content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import OrderedDict def get_explicit_kwargs_OD(f_params, bound_args, kwargs) -> OrderedDict: """For some call to a function f, args *arg and **kwargs, :param f_params: inspect.signature(f).parameters :param bound_args: inspect.signature(f).bind(*args, **kwargs) :return: OrderedDict of the (kwd, kwargs[kwd]) for keyword parameters kwd of f that ARE explicitly passed. Another ad-hoc little function, needed in 2 different places. TODO (doc)tests? """ arguments = bound_args.arguments return OrderedDict( ((k, kwargs[k]) for k in f_params if k in arguments and k in kwargs) )
abf069f5a15f159535825d77015af5205ff72c5c
3,642,300
import os def generate_variable_formants_point_function(corpus_context, min_formants, max_formants): """Generates a function used to call Praat to measure formants and bandwidths with variable num_formants. Parameters ---------- corpus_context : :class:`~polyglot.corpus.context.CorpusContext` The CorpusContext object of the corpus. min_formants : int The minimum number of formants to measure with on subsequent passes (default is 4). max_formants : int The maximum number of formants to measure with on subsequent passes (default is 7). Returns ------- formant_function : Partial function object The function used to call Praat. """ max_freq = 5500 script_dir = os.path.dirname(os.path.abspath(__file__)) script = os.path.join(script_dir, 'multiple_num_formants.praat') formant_function = PraatAnalysisFunction(script, praat_path=corpus_context.config.praat_path, arguments=[0.01, 0.025, min_formants, max_formants, max_freq]) formant_function._function._output_parse_function = parse_multiple_formant_output return formant_function
62ba3be914caaff2dbf71b3e43ae27142c4ff6af
3,642,301
def handle_player_dead_keys(key): """ The set of keys for a dead player. Can only see the inventory and toggle fullscreen. """ key_char = chr(key.c) if key.vk == libtcod.KEY_CHAR else "" if key_char == 'i': return {'show_inventory': True} if key.vk == libtcod.KEY_ENTER and key.lalt: # Alt+Enter: toggle full screen return {'fullscreen': True} elif key.vk == libtcod.KEY_ESCAPE: # Exit the menu return {'exit': True} return {}
35f6288e7e830c36b163cd762a3a53531bbee394
3,642,302
def safe_std(values): """Remove zero std values for ones.""" return np.array([val if val != 0.0 else 1.0 for val in values])
ab09a435393ea8025af966f4b464e088dce7a00b
3,642,303
def _munge_source_data(data_source=settings.NETDEVICES_SOURCE): """ Read the source data in the specified format, parse it, and return a :param data_source: Absolute path to source data file """ log.msg('LOADING FROM: ', data_source) kwargs = parse_url(data_source) path = kwargs.pop('path') return loader.load_metadata(path, **kwargs)
bda1261e3cf914402aa4e7b4e49f523088da1fe9
3,642,304
def create_app(settings_override=None): """ Create a flask application using the app factory pattern :return: Flask app """ app = Flask(__name__, instance_relative_config=True) app.config.from_object('config.settings') app.config.from_pyfile('settings.py', silent=True) if settings_override: app.config.update(settings_override) app.register_blueprint(user) extensions(app) return app
de3dbd009b67cfabd37e71063dc3d2b925b08cb6
3,642,305
def convex_hull(ps: Polygon) -> Polygon: """Andrew's algorithm""" def construct(limit, start, stop, step=1): for i in range(start, stop, step): while len(res) > limit and cross(res[-1] - res[-2], s_ps[i] - res[-1]) < 0: res.pop() res.append(s_ps[i]) assert len(ps) >= 3 s_ps = sorted(ps) N = len(s_ps) res: Polygon = [] construct(1, 0, N) construct(len(res), N - 2, -1, -1) return res[:-1]
4cdf71cdb65e838f6ef2b4617237d483257364df
3,642,306
def get_api_file_url(file_id): """Get BaseSpace API file URL.""" api_url = get_api_url() return f'{api_url}/files/{file_id}'
eff39b6dc2470f4217b8190104b3efb7c532f995
3,642,307
def Tr(*content, **attrs): """ Wrapper for tr tag >>> Tr().render() '<tr></tr>' """ return KWElement('tr', *content, **attrs)
30b3cd48fb96a0d7d04f5deebe85f4de77d82126
3,642,308
import numpy def _read_storm_locations_one_time( top_tracking_dir_name, valid_time_unix_sec, desired_full_id_strings): """Reads storm locations at one time. K = number of storm objects desired :param top_tracking_dir_name: See documentation at top of file. :param valid_time_unix_sec: Valid time. :param desired_full_id_strings: length-K list of full storm IDs. Locations will be read for these storms only. :return: desired_latitudes_deg: length-K numpy array of latitudes (deg N). :return: desired_longitudes_deg: length-K numpy array of longitudes (deg E). """ spc_date_string = time_conversion.time_to_spc_date_string( valid_time_unix_sec) desired_times_unix_sec = numpy.full( len(desired_full_id_strings), valid_time_unix_sec, dtype=int ) tracking_file_name = tracking_io.find_file( top_tracking_dir_name=top_tracking_dir_name, tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2, source_name=tracking_utils.SEGMOTION_NAME, valid_time_unix_sec=valid_time_unix_sec, spc_date_string=spc_date_string, raise_error_if_missing=True) print('Reading storm locations from: "{0:s}"...'.format(tracking_file_name)) storm_object_table = tracking_io.read_file(tracking_file_name) desired_indices = tracking_utils.find_storm_objects( all_id_strings=storm_object_table[ tracking_utils.FULL_ID_COLUMN].values.tolist(), all_times_unix_sec=storm_object_table[ tracking_utils.VALID_TIME_COLUMN].values, id_strings_to_keep=desired_full_id_strings, times_to_keep_unix_sec=desired_times_unix_sec, allow_missing=False) desired_latitudes_deg = storm_object_table[ tracking_utils.CENTROID_LATITUDE_COLUMN].values[desired_indices] desired_longitudes_deg = storm_object_table[ tracking_utils.CENTROID_LONGITUDE_COLUMN].values[desired_indices] return desired_latitudes_deg, desired_longitudes_deg
7867d2a36b71d0ab0c4d694e617cabe2aa960e92
3,642,309
def ja_il(il, instr): """ Returns llil expression to goto target of instruction :param il: llil function to generate expression with :param instr: instruction to pull jump target from :return: llil expression to goto target of instr """ label = valid_label(il, instr.ja_target) return il.goto(label)
9eb18f9b709c960467d9c6a9d9cbed0d7619c5fe
3,642,310
def create_plot_durations_v_nrows(source, x_axis_type='log', x_range=(1, 10**5), y_axis_type='log', y_range=(0.001, 10**3)): """ Create a Bokeh plot (Figure) of do_query_dur and stream_to_file_dur versus num_rows. num_rows is the number of result rows from the query. Parameters ---------- source : ColumnDataSource Bokeh data source containing the navostats data x_axis_type : str auto, linear, log, datetime, or mercator x_range : tuple (min, max) The range of values to display on the x axis. When x_axis_type is 'log', it helps if the endpoints are exact powers of 10. y_axis_type : str auto, linear, log, datetime, or mercator y_range : tuple (min, max) The range of values to display on the y axis. When y_axis_type is 'log', it helps if the endpoints are exact powers of 10. Returns ------- plotting.figure A Bokeh plot that can be shown. """ # create a new plot with a datetime axis type p = plotting.figure(plot_width=500, plot_height=500, x_axis_type=x_axis_type, x_range=x_range, y_axis_type=y_axis_type, y_range=y_range) hover = create_hover() p.add_tools(hover) # add renderers qt_rend = p.circle(x="num_rows", y="do_query_dur", source=source, size=4, color='red', alpha=0.2) dt_rend = p.circle(x="num_rows", y="stream_to_file_dur", source=source, size=4, color='green', alpha=0.2) legend = Legend(items=[ ("Query Duration", [qt_rend]), ("Download Duration", [dt_rend]) ], location=(0, 40), click_policy='hide') p.add_layout(legend, 'below') p.title.text = 'Query and Download Durations v. # of Rows' p.xaxis.axis_label = '# of Rows' p.yaxis.axis_label = 'Durations (s)' return p
2c018a68d521ba7116086f4d9f2fb015c4f584d8
3,642,311
from auroraapi.text import Text import functools def listen_and_transcribe(length=0, silence_len=0.5): """ Listen with the given parameters, but simulaneously stream the audio to the Aurora API, transcribe, and return a Text object. This reduces latency if you already know you want to convert the speech to text. :param length the length of time (seconds) to record for. If 0, it will record indefinitely, until the specified amount of silence :type length float :param silence_len the amount of silence (seconds) to allow before stoping (ignored if length != 0) :type silence_len float """ return Text(get_stt(functools.partial(stream, length, silence_len), stream=True)["transcript"])
2807b00fc760d4767c211ba168ac38dc793743aa
3,642,312
def load_test_dataframes(feature_folder, **kwargs): """ Convenience function for loading unlabeled test dataframes. Does not add a 'Preictal' column. :param feature_folder: The folder to load the feature data from. :param kwargs: keyword arguments to use for loading the features. :return: A DataFrame of unlabeled test data without a 'Preictal' column. """ test = load_feature_files(feature_folder, class_name="test", # Never use sliding frames for the test-data sliding_frames=False, **kwargs) test.sortlevel('segment', inplace=True) if isinstance(test.columns, pd.MultiIndex): test.sortlevel(axis=1, inplace=True) return test
69d503c61ec752ed640c9416f7d2292788389aee
3,642,313
import random def _match_grid(grid): """ given a grid, create the other side to obey: one p1 black must be a p2 green, tan, and black; and vice versa """ l = [""] * 25 color_dict = { "b": [i for i in range(25) if grid[i] == "b"], "t": [i for i in range(25) if grid[i] == "t"], "g": [i for i in range(25) if grid[i] == "g"] } random.shuffle(color_dict["b"]) l[color_dict["b"][0]] = "b" l[color_dict["b"][1]] = "g" l[color_dict["b"][2]] = "t" x = random.choice(color_dict["g"]) color_dict["g"].remove(x) l[x] = "b" l[random.choice(color_dict["t"])] = "b" # one green is the other player's black # three are the other players greens remain = {i for i in range(25) if l[i] == ""} s = random.sample(remain.difference(set(color_dict["g"])), _NUM_GREENS - 4) s += random.sample(color_dict["g"], 3) for i in remain: if i in s: l[i] = "g" else: l[i] = "t" return _Player_Grid(l)
83b2ee7ac92c5f5d085cd5da11fff7132449736e
3,642,314
def add_vary_callback_if_cookie(*varies): """Add vary: cookie header to all session responses. Prevent downstream web serves to accidentally cache session set-cookie reponses, potentially resulting to session leakage. """ def inner(request, response): vary = set(response.vary if response.vary is not None else []) vary |= set(varies) response.vary = vary return inner
ee7949f8c6ba1c11784b2c460e3c9dd962473412
3,642,315
import re def fix_span(text_context, offsets, span): """ find start-end indices of the span in the text_context nearest to the existing token start-end indices :param text_context: (str) text to search for span in :param offsets: (List(Tuple[int, int]) list of begins and ends for each token in the text :param span: (str) the answer span to find in the text_context :return: span indices, distance to the nearest token indices """ span = span.strip() assert span in text_context, f'answer span:{span} is not in the context: {text_context}' begins, ends = map(list, zip(*[x for x in offsets])) best_dist = 1e200 best_indices = None if span == text_context: return text_context, (0, len(text_context)), 0 # re.escape(pattern) escapes (adds '\' to special characters in pattern) # re.finditer(pattern, string) returns match objects for all matches of pattern in the string for m in re.finditer(re.escape(span), text_context): begin_offset, end_offset = m.span() fixed_begin, d1 = find_nearest(begins, begin_offset, lambda x: x < end_offset) fixed_end, d2 = find_nearest(ends, end_offset, lambda x: x > begin_offset) if d1 + d2 < best_dist: best_dist = d1 + d2 best_indices = (fixed_begin, fixed_end) if best_dist == 0: break assert best_indices is not None return best_indices, best_dist
0c4802c20fa138a6e011f550a58328eb54a487a5
3,642,316
def update_moira_lists( strategy, backend, user=None, **kwargs ): # pylint: disable=unused-argument """ Update a user's moira lists Args: strategy (social_django.strategy.DjangoStrategy): the strategy used to authenticate backend (social_core.backends.base.BaseAuth): the backend being used to authenticate user (User): the current user """ if features.is_enabled(features.MOIRA) and user and user.is_active: update_user_moira_lists.delay(user.id, update_memberships=True) return {}
f21f481bbf0b12e76149a93fee3c5c4923407c29
3,642,317
def certificate_get_all_by_project(context, project_id): """Get all certificates for a project.""" return IMPL.certificate_get_all_by_project(context, project_id)
6e4c83ff75c229034ae843607d20ae211e094df9
3,642,318
def simple_list(li): """ takes in a list li returns a sorted list without doubles """ return sorted(set(li))
1e36f15cea4be4b403f0a9795a2924c08b2cb262
3,642,319
from typing import OrderedDict def create_model(gpu, arch = 'vgg16', input_size = 25088, hidden_layer_size = 512, output_size = 102): """Creates a neural network model. """ if arch in archs_dict: model = archs_dict[arch] else: print("You haven`t inserted a valid architecture. Check the available architectures at https://pytorch.org/docs/stable/torchvision/models.html.") return False for parameter in model.parameters(): parameter.requires_grad = False model.classifier = nn.Sequential(OrderedDict([ ('Input', nn.Linear(input_size, hidden_layer_size)), ('hidden1', nn.ReLU()), ('DropOut1', nn.Dropout(p=0.2)), ('layer1', nn.Linear(hidden_layer_size, int(hidden_layer_size/2))), ('hidden2', nn.ReLU()), ('layer2', nn.Linear(int(hidden_layer_size/2), output_size)), ('output', nn.LogSoftmax(dim=1)) ])) device = 'cuda' if gpu else 'cpu' model.to(device) return model
39b8b58cfe97b5872a20f67fbeadff8b5d8e1b16
3,642,320
import json def write_json(object_list, metadata,num_frames, out_file = None): """ """ classes = ["person","bicycle","car","motorbike","NA","bus","train","truck"] # metadata = { # "camera_id": camera_id, # "start_time":start_time, # "num_frames":num_frames, # "frame_rate":frame_rate # } data = {} for frame_num in range(0,num_frames): frame_data = [] # for each object for i in range(0,len(object_list)): obj = object_list[i] # see if coordinate will be in range if obj.first_frame <= frame_num: if obj.first_frame + len(obj.all) > frame_num: veh_data = {} idx = frame_num - obj.first_frame veh_data["id_num"] = i veh_data["class"] = classes[int(obj.cls)] veh_data["detected"] = obj.tags[idx] veh_data["image_position"] = (obj.all[idx]).tolist() veh_data["world_position"] = (obj.all_world[idx]).tolist() veh_data["gps_position"] = (obj.all_gps[idx]).tolist() frame_data.append(veh_data) data[frame_num] = frame_data all_data = { "metadata":metadata, "data":data } if out_file is not None: with open(out_file, 'w') as fp: json.dump(all_data, fp) return all_data
8b224af4edbd31570a432a8c551e95cd7a002818
3,642,321
def get_infer_iterator(src_dataset, src_vocab_table, batch_size, eos, sos, src_max_len=None): """Get dataset for inference.""" # Totol number of examples in src_dataset # (3003 examples + 69 padding examples). src_eos_id = tf.cast(src_vocab_table.lookup(tf.constant(eos)), tf.int32) src_sos_id = tf.cast(src_vocab_table.lookup(tf.constant(sos)), tf.int32) src_dataset = src_dataset.map(lambda src: tf.string_split([src]).values) # Convert the word strings to ids src_dataset = src_dataset.map( lambda src: tf.cast(src_vocab_table.lookup(src), tf.int32)) # Add in the word counts. src_dataset = src_dataset.map(lambda src: (tf.concat( ([src_sos_id], src, [src_eos_id]), 0), 2 + tf.size(src))) def batching_func(x): return x.padded_batch( batch_size, # The entry is the source line rows; # this has unknown-length vectors. The last entry is # the source row size; this is a scalar. padded_shapes=( tf.TensorShape([src_max_len]), # src tf.TensorShape([])), # src_len # Pad the source sequences with eos tokens. # (Though notice we don't generally need to do this since # later on we will be masking out calculations past the true sequence. padding_values=( src_eos_id, # src 0), drop_remainder=True) # src_len -- unused batched_dataset = batching_func(src_dataset) batched_dataset = batched_dataset.map( lambda src_ids, src_seq_len: ( {"source": src_ids, "source_sequence_length": src_seq_len})) return batched_dataset
81ebd9f9f7d17bf1046f3fd0fafcbc3cdbb53ef4
3,642,322
def get_num_hearts(image): """Returns the number of full and total hearts. Keyword arguements: image - image of hearts region """ # definitions: lower_full = np.array([0, 15, 70]) upper_full = np.array([30, 35, 250]) lower_empty = np.array([150, 160, 220]) upper_empty = np.array([255, 255, 255]) full_heart_area_lower = 200 full_heart_area_upper = 300 half_heart_area_lower = 60 half_heart_area_upper = 100 # define heart image: hearts_image = image[98:161,967:1200] # this the heart region # initialize hearts full_hearts = 0 empty_hearts = 0 # calculate shapes in hearts image shapeMask_full = cv2.inRange(hearts_image, lower_full, upper_full) shapeMask_empty = cv2.inRange(hearts_image, lower_empty, upper_empty) # count full hearts cnts_full_hearts = cv2.findContours(shapeMask_full.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts_full_hearts = cnts_full_hearts[0] if imutils.is_cv2() else cnts_full_hearts[1] for c in cnts_full_hearts: if cv2.contourArea(c) >= full_heart_area_lower and cv2.contourArea(c) <= full_heart_area_upper: full_hearts = full_hearts +1 if cv2.contourArea(c) >= half_heart_area_lower and cv2.contourArea(c) <= half_heart_area_upper: full_hearts = full_hearts + 0.5 # count empty hearts cnts_empty_hearts = cv2.findContours(shapeMask_empty.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts_empty_hearts = cnts_empty_hearts[0] if imutils.is_cv2() else cnts_empty_hearts[1] for c in cnts_empty_hearts: if cv2.contourArea(c) >= full_heart_area_lower and cv2.contourArea(c) <= full_heart_area_upper: empty_hearts = empty_hearts +1 if cv2.contourArea(c) >= half_heart_area_lower and cv2.contourArea(c) <= half_heart_area_upper: empty_hearts = empty_hearts + 0.5 return full_hearts, empty_hearts+full_hearts
614d11546c5d458b5e9d485024da4bdb34688e24
3,642,323
import copy def _clean_root(tool_xml): """XSD assumes macros have been expanded, so remove them.""" clean_tool_xml = copy.deepcopy(tool_xml) to_remove = [] for macros_el in clean_tool_xml.getroot().findall("macros"): to_remove.append(macros_el) for macros_el in to_remove: clean_tool_xml.getroot().remove(macros_el) return clean_tool_xml
9df0980265b26a2de1c88d2999f10cd5d1421e0b
3,642,324
import logging import traceback def page_not_found(e): """Return a custom 404 error.""" logging.error(':: A 404 was thrown a bad URL was requested ::') logging.error(traceback.format_exc()) return render_template('404.html'), 404
11a553ab9ce52b4b1ba12916887f636d02aaef8f
3,642,325
def find_prime_factors(num): """Return prime factors of num.""" validate_integers(num) zero_divisors_error(num) potential_factor = 2 prime_factors = set() while potential_factor <= num: if num % potential_factor == 0: prime_factors.add(potential_factor) num = num/potential_factor else: potential_factor += 1 return prime_factors
fe15c75d19081ec5fa5cfdefa0c95e4bcd20c26d
3,642,326
from datetime import datetime def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, (datetime, date)): return obj.isoformat() elif isinstance(obj, (dict)): return obj raise TypeError("Type %s not serializable" % type(obj))
7da3adb9dde3315741b5dcad2fa276e9f0b582af
3,642,327
import os import yaml def read_yaml_files(directories): """Read the contents of all yaml files in a directory. Args: directories: List of directory names with configuration files Returns: config_dict: Dict of yaml read """ # Initialize key variables yaml_found = False yaml_from_file = '' all_yaml_read = '' # Check each directory in sequence for config_directory in directories: # Check if config_directory exists if os.path.isdir(config_directory) is False: log_message = ( 'Configuration directory "{}" ' 'doesn\'t exist!'.format(config_directory)) log.log2die_safe(1009, log_message) # Cycle through list of files in directory for filename in os.listdir(config_directory): # Examine all the '.yaml' files in directory if filename.endswith('.yaml'): # Read YAML data filepath = '{}/{}'.format(config_directory, filename) yaml_from_file = read_yaml_file(filepath, as_string=True) yaml_found = True # Append yaml from file to all yaml previously read all_yaml_read = '{}\n{}'.format(all_yaml_read, yaml_from_file) # Verify YAML files found in directory if yaml_found is False: log_message = ( 'No files found in directory "{}" with ".yaml" ' 'extension.'.format(config_directory)) log.log2die_safe(1010, log_message) # Return config_dict = yaml.safe_load(all_yaml_read) return config_dict
c849280c1b267984d779adfbd5a18d3316254117
3,642,328
import sys import logging def _check_for_crash(project_name, fuzz_target, testcase_path): """Check for crash.""" def docker_run(args): command = ['docker', 'run', '--rm', '--privileged'] if sys.stdin.isatty(): command.append('-i') return utils.execute(command + args) logging.info('Checking for crash') out, err, return_code = helper.reproduce_impl( project=helper.Project(project_name), fuzzer_name=fuzz_target, valgrind=False, env_to_add=[], fuzzer_args=[], testcase_path=testcase_path, run_function=docker_run, err_result=(None, None, None)) if return_code is None: return None logging.info('stdout =\n%s', out) logging.info('stderr =\n%s', err) # pylint: disable=unsupported-membership-test has_start_marker = any( marker in out or marker in err for marker in START_MARKERS) has_end_marker = any(marker in out or marker in err for marker in END_MARKERS) if not has_start_marker or not has_end_marker: return None return _get_dedup_token(out + err)
00531cff78355d1b7e84bcffdcf2c1cb943803e2
3,642,329
import os import sys def parse_from_compdb(compdb, file_to_parse): """Extracts the absolute file path of the file to parse and its arguments from compdb""" absolute_filepath = None file_arguments = [] compdb = compdb_parser.load_compdb(compdb) if compdb: commands = compdb.getAllCompileCommands() for command in commands: if file_to_parse in command.filename: absolute_filepath = os.path.join(command.directory, command.filename) file_arguments = list(command.arguments) file_arguments = tu_parser.clean_args(file_arguments) file_arguments = tu_parser.absolute_path_include(file_arguments, command.directory) else: sys.exit("ERROR: Failed to load compdb") return absolute_filepath, file_arguments
d1f9b3098335571f5ef2c96727d9d8be5eecaacd
3,642,330
import subprocess def _pyenv_version(): """Determine which pyenv Returns: str: pyenv version """ return subprocess.check_output(['pyenv', 'version']).split(' ')[0]
83c9f3a7ba15996392d8510f34e555e39c813a1a
3,642,331
import subprocess def reset_config_on_routers(tgen, routerName=None): """ Resets configuration on routers to the snapshot created using input JSON file. It replaces existing router configuration with FRRCFG_BKUP_FILE Parameters ---------- * `tgen` : Topogen object * `routerName` : router config is to be reset """ logger.debug("Entering API: reset_config_on_routers") tgen.cfg_gen += 1 gen = tgen.cfg_gen # Trim the router list if needed router_list = tgen.routers() if routerName: if routerName not in router_list: logger.warning( "Exiting API: reset_config_on_routers: no router %s", routerName, exc_info=True, ) return True router_list = {routerName: router_list[routerName]} delta_fmt = tgen.logdir + "/{}/delta-{}.conf" # FRRCFG_BKUP_FILE target_cfg_fmt = tgen.logdir + "/{}/frr_json_initial.conf" run_cfg_fmt = tgen.logdir + "/{}/frr-{}.sav" # # Get all running configs in parallel # procs = {} for rname in router_list: logger.info("Fetching running config for router %s", rname) procs[rname] = router_list[rname].popen( ["/usr/bin/env", "vtysh", "-c", "show running-config no-header"], stdin=None, stdout=open(run_cfg_fmt.format(rname, gen), "w"), stderr=subprocess.PIPE, ) for rname, p in procs.items(): _, error = p.communicate() if p.returncode: logger.error( "Get running config for %s failed %d: %s", rname, p.returncode, error ) raise InvalidCLIError( "vtysh show running error on {}: {}".format(rname, error) ) # # Get all delta's in parallel # procs = {} for rname in router_list: logger.info( "Generating delta for router %s to new configuration (gen %d)", rname, gen ) procs[rname] = tgen.net.popen( [ "/usr/lib/frr/frr-reload.py", "--test-reset", "--input", run_cfg_fmt.format(rname, gen), "--test", target_cfg_fmt.format(rname), ], stdin=None, stdout=open(delta_fmt.format(rname, gen), "w"), stderr=subprocess.PIPE, ) for rname, p in procs.items(): _, error = p.communicate() if p.returncode: logger.error( "Delta file creation for %s failed %d: %s", rname, p.returncode, error ) raise InvalidCLIError("frr-reload error for {}: {}".format(rname, error)) # # Apply all the deltas in parallel # procs = {} for rname in router_list: logger.info("Applying delta config on router %s", rname) procs[rname] = router_list[rname].popen( ["/usr/bin/env", "vtysh", "-f", delta_fmt.format(rname, gen)], stdin=None, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) for rname, p in procs.items(): output, _ = p.communicate() vtysh_command = "vtysh -f {}".format(delta_fmt.format(rname, gen)) if not p.returncode: router_list[rname].logger.info( '\nvtysh config apply => "{}"\nvtysh output <= "{}"'.format( vtysh_command, output ) ) else: router_list[rname].logger.warning( '\nvtysh config apply failed => "{}"\nvtysh output <= "{}"'.format( vtysh_command, output ) ) logger.error( "Delta file apply for %s failed %d: %s", rname, p.returncode, output ) # We really need to enable this failure; however, currently frr-reload.py # producing invalid "no" commands as it just preprends "no", but some of the # command forms lack matching values (e.g., final values). Until frr-reload # is fixed to handle this (or all the CLI no forms are adjusted) we can't # fail tests. # raise InvalidCLIError("frr-reload error for {}: {}".format(rname, output)) # # Optionally log all new running config if "show_router_config" is defined in # "pytest.ini" # if show_router_config: procs = {} for rname in router_list: logger.info("Fetching running config for router %s", rname) procs[rname] = router_list[rname].popen( ["/usr/bin/env", "vtysh", "-c", "show running-config no-header"], stdin=None, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) for rname, p in procs.items(): output, _ = p.communicate() if p.returncode: logger.warning( "Get running config for %s failed %d: %s", rname, p.returncode, output, ) else: logger.info( "Configuration on router %s after reset:\n%s", rname, output ) logger.debug("Exiting API: reset_config_on_routers") return True
3f90d31d2ac1d85bf52a341433ccb96cb044c938
3,642,332
def ignore_exception(exception): """Check whether we can safely ignore this exception.""" if isinstance(exception, BadRequest): if 'Query is too old' in exception.message or \ exception.message.startswith('Have no rights to send a message') or \ exception.message.startswith('Message_id_invalid') or \ exception.message.startswith('Message identifier not specified') or \ exception.message.startswith('Schedule_date_invalid') or \ exception.message.startswith('Message is not modified: specified new message content'): return True if isinstance(exception, Unauthorized): if exception.message.lower() == 'forbidden: bot was blocked by the user': return True if exception.message.lower() == 'forbidden: message_author_required': return True if exception.message.lower() == 'forbidden: bot is not a member of the supergroup chat': return True if exception.message.lower() == 'forbidden: user is deactivated': return True if exception.message.lower() == 'forbidden: bot was kicked from the group chat': return True if exception.message.lower() == 'forbidden: bot was kicked from the supergroup chat': return True if exception.message.lower() == 'forbidden: chat_write_forbidden': return True if isinstance(exception, TimedOut): return True return False
3f0182fbe7cec2e5978c61c110d10ed039869fd7
3,642,333
def rmse_loss(prediction, ground_truth, weight_map=None): """ :param prediction: the current prediction of the ground truth. :param ground_truth: the measurement you are approximating with regression. :param weight_map: a weight map for the cost function. . :return: sqrt(mean(differences squared)) """ if weight_map is not None: residuals = tf.subtract(prediction, ground_truth) residuals = tf.multiply(residuals, residuals) residuals = tf.multiply(residuals, weight_map) return tf.sqrt(tf.reduce_mean(residuals) / tf.reduce_mean(weight_map)) else: return tf.sqrt(tf.losses.mean_squared_error(prediction, ground_truth))
aef45b5549151a3d6c026dd34ccd9b6aa2b6d695
3,642,334
def get_corrupted_simulation_docs(): """Returns iterable of simdocs without samples (when num_paticles >0) When num_particle<=0, no samples are created and the simulation is considered Finished anyway. These ignored simulations """ return db[DBCOLLECTIONS.SIMULATION].find({ 'procstatus.status': PROCSTATUS.FINISHED, 'samples': {'$exists': True, "$eq": []}, 'num_particles': {'$gt': 0}, })
f23620d7ea09fd37790ceb682f15dc0183b17c9c
3,642,335
def residual_block(x: Tensor, downsample: bool, filters: int, kernel_size: int = 3) -> Tensor: """ Parameters ---------- x : Tensor DESCRIPTION. downsample : bool DESCRIPTION. filters : int DESCRIPTION. kernel_size : int, optional DESCRIPTION. The default is 3. Returns ------- Tensor DESCRIPTION. """ y = Conv2D(kernel_size=kernel_size, strides= (1 if not downsample else 2), filters=filters, padding="same")(x) y = relu_bn(y) y = Conv2D(kernel_size=kernel_size, strides=1, filters=filters, padding="same")(y) if downsample: x = Conv2D(kernel_size=1, strides=2, filters=filters, padding="same")(x) out = Add()([x, y]) out = relu_bn(out) return out
092c41b6508ccb52d545219e0d2e254c3430362a
3,642,336
def dehaze(img, level): """use Otsu to threshold https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_multiotsu.html n.b. threshold used to mask image: dark values are zeroed, but result is NOT binary level: value 1..5 with larger values preserving more bright voxels level: dark_classes/total_classes 1: 3/4 2: 2/3 3: 1/2 4: 1/3 5: 1/4 """ level = bound(1, 5, level) n_classes = abs(3 - level) + 2 dark_classes = 4 - level dark_classes = bound(1, 3, dark_classes) thresholds = skimage.filters.threshold_multiotsu(img, n_classes) thresh = thresholds[dark_classes - 1] print("Zeroing voxels darker than ", thresh) img[img < thresh] = 0 return img
bdb6f55fd09986a2abac92728644777fae77f6ca
3,642,337
def matthews_correlation_coefficient(tp, tn, fp, fn): """Return Matthews correlation coefficient for values from a confusion matrix. Implementation is based on the definition from wikipedia: https://en.wikipedia.org/wiki/Matthews_correlation_coefficient """ numerator = (tp * tn) - (fp * fn) denominator = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) if denominator == 0: denominator = 1 return float(numerator) / denominator
2048fb05664b3fcab99e08c51eb11a222676df84
3,642,338
import os import yaml def find_graph(hostnames): """ Find a graph file contains all devices in testbed. duts are spcified by hostnames Parameters: hostnames: list of duts in the target testbed. """ filename = os.path.join(LAB_GRAPHFILE_PATH, LAB_CONNECTION_GRAPH_FILE) with open(filename) as fd: file_list = yaml.safe_load(fd) # Finding the graph file contains all duts from hostnames, for fn in file_list: print_debug_msg(debug_fname, "Looking at conn graph file: %s for hosts %s" % (fn, hostnames)) filename = os.path.join(LAB_GRAPHFILE_PATH, fn) lab_graph = Parse_Lab_Graph(filename) lab_graph.parse_graph() print_debug_msg(debug_fname, "For file %s, got hostnames %s" % (fn, lab_graph.devices)) if lab_graph.contains_hosts(hostnames): print_debug_msg(debug_fname, ("Returning lab graph from conn graph file: %s for hosts %s" % (fn, hostnames))) return lab_graph # Fallback to return an empty connection graph, this is # needed to bridge the kvm test needs. The KVM test needs # A graph file, which used to be whatever hardcoded file. # Here we provide one empty file for the purpose. lab_graph = Parse_Lab_Graph(os.path.join(LAB_GRAPHFILE_PATH, EMPTY_GRAPH_FILE)) lab_graph.parse_graph() return lab_graph
307c939bdac3bf106ba12d12fbf0a41b06b3d525
3,642,339
import re def run_analysis(apk_dir, md5_hash, package): """Run Dynamic File Analysis.""" analysis_result = {} logger.info('Dynamic File Analysis') domains = {} clipboard = [] # Collect Log data data = get_log_data(apk_dir, package) clip_tag = 'I/CLIPDUMP-INFO-LOG' clip_tag2 = 'I CLIPDUMP-INFO-LOG' # Collect Clipboard for log_line in data['logcat']: if clip_tag in log_line: clipboard.append(log_line.replace(clip_tag, 'Process ID ')) if clip_tag2 in log_line: log_line = log_line.split(clip_tag2)[1] clipboard.append(log_line) # URLs My Custom regex url_pattern = re.compile( r'((?:https?://|s?ftps?://|file://|' r'javascript:|data:|www\d{0,3}' r'[.])[\w().=/;,#:@?&~*+!$%\'{}-]+)', re.UNICODE) urls = re.findall(url_pattern, data['traffic'].lower()) if urls: urls = list(set(urls)) else: urls = [] # Domain Extraction and Malware Check logger.info('Performing Malware Check on extracted Domains') domains = MalwareDomainCheck().scan(urls) # Email Etraction Regex emails = [] regex = re.compile(r'[\w.-]{1,20}@[\w-]{1,20}\.[\w]{2,10}') for email in regex.findall(data['traffic'].lower()): if (email not in emails) and (not email.startswith('//')): emails.append(email) # Tar dump and fetch files all_files = get_app_files(apk_dir, md5_hash, package) analysis_result['urls'] = urls analysis_result['domains'] = domains analysis_result['emails'] = emails analysis_result['clipboard'] = clipboard analysis_result['xml'] = all_files['xml'] analysis_result['sqlite'] = all_files['sqlite'] analysis_result['other_files'] = all_files['others'] analysis_result['tls_tests'] = get_tls_logs(apk_dir, md5_hash) return analysis_result
f5108c8e3a09799e451bc8182018acf1481615e4
3,642,340
from datetime import datetime import fastapi async def quotes( ticker: str, date: datetime.date, uow: UoW = fastapi.Depends(dependendies.get_uow), ) -> ListResponse[Ticker]: """Return the list of available tickers.""" with uow: results = uow.quotes.iterator({'ticker': ticker, 'date': date}) return ListResponse(results=results)
4267815af0ec13bc617870ee16b7b452a66d7891
3,642,341
from typing import Tuple from typing import Union def delete_snapshot(client, data_args) -> Tuple[str, dict, Union[list, dict]]: """ Delete exsisting snapshot from the system. :type client: ``Client`` :param client: client which connects to api. :type data_args: ``dict`` :param data_args: request arguments. :return: human readable format, context output and the original raw response. :rtype: ``tuple`` """ snapshot_ids = argToList(data_args.get('snapshot_ids')) body = {'ids': snapshot_ids} client.do_request('DELETE', '/plugin/products/threat-response/api/v1/snapshot', data=body) return f'Snapshot {",".join(snapshot_ids)} deleted successfully.', {}, {}
509298677120b61dd9aa050dbe40aacffff6d97c
3,642,342
from backend.models.prices import PriceDB def api_user_submissions(user_id): """Gets the price submissions for a user matching the user_id. Example Request: HTTP GET /api/v1/users/56cf848722e7c01d0466e533/submissions Example Response: { "success": "OK", "user_submissions": [ { "submitted_timestamp": "2016-02-25 22:52:32+00:00", "image": null, "business_details": { "google_places": { ... truncated for ease of reading ... }, "open_time": null, "business_id": "56cf859195bfb3ccb12582e5", "address": "6200 N Broad St, Philadelphia, PA 19141, United States", "phone_number": "(215) 549-5089", "name": "Shell", "close_time": null }, "product_id": "56bbda2dd8d9a114db76ca5c", "price": 153, "user_id": "56cf848722e7c01d040ae533", "price_id": "56cf85b022e7c0197cf2a02b" }, ... ] } """ if not user_is_authenticated(user_id=user_id): return json_error("Unauthorized", status_code=403) price_db = PriceDB() submissions = price_db.get_submissions(user_id=user_id) return json_success("OK", user_submissions=submissions)
498c91451896dde6d347492acad9573839c45e13
3,642,343
def get_pdf_info(pdf_path: str) -> PdfInfo: """Get meta information of a PDF file.""" info: PdfInfo = PdfInfo(path=pdf_path) keys = get_flat_cfg_file(path="~/.edapy/pdf_keys.csv") ignore_keys = get_flat_cfg_file(path="~/.edapy/pdf_ignore_keys.csv") for key in keys: info.user_attributes[key] = None info.is_errornous = False info.is_encrypted = False info.nb_pages = -1 info.nb_toc_top_level = -1 info.nb_characters = 0 with open(pdf_path, "rb") as fp: try: pdf_toread = PdfFileReader(fp, strict=False) except PyPDF2.utils.PdfReadError: info.is_errornous = True return info except KeyError as e: logger.warning( "https://github.com/mstamy2/PyPDF2/issues/388 for " f" PDF '{pdf_path}': {e}" ) return info except OSError as e: logger.warning(f"OSError for PDF '{pdf_path}': {e}") return info except AssertionError as e: logger.warning(f"AssertionError for PDF '{pdf_path}': {e}") return info except TypeError as e: logger.warning(f"TypeError for PDF '{pdf_path}': {e}") return info try: tl_toc = [el for el in pdf_toread.outlines if not isinstance(el, list)] info.nb_toc_top_level = len(tl_toc) except PyPDF2.utils.PdfReadError as e: logger.error(f"{pdf_path}: PyPDF2.utils.PdfReadError {e}") except ValueError as e: logger.error(f"{pdf_path}: ValueError {e}") except TypeError as e: logger.error(f"{pdf_path}: TypeError {e}") info_t = enhance_pdf_info(info, pdf_toread, pdf_path, keys, ignore_keys) return info_t
3f80d9d50261e6b7a9e1c90b504abcbeed2b214d
3,642,344
import json import zlib import base64 def convert_gz_json_type(value): """Provide an ArgumentParser type function to unmarshal a b64 gz JSON string. """ return json.loads(zlib.decompress(base64.b64decode(value)))
1cf0300f40c8367b9129f230a7fef0c9b89ba012
3,642,345
def get_tag(tag): """ Returns a tag object for the string passed to it If it does not appear in the database then return a new tag object If it does exisit in the data then return the database object """ tag = tag.lower() try: return Session.query(Tag).filter_by(name=unicode(tag)).one() except NoResultFound as nrf: t = Tag(unicode(tag)) Session.add(t) return t
e11ae349fa4d436a6b7057bf0b5d8b74a7e0f4e4
3,642,346
import requests import json def makeApiCall( url, endpointParams, debug = 'no' ) : """ Request data from endpoint with params Args: url: string of the url endpoint to make request from endpointParams: dictionary keyed by the names of the url parameters Returns: object: data from the endpoint """ data = requests.get( url, endpointParams ) # make get request response = dict() # hold response info response['url'] = url # url we are hitting response['endpoint_params'] = endpointParams #parameters for the endpoint response['endpoint_params_pretty'] = json.dumps( endpointParams, indent = 4 ) # pretty print for cli response['json_data'] = json.loads( data.content ) # response data from the api response['json_data_pretty'] = json.dumps( response['json_data'], indent = 4 ) # pretty print for cli if ( 'yes' == debug ) : # display out response info displayApiCallData( response ) # display response return response
5f9362d6b34ee4809714ae7380bfaa5500763177
3,642,347
def get_closest_area( lat: float, lng: float, locations: t.List[config.Area] ) -> t.Optional[config.Area]: """Return area if image taken within 50 km from center of area""" distances = [ (great_circle((area.lat, area.lng), (lat, lng)).km, area) for area in locations ] distance, closest_area = min(distances) return closest_area if distance < 50 else None
3deb96bc1863ed1d02699cff0a48edd9471bbade
3,642,348
def disable(request): """ Disable Pool Member Running Script """ try: auth = AuthSession(request.session) client = auth.get_clientFactory() id_server_pool = request.POST.get('id_server_pool') ids = request.POST.get('ids') if id_server_pool and ids: client.create_pool().disable(split_to_array(ids)) messages.add_message( request, messages.SUCCESS, pool_messages.get('success_disable')) else: messages.add_message( request, messages.ERROR, error_messages.get('select_one')) except NetworkAPIClientError, e: logger.error(e) messages.add_message(request, messages.ERROR, e) return redirect(reverse('pool.manage.tab2', args=[id_server_pool]))
9c56d891a86db3e9f999cb8f329630172ea9703e
3,642,349
def fastapi_native_middleware_factory(): """Create a FastAPI app that uses native-style middleware.""" app = FastAPI() # Exception handler for `/client_error_from_handled_exception` app.add_exception_handler(IndexError, client_induced_exception_handler) app.add_middleware(BaseHTTPMiddleware, dispatch=xray_middleware) app.add_api_route("/", handle_request) app.add_api_route("/client_error_as_http_exception", handle_with_http_exception) app.add_api_route( "/client_error_as_response", handle_request, status_code=HTTP_422_UNPROCESSABLE_ENTITY, ) app.add_api_route("/client_error_from_handled_exception", handle_with_indexerror) app.add_api_route("/delay", handle_with_delay) app.add_api_route("/exception", handle_with_keyerror) app.add_api_route( "/unauthorized", handle_request, status_code=HTTP_401_UNAUTHORIZED ) return app
5c85df93f126443b19b10b58fc7cb57661fd3388
3,642,350
def _partial_dependence( pipeline, X, features, percentiles=(0.05, 0.95), grid_resolution=100, kind="average", custom_range=None, ): """Compute the partial dependence for features of X. Args: pipeline (PipelineBase): pipeline. X (pd.DataFrame): Holdout data features (list(str)): Column names of X to compute the partial dependence for. percentiles (tuple float): Percentiles to use in range calculation for a given feature. grid_resolution: Number of points in range of values used for each feature in partial dependence calculation. kind (str): The type of predictions to return. custom_range (dict[str, np.ndarray]): Mapping from column name in X to range of values to use in partial dependence. If custom_range is specified, the percentile + interpolation procedure is skipped and the values in custom_range are used. Returns: dict with 'average', 'individual', 'values' keys. 'values' is a list of the values used in the partial dependence for each feature. 'average' and 'individual' are averaged and individual predictions for each point in the grid. """ if grid_resolution <= 1: raise ValueError("'grid_resolution' must be strictly greater than 1.") custom_range = custom_range or {} custom_range = { feature: custom_range.get(feature) for feature in features if feature in custom_range } grid, values = _grid_from_X( X.loc[:, features], percentiles, grid_resolution, custom_range, ) averaged_predictions, predictions = _partial_dependence_calculation( pipeline, grid, features, X, ) # reshape predictions to # (n_outputs, n_instances, n_values_feature_0, n_values_feature_1, ...) predictions = predictions.reshape(-1, X.shape[0], *[val.shape[0] for val in values]) # reshape averaged_predictions to # (n_outputs, n_values_feature_0, n_values_feature_1, ...) averaged_predictions = averaged_predictions.reshape( -1, *[val.shape[0] for val in values] ) if kind == "average": return {"average": averaged_predictions, "values": values} elif kind == "individual": return {"individual": predictions, "values": values} else: # kind='both' return { "average": averaged_predictions, "individual": predictions, "values": values, }
1b8ae5811b7e815805e95d1c4ccc2fb1127187a9
3,642,351
from typing import Union from typing import Tuple def nplog( a: np.ndarray, deriv: bool = False, eps: float = 1e-30, verbose: bool = False ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """$C^2$ extension of $\ln(a)$ below `eps` Args: a: a Numpy array deriv: if `True`, the first derivative is also returned eps: a lower bound verbose: whether diagnoses are printed Returns: $\ln(a)$ $C^2$-extended below `eps`, with its derivative if `deriv` is `True` """ if np.min(a) > eps: loga = np.log(a) return [loga, 1.0 / a] if deriv else loga else: logarreps = np.log(np.maximum(a, eps)) logarr_smaller = log(eps) - (eps - a) * (3.0 * eps - a) / (2.0 * eps * eps) if verbose: n_small_args = np.sum(a < eps) if n_small_args > 0: finals = "s" if n_small_args > 1 else "" print( f"nplog: {n_small_args} argument{finals} smaller than {eps}: mini = {np.min(a)}" ) loga = np.where(a > eps, logarreps, logarr_smaller) if deriv: der_logarreps = 1.0 / np.maximum(a, eps) der_logarr_smaller = (2.0 * eps - a) / (eps * eps) der_loga = np.where(a > eps, der_logarreps, der_logarr_smaller) return loga, der_loga else: return loga
cc2258b78aca58c71d61aa058b9de0d408165268
3,642,352
from typing import List import os import json def translate_names(recipe_names: List[str], locale: str) -> List[str]: """Translates a list of recipe names to the given locale.""" if locale in ['auto', 'en-us']: return recipe_names translation_path = os.path.join('recipes', 'translations.json') with open(translation_path, encoding='utf-8') as fp: translations = json.load(fp) return [translations[name][locale] for name in recipe_names]
2294f1ee2556521ae080eee7d9050873d9a723cb
3,642,353
def _section_to_text(config_section: ConfigSection) -> str: """Convert a single config section to text""" return (f'[{config_section.name}]{LINE_SEP}' f'{LINE_SEP.join(_option_to_text(option) for option in config_section.options)}{LINE_SEP}')
ee5feed2f9453c9f3338997d5294bada22961f07
3,642,354
import tempfile def TempFileDecorator(func): """Populates self.tempfile with path to a temporary writeable file""" def f(self, *args, **kwargs): with tempfile.NamedTemporaryFile(dir=self.tempdir, delete=False) as f: self.tempfile = f.name return func(self, *args, **kwargs) f.__name__ = func.__name__ f.__doc__ = func.__doc__ f.__module__ = func.__module__ return TempDirDecorator(f)
d696a16cade0eee36fee9cba4c0d8b96fbcc79e4
3,642,355
import string import random def get_random_string(length: int) -> str: """ Returns a random string starting with a lower-case letter. Later parts can contain numbers, lower- and uppercase letters. Note: Random Seed should be set somewhere in the program! :param length: How long the required string must be. length > 0 required. :return: a randomly created string :raises: ValueError for zero and negative length """ if length < 1: raise ValueError("Random Strings must have length 1 minimum.") # choose from all lowercase letter letters = string.ascii_letters + string.digits first_letter = random.choice(string.ascii_lowercase) result_str = ''.join(random.choice(letters) for i in range(length - 1)) return first_letter + result_str
6cf20ce7d158ac158ffa49cac427c396cfd840db
3,642,356
import numpy def subset_by_month(prediction_dict, desired_month): """Subsets examples by month. :param prediction_dict: See doc for `write_file`. :param desired_month: Desired month (integer from 1...12). :return: prediction_dict: Same as input but with fewer examples. """ error_checking.assert_is_integer(desired_month) error_checking.assert_is_geq(desired_month, 1) error_checking.assert_is_leq(desired_month, 12) all_months = numpy.array([ int(time_conversion.unix_sec_to_string(t, '%m')) for t in prediction_dict[INIT_TIMES_KEY] ], dtype=int) desired_indices = numpy.where(all_months == desired_month)[0] return subset_by_index( prediction_dict=prediction_dict, desired_indices=desired_indices )
4df4eca74bcb433e85a06a99b32877890909ba86
3,642,357
import time def build_dataset_mce(platform, dataset_name, columns): """ Creates MetadataChangeEvent for the dataset. """ actor, sys_time = "urn:li:corpuser:etl", int(time.time()) fields = [] for column in columns: fields.append({ "fieldPath": column["name"], "nativeDataType": repr(column["type"]), "type": { "type":get_column_type(column["type"]) }, "description": column.get("comment", None) }) schema_metadata = { "schemaName": dataset_name, "platform": f"urn:li:dataPlatform:{platform}", "version": 0, "created": { "time": sys_time, "actor": actor }, "lastModified": { "time":sys_time, "actor": actor }, "hash": "", "platformSchema": { "tableSchema": "" }, "fields": fields } return { "auditHeader": None, "proposedSnapshot":("com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot", { "urn": f"urn:li:dataset:(urn:li:dataPlatform:{platform},{dataset_name},PROD)", "aspects": [("com.linkedin.pegasus2avro.schema.SchemaMetadata", schema_metadata)] }), "proposedDelta": None }
22fab14fe4a6e9f01b24ca67dce40b5860aebbe2
3,642,358
from copy import copy import re import logging def tag_source_file(path): """Returns a list of tuples: (line_text, list_of_tags)""" file = open(path, "r") # The list of tagged lines tagged_lines = [] # The list of tags that currently apply current_tags = [] # Use this to store snapshots of current_tags # Regexes for detecting when tags start and end begin_re = re.compile(".*?\/\/ BEGIN (.*).*") end_re = re.compile(".*?\/\/ END (.*).*") line_num = 0 for line in file: # If this line contains "//-", "/*-" or "-*/", it's a comment # that should not be rendered. if "/*-" in line or "-*/" in line or "//-" in line: pass # If we entered a tag, add it to the list elif begin_re.search(line): tag = begin_re.search(line).group(1) if tag in current_tags: logging.warn("{0}:{1}: \"{2}\" was entered twice without exiting it".format(path, line_num, tag)) current_tags.append(tag) # If we left a tag, remove it elif end_re.search(line): tag = end_re.search(line).group(1) if tag not in current_tags: logging.warn("{0}:{1}: \"{2}\" was exited, but had not yet been entered".format(path, line_num, tag)) current_tags.remove(tag) # If it's neither, add it to the list of tagged lines else: tagged_lines.append((line, copy(current_tags), (path, line_num))) line_num += 1 # TODO: Error if we left a file with an unclosed tag return tagged_lines
0d46748a2145bcd70115bf5047fce21184a4f535
3,642,359
def FindMissingReconstruction(X, track_i): """ Find the points that will be newly added Parameters ---------- X : ndarray of shape (F, 3) 3D points track_i : ndarray of shape (F, 2) 2D points of the newly registered image Returns ------- new_point : ndarray of shape (F,) The indicator of new points that are valid for the new image and are not reconstructed yet """ new_point = np.logical_and(X[:, 0] == -1, track_i[:, 0] != -1) return new_point
36e0f0f2dbc6a68f20a349a92fc1c882d5d0b73a
3,642,360
def deserialize(iodata): """ Turn IOData back into a Python object of the appropriate kind. An object is deemed deserializable if 1) it is recorded in SERIALIZABLE_REGISTRY and has a `.deserialize` method 2) there exists a function `file_io_serializers.<typename>_deserialize` Parameters ---------- iodata: IOData Returns ------- class instance """ typename = iodata.typename if typename in io_serializers.SERIALIZABLE_REGISTRY: cls = io_serializers.SERIALIZABLE_REGISTRY[typename] return cls.deserialize(iodata) if hasattr(io_serializers, typename + '_deserialize'): deserialize_method = getattr(io_serializers, typename + '_deserialize') return deserialize_method(iodata) raise NotImplementedError("No implementation for converting {} data to Python object.".format(typename))
3eb21f34b1571626a40fc52bd2eae2a42ff7dbb4
3,642,361
from typing import Union from typing import Iterable from typing import Tuple from typing import Optional def business_day_offset(dates: DateOrDates, offsets: Union[int, Iterable[int]], roll: str= 'raise', calendars: Union[str, Tuple[str, ...]]=(), week_mask: Optional[str]=None) -> DateOrDates: """ Apply offsets to the dates and move to the nearest business date :param dates: The input date or dates :param offsets: The number of days by which to adjust the dates :param roll: Which direction to roll, in order to get to the nearest business date :param calendars: Calendars to use for holidays :param week_mask: Which days are considered weekends (defaults to Saturday and Sunday) :return: A date (if dates is a single date) or tuple of dates, adjusted by the offsets **Examples** >>> import datetime as dt >>> prev_bus_date = business_day_offset(dt.date.today(), -1, roll='preceding') """ calendar = GsCalendar.get(calendars) res = np.busday_offset(dates, offsets, roll, busdaycal=calendar.business_day_calendar(week_mask)).astype(dt.date) return tuple(res) if isinstance(res, np.ndarray) else res
32769b604b8e671b8318b0a6e00cdb8331774870
3,642,362
def factorial(n): """ Return n! - the factorial of n. >>> factorial(1) 1 >>> factorial(0) 1 >>> factorial(3) 6 """ if n<=0: return 0 elif n==1: return 1 else: return n*factorial(n-1)
da5bc6f68375c7db03b7b2bdac1fec2b476ba563
3,642,363
from scipy.io import loadmat from scipy.interpolate import interp1d def _load_absorption(freqs): """Load molar extinction coefficients.""" # Data from https://omlc.org/spectra/hemoglobin/summary.html # The text was copied to a text file. The text before and # after the table was deleted. The the following was run in # matlab # extinct_coef=importdata('extinction_coef.txt') # save('extinction_coef.mat', 'extinct_coef') # # Returns data as [[HbO2(freq1), Hb(freq1)], # [HbO2(freq2), Hb(freq2)]] extinction_fname = op.join(op.dirname(__file__), '..', '..', 'data', 'extinction_coef.mat') a = loadmat(extinction_fname)['extinct_coef'] interp_hbo = interp1d(a[:, 0], a[:, 1], kind='linear') interp_hb = interp1d(a[:, 0], a[:, 2], kind='linear') ext_coef = np.array([[interp_hbo(freqs[0]), interp_hb(freqs[0])], [interp_hbo(freqs[1]), interp_hb(freqs[1])]]) abs_coef = ext_coef * 0.2303 return abs_coef
e31c5d46c5e2de81627834f51ddb79f6f1265e5a
3,642,364
import math def pw_sin_relaxation(b, x, w, x_pts, relaxation_side=RelaxationSide.BOTH, pw_repn='INC', safety_tol=1e-10): """ This function creates piecewise relaxations to relax "w=sin(x)" for -pi/2 <= x <= pi/2. Parameters ---------- b: pyo.Block x: pyomo.core.base.var.SimpleVar or pyomo.core.base.var._GeneralVarData The "x" variable in sin(x). The lower bound on x must greater than or equal to -pi/2 and the upper bound on x must be less than or equal to pi/2. w: pyomo.core.base.var.SimpleVar or pyomo.core.base.var._GeneralVarData The auxillary variable replacing sin(x) x_pts: list of float A list of floating point numbers to define the points over which the piecewise representation will be generated. This list must be ordered, and it is expected that the first point (x_pts[0]) is equal to x.lb and the last point (x_pts[-1]) is equal to x.ub relaxation_side: minlp.RelaxationSide Provide the desired side for the relaxation (OVER, UNDER, or BOTH) pw_repn: str This must be one of the valid strings for the peicewise representation to use (directly from the Piecewise component). Use help(Piecewise) to learn more. safety_tol: float amount to lift the overestimator or drop the underestimator. This is used to ensure none of the feasible region is cut off by error in computing the over and under estimators. """ check_var_pts(x, x_pts) expr = pyo.sin(x) xlb = x_pts[0] xub = x_pts[-1] if x.is_fixed() or xlb == xub: b.x_fixed_con = pyo.Constraint(expr=w == (pyo.value(expr))) return if xlb < -np.pi / 2.0: return if xub > np.pi / 2.0: return if x_pts[0] >= 0: pw_univariate_relaxation(b=b, x=x, w=w, x_pts=x_pts, f_x_expr=expr, shape=FunctionShape.CONCAVE, relaxation_side=relaxation_side, pw_repn=pw_repn) return if x_pts[-1] <= 0: pw_univariate_relaxation(b=b, x=x, w=w, x_pts=x_pts, f_x_expr=expr, shape=FunctionShape.CONVEX, relaxation_side=relaxation_side, pw_repn=pw_repn) return OE_tangent_x, OE_tangent_slope, OE_tangent_intercept = _compute_sine_overestimator_tangent_point(xlb) UE_tangent_x, UE_tangent_slope, UE_tangent_intercept = _compute_sine_underestimator_tangent_point(xub) non_piecewise_overestimators_pts = [] non_piecewise_underestimator_pts = [] if relaxation_side == RelaxationSide.OVER: if OE_tangent_x < xub: new_x_pts = [i for i in x_pts if i < OE_tangent_x] new_x_pts.append(xub) non_piecewise_overestimators_pts = [OE_tangent_x] non_piecewise_overestimators_pts.extend(i for i in x_pts if i > OE_tangent_x) x_pts = new_x_pts elif relaxation_side == RelaxationSide.UNDER: if UE_tangent_x > xlb: new_x_pts = [xlb] new_x_pts.extend(i for i in x_pts if i > UE_tangent_x) non_piecewise_underestimator_pts = [i for i in x_pts if i < UE_tangent_x] non_piecewise_underestimator_pts.append(UE_tangent_x) x_pts = new_x_pts b.non_piecewise_overestimators = pyo.ConstraintList() b.non_piecewise_underestimators = pyo.ConstraintList() for pt in non_piecewise_overestimators_pts: b.non_piecewise_overestimators.add(w <= math.sin(pt) + safety_tol + (x - pt) * math.cos(pt)) for pt in non_piecewise_underestimator_pts: b.non_piecewise_underestimators.add(w >= math.sin(pt) - safety_tol + (x - pt) * math.cos(pt)) intervals = [] for i in range(len(x_pts)-1): intervals.append((x_pts[i], x_pts[i+1])) b.interval_set = pyo.Set(initialize=range(len(intervals)), ordered=True) b.x = pyo.Var(b.interval_set) b.w = pyo.Var(b.interval_set) if len(intervals) == 1: b.lam = pyo.Param(b.interval_set, mutable=True) b.lam[0].value = 1.0 else: b.lam = pyo.Var(b.interval_set, within=pyo.Binary) b.x_lb = pyo.ConstraintList() b.x_ub = pyo.ConstraintList() b.x_sum = pyo.Constraint(expr=x == sum(b.x[i] for i in b.interval_set)) b.w_sum = pyo.Constraint(expr=w == sum(b.w[i] for i in b.interval_set)) b.lam_sum = pyo.Constraint(expr=sum(b.lam[i] for i in b.interval_set) == 1) b.overestimators = pyo.ConstraintList() b.underestimators = pyo.ConstraintList() for i, tup in enumerate(intervals): x0 = tup[0] x1 = tup[1] b.x_lb.add(x0 * b.lam[i] <= b.x[i]) b.x_ub.add(b.x[i] <= x1 * b.lam[i]) # Overestimators if relaxation_side in {RelaxationSide.OVER, RelaxationSide.BOTH}: if x0 < 0 and x1 <= 0: slope = (math.sin(x1) - math.sin(x0)) / (x1 - x0) intercept = math.sin(x0) - slope * x0 b.overestimators.add(b.w[i] <= slope * b.x[i] + (intercept + safety_tol) * b.lam[i]) elif (x0 < 0) and (x1 > 0): tangent_x, tangent_slope, tangent_intercept = _compute_sine_overestimator_tangent_point(x0) if tangent_x <= x1: b.overestimators.add(b.w[i] <= tangent_slope * b.x[i] + (tangent_intercept + safety_tol) * b.lam[i]) b.overestimators.add(b.w[i] <= math.cos(x1) * b.x[i] + (math.sin(x1) - x1 * math.cos(x1) + safety_tol) * b.lam[i]) else: slope = (math.sin(x1) - math.sin(x0)) / (x1 - x0) intercept = math.sin(x0) - slope * x0 b.overestimators.add(b.w[i] <= slope * b.x[i] + (intercept + safety_tol) * b.lam[i]) else: b.overestimators.add(b.w[i] <= math.cos(x0) * b.x[i] + (math.sin(x0) - x0 * math.cos(x0) + safety_tol) * b.lam[i]) b.overestimators.add(b.w[i] <= math.cos(x1) * b.x[i] + (math.sin(x1) - x1 * math.cos(x1) + safety_tol) * b.lam[i]) # Underestimators if relaxation_side in {RelaxationSide.UNDER, RelaxationSide.BOTH}: if x0 >= 0 and x1 > 0: slope = (math.sin(x1) - math.sin(x0)) / (x1 - x0) intercept = math.sin(x0) - slope * x0 b.underestimators.add(b.w[i] >= slope * b.x[i] + (intercept - safety_tol) * b.lam[i]) elif (x1 > 0) and (x0 < 0): tangent_x, tangent_slope, tangent_intercept = _compute_sine_underestimator_tangent_point(x1) if tangent_x >= x0: b.underestimators.add(b.w[i] >= tangent_slope * b.x[i] + (tangent_intercept - safety_tol) * b.lam[i]) b.underestimators.add(b.w[i] >= math.cos(x0) * b.x[i] + (math.sin(x0) - x0 * math.cos(x0) - safety_tol) * b.lam[i]) else: slope = (math.sin(x1) - math.sin(x0)) / (x1 - x0) intercept = math.sin(x0) - slope * x0 b.underestimators.add(b.w[i] >= slope * b.x[i] + (intercept - safety_tol) * b.lam[i]) else: b.underestimators.add(b.w[i] >= math.cos(x0) * b.x[i] + (math.sin(x0) - x0 * math.cos(x0) - safety_tol) * b.lam[i]) b.underestimators.add(b.w[i] >= math.cos(x1) * b.x[i] + (math.sin(x1) - x1 * math.cos(x1) - safety_tol) * b.lam[i]) return x_pts
38c5d8a459f8c90aaa17a95f4000e4388e491f69
3,642,365
import sys,time from datetime import datetime from datetime import timedelta def getAsDateTimeStr(value, offset=0,fmt=_formatTimeStr()): """ return time as 2004-01-10T00:13:50.000Z """ if (not isinstance(offset,str)): if isinstance(value, (tuple, time.struct_time,)): return time.strftime(fmt, value) if isinstance(value, (int, float,)): secs = time.gmtime(value+offset) return time.strftime(fmt, secs) if isinstance(value, str): try: value = time.strptime(value, fmt) return time.strftime(fmt, value) except: secs = time.gmtime(time.time()+offset) return time.strftime(fmt, secs) elif (isinstance(value,datetime)): if (offset is not None): value += timedelta(offset) ts = time.strftime(fmt, value.timetuple()) return ts
ddf47f2e8f9be7d1387baaf7c1dc0fd83ddf3022
3,642,366
def doc_to_tokenlist_no_sents(doc): """ serializes a spacy DOC object into a python list with tokens grouped by sents :param doc: spacy DOC element :return: a list of of token objects/dicts """ result = [] for x in doc: token = {} if y.has_extension('tokenId'): parts['tokenId'] = y._.tokenId else: parts['tokenId'] = y.i token['value'] = x.text token['lemma'] = x.lemma_ token['pos'] = x.pos_ token['type'] = x.tag_ token['dep'] = x.dep_ token['shape'] = x.shape_ token['is_alpha'] = x.is_alpha token['ent_iob'] = x.ent_iob_ token['iob'] = format_iob_tag(x) token['ent_type'] = x.ent_type_ result.append(token) return result
0879e49836910d1f3a9be93281158c1b64978d53
3,642,367
def _applychange(raw_text: Text, content_change: t.TextDocumentContentChangeEvent): """Apply changes in-place""" # Remove chars start = content_change.range.start range_length = content_change.range_length index = _find_position(raw_text, start) for _ in range(range_length): raw_text.pop(index) # Add chars new_text = content_change.text for char in reversed(new_text): raw_text.insert(index, char) return raw_text
9dddeb69a5830980721d747f743e5e516f2eba51
3,642,368
def get_engine(): """Return a SQLAlchemy engine.""" connection_dict = sqlalchemy.engine.url.make_url(FLAGS.sql_connection) engine_args = { "pool_recycle": FLAGS.sql_idle_timeout, "echo": False, } if "sqlite" in connection_dict.drivername: engine_args["poolclass"] = sqlalchemy.pool.NullPool return sqlalchemy.create_engine(FLAGS.sql_connection, **engine_args)
f93bfe29b7cf96d32f250e4385d3d2a794a02ee0
3,642,369
def ccw(p0, p1, p2): """ Judge whether p0p2 vector is ccw to p0p1 vector. Return value map: \n 1: p0p2 is ccw to p0p1 (angle to x axis bigger) \n 0: p0p2 and p0p1 on a same line \n -1: p0p2 is cw to p0p1 (angle to x axis smaller) \n Args: p0: base point index 0 and 1 is x and y value. [x, y, ...] p1: first point index 0 and 1 is x and y value. [x, y, ...] p2: second point index 0 and 1 is x and y value. [x, y, ...] Returns: int: judgement value -1 or 0 or 1 """ comp = Comp(p0) return comp.compare_angle(p2, p1)
46599e0df6c39346e4b61f6daeb140a8db6225a3
3,642,370
def get_ffmpeg_folder(): # type: () -> str """ Returns the path to the folder containing the ffmpeg executable :return: """ return 'C:/ffmpeg/bin'
4708eec64ff56b72f7b1b9cc7f5ee7916f6310bd
3,642,371
import subprocess def decode_typeinfo(typeinfo): """Invoke c++filt to decode a typeinfo""" try: type_string = subprocess.check_output(["c++filt", typeinfo], stdin=subprocess.DEVNULL) except FileNotFoundError: # This happens when c++filt (from package binutils) is not found, # and with "wine python" on Linux systems raise CxxFiltNotFoundException if not type_string.startswith(b"typeinfo name for "): raise ValueError(f"Unexpected c++filt output for {typeinfo!r}: {type_string!r}") return type_string[18:].decode("ascii").strip()
95211c7175a572ba2b5a627e0e18d95e68405f86
3,642,372
def get_nums(image): """get the words from an image using pytesseract. the extracted words are cleaned and all spaces, newlines and non uppercase characters are removed. :param image: inpout image :type image: cv2 image :return: extracted words :rtype: list """ # pytesseract config config = ('--psm 6 --oem 3 -c tessedit_char_whitelist=0123456789/') # extract text and preprocess text = pytesseract.image_to_string(image, config=config) text = ''.join([c for c in text if c.isdigit() or c in ['\n', ' ', '.']]) # return as a lis return text.split()
0ff23d8363a14a46c7f6ffa2be130c6eb61409c8
3,642,373
def create_bag_of_vocabulary_words(): """ Form the array of words which can be conceived during the game. This words are stored in hangman/vocabulary.txt """ words_array = [] file_object = open("./hangman/vocabulary.txt") for line in file_object: for word in line.split(): words_array.append(word) file_object.close() return words_array
e3aadad2575e28b19b83158eb2127437c8aada89
3,642,374
import math def kato_ranking_candidates(identifier: Identifier, params=None): """rank candidates based on the method proposed by Kato, S. and Kano, M.. Candidates are the noun phrases in the sentence where the identifier was appeared first. Args: identifier (Identifier) params (dict) Returns: Definition_list (List[Definition]) """ if params is None: params = {'sigma_d': math.sqrt(12 / math.log(2)), 'sigma_s': 2 / math.sqrt(math.log(2)), 'alpha': 1, 'beta': 1, 'gamma': 0.1, 'eta': 1} ranked_definition_list = [] for candidate_ in identifier.candidates: n_sentence = candidate_.included_sentence.id - identifier.sentences[0].id delta = candidate_.word_count_btwn_var_cand + 1 # minimum is 1. tf_candidate = candidate_.candidate_count_in_sentence / len(candidate_.included_sentence.replaced.strip()) score_match_initial_char = candidate_.score_match_character r_sigma_d = math.exp(- 1 / 2 * (delta ** 2 - 1) / params['sigma_d'] ** 2) r_sigma_s = math.exp(- 1 / 2 * (n_sentence ** 2 - 1) / params['sigma_s'] ** 2) score = (params['alpha'] * r_sigma_d + params['beta'] * r_sigma_s + params['gamma'] * tf_candidate + params['eta'] * score_match_initial_char) score /= (params['alpha'] + params['beta'] + params['gamma'] + params['eta']) ranked_definition_list.append( Definition( definition=candidate_.text, score=score, params=params)) ranked_definition_list = sorted( ranked_definition_list, key=lambda x: x.score, reverse=True) if not ranked_definition_list: return [Definition(definition='')] return ranked_definition_list
c8a413118b599eb3cb9c9db877d7d489871d65a2
3,642,375
def _get_bag_of_pos_with_dependency(words, index): """Return pos list surrounding index Args: words (list): stanfordnlp word list object having pos attributes. index (int): target index Return: pos_list (List[str]): xpos format string list """ pos_list = [] def _get_governor(_index, name): governor_list = [] if int(words[_index].governor) == 0: # case _index word has no governer return -1, governor_list governor_index = _index + (int(words[_index].governor) - int(words[_index].index)) if governor_index < len(words): governor = words[governor_index] governor_list.append(_get_word_feature(governor) + '_' + name) else: governor_list.append(NONE_DEPENDENCY + '_' + name) return governor_index, governor_list def _get_children(_index, name): children = [] child_list = [] roots = [(i, w) for i, w in enumerate(words) if int(w.index) == 1] start_index = 0 end_index = len(words) - 1 for i, w in roots: if i <= _index: start_index = i else: end_index = i - 1 break for i, w in enumerate(words[start_index:end_index + 1]): if int(w.governor) == int(words[_index].index): children.append(start_index + i) child_list.append(_get_word_feature(w) + '_' + name) return children, child_list # add governor governor_index, governor_list = _get_governor(index, 'governor') if 0 <= governor_index < len(words): # case index word has a governer pos_list.extend(governor_list) if int(words[governor_index].governor) != 0: # case _index word has a governer # add ancestor _, ancestor_list = _get_governor(governor_index, 'ancestor') pos_list.extend(ancestor_list) # add sibling siblings, sibling_list = _get_children(governor_index, 'sibling') i_index = siblings.index(index) del sibling_list[i_index] del siblings[i_index] pos_list.extend(sibling_list) # add sibling list for i in siblings: sibling_children, sibling_child_list = _get_children(i, 'sibling_child') pos_list.extend(sibling_child_list) # add child children, child_list = _get_children(index, 'child') pos_list.extend(child_list) for i in children: grandchildren, grandchild_list = _get_children(i, 'grandchild') pos_list.extend(grandchild_list) return pos_list
02fc508583d79464161927080c1c55d308926274
3,642,376
def fix_time_individual(df): """ 1. pandas.apply a jit function to add 0 to time 2. concat date + time 3. change to np.datetime64 """ @jit def _fix_time(x): aux = "0" * (8 - len(str(x))) + str(x) return aux[:2] + ":" + aux[2:4] + ":" + aux[4:6] + "." + aux[6:] return (df["date"] + " " + df["time"].apply(_fix_time)).astype(np.datetime64)
8d0c99d3f485d852130f9f4fe7ab05bbcdd99557
3,642,377
def convolve_fft(data, kernel, kernel_fft=False, return_fft=False): """ Convolve data with a kernel. This is inspired by astropy.convolution.convolve_fft, but stripped down to what's needed for the expected application. That has the benefit of cutting down on the execution time, but limits its use. Beware: - ``data`` and ``kernel`` must have the same shape. - For the sum of all pixels in the convolved image to be the same as the input data, the kernel must sum to unity. - Padding is never added by default. Args: data (`numpy.ndarray`_): Data to convolve. kernel (`numpy.ndarray`_): The convolution kernel, which must have the same shape as ``data``. If ``kernel_fft`` is True, this is the FFT of the kernel image; otherwise, this is the direct kernel image with the center of the kernel at the center of the array. kernel_fft (:obj:`bool`, optional): Flag that the provided ``kernel`` array is actually the FFT of the kernel, not its direct image. return_fft (:obj:`bool`, optional): Flag to return the FFT of the convolved image, instead of the direct image. Returns: `numpy.ndarray`_: The convolved image, or its FFT, with the same shape as the provided ``data`` array. Raises: ValueError: Raised if ``data`` and ``kernel`` do not have the same shape or if any of their values are not finite. """ if data.shape != kernel.shape: raise ValueError('Data and kernel must have the same shape.') if not np.all(np.isfinite(data)) or not np.all(np.isfinite(kernel)): print('**********************************') print(f'nans in data: {(~np.isfinite(data)).sum()}, nans in kernel: {(~np.isfinite(kernel)).sum()}') raise ValueError('Data and kernel must both have valid values.') datafft = np.fft.fftn(data) kernfft = kernel if kernel_fft else np.fft.fftn(np.fft.ifftshift(kernel)) fftmult = datafft * kernfft return fftmult if return_fft else np.fft.ifftn(fftmult).real
64fc4c02f72c419f6c315f524597a32391ea7b8c
3,642,378
import os def segment_nifti(fname_image, folder_model, fname_prior=None, param=None): """ Segment a nifti file. :param fname_image: str: Filename of the image to segment. :param folder_model: str: Folder that encloses the deep learning model. :param fname_prior: str: Filename of a previous segmentation that is used here as a prior. :param param: dict: Dictionary of user's parameter :return: fname_out: str: Output filename. If directory does not exist, it will be created. """ if param is None: param = {} nii_seg = imed.utils.segment_volume(folder_model, fname_image, fname_prior) # Postprocessing metadata = sct.deepseg.models.get_metadata(folder_model) options = {**DEFAULTS, **metadata, **param} nii_seg = postprocess(nii_seg, options) # Save output seg if 'o' in options: fname_out = options['o'] else: fname_out = ''.join([sct.utils.splitext(fname_image)[0], '_seg.nii.gz']) # If output folder does not exist, create it path_out = os.path.dirname(fname_out) if not (path_out == '' or os.path.exists(path_out)): os.makedirs(path_out) nib.save(nii_seg, fname_out) return fname_out
74ea5aa03f1f36c717e6f700c91d26fda3afb78d
3,642,379
def friable_sand(Ks, Gs, phi, phic, P_eff, n=-1, f=1.0): """ Friable sand rock physics model. Reference: Avseth et al., Quantitative Seismic Interpretation, p.54 Inputs: Ks = Bulk modulus of mineral matrix Gs = Shear modulus of mineral matrix phi = porosity phic = critical porosity P_eff = effective pressure n = coordination number f = shear reduction factor Outputs: K_dry = dry rock bulk modulus of friable rock G_dry = dry rock shear modulus of friable rock """ K_hm, G_hm = hertz_mindlin(Ks, Gs, phic, P_eff, n, f) z = G_hm/6 * (9*K_hm + 8*G_hm)/(K_hm + 2*G_hm) A = (phi/phic)/(K_hm + 4/3*G_hm) B = (1 - phi/phic)/(Ks + 4.0/3.0*G_hm) K_dry = (A+B)**-1 - 4.0/3.0*G_hm C = (phi/phic)/(G_hm+z) D = (1.0-phi/phic)/(Gs + z) G_dry = (C+D)**-1 - z return K_dry, G_dry
ace533ee727cd4749ad210b13eec5193b74416b8
3,642,380
def get_available_currencies(): """ This function retrieves a listing with all the available currencies with indexed currency crosses in order to get to know which are the available currencies. The currencies listed in this function, so on, can be used to search currency crosses and used the retrieved data to get historical data of those currency crosses, so to determine which is the value of one base currency in the second currency. Returns: :obj:`list` - available_currencies: The resulting :obj:`list` contains all the available currencies with currency crosses being either the base or the second value of the cross, as listed in Investing.com. In case the listing was successfully retrieved, the :obj:`list` will look like:: available_currencies = [ 'AED', 'AFN', 'ALL', 'AMD', 'ANG', ... ] Raises: FileNotFoundError: raised if currency crosses file was not found. IOError: raised if currency crosses retrieval failed, both for missing file or empty file. """ return available_currencies_as_list()
139f775943bc251149444c702cb4290d78a58a03
3,642,381
def mktemp(suffix="", prefix=template, dir=None): """User-callable function to return a unique temporary file name. The file is not created. Arguments are as for mkstemp, except that the 'text' argument is not accepted. This function is unsafe and should not be used. The file name refers to a file that did not exist at some point, but by the time you get around to creating it, someone else may have beaten you to the punch. """ ## from warnings import warn as _warn ## _warn("mktemp is a potential security risk to your program", ## RuntimeWarning, stacklevel=2) if dir is None: dir = gettempdir() names = _get_candidate_names() for seq in xrange(TMP_MAX): name = names.next() file = _os.path.join(dir, prefix + name + suffix) if not _exists(file): return file raise IOError, (_errno.EEXIST, "No usable temporary filename found")
0785609c3284b0052fa31767d0df11476b28c786
3,642,382
def getTaskIdentifier( task_id ) : """Get tuple of Type and Instance identifiers.""" _inst = Instance.objects.get( id = task_id ) return ( _inst.type.identifier , _inst.identifier )
fb18be814330bd02205d355b3ebfb68f777ee9c2
3,642,383
def hessian_vector_product(loss, weights, v): """Compute the tensor of the product H.v, where H is the loss Hessian with respect to the weights. v is a vector (a rank 1 Tensor) of the same size as the loss gradient. The ordering of elements in v is the same obtained from flatten_tensor_list() acting on the gradient. Derivatives of dv/dweights should vanish. """ grad = flatten_tensor_list(tf.gradients(loss, weights)) grad_v = tf.reduce_sum(grad * tf.stop_gradient(v)) H_v = flatten_tensor_list(tf.gradients(grad_v, weights)) return H_v
35ef7772367f56fcded2e4173fe194cb28da3bc7
3,642,384
def clean_cells(nb_node): """Delete any outputs and resets cell count.""" for cell in nb_node['cells']: if 'code' == cell['cell_type']: if 'outputs' in cell: cell['outputs'] = [] if 'execution_count' in cell: cell['execution_count'] = None return nb_node
67dce7ecc3590143730f943d3eb07ae7df9d8145
3,642,385
from typing import Callable from typing import Any import asyncio import inspect def _spanned(scond: _SpanConductor) -> Callable[..., Any]: """Handle decorating a function with either a new span or a reused span.""" def inner_function(func: Callable[..., Any]) -> Callable[..., Any]: def setup(args: Args, kwargs: Kwargs) -> Span: if not isinstance(scond, (_NewSpanConductor, _ReuseSpanConductor)): raise Exception(f"Undefined SpanConductor type: {scond}.") else: return scond.get_span(FunctionInspector(func, args, kwargs)) @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: LOGGER.debug("Spanned Function") span = setup(args, kwargs) is_iterator_class_next_method = span.name.endswith(".__next__") reraise_stopiteration_outside_contextmanager = False # CASE 1 ---------------------------------------------------------- if scond.behavior == SpanBehavior.ONLY_END_ON_EXCEPTION: try: with use_span(span, end_on_exit=False): try: return func(*args, **kwargs) except StopIteration: # intercept and temporarily suppress StopIteration if not is_iterator_class_next_method: raise reraise_stopiteration_outside_contextmanager = True except: # noqa: E722 # pylint: disable=bare-except span.end() raise if reraise_stopiteration_outside_contextmanager: raise StopIteration raise RuntimeError("Malformed SpanBehavior Handling") # CASES 2 & 3 ----------------------------------------------------- elif scond.behavior in (SpanBehavior.END_ON_EXIT, SpanBehavior.DONT_END): end_on_exit = bool(scond.behavior == SpanBehavior.END_ON_EXIT) with use_span(span, end_on_exit=end_on_exit): try: return func(*args, **kwargs) except StopIteration: # intercept and temporarily suppress StopIteration if not is_iterator_class_next_method: raise reraise_stopiteration_outside_contextmanager = True if reraise_stopiteration_outside_contextmanager: raise StopIteration raise RuntimeError("Malformed SpanBehavior Handling") # ELSE ------------------------------------------------------------ else: raise InvalidSpanBehavior(scond.behavior) @wraps(func) def gen_wrapper(*args: Any, **kwargs: Any) -> Any: LOGGER.debug("Spanned Generator Function") span = setup(args, kwargs) # CASE 1 ---------------------------------------------------------- if scond.behavior == SpanBehavior.ONLY_END_ON_EXCEPTION: try: with use_span(span, end_on_exit=False): for val in func(*args, **kwargs): yield val except: # noqa: E722 # pylint: disable=bare-except span.end() raise # CASES 2 & 3 ----------------------------------------------------- elif scond.behavior in (SpanBehavior.END_ON_EXIT, SpanBehavior.DONT_END): end_on_exit = bool(scond.behavior == SpanBehavior.END_ON_EXIT) with use_span(span, end_on_exit=end_on_exit): for val in func(*args, **kwargs): yield val # ELSE ------------------------------------------------------------ else: raise InvalidSpanBehavior(scond.behavior) @wraps(func) async def async_wrapper(*args: Any, **kwargs: Any) -> Any: LOGGER.debug("Spanned Async Function") span = setup(args, kwargs) is_iterator_class_anext_method = span.name.endswith(".__anext__") reraise_stopasynciteration_outside_contextmanager = False # CASE 1 ---------------------------------------------------------- if scond.behavior == SpanBehavior.ONLY_END_ON_EXCEPTION: try: with use_span(span, end_on_exit=False): try: return await func(*args, **kwargs) except StopAsyncIteration: # intercept and temporarily suppress StopAsyncIteration if not is_iterator_class_anext_method: raise reraise_stopasynciteration_outside_contextmanager = True except: # noqa: E722 # pylint: disable=bare-except span.end() raise if reraise_stopasynciteration_outside_contextmanager: raise StopAsyncIteration raise RuntimeError("Malformed SpanBehavior Handling") # CASES 2 & 3 ----------------------------------------------------- elif scond.behavior in (SpanBehavior.END_ON_EXIT, SpanBehavior.DONT_END): end_on_exit = bool(scond.behavior == SpanBehavior.END_ON_EXIT) with use_span(span, end_on_exit=end_on_exit): try: return await func(*args, **kwargs) except StopAsyncIteration: # intercept and temporarily suppress StopAsyncIteration if not is_iterator_class_anext_method: raise reraise_stopasynciteration_outside_contextmanager = True if reraise_stopasynciteration_outside_contextmanager: raise StopAsyncIteration raise RuntimeError("Malformed SpanBehavior Handling") # ELSE ------------------------------------------------------------ else: raise InvalidSpanBehavior(scond.behavior) if asyncio.iscoroutinefunction(func): return async_wrapper else: if inspect.isgeneratorfunction(func): return gen_wrapper else: return wrapper return inner_function
4d6b9bc4a56ae50c781da2078e2d919bae19bfdf
3,642,386
def getProjectProperties(): """ :return: @rtype: list of ProjectProperty """ return getMetDataLoader().projectProperties
7f517a20d83002c41867bbc7911f775d64b21b88
3,642,387
def svn_client_cleanup(*args): """svn_client_cleanup(char dir, svn_client_ctx_t ctx, apr_pool_t scratch_pool) -> svn_error_t""" return _client.svn_client_cleanup(*args)
2a9921e8521e927e124633bb932b158a1f9abdf3
3,642,388
def model_chromatic(psrs, psd='powerlaw', noisedict=None, components=30, gamma_common=None, upper_limit=False, bayesephem=False, wideband=False, idx=4, chromatic_psd='powerlaw', c_psrs=['J1713+0747']): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2A from the analysis paper + additional chromatic noise for given pulsars per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. 6. Chromatic noise for given pulsar list global: 1.Common red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param wideband: Use wideband par and tim files. Ignore ECORR. Set to False by default. :param idx: Index of chromatic process (i.e DM is 2, scattering would be 4). If set to `vary` then will vary from 0 - 6 (This will be VERY slow!) :param chromatic_psd: PSD to use for chromatic noise. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param c_psrs: List of pulsars to use chromatic noise. 'all' will use all pulsars """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # white noise s = white_noise_block(vary=False, wideband=wideband) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, name='gw') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # timing model s += gp_signals.TimingModel() # chromatic noise sc = chromatic_noise_block(psd=chromatic_psd, idx=idx) if c_psrs == 'all': s += sc models = [s(psr) for psr in psrs] elif len(c_psrs) > 0: models = [] for psr in psrs: if psr.name in c_psrs: print('Adding chromatic model to PSR {}'.format(psr.name)) snew = s + sc models.append(snew(psr)) else: models.append(s(psr)) # set up PTA pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta
568f4951930fe6f8175417785c4503895f76bc88
3,642,389
import os import shutil def restore(backup_path: str, storage_name: str, target: str or None = None, token: str or None = None) -> str: """ Downloads the information from the backup :returns path to the file """ if not token: token = _restore_token(storage_name) print(f'[{__name__}] Getting storage...') storage_class = get_storage_by_name(storage_name) storage: Storage = storage_class(token=token) # Handle files that were saved on a normal basis remote_path_resource_id = backup_path.split('/')[-2] _, original_name = _decode_resource_id(remote_path_resource_id) # Handle files saved under /custom folder # pass if target is None: print(f'[{__name__}] Calculating local file path...') dl_target = f"{BASE_BACKUPS_DIRECTORY}/" + original_name + ".zip" target = f"{BASE_BACKUPS_DIRECTORY}/" + original_name if os.path.exists(target): raise ValueError(f"Path {target} is not empty. Please deal with it, then try to restore file again") else: raise NotImplementedError() print(f'[{__name__}] Downloading file...') storage.download_resource(backup_path, dl_target) try: print(f'[{__name__}] Unpacking file...') shutil.unpack_archive(dl_target, target, 'zip') return target finally: os.unlink(dl_target)
380a654c98b406c892f50deba80c00ec3d37fa50
3,642,390
def test_f32(heavydb): """If UDF name ends with an underscore, expect strange behaviour. For instance, defining @heavydb('f32(f32)', 'f32(f64)') def f32_(x): return x+4.5 the query `select f32_(0.0E0))` fails but not when defining @heavydb('f32(f64)', 'f32(f32)') def f32_(x): return x+4.5 (notice the order of signatures in heavydb decorator argument). """ @heavydb('f32(f32)', 'f32(f64)') # noqa: F811 def f_32(x): return x+4.5 descr, result = heavydb.sql_execute( 'select f_32(0.0E0) from {heavydb.table_name} limit 1' .format(**locals())) assert list(result)[0] == (4.5,)
157560cc90e3f869d84198eeb26896a76157eb39
3,642,391
from typing import Union from pathlib import Path def get_message_bytes( file_path: Union[str, Path], count: int, ) -> bytes: """ 从 GRIB2 文件中读取第 count 个要素场,裁剪区域 (东北区域),并返回新场的字节码 Parameters ---------- file_path count 要素场序号,从 1 开始,ecCodes GRIB Key count Returns ------- bytes 重新编码后的 GRIB 2 消息字节码 """ message = load_message_from_file(file_path, count=count) message = extract_region( message, 0, 180, 89.875, 0.125 ) message_bytes = eccodes.codes_get_message(message) eccodes.codes_release(message) return message_bytes
6a2ad3a20e02283c2bffe31eb78cacf84d92ff6f
3,642,392
from typing import Union from typing import List import json def discover_climate_observations( time_resolution: Union[ None, str, TimeResolution, List[Union[str, TimeResolution]] ] = None, parameter: Union[None, str, Parameter, List[Union[str, Parameter]]] = None, period_type: Union[None, str, PeriodType, List[Union[str, PeriodType]]] = None, ) -> str: """ Function to print/discover available time_resolution/parameter/period_type combinations. :param parameter: Observation measure :param time_resolution: Frequency/granularity of measurement interval :param period_type: Recent or historical files :return: Result of available combinations in JSON. """ if not time_resolution: time_resolution = [*TimeResolution] if not parameter: parameter = [*Parameter] if not period_type: period_type = [*PeriodType] time_resolution = parse_enumeration(TimeResolution, time_resolution) parameter = parse_enumeration(Parameter, parameter) period_type = parse_enumeration(PeriodType, period_type) trp_mapping_filtered = { ts: { par: [p for p in pt if p in period_type] for par, pt in parameters_and_period_types.items() if par in parameter } for ts, parameters_and_period_types in TIME_RESOLUTION_PARAMETER_MAPPING.items() if ts in time_resolution } time_resolution_parameter_mapping = { str(time_resolution): { str(parameter): [str(period) for period in periods] for parameter, periods in parameters_and_periods.items() if periods } for time_resolution, parameters_and_periods in trp_mapping_filtered.items() if parameters_and_periods } return json.dumps(time_resolution_parameter_mapping, indent=4)
b96fd2a0a9bcb9a7b50018a1b7e3ae7add3e3c63
3,642,393
def set_template(template_name, file_name, p_name): """ Insert template into the E-mail. """ corp = template(template_name, file_name, p_name) msg = MIMEMultipart() msg['from'] = p_name msg['subject'] = f'{file_name}' msg.attach(MIMEText(corp, 'html')) return msg
8745d9729ddbe159e0bca90dee198ce4e3efb489
3,642,394
import gettext def lazy_gettext(string): """A lazy version of `gettext`.""" if isinstance(string, _TranslationProxy): return string return _TranslationProxy(gettext, string)
9229c987d6b2f300f7225ea4b58f964c70e882fc
3,642,395
def toggleautowithdrawalstatus(status, fid, alternate_token=False): """ Sets auto-withdrawal status of the account associated with the current OAuth token under the specified funding ID. :param status: Boolean for toggle. :param fid: String with funding ID for target account :return: String (Either "Enabled" or "Disabled") """ if not status: raise Exception('toggleautowithdrawlstatus() requires status parameter') if not fid: raise Exception('toggleautowithdrawlstatus() requires fid parameter') return r._post('/accounts/features/auto_withdrawl', { 'oauth_token': alternate_token if alternate_token else c.access_token, 'enabled': status, 'fundingId': fid })
4df2be7801a23978c58b7ce8aec7e5fd30fb1e76
3,642,396
def load_avenger_models(): """ Load each instance of data from the repository into its associated model at this point in the schema lifecycle """ avengers = [] for item in fetch_avenger_data(): # Explicitly assign each attribute of the model, so various attributes can be ignored avenger = Avenger(url=item.url, name=item.name, appearances=item.appearances, current=item.current == "YES", gender=item.gender, probationary=parse_date(item.probationary), full_reserve=parse_date(item.full_reserve, item.year), year=item.year, honorary=item.honorary, notes=item.notes) for occurrence in range(1, 6): # Iterate over the known indices of deaths (max in data range is 5) # If the death attribute exists and has a value, create a new Death instance and load the associated # instance data before adding it to the the list of deaths on the current avenger if getattr(item, f"death{occurrence}", None): avenger.deaths.append( Death(death=getattr(item, f"death{occurrence}") == "YES", # Convert string to boolean returned=getattr(item, f"return{occurrence}") == "YES", # Convert string to boolean sequence=occurrence) # Add the sequence of this death, order is important! ) else: break # If this is the last death, there is no reason to check subsequent iterations avengers.append(avenger) # Add this avenger to the list of avengers return avengers
70740495be63a198cf5ec1308608955f52be46f0
3,642,397
import json import _json import _datetime def aggregate_points(point_layer, bin_type=None, bin_size=None, bin_size_unit=None, polygon_layer=None, time_step_interval=None, time_step_interval_unit=None, time_step_repeat_interval=None, time_step_repeat_interval_unit=None, time_step_reference=None, summary_fields=None, output_name=None, gis=None, future=False): """ .. image:: _static/images/aggregate_points/aggregate_points.png This ``aggregate_points`` tool works with a layer of point features and a layer of areas. The layer of areas can be an input polygon layer or it can be square or hexagonal bins calculated when the task is run. The tool first determines which points fall within each specified area. After determining this point-in-area spatial relationship, statistics about all points in the area are calculated and assigned to the area. The most basic statistic is the count of the number of points within the area, but you can get other statistics as well. For example, suppose you have point features of coffee shop locations and area features of counties, and you want to summarize coffee sales by county. Assuming the coffee shops have a TOTAL_SALES attribute, you can get the sum of all TOTAL_SALES within each county, the minimum or maximum TOTAL_SALES within each county, or other statistics like the count, range, standard deviation, and variance. This tool can also work on data that is time-enabled. If time is enabled on the input points, then the time slicing options are available. Time slicing allows you to calculate the point-in area relationship while looking at a specific slice in time. For example, you could look at hourly intervals, which would result in outputs for each hour. For an example with time, suppose you had point features of every transaction made at a coffee shop location and no area layer. The data has been recorded over a year, and each transaction has a location and a time stamp. Assuming each transaction has a TOTAL_SALES attribute, you can get the sum of all TOTAL SALES within the space and time of interest. If these transactions are for a single city, we could generate areas that are one kilometer grids, and look at weekly time slices to summarize the transactions in both time and space. ================================================= ======================================================================== **Argument** **Description** ------------------------------------------------- ------------------------------------------------------------------------ point_layer Required point feature layer. The point features that will be aggregated into the polygons in the ``polygon_layer`` or bins of the specified ``bin_size``. See :ref:`Feature Input<FeatureInput>`. ------------------------------------------------- ------------------------------------------------------------------------ bin_type Optional string. If ``polygon_layer`` is not defined, it is required. The type of bin that will be generated and into which points will be aggregated. Choice list:['Square', 'Hexagon']. The default value is "Square". When generating bins for Square, the number and units specified determine the height and length of the square. For Hexagon, the number and units specified determine the distance between parallel sides. Either ``bin_type`` or ``polygon_layer`` must be specified. If ``bin_type`` is chosen, ``bin_size`` and ``bin_size_unit`` specifying the size of the bins must be included. ------------------------------------------------- ------------------------------------------------------------------------ bin_size (Required if ``bin_type`` is used) Optional float. The distance for the bins of type binType that the ``point_layer`` will be aggregated into. When generating bins, for Square, the number and units specified determine the height and length of the square. For Hexagon, the number and units specified determine the distance between parallel sides. ------------------------------------------------- ------------------------------------------------------------------------ bin_size_unit (Required if ``bin_size`` is used) Optional string. The distance unit for the bins that the ``point_layer`` will be aggregated into. Choice list:['Feet', 'Yards', 'Miles', 'Meters', 'Kilometers', 'NauticalMiles'] When generating bins for Square, the number and units specified determine the height and length of the square. For Hexagon, the number and units specified determine the distance between parallel sides. Either ``bin_type`` or ``polygon_layer`` must be specified. If ``bin_type`` is chosen, ``bin_size`` and ``bin_size_unit`` specifying the size of the bins must be included. ------------------------------------------------- ------------------------------------------------------------------------ polygon_layer Optional polygon feature layer. The polygon features (areas) into which the input points will be aggregated. See :ref:`Feature Input<FeatureInput>`. One of ``polygon_layer`` or bins ``bin_size`` and ``bin_size_unit`` is required. ------------------------------------------------- ------------------------------------------------------------------------ time_step_interval Optional integer. A numeric value that specifies duration of the time step interval. This option is only available if the input points are time-enabled and represent an instant in time. The default value is 'None'. ------------------------------------------------- ------------------------------------------------------------------------ time_step_interval_unit Optional string. A string that specifies units of the time step interval. This option is only available if the input points are time-enabled and represent an instant in time. Choice list:['Years', 'Months', 'Weeks', 'Days', 'Hours', 'Minutes', 'Seconds', 'Milliseconds'] The default value is 'None'. ------------------------------------------------- ------------------------------------------------------------------------ time_step_repeat_interval Optional integer. A numeric value that specifies how often the time step repeat occurs. This option is only available if the input points are time-enabled and of time type instant. ------------------------------------------------- ------------------------------------------------------------------------ time_step_repeat_interval_unit Optional string. A string that specifies the temporal unit of the step repeat. This option is only available if the input points are time-enabled and of time type instant. Choice list:['Years', 'Months', 'Weeks', 'Days', 'Hours', 'Minutes', 'Seconds', 'Milliseconds'] The default value is 'None'. ------------------------------------------------- ------------------------------------------------------------------------ time_step_reference Optional datetime. A date that specifies the reference time to align the time slices to, represented in milliseconds from epoch. The default is January 1, 1970, at 12:00 a.m. (epoch time stamp 0). This option is only available if the input points are time-enabled and of time type instant. ------------------------------------------------- ------------------------------------------------------------------------ summary_fields Optional list of dicts. A list of field names and statistical summary types that you want to calculate for all points within each polygon or bin. Note that the count of points within each polygon is always returned. By default, all statistics are returned. Example: [{"statisticType": "Count", "onStatisticField": "fieldName1"}, {"statisticType": "Any", "onStatisticField": "fieldName2"}] fieldName is the name of the fields in the input point layer. statisticType is one of the following for numeric fields: * ``Count`` -Totals the number of values of all the points in each polygon. * ``Sum`` -Adds the total value of all the points in each polygon. * ``Mean`` -Calculates the average of all the points in each polygon. * ``Min`` -Finds the smallest value of all the points in each polygon. * ``Max`` -Finds the largest value of all the points in each polygon. * ``Range`` -Finds the difference between the Min and Max values. * ``Stddev`` -Finds the standard deviation of all the points in each polygon. * ``Var`` -Finds the variance of all the points in each polygon. statisticType is one of the following for string fields: * ``Count`` -Totals the number of strings for all the points in each polygon. * ``Any` `-Returns a sample string of a point in each polygon. ------------------------------------------------- ------------------------------------------------------------------------ output_name Optional string. The method will create a feature service of the results. You define the name of the service. ------------------------------------------------- ------------------------------------------------------------------------ gis Optional, the GIS on which this tool runs. If not specified, the active GIS is used. ------------------------------------------------- ------------------------------------------------------------------------ context Optional dict. The context parameter contains additional settings that affect task execution. For this task, there are four settings: * Extent (``extent``) - a bounding box that defines the analysis area. Only those features that intersect the bounding box will be analyzed. * Processing spatial reference (``processSR``) The features will be projected into this coordinate system for analysis. * Output Spatial Reference (``outSR``) - the features will be projected into this coordinate system after the analysis to be saved. The output spatial reference for the spatiotemporal big data store is always WGS84. * Data store (``dataStore``) Results will be saved to the specified data store. The default is the spatiotemporal big data store. ------------------------------------------------- ------------------------------------------------------------------------ future optional Boolean. If True, a GPJob is returned instead of results. The GPJob can be queried on the status of the execution. ================================================= ======================================================================== :returns: result_layer : Output Features as feature layer item. .. code-block:: python # Usage Example: To aggregate number of 911 calls within 1 km summarized by Day count. agg_result = aggregate_points(calls, bin_size=1, bin_size_unit='Kilometers', time_step_interval=1, time_step_interval_unit="Years", summary_fields=[{"statisticType": "Count", "onStatisticField": "Day"}], output_name='testaggregatepoints01') """ kwargs = locals() gis = _arcgis.env.active_gis if gis is None else gis url = gis.properties.helperServices.geoanalytics.url params = {} for key, value in kwargs.items(): if value is not None: params[key] = value if output_name is None: output_service_name = 'Aggregate Points Analysis_' + _id_generator() output_name = output_service_name.replace(' ', '_') else: output_service_name = output_name.replace(' ', '_') output_service = _create_output_service(gis, output_name, output_service_name, 'Aggregate Points') params['output_name'] = _json.dumps({ "serviceProperties": {"name" : output_name, "serviceUrl" : output_service.url}, "itemProperties": {"itemId" : output_service.itemid}}) if isinstance(summary_fields, list): summary_fields = json.dumps(summary_fields) _set_context(params) param_db = { "point_layer": (_FeatureSet, "pointLayer"), "bin_type": (str, "binType"), "bin_size": (float, "binSize"), "bin_size_unit": (str, "binSizeUnit"), "polygon_layer": (_FeatureSet, "polygonLayer"), "time_step_interval": (int, "timeStepInterval"), "time_step_interval_unit": (str, "timeStepIntervalUnit"), "time_step_repeat_interval": (int, "timeStepRepeatInterval"), "time_step_repeat_interval_unit": (str, "timeStepRepeatIntervalUnit"), "time_step_reference": (_datetime, "timeStepReference"), "summary_fields": (str, "summaryFields"), "output_name": (str, "outputName"), "context": (str, "context"), "output": (_FeatureSet, "Output Features"), } return_values = [ {"name": "output", "display_name": "Output Features", "type": _FeatureSet}, ] try: _execute_gp_tool(gis, "AggregatePoints", params, param_db, return_values, _use_async, url, True, future=future) return output_service except: output_service.delete() raise
fe946d4273ed1ce4e4cd3e46d9f9a3e0ff5c6725
3,642,398
def scattered_embedding_lookup(params, values, dimension, name=None, hash_key=None): """Looks up embeddings using parameter hashing for each value in `values`. The i-th embedding component of a value v in `values` is found by retrieving the weight whose index is a fingerprint of the pair (v,i). The concept is explored as "feature hashing" for model compression in this paper: http://arxiv.org/pdf/1504.04788.pdf Feature hashing has the pleasant effect of allowing us to compute an embedding without needing a pre-determined vocabulary, relieving some amount of process complexity. It also allows for us to maintain embeddings for possibly trillions of features with a fixed amount of memory. Note that this is superior to out-of-vocabulary shared "hash buckets" in that the embedding is extremely likely to be unique for each token as opposed to being shared across probably-colliding tokens. The price is that we must compute a hash once for each scalar in the token's embedding as opposed to once per token. If `params` is a list, it represents a partition of the embedding parameters. Each tensor in the list should have the same length, except for the first ones which may have an additional element. For instance 10 parameters can be partitioned in 4 tensors with length `[3, 3, 2, 2]`. Args: params: A `Tensor`, `list` of `Tensors`, or `PartitionedVariable`. Each tensor must be of rank 1 with fully-defined shape. values: `Tensor` of values to be embedded with shape `[d0, ..., dn]`. dimension: Embedding dimension. name: An optional name for this op. hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints on SparseFeatureCrossOp (optional). Returns: A `Tensor` with shape `[d0, ..., dn, dimension]`. Raises: ValueError: if dimension is not positive or the partition size is invalid. """ if dimension is None: raise ValueError("You must specify dimension.") return _sampled_scattered_embedding_lookup( params, values, dimension=dimension, sampled_candidates=None, hash_key=hash_key, name=name)
a317d7d494bd9b9918f6f2354d854c2fbffc1c6c
3,642,399