blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
โŒ€
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
d8a6f08dd04ec9ae7d39e4517dc83f205c562ba9
e0212c9361a553c37df7f109e60c323c6bf32246
/minesweeper.py
a2bcbefceced04154cfc8b391b4ed0265f252653
[]
no_license
nickpwhite/minesweeper
27be10bdfe91089b995858c93fcc683e3c6094a2
a690a5d6bf47ab203df06d655a161e686ffd57e5
refs/heads/master
2020-03-11T21:47:01.071961
2018-04-19T21:32:01
2018-04-19T21:32:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,387
py
import random class Cell: def __init__(self): self.isVisible = False self.value = 0 self.isFlagged = False def __str__(self): if self.isFlagged: return '๐Ÿšฉ' elif self.isVisible: if self.value == -1: return '๐Ÿ’ฃ' if self.value == 0: return ' ' else: return str(self.value) else: return '*' class Game: WIDTH = 10 HEIGHT = 10 MINES = 10 SURROUNDING_ARRAY = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)] def __init__(self): self.board = [[Cell() for i in range(self.WIDTH)] for j in range(self.HEIGHT)] self.flagged = 0 self.initializeBoard() def printHelp(self): print("To play, enter one of the following commands, followed by x,y-coordinates:") print("\to[pen] - opens the given node, revealing it") print("\tf[lag] - flags the given node, marking it as a (potential) mine") print("\tu[nflag] - unflags the given node, removing a flag") print("\tq[uit] - quits the game") print("\thelp - shows this help") print("") def printWelcome(self): print("Welcome to Minesweeper!") self.printHelp() def printStatus(self): print() print('{0} flagged / {1} mines'.format(self.flagged, self.MINES)) print() def printBoard(self): print('', end=' ') for i in range(self.WIDTH): print(i % 10, end=' ') print('') for i in range(self.WIDTH): print('___', end='') print('') for i in range(self.HEIGHT): print('{0}|'.format(i % 10), end='') for j in range(self.WIDTH): print('{0}'.format(self.board[i][j]), end=' ') print('') def printDebug(self): print('', end=' ') for i in range(self.WIDTH): print(i % 10, end=' ') print('') for i in range(self.WIDTH): print('___', end='') print('') for i in range(self.HEIGHT): print('{0}|'.format(i % 10), end='') for j in range(self.WIDTH): cell = self.board[i][j] cell.isVisible = True print('{0}'.format(cell), end=' ') cell.isVisible = False print('') def isWon(self): for i in range(self.HEIGHT): for j in range(self.WIDTH): cell = self.board[i][j] if cell.value >= 0 and not cell.isVisible: return False return True def setMines(self): mines = 0 while mines < self.MINES: x = random.randint(0, self.WIDTH - 1) y = random.randint(0, self.HEIGHT - 1) cell = self.board[y][x] if cell.value != -1: cell.value = -1 mines += 1 def setCellValue(self, x, y): cell = self.board[y][x] if cell.value != -1: mines = 0 for dx, dy in self.SURROUNDING_ARRAY: newx = x + dx newy = y + dy if 0 <= newx < self.WIDTH and 0 <= newy < self.HEIGHT and self.board[newy][newx].value == -1: mines += 1 cell.value = mines def initializeBoard(self): self.setMines() # set all the values for y in range(self.HEIGHT): for x in range(self.WIDTH): self.setCellValue(x, y) def clearFlags(self): for y in range(self.HEIGHT): for x in range(self.WIDTH): self.board[y][x].isFlagged = False def openCellsAround(self, x, y): surrounding_cells = [] visited_cells = [(x, y)] for dx, dy in self.SURROUNDING_ARRAY: newx = x + dx newy = y + dy if 0 <= newx < self.WIDTH and 0 <= newy < self.HEIGHT: surrounding_cells.append((newx, newy)) while surrounding_cells: u, v = surrounding_cells.pop() cell = self.board[v][u] visited_cells.append((u, v)) if not cell.isFlagged: cell.isVisible = True if cell.value == 0: for du, dv in self.SURROUNDING_ARRAY: newu = u + du newv = v + dv if 0 <= newu < self.WIDTH and 0 <= newv < self.HEIGHT: newcell = (newu, newv) if newcell not in surrounding_cells and newcell not in visited_cells: surrounding_cells.append(newcell) return 0 def processCommand(self, command, x, y): if "open".startswith(command.lower()): cell = self.board[y][x] if cell.isVisible: return cell.value cell.isVisible = True if cell.value == 0: return self.openCellsAround(x, y) else: return cell.value elif "flag".startswith(command.lower()): cell = self.board[y][x] if not cell.isVisible: self.flagged += 1 cell.isFlagged = True return 0 elif "unflag".startswith(command.lower()): cell = self.board[y][x] if cell.isFlagged: self.flagged -= 1 cell.isFlagged = False return 0 elif "quit".startswith(command.lower()): return -1 else: game.printHelp() game = Game() game.printWelcome() game.printBoard() while not game.isWon(): full_command = input("> ").split() try: command = full_command[0] if len(full_command) > 1: x = int(full_command[1]) y = int(full_command[2]) else: x = 0 y = 0 result = game.processCommand(command, x, y) if result == -1: game.printBoard() print("Thanks for playing!") break; else: game.printStatus() game.printBoard() except Exception as e: game.printHelp() if game.isWon(): game.clearFlags() game.printDebug() print("Congratulations! You won!")
[ "nick41496@gmail.com" ]
nick41496@gmail.com
9a4f444ef136bc8766e3fde43a36cab0eb31ed99
0b347d1f766cba6c00a20ab02fe50f7ebb2e8754
/projet HTML fini/Exercices/Fonctions/exercice10.py
ee3e26933ea2057a3e14e8df398fccdba39db9aa
[]
no_license
AdriBird/SiteWeb
d2f20161c23c207c0544490c1842f39be523a326
37c59aa2c8f1f5bb41784da7cdb85c02e1b0633b
refs/heads/main
2023-04-27T04:39:14.736647
2021-05-17T09:29:15
2021-05-17T09:29:15
355,120,714
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
ma_chaine_1 = 2020 ma_chaine_2 = "le" res = ma_chaine_1 + ma_chaine_2 + "monde" print(res)
[ "jmear92@gmail.com" ]
jmear92@gmail.com
51b70b9324f5e51e8212940b9ce83e5d29286acd
9729b72f99ce764fcb2741af5914051f9dd2b87e
/app/models.py
150a6c279b5869fd6850f870261ca0aadc2b2aff
[]
no_license
sleong1/msa-webapps
eda01f5715aa87fed9debb48fec8c1036b9b6c88
2cfb9afe4d5ed861ec9fc05b244920ccac799c94
refs/heads/master
2022-12-07T10:05:04.010844
2020-09-04T04:30:09
2020-09-04T04:30:09
291,599,121
1
0
null
null
null
null
UTF-8
Python
false
false
620
py
from app import db from sqlalchemy_imageattach.entity import Image, image_attachment # Models class AllRecipes(db.Model): __tablename__ = 'allrecipes' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) description = db.Column(db.String(512)) ingredients = db.Column(db.String(2048)) method = db.Column(db.String(2048)) fav = db.Column(db.Boolean(create_constraint=False)) #photo = image_attachment('UserPicture') def __repr__(self): return '<AllRecipes %r - %r - %r - %r - %r>' % self.name, self.description, self.ingredients, self.method, self.fav
[ "leongsuwen@yahoo.com" ]
leongsuwen@yahoo.com
f9a9a10310655241434c78951afb857b9bac83f5
0b0ca501c78908cbd84d79aea0c18dbe10ec2393
/venv/lib/python2.7/site-packages/novaclient/tests/unit/test_shell.py
86047923e37b149b127ab109abb24f1730372fc6
[]
no_license
Supriya30201/gskube
71c83528d0f425380f47e2c3148200e1b72c8a01
7a5c75ee7eabd39a3f286b22af8d7ce2d74225d0
refs/heads/master
2020-04-21T11:22:54.848625
2018-06-25T08:39:00
2018-06-25T08:39:00
169,523,236
0
0
null
null
null
null
UTF-8
Python
false
false
39,353
py
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse import distutils.version as dist_version import re import sys import fixtures from keystoneauth1 import fixture import mock import prettytable import requests_mock import six from testtools import matchers from novaclient import api_versions import novaclient.client from novaclient import exceptions import novaclient.shell from novaclient.tests.unit import fake_actions_module from novaclient.tests.unit import utils FAKE_ENV = {'OS_USERNAME': 'username', 'OS_PASSWORD': 'password', 'OS_TENANT_NAME': 'tenant_name', 'OS_AUTH_URL': 'http://no.where/v2.0', 'OS_COMPUTE_API_VERSION': '2'} FAKE_ENV2 = {'OS_USER_ID': 'user_id', 'OS_PASSWORD': 'password', 'OS_TENANT_ID': 'tenant_id', 'OS_AUTH_URL': 'http://no.where/v2.0', 'OS_COMPUTE_API_VERSION': '2'} FAKE_ENV3 = {'OS_USER_ID': 'user_id', 'OS_PASSWORD': 'password', 'OS_TENANT_ID': 'tenant_id', 'OS_AUTH_URL': 'http://no.where/v2.0', 'NOVA_ENDPOINT_TYPE': 'novaURL', 'OS_ENDPOINT_TYPE': 'osURL', 'OS_COMPUTE_API_VERSION': '2'} FAKE_ENV4 = {'OS_USER_ID': 'user_id', 'OS_PASSWORD': 'password', 'OS_TENANT_ID': 'tenant_id', 'OS_AUTH_URL': 'http://no.where/v2.0', 'NOVA_ENDPOINT_TYPE': 'internal', 'OS_ENDPOINT_TYPE': 'osURL', 'OS_COMPUTE_API_VERSION': '2'} FAKE_ENV5 = {'OS_USERNAME': 'username', 'OS_PASSWORD': 'password', 'OS_TENANT_NAME': 'tenant_name', 'OS_AUTH_URL': 'http://no.where/v2.0'} def _create_ver_list(versions): return {'versions': {'values': versions}} class DeprecatedActionTest(utils.TestCase): @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_emptyhelp_nouse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertEqual(result.real_action_args, ('option_strings', 'dest', 'Deprecated', {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', a=1, b=2, c=3) @mock.patch.object(novaclient.shell.argparse.Action, '__init__', return_value=None) def test_init_emptyhelp_withuse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', use='use this instead', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertEqual(result.use, 'use this instead') self.assertEqual(result.real_action_args, ('option_strings', 'dest', 'Deprecated; use this instead', {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help='Deprecated; use this instead', a=1, b=2, c=3) @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_withhelp_nouse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', help='some help', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertEqual(result.real_action_args, ('option_strings', 'dest', 'some help (Deprecated)', {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help='some help (Deprecated)', a=1, b=2, c=3) @mock.patch.object(novaclient.shell.argparse.Action, '__init__', return_value=None) def test_init_withhelp_withuse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', help='some help', use='use this instead', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertEqual(result.use, 'use this instead') self.assertEqual(result.real_action_args, ('option_strings', 'dest', 'some help (Deprecated; use this instead)', {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help='some help (Deprecated; use this instead)', a=1, b=2, c=3) @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_suppresshelp_nouse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', help=argparse.SUPPRESS, a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertEqual(result.real_action_args, ('option_strings', 'dest', argparse.SUPPRESS, {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help=argparse.SUPPRESS, a=1, b=2, c=3) @mock.patch.object(novaclient.shell.argparse.Action, '__init__', return_value=None) def test_init_suppresshelp_withuse(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', help=argparse.SUPPRESS, use='use this instead', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertEqual(result.use, 'use this instead') self.assertEqual(result.real_action_args, ('option_strings', 'dest', argparse.SUPPRESS, {'a': 1, 'b': 2, 'c': 3})) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help=argparse.SUPPRESS, a=1, b=2, c=3) @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_action_nothing(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action='nothing', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertIs(result.real_action_args, False) self.assertIsNone(result.real_action) mock_init.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', a=1, b=2, c=3) @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_action_string(self, mock_init): result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action='store', a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertEqual(result.real_action_args, ('option_strings', 'dest', 'Deprecated', {'a': 1, 'b': 2, 'c': 3})) self.assertEqual(result.real_action, 'store') mock_init.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', a=1, b=2, c=3) @mock.patch.object(argparse.Action, '__init__', return_value=None) def test_init_action_other(self, mock_init): action = mock.Mock() result = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action=action, a=1, b=2, c=3) self.assertEqual(result.emitted, set()) self.assertIsNone(result.use) self.assertIs(result.real_action_args, False) self.assertEqual(result.real_action, action.return_value) mock_init.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', a=1, b=2, c=3) action.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', a=1, b=2, c=3) @mock.patch.object(sys, 'stderr', six.StringIO()) def test_get_action_nolookup(self): action_class = mock.Mock() parser = mock.Mock(**{ '_registry_get.return_value': action_class, }) obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action='nothing', const=1) obj.real_action = 'action' result = obj._get_action(parser) self.assertEqual(result, 'action') self.assertEqual(obj.real_action, 'action') self.assertFalse(parser._registry_get.called) self.assertFalse(action_class.called) self.assertEqual(sys.stderr.getvalue(), '') @mock.patch.object(sys, 'stderr', six.StringIO()) def test_get_action_lookup_noresult(self): parser = mock.Mock(**{ '_registry_get.return_value': None, }) obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action='store', const=1) result = obj._get_action(parser) self.assertIsNone(result) self.assertIsNone(obj.real_action) parser._registry_get.assert_called_once_with( 'action', 'store') self.assertEqual(sys.stderr.getvalue(), 'WARNING: Programming error: Unknown real action ' '"store"\n') @mock.patch.object(sys, 'stderr', six.StringIO()) def test_get_action_lookup_withresult(self): action_class = mock.Mock() parser = mock.Mock(**{ '_registry_get.return_value': action_class, }) obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', real_action='store', const=1) result = obj._get_action(parser) self.assertEqual(result, action_class.return_value) self.assertEqual(obj.real_action, action_class.return_value) parser._registry_get.assert_called_once_with( 'action', 'store') action_class.assert_called_once_with( 'option_strings', 'dest', help='Deprecated', const=1) self.assertEqual(sys.stderr.getvalue(), '') @mock.patch.object(sys, 'stderr', six.StringIO()) @mock.patch.object(novaclient.shell.DeprecatedAction, '_get_action') def test_call_unemitted_nouse(self, mock_get_action): obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest') obj('parser', 'namespace', 'values', 'option_string') self.assertEqual(obj.emitted, set(['option_string'])) mock_get_action.assert_called_once_with('parser') mock_get_action.return_value.assert_called_once_with( 'parser', 'namespace', 'values', 'option_string') self.assertEqual(sys.stderr.getvalue(), 'WARNING: Option "option_string" is deprecated\n') @mock.patch.object(sys, 'stderr', six.StringIO()) @mock.patch.object(novaclient.shell.DeprecatedAction, '_get_action') def test_call_unemitted_withuse(self, mock_get_action): obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', use='use this instead') obj('parser', 'namespace', 'values', 'option_string') self.assertEqual(obj.emitted, set(['option_string'])) mock_get_action.assert_called_once_with('parser') mock_get_action.return_value.assert_called_once_with( 'parser', 'namespace', 'values', 'option_string') self.assertEqual(sys.stderr.getvalue(), 'WARNING: Option "option_string" is deprecated; ' 'use this instead\n') @mock.patch.object(sys, 'stderr', six.StringIO()) @mock.patch.object(novaclient.shell.DeprecatedAction, '_get_action') def test_call_emitted_nouse(self, mock_get_action): obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest') obj.emitted.add('option_string') obj('parser', 'namespace', 'values', 'option_string') self.assertEqual(obj.emitted, set(['option_string'])) mock_get_action.assert_called_once_with('parser') mock_get_action.return_value.assert_called_once_with( 'parser', 'namespace', 'values', 'option_string') self.assertEqual(sys.stderr.getvalue(), '') @mock.patch.object(sys, 'stderr', six.StringIO()) @mock.patch.object(novaclient.shell.DeprecatedAction, '_get_action') def test_call_emitted_withuse(self, mock_get_action): obj = novaclient.shell.DeprecatedAction( 'option_strings', 'dest', use='use this instead') obj.emitted.add('option_string') obj('parser', 'namespace', 'values', 'option_string') self.assertEqual(obj.emitted, set(['option_string'])) mock_get_action.assert_called_once_with('parser') mock_get_action.return_value.assert_called_once_with( 'parser', 'namespace', 'values', 'option_string') self.assertEqual(sys.stderr.getvalue(), '') class ParserTest(utils.TestCase): def setUp(self): super(ParserTest, self).setUp() self.parser = novaclient.shell.NovaClientArgumentParser() def test_ambiguous_option(self): self.parser.add_argument('--tic') self.parser.add_argument('--tac') try: self.parser.parse_args(['--t']) except SystemExit as err: self.assertEqual(2, err.code) else: self.fail('SystemExit not raised') def test_not_really_ambiguous_option(self): # current/deprecated forms of the same option self.parser.add_argument('--tic-tac', action="store_true") self.parser.add_argument('--tic_tac', action="store_true") args = self.parser.parse_args(['--tic']) self.assertTrue(args.tic_tac) class ShellTest(utils.TestCase): _msg_no_tenant_project = ("You must provide a project name or project" " ID via --os-project-name, --os-project-id," " env[OS_PROJECT_ID] or env[OS_PROJECT_NAME]." " You may use os-project and os-tenant" " interchangeably.") def make_env(self, exclude=None, fake_env=FAKE_ENV): env = dict((k, v) for k, v in fake_env.items() if k != exclude) self.useFixture(fixtures.MonkeyPatch('os.environ', env)) def setUp(self): super(ShellTest, self).setUp() self.mock_client = mock.MagicMock() self.mock_client.return_value.api_version = novaclient.API_MIN_VERSION self.useFixture(fixtures.MonkeyPatch('novaclient.client.Client', self.mock_client)) self.nc_util = mock.patch('novaclient.utils.isunauthenticated').start() self.nc_util.return_value = False self.mock_server_version_range = mock.patch( 'novaclient.api_versions._get_server_version_range').start() self.mock_server_version_range.return_value = ( novaclient.API_MIN_VERSION, novaclient.API_MIN_VERSION) self.orig_max_ver = novaclient.API_MAX_VERSION self.orig_min_ver = novaclient.API_MIN_VERSION self.addCleanup(self._clear_fake_version) self.addCleanup(mock.patch.stopall) def _clear_fake_version(self): novaclient.API_MAX_VERSION = self.orig_max_ver novaclient.API_MIN_VERSION = self.orig_min_ver def shell(self, argstr, exitcodes=(0,)): orig = sys.stdout orig_stderr = sys.stderr try: sys.stdout = six.StringIO() sys.stderr = six.StringIO() _shell = novaclient.shell.OpenStackComputeShell() _shell.main(argstr.split()) except SystemExit: exc_type, exc_value, exc_traceback = sys.exc_info() self.assertIn(exc_value.code, exitcodes) finally: stdout = sys.stdout.getvalue() sys.stdout.close() sys.stdout = orig stderr = sys.stderr.getvalue() sys.stderr.close() sys.stderr = orig_stderr return (stdout, stderr) def register_keystone_discovery_fixture(self, mreq): v2_url = "http://no.where/v2.0" v2_version = fixture.V2Discovery(v2_url) mreq.register_uri( 'GET', v2_url, json=_create_ver_list([v2_version]), status_code=200) def test_help_unknown_command(self): self.assertRaises(exceptions.CommandError, self.shell, 'help foofoo') def test_invalid_timeout(self): for f in [0, -1, -10]: cmd_text = '--timeout %s' % (f) stdout, stderr = self.shell(cmd_text, exitcodes=[0, 2]) required = [ 'argument --timeout: %s must be greater than 0' % (f), ] for r in required: self.assertIn(r, stderr) def _test_help(self, command, required=None): if required is None: required = [ '.*?^usage: ', '.*?^\s+set-password\s+Change the admin password', '.*?^See "nova help COMMAND" for help on a specific command', ] stdout, stderr = self.shell(command) for r in required: self.assertThat((stdout + stderr), matchers.MatchesRegex(r, re.DOTALL | re.MULTILINE)) def test_help(self): self._test_help('help') def test_help_option(self): self._test_help('--help') self._test_help('-h') def test_help_no_options(self): self._test_help('') def test_help_on_subcommand(self): required = [ '.*?^usage: nova set-password', '.*?^Change the admin password', '.*?^Positional arguments:', ] self._test_help('help set-password', required=required) def test_bash_completion(self): stdout, stderr = self.shell('bash-completion') # just check we have some output required = [ '.*--matching', '.*--wrap', '.*help', '.*server-group-delete', '.*--image-with'] for r in required: self.assertThat((stdout + stderr), matchers.MatchesRegex(r, re.DOTALL | re.MULTILINE)) def test_no_username(self): required = ('You must provide a user name/id (via --os-username, ' '--os-user-id, env[OS_USERNAME] or env[OS_USER_ID]) or ' 'an auth token (via --os-token).') self.make_env(exclude='OS_USERNAME') try: self.shell('list') except exceptions.CommandError as message: self.assertEqual(required, message.args[0]) else: self.fail('CommandError not raised') def test_no_user_id(self): required = ('You must provide a user name/id (via --os-username, ' '--os-user-id, env[OS_USERNAME] or env[OS_USER_ID]) or ' 'an auth token (via --os-token).') self.make_env(exclude='OS_USER_ID', fake_env=FAKE_ENV2) try: self.shell('list') except exceptions.CommandError as message: self.assertEqual(required, message.args[0]) else: self.fail('CommandError not raised') def test_no_tenant_name(self): required = self._msg_no_tenant_project self.make_env(exclude='OS_TENANT_NAME') try: self.shell('list') except exceptions.CommandError as message: self.assertEqual(required, message.args[0]) else: self.fail('CommandError not raised') def test_no_tenant_id(self): required = self._msg_no_tenant_project self.make_env(exclude='OS_TENANT_ID', fake_env=FAKE_ENV2) try: self.shell('list') except exceptions.CommandError as message: self.assertEqual(required, message.args[0]) else: self.fail('CommandError not raised') def test_no_auth_url(self): required = ('You must provide an auth url' ' via either --os-auth-url or env[OS_AUTH_URL].',) self.make_env(exclude='OS_AUTH_URL') try: self.shell('list') except exceptions.CommandError as message: self.assertEqual(required, message.args) else: self.fail('CommandError not raised') @requests_mock.Mocker() def test_nova_endpoint_type(self, m_requests): self.make_env(fake_env=FAKE_ENV3) self.register_keystone_discovery_fixture(m_requests) self.shell('list') client_kwargs = self.mock_client.call_args_list[0][1] self.assertEqual(client_kwargs['endpoint_type'], 'novaURL') @requests_mock.Mocker() def test_endpoint_type_like_other_clients(self, m_requests): self.make_env(fake_env=FAKE_ENV4) self.register_keystone_discovery_fixture(m_requests) self.shell('list') client_kwargs = self.mock_client.call_args_list[0][1] self.assertEqual(client_kwargs['endpoint_type'], 'internalURL') @requests_mock.Mocker() def test_os_endpoint_type(self, m_requests): self.make_env(exclude='NOVA_ENDPOINT_TYPE', fake_env=FAKE_ENV3) self.register_keystone_discovery_fixture(m_requests) self.shell('list') client_kwargs = self.mock_client.call_args_list[0][1] self.assertEqual(client_kwargs['endpoint_type'], 'osURL') def test_default_endpoint_type(self): self.make_env() self.shell('list') client_kwargs = self.mock_client.call_args_list[0][1] self.assertEqual(client_kwargs['endpoint_type'], 'publicURL') @mock.patch('sys.stdin', side_effect=mock.MagicMock) @mock.patch('getpass.getpass', return_value='password') @requests_mock.Mocker() def test_password(self, mock_getpass, mock_stdin, m_requests): mock_stdin.encoding = "utf-8" # default output of empty tables differs depending between prettytable # versions if (hasattr(prettytable, '__version__') and dist_version.StrictVersion(prettytable.__version__) < dist_version.StrictVersion('0.7.2')): ex = '\n' else: ex = '\n'.join([ '+----+------+--------+------------+-------------+----------+', '| ID | Name | Status | Task State | Power State | Networks |', '+----+------+--------+------------+-------------+----------+', '+----+------+--------+------------+-------------+----------+', '' ]) self.make_env(exclude='OS_PASSWORD') self.register_keystone_discovery_fixture(m_requests) stdout, stderr = self.shell('list') self.assertEqual((stdout + stderr), ex) def _test_service_type(self, version, service_type, mock_client): if version is None: cmd = 'list' else: cmd = ('--service-type %s --os-compute-api-version %s list' % (service_type, version)) self.make_env() self.shell(cmd) _client_args, client_kwargs = mock_client.call_args_list[0] self.assertEqual(service_type, client_kwargs['service_type']) def test_default_service_type(self): self._test_service_type(None, 'compute', self.mock_client) def test_v2_service_type(self): self._test_service_type('2', 'compute', self.mock_client) def test_v_unknown_service_type(self): self.assertRaises(exceptions.UnsupportedVersion, self._test_service_type, 'unknown', 'compute', self.mock_client) @mock.patch('sys.argv', ['nova']) @mock.patch('sys.stdout', six.StringIO()) @mock.patch('sys.stderr', six.StringIO()) def test_main_noargs(self): # Ensure that main works with no command-line arguments try: novaclient.shell.main() except SystemExit: self.fail('Unexpected SystemExit') # We expect the normal usage as a result self.assertIn('Command-line interface to the OpenStack Nova API', sys.stdout.getvalue()) @mock.patch.object(novaclient.shell.OpenStackComputeShell, 'main') def test_main_keyboard_interrupt(self, mock_compute_shell): # Ensure that exit code is 130 for KeyboardInterrupt mock_compute_shell.side_effect = KeyboardInterrupt() try: novaclient.shell.main() except SystemExit as ex: self.assertEqual(ex.code, 130) @mock.patch.object(novaclient.shell.OpenStackComputeShell, 'times') @requests_mock.Mocker() def test_timing(self, m_times, m_requests): m_times.append.side_effect = RuntimeError('Boom!') self.make_env() self.register_keystone_discovery_fixture(m_requests) self.shell('list') exc = self.assertRaises(RuntimeError, self.shell, '--timings list') self.assertEqual('Boom!', str(exc)) @requests_mock.Mocker() def test_osprofiler(self, m_requests): self.make_env() def client(*args, **kwargs): self.assertEqual('swordfish', kwargs['profile']) with mock.patch('novaclient.client.Client', client): # we are only interested in the fact Client is initialized properly self.shell('list --profile swordfish', (0, 2)) @requests_mock.Mocker() def test_osprofiler_not_installed(self, m_requests): self.make_env() # NOTE(rpodolyaka): osprofiler is in test-requirements, so we have to # simulate its absence here with mock.patch('novaclient.shell.osprofiler_profiler', None): _, stderr = self.shell('list --profile swordfish', (0, 2)) self.assertIn('unrecognized arguments: --profile swordfish', stderr) def test_microversion_with_default_behaviour(self): self.make_env(fake_env=FAKE_ENV5) self.mock_server_version_range.return_value = ( api_versions.APIVersion("2.1"), api_versions.APIVersion("2.3")) self.shell('list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.3"), client_args[0]) def test_microversion_with_default_behaviour_with_legacy_server(self): self.make_env(fake_env=FAKE_ENV5) self.mock_server_version_range.return_value = ( api_versions.APIVersion(), api_versions.APIVersion()) self.shell('list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.0"), client_args[0]) def test_microversion_with_latest(self): self.make_env() novaclient.API_MAX_VERSION = api_versions.APIVersion('2.3') self.mock_server_version_range.return_value = ( api_versions.APIVersion("2.1"), api_versions.APIVersion("2.3")) self.shell('--os-compute-api-version 2.latest list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.3"), client_args[0]) def test_microversion_with_specified_version(self): self.make_env() self.mock_server_version_range.return_value = ( api_versions.APIVersion("2.10"), api_versions.APIVersion("2.100")) novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.90") self.shell('--os-compute-api-version 2.99 list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.99"), client_args[0]) def test_microversion_with_specified_version_out_of_range(self): novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.90") self.assertRaises(exceptions.CommandError, self.shell, '--os-compute-api-version 2.199 list') def test_microversion_with_v2_and_v2_1_server(self): self.make_env() self.mock_server_version_range.return_value = ( api_versions.APIVersion('2.1'), api_versions.APIVersion('2.3')) novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.1") self.shell('--os-compute-api-version 2 list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.0"), client_args[0]) def test_microversion_with_v2_and_v2_server(self): self.make_env() self.mock_server_version_range.return_value = ( api_versions.APIVersion(), api_versions.APIVersion()) novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.1") self.shell('--os-compute-api-version 2 list') client_args = self.mock_client.call_args_list[1][0] self.assertEqual(api_versions.APIVersion("2.0"), client_args[0]) def test_microversion_with_v2_without_server_compatible(self): self.make_env() self.mock_server_version_range.return_value = ( api_versions.APIVersion('2.2'), api_versions.APIVersion('2.3')) novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.1") self.assertRaises( exceptions.UnsupportedVersion, self.shell, '--os-compute-api-version 2 list') def test_microversion_with_specific_version_without_microversions(self): self.make_env() self.mock_server_version_range.return_value = ( api_versions.APIVersion(), api_versions.APIVersion()) novaclient.API_MAX_VERSION = api_versions.APIVersion("2.100") novaclient.API_MIN_VERSION = api_versions.APIVersion("2.1") self.assertRaises( exceptions.UnsupportedVersion, self.shell, '--os-compute-api-version 2.3 list') @mock.patch.object(novaclient.shell.OpenStackComputeShell, 'main') def test_main_error_handling(self, mock_compute_shell): class MyException(Exception): pass with mock.patch('sys.stderr', six.StringIO()): mock_compute_shell.side_effect = MyException('message') self.assertRaises(SystemExit, novaclient.shell.main) err = sys.stderr.getvalue() self.assertEqual(err, 'ERROR (MyException): message\n') class TestLoadVersionedActions(utils.TestCase): def test_load_versioned_actions(self): parser = novaclient.shell.NovaClientArgumentParser() subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.15"), False) self.assertIn('fake-action', shell.subcommands.keys()) self.assertEqual( 1, shell.subcommands['fake-action'].get_default('func')()) shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.25"), False) self.assertIn('fake-action', shell.subcommands.keys()) self.assertEqual( 2, shell.subcommands['fake-action'].get_default('func')()) self.assertIn('fake-action2', shell.subcommands.keys()) self.assertEqual( 3, shell.subcommands['fake-action2'].get_default('func')()) def test_load_versioned_actions_not_in_version_range(self): parser = novaclient.shell.NovaClientArgumentParser() subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.10000"), False) self.assertNotIn('fake-action', shell.subcommands.keys()) self.assertIn('fake-action2', shell.subcommands.keys()) def test_load_versioned_actions_with_help(self): parser = novaclient.shell.NovaClientArgumentParser() subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.15"), True) self.assertIn('fake-action', shell.subcommands.keys()) expected_desc = (" (Supported by API versions '%(start)s' - " "'%(end)s')") % {'start': '2.10', 'end': '2.30'} self.assertEqual(expected_desc, shell.subcommands['fake-action'].description) def test_load_versioned_actions_with_help_on_latest(self): parser = novaclient.shell.NovaClientArgumentParser() subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.latest"), True) self.assertIn('another-fake-action', shell.subcommands.keys()) expected_desc = (" (Supported by API versions '%(start)s' - " "'%(end)s')%(hint)s") % { 'start': '2.0', 'end': '2.latest', 'hint': novaclient.shell.HINT_HELP_MSG} self.assertEqual(expected_desc, shell.subcommands['another-fake-action'].description) @mock.patch.object(novaclient.shell.NovaClientArgumentParser, 'add_argument') def test_load_versioned_actions_with_args(self, mock_add_arg): parser = novaclient.shell.NovaClientArgumentParser(add_help=False) subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.1"), False) self.assertIn('fake-action2', shell.subcommands.keys()) mock_add_arg.assert_has_calls([ mock.call('-h', '--help', action='help', help='==SUPPRESS=='), mock.call('--foo')]) @mock.patch.object(novaclient.shell.NovaClientArgumentParser, 'add_argument') def test_load_versioned_actions_with_args2(self, mock_add_arg): parser = novaclient.shell.NovaClientArgumentParser(add_help=False) subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.4"), False) self.assertIn('fake-action2', shell.subcommands.keys()) mock_add_arg.assert_has_calls([ mock.call('-h', '--help', action='help', help='==SUPPRESS=='), mock.call('--bar')]) @mock.patch.object(novaclient.shell.NovaClientArgumentParser, 'add_argument') def test_load_versioned_actions_with_args_not_in_version_range( self, mock_add_arg): parser = novaclient.shell.NovaClientArgumentParser(add_help=False) subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.10000"), False) self.assertIn('fake-action2', shell.subcommands.keys()) mock_add_arg.assert_has_calls([ mock.call('-h', '--help', action='help', help='==SUPPRESS==')]) @mock.patch.object(novaclient.shell.NovaClientArgumentParser, 'add_argument') def test_load_versioned_actions_with_args_and_help(self, mock_add_arg): parser = novaclient.shell.NovaClientArgumentParser(add_help=False) subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.4"), True) mock_add_arg.assert_has_calls([ mock.call('-h', '--help', action='help', help='==SUPPRESS=='), mock.call('--bar', help=" (Supported by API versions '2.3' - '2.4')")]) @mock.patch.object(novaclient.shell.NovaClientArgumentParser, 'add_argument') def test_load_actions_with_versioned_args(self, mock_add_arg): parser = novaclient.shell.NovaClientArgumentParser(add_help=False) subparsers = parser.add_subparsers(metavar='<subcommand>') shell = novaclient.shell.OpenStackComputeShell() shell.subcommands = {} shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.20"), False) self.assertIn(mock.call('--foo', help="first foo"), mock_add_arg.call_args_list) self.assertNotIn(mock.call('--foo', help="second foo"), mock_add_arg.call_args_list) mock_add_arg.reset_mock() shell._find_actions(subparsers, fake_actions_module, api_versions.APIVersion("2.21"), False) self.assertNotIn(mock.call('--foo', help="first foo"), mock_add_arg.call_args_list) self.assertIn(mock.call('--foo', help="second foo"), mock_add_arg.call_args_list) class ShellTestKeystoneV3(ShellTest): def make_env(self, exclude=None, fake_env=FAKE_ENV): if 'OS_AUTH_URL' in fake_env: fake_env.update({'OS_AUTH_URL': 'http://no.where/v3'}) env = dict((k, v) for k, v in fake_env.items() if k != exclude) self.useFixture(fixtures.MonkeyPatch('os.environ', env)) def register_keystone_discovery_fixture(self, mreq): v3_url = "http://no.where/v3" v3_version = fixture.V3Discovery(v3_url) mreq.register_uri( 'GET', v3_url, json=_create_ver_list([v3_version]), status_code=200)
[ "rahul.mishra@gslab.com" ]
rahul.mishra@gslab.com
3327bd789cd44d894356311aa715e14c3e2975bf
d398bff6ef75eda209f815c93ef45e3c11b508a8
/CIS3210/Lab 10/lab10/tests/functional/test_users.py
9db55c302199eb9027d335f894eb6e6115ee0cda
[]
no_license
mtran155/uoguelph
1d8eb2f4d8e7f38647949de63d48d227a4037f47
ab35d69acb874ff76220397a2637023850e04a00
refs/heads/master
2021-01-10T06:50:17.999278
2015-12-04T21:02:29
2015-12-04T21:02:29
47,378,239
0
1
null
null
null
null
UTF-8
Python
false
false
718
py
from lab2.tests import * class TestUsersController(TestController): # def test_index(self): # response = self.app.get(url(controller='users', action='index')) # assert 'Home' in response def test_get(self): response = self.app.get(url(controller='users', action='userid')) assert "Getting " in response def test_put(self): response = self.app.put(url(controller='users', action='userid')) assert "Updating " in response def test_post(self): response = self.app.post(url(controller='users', action='userid')) assert "Creating " in response def test_delete(self): response = self.app.delete(url(controller='users', action='userid')) assert "Deleting " in response
[ "miketran155@gmail.com" ]
miketran155@gmail.com
455b313e95a0e259cb911bec579e4255b2a88b6b
f692aeee810dfaa5e78efbc2137535f3694f4bf4
/vertex_face_feature/vertex_functions.py
5a71154ce99c1163ca477c78cd6eee8dd2de1d31
[]
no_license
alikhanlab/Lesion-Clustering
e1ce3d13912e4df5a7fd001619e6e216d599ad5a
e0249c1f06300f49ec50e431baae98b5f7b6465a
refs/heads/master
2020-08-01T07:35:02.818796
2019-11-14T01:59:03
2019-11-14T01:59:03
210,915,896
0
0
null
null
null
null
UTF-8
Python
false
false
1,947
py
import pandas as pd def create_vertex(df): ''' Takes df Returns df vertex coordinates # v1 = (+1/2 , +1/2, +1/2) # v2 = (+1/2, +1/2, -1/2) # v3 = (+1/2, -1/2, +1/2) # v4 = (+1/2, -1/2, -1/2) # v5 = (-1/2, +1/2, +1/2) # v6 = (-1/2, -1/2, +1/2) # v7 = (-1/2, +1/2, -1/2) # v8 = (-1/2, -1/2, -1/2) ''' df['v1'] = df['xyz'].apply(lambda xyz: [xyz[0]+0.5, xyz[1]+0.5, xyz[2]+0.5]) df['v2'] = df['xyz'].apply(lambda xyz: [xyz[0]+0.5, xyz[1]+0.5, xyz[2]-0.5]) df['v3'] = df['xyz'].apply(lambda xyz: [xyz[0]+0.5, xyz[1]-0.5, xyz[2]+0.5]) df['v4'] = df['xyz'].apply(lambda xyz: [xyz[0]+0.5, xyz[1]-0.5, xyz[2]-0.5]) df['v5'] = df['xyz'].apply(lambda xyz: [xyz[0]-0.5, xyz[1]+0.5, xyz[2]+0.5]) df['v6'] = df['xyz'].apply(lambda xyz: [xyz[0]-0.5, xyz[1]-0.5, xyz[2]+0.5]) df['v7'] = df['xyz'].apply(lambda xyz: [xyz[0]-0.5, xyz[1]+0.5, xyz[2]-0.5]) df['v8'] = df['xyz'].apply(lambda xyz: [xyz[0]-0.5, xyz[1]-0.5, xyz[2]-0.5]) return df # Calculate vertex function def calculate_vertex(df): ''' Calculates, counts how many identical vertexes, by face neighbors Iterates over voxels. ''' import pandas as pd c = df.values.tolist() # Counting vertexes result = [] for row in c: all_v = row[3:] neighbors = row[2] counter = [0, 0, 0, 0, 0, 0, 0, 0] for element in neighbors: checker = c[element][3:] for count, l in enumerate(all_v): if l in checker: counter[count]+=1 counter = sorted(counter, reverse=True) result.append(counter) # Converting to dataFrame df_res = pd.DataFrame(result, columns = ['v1_n' , 'v2_n', 'v3_n', 'v4_n', 'v5_n', 'v6_n', 'v7_n', 'v8_n']) # Merge with original dataFrame vox = pd.concat([df, df_res], axis=1, sort=False) return vox
[ "nalikhan@bu.edu" ]
nalikhan@bu.edu
4ba5d130f9a73bb9196a02b349f5f8c4281bf1c9
a011b2c93c829781dd381d405d880445a9c5188b
/main.py
5921bd76daa813c7c754abd791a690224cd52013
[]
no_license
DavidRSeWell/ImageMLScaffold
704a015d575ecfc4590a7475eebe0c1f2e83c55d
5b62f75d94a29f974eae0d67e177ea72c51fb45b
refs/heads/master
2023-03-22T13:05:43.088243
2021-03-23T23:55:01
2021-03-23T23:55:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
import json import numpy as np from ml import data,utils from ml.designer import Designer def main(config_path): config = utils.load_config(config_path) print("CONFIG") print("----------------------------------------------------------") print(json.dumps(config, indent=4, sort_keys=True)) designer = Designer(config_path) print("Loading in the data") designer.load_data() print("Data loaded showing stats") designer.image_data.get_data_stats() X = designer.transform_data() label_dict, y = designer.image_data.transform_labels() X_train, X_test, y_train, y_test = designer.create_train_data(X,y) print("Training size \n") print(X_train.shape) print("Testing size \n") print(X_test.shape) print("Training model \n") designer.train(X_train,y_train) print("Evaluating the model") print(designer.test(X_test,y_test)) print("Done running main") if __name__ == '__main__': config_path = "config.yaml" main(config_path)
[ "dsewell@pdx.edu" ]
dsewell@pdx.edu
27f65268dc55bcd17b19df08d6232dc00b7385b2
9e5ac63135b43127d14e74b707d5c0dc846e07d2
/wikinterests/users/models.py
0b5f66774cfd451d55e94942b07527c57c9a8bd3
[]
no_license
Aayog/WikiNterest
4ce82d40cf886c095391921041431d556ee14b5b
ac5d2f29335a42e66f34b41ff18e481ce62f4e42
refs/heads/master
2022-11-10T01:41:50.298381
2020-07-05T14:36:30
2020-07-05T14:36:30
276,683,594
0
0
null
2020-07-03T16:41:53
2020-07-02T15:34:50
Python
UTF-8
Python
false
false
575
py
from django.db import models from django.contrib.auth.models import User class Category(models.Model): title = models.CharField(max_length=100) url = models.CharField(max_length=100) class Article(models.Model): title = models.CharField(max_length=100) url = models.CharField(max_length=100) class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) categories = models.ManyToManyField(Category) favorites = models.ManyToManyField(Article) def __str__(self): return f'{self.user.username} Profile'
[ "1aayogkoirala@gmail.com" ]
1aayogkoirala@gmail.com
d6787e11fbca103b10a569b2c9d9eacdc24cd19d
90094b0065058917b840226558b1712c9e69138e
/Exercise/Day1.3/ex2.py
43aa77b530e28d7c46a86b663c25a8cd8f99605e
[]
no_license
MinhTamPhan/LearnPythonTheHardWay
8008a33784e3c1b7f74bac6541cddb02e2eab0f2
099beaaba1edc426d1f144b1c0a0c901db40479e
refs/heads/master
2021-06-21T22:30:12.810483
2017-07-18T15:32:17
2017-07-18T15:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
# A comment, this is so you can read your program later # Anything after the # is ingored by python print "I could have code like this."# and the comment after ingored # You can also use a comment to "disable" or comment out a piece of code #ptint "this won't run." print "This will run."
[ "phanminhtam247@gmail.com" ]
phanminhtam247@gmail.com
99677e21c63be316461e81c583cece59ba4c30ec
0a227eb4db935d8c0d04a8075e067401d373e733
/backend/manage.py
d8971114ef826868e2d9db2398ba8841021a79e9
[]
no_license
crowdbotics-apps/tst-daniel-figma-de-22592
3639f7a97ebb0186f1f0181d889fa38e9f789241
52d451240ed42de2d8e6e8eb054e0bddecc024aa
refs/heads/master
2023-05-05T03:26:49.228604
2021-05-24T17:18:56
2021-05-24T17:18:56
370,423,052
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tst_daniel_figma_de_22592.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
487f1b80806f1d4101d12458b639f7942ce6b667
b4d04e3beaee3272835fe4fc85e8e0cbc798870c
/uebung/sets.py
87968839e12a19b523a136d065b9ec4ecb967bf5
[ "MIT" ]
permissive
wieerwill/Python-Intro
5e2c95946b64a169014b0587bd69ffafe2b1d4d5
6b6f1d8b1b5c95590ffe15b0b4ddf188b680b491
refs/heads/master
2022-01-19T01:53:22.489401
2022-01-11T15:11:41
2022-01-11T15:11:41
173,446,988
3
0
null
null
null
null
UTF-8
Python
false
false
438
py
# ร–ffne die ../data/names.csv - Datei als .csv-Datei und berechne die Anzahl der verschiedenen Vornamen, die in dieser Datei aufgelistet sind import csv names = set() with open('../data/names.csv', newline='') as csvfile: namereader = csv.reader(csvfile, delimiter=',', quotechar='"') counter = 0 for row in namereader: if counter != 0: names.add(row[1]) counter = counter + 1 print(len(names))
[ "robert.jeutter@gmx.de" ]
robert.jeutter@gmx.de
46142fed8a42b76bbcd40ef9e7a53b005fe228fc
07e803289e82ec0eb25d6b2aabc7093c42fdddb7
/primenums_occurance_plotter.py
a2cf899a60a63ace7ca5e4e8610657ec605c37fc
[]
no_license
joncokisler/Prime_Number_Occurance_Frequency_Plotter
173ca99e8b40b2c2c228d9fcba096dc3f7a04e25
306da5a8a7e660121c290b752d58a9efc572912e
refs/heads/master
2020-03-27T09:54:27.029397
2018-08-28T02:45:58
2018-08-28T02:45:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
import pandas as pd import matplotlib.pyplot as plt import math file = open('prime_numbers.csv', 'w') primes_list = [2] limit = 1000 a = 0 for i in range(3, limit): gate = True if i % 2 == 0: gate = False continue ## for j in range(2, int(math.sqrt(i))+1): ##math.sqrt(i) + 1 --> because you only need to check until the number's sqr root. if i % j == 0: gate = False break if i % j != 0: pass if gate: primes_list.append(i) print(i) file.write('prime_num') for b in primes_list: file.write("\n" + str(b)) print(b) file.close() df = pd.read_csv('prime_numbers.csv') df2 = df.prime_num.tolist() data = {} upper_range = int(math.ceil(float(df2[-1] / 100))) for counter in range(upper_range): data[counter * 100] = 0 for i in range(len(df2)): if df2[i] > (counter * 100): break if df2[i] <= (counter * 100) and df2[i] > ((counter - 1) * 100): data[counter * 100] += 1 print(data) x, y = zip(*sorted(data.items())) plt.style.use('grayscale') plt.ylabel('Prime Number Occurance Frequency') plt.xlabel('Range of Num from X-100 to X') plt.title('Frequency of Prime Number Occurances Between x-100 and x') plt.plot(x, y) plt.grid() plt.show()
[ "can.cokisler@gmail.com" ]
can.cokisler@gmail.com
0f44faa55dd74a6ff2459dd236af6e9efd69c83a
d9cc66f37c08ba7f3f1309c0932df137fef93fd0
/Appium+Mitmdump็ˆฌๅ–b็ซ™็•ชๅ‰งไฟกๆฏ/run.py
4bf1f3057e790ebf45b453aeb5dd39decdc39783
[]
no_license
TechnologyDepartment/Python_Spider_AppSpider
4538b5925707a692c98cdf0fc648b8652d93ef05
eeee0fa14c091f699d2368e71ca3e327441fd20d
refs/heads/master
2020-08-30T02:41:36.389271
2018-08-03T14:15:42
2018-08-03T14:15:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
from bilibili.Appium import Bilibili def main(): main = Bilibili() main.main() if __name__ == '__main__': main()
[ "guanwei006@gmail.com" ]
guanwei006@gmail.com
1942b79c10625cb0fcda6b40d916f376a98b7ad7
549c944ee0c743e5bf79c510fe03505d78ad356c
/food_order/urls.py
90152d26ca6d3039101d06efaa90ce62187ceef3
[]
no_license
mPooja-15/practise
a6792c431a76a68412aa488fd858116c5608e250
d81889a14706ed5c5c44d014b6aea716e0feacb8
refs/heads/master
2021-05-25T14:19:13.312333
2020-04-07T12:46:11
2020-04-07T12:46:11
253,786,330
3
0
null
null
null
null
UTF-8
Python
false
false
1,675
py
from django.urls import path from . import views from django.contrib.auth import views as v urlpatterns = [ path('index_page/',views.index_page,name='index_page'), path('register/',views.register_user,name='register_user'), path('login/',views.login_user,name='login_user'), path('logout_user/',views.logout_user,name='logout_user'), path('recipes/',views.recipes,name='recipes'), path('service/',views.service,name='service'), path('about/',views.about,name='about'), path('news/',views.news,name='news'), path('',views.single,name='single'), path('contact/',views.contact,name='contact'), path('password-change/',v.PasswordChangeView.as_view(template_name='food/password_change.html'),name='change_password'), path('password-change-done/',v.PasswordChangeView.as_view(template_name='food/password_change_done.html'),name='password_change_done'), path('password-reset/',v.PasswordResetView.as_view(template_name='food/password_reset.html',email_template_name='food/password_reset_email.html',subject_template_name='food/password_reset_email_subject.txt'),name='password_reset'), path('password-reset-done/',v.PasswordResetView.as_view(template_name='food/password_reset_done.html'),name='password_reset_done'), path('password-reset-confirm/<uidb64>/<token>',v.PasswordResetConfirmView.as_view(template_name='food/password_reset_confirm.html'),name='password_reset_confirm'), path('password-reset-complete/',v.PasswordResetCompleteView.as_view(template_name='food/password_reset_complete.html'),name='password_reset_complete'), path('edit_profile/',views.edit_profile,name='edit_profile') ]
[ "mishrapooja8128@gmail.com" ]
mishrapooja8128@gmail.com
5cdd000db5a17f5c6b8d974f1ea18fe71bc2fd53
3b22eb1b5edd936ce1582295422d5101d85cf4b4
/day5/simple_math/setup.py
3d221c2688e14b3b29e611d3c8e709fd2e81cb83
[]
no_license
zhou436/advanced_python_assignments
1822240eb341ec300c5f54392e7dcf833214da2e
f086fff82e84067a3614a489d8c80773dee8426f
refs/heads/master
2023-03-07T17:18:24.192101
2021-02-19T16:19:36
2021-02-19T16:19:36
339,788,768
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
from setuptools import setup setup(name='uu-bms-simple_math', version='0.0', description='Nothing', author='Yijun Zhou', author_email='yijun.zhou@angstrom.uu.se', license='BSD', py_modules=['simple_math'], packages=[])
[ "zyj19931230@gmail.com" ]
zyj19931230@gmail.com
865dc8309fd2470836c0870494552d1cf3796028
b7f40a654701e87b8bc3ec24a0c018982f85cd8f
/distruct/tests/test_Distructure.py
988f931e36ed51ef5241d50ca86574206eb243b0
[ "MIT" ]
permissive
AsclepiusInformatica/distruct
c07f9b233903a096864a6fca915c6576b0a8052e
c8633f4c90bbac8669efae43bda765dfa8b7348a
refs/heads/master
2023-03-30T14:03:26.259069
2020-06-17T16:08:22
2020-06-17T16:08:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,065
py
#!/usr/bin/env python3 ##################################### # # Filename : test_Distructure.py # # Projectname : diSTruct # # Author : Oskar Taubert # # Creation Date : Mon 11 Jun 2018 04:04:59 PM CEST # # Last Modified : Thu 28 Mar 2019 11:14:02 AM CET # ##################################### from Bio import SeqIO from Bio.PDB.PDBParser import PDBParser from distruct import Distructure from distruct import config testFilePath = config.data_path + "tests/" def test_Distructure(): code = "1ptq" fileName = testFilePath + code + '.pdb' sequences = list() with open(fileName, 'r') as f: # for record in SeqIO.parse(f, "pdb-seqres"): # print(record) # sequences.append(record.seq) # pass sequences = [r.seq for r in SeqIO.parse(f, "pdb-seqres")] pass # create distruct ds = Distructure(code, sequences) # create primary contacts ds.generate_primary_contacts() # generate coordinates ds.run() return if __name__ == '__main__': test_Distructure()
[ "oskar.taubert@kit.edu" ]
oskar.taubert@kit.edu
8f0d7371318bd0aff7f8a010412f044bdd8dd4a9
f0a20597594121d228798af6160a97c943e5ef93
/chap15/calcProd.py
0fdad3408d88fcc664842decba1364af39033a79
[]
no_license
febin89/automate_theboringstuff
c1cc15875f763d5bf3a841fbc873ac084a2f875f
3a28d95a69257b6c689c3ceed54243a2c74a83bd
refs/heads/master
2021-01-09T20:23:23.330662
2016-07-17T11:20:01
2016-07-17T11:20:01
63,527,035
0
1
null
null
null
null
UTF-8
Python
false
false
277
py
import time def calcProd(): product=1 for i in range(1,100000): product=product*i return product startTime=time.time() prod=calcProd() endTime=time.time() print('The result is %s digits long.' %(len(str(prod)))) print('Took %s seconds to calculate.'%(endTime-startTime))
[ "a@jfh.com" ]
a@jfh.com
ea59816d8bbd0ddcee9cb8a67eb5006a8d7b55fa
081f423c0e18eda780e517d760bb413a067da58b
/demo/settings/development.py
299c53343536616f69a56e085db1523d479e48de
[]
no_license
Frozen-Burrito/DjangoBoilerplate
65f09dbc0734072f66da6710a9f44c883699fc8b
b17a8b56836b06d6e96402e4d538722d9d1cd06e
refs/heads/master
2021-10-09T12:37:39.554314
2020-01-21T17:04:45
2020-01-21T17:04:45
235,257,760
2
0
null
2021-09-22T18:27:34
2020-01-21T04:43:50
JavaScript
UTF-8
Python
false
false
1,373
py
from .base import * # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', cast=bool) ALLOWED_HOSTS = ['127.0.0.1'] INSTALLED_APPS += [ 'debug_toolbar', ] MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware',] # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # DEBUG TOOLBAR SETTINGS DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', 'debug_toolbar.panels.profiling.ProfilingPanel', ] def show_toolbar(request): return True DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, 'SHOW_TOOLBAR_CALLBACK': show_toolbar } STRIPE_PUBLIC_KEY: '' STRIPE_SECRET_KEY: ''
[ "f3rm3ndouza@outlook.com" ]
f3rm3ndouza@outlook.com
d986a4cb8eab53a3affc3d659f59d7d5e496ed95
70c78732a42f95cc4ad8e9698050477282feca87
/Painting System/Ground Station/Python_XBee_Communication.py
f1446eff7754afda2c040a1a039961bfec1f6052
[ "MIT" ]
permissive
BAILOOL/Automatized-Wall-Painting-Drone
15b29508d637c6cb6849744b78eaa064fd4c156c
fc2da8692d4f7d0651634af7e49a1f29f79e3c6d
refs/heads/master
2021-01-16T00:57:28.130000
2018-05-11T00:33:00
2018-05-11T00:33:00
38,023,142
6
3
null
null
null
null
UTF-8
Python
false
false
801
py
import sys, os import serial ser = serial.Serial('COM15', 9600) received = [] print "Reseting arduino" #reset arduino first!!! ser.write(bytes("&")) print "Waiting for response from arduino" if ser.read() == '&': while True: received.append(ser.read()) length = len(received) #print received if received[length-1] == '*': receivedstring = ''.join(map(str,received[:length-1])) print receivedstring if receivedstring == 'Please input a word!': input_word = raw_input() print "Sending word input to xbee" ser.write(bytes(input_word)) if receivedstring == 'Printing is completed. Congratulations!': print "Exiting the program" ser.close() ser.close() ser.close() ser.close() ser.close() sys.exit("Mission is completed") del received[:]
[ "alexandr.baylo@gmail.com" ]
alexandr.baylo@gmail.com
01c5be4bb24dd571f976567d024215e2cd20ace1
6138af219efc3a8f31060e30ebc532ffcbad1768
/astrogrid/desktop/impl/python-test/Plastic.py
cd0af30734dce3c6daf74a4595cc36afd036e15f
[]
no_license
Javastro/astrogrid-legacy
dd794b7867a4ac650d1a84bdef05dfcd135b8bb6
51bdbec04bacfc3bcc3af6a896e8c7f603059cd5
refs/heads/main
2023-06-26T10:23:01.083788
2021-07-30T11:17:12
2021-07-30T11:17:12
391,028,616
0
0
null
null
null
null
UTF-8
Python
false
false
5,783
py
#!/usr/bin/env python #exercise the plastic hub. import unittest class Plastic(unittest.TestCase): def setUp(self): self.hub = ar.plastic.hub self.id = self.hub.getHubId() l = self.hub.getRegisteredIds() l.remove(self.id) self.vdId = None for id in l: n = self.hub.getName(id) if n == 'VO Desktop': self.vdId = id self.assertTrue(self.vdId != None,"Vodesktop not registered with plastic?") self.ECHO = 'ivo://votech.org/test/echo' self.ownName = 'testScript' def testHubRegistered(self): self.assertTrue(self.id in self.hub.getRegisteredIds()) def testHubName(self): self.assertEquals("hub",self.hub.getName(self.id)) def testHubUnderstoodMessages(self): l = self.hub.getUnderstoodMessages(self.id) self.assertTrue(len(l) > 3) self.assertTrue(self.ECHO in l) def testAppUnderstoodMessages(self): l = self.hub.getUnderstoodMessages(self.vdId) self.assertTrue(len(l) > 6) self.assertTrue(self.ECHO in l) def testMessageRegisteredIds(self): ids = self.hub.getMessageRegisteredIds(self.ECHO) self.assertTrue(self.id in ids) self.assertTrue(self.vdId in ids) self.assertEquals(0,len(self.hub.getMessageRegisteredIds('ivo://unknown'))) def testRegister(self): prevSize = len(self.hub.getRegisteredIds()) myId = self.hub.registerNoCallBack(self.ownName ) ids = self.hub.getRegisteredIds() self.assertEquals(prevSize,len(ids) - 1) self.assertTrue(myId in ids) self.hub.unregister(myId) ids = self.hub.getRegisteredIds() self.assertEquals(prevSize,len(ids)) self.assertFalse(myId in ids) def testRequest(self): myId = self.hub.registerNoCallBack(self.ownName) r = self.hub.request(myId,self.ECHO,['msg']) self.hub.unregister(myId) self.assertTrue(self.id in r) self.assertTrue(self.vdId in r) self.assertEquals('msg',r[self.id]) self.assertEquals('msg',r[self.vdId]) def testRequestToSubset(self): myId = self.hub.registerNoCallBack(self.ownName) r = self.hub.requestToSubset(myId,self.ECHO,['msg'],[self.id,self.vdId]) self.hub.unregister(myId) self.assertTrue(self.vdId in r,msg='VODesktop did not respond') self.assertTrue(self.id in r,msg='hub did not respond') self.assertEquals('msg',r[self.id]) self.assertEquals('msg',r[self.vdId]) self.assertEquals(2,len(r)) def testRegisterAsMockService(self): myId = self.hub.registerXMLRPC(self.ownName,[self.ECHO],'http://localhost:7090') self.assertTrue(myId in self.hub.getRegisteredIds()) self.assertTrue(myId in self.hub.getMessageRegisteredIds(self.ECHO)) self.hub.unregister(myId) self.assertTrue(myId not in self.hub.getRegisteredIds()) self.assertTrue(myId not in self.hub.getMessageRegisteredIds(self.ECHO)) def testRegisterAsService(self): from SimpleXMLRPCServer import SimpleXMLRPCServer server = SimpleXMLRPCServer(('localhost',7090)) server.register_introspection_functions() def fn(sender,message,args): if message == self.ECHO: return args[0] server.register_function(fn,"perform") import thread thread.start_new_thread(server.serve_forever,()) servId = self.hub.registerXMLRPC('testService',[self.ECHO],'http://localhost:7090') myId = self.hub.registerNoCallBack(self.ownName) r = self.hub.request(myId,self.ECHO,['msg']) self.assertTrue(self.id in r) self.assertTrue(self.vdId in r) self.assertTrue(servId in r) self.assertEquals('msg',r[self.id]) self.assertEquals('msg',r[self.vdId]) self.assertEquals('msg',r[servId]) r = self.hub.requestToSubset(myId,self.ECHO,['msg'],[servId]) self.assertTrue(servId in r,msg='service did not respond to subset message') self.assertEquals('msg',r[servId]) self.assertEquals(1,len(r)) self.hub.unregister(myId) self.hub.unregister(servId) #sadly it's too hard to clean up all the stuff that this one creates. def noTestRegisterAsAsynchService(self): from SimpleXMLRPCServer import SimpleXMLRPCServer server = SimpleXMLRPCServer(('localhost',7091)) server.register_introspection_functions() def fn(sender,message,args): print sender, message, args if message == self.ECHO: self.seen = True return args[0] fn.seen = False server.register_function(fn,"perform") import thread thread.start_new_thread(server.serve_forever,()) servId = self.hub.registerXMLRPC('testService',[self.ECHO],'http://localhost:7091') myId = self.hub.registerNoCallBack(self.ownName) import time self.hub.requestAsynch(myId,self.ECHO,['msg']) self.assertFalse(fn.seen) time.sleep(5) self.assertTrue(fn.seen) fn.seen = False self.hub.requestToSubsetAsynch(myId,self.ECHO,['msg'],[servId]) time.sleep(5) self.assertTrue(fn.seen) fn.seen = False self.hub.unregister(myId) self.hub.unregister(servId) def suite(): return unittest.TestLoader().loadTestsFromTestCase(Plastic) if __name__ == '__main__': import alltests alltests.setupAR() #run the tests. unittest.TextTestRunner(verbosity=1).run(suite())
[ "Noel.Winstanley@astrogrid.org" ]
Noel.Winstanley@astrogrid.org
197585ed48041451db0d028d44ce2fb4cd7fb1fb
2d2c422fe86b253c628129bb1713f3c14af1704d
/examples/neural_doodle.py
a63b33ab76369f5ac21eee7df607dde6c9e60ee8
[ "MIT" ]
permissive
alvarouc/keras
43f3b04332e40c3cf1cfbe364b0cd84fc3b69a3e
4301f009ffe57a1713b36bb863df73b30c466446
refs/heads/master
2020-05-19T23:17:49.304548
2019-05-06T20:15:50
2019-05-06T20:15:50
43,589,364
0
0
MIT
2019-05-06T20:02:38
2015-10-03T05:47:36
Python
UTF-8
Python
false
false
14,089
py
'''Neural doodle with Keras # Script Usage ## Arguments ``` --nlabels: # of regions (colors) in mask images --style-image: image to learn style from --style-mask: semantic labels for style image --target-mask: semantic labels for target image (your doodle) --content-image: optional image to learn content from --target-image-prefix: path prefix for generated target images ``` ## Example 1: doodle using a style image, style mask and target mask. ``` python neural_doodle.py --nlabels 4 --style-image Monet/style.png \ --style-mask Monet/style_mask.png --target-mask Monet/target_mask.png \ --target-image-prefix generated/monet ``` ## Example 2: doodle using a style image, style mask, target mask and an optional content image. ``` python neural_doodle.py --nlabels 4 --style-image Renoir/style.png \ --style-mask Renoir/style_mask.png --target-mask Renoir/target_mask.png \ --content-image Renoir/creek.jpg \ --target-image-prefix generated/renoir ``` # References - [Dmitry Ulyanov's blog on fast-neural-doodle] (http://dmitryulyanov.github.io/feed-forward-neural-doodle/) - [Torch code for fast-neural-doodle] (https://github.com/DmitryUlyanov/fast-neural-doodle) - [Torch code for online-neural-doodle] (https://github.com/DmitryUlyanov/online-neural-doodle) - [Paper Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] (http://arxiv.org/abs/1603.03417) - [Discussion on parameter tuning] (https://github.com/keras-team/keras/issues/3705) # Resources Example images can be downloaded from https://github.com/DmitryUlyanov/fast-neural-doodle/tree/master/data ''' from __future__ import print_function import time import argparse import numpy as np from scipy.optimize import fmin_l_bfgs_b from keras import backend as K from keras.layers import Input, AveragePooling2D from keras.models import Model from keras.preprocessing.image import load_img, save_img, img_to_array from keras.applications import vgg19 # Command line arguments parser = argparse.ArgumentParser(description='Keras neural doodle example') parser.add_argument('--nlabels', type=int, help='number of semantic labels' ' (regions in differnet colors)' ' in style_mask/target_mask') parser.add_argument('--style-image', type=str, help='path to image to learn style from') parser.add_argument('--style-mask', type=str, help='path to semantic mask of style image') parser.add_argument('--target-mask', type=str, help='path to semantic mask of target image') parser.add_argument('--content-image', type=str, default=None, help='path to optional content image') parser.add_argument('--target-image-prefix', type=str, help='path prefix for generated results') args = parser.parse_args() style_img_path = args.style_image style_mask_path = args.style_mask target_mask_path = args.target_mask content_img_path = args.content_image target_img_prefix = args.target_image_prefix use_content_img = content_img_path is not None num_labels = args.nlabels num_colors = 3 # RGB # determine image sizes based on target_mask ref_img = img_to_array(load_img(target_mask_path)) img_nrows, img_ncols = ref_img.shape[:2] total_variation_weight = 50. style_weight = 1. content_weight = 0.1 if use_content_img else 0 content_feature_layers = ['block5_conv2'] # To get better generation qualities, use more conv layers for style features style_feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] # helper functions for reading/processing images def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg19.preprocess_input(img) return img def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x def kmeans(xs, k): assert xs.ndim == 2 try: from sklearn.cluster import k_means _, labels, _ = k_means(xs.astype('float64'), k) except ImportError: from scipy.cluster.vq import kmeans2 _, labels = kmeans2(xs, k, missing='raise') return labels def load_mask_labels(): '''Load both target and style masks. A mask image (nr x nc) with m labels/colors will be loaded as a 4D boolean tensor: (1, m, nr, nc) for 'channels_first' or (1, nr, nc, m) for 'channels_last' ''' target_mask_img = load_img(target_mask_path, target_size=(img_nrows, img_ncols)) target_mask_img = img_to_array(target_mask_img) style_mask_img = load_img(style_mask_path, target_size=(img_nrows, img_ncols)) style_mask_img = img_to_array(style_mask_img) if K.image_data_format() == 'channels_first': mask_vecs = np.vstack([style_mask_img.reshape((3, -1)).T, target_mask_img.reshape((3, -1)).T]) else: mask_vecs = np.vstack([style_mask_img.reshape((-1, 3)), target_mask_img.reshape((-1, 3))]) labels = kmeans(mask_vecs, num_labels) style_mask_label = labels[:img_nrows * img_ncols].reshape((img_nrows, img_ncols)) target_mask_label = labels[img_nrows * img_ncols:].reshape((img_nrows, img_ncols)) stack_axis = 0 if K.image_data_format() == 'channels_first' else -1 style_mask = np.stack([style_mask_label == r for r in range(num_labels)], axis=stack_axis) target_mask = np.stack([target_mask_label == r for r in range(num_labels)], axis=stack_axis) return (np.expand_dims(style_mask, axis=0), np.expand_dims(target_mask, axis=0)) # Create tensor variables for images if K.image_data_format() == 'channels_first': shape = (1, num_colors, img_nrows, img_ncols) else: shape = (1, img_nrows, img_ncols, num_colors) style_image = K.variable(preprocess_image(style_img_path)) target_image = K.placeholder(shape=shape) if use_content_img: content_image = K.variable(preprocess_image(content_img_path)) else: content_image = K.zeros(shape=shape) images = K.concatenate([style_image, target_image, content_image], axis=0) # Create tensor variables for masks raw_style_mask, raw_target_mask = load_mask_labels() style_mask = K.variable(raw_style_mask.astype('float32')) target_mask = K.variable(raw_target_mask.astype('float32')) masks = K.concatenate([style_mask, target_mask], axis=0) # index constants for images and tasks variables STYLE, TARGET, CONTENT = 0, 1, 2 # Build image model, mask model and use layer outputs as features # image model as VGG19 image_model = vgg19.VGG19(include_top=False, input_tensor=images) # mask model as a series of pooling mask_input = Input(tensor=masks, shape=(None, None, None), name='mask_input') x = mask_input for layer in image_model.layers[1:]: name = 'mask_%s' % layer.name if 'conv' in layer.name: x = AveragePooling2D((3, 3), padding='same', strides=( 1, 1), name=name)(x) elif 'pool' in layer.name: x = AveragePooling2D((2, 2), name=name)(x) mask_model = Model(mask_input, x) # Collect features from image_model and task_model image_features = {} mask_features = {} for img_layer, mask_layer in zip(image_model.layers, mask_model.layers): if 'conv' in img_layer.name: assert 'mask_' + img_layer.name == mask_layer.name layer_name = img_layer.name img_feat, mask_feat = img_layer.output, mask_layer.output image_features[layer_name] = img_feat mask_features[layer_name] = mask_feat # Define loss functions def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram def region_style_loss(style_image, target_image, style_mask, target_mask): '''Calculate style loss between style_image and target_image, for one common region specified by their (boolean) masks ''' assert 3 == K.ndim(style_image) == K.ndim(target_image) assert 2 == K.ndim(style_mask) == K.ndim(target_mask) if K.image_data_format() == 'channels_first': masked_style = style_image * style_mask masked_target = target_image * target_mask num_channels = K.shape(style_image)[0] else: masked_style = K.permute_dimensions( style_image, (2, 0, 1)) * style_mask masked_target = K.permute_dimensions( target_image, (2, 0, 1)) * target_mask num_channels = K.shape(style_image)[-1] num_channels = K.cast(num_channels, dtype='float32') s = gram_matrix(masked_style) / K.mean(style_mask) / num_channels c = gram_matrix(masked_target) / K.mean(target_mask) / num_channels return K.mean(K.square(s - c)) def style_loss(style_image, target_image, style_masks, target_masks): '''Calculate style loss between style_image and target_image, in all regions. ''' assert 3 == K.ndim(style_image) == K.ndim(target_image) assert 3 == K.ndim(style_masks) == K.ndim(target_masks) loss = K.variable(0) for i in range(num_labels): if K.image_data_format() == 'channels_first': style_mask = style_masks[i, :, :] target_mask = target_masks[i, :, :] else: style_mask = style_masks[:, :, i] target_mask = target_masks[:, :, i] loss += region_style_loss(style_image, target_image, style_mask, target_mask) return loss def content_loss(content_image, target_image): return K.sum(K.square(target_image - content_image)) def total_variation_loss(x): assert 4 == K.ndim(x) if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # Overall loss is the weighted sum of content_loss, style_loss and tv_loss # Each individual loss uses features from image/mask models. loss = K.variable(0) for layer in content_feature_layers: content_feat = image_features[layer][CONTENT, :, :, :] target_feat = image_features[layer][TARGET, :, :, :] loss += content_weight * content_loss(content_feat, target_feat) for layer in style_feature_layers: style_feat = image_features[layer][STYLE, :, :, :] target_feat = image_features[layer][TARGET, :, :, :] style_masks = mask_features[layer][STYLE, :, :, :] target_masks = mask_features[layer][TARGET, :, :, :] sl = style_loss(style_feat, target_feat, style_masks, target_masks) loss += (style_weight / len(style_feature_layers)) * sl loss += total_variation_weight * total_variation_loss(target_image) loss_grads = K.gradients(loss, target_image) # Evaluator class for computing efficiency outputs = [loss] if isinstance(loss_grads, (list, tuple)): outputs += loss_grads else: outputs.append(loss_grads) f_outputs = K.function([target_image], outputs) def eval_loss_and_grads(x): if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() # Generate images by iterative optimization if K.image_data_format() == 'channels_first': x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128. else: x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128. for i in range(50): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # save current generated image img = deprocess_image(x.copy()) fname = target_img_prefix + '_at_iteration_%d.png' % i save_img(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))
[ "francois.chollet@gmail.com" ]
francois.chollet@gmail.com
1607c5383de4197cee20b31ca046cbce530dd23b
cb58e2890778b3489c28c952bd74ad9bbb0a09c2
/old_code/convert_to_csv.py
f7f32f83460ff81ae38e0d76e1a71a05b17d1a9c
[]
no_license
codyfcook/political_polarization
044e56f2f0aa5fc097d25eab525a638d1f0f6d75
34b188ccc0ce5b7931904d01060ea8e1c4e1c3f4
refs/heads/master
2021-06-12T18:24:52.118319
2017-04-27T04:18:26
2017-04-27T04:18:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
import cPickle as pickle import csv ## DEBATES ## d = pickle.load(open("debates.p", "rb")) f = csv.writer(open("debates.csv", "wb+")) f.writerow(["date", "debate", "speaker", "text"]) for date in d.keys(): for speaker in d[date]['speakers']: f.writerow([unicode(date.replace(",", "")).encode("utf-8"), unicode(d[date]['debate_title'].replace(",", "")).encode("utf-8"), unicode(speaker.lower().replace(",", "")).encode("utf-8"), d[date]['speakers'][speaker].replace(",", "") ]) ## SPEECHES ## d = pickle.load(open("speeches.p", "rb")) f = csv.writer(open("speeches.csv", "wb+")) f.writerow(["speaker", "type", "date", "text"]) for speaker in d.keys(): for type1 in d[speaker].keys(): for date in d[speaker][type1].keys(): f.writerow([speaker.replace(",", ""), type1.replace(",", ""), date.replace(",", ""), d[speaker][type1][date].replace(",", "")]) ## SPEAKERS DICT ## d = pickle.load(open("speakers_dict.p", "rb")) f = csv.writer(open("speakers_dict.csv", "wb+")) f.writerow(["date", "title", "speaker", "text"]) for date in d.keys(): for title in d[date].keys(): for speaker in d[date][title].keys(): if speaker!="ACTING PRESIDENT" and speaker!="PRESIDING OFFICER": text = ' '.join(d[date][title][speaker]) f.writerow([ unicode(date.replace(",", "")).encode("utf-8"), unicode(title.replace(",", "")).encode("utf-8"), unicode(speaker.replace(",", "")).encode("utf-8"), unicode(text.replace(",", ""))])
[ "Cody@Codys-MacBook-Pro.local" ]
Cody@Codys-MacBook-Pro.local
3b3eaf64d2ec26a49fe7af5ed9a93cf844e28921
4088951e5ff3830a502f8098d0633f643e862579
/app.py
2f4f3043f2c16288b2efae868ee6388ee921e81a
[]
no_license
brvijaya/qaservice
669ea9312c7aaff6590a8d98c7cb1783e119aae6
867ce833de1af7f5c1588ca73fe65e2d35b8f434
refs/heads/master
2022-11-09T22:50:06.285038
2020-06-09T06:20:56
2020-06-09T06:20:56
270,339,490
0
0
null
null
null
null
UTF-8
Python
false
false
1,493
py
import os import logging import socket from flask import Flask, jsonify, request import json from distilbert import run_prediction HOST_NAME = os.environ.get('OPENSHIFT_APP_DNS', 'localhost') APP_NAME = os.environ.get('OPENSHIFT_APP_NAME', 'flask') IP = os.environ.get('OPENSHIFT_PYTHON_IP', '127.0.0.1') PORT = int(os.environ.get('OPENSHIFT_PYTHON_PORT', 8080)) HOME_DIR = os.environ.get('OPENSHIFT_HOMEDIR', os.getcwd()) log = logging.getLogger(__name__) app = Flask(__name__) @app.route('/') def hello(): return jsonify({ 'host_name': HOST_NAME, 'app_name': APP_NAME, 'ip': IP, 'port': PORT, 'home_dir': HOME_DIR, 'host': socket.gethostname() }) @app.route("/qa/ask", methods=['POST']) def ask(): data = request.get_json() print(data) question = data['question'] context = data['context'] predictions = run_prediction([question], context) return predictions @app.route("/test", methods=['GET','POST']) def run_test(): context = "New Zealand (Mฤori: Aotearoa) is a sovereign island country in the southwestern Pacific Ocean. It has a total land area of 268,000 square kilometres (103,500 sq mi), and a population of 4.9 million. New Zealand's capital city is Wellington, and its most populous city is Auckland." question = "What's the largest city?" predictions = run_prediction([question], context) return predictions if __name__ == '__main__': app.run(host='0.0.0.0', port=PORT)
[ "noreply@github.com" ]
brvijaya.noreply@github.com
b9d412eec1487bfed44c40513d70646016ca33c6
42ac672183d9c61794c6c07440ee0fa791296189
/tests/test_properties.py
562778baaca88d935a135669ec14ee0e201a0ee5
[ "BSD-2-Clause" ]
permissive
pydanny/pygments-custom
c5f900dcb7e5cb73b01c8cbe787306c3310781aa
b2862e3e58c7e42028ec8363ae668f2f7efd6ccb
refs/heads/master
2023-08-28T19:43:40.507971
2017-06-14T21:24:13
2017-06-14T21:24:13
93,273,976
2
3
BSD-2-Clause
2021-08-10T17:10:57
2017-06-03T21:06:41
Python
UTF-8
Python
false
false
2,745
py
# -*- coding: utf-8 -*- """ Properties Tests ~~~~~~~~~~~~~~~~ :copyright: Copyright 2006-2017 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import unittest from pygments.lexers.configs import PropertiesLexer from pygments.token import Token class PropertiesTest(unittest.TestCase): def setUp(self): self.lexer = PropertiesLexer() def test_comments(self): """ Assures lines lead by either # or ! are recognized as a comment """ fragment = '! a comment\n# also a comment\n' tokens = [ (Token.Comment, '! a comment'), (Token.Text, '\n'), (Token.Comment, '# also a comment'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_leading_whitespace_comments(self): fragment = ' # comment\n' tokens = [ (Token.Text, ' '), (Token.Comment, '# comment'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_escaped_space_in_key(self): fragment = 'key = value\n' tokens = [ (Token.Name.Attribute, 'key'), (Token.Text, ' '), (Token.Operator, '='), (Token.Text, ' '), (Token.Literal.String, 'value'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_escaped_space_in_value(self): fragment = 'key = doubleword\\ value\n' tokens = [ (Token.Name.Attribute, 'key'), (Token.Text, ' '), (Token.Operator, '='), (Token.Text, ' '), (Token.Literal.String, 'doubleword\\ value'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_space_delimited_kv_pair(self): fragment = 'key value\n' tokens = [ (Token.Name.Attribute, 'key'), (Token.Text, ' '), (Token.Literal.String, 'value\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_just_key(self): fragment = 'justkey\n' tokens = [ (Token.Name.Attribute, 'justkey'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment))) def test_just_key_with_space(self): fragment = 'just\\ key\n' tokens = [ (Token.Name.Attribute, 'just\\ key'), (Token.Text, '\n'), ] self.assertEqual(tokens, list(self.lexer.get_tokens(fragment)))
[ "pydanny@gmail.com" ]
pydanny@gmail.com
0640bc720256153a8ef2810f14e34e37c4dc5c56
723fb811f684994827f7ba51f9d736b965111227
/code/utils.py
bf1e394fc552e43819cf703b778f520770b518c4
[]
no_license
mjason98/evalita20_hate
439c75e0cbacb9ed7afaeb5dfcdd1081bd5efa16
71180255d66be5f2dfdfc1adb91608cc17023c64
refs/heads/main
2023-01-07T14:56:05.560146
2020-11-02T22:03:49
2020-11-02T22:03:49
301,477,785
5
0
null
null
null
null
UTF-8
Python
false
false
5,896
py
import math import time import numpy as np import matplotlib.pyplot as plt import random import collections # reducer import os # reducer import re # reducer import pickle def colorizar(text): return '\033[91m' + text + '\033[0m' def headerizar(text): return '\033[1m' + text + '\033[0m' def getMyDict(): return {'<emogy>':1, '<hashtag>':2, '<url>':3, '<risa>':4, '<signo>':5, '<ask>':6, '<phoria>':7, '<diag>':8, '<number>':9, '<date>':10, '<sent>':11, '<user>':12, '<frase>':13 } def generate_dictionary_from_embedding(filename, dictionary, ret=True, logs=True, norm=False, message_logs=''): if logs: print ('# Loading:', colorizar(os.path.basename(filename)), message_logs) x = [] band, l = False, 0 mean, var, T = 0, 0, 0 with open(filename, 'r', encoding='utf-8') as file: for ide, line in enumerate(file): li = line.split() if len(li) <= 2: print('#WARNING::', line, 'interpreted as head') continue if not band: x.append([0 for _ in range(len(li)-1)]) my_d = getMyDict() l = len(my_d) for val in my_d: x.append([random.random() for _ in range(len(li)-1)]) dictionary.update({val.lower(): my_d[val] }) band = True a = [float(i) for i in li[1:]] x.append(a) mean += np.array(a, dtype=np.float32) var += np.array(a, dtype=np.float32)**2 T += 1 dictionary.update({li[0].lower(): ide + l + 1}) var /= float(T) mean /= float(T) var -= mean ** 2 var = np.sqrt(var) mean = mean.reshape(1,mean.shape[0]) var = var.reshape(1,var.shape[0]) if ret: sol = np.array(x, np.float32) if norm: sol = (sol - mean) / var return sol class StatusBar: def __init__(self, fin_, title=""): self.title = title self.ini = 0 self.fin = fin_ self.car = 's' self.ti = time.time() def update(self, loss=[], metrics=[]): self.ini = self.ini + 1 metrics = " - ".join(['{}: {:.6f} '.format(n, m) for n, m in loss + metrics]) ctn = int(float(self.ini) / float(self.fin) * 20.0) bars = '=' * ctn + '.' * (20 - ctn) lo1, lo2 = int(math.log10(self.fin + 0.1) + 1), int(math.log10(self.ini + 0.1) + 1) spas = ' ' * (lo1 - lo2) ta = time.time() - self.ti if ta > 60: self.car = 'm' if ta / 60.0 > 60.0: self.car = 'h' if self.car == 'm': ta /= 60.0 elif self.car == 'h': ta /= 360.0 lo1 = 2 - int(math.log10(int(ta) + 0.1)) spa2 = ' ' * lo1 end = "" if self.ini < self.fin else "\n" print("\r{} {}{}/{} [{}] {}{:.1f}{} ".format(self.title, spas, self.ini, self.fin, bars, spa2, ta, self.car) + metrics, end=end) # + metrics, end=end) class TorchBoard(object): def __init__(self): self.dict = {} self.labels = ['train', 'test'] self.future_updt = True self.best_funct = None self.setFunct( max ) self.best = [None, None] self.best_p = [0, 0] def setFunct(self, fun): self.best_funct = fun def update(self, label, value, getBest=False): if self.future_updt == False: return if label not in self.labels: print ('WARNING: the label {} its not in {}, the board will not be updated.'.format( label, self.labels)) self.future_updt = False return pk = 1 if label == 'train': pk = 0 if self.dict.get(label) == None: self.dict.update({label:[value]}) else: self.dict[label].append(value) yo = False if self.best[pk] is None: yo = True self.best[pk] = value else: self.best[pk] = self.best_funct(self.best[pk], value) yo = self.best[pk] == value if yo: self.best_p[pk] = len(self.dict[label]) - 1 if getBest: return yo def show(self, saveroute, plot_smood=False): fig , axes = plt.subplots() for i,l in enumerate(self.dict): y = self.dict[l] if len(y) <= 1: continue lab = str(self.best[i]) if len(lab) > 7: lab = lab[:7] axes.plot(range(len(y)), y, label=l + ' ' + lab) axes.scatter([self.best_p[i]], [self.best[i]]) if plot_smood: w = 3 y_hat = [ np.array(y[max(i-w,0):min(len(y),i+w)]).mean() for i in range(len(y))] axes.plot(range(len(y)), y_hat, ls='--', color='gray') fig.legend() fig.savefig(saveroute) del axes del fig # ------------------------------------------------- def reduced(oldFile, newFile, vocab): print ('# Turning', colorizar(oldFile), 'into', colorizar(newFile)) file = open (newFile, 'w') with open(oldFile, 'r', encoding='utf-8') as oldf: for line in oldf.readlines(): l = line.split() if len(l) <= 2: continue word = l[0].lower() if vocab.get(word, 0) != 0: file.write(line) vocab.pop(word) file.close() print('# Done!') def makeVocabFromData(filepath): c = None with open(filepath, 'r', encoding='utf-8') as f: line = f.read().replace('\n', ' ') c = collections.Counter(line.split()) return dict([(i, 5) for i in sorted(c, reverse=True)])
[ "mjasoncuba@gmail.com" ]
mjasoncuba@gmail.com
02d9364f10e7a583cdb28b925cf60d416c15c9c9
2778a9542d551283eeb6b6d06ba4bbd5db877676
/draw_pictures_for_gradu/make_centerList.py
86147ad0b4755e0e3f816554e2c7d51a440f3210
[]
no_license
EmmaMannfors/gradu
077046e2a39f7b674a7e1467a634d2fe2fcb7bf6
3533d09363b75f54dd4cf77ae008eb5104c3b3eb
refs/heads/master
2021-08-27T18:31:43.034113
2021-08-02T08:56:48
2021-08-02T08:56:48
148,455,443
0
0
null
null
null
null
UTF-8
Python
false
false
1,092
py
##################################################################################### # Writes file which has scuba centers corresponding with Herschel files ##################################################################################### # Jul 20, 2018 ##################################################################################### import os # Centers, in deg, corresponds to SCUBA files center_deg = '/home/emma/gradu/codes/Find_and_write_center_of_scuba_map/center_in_deg.txt' # Matches, scuba = p[0], psw = p[4] out = open('centers_250_850.txt','w') out.write('SCUBA'+3*' '+'PSW(250 um)'+4*' '+'RA DEC\n') with open(center_deg) as c: next(c) for line in c: match = open('/home/emma/gradu/codes/matches/cropMatches.txt','r') p = line.split() scuba = p[0] ra = p[1] dec = p[2] print scuba for line in match: e = line.split() print e[0] if e[0] == scuba: psw = e[4] if psw == 'NA': psw = 'NA'+4*' ' else: continue print psw out.write(scuba+' '+psw+' '+ra+' '+dec+'\n') print 10*'*' psw = 'NA'
[ "noreply@github.com" ]
EmmaMannfors.noreply@github.com
c32bc595bcac3b99c0cd50c0cfde594f121dc9ee
730f441d2828f0fefcb2c7d7ef252a0cb98217a3
/convertirABlanco.py
ea2ca75bcd703649d9a44961fb89e4fc2bf2e90c
[]
no_license
camilo912/lettuceClassificator
21686790dd5e39fe98a770b26321f6b4d6717218
fb904a70f54376a78bbed76877dd6002349247b1
refs/heads/master
2020-03-10T22:29:28.399853
2018-04-15T20:48:49
2018-04-15T20:48:49
129,620,245
0
1
null
null
null
null
UTF-8
Python
false
false
414
py
###script que convierte las imagenes en blanco import numpy as np import cv2 import matplotlib.pyplot as plt from skimage.segmentation import slic from skimage.segmentation import mark_boundaries for i in range(11,18): image_name = str(i) + ".jpg" image = cv2.imread("datasetTrainPlants/" + image_name, cv2.IMREAD_COLOR) image[:,:,:]=255 cv2.imwrite("negroYBlancoParaPlantas/"+image_name, image)
[ "cam.912@hotmail.com" ]
cam.912@hotmail.com
cab67cc7f4473bc83520c5aac57676fda1591172
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/1/cvk.py
d49bc0cf25f76bcc1026a9e082cfe955b27b36b4
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'cVK': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
ff45f6e59dc0d234c40145ed2efc22aa14096a08
e1883fb6506f989b1ee805388aa5a1ebd1d511b7
/models/keras/inception_v3.py
10c9edbeae691ff71ba7b82d65bffe587cca8f23
[]
no_license
bellamkondaprakash/praveen-eyeem
47d8a9cc5b5df6447bf09a3efd962aacaa09c030
6409f0fc442ec60ba50d4b6147b3b7154694dd20
refs/heads/master
2020-03-23T19:34:20.533413
2017-02-10T10:10:39
2017-02-10T10:10:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,265
py
# https://groups.google.com/forum/#!topic/keras-users/rRdL01zGKi4 # https://github.com/Lasagne/Recipes/blob/master/modelzoo/inception_v3.py # https://github.com/fchollet/keras/issues/1321#issuecomment-166576492 import numpy as np import sys, os import yaml import json import h5py from keras.optimizers import SGD, RMSprop, Adagrad, Adam from keras import backend as K from keras.layers.core import Merge from keras.models import Sequential, Graph from keras.layers.normalization import BatchNormalization from keras.layers.core import Activation, Dense, Reshape, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D from rnd_libs.lib.label_embedding.embedding_io import EmbeddingIO from rnd_libs.lib.keras.loss_functions import ObjectiveFunctions layer_dict = {'Convolution2D': Convolution2D, 'ZeroPadding2D': ZeroPadding2D, 'MaxPooling2D': MaxPooling2D, 'BatchNormalization': BatchNormalization, 'Activation': Activation} pooling_dict = {'max': MaxPooling2D, 'average': AveragePooling2D} optimizer_dict = {'sgd': SGD, 'rmsprop': RMSprop, 'adam': Adam} class InceptionV3(): def __init__(self): self.layer_list = [] self.config_file = None self.io = EmbeddingIO(None) self.init = False self.cfgs = None self.loss_functions = ObjectiveFunctions() def configure(self, config_file): self.config_file = config_file self.init = False if not os.path.exists(self.config_file): self.io.print_error('Could not find config file for InceptionV3 {0}'.format(self.config_file)) self.init = False return pfile = open(self.config_file, 'r') self.cfgs = yaml.load(pfile) pfile.close() self.init = True def add_to_graph(self, *args, **kwargs): self.model.add_node(*args, **kwargs) self.last_added_node = kwargs['name'] self.layer_list.append(kwargs['name']) return kwargs['name'] def add_bn_conv_layer(self, *args, **kwargs): layer_name = kwargs['name'] input_layer = kwargs['input'] del kwargs['name'] del kwargs['input'] if 'padding' in kwargs: layer_name = layer_name + '_pad' self.add_to_graph(ZeroPadding2D(padding=kwargs['padding']), name=layer_name, input=input_layer) input_layer = layer_name del kwargs['padding'] # CONV with linear activation by default layer_name = layer_name + '_conv' self.add_to_graph(Convolution2D(*args, **kwargs), name=layer_name, input=input_layer) # Batch normalization added directly on output of a linear layer input_layer = layer_name layer_name = layer_name + '_bn' _ = self.add_to_graph(BatchNormalization(mode=0, epsilon=0.0001, axis=1), name=layer_name, input=input_layer) # Standard normalization input_layer = layer_name layer_name = layer_name + '_nonlin' _ = self.add_to_graph(Activation('relu'), name=layer_name, input=input_layer) return layer_name def add_inceptionA(self, input_layer, list_nb_filter, base_name): l1_1 = self.add_bn_conv_layer(name=base_name + '_l1_1', input=input_layer, nb_filter=list_nb_filter[0][0], nb_row=1, nb_col=1) l2_1 = self.add_bn_conv_layer(name=base_name + '_l2_1', input=input_layer, nb_filter=list_nb_filter[1][0], nb_row=1, nb_col=1) l2_2 = self.add_bn_conv_layer(name=base_name + '_l2_2', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=5, nb_col=5, padding=(2, 2)) l3_1 = self.add_bn_conv_layer(name=base_name + '_l3_1', input=input_layer, nb_filter=list_nb_filter[2][0], nb_row=1, nb_col=1) l3_2 = self.add_bn_conv_layer(name=base_name + '_l3_2', input=l3_1, nb_filter=list_nb_filter[2][1], nb_row=3, nb_col=3, padding=(1, 1)) l3_3 = self.add_bn_conv_layer(name=base_name + '_l3_3', input=l3_2, nb_filter=list_nb_filter[2][2], nb_row=3, nb_col=3, padding=(1, 1)) l4_1 = self.add_to_graph(ZeroPadding2D(padding=(1, 1)), name=base_name + '_14_1', input=input_layer) l4_2 = self.add_to_graph(AveragePooling2D(pool_size=(3, 3), strides=(1, 1)), name=base_name + '_14_2', input=l4_1) l4_3 = self.add_bn_conv_layer(name=base_name + '_l4_3', input=l4_2, nb_filter=list_nb_filter[3][0], nb_row=1, nb_col=1) self.add_to_graph(Activation("linear"), name=base_name, inputs=[l1_1, l2_2, l3_3, l4_3], merge_mode="concat", concat_axis=1) self.io.print_info('Added Inception-A {0}'.format(base_name)) # https://github.com/fchollet/keras/issues/391 def add_inceptionB(self, input_layer, list_nb_filter, base_name): l1_1 = self.add_bn_conv_layer(name=base_name + '_l1_1', input=input_layer, nb_filter=list_nb_filter[0][0], nb_row=3, nb_col=3, subsample=(2, 2)) l2_1 = self.add_bn_conv_layer(name=base_name + '_l2_1', input=input_layer, nb_filter=list_nb_filter[1][0], nb_row=1, nb_col=1) l2_2 = self.add_bn_conv_layer(name=base_name + '_l2_2', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=3, nb_col=3, padding=(1, 1)) l2_3 = self.add_bn_conv_layer(name=base_name + '_l2_3', input=l2_2, nb_filter=list_nb_filter[1][2], nb_row=3, nb_col=3, subsample=(2, 2)) l3_1 = self.add_to_graph(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), name=base_name + '_13_1', input=input_layer) self.add_to_graph(Activation("linear"), name=base_name, inputs=[l1_1, l2_3, l3_1], merge_mode="concat", concat_axis=1) self.io.print_info('Added Inception-B {0}'.format(base_name)) # https://github.com/fchollet/keras/issues/391 def add_inceptionC(self, input_layer, list_nb_filter, base_name): l1_1 = self.add_bn_conv_layer(name=base_name + '_l1_1', input=input_layer, nb_filter=list_nb_filter[0][0], nb_row=1, nb_col=1) l2_1 = self.add_bn_conv_layer(name=base_name + '_l2_1', input=input_layer, nb_filter=list_nb_filter[1][0], nb_row=1, nb_col=1) l2_2 = self.add_bn_conv_layer(name=base_name + '_l2_2', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=1, nb_col=7, padding=(0, 3)) l2_3 = self.add_bn_conv_layer(name=base_name + '_l2_3', input=l2_2, nb_filter=list_nb_filter[1][2], nb_row=7, nb_col=1, padding=(3, 0)) l3_1 = self.add_bn_conv_layer(name=base_name + '_l3_1', input=input_layer, nb_filter=list_nb_filter[2][0], nb_row=1, nb_col=1) l3_2 = self.add_bn_conv_layer(name=base_name + '_l3_2', input=l3_1, nb_filter=list_nb_filter[2][1], nb_row=7, nb_col=1, padding=(3, 0)) l3_3 = self.add_bn_conv_layer(name=base_name + '_l3_3', input=l3_2, nb_filter=list_nb_filter[2][2], nb_row=1, nb_col=7, padding=(0, 3)) l3_4 = self.add_bn_conv_layer(name=base_name + '_l3_4', input=l3_3, nb_filter=list_nb_filter[2][3], nb_row=7, nb_col=1, padding=(3, 0)) l3_5 = self.add_bn_conv_layer(name=base_name + '_l3_5', input=l3_4, nb_filter=list_nb_filter[2][4], nb_row=1, nb_col=7, padding=(0, 3)) l4_1 = self.add_to_graph(ZeroPadding2D(padding=(1, 1)), name=base_name + '_14_1', input=input_layer) l4_2 = self.add_to_graph(AveragePooling2D(pool_size=(3, 3), strides=(1, 1)), name=base_name + '_14_2', input=l4_1) l4_3 = self.add_bn_conv_layer(name=base_name + '_l4_3', input=l4_2, nb_filter=list_nb_filter[3][0], nb_row=1, nb_col=1) self.add_to_graph(Activation("linear"), name=base_name, inputs=[l1_1, l2_3, l3_5, l4_3], merge_mode="concat", concat_axis=1) self.io.print_info('Added Inception-C {0}'.format(base_name)) # https://github.com/fchollet/keras/issues/391 def add_inceptionD(self, input_layer, list_nb_filter, base_name): l1_1 = self.add_bn_conv_layer(name=base_name + '_l1_1', input=input_layer, nb_filter=list_nb_filter[0][0], nb_row=1, nb_col=1) l1_2 = self.add_bn_conv_layer(name=base_name + '_l1_2', input=l1_1, nb_filter=list_nb_filter[0][1], nb_row=3, nb_col=3, subsample=(2, 2)) l2_1 = self.add_bn_conv_layer(name=base_name + '_l2_1', input=input_layer, nb_filter=list_nb_filter[1][0], nb_row=1, nb_col=1) l2_2 = self.add_bn_conv_layer(name=base_name + '_l2_2', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=1, nb_col=7, padding=(0, 3)) l2_3 = self.add_bn_conv_layer(name=base_name + '_l2_3', input=l2_2, nb_filter=list_nb_filter[1][2], nb_row=7, nb_col=1, padding=(3, 0)) l2_4 = self.add_bn_conv_layer(name=base_name + '_l2_4', input=l2_3, nb_filter=list_nb_filter[1][2], nb_row=3, nb_col=3, subsample=(2, 2)) l3_1 = self.add_to_graph(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), name=base_name + '_13_1', input=input_layer) self.add_to_graph(Activation("linear"), name=base_name, inputs=[l1_2, l2_4, l3_1], merge_mode="concat", concat_axis=1) self.io.print_info('Added Inception-D {0}'.format(base_name)) # https://github.com/fchollet/keras/issues/391 def add_inceptionE(self, input_layer, list_nb_filter, base_name, pool_mode): l1_1 = self.add_bn_conv_layer(name=base_name + '_l1_1', input=input_layer, nb_filter=list_nb_filter[0][0], nb_row=1, nb_col=1) l2_1 = self.add_bn_conv_layer(name=base_name + '_l2_1', input=input_layer, nb_filter=list_nb_filter[1][0], nb_row=1, nb_col=1) l2_2a = self.add_bn_conv_layer(name=base_name + '_l2_2a', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=1, nb_col=3, padding=(0, 1)) l2_2b = self.add_bn_conv_layer(name=base_name + '_l2_2b', input=l2_1, nb_filter=list_nb_filter[1][1], nb_row=3, nb_col=1, padding=(1, 0)) l3_1 = self.add_bn_conv_layer(name=base_name + '_l3_1', input=input_layer, nb_filter=list_nb_filter[2][0], nb_row=1, nb_col=1) l3_2 = self.add_bn_conv_layer(name=base_name + '_l3_2', input=l3_1, nb_filter=list_nb_filter[2][1], nb_row=3, nb_col=3, padding=(1, 1)) l3_3a = self.add_bn_conv_layer(name=base_name + '_l3_3a', input=l3_2, nb_filter=list_nb_filter[2][2], nb_row=1, nb_col=3, padding=(0, 1)) l3_3b = self.add_bn_conv_layer(name=base_name + '_l3_3b', input=l3_2, nb_filter=list_nb_filter[2][3], nb_row=3, nb_col=1, padding=(1, 0)) l4_1 = self.add_to_graph(ZeroPadding2D(padding=(1, 1)), name=base_name + '_14_1', input=input_layer) l4_2 = self.add_to_graph(pooling_dict[pool_mode](pool_size=(3, 3), strides=(1, 1)), name=base_name + '_14_2', input=l4_1) l4_3 = self.add_bn_conv_layer(name=base_name + '_l4_3', input=l4_2, nb_filter=list_nb_filter[3][0], nb_row=1, nb_col=1) self.add_to_graph(Activation("linear"), name=base_name, inputs=[l1_1, l2_2a, l2_2b, l3_3a, l3_3b, l4_3], merge_mode="concat", concat_axis=1) self.io.print_info('Added Inception-E {0}'.format(base_name)) # https://github.com/fchollet/keras/issues/391 def define(self): try: self.model = Graph() self.model.add_input(name='input', input_shape=(self.cfgs['n_channels'], self.cfgs['image_height'], self.cfgs['image_width'])) # # Part of the network which is defined in the config file should move here # cgfs_nodes = self.cfgs['nodes'] for node in cgfs_nodes: if not node['type'] == 'Activation': self.add_to_graph(layer_dict[node['type']](**node['parameter']), name=node['name'], input=node['input']) else: self.add_to_graph(layer_dict[node['type']](node['parameter']['mode']), name=node['name'], input=node['input']) self.io.print_info('Added {1}:{0}'.format(node['type'], node['name'])) self.add_inceptionA(input_layer=self.last_added_node, list_nb_filter=((64,), (48, 64), (64, 96, 96), (32,)), base_name='mixed') self.add_inceptionA(input_layer=self.last_added_node, list_nb_filter=((64,), (48, 64), (64, 96, 96), (64,)), base_name='mixed_1') self.add_inceptionA(input_layer=self.last_added_node, list_nb_filter=((64,), (48, 64), (64, 96, 96), (64,)), base_name='mixed_2') self.add_inceptionB(input_layer=self.last_added_node, list_nb_filter=((384,), (64, 96, 96)), base_name='mixed_3') self.add_inceptionC(input_layer=self.last_added_node, list_nb_filter=((192,), (128, 128, 192), (128, 128, 128, 128, 192), (192,)), base_name='mixed_4') self.add_inceptionC(input_layer=self.last_added_node, list_nb_filter=((192,), (160, 160, 192), (160, 160, 160, 160, 192), (192,)), base_name='mixed_5') self.add_inceptionC(input_layer=self.last_added_node, list_nb_filter=((192,), (160, 160, 192), (160, 160, 160, 160, 192), (192,)), base_name='mixed_6') self.add_inceptionC(input_layer=self.last_added_node, list_nb_filter=((192,), (192, 192, 192), (192, 192, 192, 192, 192), (192,)), base_name='mixed_7') self.add_inceptionD(input_layer=self.last_added_node, list_nb_filter=((192, 320), (192, 192, 192, 192)), base_name='mixed_8') self.add_inceptionE(input_layer=self.last_added_node, list_nb_filter=((320,), (384, 384, 384), (448, 384, 384, 384), (192,)), pool_mode='average', base_name='mixed_9') self.add_inceptionE(input_layer=self.last_added_node, list_nb_filter=((320,), (384, 384, 384), (448, 384, 384, 384), (192,)), pool_mode='max', base_name='mixed_10') self.add_to_graph(AveragePooling2D(pool_size=(5, 5)), name='pool3', input=self.last_added_node) self.io.print_info('Added {1}:{0}'.format('AveragePooling', self.last_added_node)) self.add_to_graph(Flatten(), name='flatten', input='pool3') self.io.print_info('Added {1}:{0}'.format('Flatten', self.last_added_node)) self.add_to_graph(Dense(self.cfgs['nb_classes']), name='softmax', input='flatten') self.io.print_info('Added {1}:{0}'.format('Dense', self.last_added_node)) self.add_to_graph(Activation(self.cfgs['activation']), name='prob', input='softmax') # Output to the Graph self.model.add_output(name='output', input='prob') if self.cfgs['model_weights_file'] is not None: self.init_from_this() except Exception as err: self.io.print_error('Error configuring the model, {0}'.format(err)) self.init = False return self.init = True def init_from_this(self): weights_file = self.cfgs['model_weights_file'] if not weights_file == 'None': self.load_weights(weights_file) self.io.print_info('Weights Initalized from {0}'.format(weights_file)) def load_weights(self, filepath): if filepath.endswith('.npz'): pfile = open(filepath, 'r') graph = np.load(pfile)['graph'].item() for node_name, weights in graph.items(): if node_name in self.cfgs['ignore_while_loading']: self.io.print_warning('Ignoring weights from {0}'.format(node_name)) continue self.io.print_info('Transfering parameters from {0}'.format(node_name)) self.model.nodes[node_name].set_weights(weights) pfile.close() elif filepath.endswith('.hdf5'): self.model.load_weights(filepath) else: self.io.print_error('Unknown model weights file {}'.format(filepath)) self.io.print_info(self.model.nodes['softmax'].get_config()) def setup_loss_function(self, w): self.loss_functions.set_weights(w) def update_optimizer(self, decay_rate=0.95): lr = self.opt.get_config()['lr'] self.opt.lr = K.variable(lr * np.exp(-decay_rate)) lr = self.opt.get_config()['lr'] return lr def compile(self, compile_cfgs): try: self.opt = optimizer_dict[compile_cfgs['optimizer']](lr=compile_cfgs['lr'], epsilon=compile_cfgs['epsilon']) self.model.compile(loss={'output': self.loss_functions.dict[compile_cfgs['loss']]}, optimizer=self.opt) except Exception as e: self.io.print_error('Error configuring the model, {0}'.format(e)) self.init = False return self.init = True
[ "praveen@eyeem.com" ]
praveen@eyeem.com
24a33ed287568028e5739b87f65ed322ba179399
501238f0462ec2bb65534b6258b0559c710c08ed
/sftp_to_db.py
bbcc53bf820383d0193b035276d993186bc7eb93
[]
no_license
nfisher20/sftp-to-db
1eae08e924164e9ff7b072ff69749d37ae199017
bfb9143e00fdef7fd63c0477fd293d4dc504b9f5
refs/heads/main
2023-02-21T20:41:07.437427
2021-01-18T16:44:37
2021-01-18T16:44:37
329,975,542
0
0
null
null
null
null
UTF-8
Python
false
false
2,836
py
import paramiko import datetime import pandas as pd import numpy as np import sqlalchemy import settings hostkey=None t = paramiko.Transport((settings.myHostname, settings.myPort)) t.connect(username=settings.myUsername, password=settings.myPassword, hostkey=hostkey) sftp = paramiko.SFTPClient.from_transport(t) # get directory list dirlist = sftp.listdir_iter('.') today = datetime.datetime.now().date() #open file to be inserted into database fopen = sftp.open(settings.sftppath,'r') #read lines of txt file to list txtfile = fopen.readlines() #close connections t.close() sftp.close() #filter txtfile to remove lines that start with 1 as their first index filteredtxtfile = [] for line in txtfile: if line[0] == '1': filteredtxtfile.append(line) #dictionary of headers and indexes as .csv did not have delimeters carrierrecord = {'RECORDID' : [0,1], 'PROCESSORNO' : [1,11], 'BATCHNO' : [11,18], 'PROCESSORNAME' : [18,43], 'PROCESSORADDRESS' : [43,63], 'PROCESSORCITY' : [63,81], 'PROCESSORSTATE' : [81,83], 'PROCESSORZIP' : [83,88], 'PROCESSORPHONE' : [88,98], 'CREATIONDATE' : [98,106], 'CREATIONMM' : [98,100], 'CREATIONDD' : [100,102], 'CREATIONCC' : [102,104], 'CREATIONYY' : [104,106], 'ZIPEXPAND' : [106,110], 'DESTCUSTOMER' : [110,125], 'DESTPROCNO' : [125,135], 'FILLER2' : [135,5000] } #assign headers to columns based on indexing and store in dict dict2 = {} for line in filteredtxtfile: for key,value in carrierrecord.items(): #print(key,value[0]) i[value[0]:value[1]] dict2.setdefault(key,[]).append(line[value[0]:value[1]]) #convert dictionary to dataframe df = pd.DataFrame.from_dict(dict2,dtype=str) #process phone numbers df['PROCESSORPHONE']=df['PROCESSORPHONE'].astype(str).apply(lambda x: np.where((len(x)>=10)&set(list(x)).issubset(list('.0123456789')), '('+x[:3]+')'+x[3:6]+'-'+x[6:10], 'Phone number not in record')) #parse date df['CREATIONDATE'] = pd.to_datetime(df['CREATIONDATE'],format='%m%d%Y', errors='ignore') sql = """ SELECT PROCESSORNAME FROM CarrierRecord """ engine = sqlalchemy.create_engine('mssql+pyodbc://@' + settings.servername + '/' + settings.databasename + '?trusted_connection=yes&driver=ODBC+Driver+13+for+SQL+Server') sqltable = pd.read_sql_query(sql, engine) processornames = sqltable.PROCESSORNAME.unique() #drop duplicate processor names for processor in processornames: for index, row in df.iterrows(): if processor == df.PROCESSORNAME[index]: df = df.drop([index]) #write dataframe to database df.to_sql('CarrierRecord',engine,if_exists = 'append',index=False)
[ "noreply@github.com" ]
nfisher20.noreply@github.com
f2df6fd91c81c440ba467cea676610defdc3838f
0a3efe67ef4c69317154276c0094cc237da7f8ca
/InsertionSort.py
0012b34ee62eb8f28872b3ff897dc40607c48563
[]
no_license
GlamorousCar/Algorithm
c707676cb75378da8f0fb349da4016d946df43cd
04ed7c47ac3d60a057ee2d7ed9473f283a405857
refs/heads/master
2023-01-24T00:33:42.038830
2020-12-04T13:28:17
2020-12-04T13:28:17
258,520,403
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
import random a, b, s = 0, 100, 10 array = [random. randint (a, b) for _ in range (s)] def InsertionSort(array): for i in range(2,len(array)): key = array[i] k = i - 1 while k > 0 and array[k] > key: array[k+1] = array[k] k = k - 1 array[k+1] = key return array print(array) print(InsertionSort(array))
[ "noreply@github.com" ]
GlamorousCar.noreply@github.com
a766a6bd0b97decd8a899aa1e066a7c8774ecdbe
5f8398e336790fa833a97139d9e4afcb0eea4701
/Dinner_Party/submit.py
2c305511537a013bef3d756faddefd6be4dae108
[]
no_license
Achva-Kl/CSA-2020
61c960d4eafc7b15143789c9c1c7abf5e60f489d
97c6aae671716f29d3e38eeae7cf2f75810273a6
refs/heads/main
2023-03-28T12:32:46.557656
2021-03-25T13:53:38
2021-03-25T13:53:38
350,474,407
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
#! /usr/bin/python3 ### run the file with the solution ### import sys import itertools from hashlib import sha256 from Crypto.Cipher import ARC4 PROOF_OF_WORK_DIFFICULTY = 25 #bit def proof_of_work(buf,n): i = 0 while True: for prefix in itertools.product(range(0x30,0x7E), repeat = i): h = sha256() h.update(bytes(prefix)) h.update(buf) if bin(int(h.hexdigest(),16)).endswith("0"*n): return prefix i += 1 def recover_flag(solution, e_flag): prow = proof_of_work(solution.encode("utf8"), PROOF_OF_WORK_DIFFICULTY) prow = bytes(prow).decode("utf8") key = f"RC4KEYFILLER|{solution}|{prow}" key = key.encode("utf8") return ARC4.new(key).decrypt(e_flag) if __name__ == "__main__": solution = " ".join(sys.argv[1:]) with open("flag.txt.enc","rb") as fh: e_flag = fh.read() flag = recover_flag(solution, e_flag) try: flag = flag.decode("utf8") if flag.startswith("CSA"): print("Congratulations!") print("Your flag is: ", flag) else: print("Sorry, try again") except: print("Sorry, try again") # python3 submit.py Germain scales Franklin abacus Curie telescope Lovelace pencil Noether laptop
[ "achvakk1@gmail.com" ]
achvakk1@gmail.com
9d6730d9edce0a074813fd0fe10fd9e3cb40551e
4c8ccd889db16011835e970b8c4d6b93036595a0
/realestate/decorators.py
685cf4705c486e6ddcf9139f0437c15be0996682
[]
no_license
arjun312-coder/Real-Estate-Django-Project
a35a09fb6eb366da12b1cfd3ad51fa51630d9003
c149d3c756200883d27f048e53a01738fb1169a0
refs/heads/master
2022-04-24T15:08:12.107957
2020-04-24T12:24:43
2020-04-24T12:24:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.decorators import user_passes_test def agent_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url='login'): actual_decorator = user_passes_test( lambda u: u.is_active and u.is_agent, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator def office_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url='login'): actual_decorator = user_passes_test( lambda u: u.is_active and u.is_office, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator
[ "ravi16iiitg@gmail.com" ]
ravi16iiitg@gmail.com
ed71559e27b6930a355acfdb912e7b85eec752c8
5be9cf2da0de61fdd4510c5a28333298a8fe1843
/questionnaire/migrations/0008_auto_20190303_1715.py
46a9ddd01f2994b4bc152f99f373e1944575e11c
[]
no_license
jordanSev/CS3398-Ferengi-Finaglers-S2019
e85bd6f9f6a9756a8545a95faece240746d926db
2a1c64a2a1680913a68e97bbba980a4fde9a603e
refs/heads/master
2020-07-09T17:27:44.921035
2019-05-02T03:10:20
2019-05-02T03:10:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,674
py
# Generated by Django 2.1.7 on 2019-03-03 23:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('questionnaire', '0007_auto_20190302_0112'), ] operations = [ migrations.CreateModel( name='ResponseIntance', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.CharField(max_length=64, verbose_name='User who answered the question')), ('answer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='questionnaire.Answers', verbose_name='Question that was answered')), ], ), migrations.AlterField( model_name='questions', name='answertype', field=models.CharField(choices=[('SINGLE', 'Can only pick one answer'), ('MULTIPLE', 'Can pick multiple answers'), ('SORTABLE', 'The answers are sortable or rateable')], default='SINGLEANSWER', max_length=64, verbose_name='Answer Type'), ), migrations.AlterField( model_name='questions', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='questionnaire.Categories', verbose_name='Question Category'), ), migrations.AddField( model_name='responseintance', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='questionnaire.Questions', verbose_name='Question that was answered'), ), ]
[ "kcp36@txstate.edu" ]
kcp36@txstate.edu
cd53046a6b6ee2f9f16ab5e7e54cb942ada274d2
19ee33b2aee85046a46319b1e3c434b913228e98
/text_process.py
b461f6c613a40636353cc0369cf2403a89936fe2
[]
no_license
wataru-masuda/text-base-demogra
bba9241607fd356b09deb602d41ef51b3597d717
206c5603aa8a150726b0537bd477b8cf5a8e80bd
refs/heads/master
2021-06-26T08:05:58.387106
2020-02-12T07:36:52
2020-02-12T07:36:52
232,492,427
0
0
null
2021-06-18T22:12:29
2020-01-08T06:16:28
Python
UTF-8
Python
false
false
1,305
py
# -*- coding: utf-8 -*- import requests import sys from gensim.corpora.dictionary import Dictionary from bs4 import BeautifulSoup import MeCab def fetch_contents_from_url(url, encoding="UTF-8", use_domain=False, timeout=3.0): try: res = requests.get("http://"+url, timeout=timeout) if use_domain else requests.get(url, timeout=timeout) except Exception: print("GET request failed") return None res.encoding = encoding try: soup = BeautifulSoup(res.text, 'html.parser') except Exception: print("failed to parse html text") return None for meta_tag in soup.find_all('meta', attrs={'name': 'description'}): if soup.title: return str(soup.title.string) + "\n" + str(meta_tag.get('content')) else: return None def doc2word_list(text): m = MeCab.Tagger("-d /usr/local/lib/mecab/dic/mecab-ipadic-neologd") word_list = [] for row in m.parse(text).split("\n"): word = row.split()[0] if word == "EOS": break pos = row.split()[-1] if "ๅ่ฉž-ใ‚ตๅค‰ๆŽฅ็ถš" in pos or "ๆ•ฐ" in pos: continue if "ๅ่ฉž" in pos or "ๅฝขๅฎน่ฉž" in pos or "ๅ‹•่ฉž" in pos: word_list.append(word) return word_list
[ "wataru-masuda@GD0033.local" ]
wataru-masuda@GD0033.local
949cb8f555f0b92cd8efa118c8b092fa031c75dc
915413d79c69f5a22d7dc1fc88dadd70eedf1e10
/instance/config.py
8f76fd76f1427cf4e5bfacbdbbd54694206c588a
[ "MIT" ]
permissive
Dave-mash/StackOverflow-lite-API
258db5a1800f94b6f996a49a999727fcbbfe1601
10f86ffe732d3cffe2b16323184780f4c9f4fdc4
refs/heads/develop
2020-04-11T23:45:21.877576
2019-01-02T10:09:54
2019-01-02T10:09:54
162,178,069
0
0
MIT
2019-01-02T10:09:55
2018-12-17T19:13:02
Python
UTF-8
Python
false
false
588
py
import os class Config(object): """Parent configuration class.""" DEBUG = False TESTING = False SECRET = os.getenv('SECRET') class Development(Config): """Configurations for Development.""" DEBUG = True TESTING = True class Testing(Config): """Configurations for Testing, with a separate test database.""" TESTING = True DEBUG = True class Production(Config): """Configurations for Production.""" DEBUG = False TESTING = False app_config = { 'development': Development, 'testing': Testing, 'production': Production }
[ "macharia3041@gmail.com" ]
macharia3041@gmail.com
90f1442e8dd5d3a5cce13e0c94173151d58984a3
559b9cd3a7ed865cd1955c62b4835207e30e3ff1
/tests/test_run_process.py
51bbd827cc962d872a08974fa55f913a7e211844
[ "MIT" ]
permissive
affankingkhan/watchgod
423f7dc782342d6e4e6bf8001378c9c980913ffe
3d5558bb04b77488abe43cb0a18e46212cded72b
refs/heads/master
2020-09-09T11:29:39.896724
2019-11-13T12:02:39
2019-11-13T12:02:39
221,435,053
0
0
MIT
2019-11-13T10:39:28
2019-11-13T10:39:27
null
UTF-8
Python
false
false
2,960
py
from asyncio import Future from watchgod import arun_process, run_process from watchgod.main import _start_process class FakeWatcher: def __init__(self, path): self._async = 'async' in path self._check = 0 self.files = [1, 2, 3] def check(self): self._check += 1 if self._check == 1: return {'x'} elif self._check == 2: return set() elif self._async: raise StopAsyncIteration else: raise KeyboardInterrupt class FakeProcess: def __init__(self, is_alive=True, exitcode=1, pid=123): self._is_alive = is_alive self.exitcode = exitcode self.pid = pid def is_alive(self): return self._is_alive def join(self, wait): pass def test_alive_terminates(mocker): mock_start_process = mocker.patch('watchgod.main._start_process') mock_start_process.return_value = FakeProcess() mock_kill = mocker.patch('watchgod.main.os.kill') assert run_process('/x/y/z', object(), watcher_cls=FakeWatcher, debounce=5, min_sleep=1) == 1 assert mock_start_process.call_count == 2 assert mock_kill.call_count == 1 def test_dead_callback(mocker): mock_start_process = mocker.patch('watchgod.main._start_process') mock_start_process.return_value = FakeProcess(is_alive=False) mock_kill = mocker.patch('watchgod.main.os.kill') c = mocker.MagicMock() assert run_process('/x/y/z', object(), watcher_cls=FakeWatcher, callback=c, debounce=5, min_sleep=1) == 1 assert mock_start_process.call_count == 2 assert mock_kill.call_count == 0 assert c.call_count == 1 c.assert_called_with({'x'}) def test_alive_doesnt_terminate(mocker): mock_start_process = mocker.patch('watchgod.main._start_process') mock_start_process.return_value = FakeProcess(exitcode=None) mock_kill = mocker.patch('watchgod.main.os.kill') assert run_process('/x/y/z', object(), watcher_cls=FakeWatcher, debounce=5, min_sleep=1) == 1 assert mock_start_process.call_count == 2 assert mock_kill.call_count == 2 def test_start_process(mocker): mock_process = mocker.patch('watchgod.main.Process') v = object() _start_process(v, (1, 2, 3), {}) assert mock_process.call_count == 1 mock_process.assert_called_with(target=v, args=(1, 2, 3), kwargs={}) async def test_async_alive_terminates(mocker): mock_start_process = mocker.patch('watchgod.main._start_process') mock_start_process.return_value = FakeProcess() mock_kill = mocker.patch('watchgod.main.os.kill') f = Future() f.set_result(1) c = mocker.MagicMock(return_value=f) reloads = await arun_process('/x/y/async', object(), watcher_cls=FakeWatcher, callback=c, debounce=5, min_sleep=1) assert reloads == 1 assert mock_start_process.call_count == 2 assert mock_kill.call_count == 1 assert c.call_count == 1 c.assert_called_with({'x'})
[ "s@muelcolvin.com" ]
s@muelcolvin.com
211f94f6fe84de597390b4eea76d59f256bbd5b7
b31bbc632c6895170e5ac4bb17ec0a25cb024466
/Neural_Network/schedule_LR.py
62b1656548205a479eac802b9281071cc46b6a83
[]
no_license
lamnguyen-mltd/shuffling
1b8bd88f47ffbd436d22a07a5718e7b1b4119da3
e81eb35650dbf394d6892a282ba5c964c4316cbf
refs/heads/master
2023-06-02T12:57:35.782370
2021-06-18T01:35:18
2021-06-18T01:35:18
377,664,543
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
""" Different learning rates """ import math def constant(eta): x = lambda t : eta return x def diminishing(gamma, alpha): return lambda t : gamma / (1 + t)**(alpha)
[ "lmn214@lehigh.edu" ]
lmn214@lehigh.edu
39530fcac484022b59d18d7d4d6e79231b44069d
f80ef3a3cf859b13e8af8433af549b6b1043bf6e
/pyobjc-framework-DiscRecording/PyObjCTest/test_drburn.py
b073fb67b06ed44f8785845ab704f1fd5d39d6ed
[ "MIT" ]
permissive
ronaldoussoren/pyobjc
29dc9ca0af838a56105a9ddd62fb38ec415f0b86
77b98382e52818690449111cd2e23cd469b53cf5
refs/heads/master
2023-09-01T05:15:21.814504
2023-06-13T20:00:17
2023-06-13T20:00:17
243,933,900
439
49
null
2023-06-25T02:49:07
2020-02-29T08:43:12
Python
UTF-8
Python
false
false
2,115
py
import DiscRecording from PyObjCTools.TestSupport import TestCase class TestDRBurn(TestCase): def testMethods(self): self.assertResultIsBOOL(DiscRecording.DRBurn.appendable) self.assertArgIsBOOL(DiscRecording.DRBurn.setAppendable_, 0) self.assertResultIsBOOL(DiscRecording.DRBurn.verifyDisc) self.assertArgIsBOOL(DiscRecording.DRBurn.setVerifyDisc_, 0) def testConstants(self): self.assertIsInstance(DiscRecording.DRBurnRequestedSpeedKey, str) self.assertIsInstance(DiscRecording.DRBurnAppendableKey, str) self.assertIsInstance(DiscRecording.DRBurnOverwriteDiscKey, str) self.assertIsInstance(DiscRecording.DRBurnVerifyDiscKey, str) self.assertIsInstance(DiscRecording.DRBurnCompletionActionKey, str) self.assertIsInstance(DiscRecording.DRBurnUnderrunProtectionKey, str) self.assertIsInstance(DiscRecording.DRBurnTestingKey, str) self.assertIsInstance(DiscRecording.DRSynchronousBehaviorKey, str) self.assertIsInstance(DiscRecording.DRBurnFailureActionKey, str) self.assertIsInstance(DiscRecording.DRMediaCatalogNumberKey, str) self.assertIsInstance(DiscRecording.DRBurnDoubleLayerL0DataZoneBlocksKey, str) self.assertIsInstance(DiscRecording.DRBurnStrategyKey, str) self.assertIsInstance(DiscRecording.DRBurnStrategyIsRequiredKey, str) self.assertIsInstance(DiscRecording.DRCDTextKey, str) self.assertIsInstance(DiscRecording.DRBurnCompletionActionEject, str) self.assertIsInstance(DiscRecording.DRBurnCompletionActionMount, str) self.assertIsInstance(DiscRecording.DRBurnFailureActionEject, str) self.assertIsInstance(DiscRecording.DRBurnFailureActionNone, str) self.assertIsInstance(DiscRecording.DRBurnStrategyCDTAO, str) self.assertIsInstance(DiscRecording.DRBurnStrategyCDSAO, str) self.assertIsInstance(DiscRecording.DRBurnStrategyDVDDAO, str) self.assertIsInstance(DiscRecording.DRBurnStrategyBDDAO, str) self.assertIsInstance(DiscRecording.DRBurnStatusChangedNotification, str)
[ "ronaldoussoren@mac.com" ]
ronaldoussoren@mac.com
77eb14d50bb083ecbe2ae6ce90c59fb3c5bfbb00
2253dad674431167638a94a028bf2fc16cf6c27a
/core/migrations/0001_initial.py
ac502e50b632e94dc0fa51291a5933898dd88ef0
[]
no_license
tristanmatthew/django-music-collab-tristanmatthew
38b32620d77c5551d2a7b24e8b71598312f2fb53
473151ccf9301786f2d749075db7d64498cf1271
refs/heads/main
2023-03-13T00:54:32.948223
2021-03-04T00:10:06
2021-03-04T00:10:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,870
py
# Generated by Django 3.1.7 on 2021-03-01 16:05 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
[ "tristanmatthew@gmail.com" ]
tristanmatthew@gmail.com
151158dc001dab396c79cb4025e6326f17ad263b
2d3babcba078a44b7f2c70718e095cd766d9e55e
/script/my_codes/digital_classroom.py
c795be3d6c4732429f577d40acd4a9bf318e59d4
[ "MIT" ]
permissive
ThivakaranThana/AlignedReid-Reproduction-Pytorch
6cfdb8be7902b2e6ecc9e518b561916b683e6a29
a310de27c74a7fc29963386aa631d09e7cc3eb2f
refs/heads/master
2020-04-04T13:35:43.923708
2019-01-07T16:51:37
2019-01-07T16:51:37
155,967,554
0
1
null
null
null
null
UTF-8
Python
false
false
1,844
py
import cv2 from aligned_reid.model.Model import Model from torch.nn.parallel import DataParallel import torch.optim as optim import torch from aligned_reid.utils.utils import load_state_dict from aligned_reid.utils.utils import set_devices from torch.autograd import Variable import numpy as np input_image = cv2.imread('gow_query.jpg') resized_image = cv2.resize(input_image, (128, 256)) # input_image = np.asarray(Image.open('gow_query.jpg')) transposed = resized_image.transpose(2,0,1) test_img = transposed[np.newaxis] # cv2.imshow("preview", input_image) # key = cv2.waitKey(0) ########### # Models # ########### local_conv_out_channels = 128 num_classes = 3 model = Model(local_conv_out_channels=local_conv_out_channels, num_classes=num_classes) # Model wrapper model_w = DataParallel(model) base_lr = 2e-4 weight_decay = 0.0005 optimizer = optim.Adam(model.parameters(), lr = base_lr, weight_decay = weight_decay) # Bind them together just to save some codes in the following usage. modules_optims = [model, optimizer] model_weight_file = '/home/niruhan/AlignedReID-Re-Production-Pytorch/model_weight.pth' map_location = (lambda storage, loc: storage) sd = torch.load(model_weight_file, map_location=map_location) load_state_dict(model, sd) print('Loaded model weights from {}'.format(model_weight_file)) sys_device_ids = (0,) TVT, TMO = set_devices(sys_device_ids) old_train_eval_model = model.training # Set eval mode. # Force all BN layers to use global mean and variance, also disable dropout. model.eval() ims = np.stack(input_image, axis=0) ims = Variable(TVT(torch.from_numpy(test_img).float())) global_feat, local_feat = model(ims)[:2] global_feat = global_feat.data.cpu().numpy() local_feat = local_feat.data.cpu().numpy() # Restore the model to its old train/eval mode. model.train(old_train_eval_model)
[ "thivakaranthana@gmail.com" ]
thivakaranthana@gmail.com
9ab33f4881e26c8bfa04c708f83dce9807708c20
d775692233aaf07d59a814953c4f6166e551822b
/myapi/updates/migrations/0001_initial.py
1b5e0ebc0326c39915fa38c98b5dfea14dcc4205
[]
no_license
tweeks024/django_rest_example
ccc10df86477086027decf94fec49f889460c677
eb6d217e125b502d43c52a18ca372b68b7cab6f8
refs/heads/master
2021-04-28T03:06:20.940298
2018-03-15T11:24:54
2018-03-15T11:24:54
122,132,140
0
0
null
null
null
null
UTF-8
Python
false
false
1,088
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2018-02-19 22:27 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import updates.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Update', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(blank=True, null=True)), ('image', models.ImageField(blank=True, null=True, upload_to=updates.models.upload_update_image)), ('updated', models.DateTimeField(auto_now=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "tweeks@timetrade.com" ]
tweeks@timetrade.com
dcd3054a1f19fbffeaa4bdb6d4a5120debffe7b3
2fad3cec294796205ad4ff5806601165a9ef7ae1
/match/migrations/0001_initial.py
4ee29f481a2c48eadd4b9ef96c27385ac303c4c2
[]
no_license
taro1025/sb.com
325c5c4b522926758c2982e4bf30face7943008f
d6a6980002c8abb1edf0b10bfa67de8c5f89df4e
refs/heads/master
2023-04-04T03:03:55.413060
2021-04-21T10:15:58
2021-04-21T10:15:58
323,674,761
0
0
null
null
null
null
UTF-8
Python
false
false
8,950
py
# Generated by Django 3.1.4 on 2020-12-21 17:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import match.models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=254, unique=True, verbose_name='email address')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('my_profile', models.TextField(blank=True, null=True, verbose_name='่‡ชๅทฑ็ดนไป‹')), ('user_img', models.ImageField(blank=True, upload_to='', verbose_name='ใƒ—ใƒญใƒ•็”ปๅƒ')), ('menter', models.IntegerField(choices=[(1, 'ใƒกใƒณใ‚ฟใƒผ'), (2, 'ๅผŸๅญ')], default=0, verbose_name='ไผšๅ“กๅฝขๅผ')), ('course1', models.IntegerField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น1')), ('course2', models.IntegerField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น2')), ('course3', models.IntegerField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น3')), ('describe1', models.TextField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น1ใฎ่ชฌๆ˜Ž')), ('describe2', models.TextField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น2ใฎ่ชฌๆ˜Ž')), ('describe3', models.TextField(blank=True, null=True, verbose_name='ใ‚ณใƒผใ‚น3ใฎ่ชฌๆ˜Ž')), ('busy', models.BooleanField(default=True, verbose_name='ๅฟ™ใ—ใ„')), ('user_account_number', models.CharField(max_length=128, null=True, verbose_name='ๅฃๅบง็•ชๅท')), ('user_routing_number', models.CharField(max_length=128, null=True, verbose_name='้Š€่กŒใ‚ณใƒผใƒ‰๏ผ‹ๆ”ฏๅบ—ใ‚ณใƒผใƒ‰')), ('user_holder_name', models.CharField(max_length=32, null=True, verbose_name='ๅฃๅบงๅ็พฉ')), ('user_postal_code', models.CharField(max_length=128, null=True, verbose_name='้ƒตไพฟ็•ชๅท')), ('user_state_kana', models.CharField(max_length=32, null=True, verbose_name='้ƒฝ้“ๅบœ็œŒ๏ผˆใ‚ซใƒŠ๏ผ‰')), ('user_city_kana', models.CharField(max_length=32, null=True, verbose_name='ๅŒบๅธ‚็”บๆ‘๏ผˆใ‚ซใƒŠ๏ผ‰')), ('user_town_kana', models.CharField(max_length=32, null=True, verbose_name='็”บๅ๏ผˆใ‚ซใƒŠ๏ผ‰')), ('user_line1_kana', models.CharField(max_length=32, null=True, verbose_name='็•ชๅœฐใ€ๅท๏ผˆใ‚ซใƒŠ๏ผ‰')), ('user_line2_kana', models.CharField(blank=True, max_length=32, null=True, verbose_name='ๅปบ็‰ฉใƒป้ƒจๅฑ‹็•ชๅทใƒปใใฎไป–๏ผˆไปปๆ„๏ผ‰๏ผˆใ‚ซใƒŠ๏ผ‰')), ('user_state_kanji', models.CharField(max_length=32, null=True, verbose_name='้ƒฝ้“ๅบœ็œŒ๏ผˆๆผขๅญ—๏ผ‰')), ('user_city_kanji', models.CharField(max_length=32, null=True, verbose_name='ๅŒบๅธ‚็”บๆ‘๏ผˆๆผขๅญ—๏ผ‰')), ('user_town_kanji', models.CharField(max_length=32, null=True, verbose_name='็”บๅ๏ผˆๆผขๅญ—๏ผ‰')), ('user_line1_kanji', models.CharField(max_length=32, null=True, verbose_name='็•ชๅœฐใ€ๅท๏ผˆๆผขๅญ—๏ผ‰')), ('user_line2_kanji', models.CharField(blank=True, max_length=32, null=True, verbose_name='ๅปบ็‰ฉใƒป้ƒจๅฑ‹็•ชๅทใƒปใใฎไป–๏ผˆไปปๆ„๏ผ‰๏ผˆๆผขๅญ—๏ผ‰')), ('user_day', models.IntegerField(null=True, verbose_name='็”Ÿๅนดๆœˆๆ—ฅ๏ผˆๆ—ฅ๏ผ‰')), ('user_month', models.IntegerField(null=True, verbose_name='็”Ÿๅนดๆœˆๆ—ฅ๏ผˆๆœˆ๏ผ‰')), ('user_year', models.IntegerField(null=True, verbose_name='็”Ÿๅนดๆœˆๆ—ฅ๏ผˆๅนด๏ผ‰')), ('user_phone_number', models.CharField(max_length=128, null=True, verbose_name='้›ป่ฉฑ็•ชๅท')), ('user_tos_date', models.DateTimeField(default=django.utils.timezone.now, verbose_name='ใ‚ฟใ‚คใƒ ใ‚นใ‚ฟใƒณใƒ—')), ('user_last_name_kanji', models.CharField(max_length=32, null=True, verbose_name='ๆ€ง๏ผˆๆผขๅญ—๏ผ‰')), ('user_last_name_kana', models.CharField(max_length=32, null=True, verbose_name='ๆ€ง๏ผˆใ‹ใช๏ผ‰')), ('user_first_name_kanji', models.CharField(max_length=32, null=True, verbose_name='ๅ๏ผˆๆผขๅญ—๏ผ‰')), ('user_first_name_kana', models.CharField(max_length=32, null=True, verbose_name='ๅ๏ผˆใ‹ใช๏ผ‰')), ('user_gender', models.IntegerField(choices=[(1, '็”ท'), (2, 'ๅฅณ')], default=0, verbose_name='ๆ€งๅˆฅ')), ('user_verification', models.ImageField(null=True, upload_to='', verbose_name='ๆœฌไบบ็ขบ่ช')), ('user_account_id', models.CharField(blank=True, max_length=255, null=True, verbose_name='ๆฑบๆธˆใซไฝฟใ†ID')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', }, managers=[ ('objects', match.models.CustomUserManager()), ], ), migrations.CreateModel( name='Char', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('char', models.CharField(max_length=255, verbose_name='ใ‚ญใƒฃใƒฉ')), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField(verbose_name='ใƒกใƒƒใ‚ปใƒผใ‚ธ')), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now, verbose_name='้€ไฟกๆ—ฅๆ™‚้–“')), ('room', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='room', to=settings.AUTH_USER_MODEL, verbose_name='ใƒกใƒƒใ‚ปใƒผใ‚ธใฎๆŒใกไธป')), ('to_user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='to_user', to=settings.AUTH_USER_MODEL, verbose_name='ใƒกใƒƒใ‚ปใƒผใ‚ธใฎๅฎ›ๅ…ˆ')), ], ), migrations.CreateModel( name='BuyingHistory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('stripe_id', models.CharField(max_length=200, verbose_name='ใ‚ฟใ‚คใƒˆใƒซ')), ('created_at', models.DateTimeField(default=django.utils.timezone.now, verbose_name='ๆ—ฅไป˜')), ('course', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='course', to=settings.AUTH_USER_MODEL, verbose_name='ใƒกใƒƒใ‚ปใƒผใ‚ธใฎๅฎ›ๅ…ˆ')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='buyer', to=settings.AUTH_USER_MODEL, verbose_name='่ณผๅ…ฅ่€…')), ], ), migrations.AddField( model_name='user', name='user_char', field=models.ManyToManyField(blank=True, to='match.Char', verbose_name='ไฝฟ็”จใ‚ญใƒฃใƒฉ'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
[ "game4967@gmail.com" ]
game4967@gmail.com
797f4c73b0278599dcfedb7af58d95b38a5afc87
b0cdbad299f6174bfdb0fba173dbcf3889b82209
/Modules/os/dirwalk4.py
eaaefb1ed5ab44c8053319d9393155e7f7a65218
[]
no_license
deesaw/PythonD-06
a33e676f1e0cfc13b4ea645c8b60547b198239ac
3c6f065d7be2e3e10cafb6cef79d6cae9d55a7fa
refs/heads/master
2023-03-18T08:24:42.030935
2021-03-02T14:15:09
2021-03-02T14:15:09
343,797,605
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
import os extns=["mp3","jpg","jpeg","mpg","mpeg"] size=1 * 1024 * 1024 for (dirname, subdir, files) in os.walk('c:\\'): for myfile in files: filename=os.path.join(dirname,myfile) extn = os.path.splitext(filename)[-1] if extn in extns: if os.path.getfilesize(filename) > size: print(filename)
[ "69420960+deesaw@users.noreply.github.com" ]
69420960+deesaw@users.noreply.github.com
3dd874f730373ef6ad93cf7b4ac82b15d6f296e6
68ebbec2ceb269add3f71fa0189c6547765dae8b
/orders/models.py
597159ce256c919c2d930027717cf0500096b406
[ "MIT" ]
permissive
OjureFred/BlazeMarketplace
17ca512dbd80319db6342fa2d9e90dc41f3f67f3
e207d538e25dfa8866b01e74886d8e91a54c53fe
refs/heads/main
2023-04-24T18:57:05.834297
2021-05-04T06:52:36
2021-05-04T06:52:36
319,242,596
0
0
null
null
null
null
UTF-8
Python
false
false
3,559
py
from django.db import models from django.db.models.signals import pre_save, post_save import math from addresses.models import Address from carts.models import Cart from billing.models import BillingProfile from blazemarketplace.utils import unique_order_id_generator # Create your models here. ORDER_STATUS_CHOICES = ( ('created', 'Created'), ('paid', 'Paid'), ('shipped', 'Shipped'), ('refunded', 'Refunded'), ) class OrderManager(models.Manager): def new_or_get(self, billing_profile, cart_obj): created = False qs = self.get_queryset().filter(billing_profile=billing_profile, cart=cart_obj, active=True, status='created') if qs.count() == 1: obj = qs.first() else: obj = self.model.objects.create(billing_profile=billing_profile, cart=cart_obj) created=True return obj, created class Order(models.Model): order_id = models.CharField(max_length=120, blank=True) billing_profile = models.ForeignKey(BillingProfile, null=True, blank=True, on_delete=models.CASCADE) shipping_address = models.ForeignKey(Address, related_name='shipping_address', null=True, blank=True, on_delete=models.CASCADE) billing_address = models.ForeignKey(Address, related_name='billing_address',null=True, blank=True, on_delete=models.CASCADE) cart = models.ForeignKey(Cart, on_delete=models.CASCADE) status = models.CharField(max_length=120, default='created', choices=ORDER_STATUS_CHOICES) shipping_total = models.DecimalField(default=500.00, max_digits=100, decimal_places=2) total = models.DecimalField(default=0.00, max_digits=100, decimal_places=2) active = models.BooleanField(default=True) def __str__(self): return self.order_id objects = OrderManager() def update_total(self): cart_total = self.cart.total shipping_total = self.shipping_total new_total = math.fsum([cart_total, shipping_total]) formatted_total = format(new_total, '.2f') self.total = formatted_total self.save() return formatted_total def check_done(self): billing_profile = self.billing_profile shipping_address = self.shipping_address billing_address = self.billing_address total = self.total if billing_profile and shipping_address and billing_address and total > 0: return True return False def mark_paid(self): if self.check_done(): self.status = 'paid' self.save() return self.status def pre_save_create_order_id(sender, instance, *args, **kwargs): if not instance.order_id: instance.order_id = unique_order_id_generator(instance) qs = Order.objects.filter(cart=instance.cart).exclude(billing_profile=instance.billing_profile) if qs.exists(): qs.update(active=False) pre_save.connect(pre_save_create_order_id, sender=Order) def post_save_cart_total(sender, instance, created, *args, **kwargs): if not created: cart_obj = instance cart_total = cart_obj.total cart_id = cart_obj.id qs = Order.objects.filter(cart__id=cart_id) if qs.count() == 1: order_obj = qs.first() print('running update') order_obj.update_total() post_save.connect(post_save_cart_total, sender=Cart) def post_save_order(sender, instance, created, *args, **kwargs): if created: instance.update_total post_save.connect(post_save_order, sender=Order)
[ "fredojure@hotmail.com" ]
fredojure@hotmail.com
fb1d6c7c79955d6e7e9956c82783c28acb3d3057
f513c794fd95cb72ee776029ece38a08c4b4da0b
/custom/_legacy/pathfinder/urls.py
d2352d244f646d232b5dae3a977e19a0c1485820
[]
no_license
bglar/commcare-hq
a92f034a0c2faf787da8321b4d79e55f098bd89f
972129fc26864c08c7bef07874bd2a7218550bff
refs/heads/master
2021-05-28T20:44:12.876151
2015-01-16T16:23:52
2015-01-16T16:23:52
29,391,363
1
0
null
null
null
null
UTF-8
Python
false
false
362
py
from django.conf.urls.defaults import * urlpatterns = patterns('pathfinder.views', url(r'select/$', 'selector'), url('select/ward', 'ward_selector'), url('select/provider', 'provider_selector'), url('select/hbc', 'hbc_selector'), url('hbc/', 'home_based_care'), url('ward/', 'ward_summary'), url('provider/', 'provider_summary'), )
[ "cternus@dimagi.com" ]
cternus@dimagi.com
a9b90beacd2dc62d8a0ddd34deb42dedee180677
9591cbab774598c0d3b5a382f03202d7d86f9bb9
/xmlfilter.py
a5f2e8cb2f75adb04f34024961e788824a8b3c1f
[]
no_license
zgjoget9/Scripts_for_spotbugs
e3094fce87e9bcc87f59ef96d400d6ad987e59b3
fb4f2721806723037a96e6dd2330c929aa8e841c
refs/heads/main
2023-03-25T23:23:11.324142
2021-03-21T06:57:40
2021-03-21T06:57:40
349,895,698
2
0
null
null
null
null
UTF-8
Python
false
false
4,165
py
from xml.dom.minidom import parse import xml.dom.minidom import os import sys # using minidom typelist = ['BC_UNCONFIRMED_CAST', 'DLS_DEAD_LOCAL_STORE', 'RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE', 'UCF_USELESS_CONTROL_FLOW', 'UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR'] BC_UNCONFIRMED_CAST = [] DLS_DEAD_LOCAL_STORE = [] RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE = [] UCF_USELESS_CONTROL_FLOW = [] UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR = [] filedir = "/.../allxml/" files = os.listdir(filedir) f1 = open("/.../BC_UNCONFIRMED_CAST.txt","w+") f2 = open("/.../DLS_DEAD_LOCAL_STORE.txt","w+") f3 = open("/.../RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE.txt","w+") f4 = open("/.../UCF_USELESS_CONTROL_FLOW.txt","w+") f5 = open("/.../UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR.txt","w+") for file in files: if not file.endswith('.xml'): continue try: DOMTree = xml.dom.minidom.parse(filedir+file) except: continue collection = DOMTree.documentElement jar = collection.getElementsByTagName("Jar") BugInstance = collection.getElementsByTagName("BugInstance") for buginstance in BugInstance: TYPE = buginstance.getAttribute("type") if TYPE not in typelist: continue entity = [] signatures = [] clasS = buginstance.getElementsByTagName("Class") for claSS in clasS: sourceline = claSS.getElementsByTagName("SourceLine")[0] entity.append("file: "+sourceline.getAttribute("sourcepath")) methods = buginstance.getElementsByTagName("Method") for method in methods: sourceline = method.getElementsByTagName("SourceLine")[0] entity.append("method name: " + method.getAttribute("name")) entity.append("method signature: " + method.getAttribute("signature")) entity.append("method begin: "+sourceline.getAttribute("start")) entity.append("method end: " + sourceline.getAttribute("end")) sourcelines = buginstance.childNodes i = len(sourcelines)-1 while(i>=0): if sourcelines[i].localName=="SourceLine": entity.append("bug begin: " + sourcelines[i].getAttribute("start")) entity.append("bug end: " + sourcelines[i].getAttribute("end")) i-=1 if TYPE == 'BC_UNCONFIRMED_CAST': if entity not in BC_UNCONFIRMED_CAST: BC_UNCONFIRMED_CAST.append(entity) f1.writelines("jar: "+jar[0].childNodes[0].data+'\n') for i in entity: f1.writelines(i+'\n') f1.writelines('\n') elif TYPE == 'DLS_DEAD_LOCAL_STORE': if entity not in DLS_DEAD_LOCAL_STORE: DLS_DEAD_LOCAL_STORE.append(entity) f2.writelines("jar: " + jar[0].childNodes[0].data+'\n') for i in entity: f2.writelines(i+'\n') f2.writelines('\n') elif TYPE == 'RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE': if entity not in RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE: RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE.append(entity) f3.writelines("jar: " + jar[0].childNodes[0].data+'\n') for i in entity: f3.writelines(i+'\n') f3.writelines('\n') elif TYPE == 'UCF_USELESS_CONTROL_FLOW': if entity not in UCF_USELESS_CONTROL_FLOW: UCF_USELESS_CONTROL_FLOW.append(entity) f4.writelines("jar: " + jar[0].childNodes[0].data+'\n') for i in entity: f4.writelines(i+'\n') f4.writelines('\n') elif TYPE == 'UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR': if entity not in UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR: UWF_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR.append(entity) f5.writelines("jar: " + jar[0].childNodes[0].data+'\n') for i in entity: f5.writelines(i+'\n') f5.writelines('\n') print('over') f1.close() f2.close() f3.close() f4.close() f5.close()
[ "noreply@github.com" ]
zgjoget9.noreply@github.com
0a40a1d559c028627fb025ed6057c40c0d9f9f1d
90419da201cd4948a27d3612f0b482c68026c96f
/sdk/python/pulumi_azure_nextgen/recoveryservices/v20200202/private_endpoint_connection.py
f1f8b04627df798b43442d52d427fd896c41693a
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
test-wiz-sec/pulumi-azure-nextgen
cd4bee5d70cb0d332c04f16bb54e17d016d2adaf
20a695af0d020b34b0f1c336e1b69702755174cc
refs/heads/master
2023-06-08T02:35:52.639773
2020-11-06T22:39:06
2020-11-06T22:39:06
312,993,761
0
0
Apache-2.0
2023-06-02T06:47:28
2020-11-15T09:04:00
null
UTF-8
Python
false
false
6,487
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['PrivateEndpointConnection'] class PrivateEndpointConnection(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, e_tag: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointConnectionArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vault_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Private Endpoint Connection Response Properties :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] e_tag: Optional ETag. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection. :param pulumi.Input[pulumi.InputType['PrivateEndpointConnectionArgs']] properties: PrivateEndpointConnectionResource properties :param pulumi.Input[str] resource_group_name: The name of the resource group where the recovery services vault is present. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[str] vault_name: The name of the recovery services vault. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['e_tag'] = e_tag __props__['location'] = location if private_endpoint_connection_name is None: raise TypeError("Missing required property 'private_endpoint_connection_name'") __props__['private_endpoint_connection_name'] = private_endpoint_connection_name __props__['properties'] = properties if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags if vault_name is None: raise TypeError("Missing required property 'vault_name'") __props__['vault_name'] = vault_name __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:recoveryservices/latest:PrivateEndpointConnection")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateEndpointConnection, __self__).__init__( 'azure-nextgen:recoveryservices/v20200202:PrivateEndpointConnection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateEndpointConnection': """ Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return PrivateEndpointConnection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="eTag") def e_tag(self) -> pulumi.Output[Optional[str]]: """ Optional ETag. """ return pulumi.get(self, "e_tag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name associated with the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output['outputs.PrivateEndpointConnectionResponse']: """ PrivateEndpointConnectionResource properties """ return pulumi.get(self, "properties") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type represents the complete path of the form Namespace/ResourceType/ResourceType/... """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
[ "public@paulstack.co.uk" ]
public@paulstack.co.uk
92211e6930886bccd94286601778955ce5b0fc35
83fd94bddf0039a692518284249b4a0411738086
/prob_ioi.py
0c497411a3c5ee3732b62c36a9dd2397d43ea0b1
[]
no_license
Firasnafti67/problemSolving
3ad53e6c8875f1b054fce0e5647d2e6cca0d3cb8
2ca6e2ba72598d68c31f63115b61ee1509e43b3b
refs/heads/main
2023-02-12T17:43:47.938889
2021-01-12T21:11:29
2021-01-12T21:11:29
329,112,837
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
nbLivres, nbJours = map(int,input().split()) d=dict() for i in range(nbLivres): d[i]=0 i=1 l = [] while i<=nbJours: nbClients = int(input()) while nbClients: ind,dur = map(int,input().split()) if i>= d[ind]: d[ind]=i+dur l.append(1) else: l.append(0) nbClients = nbClients-1 i = i+1 for i in l: print(i)
[ "noreply@github.com" ]
Firasnafti67.noreply@github.com
bbcf290fc9f7863e878a76ee3541e662eba89da2
f7a9c41ebdbab550ad07e9382a6df3d88d9f317e
/StudyExample/1.DataType/int_convert.py
f4cfeda4188c8b976eb9f29c8a8caddf2619c001
[]
no_license
shinsangeun/PythonStudy
9f32abf08bf5a936db147722ea85fcb97cfe26f0
2bf2dfaf5b838b5456b450acbaf31fd9b256ee12
refs/heads/master
2023-02-08T12:34:57.556148
2020-12-23T16:39:36
2020-12-23T16:39:36
141,964,854
0
1
null
null
null
null
UTF-8
Python
false
false
185
py
string_a = input("์ž…๋ ฅA>") string_b = input("์ž…๋ ฅB>") int_a = int(string_a) int_b = int(string_b) print("๋ฌธ์ž์—ด ์ž๋ฃŒ:", string_a+string_b) print("์ˆซ์ž ์ž๋ฃŒ", int_a+int_b)
[ "s0813se@naver.com" ]
s0813se@naver.com
81b6d1556691d9c085b59e7856c9a9bc25214281
5c5f0b22f48d00d06ac1a2455341de513d35bd5c
/TL through optimal extension/Test.py
d93a934dd1fed2914a9c170cc897c8064456d5e6
[]
no_license
dvaccam/RL-TL-Code
93f83961e2404b8e17ec44252955980c5f4ca8ab
95243b6394f0c8416bddbbc4dabc4a393a826611
refs/heads/master
2021-01-23T09:40:01.093061
2017-11-22T18:34:01
2017-11-22T18:34:01
102,589,651
4
0
null
null
null
null
UTF-8
Python
false
false
11,935
py
import gym import numpy as np import utils import scipy.optimize as opt import itertools as itt import time def policy(state): if state[0] < -0.9 or state[1] > 0 or (abs(state[1]) < 0.001 and state[0] < -0.4): action = 2 else: action = 0 return action gamma = 0.9 goal_pos = -0.35 # Creation of source task source_task = gym.make('MountainCar-v0', discretize=(1000, 1000), aceleration=0.001, seed=1000, goal_position=goal_pos) # Data structures for storing samples n_source = 5#1000 source_samples = [] #93, 115 # Dictionary to check if an initial position is observed during sampling init_positions = source_task.env.bins[0][(-0.6 <= source_task.env.bins[0]) & (source_task.env.bins[0] <= -0.4)] seen_init_positions_source = {s0:False for s0 in init_positions} #Sampling from source task print("Collecting ", n_source, " samples from source task...") for i in range(n_source): episode = [] init_state = source_task.reset() seen_init_positions_source[init_state[0]] = True first_state = init_state for t in range(500): source_task.render() action = policy(first_state) next_state, reward, done, info = source_task.step(action) episode.append((first_state, action, next_state, reward)) first_state = next_state if done: break source_samples.append(episode) print("Done sampling from source task") # Check there was at least one episode for each initial position not_seen_states = 0 for k,v in seen_init_positions_source.items(): if not v: not_seen_states += 1#print(k) print("Not seen positions: ", not_seen_states, "/", len(seen_init_positions_source)) # Creation of target task target_acel = 0.0025 target_task = gym.make('MountainCar-v0', discretize=(1000, 1000), aceleration=target_acel, seed=1, goal_position=goal_pos) # Data structures for storing samples n_target = 1 target_samples = [] # Dictionary to check if an initial position is observed during sampling seen_init_positions_target = {s0:False for s0 in init_positions} # Sampling from target task print("Collecting ", n_target, " samples from target task...") for i in range(n_target): episode = [] init_state = target_task.reset() seen_init_positions_target[init_state[0]] = True first_state = init_state for t in range(500): # target_task.render() if first_state[0] < -0.9 or first_state[1] > 0 or (abs(first_state[1]) < 0.001 and first_state[0] < -0.5): action = 2 else: action = 0 next_state, reward, done, info = target_task.step(action) episode.append((first_state, action, next_state, reward)) first_state = next_state if done: break target_samples.append(episode) print("Done sampling from target task") # Check there was at least one episode for each initial state not_seen_states = 0 for k,v in seen_init_positions_target.items(): if not v: not_seen_states += 1#print(k) print("Not seen states: ", not_seen_states, "/", len(seen_init_positions_target)) # Calculate real value function on target task V = {} print("Calculating real value function for target task...") for s in init_positions: V[s] = 0 target_task = gym.make('MountainCar-v0', discretize=(1000, 1000), aceleration=target_acel, initial_position=s, goal_position=goal_pos) init_state = target_task.reset() first_state = init_state for t in range(500): # target_task.render() if first_state[0] < -0.9 or first_state[1] > 0 or (abs(first_state[1]) < 0.001 and first_state[0] < -0.5): action = 2 else: action = 0 next_state, reward, done, info = target_task.step(action) V[s] += np.power(gamma, t)*reward first_state = next_state if done: break print("Done calculating real value function for target task") # Calculate real expected reward for policy Jt = np.array(list(V.values())).mean() print("Expected reward for the policy:", Jt) print("Estimated expected reward:", utils.estimate_J(target_samples, gamma)) def B(D_source, D_target, gamma, ext, target_task, Jt):# Ext is a mutidimensional array with the new states D_c = list(D_target) diff = 0 for ep in range(len(ext)): ep_c = [] for d in range(len(ext[ep])): init_pos, init_vel = D_source[ep][d][0] action = D_source[ep][d][1] vel = init_vel + (action - 1) * target_acel + np.cos(3 * init_pos) * (-0.0025) vel = target_task.env.bins[1][np.array(abs(target_task.env.bins[1] - vel)).argmin()] pos = init_pos + vel pos = target_task.env.bins[0][np.array(abs(target_task.env.bins[0] - pos)).argmin()] if (pos == target_task.env.min_position and vel < 0): vel = 0 dis = np.sqrt(((np.array([pos, vel]) - ext[ep][d])**2).sum()) ep_c.append((D_source[ep][d][0], D_source[ep][d][1], ext[ep][d], pow(2, dis)*-1)) diff += (D_source[ep][d][3] - ep_c[d][3]) D_c.append(ep_c) diff /= len(D_source) J_cap = utils.estimate_J(D_c, gamma) eps = abs(J_cap - Jt) return eps + diff def par_f(D_source, D_target, gamma, x, target_task, Jt): ext = [] offset = 0 for e in range(len(D_source)): ep = [] for d in range(len(D_source[e])): ep.append(np.array([x[offset + 2*d], x[offset + 2*d + 1]])) offset += 2*len(D_source[e]) ext.append(ep) return B(D_source, D_target, gamma, ext, target_task, Jt) def B_1(D_source, D_target, gamma, ext, sample_mask, target_task, Jt):# Ext is a list of lists as D_source, but with the state as a numpy array instead of a tuple #rounded_mask = np.array(np.around(sample_mask)).astype(dtype=bool) D_c = list(D_target) diff = 0 for ep in range(len(ext)): #if rounded_mask[ep]: ep_c = [] for d in range(len(ext[ep])): init_pos, init_vel = D_source[ep][d][0] action = D_source[ep][d][1] vel = init_vel + (action - 1) * target_acel + np.cos(3 * init_pos) * (-0.0025) vel = target_task.env.bins[1][np.array(abs(target_task.env.bins[1] - vel)).argmin()] pos = init_pos + vel pos = target_task.env.bins[0][np.array(abs(target_task.env.bins[0] - pos)).argmin()] if (pos == target_task.env.min_position and vel < 0): vel = 0 dis = np.sqrt(((np.array([pos, vel]) - ext[ep][d])**2).sum()) ep_c.append((D_source[ep][d][0], D_source[ep][d][1], ext[ep][d], pow(2, dis)*-1)) diff += sample_mask[ep]*(D_source[ep][d][3] - ep_c[d][3]) D_c.append(ep_c) diff /= sample_mask.sum() if sample_mask.sum() != 0 else 1 J_cap = utils.estimate_J(D_c, gamma, weights=np.hstack((np.ones(len(D_target)), sample_mask))) eps = abs(J_cap - Jt) return eps + diff def par_f1(D_source, D_target, gamma, x, target_task, Jt): ext = [] offset = 0 for e in range(len(D_source)): ep = [] for d in range(len(D_source[e])): ep.append(np.array([x[offset + 2 * d], x[offset + 2 * d + 1]])) offset += 2 * len(D_source[e]) ext.append(ep) sample_mask = x[-len(D_source):] return B_1(D_source, D_target, gamma, ext, sample_mask, target_task, Jt) np.random.seed(200) st = time.time() ex = [] for e in source_samples: for d in e: ex.extend([d[2][0], d[2][1]]) ex = np.array(ex) dim = ex.shape[0] a = par_f(source_samples, target_samples, gamma, ex, target_task, Jt) print("Bound by using source samples as extension:", a) print("Estimated expected reward with direct tranfer:", utils.estimate_J(target_samples+source_samples, gamma)) print("Error by direct transfer:", abs(utils.estimate_J(target_samples+source_samples, gamma) - Jt)) f = lambda x:par_f(D_source=source_samples, D_target=target_samples, gamma=gamma, Jt=Jt, target_task=target_task, x=x) bounds = [] for _ in range(int(dim/2)): bounds.extend([(target_task.env.min_position, target_task.env.max_position), (-target_task.env.max_speed, target_task.env.max_speed)]) s0 = np.random.uniform(low=target_task.env.min_position, high=target_task.env.max_position, size=int(dim/2)) v0 = np.random.uniform(low=-target_task.env.max_speed, high=target_task.env.max_speed, size=int(dim/2)) x0 = np.empty(dim, dtype=s0.dtype) x0[0::2] = s0 x0[1::2] = v0 best = opt.minimize(f, x0, bounds=bounds, options={'maxfun':min(10000*len(source_samples), 1e5)}) print("Def:", best.fun, best.x, best.success) x_opt_all = best.x print("Full extenstion:", time.time()-st) print("-------") st = time.time() minim = 100 min_idx = None for n in range(len(source_samples)): for idx in itt.combinations(range(len(source_samples)), n+1): sub = np.array(source_samples)[np.array(idx)].tolist() ex = [] for e in sub: for d in e: ex.extend([d[2][0], d[2][1]]) ex = np.array(ex) dim = ex.shape[0] a = par_f(sub, target_samples, gamma, ex, target_task, Jt) print(idx) print("Bound by using source samples as extension:", a) print("Estimated expected reward with direct tranfer:", utils.estimate_J(target_samples+sub, gamma)) print("Error by direct transfer:", abs(utils.estimate_J(target_samples+sub, gamma) - Jt)) f = lambda x:par_f(D_source=sub, D_target=target_samples, gamma=gamma, Jt=Jt, target_task=target_task, x=x) bounds = [] for _ in range(int(dim/2)): bounds.extend([(target_task.env.min_position, target_task.env.max_position), (-target_task.env.max_speed, target_task.env.max_speed)]) s0 = np.random.uniform(low=target_task.env.min_position, high=target_task.env.max_position, size=int(dim/2)) v0 = np.random.uniform(low=-target_task.env.max_speed, high=target_task.env.max_speed, size=int(dim/2)) x0 = np.empty(dim, dtype=s0.dtype) x0[0::2] = s0 x0[1::2] = v0 best = opt.minimize(f, x0, bounds=bounds, options={'maxfun':min(10000*len(sub), 1e5)}) if best.fun < minim: minim = best.fun min_idx = idx print("Def:", best.fun, best.success) print("-------") print("Best one:",minim, min_idx) print("Combinatorial:", time.time()-st) print("-------") st = time.time() '''ex = [] for e in source_samples: for d in e: ex.extend([d[2][0], d[2][1]]) ex.extend([0,1]) ex = np.array(ex) dim = ex.shape[0] a = par_f1(source_samples, target_samples, gamma, ex, target_task, Jt) print("Bound by using some source samples as extension:", a) print("Error by direct transfer:", abs(utils.estimate_J(target_samples+source_samples, gamma, np.array([1,0,1])) - Jt))''' dim = ex.shape[0] + len(source_samples) f = lambda x:par_f1(D_source=source_samples, D_target=target_samples, gamma=gamma, Jt=Jt, target_task=target_task, x=x) bounds = [] for _ in range(int((dim-len(source_samples))/2)): bounds.extend([(target_task.env.min_position, target_task.env.max_position), (-target_task.env.max_speed, target_task.env.max_speed)]) bounds.extend([(0,1) for _ in range(len(source_samples))]) reps = 1 for i in range(reps): s0 = np.random.uniform(low=target_task.env.min_position, high=target_task.env.max_position, size=int((dim-len(source_samples))/2)) v0 = np.random.uniform(low=-target_task.env.max_speed, high=target_task.env.max_speed, size=int((dim-len(source_samples))/2)) x0 = np.empty(dim-len(source_samples), dtype=s0.dtype) x0[0::2] = s0 x0[1::2] = v0 w0 = np.random.uniform(low=0, high=1, size=len(source_samples)) #x0 = x_opt_all w0 = np.ones(len(source_samples)) best = opt.minimize(f, np.hstack((x0, w0)), bounds=bounds, options={'maxfun':min(10000*len(source_samples), 1e5)}) print("Def:", best.fun, best.x, best.success) print("Full optimization:", time.time()-st)
[ "daniel.vacca@hotmail.com" ]
daniel.vacca@hotmail.com
c54f7cc8f4d5a5509d29f0f3b3b2b5d1611e711d
a72f33626c6a773d3a2e2a434f0b3f56e84359bd
/preprocessing/tape_detection.py
97d615d8b3b9c95cf361df910f2aa4da7c4ae7c7
[ "MIT" ]
permissive
isse-augsburg/adaptive-spreading
fceb3d5a19d5eb473a10ea890db31c32fbf9a1f8
3e423f888ff07257111fc95c3276024c4c44036d
refs/heads/master
2023-07-20T04:41:27.458970
2020-05-04T11:08:23
2020-05-04T11:08:23
260,015,568
0
0
MIT
2023-07-06T21:48:52
2020-04-29T18:54:03
Python
UTF-8
Python
false
false
663
py
import torch def get_tape_edges(profiles, axis=1): nonzeros = (profiles > torch.unsqueeze(torch.mean(profiles, dim=1), -1)) tape_counter = nonzeros.cumsum(axis) tape_counter[~nonzeros] = 0 temp_tape_profile, temp_tape_start_idx = (tape_counter == 1).max(axis) temp_tape_start_idx[temp_tape_profile == 0] = 0 temp_tape_profile, temp_tape_end_idx = tape_counter.max(axis) temp_tape_end_idx[temp_tape_profile == 0] = 0 return temp_tape_start_idx, temp_tape_end_idx def get_tape_width(profiles, axis=1): temp_tape_start_idx, temp_tape_end_idx = get_tape_edges(profiles, axis) return temp_tape_end_idx - temp_tape_start_idx
[ "kruetzmann@isse.de" ]
kruetzmann@isse.de
003d77730c8e89b19c510db41dd9d0781b0d847e
20c20938e201a0834ccf8b5f2eb5d570d407ad15
/abc179/abc179_a/18172147.py
fb5d8b2b9d6a805bfe0b9e458bc5ec4ae341844c
[]
no_license
kouhei-k/atcoder_submissions
8e1a1fb30c38e0d443b585a27c6d134bf1af610a
584b4fd842ccfabb16200998fe6652f018edbfc5
refs/heads/master
2021-07-02T21:20:05.379886
2021-03-01T12:52:26
2021-03-01T12:52:26
227,364,764
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
x=input() if x[-1]=="s": print(x+"es") else: print(x+"s")
[ "kouhei.k.0116@gmail.com" ]
kouhei.k.0116@gmail.com
67fd75d7c3672c13f3dd4033cb6fb5e6b8d53d71
2b120cadf79de28652eaab9ba468b78e2eeddeaf
/main.py
9680d298af699b2319ad134529d562b32527ac76
[]
no_license
0xfirefist/face-liveness-detection
8ff19d1fd09257598ff1e5be364fa4fcc45e9851
6d4ec5e9ba6106e5f238c04fec0cedb0ed43b6c0
refs/heads/master
2023-01-22T15:39:47.444135
2020-12-03T10:47:17
2020-12-03T10:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,757
py
import cv2 from liveness_model.model import LivenessNet from keras.models import load_model import face_recognition from keras.preprocessing.image import img_to_array import numpy as np def extract_faces(image): face_locations = face_recognition.face_locations(image) face_images = [] locs = [] for face_location in face_locations: # Print the location of each face in this image top, right, bottom, left = face_location locs.append([top, right, bottom, left]) # You can access the actual face itself like this: face_image = image[top:bottom, left:right] face_images.append(face_image) return face_images, locs # loading models model = load_model("liveness_model/model.h5") cap = cv2.VideoCapture(0) checker = 0 while True: ret, frame = cap.read() if checker < 50: checker += 1 continue a, locs = extract_faces(frame) if len(a) < 1: continue face_image = a[0] face_image = cv2.resize(face_image, (64,64)) face = img_to_array(face_image) face = np.expand_dims(face, axis=0) preds = model.predict(face) predicted_class_indices=np.argmax(preds,axis=1) if(predicted_class_indices[0] == 1): cv2.putText(frame, 'REAL', (frame.shape[1]//2, frame.shape[0]//2), cv2.FONT_HERSHEY_DUPLEX, 1.0, (0, 255, 0), 1) else: cv2.putText(frame, 'FAKE', (frame.shape[1]//2, frame.shape[0]//2), cv2.FONT_HERSHEY_DUPLEX, 1.0, (0, 0, 255), 1) top,right,bottom,left = locs[0] cv2.rectangle(frame, (left, top), (right, bottom), (255, 0, 0), 2) cv2.imshow('testing', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam cap.release() cv2.destroyAllWindows()
[ "kalradev@outlook.com" ]
kalradev@outlook.com
4845e4d8830fd0273b3515d8fcb0b0f8a2892e8a
6ea96e96810f1db6f0b41511681d8481726c8d21
/setup.py
cbe1a3d21a445d557c6933e9836b3a1a9ce71f4a
[]
no_license
mmreis/pdTransformers
34bc846e73bb9d148f543c5d3e977f8848036639
ce0336f273d9a1c4e7dc07edc49df054a057fb69
refs/heads/master
2021-04-29T21:41:05.135098
2018-05-28T12:11:32
2018-05-28T12:11:32
121,621,122
1
0
null
null
null
null
UTF-8
Python
false
false
400
py
from setuptools import setup setup(name='pdTransformers', version='0.1.0', description='TransformerMixin for Pipeline building', url='https://github.com/mmreis/pdTransformers', author='Marisa Reis', license='MIT', packages=['pdTransformers'], install_requires=[ 'pandas', 'numpy', 'scikit-learn', ], zip_safe=False)
[ "marisa.m.reis@inesctec.pt" ]
marisa.m.reis@inesctec.pt
4493d5fe0c58bab3c391c494e22e17440866d8fa
1fc4efd558eef3caa760d1d4df7142b60bff10b9
/baoming/webapp/models_report.py
f0b3f6070b35f0d7fa9ccae3257790dba5a4ac26
[ "Apache-2.0" ]
permissive
hanxiaoshun/RegistrationSystem
e041f94a2661913db61b3911292a5d53b29f4e47
2f7310508fc1725e96fe941b1062ce7f26f265a4
refs/heads/master
2022-12-15T12:10:42.631271
2020-07-06T00:46:57
2020-07-06T00:46:57
244,163,310
0
0
Apache-2.0
2022-11-22T04:00:40
2020-03-01T14:25:11
JavaScript
UTF-8
Python
false
false
1,061
py
import django.utils.timezone as timezone from django.db import models import uuid class ReportBase(models.Model): """ ๅŸบ็ก€ไฟกๆฏ็ฑป """ explain = models.TextField('่ฏดๆ˜Ž', default='', max_length=200, blank=True, null=True) user_operator = models.ForeignKey('RegisterUserInfo', to_field='id', related_name="%(app_label)s_%(class)s_Operator", verbose_name='ๆ“ไฝœ็”จๆˆท', blank=True, null=True, on_delete=models.SET_NULL, help_text='ๆ“ไฝœ็”จๆˆท่ฎฐๅฝ•') create_time = models.DateTimeField('็”Ÿๆˆๆ—ถ้—ด', default=timezone.now) # ไฝฟ็”จModel.save()ๆฅๆ›ดๆ–ฐๆ‰ไผšๆ›ดๆ–ฐๆณจๆ„ modify_time = models.DateTimeField('ไฟฎๆ”นๆ—ถ้—ด', auto_now=True) objects = models.Manager()
[ "18301513217@sina.cn" ]
18301513217@sina.cn
580c34eb0100a79df9dbbdd88edfc188993e36ab
5462142b5e72cb39bea5b802dd46f55357c4ea84
/homework_zero_class/lesson9/ๅ‡ฝๆ•ฐ็š„ไฝœ็”จๅŸŸ-times_3.py
6ddd3b709e42f3734bdc4783ba910b1682547cca
[]
no_license
qqmadeinchina/myhomeocde
a0996ba195020da9af32613d6d2822b049e515a0
291a30fac236feb75b47610c4d554392d7b30139
refs/heads/master
2023-03-23T05:28:53.076041
2020-08-24T08:39:00
2020-08-24T08:39:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,604
py
#!D:\Program Files\Anaconda3 # -*- coding: utf-8 -*- # @Time : 2020/7/23 00:35 # @Author : ่€่ๅœ # @File : ๅ‡ฝๆ•ฐ็š„ไฝœ็”จๅŸŸ-times_3.py # @Software: PyCharm Community Edition # ไฝœ็”จๅŸŸ(scope) # ไฝœ็”จๅŸŸๆŒ‡็š„ๆ˜ฏๅ˜้‡็”Ÿๆ•ˆ็š„ๅŒบๅŸŸ # ๅœจPythonๅฝ“ไธญไธ€ๅ…ฑๆœ‰ไธค็งไฝœ็”จๅŸŸ:ๅ…จๅฑ€ไฝœ็”จๅŸŸ ๅ’Œ ๅ‡ฝๆ•ฐไฝœ็”จๅŸŸ def fn(): # aๅฎšไน‰ๅœจไบ†ๅ‡ฝๆ•ฐๅ†…้ƒจ๏ผŒๆ‰€ๆœ‰ๅฎƒ็š„ไฝœ็”จๅŸŸๅฐฑๆ˜ฏๅ‡ฝๆ•ฐๅ†…้ƒจ๏ผŒๅ‡ฝๆ•ฐๅค–้ƒจ่ฎฟ้—ฎไธๅˆฐ a=10 print("ๅ‡ฝๆ•ฐๅ†…้ƒจa=",a) fn() # ๅ‡ฝๆ•ฐๅ†…้ƒจa= 10 # print("ๅ‡ฝๆ•ฐๅค–้ƒจa=", a) # NameError: name 'a' is not defined b = 20 def fn1(): # aๅฎšไน‰ๅœจไบ†ๅ‡ฝๆ•ฐๅ†…้ƒจ๏ผŒๆ‰€ๆœ‰ๅฎƒ็š„ไฝœ็”จๅŸŸๅฐฑๆ˜ฏๅ‡ฝๆ•ฐๅ†…้ƒจ๏ผŒๅ‡ฝๆ•ฐๅค–้ƒจ่ฎฟ้—ฎไธๅˆฐ a = 10 print('ๅ‡ฝๆ•ฐๅ†…้ƒจ:','a =',a) print('ๅ‡ฝๆ•ฐๅ†…้ƒจ:','b =',b) fn1() print('ๅ‡ฝๆ•ฐๅค–้ƒจ:', 'b =', b) # print('ๅ‡ฝๆ•ฐๅค–้ƒจ:', 'a =', a) # NameError: name 'a' is not defined # ๅ‡ฝๆ•ฐๅ†…้ƒจ: a = 10 # ๅ‡ฝๆ•ฐๅ†…้ƒจ: b = 20 # ๅ‡ฝๆ•ฐๅค–้ƒจ: b = 20 def fn2(): a = 30 def fn3(): a = 80 print("fn3ไธญ๏ผša =",a) print("fn3ไธญ๏ผšb =",b) fn3() print("fn2ไธญ๏ผša =", a) fn2() # fn3ไธญ๏ผša = 80 # fn3ไธญ๏ผšb = 20 # fn2ไธญ๏ผša = 30 print("ๅ‡ฝๆ•ฐ่ฐƒ็”จๅ‰ b =",b) def fn4(): # ๅฆ‚ๆžœๅธŒๆœ›ๅœจๅ‡ฝๆ•ฐๅ†…้ƒจไฟฎๆ”นๅ…จๅฑ€ๅ˜้‡๏ผŒๅˆ™้œ€่ฆไฝฟ็”จไธ€ไธชglobalๅ…ณ้”ฎๅญ—๏ผŒๆฅๅฃฐๆ˜Žๅ˜้‡ global b # ๅฃฐๆ˜Žๅœจๅ‡ฝๆ•ฐๅ†…้ƒจ็š„ไฝฟ็”จaๆ˜ฏๅ…จๅฑ€ๅ˜้‡๏ผŒๆญคๆ—ถๆˆ‘ไปฌไฟฎๆ”นa๏ผŒๅฐฑๆ˜ฏๅœจไฟฎๆ”นๅ…จๅฑ€ๅ˜้‡ b = 80 print('ๅ‡ฝๆ•ฐๅ†…้ƒจ:', 'b =', b) fn4() print('ๅ‡ฝๆ•ฐๅค–้ƒจ:','b =',b) # ๅ‡ฝๆ•ฐ่ฐƒ็”จๅ‰ b= 20 # ๅ‡ฝๆ•ฐๅ†…้ƒจ: b = 80 # ๅ‡ฝๆ•ฐๅค–้ƒจ: b = 80
[ "newwxm@126.com" ]
newwxm@126.com
791973912cf18523ae8538782e145e325e26c72c
39f475f5f5c9cacbcffb1d742742d004394d6098
/amo_s.py
c9aa9a685661a26a045d9e9f69b6bac12cc21b14
[]
no_license
SamuelDBZMAAM/Budokai-Modding-Tool
bb990106defb79b7932739134a9e861c99ddfc10
32f35d23b91c3c9197d3fd549e34561582dda9e4
refs/heads/master
2020-04-11T23:46:08.669371
2019-07-01T16:54:15
2019-07-01T16:54:15
162,178,720
4
1
null
null
null
null
UTF-8
Python
false
false
5,445
py
# AMO Model Separator - amo_s # Purpose: To make every model part in the character a separate AMG for use in Budokai series import struct import math import os def main(): print("") print("Drag and drop AMO here") x = input("") x = x.replace("\"", "") f = open(x, "r+b") # Copying files needed hti = 0 ith = 0 chunk = f.read(16) amg_head = open("Files\AMG\B3_amg_head.bin", "r+b") amg_head = amg_head.read() amg_axis = open("Files\AMG\B3_amg_axis.bin", "r+b") amg_axis = amg_axis.read() amg_mp1 = open("Files\AMG\B3_amg_mp1.bin", "r+b") amg_mp1 = amg_mp1.read() amg_mp2 = open("Files\AMG\B3_amg_mp2.bin", "r+b") amg_mp2 = amg_mp2.read() amg_end = open("Files\AMG\B3_amg_end.bin", "r+b") amg_end = amg_end.read() # Setting up temp bins tn1 = "Files\z.bin" # Will hold edited bin temp1 = open(tn1, "w+b") temp1.close() temp1 = open(tn1, "r+b") # Setting up AMG template temp1.write(amg_head) temp1.seek(16) temp1.write(b'\x01') temp1.read() temp1.write(amg_axis) temp1.seek(84) temp1.write(b'\x70\x00\x00\x00') temp1.read() temp1.write(amg_mp1) temp1.seek(116) temp1.write(b'\x80\x00\x00\x00') temp1.read() temp1.write(amg_mp2) temp1.seek(144) temp1.write(b'\x20\x00\x00\x00') temp1.seek(0) amg_temp = temp1.read() # Searches how many model parts are in the AMO and creates AMGs amount_parts = 0 while chunk != b"": if chunk[0] == 0x01 and chunk[8] == 0x46: amount_parts += 1 part_offset = f.tell() #print("DEBUG: Model part position - " + str(f.tell())) # Collects mesh----------------------------------------- f.seek(part_offset+64) hti = f.read(4) mesh_size = hex_to_int(hti) mesh_size = (mesh_size-1610612736)*16 #print("DEBUG: Mesh size - " + str(mesh_size)) f.seek(part_offset+80) mesh = f.read(mesh_size) # Collects the model part heading----------------------- f.seek(part_offset-80) mesh_heading = f.read(160) #print("DEBUG: Heading data collected...") f.seek(part_offset-72) # Texture number hti = f.read(4) if hti == b'\xFF\xFF\xFF\xFF': t_numb = "N" else: t_numb = hex_to_int(hti)+1 f.seek(part_offset-68) # Shader number hti = f.read(4) if hti == b'\xFF\xFF\xFF\xFF': s_numb = "N" else: s_numb = hex_to_int(hti) + 1 #print("DEBUG: Texture - " + str(t_numb)) #print("DEBUG: Shader - " + str(s_numb)) # Creating AMG for part found-------------------------- f_name = "Model Part " + str(amount_parts) + " - T" + str(t_numb) + "_S" + str(s_numb) + ".bin" #print("DEBUG: File name - " + f_name) folder = x+" - All parts\\" if not os.path.exists(folder): # Creates new folder for model parts os.makedirs(folder) amg = open(folder+f_name, "w+b") amg.close() amg = open(folder+f_name, "r+b") amg.write(amg_temp) amg.write(mesh_heading) amg.write(mesh) amg.write(amg_end) amg_size = amg.tell() #print("DEBUG: AMG size - " + str(amg_size)) amg.seek(28) amg.write(b'\x00\x00\x00\x00') amg.seek(28) ith = amg_size amg_size2 = int_to_hex(ith) amg.write(amg_size2) amg.seek(124) amg.write(b'\x00\x00\x00\x00') amg.seek(124) ith = amg_size-64 amg_size2 = int_to_hex(ith) amg.write(amg_size2) #print("") f.seek(part_offset) chunk = f.read(16) #print("DEBUG: Total amount of model parts - " + str(amount_parts)) print("") print("Completed!") # deletes temp files tn1 = "Files\z.bin" temp1 = open(tn1, "r+b") temp1.close() os.remove(tn1) print("") print("T#_S# = Texture used [Texture number in GGS], Shader used [Texture number in GGS].") print("TN or SN = No texture used.") print("You now have a new folder with all of the model parts in it located at [" + folder + "]") print("") def hex_to_int(hti): # Converts hex offsets to integer format hti = hti.hex() hti = int(hti, 16) hti = struct.pack('<L', hti) hti = hti.hex() hti = int(hti, 16) #print("DEBUG:HTI - " + str(hti)) return hti def int_to_hex(ith): # Opposite of hex_to_int ith = struct.pack('<L', ith) #print("DEBUG:ITH - " + str(ith)) return ith def again(): yn = input("Would you like to load another? (Y/N)") yn = yn.lower() if yn == "y" or yn == "yes": main() again() else: print("") print("AMO model separator by: Nexus-sama") print("credit to SamuelDBZMA&M for some parts") print("Follow me on Twitter @NexusTheModder") print("") kill = input("press enter to close") main() again() exit()
[ "noreply@github.com" ]
SamuelDBZMAAM.noreply@github.com
3b07fbf27860b7e43680ac8f5e92ef3e7704557d
c807f50194c1ad6912bab6d4cf848d51e6f4c120
/exercise_4/linked_list_step_4.py
e59af4bff7e3f4e4048c9869a18d7c0efdae8089
[ "MIT" ]
permissive
LDSSA/batch3-wave1-test-solutions
3cae5b6ab1b1e200d3209506436b6c3c6be727ad
3f5d72ec41888c8eb14937a437e1a13ef3d6d633
refs/heads/master
2020-05-21T16:51:49.317733
2019-05-20T09:07:39
2019-05-20T09:07:39
186,111,737
1
1
null
2019-05-16T14:27:26
2019-05-11T09:14:17
Python
UTF-8
Python
false
false
76
py
def update_list(l): l.remove_node(7) l.remove_node(10) return l
[ "mariacristinavfdominguez@gmail.com" ]
mariacristinavfdominguez@gmail.com
971f126af73af3400b894e7d1eac4731e8aa4ea0
a319119367429716fc57916ae479a66b8158cd16
/mantle/xilinx/spartan6/DCM.py
f0e14f4e4cc791ba3fe91184a20b4edc1c044319
[ "MIT" ]
permissive
phanrahan/mantle
788ab7689107ea139f87cb169d53ad6cd9a91e38
8193cf6df60f5be7f198e55d74d9a196abec8342
refs/heads/master
2023-01-05T17:21:29.458634
2022-12-20T20:14:12
2022-12-20T20:14:12
84,332,208
38
14
NOASSERTION
2021-09-17T04:07:31
2017-03-08T14:56:32
Verilog
UTF-8
Python
false
false
2,138
py
from magma import * __all__ = ['_DCM', 'DCM'] _DCM = DeclareCircuit('DCM', "CLKIN", In(Bit), "CLKFB", In(Bit), "PSCLK", In(Bit), "PSEN", In(Bit), "PSINCDEC", In(Bit), "RST", In(Bit), "CLKFX", In(Bit)) def DCM( freq, basefreq=32): """ Instantiate a Digital Clock Manager >>> DCM(freq,basefreq=32) O's clockrate is freq (in Mhz). clockin should be set to the frequency of the input clock. """ (mult, div), bestfreq = findbestclock(freq, basefreq) if freq != bestfreq: print("%d * %d / %d (%g) ~= %g" % (basefreq, mult, div, bestfreq, freq)) params = {} params["CLK_FEEDBACK"] = '"NONE"' params["CLKFX_DIVIDE"] = str(div) params["CLKFX_MULTIPLY"] = str(mult) params["DUTY_CYCLE_CORRECTION"] = '"FALSE"' params["STARTUP_WAIT"] = '"FALSE"' #params["X_CLKIN_PERIOD"] = '"31.25"' #for attr in ["PSEN", "PSINCDEC", "RST", "PSCLK"]: # params[attr + "INV"] = '"%s"' % attr dcm = _DCM(**params) for attr in ["PSEN", "PSINCDEC", "RST", "PSCLK"]: wire(GND, getattr(dcm, attr)) wire(GND, dcm.CLKFB) return AnonymousCircuit("input I", dcm.CLKIN, "output O", dcm.CLKFX) def findbestclock(freq, basefreq): bestfreq = freq bestdiff = 1024. bestclock = None for i in range(2, 33): f1 = basefreq * i for j in range(1, 33): f2 = f1 / float(j) diff = abs(f2 - freq) if diff < bestdiff: bestdiff = diff bestfreq = f2 best = (i, j) return best, bestfreq if __name__ == '__main__': from parts.xilinx.spartan6.primitives.BUF import BUFG d = DefineCircuit('main', "input CLKIN", Bit, "output CLKOUT", Bit) dcm = DCM(50) bufg = BUFG() wire(d.CLKIN, dcm.I) wire(dcm, bufg) wire(bufg, d.CLKOUT) EndCircuit() compiledefinitions('main.v', d)
[ "hanrahan@cs.stanford.edu" ]
hanrahan@cs.stanford.edu
1833e6bd9c1ffad2af48048acbdc3876e2309735
ce2bd9e3080726df8d6bbc98eb218bed8afbb04d
/app.py
626972e050675db212f356010e7f5bc651e410d3
[]
no_license
Abhishek-Dobliyal/MonoShot
325de6fdab483e3b9f4bcd558d92b798b02646cd
3bc1eb4d9a9e3aad5d833320782042c83d1fb7bd
refs/heads/main
2023-03-05T11:41:41.673738
2021-02-26T07:57:42
2021-02-26T07:57:42
341,968,995
0
0
null
null
null
null
UTF-8
Python
false
false
14,520
py
# Required Imports import streamlit as st # pip install streamlit from file_processing import FileProcessor import tempfile import os import shutil import time # Helper Functions def get_file_data(file): ''' Writes the uploaded file data to a temporary file for processing''' if not os.path.isdir("./temp_files"): os.mkdir("./temp_files") tempfile.tempdir = "temp_files" # Set the directory where all temp files will be stores temp_file = tempfile.NamedTemporaryFile(suffix="file_for_processing") temp_file.write(file.read()) return temp_file def display_progress_bar(): ''' Displays a progress bar to visualize the completion of a function ''' processing_txt = st.markdown("#### Processing, Please wait...") bar = st.progress(0) for percent in range(100): time.sleep(0.05) bar.progress(percent) bar.empty() processing_txt.empty() def display_msg(msg, msg_type=0): ''' Display message according to the type 1 -> Success Message 0 -> Info Message -1 -> Error Message ''' msg_widget = st.empty() if msg_type == 1: msg_widget = st.success(msg) time.sleep(3) msg_widget.empty() elif msg_type == -1: msg_widget = st.error(msg) time.sleep(3) msg_widget.empty() elif msg_type == 0: msg_widget = st.info(msg) time.sleep(3) msg_widget.empty() def get_file_details(processed_file_path, processed_file_details, file_extension): ''' Dispalys the basic details of the file inside an expander widget ''' info_expander = st.beta_expander("Output Section") with info_expander: processed_col, file = st.beta_columns(2) processed_col.write(processed_file_details) if file_extension in ("mov", "mp4", "avi"): file.video(processed_file_path) else: file.image(processed_file_path) def display_processed_file(processed_file_path, processed_files): ''' Displays the processed file in web app ''' if not processed_files: display_msg("No files processed yet.", -1) elif len(processed_files) == 1: file = processed_files[0] processed_filename, processed_file_ext = os.path.basename(processed_file_path + file).split('.') processed_file_details = { "File Name": processed_filename, "File Type": processed_file_ext, "File Size": str(round(os.path.getsize(processed_file_path + file) / 1e6, 2)) + " MB" } if processed_file_ext in ("mov", "mp4", "avi"): get_file_details(processed_file_path + file, processed_file_details, processed_file_ext) else: get_file_details(processed_file_path + file, processed_file_details, processed_file_ext) else: display_msg("You can only process and download a single file at a time", 0) shutil.rmtree(processed_file_path) def display_info_sections(): ''' Displays the instructions and about section ''' help_expander = st.beta_expander("Instructions") about_expander = st.beta_expander("About") instructions = ''' * **Choose or Drag N Drop** a file to upload. For a video file, the duration must not exceed the 30 seconds mark. * Once uploaded, select the enhacements you would like to apply from the sidebar. * Click on the **Generate** button and wait for the processing to complete. * Once completed, click on the **Proceed to Download** button to generate the output. * Wait for the processing to complete **(notice the RUNNING status on the top right hand corner)**. Once completed, expand the **Output Section** section to view the output. * If satisfied with the results: - If the output is an image file then right click on the file and select the **Save as** option to download the output ( This applies to GIFs and Boomerangs as well ). - If it is a video file then click on the **Three dots** present at the bottom right corner inside the video player and select **Download**. ''' about = ''' Made By <span style="color:seagreen">**Abhishek Dobliyal**</span> :smile: [![GitHub Abhishek-Dobliyal](https://img.shields.io/github/followers/Abhishek-Dobliyal?label=follow&style=social)](https://github.com/Abhishek-Dobliyal) [![Linkedin: Abhishek Dobliyal] (https://img.shields.io/badge/-AbhishekDobliyal-blue?style=flat-square&logo=Linkedin&logoColor=white&link=https://www.linkedin.com/in/abhishek-dobliyal-4474061b7/)] (https://www.linkedin.com/in/abhishek-dobliyal-4474061b7) #### Modules Utilized: - <a style="text-decoration: none;" href="http://streamlit.io/" target="blank_"> Streamlit </a> - <a style="text-decoration: none;" href="https://opencv.org/releases/" target="blank_"> OpenCV </a> - <a style="text-decoration: none;" href="https://zulko.github.io/moviepy/" target="blank_"> MoviePy </a> - <a style="text-decoration: none;" href="https://pillow.readthedocs.io/en/3.0.x/index.html" target="blank_"> Pillow </a> - <a style="text-decoration: none;" href="https://numpy.org/" target="blank_"> NumPy </a> #### Hope You Like It :blush: ''' with help_expander: # Instructions help_expander.markdown(instructions, unsafe_allow_html=True) with about_expander: # About about_expander.markdown(about, unsafe_allow_html=True) # Main App def main(): ''' The main Web app ''' # Set Page name and favicon ICON = "./assets/favicon.png" st.set_page_config(page_title="MonoShot", page_icon=ICON) # Title TITLE_STYLE = ''' border: 3px solid #9ab7d6; border-radius: 15px; text-align: center; background: rgb(220, 235, 237); color: white; font-family: Futura, sans-serif; color: pink; text-shadow: #000 0px 0px 1px; ''' title = f''' <div style="{TITLE_STYLE}"> <h1> MONOSHOT </h1> </div> ''' st.markdown(title, unsafe_allow_html=True) # Render the HTML/CSS # Header HEADER = "Just a single shot that's all it takes." st.subheader(HEADER) # File Upload and Selections PROCESSED_DATA_PATH = "./processed_data/" uploaded_file = st.file_uploader("Upload your file here:", type=[".mp4", ".avi", ".mov", ".jpeg", ".jpg", ".png"]) if uploaded_file: file_data = get_file_data(uploaded_file) processor = FileProcessor(file_data) # Processor object for applying diff. methods to the media file if uploaded_file.type in ("video/mp4", "video/mov", "video/avi"): if not os.path.isdir(PROCESSED_DATA_PATH): os.mkdir(PROCESSED_DATA_PATH) video_duration = processor.get_duration() has_required_dim = processor.get_dimensions() if video_duration > 30: display_msg("Oops! Video too long to be processed!", -1) elif not has_required_dim: display_msg("Oops! Allowed Resolutions are: 360p, 480p, 720p and 1080p", -1) else: # SideBar Widgets select_options = ["Enhance Image", "Generate Shot"] select_output = st.sidebar.selectbox("Select Enhancement:", select_options) if select_output: time.sleep(1.5) if select_output == "Enhance Image": time_stamp = st.sidebar.slider("Choose the time stamp (in seconds)", min_value=1, max_value=video_duration, step=1) brightness_lvl = st.sidebar.slider("Brightness:", min_value=0.0, max_value=2.0, step=0.2, value=1.0) sharpness_lvl = st.sidebar.slider("Sharpness:", min_value=0.0, max_value=2.0, step=0.2, value=1.0) contrast_lvl = st.sidebar.slider("Contrast:", min_value=0.0, max_value=2.0, step=0.2, value=1.0) color_lvl = st.sidebar.slider("Color:", min_value=0.0, max_value=2.0, step=0.2, value=1.0) if st.sidebar.button("Generate"): processor.enhanced_img(PROCESSED_DATA_PATH, time_stamp*1000, # Timestamp should be in milliseconds brightness_lvl, sharpness_lvl, contrast_lvl, color_lvl) display_progress_bar() display_msg("Enhanced Image has been successfully generated.", 1) elif select_output == "Generate Shot": display_msg("NOTE: It may take a while to generate a shot.", 0) shot_options = ["SlowMo", "TimeLapse", "GIF", "Boomerang"] shot = st.sidebar.selectbox("Select Shot:", shot_options) if shot == "SlowMo" and st.sidebar.button("Generate"): processor.generate_shot(PROCESSED_DATA_PATH, slowmo=True) display_progress_bar() display_msg("SlowMo has been successfully generated.", 1) elif shot == "TimeLapse" and st.sidebar.button("Generate"): processor.generate_shot(PROCESSED_DATA_PATH, timelapse=True) display_progress_bar() display_msg("TimeLapse has been successfully generated.", 1) elif shot == "GIF" and st.sidebar.button("Generate"): processor.generate_shot(PROCESSED_DATA_PATH, gif=True) display_progress_bar() display_msg("GIF has been successfully generated.", 1) elif shot == "Boomerang": start_time = st.sidebar.slider("Choose the start time (in seconds):", min_value=1, max_value=video_duration, step=1) end_time = st.sidebar.slider("Choose the end time (in seconds):", min_value=start_time + 2, max_value=video_duration, step=1) if st.sidebar.button("Generate"): processor.generate_shot(PROCESSED_DATA_PATH, boomerang=(True, start_time, end_time)) display_progress_bar() display_msg("Boomerang has been successfully generated.", 1) else: display_msg("Please select atleast a single option to proceed.", 0) else: if not os.path.isdir(PROCESSED_DATA_PATH): os.mkdir(PROCESSED_DATA_PATH) select_options = ["Enhance Resolution", "Apply Filter", "Extract Text"] select_output = st.sidebar.selectbox("Select Enhancement:", select_options) if select_output: time.sleep(1.5) if select_output == "Enhance Resolution": if st.sidebar.button("Generate"): display_msg("Please wait. It may take a while to enhance the resolution...", 0) processor.enhance_resolution(PROCESSED_DATA_PATH) display_progress_bar() display_msg("Enhanced Resolution Image has been successfully generated.", 1) elif select_output == "Apply Filter": select_options = ["Pencil Sketch", "Water Colored", "Faded", "Document", "Cartoonify", "Vigenette", "Phantom", "Negative"] select_output = st.sidebar.selectbox("Select a filter:", select_options) if st.sidebar.button("Generate"): processor.apply_filter(PROCESSED_DATA_PATH, filter=select_output) display_progress_bar() display_msg("Filter has been successfully applied.", 1) elif select_output == "Extract Text": if st.sidebar.button("Fetch Text"): txt = processor.extract_txt() if txt: display_msg("Text extraction successful.", 1) text_expander = st.beta_expander("Output Section") with text_expander: st.text("*" * 70) st.write(txt) st.text("*" * 70) else: display_msg("Failed to extract text!", -1) else: display_msg("Please select atleast a single option to proceed.", 0) file_data.close() # Delete the temp file after all the operations. shutil.rmtree("./temp_files") helper_widget = st.empty() processed_files = os.listdir(PROCESSED_DATA_PATH) if processed_files: if helper_widget.button("Proceed to Download"): display_processed_file(PROCESSED_DATA_PATH, processed_files) display_info_sections() if __name__ == '__main__': main()
[ "noreply@github.com" ]
Abhishek-Dobliyal.noreply@github.com
32ab833d177d77afda396b1be367557bb9ddf33f
d315461033c69c8055aba6ac90b4053886a16afa
/local/common/internet_active.py
7d949f6f320828be6e81e054578af3cde4b6eefc
[]
no_license
dhhjjdfg/GotoX
5855653d4b100bef2269b5fba8cdf422e3583fc6
6fee4d20e109fbbe0c9d9bd2d29a6cb2d3873948
refs/heads/master
2023-03-10T10:20:09.687538
2021-02-26T05:14:54
2021-02-26T05:14:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,814
py
# coding:utf-8 #ๆญค่„šๆœฌ้€š่ฟ‡ๅŸŸๅ่งฃๆžๆต‹่ฏ•็ฝ‘็ปœ็Šถๆ€๏ผŒไธๆ”ฏๆŒ UDP ็š„ๅ‰็ซฏไปฃ็†ๆ— ๆณ•ไฝฟ็”จ #ๅณไฝฟๅ‰็ฝฎไปฃ็†ๆ”ฏๆŒ UDP๏ผŒ่ฟ˜้œ€่ฆไฟฎๆ”นๅฅ—ๆŽฅๅญ—ไฝฟ็”จไปฃ็† import os import queue import socket import random import dnslib import logging import collections from time import time, sleep from select import select from threading import _start_new_thread as start_new_thread from .net import isipv4, isipv6, get_wan_ipv6 from .path import get_dirname from .util import spawn_loop from local.GlobalConfig import GC #็ฝ‘็ปœๆต‹่ฏ•่ฆๆฑ‚็จณๅฎšใ€ๅฟซ้€Ÿ๏ผŒๆ‰€ไปฅ้€‰ๅ›ฝๅ†…็š„ DNS IP dns_ips_v4 = ( #็”ตไฟก 114 #https://www.114dns.com/ '114.114.114.114', '114.114.115.115', '114.114.114.110', '114.114.115.110', '114.114.114.119', '114.114.115.119', #้˜ฟ้‡Œ #http://www.alidns.com/ '223.5.5.5', '223.6.6.6', #็™พๅบฆ #http://dudns.baidu.com/intro/publicdns/ '180.76.76.76', #่…พ่ฎฏ DNSPod #https://www.dnspod.cn/Products/Public.DNS '119.28.28.28', '119.29.29.29', '182.254.116.116', '182.254.118.118', #DNS ๆดพ #http://www.dnspai.com/public.html '101.226.4.6', '218.30.118.6', '123.125.81.6', '140.207.198.6', #OneDNS #http://www.onedns.net/ '117.50.11.11', '117.50.22.22', '112.124.47.27', '114.215.126.16', #CNNIC SDNS #http://public.sdns.cn/emergency_services.shtml '1.2.4.8', '210.2.4.8', ) dns_ips_v6 = ( #CFIEC #http://www.cfiec.net/dns/s/?978.html #http://www.chinaipv6.com.cn/ '240c::6666', '240c::6644', #CNNIC '2001:dc7:1000::1', #ๆธ…ๅŽๅคงๅญฆ TUNA ๅไผš #https://tuna.moe/help/dns/ '2001:da8::666', #ๅŒ—ไบฌ็ง‘ๆŠ€ๅคงๅญฆ '2001:da8:208:10::6', #ๅง‹็ปˆๅ›žๅบ” REFUSED #ไธŠๆตทไบคๅคง #http://ipv6.sjtu.edu.cn/dns.php '2001:da8:8000:1:202:120:2:100', #ๅง‹็ปˆๅ›žๅบ” REFUSED '2001:da8:8000:1:202:120:2:101', #ๅง‹็ปˆๅ›žๅบ” REFUSED #ๅŒ—ไบฌ้‚ฎ็”ตๅคงๅญฆ '2001:da8:202:10::36', '2001:da8:202:10::37', #็™พๅบฆ #http://dudns.baidu.com/intro/publicdns/ '2400:da00::6666', ) #็”จไบŽ Teredo ้šง้“็ญ‰ dns_ips_v6w = ( #Google #https://developers.google.com/speed/public-dns/docs/using '2001:4860:4860::8888', '2001:4860:4860::8844', #OpenDNS #https://www.opendns.com/about/innovations/ipv6/ '2620:119:35::35', '2620:119:53::53', #Cloudflare #https://developers.cloudflare.com/1.1.1.1/setting-up-1.1.1.1/ '2606:4700:4700::1111', '2606:4700:4700::1001', #Quad9 #https://www.quad9.net/faq/ '2620:fe::fe', '2620:fe::9', #Neustar UltraDNS #https://www.security.neustar/digital-performance/dns-services/recursive-dns '2610:a1:1018::1', '2610:a1:1019::1', '2610:a1:1018::5', '2610:a1:1019::5', #'2610:a1:1018::2', #'2610:a1:1019::2', #'2610:a1:1018::3', #'2610:a1:1019::3', #'2610:a1:1018::4', #'2610:a1:1019::4', ) def read_domains(file): domains = set() with open(file, 'r') as fd: for line in fd: if line[:1] not in '#;': domain = line.strip() if domain: domains.add(domain) return list(domains) current_dir = get_dirname(__file__) domains_file = os.path.join(current_dir, 'domains.txt') domains = read_domains(domains_file) class InternetActiveCheck: max_qdata_num = 256 max_check_times = 0 only_check_ip = None def __init__(self, type, domains=domains): self.in_check = False self.last_stat = None self.qdata = None self._dns_servers = None if type.lower() == 'ipv4': self.type = 'IPv4' self.set_dns_servers(dns_ips_v4) elif type.lower() == 'ipv6': self.type = 'IPv6' self.only_check_ip = GC.LINK_FASTV6CHECK self.set_dns_servers_v6() spawn_loop(10, self.set_dns_servers_v6) domains = domains.copy() random.shuffle(domains) del domains[self.max_qdata_num:] self.qdata_list = collections.deque(dnslib.DNSRecord.question(qname).pack() for qname in domains) self.sock = socket.socket(socket.AF_INET if self.type == 'IPv4' else socket.AF_INET6, socket.SOCK_DGRAM) def set_dns_servers(self, dns_ips): dns_servers = [(ip, 53) for ip in dns_ips] random.shuffle(dns_servers) self.max_check_times = len(dns_servers) self._dns_servers = dns_servers self.dns_servers = None def set_dns_servers_v6(self): if '6' not in GC.LINK_PROFILE: return addr6 = get_wan_ipv6() if addr6: if addr6.teredo: if self.type != 'IPv6 Teredo': if self.type != 'IPv6': logging.warning('ๆฃ€ๆต‹ๅˆฐ IPv6 ็ฝ‘็ปœๅ˜ๅŠจ๏ผŒๅฝ“ๅ‰ไฝฟ็”จ Teredo ้šง้“๏ผŒIP๏ผš%s', addr6) self.type = 'IPv6 Teredo' if not (self._dns_servers or self.only_check_ip): self.set_dns_servers(dns_ips_v6w) elif addr6.sixtofour: if self.type != 'IPv6 6to4': if self.type != 'IPv6': logging.warning('ๆฃ€ๆต‹ๅˆฐ IPv6 ็ฝ‘็ปœๅ˜ๅŠจ๏ผŒๅฝ“ๅ‰ไฝฟ็”จ 6to4 ้šง้“๏ผŒIP๏ผš%s', addr6) self.type = 'IPv6 6to4' if not (self._dns_servers or self.only_check_ip): self.set_dns_servers(dns_ips_v6w) else: if self.type != 'IPv6 Global': if self.type != 'IPv6': logging.warning('ๆฃ€ๆต‹ๅˆฐ IPv6 ็ฝ‘็ปœๅ˜ๅŠจ๏ผŒๅฝ“ๅ‰ไฝฟ็”จๅŽŸ็”Ÿ็ฝ‘็ปœ๏ผŒIP๏ผš%s', addr6) self.type = 'IPv6 Global' if not (self._dns_servers or self.only_check_ip): self.set_dns_servers(dns_ips_v6) if self.only_check_ip and self.last_stat != 1: if self.last_stat is not None: logging.warning('IPv6 ็ฝ‘็ปœๆขๅค่ฟžๆŽฅ') self.last_stat = 1 else: if self.only_check_ip and self.last_stat != 0: logging.error('IPv6 ็ฝ‘็ปœ็Žฐๅœจไธๅฏ็”จ๏ผŒๅฐ†ๆฏ 10 ็ง’ๆฃ€ๆต‹ไธ€ๆฌกโ€ฆโ€ฆ') self.last_stat = 0 self._dns_servers = None return def is_active(self, keep_on=None): if self.only_check_ip: while keep_on and not self.last_stat: sleep(5) return self.last_stat time_pass = 0 while self.in_check: sleep(0.01) time_pass += 0.01 if time_pass > 10: if not keep_on: break time_pass = 0.01 if time_pass: return self.last_stat self.in_check = True ok = None haserr = None ins = True sent = [] check_times = 0 try: #ๆธ…็†่ฟ‡ๆœŸๅ“ๅบ” while ins: ins, _, _ = select([self.sock], [], [], 0) if ins: self.sock.recvfrom(512) while ok is None: check_times += 1 if check_times > self.max_check_times: if not haserr: if not keep_on: ok = False break haserr = True try: keep_on = abs(int(keep_on)) except: keep_on = 10 logging.error('%s ็ฝ‘็ปœ็Žฐๅœจไธๅฏ็”จ๏ผŒๅฐ†ๆฏ %d ็ง’ๆฃ€ๆต‹ไธ€ๆฌกโ€ฆโ€ฆ', self.type, keep_on) sleep(keep_on) if self._dns_servers is None: check_times = self.max_check_times continue if not self.dns_servers: self.dns_servers = self._dns_servers.copy() self.qdata = self.qdata_list.pop() self.qdata_list.appendleft(self.qdata) dns_server = self.dns_servers.pop() try: self.sock.sendto(self.qdata, dns_server) sent.append(dns_server) ins, _, _ = select([self.sock], [], [], 0.5) if ins: _, peername = self.sock.recvfrom(512) if peername[:2] in sent: ok = True except: pass except: pass finally: self.last_stat = int(ok is True) self.in_check = False if haserr: logging.warning('%s ็ฝ‘็ปœๆขๅค่ฟžๆŽฅ', self.type) return self.last_stat internet_v4 = InternetActiveCheck('ipv4') internet_v6 = InternetActiveCheck('ipv6') qobj_cache = queue.deque() def _is_active(type, qobj, keep_on): if type == 4: stat = internet_v4.is_active(keep_on) elif type == 6: stat = internet_v6.is_active(keep_on) qobj.put(stat) def is_active(type='ipv4', keep_on=None): stat = 1 n = 0 try: qobj = qobj_cache.pop() qobj.queue.clear() except IndexError: qobj = queue.LifoQueue() if type.lower() in ('ipv4', 'ipv46') or isipv4(type): start_new_thread(_is_active, (4, qobj, keep_on)) n += 1 if type.lower() in ('ipv6', 'ipv46') or isipv6(type): start_new_thread(_is_active, (6, qobj, keep_on)) n += 1 for _ in range(n): _stat = qobj.get() if _stat and keep_on: return _stat stat &= _stat qobj_cache.append(qobj) if n: return stat else: logging.error('is_active๏ผš้”™่ฏฏ็š„ type ๅ‚ๆ•ฐ๏ผš%s', type)
[ "Seahoh@Gmail.com" ]
Seahoh@Gmail.com
3237faa7ea52ea2f166108e843853e2fa401b89f
57d7c6ef3e16999661ef959336158a833fc83c8c
/competitive level/TuxTiepattern1.py
85fd88c6742865912da6a030176bf79447cd43f9
[]
no_license
Sevansu/PythonBasicPrograms
c60402bd7d2d469337ff58241532450d0ba38da2
3367140193844091eb9d4e43ea014c2176721543
refs/heads/master
2021-06-26T14:01:43.105778
2020-12-15T10:15:40
2020-12-15T10:15:40
183,554,250
1
0
null
null
null
null
UTF-8
Python
false
false
363
py
try: n=abs(int(input("Enter number of lines:"))) if n&1: for i in range(1,n+1): for j in range(1,n+1): print([' ','*'][(j<=i or j>n-i if i<=(n+1)/2 else j<=n-i+1 or j>=i) and (i&1)==(j&1)],end=' ') print('') else:print("Invalid input. Input must be an odd number") except:print("Invalid input. Input must be an odd number")
[ "noreply@github.com" ]
Sevansu.noreply@github.com
481377a716123168e4dd9980470b57b9c3cd8ce8
d25d42d61c450a0a9c337861069df97660df8f39
/datacleaning.py
35a0ad14d55917f3e29948e78c3b8a64524e425a
[]
no_license
zehaowork/Open-Data-Innovation-CW1
e90d3577e9223319c15014c81d9b71ddb2dbc8f4
2f3611fc58125ca63977fcbe05fa2ced1b914dba
refs/heads/main
2023-03-28T15:08:19.126606
2021-03-31T18:29:10
2021-03-31T18:29:10
344,849,819
1
0
null
null
null
null
UTF-8
Python
false
false
124
py
import pandas as pd sample_size = pd.ExcelFile('CW1-BusinessImpactsOfCovid19Data.xlsx') print(sample_size['Sample Size'])
[ "zehaowork@outlook.com" ]
zehaowork@outlook.com
bb10f37c105b960f6047c77acfdca615d5446032
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/nTW4KgmJxpLDXcWPt_6.py
a0d819f3ad17c6e5031c3261795b415657d3c1e2
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
""" Write a function that moves all elements of one type to the **end** of the list. ### Examples move_to_end([1, 3, 2, 4, 4, 1], 1) โžž [3, 2, 4, 4, 1, 1] # Move all the 1s to the end of the array. move_to_end([7, 8, 9, 1, 2, 3, 4], 9) โžž [7, 8, 1, 2, 3, 4, 9] move_to_end(["a", "a", "a", "b"], "a") โžž ["b", "a", "a", "a"] ### Notes Keep the order of the un-moved items the same. """ def move_to_end(lst, el): return [i for i in lst if i!=el]+([el]*lst.count(el))
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
67128f9bdccd6db6951e2c77216a82f0ca32a684
fbf3d58c8410cc3bd5ef28e03576550f137f2b44
/voting-client/node_modules/webpack-dev-server/node_modules/socket.io/node_modules/engine.io/node_modules/ws/node_modules/bufferutil/build/config.gypi
99f3b3c25007889f1fec4c9214c0f52984300397
[ "MIT" ]
permissive
SpencerCDixon/React-Redux-Voting
7fba4b6b34c07ff96bd1eeef7bcacbc34a1f1af3
f515c5dbf6bd53753fb90791459727a9cb240e39
refs/heads/master
2016-09-06T04:29:49.661213
2015-09-22T13:24:13
2015-09-22T13:24:13
42,935,102
2
0
null
null
null
null
UTF-8
Python
false
false
3,750
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "icu_data_file": "icudt54l.dat", "icu_data_in": "../../deps/icu/source/data/in/icudt54l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "./deps/icu", "icu_small": "true", "icu_ver_major": "54", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_mdb": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "openssl_no_asm": 0, "python": "/usr/bin/python", "target_arch": "x64", "uv_library": "static_library", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_random_seed": 0, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/Users/spencerdixon/.node-gyp/0.12.7", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "true", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/zsh", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "fetch_retries": "2", "npat": "", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "cafile": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "access": "", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/spencerdixon/.npm-init.js", "userconfig": "/Users/spencerdixon/.npmrc", "node_version": "0.12.7", "user": "501", "save": "true", "editor": "mvim", "tag": "latest", "global": "", "optional": "true", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "strict_ssl": "true", "tag_version_prefix": "v", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/spencerdixon/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/2.11.3 node/v0.12.7 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "1.0.0", "umask": "0022", "git": "git", "init_author_name": "", "scope": "", "onload_script": "", "tmp": "/var/folders/9f/n_j80xgs5w57sj6bf6b9tw7w0000gn/T", "unsafe_perm": "true", "link": "", "prefix": "/usr/local" } }
[ "spencercdixon@gmail.com" ]
spencercdixon@gmail.com
9393c39a5b7513fadd41c4b6eee020413957d027
1ec436504cb7dbd4796931cf64faa333c827b6e4
/flask_service/runSimulation.py
d0eb5a21be3bb17ddf780034c327c1c1c69dd9e4
[]
no_license
IDPSGitHubProjects/SIM_app
540cf479fa3b28817a624257bb0f7f8740caa2e2
58caab39f5a4ea920bf6a53b338a9674fbe8c46b
refs/heads/master
2023-04-14T14:41:52.434085
2021-05-02T04:20:05
2021-05-02T04:20:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,414
py
import pandas as pd import json,sys import numpy as np class SpaceNode: def __init__(self,data): # print(data) self.name = data['spaceName'] self.area = float(data['area']) self.level = int(data['level']) self.window = data['window'] self.occupied = data['occupied'] self.contains = [] self.nextElement = None class DeviceNode: def __init__(self,data): self.name = data['deviceName'] self.type = data['type'] self.placement = data['placement'] self.networks = data['networks'] self.visibility = data['visibility'] self.monitoring = data['monitoring'] self.nextElement = None class Vertex: def __init__(self, node): self.id = node.name self.data = node self.adjacent = {} # Set distance to infinity for all nodes # self.distance = float('inf') self.distance = 100 # Mark all nodes unvisited self.visited = False # Predecessor self.previous = None def add_neighbor(self, neighbor, weight=0): self.adjacent[neighbor] = weight def get_connections(self): return self.adjacent.keys() def get_id(self): return self.id def get_weight(self, neighbor): return self.adjacent[neighbor] def set_distance(self, dist): self.distance = dist def get_distance(self): return self.distance def set_previous(self, prev): self.previous = prev def set_visited(self): self.visited = True def __str__(self): return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent]) class Graph: def __init__(self): self.vert_dict = {} self.num_vertices = 0 def __iter__(self): return iter(self.vert_dict.values()) def add_vertex(self, node): self.num_vertices = self.num_vertices + 1 new_vertex = Vertex(node) self.vert_dict[node.name] = new_vertex # name to vertex mapping return new_vertex def get_vertex(self, n): if n in self.vert_dict: return self.vert_dict[n] else: return None def add_edge(self, frm, to, cost = {}): if frm not in self.vert_dict: self.add_vertex(self.vert_dict[frm]) if to not in self.vert_dict: self.add_vertex(self.vert_dict[to]) self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost) self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost) def add_directed_edge(self, frm, to): if frm not in self.vert_dict: self.add_vertex(self.vert_dict[frm]) self.vert_dict[frm].add_neighbor(self.vert_dict[to]) def get_vertices(self): return self.vert_dict.keys() def set_previous(self, current): self.previous = current def get_previous(self, current): return self.previous class RunSim: def generatePaths(self,u,d): res = [] def dfs(u,d,path): u.visited = True path.append(u.data.name) # If current vertex is same as destination, then print if u == d: # print(path) res.append(list(path)) else: # If current vertex is not destination # Recur for all the vertices adjacent to this vertex for i in u.get_connections(): if i.visited == False: dfs(i, d, path) # Remove current vertex from path[] and mark it as unvisited path.pop() u.visited = False dfs(u,d,[]) return res def calculate1(self,df_attack,paths,g): all_paths = [] for path in paths: # breach_time = 0 breach_difficulty = "" attack_type = "" result_path = "Outside, " breached_node = "" breached = False for i in range(len(path)): curr = path[i] device_generic_name = ''.join([i for i in curr if not i.isdigit()]).strip() curr_node = g.vert_dict[curr] # if the curr node is space node if curr_node.data.__class__.__name__ == 'SpaceNode': # check all its connections to see if there is any monitoring device monitored = False # check if the space has windows or is occupied if curr_node.data.window == False or curr_node.data.occupied == True: continue for conn in g.vert_dict[curr].get_connections(): if conn.data.__class__.__name__ == 'SpaceNode': continue if curr in conn.data.monitoring: # print("monitored") monitored = True break if not monitored: result_path+=curr+" window, " breach_difficulty = "easy" breached_node = curr attack_type = "physical" # if the curr node is vulnerable to cyber attack elif device_generic_name in df_attack['Attacked device'].values.tolist(): df_curr_attack = df_attack[df_attack['Attacked device']==device_generic_name] list_index = [] curr_network = curr_node.data.networks for index,row in df_curr_attack.iterrows(): if len(set(row['Communication protocol']).intersection(set(curr_network)))>0: list_index.append(index) df_filtered = df_curr_attack[df_curr_attack.index.isin(list_index)] # print(df_filtered) for index,row in df_filtered.iterrows(): # print(row) if row['Constraint'] == 'visibility': # print("visibility") # Laser attack if 'Outside' in curr_node.data.visibility: if row['Testing Device'] in path[i+1:]: breach_difficulty = row['Attack difficulty'] breached_node = curr result_path+=curr+", " attack_type = row['Attack Vector'] for j in range(i+1,len(path)): result_path+=path[j]+", " # breach_time+=5 breached = True break elif np.isnan(row['Constraint']): # print("else") breach_difficulty = row['Attack difficulty'] breached_node = curr result_path+=curr+", " attack_type = row['Attack Vector'] for j in range(i+1,len(path)): result_path+=path[j]+", " # breach_time+=5 breached = True break if breached: break if breached_node!="": attack_path = breached_node+" : "+breach_difficulty+" : "+ attack_type+" : "+result_path if attack_path not in all_paths: all_paths.append(attack_path) return all_paths def tranformAttackPaths(self,data,attack): ''' converts a string of attack path into a graph format which is compatible for D3 force directed graph viz input: data(json input graph), attack(string) output: output graph (json) ''' # assigning groups to differentiate nodes with different colors for i in data['Spaces']: i['group']='space' if i['spaceName']!='Outside' else 'Outside' i['name'] = i['spaceName'] for i in data['Devices']: i['group']='device' i['name'] = i['deviceName'] final = {"vertices":data['Spaces']+data['Devices']} # edges represent physical and cyber connections edges = [] # adding all cyber connection for i in data['CyberConnections']: for j in i['targets']: edges.append({'source':j,'target':i['sources'],'distance':30,'group':2}) # adding all physical connection for i in data['PhysicalConnections']: edges.append({'source':i['sources'],'target':i['targets'],'distance':30,'group':1}) # adding all containment connections for i in data['Devices']: edges.append({'source':i['placement'],'target':i['deviceName'],'distance':15,'group':3}) # links show attack paths links = [] # attack string format - "target_node:attack_difficulty:attack_type:attack_path" attack_split = attack.split(':') path_list = attack_split[-1].strip()[:-1].split(',') # for nodes in the attack path adjacent nodes become source and target respectively for i in range(len(path_list)-1): # if there is a break-in through window, we extract the space name since nodes in graph # have space names source = path_list[i].split('window')[0].strip() target = path_list[i+1].split('window')[0].strip() # if "physical" in attack_split[2]: # target = target.split(' ')[0] # assigning link distance as 20 (can be experimented with for better viz) # also initializing the attack type only for the first node which has been targeted # the attack type will be displayed on the link in the output graph links.append({'source':source,'target':target,'distance':20,'group':4, 'attack':attack_split[2]+attack_split[1] if i==0 else ''}) # assigning the targeted node which will be highlighted in the graph for i in final['vertices']: if i['name'] == attack_split[0].strip(): i['attacked']=True else: i['attacked']=False final['edges']=edges final['links']=links return final def main(self,data): g = Graph() # create space vertices for s in data['Spaces']: g.add_vertex(SpaceNode(s)) # add space connections for pc in data['PhysicalConnections']: g.add_edge(pc['sources'],pc['targets'],pc) # create device vertices for d in data['Devices']: g.add_vertex(DeviceNode(d)) # add device connections for cc in data['CyberConnections']: for target in cc['targets']: g.add_directed_edge(cc['sources'],target) # add edges between devices and spaces by checking where they are placed for d in data['Devices']: g.add_directed_edge(d['placement'],d['deviceName']) # reads the excel file in the current folder df_attack = pd.read_excel('attack_models.xls',sheet_name='Sheet2') # splits multiple values and converts it into a list df_attack['Communication protocol'] = df_attack['Communication protocol'].map(lambda x: x.split(',')) df_attack['Smart home solution'] = df_attack['Smart home solution'].map(lambda x: x.split(',')) # not taking outside node into consideration vertices = [v for v in g if v.data.name!='outside'] candidate_paths = [] # for every combination of start and end nodes generate path. # TODO: logic can be improved for v in vertices: for u in vertices: temp = self.generatePaths(u,v) if temp: candidate_paths.extend(temp) return {'attacks':self.calculate1(df_attack,candidate_paths,g)}
[ "rahulagarwal@Rahuls-MacBook-Pro.local" ]
rahulagarwal@Rahuls-MacBook-Pro.local
ed2d87291941590e4acfaefb1d07eb4fb4fbdf83
b80fbb7238b91858932169e1595b7fe04015a9a5
/benchmarking_rule_check_optimized.py
8a247512d68b221d7e2f8a51f05f0c3469b15fbd
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jake-billings/research-graphs
a65e7e611b8af7eb92543acb0e1d44938039c483
fcb5007bebf027d2da2fb29b2b9d37b17ae42889
refs/heads/master
2021-01-21T08:51:49.179790
2018-01-12T05:38:52
2018-01-12T05:38:52
91,642,820
0
0
null
null
null
null
UTF-8
Python
false
false
963
py
import networkx as nx from time import time import graph if __name__ == "__main__": G = graph.treex(3, 8) G.add_edge(2, 7) print "Testing network of size", len(nx.to_numpy_matrix(G)) start_optimized = time() follows_rules_optimized = graph.does_follow_rules_optimized(nx.to_numpy_matrix(G)) end_optimized = time() start_normal = time() follows_rules = graph.does_follow_rules(nx.to_numpy_matrix(G)) end_normal = time() optimized_duration = end_optimized - start_optimized normal_duration = end_normal - start_normal if follows_rules != follows_rules_optimized: print "The functions disagree. This is a huge problem." print "Follows rules: ", follows_rules print "Time optimized: ", optimized_duration, "seconds" print "Time slow: ", normal_duration, "seconds" print "The optimized algorithm ran in ", optimized_duration/normal_duration*100, "% of the time as the normal algorithm."
[ "jake@jakebillings.com" ]
jake@jakebillings.com
ab49b4cc29be7c1856e89b14aeaf2bd67a324f7c
99d80e6403488291e2f15eb989b6815a16bf9366
/pyfolio1.py
6c24a80bc5eedff886a578c6e081854be07effd0
[]
no_license
rorro128/finanzas
72f975f0d6bdac5c109aa5d27f1c8fb708c673e3
0a1e8065988858016a4199e3120cb83ef9c86383
refs/heads/main
2023-06-30T09:09:50.187407
2021-08-02T23:39:11
2021-08-02T23:39:11
392,125,480
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
import pyfolio as pf import warnings warnings.filterwarnings('ignore') stock_rets = pf.utils.get_symbol_rets('AMZN') pf.create_returns_tear_sheet(stock_rets, live_start_date='2015-12-1')
[ "noreply@github.com" ]
rorro128.noreply@github.com
ffd55c1a5a6990efbf68b16e0f88165b675f4f9d
523522ed5b9573dd495dad23e91b630c18e5eb08
/simpleUnixServer/compile.py
4a7865b0edf5e6e8b9b7b09675f2e992e1be6d35
[]
no_license
leonlazuli/tempWorkShop
a72cb989a029f2d6d1cebfed598133014f5f9241
9476ed6c0a7801b4e7ec689ff9b95146371f4b25
refs/heads/master
2021-01-10T08:38:04.223461
2016-01-07T01:26:48
2016-01-07T01:26:48
48,371,409
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
import subprocess import sys command1 = "gcc -o main webServer.c;" command2 = " gcc -o client webClient.c rio.h;" command3 = " gcc -o cgi-bin/adder cgi-bin/adder.c rio.h;"; command = ""; argv= sys.argv; print len(argv); if(len(argv) == 1): command = command1 + command2 + command3; else: options = argv[1]; if "s" in options: command += command1; if "c" in options: command += command2; if "a" in options: command += command3; proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE,shell=True) (out, err) = proc.communicate() print "program output:", out print "program error:", err
[ "leonlazuli@gmail.com" ]
leonlazuli@gmail.com
1d492964a7f09669838f135f72666c0f70abb33b
5b810b5b59eb66e564b84d4627a81afb72bb769c
/app/util/myid.py
9b1d49f940b1dc3740c5f691382d3cc62374eaf6
[]
no_license
wangyitao/microfilm
402d6c61aa8e4f41749829c96a742487c88d9f75
3cbee7b599483b117283359de9e7bec9d945ff53
refs/heads/master
2020-03-23T04:19:19.797404
2018-08-02T01:38:14
2018-08-02T01:38:14
141,076,259
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
# -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 13:48 def my_id_maker(): import uuid from hashlib import md5 import datetime import random return md5(str('{0:%Y%m%d%H%M%S%f}'.format(datetime.datetime.now()) + ''.join( [str(random.randint(1, 10)) for i in range(5)])).encode('utf8') + str(uuid.uuid1()).encode('utf8')).hexdigest() # ็ฎ€ๅ•็‰ˆๆœฌ็š„ไธ‹้ขๅฐฑ่กŒไบ† # return '{0:%Y%m%d%H%M%S%f}'.format(datetime.datetime.now()) + ''.join( # [str(random.randint(1, 10)) for i in range(5)]) if __name__ == '__main__': for i in range(10): print(len(my_id_maker()))
[ "1403179190@qq.com" ]
1403179190@qq.com
fb48644ac909941918fc799f5736d3cf518d0fb4
c7132023d6caa10c879ea9345109f95c7e1c70a8
/q1.py
998b3e0e2b6d1b38419c8c5fce4bb73a799ce828
[]
no_license
paulremerata/Excercises
ac9b74fe5474a56aab428c45b55fcfc9d397a529
e23ee8587f6b85086066e88fb7e38b340c198d0c
refs/heads/master
2016-09-13T07:08:32.119078
2016-04-22T07:38:24
2016-04-22T07:38:24
56,668,878
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
def convert(): x=raw_input("Convert to Fahrenheit or Celsius (f/c)?\n") y=raw_input("Enter Value:") if x=="f": print str(9*float(y)/5+32)+" F" elif x=="c": print str((float(y)-32)*5/9)+" C" else: print "wrong input" again(raw_input("Again?(y/n)")) def again(x): if x=="y": convert() elif x=="n": 1+1 else: again(raw_input("Again?(y/n)")) convert()
[ "paul26rem@gmail.com" ]
paul26rem@gmail.com
b581d3246abc1d89d94a521412e4a8b80d71ce70
0363ca4526c72fafd96daa2bd8cbb38db68cc3d3
/model.py
604bb0b7137c365f2f269db6d7d9cd8ec4973e99
[]
no_license
Gabrielnero000/Rotation-Detection
6ea79d491d61b825113a07b60b3c2e97974250ec
25475fce86e79f6992cdd492b381ca4eddba8bad
refs/heads/master
2020-08-09T04:01:37.270778
2019-10-09T18:35:14
2019-10-09T18:35:14
213,991,896
1
0
null
null
null
null
UTF-8
Python
false
false
983
py
from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense # Return the CNN model def GetModel(input_shape, num_classes): model = Sequential() model.add(Conv2D(16, (3, 3), padding='same', input_shape=input_shape, activation='relu')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.35)) model.add(Dense(num_classes, activation='softmax')) return model
[ "gabriel.leite083@gmail.com" ]
gabriel.leite083@gmail.com
50f306e030bc29b5fe1d794458ce400433b8e462
a99bf3c086622348e7363e974ac7bac6a6e00f15
/manage.py
ad9442e82125ccd22e0b395f6de4882582b1fbbc
[]
no_license
shubhamd/Dj-API
96e14a5d8f0dea600a3ded989c09c69ab1f2d57c
c739d3d85ae5b14891793be13213e24937ba2f16
refs/heads/master
2021-01-16T00:28:41.043023
2015-02-14T15:19:43
2015-02-14T15:19:43
30,799,855
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "kisan_net.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "shubham.desale@gmail.com" ]
shubham.desale@gmail.com
0b9e96092d3e1008a7f05cc7c7bfc659ab670f67
65909167510b7c479cd81db74a0f2bbc9d57e9fd
/webGuard/urls.py
d649847aeb99553dced843049be5d7c4be57d6cf
[]
no_license
Njokosi/webguard-django
99c4a2ba814d44d816527706685bf34bbf593870
f1ca3ebaa093a22577303b78d59531133ed9b01a
refs/heads/master
2023-04-14T21:27:37.062158
2021-04-17T09:54:26
2021-04-17T09:54:26
358,842,766
0
0
null
null
null
null
UTF-8
Python
false
false
997
py
"""webGuard URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('reports/', include('reports.urls')), path('', include('account.urls')), ] admin.site.site_header = "WEB GUARD Admin" admin.site.site_title = "WEB GUARD Admin Portal" admin.site.index_title = "WEB GUARD Administration Portal"
[ "eng.njokosi@gmail.com" ]
eng.njokosi@gmail.com
03ca7feebe8e5d697766b33c66fa96f2c7d8f4c3
fc206761fdbc29be053f7721492bb715b03143bf
/Lab/DataVisualization/MedDataColumnTransforms.py
ff1ec847835d1cb8cad99a39b00226867ef9a5ae
[]
no_license
zeydabadi/PythonLab
ec0f67f7a694ea5c2e25f9b2df21c95e95ccbcf4
4ce6e8e827fbcc00f040bfc1133a3272e5147aa6
refs/heads/master
2020-03-28T17:33:24.486283
2018-09-19T22:07:19
2018-09-19T22:07:19
148,800,976
0
0
null
null
null
null
UTF-8
Python
false
false
1,865
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 5 11:28:40 2018 @author: Nita """ import matplotlib.pyplot as plt import numpy as np import pandas as pd # Read the data in and once read in, we can: # run data transformations on columns # filter rows by conditions # sort data etc medData=pd.read_csv('./csvfiles/processed.cleveland.data.csv') medDataDf = pd.DataFrame(medData) print(medDataDf) # From the dataset, transform a column and save it as a new column in the # dataframe: Ex. add a new column identifying rows with RestBP >120 medDataDf['HighRestBP']=medDataDf['RestBP'].apply(lambda x: x > 120) # add a new column identifying rows with High or normal FBS medDataDf['HighFBS']=medDataDf['FBS'].apply(lambda x: x == 1) # Filter rows using conditions. This can be done by creating the condition # and generating a boolean array variable for each condition # EX. the following 3 lines creates a boolean array, with each row having # a True saved if the condition is met or False if it isnt't. # The length of such a boolean array is equal to the total number of rows # in the dataframe edf=medDataDf['RestECG'] == 2 hrBp=medDataDf['RestBP'] > 120 hFbs=medDataDf['FBS'] == 1 # Once the boolean arrays are created, they can be used singly to filter # rows of combined with operators like 'And' 'Or' etc print(medDataDf[edf & hrBp & hFbs].count()) # Column wise calculation of stats using functions like mean(), max() etc #calculate mean of all values in a column print("Mean of Column RestBP:", medDataDf['RestBP'].mean()) #calculate max of all values in a column print("Max value of Column RestBP:", medDataDf['RestBP'].max()) #calculate min of all values in a column print("Min value of Column RestBP:", medDataDf['RestBP'].min()) #calculate median of all values in a column print("Median of Column RestBP:", medDataDf['Age'].median())
[ "zeydabadi@gmail.com" ]
zeydabadi@gmail.com
e09c1b5770850fd83798f6c08f48354e1b74a5ca
391ba6a63ae180a9dd837489dd195ed3fd8fb233
/OOP/Tebak Kandang.py
653f64f0699bd1c04263de097e644624d6e7a6e5
[]
no_license
hamdiranu/cobarepo
90502f5defb3b6c3a0aad6f0592ebd62b39d229d
e569df6b27f9d9f375889c3cf56b527d0affbcd3
refs/heads/master
2020-11-27T04:43:26.288102
2019-12-20T17:30:18
2019-12-20T17:30:18
229,307,844
0
0
null
null
null
null
UTF-8
Python
false
false
6,614
py
import os, sys, random if sys.platform.lower() == "win32": os.system('color') # Group of Different functions for different styles class style(): RED = lambda x: '\033[31m' + str(x) YELLOW = lambda x: '\033[33m' + str(x) BLUE = lambda x: '\033[34m' + str(x) WHITE = lambda x: '\033[37m' + str(x) GREEN = lambda x: '\033[32m' + str(x) RESET = lambda x: '\033[0m' + str(x) # print(style.YELLOW("Hello, ") + style.RESET("World!")) class Kandang(): def __init__(self, angka, huruf, status): self.angka = angka self.huruf = huruf self.status = status def tampilan_huruf_angka(self): if self.status == 'Buka': print('\n| | |\n| {} '.format(self.huruf)+style.RESET('|\n| | |\n')) # dibutuhkan 'reset' agar str stelah self.huruf tidak bewarna else : print('\n| | |\n| {} |\n| | |\n'.format(self.angka)) def ganti_status_buka(self): self.status = 'Buka' def huruf_pada_kandang(self): return self.huruf class Kambing(Kandang): def __init__(self, angka): super().__init__(angka, style.BLUE('K'), 'Tutup') class Zebra(Kandang): def __init__(self, angka): super().__init__(angka, style.RED('Z'), 'Tutup') class Bebek(Kandang): def __init__(self, angka): super().__init__(angka, style.YELLOW('B'), 'Tutup') # Sistem Game class Board: hasil = 0 # berguna agar untuk mengetahui kapan permainan harus berhenti nantinya def __init__(self, hasil): self.hasil = hasil # =========================== Opening =========================== def run(self): os.system('clear') self.hasil=0 print('\n=====================================\n'+'||'+' '*10+style.BLUE('Tebak Kandang')+' '*10+style.RESET('||\n=====================================\n')) print('1: Jumlah Kandang \n99: Exit\n') input1=int(input('Pilih Menu: ')) if input1==1: self.kandang() elif input1==99: print('\n Terima Kasih telah menggunakan program kami :)\n') else: print('\nMohon masukkan pilihan yang sesuai') self.run() # ====================== Masukkan Jumlah Kandang ========================== def kandang(self): input2=int(input('Masukkan jumlah kandang: ')) jmlh_kandang=input2 self.buat_kandang(jmlh_kandang) # ========================= Buat Kandang ============================== def buat_kandang(self,jmlh_kandang): isi_kandang = [] for i in range(0,jmlh_kandang): index_list_huruf=random.choice(['K','Z','B']) if index_list_huruf == 'K': isi_kandang.append(Kambing(str(i+1))) elif index_list_huruf == 'Z': isi_kandang.append(Zebra(str(i+1))) elif index_list_huruf == 'B': isi_kandang.append(Bebek(str(i+1))) self.tampilan_kandang(jmlh_kandang, isi_kandang) # ========================= Tampilan Kandang ============================= def tampilan_kandang(self, jmlh_kandang, isi_kandang): for i in (isi_kandang): i.tampilan_huruf_angka() self.pilihan_kandang(jmlh_kandang, isi_kandang) # ====================== Pilihan kotak tebakan =========================== def pilihan_kandang(self,jmlh_kandang,isi_kandang): pilihan_kotak = 0 cek_input=[] input3 = input('Pilih kandang yang ingin dibuka: ') for i in range(1,jmlh_kandang+1): cek_input.append(str(i)) if input3 in cek_input: pilihan_kotak = int(input3) self.tebakan_user(jmlh_kandang, isi_kandang, pilihan_kotak) else: print('\nMohon masukkan input yang sesuai\n') self.pilihan_kandang(jmlh_kandang,isi_kandang) # ========================== Tebakan User ================================ def tebakan_user(self,jmlh_kandang, isi_kandang, pilihan_kotak): tebakan = '' print('---------Pilihan---------\n'+style.BLUE('K')+style.RESET(': Kambing')) print(style.RED('Z')+style.RESET(': Zebra')) print(style.YELLOW('B')+style.RESET(': Bebek\n')) input4 = str(input('Masukkan tebakan: ')) if input4 in ['K','Z','B','k','z','b']: tebakan = input4 self.proses_cek(jmlh_kandang, isi_kandang, pilihan_kotak, tebakan) else: print('\nMohon masukkan input yang sesuai\n') self.tebakan_user(jmlh_kandang, isi_kandang, pilihan_kotak) # ============================ Proses ================================== def proses_cek(self,jmlh_kandang, isi_kandang, pilihan_kotak, tebakan): os.system('clear') print('PERCOBAAN BUKA:\n') if style.BLUE(tebakan.upper()) == isi_kandang[pilihan_kotak-1].huruf_pada_kandang() or style.YELLOW(tebakan.upper()) == isi_kandang[pilihan_kotak-1].huruf_pada_kandang() or style.RED(tebakan.upper()) == isi_kandang[pilihan_kotak-1].huruf_pada_kandang(): isi_kandang[pilihan_kotak-1].ganti_status_buka() self.hasil = self.hasil + 1 for i in (isi_kandang): i.tampilan_huruf_angka() print(style.GREEN("Tebakan Benar!")+style.RESET('')) else : for i in (isi_kandang): i.tampilan_huruf_angka() print(style.YELLOW("Tebakan Salah!")+style.RESET('')) self.cek_hasil(jmlh_kandang, isi_kandang, pilihan_kotak, tebakan) # ================ Pengecekan apakah semua kandang telah dibuka ============== def cek_hasil(self,jmlh_kandang, isi_kandang, pilihan_kotak, tebakan): if self.hasil==len(isi_kandang): for i in (isi_kandang): i.tampilan_huruf_angka() print('Selamat! anda menebak semua kandang\n') self.Bye() else: self.tampilan_kandang(jmlh_kandang, isi_kandang) # ================================= OUT ==================================== def Bye(self): input5=input('Apakah anda ingin mengulangi permainan? (Y/N) :') if input5 == "Y" or input5 == "y": self.run() elif input5 == "N" or input5 == "n": print('\n+-+-+-+-+-+-+-+-+-Terima Kasih telah menggunakan program kami :)+-+-+-+-+-+-+-+-+-+\n| '+' '*80+'|\n+-+-+-+-+-+-+-+-+-+-+-+-+ Created By : Hamdi R. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\n') else: print('\nMohon masukkan pilihan yang sesuai\n') self.Bye() Board_object=Board(0) Board_object.run()
[ "hamdi@alterra.id" ]
hamdi@alterra.id
46255fb3ef72a146254c24529e25171cabf29bf8
59c2f193f5a05bc669dbc750642e820439581bc1
/01-Jose-Salvatierra-Learn-Python-By-Doing/01-Basic-Data-Types/05-booleans.py
d3a0934f413d98db55b69f6f61355d611d3ae0a3
[]
no_license
dhanushka-gayashan/python-mastering
046ceba57bb3e5b5494c7f50f071df15f95d8b9d
63aa64fe99ded212e6617be35e028f1936f7531b
refs/heads/master
2022-04-25T21:45:12.150691
2020-04-27T08:48:54
2020-04-27T08:48:54
255,232,840
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
# Truthy and Falsy truthy = True falsy = False # Boolena Comparison age = 20 is_over_age = age >= 18 is_under_age = age < 18 is_twenty = age == 20 # AND age = 30 can_learn_programming = age > 0 and age < 100 # OR age = 30 usually_working = age >= 18 or age <= 65 # bool() - Convert into boolean print(bool(35)) print(bool(0)) print(bool("Dhanushka")) print(bool("")) # Usage AND and OR x = 35 and 0 print(x) x = 0 and 35 print(x) x = True and 18 print(x) x = 35 or 0 print(x) x = 0 or 35 print(x) x = False or 35 print(x) age = 16 side_job = True print(age > 18 and age < 65 or side_job) # Eveluate Left to Right name = input("Enter your name: ") surname = input("Enter your suername: ") greeting = name or f"Mr. {surname}" print(greeting) # Use of NOT x = not False print(x) x = not True print(x) x = not 35 print(x) x = not 0 print(x)
[ "dhanukdg.soft@gmail.com" ]
dhanukdg.soft@gmail.com
1aa314ea7fea174b2a659cde9f3fa638e36af50d
ec5f0341e53733d1142bb2826aeb98e8a73fb4ff
/Unit7/same_structure.py
66abf89246a146d4cd06970ea3463d8741e0ae7b
[]
no_license
sandrabee/Udacity_CS101
0ecea7dc0f97ff489437ca95a74793098313b8e3
83a16a9465d8cad8407563f3f745dde34190d05f
refs/heads/master
2020-12-24T13:53:09.026621
2012-04-12T21:27:29
2012-04-12T21:27:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,260
py
#Same Structure #Define a procedure, same_structure, that takes two inputs. It should output #True if the lists contain the same elements in the same structure, and False #otherwise. Two values, p and q have the same structure if: # Neither p or q is a list. # Both p and q are lists, they have the same number of elements, and each # element of p has the same structure as the corresponding element of q. #For this procedure, you can use the is_list(p) procedure from Homework 6: def is_list(p): return isinstance(p, list) def deep_count(p): leng = len(p) for elem in p: if is_list(elem): leng = deep_count(elem)+leng return leng def same_structure(a,b): if is_list(a) and is_list(b) and len(a) == len(b) and deep_count(a) == deep_count(b): return True elif not is_list(a) and not is_list(b): return True return False #Here are some examples: #print same_structure(3, 7) #>>> True #print same_structure([1, 0, 1], [2, 1, 2]) #>>> True #print same_structure([1, [0], 1], [2, 5, 3]) #>>> False #print same_structure([1, [2, [3, [4, 5]]]], ['a', ['b', ['c', ['d', 'e']]]]) #>>> True #print same_structure([1, [2, [3, [4, 5]]]], ['a', ['b', ['c', ['de']]]]) #>>> False
[ "barteitsandra@gmail.com" ]
barteitsandra@gmail.com
8c6cf3faa76d0ff8db9c4587da99976def0570f9
b191c19a9fe9c5c7318b811336ef176ff551da48
/CSPP1-Practice/CSPP1-Assignments/M7/Eval Quadratic Exercise/eval_quadratic.py
85e74343fe924fecece839e42260fd2ce8fdaeee
[]
no_license
Pranav-20186017/CSPP1
0d4423d0b8a6028f07a64bc90383bb322538932f
b8e61256d9c4950fedebf57de45cdc9fec3bb302
refs/heads/master
2020-03-24T17:40:21.486906
2018-10-01T03:00:17
2018-10-01T03:00:17
142,867,060
3
0
null
null
null
null
UTF-8
Python
false
false
845
py
# Exercise: eval quadratic # Write a Python function, evalQuadratic(a, b, c, x), #that returns the value of the quadratic a . x 2 + b . x + c # This function takes in four numbers and returns a single number. ''' Author: Pranav Surampudi Date: 6 August 2018 Encoding: utf-8 ''' def eval_quadratic(a_coeff, b_coeff, c_coeff, x_var): """This method evaluates a quadratic equation""" return int((a_coeff * (x_var ** 2)) + (b_coeff * x_var) + c_coeff) def main(): """Main function""" data = input() data = data.split(' ') data = list(map(float, data)) for x_var in data: temp = str(x_var).split('.') if temp[1] == '0': x_var = int(float(str(x_var))) else: x_var = x_var print(eval_quadratic(data[0], data[1], data[2], data[3])) if __name__ == "__main__": main()
[ "sharmapranav307@msitprogram.net" ]
sharmapranav307@msitprogram.net
e8bfab5581f0fd75f7a96a09361f6b8edfcf21f3
435079f92604590710f7149fecf886563529bc96
/config/settings/local.py
af3b51d5cfd419e42c164590fb61212e17ae6a7a
[ "MIT" ]
permissive
PEKTOP/metrics-api
f93b04965af877ddb4f1de01dcecf06d50a339c2
025b955bd86ef5df0261788abde3a0358d64f8f5
refs/heads/master
2020-09-08T18:09:52.211724
2017-06-15T14:03:40
2017-06-15T14:03:40
94,438,471
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
from .base import * # noqa ALLOWED_HOSTS += ['127.0.0.1'] # noqa INTERNAL_IPS = ALLOWED_HOSTS DEBUG_TOOLBAR_CONFIG = { 'SHOW_COLLAPSED': True } INSTALLED_APPS += [ # noqa 'debug_toolbar', ] MIDDLEWARE += [ # noqa 'debug_toolbar.middleware.DebugToolbarMiddleware', ]
[ "mail2nikolas@gmail.com" ]
mail2nikolas@gmail.com
dda9dd5bcabf859f268643acce6bb426918e144c
ef97cd06e991b87bda612c5b7f19f30fa6e083e9
/scripts/servicenode_test.py
96945e99efe399e5eb5f0fa50a7cc3f25c7caa7a
[]
no_license
jdios89/Ragnar_teensy
b5ba72c3cfd68763dd113c163ed7d4ef786125d2
4eb44159ddcb154a72dd5b48e1d7d687821e2834
refs/heads/master
2023-08-18T09:10:23.379972
2023-08-07T17:37:19
2023-08-07T17:37:19
152,589,585
0
0
null
null
null
null
UTF-8
Python
false
false
736
py
#!/usr/bin/env python import sys import rospy from std_msgs.msg import String from ragnar_teensy.srv import * from std_msgs.msg import Float64MultiArray servicetotest = 'set_stiffness_matrix' def set_matrix(): rospy.wait_for_service(servicetotest) try: servarg = Float64MultiArray() data = [None]*9 for x in range(9): data[x] = x * 0.1 servarg.data = data print(data) servicce = rospy.ServiceProxy(servicetotest, threeby3Matrix) servicce(servarg) return except rospy.ServiceException, e: print "Service call failed: %s"%e def usage(): return if __name__ == "__main__": print "Requesting " set_matrix()
[ "juan.dios.flores@gmail.com" ]
juan.dios.flores@gmail.com
d32de1d1ac15ec06e6ba5df921548fd598644253
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_278/ch25_2020_03_23_20_30_02_598987.py
a64e003c1ccb846a55e1d315202af707e65238c0
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
import math a= รขngulo desejado d= distรขncia d=(v**2)*math.sin(2*a)/9.8 if d<98: return "Muito perto" elif 98<=d<=102: return "Muito longe" else: return "Acertou!"
[ "you@example.com" ]
you@example.com
39f52eaa9c5a4cad6f26a0e003f857b598337245
d60ec19607f02d885fc9a50347fdf527e99fba50
/Face_Recog_and_Detection_files/Face_Recog/pi-facerec-box-master/facedetpicamera.py
b77c2d3365d7ef93b01abba44dcfdf85dbcb953c
[ "MIT" ]
permissive
RBurke314/test1
944359177affbf5331e80eccfc527c8f7693f022
3ef05ea9ed93aafbe5d1f39d1cea1d02aa40c5a9
refs/heads/master
2021-04-15T17:19:08.761329
2017-06-28T20:31:05
2017-06-28T20:31:05
95,709,182
0
0
null
null
null
null
UTF-8
Python
false
false
2,874
py
# import the necessary packages import numpy as np from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 FRAME_W=400 FRAME_H=240 x1=0 y1=0 z1=0 Default_X=float(80) Default_Y=float(48) Default_Z=float(75) # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (400, 240)#faster processing set to 160, 120 camera.framerate = 40 #max frame rate of 90 frames per second rawCapture = PiRGBArray(camera, size=(400, 240))#faster processing set to 160, 120 # allow the camera to warmup time.sleep(0.1) cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml") while True: # capture frames from the camera for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text img = frame.array gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) face=0 faces = cascade.detectMultiScale(gray, 1.3, 5) for (x, y, width, height) in faces: face=1 cv2.rectangle(img, (x,y), (x+width, y+height), (0, 255,0), 2) #get the center position of face x1 = ((x+width)/2) y1 = ((y+height)/2) z1 = ((width+height)/2) if face == 1: Position_x = float(((FRAME_W/2)-x1)) Position_y = float((FRAME_H/2)-y1) Position_z = float(z1) else: Position_x = (Default_X) Position_y = (Default_Y) Position_z = (Default_Z) cv2.putText(img,'cam_pan='+ str(Position_x),(1,50), cv2.FONT_ITALIC, 0.5,(0,0,255)) cv2.putText(img,'cam_tilt='+ str(Position_y),(1,100), cv2.FONT_ITALIC, 0.5,(0,0,255)) cv2.putText(img,'cam_focus='+ str(Position_z),(1,150), cv2.FONT_ITALIC, 0.5,(0,0,255)) # show the frame print('cam_pan='+ str(Position_x)) print('cam_tilt='+ str(Position_y)) print('cam_focus='+ str(Position_z)) print "Found {0} faces!".format(len(faces)) print"Found: %d" % (face) cv2.imshow("Frame", img) # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
[ "robertjburke3.14@gmail.com" ]
robertjburke3.14@gmail.com
c00c44c24fe7e1137c0426f1fa5eea0742de0ffe
f28bbb08c931770f2c2cf6fa4cecbf18605881de
/Criptografia Classica/ataque/escuro/vigenere_forca_bruta.py
a3dd808641228595930ad5a3f325015d7e05b5b8
[]
no_license
elitont/Seguranca-e-Auditoria-de-Sistemas
002989b3aedc590e7b21f63be3674c6db91614e2
1101eaa2d678c3d121a90f7f028eeb8217e43e51
refs/heads/master
2021-01-20T19:33:43.239743
2017-02-23T13:24:25
2017-02-23T13:24:25
65,201,977
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
#!/opt/plone/zinstance/bin/python2.7 # -*- coding: utf-8 -*- from itertools import cycle from sys import argv import itertools """ Ataque por forรงa bruta, sem texto em claro """ chars = 'abcdefghijklmnopqrstuvwxyz0123456789' data = open(argv[1], 'rb').read() words_english = open('data/words_example.in', 'rb').read() words_english = words_english.split() chaves_invalidas = [] for i in range(1, 4): r = itertools.product(chars, repeat=i) for i in r: key = [-ord(j) for j in i] msg_decifrada = bytes((c + m) % 256 for (c, m) in zip(cycle(key), data)) all_word = msg_decifrada.split() words = [] for word in all_word[0:30]: if word in words_english: words.append(word) if(len(words) > 5): open('data/outputs/vigenere_decifrado.txt', 'wb').write(msg_decifrada)
[ "eliton.traverssini@gmail.com" ]
eliton.traverssini@gmail.com
585c781e287285340d839ba8d718541fa9dc84fd
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-smn/huaweicloudsdksmn/v2/model/application_endpoint.py
562ef992a276405881049913173794a8aac0d433
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
6,649
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ApplicationEndpoint: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'create_time': 'str', 'endpoint_urn': 'str', 'user_data': 'str', 'enabled': 'str', 'token': 'str' } attribute_map = { 'create_time': 'create_time', 'endpoint_urn': 'endpoint_urn', 'user_data': 'user_data', 'enabled': 'enabled', 'token': 'token' } def __init__(self, create_time=None, endpoint_urn=None, user_data=None, enabled=None, token=None): """ApplicationEndpoint The model defined in huaweicloud sdk :param create_time: ๅˆ›ๅปบapplication็š„ๆ—ถ้—ด ๆ—ถ้—ดๆ ผๅผไธบUTCๆ—ถ้—ด๏ผŒYYYY-MM-DDTHH:MM:SSZใ€‚ :type create_time: str :param endpoint_urn: Application endpoint็š„ๅ”ฏไธ€่ต„ๆบๆ ‡่ฏ†ใ€‚ :type endpoint_urn: str :param user_data: ็”จๆˆท่‡ชๅฎšไน‰ๆ•ฐๆฎ ๆœ€ๅคง้•ฟๅบฆๆ”ฏๆŒUTF-8็ผ–็ ๅŽ2048ๅญ—่Š‚ใ€‚ :type user_data: str :param enabled: endpointๅฏ็”จๅผ€ๅ…ณ trueๆˆ–falseๅญ—็ฌฆไธฒใ€‚ :type enabled: str :param token: ่ฎพๅค‡token ๆœ€ๅคง้•ฟๅบฆ512ไธชๅญ—่Š‚ใ€‚ :type token: str """ self._create_time = None self._endpoint_urn = None self._user_data = None self._enabled = None self._token = None self.discriminator = None self.create_time = create_time self.endpoint_urn = endpoint_urn self.user_data = user_data self.enabled = enabled self.token = token @property def create_time(self): """Gets the create_time of this ApplicationEndpoint. ๅˆ›ๅปบapplication็š„ๆ—ถ้—ด ๆ—ถ้—ดๆ ผๅผไธบUTCๆ—ถ้—ด๏ผŒYYYY-MM-DDTHH:MM:SSZใ€‚ :return: The create_time of this ApplicationEndpoint. :rtype: str """ return self._create_time @create_time.setter def create_time(self, create_time): """Sets the create_time of this ApplicationEndpoint. ๅˆ›ๅปบapplication็š„ๆ—ถ้—ด ๆ—ถ้—ดๆ ผๅผไธบUTCๆ—ถ้—ด๏ผŒYYYY-MM-DDTHH:MM:SSZใ€‚ :param create_time: The create_time of this ApplicationEndpoint. :type create_time: str """ self._create_time = create_time @property def endpoint_urn(self): """Gets the endpoint_urn of this ApplicationEndpoint. Application endpoint็š„ๅ”ฏไธ€่ต„ๆบๆ ‡่ฏ†ใ€‚ :return: The endpoint_urn of this ApplicationEndpoint. :rtype: str """ return self._endpoint_urn @endpoint_urn.setter def endpoint_urn(self, endpoint_urn): """Sets the endpoint_urn of this ApplicationEndpoint. Application endpoint็š„ๅ”ฏไธ€่ต„ๆบๆ ‡่ฏ†ใ€‚ :param endpoint_urn: The endpoint_urn of this ApplicationEndpoint. :type endpoint_urn: str """ self._endpoint_urn = endpoint_urn @property def user_data(self): """Gets the user_data of this ApplicationEndpoint. ็”จๆˆท่‡ชๅฎšไน‰ๆ•ฐๆฎ ๆœ€ๅคง้•ฟๅบฆๆ”ฏๆŒUTF-8็ผ–็ ๅŽ2048ๅญ—่Š‚ใ€‚ :return: The user_data of this ApplicationEndpoint. :rtype: str """ return self._user_data @user_data.setter def user_data(self, user_data): """Sets the user_data of this ApplicationEndpoint. ็”จๆˆท่‡ชๅฎšไน‰ๆ•ฐๆฎ ๆœ€ๅคง้•ฟๅบฆๆ”ฏๆŒUTF-8็ผ–็ ๅŽ2048ๅญ—่Š‚ใ€‚ :param user_data: The user_data of this ApplicationEndpoint. :type user_data: str """ self._user_data = user_data @property def enabled(self): """Gets the enabled of this ApplicationEndpoint. endpointๅฏ็”จๅผ€ๅ…ณ trueๆˆ–falseๅญ—็ฌฆไธฒใ€‚ :return: The enabled of this ApplicationEndpoint. :rtype: str """ return self._enabled @enabled.setter def enabled(self, enabled): """Sets the enabled of this ApplicationEndpoint. endpointๅฏ็”จๅผ€ๅ…ณ trueๆˆ–falseๅญ—็ฌฆไธฒใ€‚ :param enabled: The enabled of this ApplicationEndpoint. :type enabled: str """ self._enabled = enabled @property def token(self): """Gets the token of this ApplicationEndpoint. ่ฎพๅค‡token ๆœ€ๅคง้•ฟๅบฆ512ไธชๅญ—่Š‚ใ€‚ :return: The token of this ApplicationEndpoint. :rtype: str """ return self._token @token.setter def token(self, token): """Sets the token of this ApplicationEndpoint. ่ฎพๅค‡token ๆœ€ๅคง้•ฟๅบฆ512ไธชๅญ—่Š‚ใ€‚ :param token: The token of this ApplicationEndpoint. :type token: str """ self._token = token def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApplicationEndpoint): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
2799baf75b490c89a862ad9a728c49b9539d73cc
49ddd4e169fd9b271427f34cd216cbc9b001ded6
/dist_search/apps.py
fb06022ee796b90866c0e51a018a6c6d8846047e
[ "MIT" ]
permissive
pontusgranath/svt-apl
9dac25ed7d029b946c6b3a91fa9959822a240dd5
fea759e7629af3e92a03849ad06d82c77e57328e
refs/heads/main
2023-04-27T21:01:28.451804
2021-05-07T12:35:15
2021-05-07T12:35:15
347,094,738
2
0
null
2021-05-07T09:02:36
2021-03-12T14:32:16
Python
UTF-8
Python
false
false
96
py
from django.apps import AppConfig class DistSearchConfig(AppConfig): name = 'dist_search'
[ "felix.larsson@elev.ga.ntig.se" ]
felix.larsson@elev.ga.ntig.se
2e7616731d2c59f2ebf041b4b3ca45a459628f98
3af9b492ec584c561cf8e6d7921e508ed1f84dec
/ubuntu/provisioners/mywiki.py
2926c352154942636c897f755b7fb2ffe8b37583
[]
no_license
AAROC/VMI-endorsement
85671ffd45cf90dd32f70c3264b0a31b258cf3b5
d6e3c1affab352d8fbebafd7760ab1b47ddeef2a
refs/heads/master
2021-06-21T11:28:59.199245
2017-08-02T10:34:14
2017-08-02T10:34:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,352
py
# -*- coding: iso-8859-1 -*- # IMPORTANT! This encoding (charset) setting MUST be correct! If you live in a # western country and you don't know that you use utf-8, you probably want to # use iso-8859-1 (or some other iso charset). If you use utf-8 (a Unicode # encoding) you MUST use: coding: utf-8 # That setting must match the encoding your editor uses when you modify the # settings below. If it does not, special non-ASCII chars will be wrong. """ This is a sample config for a wiki that is part of a wiki farm and uses farmconfig for common stuff. Here we define what has to be different from the farm's common settings. """ # we import the FarmConfig class for common defaults of our wikis: from farmconfig import FarmConfig # now we subclass that config (inherit from it) and change what's different: class Config(FarmConfig): # basic options (you normally need to change these) sitename = u'MyWiki' # [Unicode] interwikiname = u'MyWiki' # [Unicode] superuser = [u"WikiAdmin", ] # name of entry page / front page [Unicode], choose one of those: # a) if most wiki content is in a single language #page_front_page = u"MyStartingPage" # b) if wiki content is maintained in many languages page_front_page = u"FrontPage" data_dir = '/org/mywiki/data/' data_underlay_dir = '/org/mywiki/underlay/'
[ "enol.fernandez@egi.eu" ]
enol.fernandez@egi.eu
9119719ad7d1887e6ad58a29a0abf8a5d0cdcc67
902198ab44ff0c74f8176e3eb3c6850c67ece463
/fwaas-service-chain/neutron-66/neutron/plugins/mlnx/agent/utils.py
654ba8fb72fc2e695bb8d47dab42f7eb0e22c64b
[ "Apache-2.0" ]
permissive
rajeshmohan/openstack
7ca543e86ce5b18be9615590128bf2811c019ef5
19eaf41c20503a7320e9895271802d11675dae2f
refs/heads/master
2021-03-12T20:29:20.842361
2014-09-12T00:48:08
2014-09-12T00:48:08
23,939,961
1
0
null
null
null
null
UTF-8
Python
false
false
5,692
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2013 Mellanox Technologies, Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from neutron.openstack.common import importutils from neutron.openstack.common import jsonutils from neutron.openstack.common import log as logging from neutron.plugins.mlnx.common.comm_utils import RetryDecorator from neutron.plugins.mlnx.common import exceptions zmq = importutils.try_import('eventlet.green.zmq') LOG = logging.getLogger(__name__) class EswitchUtils(object): def __init__(self, daemon_endpoint, timeout): if not zmq: msg = _("Failed to import eventlet.green.zmq. " "Won't connect to eSwitchD - exiting...") LOG.error(msg) raise SystemExit(msg) self.__conn = None self.daemon = daemon_endpoint self.timeout = timeout @property def _conn(self): if self.__conn is None: context = zmq.Context() socket = context.socket(zmq.REQ) socket.setsockopt(zmq.LINGER, 0) socket.connect(self.daemon) self.__conn = socket self.poller = zmq.Poller() self.poller.register(self._conn, zmq.POLLIN) return self.__conn @RetryDecorator(exceptions.RequestTimeout) def send_msg(self, msg): self._conn.send(msg) socks = dict(self.poller.poll(self.timeout)) if socks.get(self._conn) == zmq.POLLIN: recv_msg = self._conn.recv() response = self.parse_response_msg(recv_msg) return response else: self._conn.setsockopt(zmq.LINGER, 0) self._conn.close() self.poller.unregister(self._conn) self.__conn = None raise exceptions.RequestTimeout() def parse_response_msg(self, recv_msg): msg = jsonutils.loads(recv_msg) if msg['status'] == 'OK': if 'response' in msg: return msg.get('response') return elif msg['status'] == 'FAIL': msg_dict = dict(action=msg['action'], reason=msg['reason']) error_msg = _("Action %(action)s failed: %(reason)s") % msg_dict else: error_msg = _("Unknown operation status %s") % msg['status'] LOG.error(error_msg) raise exceptions.OperationFailed(err_msg=error_msg) def get_attached_vnics(self): LOG.debug(_("get_attached_vnics")) msg = jsonutils.dumps({'action': 'get_vnics', 'fabric': '*'}) vnics = self.send_msg(msg) return vnics def set_port_vlan_id(self, physical_network, segmentation_id, port_mac): LOG.debug(_("Set Vlan %(segmentation_id)s on Port %(port_mac)s " "on Fabric %(physical_network)s"), {'port_mac': port_mac, 'segmentation_id': segmentation_id, 'physical_network': physical_network}) msg = jsonutils.dumps({'action': 'set_vlan', 'fabric': physical_network, 'port_mac': port_mac, 'vlan': segmentation_id}) self.send_msg(msg) def define_fabric_mappings(self, interface_mapping): for fabric, phy_interface in interface_mapping.iteritems(): LOG.debug(_("Define Fabric %(fabric)s on interface %(ifc)s"), {'fabric': fabric, 'ifc': phy_interface}) msg = jsonutils.dumps({'action': 'define_fabric_mapping', 'fabric': fabric, 'interface': phy_interface}) self.send_msg(msg) def port_up(self, fabric, port_mac): LOG.debug(_("Port Up for %(port_mac)s on fabric %(fabric)s"), {'port_mac': port_mac, 'fabric': fabric}) msg = jsonutils.dumps({'action': 'port_up', 'fabric': fabric, 'ref_by': 'mac_address', 'mac': 'port_mac'}) self.send_msg(msg) def port_down(self, fabric, port_mac): LOG.debug(_("Port Down for %(port_mac)s on fabric %(fabric)s"), {'port_mac': port_mac, 'fabric': fabric}) msg = jsonutils.dumps({'action': 'port_down', 'fabric': fabric, 'ref_by': 'mac_address', 'mac': port_mac}) self.send_msg(msg) def port_release(self, fabric, port_mac): LOG.debug(_("Port Release for %(port_mac)s on fabric %(fabric)s"), {'port_mac': port_mac, 'fabric': fabric}) msg = jsonutils.dumps({'action': 'port_release', 'fabric': fabric, 'ref_by': 'mac_address', 'mac': port_mac}) self.send_msg(msg) def get_eswitch_ports(self, fabric): # TODO(irena) - to implement for next phase return {} def get_eswitch_id(self, fabric): # TODO(irena) - to implement for next phase return ""
[ "rajesh.mlists@gmail.com" ]
rajesh.mlists@gmail.com
362db05edead17a47a2ae5d4f707c6ca9eafd1fa
fac3dc011d1ddc577ac3922393ac750d1e943147
/src/transformers/models/bloom/modeling_bloom.py
d37972a429f12cb0d20fee47e66cdae4dadec0d6
[ "Apache-2.0" ]
permissive
wxrui/transformers
06ce57bc71466af05cbbe29b5be3ead5ce386d5b
6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1
refs/heads/master
2023-07-06T02:54:36.257425
2023-07-03T10:24:46
2023-07-03T10:24:46
250,432,634
0
0
Apache-2.0
2020-03-27T03:38:17
2020-03-27T03:38:16
null
UTF-8
Python
false
false
56,944
py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and BigScience workshop. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BLOOM model.""" import math import warnings from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_bloom import BloomConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" _CONFIG_FOR_DOC = "BloomConfig" BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bigscience/bigscience-small-testing", "bigscience/bloom-560m", "bigscience/bloom-1b1", "bigscience/bloom-1b7", "bigscience/bloom-3b", "bigscience/bloom-7b1", "bigscience/bloom", ] def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) return expanded_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, 1, tgt_length, src_length) def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): esidual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: """ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to make the model jitable. Args: x (`torch.tensor`, *required*): input hidden states """ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: """ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) Args: g (`torch.tensor`, *required*): gradient output tensor x (`torch.tensor`, *required*): input tensor """ x = x[0] # x is a tuple of 1 element, needs to unpack it first tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff * g class GeLUFunction(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor) -> torch.Tensor: ctx.save_for_backward(input) return bloom_gelu_forward(input) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: input = ctx.saved_tensors tmp = bloom_gelu_back(grad_output, input) return tmp class BloomGelu(nn.Module): """ BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly copied from Megatron-DeepSpeed code and adapted for our needs See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 """ def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: return GeLUFunction.apply(x) else: return bloom_gelu_forward(x) class BloomAttention(nn.Module): def __init__(self, config: BloomConfig): super().__init__() self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) self.dense = nn.Linear(self.hidden_size, self.hidden_size) self.attention_dropout = nn.Dropout(config.attention_dropout) def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimenstion Args: x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, head_dim, kv_length] # - value: [batch_size * self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=2) value_layer = torch.cat((past_value, value_layer), dim=1) _, _, kv_length = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None # [batch_size * num_heads, q_length, kv_length] # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 matmul_result = alibi.baddbmm( batch1=query_layer, batch2=key_layer, beta=self.beta, alpha=self.inv_norm_factor, ) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = torch.bmm(attention_probs_reshaped, value_layer) # change view [batch_size, num_heads, q_length, head_dim] context_layer = self._merge_heads(context_layer) # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 if self.pretraining_tp > 1 and self.slow_but_exact: slices = self.hidden_size / self.pretraining_tp output_tensor = torch.zeros_like(context_layer) for i in range(self.pretraining_tp): output_tensor = output_tensor + F.linear( context_layer[:, :, int(i * slices) : int((i + 1) * slices)], self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: output_tensor = self.dense(context_layer) output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs class BloomMLP(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) self.gelu_impl = BloomGelu() self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) self.hidden_dropout = config.hidden_dropout def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) if self.pretraining_tp > 1 and self.slow_but_exact: intermediate_output = torch.zeros_like(residual) slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp for i in range(self.pretraining_tp): intermediate_output = intermediate_output + F.linear( hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: intermediate_output = self.dense_4h_to_h(hidden_states) output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) return output class BloomBlock(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.num_heads = config.n_head self.self_attention = BloomAttention(config) self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = BloomMLP(config) self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Layer norm post the self attention. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) # Get residual if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output # MLP. output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions class BloomPreTrainedModel(PreTrainedModel): config_class = BloomConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["BloomBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): if isinstance(module, BloomModel): module.gradient_checkpointing = value @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_bloom_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) BLOOM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BloomConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLOOM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. Each element of `past_key_values` is a tuple (past_key, past_value): - past_key: [batch_size * num_heads, head_dim, kv_length] - past_value: [batch_size * num_heads, kv_length, head_dim] attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", BLOOM_START_DOCSTRING, ) class BloomModel(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Transformer blocks self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: return build_alibi_tensor(attention_mask, num_heads, dtype) def get_input_embeddings(self): return self.word_embeddings def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Compute alibi tensor: check build_alibi_tensor documentation seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, alibi, causal_mask, layer_past, head_mask[i], ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, BLOOM_START_DOCSTRING, ) class BloomForCausalLM(BloomPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: BloomConfig): super().__init__(config) self.transformer = BloomModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # only last token for input_ids if past is not None if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed if past_key_values[0][0].shape[0] == input_ids.shape[0]: past_key_values = self._convert_to_bloom_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in standardized_past ) return self._convert_to_bloom_cache(reordered_past) @add_start_docstrings( """ The Bloom Model transformer with a sequence classification head on top (linear layer). [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, BLOOM_START_DOCSTRING, ) class BloomForSequenceClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BLOOM_START_DOCSTRING, ) class BloomForTokenClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BLOOM_START_DOCSTRING, ) class BloomForQuestionAnswering(BloomPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = BloomModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
[ "noreply@github.com" ]
wxrui.noreply@github.com
5304cbf2716d3daa6232534adbc4e9a7a839f803
5887aa33c8034d6c60a80df78030fc2d66c9a8ad
/ejemplo_cloudml/trainer/model.py
6851b2b5a3897b45852325786e5a6bba0e2f4c86
[]
no_license
mjuez/seminario-gcp
775045a5f91a9aa6d4ec5a74f34d179a79c2be63
41a9ddf003c91fb8d708c39792a3b68c81459800
refs/heads/master
2021-08-28T13:22:12.051871
2017-12-12T09:22:31
2017-12-12T09:22:31
112,468,890
1
0
null
null
null
null
UTF-8
Python
false
false
3,644
py
#!/usr/bin/env python # Copyright 2017 Mario Juez. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Creacion de un modelo de machine learning (regresion lineal) # en Cloud ML Engine (TensorFlow) # # El modelo generado sirve para predecir el peso de un recien nacido # en base a los siguientes valores: # * Edad de la madre # * Edad del padre # * Semanas de gestacion # * Ganancia de peso de la madre # * Puntuacion apgar # # Los dataset de entrenamiento y test han sido obtenidos del conjunto # de datos publico [publicdata:samples.natality] de BigQuery. # # Autor: Mario Juez <mario@mjuez.com> from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing import tensorflow as tf # Columnas del fichero CSV. CSV_COLUMNS = ['peso', 'edad_madre', 'edad_padre', 'semanas_gestacion', 'ganancia_peso', 'puntuacion_apgar'] # Valores por defecto. CSV_COLUMN_DEFAULTS = [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]] # Etiqueta a predecir. LABEL_COLUMN = 'peso' # Trabajamos con caracteristicas numericas. INPUT_COLUMNS = [ tf.feature_column.numeric_column('edad_madre'), tf.feature_column.numeric_column('edad_padre'), tf.feature_column.numeric_column('semanas_gestacion'), tf.feature_column.numeric_column('ganancia_peso'), tf.feature_column.numeric_column('puntuacion_apgar') ] def build_estimator(output_dir): """Construccion del estimador de regresion lineal""" return tf.contrib.learn.LinearRegressor(model_dir=output_dir, feature_columns=INPUT_COLUMNS) def csv_serving_input_fn(): """Definicion de la funcion de entrada""" csv_row = tf.placeholder( shape=[None], dtype=tf.string ) features = parse_csv(csv_row) features.pop(LABEL_COLUMN) return tf.contrib.learn.InputFnOps(features, None, {'csv_row': csv_row}) # Solo ofrecemos la opcion de utilizar ficheros CSV SERVING_FUNCTIONS = { 'CSV': csv_serving_input_fn } def parse_csv(rows_tensor): """Lectura de caracteristicas desde CSV""" row_columns = tf.expand_dims(rows_tensor, -1) columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS) features = dict(zip(CSV_COLUMNS, columns)) return features def generate_input_fn(filenames, num_epochs=None, skip_header_lines=1, batch_size=200): """Creacion de la funcion de entrada""" filename_queue = tf.train.string_input_producer( filenames, num_epochs=num_epochs, shuffle=False) reader = tf.TextLineReader(skip_header_lines=skip_header_lines) # Lectura de tantas filas como batch_size _, rows = reader.read_up_to(filename_queue, num_records=batch_size) # Obtencion de caracteristicas features = parse_csv(rows) features = tf.train.batch( features, batch_size, capacity=batch_size * 10, num_threads=multiprocessing.cpu_count(), enqueue_many=True, allow_smaller_final_batch=True ) # Obtencion de etiqueta label = features.pop(LABEL_COLUMN) return features, label
[ "mjuezath@gmail.com" ]
mjuezath@gmail.com
e3cb99ef947dba4d15936b6267d2cf162301a086
f17315da2280b1885600abbfc5a4765386111264
/python_script/Image_Preprocessing.py
93bce424ae43a2246e74fca3c13f78b254a68864
[ "Apache-2.0" ]
permissive
rayheberer/burda_hackday
e42e12ab448ba139938e92b8f252385554a53c62
29837f891898bf4a7b63631f98325b0e9240266b
refs/heads/master
2021-07-12T16:35:48.744783
2017-10-16T18:30:06
2017-10-16T18:30:06
106,206,711
0
0
null
2017-10-08T20:14:35
2017-10-08T20:14:35
null
UTF-8
Python
false
false
3,634
py
import glob, os from PIL import Image, ImageOps def rename_images(directory, label): for ii, img in enumerate(glob.iglob(os.path.join(directory, '*.jpg'))): os.rename(img, os.path.join(directory, label + str(ii)+'.jpg')) def split_image(img_dir, img_name, left_dir, right_dir): im = Image.open(os.path.join(img_dir, img_name)) left = im.crop((0, 0, im.width/2, im.height)) left.save(os.path.join(left_dir, img_name)) right = im.crop((im.width/2, 0, im.width, im.height)) right.save(os.path.join(right_dir, img_name)) def split_all_images(img_dir, left_dir, right_dir): for img in glob.iglob(os.path.join(img_dir, '*.jpg')): title = os.path.basename(img) split_image(img_dir, title, left_dir, right_dir) def reflect_y(img_dir, img_name, label, out_dir, reflect): im = Image.open(os.path.join(img_dir, img_name)) if reflect: im = ImageOps.mirror(im) name, ext = os.path.splitext(img_name) im.save(os.path.join(out_dir, name + label + ext)) def reflect_permutations(img_dir, out_dir, label, reflect=True): for img in glob.iglob(os.path.join(img_dir, '*.jpg')): title = os.path.basename(img) reflect_y(img_dir, title, label, out_dir, reflect) def crop_top_bottom(img_dir, img_name, label, out_dir, upper_crop_fraction): im = Image.open(os.path.join(img_dir, img_name)) height = im.height width = im.width diff = height - width cropped = im.crop((0, diff * upper_crop_fraction, width, height - diff*(1 - upper_crop_fraction))) name, ext = os.path.splitext(img_name) cropped.save(os.path.join(out_dir, name + label + ext)) def crop_all_images(img_dir, out_dir, label, upper_crop_fraction): for img in glob.iglob(os.path.join(img_dir, '*.jpg')): title = os.path.basename(img) crop_top_bottom(img_dir, title, label, out_dir, upper_crop_fraction) rename_images(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\original', 'male') split_all_images(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\original', r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\split\left', r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\split\right') labels = ['r0', 'r1'] directions = ['left', 'right'] reflects = [(False, False), (True, True)] for ii, label in enumerate(labels): reflect_permutations(os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\split', 'left'), os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\reflected', 'left'), label, reflects[ii][0]) reflect_permutations(os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\split', 'right'), os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\reflected', 'right'), label, reflects[ii][1]) fractions = [0, 0.5] labels = ['a', 'b'] directions = ['left', 'right'] for crop_fraction, label in zip(fractions, labels): for side in directions: crop_all_images(os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\reflected', side), os.path.join(r'C:\Users\8050116\Documents\DPS\Events\Burda Hackathon\pix2pix-tensorflow\data\cropped', side), label, crop_fraction)
[ "kapilbakshi88@gmail.com" ]
kapilbakshi88@gmail.com
4c74d8ca0b0d5b396d8797f37e0106f98f47f509
4438a397db52f1dad60edc7f583d2dad103f217a
/ex5 nota.py
c53ece70fa79fa731a766a207f2feee28bc3eb82
[]
no_license
ddank0/Python-ex
07c20ed2f609fad700f0801d7d174626285a3bb2
ab0ed0d7228d19695e7e320a973a928cddbe9055
refs/heads/master
2021-07-01T18:17:05.729400
2021-02-22T01:30:05
2021-02-22T01:30:05
224,468,844
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
cont = 0 soma = 0 nome = input('Nome:') while nome != 'fim': sexo = input('Sexo:') n1 = float(input('1ยช nota:')) n2 = float(input('2ยชnota:')) media = (n1+n2)/2 if sexo == 'f': print('media feminina individual:',media) else: cont = cont + 1 soma = soma + media nome = input('Nome:') if cont != 0: print('Media masculina total:',(soma/cont))
[ "isporck0@gmail.com" ]
isporck0@gmail.com
d587998f796c35b943ebb944133064b336c1b387
63fcd65a543f047f4dbab65b9275a4646395a731
/ENet.py
298584992ba65269d507cf0a52779019fb45a176
[]
no_license
XXXVincent/ENet-Keras
14ed0e94f0e5bf2d03bce1df196c432a8805f843
2d13203075fc2860aba60ec4be6060dd78907d0e
refs/heads/master
2020-04-25T08:42:58.710149
2019-02-14T05:42:30
2019-02-14T05:42:30
172,656,054
2
0
null
2019-02-26T07:01:26
2019-02-26T07:01:26
null
UTF-8
Python
false
false
6,097
py
#coding=utf-8 from keras.layers.advanced_activations import PReLU from keras.layers.convolutional import Conv2D, Conv2DTranspose, UpSampling2D, ZeroPadding2D from keras.layers.core import SpatialDropout2D, Permute, Activation, Reshape from keras.layers.merge import add, concatenate from keras.layers.normalization import BatchNormalization from keras.layers.pooling import MaxPooling2D from keras.engine.topology import Input from keras.models import Model def initial_block(inp, nb_filter=13, nb_row=3, nb_col=3, strides=(2, 2)): conv = Conv2D(nb_filter, (nb_row, nb_col), padding='same', strides=strides)(inp) max_pool = MaxPooling2D()(inp) merged = concatenate([conv, max_pool], axis=3) return merged def bottleneck(inp, output, internal_scale=4, asymmetric=0, dilated=0, downsample=False, dropout_rate=0.1): # main branch internal = output // internal_scale encoder = inp # 1x1 input_stride = 2 if downsample else 1 # the 1st 1x1 projection is replaced with a 2x2 convolution when downsampling encoder = Conv2D(internal, (input_stride, input_stride), # padding='same', strides=(input_stride, input_stride), use_bias=False)(encoder) # Batch normalization + PReLU encoder = BatchNormalization(momentum=0.1)(encoder) # enet uses momentum of 0.1, keras default is 0.99 encoder = PReLU(shared_axes=[1, 2])(encoder) # conv if not asymmetric and not dilated: encoder = Conv2D(internal, (3, 3), padding='same')(encoder) elif asymmetric: encoder = Conv2D(internal, (1, asymmetric), padding='same', use_bias=False)(encoder) encoder = Conv2D(internal, (asymmetric, 1), padding='same')(encoder) elif dilated: encoder = Conv2D(internal, (3, 3), dilation_rate=(dilated, dilated), padding='same')(encoder) else: raise (Exception('You shouldn\'t be here')) encoder = BatchNormalization(momentum=0.1)(encoder) # enet uses momentum of 0.1, keras default is 0.99 encoder = PReLU(shared_axes=[1, 2])(encoder) # 1x1 encoder = Conv2D(output, (1, 1), use_bias=False)(encoder) encoder = BatchNormalization(momentum=0.1)(encoder) # enet uses momentum of 0.1, keras default is 0.99 encoder = SpatialDropout2D(dropout_rate)(encoder) other = inp # other branch if downsample: other = MaxPooling2D()(other) other = Permute((1, 3, 2))(other) pad_feature_maps = output - inp.get_shape().as_list()[3] tb_pad = (0, 0) lr_pad = (0, pad_feature_maps) other = ZeroPadding2D(padding=(tb_pad, lr_pad))(other) other = Permute((1, 3, 2))(other) encoder = add([encoder, other]) encoder = PReLU(shared_axes=[1, 2])(encoder) return encoder def en_build(inp, dropout_rate=0.01): enet = initial_block(inp) enet = BatchNormalization(momentum=0.1)(enet) # enet_unpooling uses momentum of 0.1, keras default is 0.99 enet = PReLU(shared_axes=[1, 2])(enet) enet = bottleneck(enet, 64, downsample=True, dropout_rate=dropout_rate) # bottleneck 1.0 for _ in range(4): enet = bottleneck(enet, 64, dropout_rate=dropout_rate) # bottleneck 1.i enet = bottleneck(enet, 128, downsample=True) # bottleneck 2.0 # bottleneck 2.x and 3.x for _ in range(2): enet = bottleneck(enet, 128) # bottleneck 2.1 enet = bottleneck(enet, 128, dilated=2) # bottleneck 2.2 enet = bottleneck(enet, 128, asymmetric=5) # bottleneck 2.3 enet = bottleneck(enet, 128, dilated=4) # bottleneck 2.4 enet = bottleneck(enet, 128) # bottleneck 2.5 enet = bottleneck(enet, 128, dilated=8) # bottleneck 2.6 enet = bottleneck(enet, 128, asymmetric=5) # bottleneck 2.7 enet = bottleneck(enet, 128, dilated=16) # bottleneck 2.8 return enet # decoder def de_bottleneck(encoder, output, upsample=False, reverse_module=False): internal = output // 4 x = Conv2D(internal, (1, 1), use_bias=False)(encoder) x = BatchNormalization(momentum=0.1)(x) x = Activation('relu')(x) if not upsample: x = Conv2D(internal, (3, 3), padding='same', use_bias=True)(x) else: x = Conv2DTranspose(filters=internal, kernel_size=(3, 3), strides=(2, 2), padding='same')(x) x = BatchNormalization(momentum=0.1)(x) x = Activation('relu')(x) x = Conv2D(output, (1, 1), padding='same', use_bias=False)(x) other = encoder if encoder.get_shape()[-1] != output or upsample: other = Conv2D(output, (1, 1), padding='same', use_bias=False)(other) other = BatchNormalization(momentum=0.1)(other) if upsample and reverse_module is not False: other = UpSampling2D(size=(2, 2))(other) if upsample and reverse_module is False: decoder = x else: x = BatchNormalization(momentum=0.1)(x) decoder = add([x, other]) decoder = Activation('relu')(decoder) return decoder def de_build(encoder, nc): enet = de_bottleneck(encoder, 64, upsample=True, reverse_module=True) # bottleneck 4.0 enet = de_bottleneck(enet, 64) # bottleneck 4.1 enet = de_bottleneck(enet, 64) # bottleneck 4.2 enet = de_bottleneck(enet, 16, upsample=True, reverse_module=True) # bottleneck 5.0 enet = de_bottleneck(enet, 16) # bottleneck 5.1 enet = Conv2DTranspose(filters=nc, kernel_size=(2, 2), strides=(2, 2), padding='same')(enet) return enet def ENet(n_classes, input_height=512, input_width=512): assert input_height % 32 == 0 assert input_width % 32 == 0 img_input = Input(shape=(input_height, input_width, 3)) enet = en_build(img_input) enet = de_build(enet, n_classes) o_shape = Model(img_input, enet).output_shape outputHeight = o_shape[1] outputWidth = o_shape[2] enet = (Reshape((outputHeight*outputWidth, n_classes)))(enet) enet = Activation('softmax')(enet) model = Model(img_input, enet) print(outputHeight) print(outputWidth) model.outputWidth = outputWidth model.outputHeight = outputHeight return model
[ "1182563586@qq.com" ]
1182563586@qq.com
97db9e62ed85695f27f233c12c47c5aadfcf9b64
3bf398d66621db1e8955f5c6cf5cc37c677f5153
/external_tools/ply_info/test/testyacc.py
1a98b4f756bab7e924b2e51565548a896762ae97
[ "MIT", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
engineeringentropy/echronos
b60d4f00333375534b10566f470f734c4d4e02dd
b531d5d374ee9b3b66732001eaa6923b3f97ec1b
refs/heads/master
2021-08-07T11:22:30.795797
2020-08-13T03:01:45
2020-08-13T03:01:45
209,948,267
0
0
NOASSERTION
2019-09-21T08:09:32
2019-09-21T08:09:32
null
UTF-8
Python
false
false
15,937
py
# testyacc.py import unittest try: import StringIO except ImportError: import io as StringIO import sys import os import warnings sys.path.insert(0,"..") sys.tracebacklimit = 0 import ply.yacc import imp def make_pymodule_path(filename): path = os.path.dirname(filename) file = os.path.basename(filename) mod, ext = os.path.splitext(file) if sys.hexversion >= 0x3020000: modname = mod+"."+imp.get_tag()+ext fullpath = os.path.join(path,'__pycache__',modname) else: fullpath = filename return fullpath def pymodule_out_exists(filename): return os.path.exists(make_pymodule_path(filename)) def pymodule_out_remove(filename): os.remove(make_pymodule_path(filename)) def check_expected(result,expected): resultlines = [] for line in result.splitlines(): if line.startswith("WARNING: "): line = line[9:] elif line.startswith("ERROR: "): line = line[7:] resultlines.append(line) expectedlines = expected.splitlines() if len(resultlines) != len(expectedlines): return False for rline,eline in zip(resultlines,expectedlines): if not rline.endswith(eline): return False return True def run_import(module): code = "import "+module exec(code) del sys.modules[module] # Tests related to errors and warnings when building parsers class YaccErrorWarningTests(unittest.TestCase): def setUp(self): sys.stderr = StringIO.StringIO() sys.stdout = StringIO.StringIO() try: os.remove("parsetab.py") pymodule_out_remove("parsetab.pyc") except OSError: pass if sys.hexversion >= 0x3020000: warnings.filterwarnings('ignore',category=ResourceWarning) def tearDown(self): sys.stderr = sys.__stderr__ sys.stdout = sys.__stdout__ def test_yacc_badargs(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_badargs") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_badargs.py:23: Rule 'p_statement_assign' has too many arguments\n" "yacc_badargs.py:27: Rule 'p_statement_expr' requires an argument\n" )) def test_yacc_badid(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_badid") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_badid.py:32: Illegal name 'bad&rule' in rule 'statement'\n" "yacc_badid.py:36: Illegal rule name 'bad&rule'\n" )) def test_yacc_badprec(self): try: run_import("yacc_badprec") except ply.yacc.YaccError: result = sys.stderr.getvalue() self.assert_(check_expected(result, "precedence must be a list or tuple\n" )) def test_yacc_badprec2(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_badprec2") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Bad precedence table\n" )) def test_yacc_badprec3(self): run_import("yacc_badprec3") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Precedence already specified for terminal 'MINUS'\n" "Generating LALR tables\n" )) def test_yacc_badrule(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_badrule") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_badrule.py:24: Syntax error. Expected ':'\n" "yacc_badrule.py:28: Syntax error in rule 'statement'\n" "yacc_badrule.py:33: Syntax error. Expected ':'\n" "yacc_badrule.py:42: Syntax error. Expected ':'\n" )) def test_yacc_badtok(self): try: run_import("yacc_badtok") except ply.yacc.YaccError: result = sys.stderr.getvalue() self.assert_(check_expected(result, "tokens must be a list or tuple\n")) def test_yacc_dup(self): run_import("yacc_dup") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_dup.py:27: Function p_statement redefined. Previously defined on line 23\n" "Token 'EQUALS' defined, but not used\n" "There is 1 unused token\n" "Generating LALR tables\n" )) def test_yacc_error1(self): try: run_import("yacc_error1") except ply.yacc.YaccError: result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_error1.py:61: p_error() requires 1 argument\n")) def test_yacc_error2(self): try: run_import("yacc_error2") except ply.yacc.YaccError: result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_error2.py:61: p_error() requires 1 argument\n")) def test_yacc_error3(self): try: run_import("yacc_error3") except ply.yacc.YaccError: e = sys.exc_info()[1] result = sys.stderr.getvalue() self.assert_(check_expected(result, "'p_error' defined, but is not a function or method\n")) def test_yacc_error4(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_error4") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_error4.py:62: Illegal rule name 'error'. Already defined as a token\n" )) def test_yacc_error5(self): run_import("yacc_error5") result = sys.stdout.getvalue() self.assert_(check_expected(result, "Group at 3:10 to 3:12\n" "Syntax error at 'b'\n" "Syntax error at 4:18 to 4:22\n" "Assignment Error at 2:5 to 5:33\n" )) def test_yacc_error6(self): run_import("yacc_error6") result = sys.stdout.getvalue() self.assert_(check_expected(result, "a=7\n" "Line 3: Syntax error at '*'\n" "c=21\n" )) def test_yacc_error7(self): run_import("yacc_error7") result = sys.stdout.getvalue() self.assert_(check_expected(result, "a=7\n" "Line 3: Syntax error at '*'\n" "c=21\n" )) def test_yacc_inf(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_inf") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Token 'NUMBER' defined, but not used\n" "There is 1 unused token\n" "Infinite recursion detected for symbol 'statement'\n" "Infinite recursion detected for symbol 'expression'\n" )) def test_yacc_literal(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_literal") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_literal.py:36: Literal token '**' in rule 'expression' may only be a single character\n" )) def test_yacc_misplaced(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_misplaced") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_misplaced.py:32: Misplaced '|'\n" )) def test_yacc_missing1(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_missing1") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_missing1.py:24: Symbol 'location' used, but not defined as a token or a rule\n" )) def test_yacc_nested(self): run_import("yacc_nested") result = sys.stdout.getvalue() self.assert_(check_expected(result, "A\n" "A\n" "A\n", )) def test_yacc_nodoc(self): run_import("yacc_nodoc") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_nodoc.py:27: No documentation string specified in function 'p_statement_expr' (ignored)\n" "Generating LALR tables\n" )) def test_yacc_noerror(self): run_import("yacc_noerror") result = sys.stderr.getvalue() self.assert_(check_expected(result, "no p_error() function is defined\n" "Generating LALR tables\n" )) def test_yacc_nop(self): run_import("yacc_nop") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_nop.py:27: Possible grammar rule 'statement_expr' defined without p_ prefix\n" "Generating LALR tables\n" )) def test_yacc_notfunc(self): run_import("yacc_notfunc") result = sys.stderr.getvalue() self.assert_(check_expected(result, "'p_statement_assign' not defined as a function\n" "Token 'EQUALS' defined, but not used\n" "There is 1 unused token\n" "Generating LALR tables\n" )) def test_yacc_notok(self): try: run_import("yacc_notok") except ply.yacc.YaccError: result = sys.stderr.getvalue() self.assert_(check_expected(result, "No token list is defined\n")) def test_yacc_rr(self): run_import("yacc_rr") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Generating LALR tables\n" "1 reduce/reduce conflict\n" "reduce/reduce conflict in state 15 resolved using rule (statement -> NAME EQUALS NUMBER)\n" "rejected rule (expression -> NUMBER) in state 15\n" )) def test_yacc_rr_unused(self): run_import("yacc_rr_unused") result = sys.stderr.getvalue() self.assert_(check_expected(result, "no p_error() function is defined\n" "Generating LALR tables\n" "3 reduce/reduce conflicts\n" "reduce/reduce conflict in state 1 resolved using rule (rule3 -> A)\n" "rejected rule (rule4 -> A) in state 1\n" "reduce/reduce conflict in state 1 resolved using rule (rule3 -> A)\n" "rejected rule (rule5 -> A) in state 1\n" "reduce/reduce conflict in state 1 resolved using rule (rule4 -> A)\n" "rejected rule (rule5 -> A) in state 1\n" "Rule (rule5 -> A) is never reduced\n" )) def test_yacc_simple(self): run_import("yacc_simple") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Generating LALR tables\n" )) def test_yacc_sr(self): run_import("yacc_sr") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Generating LALR tables\n" "20 shift/reduce conflicts\n" )) def test_yacc_term1(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_term1") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_term1.py:24: Illegal rule name 'NUMBER'. Already defined as a token\n" )) def test_yacc_unused(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_unused") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_unused.py:62: Symbol 'COMMA' used, but not defined as a token or a rule\n" "Symbol 'COMMA' is unreachable\n" "Symbol 'exprlist' is unreachable\n" )) def test_yacc_unused_rule(self): run_import("yacc_unused_rule") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_unused_rule.py:62: Rule 'integer' defined, but not used\n" "There is 1 unused rule\n" "Symbol 'integer' is unreachable\n" "Generating LALR tables\n" )) def test_yacc_uprec(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_uprec") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_uprec.py:37: Nothing known about the precedence of 'UMINUS'\n" )) def test_yacc_uprec2(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_uprec2") result = sys.stderr.getvalue() self.assert_(check_expected(result, "yacc_uprec2.py:37: Syntax error. Nothing follows %prec\n" )) def test_yacc_prec1(self): self.assertRaises(ply.yacc.YaccError,run_import,"yacc_prec1") result = sys.stderr.getvalue() self.assert_(check_expected(result, "Precedence rule 'left' defined for unknown symbol '+'\n" "Precedence rule 'left' defined for unknown symbol '*'\n" "Precedence rule 'left' defined for unknown symbol '-'\n" "Precedence rule 'left' defined for unknown symbol '/'\n" )) unittest.main()
[ "benno@breakawayconsulting.com.au" ]
benno@breakawayconsulting.com.au
4bdd54024cb065037e02da496368a94aedc86137
2ac772bf0c2054e2f1a2e8db6d73e0b4d14dedda
/[Do_it]_Python/chap06/shell_sort2.py
9c6b3e024beb69d3a8bd9884b06668dc47f56052
[]
no_license
cherieuu/Algorithm
1cf5d7399cb89eb124c3b335eb666b77dd33d8b8
cd1e4482e2ce5ad46efac0fff22eea80a3edb036
refs/heads/master
2023-06-23T20:12:00.148985
2021-07-27T14:55:54
2021-07-27T14:55:54
377,110,737
0
0
null
null
null
null
UTF-8
Python
false
false
993
py
# [Do it! ์‹ค์Šต 6-9] ์…ธ ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„ํ•˜๊ธฐ(h * 3 + 1์˜ ์ˆ˜์—ด ์‚ฌ์šฉ) from typing import MutableSequence def shell_sort(a: MutableSequence) -> None: """์…ธ ์ •๋ ฌ(h * 3 + 1์˜ ์ˆ˜์—ด ์‚ฌ์šฉ)""" n = len(a) h = 1 while h < n // 9: h = h * 3 + 1 while h > 0: for i in range(h, n): j = i - h tmp = a[i] while j >= 0 and a[j] > tmp: a[j + h] = a[j] j -= h a[j + h] = tmp h //= 3 if __name__ == '__main__': print('์…ธ ์ •๋ ฌ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค(h * 3 + 1์˜ ์ˆ˜์—ด ์‚ฌ์šฉ).') num = int(input('์›์†Œ ์ˆ˜๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”.: ')) x = [None] * num # ์›์†Œ ์ˆ˜๊ฐ€ num์ธ ๋ฐฐ์—ด์„ ์ƒ์„ฑ for i in range(num): x[i] = int(input(f'x[{i}]: ')) shell_sort(x) # ๋ฐฐ์—ด x๋ฅผ ์…ธ ์ •๋ ฌ print('์˜ค๋ฆ„์ฐจ์ˆœ์œผ๋กœ ์ •๋ ฌํ–ˆ์Šต๋‹ˆ๋‹ค.') for i in range(num): print(f'x[{i}] = {x[i]}')
[ "yhy970108@gmail.com" ]
yhy970108@gmail.com
7a0612bb90e38e3b609279636f755bf5f4be3f41
839c28be0b52f3831fe1b64ef2d8ba34c384dec4
/etc/hello.py
a4d609375092cda12958024c573ea83626c03e58
[]
no_license
petertrr/stepic-project-web
5d9d82522d70e65b534325815e768d1df3e43016
d235d9d1b187b98dcaca8d833bf77f4cf2b632ae
refs/heads/master
2020-07-22T17:50:16.233607
2016-11-21T18:59:31
2016-11-21T18:59:31
73,825,971
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
def app(environ, start_response): # logic status = '200 OK' headers = [ ('Content-Type', 'text/plain') ] body = environ['QUERY_STRING'].split("&") body = [i+'\r\n' for i in body] start_response(status, headers ) return body
[ "peter.trifanov@mail.ru" ]
peter.trifanov@mail.ru
7d6914b5302e5fb20406717bbbb6260a2f53a640
1e23ae696c5620043063e20c2dde14a92709c644
/appengine/lib/echonest.py
b9cc406fc367d5fb4d4e6338c206c69aee93854d
[]
no_license
ynohtna/techno-is-the-word
ff1ea4e3f553118bd43380f1db1c9ec834a28c08
ebfd4186d847ebce1a83476ca557448d26e4aad6
refs/heads/master
2021-01-19T04:43:48.549625
2016-02-28T17:30:03
2016-02-28T17:30:03
52,732,582
1
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
import logging from django.utils import simplejson from google.appengine.api.urlfetch import fetch from lib.helpers import alter_query # ============================================================ # CONSTANTS. API_KEY = 'TCLMMWCPEMTQCMBVA' CON_KEY = '93a88bc50c2a37f66339cbd35d7bfb66' SECRET = 'qlJ5i/ZeQjGv5e8cBTjqlQ' URL = 'http://developer.echonest.com/api/v4' # ============================================================ def mk_url(api, dict = None): url = '%s/%s' % (URL, api) params = { 'api_key': API_KEY, 'format': 'json' } if dict: params.update(dict) url = alter_query(url, params) return url # ============================================================ def test(): url = mk_url('song') logging.info('URL %s' % url) # ============================================================ def get_assets(limit = 100, offset = 0): url = mk_url('sandbox/list', { 'sandbox': 'emi_open_collection', 'results': limit, 'start': offset, }) logging.info('FETCHING ASSETS FROM %s' % url) response = fetch(url) assets = [] try: if response.status_code == 200: json = response.content json_dict = simplejson.loads(json) assets = json_dict['response']['assets'] except Exception, e: logging.error(repr(e)) return assets # ============================================================ def get_techno_tracks(limit = 100, offset = 0): url = mk_url('song/search', { 'style': 'techno', 'bucket': 'id:emi_open_collection', 'results': limit, 'start': offset, }) logging.info('FETCHING TECHNO TRACKS FROM %s' % url) response = fetch(url) tracks = [] try: if response.status_code == 200: json = response.content json_dict = simplejson.loads(json) tracks = json_dict['response']['songs'] except Exception, e: logging.error(repr(e)) return tracks
[ "ynohtna@ynohtna.org" ]
ynohtna@ynohtna.org
45f8a9907a4bba03a02af49231f0d72b1e4bcfdc
35ef09d5ded82356cdec16c1dc710d3b1643588f
/project/project/settings.py
1fa9c005d230e9fb5ff5d7da82fd0ced1d84c1bd
[ "MIT" ]
permissive
Shravya9506/sample-django-docker
c5c23140a2b3537255ba5e8f83296459c7f11957
b80f68ad639d134b8699abd10c83de2283955e9a
refs/heads/master
2022-01-12T08:12:11.849002
2019-07-09T11:33:36
2019-07-09T11:33:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,309
py
""" Django settings for project project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'postgres', 'USER': 'postgres', 'PASSWORD': os.environ.get('POSTGRES_PASSWORD'), 'HOST': 'db', 'PORT': '5432', } } BROKER_TRANSPORT = 'redis' BROKER_URL = "redis://redis:6379/0" CELERY_RESULT_BACKEND = BROKER_URL STATIC_ROOT = '/code/static' # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
[ "rowdy_beaver@piedmontfalls.org" ]
rowdy_beaver@piedmontfalls.org
232cd5de467da1a24c6ec42498c4ddf0a4ba6674
b083ec94ed712c315e7f811aa6f7a3eb37eeb1cf
/exe6.py
e47b06645f8bb1107efb0e75ea41619fe7f0d95f
[]
no_license
LePetuconski/simple-python-exercises
742cbdfefb5299840fb925a6206ef8e54960507b
6851dedf5d55e4ae64008eeb37c717376ad267c0
refs/heads/master
2023-04-11T06:36:01.909128
2021-04-25T16:01:04
2021-04-25T16:01:04
361,325,880
3
0
null
null
null
null
UTF-8
Python
false
false
106
py
R = 30; volume = ((4/3) * 3.1416 * (R**3)); print(f'A esfera do raio รฉ r = {R} e o volume รฉ {volume}');
[ "leticiapetuconski@gmail.com" ]
leticiapetuconski@gmail.com