['description'] = html_meta cur_description['materialization_arguments'] = {'url': href} # Not to extract html tables, otherwise there will be too many FPs: cur_metadata = generate_metadata(cur_description, ignore_html=True, enable_two_ravens_profiler=enable_two_ravens_profiler) if cur_metadata: successed.append(cur_metadata) except Exception as e: print(' - FAILED GENERATE METADATA ON \n\ttext = %s, \n\thref = %s \n%s' % (text, href, str(e))) return successed
333d4ce53eac5b7214d516a09c5070b718b7a165
3,642,283
def add_cals(): """ Add nutrients from products. """ if 'username' in session: user_obj = users_db.get(escape(session['username'])) calc = Calculator(user_obj.weight, user_obj.height, user_obj.age, user_obj.gender, user_obj.activity) food = request.form.get("menu") weight = request.form.get('keyword') pr = Product(food) try: weig = float(weight) nutr = pr.choose_product(food, weig) a.append(nutr) return render_template('home.html', username=escape(session['username']), normas=[calc.calories_need(), calc.proteins_need(), calc.fats_need(), calc.carbohydrates_need()], vars=nutr) except TypeError: return "Wrong weight" else: return "You are not logged in"
f052b1d314fa3005f7bcd74b5890dba049bb3827
3,642,284
def parse(q): """http://en.wikipedia.org/wiki/Shunting-yard_algorithm""" def _merge(output, scache, pos): if scache: s = " ".join(scache) output.append((s, TOKEN_VALUE, pos - len(s))) del scache[:] try: tokens = lex(q) except Exception as e: raise ParseError(e.message) tokens.reverse() scache, stack, output = list(), list(), list() while tokens: tup = tokens.pop() token, token_type, pos = tup[0], tup[1], tup[2] utoken = token.upper() if token_type in (TOKEN_OPER, TOKEN_LOGIC): _merge(output, scache, pos) if stack and not (stack[-1][1] == TOKEN_PARENTHESIS and stack[-1][0] == "("): # compare with old token on the top of stack top = stack[-1] if utoken not in OPERS: raise ParseError( "invalid operator `%s' at position %s" % (token, pos)) p = (OPERS[utoken], OPERS[top[0]]) if ((p[0].assoc == "L" and p[0].p <= p[1].p) or (p[0].assoc == "R" and p[0].p < p[1].p)): output.append(stack.pop()) # push new token onto stack if token_type == TOKEN_LOGIC: stack.append((utoken, TOKEN_LOGIC, pos)) else: stack.append((utoken, TOKEN_OPER, pos)) elif token_type == TOKEN_PARENTHESIS and token == "(": _merge(output, scache, pos) stack.append((token, TOKEN_PARENTHESIS, pos)) elif token_type == TOKEN_PARENTHESIS and token == ")": _merge(output, scache, pos) del scache[:] try: while not (stack[-1][1] == TOKEN_PARENTHESIS and stack[-1][0] == "("): output.append(stack.pop()) except IndexError: raise ParseError( "parenthesis mismatch at position %s" % (pos)) stack.pop() else: scache.append(token) _merge(output, scache, pos) if stack and stack[-1][0] == "(": raise ParseError( "parenthesis mismatch at position %s" % output[2]) while stack: output.append(stack.pop()) return output
484b240d1ec2cea3cf553bcbac5bef33efd1f74a
3,642,285
def CheckChangeOnUpload(input_api, output_api): """Presubmit checks for the change on upload. The following are the presubmit checks: * Check change has one and only one EOL. """ results = [] results.extend(_CommonChecks(input_api, output_api)) # Run on upload, not commit, since the presubmit bot apparently doesn't have # coverage or Go installed. results.extend(_InfraTests(input_api, output_api)) results.extend(_CheckGNFormatted(input_api, output_api)) return results
4791e348cfa7e4e1d25341bf44f8ddb8c8a84d4e
3,642,286
def compute_compression_rate(file: str, zip_archive) -> float: """Compute the compression rate of two files. More info: https://en.m.wikipedia.org/wiki/Data_compression_ratio :param file: the uncompressed file. :param zip_archive the same file but compressed. :returns the compression rate. """ uncompressed = Helper.Helper.get_file_size(file) compressed = Helper.Helper.get_file_size(archive(file, zip_archive)) return uncompressed / compressed
f92f81282b51da253b1f06ad63d72555917b8256
3,642,287
def set_idc_func_ex(name, fp=None, args=(), flags=0): """ Extends the IDC language by exposing a new IDC function that is backed up by a Python function This function also unregisters the IDC function if 'fp' was passed as None @param name: IDC function name to expose @param fp: Python callable that will receive the arguments and return a tuple. If this argument is None then the IDC function is unregistered @param args: Arguments. A tuple of idaapi.VT_XXX constants @param flags: IDC function flags. A combination of EXTFUN_XXX constants @return: Boolean. """ global __IDC_FUNC_CTXS # Get the context f = __IDC_FUNC_CTXS.get(name, None) # Unregistering? if fp is None: # Not registered? if f is None: return False # Break circular reference del f.cb # Delete the name from the dictionary del __IDC_FUNC_CTXS[name] # Delete the context and unregister the function return _idaapi.pyw_unregister_idc_func(f.ctxptr) # Registering a function that is already registered? if f is not None: # Unregister it first set_idc_func_ex(name, None) # Convert the tupple argument info to a string args = "".join([chr(x) for x in args]) # Create a context ctxptr = _idaapi.pyw_register_idc_func(name, args, fp) if ctxptr == 0: return False # Bind the context with the IdcFunc object f = _IdcFunction(ctxptr) # Remember the Python context __IDC_FUNC_CTXS[name] = f # Register IDC function with a callback return _idaapi.py_set_idc_func_ex( name, f.fp_ptr, args, flags)
fe3656d7e33285eecc79b497866529e81ff15e64
3,642,288
from typing import Dict def get_hidden_plugins() -> Dict[str, str]: """ Get the dictionary of hidden plugins and versions. :return: dict of hidden plugins and their versions """ hidden_plugins = get_cache('cache/hidden-plugins.json') if hidden_plugins: return hidden_plugins else: return {}
bf4db552411576a4840b72e2e10aab25030d6191
3,642,289
import time def wait_for_re_doc(coll, key, timeout=180): """Fetch a doc with the RE API, waiting for it to become available with a 30s timeout.""" start_time = time.time() while True: print(f'Waiting for doc {coll}/{key}') results = re_client.get_doc(coll, key) if results['count'] > 0: break else: if int(time.time() - start_time) > timeout: raise RuntimeError('Timed out trying to fetch', key) time.sleep(1) return results['results'][0]
0aa70ddd010f2d60ef2340d17ddf94b8660d0f1c
3,642,290
def split_year_from_week(data: pd.DataFrame) -> pd.DataFrame: """ Because we have used the partition key as the NFL year, the year/week need to be put into the appropriate columns """ data[[Stats.YEAR, Stats.NFL_WEEK]] = data[Stats.YEAR].str.split("/", expand=True) data[Stats.NFL_WEEK] = data[Stats.NFL_WEEK].apply(lambda x: int(x.lstrip("week"))) return data
52e65d28b3169759e949725b17d159d319514a61
3,642,291
from .core import Array, from_array def normalize_index(idx, shape): """Normalize slicing indexes 1. Replaces ellipses with many full slices 2. Adds full slices to end of index 3. Checks bounding conditions 4. Replace multidimensional numpy arrays with dask arrays 5. Replaces numpy arrays with lists 6. Posify's integers and lists 7. Normalizes slices to canonical form Examples -------- >>> normalize_index(1, (10,)) (1,) >>> normalize_index(-1, (10,)) (9,) >>> normalize_index([-1], (10,)) (array([9]),) >>> normalize_index(slice(-3, 10, 1), (10,)) (slice(7, None, None),) >>> normalize_index((Ellipsis, None), (10,)) (slice(None, None, None), None) >>> normalize_index(np.array([[True, False], [False, True], [True, True]]), (3, 2)) (dask.array<array, shape=(3, 2), dtype=bool, chunksize=(3, 2), chunktype=numpy.ndarray>,) """ if not isinstance(idx, tuple): idx = (idx,) # if a > 1D numpy.array is provided, cast it to a dask array if len(idx) > 0 and len(shape) > 1: i = idx[0] if is_arraylike(i) and not isinstance(i, Array) and i.shape == shape: idx = (from_array(i), *idx[1:]) idx = replace_ellipsis(len(shape), idx) n_sliced_dims = 0 for i in idx: if hasattr(i, "ndim") and i.ndim >= 1: n_sliced_dims += i.ndim elif i is None: continue else: n_sliced_dims += 1 idx = idx + (slice(None),) * (len(shape) - n_sliced_dims) if len([i for i in idx if i is not None]) > len(shape): raise IndexError("Too many indices for array") none_shape = [] i = 0 for ind in idx: if ind is not None: none_shape.append(shape[i]) i += 1 else: none_shape.append(None) for axis, (i, d) in enumerate(zip(idx, none_shape)): if d is not None: check_index(axis, i, d) idx = tuple(map(sanitize_index, idx)) idx = tuple(map(normalize_slice, idx, none_shape)) idx = posify_index(none_shape, idx) return idx
63b98679ca435a238682d86124d6a60e81dd1f89
3,642,292
def relu(data): """Rectified linear unit. .. math:: out = max(x, 0) Parameters ---------- data : relay.Expr The input data Returns ------- result : relay.Expr The computed result. """ return _make.relu(data)
3c4602d68ca18a851ed6c24a35c348b1a97a2a4d
3,642,293
def levsim(args): """Returns the Levenshtein similarity between two terms.""" term_i, term_j, j = args return (MLEV_ALPHA * (1 - Levenshtein.distance(term_i, term_j) \ / max(len(term_i), len(term_j)))**MLEV_BETA, term_j, j)
5c4c70cbf0c172ac42ad26d15753a18e79fdd1f4
3,642,294
def retrieve_job_logs(job_id): """Retrieve job's logs. :param job_id: UUID which identifies the job. :returns: Job's logs. """ return JOB_DB[job_id].get('log')
b2759f3af8316272c4f4ef7f63939634a114c0c9
3,642,295
import sys def parse_argv(): """Parses arguments for use with the test launcher. Arguments are: 1. Working directory. 2. Test runner, `pytest` or `nose` 3. debugSecret 4. debugPort 5. Debugger search path 6. Mixed-mode debugging (non-empty string to enable, empty string to disable) 7. Enable code coverage and specify filename 8. TestFile, with a list of testIds to run 9. Rest of the arguments are passed into the test runner. """ return (sys.argv[1], sys.argv[2], sys.argv[3], int(sys.argv[4]), sys.argv[5], sys.argv[6], sys.argv[7], sys.argv[8], sys.argv[9:])
08ddb56f0fa0d0ef58d5cc3a437037ee2356d1a6
3,642,296
def _normalize_format(fmt): """Return normalized format string, is_compound format.""" if _is_string_or_bytes(fmt): return _compound_format(sorted( _factor_format(fmt.lower()))), ',' in fmt else: return _compound_format(sorted([_normalize_format(f)[0] for f in fmt])), True
30094ec1b00205ae321a53f1bcba3ae250cd740d
3,642,297
def get_cevioai_version() -> str: """ CeVIO AIのバージョンを取得します。 Returns ------- str CeVIO AIのバージョン """ _check_cevioai_status() return _service_control.host_version
1186878664776d445402d04251bec140cda3390a
3,642,298
import subprocess from bs4 import BeautifulSoup import operator def get_all_revisions_available(link): """ List all the revisions availabel for a particular link """ svn_username = current_user.svn_username svn_password = current_user.svn_password link = link.replace("dllohsr222","10.133.0.222") args = ["svn", "log", link,"--xml", "--username", svn_username, "--password", svn_password, "--non-interactive", "--no-auth-cache"] process = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = process.communicate() #logger.info(out) soup = BeautifulSoup(out, "xml") revision_data = soup.find_all('logentry') #logger.info(revision_data) rev_list = [] for rev in revision_data: rev_list.append((int(rev["revision"]),rev.msg.getText())) #revision_list = [] ##for rev in revision_data: rev_list.sort(key=operator.itemgetter(0), reverse = True) updated_rev_list = [] first_flag = False for rev_data in rev_list: if not first_flag: updated_rev_list.append("{}->{}(Latest)".format(rev_data[0], rev_data[1])) first_flag = True else: updated_rev_list.append("{}->{}".format(rev_data[0], rev_data[1])) return updated_rev_list
a531e6bd9e2fb1e7f35af2a4b51e167634f8f4f6
3,642,299