content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import time def acquire_lease(lease_id, client_id, ttl=DEFAULT_LOCK_DURATION_SECONDS, timeout=DEFAULT_ACQUIRE_TIMEOUT_SECONDS): """ Try to acquire the lease. If fails, return None, else return lease object. The timeout is crudely implemented with backoffs and retries so the timeout is not precise :param client_id: the id to use to set the lease to the caller's identity :param lease_id: the lease name to aqcuire :param timeout: int (seconds) to keep retrying and waiting before giving up. :return: expiration time of the acquired lease or None if not acquired """ logger.debug('Attempting to acquire lease {} for {}'.format(lease_id, client_id)) t = 0 while t < timeout: try: with session_scope() as db: ent = db.query(Lease).with_for_update(nowait=False, of=Lease).get((lease_id)) if not ent: raise KeyError(lease_id) if ent.do_acquire(client_id, duration_sec=ttl): return ent.to_json() except Exception as e: if not is_lock_acquisition_error(e): logger.exception('Unexpected exception during lease acquire. Will retry') logger.debug('Retrying acquire of lease {} for {}'.format(lease_id, client_id)) t += 1 time.sleep(1) else: # Exceeded retry count, so failed to get lease logger.info('Failed to get lease {} for {} after {} retries'.format(lease_id, client_id, t)) return None
77de69b03dab5d529872c66bc2a5648d656c829c
3,642,000
def create_index(conn, column_list, table='perfdata', unique=False): """Creates one index on a list of/one database column/s. """ table = base2.filter_str(table) index_name = u'idx_{}'.format(base2.md5sum(table + column_list)) c = conn.cursor() if unique: sql = u'CREATE UNIQUE INDEX IF NOT EXISTS {} ON "{}" ({});'.format( index_name, table, column_list ) else: sql = u'CREATE INDEX IF NOT EXISTS {} ON "{}" ({});'.format( index_name, table, column_list ) try: c.execute(sql) except Exception as e: return(False, u'Query failed: {}, Error: {}'.format(sql, e)) return (True, True)
38b71cededb8500452cd3eac53609cc4ee384566
3,642,001
from typing import Type from typing import Any import inspect def produce_hash(self: Type[PCell], extra: Any = None) -> str: """Produces a hash of a PCell instance based on: 1. the source code of the class and its bases. 2. the non-default parameter with which the pcell method is called 3. the name of the pcell """ # copy source code of class and all its ancestors source_code = "".join( [inspect.getsource(klass) for klass in self.__class__.__mro__ if issubclass(klass, PCell)] ) diff_params = dict(self.params) # str(diff_params) calls __repr__ in inner values, instead of __str__ () # therefore it would fail for instances without readable __repr__ methods str_diff_params = "{%s}" % ", ".join("%r: %s" % p for p in diff_params.items()) long_hash_pcell = sha256( (source_code + str_diff_params + self.name + str(extra)).encode() ).hexdigest() short_hash_pcell = long_hash_pcell[0:7] return short_hash_pcell
859f51600a9cc4da8ba546afebf0ecdf20959ec8
3,642,002
def boxes3d_kitti_fakelidar_to_lidar(boxes3d_lidar): """ Args: boxes3d_fakelidar: (N, 7) [x, y, z, w, l, h, r] in old LiDAR coordinates, z is bottom center Returns: boxes3d_lidar: [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center """ w, l, h, r = boxes3d_lidar[:, 3:4], boxes3d_lidar[:, 4:5], boxes3d_lidar[:, 5:6], boxes3d_lidar[:, 6:7] boxes3d_lidar[:, 2] += h[:, 0] / 2 return np.concatenate([boxes3d_lidar[:, 0:3], l, w, h, -(r + np.pi / 2)], axis=-1)
139a3da3ac8e6c09a376d976d0e96a8d91f9a74a
3,642,003
def combine_per_choice(*args): """ Combines two or more per-choice analytics results into one. """ args = list(args) result = args.pop() new_weight = None new_averages = None while args: other = args.pop() for key in other: if key not in result: result[key] = other[key] else: old_weight, old_averages = result[key] other_weight, other_averages = other[key] if ( new_averages and set(old_averages.keys()) != set(new_averages.keys()) ): raise ValueError( "Can't combine per-choice results which used different sets of " "player models." ) new_weight = old_weight + other_weight new_averages = {} for pmn in old_averages: new_averages[pmn] = ( old_averages[pmn] * old_weight + other_averages[pmn] * other_weight ) / new_weight result[key] = (new_weight, new_averages) return result
63e482a60b521744c94d80b0b8a740ff74f4b197
3,642,004
import string def prepare_input(dirty: str) -> str: """ Prepare the plaintext by up-casing it and separating repeated letters with X's """ dirty = "".join([c.upper() for c in dirty if c in string.ascii_letters]) clean = "" if len(dirty) < 2: return dirty for i in range(len(dirty) - 1): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(clean) & 1: clean += "X" return clean
5c55ba770e024b459d483fd168978437b8d48c21
3,642,005
def calc_center_from_box(box_array): """calculate center point of boxes Args: box_array (array): N*4 [left_top_x, left_top_y, right_bottom_x, right_bottom_y] Returns: array N*2: center points array [x, y] """ center_array=[] for box in box_array: center_array.append([(box[0]+box[2])//2, (box[1]+box[3])//2]) return np.array(center_array)
1f713a2f6900678ad1760ea60456bbf44b9f06af
3,642,006
import scipy def getW3D(coords): """ ################################################################# The calculation of 3-D Wiener index based gemetrical distance matrix optimized by MOPAC(Not including Hs) -->W3D ################################################################# """ temp = [] for i in coords: if i[3] != 'H': temp.append([float(i[0]), float(i[1]), float(i[2])]) DistanceMatrix = GetGementricalDistanceMatrix(temp) return scipy.sum(DistanceMatrix) / 2.0
25fb1596b0d818d7f7f120289a79ccbf9b4f1ae4
3,642,007
from typing import Any from typing import Sequence def state_vectors( draw: Any, max_num_qudits: int = 3, allowed_bases: Sequence[int] = (2, 3), min_num_qudits: int = 1, ) -> StateVector: """Hypothesis strategy for generating `StateVector`'s.""" num_qudits, radixes = draw( num_qudits_and_radixes( max_num_qudits, allowed_bases, min_num_qudits, ), ) return StateVector.random(num_qudits, radixes)
b81059843f94cb1c36581ac0a7dd5d3c17f39839
3,642,008
def ProcessChainsAndLigandsOptionsInfo(ChainsAndLigandsInfo, ChainsOptionName, ChainsOptionValue, LigandsOptionName = None, LigandsOptionValue = None): """Process specified chain and ligand IDs using command line options. Arguments: ChainsAndLigandsInfo (dict): A dictionary containing information existing chains and ligands. ChainsOptionName (str): Name of command line chains option. ChainsOptionValue (str): Value for command line chains option. LigandsOptionName (str): Name of command line ligands option. LigandsOptionValue (str): Value for command line ligands option. Returns: dict: A dictionary containing list of chain identifiers and dictionaries of chains containing lists of ligand names for each chain. Examples: ChainsAndLigandsInfo = ProcessChainsAndLigandsOptionsInfo(Infile, MolName) for ChainID in ChainsAndLigandsInfo["ChainIDs"]: for LigandID in ChainsAndLigandsInfo["LigandIDs"][ChainID]: MiscUtil.PrintInfo("ChainID: %s; LigandID: %s" % (ChainID, LigandID)) """ SpecifiedChainsAndLigandsInfo = {} SpecifiedChainsAndLigandsInfo["ChainIDs"] = [] SpecifiedChainsAndLigandsInfo["LigandIDs"] = {} if ChainsOptionValue is None: return SpecifiedChainsAndLigandsInfo _ProcessChainIDs(ChainsAndLigandsInfo, SpecifiedChainsAndLigandsInfo, ChainsOptionName, ChainsOptionValue) if LigandsOptionValue is None: return SpecifiedChainsAndLigandsInfo _ProcessLigandIDs(ChainsAndLigandsInfo, SpecifiedChainsAndLigandsInfo, LigandsOptionName, LigandsOptionValue) return SpecifiedChainsAndLigandsInfo
0bdadbc08512957269a179df24c1202a56870d42
3,642,009
def oa_filter(x, h, N, mode=0): """ Overlap and add transform domain FIR filtering. This function implements the classical overlap and add method of transform domain filtering using a length P FIR filter. Parameters ---------- x : input signal to be filtered as an ndarray h : FIR filter coefficients as an ndarray of length P N : FFT size > P, typically a power of two mode : 0 or 1, when 1 returns a diagnostic matrix Returns ------- y : the filtered output as an ndarray y_mat : an ndarray whose rows are the individual overlap outputs. Notes ----- y_mat is used for diagnostics and to gain understanding of the algorithm. Examples -------- >>> import numpy as np >>> from sk_dsp_comm.sigsys import oa_filter >>> n = np.arange(0,100) >>> x = np.cos(2*np.pi*0.05*n) >>> b = np.ones(10) >>> y = oa_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = oa_filter(x,h,N,1) """ P = len(h) L = int(N) - P + 1 # need N >= L + P -1 Nx = len(x) Nframe = int(np.ceil(Nx/float(L))) # zero pad to full number of frames needed x = np.hstack((x,np.zeros(Nframe*L-Nx))) y = np.zeros(Nframe*N) # create an instrumentation matrix to observe the overlap and add behavior y_mat = np.zeros((Nframe,Nframe*N)) H = fft.fft(h,N) # begin the filtering operation for k in range(Nframe): xk = x[k*L:(k+1)*L] Xk = fft.fft(xk,N) Yk = H*Xk yk = np.real(fft.ifft(Yk)) y[k*L:k*L+N] += yk y_mat[k,k*L:k*L+N] = yk if mode == 1: return y[0:Nx], y_mat[:,0:Nx] else: return y[0:Nx]
41fa7aaf7a57e0f6c363eb1efa7413b2a1a34d47
3,642,010
from typing import Optional from typing import Iterable import re def get_languages(translation_dir: str, default_language: Optional[str] = None) -> Iterable[str]: """ Get a list of available languages. The default language is (generic) English and will always be included. All other languages will be read from the folder `translation_dir`. A folder within that directory is considered to contain a language for the application if its name is either two lowercase letters, or two lowercase letters, a dash, and two uppercase letters. :Example: The following list contains *valid* language codes: * ``de`` * ``de-DE`` * ``de-AT`` * ``de-CH`` :Example: The following list contains *invalid* language codes: * ``EN`` * ``EN-us`` * ``EN-US`` * ``en-us`` * ``en-USA`` :param default_language: The default language as used in the GetText functions within the code. If not given, the default language from :meth:`get_default_language` will be used. :param translation_dir: The directory within which the translation folders can be found. :return: A list of language codes supported by the application. """ if not default_language: default_language = get_default_language() # Get a list of all entries in the translations folder and filter it. If the given folder could not be read, do not # include any additional languages. pattern = re.compile('^([a-z]{2})(-[A-Z]{2})?$') try: languages = [language for language in listdir(translation_dir) if pattern.match(language)] except OSError: languages = [] return [default_language] + languages
a25c9c2672f4f8d96cffc363aa922424b031aea7
3,642,011
def calculate_direction(a, b): """Calculates the direction vector between two points. Args: a (list): the position vector of point a. b (list): the position vector of point b. Returns: array: The (unnormalised) direction vector between points a and b. The smallest magnitude of an element is 1 (eg: [1,1,2]). """ difference = np.subtract(a, b) if np.count_nonzero(difference) < 1: print("The two k-points are equal") return np.array([0, 0, 0]) # we need to find the smallest non-zero value within a-b a = np.array(a) b = np.array(b) direction_masked = ma.masked_equal( a - b, 0) # return array with invalid entries where values are equal direction_filled = ma.filled( direction_masked, 10 **6) # fill invalid elements of array with a large number s direction_absolute = np.absolute( direction_filled) # return absolute values of each element smallest = np.amin(direction_absolute) direction = ( b - a) / smallest # use the minimum absolute value as a divisor a-b if -1 in direction: direction = np.multiply(direction, -1) return direction
9e0297560bb48d57cd4e1d5f12788a62ae7d9b3b
3,642,012
def argmin(a, axis=None, out=None, keepdims=None, combine_size=None): """ Returns the indices of the minimum values along an axis. Parameters ---------- a : array_like Input tensor. axis : int, optional By default, the index is into the flattened tensor, otherwise along the specified axis. out : Tensor, optional If provided, the result will be inserted into this tensor. It should be of the appropriate shape and dtype. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input tensor. If the default value is passed, then `keepdims` will not be passed through to the `mean` method of sub-classes of `Tensor`, however any non-default value will be. If the sub-classes `sum` method does not implement `keepdims` any exceptions will be raised. combine_size: int, optional The number of chunks to combine. Returns ------- index_array : Tensor of ints Tensor of indices into the tensor. It has the same shape as `a.shape` with the dimension along `axis` removed. See Also -------- Tensor.argmin, argmax amin : The minimum value along a given axis. unravel_index : Convert a flat index into an index tuple. Notes ----- In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned. Examples -------- >>> import mars.tensor as mt >>> from mars.session import new_session >>> sess = new_session().as_default() >>> a = mt.arange(6).reshape(2,3) >>> a.execute() array([[0, 1, 2], [3, 4, 5]]) >>> mt.argmin(a).execute() 0 >>> mt.argmin(a, axis=0).execute() array([0, 0, 0]) >>> mt.argmin(a, axis=1).execute() array([0, 0]) Indices of the minimum elements of a N-dimensional tensor: >>> ind = mt.unravel_index(mt.argmin(a, axis=None), a.shape) >>> sess.run(ind) (0, 0) >>> a[ind] # TODO(jisheng): accomplish when fancy index on tensor is supported >>> b = mt.arange(6) >>> b[4] = 0 >>> b.execute() array([0, 1, 2, 3, 0, 5]) >>> mt.argmin(b).execute() # Only the first occurrence is returned. 0 """ op = TensorArgmin(axis=axis, dtype=np.dtype(int), keepdims=keepdims, combine_size=combine_size) return op(a, out=out)
d289cf508720c5d93ef1622d3e960e9063ab5131
3,642,013
import json def parse_game_state(gs_json: dict) -> game_state_pb2.GameState: """Deserialize a JSON-formatted game state to protobuf.""" if 'provider' not in gs_json: raise InvalidGameStateException(gs_json) try: map_ = parse_map(gs_json.get('map')) provider = parse_provider(gs_json['provider']) round_ = parse_round(gs_json.get('round')) player = parse_player(gs_json['player']) allplayers = [ parse_allplayers_entry(steam_id, allplayers_entry) for steam_id, allplayers_entry in gs_json.get('allplayers', {}).items() ] previously = parse_previously(gs_json['previously']) \ if 'previously' in gs_json else None added = parse_added(gs_json['added']) if 'added' in gs_json else None return game_state_pb2.GameState( provider=provider, map=map_, round=round_, player=player, allplayers=allplayers, previously=previously, added=added) except DeserializationError as e: logger.error('Failed to deserialize game_state: %s', json.dumps(gs_json)) raise e
d78868c24807a3cac469b87990e5a74f88876eb5
3,642,014
def state2bin(s, num_bins, limits): """ :param s: a state. (possibly multidimensional) ndarray, with dimension d = dimensionality of state space. :param num_bins: the total number of bins in the discretization :param limits: 2 x d ndarray, where row[0] is a row vector of the lower limit of each discrete dimension, and row[1] are corresponding upper limits. Returns the bin number (index) corresponding to state s given a discretization num_bins between each column of limits[0] and limits[1]. The return value has same dimensionality as ``s``. \n Note that ``s`` may be continuous. \n \n Examples: \n s = 0, limits = [-1,5], num_bins = 6 => 1 \n s = .001, limits = [-1,5], num_bins = 6 => 1 \n s = .4, limits = [-.5,.5], num_bins = 3 => 2 \n """ if s == limits[1]: return num_bins - 1 width = limits[1] - limits[0] if s > limits[1]: print 'Tools.py: WARNING: ', s, ' > ', limits[1], '. Using the chopped value of s' print 'Ignoring', limits[1] - s s = limits[1] elif s < limits[0]: print 'Tools.py: WARNING: ', s, ' < ', limits[0], '. Using the chopped value of s' # print("WARNING: %s is out of limits of %s . Using the chopped value of s" %(str(s),str(limits))) s = limits[0] return int((s - limits[0]) * num_bins / (width * 1.))
8c0a1d559a332b1a015bde78c9eca413eeae942c
3,642,015
def _fix_json_agents(ag_obj): """Fix the json representation of an agent.""" if isinstance(ag_obj, str): logger.info("Fixing string agent: %s." % ag_obj) ret = {'name': ag_obj, 'db_refs': {'TEXT': ag_obj}} elif isinstance(ag_obj, list): # Recursive for complexes and similar. ret = [_fix_json_agents(ag) for ag in ag_obj] elif isinstance(ag_obj, dict) and 'TEXT' in ag_obj.keys(): ret = deepcopy(ag_obj) text = ret.pop('TEXT') ret['db_refs']['TEXT'] = text else: ret = ag_obj return ret
be73467edc1dc30ac0be1f6804cdb19cf5f942bf
3,642,016
def vflip(img): """Vertically flip the given CV Image. Args: img (CV Image): Image to be flipped. Returns: CV Image: Vertically flipped image. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) return cv2.flip(img, 1)
7b678327a15876a98e0622eacc012f86a8ffd432
3,642,017
def list_pending_tasks(): """List all pending tasks in celery cluster.""" inspector = celery_app.control.inspect() return inspector.reserved()
3d1785dd9ac8fd91f1f0ceb72eeb7df5671b55d5
3,642,018
def get_attack(attacker, defender): """ Returns a value for an attack roll. Args: attacker (obj): Character doing the attacking defender (obj): Character being attacked Returns: attack_value (int): Attack roll value, compared against a defense value to determine whether an attack hits or misses. Notes: By default, returns a random integer from 1 to 100 without using any properties from either the attacker or defender. This can easily be expanded to return a value based on characters stats, equipment, and abilities. This is why the attacker and defender are passed to this function, even though nothing from either one are used in this example. """ # For this example, just return a random integer up to 100. attack_value = randint(1, 100) return attack_value
3ec24ab34a02c2572ee62d1cc18079bdb7ef10ee
3,642,019
def colored(s, color=None, attrs=None): """Call termcolor.colored with same arguments if this is a tty and it is available.""" if HAVE_COLOR: return colored_impl(s, color, attrs=attrs) return s
a8c4f56e55721ec464728fbe9af4453cd98400ba
3,642,020
def _combine_by_cluster(ad, clust_key='leiden'): """ Given a new AnnData object, we want to create a new object where each element isn't a cell, but rather is a cluster. """ clusters = [] X_mean_clust = [] for clust in sorted(set(ad.obs[clust_key])): cells = ad.obs.loc[ad.obs[clust_key] == clust].index X_clust = ad[cells,:].X x_clust = _aggregate_expression(X_clust) X_mean_clust.append(x_clust) clusters.append(str(clust)) X_mean_clust = np.array(X_mean_clust) ad_mean_clust = AnnData( X=X_mean_clust, var=ad.var, obs=pd.DataFrame( data=clusters, index=clusters ) ) return ad_mean_clust
2d48a9f504050604a679f35c06916c175e813ffe
3,642,021
def subsample_data(features, scaled_features, labels, subsamp): # This is only for poker dataset """ Subsample the data. """ # k is class, will iterate from class 0 to class 1 # v is fraction to sample, i.e. 0.1, sample 10% of the current class being iterated for k, v in subsamp.items(): ix = np.where(labels == k)[0] ix_rest = np.where(labels != k)[0] sample_ix = np.random.choice(ix, int(v * len(ix)), replace=False) keep_ix = np.union1d(ix_rest, sample_ix) # subsample features = features[keep_ix, :] scaled_features = scaled_features[keep_ix, :] labels = labels[keep_ix] return features, scaled_features, labels
3981fb0c793f64d52fc21cf2bbf87975bf97c786
3,642,022
def anomary_scores_ae(df_original, df_reduced): """AEで再生成された特徴量から異常度を計算する関数""" """再構成誤差を計算する異常スコア関数 Args: df_original(array-like): training data of shape (n_samples, n_features) df_reduced(array-like): prediction of shape (n_samples, n_features) Returns: pd.Series: 各データごとの異常スコア(二乗誤差をMinMaxScalingしたもの) """ # サンプルごとの予測値との二乗誤差を計算 loss = np.sum((np.array(df_original) - np.array(df_reduced)) ** 2, axis=1) # lossをpd.Seriesに変換 loss = pd.Series(data=loss, index=df_original.index) # 二乗誤差をMinMaxScalingして0~1のスコアに変換 min_max_normalized_loss = (loss - np.min(loss)) / (np.max(loss) - np.min(loss)) return min_max_normalized_loss
f6fe2dca7c10e19ee1e0a03a8d94c663ef5d77fd
3,642,023
import os def merge_runs(input_dir1, input_dir2, map_df, output, arguments): """ :param input_dir1: Directory 1 contains mutation counts files :param input_dir2: Directory 2 contains mutation counts files :param map_df: A dataframe that maps the samples to be merged :param output: output directory to save merged mut_counts """ # make a new file new_samples = [] for index, row in map_df.iterrows(): merged_header = "" mut_count_f1 = os.path.join(input_dir1, f"counts_sample_{row['Sample ID_run1']}.csv") mut_count_f2 = os.path.join(input_dir2, f"counts_sample_{row['Sample ID_run2']}.csv") new_samples.append(f"{row['Sample ID_run1']}-{row['Sample ID_run2']}") # join headers with open(mut_count_f1) as file1, open(mut_count_f2) as file2: for line1, line2 in zip(file1, file2): if "#" not in line1: break if "Final read-depth:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1+n_depth_2 merged_header+= f"#Final read-depth:{total_depth}\n" continue if "Number of read pairs without mutations:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1 + n_depth_2 merged_header += f"#Number of read pairs without mutations:{total_depth}\n" continue if "Total read pairs with mutations:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1 + n_depth_2 merged_header += f"#Total read pairs with mutations:{total_depth}\n" continue if "Number of read pairs did not map to gene:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1 + n_depth_2 merged_header += f"#Number of read pairs did not map to gene:{total_depth}\n" continue if "Number of reads outside of the tile:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1 + n_depth_2 merged_header += f"#Number of reads outside of the tile:{total_depth}\n" continue if "Raw read depth:" in line1: n_depth_1 = int(line1.split(":")[1]) n_depth_2 = int(line2.split(":")[1]) total_depth = n_depth_1 + n_depth_2 merged_header += f"#Raw read depth:{total_depth}\n" continue merged_header += line1.strip() + "; " + line2 output_f = open(os.path.join(output, f"counts_sample_{row['Sample ID_run1']}-{row['Sample ID_run2']}.csv"), "w") output_f.write(merged_header) # skip header and read the mutations df1 = pd.read_csv(mut_count_f1, skiprows=20) df2 = pd.read_csv(mut_count_f2, skiprows=20) # for each file find the corresponded wt file and read the wt merge = [df1, df2] merge = pd.concat(merge) merge_counts = merge.groupby(by=["HGVS"], as_index=False)["count"].sum().sort_values("count", ascending=False) # save header and counts to file merge_counts.to_csv(output_f, mode="a", index=False) output_f.close() if not arguments.covOverride: cov_f1 = os.path.join(input_dir1, f"coverage_{row['Sample ID_run1']}.csv") cov_f2 = os.path.join(input_dir2, f"coverage_{row['Sample ID_run2']}.csv") # read coverage files # sum up two df cov_d1 = pd.read_csv(cov_f1).set_index("pos") cov_d2 = pd.read_csv(cov_f2).set_index("pos") df_sum = cov_d1.add(cov_d2, fill_value=0) output_cov = os.path.join(output, f"coverage_{row['Sample ID_run1']}-{row['Sample ID_run2']}.csv") df_sum.to_csv(output_cov) return new_samples
d2e27bb99d7e6e75110a1ed9a51ab285ee2c39d2
3,642,024
import logging def latest_res_ords(): """Get last decade from reso and ords table""" filename = 'documentum_scs_council_reso_ordinance_v.csv' save_path = f"{conf['prod_data_dir']}/documentum_scs_council_reso_ordinance_v" df = pd.read_csv(f"{conf['prod_data_dir']}/{filename}", low_memory=False) df['DOC_DATE'] = pd.to_datetime(df['DOC_DATE'],errors='coerce') df_current = df.loc[df['DOC_DATE'] >= f"01/01/2016"] general.pos_write_csv(df_current, f"{save_path}_2016_current.csv") logging.info(f"Wrote 2016_current") return f"Successfully extracted this decade of resos and ords"
c23b26e878887758c6822164bcac33eb7c28f765
3,642,025
def langevin_coefficients(temperature, dt, friction, masses): """ Compute coefficients for langevin dynamics Parameters ---------- temperature: float units of Kelvin dt: float units of picoseconds friction: float collision rate in 1 / picoseconds masses: array mass of each atom in standard mass units. np.inf masses will effectively freeze the particles. Returns ------- tuple (ca, cb, cc) ca is scalar, and cb and cc are n length arrays that are used during langevin dynamics as follows: during heat-bath update v -> ca * v + cc * gaussian during force update v -> v + cb * force """ kT = BOLTZ * temperature nscale = np.sqrt(kT / masses) ca = np.exp(-friction * dt) cb = dt / masses cc = np.sqrt(1 - np.exp(-2 * friction * dt)) * nscale return ca, cb, cc
a95ba22bda908fdd10171ed63eba1dc7906c0c1f
3,642,026
def get_description(): """ Read full description from 'README.md' :return: description :rtype: str """ with open('README.md', 'r', encoding='utf-8') as f: return f.read()
9a73c9dbaf88977f8c96eee056f92a7d5ff938fd
3,642,027
def qt_matrices(matrix_dim, selected_pp_indices=[0, 5, 10, 11, 1, 2, 3, 6, 7]): """ Get the elements of a special basis spanning the density-matrix space of a qutrit. The returned matrices are given in the standard basis of the density matrix space. These matrices form an orthonormal basis under the trace inner product, i.e. Tr( dot(Mi,Mj) ) == delta_ij. Parameters ---------- matrix_dim : int Matrix-dimension of the density-matrix space. Must equal 3 (present just to maintain consistency which other routines) Returns ------- list A list of 9 numpy arrays each of shape (3, 3). """ if matrix_dim == 1: # special case of just identity mx return [_np.identity(1, 'd')] assert(matrix_dim == 3) A = _np.array([[1, 0, 0, 0], [0, 1. / _np.sqrt(2), 1. / _np.sqrt(2), 0], [0, 0, 0, 1]], 'd') # projector onto symmetric space def _toQutritSpace(inputMat): return _np.dot(A, _np.dot(inputMat, A.transpose())) qt_mxs = [] pp_mxs = pp_matrices(4) #selected_pp_indices = [0,5,10,11,1,2,3,6,7] #which pp mxs to project # labels = ['II', 'XX', 'YY', 'YZ', 'IX', 'IY', 'IZ', 'XY', 'XZ'] qt_mxs = [_toQutritSpace(pp_mxs[i]) for i in selected_pp_indices] # Normalize so Tr(BiBj) = delta_ij (done by hand, since only 3x3 mxs) qt_mxs[0] *= 1 / _np.sqrt(0.75) #TAKE 2 (more symmetric = better?) q1 = qt_mxs[1] - qt_mxs[0] * _np.sqrt(0.75) / 3 q2 = qt_mxs[2] - qt_mxs[0] * _np.sqrt(0.75) / 3 qt_mxs[1] = (q1 + q2) / _np.sqrt(2. / 3.) qt_mxs[2] = (q1 - q2) / _np.sqrt(2) #TAKE 1 (XX-II and YY-XX-II terms... not symmetric): #qt_mxs[1] = (qt_mxs[1] - qt_mxs[0]*_np.sqrt(0.75)/3) / _np.sqrt(2.0/3.0) #qt_mxs[2] = (qt_mxs[2] - qt_mxs[0]*_np.sqrt(0.75)/3 + qt_mxs[1]*_np.sqrt(2.0/3.0)/2) / _np.sqrt(0.5) for i in range(3, 9): qt_mxs[i] *= 1 / _np.sqrt(0.5) return qt_mxs
8e444fae5b936f4e20f615404712c91a5bbe3f4c
3,642,028
def get_signed_value(bit_vector): """ This function will generate the signed value for a given bit list bit_vector : list of bits """ signed_value = 0 for i in sorted(bit_vector.keys()): if i == 0: signed_value = int(bit_vector[i]) else: signed_value += ((2 << 7) << (int(i) - 1)) * int(bit_vector[i]) return signed_value
6b2b9a968576256738f396eeefba844561e2d2c7
3,642,029
def values_to_colors(values, cmap, vmin=None, vmax=None): """ Function to map a set of values through a colormap to get RGB values in order to facilitate coloring of meshes. Parameters ---------- values: array-like, (n_vertices, ) values to pass through colormap cmap: array-like, (n_colors, 3) colormap describing the RGB values from vmin to vmax vmin : float (optional) value that should receive minimum of colormap. default to minimum of values vmax : float (optional) values that should receive maximum of colormap default to maximum of values Output ------ colors: array-like, (n_vertices, 3) RGB values for each entry in values (as np.uint8 [0-255]) Example ------- Assuming mesh object and 'values' have been calculated already :: import seaborn as sns cmap = np.array(sns.color_palette('viridis', 1000)) clrs = trimesh_vtk.values_to_colors(values, cmap) mesh_actor = trimesh_io.mesh_actor(mesh, vertex_colors = clrs, opacity=1.0) trimesh_vtk.render_actors([mesh_actor]) """ n_colors = cmap.shape[0] if vmin is None: vmin = np.nanmin(values) if vmax is None: vmax = np.nanmax(values) values = np.clip(values, vmin, vmax) r = np.interp(x=values, xp=np.linspace(vmin, vmax, n_colors), fp=cmap[:, 0]) g = np.interp(x=values, xp=np.linspace(vmin, vmax, n_colors), fp=cmap[:, 1]) b = np.interp(x=values, xp=np.linspace(vmin, vmax, n_colors), fp=cmap[:, 2]) colors = np.vstack([r, g, b]).T colors = (colors * 255).astype(np.uint8) return colors
d26bcf4daaeb5247a11576547cdce8417b8d4b19
3,642,030
from typing import List import sys def _clean_sys_argv(pipeline: str) -> List[str]: """Values in sys.argv that are not valid option values in Where """ reserved_opts = {pipeline, "label", "id", "only_for_rundate", "session", "stage", "station", "writers"} return [o for o in sys.argv[1:] if o.startswith("--") and o[2:].split("=")[0] not in reserved_opts]
551f4fdca5d7cc276b03943f3679cc2eff8ce89e
3,642,031
def get_number_from_user_input(prompt: str, min_value: int, max_value: int) -> int: """gets a int integer from user input""" # input loop user_input = None while user_input is None or user_input < min_value or user_input > max_value: raw_input = input(prompt + f" ({min_value}-{max_value})? ") try: user_input = int(raw_input) if user_input < min_value or user_input > max_value: print("Invalid input, please try again") except ValueError: print("Invalid input, please try again") return user_input
c9df4ac604b3bf8f0f9c2a35added1f23e88048e
3,642,032
def word_saliency(topic_word_distrib, doc_topic_distrib, doc_lengths): """ Calculate word saliency according to [Chuang2012]_ as ``saliency(w) = p(w) * distinctiveness(w)`` for a word ``w``. .. [Chuang2012] J. Chuang, C. Manning, J. Heer. 2012. Termite: Visualization Techniques for Assessing Textual Topic Models :param topic_word_distrib: topic-word distribution; shape KxM, where K is number of topics, M is vocabulary size :param doc_topic_distrib: document-topic distribution; shape NxK, where N is the number of documents, K is the number of topics :param doc_lengths: array of size N (number of docs) with integers indicating the number of terms per document :return: array of size M (vocabulary size) with word saliency """ p_t = marginal_topic_distrib(doc_topic_distrib, doc_lengths) p_w = marginal_word_distrib(topic_word_distrib, p_t) return p_w * word_distinctiveness(topic_word_distrib, p_t)
47acaa848601192837eceef210389ada090b1fec
3,642,033
import json def parse_cl_items(s): """Take a json string of checklist items and make a dict of item objects keyed on item name (id)""" dispatch = {"floating":Floating, "weekly":Weekly, "monthly": Monthly, "daily":Daily } if len(s) == 0: return [] raw = json.loads(s) il = [] for d in raw: t = d.pop('type') t = t.lower() il.append(dispatch[t](**d)) return il
274374f8ad3048f7bf9f17ed7d43740a83900a63
3,642,034
def get_queue(queue, flags=FLAGS.ALL, **conn): """ Orchestrates all the calls required to fully fetch details about an SQS Queue: { "Arn": ..., "Region": ..., "Name": ..., "Url": ..., "Attributes": ..., "Tags": ..., "DeadLetterSourceQueues": ..., "_version": 1 } :param queue: Either the queue name OR the queue url :param flags: By default, set to ALL fields. :param conn: dict containing enough information to make a connection to the desired account. Must at least have 'assume_role' key. :return: dict containing a fully built out SQS queue. """ # Check if this is a Queue URL or a queue name: if queue.startswith("https://") or queue.startswith("http://"): queue_name = queue else: queue_name = get_queue_url(QueueName=queue, **conn) sqs_queue = {"QueueUrl": queue_name} return registry.build_out(flags, sqs_queue, **conn)
b39ea959835fc3ae32042cabac4bc4f9b5f1c425
3,642,035
def mixed_float_frame(): """ Fixture for DataFrame of different float types with index of unique strings Columns are ['A', 'B', 'C', 'D']. """ df = DataFrame(tm.getSeriesData()) df.A = df.A.astype('float32') df.B = df.B.astype('float32') df.C = df.C.astype('float16') df.D = df.D.astype('float64') return df
aaef420666cf714c45bb87bf7e1eb484a4c06f69
3,642,036
import unittest def create_parsetestcase(durationstring, expectation, format, altstr): """ Create a TestCase class for a specific test. This allows having a separate TestCase for each test tuple from the PARSE_TEST_CASES list, so that a failed test won't stop other tests. """ class TestParseDuration(unittest.TestCase): ''' A test case template to parse an ISO duration string into a timedelta or Duration object. ''' def test_parse(self): ''' Parse an ISO duration string and compare it to the expected value. ''' result = parse_duration(durationstring) self.assertEqual(result, expectation) def test_format(self): ''' Take duration/timedelta object and create ISO string from it. This is the reverse test to test_parse. ''' if altstr: self.assertEqual(duration_isoformat(expectation, format), altstr) else: # if durationstring == '-P2W': # import pdb; pdb.set_trace() self.assertEqual(duration_isoformat(expectation, format), durationstring) return unittest.TestLoader().loadTestsFromTestCase(TestParseDuration)
b74dbb969743bc98e22bfd80677da7f02891391e
3,642,037
import time import traceback def draw_data_from_db(host, port=None, pid=None, startTime=None, endTime=None, system=None, disk=None): """ Get data from InfluxDB, and visualize :param host: client IP, required :param port: port, visualize port data; optional, choose one from port, pid and system :param pid: pid, visualize pid data; optional, choose one from port, pid and system :param startTime: Start time; optional :param endTime: end time; optional :param system: visualize system data; optional, choose one from port, pid and system :param disk: disk number; optional :return: """ post_data = { 'types': 'system', 'cpu_time': [], 'cpu': [], 'iowait': [], 'usr_cpu': [], 'mem': [], 'mem_available': [], 'jvm': [], 'io_time': [], 'io': [], 'disk_r': [], 'disk_w': [], 'disk_d': [], 'rec': [], 'trans': [], 'nic': [], 'tcp': [], 'close_wait': [], 'time_wait': [], 'retrans': [], 'disk': disk} res = {'code': 1, 'flag': 1, 'message': 'Successful!'} connection = influxdb.InfluxDBClient(cfg.getInflux('host'), cfg.getInflux('port'), cfg.getInflux('username'), cfg.getInflux('password'), cfg.getInflux('database')) try: if startTime and endTime: # If there is a start time and an end time pass elif startTime is None and endTime is None: # If the start time and end time do not exist, use the default time. startTime = '2020-05-20 20:20:20' endTime = time.strftime('%Y-%m-%d %H:%M:%S') else: # If the end time does not exist, the current time is used endTime = time.strftime('%Y-%m-%d %H:%M:%S') s_time = time.time() if port: sql = f"select cpu, wait_cpu, mem, tcp, jvm, rKbs, wKbs, iodelay, close_wait, time_wait from \"{host}\" " \ f"where time>'{startTime}' and time<'{endTime}' and type='{port}' tz('Asia/Shanghai')" logger.info(f'Execute sql: {sql}') datas = connection.query(sql) if datas: post_data['types'] = 'port' for data in datas.get_points(): post_data['cpu_time'].append(data['time'][:19].replace('T', ' ')) post_data['cpu'].append(data['cpu']) post_data['iowait'].append(data['wait_cpu']) post_data['mem'].append(data['mem']) post_data['tcp'].append(data['tcp']) post_data['jvm'].append(data['jvm']) post_data['io'].append(data['iodelay']) post_data['disk_r'].append(data['rKbs']) post_data['disk_w'].append(data['wKbs']) post_data['close_wait'].append(data['close_wait']) post_data['time_wait'].append(data['time_wait']) else: res['message'] = f'No monitoring data of the port {port} is found, ' \ f'please check the port or time setting.' res['code'] = 0 if disk: sql = f"select rec, trans, net from \"{host}\" where time>'{startTime}' and time<'{endTime}' and " \ f"type='system' tz('Asia/Shanghai')" logger.info(f'Execute sql: {sql}') datas = connection.query(sql) if datas: for data in datas.get_points(): post_data['nic'].append(data['net']) post_data['rec'].append(data['rec']) post_data['trans'].append(data['trans']) else: res['message'] = 'No monitoring data is found, please check the disk number or time setting.' res['code'] = 0 if pid: pass if system and disk: disk_n = disk.replace('-', '') disk_r = disk_n + '_r' disk_w = disk_n + '_w' disk_d = disk_n + '_d' sql = f"select cpu, iowait, usr_cpu, mem, mem_available, {disk_n}, {disk_r}, {disk_w}, {disk_d}, rec, trans, " \ f"net, tcp, retrans from \"{host}\" where time>'{startTime}' and time<'{endTime}' and " \ f"type='system' tz('Asia/Shanghai')" logger.info(f'Execute sql: {sql}') datas = connection.query(sql) if datas: post_data['types'] = 'system' for data in datas.get_points(): post_data['cpu_time'].append(data['time'][:19].replace('T', ' ')) post_data['cpu'].append(data['cpu']) post_data['iowait'].append(data['iowait']) post_data['usr_cpu'].append(data['usr_cpu']) post_data['mem'].append(data['mem']) post_data['mem_available'].append(data['mem_available']) post_data['rec'].append(data['rec']) post_data['trans'].append(data['trans']) post_data['nic'].append(data['net']) post_data['io'].append(data[disk_n]) post_data['disk_r'].append(data[disk_r]) post_data['disk_w'].append(data[disk_w]) post_data['disk_d'].append(data[disk_d]) post_data['tcp'].append(data['tcp']) post_data['retrans'].append(data['retrans']) else: res['message'] = 'No monitoring data is found, please check the disk number or time setting.' res['code'] = 0 res.update({'post_data': post_data}) logger.info(f'Time consuming to query is {time.time() - s_time}') # lines = get_lines(post_data) # Calculate percentile, 75%, 90%, 95%, 99% # res.update(lines) except Exception as err: logger.error(traceback.format_exc()) res['message'] = str(err) res['code'] = 0 del connection, post_data return res
73aa86b18dff59fdf88eff0b173e32fa4f3ed3ed
3,642,038
def get_sample_generator(filenames, batch_size, model_config): """Set data loader generator according to different tasks. Args: filenames(list): filenames of the input data. batch_size(int): size of the each batch. model_config(dict): the dictionary containing model configuration. Raises: NameError: if key ``task`` in ``model_config`` is invalid. Returns: reader(func): data reader. """ task = model_config['task'] if task == 'pretrain': return pretrain_sample_reader(filenames, batch_size) elif task == 'seq_classification': label_name = model_config.get('label_name', 'labels') return sequence_sample_reader(filenames, batch_size, label_name) elif task in ['classification', 'regression']: label_name = model_config.get('label_name', 'labels') return normal_sample_reader(filenames, batch_size, label_name) else: raise NameError('Task %s is unsupport.' % task)
2033e081addf26a8f9074591b2f8992f39ed86c1
3,642,039
def execute_batch(table_type, bulk, count, topic_id, topic_name): """ Execute bulk operation. return true if operation completed successfully False otherwise """ errors = False try: result = bulk.execute() if result['nModified'] != count: print( "bulk execute of {} data for {}:{}.\nnumber of op sent to " "bulk execute ({}) does not match nModified count".format( table_type, topic_id, topic_name, count)) print ("bulk execute result {}".format(result)) errors = True except BulkWriteError as ex: print(str(ex.details)) errors = True return errors
954de6b5bfefcea7a7bfdebdc7cb7b1b1ba1dd95
3,642,040
def process_domain_assoc(url, domain_map): """ Replace domain name with a more fitting tag for that domain. User defined. Mapping comes from provided config file Mapping in yml file is as follows: tag: - url to map to tag - ... A small example domain_assoc.yml is included """ if not domain_map: return url for key in domain_map: if url in domain_map[key]: return key return url
29c0f81a4959d97cd91f839cbe511eb46872b5ec
3,642,041
def process_auc(gt_list, pred_list): """ Process AUC (AUROC) over lists. :param gt_list: Ground truth list :type gt_list: np.array :param pred_list: Predictions list :type pred_list: np.array :return: Mean AUC over the lists :rtype: float """ res = [] for i, gt in enumerate(gt_list): if np.amax(gt) != 0: pred = pred_list[i].flatten() gt = gt.flatten() # res.append(roc_auc_score(gt, pred)) res.append(f1_score(gt, pred)) return np.mean(res)
2f1de3ba0d5f1154ef4a5888d01d398fd8533793
3,642,042
def transform( Y, transform_type=None, dtype=np.float32): """ Transform STFT feature Args: Y: STFT (n_frames, n_bins)-shaped np.complex array transform_type: None, "log" dtype: output data type np.float32 is expected Returns: Y (numpy.array): transformed feature """ Y = np.abs(Y) if transform_type == 'log': Y = np.log(np.maximum(Y, 1e-06)) return Y.astype(dtype)
96613eb77c20c1a09a3e41af176a36d2ce4d8080
3,642,043
def tol_vif_table(df, n = 5): """ :param df: dataframe :param n: number of pairs to show :return: table of correlations, tolerances, and VIF """ cor = get_top_abs_correlations(df, n) tol = 1 - cor ** 2 vif = 1 / tol cor_table = pd.concat([cor, tol, vif], axis=1) cor_table.columns = ['Correlation', 'Tolerance', 'VIF'] return cor_table
94cf5715951892375e92ada019476b9ae3d09577
3,642,044
import random def shuffled(iterable): """Randomly shuffle a copy of iterable.""" items = list(iterable) random.shuffle(items) return items
cd554d4a31e042dc1d2b4c7b246528a5184d558e
3,642,045
from ray.autoscaler._private.constants import RAY_PROCESSES from typing import Optional from typing import List from typing import Tuple import psutil import subprocess import tempfile import yaml def get_local_ray_processes(archive: Archive, processes: Optional[List[Tuple[str, bool]]] = None, verbose: bool = False): """Get the status of all the relevant ray processes. Args: archive (Archive): Archive object to add process info files to. processes (list): List of processes to get information on. The first element of the tuple is a string to filter by, and the second element is a boolean indicating if we should filter by command name (True) or command line including parameters (False) verbose (bool): If True, show entire executable command line. If False, show just the first term. Returns: Open archive object. """ if not processes: # local import to avoid circular dependencies processes = RAY_PROCESSES process_infos = [] for process in psutil.process_iter(["pid", "name", "cmdline", "status"]): try: with process.oneshot(): cmdline = " ".join(process.cmdline()) process_infos.append(({ "executable": cmdline if verbose else cmdline.split("--", 1)[0][:-1], "name": process.name(), "pid": process.pid, "status": process.status(), }, process.cmdline())) except Exception as exc: raise LocalCommandFailed(exc) from exc relevant_processes = {} for process_dict, cmdline in process_infos: for keyword, filter_by_cmd in processes: if filter_by_cmd: corpus = process_dict["name"] else: corpus = subprocess.list2cmdline(cmdline) if keyword in corpus and process_dict["pid"] \ not in relevant_processes: relevant_processes[process_dict["pid"]] = process_dict with tempfile.NamedTemporaryFile("wt") as fp: for line in relevant_processes.values(): fp.writelines([yaml.dump(line), "\n"]) fp.flush() with archive.subdir("meta") as sd: sd.add(fp.name, "process_info.txt") return archive
7ed76d4e93198ce0afef0fbf5cf5b37a7b92e0ed
3,642,046
def test_rule(rule_d, ipv6=False): """ Return True if the rule is a well-formed dictionary, False otherwise """ try: _encode_iptc_rule(rule_d, ipv6=ipv6) return True except: return False
7435cb900117e4c273b4157b2f25ba56aefd1355
3,642,047
def intersects(hp, sphere): """ The closed, upper halfspace intersects the sphere (i.e. there exists a spatial relation between the two) """ return signed_distance(sphere.center, hp) + sphere.radius >= 0.0
9366824f03a269d0fa9e96f34260c621ad610d16
3,642,048
def invert_center_scale(X_cs, X_center, X_scale): """ This function inverts whatever centering and scaling was done by ``center_scale`` function: .. math:: \mathbf{X} = \mathbf{X_{cs}} \\cdot \mathbf{D} + \mathbf{C} **Example:** .. code:: python from PCAfold import center_scale, invert_center_scale import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Center and scale: (X_cs, X_center, X_scale) = center_scale(X, 'range', nocenter=False) # Uncenter and unscale: X = invert_center_scale(X_cs, X_center, X_scale) :param X_cs: centered and scaled data set :math:`\mathbf{X_{cs}}`. :param X_center: vector of centers :math:`\mathbf{C}` applied on the original data set :math:`\mathbf{X}`. :param X_scale: vector of scales :math:`\mathbf{D}` applied on the original data set :math:`\mathbf{X}`. :return: - **X** - original data set :math:`\mathbf{X}`. """ try: (_, n_variables) = np.shape(X_cs) except: n_variables = 1 if n_variables == 1: X = X_cs * X_scale + X_center else: X = np.zeros_like(X_cs, dtype=float) for i in range(0, n_variables): X[:, i] = X_cs[:, i] * X_scale[i] + X_center[i] return(X)
e37d82e7da932ea760981bb5a472799cd5a4d3d9
3,642,049
def weighted_smoothing(image, diffusion_weight=1e-4, data_weight=1.0, weight_function_parameters={}): """Weighted smoothing of images: smooth regions, preserve sharp edges. Parameters ---------- image : NumPy array diffusion_weight : float or NumPy array, optional The weight of the diffusion for smoothing. It can be provided as an array the same shape as the image, or as a scalar that will multiply the default weight matrix obtained from the edge indicator function. data_weight : float or NumPy array, optional The weight of the image data to preserve fidelity to the image. It can be provided as an array the same shape as the image, or as a scalar that will multiply the default weight matrix obtained by subtracting the edge indicator function from 1.0. weight_function_parameters : dict, optional The parameters sigma and rho for the edge indicator function. Sigma is the standard deviation for the gaussian gradient applied to the image: dI = N * gaussian_gradient_magnitude(image), where N = min(image.shape) - 1, and rho is the scaling weight in the definition of the edge indicator function: 1/(1 + (dI/rho)**2) The default values are: {'sigma': 3.0, 'rho': None}. If rho is None, it is calculated by rho = 0.23 * dI.max(). Returns ------- smoothed_image : NumPy array Raises ------ ValueError If diffusion_weight or data_weight have the wrong type. """ if type( diffusion_weight ) is np.ndarray: beta = diffusion_weight elif not np.isscalar( diffusion_weight ): raise ValueError("data_weight can only be None or a scalar number "\ "or a NumPy array the same shape as the image.") else: sigma = weight_function_parameters.get('sigma', 3.0) rho = weight_function_parameters.get('rho', None) if rho is None: N = min(image.shape) - 1.0 dI = N * gaussian_gradient_magnitude( image, sigma, mode='nearest' ) rho = 0.23 * dI.max() g = EdgeIndicatorFunction( image, rho, sigma ) G = g._g beta = (G - G.min()) / (G.max() - G.min()) beta *= diffusion_weight if type(data_weight) is np.ndarray: alpha = data_weight elif np.isscalar(data_weight): alpha = data_weight * (beta.max() - beta) / (beta.max() - beta.min()) else: raise ValueError("data_weight can only be None or a scalar number "\ "or a NumPy array the same shape as the image.") rhs = alpha * image grid = Grid2d( image.shape ) smooth_image = fem.solve_elliptic_pde( grid, alpha, beta, rhs ) return smooth_image
3c861b9a8878f2d85d581d8f8d1f62cf017a7920
3,642,050
import random def get_random_tablature(tablature : Tablature, constants : Constants): """make a copy of the tablature under inspection and generate new random tablatures""" new_tab = deepcopy(tablature) for tab_instance, new_tab_instance in zip(tablature.tablature, new_tab.tablature): if tab_instance.string == 6: string, fret = random.choice(determine_combinations(tab_instance.fundamental, constants)) new_tab_instance.string, new_tab_instance.fret = string, fret elif constants.init_mutation_rate > random.random(): string, fret = get_random_position(tab_instance.string, tab_instance.fret, constants) new_tab_instance.string, new_tab_instance.fret = string, fret return new_tab
befa3a488e2ca53e37032ed102a12b250594bd90
3,642,051
def _staticfy(value): """ Allows to keep backward compatibility with instances of OpenWISP which were using the previous implementation of OPENWISP_ADMIN_THEME_LINKS and OPENWISP_ADMIN_THEME_JS which didn't automatically pre-process those lists of static files with django.templatetags.static.static() and hence were not configured to allow those files to be found by the staticfile loaders, if static() raises ValueError, we assume one of either cases: 1. An old instance has upgraded and we keep returning the old value so the file will continue being found although unprocessed by django's static file machinery. 2. The value passed is wrong, instead of failing loudly we fail silently. """ try: return static(value) # maintain backward compatibility except ValueError: return value
2ac932a178a86d301dbb15602f3b59edb39cf3c1
3,642,052
def compare_rep(topic, replication_factor): # type: (str, int) -> bool """Compare replication-factor in the playbook with the one actually set. Keyword arguments: topic -- topicname replication_factor -- number of replications Return: bool -- True if change is needed, else False """ try: metadata = admin.list_topics() # type(metadata.topics) = dict except KafkaException as e: msg = ( "Can not get metadata of topic %s: %s" % (topic, e) ) fail_module(msg) old_rep = len(metadata.topics[topic].partitions[0].replicas) #type(partitions) = dict, access replicas with partition-id as key over .replicas-func if replication_factor != old_rep: if module.params['zookeeper'] is None: msg = ( "For modifying the replication_factor of a topic," " you also need to set the zookeeper-parameter." " At the moment, replication_factor is set to %s" " and you tried to set it to %s." % (old_rep, replication_factor) ) fail_module(msg) diff['before']['replication_factor'] = old_rep diff['after']['replication_factor'] = replication_factor return True # if replication_factor == old_rep: return False
882b028d078e507f9673e3ead6549da100a83226
3,642,053
def verbosity_option_parser() -> ArgumentParser: """ Creates a parser suitable to parse the verbosity option in different subparsers """ parser = ArgumentParser(add_help=False) parser.add_argument('--verbosity', dest=VERBOSITY_ARGNAME, type=str.upper, choices=ALLOWED_VERBOSITY, help='verbosity level to use for this command and subsequent ones.') return parser
c24f0704f1632cc0af416cf2c0a3e65c6845566f
3,642,054
import snappi def b2b_config(api): """Demonstrates creating a back to back configuration of tx and rx ports, devices and a single flow using those ports as endpoints for transmit and receive. """ config = api.config() config = snappi.Api().config() config.options.port_options.location_preemption = True tx_port, rx_port = config.ports \ .port(name='Tx Port', location='10.36.74.26;02;13') \ .port(name='Rx Port', location='10.36.74.26;02;14') tx_device, rx_device = (config.devices \ .device(name='Tx Devices') .device(name='Rx Devices') ) tx_device.ethernets.ethernet(port_name=tx_port.name) rx_device.ethernets.ethernet(port_name=rx_port.name) tx_device.ethernets[-1].name = 'Tx Eth' tx_device.ethernets[-1].mac = '00:00:01:00:00:01' tx_device.ethernets[-1].ipv4_addresses.ipv4() tx_device.ethernets[-1].ipv4_addresses[-1].name = 'Tx Ipv4' tx_device.ethernets[-1].ipv4_addresses[-1].address = '1.1.1.1' tx_device.ethernets[-1].ipv4_addresses[-1].gateway = '1.1.2.1' tx_device.ethernets[-1].ipv4_addresses[-1].prefix = 16 vlan1, vlan2 = tx_device.ethernets[-1].vlans.vlan(name='v1').vlan(name='v2') vlan1.id = 1 vlan2.id = 2 rx_device.ethernets[-1].name = 'Rx Eth' rx_device.ethernets[-1].mac = '00:00:01:00:00:02' flow = config.flows.flow(name='Tx -> Rx Flow')[0] flow.tx_rx.port.tx_name = tx_port.name flow.tx_rx.port.rx_name = rx_port.name flow.size.fixed = 128 flow.rate.pps = 1000 flow.duration.fixed_packets.packets = 10000 eth, vlan, ip, tcp = flow.packet.ethernet().vlan().ipv4().tcp() eth.src.value = '00:00:01:00:00:01' eth.dst.values = ['00:00:02:00:00:01', '00:00:02:00:00:01'] eth.dst.metric_group = 'eth dst mac' ip.src.increment.start = '1.1.1.1' ip.src.increment.step = '0.0.0.1' ip.src.increment.count = 10 ip.dst.decrement.start = '1.1.2.200' ip.dst.decrement.step = '0.0.0.1' ip.dst.decrement.count = 10 ip.priority.dscp.phb.values = [8, 16, 32] ip.priority.dscp.ecn.value = 1 tcp.src_port.increment.start = 10 tcp.dst_port.increment.start = 1 return config
60a838885c058f5c65d3b331082f525b2e04b5c7
3,642,055
import os def apply_patch(ffrom, fpatch, fto): """Apply given normal patch `fpatch` to `ffrom` to create `fto`. Returns the size of the created to-data. All arguments are file-like objects. >>> ffrom = open('foo.mem', 'rb') >>> fpatch = open('foo.patch', 'rb') >>> fto = open('foo.new', 'wb') >>> apply_patch(ffrom, fpatch, fto) 2780 """ compression, to_size = read_header_normal(fpatch) if to_size == 0: return to_size patch_reader = PatchReader(fpatch, compression) dfdiff, ffrom = create_data_format_readers(patch_reader, ffrom, to_size) to_pos = 0 while to_pos < to_size: # Diff data. for chunk_size, patch_data in iter_diff_chunks(patch_reader, to_pos, to_size): from_data = ffrom.read(chunk_size) if dfdiff is not None: dfdiff_data = dfdiff.read(chunk_size) data = bytearray( (pb + fb + db) & 0xff for pb, fb, db in zip(patch_data, from_data, dfdiff_data) ) else: data = bytearray( (pb + fb) & 0xff for pb, fb in zip(patch_data, from_data) ) fto.write(data) to_pos += chunk_size # Extra data. for chunk_size, patch_data in iter_extra_chunks(patch_reader, to_pos, to_size): if dfdiff is not None: dfdiff_data = dfdiff.read(chunk_size) data = bytearray( (dd + db) & 0xff for dd, db in zip(patch_data, dfdiff_data) ) else: data = patch_data fto.write(data) to_pos += chunk_size # Adjustment. size = unpack_size(patch_reader) ffrom.seek(size, os.SEEK_CUR) if not patch_reader.eof: raise Error('End of patch not found.') return to_size
b847f7641bdd34c935d2f88fd8ca114abb0b4033
3,642,056
def fib(n): """Return the n'th Fibonacci number.""" if n < 0: raise ValueError("Fibonacci number are only defined for n >= 0") return _fib(n)
4aee5fbb4c9a497ffc4f63529b226ad3b08c0ef4
3,642,057
def gen(n): """ Compute the n-th generator polynomial. That is, compute (x + 2 ** 1) * (x + 2 ** 2) * ... * (x + 2 ** n). """ p = Poly([GF(1)]) two = GF(1) for i in range(1, n + 1): two *= GF(2) p *= Poly([two, GF(1)]) return p
29e6b1f164d93b21a2d98352ff60c8cf7a8d5864
3,642,058
def get_prefix(bot, message): """A callable Prefix for our bot. This could be edited to allow per server prefixes.""" # Notice how you can use spaces in prefixes. Try to keep them simple though. prefixes = ['!'] # If we are in a guild, we allow for the user to mention us or use any of the prefixes in our list. return commands.when_mentioned_or(*prefixes)(bot, message)
35567d49b747f51961fad861e00d9f9524126641
3,642,059
def parse_discontinuous_phrase(phrase: str) -> str: """ Transform discontinuous phrase into a regular expression. Discontinuity is interpreted as taking place at any whitespace outside of terms grouped by parentheses. That is, the whitespace indicates that anything can be in between the left side and right side. Example 1: x1 (x2 (x3"x4")) becomes x1.+(x2 (x3|x4)) """ level = 0 parsed_phrase = "" for index, char in enumerate(phrase): if char == "(": level += 1 elif char == ")": level -= 1 elif char == " " and level == 0: char = ".+" parsed_phrase += char return parsed_phrase
58fe394a08931e7e79afc00b9bb0e8e9981f3c81
3,642,060
def preprocess(frame): """ Preprocess the images before they are sent into the model """ #Read the image bgr_img = frame.astype(np.float32) #Opencv reads the picture as (N) HWC to get the HW value orig_shape = bgr_img.shape[:2] #Normalize the picture bgr_img = bgr_img / 255.0 #Convert the picture to Lab space lab_img = cv.cvtColor(bgr_img, cv.COLOR_BGR2Lab) #Gets the L orig_l = lab_img[:, :, 0] if not orig_l.flags['C_CONTIGUOUS']: orig_l = np.ascontiguousarray(orig_l) #resize lab_img = cv.resize(lab_img, (MODEL_WIDTH, MODEL_HEIGHT)).astype(np.float32) l_data = lab_img[:, :, 0] if not l_data.flags['C_CONTIGUOUS']: l_data = np.ascontiguousarray(l_data) #The L-part minus the average l_data = l_data - 50 return orig_shape, orig_l, l_data
33a24a31ae9e25efb080037a807897f2762656c0
3,642,061
def draw_roc_curve(y_true, y_score, annot=True, name=None, ax=None): """Draws a ROC (Receiver Operating Characteristic) curve using class rankings predicted by a classifier. Args: y_true (array-like): True class labels (0: negative; 1: positive) y_score (array-like): Predicted probability of positive-class membership annot (bool, optional): Whether to create and add a label to the curve with the computed AUC name (str, optional): Name of the curve to add to the AUC label ax (Matplotlib.Axes, optional): The axes on which to draw the ROC curve Returns: ax (Matplotlib.Axes): The axes containing the ROC curve """ fpr, tpr, _ = roc_curve(y_true, y_score) if ax is None: ax = plt.gca() # Add a label displaying the computed area under the curve if annot: roc_auc = auc(fpr, tpr) if name is not None: label = f'{name} AUC = {roc_auc:.3f}' else: label = f'AUC = {roc_auc:.3f}' else: label=None ax.plot(fpr, tpr, label=label) ax.set_xlabel('False positive rate') ax.set_ylabel('True positive rate') ax.legend(loc='best') return ax
cf59a02c5f72f728b0d9179a4eee3f012da564df
3,642,062
def make_links_absolute(soup, base_url): """ Replace relative links with absolute links. This one modifies the soup object. """ assert base_url is not None # for tag in soup.findAll('a', href=True): tag['href'] = urljoin(base_url, tag['href']) return soup
52d328c944d4a80b4f0a027a3b72f2fcebc152a9
3,642,063
def get_predictions(model, dataloader): """takes a trained model and validation or test dataloader and applies the model on the data producing predictions binary version """ model.eval() all_y_hats = [] all_preds = [] all_true = [] all_attention = [] for batch_id, (data, label) in enumerate(dataloader): label = label.squeeze() bag_label = label[0] bag_label = bag_label.cpu() y_hat, preds, attention = model(data.to("cuda:0")) y_hat = y_hat.squeeze(dim=0) # for binary setting y_hat = y_hat.cpu() preds = preds.squeeze(dim=0) # for binary setting preds = preds.cpu() all_y_hats.append(y_hat.numpy().item()) all_preds.append(preds.numpy().item()) all_true.append(bag_label.numpy().item()) attention_scores = np.round(attention.cpu().data.numpy()[0], decimals=3) all_attention.append(attention_scores) print("Bag Label:" + str(bag_label)) print("Predicted Label:" + str(preds.numpy().item())) print("attention scores (unique ones):") print(np.unique(attention_scores)) # print(attention_scores) del data, bag_label, label return all_y_hats, all_preds, all_true
f58a5863c211a24665db7348606d39232ad8af19
3,642,064
def _getPymelType(arg, name) : """ Get the correct Pymel Type for an object that can be a MObject, PyNode or name of an existing Maya object, if no correct type is found returns DependNode by default. If the name of an existing object is passed, the name and MObject will be returned If a valid MObject is passed, the name will be returned as None If a PyNode instance is passed, its name and MObject will be returned """ obj = None results = {} isAttribute = False #-------------------------- # API object testing #-------------------------- if isinstance(arg, _api.MObject) : results['MObjectHandle'] = _api.MObjectHandle( arg ) obj = arg elif isinstance(arg, _api.MObjectHandle) : results['MObjectHandle'] = arg obj = arg.object() elif isinstance(arg, _api.MDagPath) : results['MDagPath'] = arg obj = arg.node() elif isinstance(arg, _api.MPlug) : isAttribute = True obj = arg results['MPlug'] = obj if _api.isValidMPlug(arg): pymelType = Attribute else : raise MayaAttributeError, "Unable to determine Pymel type: the passed MPlug is not valid" # #--------------------------------- # # No Api Object : Virtual PyNode # #--------------------------------- # elif objName : # # non existing node # pymelType = DependNode # if '.' in objName : # # TODO : some better checking / parsing # pymelType = Attribute else : raise ValueError( "Unable to determine Pymel type for %r" % (arg,) ) if not isAttribute: pymelType = _getPymelTypeFromObject( obj, name ) return pymelType, results
b303bebfc5c97ac6a969c151cb78de7f28523476
3,642,065
def _parse_objective(objective): """ Modified from deephyper/nas/run/util.py function compute_objective """ if isinstance(objective, str): negate = (objective[0] == '-') if negate: objective = objective[1:] split_objective = objective.split('__') kind = split_objective[1] if len(split_objective) > 1 else 'last' mname = split_objective[0] # kind: min/max/last if negate: if kind == 'min': kind = 'max' elif kind == 'max': kind = 'min' return mname, kind elif callable(objective): logger.warn('objective is a callable, not a str, setting kind="last"') return None, 'last' else: raise TypeError(f'unknown objective type {type(objective)}')
df8f23464cd04be9a3c61a2969200a0c98c4471e
3,642,066
def redirect_path_context_processor(request): """Procesador para generar el redirect_to para la localización en el selector de idiomas""" return {'language_select_redirect_to': translate_url(request.path, settings.LANGUAGE_CODE)}
fdb62f3079079d63c280d2b887468c7893aafcf8
3,642,067
def RightCenter(cell=None): """Take up horizontal and vertical space, and place the cell on the right center of it.""" return FillSpace(cell, "right", "center")
ce64a346658813ab281168864e357cec1ba09c0b
3,642,068
def name_standard(name): """ return the Standard version of the input word :param name: the name that should be standard :return name: the standard form of word """ reponse_name = name[0].upper() + name[1:].lower() return reponse_name
65273cafaaa9aceb803877c2071dc043a0d598eb
3,642,069
def getChildElementsListWithTagAttribValueMatch(parent, tag, attrib, value): """ This method takes a parent element as input and finds all the sub elements (children) containing specified tag and an attribute with the specified value. Returns a list of child elements. Arguments: parent = parent element tag = tag value of the sub-element(child) to be searched for. attrib = attribute name for the sub-element with above given tag should have. value = attribute value that the sub-element with above given tag, attribute should have. """ child_elements = parent.findall(".//%s[@%s='%s']" % (tag, attrib, value)) return child_elements
cae87e6548190ad0a675019b397eeb88289533ee
3,642,070
def f_engine (air_volume, energy_MJ): """Прямоточный воздушно реактивный двигатель. Набегающий поток воздуха попадает в нагреватель, где расширяется, А затем выбрасывается из сопла реактивной струёй. """ # Рабочее вещество, это атмосферный воздух: working_mass = air_volume * AIR_DENSITY # Делим энергию на полезную и бесполезную: useful_energy_MJ = energy_MJ * ENGINE_USEFUL_ENERGY useless_energy_MJ = energy_MJ - useful_energy_MJ useful_energy_KJ = useful_energy_MJ * 1000 # Полезную энергию пускаем на разогрев воздуха: working_mass_heat = AIR_HEAT_CAPACITY * useful_energy_KJ / working_mass # Делаем поправку на температуру воздуха и переводим градусы в шкалу Кельвина: working_mass_heat = AIR_TEMPERATURE + working_mass_heat + KELVIN_SCALE # Давление разогретого воздуха увеличивается: working_mass_pressure = f_heated_gas_pressure(working_mass_heat) # Воздух подаётся на сопло Лаваля, так мы получаем скорость реактивной струи: reactive_speed = f_de_laval_nozzle(working_mass_heat, working_mass_pressure, ATMOSPHERIC_PRESSURE) # Максимальная тяга, это масса рабочего вещества умноженная на его скорость: max_engine_thrust = f_jet_force(working_mass, reactive_speed) # Бесполезную тепловую энергию тоже требуется куда-то отводить: engine_output = (max_engine_thrust, working_mass, reactive_speed, useless_energy_MJ) return engine_output
3d307622fca17f16f03e49bd7f8b5b742217ee37
3,642,071
def not_numbers(): """Non-numbers for (i)count.""" return [None, [1, 2], {-3, 4}, (6, 9.7)]
31f935916c8463f6192d0b2770c1034ee70a4fc5
3,642,072
import requests def get_agol_token(): """requests and returns an ArcGIS Token for the pre-registered application. Client id and secrets are managed through the ArcGIS Developer's console. """ params = { 'client_id': app.config['ESRI_APP_CLIENT_ID'], 'client_secret': app.config['ESRI_APP_CLIENT_SECRET'], 'grant_type': "client_credentials" } request = requests.get( 'https://www.arcgis.com/sharing/oauth2/token', params=params ) token = request.json() print("AGOL token acquired: {0}".format(token)) return token
7b240ef57264c1a88f10f4c06c9492a71dac8c11
3,642,073
def default_validate(social_account): """ Функция по-умолчанию для ONESOCIAL_VALIDATE_FUNC. Ничего не делает. """ return None
634382dbfe64eeed38225f8dca7e16105c40f7c2
3,642,074
import requests def pull_early_late_by_stop(line_number,SWIFTLY_API_KEY, dateRange, timeRange): """ Pulls from the Swiftly APIS to get OTP. Follow the docs: http://dashboard.goswift.ly/vta/api-guide/docs/otp """ line_table = pd.read_csv('line_table.csv') line_table.rename(columns={"DirNum":"direction_id","DirectionName":"DIRECTION_NAME"},inplace=True) line_table['direction_id'] = line_table['direction_id'].astype(str) headers = {'Authorization': SWIFTLY_API_KEY} payload = {'agency': 'vta', 'route': line_number, 'dateRange': dateRange,'timeRange': timeRange, 'onlyScheduleAdherenceStops':'True'} url = 'https://api.goswift.ly/otp/by-stop' r = requests.get(url, headers=headers, params=payload) try: swiftly_df = pd.DataFrame(r.json()['data']) swiftly_df.rename(columns={"stop_id":"STOP_ID"},inplace=True) swiftly_df = pd.merge(swiftly_df,line_table.query('lineabbr==%s'%line_number)[['direction_id','DIRECTION_NAME']]) swiftly_df['STOP_ID'] = swiftly_df['STOP_ID'].astype(int) return swiftly_df except KeyError: print(r.json())
a64ad2e5fe84ee5ab5a49c8122f28b693382cf8e
3,642,075
def create_build_job(user, project, config, code_reference): """Get or Create a build job based on the params. If a build job already exists, then we check if the build has already an image created. If the image does not exists, and the job is already done we force create a new job. Returns: tuple: (build_job, image_exists[bool], build_status[bool]) """ build_job, rebuild = BuildJob.create( user=user, project=project, config=config, code_reference=code_reference) if build_job.succeeded and not rebuild: # Check if image was built in less than an 6 hours return build_job, True, False if check_image(build_job=build_job): # Check if image exists already return build_job, True, False if build_job.is_done: build_job, _ = BuildJob.create( user=user, project=project, config=config, code_reference=code_reference, nocache=True) if not build_job.is_running: # We need to build the image first auditor.record(event_type=BUILD_JOB_STARTED_TRIGGERED, instance=build_job, actor_id=user.id, actor_name=user.username) build_status = start_dockerizer(build_job=build_job) else: build_status = True return build_job, False, build_status
879ed02f142326b4a793bef2d8bcbc1de4faf64c
3,642,076
import json def create(ranger_client: RangerClient, config: str): """ Creates a new Apache Ranger service repository. """ return ranger_client.create_service(json.loads(config))
a53fa80f94960f89410a60aae04a04417491f332
3,642,077
def populate_glue_catalogue_from_metadata(table_metadata, db_metadata, check_existence = True): """ Take metadata and make requisite calls to AWS API using boto3 """ database_name = db_metadata["name"] database_description = ["description"] table_name = table_metadata["table_name"] tbl_def = metadata_to_glue_table_definition(table_metadata, db_metadata) if check_existence: try: glue_client.get_database(Name=database_name) except glue_client.exceptions.EntityNotFoundException: overwrite_or_create_database(database_name, db_metadata["description"]) try: glue_client.delete_table(DatabaseName=database_name, Name=table_name) except glue_client.exceptions.EntityNotFoundException: pass return glue_client.create_table( DatabaseName=database_name, TableInput=tbl_def)
c09af0344b523213010af8fdbcc0ed35328f165e
3,642,078
def choose_komoot_tour_live(): """ Login with user credentials, download tour information, choose a tour, and download it. Can be passed to :func:`komoog.gpx.convert_tour_to_gpx_tracks` afterwards. """ tours, session = get_tours_and_session() for idx in range(len(tours)): print(f"({idx+1}) {tours[idx]['name']}") tour_id = int(input("Tour ID: ")) tour_id -= 1 tour = get_tour(tours,tour_id,session) return tour
3be625643d6861c9aaff910506dce53e3f336e40
3,642,079
def root(): """ The root stac page links to each collection (product) catalog """ return _stac_response( dict( **stac_endpoint_information(), links=[ dict( title="Collections", description="All product collections", rel="children", type="application/json", href=url_for(".collections"), ), dict( title="Arrivals", description="Most recently added items", rel="child", type="application/json", href=url_for(".arrivals"), ), dict( title="Item Search", rel="search", type="application/json", href=url_for(".stac_search"), ), dict(rel="self", href=request.url), # Individual Product Collections *( dict( title=product.name, description=product.definition.get("description"), rel="child", href=url_for(".collection", collection=product.name), ) for product, product_summary in _model.get_products_with_summaries() ), ], conformsTo=[ "https://api.stacspec.org/v1.0.0-beta.1/core", "https://api.stacspec.org/v1.0.0-beta.1/item-search", ], ) )
0904122654a1ce71264489590a2a1813dad31689
3,642,080
def recursive_dict_of_lists(d, helper=None, prev_key=None): """ Builds dictionary of lists by recursively traversing a JSON-like structure. Arguments: d (dict): JSON-like dictionary. prev_key (str): Prefix used to create dictionary keys like: prefix_key. Passed by recursive step, not intended to be used. helper (dict): In case d contains nested dictionaries, you can specify a helper dictionary with 'key' and 'value' keys to specify where to look for keys and values instead of recursive step. It helps with cases like: {'action': {'type': 'step', 'amount': 1}}, by passing {'key': 'type', 'value': 'amount'} as a helper you'd get {'action_step': [1]} as a result. """ d_o_l = {} if helper is not None and helper['key'] in d.keys() and helper['value'] in d.keys(): if prev_key is not None: key = f"{prev_key}_{helper['key']}" else: key = helper['key'] if key not in d_o_l.keys(): d_o_l[key] = [] d_o_l[key].append(d[helper['value']]) return d_o_l for k, v in d.items(): if isinstance(v, dict): d_o_l.update(recursive_dict_of_lists(v, helper=helper, prev_key=k)) else: if prev_key is not None: key = f'{prev_key}_{k}' else: key = k if key not in d_o_l.keys(): d_o_l[key] = [] if isinstance(v, list): d_o_l[key].extend(v) else: d_o_l[key].append(v) return d_o_l
c615582febbd043adae6788585d004aabf1ac7e3
3,642,081
def same_shape(shape1, shape2): """ Checks if two shapes are the same Parameters ---------- shape1 : tuple First shape shape2 : tuple Second shape Returns ------- flag : bool True if both shapes are the same (same length and dimensions) """ if len(shape1) != len(shape2): return False for i in range(len(shape1)): if shape1[i] != shape2[i]: return False return True
9452f7973e510532cee587f2bf49a146fb8cc46e
3,642,082
def get_reference(): """Get DrugBank references.""" return _get_model(drugbank.Reference)
b4d26c24559883253f3894a1c56151e1809e4050
3,642,083
import collections def __parse_search_results(collected_results, raise_exception_finally): """ Parses locally the results collected from the __mapped_pattern_matching: - list of ( scores, matched_intervals, unprocessed_interval, rank_superwindow, <meta info>, <error_info>) This parsing - evaluates the errors: logs and raise IkatsException if raise_exception_finally is True - evaluates, encodes the unprocessed intervals :param collected_results: the results collected from the __mapped_pattern_matching :type list :param raise_exception_finally: flag is True when it is demanded to raise IkatsException when errors exist in the collected fields <error_info> :type raise_exception_finally: bool :return: unprocessed_info: dict stocking unprocessed intervals [sd, ed] by superwindow rank :rtype: dict """ # On the driver/manager # - driver: local computing of the re-evaluated intervals: # => set unprocessed_info # => logs errors unprocessed_info = {} error_exists = False for status_cell in collected_results: # logs error (when needed) error = status_cell[-1] cell_has__errors = False if isinstance(error, collections.Iterable) and len(error) > 0: cell_has__errors = True for error_item in error: LOGGER.error(error_item) error_exists = error_exists or cell_has__errors # unprocessed_info[ <rank_superwindow> ] = <unprocessed_interval> unprocessed_info[status_cell[3]] = status_cell[2] LOGGER.debug("Unprocessed_info[rank=%s]=%s", status_cell[3], status_cell[2]) if raise_exception_finally and error_exists: raise IkatsException("At least one error has been collected: see driver/manager logs") return unprocessed_info
5e7bad5a745d76b6d0a9b45a3c36df846051c1bc
3,642,084
def decode_matrix_fbs(fbs): """ Given an FBS-encoded Matrix, return a Pandas DataFrame the contains the data and indices. """ matrix = Matrix.Matrix.GetRootAsMatrix(fbs, 0) n_rows = matrix.NRows() n_cols = matrix.NCols() if n_rows == 0 or n_cols == 0: return pd.DataFrame() if matrix.RowIndexType() is not TypedArray.TypedArray.NONE: raise ValueError("row indexing not supported for FBS Matrix") columns_length = matrix.ColumnsLength() columns_index = deserialize_typed_array((matrix.ColIndexType(), matrix.ColIndex())) if columns_index is None: columns_index = range(0, n_cols) # sanity checks if len(columns_index) != n_cols or columns_length != n_cols: raise ValueError("FBS column count does not match number of columns in underlying matrix") columns_data = {} columns_type = {} for col_idx in range(0, columns_length): col = matrix.Columns(col_idx) tarr = (col.UType(), col.U()) data = deserialize_typed_array(tarr) columns_data[columns_index[col_idx]] = data if len(data) != n_rows: raise ValueError("FBS column length does not match number of rows") if col.UType() is TypedArray.TypedArray.JSONEncodedArray: columns_type[columns_index[col_idx]] = "category" df = pd.DataFrame.from_dict(data=columns_data).astype(columns_type, copy=False) # more sanity checks if not df.columns.is_unique or len(df.columns) != n_cols: raise KeyError("FBS column indices are not unique") return df
d3ffdd5f0d74a6e07b47fac175dae4ad6035cda8
3,642,085
async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool: """Track states and offer events for sensors.""" component = hass.data[DOMAIN] = EntityComponent( _LOGGER, DOMAIN, hass, SCAN_INTERVAL ) await component.async_setup(config) return True
eaeee6df6c8b632fb331884236f7b3b47d551683
3,642,086
def _all_lists_equal_lenght(values: t.List[t.List[str]]) -> bool: """ Tests to see if all the lengths of all the elements are the same """ for vn in values: if len(values[0]) != len(vn): return False return True
9fd7db874658822d7a48d5f27340e0dfd5a2d177
3,642,087
def wind_shear( shear: str, unit_alt: str = "ft", unit_wind: str = "kt", spoken: bool = False ) -> str: """Translate wind shear into a readable string Ex: Wind shear 2000ft from 140 at 30kt """ if not shear or "WS" not in shear or "/" not in shear: return "" shear = shear[2:].rstrip(unit_wind.upper()).split("/") wdir = core.spoken_number(shear[1][:3], True) if spoken else shear[1][:3] return f"Wind shear {int(shear[0])*100}{unit_alt} from {wdir} at {shear[1][3:]}{unit_wind}"
b7aaf5253e251393a508de2d8080a5b3458c45f6
3,642,088
def root_hash(hashes): """ Compute the root hash of a merkle tree with the given list of leaf hashes """ # the number of hashes must be a power of two assert len(hashes) & (len(hashes) - 1) == 0 while len(hashes) > 1: hashes = [sha256(l + r).digest() for l, r in zip(*[iter(hashes)] * 2)] return hashes[0]
9036414c71e192a62968a9939d56f9523359c877
3,642,089
import json def DumpStr(obj, pretty=False, newline=None, **json_dumps_kwargs): """Serialize a Python object to a JSON string. Args: obj: a Python object to be serialized. pretty: True to output in human-friendly pretty format. newline: True to append a newline in the end of result, default to the previous argument ``pretty``. json_dumps_kwargs: Any allowable arguments to json.dumps. Returns: The serialized JSON string. """ if newline is None: newline = pretty if pretty: kwargs = dict(indent=2, separators=(',', ': '), sort_keys=True) else: kwargs = {} kwargs.update(json_dumps_kwargs) result = json.dumps(obj, **kwargs) if newline: result += '\n' return result
97ed8c722d8d9e545f29214fbc8a817e6cf4ca1a
3,642,090
def snake_case(s: str): """ Transform into a lower case string with underscores between words. Parameters ---------- s : str Original string to transform. Returns ------- Transformed string. """ return _change_case(s, '_', str.lower)
c4dc65445e424101b3b5264c2f14e0aa0d7bcd22
3,642,091
def multiple_workers_thread(worker_fn, queue_capacity_input=1000, queue_capacity_output=1000, n_worker=3): """ :param worker_fn: lambda (tid, queue): pass :param queue_capacity: :param n_worker: :return: """ threads = [] queue_input = Queue.Queue(queue_capacity_input) queue_output = Queue.Queue(queue_capacity_output) for i in range(n_worker): t = threading.Thread(target=worker_fn, args=(i, queue_input, queue_output)) threads.append(t) t.start() print 'multiple_workers_thread: start %s sub-processes' % n_worker return queue_input, queue_output, threads
b9a989404b6f7e3aa6b028af5e55719364c62fd8
3,642,092
from typing import List from typing import Any def reorder(list_1: List[Any]) -> List[Any]: """This function takes a list and returns it in sorted order""" new_list: list = [] for ele in list_1: new_list.append(ele) temp = new_list.index(ele) while temp > 0: if new_list[temp - 1] > new_list[temp]: new_list[temp - 1], new_list[temp] = new_list[temp], new_list[temp-1] else: break temp = temp - 1 return new_list
2e7dad8fa138b1a9a140deab4223eea4a09cdf91
3,642,093
def is_extended_markdown(view): """True if the view contains 'Markdown Extended' syntax'ed text. """ return view.settings().get("syntax").endswith( "Markdown Extended.sublime-syntax")
5c870fd277910f6fa48f2b8ae0dfd304fdbddff0
3,642,094
from typing import Dict from typing import List from typing import Any import random import logging def _generate_graph(rule_dict: Dict[int, List[PartRule]], upper_bound: int) -> Any: """ Create a new graph from the VRG at random Returns None if the nodes in generated graph exceeds upper_bound :return: newly generated graph """ node_counter = 1 new_g = LightMultiGraph() new_g.add_node(0, label=0) non_terminals = {0} rule_ordering = [] # list of rule ids in the order they were fired while len(non_terminals) > 0: # continue until no more non-terminal nodes if new_g.order() > upper_bound: # early stopping return None, None node_sample = random.sample(non_terminals, 1)[0] # choose a non terminal node at random lhs = new_g.nodes[node_sample]['label'] rhs_candidates = rule_dict[lhs] if len(rhs_candidates) == 1: rhs = rhs_candidates[0] else: weights = np.array([rule.frequency for rule in rhs_candidates]) weights = weights / np.sum(weights) # normalize into probabilities idx = int(np.random.choice(range(len(rhs_candidates)), size=1, p=weights)) # pick based on probability rhs = rhs_candidates[idx] logging.debug(f'firing rule {rhs.id}, selecting node {node_sample} with label: {lhs}') rule_ordering.append(rhs.id) broken_edges = find_boundary_edges(new_g, {node_sample}) assert len(broken_edges) == lhs new_g.remove_node(node_sample) non_terminals.remove(node_sample) nodes = {} for n, d in rhs.graph.nodes(data=True): # all the nodes are internal new_node = node_counter nodes[n] = new_node label = None if 'label' in d: # if it's a new non-terminal add it to the set of non-terminals non_terminals.add(new_node) label = d['label'] node_color = None if 'node_colors' in d.keys(): node_color = random.sample(d['node_colors'], 1)[0] if label is None and node_color is None: new_g.add_node(new_node, b_deg=d['b_deg']) elif label is not None and node_color is None: new_g.add_node(new_node, b_deg=d['b_deg'], label=label) elif label is None and node_color is not None: new_g.add_node(new_node, b_deg=d['b_deg'], node_color=node_color) else: new_g.add_node(new_node, b_deg=d['b_deg'], label=label, node_color=node_color) node_counter += 1 # randomly assign broken edges to boundary edges random.shuffle(broken_edges) # randomly joining the new boundary edges from the RHS to the rest of the graph - uniformly at random for n, d in rhs.graph.nodes(data=True): num_boundary_edges = d['b_deg'] if num_boundary_edges == 0: # there are no boundary edges incident to that node continue assert len(broken_edges) >= num_boundary_edges edge_candidates = broken_edges[:num_boundary_edges] # picking the first batch of broken edges broken_edges = broken_edges[num_boundary_edges:] # removing them from future consideration for e in edge_candidates: # each edge is either (node_sample, v) or (u, node_sample) if len(e) == 2: u, v = e else: u, v, d = e if u == node_sample: u = nodes[n] else: v = nodes[n] logging.debug(f'adding broken edge ({u}, {v})') if len(e) == 2: new_g.add_edge(u, v) else: new_g.add_edge(u, v, attr_dict=d) # adding the rhs to the new graph for u, v, d in rhs.graph.edges(data=True): #edge_multiplicity = rhs.graph[u][v]['weight'] # edge_multiplicity = d['weight'] if 'edge_colors' in d.keys(): edge_color = random.sample(d['edge_colors'], 1)[0] new_g.add_edge(nodes[u], nodes[v], weight=edge_multiplicity, edge_color=edge_color) else: new_g.add_edge(nodes[u], nodes[v], weight=edge_multiplicity) logging.debug(f'adding RHS internal edge ({nodes[u]}, {nodes[v]}) wt: {edge_multiplicity}') return new_g, rule_ordering
8bcc3c93c0ff7f1f895f3970b9aa16c7f6293e68
3,642,095
def match_command_to_alias(command, aliases, match_multiple=False): """ Match the text against an action and return the action reference. """ results = [] for alias in aliases: formats = list_format_strings_from_aliases([alias], match_multiple) for format_ in formats: try: extract_parameters(format_str=format_['representation'], param_stream=command) except ParseException: continue results.append(format_) return results
74712b70cb5995c30c7948991d60954732e4bc16
3,642,096
def dan_acf(x, axis=0, fast=False): """ DFM's acf function Estimate the autocorrelation function of a time series using the FFT. :param x: The time series. If multidimensional, set the time axis using the ``axis`` keyword argument and the function will be computed for every other axis. :param axis: (optional) The time axis of ``x``. Assumed to be the first axis if not specified. :param fast: (optional) If ``True``, only use the largest ``2^n`` entries for efficiency. (default: False) """ x = np.atleast_1d(x) m = [slice(None), ] * len(x.shape) # For computational efficiency, crop the chain to the largest power of # two if requested. if fast: n = int(2**np.floor(np.log2(x.shape[axis]))) m[axis] = slice(0, n) x = x else: n = x.shape[axis] # Compute the FFT and then (from that) the auto-correlation function. f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) m[axis] = slice(0, n) acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real m[axis] = 0 return acf / acf[m]
ec258af743184c09e1962f1445ec6971b4d0cfab
3,642,097
import re def set_selenium_local_session(proxy_address, proxy_port, proxy_username, proxy_password, proxy_chrome_extension, headless_browser, use_firefox, browser_profile_path, disable_image_load, page_delay, logger): """Starts local session for a selenium server. Default case scenario.""" browser = None err_msg = '' if use_firefox: firefox_options = Firefox_Options() if headless_browser: firefox_options.add_argument('-headless') if browser_profile_path is not None: firefox_profile = webdriver.FirefoxProfile( browser_profile_path) else: firefox_profile = webdriver.FirefoxProfile() # set English language firefox_profile.set_preference('intl.accept_languages', 'en') if disable_image_load: # permissions.default.image = 2: Disable images load, # this setting can improve pageload & save bandwidth firefox_profile.set_preference('permissions.default.image', 2) if proxy_address and proxy_port: firefox_profile.set_preference('network.proxy.type', 1) firefox_profile.set_preference('network.proxy.http', proxy_address) firefox_profile.set_preference('network.proxy.http_port', proxy_port) firefox_profile.set_preference('network.proxy.ssl', proxy_address) firefox_profile.set_preference('network.proxy.ssl_port', proxy_port) browser = webdriver.Firefox(firefox_profile=firefox_profile, options=firefox_options) # converts to custom browser # browser = convert_selenium_browser(browser) # authenticate with popup alert window if (proxy_username and proxy_password): proxy_authentication(browser, logger, proxy_username, proxy_password) else: chromedriver_location = get_chromedriver_location() chrome_options = Options() chrome_options.add_argument('--mute-audio') chrome_options.add_argument('--dns-prefetch-disable') chrome_options.add_argument('--lang=en-US') chrome_options.add_argument('--disable-setuid-sandbox') chrome_options.add_argument('--no-sandbox') # this option implements Chrome Headless, a new (late 2017) # GUI-less browser. chromedriver 2.9 and above required if headless_browser: chrome_options.add_argument('--headless') if disable_image_load: chrome_options.add_argument( '--blink-settings=imagesEnabled=false') # replaces browser User Agent from "HeadlessChrome". user_agent = "Chrome" chrome_options.add_argument('user-agent={user_agent}' .format(user_agent=user_agent)) capabilities = DesiredCapabilities.CHROME # Proxy for chrome if proxy_address and proxy_port: prox = Proxy() proxy = ":".join([proxy_address, str(proxy_port)]) if headless_browser: chrome_options.add_argument( '--proxy-server=http://{}'.format(proxy)) else: prox.proxy_type = ProxyType.MANUAL prox.http_proxy = proxy prox.socks_proxy = proxy prox.ssl_proxy = proxy prox.add_to_capabilities(capabilities) # add proxy extension if proxy_chrome_extension and not headless_browser: chrome_options.add_extension(proxy_chrome_extension) # using saved profile for chrome if browser_profile_path is not None: chrome_options.add_argument( 'user-data-dir={}'.format(browser_profile_path)) chrome_prefs = { 'intl.accept_languages': 'en-US', } if disable_image_load: chrome_prefs['profile.managed_default_content_settings.images'] = 2 chrome_options.add_experimental_option('prefs', chrome_prefs) try: browser = webdriver.Chrome(chromedriver_location, desired_capabilities=capabilities, chrome_options=chrome_options) # gets custom instance # browser = convert_selenium_browser(browser) except WebDriverException as exc: logger.exception(exc) err_msg = 'ensure chromedriver is installed at {}'.format( Settings.chromedriver_location) return browser, err_msg # prevent: Message: unknown error: call function result missing 'value' matches = re.match(r'^(\d+\.\d+)', browser.capabilities['chrome'][ 'chromedriverVersion']) if float(matches.groups()[0]) < Settings.chromedriver_min_version: err_msg = 'chromedriver {} is not supported, expects {}+'.format( float(matches.groups()[0]), Settings.chromedriver_min_version) return browser, err_msg browser.implicitly_wait(page_delay) message = "Session started!" highlight_print('browser', message, "initialization", "info", logger) print('') return browser, err_msg
4f70baeea220c8e4e21097a5a9d9d54a47f55c2e
3,642,098
def match(): """Show a timer of the match length and an upload button""" player_west = request.form['player_west'] player_east = request.form['player_east'] start_time = dt.datetime.now().strftime('%Y%m%d%H%M') # generate filename to save video to filename = '{}_vs_{}_{}.h264'.format(player_west, player_east, start_time) GAMESAVER.filename = filename GAMESAVER.start_recording(filename) return render_template('match.html', player_west=player_west, player_east=player_east, filename=filename)
7d2e51ddfaafdff903a31b5662093ab423d8f3a1
3,642,099