blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 2
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
69
| license_type
stringclasses 2
values | repo_name
stringlengths 5
118
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
63
| visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 2.91k
686M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 23
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 213
values | src_encoding
stringclasses 30
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 2
10.3M
| extension
stringclasses 246
values | content
stringlengths 2
10.3M
| authors
listlengths 1
1
| author_id
stringlengths 0
212
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73d3562cc8169b63495c78ae59440d22cfde758f
|
c2a6adcfb2319b67922c646ebfb70a8f189c5e12
|
/moya/command/sub/filesystems.py
|
6f9c3ad92bb93bc098833bb4b4daee56548919fe
|
[
"MIT"
] |
permissive
|
metaperl/moya
|
d8624664382370ca28502b43a91f69d856b79aa3
|
960d504e98da643ae870e85a75ad0ed183fabfa2
|
refs/heads/master
| 2020-06-24T20:33:53.771757
| 2016-09-11T14:44:25
| 2016-09-11T14:44:25
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 12,106
|
py
|
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
from ...command import SubCommand
from ...wsgi import WSGIApplication
from ...console import Cell
from ...compat import text_type, raw_input
from fs.opener import fsopendir
from fs.errors import FSError
from fs.multifs import MultiFS
from fs.mountfs import MountFS
from fs.path import dirname
def _ls(console, file_paths, dir_paths, format_long=False):
"""Cannibalized from pyfileystem"""
dirs = frozenset(dir_paths)
paths = sorted(file_paths + dir_paths, key=lambda p: p.lower())
def columnize(paths, num_columns):
col_height = (len(paths) + num_columns - 1) / num_columns
columns = [[] for _ in range(num_columns)]
col_no = 0
col_pos = 0
for path in paths:
columns[col_no].append(path)
col_pos += 1
if col_pos >= col_height:
col_no += 1
col_pos = 0
padded_columns = []
def wrap(path):
return (path in dirs, path.ljust(max_width))
for column in columns:
if column:
max_width = max([len(path) for path in column])
else:
max_width = 1
max_width = min(max_width, terminal_width)
padded_columns.append([wrap(path) for path in column])
return padded_columns
def condense_columns(columns):
max_column_height = max([len(col) for col in columns])
lines = [[] for _ in range(max_column_height)]
for column in columns:
for line, (isdir, path) in zip(lines, column):
line.append((isdir, path))
for line in lines:
for i, (isdir, path) in enumerate(line):
if isdir:
console(path, bold=True, fg="blue")
else:
console(path)
if i < len(line) - 1:
console(' ')
console.nl()
if format_long:
for path in paths:
if path in dirs:
console(path, bold=True, fg="blue")
else:
console(path)
console.nl()
else:
terminal_width = console.width
path_widths = [len(path) for path in paths]
smallest_paths = min(path_widths)
num_paths = len(paths)
num_cols = min(terminal_width // (smallest_paths + 2), num_paths)
while num_cols:
col_height = (num_paths + num_cols - 1) // num_cols
line_width = 0
for col_no in range(num_cols):
try:
col_width = max(path_widths[col_no * col_height: (col_no + 1) * col_height])
except ValueError:
continue
line_width += col_width
if line_width > terminal_width:
break
line_width += 2
else:
if line_width - 1 <= terminal_width:
break
num_cols -= 1
num_cols = max(1, num_cols)
columns = columnize(paths, num_cols)
condense_columns(columns)
class FS(SubCommand):
"""Manage project filesystems"""
help = "manage project fsfilesystems"
def add_arguments(self, parser):
parser.add_argument(dest="fs", nargs="?", default=None, metavar="FILESYSTEM",
help="filesystem name")
parser.add_argument("-l", "--location", dest="location", default=None, metavar="PATH",
help="location of the Moya server code")
parser.add_argument("-i", "--ini", dest="settings", default=None, metavar="SETTINGSPATH",
help="path to project settings")
parser.add_argument("--server", dest="server", default='main', metavar="SERVERREF",
help="server element to use")
parser.add_argument('--ls', dest="listdir", default=None, metavar="PATH",
help="list files / directories")
parser.add_argument("--tree", dest="tree", nargs='?', default=None, const='/',
help="display a tree view of the filesystem")
parser.add_argument("--cat", dest="cat", default=None, metavar="PATH",
help="Cat a file to the console")
parser.add_argument("--syspath", dest="syspath", default=None, metavar="PATH",
help="display the system path of a file")
parser.add_argument("--open", dest="open", default=None, metavar="PATH",
help="open a file")
parser.add_argument("--copy", dest="copy", metavar="DESTINATION or PATH DESTINATION", nargs='+',
help="copy contents of a filesystem to PATH, or a file from PATH to DESTINATION")
parser.add_argument('--extract', dest="extract", metavar="PATH DIRECTORY", nargs=2,
help="copy a file from a filesystem, preserving directory structure")
parser.add_argument("-f", "--force", dest="force", action="store_true", default=False,
help="force overwrite of destination even if it is not empty (with --copy)")
return parser
def run(self):
args = self.args
application = WSGIApplication(self.location,
self.get_settings(),
args.server,
disable_autoreload=True,
master_settings=self.master_settings)
archive = application.archive
filesystems = archive.filesystems
fs = None
if args.fs:
try:
fs = filesystems[args.fs]
except KeyError:
self.console.error("No filesystem called '%s'" % args.fs)
return -1
if args.tree is not None:
if fs is None:
self.console.error("Filesystem required")
return -1
with fs.opendir(args.tree) as tree_fs:
tree_fs.tree()
return
if args.listdir:
if fs is None:
self.console.error("Filesystem required")
return -1
dir_fs = fs.opendir(args.listdir)
file_paths = dir_fs.listdir(files_only=True)
dir_paths = dir_fs.listdir(dirs_only=True)
_ls(self.console, file_paths, dir_paths)
elif args.cat:
if fs is None:
self.console.error("Filesystem required")
return -1
contents = fs.getcontents(args.cat)
self.console.cat(contents, args.cat)
elif args.open:
if fs is None:
self.console.error("Filesystem required")
return -1
filepath = fs.getsyspath(args.open, allow_none=True)
if filepath is None:
self.console.error("No system path for '%s' in filesystem '%s'" % (args.open, args.fs))
return -1
import subprocess
if os.name == 'mac':
subprocess.call(('open', filepath))
elif os.name == 'nt':
subprocess.call(('start', filepath), shell=True)
elif os.name == 'posix':
subprocess.call(('xdg-open', filepath))
else:
self.console.error("Moya doesn't know how to open files on this platform (%s)" % os.name)
elif args.syspath:
if fs is None:
self.console.error("Filesystem required")
return -1
if not fs.exists(args.syspath):
self.console.error("No file called '%s' found in filesystem '%s'" % (args.syspath, args.fs))
return -1
syspath = fs.getsyspath(args.syspath, allow_none=True)
if syspath is None:
self.console.error("No system path for '%s' in filesystem '%s'" % (args.syspath, args.fs))
else:
self.console(syspath).nl()
elif args.copy:
if fs is None:
self.console.error("Filesystem required")
return -1
if len(args.copy) == 1:
src = '/'
dst = args.copy[0]
elif len(args.copy) == 2:
src, dst = args.copy
else:
self.console.error("--copy requires 1 or 2 arguments")
return -1
if fs.isdir(src):
src_fs = fs.opendir(src)
dst_fs = fsopendir(dst, create_dir=True)
if not args.force and not dst_fs.isdirempty('/'):
response = raw_input("'%s' is not empty. Copying may overwrite directory contents. Continue? " % dst)
if response.lower() not in ('y', 'yes'):
return 0
from fs.utils import copydir
copydir(src_fs, dst_fs)
else:
with fs.open(src, 'rb') as read_f:
if os.path.isdir(dst):
dst = os.path.join(dst, os.path.basename(src))
try:
os.makedirs(dst)
with open(dst, 'wb') as write_f:
while 1:
chunk = read_f.read(16384)
if not chunk:
break
write_f.write(chunk)
except IOError as e:
self.error('unable to write to {}'.format(dst))
elif args.extract:
if fs is None:
self.console.error("Filesystem required")
return -1
src_path, dst_dir_path = args.extract
src_fs = fs
dst_fs = fsopendir(dst_dir_path, create_dir=True)
if not args.force and dst_fs.exists(src_path):
response = raw_input("'%s' exists. Do you want to overwrite? " % src_path)
if response.lower() not in ('y', 'yes'):
return 0
dst_fs.makedir(dirname(src_path), recursive=True, allow_recreate=True)
with src_fs.open(src_path, 'rb') as read_file:
dst_fs.setcontents(src_path, read_file)
else:
table = [[Cell("Name", bold=True),
Cell("Type", bold=True),
Cell("Location", bold=True)]]
if fs is None:
list_filesystems = filesystems.items()
else:
list_filesystems = [(args.fs, fs)]
for name, fs in sorted(list_filesystems):
if isinstance(fs, MultiFS):
location = '\n'.join(mount_fs.desc('/') for mount_fs in fs.fs_sequence)
fg = "yellow"
elif isinstance(fs, MountFS):
mount_desc = []
for path, dirmount in fs.mount_tree.items():
mount_desc.append('%s->%s' % (path, dirmount.fs.desc('/')))
location = '\n'.join(mount_desc)
fg = "magenta"
else:
syspath = fs.getsyspath('/', allow_none=True)
if syspath is not None:
location = syspath
fg = "green"
else:
try:
location = fs.desc('/')
except FSError as e:
location = text_type(e)
fg = "red"
else:
fg = "blue"
table.append([Cell(name),
Cell(type(fs).__name__),
Cell(location, bold=True, fg=fg)
])
self.console.table(table, header=True)
|
[
"willmcgugan@gmail.com"
] |
willmcgugan@gmail.com
|
701b994d2b8c8b09b9fbfc52af044fe27f7a4ed4
|
7f87a68d69e41ddc2e4cf67d019eaf74f823a5e5
|
/models/post.py
|
930e32e74d00ff3f299092c59ab27b565f00e492
|
[] |
no_license
|
wgwjifeng/Publish
|
5b9ac129bca819077ddc1edaa5c54240a51a5a64
|
9a0cc10278bdd71b93d539c23daae86c469ff5c9
|
refs/heads/master
| 2020-04-04T02:59:45.206878
| 2016-04-10T13:58:16
| 2016-04-10T13:58:16
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 679
|
py
|
# -*- coding: utf-8 -*-
import sqlalchemy as sa
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Post(Base):
__tablename__ = 'post'
__table_args__ = {
'mysql_charset': 'utf8',
}
id = sa.Column(sa.Integer, primary_key = True, autoincrement = True)
title = sa.Column(sa.String(64))
content = sa.Column(sa.Text)
username = sa.Column(sa.String)
def __init__(self, title=title, content=content, username=username):
self.title = title
self.content = content
self.username = username
def __repr__(self):
return '<Post %s> [Content %s]' % (self.title, self.content)
|
[
"1016903103@qq.com"
] |
1016903103@qq.com
|
fd634b5a0f7144f8919b3ba701529f52f30990f2
|
f2770a694a8aedb71c326ced49e76531d69d9f4f
|
/bin_SPIDERS_AGN/create_gaia_mask_2RXS.py
|
c1ba0a341fabe82650c3c0d62c2cea216a8ff4d4
|
[] |
no_license
|
JohanComparat/makeSample
|
258280ccb0f9dfa7dc13e934f453c520a1f416b8
|
b15f942f51750f504150f6ec29eba857123c29c4
|
refs/heads/master
| 2021-06-07T18:21:27.559530
| 2020-01-22T08:46:04
| 2020-01-22T08:46:04
| 106,016,246
| 2
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,675
|
py
|
import astropy.io.fits as fits
import os, sys, glob
from os.path import join
#import pymangle as mangle
import numpy as np
import matplotlib.pyplot as p
from scipy.interpolate import interp1d
import astropy.units as u
import astropy.cosmology as cc
cosmo = cc.Planck13
from astropy.coordinates import SkyCoord
from sklearn.neighbors import BallTree, DistanceMetric
from astropy.table import Table,unique
from math import radians, cos, sin, asin, sqrt, pi
in_dir = '/data36s/comparat/AGN_clustering/catalogs/'
out_dir = '/data36s/comparat/AGN_clustering/angular_clustering/'
deg_to_rad = np.pi/180.
arcsec = 1. / 3600.
rs = 10**np.arange(-1,1.6,0.1) *arcsec
# SDSS WISE CATALOGS
# path_2_file = '/data44s/eroAGN_WG_DATA/DATA/masks/SDSS_WISE_imageprop_nside512.fits'
# hdu_S = fits.open(path_2_file)
# DATA
path_2_data_2rxs = join( in_dir, '2RXS_AllWISE_catalog_paper_2017May26_v5_11_0_sdss_26_VERON_MASKED.fits' )
data_file = path_2_data_2rxs
ra_name_data = 'ALLW_RA'
dec_name_data = 'ALLW_DEC'
hduD = fits.open(data_file)
ra_data = hduD[1].data[ra_name_data]
dec_data = hduD[1].data[dec_name_data]
z_data = np.zeros_like(ra_data)
ratelim_data = hduD[1].data['RATELIM']
coords = SkyCoord(ra_data, dec_data, unit='deg', frame='icrs')
bb_data = coords.galactic.b.value
ll_data = coords.galactic.l.value
bb_ecl_data = coords.barycentrictrueecliptic.lat
stars_data = (hduD[1].data['p_any']>0.5)&(hduD[1].data['2RXS_ExiML']>10)
rt_sel_data = (ratelim_data>0.015)
x_gal_data = (abs(bb_data)>20)&(dec_data<80)&(dec_data>-80)&(bb_ecl_data.value>-80)
selection_data = (x_gal_data)&(stars_data==False)&(rt_sel_data)
N_data = len(ra_data[selection_data])
# GAIA CATALOGS
gaia_dir = '/data44s/eroAGN_WG_DATA/DATA/photometry/catalogs/GAIA/DR2/'
gaia_table_list = np.array(glob.glob(os.path.join(gaia_dir, 'table_*.fits')))
gaia_table_list.sort()
for gaia_file in gaia_table_list[1:][::-1]:
print(gaia_file)
hdu_G = fits.open(gaia_file)
ra_gaia, dec_gaia = hdu_G[1].data['ra'], hdu_G[1].data['dec']
coords = SkyCoord(ra_gaia, dec_gaia, unit='deg', frame='icrs')
bb_gaia = coords.galactic.b.value
ll_gaia = coords.galactic.l.value
bb_ecl_gaia = coords.barycentrictrueecliptic.lat
x_gal_gaia = (abs(bb_gaia)>20)&(dec_gaia<80)&(dec_gaia>-80)&(bb_ecl_gaia.value>-80)
selection_gaia = (x_gal_gaia)
N_gaia = len(ra_gaia[selection_gaia])
agn_coordinates = deg_to_rad * np.transpose([dec_data[selection_data], ra_data[selection_data]])
gaia_coordinates = deg_to_rad * np.transpose([dec_gaia[selection_gaia], ra_gaia[selection_gaia]])
Tree_obj_Gaia = BallTree(gaia_coordinates, metric='haversine')
Tree_obj_AGN = BallTree(agn_coordinates , metric='haversine')
test_c = np.array([ Tree_obj_Gaia.query_radius(agn_coordinates, r = rr, count_only=True) for rr in rs ])
N_pairs_total = test_c.sum(axis=1)
Delta_N_pairs = N_pairs_total[1:]-N_pairs_total[:-1]
area = 4.*np.pi*(rs[1:]**2 - rs[:-1]**2)
pair_density = Delta_N_pairs/(area*N_data*N_gaia)
out_data = os.path.join(out_dir , '2RXS_AllWISE_catalog_paper_2017May26_X_GAIA_'+os.path.basename(gaia_file)+'.data')
np.savetxt(out_data, np.transpose([rs[1:], pair_density]), header='radius_arcsec density' )
# EXCEPTION for the first file, that has a broad magnitude range 1-5 that I re-cut by hand into 2 and extend the radius.
gaia_file = gaia_table_list[0]
print(gaia_file)
hdu_G = fits.open(gaia_file)
ra_gaia, dec_gaia = hdu_G[1].data['ra'], hdu_G[1].data['dec']
coords = SkyCoord(ra_gaia, dec_gaia, unit='deg', frame='icrs')
bb_gaia = coords.galactic.b.value
ll_gaia = coords.galactic.l.value
bb_ecl_gaia = coords.barycentrictrueecliptic.lat
g_mag = hdu_G[1].data['phot_g_mean_mag']
x_gal_gaia = (abs(bb_gaia)>20)&(dec_gaia<80)&(dec_gaia>-80)&(bb_ecl_gaia.value>-80)
mag_sel = (g_mag>4)
selection_gaia = (x_gal_gaia)&(mag_sel)
N_gaia = len(ra_gaia[selection_gaia])
# Tree to select pairs
# COUNT UNIQUE
agn_coordinates = deg_to_rad * np.transpose([dec_data[selection_data], ra_data[selection_data]])
gaia_coordinates = deg_to_rad * np.transpose([dec_gaia[selection_gaia], ra_gaia[selection_gaia]])
Tree_obj_Gaia = BallTree(gaia_coordinates, metric='haversine')
Tree_obj_AGN = BallTree(agn_coordinates , metric='haversine')
test_c = np.array([ Tree_obj_Gaia.query_radius(agn_coordinates, r = rr, count_only=True) for rr in rs ])
N_pairs_total = test_c.sum(axis=1)
Delta_N_pairs = N_pairs_total[1:]-N_pairs_total[:-1]
area = 4.*np.pi*(rs[1:]**2 - rs[:-1]**2)
pair_density = Delta_N_pairs/(area*N_data*N_gaia)
out_data = os.path.join(out_dir , '2RXS_AllWISE_catalog_paper_2017May26_X_GAIA_table_4_g_5.fits.data')
np.savetxt(out_data, np.transpose([rs[1:], pair_density]), header='radius_arcsec density' )
mag_sel = (g_mag<=4)
selection_gaia = (x_gal_gaia)&(mag_sel)
N_gaia = len(ra_gaia[selection_gaia])
# Tree to select pairs
# COUNT UNIQUE
agn_coordinates = deg_to_rad * np.transpose([dec_data[selection_data], ra_data[selection_data]])
gaia_coordinates = deg_to_rad * np.transpose([dec_gaia[selection_gaia], ra_gaia[selection_gaia]])
Tree_obj_Gaia = BallTree(gaia_coordinates, metric='haversine')
Tree_obj_AGN = BallTree(agn_coordinates , metric='haversine')
test_c = np.array([ Tree_obj_Gaia.query_radius(agn_coordinates, r = rr, count_only=True) for rr in rs ])
N_pairs_total = test_c.sum(axis=1)
Delta_N_pairs = N_pairs_total[1:]-N_pairs_total[:-1]
area = 4.*np.pi*(rs[1:]**2 - rs[:-1]**2)
pair_density = Delta_N_pairs/(area*N_data*N_gaia)
out_data = os.path.join(out_dir , '2RXS_AllWISE_catalog_paper_2017May26_X_GAIA_table_1_g_4.fits.data')
np.savetxt(out_data, np.transpose([rs[1:], pair_density]), header='radius_arcsec density' )
|
[
"johan.comparat@gmail.com"
] |
johan.comparat@gmail.com
|
d40c9cc8024fef9549347f41beb2dad2ef0fbe36
|
79945ed5fa2bdc4adbc96008d40e7b1f4f741b9f
|
/keyPressed.py
|
7e26fe461de7dd72666a4ad7d0ec587c3b2b3cd0
|
[] |
no_license
|
Zaraklin/ContinuousAuthDataAnalyzer
|
ce4414fc64d2dee0bfae90ff5f0a380c67b5be84
|
ce2da60582056ebff2774db0ee75d3865f4daafd
|
refs/heads/master
| 2021-04-15T02:17:11.488103
| 2020-03-22T22:44:10
| 2020-03-22T22:44:10
| 249,286,439
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,090
|
py
|
class KeyPressed(object):
def __init__(self, data):
self.__dict__ = data
self.intervalBetweenKeyPress = self.__dict__["intervalBetweenKeyPress"]
self.keyPressed = self.__dict__["keyPressed"]
def __repr__(self):
return str(self)
def __str__(self):
return str(self.intervalBetweenKeyPress) + "," + "'" + str(self.keyPressed) + "'"
def __int__(self):
return int(self.intervalBetweenKeyPress)
def __lt__(self, other):
return int(self.intervalBetweenKeyPress) < int(other.intervalBetweenKeyPress)
def __le__(self, other):
return int(self.intervalBetweenKeyPress) <= int(other.intervalBetweenKeyPress)
def __gt__(self, other):
return int(self.intervalBetweenKeyPress) > int(other.intervalBetweenKeyPress)
def __ge__(self, other):
return int(self.intervalBetweenKeyPress) > int(other.intervalBetweenKeyPress)
def __eq__(self, other):
return int(self.intervalBetweenKeyPress) == int(other.intervalBetweenKeyPress)
def __ne__(self, other):
return int(self.intervalBetweenKeyPress) != int(other.intervalBetweenKeyPress)
def __radd__(self, other):
return self.intervalBetweenKeyPress + int(other)
def __iadd__(self, other):
return self.intervalBetweenKeyPress + int(other)
def __sum__(self, other):
return self.intervalBetweenKeyPress + int(other)
def __rsub__(self, other):
return self.intervalBetweenKeyPress - int(other)
def __isub__(self, other):
return self.intervalBetweenKeyPress - int(other)
def __sub__(self, other):
return self.intervalBetweenKeyPress - int(other)
def __rtruediv__(self, other):
return self.intervalBetweenKeyPress / int(other)
def __truediv__(self, other):
return self.intervalBetweenKeyPress / int(other)
def __rfloordiv__(self, other):
return self.intervalBetweenKeyPress / int(other)
def __floordiv__(self, other):
return self.intervalBetweenKeyPress / int(other)
|
[
"zaraklin@users.noreply.github.com"
] |
zaraklin@users.noreply.github.com
|
4e2274addc319ca71c1ddd6fb261f8e950e2a1d7
|
685fa64398a4af7529c16de12edbb430aa8f444c
|
/OnlineAssesment/Amazon/MaximumUnit.py
|
9682d0328d9be7eec7ae123f7eda75e144b110a1
|
[] |
no_license
|
aakashpatel25/InterviewQuestions
|
2407c83c911587f2e648ae150463412dac5cd626
|
2f8e8a33747affdabb10f4bc478fe545e7f09a4c
|
refs/heads/master
| 2022-12-15T02:18:22.645049
| 2020-09-19T03:19:53
| 2020-09-19T03:19:53
| 296,470,873
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 629
|
py
|
"""
https://leetcode.com/discuss/interview-question/793606/
Approach: Compute the number of units for each box sort it in descending order and fill up the truck till it is full.
Time Complexity: O(MlogM) - Sorting would require this complexity
Space Complexity: O(M) - Where M sum(boxes)
"""
def get_max_unit(num, boxes, unit_size, units_per_box, truck_size):
units = []
for boxes, unit in zip(boxes, units_per_box):
units+= [unit]*boxes
units.sort(reverse=True)
return sum(units[:truck_size])
assert get_max_unit(3, [1,2,3], 3, [3,2,1], 3) == 7
assert get_max_unit(3, [2,5,3], 3, [3,2,1], 50) == 19
|
[
"aakashpatel775@gmail.com"
] |
aakashpatel775@gmail.com
|
8780c7cb4a2857a1136d8ebd11d3ba4e48effcab
|
7c0d51af5c615ee557e4189444ca9c00a53f1b1e
|
/query.py
|
d28fdb045cc532b8757b6bdd8022ed052dd220b2
|
[] |
no_license
|
akhiljain0777/wikigraph
|
c68fd2787b7fc99a6fd38658bc1e81f522a3d51d
|
08fd74ea020f5eedec641e5878128985c1e6c758
|
refs/heads/master
| 2020-05-21T08:06:34.508241
| 2015-01-21T18:32:41
| 2015-01-21T18:32:41
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,697
|
py
|
from py2neo import neo4j
import json, time
def find_shortest_path(node1, node2):
"""Connects to graph database, then creates and sends query to graph
database. Returns the shortest path between two nodes.
Format: (67149)-[:'LINKS_TO']->(421)"""
graph_db = neo4j.GraphDatabaseService()
t0 = time.time()
query = neo4j.CypherQuery(
graph_db,
"""MATCH (m:Page {node:{n1}}), (n:Page {node:{n2}}),
p = shortestPath((m)-[*..10]->(n)) RETURN p"""
)
try:
path = query.execute_one(n1=node1, n2=node2)
except:
path = None
t1 = time.time()
print "\nShortest Path:", path
print "Time elapsed: %.2f seconds" % (t1 - t0)
return path
def parse_node(node, in_path):
"""Extract title and code from a node object. Returns a dict of information."""
code, deg, title = node.get_properties().values()
title = title.replace('_', ' ')
if title == "Basque people": # special exception for a changed redirect
title = "Basques"
node_dict = {'code': int(code),
'title': title,
'degrees': deg,
'group': 'none'}
if in_path:
node_dict['group'] = 'path'
return node_dict
def parse_rel(rel, in_path):
"""Extract node code from a relationship object. Returns a dict of
information."""
start_id = rel.start_node.get_properties()['node']
end_id = rel.end_node.get_properties()['node']
rel_dict = {'source': int(start_id),
'target': int(end_id),
'value': 0}
if in_path:
rel_dict['value'] = 1
return rel_dict
def parse_node_objs(node_objs_list, in_path=False):
"""Takes a list of node objects. Returns dict of node dicts."""
nodes = {}
for node in node_objs_list:
node_dict = parse_node(node, in_path=in_path)
if node_dict['code'] not in nodes:
nodes[node_dict['code']] = node_dict
return nodes
def parse_rel_objs(rel_objs_list, in_path=False):
"""Takes a list of relationship objects. Returns list of rel dicts."""
rel_dict_list = [parse_rel(rel=rel, in_path=in_path) for rel in rel_objs_list]
return rel_dict_list
def find_other_nodes(node_objs_list):
"""Takes a list of node objects. Returns list of rel dicts and list of
node dicts."""
rels = []
nodes = []
for node in node_objs_list:
for rel in node.match_incoming(limit=8):
rels.append(rel)
nodes.append(rel.start_node)
for rel in node.match_outgoing(limit=8):
rels.append(rel)
nodes.append(rel.end_node)
rel_dict_list = parse_rel_objs(rels)
node_dict_list = parse_node_objs(nodes)
return rel_dict_list, node_dict_list
def merge_node_dicts(path_nodes, npath_nodes):
"""Takes and merges the two dictionaries of node dicts. Returns list of
node dicts."""
d = dict(npath_nodes.items() + path_nodes.items())
node_dict_list = [node_dict for node_dict in d.values()]
return node_dict_list
def parse_nodes_and_rels(path):
"""Takes a path object. Returns two lists, one for rel dicts and one for
node dicts."""
# rel dict list for main path
path_rels = parse_rel_objs(rel_objs_list=path.relationships, in_path=True)
# parse nodes, create list of unique nodes
path_nodes = parse_node_objs(node_objs_list=path.nodes, in_path=True)
# this is a quick/dirty way to grab the names for each path node in order
path_names = []
for node in path.nodes:
path_dict = node.get_properties().values()[0]
path_names.append({'title': path_nodes[int(path_dict)]['title'],
'code': path_nodes[int(path_dict)]['code']})
# rel dict list for secondary rels
npath_rels, npath_nodes = find_other_nodes(node_objs_list=path.nodes)
# filter out reversed or duplicate paths in the path rels
for rel in npath_rels:
for path in path_rels:
if rel['source'] == path['target'] and rel['target'] == path['source']:
rel['value'] = 1 # include it in the path
if rel['source'] == path['source'] and rel['target'] == path['target']:
npath_rels.remove(rel) # remove duplicates
# combine the two lists for nodes and rels
rels_list = path_rels + npath_rels
nodes_list = merge_node_dicts(path_nodes, npath_nodes)
return rels_list, nodes_list, path_names
def create_lists(node1, node2):
"""Request the shortest path between two nodes from the database. Assemble
list of nodes and relationships from the path, then process to recode their
IDs. Write output to a JSON file."""
path = find_shortest_path(str(node1), str(node2))
if path:
rels_list, nodes_list, path_names = parse_nodes_and_rels(path)
codes = {}
id_counter = 0
for node in nodes_list: # create a dict to translate id codes
node_id = node['code']
if node_id not in codes:
codes[node_id] = id_counter
id_counter += 1
for rel in rels_list: # look up the source and target in codes
rel['source'] = codes[rel['source']]
rel['target'] = codes[rel['target']]
response = """{ "path": %s, "results": { "directed": true, "nodes": %s,
"links": %s, "multigraph": false }}""" % (json.dumps(path_names), json.dumps(nodes_list), json.dumps(rels_list))
else:
response = '{ "path": "None", "results": "None" }'
return response
if __name__ == '__main__':
print create_lists('335354', '3778612') # Abraham Lincoln to Astronomy
|
[
"erabug@gmail.com"
] |
erabug@gmail.com
|
ac7ed1ceb5306083b6350f9abe9ce05b8d24226a
|
cd713f083d719dcdf219a72f6f7f0f506a128e14
|
/weather.py
|
42cfc558f2d5c465ecfc60f2e103c40b290d09d8
|
[] |
no_license
|
patricia1387/IPK-projekt
|
2397b469f4a8d5e081b6c9565045acee8b1652a7
|
f3dc0e77e0d5c202e713fcfa2fbd2bd4ff6f096d
|
refs/heads/master
| 2020-05-18T03:02:10.841575
| 2019-04-29T19:55:40
| 2019-04-29T19:55:40
| 184,134,410
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,176
|
py
|
#!/bin/env python3
import sys
import socket
import json
from socket import *
if len(sys.argv) != 3:
sys.stderr.write("Wrong number of arguments\n")
sys.exit()
CITY = sys.argv[2]
API_KEY = sys.argv[1]
HOST = "api.openweathermap.org"
message = 'GET /data/2.5/weather?q='+CITY+'&APPID='+API_KEY+'&units=metric HTTP/1.1\r\nHost:'+HOST+'\r\n\r\n'
message = str.encode(message)
HOST = "api.openweathermap.org"
PORT = 80
mySocket = socket(AF_INET, SOCK_STREAM)
mySocket.connect((HOST,PORT))
mySocket.sendall(message)
data = mySocket.recv(1024).decode()
data.json.loads(data[data.find("\r\n\r\n")+4:])
try:
description = data['weather'][0]['description']
temp = data['main']['temp']
pressure = data['main']['pressure']
humidity = data['main']['humidity']
wind_speed = data['wind']['speed']*3.6
wind_deg = data['wind']['deg']
print(CITY)
print('{}'.format(description))
print('Teplota : {} stupnov Celzia'.format(temp))
print('Tlak : {} hPa'.format(pressure))
print('Vlhkost : {} %'.format(humidity))
print('Rychlost vetra : {} km/h'.format(wind_speed))
print('Smer vetra : {} '.format(wind_deg))
except:
print("Mesto sa nenašlo: " + CITY)
|
[
"noreply@github.com"
] |
patricia1387.noreply@github.com
|
adee2f37c5e416cdc0042d01d5194f7e63586daa
|
71ea474548cd7521723c97b48abe1ff03e54a4a4
|
/optimal_covering.py
|
534e24212a673ce559b7ec48820a05ff451e2a1f
|
[] |
no_license
|
wfedorko/optimal_covering
|
7d6eaca0c9bb96fc7ac4ba19a83df26c02b858c0
|
f0ab5559c7b0519df3dd0cd9441f48b7b017f6ce
|
refs/heads/master
| 2020-08-09T07:35:11.144149
| 2019-10-09T22:08:44
| 2019-10-09T22:08:44
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,182
|
py
|
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from shapely.geometry import Polygon
from datetime import datetime
import os
import itertools
import time
import random
from modules.earth_data import clouds
from modules.utils import time_utils
from modules.optimization import genetic_helpers
from modules.utils import retrievals
from modules.optimization import genetic_algorithm
from modules.earth_data import clouds
def remove(polygon_to_remove, mask_polys):
# removes all intersections of the mask with this polygon.
# that is, after calling this function your mask will have a hole
# where the polygon was
removed = []
for p in mask_polys:
intersection = poly_minus_intersection(p, polygon_to_remove)
if intersection.wkt == "GEOMETRYCOLLECTION EMPTY":
continue
removed.append(intersection)
return removed
def poly_minus_intersection(pol1, pol2):
# removes the intersection of pol1 and pol2 from pol1
if pol1.intersects(pol2):
# https://stackoverflow.com/questions/39459496/create-new-shapely-polygon-by-subtracting-the-intersection-with-another-polygon
no_overlap = (pol1.symmetric_difference(pol2)).difference(pol2)
else:
no_overlap = pol1
return no_overlap
def genetic_lattice(dtime, plot=False, **kwargs):
ref_time = datetime(2015, 1, 1)
time = time_utils.Time(dtime, ref_time)
# mask of lat between 0->90 and lon -180->180
mask_obj = genetic_helpers.clear_mask(time, plot=plot)
# polygons describing said mask
speed = False
if speed:
mask_polys = genetic_algorithm.get_mask_points(mask_obj)
else:
mask_polys = genetic_algorithm.get_mask_polys(mask_obj)
# lattice of FOVs generated using that mask and genetic algorithm
lattice = genetic_helpers.generate_fovs(mask_obj, mask_polys=mask_polys, **kwargs)
genetic_helpers.plot_individual(lattice, mask_obj, "final", save=False)
def subtraction_lattice(dtime, plot=False):
ref_time = datetime(2015, 1, 1)
time = time_utils.Time(dtime, ref_time)
# mask of lat between 0->90 and lon -180->180
mask_obj = genetic_helpers.clear_mask(time)
# coords = mask_obj.coords
# clear = mask_obj.mask
# num_ones = len(np.where(clear == 1)[0].flatten())
# polygons describing said mask
mask_polys = genetic_algorithm.get_mask_polys(mask_obj)
# get one point chosen by taking 100 random samples and evaluating each
best_observations = []
best_obs_poly = Polygon([(0, 0), (0, 0), (0, 0), (0, 0)])
members_per_pop = 100
for fov_num in range(120):
print("loop", fov_num)
mask_polys = remove(best_obs_poly, mask_polys)
best_obs_pop = genetic_helpers.generate_fovs(
mask_obj,
mask_polys=mask_polys,
generations=1,
members_per_pop=members_per_pop, # num_ones,
fovs_per_member=1,
num_parents_mating=0,
hpixels=64,
vpixels=64)
best_obs_poly = best_obs_pop[0]
best_observations.append(best_obs_poly)
# genetics.plot_individual(
# best_obs_pop, mask_obj, fov_num, save=False,
# mask_polys=mask_polys)
# print(best_obs_poly)
best_observations = np.array(best_observations)
# for obs in best_observations:
# print(obs)
genetic_helpers.plot_individual(best_observations, mask_obj, fov_num, save=True)
if __name__ == "__main__":
# np.random.seed(1234)
year = 2015
month = 4 # np.random.randint(1, 13)
day = 4 # np.randgenetic_algorithm.randint(1, 29) # no days above 28 to avoid February
hour = 8 # np.random.randint(0, 24)
dtime = datetime(year, month, day, hour=hour)
#clouds.download_merra_data(year, month)
#genetic_lattice(
# dtime,
# generations=400,
# members_per_pop=10,
# fovs_per_member=30,
# num_parents_mating=2,
# num_mutations=1
#)
genetic_lattice(dtime, generations=0)
|
[
"callum189@gmail.com"
] |
callum189@gmail.com
|
5853f6d3503fb35e9598547cafd94efd8a76e23c
|
2bdedcda705f6dcf45a1e9a090377f892bcb58bb
|
/src/main/output/issue/student_year/change/state/point/moment.py
|
ee124633f30626ea2579ff142848cd93d68a4ae2
|
[] |
no_license
|
matkosoric/GenericNameTesting
|
860a22af1098dda9ea9e24a1fc681bb728aa2d69
|
03f4a38229c28bc6d83258e5a84fce4b189d5f00
|
refs/heads/master
| 2021-01-08T22:35:20.022350
| 2020-02-21T11:28:21
| 2020-02-21T11:28:21
| 242,123,053
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,730
|
py
|
var express = require('express');
let https = require ('https');
let body = '';
let host = 'api.microsofttranslator.com';
let path = '/V2/Http.svc/TranslateArray';
let target = 'en';
let params = '';
let ns = "http://schemas.microsoft.com/2003/10/Serialization/Arrays";
let content =
'<TranslateArrayRequest>\n' +
// NOTE: AppId is required, but it can be empty because we are sending the Ocp-Apim-Subscription-Key header.
' <AppId />\n' +
' <Texts>\n' +
' <string xmlns=\"' + ns + '\">돼지</string>\n' +
' <string xmlns=\"' + ns + '\">소고기</string>\n' +
' <string xmlns=\"' + ns + '\">닭고기</string>\n' +
' <string xmlns=\"' + ns + '\">같은 제조시설</string>\n' +
' </Texts>\n' +
' <To>' + target + '</To>\n' +
'</TranslateArrayRequest>\n';
module.exports.Translate = async function() {
GetTranslationsArray();
}
let GetTranslationsArray = function () {
let request_params = {
method : 'POST',
hostname : host,
path : path + params,
headers : {
'Content-Type' : 'text/xml',
'70de318bb5902f3b5cc0d6119aba0c05' : subscriptionKey,
}
};
let req = https.request (request_params, response_handler);
req.write (content);
req.end ();
}
let response_handler = function (response) {
response.on ('data', function (d) {
body += d;
});
response.on ('end', function () {
console.log ('[[[[[[end]]]]]]' + body);
return body;
});
response.on ('error', function (e) {
console.log ('Error: ' + e.message);
});
};
/*
let response_handler = function (response) {
let body = '';
response.on ('data', function (d) {
body += d;
});
response.on ('end', function () {
console.log (body);
});
response.on ('error', function (e) {
console.log ('Error: ' + e.message);
});
};
module.exports.Translate = function(){
// Replace the subscriptionKey string value with your valid subscription key.
let subscriptionKey = '95c07978668892044c722dacc9d7607d';
let host = 'api.microsofttranslator.com';
let path = '/V2/Http.svc/Translate';
//let from = 'unk';from=' + from + '
let target = 'en';
let text = '안녕. 좋은 아침입니다.';
let params = '?to=' + target + '&text=' + encodeURI(text);
let request_params = {
method : 'GET',
hostname : host,
path : path + params,
headers : {
'53f9bacbf84de83f7081e0f15b562425' : subscriptionKey,
}
};
let req = https.request (request_params, response_handler);
req.end ();
console.log(req);
return req;
};
*/
|
[
"soric.matko@gmail.com"
] |
soric.matko@gmail.com
|
6963950662de49a1b19ec0ddd269e009f1a95243
|
f19ef1f67be42b17e75bf62fe0c7cc18dedceb81
|
/shop/migrations/0031_product_likes.py
|
7801fed65c933e126c9fc3c4a3cde57dac4c6160
|
[] |
no_license
|
FatfoutiMontassar/django
|
5ec1164a14a0ed77f673372d9b62367444982c47
|
f63dfd053314311e24aabf969ed1cb154e186493
|
refs/heads/master
| 2020-11-30T00:33:36.161003
| 2017-08-25T14:54:56
| 2017-08-25T14:54:56
| 95,864,961
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 564
|
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.10 on 2017-07-09 22:23
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('shop', '0030_trader'),
]
operations = [
migrations.AddField(
model_name='product',
name='likes',
field=models.ManyToManyField(blank=True, to=settings.AUTH_USER_MODEL),
),
]
|
[
"montassar.fatfouti@supcom.tn"
] |
montassar.fatfouti@supcom.tn
|
83b1aa1cb7e5ac74c85cac1b03d678a6da5ecb50
|
5fffb4c907ca25c8481ae2cf3a9d4b97ae746117
|
/bloomfilter.py
|
d563f6f0e3c4f5a4635b0cd538da180ce95cce25
|
[] |
no_license
|
dengguoguo/algorithm
|
b7aa47c559339ed64c464ca1fd6763f8d11cd850
|
316e06bc6ad163eaff8644d1d88a04fccaad06d8
|
refs/heads/master
| 2020-04-07T11:45:59.786332
| 2018-11-20T06:54:12
| 2018-11-20T06:54:12
| 158,339,921
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,569
|
py
|
# -*- coding: utf-8 -*-
# @Time : 2018/8/17 11:42
# @Author : dengguo
# @File : bloomfilter.py
# @Software: PyCharm
"""
如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。
链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。
不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。
它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。
这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。
Hash面临的问题就是冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。
解决方法也简单,就是使用多个 Hash,如果它们有一个说元素不在集合中,那肯定就不在。
如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。
"""
from bitarray import bitarray
import mmh3
class BloomFilter(set):
def __init__(self, size, hash_count):
super(BloomFilter, self).__init__()
self.bit_array = bitarray(size)
self.bit_array.setall(0)
self.size = size
self.hash_count = hash_count
def __len__(self):
return self.size
def __iter__(self):
return iter(self.bit_array)
def add(self, item):
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
self.bit_array[index] = 1
return self
def __contains__(self, item):
out = True
for ii in range(self.hash_count):
index = mmh3.hash(item, ii) % self.size
if self.bit_array[index] == 0:
out = False
return out
def main():
bloom = BloomFilter(100, 10)
animals = ['dog', 'cat', 'giraffe', 'fly', 'mosquito', 'horse', 'eagle',
'bird', 'bison', 'boar', 'butterfly', 'ant', 'anaconda', 'bear',
'chicken', 'dolphin', 'donkey', 'crow', 'crocodile']
# First insertion of animals into the bloom filter
for animal in animals:
bloom.add(animal)
# Membership existence for already inserted animals
# There should not be any false negatives
for animal in animals:
if animal in bloom:
print('{} is in bloom filter as expected'.format(animal))
else:
print('Something is terribly went wrong for {}'.format(animal))
print('FALSE NEGATIVE!')
# Membership existence for not inserted animals
# There could be false positives
other_animals = ['badger', 'cow', 'pig', 'sheep', 'bee', 'wolf', 'fox',
'whale', 'shark', 'fish', 'turkey', 'duck', 'dove',
'deer', 'elephant', 'frog', 'falcon', 'goat', 'gorilla',
'hawk']
for other_animal in other_animals:
if other_animal in bloom:
print('{} is not in the bloom, but a false positive'.format(other_animal))
else:
print('{} is not in the bloom filter as expected'.format(other_animal))
if __name__ == '__main__':
main()
|
[
"609085005@qq.com"
] |
609085005@qq.com
|
5a55e22c0047fbb7206c9582f0074d7c4212b789
|
e8ea8c6049ce3168753d06a23ed44cca7aadf098
|
/baselines/racing/experiments/acme/__init__.py
|
216f423713605af9bbba13e06ab3182dd577a776
|
[] |
no_license
|
luigiberducci/racing_dreamer
|
a05ec0e8a611d8c819f70c2b9b16bb97f52b2462
|
6ae736a577573682b17e67e63537c3c00de21b22
|
refs/heads/main
| 2023-08-24T09:20:40.262976
| 2021-10-23T10:32:58
| 2021-10-23T10:32:58
| 350,778,233
| 0
| 0
| null | 2021-03-23T16:16:08
| 2021-03-23T16:16:07
| null |
UTF-8
|
Python
| false
| false
| 1,932
|
py
|
from functools import partial
from typing import Optional, Union, Dict
from baselines.racing import make_mpo_agent
from baselines.racing.algorithms.d4pg import make_d4pg_agent
from baselines.racing.algorithms.lstm_mpo import make_lstm_mpo_agent
from baselines.racing.experiments.acme import SingleAgentExperiment
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
for device in physical_devices:
tf.config.experimental.set_memory_growth(device, True)
from baselines.racing.experiments.util import read_hyperparams
def choose_agent(name: str, param_file: Union[Optional[str], Dict], checkpoint_path: str):
if param_file:
if isinstance(param_file, str):
params = read_hyperparams(param_file)
elif isinstance(param_file, Dict):
params = param_file
else:
params = {}
else:
params ={}
print(params.keys())
if name == 'mpo':
constructor = partial(make_mpo_agent, hyperparams=params, checkpoint_path=checkpoint_path)
elif name == 'd4pg':
constructor = partial(make_d4pg_agent, hyperparams=params, checkpoint_path=checkpoint_path)
elif name == 'lstm-mpo':
constructor = partial(make_lstm_mpo_agent, hyperparams=params, checkpoint_path=checkpoint_path)
else:
raise NotImplementedError(name)
return constructor
def make_experiment(args, logdir):
checkpoint_path = f'{logdir}/checkpoints'
env_config = SingleAgentExperiment.EnvConfig(
track=args.track,
task=args.task,
action_repeat=args.action_repeat,
training_time_limit=args.training_time_limit,
eval_time_limit=args.eval_time_limit
)
experiment = SingleAgentExperiment(env_config=env_config, seed=args.seed, logdir=logdir)
agent_ctor = choose_agent(name=args.agent, param_file=args.params, checkpoint_path=checkpoint_path)
return experiment, agent_ctor
|
[
"axel.brunnbauer@gmx.at"
] |
axel.brunnbauer@gmx.at
|
20788e9de508e3703d0c702bb4d7af18d499b85f
|
eab8f79829f1f5d3050a4f47b240b79f9e37dbda
|
/unused_oil_effect.py
|
3dfaf355a9044ebf4ae7e2928026e72c616eb274
|
[] |
no_license
|
ZichangYe/AdvancedPython2021
|
5c5f3df36db4a34f3531f44b550ae79b0a520b69
|
a2aad24f2e8c9242c6551724fe9bb4b67171cdc0
|
refs/heads/main
| 2023-05-03T12:49:29.758440
| 2021-05-12T03:41:33
| 2021-05-12T03:41:33
| 363,002,008
| 4
| 3
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,697
|
py
|
import numpy as np
from itertools import product
def img_filter(img, locations, radius=3, level=10):
'''
this algorithm select the most frequent intensity group in the kernel,
and average r,b,g in the pixel group, it makes the original image like oil painting
:param img: 3d image array height, width, channel (b,g,r)
:param locations: list of tuple of face locations (top, right, bottom, left)
:param radius:
:param level:
:return:
'''
des_img = np.copy(img)
for location in locations:
top, right, bottom, left = location
if top+radius >= bottom-radius or left+radius>=right-radius:
continue
for i, j in product(range(top+radius, bottom-radius), range(left+radius, right-radius)):
level_counter = np.zeros(level, dtype=np.uint32)
b_level = np.zeros(level, dtype=np.uint32)
r_level = np.zeros(level, dtype=np.uint32)
g_level = np.zeros(level, dtype=np.uint32)
for m, n in product(range(-radius, radius), repeat=2):
b, g, r = img[i + m, j + n]
avg = (b+g+r) / 3.
pixlv = int(avg / (256 / level))
level_counter[pixlv] += 1
b_level[pixlv] += b
g_level[pixlv] += g
r_level[pixlv] += r
most_level_Idx = np.argmax(level_counter)
most_level_count = level_counter[most_level_Idx]
des_img[i, j, 0] = b_level[most_level_Idx] // most_level_count
des_img[i, j, 1] = g_level[most_level_Idx] // most_level_count
des_img[i, j, 2] = r_level[most_level_Idx] // most_level_count
return des_img
|
[
"54514463+PygMali0n@users.noreply.github.com"
] |
54514463+PygMali0n@users.noreply.github.com
|
cc48c048975e45adac7805c2e2bb0d29228dbacb
|
74bdcbc8781e850d1088e506ffd758038c7ee7d9
|
/pytty/lukija.py
|
d4d613b1c7e9cf900f760151b0c983e52db54b6d
|
[] |
no_license
|
ToniTSaari/Beginning
|
0522209d0ceb1367871c96ffcd4b9dc3a4460eaa
|
16b318e6de49017e3e6b8f9ee60743a0a4ed5ce6
|
refs/heads/master
| 2020-07-16T23:30:37.120940
| 2019-11-15T09:41:56
| 2019-11-15T09:41:56
| 205,891,313
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 410
|
py
|
import os
dir = os.getcwd()
juuri = os.path.abspath('..')
print(dir)
print(juuri)
print(["Tiedosto","Koko"])
for file in os.listdir(dir):
content = [file] + [str(os.path.getsize(os.path.join(dir, file)))]
print(content)
print()
print(["Tiedosto","Koko"])
for file in os.listdir(juuri):
content = [file] + [str(os.path.getsize(os.path.join(juuri, file)))]
print(content)
|
[
"noreply@github.com"
] |
ToniTSaari.noreply@github.com
|
514580033b9cd1a0d335e94d0eccc4cf36a36f2b
|
0ae2bb21d7ca71a691e33cb044a0964d380adda2
|
/EA/LC160IntersectionOfTwoLinkedLists.py
|
4c7fb25db05293025b1189d2b23daabae55d0cf8
|
[] |
no_license
|
xwang322/Coding-Interview
|
5d27ec92d6fcbb7b929dd98bb07c968c1e1b2a04
|
ee5beb79038675ce73c6d147ba9249d9a5ca346a
|
refs/heads/master
| 2020-03-10T08:18:34.980557
| 2018-06-24T03:37:12
| 2018-06-24T03:37:12
| 129,282,263
| 2
| 6
| null | 2018-04-19T19:31:24
| 2018-04-12T16:41:28
|
Python
|
UTF-8
|
Python
| false
| false
| 1,299
|
py
|
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
# O(n) space
def getIntersectionNode(self, headA, headB):
if not headA or not headB:
return None
visited = set()
while headA:
visited.add(headA.val)
headA = headA.next
while headB:
if headB.val in visited:
return headB
headB = headB.next
return None
class Solution(object):
# O(1) space
def getIntersectionNode(self, headA, headB):
if not headA or not headB:
return None
length1 = 0
length2 = 0
tempA = headA
tempB = headB
while tempA:
length1 += 1
tempA = tempA.next
while tempB:
length2 += 1
tempB = tempB.next
if length1 >= length2:
for i in range(length1 - length2):
headA = headA.next
else:
for i in range(length2 - length1):
headB = headB.next
while headA != headB:
headA = headA.next
headB = headB.next
return headA
|
[
"noreply@github.com"
] |
xwang322.noreply@github.com
|
d8440c333807f499183b5d7c0271f43a4a5eddf3
|
bb32566f0c4688292b8f37d29630e0b7a18be24b
|
/checkio/cipher-map.py
|
d7b90088c37eff5bec1701186b7ee4eab0cc5e34
|
[] |
no_license
|
Chencheng78/python-learning
|
4c7dd3a5ad39ac2e96b9ff0a1b9aabb56e863f7f
|
63eb7ee9e547f899eafa698556f6adeb518795bb
|
refs/heads/master
| 2022-07-27T02:40:03.067820
| 2022-07-12T09:05:47
| 2022-07-12T09:05:47
| 55,224,905
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 649
|
py
|
def clockwise_90(matrix):
matrix.reverse()
return list(map(list,zip(*matrix)))
def recall_password(grille,password):
cipher_matrix = []
for i in grille:
cipher_matrix.append([j for j in i])
pwd_matrix = []
for i in password:
pwd_matrix.append([j for j in i])
i = 0
output = ''
while i < 4:
for a in range(4):
for b in range(4):
if cipher_matrix[a][b] == 'X':
output += pwd_matrix[a][b]
cipher_matrix = clockwise_90(cipher_matrix)
i +=1
#print(clockwise_90(cipher_matrix))
return output
print(recall_password(
('X...',
'..X.',
'X..X',
'....'),
('itdf',
'gdce',
'aton',
'qrdi')))
|
[
"geniuscc7@163.com"
] |
geniuscc7@163.com
|
d6caf303d71c8dc706509a4b217651915c4b7600
|
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
|
/3yPvbEjskPuuSSCAC_11.py
|
2fba61184753e37ef33b7f27aaa7c8a6692740f4
|
[] |
no_license
|
daniel-reich/ubiquitous-fiesta
|
26e80f0082f8589e51d359ce7953117a3da7d38c
|
9af2700dbe59284f5697e612491499841a6c126f
|
refs/heads/master
| 2023-04-05T06:40:37.328213
| 2021-04-06T20:17:44
| 2021-04-06T20:17:44
| 355,318,759
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 121
|
py
|
def trimmed_averages(lst):
lst.remove(min(lst))
lst.remove(max(lst))
avg = sum(lst)/len(lst)
return round(avg)
|
[
"daniel.reich@danielreichs-MacBook-Pro.local"
] |
daniel.reich@danielreichs-MacBook-Pro.local
|
6234f0537de000f3fcd0a6ebe6e3d79510ff5394
|
c9b4179f07e10a657b4d18fb3dea6ed34ccf79c4
|
/benchmark_system/EmoticonDetector.py
|
9e69ddb0b2ed6e67170f7bb24f4428d6ad56e3ca
|
[] |
no_license
|
chialun-yeh/irony-detection
|
866c3ab00e1218d35579d32f0decd0e83b09c55a
|
c9556636f4dfcbb9c5d095f55bb960da548e2242
|
refs/heads/master
| 2020-04-07T16:31:35.341366
| 2018-04-16T17:53:09
| 2018-04-16T17:53:09
| 124,222,779
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 825
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 4 15:51:20 2018
@author: xuecho
"""
class EmoticonDetector:
emoticons = {}
def __init__(self, emoticon_file="emoticons.txt"):
from pathlib import Path
content = Path(emoticon_file).read_text()
positive = True
for line in content.split("\n"):
if "positive" in line.lower():
positive = True
continue
elif "negative" in line.lower():
positive = False
continue
self.emoticons[line] = positive
def is_positive(self, emoticon):
if emoticon in self.emoticons:
return self.emoticons[emoticon]
return False
def is_emoticon(self, to_check):
return to_check in self.emoticons
|
[
"F.Xu-1@student.tudelft.nl"
] |
F.Xu-1@student.tudelft.nl
|
2284ae8e1029a899f3759326e8b0fd32c931c601
|
6d026cee30d52154e3fd55a92c4981ee532c8084
|
/Section2/L5 Univeral array/universal_array_function.py
|
5c12399655d6095a4c5fbd790387f524779bf968
|
[
"MIT"
] |
permissive
|
Mohit-Sharma1/Takenmind_Internship_assignments
|
6817934a7c210e1e471da3fb1aebf5f5d87366a3
|
7099ae3a70fca009f6298482e90e988124868148
|
refs/heads/master
| 2022-11-17T18:45:19.488769
| 2020-07-20T19:03:22
| 2020-07-20T19:03:22
| 281,186,240
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 434
|
py
|
import numpy as np
#arrange
#sqrt
#expo
#random
#addition
#maximum
#reference link for many others
A= np.arange(15)
print A
A=np.arange(1,15,2)
print A
#sqrt
B=np.sqrt(A)
print "B is"
print B
#exp
C=np.exp(A)
print "C is"
print C
#addition
D=np.add(A,B)
print "D is"
print D
#maximum function
E=np.maximum(A,B)
print "E is"
print E
#additional resources
#scipy.org all functions associated np array
#docs.scipy.org
|
[
"noreply@github.com"
] |
Mohit-Sharma1.noreply@github.com
|
ceca4d7baec39bcf1dc5d2c847eea6e41fe27d3a
|
89828b141969c07d00fc7aa8da51f8244babf40b
|
/catalog/migrations/0002_auto_20210204_2112.py
|
d2ada785787a7cde2eea2c0c51b1b68d20702899
|
[] |
no_license
|
dannybarajas/library
|
0d2288bbbe2e019ceb1f14f106f87c1d1aa4304a
|
11386cae8283435514437e27ff3f9f9949eea439
|
refs/heads/master
| 2023-02-27T05:20:47.280827
| 2021-02-05T03:33:37
| 2021-02-05T03:33:37
| 336,152,919
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 840
|
py
|
# Generated by Django 3.1.5 on 2021-02-05 02:12
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('catalog', '0001_initial'),
]
operations = [
migrations.CreateModel(
name='Language',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(help_text="Enter the book's natural language (e.g. English, French, Japanese etc.)", max_length=200)),
],
),
migrations.AddField(
model_name='book',
name='language',
field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='catalog.language'),
),
]
|
[
"dbarajasm93@gmail.com"
] |
dbarajasm93@gmail.com
|
f3e633a244d1f2f9e6a7415e195e1f9f035238f5
|
b28e5d26f3ec176970c035d10823ce47fcadcb38
|
/operations/exchange.py
|
b0806dcbcb32e17ea89e202d70fbbc1144cb3bf5
|
[] |
no_license
|
Aldebrand/xchange
|
da989f63ebc4645874e749fdc4c5e9c3c968cc55
|
4f7073624601275675077f6106716754c442a74d
|
refs/heads/main
| 2023-03-26T05:47:48.501485
| 2021-03-24T22:08:02
| 2021-03-24T22:08:02
| 350,117,788
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,971
|
py
|
from typing import Optional, Tuple
from operations.utils import convert_money, load_config
def exchange(amount: int, origin_currency: str,
target_currency: str) -> Tuple[Optional[str], Optional[str]]:
"""
Exchange a certain amount of money from one currency to another.
:param amount: Amount of money to exchange
:param origin_currency: Original currency
:param target_currency: Target currency (defaults to EUR)
"""
# Load the configuration before exchanging the money in order to exchange.
# it with the right commission.
# If something went wrong, return an error message.
config = load_config()
if not config:
error_msg = 'Invalid configuration file'
return None, error_msg
# Convert the money.
converted_amount = convert_money(origin_currency, target_currency, amount)
# Check if the conversion completed successfully.
# If not, return an error message.
if not converted_amount:
error_msg = (f'One of the currency codes: {origin_currency} or '
f'{target_currency} is invalid')
return None, error_msg
# Calculate the amount of money to give back to the user.
commission = config.get('base_commission', 5)
commission_percent = commission / 100
profit = converted_amount * commission_percent
amount_after_commission = round(converted_amount - profit, 3)
# Build summery message.
success_msg = """
From Amount: {origin_amount}
From Currency: {origin_currency}
To Currency: {target_currency}
Commission: {commission}%
Amount Before commission: {converted_amount}
Amount: {amount}
""".format(origin_amount=amount,
origin_currency=origin_currency,
target_currency=target_currency,
commission=commission,
converted_amount=converted_amount,
amount=amount_after_commission)
return success_msg, None
|
[
"or@datascience.co.il"
] |
or@datascience.co.il
|
5489b75964557fe23e7066825e9c3fdcf32c8609
|
60b620746561bdcbdfde2106c167095c63ea3448
|
/Hash Maps/PermutationPalindrome.py
|
0d53b0d93f0f7e490ec4398ab5f7b31c4c164c07
|
[] |
no_license
|
salonishah331/CodingChallenges
|
b20c9f450ce523dd5cca14496ca3b8ed15a78559
|
1c02aedc08e8c4eac2f59b7c8860b7e89e7cc27e
|
refs/heads/master
| 2021-01-14T04:15:14.064951
| 2020-10-21T20:33:18
| 2020-10-21T20:33:18
| 242,596,422
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 892
|
py
|
'''
Permutation Palindrome:
Write an efficient function that checks whether any permutation of an input string is a palindrome.
Ex: "ivicc" should return True
"civil" should return False
'''
def PermutationPalindrome(word):
perm = {}
for i in range(len(word)):
if word[i] not in perm:
# add to dict
perm[word[i]] = 1
else:
# increment value
perm[word[i]] += 1
vals = list(perm.values())
odd_count = 0
for elem in vals:
if elem % 2 != 0:
odd_count += 1
return odd_count <= 1
def ver2(word):
perms = set()
for char in word:
if char in perms:
perms.remove(char)
else:
perms.add(char)
return len(perms) <= 1
def main():
word = 'salas'
print(PermutationPalindrome(word))
print(ver2(word))
main()
|
[
"noreply@github.com"
] |
salonishah331.noreply@github.com
|
cacfc13d21332b6a02950212f0f55a6fa2fbf453
|
8bce93fc8f875780f0737130f457ff9fe0c58836
|
/deploy.py
|
9ef305a04d3207d3890f3552a7f06ef5987f6d7d
|
[
"Apache-2.0"
] |
permissive
|
cundohubs/cundo-lambda-deployer
|
e992668f0466e28e8995da7707f466ca3dea3f5e
|
a91565c42cf981962634b1e090f687440a0c0181
|
refs/heads/master
| 2020-05-30T19:11:06.200031
| 2016-06-21T23:11:29
| 2016-06-21T23:11:29
| 61,673,382
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,486
|
py
|
#!/usr/bin/env python
from git import Repo
from boto3 import session
from shutil import rmtree
import os
import zipfile
import logging
import json
import argparse
import ConfigParser
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
root_dir = "/tmp"
class DeploymentConfig:
def __init__(self, **config_json):
self.__dict__.update(config_json)
class Deployment:
def __init__(self, name, region, codecommit_arn, aws_access_key_id=None, aws_secret_access_key=None):
self.session = session.Session(aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
region_name=region)
self._repository_name = name
self._codecommit_arn = codecommit_arn
self.codecommit = self.session.client('codecommit', region_name=region)
self.repository_name = self._codecommit_arn.split(":")[-1]
self.local_repo_path = root_dir + "/" + self.repository_name + "/"
self._zip_filename = None
self._s3_bucket = None
self._s3_key = None
self._s3_prefix = None
self._lambda_config = None
self._local_lambda_path_inside_repo = None
self._function_name = None
def get_deployment_configurations(self, config_file_name='lambda-deploy.json'):
config_file = self.local_repo_path + config_file_name
with open(config_file) as data_file:
data = json.load(data_file)
configurations = data["DeploymentConfiguration"]
self._s3_prefix = configurations["S3PrefixDeployments"]
self._local_lambda_path_inside_repo = configurations["LambdaDirectory"]
self._s3_bucket = configurations["S3Bucket"]
def git_clone(self):
try:
response = self.codecommit.get_repository(repositoryName=self._repository_name)
# clone_url = response['repositoryMetadata']['cloneUrlHttp']
clone_ssh = response['repositoryMetadata']['cloneUrlSsh']
destination = self.local_repo_path
if os.path.exists(destination):
self.git_pull(self._repository_name)
Repo.clone_from(clone_ssh, destination)
return clone_ssh
except Exception as e:
print(e)
print(
'Error getting repository {}. Make sure it exists and that your \
repository is in the same region as this function.'.format(
self._repository_name))
raise e
def configure_lambda_function_deprecated(self, repository):
try:
self.configure_lambda_function_from_config_json(repository)
self._s3_bucket = self._lambda_config.S3Bucket
self._local_lambda_path_inside_repo = self._lambda_config.LambdaDirectory
self._function_name = self._lambda_config.FunctionName
except Exception as e:
print (e.message)
print("Failed to configure Lambda function from config file")
raise e
def configure_lambda_function_from_config_json(self, config_file_name='config.json'):
config_json_path = self.repository_name + config_file_name
try:
with open(config_json_path) as data_file:
data = json.load(data_file)
self._lambda_config = DeploymentConfig(**data)
data_file.close()
except Exception as e:
print(e.message)
print("Failed to load configurations from file %s" % config_json_path)
# raise e
data = {'S3Bucket': 'curalate-lambda-qa',
'LambdaDirectory': 'src/python/',
'FunctionName': 'test_function'}
self._lambda_config = DeploymentConfig(**data)
def zip_package(self):
lambda_directory = self._local_lambda_path_inside_repo
try:
lambda_path = self.local_repo_path + "/" + lambda_directory.strip('/')
self._zip_filename = self._repository_name + '.zip'
ziph = zipfile.ZipFile(root_dir + '/' + self._zip_filename, 'w', zipfile.ZIP_DEFLATED)
exclude = {'.git'}
# ziph is zipfile handle
for root, dirs, files in os.walk(lambda_path):
dirs[:] = [d for d in dirs if d not in exclude]
for f in files:
lambda_path_inside_zip = root.replace(lambda_path, self._repository_name) + "/"
ziph.write(os.path.join(root, f), lambda_path_inside_zip + f)
except Exception as e:
print (e.message)
raise e
def upload_zip_file_to_s3(self, bucket=None):
s3_client = self.session.client('s3')
if bucket is not None:
self._s3_bucket = bucket
try:
logger.info("Uploading %s to S3..." % self._zip_filename)
self._s3_key = self._s3_prefix + self._zip_filename
s3_client.upload_file(root_dir + "/" + self._zip_filename, self._s3_bucket, self._s3_key)
except Exception as e:
print(e.message)
raise e
def get_s3_key_version(self, s3_key):
self._s3_bucket = self._s3_bucket
try:
logger.info("Getting version id of %s from S3..." % (s3_key))
s3_resource = self.session.resource('s3')
obj = s3_resource.Object(self._s3_bucket, s3_key)
return obj.version_id
except Exception, e:
print(e.message)
raise e
def load_lambda_configuration_from_file(self, file_name="lambda-deploy.json"):
config_file = self.local_repo_path + file_name
with open(config_file) as data_file:
data = json.load(data_file)
configurations = data["LambdaConfiguration"]
configurations["Handler"] = self.repository_name + "/" + configurations["Handler"]
# configurations["Code"]["S3ObjectVersion"] = self.get_s3_key_version(self._s3_key)
del configurations["Code"]["S3Key"]
del configurations["Code"]["S3Bucket"]
del configurations["Code"]["S3ObjectVersion"]
del configurations["VpcConfig"]
return configurations
def create_lambda_function(self):
parameters = self.load_lambda_configuration_from_file()
try:
zipdata = file_get_contents(root_dir + "/" + self._zip_filename)
lambda_client = self.session.client('lambda')
parameters['Code']['ZipFile'] = zipdata
lambda_client.create_function(**parameters)
except Exception as e:
print("Failed to create lambda function from %s/%s" % (self._s3_bucket, self._s3_key))
print ("Parameters: %s" % parameters)
print (e.message)
raise e
def update_lambda_function_code(self, s3_key=None):
lambda_client = self.session.client('lambda')
s3_key = self._s3_key if s3_key is None else s3_key
# prefix, filename = s3_key.split("/", 1)
parameters = {
'FunctionName': self._function_name,
'S3Bucket': self._s3_bucket,
'S3Key': s3_key,
'Publish': True
}
try:
lambda_client.update_function_code(**parameters)
except Exception as e:
print("Failed to publish zip file %s to S3 Bucket %s" % (s3_key, self._s3_bucket))
print (e.message)
raise e
def rm_local_repo(self):
try:
rmtree(self.local_repo_path)
return True
except Exception as e:
print (e.message)
raise e
def git_pull(self):
# To do: git pull, not rm the local repo
self.rm_local_repo()
def file_get_contents(filename):
with open(filename) as f:
return f.read()
def lambda_handler(event, context):
# Load credentials only if we are testing. Otherwise, use IAM Role
event = json.loads(event)
if 'Credentials' in event.keys():
aws_access_key_id = event['Credentials']['aws_access_key_id']
aws_secret_access_key = event['Credentials']['aws_secret_access_key']
else:
aws_access_key_id = None
aws_secret_access_key = None
function_arn = event['Records'][0]['eventSourceARN']
arn, provider, service, region, akid, resource_id = function_arn.split(":")
# references = {reference['ref'] for reference in event['Records'][0]['codecommit']['references']}
# print("References: " + str(references))
# Get the repository from the event and show its git clone URL
repository = event['Records'][0]['eventSourceARN'].split(':')[5]
deployment = Deployment(repository, region, function_arn,
aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key)
deployment.git_clone()
deployment.get_deployment_configurations()
# deployment.configure_lambda_function_from_config_json()
deployment.zip_package()
deployment.upload_zip_file_to_s3()
# deployment.load_lambda_configuration_from_file()
deployment.create_lambda_function()
# deployment.update_lambda_function_code()
output = event
output['Status'] = "OK"
return output
class Event:
def __init__(self, **entries):
self.__dict__.update(entries)
class Context:
def __init__(self, **entries):
self.__dict__.update(entries)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dryrun", help="Dry run - don't change anything in AWS")
parser.add_argument("--account", help="AWS Account Name", default="QA")
parser.add_argument("--secretkey", help="AWS Secret Key", default="deprecated")
args = parser.parse_args()
credentials = ConfigParser.ConfigParser()
configs = ConfigParser.ConfigParser()
home_dir = os.environ['HOME']
credentials_file = home_dir + "/.aws/credentials"
credentials.read(credentials_file)
account_name = args.account
aws_access_key_id = credentials.get(account_name, "aws_access_key_id")
aws_secret_access_key = credentials.get(account_name, "aws_secret_access_key")
aws_credentials = dict([
('aws_access_key_id', aws_access_key_id),
('aws_secret_access_key', aws_secret_access_key)])
sample_arn = "arn:aws:lambda:us-east-1:123456789012:function:tagging-lambda"
records = [dict([
('eventSourceARN', "arn:aws:codecommit:us-east-1:176853725791:tagger-asg"),
('codecommit', dict([
('references', [dict([('ref', 'ref_1')])])
]))
])]
event = dict([("invokingEvent",
dict([("configurationItem",
dict([("configuration",
dict([("instanceId", "i-deaed543")])
),
("configurationItemStatus", "OK")])
)])),
("Records", records),
("eventLeftScope", False),
("Credentials", aws_credentials),
])
context = dict([("invoked_function_arn", sample_arn),
("keys", dict([
("aws_access_key_id", aws_access_key_id),
("aws_secret_access_key", aws_secret_access_key)]
))
])
lambda_handler(json.dumps(event), Context(**context))
|
[
"facundo@curalate.com"
] |
facundo@curalate.com
|
3690b622b34c806b02e2997a3f32cb9d737b7b7d
|
459a338018ba2d1a8ea228045b662fccbced58d0
|
/ebooksapi/ebooks/migrations/0003_auto_20191111_2146.py
|
60f2f543c332f59b6be4d55985470a4e7ac4e3cc
|
[] |
no_license
|
nasutionam/django-web-api
|
ca75147d219774ca7454a2cf05073194f48643ac
|
03373c74a981e27f8fa1c56d14e8418801aa8350
|
refs/heads/master
| 2022-12-15T14:11:23.490820
| 2019-11-20T06:17:57
| 2019-11-20T06:17:57
| 220,584,142
| 1
| 0
| null | 2022-11-22T04:50:06
| 2019-11-09T03:09:51
|
Python
|
UTF-8
|
Python
| false
| false
| 516
|
py
|
# Generated by Django 2.2.7 on 2019-11-11 14:46
import django.core.validators
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('ebooks', '0002_auto_20191111_2102'),
]
operations = [
migrations.AlterField(
model_name='review',
name='rating',
field=models.PositiveIntegerField(validators=[django.core.validators.MinLengthValidator(1), django.core.validators.MaxLengthValidator(5)]),
),
]
|
[
"nasution.nam@gmail.com"
] |
nasution.nam@gmail.com
|
2e2050dc501bb659f815d5f48c8b65a162ee9cc0
|
5a8b0fe3e31a6436c159beee3ac07752d8cd2531
|
/exam.py
|
fb4b1b4d976e3071c232c143b0798660b6e6b222
|
[] |
no_license
|
toekhinethein/Sample
|
49e81442a1171693ee5cd7e547eff56515bfd602
|
aad6d7c3240193fd8db4ad1d45e5f19759cd3f57
|
refs/heads/master
| 2020-12-14T07:13:10.636859
| 2020-03-07T05:35:08
| 2020-03-07T05:35:08
| 234,677,203
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 271
|
py
|
x = int(input("Please Enter Exam Result: "))
if x < 50 and x > 0:
print ( "F" )
elif x > 49 and x < 60:
print ( "D" )
elif x > 59 and x < 80:
print ( "C" )
elif x > 79 and x < 90:
print ( "B" )
elif x > 89 and x < 101:
print ( "A" )
else:
print ("Check Again")
|
[
"toekhinetheinthein@gmail.com"
] |
toekhinetheinthein@gmail.com
|
b381305143d97abcbd35226c2553b66154935323
|
156ede071b75ce824dcac0dddb0162b6f83963ee
|
/08 Practice Makes Perfect/07_reverse.py
|
b6b1745341a468b28fbfaa4db8b9e3e47203cb56
|
[] |
no_license
|
mindovermiles262/codecademy-python
|
c834b4a7f3b1381dd3e65db27b2edb15eabda9c8
|
b6a6aa4db10192264ec2c88ddf4d1d16db66c533
|
refs/heads/master
| 2021-01-12T03:31:04.388402
| 2017-01-11T16:58:06
| 2017-01-11T16:58:06
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 578
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 4 12:34:29 2017
@author: mindovermiles262
Define a function called reverse that takes a string textand returns that string in reverse.
For example: reverse("abcd") should return "dcba".
You may not use reversed or [::-1] to help you with this.
You may get a string containing special characters (for example, !, @, or #).
"""
def reverse(x):
x = str(x)
index = len(x) - 1
reversed_output = []
for i in x:
reversed_output.append(x[index])
index = index - 1
return(''.join(reversed_output))
|
[
"mindovermiles262@gmail.com"
] |
mindovermiles262@gmail.com
|
4ec3271673e917258b23e66d30a21e94fce571aa
|
e676677d718a3572634b3d5ef75815d3bb18a6c9
|
/venv/Scripts/keyy.py
|
3f374ca31b6b1890bb21c03b53bf27ddedce7e6d
|
[] |
no_license
|
charithcherry/Automation_opencv
|
ecf525bb3efc288d67b5418204dc65ee40def857
|
cff68137df79e9c17d7ce8fb669fb009d3396006
|
refs/heads/master
| 2022-11-18T03:11:36.185841
| 2020-07-20T11:20:09
| 2020-07-20T11:20:09
| 281,095,998
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 154
|
py
|
import keyboard
while True:
rk=keyboard.record(until="shift")
keyboard.play(rk,speed_factor=10)
keyboard.add_hotkey('alt',lambda : exit(0))
|
[
"charithcherry1100gmail.com"
] |
charithcherry1100gmail.com
|
ed32075ba24c826644dd08d780d93081e8b04d3d
|
60ce3d7cbf8689663fb9f8682fd8fd4a85a8aceb
|
/.venv/bin/easy_install
|
806e4fe3a1344f4d5caa8c63ac83405e1c468704
|
[] |
no_license
|
SlikNik/ghostpost_backend
|
91c330094b6e1e387803cff770892799f257dacb
|
810db076516dbd9cfa2dc4e17bce5103ed80748f
|
refs/heads/master
| 2022-12-24T00:44:40.042721
| 2020-10-02T00:21:45
| 2020-10-02T00:21:45
| 299,697,335
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 295
|
#!/Users/nikalmorgan/Desktop/Kenzie/submitted/Q4/ghostpost_backend/.venv/bin/python
# -*- coding: utf-8 -*-
import re
import sys
from setuptools.command.easy_install import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"nikalmorgan11@gmail.com"
] |
nikalmorgan11@gmail.com
|
|
dc1a42b7340f04ba0eb9400c2c8855f8a88f2ea9
|
134ff3c0719d4c0022eb0fb7c859bdbff5ca34b2
|
/desktop/core/ext-py/Twisted/doc/core/howto/tutorial/listings/finger/finger20.tac
|
52b955619703f31883d897082674c0c7f37e1c7c
|
[
"Apache-2.0",
"MIT"
] |
permissive
|
civascu/hue
|
22637f13a4cfc557716557661523131b6ac16da4
|
82f2de44789ff5a981ed725175bae7944832d1e9
|
refs/heads/master
| 2020-03-31T01:50:39.449966
| 2010-07-21T01:05:50
| 2010-07-21T01:07:15
| 788,284
| 0
| 0
|
Apache-2.0
| 2019-02-04T07:03:12
| 2010-07-21T07:34:27
|
Python
|
UTF-8
|
Python
| false
| false
| 6,918
|
tac
|
# Do everything properly, and componentize
from twisted.application import internet, service
from twisted.internet import protocol, reactor, defer
from twisted.words.protocols import irc
from twisted.protocols import basic
from twisted.python import components
from twisted.web import resource, server, static, xmlrpc, microdom
from zope.interface import Interface, implements
import cgi
class IFingerService(Interface):
def getUser(user):
"""Return a deferred returning a string"""
def getUsers():
"""Return a deferred returning a list of strings"""
class IFingerSetterService(Interface):
def setUser(user, status):
"""Set the user's status to something"""
def catchError(err):
return "Internal error in server"
class FingerProtocol(basic.LineReceiver):
def lineReceived(self, user):
d = self.factory.getUser(user)
d.addErrback(catchError)
def writeValue(value):
self.transport.write(value+'\r\n')
self.transport.loseConnection()
d.addCallback(writeValue)
class IFingerFactory(Interface):
def getUser(user):
"""Return a deferred returning a string"""
def buildProtocol(addr):
"""Return a protocol returning a string"""
class FingerFactoryFromService(protocol.ServerFactory):
implements(IFingerFactory)
protocol = FingerProtocol
def __init__(self, service):
self.service = service
def getUser(self, user):
return self.service.getUser(user)
components.registerAdapter(FingerFactoryFromService,
IFingerService,
IFingerFactory)
class FingerSetterProtocol(basic.LineReceiver):
def connectionMade(self):
self.lines = []
def lineReceived(self, line):
self.lines.append(line)
def connectionLost(self, reason):
if len(self.lines) == 2:
self.factory.setUser(*self.lines)
class IFingerSetterFactory(Interface):
def setUser(user, status):
"""Return a deferred returning a string"""
def buildProtocol(addr):
"""Return a protocol returning a string"""
class FingerSetterFactoryFromService(protocol.ServerFactory):
implements(IFingerSetterFactory)
protocol = FingerSetterProtocol
def __init__(self, service):
self.service = service
def setUser(self, user, status):
self.service.setUser(user, status)
components.registerAdapter(FingerSetterFactoryFromService,
IFingerSetterService,
IFingerSetterFactory)
class IRCReplyBot(irc.IRCClient):
def connectionMade(self):
self.nickname = self.factory.nickname
irc.IRCClient.connectionMade(self)
def privmsg(self, user, channel, msg):
user = user.split('!')[0]
if self.nickname.lower() == channel.lower():
d = self.factory.getUser(msg)
d.addErrback(catchError)
d.addCallback(lambda m: "Status of %s: %s" % (msg, m))
d.addCallback(lambda m: self.msg(user, m))
class IIRCClientFactory(Interface):
"""
@ivar nickname
"""
def getUser(user):
"""Return a deferred returning a string"""
def buildProtocol(addr):
"""Return a protocol"""
class IRCClientFactoryFromService(protocol.ClientFactory):
implements(IIRCClientFactory)
protocol = IRCReplyBot
nickname = None
def __init__(self, service):
self.service = service
def getUser(self, user):
return self.service.getUser(user)
components.registerAdapter(IRCClientFactoryFromService,
IFingerService,
IIRCClientFactory)
class UserStatusTree(resource.Resource):
def __init__(self, service):
resource.Resource.__init__(self)
self.service=service
# add a specific child for the path "RPC2"
self.putChild("RPC2", UserStatusXR(self.service))
# need to do this for resources at the root of the site
self.putChild("", self)
def _cb_render_GET(self, users, request):
userOutput = ''.join(["<li><a href=\"%s\">%s</a></li>" % (user, user)
for user in users])
request.write("""
<html><head><title>Users</title></head><body>
<h1>Users</h1>
<ul>
%s
</ul></body></html>""" % userOutput)
request.finish()
def render_GET(self, request):
d = self.service.getUsers()
d.addCallback(self._cb_render_GET, request)
# signal that the rendering is not complete
return server.NOT_DONE_YET
def getChild(self, path, request):
return UserStatus(user=path, service=self.service)
components.registerAdapter(UserStatusTree, IFingerService, resource.IResource)
class UserStatus(resource.Resource):
def __init__(self, user, service):
resource.Resource.__init__(self)
self.user = user
self.service = service
def _cb_render_GET(self, status, request):
request.write("""<html><head><title>%s</title></head>
<body><h1>%s</h1>
<p>%s</p>
</body></html>""" % (self.user, self.user, status))
request.finish()
def render_GET(self, request):
d = self.service.getUser(self.user)
d.addCallback(self._cb_render_GET, request)
# signal that the rendering is not complete
return server.NOT_DONE_YET
class UserStatusXR(xmlrpc.XMLRPC):
def __init__(self, service):
xmlrpc.XMLRPC.__init__(self)
self.service = service
def xmlrpc_getUser(self, user):
return self.service.getUser(user)
def xmlrpc_getUsers(self):
return self.service.getUsers()
class FingerService(service.Service):
implements(IFingerService)
def __init__(self, filename):
self.filename = filename
self._read()
def _read(self):
self.users = {}
for line in file(self.filename):
user, status = line.split(':', 1)
user = user.strip()
status = status.strip()
self.users[user] = status
self.call = reactor.callLater(30, self._read)
def getUser(self, user):
return defer.succeed(self.users.get(user, "No such user"))
def getUsers(self):
return defer.succeed(self.users.keys())
application = service.Application('finger', uid=1, gid=1)
f = FingerService('/etc/users')
serviceCollection = service.IServiceCollection(application)
internet.TCPServer(79, IFingerFactory(f)
).setServiceParent(serviceCollection)
internet.TCPServer(8000, server.Site(resource.IResource(f))
).setServiceParent(serviceCollection)
i = IIRCClientFactory(f)
i.nickname = 'fingerbot'
internet.TCPClient('irc.freenode.org', 6667, i
).setServiceParent(serviceCollection)
|
[
"bcwalrus@cloudera.com"
] |
bcwalrus@cloudera.com
|
b397b42327400482c2d0d8bacccc325d4eee2383
|
c8a04384030c3af88a8e16de4cedc4ef8aebfae5
|
/stubs/pandas/tests/io/parser/test_c_parser_only.pyi
|
4f06775773e118e6584efa8effa83be67cd56474
|
[
"MIT"
] |
permissive
|
Accern/accern-xyme
|
f61fce4b426262b4f67c722e563bb4297cfc4235
|
6ed6c52671d02745efabe7e6b8bdf0ad21f8762c
|
refs/heads/master
| 2023-08-17T04:29:00.904122
| 2023-05-23T09:18:09
| 2023-05-23T09:18:09
| 226,960,272
| 3
| 2
|
MIT
| 2023-07-19T02:13:18
| 2019-12-09T20:21:59
|
Python
|
UTF-8
|
Python
| false
| false
| 2,374
|
pyi
|
# Stubs for pandas.tests.io.parser.test_c_parser_only (Python 3)
#
# NOTE: This dynamically typed stub was automatically generated by stubgen.
# pylint: disable=unused-argument,redefined-outer-name,no-self-use,invalid-name
# pylint: disable=relative-beyond-top-level,line-too-long,arguments-differ
# pylint: disable=no-member,too-few-public-methods,keyword-arg-before-vararg
# pylint: disable=super-init-not-called,abstract-method,redefined-builtin
from typing import Any
def test_buffer_overflow(c_parser_only: Any, malformed: Any) -> None:
...
def test_buffer_rd_bytes(c_parser_only: Any) -> None:
...
def test_delim_whitespace_custom_terminator(c_parser_only: Any) -> None:
...
def test_dtype_and_names_error(c_parser_only: Any) -> None:
...
def test_unsupported_dtype(c_parser_only: Any, match: Any, kwargs: Any) -> None:
...
def test_precise_conversion(c_parser_only: Any) -> None:
...
def test_usecols_dtypes(c_parser_only: Any) -> None:
...
def test_disable_bool_parsing(c_parser_only: Any) -> None:
...
def test_custom_lineterminator(c_parser_only: Any) -> None:
...
def test_parse_ragged_csv(c_parser_only: Any) -> None:
...
def test_tokenize_CR_with_quoting(c_parser_only: Any) -> None:
...
def test_grow_boundary_at_cap(c_parser_only: Any) -> None:
...
def test_parse_trim_buffers(c_parser_only: Any) -> None:
...
def test_internal_null_byte(c_parser_only: Any) -> None:
...
def test_read_nrows_large(c_parser_only: Any) -> None:
...
def test_float_precision_round_trip_with_text(c_parser_only: Any) -> None:
...
def test_large_difference_in_columns(c_parser_only: Any) -> None:
...
def test_data_after_quote(c_parser_only: Any) -> None:
...
def test_comment_whitespace_delimited(c_parser_only: Any, capsys: Any) -> None:
...
def test_file_like_no_next(c_parser_only: Any) -> None:
...
def test_buffer_rd_bytes_bad_unicode(c_parser_only: Any) -> None:
...
def test_read_tarfile(c_parser_only: Any, csv_dir_path: Any, tar_suffix: Any) -> None:
...
def test_bytes_exceed_2gb(c_parser_only: Any) -> None:
...
def test_chunk_whitespace_on_boundary(c_parser_only: Any) -> None:
...
def test_file_handles_mmap(c_parser_only: Any, csv1: Any) -> None:
...
def test_file_binary_mode(c_parser_only: Any) -> None:
...
|
[
"josua.krause@gmail.com"
] |
josua.krause@gmail.com
|
e22adfda64346dc4ead5ef8e645866f4ad1921df
|
912fbf0ca814c831d4e1eaf5e919c6f300a5f8de
|
/Code/Basic/check_firmware.py
|
41ad479f747d6bc5cc37ce0c3eddca9069950aeb
|
[
"MIT"
] |
permissive
|
JoelBuenrostro/micropython-for-esp32
|
2ed503549d2581cbb304f66e8b2a60c98f1df5bb
|
d4ba9777ec4459b09089762be9287985d19bbe28
|
refs/heads/master
| 2020-07-22T03:15:02.558445
| 2019-10-14T12:24:12
| 2019-10-14T12:24:12
| 207,058,087
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 434
|
py
|
# Chip: ESP32-WROOM-32 (ESP32-D0WDQ6)
# Microprocessor: Dual-Core Xtensa® 32-bit LX6
# Clock: 80MHz to 240Mhz
# Crystal: 40MHz
# SPÍ flash: 4 MB
# Operating voltage: 3.0V-3.6V
# Operating current: 80mA
# Purpose: Check the firmware integrity from a MicroPython REPL prompt
# Notes: If the last output value is True, the firmware is OK. Otherwise, it’s corrupted and need
# to be reflashed correctly.
import esp
esp.check_fw()
|
[
"joelbuenrostro@outlook.com"
] |
joelbuenrostro@outlook.com
|
4a4c6c643a4bac875fe8b0b5f38720441793c48a
|
aa26cd3faeff070f056314f0aec2302ca8b32cef
|
/bs1.py
|
fc4c21d0d9da6543df2f4eca78dbb2e72ec3f195
|
[] |
no_license
|
rcanzlovar/linux-customizations
|
8f709b1d7fd1e2b61bf5f31c101442f5d3bd5bed
|
8ace30643a906b6d83eb16609d5fd4ce9bd51ba5
|
refs/heads/master
| 2020-06-27T18:03:55.761361
| 2017-12-11T09:55:24
| 2017-12-11T09:55:24
| 97,069,156
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,398
|
py
|
#!/usr/bin/python3
import bs4 as bs
import urllib.request
import urllib.parse
import time
values = {}
# get the timestamp for the mysql command
values["timestamp"] = time.strftime('%Y-%m-%d %H:%M:%S')
source = urllib.request.urlopen("http://www.msn.com/en-us/weather/today/Longmont,Colorado,United-States/we-city-40.164,-105.100")
# (`timestamp`,
# `city_name`,
# `city_lat`,
# `city_lon`,
fields = {
"Humidity": "humidity",
"Barometer": "barometer",
"Wind": "wind",
"Visibility": "visibility",
"Dew Point": "dewpoint",
"Feels Like": "feelslike"
}
soup = bs.BeautifulSoup(source,'lxml')
body = soup.body
###print (body)
print ('###start - my locations ###')
for item in body.find_all('div', class_="mylocations" ):
# get rid of the %99 escaped characters
foo = (item.attrs['data-loc'])
for thing in urllib.parse.unquote(foo).split("&"):
print ("Thing: ",thing)
(key,val) = thing.split("=")
if key == "c":
values["city_name"] = val
if key == "lat":
values["city_lat"] = val
if key == "long":
values["city_lon"] = val
## get the temperature
for item in body.find_all('span', class_="current" ):
values["temperature"] = item.text
print ("## Temp ", values["temperature"])
# get the other values
print ('### weather-info ###')
for item in body.find_all('div', class_="weather-info" ):
# print (item.text) # whole item including all the bits
# this is the first span in the div....
values["summary"] = item.find_all('span')[0].text
# get the other pieces...
for thing1 in item.find_all('li'):
whole = thing1.text
for thing2 in thing1.find_all('span'):
label = thing2.text
label = label.strip()
# print ("span thing: ",thing2.text)
value = whole.replace(label,'')
# clear extraneous bits
value = value.replace("°",'')
value = value.replace(" mi",'')
value = value.replace(" in",'')
value = value.replace("%",'')
value = value.strip()
print (label + ": ",value)
if (fields[label]):
values[fields[label]] = value
# ['HTML_FORMATTERS', 'XML_FORMATTERS', '__bool__', '__call__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', '__unicode__', '__weakref__', '_all_strings', '_attr_value_as_string', '_attribute_checker', '_find_all', '_find_one', '_formatter_for_name', '_is_xml', '_lastRecursiveChild', '_last_descendant', '_select_debug', '_selector_combinators', '_should_pretty_print', '_tag_name_matches_and', 'append', 'attribselect_re', 'attrs', 'can_be_empty_element', 'childGenerator', 'children', 'clear', 'contents', 'decode', 'decode_contents', 'decompose', 'descendants', 'encode', 'encode_contents', 'extract', 'fetchNextSiblings', 'fetchParents', 'fetchPrevious', 'fetchPreviousSiblings', 'find', 'findAll', 'findAllNext', 'findAllPrevious', 'findChild', 'findChildren', 'findNext', 'findNextSibling', 'findNextSiblings', 'findParent', 'findParents', 'findPrevious', 'findPreviousSibling', 'findPreviousSiblings', 'find_all', 'find_all_next', 'find_all_previous', 'find_next', 'find_next_sibling', 'find_next_siblings', 'find_parent', 'find_parents', 'find_previous', 'find_previous_sibling', 'find_previous_siblings', 'format_string', 'get', 'getText', 'get_attribute_list', 'get_text', 'has_attr', 'has_key', 'hidden', 'index', 'insert', 'insert_after', 'insert_before', 'isSelfClosing', 'is_empty_element', 'known_xml', 'name', 'namespace', 'next', 'nextGenerator', 'nextSibling', 'nextSiblingGenerator', 'next_element', 'next_elements', 'next_sibling', 'next_siblings', 'parent', 'parentGenerator', 'parents', 'parserClass', 'parser_class', 'prefix', 'preserve_whitespace_tags', 'prettify', 'previous', 'previousGenerator', 'previousSibling', 'previousSiblingGenerator', 'previous_element', 'previous_elements', 'previous_sibling', 'previous_siblings', 'quoted_colon', 'recursiveChildGenerator', 'renderContents', 'replaceWith', 'replaceWithChildren', 'replace_with', 'replace_with_children', 'select', 'select_one', 'setup', 'string', 'strings', 'stripped_strings', 'tag_name_re', 'text', 'unwrap', 'wrap']
keys = ""
vals = ""
print (values)
for key in values:
print (key + "=\"" + values[key] + "\",")
keys = keys + key + ","
vals = vals + values[key] + ","
sql = "INSERT into `weather` (" + keys + ") VALUES (" + vals + ")"
print ("sql = ",sql)
##insert into table set fieldr=valoe, field2=val2, etc=something
# sql = "INSERT INTO `weather`
# (`timestamp`,
# `city_name`,
# `city_lat`,
# `city_lon`,
# `temperature`,
# `humidity`,
# `barometer`,
# `conditions`,
# `visibility`,
# `dewpoint`,
# `feelslike`)
# VALUES
# ('" . $timestamp . "',
# '" . $weather_values{'city'} . "',
# '" . $weather_values{'lat'} . "',
# '" . $weather_values{'lon'} . "',
# '" . $weather_values{'temperature'} . "',
# '" . $weather_values{'humidity'} . "',
# '" . $weather_values{'barometer'} . "',
# '" . $weather_values{'conditions'} . "',
# '" . $weather_values{'visibility'} . "',
# '" . $weather_values{'dewpoint'} . "',
# '" . $weather_values{'feelslike'} . "');";
|
[
"noreply@github.com"
] |
rcanzlovar.noreply@github.com
|
f2d1fe0367179617efb95be8c474a75140a696e9
|
089533c91d5506bd19f8af5a9240f4429d747195
|
/tests/build-workflows.py
|
399ef0012bbcea2870d237380a4a1f099f358bad
|
[
"Apache-2.0"
] |
permissive
|
chia-os/pipscoin-blockchain
|
f55092c6962d18d455d01601c725d3c891077e86
|
55c09f9b75f912625bc3ed27e46dc85a410392fb
|
refs/heads/main
| 2023-08-08T01:30:56.832134
| 2021-09-02T02:33:47
| 2021-09-02T02:33:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,370
|
py
|
#!/usr/bin/env python3
# Run from the current directory.
import argparse
import testconfig
import logging
import subprocess
from pathlib import Path
from typing import List
def subdirs(root_dirs: List[str]) -> List[Path]:
dirs: List[Path] = []
for r in root_dirs:
dirs.extend(Path(r).rglob("**/"))
return [d for d in dirs if not (any(c.startswith("_") for c in d.parts) or any(c.startswith(".") for c in d.parts))]
def module_dict(module):
return {k: v for k, v in module.__dict__.items() if not k.startswith("_")}
def dir_config(dir):
import importlib
module_name = str(dir).replace("/", ".") + ".config"
try:
return module_dict(importlib.import_module(module_name))
except ModuleNotFoundError:
return {}
def read_file(filename):
with open(filename) as f:
return f.read()
return None
# Input file
def workflow_yaml_template_text(os):
return Path(f"runner-templates/build-test-{os}").read_text()
# Output files
def workflow_yaml_file(dir, os, test_name):
return Path(dir / f"build-test-{os}-{test_name}.yml")
# String function from test dir to test name
def test_name(dir):
return str(dir).replace("/", "-")
def transform_template(template_text, replacements):
t = template_text
for r, v in replacements.items():
t = t.replace(r, v)
return t
def test_files_in_dir(dir):
g = dir.glob("test_*.py")
return [] if g is None else [f for f in g]
# -----
default_replacements = {
"INSTALL_TIMELORD": read_file("runner-templates/install-timelord.include.yml").rstrip(),
"CHECKOUT_TEST_BLOCKS_AND_PLOTS": read_file("runner-templates/checkout-test-plots.include.yml").rstrip(),
"TEST_DIR": "",
"TEST_NAME": "",
"PYTEST_PARALLEL_ARGS": "",
}
# -----
# Replace with update_config
def generate_replacements(defaults, conf, dir, test_files):
assert len(test_files) > 0
replacements = dict(defaults)
if not conf["checkout_blocks_and_plots"]:
replacements[
"CHECKOUT_TEST_BLOCKS_AND_PLOTS"
] = "# Omitted checking out blocks and plots repo Pipscoin-Network/test-cache"
if not conf["install_timelord"]:
replacements["INSTALL_TIMELORD"] = "# Omitted installing Timelord"
if conf["parallel"]:
replacements["PYTEST_PARALLEL_ARGS"] = "-n auto"
if conf["job_timeout"]:
replacements["JOB_TIMEOUT"] = str(conf["job_timeout"])
test_paths = ["tests/" + str(f) for f in test_files]
# We have to list the test files individually until pytest has the
# option to only collect tests in the named dir, and not those below
replacements["TEST_DIR"] = " ".join(sorted(test_paths))
replacements["TEST_NAME"] = test_name(str(dir))
if "test_name" in conf:
replacements["TEST_NAME"] = conf["test_name"]
return replacements
# Overwrite with directory specific values
def update_config(parent, child):
if child is None:
return parent
conf = child
for k, v in parent.items():
if k not in child:
conf[k] = v
return conf
def dir_path(string):
p = Path(string)
if p.is_dir():
return p
else:
raise NotADirectoryError(string)
# args
arg_parser = argparse.ArgumentParser(description="Build github workflows")
arg_parser.add_argument("--output-dir", "-d", default="../.github/workflows", type=dir_path)
arg_parser.add_argument("--verbose", "-v", action="store_true")
args = arg_parser.parse_args()
if args.verbose:
logging.basicConfig(format="%(asctime)s:%(message)s", level=logging.DEBUG)
# main
test_dirs = subdirs(testconfig.root_test_dirs)
for os in testconfig.oses:
template_text = workflow_yaml_template_text(os)
for dir in test_dirs:
test_files = test_files_in_dir(dir)
if len(test_files) == 0:
logging.info(f"Skipping {dir}: no tests collected")
continue
conf = update_config(module_dict(testconfig), dir_config(dir))
replacements = generate_replacements(default_replacements, conf, dir, test_files)
txt = transform_template(template_text, replacements)
logging.info(f"Writing {os}-{test_name(dir)}")
workflow_yaml_file(args.output_dir, os, test_name(dir)).write_text(txt)
out = subprocess.run(["git", "diff", args.output_dir])
if out.stdout:
print(out.stdout)
|
[
"hello@pipscoin.net"
] |
hello@pipscoin.net
|
f1117ca1bf35ce910854edc80c27f58f03f2f6a6
|
8b4aa3227c54a283e4c61294fb4c475b5df83ec9
|
/spanning_tree.py
|
31f3dc6bd6373b6546acef163817264e7a97d965
|
[] |
no_license
|
dailydmello/PythonComputerNetworkandSecurity
|
abdbce8433076fabe2695658983bbb5a286aea43
|
e3ab5fcae9554e9d34824f6cbda7811190792eb4
|
refs/heads/master
| 2020-04-09T15:13:33.842245
| 2018-12-05T21:11:57
| 2018-12-05T21:11:57
| 160,419,967
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 14,243
|
py
|
# Copyright 2012,2013 James McCauley
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Creates a spanning tree.
This component uses the discovery component to build a view of the network
topology, constructs a spanning tree, and then disables flooding on switch
ports that aren't on the tree by setting their NO_FLOOD bit. The result
is that topologies with loops no longer turn your network into useless
hot packet soup.
This component is inspired by and roughly based on the description of
Glenn Gibb's spanning tree module for NOX:
http://www.openflow.org/wk/index.php/Basic_Spanning_Tree
Note that this does not have much of a relationship to Spanning Tree
Protocol. They have similar purposes, but this is a rather different way
of going about it.
"""
from pox.core import core
import pox.openflow.libopenflow_01 as of
from pox.lib.revent import *
from collections import defaultdict
from pox.openflow.discovery import Discovery
from pox.lib.util import dpidToStr
from pox.lib.recoco import Timer
import time
import sys
import itertools
log = core.getLogger()
def diameter (nodes, G):
# number of vertices
number_of_nodes = len (G.keys())
dist_mat=[]
for i in range (0,number_of_nodes):
dist_mat.append([0,0,0,0,0,0,0]) #distance matrix
for curr_node, node_neighbours in G.iteritems():#assign weights of 1 to nearby nodes #since list indexing starts at 0
for neighbours in node_neighbours:
dist_mat[curr_node-1][neighbours-1]=1
for i in range(0,number_of_nodes): #setting nodes not adjacent to infinity
for j in range (0,number_of_nodes):
if (i!=j and dist_mat[i][j]!=1):
dist_mat[i][j]=float('inf')
# floyd warshall algorithm will store the distance from current node to every other node in a matrix
for a in range (0,number_of_nodes):
for b in range (0,number_of_nodes):
for c in range (0,number_of_nodes):
if (dist_mat[b][c]>dist_mat[b][a]+dist_mat[a][c]):
dist_mat[b][c] = dist_mat[b][a] + dist_mat[a][c]
#loop through matrix and store largest distance as diameter
maximum=0
for i in range (0,number_of_nodes):
for j in range (0,number_of_nodes):
if maximum < dist_mat[i][j]:
maximum = dist_mat[i][j]
Diameter = maximum
return Diameter
visited=[]
def check_visited(node):
for x in visited:
if (x == node):
return True
return False
def check_spanning_tree(nodes, G):
stack = []
current = 1
while (len(visited)!=7):
# loop to get all the node_neighbours to get into stack
for curr_node, node_neighbours in G.iteritems():
if (curr_node==current):
for neighbours in node_neighbours:
if (check_visited(neighbours)==False):
stack.append(neighbours)
#add current node to visited to keep track
visited.append(current)
# if stack is not empty pop top node on stack into current
if (len(stack)!=0):
current = stack.pop()
visited.sort() #sort through stack to check for repeated cycles
for x in range (0, len(visited)-1):
if (visited[x] == visited[x+1]):
isSpanningTree = False
return isSpanningTree
isSpanningTree = True
return isSpanningTree
def get_choices (L, excludes):
choices = []
for i in range(1, 2**len(L)):
l = []
good = True
for j in range(len(L) + 1):
if (i >= (2 ** j) and i % (2 ** (j + 1)) != 0):
if (L[j] > excludes):
l.append (L[j])
else:
good = False
break
if (good):
choices.append(l)
return choices
def _calc_mdst ():
"""
Calculates the minimum diameter spanning tree
Returns it as dictionary where the keys are DPID1, and the
values are tuples of (DPID2, port-num), where port-num
is the port on DPID1 connecting to DPID2.
"""
def flip (link):
return Discovery.Link(link[2],link[3], link[0],link[1])
adj = defaultdict(lambda:defaultdict(lambda:[]))
switches = set()
# Add all links and switches
for l in core.openflow_discovery.adjacency:
adj[l.dpid1][l.dpid2].append(l)
switches.add(l.dpid1)
switches.add(l.dpid2)
for s1 in switches:
for s2 in switches:
if s2 not in adj[s1]:
continue
if not isinstance(adj[s1][s2], list):
continue
assert s1 is not s2
good = False
for l in adj[s1][s2]:
if flip(l) in core.openflow_discovery.adjacency:
# This is a good one
adj[s1][s2] = l.port1
adj[s2][s1] = l.port2
good = True
break
if not good:
del adj[s1][s2]
if s1 in adj[s2]:
# Delete the other way too
del adj[s2][s1]
Choices = {}
selectedChoice = {}
ls = sorted(list(switches))
for i in ls:
Choices[i] = get_choices(list(adj[i]), i)
selectedChoice[i] = 0
tree = defaultdict(set)
finish = False
md = 100
while (not finish):
nextTree = defaultdict(set)
for i in ls:
selectedChoice[i] = selectedChoice[i] + 1
if (selectedChoice[i] >= len(Choices[i])):
selectedChoice[i] = 0
if (i == ls[len(ls) - 1]):
finish = True
else:
break
graph = {}
for j in switches:
graph[j] = []
for j in switches:
if(len(Choices[j]) > 0):
for k in Choices[j][selectedChoice[j]]:
if not ((k,adj[j][k]) in nextTree[j]):
graph[j].append(k)
graph[k].append(j)
nextTree[j].add((k,adj[j][k]))
nextTree[k].add((j,adj[k][j]))
if (check_spanning_tree(ls, graph)):
d = diameter(ls, graph)
if (d < md):
md = d
tree = nextTree
log.debug("*** SPANNING TREE ***")
for sw,ports in tree.iteritems():
log.debug((" %i : " % sw) + " ".join([str(l[0]) for l in
sorted(list(ports))]))
log.debug("*********************")
return tree
def _calc_spanning_tree ():
"""
Calculates the first found spanning tree
Returns it as dictionary where the keys are DPID1, and the
values are tuples of (DPID2, port-num), where port-num
is the port on DPID1 connecting to DPID2.
"""
def flip (link):
return Discovery.Link(link[2],link[3], link[0],link[1])
adj = defaultdict(lambda:defaultdict(lambda:[]))
switches = set()
# Add all links and switches
for l in core.openflow_discovery.adjacency:
adj[l.dpid1][l.dpid2].append(l)
switches.add(l.dpid1)
switches.add(l.dpid2)
# Cull links -- we want a single symmetric link connecting nodes
for s1 in switches:
for s2 in switches:
if s2 not in adj[s1]:
continue
if not isinstance(adj[s1][s2], list):
continue
assert s1 is not s2
good = False
for l in adj[s1][s2]:
if flip(l) in core.openflow_discovery.adjacency:
# This is a good one
adj[s1][s2] = l.port1
adj[s2][s1] = l.port2
good = True
break
if not good:
del adj[s1][s2]
if s1 in adj[s2]:
# Delete the other way too
del adj[s2][s1]
q = []
more = set(switches)
done = set()
tree = defaultdict(set)
while True:
q = sorted(list(more)) + q
more.clear()
if len(q) == 0: break
v = q.pop(False)
if v in done: continue
done.add(v)
for w,p in adj[v].iteritems():
if w in tree: continue
more.add(w)
tree[v].add((w,p))
tree[w].add((v,adj[w][v]))
if True:
log.debug("*** SPANNING TREE ***")
for sw,ports in tree.iteritems():
#print " ", dpidToStr(sw), ":", sorted(list(ports))
#print " ", sw, ":", [l[0] for l in sorted(list(ports))]
log.debug((" %i : " % sw) + " ".join([str(l[0]) for l in
sorted(list(ports))]))
log.debug("*********************")
return tree
# Keep a list of previous port states so that we can skip some port mods
# If other things mess with port states, these may not be correct. We
# could also refer to Connection.ports, but those are not guaranteed to
# be up to date.
_prev = defaultdict(lambda : defaultdict(lambda : None))
# If True, we set ports down when a switch connects
_noflood_by_default = False
# If True, don't allow turning off flood bits until a complete discovery
# cycle should have completed (mostly makes sense with _noflood_by_default).
_hold_down = False
# If True, calculate the minimum diameter spanning tree
_mdst = False
def _handle_ConnectionUp (event):
# When a switch connects, forget about previous port states
_prev[event.dpid].clear()
if _noflood_by_default:
con = event.connection
log.debug("Disabling flooding for %i ports", len(con.ports))
for p in con.ports.itervalues():
if p.port_no >= of.OFPP_MAX: continue
_prev[con.dpid][p.port_no] = False
pm = of.ofp_port_mod(port_no=p.port_no,
hw_addr=p.hw_addr,
config = of.OFPPC_NO_FLOOD,
mask = of.OFPPC_NO_FLOOD)
con.send(pm)
_invalidate_ports(con.dpid)
if _hold_down:
t = Timer(core.openflow_discovery.send_cycle_time + 1, _update_tree,
kw={'force_dpid':event.dpid})
def _handle_LinkEvent (event):
# When links change, update spanning tree
(dp1,p1),(dp2,p2) = event.link.end
if _prev[dp1][p1] is False:
if _prev[dp2][p2] is False:
# We're disabling this link; who cares if it's up or down?
#log.debug("Ignoring link status for %s", event.link)
return
_update_tree()
def _update_tree (force_dpid = None):
"""
Update spanning tree
force_dpid specifies a switch we want to update even if we are supposed
to be holding down changes.
"""
# Get a spanning tree
if _mdst:
tree = _calc_mdst()
else:
tree = _calc_spanning_tree()
log.debug("Spanning tree updated")
# Connections born before this time are old enough that a complete
# discovery cycle should have completed (and, thus, all of their
# links should have been discovered).
enable_time = time.time() - core.openflow_discovery.send_cycle_time - 1
# Now modify ports as needed
try:
change_count = 0
for sw, ports in tree.iteritems():
con = core.openflow.getConnection(sw)
if con is None: continue # Must have disconnected
if con.connect_time is None: continue # Not fully connected
if _hold_down:
if con.connect_time > enable_time:
# Too young -- we should hold down changes.
if force_dpid is not None and sw == force_dpid:
# .. but we'll allow it anyway
pass
else:
continue
tree_ports = [p[1] for p in ports]
for p in con.ports.itervalues():
if p.port_no < of.OFPP_MAX:
flood = p.port_no in tree_ports
if not flood:
if core.openflow_discovery.is_edge_port(sw, p.port_no):
flood = True
if _prev[sw][p.port_no] is flood:
#print sw,p.port_no,"skip","(",flood,")"
continue # Skip
change_count += 1
_prev[sw][p.port_no] = flood
#print sw,p.port_no,flood
#TODO: Check results
pm = of.ofp_port_mod(port_no=p.port_no,
hw_addr=p.hw_addr,
config = 0 if flood else of.OFPPC_NO_FLOOD,
mask = of.OFPPC_NO_FLOOD)
con.send(pm)
_invalidate_ports(con.dpid)
if change_count:
log.info("%i ports changed", change_count)
except:
_prev.clear()
log.exception("Couldn't push spanning tree")
_dirty_switches = {} # A map dpid_with_dirty_ports->Timer
_coalesce_period = 2 # Seconds to wait between features requests
def _invalidate_ports (dpid):
"""
Registers the fact that port info for dpid may be out of date
When the spanning tree adjusts the port flags, the port config bits
we keep in the Connection become out of date. We don't want to just
set them locally because an in-flight port status message could
overwrite them. We also might not want to assume they get set the
way we want them. SO, we do send a features request, but we wait a
moment before sending it so that we can potentially coalesce several.
TLDR: Port information for this switch may be out of date for around
_coalesce_period seconds.
"""
if dpid in _dirty_switches:
# We're already planning to check
return
t = Timer(_coalesce_period, _check_ports, args=(dpid,))
_dirty_switches[dpid] = t
def _check_ports (dpid):
"""
Sends a features request to the given dpid
"""
_dirty_switches.pop(dpid,None)
con = core.openflow.getConnection(dpid)
if con is None: return
con.send(of.ofp_barrier_request())
con.send(of.ofp_features_request())
log.debug("Requested switch features for %s", str(con))
def launch (no_flood = False, hold_down = False, mdst=False):
global _noflood_by_default, _hold_down, _mdst
if no_flood is True:
_noflood_by_default = True
if hold_down is True:
_hold_down = True
if mdst is True:
_mdst = True
def start_spanning_tree ():
core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp)
core.openflow_discovery.addListenerByName("LinkEvent", _handle_LinkEvent)
log.debug("Spanning tree component ready")
core.call_when_ready(start_spanning_tree, "openflow_discovery")
|
[
"dmelloe@mcmaster.ca"
] |
dmelloe@mcmaster.ca
|
75dfe29367cde603df06f5c09d349672c7e70888
|
c7e58e7e961c9e8a3f307e423eb9c0d796e123e3
|
/test_python.py
|
05675da23381a6e74f88edfce84694e95a9be400
|
[] |
no_license
|
StuWheel/mount_steel
|
7632034647a7868fa02070254bdb3b93d09a499f
|
b6f2158e60a3e48ed643da77e05ed10245d0faa9
|
refs/heads/master
| 2021-04-04T14:47:05.315758
| 2020-03-29T04:41:52
| 2020-03-29T04:41:52
| 248,465,489
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 22
|
py
|
x = 15
print(x)
y = 15
|
[
"stuart.s.wall@gmail.com"
] |
stuart.s.wall@gmail.com
|
440e2fcbfd242367639df5349316b38f86b6a699
|
88863cb16f35cd479d43f2e7852d20064daa0c89
|
/Winton/kimonolabs-api.py
|
a126fb4eb279151491491f9e15b6d5c4ebc0e053
|
[] |
no_license
|
chrishefele/kaggle-sample-code
|
842c3cd766003f3b8257fddc4d61b919e87526c4
|
1c04e859c7376f8757b011ed5a9a1f455bd598b9
|
refs/heads/master
| 2020-12-29T12:18:09.957285
| 2020-12-22T20:16:35
| 2020-12-22T20:16:35
| 238,604,678
| 3
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 350
|
py
|
import urllib2
request = urllib2.Request("https://www.kimonolabs.com/api/csv/2i3ixo7u?apikey=qtyJXfoXzVQrHxFRbRxoZ06S13CAtOjl",
headers={"authorization" : "Bearer BRALL8UhSiBI78UvVPEN0PC7F0fNYtBh"})
contents = urllib2.urlopen(request).read()
print(contents)
print
for line in contents.splitlines():
print line
|
[
"c.hefele@verizon.net"
] |
c.hefele@verizon.net
|
05381db273e480b5a0039ca5f9462b772e1f0806
|
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
|
/alipay/aop/api/response/AlipayCommerceReceiptSyncResponse.py
|
335d068194ecc2851c30cfb4ee5e3179b39e0a1c
|
[
"Apache-2.0"
] |
permissive
|
alipay/alipay-sdk-python-all
|
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
|
1fad300587c9e7e099747305ba9077d4cd7afde9
|
refs/heads/master
| 2023-08-27T21:35:01.778771
| 2023-08-23T07:12:26
| 2023-08-23T07:12:26
| 133,338,689
| 247
| 70
|
Apache-2.0
| 2023-04-25T04:54:02
| 2018-05-14T09:40:54
|
Python
|
UTF-8
|
Python
| false
| false
| 440
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import json
from alipay.aop.api.response.AlipayResponse import AlipayResponse
class AlipayCommerceReceiptSyncResponse(AlipayResponse):
def __init__(self):
super(AlipayCommerceReceiptSyncResponse, self).__init__()
def parse_response_content(self, response_content):
response = super(AlipayCommerceReceiptSyncResponse, self).parse_response_content(response_content)
|
[
"jishupei.jsp@alibaba-inc.com"
] |
jishupei.jsp@alibaba-inc.com
|
a2e98c99e36453844e82eec47239264e0afc73d4
|
a3abf2477473e8e660f25be0c4de7a9d6daf52ee
|
/python/aws/kinesis/messages_pb2.py
|
52eb9a5955987c232237af6366ee2bce6c124f1d
|
[] |
no_license
|
abferm/Protobufs
|
b083bd683d50f1e7d7421b3625135a355b793753
|
4b60fa3861a528f3511bbfa2e37cfbc2582feafc
|
refs/heads/master
| 2021-01-12T17:27:33.141067
| 2016-11-04T22:11:16
| 2016-11-04T22:11:16
| 71,573,796
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| true
| 34,991
|
py
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: messages.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
import config_pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='messages.proto',
package='aws.kinesis.protobuf',
serialized_pb=_b('\n\x0emessages.proto\x12\x14\x61ws.kinesis.protobuf\x1a\x0c\x63onfig.proto\"!\n\x03Tag\x12\x0b\n\x03key\x18\x01 \x02(\t\x12\r\n\x05value\x18\x02 \x01(\t\"}\n\x06Record\x12\x1b\n\x13partition_key_index\x18\x01 \x02(\x04\x12\x1f\n\x17\x65xplicit_hash_key_index\x18\x02 \x01(\x04\x12\x0c\n\x04\x64\x61ta\x18\x03 \x02(\x0c\x12\'\n\x04tags\x18\x04 \x03(\x0b\x32\x19.aws.kinesis.protobuf.Tag\"\x7f\n\x10\x41ggregatedRecord\x12\x1b\n\x13partition_key_table\x18\x01 \x03(\t\x12\x1f\n\x17\x65xplicit_hash_key_table\x18\x02 \x03(\t\x12-\n\x07records\x18\x03 \x03(\x0b\x32\x1c.aws.kinesis.protobuf.Record\"\xe6\x03\n\x07Message\x12\n\n\x02id\x18\x01 \x02(\x04\x12\x11\n\tsource_id\x18\x02 \x01(\x04\x12\x35\n\nput_record\x18\x03 \x01(\x0b\x32\x1f.aws.kinesis.protobuf.PutRecordH\x00\x12,\n\x05\x66lush\x18\x04 \x01(\x0b\x32\x1b.aws.kinesis.protobuf.FlushH\x00\x12\x42\n\x11put_record_result\x18\x05 \x01(\x0b\x32%.aws.kinesis.protobuf.PutRecordResultH\x00\x12<\n\rconfiguration\x18\x06 \x01(\x0b\x32#.aws.kinesis.protobuf.ConfigurationH\x00\x12?\n\x0fmetrics_request\x18\x07 \x01(\x0b\x32$.aws.kinesis.protobuf.MetricsRequestH\x00\x12\x41\n\x10metrics_response\x18\x08 \x01(\x0b\x32%.aws.kinesis.protobuf.MetricsResponseH\x00\x12?\n\x0fset_credentials\x18\t \x01(\x0b\x32$.aws.kinesis.protobuf.SetCredentialsH\x00\x42\x10\n\x0e\x61\x63tual_message\"`\n\tPutRecord\x12\x13\n\x0bstream_name\x18\x01 \x02(\t\x12\x15\n\rpartition_key\x18\x02 \x02(\t\x12\x19\n\x11\x65xplicit_hash_key\x18\x03 \x01(\t\x12\x0c\n\x04\x64\x61ta\x18\x04 \x02(\x0c\"\x1c\n\x05\x46lush\x12\x13\n\x0bstream_name\x18\x01 \x01(\t\"f\n\x07\x41ttempt\x12\r\n\x05\x64\x65lay\x18\x01 \x02(\r\x12\x10\n\x08\x64uration\x18\x02 \x02(\r\x12\x0f\n\x07success\x18\x03 \x02(\x08\x12\x12\n\nerror_code\x18\x04 \x01(\t\x12\x15\n\rerror_message\x18\x05 \x01(\t\"~\n\x0fPutRecordResult\x12/\n\x08\x61ttempts\x18\x01 \x03(\x0b\x32\x1d.aws.kinesis.protobuf.Attempt\x12\x0f\n\x07success\x18\x02 \x02(\x08\x12\x10\n\x08shard_id\x18\x03 \x01(\t\x12\x17\n\x0fsequence_number\x18\x04 \x01(\t\">\n\x0b\x43redentials\x12\x0c\n\x04\x61kid\x18\x01 \x02(\t\x12\x12\n\nsecret_key\x18\x02 \x02(\t\x12\r\n\x05token\x18\x03 \x01(\t\"]\n\x0eSetCredentials\x12\x13\n\x0b\x66or_metrics\x18\x01 \x01(\x08\x12\x36\n\x0b\x63redentials\x18\x02 \x02(\x0b\x32!.aws.kinesis.protobuf.Credentials\"\'\n\tDimension\x12\x0b\n\x03key\x18\x01 \x02(\t\x12\r\n\x05value\x18\x02 \x02(\t\"K\n\x05Stats\x12\r\n\x05\x63ount\x18\x01 \x02(\x01\x12\x0b\n\x03sum\x18\x02 \x02(\x01\x12\x0c\n\x04mean\x18\x03 \x02(\x01\x12\x0b\n\x03min\x18\x04 \x02(\x01\x12\x0b\n\x03max\x18\x05 \x02(\x01\"\x88\x01\n\x06Metric\x12\x0c\n\x04name\x18\x01 \x02(\t\x12\x33\n\ndimensions\x18\x02 \x03(\x0b\x32\x1f.aws.kinesis.protobuf.Dimension\x12*\n\x05stats\x18\x03 \x02(\x0b\x32\x1b.aws.kinesis.protobuf.Stats\x12\x0f\n\x07seconds\x18\x04 \x02(\x04\"/\n\x0eMetricsRequest\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07seconds\x18\x02 \x01(\x04\"@\n\x0fMetricsResponse\x12-\n\x07metrics\x18\x01 \x03(\x0b\x32\x1c.aws.kinesis.protobuf.MetricB)\n\'com.amazonaws.kinesis.producer.protobuf')
,
dependencies=[config_pb2.DESCRIPTOR,])
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_TAG = _descriptor.Descriptor(
name='Tag',
full_name='aws.kinesis.protobuf.Tag',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='key', full_name='aws.kinesis.protobuf.Tag.key', index=0,
number=1, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='value', full_name='aws.kinesis.protobuf.Tag.value', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=54,
serialized_end=87,
)
_RECORD = _descriptor.Descriptor(
name='Record',
full_name='aws.kinesis.protobuf.Record',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='partition_key_index', full_name='aws.kinesis.protobuf.Record.partition_key_index', index=0,
number=1, type=4, cpp_type=4, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='explicit_hash_key_index', full_name='aws.kinesis.protobuf.Record.explicit_hash_key_index', index=1,
number=2, type=4, cpp_type=4, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='data', full_name='aws.kinesis.protobuf.Record.data', index=2,
number=3, type=12, cpp_type=9, label=2,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='tags', full_name='aws.kinesis.protobuf.Record.tags', index=3,
number=4, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=89,
serialized_end=214,
)
_AGGREGATEDRECORD = _descriptor.Descriptor(
name='AggregatedRecord',
full_name='aws.kinesis.protobuf.AggregatedRecord',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='partition_key_table', full_name='aws.kinesis.protobuf.AggregatedRecord.partition_key_table', index=0,
number=1, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='explicit_hash_key_table', full_name='aws.kinesis.protobuf.AggregatedRecord.explicit_hash_key_table', index=1,
number=2, type=9, cpp_type=9, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='records', full_name='aws.kinesis.protobuf.AggregatedRecord.records', index=2,
number=3, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=216,
serialized_end=343,
)
_MESSAGE = _descriptor.Descriptor(
name='Message',
full_name='aws.kinesis.protobuf.Message',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='id', full_name='aws.kinesis.protobuf.Message.id', index=0,
number=1, type=4, cpp_type=4, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='source_id', full_name='aws.kinesis.protobuf.Message.source_id', index=1,
number=2, type=4, cpp_type=4, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='put_record', full_name='aws.kinesis.protobuf.Message.put_record', index=2,
number=3, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='flush', full_name='aws.kinesis.protobuf.Message.flush', index=3,
number=4, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='put_record_result', full_name='aws.kinesis.protobuf.Message.put_record_result', index=4,
number=5, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='configuration', full_name='aws.kinesis.protobuf.Message.configuration', index=5,
number=6, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='metrics_request', full_name='aws.kinesis.protobuf.Message.metrics_request', index=6,
number=7, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='metrics_response', full_name='aws.kinesis.protobuf.Message.metrics_response', index=7,
number=8, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='set_credentials', full_name='aws.kinesis.protobuf.Message.set_credentials', index=8,
number=9, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
_descriptor.OneofDescriptor(
name='actual_message', full_name='aws.kinesis.protobuf.Message.actual_message',
index=0, containing_type=None, fields=[]),
],
serialized_start=346,
serialized_end=832,
)
_PUTRECORD = _descriptor.Descriptor(
name='PutRecord',
full_name='aws.kinesis.protobuf.PutRecord',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='stream_name', full_name='aws.kinesis.protobuf.PutRecord.stream_name', index=0,
number=1, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='partition_key', full_name='aws.kinesis.protobuf.PutRecord.partition_key', index=1,
number=2, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='explicit_hash_key', full_name='aws.kinesis.protobuf.PutRecord.explicit_hash_key', index=2,
number=3, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='data', full_name='aws.kinesis.protobuf.PutRecord.data', index=3,
number=4, type=12, cpp_type=9, label=2,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=834,
serialized_end=930,
)
_FLUSH = _descriptor.Descriptor(
name='Flush',
full_name='aws.kinesis.protobuf.Flush',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='stream_name', full_name='aws.kinesis.protobuf.Flush.stream_name', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=932,
serialized_end=960,
)
_ATTEMPT = _descriptor.Descriptor(
name='Attempt',
full_name='aws.kinesis.protobuf.Attempt',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='delay', full_name='aws.kinesis.protobuf.Attempt.delay', index=0,
number=1, type=13, cpp_type=3, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='duration', full_name='aws.kinesis.protobuf.Attempt.duration', index=1,
number=2, type=13, cpp_type=3, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='success', full_name='aws.kinesis.protobuf.Attempt.success', index=2,
number=3, type=8, cpp_type=7, label=2,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='error_code', full_name='aws.kinesis.protobuf.Attempt.error_code', index=3,
number=4, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='error_message', full_name='aws.kinesis.protobuf.Attempt.error_message', index=4,
number=5, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=962,
serialized_end=1064,
)
_PUTRECORDRESULT = _descriptor.Descriptor(
name='PutRecordResult',
full_name='aws.kinesis.protobuf.PutRecordResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='attempts', full_name='aws.kinesis.protobuf.PutRecordResult.attempts', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='success', full_name='aws.kinesis.protobuf.PutRecordResult.success', index=1,
number=2, type=8, cpp_type=7, label=2,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='shard_id', full_name='aws.kinesis.protobuf.PutRecordResult.shard_id', index=2,
number=3, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='sequence_number', full_name='aws.kinesis.protobuf.PutRecordResult.sequence_number', index=3,
number=4, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1066,
serialized_end=1192,
)
_CREDENTIALS = _descriptor.Descriptor(
name='Credentials',
full_name='aws.kinesis.protobuf.Credentials',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='akid', full_name='aws.kinesis.protobuf.Credentials.akid', index=0,
number=1, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='secret_key', full_name='aws.kinesis.protobuf.Credentials.secret_key', index=1,
number=2, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='token', full_name='aws.kinesis.protobuf.Credentials.token', index=2,
number=3, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1194,
serialized_end=1256,
)
_SETCREDENTIALS = _descriptor.Descriptor(
name='SetCredentials',
full_name='aws.kinesis.protobuf.SetCredentials',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='for_metrics', full_name='aws.kinesis.protobuf.SetCredentials.for_metrics', index=0,
number=1, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='credentials', full_name='aws.kinesis.protobuf.SetCredentials.credentials', index=1,
number=2, type=11, cpp_type=10, label=2,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1258,
serialized_end=1351,
)
_DIMENSION = _descriptor.Descriptor(
name='Dimension',
full_name='aws.kinesis.protobuf.Dimension',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='key', full_name='aws.kinesis.protobuf.Dimension.key', index=0,
number=1, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='value', full_name='aws.kinesis.protobuf.Dimension.value', index=1,
number=2, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1353,
serialized_end=1392,
)
_STATS = _descriptor.Descriptor(
name='Stats',
full_name='aws.kinesis.protobuf.Stats',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='count', full_name='aws.kinesis.protobuf.Stats.count', index=0,
number=1, type=1, cpp_type=5, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='sum', full_name='aws.kinesis.protobuf.Stats.sum', index=1,
number=2, type=1, cpp_type=5, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='mean', full_name='aws.kinesis.protobuf.Stats.mean', index=2,
number=3, type=1, cpp_type=5, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='min', full_name='aws.kinesis.protobuf.Stats.min', index=3,
number=4, type=1, cpp_type=5, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='max', full_name='aws.kinesis.protobuf.Stats.max', index=4,
number=5, type=1, cpp_type=5, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1394,
serialized_end=1469,
)
_METRIC = _descriptor.Descriptor(
name='Metric',
full_name='aws.kinesis.protobuf.Metric',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='name', full_name='aws.kinesis.protobuf.Metric.name', index=0,
number=1, type=9, cpp_type=9, label=2,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='dimensions', full_name='aws.kinesis.protobuf.Metric.dimensions', index=1,
number=2, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='stats', full_name='aws.kinesis.protobuf.Metric.stats', index=2,
number=3, type=11, cpp_type=10, label=2,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='seconds', full_name='aws.kinesis.protobuf.Metric.seconds', index=3,
number=4, type=4, cpp_type=4, label=2,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1472,
serialized_end=1608,
)
_METRICSREQUEST = _descriptor.Descriptor(
name='MetricsRequest',
full_name='aws.kinesis.protobuf.MetricsRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='name', full_name='aws.kinesis.protobuf.MetricsRequest.name', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='seconds', full_name='aws.kinesis.protobuf.MetricsRequest.seconds', index=1,
number=2, type=4, cpp_type=4, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1610,
serialized_end=1657,
)
_METRICSRESPONSE = _descriptor.Descriptor(
name='MetricsResponse',
full_name='aws.kinesis.protobuf.MetricsResponse',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='metrics', full_name='aws.kinesis.protobuf.MetricsResponse.metrics', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
extension_ranges=[],
oneofs=[
],
serialized_start=1659,
serialized_end=1723,
)
_RECORD.fields_by_name['tags'].message_type = _TAG
_AGGREGATEDRECORD.fields_by_name['records'].message_type = _RECORD
_MESSAGE.fields_by_name['put_record'].message_type = _PUTRECORD
_MESSAGE.fields_by_name['flush'].message_type = _FLUSH
_MESSAGE.fields_by_name['put_record_result'].message_type = _PUTRECORDRESULT
_MESSAGE.fields_by_name['configuration'].message_type = config_pb2._CONFIGURATION
_MESSAGE.fields_by_name['metrics_request'].message_type = _METRICSREQUEST
_MESSAGE.fields_by_name['metrics_response'].message_type = _METRICSRESPONSE
_MESSAGE.fields_by_name['set_credentials'].message_type = _SETCREDENTIALS
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['put_record'])
_MESSAGE.fields_by_name['put_record'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['flush'])
_MESSAGE.fields_by_name['flush'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['put_record_result'])
_MESSAGE.fields_by_name['put_record_result'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['configuration'])
_MESSAGE.fields_by_name['configuration'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['metrics_request'])
_MESSAGE.fields_by_name['metrics_request'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['metrics_response'])
_MESSAGE.fields_by_name['metrics_response'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_MESSAGE.oneofs_by_name['actual_message'].fields.append(
_MESSAGE.fields_by_name['set_credentials'])
_MESSAGE.fields_by_name['set_credentials'].containing_oneof = _MESSAGE.oneofs_by_name['actual_message']
_PUTRECORDRESULT.fields_by_name['attempts'].message_type = _ATTEMPT
_SETCREDENTIALS.fields_by_name['credentials'].message_type = _CREDENTIALS
_METRIC.fields_by_name['dimensions'].message_type = _DIMENSION
_METRIC.fields_by_name['stats'].message_type = _STATS
_METRICSRESPONSE.fields_by_name['metrics'].message_type = _METRIC
DESCRIPTOR.message_types_by_name['Tag'] = _TAG
DESCRIPTOR.message_types_by_name['Record'] = _RECORD
DESCRIPTOR.message_types_by_name['AggregatedRecord'] = _AGGREGATEDRECORD
DESCRIPTOR.message_types_by_name['Message'] = _MESSAGE
DESCRIPTOR.message_types_by_name['PutRecord'] = _PUTRECORD
DESCRIPTOR.message_types_by_name['Flush'] = _FLUSH
DESCRIPTOR.message_types_by_name['Attempt'] = _ATTEMPT
DESCRIPTOR.message_types_by_name['PutRecordResult'] = _PUTRECORDRESULT
DESCRIPTOR.message_types_by_name['Credentials'] = _CREDENTIALS
DESCRIPTOR.message_types_by_name['SetCredentials'] = _SETCREDENTIALS
DESCRIPTOR.message_types_by_name['Dimension'] = _DIMENSION
DESCRIPTOR.message_types_by_name['Stats'] = _STATS
DESCRIPTOR.message_types_by_name['Metric'] = _METRIC
DESCRIPTOR.message_types_by_name['MetricsRequest'] = _METRICSREQUEST
DESCRIPTOR.message_types_by_name['MetricsResponse'] = _METRICSRESPONSE
Tag = _reflection.GeneratedProtocolMessageType('Tag', (_message.Message,), dict(
DESCRIPTOR = _TAG,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Tag)
))
_sym_db.RegisterMessage(Tag)
Record = _reflection.GeneratedProtocolMessageType('Record', (_message.Message,), dict(
DESCRIPTOR = _RECORD,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Record)
))
_sym_db.RegisterMessage(Record)
AggregatedRecord = _reflection.GeneratedProtocolMessageType('AggregatedRecord', (_message.Message,), dict(
DESCRIPTOR = _AGGREGATEDRECORD,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.AggregatedRecord)
))
_sym_db.RegisterMessage(AggregatedRecord)
Message = _reflection.GeneratedProtocolMessageType('Message', (_message.Message,), dict(
DESCRIPTOR = _MESSAGE,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Message)
))
_sym_db.RegisterMessage(Message)
PutRecord = _reflection.GeneratedProtocolMessageType('PutRecord', (_message.Message,), dict(
DESCRIPTOR = _PUTRECORD,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.PutRecord)
))
_sym_db.RegisterMessage(PutRecord)
Flush = _reflection.GeneratedProtocolMessageType('Flush', (_message.Message,), dict(
DESCRIPTOR = _FLUSH,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Flush)
))
_sym_db.RegisterMessage(Flush)
Attempt = _reflection.GeneratedProtocolMessageType('Attempt', (_message.Message,), dict(
DESCRIPTOR = _ATTEMPT,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Attempt)
))
_sym_db.RegisterMessage(Attempt)
PutRecordResult = _reflection.GeneratedProtocolMessageType('PutRecordResult', (_message.Message,), dict(
DESCRIPTOR = _PUTRECORDRESULT,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.PutRecordResult)
))
_sym_db.RegisterMessage(PutRecordResult)
Credentials = _reflection.GeneratedProtocolMessageType('Credentials', (_message.Message,), dict(
DESCRIPTOR = _CREDENTIALS,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Credentials)
))
_sym_db.RegisterMessage(Credentials)
SetCredentials = _reflection.GeneratedProtocolMessageType('SetCredentials', (_message.Message,), dict(
DESCRIPTOR = _SETCREDENTIALS,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.SetCredentials)
))
_sym_db.RegisterMessage(SetCredentials)
Dimension = _reflection.GeneratedProtocolMessageType('Dimension', (_message.Message,), dict(
DESCRIPTOR = _DIMENSION,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Dimension)
))
_sym_db.RegisterMessage(Dimension)
Stats = _reflection.GeneratedProtocolMessageType('Stats', (_message.Message,), dict(
DESCRIPTOR = _STATS,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Stats)
))
_sym_db.RegisterMessage(Stats)
Metric = _reflection.GeneratedProtocolMessageType('Metric', (_message.Message,), dict(
DESCRIPTOR = _METRIC,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.Metric)
))
_sym_db.RegisterMessage(Metric)
MetricsRequest = _reflection.GeneratedProtocolMessageType('MetricsRequest', (_message.Message,), dict(
DESCRIPTOR = _METRICSREQUEST,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.MetricsRequest)
))
_sym_db.RegisterMessage(MetricsRequest)
MetricsResponse = _reflection.GeneratedProtocolMessageType('MetricsResponse', (_message.Message,), dict(
DESCRIPTOR = _METRICSRESPONSE,
__module__ = 'messages_pb2'
# @@protoc_insertion_point(class_scope:aws.kinesis.protobuf.MetricsResponse)
))
_sym_db.RegisterMessage(MetricsResponse)
DESCRIPTOR.has_options = True
DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\'com.amazonaws.kinesis.producer.protobuf'))
# @@protoc_insertion_point(module_scope)
|
[
"aferm@petropower.com"
] |
aferm@petropower.com
|
da25cb5b8c5a7e297cbea47ff6715d495fb036a3
|
b27308e062c956dae4e9bd6902e1a46a3ee08f2f
|
/Django/d01/ex03/capital_city.py
|
6413b8da94500f305cd2be657fb07735be98dbbd
|
[] |
no_license
|
vlapparov/Ecole42
|
d25a9af2d68cedbf349597a051bcdfca149b60f0
|
0760df71e52deee2f1b3c9cb887fc8286f7549a8
|
refs/heads/master
| 2020-03-30T12:54:09.289574
| 2018-10-14T23:47:01
| 2018-10-14T23:47:01
| 151,247,020
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 578
|
py
|
# coding: utf-8
# In[18]:
from sys import argv
def my_var():
states = {
"Oregon" : "OR",
"Alabama" : "AL",
"New Jersey": "NJ",
"Colorado" : "CO"
}
capital_cities = {
"OR": "Salem",
"AL": "Montgomery",
"NJ": "Trenton",
"CO": "Denver"
}
if(len(argv) != 2): return
else:
if(argv[1] in states):
if(states[argv[1]] in capital_cities):
print(capital_cities[states[argv[1]]])
else:
print('Unknown state.')
if __name__ == '__main__':
my_var()
|
[
"vlapparov@Valentins-MacBook-Pro-2.local"
] |
vlapparov@Valentins-MacBook-Pro-2.local
|
8a7547871ef8dbddb0987ec8942ad3ec3d0e0fe2
|
f5ef9235079706f801de198c70585e68d338beff
|
/five_votes/example_new.py
|
1c7ce5d995982aa01f4f7e3aba0cd87b56f9ad26
|
[] |
no_license
|
garciaclaudio/askthecrowd
|
1f025f8f5a58ae84d5723bd913b308a3e37a6dd9
|
7925075d9ccd70707460e451485292618a148f09
|
refs/heads/master
| 2021-01-13T01:55:59.328564
| 2015-12-15T20:34:33
| 2015-12-15T20:34:33
| 537,308
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,694
|
py
|
#!/usr/bin/env python
#
# Copyright 2010 Facebook
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
A barebones AppEngine application that uses Facebook for login.
1. Make sure you add a copy of facebook.py (from python-sdk/src/)
into this directory so it can be imported.
2. Don't forget to tick Login With Facebook on your facebook app's
dashboard and place the app's url wherever it is hosted
3. Place a random, unguessable string as a session secret below in
config dict.
4. Fill app id and app secret.
5. Change the application name in app.yaml.
"""
FACEBOOK_APP_ID = '331909936825023'
FACEBOOK_APP_SECRET = '9f17f1ecae197ca6bf22d809442be538'
import facebook
import webapp2
import os
import jinja2
import urllib2
import os, sys
import pprint
from google.appengine.ext import db
from webapp2_extras import sessions
config = {}
config['webapp2_extras.sessions'] = dict(secret_key='fbar1sas26786345barfoobfdsazbar67asdasd32')
class User(db.Model):
id = db.StringProperty(required=True)
created = db.DateTimeProperty(auto_now_add=True)
updated = db.DateTimeProperty(auto_now=True)
name = db.StringProperty(required=True)
profile_url = db.StringProperty(required=True)
access_token = db.StringProperty(required=True)
class BaseHandler(webapp2.RequestHandler):
"""Provides access to the active Facebook user in self.current_user
The property is lazy-loaded on first access, using the cookie saved
by the Facebook JavaScript SDK to determine the user ID of the active
user. See http://developers.facebook.com/docs/authentication/ for
more information.
"""
@property
def current_user(self):
if self.session.get("user"):
# User is logged in
return self.session.get("user")
else:
# Either used just logged in or just saw the first page
# We'll see here
cookie = facebook.get_user_from_cookie(self.request.cookies,
FACEBOOK_APP_ID,
FACEBOOK_APP_SECRET)
if cookie:
# Okay so user logged in.
# Now, check to see if existing user
user = User.get_by_key_name(cookie["uid"])
if not user:
# Not an existing user so get user info
graph = facebook.GraphAPI(cookie["access_token"])
profile = graph.get_object("me")
user = User(
key_name=str(profile["id"]),
id=str(profile["id"]),
name=profile["name"],
profile_url=profile["link"],
access_token=cookie["access_token"]
)
user.put()
elif user.access_token != cookie["access_token"]:
user.access_token = cookie["access_token"]
user.put()
# User is now logged in
self.session["user"] = dict(
name=user.name,
profile_url=user.profile_url,
id=user.id,
access_token=user.access_token
)
return self.session.get("user")
return None
def dispatch(self):
"""
This snippet of code is taken from the webapp2 framework documentation.
See more at
http://webapp-improved.appspot.com/api/webapp2_extras/sessions.html
"""
self.session_store = sessions.get_store(request=self.request)
try:
webapp2.RequestHandler.dispatch(self)
finally:
self.session_store.save_sessions(self.response)
@webapp2.cached_property
def session(self):
"""
This snippet of code is taken from the webapp2 framework documentation.
See more at
http://webapp-improved.appspot.com/api/webapp2_extras/sessions.html
"""
return self.session_store.get_session()
class HomeHandler(BaseHandler):
def get(self):
print >> sys.stderr, '=============== HERE I AM =============='
template = jinja_environment.get_template('example_new.html')
self.response.out.write(template.render(dict(
facebook_app_id=FACEBOOK_APP_ID,
current_user=self.current_user
)))
def post(self):
url = self.request.get('url')
file = urllib2.urlopen(url)
graph = facebook.GraphAPI(self.current_user['access_token'])
response = graph.put_photo(file, "Test Image")
photo_url = ("http://www.facebook.com/"
"photo.php?fbid={0}".format(response['id']))
self.redirect(str(photo_url))
class LogoutHandler(BaseHandler):
def get(self):
if self.current_user is not None:
self.session['user'] = None
self.redirect('/')
jinja_environment = jinja2.Environment(
loader=jinja2.FileSystemLoader(os.path.dirname(__file__))
)
app = webapp2.WSGIApplication(
[('/', HomeHandler), ('/logout', LogoutHandler)],
debug=True,
config=config
)
|
[
"claudio.garcia@booking.com"
] |
claudio.garcia@booking.com
|
a51d66646ddf79561b2c16509843ee824196ca37
|
f3e7e79c9e71c2e6b713b1bc91feba795dba44d0
|
/main.py
|
6a00c94f66918df25f4a4ab106f68c894222834b
|
[
"MIT"
] |
permissive
|
veeral-agarwal/Genetic-Algorithm
|
720c12f755bceb653a6a309295befaeb82ac0244
|
471ecac287d4e6a028e84887dab328ca950ffc5f
|
refs/heads/main
| 2023-05-14T16:23:27.099235
| 2021-06-03T22:48:15
| 2021-06-03T22:48:15
| 340,640,810
| 0
| 0
| null | 2021-05-20T21:19:28
| 2021-02-20T11:43:19
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 9,449
|
py
|
import numpy as np
from client import *
import random
import json
#13508412130.218098 368125762698.6422
#13560827319.190525 370434930576.4746
#13532626957.355581 369745382579.87744
#13510723304.19212 368296592820.6967 this
# f=open("overfit.txt","r")
# data=f.read()
# data=data.rstrip()
# data=data.strip('][').split(', ')
# f.close()
# for i in range(len(data)):
# data[i]=float(data[i])
with open ("TeamName1.json","r") as file:
vectors = json.load(file)
# data = [[]]
# for i in range(len(vectors)):
# for j in range(len(vectors[i])):
# data[i][j]=float(vectors[i][j])
data = vectors
#print(list(data))
pop_size=10
chromosome_size=11
train_factor = 0.5
def mod(val):
if val<0:
return -1*val
return val
#change few genes of chromosome
#change few genes of chromosome
def mutate(chromosome:np.ndarray):
mutation_probability = 0.2
for i in range(chromosome_size):
l = abs(chromosome[i])/5000
r = -1*l
temp = random.uniform(r,l)
k = random.uniform(0,1)
if k <= mutation_probability:
chromosome[i]+=temp
if chromosome[i]>10:
chromosome[i]=10
elif chromosome[i]<-10:
chromosome[i]=-10
#population generation
def get_fitness(arr, ind):
#getting errors on the data
fitness=[0 for i in range(chromosome_size)]
j=0
for chromoso in arr:
trainerr,validerr=get_errors(key,list(chromoso))
print(trainerr,validerr)
fitness[j]=1/(train_factor*trainerr+validerr)
j+=1
if ind==1:
for m in range(chromosome_size):
fitness1[m]=fitness[m]
#print(fitness)
else:
for m in range(chromosome_size):
fitness2[m]=fitness[m]
#calculate probabilities
sum_fit=np.sum(fitness)
generation_file.write("respective probabilities :")
for k in range(pop_size):
probability[k]=fitness[k]/sum_fit
generation_file.write(str(probability[k])+"\n")
def selection(arr:np.ndarray):
for i in range(pop_size):
parent1ind=np.random.choice(pop_size,p=probability)
parent1=arr[parent1ind]
parent2ind=np.random.choice(pop_size,p=probability)
parent2=arr[parent2ind]
#printing parents after selection :
print("printing parents after selection :")
print("parent1:")
print(parent1)
print("parent2:")
print(parent2)
# appending parents after selection in generation file
generation_file.write("parents after selection:\n")
generation_file.write("parent1 and its probability : ")
generation_file.write(str(parent1)+str(probability[parent1ind])+"\n")
generation_file.write("parent2 and its probability: ")
generation_file.write(str(parent2)+str(probability[parent2ind])+"\n")
new_pop[i]=crossover(parent1,parent2)
def crossover(parent1,parent2):
mid=random.randint(1,chromosome_size-1)
child=np.ones(chromosome_size)
for i in range(0,mid+1):
child[i]=parent1[i]
for j in range(mid,chromosome_size):
child[j]=parent2[j]
print(child)
return child
# temp_arr = np.zeros((pop_size,11))
temp_arr = data
print(temp_arr)
generation_file = open("15_march_generationsat1.txt","a")
generations=1
total_generations=2
new_init_pop=np.zeros((pop_size,11))
while(generations!=total_generations):
#at last we can put newpop to init pop and start algo again
init_pop=np.zeros((pop_size,11))
new_pop=np.zeros((pop_size,11))
fitness1=[0 for i in range(chromosome_size)]
fitness2=[0 for i in range(chromosome_size)]
probability=[0 for j in range(pop_size)]
#copy the original vector to all the population and change few values in the population so that it generates varied initial population,ie we can simply mutate
for i in range(pop_size):
if generations==0:
for j in range (chromosome_size):
probab=11
tempp = random.randint(1,10)
if tempp < probab:
rng = np.random.uniform(low = 0.3, high = 0.90)
init_pop[i][j] = rng* temp_arr[i][j]
else:
for j in range (chromosome_size):
init_pop[i][j]=temp_arr[i][j]
mutate(init_pop[i])
#initial population printing
print("initial population :")
for lol in init_pop:
print(lol)
#appending initial populaton in generations file
generation_file.write("\n \n \n \ngeneration 1 \n\n") #put here generation number
generation_file.write("initial population:\n")
for lol in init_pop:
generation_file.write(str(lol)+"\n")
generation_file.write("\n")
# generations+=1
get_fitness(init_pop,1)
selection(init_pop)
# printing population after crossover
print("after crossover:")
for lol in new_pop:
print(lol)
# appending population after crossover in generation file
generation_file.write("population after crossover:\n")
for lol in new_pop:
generation_file.write(str(lol)+"\n")
generation_file.write("\n")
# mutation
for i in range(pop_size):
mutate(new_pop[i])
#printing population after mutation
print("population after mutation :")
for lol in new_pop:
print(lol)
# appending population after mutation in generation file
generation_file.write("population after mutation:\n")
for lol in new_pop:
generation_file.write(str(lol)+"\n")
generation_file.write("\n")
#print(new_pop)
get_fitness(new_pop,2)
#print(fitness1,"initialfitness")
#print(fitness2,"childrenfitness")
#we need to replace children which are more fit than parents
#sort population according to fitness, descending
#new_init_pop=np.zeros()
finaltup=[]
for i in range(pop_size):
finaltup.append((fitness1[i],init_pop[i]))
for i in range(pop_size):
finaltup.append((fitness2[i],new_pop[i]))
print("final touple:")
print(finaltup)
# <<<<<<< HEAD
finaltup.sort(reverse=True , key=lambda x:x[0])
# =======
finaltup.sort(reverse=True, key=lambda x:x[0]) #made change here
# >>>>>>> 79663dab7f777da52388a064f057b1a35a525a35
print("final sorted touple")
print(finaltup)
print("FFS , MIXED FITNESS FUNCTIONS IN ORDER")
for i in range(pop_size):
new_init_pop[i]=finaltup[i][1]
print(finaltup[i][0])
ret=submit(key,list(new_init_pop[0]))
print(ret)
#printing the vector we are submitting
print("the vector we are submitting",end=" ")
print(new_init_pop[0])
tr ,va = get_errors(key,list(new_init_pop[0]))
update = []
for i in range(len(new_init_pop)):
update.append(list(new_init_pop[i]))
loll = open("vectors15at1.txt","a")
loll.write(str(new_init_pop[0] ))
loll.close()
loll = open("train15at1.txt","a")
loll.write(str(tr )+"\n")
loll.close()
loll = open("validations15at1.txt","a")
loll.write(str(va )+"\n")
loll.close()
generations+=1
with open('TeamName1.json','w') as outfile:
json.dump(update,outfile)
'''
[ 0.00000000e+00 -1.45791987e-12 -2.28980078e-13 4.62026183e-11
-1.75232807e-10 -1.83669770e-15 8.52944060e-16 2.29423303e-05
-2.04721003e-06 -1.59784330e-08 9.98380485e-10]
[ 0.00000000e+00 -1.45791987e-12 -2.28980078e-13 4.62165370e-11
-1.75214813e-10 -1.83669770e-15 8.52944060e-16 2.29423303e-05
-2.04726501e-06 -1.59792834e-08 9.98289696e-10]
[ 0.00000000e+00 -1.45799022e-12 -2.28980078e-13 4.62094809e-11
-1.75240463e-10 -1.83689245e-15 8.52944060e-16 2.29423303e-05
-2.04726501e-06 -1.59792834e-08 9.98172827e-10]
[ 0.00000000e+00 -1.45799022e-12 -2.28980078e-13 4.62010753e-11
-1.75214358e-10 -1.83695504e-15 8.52944060e-16 2.29423303e-05
-2.04713431e-06 -1.59792834e-08 9.98214034e-10]
[ 0.00000000e+00 -1.45799022e-12 -2.28980078e-13 4.62010753e-11
-1.75214813e-10 -1.83705704e-15 8.52993038e-16 2.29424118e-05
-2.04717969e-06 -1.59818356e-08 9.98214034e-10]
[ 0.00000000e+00 -1.45823003e-12 -2.28980078e-13 4.62010753e-11
-1.75214813e-10 -1.83669770e-15 8.52944060e-16 2.29474725e-05
-2.04732743e-06 -1.59792834e-08 9.98214034e-10]
[ 0.00000000e+00 -1.45791987e-12 -2.28954113e-13 4.62090729e-11
-1.75214813e-10 -1.83669770e-15 8.52944060e-16 2.29388125e-05
-2.04740215e-06 -1.59784330e-08 9.98386710e-10]
[ 0.00000000e+00 -1.45802904e-12 -2.28980078e-13 4.62094809e-11
-1.75240463e-10 -1.83689245e-15 8.52944060e-16 2.29467194e-05
-2.04686387e-06 -1.59777469e-08 9.98214034e-10]
[ 0.00000000e+00 -1.45810044e-12 -2.28980250e-13 4.62010753e-11
-1.75232807e-10 -1.83669770e-15 8.52944060e-16 2.29423303e-05
-2.04748606e-06 -1.59784330e-08 9.98153221e-10]
[ 0.00000000e+00 -1.45792140e-12 -2.28954583e-13 4.62094809e-11
-1.75255822e-10 -1.83669770e-15 8.52944060e-16 2.29423303e-05
-2.04740927e-06 -1.59789814e-08 9.98501919e-10]
'''
'''
[ 0.00000000e+00 -1.45791987e-12 -2.28980078e-13 4.62026183e-11
-1.75232807e-10 -1.83669770e-15 8.52944060e-16 2.29423303e-05
-2.04721003e-06 -1.59784330e-08 9.98380485e-10]
the vector we are submitting [ 0.00000000e+00 -4.68244455e-13 -1.23800807e-13 4.62010753e-11
-1.08897836e-10 -1.83645233e-15 2.85985980e-16 2.29457065e-05
-2.04721003e-06 -5.09817427e-09 6.19031957e-10]
'''
|
[
"veeral.agarwal@research.iiit.ac.in"
] |
veeral.agarwal@research.iiit.ac.in
|
363bdeff54855b7013b24e42476b351ed21eff08
|
34ef54c04b369a6161c6f8a649868a47122a2d89
|
/.venv/Lib/site-packages/Bio/PDB/parse_pdb_header.py
|
10c9f1a5d1e7f5373d3275dedda3c4d241e052ba
|
[
"MIT"
] |
permissive
|
abner-lucas/tp-cruzi-db
|
f70ad269c50a2db24debd1455daeddaa2ebd3923
|
595c5c46794ae08a1f19716636eac7430cededa1
|
refs/heads/bioinformatica
| 2023-05-18T23:23:23.458394
| 2021-06-14T02:13:17
| 2021-06-14T02:13:17
| 351,864,250
| 2
| 2
|
MIT
| 2021-06-13T19:52:18
| 2021-03-26T17:40:20
|
Python
|
UTF-8
|
Python
| false
| false
| 11,664
|
py
|
#!/usr/bin/env python
# Copyright 2004 Kristian Rother.
# Revisions copyright 2004 Thomas Hamelryck.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Parse header of PDB files into a python dictionary.
Emerged from the Columba database project www.columba-db.de, original author
Kristian Rother.
"""
import re
from Bio import File
def _get_journal(inl):
# JRNL AUTH L.CHEN,M.DOI,F.S.MATHEWS,A.Y.CHISTOSERDOV, 2BBK 7
journal = ""
for l in inl:
if re.search(r"\AJRNL", l):
journal += l[19:72].lower()
journal = re.sub(r"\s\s+", " ", journal)
return journal
def _get_references(inl):
# REMARK 1 REFERENCE 1 1CSE 11
# REMARK 1 AUTH W.BODE,E.PAPAMOKOS,D.MUSIL 1CSE 12
references = []
actref = ""
for l in inl:
if re.search(r"\AREMARK 1", l):
if re.search(r"\AREMARK 1 REFERENCE", l):
if actref != "":
actref = re.sub(r"\s\s+", " ", actref)
if actref != " ":
references.append(actref)
actref = ""
else:
actref += l[19:72].lower()
if actref != "":
actref = re.sub(r"\s\s+", " ", actref)
if actref != " ":
references.append(actref)
return references
# bring dates to format: 1909-01-08
def _format_date(pdb_date):
"""Convert dates from DD-Mon-YY to YYYY-MM-DD format (PRIVATE)."""
date = ""
year = int(pdb_date[7:])
if year < 50:
century = 2000
else:
century = 1900
date = str(century + year) + "-"
all_months = [
"xxx",
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
month = str(all_months.index(pdb_date[3:6]))
if len(month) == 1:
month = "0" + month
date = date + month + "-" + pdb_date[:2]
return date
def _chop_end_codes(line):
"""Chops lines ending with ' 1CSA 14' and the like (PRIVATE)."""
return re.sub(r"\s\s\s\s+[\w]{4}.\s+\d*\Z", "", line)
def _chop_end_misc(line):
"""Chops lines ending with ' 14-JUL-97 1CSA' and the like (PRIVATE)."""
return re.sub(r"\s+\d\d-\w\w\w-\d\d\s+[1-9][0-9A-Z]{3}\s*\Z", "", line)
def _nice_case(line):
"""Make A Lowercase String With Capitals (PRIVATE)."""
line_lower = line.lower()
s = ""
i = 0
nextCap = 1
while i < len(line_lower):
c = line_lower[i]
if c >= "a" and c <= "z" and nextCap:
c = c.upper()
nextCap = 0
elif c in " .,;:\t-_":
nextCap = 1
s += c
i += 1
return s
def parse_pdb_header(infile):
"""Return the header lines of a pdb file as a dictionary.
Dictionary keys are: head, deposition_date, release_date, structure_method,
resolution, structure_reference, journal_reference, author and
compound.
"""
header = []
with File.as_handle(infile) as f:
for l in f:
record_type = l[0:6]
if record_type in ("ATOM ", "HETATM", "MODEL "):
break
else:
header.append(l)
return _parse_pdb_header_list(header)
def _parse_remark_465(line):
"""Parse missing residue remarks.
Returns a dictionary describing the missing residue.
The specification for REMARK 465 at
http://www.wwpdb.org/documentation/file-format-content/format33/remarks2.html#REMARK%20465
only gives templates, but does not say they have to be followed.
So we assume that not all pdb-files with a REMARK 465 can be understood.
Returns a dictionary with the following keys:
"model", "res_name", "chain", "ssseq", "insertion"
"""
if line:
# Note that line has been stripped.
assert line[0] != " " and line[-1] not in "\n ", "line has to be stripped"
pattern = re.compile(
r"""
(\d+\s[\sA-Z][\sA-Z][A-Z] | # Either model number + residue name
[A-Z]{1,3}) # Or only residue name with 1 (RNA) to 3 letters
\s ([A-Za-z0-9]) # A single character chain
\s+(\d+[A-Za-z]?)$ # Residue number: A digit followed by an optional
# insertion code (Hetero-flags make no sense in
# context with missing res)
""",
re.VERBOSE,
)
match = pattern.match(line)
if match is None:
return None
residue = {}
if " " in match.group(1):
model, residue["res_name"] = match.group(1).split()
residue["model"] = int(model)
else:
residue["model"] = None
residue["res_name"] = match.group(1)
residue["chain"] = match.group(2)
try:
residue["ssseq"] = int(match.group(3))
except ValueError:
residue["insertion"] = match.group(3)[-1]
residue["ssseq"] = int(match.group(3)[:-1])
else:
residue["insertion"] = None
return residue
def _parse_pdb_header_list(header):
# database fields
pdbh_dict = {
"name": "",
"head": "",
"idcode": "",
"deposition_date": "1909-01-08",
"release_date": "1909-01-08",
"structure_method": "unknown",
"resolution": None,
"structure_reference": "unknown",
"journal_reference": "unknown",
"author": "",
"compound": {"1": {"misc": ""}},
"source": {"1": {"misc": ""}},
"has_missing_residues": False,
"missing_residues": [],
}
pdbh_dict["structure_reference"] = _get_references(header)
pdbh_dict["journal_reference"] = _get_journal(header)
comp_molid = "1"
last_comp_key = "misc"
last_src_key = "misc"
for hh in header:
h = re.sub(r"[\s\n\r]*\Z", "", hh) # chop linebreaks off
# key=re.sub("\s.+\s*","",h)
key = h[:6].strip()
# tail=re.sub("\A\w+\s+\d*\s*","",h)
tail = h[10:].strip()
# print("%s:%s" % (key, tail)
# From here, all the keys from the header are being parsed
if key == "TITLE":
name = _chop_end_codes(tail).lower()
pdbh_dict["name"] = " ".join([pdbh_dict["name"], name]).strip()
elif key == "HEADER":
rr = re.search(r"\d\d-\w\w\w-\d\d", tail)
if rr is not None:
pdbh_dict["deposition_date"] = _format_date(_nice_case(rr.group()))
rr = re.search(r"\s+([1-9][0-9A-Z]{3})\s*\Z", tail)
if rr is not None:
pdbh_dict["idcode"] = rr.group(1)
head = _chop_end_misc(tail).lower()
pdbh_dict["head"] = head
elif key == "COMPND":
tt = re.sub(r"\;\s*\Z", "", _chop_end_codes(tail)).lower()
# look for E.C. numbers in COMPND lines
rec = re.search(r"\d+\.\d+\.\d+\.\d+", tt)
if rec:
pdbh_dict["compound"][comp_molid]["ec_number"] = rec.group()
tt = re.sub(r"\((e\.c\.)*\d+\.\d+\.\d+\.\d+\)", "", tt)
tok = tt.split(":")
if len(tok) >= 2:
ckey = tok[0]
cval = re.sub(r"\A\s*", "", tok[1])
if ckey == "mol_id":
pdbh_dict["compound"][cval] = {"misc": ""}
comp_molid = cval
last_comp_key = "misc"
else:
pdbh_dict["compound"][comp_molid][ckey] = cval
last_comp_key = ckey
else:
pdbh_dict["compound"][comp_molid][last_comp_key] += tok[0] + " "
elif key == "SOURCE":
tt = re.sub(r"\;\s*\Z", "", _chop_end_codes(tail)).lower()
tok = tt.split(":")
# print(tok)
if len(tok) >= 2:
ckey = tok[0]
cval = re.sub(r"\A\s*", "", tok[1])
if ckey == "mol_id":
pdbh_dict["source"][cval] = {"misc": ""}
comp_molid = cval
last_src_key = "misc"
else:
pdbh_dict["source"][comp_molid][ckey] = cval
last_src_key = ckey
else:
pdbh_dict["source"][comp_molid][last_src_key] += tok[0] + " "
elif key == "KEYWDS":
kwd = _chop_end_codes(tail).lower()
if "keywords" in pdbh_dict:
pdbh_dict["keywords"] += " " + kwd
else:
pdbh_dict["keywords"] = kwd
elif key == "EXPDTA":
expd = _chop_end_codes(tail)
# chop junk at end of lines for some structures
expd = re.sub(r"\s\s\s\s\s\s\s.*\Z", "", expd)
# if re.search('\Anmr',expd,re.IGNORECASE): expd='nmr'
# if re.search('x-ray diffraction',expd,re.IGNORECASE): expd='x-ray diffraction'
pdbh_dict["structure_method"] = expd.lower()
elif key == "CAVEAT":
# make Annotation entries out of these!!!
pass
elif key == "REVDAT":
rr = re.search(r"\d\d-\w\w\w-\d\d", tail)
if rr is not None:
pdbh_dict["release_date"] = _format_date(_nice_case(rr.group()))
elif key == "JRNL":
# print("%s:%s" % (key, tail))
if "journal" in pdbh_dict:
pdbh_dict["journal"] += tail
else:
pdbh_dict["journal"] = tail
elif key == "AUTHOR":
auth = _nice_case(_chop_end_codes(tail))
if "author" in pdbh_dict:
pdbh_dict["author"] += auth
else:
pdbh_dict["author"] = auth
elif key == "REMARK":
if re.search("REMARK 2 RESOLUTION.", hh):
r = _chop_end_codes(re.sub("REMARK 2 RESOLUTION.", "", hh))
r = re.sub(r"\s+ANGSTROM.*", "", r)
try:
pdbh_dict["resolution"] = float(r)
except ValueError:
# print('nonstandard resolution %r' % r)
pdbh_dict["resolution"] = None
elif hh.startswith("REMARK 465"):
if tail:
pdbh_dict["has_missing_residues"] = True
missing_res_info = _parse_remark_465(tail)
if missing_res_info:
pdbh_dict["missing_residues"].append(missing_res_info)
elif hh.startswith("REMARK 99 ASTRAL"):
if tail:
remark_99_keyval = tail.replace("ASTRAL ", "").split(": ")
if type(remark_99_keyval) == list and len(remark_99_keyval) == 2:
if "astral" not in pdbh_dict:
pdbh_dict["astral"] = {
remark_99_keyval[0]: remark_99_keyval[1]
}
else:
pdbh_dict["astral"][remark_99_keyval[0]] = remark_99_keyval[
1
]
else:
# print(key)
pass
if pdbh_dict["structure_method"] == "unknown":
res = pdbh_dict["resolution"]
if res is not None and res > 0.0:
pdbh_dict["structure_method"] = "x-ray diffraction"
return pdbh_dict
|
[
"abnerlucas.cad@gmail.com"
] |
abnerlucas.cad@gmail.com
|
c2437a5446c8e2344ca329a820696b24318be6c8
|
766ed25dc718ba4b9358a13dc5fbff0f846204f8
|
/iot_temp_mod/iotSupport/getConfig.py
|
a7d67c20358b076907fcf334ed190f128cb951bd
|
[] |
no_license
|
MichaelOsowski/iot_temp_mod
|
01a734f066110c7f45702c612cd684472576a335
|
1d45e7cb5ca788c4d3332fe5c4ecc5a3d209e87f
|
refs/heads/master
| 2021-04-15T13:53:14.758721
| 2019-07-02T17:37:05
| 2019-07-02T17:37:05
| 126,368,053
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 443
|
py
|
'''
Created on Jan 26, 2016
@author: Michael Osowski
'''
import ConfigParser
def parseConfig(InFile,configGroup):
confDict = {}
config= ConfigParser.ConfigParser()
config.read(InFile)
options = config.options(configGroup)
for option in options:
try:
confDict[option] = config.get(configGroup,option)
except:
print("Missing Config values")
return confDict
|
[
"mosowski@newrelic.com"
] |
mosowski@newrelic.com
|
58794f7b06991f84fe20e97670d5b070e724b7b4
|
8b37e49a5d061a92816c0e1aaab2bdaa84132ab7
|
/Interactive_Visualizations_&_Dashboards/Plotly&Flask/PetPals_LT/PetPals/app.py
|
d4764a9ab94569f1895731533962e6e998063844
|
[] |
no_license
|
KenT370/Learned_Tech
|
d4b05e3e26d95e71407ac8b52be5943cf133b774
|
2b8fb15f3f59840c36220175b536fcb45f571f7d
|
refs/heads/master
| 2022-12-10T07:05:48.801794
| 2019-06-10T16:35:24
| 2019-06-10T16:35:24
| 171,935,753
| 0
| 0
| null | 2022-12-08T05:14:19
| 2019-02-21T19:54:43
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 1,614
|
py
|
from flask import Flask, render_template,jsonify, request, redirect
from flask_sqlalchemy import SQLAlchemy
import os
#from flask.ext.heroku import heroku
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'postgres://zphvqfcqbejonu:86c66f04c54f05d6fc6ad5adc2683dcb2e3d9bfbbc4c01c42d0005c70ee66807@ec2-54-83-201-84.compute-1.amazonaws.com:5432/d8hgnkhff30apd'
db = SQLAlchemy(app)
from .models import Pet
@app.route('/')
def home():
return render_template('index.html')
@app.route('/send',methods=['GET','POST'])
def send():
if request.method == 'POST':
name = request.form['petname']
lat = request.form['Latitude']
lon = request.form['Longitude']
pet = Pet(name=name,lat=lat,lon=lon)
db.session.add(pet)
db.session.commit()
return redirect('/',code=302)
return render_template('form.html')
@app.route('/api/pals')
def data():
results = db.session.query(Pet).all()
name = [var.name for var in results]
lat = [var.lat for var in results]
lon = [var.lon for var in results]
dic = {
'type':'scattergeo',
'mode':'markers+text',
'text':name,
'lon':lon,
'lat':lat,
'marker':{'size':10},
'name': 'Pet Locations',
'textposition': 'top center'
}
return jsonify(dic)
if __name__ == '__main__':
app.run()
# class Pet(db.Model):
# __tablename__ = 'pets'
# id = db.Column(db.*)
# lat = db.Column(db.Float)
# lon = db.Column(db.Float)
# def __repr__(self):
# return '<Pet %r>' % (self.name)
|
[
"kentorres822@gmail.com"
] |
kentorres822@gmail.com
|
83828df8c4b7e817787e4b613cd850d74a92d000
|
445b219933c75009a6c0c813b204df0c720cc4a2
|
/demo/multi_classification.py
|
45a674c20e425a7bcfdb8a91f7f0a91a478820aa
|
[] |
no_license
|
RyotaFuwa/NeuralNetworkFramework
|
a2fc1e0312f7b3a3db8222dcd085a23ad073709b
|
9558c195ab796df817cb7d83b9fbb03257eb6b69
|
refs/heads/master
| 2022-12-15T09:37:59.685252
| 2020-09-10T12:36:36
| 2020-09-10T14:21:28
| 265,612,918
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 547
|
py
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from misc.utils import split_data
def multi_classification(csv_file_path):
"""assuming the csv file has columns: x, y, class"""
df = pd.read_csv(csv_file_path)
X = df[['x', 'y']].to_numpy()
Y = df['class'].to_numpy().reshape((-1, 1))
plt.scatter(X[:, 0], X[:, 1], c=Y, s=100, marker='o')
plt.show()
(train_x, train_y), (test_x, test_y) = split_data(X, Y, ratio=0.75, random=True)
multi_classification('../data/examples/multi_classification/test_data.csv')
|
[
"ryota.fuwa.1428@gmail.com"
] |
ryota.fuwa.1428@gmail.com
|
50574fb0976254f71acedb7d478c899596de33ee
|
957f28e9296c9e9bb471b0bf178ca8a53aa21b25
|
/AI - Module/api/retrievers/__init__.py
|
a430aa52e6d175529f0650aee410ecdad38f5885
|
[] |
no_license
|
FelipeCardoso89/HackathonOriginal
|
e222f37b5ae9d647d28acfda08877740fca206e2
|
42d7915953920cd34d5bac399fdc63e92790f699
|
refs/heads/master
| 2021-08-23T05:05:54.076852
| 2017-12-03T14:22:16
| 2017-12-03T14:22:16
| 112,932,437
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 95
|
py
|
from .userInteractionIntel import UserInteractionIntel
__all__ = [
UserInteractionIntel
]
|
[
"holanda.nayana@gmail.com"
] |
holanda.nayana@gmail.com
|
6df326d71e9954918deec914f12cc7826fbf00c5
|
021d6b2c5c2b5e2e14c3e48838e040421abbf392
|
/PhD-GPCR/plotDistancesLikeShaw.py
|
2be9d7abbdedd80be3fb071af282f96a00c61d46
|
[] |
no_license
|
victor-gil-sepulveda/PhD-GPCR
|
b6f44b2a0c70e0f8035cd5c8275e9aa3907c58ab
|
338357cd01241df833fe6a6e248a9a39465fac3c
|
refs/heads/master
| 2021-01-21T14:09:02.109178
| 2016-04-26T19:18:41
| 2016-04-26T19:18:41
| 18,520,998
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,654
|
py
|
"""
Created on 13/03/2014
@author: victor
"""
import prody
import os.path
from pyRMSD.RMSDCalculator import RMSDCalculator
import matplotlib
import pylab
import os
from tools import distance, create_dir
data = [
{
'dir':'2rh1_refined',
'pdb_traj':'2rh1_refined.pdb',
'selection':{
'backbone':"backbone and chain A",
'motif_all': "noh resnum 322:327", # Todos heavy
'motif_backbone': "backbone resnum 322:327", # Solo backbone
'arg131_leu272': "ca resnum 131 272", # No hace falta alignment
'ser207':"backbone resnum 207", # Alignment backbone / RMSD backbone
'ser207_OG':"name OG resnum 207",
'lig_OAE':"name OAE", # Unique name in the ligand
'ile121': "backbone resnum 121",
'phe282': "backbone resnum 282"
}
}
]
cwd = os.getcwd()
for datum in data:
prot_name = datum['dir']
print "========================\nWorking with %s\n========================"%(prot_name)
# Look for the directory and enter it
base_dir = os.path.join(cwd, prot_name)
os.chdir(base_dir)
# Create dirs to put results
create_dir("plots")
create_dir("selections")
# Generate all selections
pdb = prody.parsePDB("%s"%datum['pdb_traj'])
selections = {}
for selection in datum['selection']:
print selection
selections[selection] = pdb.select(datum['selection'][selection])
prody.writePDB(os.path.join("selections",selection), selections[selection])
#############################
# Motif VS Helix Distance
#############################
calculator = RMSDCalculator( calculatorType = "QCP_OMP_CALCULATOR",
fittingCoordsets = selections['motif_all'].getCoordsets(),
calculationCoordsets = selections['motif_backbone'].getCoordsets())
motif_rmsd = calculator.oneVsTheOthers( conformation_number = 0,
get_superposed_coordinates = False)
residue_distances = []
for conf in selections['arg131_leu272'].getCoordsets():
arg131 = conf[0]
leu272 = conf[1]
residue_distances.append(distance(arg131, leu272))
exp_motif_rmsd = [0]+list(motif_rmsd)
matplotlib.pyplot.scatter(residue_distances, exp_motif_rmsd)
matplotlib.pyplot.savefig(os.path.join("plots", "motif_vs_helix_dist.svg"))
matplotlib.pyplot.close()
###########################################
# Backbone of ser 207 rmsd Vs ser to ligand distance
###########################################
calculator = RMSDCalculator( calculatorType = "QCP_OMP_CALCULATOR",
fittingCoordsets = selections['backbone'].getCoordsets(),
calculationCoordsets = selections['ser207'].getCoordsets())
ser207_rmsd = calculator.oneVsTheOthers( conformation_number = 0,
get_superposed_coordinates = False)
# Distance from ligand to serine
distances = []
lig_coords = selections["lig_OAE"].getCoordsets()
ser_coords = selections["ser207_OG"].getCoordsets()
for i, ser_OG in enumerate(ser_coords):
lig_OAE = lig_coords[i]
distances.append(distance(ser_OG[0], lig_OAE[0]))
exp_ser_207_rmsd = [0]+list(ser207_rmsd)
matplotlib.pyplot.scatter(distances, exp_ser_207_rmsd)
matplotlib.pyplot.savefig(os.path.join("plots", "ser207_dist_lig.svg"))
matplotlib.pyplot.close()
###########################################
# Ile 121 rmsd vs Phe 282 rmsd
###########################################
ile121_coordsets = pdb.select(datum['selection']['ile121'])
phe282_coordsets = pdb.select(datum['selection']['phe282'])
calculator = RMSDCalculator( calculatorType = "QCP_OMP_CALCULATOR",
fittingCoordsets = selections['backbone'].getCoordsets(),
calculationCoordsets = selections['ile121'].getCoordsets())
ile121_rmsd = calculator.oneVsTheOthers( conformation_number = 0,
get_superposed_coordinates = False)
calculator = RMSDCalculator( calculatorType = "QCP_OMP_CALCULATOR",
fittingCoordsets = selections['backbone'].getCoordsets(),
calculationCoordsets = selections['phe282'].getCoordsets())
phe282_rmsd = calculator.oneVsTheOthers( conformation_number = 0,
get_superposed_coordinates = False)
matplotlib.pyplot.scatter(phe282_rmsd, ile121_rmsd)
matplotlib.pyplot.savefig(os.path.join("plots", "ile121_vs_phe282.svg"))
matplotlib.pyplot.close()
|
[
"victor.gil.sepulveda@gmail.com"
] |
victor.gil.sepulveda@gmail.com
|
e8cc4a779f0748f11f893f138e6faeb4aace28ab
|
0897e2254eeac5458e4f17caea43871dd72fda9a
|
/great_expectations/expectations/core/expect_column_values_to_match_regex_list.py
|
a337613795d3cc82a329be40ed1c5a3f6b35b3eb
|
[
"Apache-2.0"
] |
permissive
|
NulledExceptions/great_expectations
|
10f7710d7520f0b57ded539ce33075ddeb47856d
|
8704c3ecf6632a72c55e012ed117d56f85a21f74
|
refs/heads/main
| 2023-09-05T19:30:32.910045
| 2021-11-18T20:50:42
| 2021-11-18T20:50:42
| 431,229,866
| 1
| 0
|
Apache-2.0
| 2021-11-23T19:35:34
| 2021-11-23T19:35:34
| null |
UTF-8
|
Python
| false
| false
| 11,214
|
py
|
from typing import Optional
from great_expectations.core.expectation_configuration import ExpectationConfiguration
from great_expectations.expectations.util import (
add_values_with_json_schema_from_list_in_params,
render_evaluation_parameter_string,
)
from ...render.renderer.renderer import renderer
from ...render.types import RenderedStringTemplateContent
from ...render.util import (
num_to_str,
parse_row_condition_string_pandas_engine,
substitute_none_for_missing,
)
from ..expectation import ColumnMapExpectation, InvalidExpectationConfigurationError
class ExpectColumnValuesToMatchRegexList(ColumnMapExpectation):
"""Expect the column entries to be strings that can be matched to either any of or all of a list of regular
expressions. Matches can be anywhere in the string.
expect_column_values_to_match_regex_list is a \
:func:`column_map_expectation <great_expectations.execution_engine.execution_engine.MetaExecutionEngine
.column_map_expectation>`.
Args:
column (str): \
The column name.
regex_list (list): \
The list of regular expressions which the column entries should match
Keyword Args:
match_on= (string): \
"any" or "all".
Use "any" if the value should match at least one regular expression in the list.
Use "all" if it should match each regular expression in the list.
mostly (None or a float between 0 and 1): \
Return `"success": True` if at least mostly fraction of values match the expectation. \
For more detail, see :ref:`mostly`.
Other Parameters:
result_format (str or None): \
Which output mode to use: `BOOLEAN_ONLY`, `BASIC`, `COMPLETE`, or `SUMMARY`.
For more detail, see :ref:`result_format <result_format>`.
include_config (boolean): \
If True, then include the expectation config as part of the result object. \
For more detail, see :ref:`include_config`.
catch_exceptions (boolean or None): \
If True, then catch exceptions and include them as part of the result object. \
For more detail, see :ref:`catch_exceptions`.
meta (dict or None): \
A JSON-serializable dictionary (nesting allowed) that will be included in the output without \
modification. For more detail, see :ref:`meta`.
Returns:
An ExpectationSuiteValidationResult
Exact fields vary depending on the values passed to :ref:`result_format <result_format>` and
:ref:`include_config`, :ref:`catch_exceptions`, and :ref:`meta`.
See Also:
:func:`expect_column_values_to_match_regex \
<great_expectations.execution_engine.execution_engine.ExecutionEngine.expect_column_values_to_match_regex>`
:func:`expect_column_values_to_not_match_regex \
<great_expectations.execution_engine.execution_engine.ExecutionEngine
.expect_column_values_to_not_match_regex>`
"""
library_metadata = {
"maturity": "production",
"package": "great_expectations",
"tags": ["core expectation", "column map expectation"],
"contributors": [
"@great_expectations",
],
"requirements": [],
}
map_metric = "column_values.match_regex_list"
success_keys = (
"regex_list",
"match_on",
"mostly",
)
default_kwarg_values = {
"row_condition": None,
"condition_parser": None, # we expect this to be explicitly set whenever a row_condition is passed
"mostly": 1,
"result_format": "BASIC",
"include_config": True,
"catch_exceptions": True,
}
def validate_configuration(self, configuration: Optional[ExpectationConfiguration]):
super().validate_configuration(configuration)
if configuration is None:
configuration = self.configuration
try:
assert "regex_list" in configuration.kwargs, "regex_list is required"
assert isinstance(
configuration.kwargs["regex_list"], (list, dict)
), "regex_list must be a list of regexes"
if (
not isinstance(configuration.kwargs["regex_list"], dict)
and len(configuration.kwargs["regex_list"]) > 0
):
for i in configuration.kwargs["regex_list"]:
assert isinstance(i, str), "regexes in list must be strings"
if isinstance(configuration.kwargs["regex_list"], dict):
assert (
"$PARAMETER" in configuration.kwargs["regex_list"]
), 'Evaluation Parameter dict for regex_list kwarg must have "$PARAMETER" key.'
except AssertionError as e:
raise InvalidExpectationConfigurationError(str(e))
return True
@classmethod
def _atomic_prescriptive_template(
cls,
configuration=None,
result=None,
language=None,
runtime_configuration=None,
**kwargs,
):
runtime_configuration = runtime_configuration or {}
include_column_name = runtime_configuration.get("include_column_name", True)
include_column_name = (
include_column_name if include_column_name is not None else True
)
styling = runtime_configuration.get("styling")
params = substitute_none_for_missing(
configuration.kwargs,
[
"column",
"regex_list",
"mostly",
"match_on",
"row_condition",
"condition_parser",
],
)
params_with_json_schema = {
"column": {"schema": {"type": "string"}, "value": params.get("column")},
"regex_list": {
"schema": {"type": "array"},
"value": params.get("regex_list"),
},
"mostly": {"schema": {"type": "number"}, "value": params.get("mostly")},
"match_on": {"schema": {"type": "string"}, "value": params.get("match_on")},
"row_condition": {
"schema": {"type": "string"},
"value": params.get("row_condition"),
},
"condition_parser": {
"schema": {"type": "string"},
"value": params.get("condition_parser"),
},
}
if not params.get("regex_list") or len(params.get("regex_list")) == 0:
values_string = "[ ]"
else:
for i, v in enumerate(params["regex_list"]):
params["v__" + str(i)] = v
values_string = " ".join(
["$v__" + str(i) for i, v in enumerate(params["regex_list"])]
)
if params.get("match_on") == "all":
template_str = (
"values must match all of the following regular expressions: "
+ values_string
)
else:
template_str = (
"values must match any of the following regular expressions: "
+ values_string
)
if params["mostly"] is not None:
params["mostly_pct"] = num_to_str(
params["mostly"] * 100, precision=15, no_scientific=True
)
# params["mostly_pct"] = "{:.14f}".format(params["mostly"]*100).rstrip("0").rstrip(".")
template_str += ", at least $mostly_pct % of the time."
else:
template_str += "."
if include_column_name:
template_str = "$column " + template_str
if params["row_condition"] is not None:
(
conditional_template_str,
conditional_params,
) = parse_row_condition_string_pandas_engine(
params["row_condition"], with_schema=True
)
template_str = conditional_template_str + ", then " + template_str
params_with_json_schema.update(conditional_params)
params_with_json_schema = add_values_with_json_schema_from_list_in_params(
params=params,
params_with_json_schema=params_with_json_schema,
param_key_with_list="regex_list",
)
return (template_str, params_with_json_schema, styling)
@classmethod
@renderer(renderer_type="renderer.prescriptive")
@render_evaluation_parameter_string
def _prescriptive_renderer(
cls,
configuration=None,
result=None,
language=None,
runtime_configuration=None,
**kwargs,
):
runtime_configuration = runtime_configuration or {}
include_column_name = runtime_configuration.get("include_column_name", True)
include_column_name = (
include_column_name if include_column_name is not None else True
)
styling = runtime_configuration.get("styling")
params = substitute_none_for_missing(
configuration.kwargs,
[
"column",
"regex_list",
"mostly",
"match_on",
"row_condition",
"condition_parser",
],
)
if not params.get("regex_list") or len(params.get("regex_list")) == 0:
values_string = "[ ]"
else:
for i, v in enumerate(params["regex_list"]):
params["v__" + str(i)] = v
values_string = " ".join(
["$v__" + str(i) for i, v in enumerate(params["regex_list"])]
)
if params.get("match_on") == "all":
template_str = (
"values must match all of the following regular expressions: "
+ values_string
)
else:
template_str = (
"values must match any of the following regular expressions: "
+ values_string
)
if params["mostly"] is not None:
params["mostly_pct"] = num_to_str(
params["mostly"] * 100, precision=15, no_scientific=True
)
# params["mostly_pct"] = "{:.14f}".format(params["mostly"]*100).rstrip("0").rstrip(".")
template_str += ", at least $mostly_pct % of the time."
else:
template_str += "."
if include_column_name:
template_str = "$column " + template_str
if params["row_condition"] is not None:
(
conditional_template_str,
conditional_params,
) = parse_row_condition_string_pandas_engine(params["row_condition"])
template_str = conditional_template_str + ", then " + template_str
params.update(conditional_params)
return [
RenderedStringTemplateContent(
**{
"content_block_type": "string_template",
"string_template": {
"template": template_str,
"params": params,
"styling": styling,
},
}
)
]
|
[
"noreply@github.com"
] |
NulledExceptions.noreply@github.com
|
a49cd1fe7b46fdd509083cfbf90268e706b9a9f7
|
4b2df15d4943e71e07d9d75fadc4f82b61853276
|
/dog_image_classifier_project/test_classifier.py
|
0b3c2a28a95f21f203b039c8ddcee7e18304afd6
|
[] |
no_license
|
suryakant1698/machineLearningProject
|
da76801e198afdd8593105a9de1814387003312b
|
547591a29dbcc8fd0cccce56e78528527154e5fe
|
refs/heads/master
| 2020-04-14T06:41:19.101947
| 2019-03-18T08:18:07
| 2019-03-18T08:18:07
| 163,693,104
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,760
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# */AIPND-revision/intropyproject-classify-pet-images/test_classifier.py
#
# PROGRAMMER: Jennifer S.
# DATE CREATED: 01/30/2018
# REVISED DATE: <=(Date Revised - if any)
# PURPOSE: To demonstrate the proper usage of the classifier() function that
# is defined in classifier.py This function uses CNN model
# architecture that has been pretrained on the ImageNet data to
# classify images. The only model architectures that this function
# will accept are: 'resnet', 'alexnet', and 'vgg'. See the example
# usage below.
#
# Usage: python test_classifier.py -- will run program from commandline
# Imports classifier function for using pretrained CNN to classify images
from classifier import classifier
# Defines a dog test image from pet_images folder
test_image = "pet_images/mangu.jpg"
# Defines a model architecture to be used for classification
# NOTE: this function only works for model architectures:
# 'vgg', 'alexnet', 'resnet'
model = "vgg"
# Demonstrates classifier() functions usage
# NOTE: image_classication is a text string - It contains mixed case(both lower
# and upper case letter) image labels that can be separated by commas when a
# label has more than one word that can describe it.
image_classification = classifier(test_image, model)
# prints result from running classifier() function
print("\nResults from test_classifier.py\nImage:", test_image, "using model:",
model, "was classified as a:", image_classification)
|
[
"suryakant.rocky@gmail.com"
] |
suryakant.rocky@gmail.com
|
2d79e4e554bf3b88d7a570df54378fe1bf1994f3
|
83bbb67d205b6488c5c86a9ff5479420994b68ac
|
/tzq_cvae/dataset.py
|
e2f43a7eefc86c09c28db556a2197cc1622bf69c
|
[
"MIT"
] |
permissive
|
enhuiz/cvae
|
7c74f78af7d3695676eed338b9dcbe85b0dcc7b1
|
8ccfd12df37996f280ae95302caecc7c7a967b44
|
refs/heads/main
| 2023-08-27T22:43:16.718363
| 2021-09-08T05:21:45
| 2021-09-08T05:21:45
| 403,652,796
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,346
|
py
|
import numpy as np
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from functools import cached_property
class MaskedMNIST(MNIST):
def __init__(self, root, num_masks=3, **kwargs):
self.num_masks = num_masks
kwargs.setdefault("transform", transforms.ToTensor())
kwargs.setdefault("download", True)
super().__init__(root, **kwargs)
@cached_property
def _quads(self):
return [
(slice(None), slice(i, i + 14), slice(j, j + 14))
for i in [0, 14]
for j in [0, 14]
]
def _sample_quads(self):
indices = np.random.choice(4, self.num_masks, False)
return [self._quads[i] for i in indices]
def __getitem__(self, index):
x, _ = super().__getitem__(index)
y = x.clone()
quads = self._sample_quads()
for quad in quads:
x[quad] = -1
return x, y
def as_dataloader(self, *args, **kwargs):
return DataLoader(self, *args, **kwargs)
if __name__ == "__main__":
import matplotlib.pyplot as plt
dataset = MaskedMNIST("data/mnist", download=True)
x, y = dataset[0]
print(x.shape)
plt.subplot(121)
plt.imshow(x[0])
plt.subplot(122)
plt.imshow(y[0])
plt.savefig("test.png")
|
[
"niuzhe.nz@outlook.com"
] |
niuzhe.nz@outlook.com
|
52fa8b03611d4b9c943a75dd51236e5aa36ec012
|
165db92b0b84dd26e3d66b1602a5285e8679c99b
|
/pset6-python/Mario/mario_less.py
|
7c30cacbd5f6cfe46167973ff3db800a00503181
|
[] |
no_license
|
BSanandu88/CS50x
|
8acee66d8c153293b46917e8f63df110bb2816df
|
044964ac0ab8afe813b84f2612c6a662c554b925
|
refs/heads/master
| 2022-11-21T13:33:56.396233
| 2020-07-18T04:35:20
| 2020-07-18T04:35:20
| 263,544,391
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 326
|
py
|
from cs50 import get_int
def main():
while True:
height=get_int("Height:")
width = height + 1
if height >= 0 and height <=23:
break
for i in range(1, height + 1):
hashes = i+1
spaces=width - hashes
print(" " * spaces,end="")
print("#" * hashes)
if__name__ == "__main__":
main()
|
[
"noreply@github.com"
] |
BSanandu88.noreply@github.com
|
20331f88d9ab903e1970463cb154cfaa0c020812
|
ef8c023091909332a8d592446040b780febe7958
|
/main.py
|
39a9ada2c9f7fe9025b2302def89a878307e1702
|
[] |
no_license
|
tungpun/php-functions
|
128706fb79a9ddac9a22288b7209f8a43b70b117
|
e7704f6dec52af67515bca2d543ed07128904370
|
refs/heads/master
| 2021-01-01T19:40:14.512003
| 2017-07-28T10:42:05
| 2017-07-28T10:42:05
| 98,639,789
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 425
|
py
|
#!/usr/bin/python 2.7
import requests
from bs4 import BeautifulSoup
if __name__ == '__main__':
url = "http://php.net/manual/en/indexes.functions.php"
res = requests.get(url)
html = res.text
soup = BeautifulSoup(html)
li_s = soup.find_all("li")
lines = soup.find_all("a", {"class": "index"})
with open('functions.txt', 'w') as f:
for line in lines:
f.write(line.text + "\n")
|
[
"nguyenhuutung@punmac.local"
] |
nguyenhuutung@punmac.local
|
d2b457d289866a682eca245ac46d0b8f83ab0bc6
|
8ef2194ca22b59e86db1d00c67bcb4aabda102b4
|
/stackfinder/cli.py
|
ebfd8327ca8a122d1b944f409d6e5e51eeb1fe90
|
[
"Apache-2.0"
] |
permissive
|
planetlabs/planet_stack_finder
|
79438b93ffe4a8e4b68d156240bf4fb4df4b25e7
|
62cf704b2c178a5f08b14164fbf5cf84550a0a46
|
refs/heads/master
| 2021-01-21T06:05:29.545844
| 2016-03-17T00:09:00
| 2016-03-17T00:09:00
| 38,714,586
| 7
| 2
| null | 2016-03-16T23:46:26
| 2015-07-07T21:00:16
|
Python
|
UTF-8
|
Python
| false
| false
| 1,392
|
py
|
"""cli interface for stack finding
"""
import click
from stackfinder import findstacks
import json
@click.command("find-stacks")
@click.argument('metadata', default='-', required=False, nargs=1)
@click.option('--index', default=0, help='zero indexed stack number ordered by decreasing number of objects in cluster')
@click.pass_context
def find_stacks(ctx, metadata, index):
"""
Input is a list of geojson dictionaries.
Each dictionary in the list must have keys ['geometry']['coordinates'] or
['coordinates']
e.g. find the deepest stack in a set of planet labs images
cat path/to/file.geojson | planet search | find-stacks
"""
if metadata == '-':
src = click.open_file('-')
if not src.isatty():
data = src.read()
else:
click.echo(ctx.get_usage())
ctx.exit(1)
else:
with open(metadata, 'r') as src:
data = src.read()
geojson = json.loads(data)
scenes_md = []
for i in geojson['features']:
scenes_md.append(i)
stacks, stack_centers = findstacks(scenes_md, min_depth=2, max_sep_km=2)
if len(stacks) < index+1:
click.echo("No Stack of that index")
exit()
# create a feature collection from the stacks
FC = {
"type": "FeatureCollection",
"features": stacks[index]
}
click.echo(json.dumps(FC))
|
[
"joshtennefoss@gmail.com"
] |
joshtennefoss@gmail.com
|
55c189bd6dec4acfe1ef58b0fe10bb3a2fa0f677
|
d490c6408851678b4346ca6ec8dc08d3547b88d3
|
/Jessie Smith/assignments/ninjagold/server.py
|
b0943f2c5410a7436e5a92e33d57f4c91079a31d
|
[
"MIT"
] |
permissive
|
authman/Python201609
|
e0852163f35d5f6e7e14a8464c4fa92e3d36e9de
|
6f40c82da395de44de2faca1272b6fe72b99721a
|
refs/heads/master
| 2020-09-19T13:26:08.162643
| 2016-10-06T14:24:27
| 2016-10-06T14:24:27
| 67,229,446
| 0
| 12
| null | 2016-10-06T14:24:28
| 2016-09-02T14:29:17
|
Python
|
UTF-8
|
Python
| false
| false
| 1,459
|
py
|
from flask import Flask, render_template, request, redirect, session
app = Flask(__name__)
import random
app.secret_key="ThisIsSecret"
@app.route('/')
def ninjamoney():
if not session.has_key('count'):
session['count'] = 0
if not session.has_key('message'):
session['message'] = []
if not session.has_key('num'):
session['num'] = 0
return render_template("index.html", num=session['num'], count=session['count'], message=reversed(session['message']))
@app.route('/process_money', methods=['POST'])
def process_money():
if (request.form['building'] == 'farm'):
session['num'] = random.randrange(10, 21)
session['count'] += session['num']
session['message'].append("You earned " + str(session['num']) + " golds from the farm!")
elif (request.form['building'] == 'cave'):
session['num'] = random.randrange(5, 11)
session['count'] += session['num']
session['message'].append("You earned " + str(session['num']) + " golds from the cave!")
elif (request.form['building'] == 'house'):
session['num'] = random.randrange(2, 6)
session['count'] += session['num']
session['message'].append("You earned " + str(session['num']) + " golds from the house!")
elif (request.form['building'] == 'casino'):
session['num'] = random.randrange(-51, 51)
session['count'] += session['num']
session['message'].append("You earned " + str(session['num']) + " golds from the casino!")
return redirect('/')
app.run(debug=True)
|
[
"jessie.smith7543@gmail.com"
] |
jessie.smith7543@gmail.com
|
87872b8b2da163f6bf90bd3e8f26052b225ac28f
|
379e61bb7708a9f54c50fb7590b28de43e002b76
|
/variables/greetings_cp3.py
|
2f11d89db42c5c2b3b810181209db03d46a69988
|
[] |
no_license
|
JAL-code/python_work
|
b377fe0328b02b7f36d95570a3d6ed2166d0428b
|
213f10c981ce94e73e56c76230f624b05e06fddd
|
refs/heads/main
| 2023-04-21T11:25:28.574958
| 2021-05-13T15:29:27
| 2021-05-13T15:29:27
| 348,765,295
| 0
| 0
| null | 2021-03-17T17:21:56
| 2021-03-17T15:46:50
|
Python
|
UTF-8
|
Python
| false
| false
| 318
|
py
|
#Python Crash Course, Eric Matthes, Chapter 3,
#Custom names
my_friends = ['Bob', 'Billy', 'Silly', 'Dot', 'Betty', 'Bailey']
print(f"Hello {my_friends[0]}")
print(f"Hello {my_friends[1]}")
print(f"Hello {my_friends[2]}")
print(f"Hello {my_friends[3]}")
print(f"Hello {my_friends[4]}")
print(f"Hello {my_friends[5]}")
|
[
"jleffek@live.com"
] |
jleffek@live.com
|
8dff07ab392aba5786ff030694a2bd24cbb14a79
|
8118f2538d3cbaf254cf21626be6ad73bff43d74
|
/fastapi-example-type-api/db.py
|
6f5be30b1d46692e4d9ca3a50b0e320a3931a0bc
|
[] |
no_license
|
mrchoke/ui-api-datatype-exmaple
|
4522d52bac33dc875c1e03a492b51a3e6a8a9edf
|
b48a1a65f615a94014616d02cd3c9ddaef509f25
|
refs/heads/main
| 2023-01-23T00:01:13.630523
| 2020-11-23T01:38:21
| 2020-11-23T01:38:21
| 315,074,516
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 576
|
py
|
import databases
import sqlalchemy
#DATABASE_URL = "mysql://user:passwd@sever/db?charset=utf8mb4"
DATABASE_URL = "sqlite:///./todos.db"
database = databases.Database(DATABASE_URL)
metadata = sqlalchemy.MetaData()
notes = sqlalchemy.Table(
"notes",
metadata,
sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True),
sqlalchemy.Column("text", sqlalchemy.String(255)),
sqlalchemy.Column("completed", sqlalchemy.Boolean),
)
engine = sqlalchemy.create_engine(
DATABASE_URL,connect_args={"check_same_thread": False}
)
metadata.create_all(engine)
|
[
"mrchoke@gmail.com"
] |
mrchoke@gmail.com
|
39bc28da239af8f974569246cabb713160001af2
|
7e67fcbc6f674ad59c5f94c7284120df092033c6
|
/privex/cspgen/builder.py
|
dcebd8f187ebc7c4bc11b42ae81b5528da903166
|
[
"MIT",
"X11"
] |
permissive
|
Privex/cspgen
|
4460d6423b8c6ba087a9f62ad7d584454b7d89f5
|
3502bc9f2300b9133afeabdaf26fce86dd8cd043
|
refs/heads/master
| 2023-02-13T13:36:23.949517
| 2021-01-13T05:16:50
| 2021-01-13T05:16:50
| 329,161,116
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 14,103
|
py
|
#!/usr/bin/env python3
"""
+===================================================+
| © 2021 Privex Inc. |
| https://www.privex.io |
+===================================================+
| |
| CSPGen - Python Content Sec Policy Generator |
| License: X11/MIT |
| |
| Core Developer(s): |
| |
| (+) Chris (@someguy123) [Privex] |
| |
+===================================================+
CSPGen - A Python tool for generating Content Security Policies without constantly repeating yourself.
Copyright (c) 2021 Privex Inc. ( https://www.privex.io )
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authorization.
"""
import configparser
import sys
import textwrap
from colorama import Fore
from os import getenv as env
from privex.helpers import empty, empty_if, is_true, is_false, env_bool, T, K, ErrHelpParser
from privex.cspgen import version
from privex.cspgen.helpers import automark_str, clean_dict, dedup, literal, read_stdin
oprint = print
from rich import print
from pathlib import Path
import logging
import argparse
from privex.loghelper import LogHelper
from typing import Union, Optional, List, Tuple, Dict, Set
__all__ = [
'CSPBuilder', 'get_builder', 'main', 'parser', 'log_level', 'PKG_DIR', 'EXAMPLE_DIR', 'EXAMPLE_INI'
]
PKG_DIR = Path(__file__).parent.resolve()
EXAMPLE_DIR = PKG_DIR / 'examples'
EXAMPLE_INI = EXAMPLE_DIR / 'example.ini'
log_level = env('LOG_LEVEL', 'WARNING')
_lh = LogHelper('privex.cspgen', handler_level=logging.getLevelName(log_level))
_lh.add_console_handler(stream=sys.stderr)
log = _lh.get_logger()
argc, argv = len(sys.argv), sys.argv
class CSPBuilder:
def __init__(self, filename: str = None, file_handle = None, contents: Union[str, list, tuple] = None, **kwargs):
self.config = configparser.ConfigParser()
self.conf_file = None
if not empty(filename):
self.conf_file = Path(filename).resolve()
self.config.read(self.conf_file)
elif file_handle is not None:
self.config.read_file(file_handle)
elif not empty(contents, itr=True):
if isinstance(contents, (tuple, list)):
contents = "\n".join(contents)
self.config.read_string(contents)
else:
raise ValueError(
"CSPBuilder expects either a filename, file handle (open()), or config string "
"contents to be passed. All 3 are None / empty. Nothing to parse."
)
self.groups = {}
self.config_dict = {}
self.flags = ''
self.excluded = kwargs.get('excluded', ['flags', 'groups', 'DEFAULT'])
self.cleaned = False
# self.section_split = kwargs.get('section_split', ': ')
self.section_split = kwargs.get('section_split', ' ')
@property
def sections(self) -> list:
return self.config.sections()
@property
def clean_sections(self) -> list:
return [s for s in self.sections if s not in self.excluded]
def clean(self):
# First we extract 'groups' from the config, replace it's {{markers}}, and then deduplicate all group values
if 'groups' in self.sections:
self.groups = clean_dict(self.config['groups'])
groups = self.groups
# Next we iterate over the Config object and extract all sections into a standard dict
config_dict = self.config_dict
for k, v in self.config.items():
v: configparser.SectionProxy
sec_items = dict(v.items())
config_dict[k] = sec_items
# Remove auto-added 'DEFAULT' (not used), and 'groups' (already parsed and extracted into self.groups)
if 'DEFAULT' in config_dict: del config_dict['DEFAULT']
if 'groups' in config_dict: del config_dict['groups']
# Extract 'flags' if present in the config, replace {{markers}}, and deduplicate it's contents.
cflags = '' if 'flags' not in config_dict else config_dict['flags']['flags']
cflags = dedup(automark_str(cflags, groups))
# Then we can simply remove 'flags' from the config dict
if 'flags' in config_dict: del config_dict['flags']
# Finally we make sure all local variables are saved back to their appropriate instance attributes
self.config_dict = {k: clean_dict(v, groups) for k, v in config_dict.items()}
self.flags = cflags
self.groups = groups
self.cleaned = True
return self
def autoclean(self):
if self.cleaned:
return True
return self.clean()
def str_section(self, name: str):
self.autoclean()
sec = self.config_dict.get(name, None)
if not sec: return None
s = f"{name}{self.section_split}{sec.get('zones', '')}"
if is_true(sec.get('unsafe-eval', False)): s += " 'unsafe-eval'"
if is_true(sec.get('unsafe-inline', False)): s += " 'unsafe-inline'"
s += ';'
return s
def generate(self, output='list', sep=' ', **kwargs):
secs = [self.str_section(s) for s in self.clean_sections]
secd = dict(zip(self.clean_sections, secs))
secd['flags'] = [s + ';' for s in self.flags.split()]
secs += secd['flags']
output = output.lower()
if output == 'list': return secs
if output == 'tuple': return tuple(secs)
if output in ['dict', 'dictionary', 'kv', 'keyval', 'map', 'mapping']: return secd
if output in ['str', 'string']:
sj = sep.join(secs)
if not sj.endswith(';'): sj += ';'
return sj
raise ValueError(f"Supported: (str, string, list, tuple). Unsupported output type: {output}")
def __str__(self):
return self.generate(output='str')
def __iter__(self):
yield from self.generate(output='list')
def __len__(self):
return len(self.generate(output='list'))
def __getitem__(self, item:str):
self.autoclean()
if item in self.sections:
return self.config_dict[item]
gend = self.generate(output='dict')
if item in gend:
return gend[item]
if item in self.groups:
return self.groups[item]
raise KeyError(f"Item {item!r} not found in config sections, generated sections, or group keys...")
def get_builder(name: str = None, file_handle = None, contents: Union[str, list, tuple] = None, **kwargs) -> CSPBuilder:
if empty(name) and file_handle is None and empty(contents, itr=True): name = argv[1]
return CSPBuilder(name, file_handle, contents, **kwargs)
COPYRIGHT = f"""
{Fore.GREEN}Content Security Policy (CSP) Generator{Fore.RESET}
{Fore.CYAN}Version: v{version.VERSION}
Github: https://github.com/Privex/cspgen
License: X11 / MIT
(C) 2021 Privex Inc. ( https://www.privex.io ){Fore.RESET}
"""
parser = ErrHelpParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=textwrap.dedent(f"""
{COPYRIGHT}
{Fore.YELLOW}Generates CSP's based off of one or more INI files, with each CSP "type" (default-src, style-src, etc.)
as an INI header, a 'zones' key in each type, containing the various domains you want to allow,
'unsafe-eval = true' / 'unsafe-inline = false' for more clear enabling/disabling unsafe-eval and unsafe-inline
per "type", and two special headers:{Fore.RESET}
{Fore.BLUE}
'groups' - Groups of variables that can be used in each type's 'zones = ' key, AND can also include
other group names (as long as the included vars are defined higher up, and doesn't include
the var including it).
'flags' - Contains "flags", which are CSP strings that standalone, such as 'upgrade-insecure-requests',
instead of being a key with zones as a value.
{Fore.RESET}
{Fore.GREEN}Example INI file:{Fore.RESET}""" + """
[groups]
# First we define cdn, onions, and i2p
cdn = https://cdn.privex.io cdn.privex.i2p files.privex.i2p files.privex.io https://www.privex.io
onions = privex3guvvasyer6pxz2fqcgy56auvw5egkir6ykwpptferdcb5toad.onion privexqvhkwdsdnjofrsm7reaixclmzpbpveefiu4uctfm2l4mycnwad.onion
i2p = privex.i2p www.privex.i2p pay.privex.i2p
# Now we can add our main websites, PLUS the onions, and i2p variables
websites = https://www.privex.io https://pay.privex.io https://privex.io {{onions}} {{i2p}}
# While defaultsrc will contain 'self' + websites + cdn
defaultsrc = 'self' {{websites}} {{cdn}}
images = https://i.imgur.com https://ipfs.io https://cloudflare-ipfs.com
video = https://youtube.com https://vimeo.com
media = {{video}} {{images}}
[default-src]
# For default-src, we can simply set zones to use the defaultsrc var
zones = {{defaultsrc}}
# Enable unsafe-inline and disable unsafe-eval for default-src
unsafe-inline = true
unsafe-eval = false
[img-src]
zones = {{defaultsrc}} {{images}} {{trustpilot}}
[media-src]
zones = {{defaultsrc}} {{media}}
[flags]
# Special header 'flags'. We can set the independent CSP flag 'upgrade-insecure-requests' here.
flags = upgrade-insecure-requests
""" + f"""
{Fore.GREEN}End of config{Fore.RESET}
"""),
)
def read_example_file() -> Tuple[str, Path]:
with open(EXAMPLE_INI, 'r') as fh:
data = fh.read()
return data, EXAMPLE_INI
parser.add_argument('--section-sep', type=str, default=' ', dest='section_sep',
help="Separator between each CSP section (default-src, media-src, img-src etc.) - Textual \\n, \\r, and \\t will "
"be auto-converted into the literal characters for newline/carriage return/tab")
parser.add_argument('--file-sep', type=str, default='\n\n', dest='file_sep', help="Separator used between each file's config output")
parser.add_argument('--version', '-V', action='store_true', default=False, dest='show_version', help="Show version + copyright info")
parser.add_argument('--verbose', '-v', action='store_true', default=False, dest='verbose_mode', help="Verbose Mode - Show DEBUG logs")
parser.add_argument('--example', '-E', action='store_true', default=False, dest='show_example',
help="Output the template example.ini to STDOUT for use as a CSP INI config template")
parser.add_argument('filenames', nargs='*', default=[], help="One or more INI files to parse into CSP configs")
def main():
global log
try:
vargs = parser.parse_args()
except Exception as e:
parser.error(f"{type(e)} - {str(e)}")
return sys.exit(1)
if vargs.verbose_mode:
_lh2 = LogHelper('privex.cspgen', handler_level=logging.DEBUG)
_lh2.add_console_handler(stream=sys.stderr)
log = _lh2.get_logger()
log.debug(f"parser args: {vargs!r}")
if vargs.show_version:
oprint(COPYRIGHT)
return COPYRIGHT
if vargs.show_example:
exfile, expath = read_example_file()
exnote = "#####", "#", "# Privex CSPGen example.ini file", f"# Original Location within Python Package: {expath}", "#", "#####\n"
oprint(*exnote, exfile, *exnote, sep="\n")
return sys.exit(0)
filenames = vargs.filenames
file_sep, sec_sep = literal(vargs.file_sep), literal(vargs.section_sep)
str_secs = []
list_secs = []
if empty(filenames, itr=True):
if sys.stdin.isatty():
parser.error("No filenames specified, and no data piped to stdin")
return sys.exit(1)
log.debug("Assuming config piped via STDIN. Reading config from stdin.")
confd = read_stdin()
builder = get_builder(contents=confd)
str_secs += [builder.generate('string', sep=sec_sep)]
list_secs += [builder.generate('list')]
else:
for fn in filenames:
if fn in ['-', '/dev/stdin', 'STDIN']:
log.debug("Assuming config piped via STDIN. Reading config from stdin.")
builder = get_builder(contents=read_stdin())
else:
builder = get_builder(fn)
str_secs += [builder.generate('string', sep=sec_sep)]
list_secs += [builder.generate('list')]
# oprint('file_sep: ', repr(file_sep))
# oprint('sec_sep: ', repr(sec_sep))
oprint(file_sep.join(str_secs))
return list_secs, str_secs
if __name__ == '__main__':
main()
|
[
"info@someguy123.com"
] |
info@someguy123.com
|
89f0820e9acb321370a83a7a3fe8fd4ce48618d2
|
cf7e903ee2b0af7cd13e6f81efd7816679bd2b7c
|
/duplicates.py
|
12ccef17d2a33fb4d501b59df688bcd692a255d4
|
[] |
no_license
|
uggi121/leetcode
|
cd2ae44e9e848ff779b167e1526ece832b244c29
|
577382d86e6482324e312fac423e4be3098099ef
|
refs/heads/master
| 2020-07-10T16:08:39.466474
| 2019-10-29T06:56:17
| 2019-10-29T06:56:17
| 204,307,451
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 489
|
py
|
class Solution(object):
def removeDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) <= 1:
return len(nums)
value = None
insert = 0
for i in range(len(nums)):
if nums[i] != value:
value = nums[i]
nums[insert] = value
insert += 1
return insert
|
[
"sudharshanmadhavan@outlook.com"
] |
sudharshanmadhavan@outlook.com
|
8c95e060bc23fd925224c79fd04682aad6794b04
|
5fcfaabd985b010074b3b078b3d80075d7487767
|
/nbeam/handlers.py
|
039394aecc5cebf850f1b6197f8054bb59ca6f7d
|
[] |
no_license
|
AnyBucket/Neutron-Beam
|
4071df02857f42fe2dd61abc70acc3802db7f639
|
3efb46511faa53615517a9314b198c5236012f67
|
refs/heads/master
| 2020-12-24T22:28:51.337431
| 2013-10-05T19:23:51
| 2013-10-05T19:23:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,183
|
py
|
import os
import re
import base64
import json
from tornado.web import RequestHandler, StaticFileHandler, HTTPError
from tornado.escape import json_encode, json_decode
from .SimpleAES import SimpleAES
from .views import list_dir, open_file, save_file, rename_file, delete, new_file, new_dir, upload_file, new_url, token, token_valid, create_realtime, stop_realtime
from .views_search import start_search, start_replace, job_status, cancel_job
from .version import VERSION_STRING
class StaticHandler (StaticFileHandler):
def get (self, path, include_body=True):
reobj = re.search('/(\S+)/public/(.*)', self.request.path)
token = reobj.group(1)
if token_valid(token):
return super(StaticHandler, self).get(path, include_body)
raise HTTPError(404)
class MainHandler (RequestHandler):
def __init__ (self, *args, **kwargs):
self.config = args[0].config
self.aes = SimpleAES(args[0].config['key'])
self.ALLOWED_TASKS = {
'list': list_dir,
'open': open_file,
'save': save_file,
'rename': rename_file,
'delete': delete,
'newfile': new_file,
'newdir': new_dir,
'upload': upload_file,
'newurl': new_url,
'search': start_search,
'replace': start_replace,
'jobstatus': job_status,
'canceljob': cancel_job,
'token': token,
'createRealtime': create_realtime,
'stopRealtime': stop_realtime,
}
super(MainHandler, self).__init__(*args, **kwargs)
def valid_request (self, rdata):
if rdata['task'] in self.ALLOWED_TASKS:
if rdata['email'].lower() == self.config['email'].lower():
path = None
if 'file' in rdata:
path = rdata['file']
elif 'dir' in rdata:
path = rdata['dir']
if path:
path = os.path.normpath(self.config['dir'] + path)
if path.startswith(self.config['dir']):
return True
return True
return False
def options (self):
self.set_header('Access-Control-Allow-Origin', '*')
self.set_header('Access-Control-Allow-Headers', 'X-CSRFToken')
self.set_header('Access-Control-Allow-Methods', 'POST, OPTIONS')
def post (self):
data = {'status': 'Invalid Request'}
self.set_header('Content-Type', 'application/json')
self.set_header('Access-Control-Allow-Origin', '*')
rdata = self.get_argument("request", '')
try:
test = base64.decodestring(rdata)
rdata = self.aes.decrypt(rdata)
rdata = json_decode(rdata)
except:
pass
else:
if self.valid_request(rdata):
rdata['REMOTE_IP'] = self.request.remote_ip
response_data = self.ALLOWED_TASKS[rdata['task']](self.config, rdata)
data = {
'response': response_data,
'email': self.config['email'],
}
j = json_encode(data)
data = {
'encrypted': self.aes.encrypt(j),
'beam': rdata['beam'],
'status': 'ok',
'version': VERSION_STRING,
}
j = json_encode(data)
self.write(j)
self.finish()
|
[
"paul.m.bailey@gmail.com"
] |
paul.m.bailey@gmail.com
|
9e9ab762dffaf01f8fe4c9d08fd6301507cdd632
|
b09d305fd5771a583a205e12328979d79f56254c
|
/expressnews/expressnews/urls.py
|
adf0b561c989fd89f8ea99be57a52a07ab708afb
|
[] |
no_license
|
DhruvikDonga/expressnews
|
02d25e1516b8f3be18d0b3bbbcc94f34c655694a
|
7670c763e7aeb04f776c74e99135cef8a6e9fef1
|
refs/heads/main
| 2023-04-15T21:01:15.983765
| 2021-04-29T05:10:01
| 2021-04-29T05:10:01
| 362,640,314
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,114
|
py
|
from django.contrib import admin
from django.urls import path
from newsAPI.views import ListNewsView,getfavourite,getfavouritenews
from rest_framework_simplejwt.views import (
TokenObtainPairView,
TokenRefreshView)
from restauth.views import ModsView, register,current_user
urlpatterns = [
path('admin/', admin.site.urls),
path('api/news/', ListNewsView.as_view()),
# path('api/newsave/', ListSaveNewsView.as_view()),
path('api/token/', TokenObtainPairView.as_view(), name='token_obtain_pair'),
# Submit your refresh token to this path to obtain a new access token
path('api/token/refresh/', TokenRefreshView.as_view(), name='token_refresh'),
# Return 'Mods' model objects
path('mods/', ModsView.as_view(), name='mods_view'),
# Register a new user
path('register/', register, name='register_view'),
# user details
path('userdetails/',current_user,name='userdetails'),
# post saved news by user
path('favourite/', getfavourite, name='favourite_post'),
# get saved news by user
path('getfavourite/', getfavouritenews, name='favourite_news'),
]
|
[
"dongadhruvik@gmail.com"
] |
dongadhruvik@gmail.com
|
3de15438cec6eb4fbe69b20384a50ef8466bc557
|
8c202ab339e4fe4458b7985f789699ee19d07fc0
|
/test2.py
|
3681ff9d63e6062e9e66e8cb3168c75146f03de5
|
[] |
no_license
|
Martijnvandebrug/autosuggest
|
0a57a3c80afec1c9b7d7a018c47caa5dab4bbcb1
|
5688112f00c06d4d14c2ab4a27a8bfe49df1e40e
|
refs/heads/master
| 2021-01-20T00:00:55.066132
| 2017-04-22T12:13:43
| 2017-04-22T12:13:43
| 89,066,116
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 157
|
py
|
import operator
dict = dict()
dict['test']=1
dict['test999']=2
dict['test3']=3
dict['test64']=11
print sorted(dict.items(), key=operator.itemgetter(1))
|
[
"martijn.vandebrug@incentro.com"
] |
martijn.vandebrug@incentro.com
|
92e641e29896fe9b94118631c0108a543f516c6c
|
bd923535ce082dd874591e7db42851d822207b96
|
/project/scr.py
|
a26a76ab9d9c57ff3354edc9ae2173b0c7baf847
|
[] |
no_license
|
amtvj/MINI_PROJECT
|
b8314825ed09ccc11a3a3b29fd4275eb739f17b1
|
831a7e1096853fb1af490c0d2f327e644bab11ef
|
refs/heads/master
| 2020-07-16T01:00:37.382157
| 2016-11-16T20:25:15
| 2016-11-16T20:25:15
| 73,954,765
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 575
|
py
|
import scenedetect
scene_list = [] # Scenes will be added to this list in detect_scenes().
for i in range(10):
scene_list = []
path = 'ACCEDE0000'+str(i)+'.mp4' # Path to video file.
# Usually use one detector, but multiple can be used.
detector_list = [
scenedetect.detectors.ThresholdDetector(threshold = 8, min_percent = 0.5)
]
video_framerate, frames_read = scenedetect.detect_scenes_file(
path, scene_list, detector_list)
# scene_list now contains the frame numbers of scene boundaries.
print(len(scene_list))#.size()
print(scene_list)
|
[
"iit2014110@iiita.ac.in"
] |
iit2014110@iiita.ac.in
|
dedf270ecd85808beb261e2b5286d4273b2404bd
|
cb44e78c06f0428f02f1648c59463616247eac49
|
/simulation/microsaccade/simulate_ms.py
|
cf97936d47e09cd4d562f2c8fa8035032dd88482
|
[
"MIT"
] |
permissive
|
helloTC/LearnPython
|
da5106da926735a6c0ff5d9e9f3a8beef0eabe4b
|
bd5fc977c800f3dc2d239b8cb7ad7e6e1b42fce8
|
refs/heads/master
| 2021-01-12T06:08:48.115607
| 2018-09-23T08:45:23
| 2018-09-23T08:45:23
| 77,313,517
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,287
|
py
|
import models
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
cancel_command = 150
perm_t_list = []
perm_m_list = []
for n_perm in range(1000):
t_list = []
m_list = []
is_success_canceled = False
is_success_canceled_list = []
t0 = 0
for i in range(1):
t, m, is_success_canceled= models.microsaccades(cancel_command, last_success_canceled = is_success_canceled, t_step = 1)
t = [j + t0 for j in t]
t0 = np.max(t)
t_list += t
m_list += m
is_success_canceled_list.append(is_success_canceled)
print('permutation times: {}'.format(n_perm))
t_list = np.array(t_list)
m_list = np.array(m_list)
pt_t_list = t_list[m_list>1000]
pt_m_list = m_list[m_list>1000]
perm_t_list.append([int(m) for m in pt_t_list])
perm_m_list.append(pt_m_list)
plt.figure()
plt.plot(t_list, m_list)
plt.plot(pt_t_list.tolist(), pt_m_list.tolist(), marker = 'o', color='r', ls='')
plt.show()
flat_perm_t_list = [item for sublist in perm_t_list for item in sublist]
flat_perm_m_list = [item for sublist in perm_m_list for item in sublist]
plt.figure()
bin_perm_t_list = np.bincount(flat_perm_t_list)
p_perm_t_list = 1.0*bin_perm_t_list/bin_perm_t_list.sum()
plt.plot(p_perm_t_list)
plt.show()
|
[
"taicheng_huang@sina.cn"
] |
taicheng_huang@sina.cn
|
76f2c9df9de6d2d8b1e534e92216377e35669502
|
0b876f54170b0bde2c0abd43bbd81389fa2f6322
|
/TO_GPU/schedulers.py
|
e358e8124b0e7eaef96cf4f16e143410a11f4548
|
[
"MIT"
] |
permissive
|
AJSVB/GPBT
|
2227aecf958a94d07473e76d8254a36e807082b9
|
746c11d06ecc4c3b62fc0a3290d672d336cbb11e
|
refs/heads/main
| 2023-08-25T16:54:04.965149
| 2021-09-30T18:02:32
| 2021-09-30T18:02:32
| 369,235,287
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 19,463
|
py
|
import copy
import math
import random
import os
import numpy as np
import time
import datetime
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import time
# Trials is an object that contains all the informations about the different trials
from hyperopt import hp, fmin, tpe, Trials
from functools import *
# importing this
from sklearn import datasets
import pandas as pd
from sklearn.model_selection import train_test_split
# the x variable is the variable whit the model configurations
def translation(liste):
config = {}
config["lr"] = liste[0]
config["droupout_prob"] = liste[1]
config["weight_decay"] = liste[2]
config["b1"] = liste[3]
config["b2"] = liste[4]
config["eps"] = liste[5]
return config
def test_function(x, models, h, losses, losses_temp, parent_model, k_f, iteration, fsvnlogger, printer,old_time):
"""General function that trains the given model with the given hyperparameters and computes the
result for the train and validation set. This function is called by the Scheduler from
initialisation() and loop().
Args:
x ([type]): new hyperparameter values
models ([type]): model
h ([type]): list of model parameters
losses ([type]): array with all the losses
parent_model ([type]): [description]
k_f ([type]): [description]
iteration ([type]): [description]
fsvnlogger ([type]): [description]
printer ([type]): [description]
"""
# x= translation(x)
if isinstance(k_f, list):
k = k_f[0]
is_list = True
else:
k = k_f
is_list = False
# checks if it's the first time and if so it initialises the model
if iteration == 0:
models[k] = parent_model[k](x)
else:
models[k] = parent_model.adapt(x)
# here it increases the pointer to each one of the models
if is_list:
k_f[0] += 1
# this changes the actual array in the Scheduler
h[k] = x
#models[k].train1()
for i in range(39):
train_acc, train_los,acc_val,loss_val = models[k].step()
if printer:
temp = dict(x)
temp.update({'train_acc': train_acc})
temp.update({'train_los': train_los})
temp.update({'acc_val': acc_val})
temp.update({'loss_val': loss_val})
temp.update({'time':time.time()-old_time})
fsvnlogger.writerow(temp)
print(k)
losses_temp[k] = loss_val
print(np.sort(losses_temp[:k+1]))
if iteration !=0 and (k==0 or (k==1 and loss_val<losses_temp[0]) or (k!=1 and loss_val<np.sort(losses_temp[:k])[math.floor(k/2)])):
train_acc1, train_los1,acc_val1,loss_val1 = models[k].step()
train_acc2, train_los2,acc_val2,loss_val2 = models[k].step()
train_acc3, train_los3,acc_val3,loss_val3 = models[k].step()
train_acc4, train_los4,acc_val4,loss_val4 = models[k].step()
train_acc, train_los,acc_val,loss_val = ((train_acc+train_acc1+train_acc2+train_acc3+train_acc4)/5, (train_los+train_los1+train_los2+train_los3+train_los4)/5,
(acc_val+acc_val1+acc_val2+acc_val3+acc_val4)/5,(loss_val+loss_val1+loss_val2+loss_val3+loss_val4)/5)
if iteration ==0 or (k==0 or (k==1 and loss_val<losses_temp[0]) or (k!=1 and loss_val<np.sort(losses_temp[:k])[math.floor(k/2)])):
acc_test,loss_test = models[k].test1()
if printer:
temp = dict(x)
temp.update({'train_acc': train_acc})
temp.update({'train_los': train_los})
temp.update({'acc_val': acc_val})
temp.update({'loss_val': loss_val})
temp.update({'acc_test': acc_test})
temp.update({'loss_test': loss_test})
temp.update({'time':time.time()-old_time})
fsvnlogger.writerow(temp)
else:
if printer:
temp = dict(x)
#acc_test,loss_test = models[k].test1()
temp.update({'train_acc': train_acc})
temp.update({'train_los': train_los})
temp.update({'acc_val': acc_val})
temp.update({'loss_val': loss_val})
#temp.update({'acc_test': acc_test})
#temp.update({'loss_test': loss_test})
temp.update({'time':time.time()-old_time})
fsvnlogger.writerow(temp)
# print("# loss : {}\t test : {}".format(loss, test))
losses[k] = loss_val
# print("# Exiting test_function")
return loss_val
def parent_idxs_choice(sorted_idxs, n_total, **opttional_args):
"""Returns the idexes of the new parents for the next iteration. Used in Scheduler.loop()
Args:
sorted_idxs (list): Indexes of the sorted loss for the previous iteration.
n_total (int): Length of the returned array.
Returns:
list: List containing the sorted indexes of the new parents for the next iteration.
"""
acceptance_probability = opttional_args.get("accept_prob", 0.9)
new_idxs = [{}] * n_total
i = 0
j = 0
while i < n_total and j < len(sorted_idxs) - (n_total - i):
if random.uniform(0, 1) < acceptance_probability:
new_idxs[i] = sorted_idxs[j]
i += 1
j += 1
while i < n_total:
new_idxs[i] = sorted_idxs[j]
i += 1
j += 1
return new_idxs
class Parent():
"""Parent class that handles the passage of Network Configurations from one step to the
following
"""
def __init__(self, point_hyperspace, configuration, model, loss):
# Trials function
self.point_hyperspace = point_hyperspace
# list of the different hyperpoints tried for this model
self.configuration_list = [configuration]
# list of all the previous losses of this function
self.loss_list = [loss]
self.model = model
self.is_replicated = False
def update(self, configuration, loss, model):
self.is_replicated = False
self.configuration_list.append(configuration)
self.loss_list.append(loss)
self.model = model
def replication(self):
self.is_replicated = True
# self.configuration_list.append(self.configuration_list[-1])
# self.loss_list.append(self.loss_list[-1])
# ?? why it its working now ?
# replication_trials(self.point_hyperspace.trials, n_children)
def get_last_conf(self):
return self.configuration_list[-1]
def get_point_hyperspace(self):
return self.point_hyperspace
def get_model(self):
return self.model
def get_loss(self):
return self.loss_list
class Scheduler():
"""Scheduler class that handles all the training process for our proposed algorithm (FSVN)
"""
def __init__(self, model, num_iterations, num_config, oracle, naccache, printer,nott):
self.oracle = oracle # Oracle manages the BO
self.num_iterations = num_iterations # total number of iterations
self.num_config = num_config # number of configurations at each step
self.naccache = naccache # la constante de naccache
self.n_parents = math.floor(math.sqrt(num_config/naccache))
self.time = time.time()
# self.h is for the num_config hyperparameters used at every loop, h is a configuration from the search space
self.h = [{}] * self.num_config
# it is a boolean to indicate if the trial should be stored in the .csv file
self.print = printer
# this will be called again in the initialization() method
# self.points_hyperspace = np.empty(num_config) # self.hyperspaces is for storing the
# sqrt(m) hyperspaces used by the algorithm
self.plot = np.empty(num_iterations) # this will contain the value for the loss at each
# ??? there is no need to save all the points in hyperspace
# self.points_hyperspace = np.empty(num_config)
# self.parents is the sqrt(m) best model from last iteration that are the parents in the current iteration
self.parents = [{}]*self.n_parents
# all the models
self.models = [model]*self.num_config
# self.losses remembers the performances of all m models during the current iteration
# sqrt(m) best from self.models
self.losses = np.empty(num_config)
self.losses_temp = np.empty(num_config)
if not os.path.isdir('./log_data'):
os.makedirs('./log_data')
import csv
temp = [k for k,v in oracle.searchspace.items()]
temp.append('aiteration')
temp.append('acc_val')
temp.append('loss_val')
temp.append('acc_test')
temp.append('loss_test')
temp.append('train_acc')
temp.append('train_los')
temp.append('time')
self.file = open(os.path.join('./log_data', 'log_seed_{0}_{1}.csv'.format(1234, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))), 'a')
self.logger = csv.DictWriter(self.file, delimiter=",", fieldnames=np.sort(np.array(temp)), extrasaction='ignore')
self.logger.writeheader()
self.file.flush()
self.nott = nott
# ??? didn't understand the use of k
# c'est pour avoir un pointeur sur k, c'est pas plus que O(sqrt)-paralélisable pour le moment du coup.
self.k = [0]
def initialisation(self):
"""It will initialise the search process creating all the relevat structures
and it will also compute the first iteration of the algorithm.
"""
# print("> Entering Scheduler.initialisation()")
# Database that will save all the evaluated points used by hyperopts
point_extended_hyperspace = Trials()# [None,None]
# defines the test function, partial sets all the different parameters
fmin_objective = partial(
test_function,
models=self.models,
h=self.h,
losses=self.losses,
losses_temp=self.losses_temp,
parent_model=self.models,
# train=self.train_loader,
# val=self.val_loader,
# test=self.test_loader,
k_f=self.k,
iteration=0,
fsvnlogger=self.logger,
printer=self.print,old_time = self.time
)
self.oracle.compute_batch(point_extended_hyperspace, self.num_config, 0, fmin_objective)
# where are the losses computed? in the `test_function`
indexes = np.argsort(self.losses)
# self.out[0] = self.losses[indexes[0:self.n_parents]]
# ??? NOT USED ANYMORE. WHY ?
# self.points_hyperspace = [point_extended_hyperspace] * self.n_parents
# we have in models all the models being trained, while we have that the models that
# can generate all the other models are in self.parents
# all the parents models have right now the informations about all the losses
self.parents = [
Parent(
#copy.deepcopy(point_extended_hyperspace), # Trials function
Trials(),
self.h[indexes[i]], # the hyperpoint is chosent during fmin
self.models[indexes[i]], # saves the model
self.losses[indexes[i]] # saves the loss
)
for i in range(self.n_parents)
]
# for the plot it only saves the best loss, which is the one we are going to take in the end
self.plot[0] = self.losses[indexes[0]]
def close(self):
for i in self.parents[0].configuration_list:
self.logger.writerow(i)
self.file.flush()
def loop(self):
"""Function to do the training for a number of times defined by the variable self.num_iterations.
"""
# print("^ Entering Scheduler.loop()")
for current_iter in range(1, self.num_iterations):
# it reinitialises the value of k that will be modified in the `test_function`
self.k[0] = 0
threshold = 1.7976931348623157e+308
if current_iter>1+self.nott:
threshold = -self.plot[-1] + self.plot[-2]
stop = False
self.losses = np.ones(self.num_config)*1.7976931348623157e+307
for idx_parent, parent in enumerate(self.parents):
if not(stop) and np.min(self.losses[-self.num_config:]) < - threshold + self.plot[-1] :
# print(np.min(self.losses[-self.num_config:]))
# print( self.plot[-1])
stop = True
if stop:
# print("stopped!")
# print("saved trainings : " + str(self.num_config/self.n_parents))
break
# print("^^ current_iter : {:d} and idx_parent : {:d}".format(current_iter, idx_parent))
point_extended_hyperspace = parent.get_point_hyperspace()
# print("^^ last loss of parent : {:.4f}".format(parent.get_loss()[-1]))
fmin_objective = partial(
test_function,
models=self.models, # ??? why it is calling all the self.models
h=self.h, # ??? why not using the configuration list in parent
losses=self.losses,
losses_temp=self.losses_temp,
parent_model=parent.get_model(),
k_f=self.k,
iteration=current_iter,
# train=self.train_loader,
# val=self.val_loader,
# test=self.test_loader,
fsvnlogger=self.logger,
printer=self.print,old_time=self.time
)
if not parent.is_replicated:
# point_extended_hyperspace = Trials() #TODO Delete
# parent.point_hyperspace = Trials() #TODO Delete
# print("^^ parent has NOT been replicated")
self.oracle.repeat_good(
point_extended_hyperspace, # trials fucntion for the current parent
len(parent.get_loss()), # number of iterations of the parent
fmin_objective,
parent.configuration_list[-1] # it is the last hyperpoint of the parent
)
# define the number of models to train from this parent in this loop iteration
# only the best parent has childrens
if idx_parent == 0:
numb_training = self.num_config - (self.n_parents - 1) * \
math.floor(self.num_config/self.n_parents) - 1
else:
numb_training = math.floor(self.num_config/self.n_parents) - 1
if not(stop) and np.min(self.losses[-self.num_config:]) < - threshold + self.plot[-1] :
stop = True
if stop:
# print("stopped!")
# print("saved trainings : " + str(numb_training))
break
# computes the new batch for each one of the parents for every iteration
# tehy are all going to be sons of this same parent since they have the same Trials func
self.oracle.compute_batch(
point_extended_hyperspace,
numb_training,
len(parent.get_loss()),
fmin_objective
)
else:
# print("^^ parent has been replicated")
if idx_parent == 0:
numb_training = self.num_config - (self.n_parents - 1) * math.floor(self.num_config/self.n_parents)
else:
numb_training = math.floor(self.num_config/self.n_parents)
# replicated parent
self.oracle.compute_batch(
point_extended_hyperspace,
numb_training,
len(parent.get_loss()),
fmin_objective
)
combined_losses = np.concatenate(
(
self.losses,
[self.parents[i].get_loss()[-1] for i in range(self.n_parents)]
),
0
)
combined_losses = self.losses
#sorted_loss = np.sort(combined_losses)
#sigma=sorted_loss[self.n_parents] - sorted_loss[1]
#best children has probability >99.5% to be taken
#all sqrt(n) best children have probability >50% to be taken
#noised_loss = [np.random.normal(i,sigma/5,) for i in combined_losses]
#print(combined_losses)
#print(np.argsort(noised_loss)[:self.n_parents])
#print(np.argsort(combined_losses)[:self.n_parents])
ixs_parents= np.argsort(combined_losses)
#ixs_parents = np.argsort(noised_loss) #Amelioration proposed by Naccache: non deterministic selection of children
parent_idx = ixs_parents[:self.n_parents]
#parent_idx = parent_idxs_choice(ixs_parents, self.n_parents, accept_prob=0.95)
temp_parents = [''] * self.n_parents
for j, x in enumerate(parent_idx):
x = int(x)
if x >= self.num_config:
print("Do we go there? (replications)")
temp_parents[j] = copy.deepcopy(
self.parents[x - self.num_config])
temp_parents[j].replication()
else:
temp_parents[j] = copy.deepcopy(self.parents[math.floor(x/self.num_config * self.n_parents)])
temp_parents[j].update(self.h[x], self.losses[x], self.models[x])
temp_parents[j].point_hyperspace = Trials() #TODO Delete
self.parents = temp_parents
# updating the best loss for the plot
self.plot[current_iter] = combined_losses[parent_idx[0]]
print("iter" + str(current_iter))
print("parent_idx" + str(combined_losses[parent_idx[0]]))
self.file.flush()
# print("^ Exiting Scheduler.loop()")
|
[
"antoine.scardigli@epfl.ch"
] |
antoine.scardigli@epfl.ch
|
812cfcad42f917b8938602ef5ac9ad34fd9f1a26
|
85e7eb9cbae5e195a303f737c069b70b20a97015
|
/人工智慧與機器學習/lab/5-2-loop.py
|
b4234ef7cb61dce8ea250790e00d21d34e20699a
|
[] |
no_license
|
Ruby-Dog/III
|
776473c315c13b166b38115bc84b8cc5440084f6
|
f9dd5578fc2a0c2130a0591babf045f7ce4f5f6c
|
refs/heads/master
| 2022-11-10T16:54:34.190619
| 2020-07-02T16:32:43
| 2020-07-02T16:32:43
| 276,695,108
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 372
|
py
|
#終極密碼
import random
low = 1
high = 100
ans = random.randint(low, high)
while True:
i = int(input("請輸入[" + str(low) + "-" + str(high) + "範圍中的數]: " ))
if i == ans:
print("你猜對了")
break
elif i < ans:
print("你猜小了")
low = i
elif i > ans:
print("你猜大了")
high = i
|
[
"rubydog0501@gmail.com"
] |
rubydog0501@gmail.com
|
8cbcc47c34e3d8102a34f1d71d6dece5e48648d6
|
5d35bcc45ebc56ec33f49ea91a68576f9e933558
|
/stage/settings.py
|
b1ef01f61fd78ae6a1b81a9d7a9fb61849c6247d
|
[] |
no_license
|
Taratra-RD/stageproject
|
1c2eb052709b6432e72ab042017ae3df7fac5b40
|
81634eba59c8f2f9f5862f7c97a6436cb56c21b3
|
refs/heads/main
| 2023-01-01T14:53:16.856683
| 2020-10-27T06:01:00
| 2020-10-27T06:01:00
| 307,600,247
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,105
|
py
|
"""
Django settings for stage project.
Generated by 'django-admin startproject' using Django 3.1.2.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.1/ref/settings/
"""
from pathlib import Path
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'r)ce#&itin@31m7z-6k-(2w#&0qskfp^qtmo005o#-d)5h@5@s'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'appli.apps.AppliConfig',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'stage.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': ["appli/templates"],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'stage.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
# Password validation
# https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.1/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.1/howto/static-files/
STATIC_URL = '/static/'
|
[
"taratra.access4@gmail.com"
] |
taratra.access4@gmail.com
|
e5c3a5017255ad7d4a49726ac7ee6252374c6a5e
|
1a4b31008e6cde2cc31de2aefad2174717299bf4
|
/ABC081A.py
|
204b9f12c1720d11ad07ad5683d12ddccfb6965b
|
[] |
no_license
|
mayosuke/atcoder
|
577b060751a830823f300ab1e58ea888672a5dc6
|
65e747a976cdacc1c2ec669bd33e2f5fdc0faf19
|
refs/heads/main
| 2023-05-05T04:34:18.941331
| 2021-05-31T06:52:54
| 2021-05-31T06:52:54
| 344,834,896
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 730
|
py
|
# https://atcoder.jp/contests/abs/tasks/abc081_a
# ABC081A - Placing Marbles /
# 実行時間制限: 2 sec / メモリ制限: 256 MB
# 配点 : 100 点
# 問題文
# すぬけ君は 1,2,3 の番号がついた
# 3 つのマスからなるマス目を持っています。 各マスには 0 か 1 が書かれており、マス i には si が書かれています。
# すぬけ君は 1 が書かれたマスにビー玉を置きます。 ビー玉が置かれるマスがいくつあるか求めてください。
# 制約
# s1,s2,s3 は 1 あるいは 0
# 入力
# 入力は以下の形式で標準入力から与えられる。
# s1s2s3
# 出力
# 答えを出力せよ。
print(len([s for s in input() if s == '1']))
|
[
"mayo.suke@gmail.com"
] |
mayo.suke@gmail.com
|
72ce4d94ac2d84c72df69cc3963c2d4e59f64193
|
12216794188a9fc317422f04a2fa3c82e952df00
|
/buddy_downloader.py
|
70ef70febfb6ec1d46cdbb8af058d831d8e486c5
|
[
"MIT"
] |
permissive
|
maciej1x/YouTuBuddy
|
a31f2b78ea0a51603ad39264d3a97cd64ca932a3
|
c1d8d5be005886ff4863986f516f6e8c9d1c82de
|
refs/heads/main
| 2023-01-31T21:37:12.534093
| 2020-12-09T10:25:20
| 2020-12-09T10:25:20
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,072
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import os
import moviepy.editor as mp
from pytube import YouTube
class BuddyDownloader:
"""
Download video and/or audio for given YouTube url
Returns
-------
None.
"""
def __init__(self) -> None:
self.logger = logging.getLogger('BuddyDownloader')
def load_url(self, url: str) -> None:
"""
Load YouTube URL
Parameters
----------
url : str
YouTube url.
Returns
-------
None.
"""
self.logger.info(f'Getting video for url: {url}')
self.yt = YouTube(url)
def download_video(self, output_path=None, filename=None) -> str:
"""
Download video from previously loaded url
Parameters
----------
output_path : str, optional
path to output videofile. The default is None.
filename : str, optional
name of videofile. The default is None, which means title of video.
Returns
-------
downloaded_file_path : str
path to videofile.
"""
self.logger.info('Downloading video...')
ys = self.yt.streams.get_highest_resolution()
downloaded_file_path = ys.download(output_path=output_path,
filename=filename)
self.logger.info('Downloading finished')
return downloaded_file_path
def convert_mp4_to_mp3(self, videofile: str) -> None:
"""
Convert given videofile (mp4) to mp3
Parameters
----------
videofile : str
path to videofile.mp4.
Returns
-------
None.
"""
self.logger.info('Converting video')
clip = mp.VideoFileClip(videofile)
self.logger.info('Saving audio')
audiofilename = os.path.basename(videofile).split('.')[0] + '.mp3'
clip.audio.write_audiofile(
os.path.join(os.path.split(videofile)[0], audiofilename)
)
|
[
"ulaszewski.maciej@gmail.com"
] |
ulaszewski.maciej@gmail.com
|
38537c9f9c94431cfa3e7134396ddf062c9de2bb
|
db4f9b417e5b91d8f83fedddc959201c55db037d
|
/AddHeightWeightToPlayerDirectory.py
|
6fd87052275e113a4c5dfbfb99aff6bc41e874b1
|
[] |
no_license
|
sbattula2/dfsNeuralNet
|
7e1e7ec666bf0b3fc915b8049880465869c97a37
|
f2e8fedebcb51609feafdccab766260657b71c59
|
refs/heads/main
| 2023-01-22T09:40:40.455702
| 2020-11-23T18:22:34
| 2020-11-23T18:22:34
| 314,943,077
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 767
|
py
|
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 5 11:30:29 2019
@author: nbatt
"""
import pandas as pd
import numpy as np
import os
df = pd.read_csv('PlayerDirectory.csv')
os.chdir('C:/NBA DFS/Anthropomorphic')
files = os.listdir('C:/NBA DFS/Anthropomorphic')
#df.set_index('Player',inplace=True)
df['Height'] = [1]*df.shape[0]
df['Weight'] = [1]*df.shape[0]
for j in files:
rosters = pd.read_csv(j)
#rosters = rosters.set_index('Player')
for i in rosters['Player']:
df.loc[df['Player']==i,'Height'] = float(rosters.loc[rosters['Player']==i,'Ht'])
df.loc[df['Player']==i,'Weight'] = float(rosters.loc[rosters['Player']==i,'Wt'])
df = df.loc[df['Tm']!='TOT']
os.chdir('C:/NBA DFS')
df.to_csv('PlayerDirectory.csv',index=False)
|
[
"nbattula2@gmail.com"
] |
nbattula2@gmail.com
|
2e5bd2963984d065453e3cd16b49c9d75b40a786
|
422e3f7534b7a9007ec02b82e28034583780b9d5
|
/argtyped/arguments.py
|
b71f69b22642f7e7dff00af50f2a69258c8b7af4
|
[
"MIT"
] |
permissive
|
guhur/argtyped
|
7128cf1ae54f2c69ee05ebb9d5ca267a3ccfa6af
|
39ce53d5d05004ea3a622c0df9a1499f8a2abbf5
|
refs/heads/master
| 2023-01-30T09:54:29.637928
| 2020-06-16T01:21:51
| 2020-06-16T01:27:12
| 319,275,849
| 0
| 0
|
MIT
| 2020-12-07T09:59:01
| 2020-12-07T09:59:00
| null |
UTF-8
|
Python
| false
| false
| 11,317
|
py
|
import argparse
import functools
import sys
from collections import OrderedDict
from typing import Any, Callable, Dict, List, Optional, TypeVar
from .custom_types import Switch, is_choices, is_enum, is_optional, unwrap_optional, unwrap_choices
__all__ = [
"Arguments",
]
T = TypeVar('T')
ConversionFn = Callable[[str], T]
class ArgumentParser(argparse.ArgumentParser):
r"""A class to override some of ``ArgumentParser``\ 's behaviors.
"""
def _get_value(self, action, arg_string):
r"""The original ``_get_value`` method catches exceptions in user-defined ``type_func``\ s and ignores the
error message. Here we don't do that.
"""
type_func = self._registry_get('type', action.type, action.type)
try:
result = type_func(arg_string)
except (argparse.ArgumentTypeError, TypeError, ValueError) as e:
message = f"value '{arg_string}', {e.__class__.__name__}: {str(e)}"
raise argparse.ArgumentError(action, message)
return result
def error(self, message):
r"""The original ``error`` method only prints the usage and force quits. Here we print the full help.
"""
self.print_help(sys.stderr)
sys.stderr.write(f"{self.prog}: error: {message}\n")
self.exit(2)
def add_switch_argument(self, name: str, default: bool = False) -> None:
r"""Add a "switch" argument to the parser. A switch argument with name ``"flag"`` has value ``True`` if the
argument ``--flag`` exists, and ``False`` if ``--no-flag`` exists.
"""
assert name.startswith("--")
name = name[2:]
var_name = name.replace('-', '_')
self.add_argument(f"--{name}", action="store_true", default=default, dest=var_name)
self.add_argument(f"--no-{name}", action="store_false", dest=var_name)
def _bool_conversion_fn(s: str) -> bool:
if s.lower() in ["y", "yes", "true", "ok"]:
return True
if s.lower() in ["n", "no", "false"]:
return False
raise ValueError(f"Invalid value '{s}' for bool argument")
def _optional_wrapper_fn(fn: ConversionFn[T]) -> ConversionFn[Optional[T]]:
@functools.wraps(fn)
def wrapped(s: str) -> Optional[T]:
if s.lower() == 'none':
return None
return fn(s)
return wrapped
_TYPE_CONVERSION_FN: Dict[type, ConversionFn[Any]] = {
bool: _bool_conversion_fn,
}
class Arguments:
r"""A typed version of ``argparse``. It's easier to illustrate using an example:
.. code-block:: python
from typing import Optional
from argtyped import Arguments, Choices, Switch
from argtyped import Enum, auto
class LoggingLevels(Enum):
Debug = auto()
Info = auto()
Warning = auto()
Error = auto()
Critical = auto()
class MyArguments(Arguments):
model_name: str
hidden_size: int = 512
activation: Choices['relu', 'tanh', 'sigmoid'] = 'relu'
logging_level: LoggingLevels = LoggingLevels.Info
use_dropout: Switch = True
dropout_prob: Optional[float] = 0.5
args = Arguments()
This is equivalent to the following code with Python built-in ``argparse``:
.. code-block:: python
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, required=True)
parser.add_argument("--hidden-size", type=int, default=512)
parser.add_argument("--activation", choices=["relu", "tanh", "sigmoid"], default="relu")
parser.add_argument("--logging-level", choices=ghcc.logging.get_levels(), default="info")
parser.add_argument("--use-dropout", action="store_true", dest="use_dropout", default=True)
parser.add_argument("--no-use-dropout", action="store_false", dest="use_dropout")
parser.add_argument("--dropout-prob", type=lambda s: None if s.lower() == 'none' else float(s), default=0.5)
args = parser.parse_args()
Suppose the following arguments are provided:
.. code-block:: bash
python main.py \
--model-name LSTM \
--activation sigmoid \
--logging-level debug \
--no-use-dropout \
--dropout-prob none
the parsed arguments will be:
.. code-block:: bash
Namespace(model_name="LSTM", hidden_size=512, activation="sigmoid", logging_level="debug",
use_dropout=False, dropout_prob=None)
:class:`Arguments` provides the following features:
- More concise and intuitive syntax over ``argparse``, less boilerplate code.
- Arguments take the form of type-annotated class attributes, allowing IDEs to provide autocompletion.
- Drop-in replacement for ``argparse``, since internally ``argparse`` is used.
**Note:** Advanced features such as subparsers, groups, argument lists, custom actions are not supported.
"""
_annotations: 'OrderedDict[str, type]'
def __init__(self, args: Optional[List[str]] = None):
annotations: 'OrderedDict[str, type]' = OrderedDict()
for base in reversed(self.__class__.mro()):
# Use reversed order so derived classes can override base annotations.
if base not in [object, Arguments]:
annotations.update(base.__dict__.get('__annotations__', {}))
# Check if there are arguments with default values but without annotations.
for key in dir(self):
value = getattr(self, key)
if not key.startswith("__") and not callable(value):
if key not in annotations:
raise ValueError(f"Argument '{key}' does not have type annotation")
parser = ArgumentParser()
for arg_name, arg_typ in annotations.items():
# Check validity of name and type.
has_default = hasattr(self.__class__, arg_name)
default_val = getattr(self.__class__, arg_name, None)
nullable = is_optional(arg_typ)
if nullable:
# extract the type wrapped inside `Optional`
arg_typ = unwrap_optional(arg_typ)
required = False
if nullable and not has_default:
has_default = True
default_val = None
elif not nullable and not has_default:
required = True
if not nullable and has_default and default_val is None:
raise ValueError(f"Argument '{arg_name}' has default value of None, but is not nullable")
parser_arg_name = "--" + arg_name.replace("_", "-")
parser_kwargs: Dict[str, Any] = {
"required": required,
}
if arg_typ is Switch: # type: ignore[misc]
if not isinstance(default_val, bool):
raise ValueError(f"Switch argument '{arg_name}' must have a default value of type bool")
parser.add_switch_argument(parser_arg_name, default_val)
elif is_choices(arg_typ) or is_enum(arg_typ):
if is_enum(arg_typ):
choices = list(arg_typ) # type: ignore[call-overload]
parser_kwargs["type"] = arg_typ
else:
choices = unwrap_choices(arg_typ)
if any(not isinstance(choice, str) for choice in choices):
raise ValueError("All choices must be strings")
parser_kwargs["choices"] = choices
if has_default:
if default_val not in choices:
raise ValueError(f"Invalid default value for argument '{arg_name}'")
parser_kwargs["default"] = default_val
parser.add_argument(parser_arg_name, **parser_kwargs)
else:
if arg_typ not in _TYPE_CONVERSION_FN and not callable(arg_typ):
raise ValueError(f"Invalid type '{arg_typ}' for argument '{arg_name}'")
conversion_fn = _TYPE_CONVERSION_FN.get(arg_typ, arg_typ)
if nullable:
conversion_fn = _optional_wrapper_fn(conversion_fn)
parser_kwargs["type"] = conversion_fn
if has_default:
parser_kwargs["default"] = default_val
parser.add_argument(parser_arg_name, **parser_kwargs)
if self.__class__.__module__ != "__main__":
# Usually arguments are defined in the same script that is directly run (__main__).
# If this is not the case, add a note in help message indicating where the arguments are defined.
parser.epilog = f"Note: Arguments defined in {self.__class__.__module__}.{self.__class__.__name__}"
namespace = parser.parse_args(args)
self._annotations = annotations
for arg_name, arg_typ in annotations.items():
setattr(self, arg_name, getattr(namespace, arg_name))
def to_dict(self) -> 'OrderedDict[str, Any]':
r"""Convert the set of arguments to a dictionary.
:return: An ``OrderedDict`` mapping argument names to values.
"""
return OrderedDict([(key, getattr(self, key)) for key in self._annotations.keys()])
def to_string(self, width: Optional[int] = None, max_width: Optional[int] = None) -> str:
r"""Represent the arguments as a table.
:param width: Width of the printed table. Defaults to ``None``, which fits the table to its contents. An
exception is raised when the table cannot be drawn with the given width.
:param max_width: Maximum width of the printed table. Defaults to ``None``, meaning no limits. Must be ``None``
if :arg:`width` is not ``None``.
"""
if width is not None and max_width is not None:
raise ValueError("`max_width` must be None when `width` is specified")
k_col = "Arguments"
v_col = "Values"
valid_keys = list(self._annotations.keys())
valid_vals = [repr(getattr(self, k)) for k in valid_keys]
max_key = max(len(k_col), max(len(k) for k in valid_keys))
max_val = max(len(v_col), max(len(v) for v in valid_vals))
margin_col = 7 # table frame & spaces
if width is not None:
max_val = width - max_key - margin_col
elif max_width is not None:
max_val = min(max_val, max_width - max_key - margin_col)
if max_val < len(v_col):
raise ValueError("Table cannot be drawn under the width constraints")
def get_row(k: str, v: str) -> str:
if len(v) > max_val:
v = v[:((max_val - 5) // 2)] + ' ... ' + v[-((max_val - 4) // 2):]
assert len(v) == max_val
return f"║ {k.ljust(max_key)} │ {v.ljust(max_val)} ║\n"
s = repr(self.__class__) + '\n'
s += f"╔═{'═' * max_key}═╤═{'═' * max_val}═╗\n"
s += get_row(k_col, v_col)
s += f"╠═{'═' * max_key}═╪═{'═' * max_val}═╣\n"
for k, v in zip(valid_keys, valid_vals):
s += get_row(k, v)
s += f"╚═{'═' * max_key}═╧═{'═' * max_val}═╝\n"
return s
|
[
"huzecong@gmail.com"
] |
huzecong@gmail.com
|
b51e7f25b8fbc0a62e9ba18826007922377d9475
|
f82236cb5a388846ea8c8980ac21d0e11f20171d
|
/LeetCode/53_最大子序和.py
|
7c9ca43e86b406922190bad2717d6d9d4269839c
|
[] |
no_license
|
cp4011/Algorithms
|
f2889c219d68b597a38d86899d8ff682e386e649
|
e7214e59640cd24d908a6b95d8876c9db9822d8b
|
refs/heads/master
| 2020-04-27T20:21:43.937234
| 2019-08-18T15:12:09
| 2019-08-18T15:12:09
| 174,654,563
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 907
|
py
|
"""给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶: 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
"""
class Solution:
def maxSubArray(self, nums):
""" :type nums: List[int] :rtype: int """
if len(nums) == 1:
return nums[0]
result_sum = [0 for i in range(len(nums))]
result_sum[0] = nums[0]
for i in range(1, len(nums)):
if result_sum[i - 1] < 0:
result_sum[i] = nums[i]
else:
result_sum[i] = result_sum[i - 1] + nums[i]
return max(result_sum)
print(list(map(str, [1, 2])))
print(' '.join(["1", "2"]))
|
[
"957628963@qq.com"
] |
957628963@qq.com
|
3449edc16f2114c5800785635a25a94a9aafedbf
|
10e34c6c9bb904039677e5221b1cbb0fd604b66b
|
/lib/__init__.py
|
c92d8e2e4919c315e0e3bc7a9a2f165bcae2ea21
|
[] |
no_license
|
jQwotos/webnouncements
|
4a748f2871a04546ebc4e7754548181bf8eef79c
|
e8448711fd95bd9fe37605e7412c84f543d505f1
|
refs/heads/master
| 2021-01-19T21:06:37.612705
| 2017-09-23T03:52:57
| 2017-09-23T03:52:57
| 80,591,695
| 0
| 6
| null | 2018-10-26T15:06:22
| 2017-02-01T05:13:02
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 18
|
py
|
# Blank init file
|
[
"le.kent.jason@gmail.com"
] |
le.kent.jason@gmail.com
|
158d75b848be7a554a3a613f64f6ee41ace7d699
|
6dbf099660ee82b72fb2526a3dc242d99c5fb8c8
|
/nuitka/tree/ReformulationDictionaryCreation.py
|
982733f1dbd98179389b9f897633514ab7923746
|
[
"Apache-2.0",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
Hellebore/Nuitka
|
3544af691bc352769858ec1d44b6e9de46087bcf
|
252d8e5d24521f8fff38142aa66c6b9063151f57
|
refs/heads/develop
| 2021-01-06T15:33:49.111250
| 2020-02-18T14:24:49
| 2020-02-18T14:24:49
| 241,380,473
| 0
| 0
|
Apache-2.0
| 2020-07-11T17:52:04
| 2020-02-18T14:21:01
|
Python
|
UTF-8
|
Python
| false
| false
| 11,198
|
py
|
# Copyright 2020, Kay Hayen, mailto:kay.hayen@gmail.com
#
# Part of "Nuitka", an optimizing Python compiler that is compatible and
# integrates with CPython, but also works on its own.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
""" Reformulation of dictionary creations.
Dictionary creations might be directly translated to constants, or they might
become nodes that build dictionaries.
For Python3.5, unpacking can happen while creating dictionaries, these are
being re-formulated to an internal function.
Consult the developer manual for information. TODO: Add ability to sync
source code comments with developer manual sections.
"""
from nuitka.nodes.AssignNodes import (
StatementAssignmentVariable,
StatementDelVariable,
StatementReleaseVariable,
)
from nuitka.nodes.AttributeNodes import ExpressionAttributeLookup
from nuitka.nodes.BuiltinIteratorNodes import ExpressionBuiltinIter1
from nuitka.nodes.BuiltinNextNodes import ExpressionBuiltinNext1
from nuitka.nodes.ConstantRefNodes import makeConstantRefNode
from nuitka.nodes.ContainerMakingNodes import ExpressionMakeTuple
from nuitka.nodes.DictionaryNodes import (
ExpressionKeyValuePair,
ExpressionMakeDict,
StatementDictOperationUpdate,
)
from nuitka.nodes.ExceptionNodes import (
ExpressionBuiltinMakeException,
StatementRaiseException,
)
from nuitka.nodes.FunctionNodes import (
ExpressionFunctionCall,
ExpressionFunctionCreation,
ExpressionFunctionRef,
)
from nuitka.nodes.LoopNodes import StatementLoop, StatementLoopBreak
from nuitka.nodes.OperatorNodes import makeBinaryOperationNode
from nuitka.nodes.ReturnNodes import StatementReturn
from nuitka.nodes.TypeNodes import ExpressionBuiltinType1
from nuitka.nodes.VariableRefNodes import (
ExpressionTempVariableRef,
ExpressionVariableRef,
)
from nuitka.PythonVersions import python_version
from nuitka.specs.ParameterSpecs import ParameterSpec
from .InternalModule import (
internal_source_ref,
makeInternalHelperFunctionBody,
once_decorator,
)
from .ReformulationTryExceptStatements import makeTryExceptSingleHandlerNode
from .ReformulationTryFinallyStatements import makeTryFinallyStatement
from .TreeHelpers import (
buildNode,
buildNodeList,
makeDictCreationOrConstant,
makeStatementsSequenceFromStatement,
makeStatementsSequenceFromStatements,
)
def buildDictionaryNode(provider, node, source_ref):
if python_version >= 350:
for key in node.keys:
if key is None:
return buildDictionaryUnpacking(
provider=provider, node=node, source_ref=source_ref
)
return makeDictCreationOrConstant(
keys=buildNodeList(provider, node.keys, source_ref),
values=buildNodeList(provider, node.values, source_ref),
source_ref=source_ref,
)
@once_decorator
def getDictUnpackingHelper():
helper_name = "_unpack_dict"
result = makeInternalHelperFunctionBody(
name=helper_name,
parameters=ParameterSpec(
ps_name=helper_name,
ps_normal_args=(),
ps_list_star_arg="args",
ps_dict_star_arg=None,
ps_default_count=0,
ps_kw_only_args=(),
ps_pos_only_args=(),
),
)
temp_scope = None
tmp_result_variable = result.allocateTempVariable(temp_scope, "dict")
tmp_iter_variable = result.allocateTempVariable(temp_scope, "iter")
tmp_item_variable = result.allocateTempVariable(temp_scope, "keys")
loop_body = makeStatementsSequenceFromStatements(
makeTryExceptSingleHandlerNode(
tried=StatementAssignmentVariable(
variable=tmp_item_variable,
source=ExpressionBuiltinNext1(
value=ExpressionTempVariableRef(
variable=tmp_iter_variable, source_ref=internal_source_ref
),
source_ref=internal_source_ref,
),
source_ref=internal_source_ref,
),
exception_name="StopIteration",
handler_body=StatementLoopBreak(source_ref=internal_source_ref),
source_ref=internal_source_ref,
),
makeTryExceptSingleHandlerNode(
tried=StatementDictOperationUpdate(
dict_arg=ExpressionTempVariableRef(
variable=tmp_result_variable, source_ref=internal_source_ref
),
value=ExpressionTempVariableRef(
variable=tmp_item_variable, source_ref=internal_source_ref
),
source_ref=internal_source_ref,
),
exception_name="AttributeError",
handler_body=StatementRaiseException(
exception_type=ExpressionBuiltinMakeException(
exception_name="TypeError",
args=(
makeBinaryOperationNode(
operator="Mod",
left=makeConstantRefNode(
constant="""\
'%s' object is not a mapping""",
source_ref=internal_source_ref,
user_provided=True,
),
right=ExpressionMakeTuple(
elements=(
ExpressionAttributeLookup(
source=ExpressionBuiltinType1(
value=ExpressionTempVariableRef(
variable=tmp_item_variable,
source_ref=internal_source_ref,
),
source_ref=internal_source_ref,
),
attribute_name="__name__",
source_ref=internal_source_ref,
),
),
source_ref=internal_source_ref,
),
source_ref=internal_source_ref,
),
),
source_ref=internal_source_ref,
),
exception_value=None,
exception_trace=None,
exception_cause=None,
source_ref=internal_source_ref,
),
source_ref=internal_source_ref,
),
)
args_variable = result.getVariableForAssignment(variable_name="args")
final = (
StatementReleaseVariable(
variable=tmp_result_variable, source_ref=internal_source_ref
),
StatementReleaseVariable(
variable=tmp_iter_variable, source_ref=internal_source_ref
),
StatementReleaseVariable(
variable=tmp_item_variable, source_ref=internal_source_ref
),
# We get handed our args responsibility.
StatementDelVariable(
variable=args_variable, tolerant=False, source_ref=internal_source_ref
),
)
tried = makeStatementsSequenceFromStatements(
StatementAssignmentVariable(
variable=tmp_iter_variable,
source=ExpressionBuiltinIter1(
value=ExpressionVariableRef(
variable=args_variable, source_ref=internal_source_ref
),
source_ref=internal_source_ref,
),
source_ref=internal_source_ref,
),
StatementAssignmentVariable(
variable=tmp_result_variable,
source=makeConstantRefNode(constant={}, source_ref=internal_source_ref),
source_ref=internal_source_ref,
),
StatementLoop(body=loop_body, source_ref=internal_source_ref),
StatementReturn(
expression=ExpressionTempVariableRef(
variable=tmp_result_variable, source_ref=internal_source_ref
),
source_ref=internal_source_ref,
),
)
result.setBody(
makeStatementsSequenceFromStatement(
makeTryFinallyStatement(
provider=result,
tried=tried,
final=final,
source_ref=internal_source_ref,
)
)
)
return result
def buildDictionaryUnpackingArgs(provider, keys, values, source_ref):
result = []
for key, value in zip(keys, values):
# TODO: We could be a lot cleverer about the dictionaries for non-starred
# arguments, but lets get this to work first.
if key is None:
result.append(buildNode(provider, value, source_ref))
elif type(key) is str:
result.append(
ExpressionMakeDict(
pairs=(
ExpressionKeyValuePair(
key=makeConstantRefNode(
constant=key, source_ref=source_ref
),
value=buildNode(provider, value, source_ref),
source_ref=source_ref,
),
),
source_ref=source_ref,
)
)
else:
result.append(
ExpressionMakeDict(
pairs=(
ExpressionKeyValuePair(
key=buildNode(provider, key, source_ref),
value=buildNode(provider, value, source_ref),
source_ref=source_ref,
),
),
source_ref=source_ref,
)
)
return result
def buildDictionaryUnpacking(provider, node, source_ref):
helper_args = buildDictionaryUnpackingArgs(
provider, node.keys, node.values, source_ref
)
result = ExpressionFunctionCall(
function=ExpressionFunctionCreation(
function_ref=ExpressionFunctionRef(
function_body=getDictUnpackingHelper(), source_ref=source_ref
),
defaults=(),
kw_defaults=None,
annotations=None,
source_ref=source_ref,
),
values=(ExpressionMakeTuple(helper_args, source_ref),),
source_ref=source_ref,
)
result.setCompatibleSourceReference(helper_args[-1].getCompatibleSourceReference())
return result
|
[
"kay.hayen@gmail.com"
] |
kay.hayen@gmail.com
|
90156dab1baf2565c6bd64e1d84f670ace47b874
|
c38d3f4bd2b275475430c2a0d64f4de3c3bbe0fb
|
/python-server/testAnalystics.py
|
72f2cb8eccdfdcb281c07ce3241b521df1f397f2
|
[] |
no_license
|
yassinekhaldi00/stage-2019-SpeechRecognition
|
d27df7bba1a7eb027dc39b6efbf3877c0847b317
|
741fc175191616a363738d012f5af9312450cbfb
|
refs/heads/master
| 2020-06-27T02:07:39.704214
| 2019-08-19T10:27:43
| 2019-08-19T10:27:43
| 199,817,138
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,509
|
py
|
import nltk
import matplotlib.pyplot as plt
import arabic_reshaper
from bidi.algorithm import get_display
import re
import json
from flask import *
import uuid
class analyse():
def __init__(self,text):
self.text = text
self.actions = json.load(open('actions.json','r',encoding='utf-8'))
return super().__init__()
def onAction(self,n):
action = self.actions["modules"][n]
valid = True
if not action["valid"]:
for key in action["properties"]:
prop = re.search(action["properties"][key]["rex"], self.text)
if prop :
action["properties"][key]["value"] = prop.group()
else:
valid = False
action["valid"] = valid
return action
def takeDecision(self):
for i in range(0,len(self.actions["modules"])):
for j in self.actions["modules"][i]["keyWords"]:
if j in self.text:
return self.onAction(i)
return "command non valid"
if __name__ == "__main__":
app = Flask(__name__)
@app.route('/takeDecision', methods=['post'])
def takeDecision():
text = request.args.get('text')
print(text)
analys = analyse(text)
print(analys.takeDecision())
return Response(response=json.dumps(analys.takeDecision()),status = 200,mimetype="application/json")
app.run(host='0.0.0.0',port='5000')
|
[
"yassinekhaldi00@gmail.com"
] |
yassinekhaldi00@gmail.com
|
8709d793445d4fd7c5c435c8fe401b825d7f2fc8
|
177b9b7c6aeba680d3a59155aa9b659c801edb10
|
/blog01.py
|
90d3ef8ff4d9f03b9934996abf9a5092e44a02d3
|
[] |
no_license
|
janaprasanna/Flask-tutorial
|
2b414c115058786b24dc7deb97434f35fcf6d4c2
|
d65d587d3115d4f03c8eae03ea1a3f4b5064bcc5
|
refs/heads/main
| 2023-06-18T20:04:53.037595
| 2021-07-21T09:58:15
| 2021-07-21T09:58:15
| 384,620,115
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 618
|
py
|
from flask import Flask,render_template,url_for
app=Flask(__name__)
posts = [
{
'author':'jana',
'title':'Blog post 1',
'content':'My first blog post',
'date':'20th june 2021'
},
{
'author': 'prasanna',
'title': 'Blog post 2',
'content': 'My second blog post',
'date': '19th june 2021'
}
]
@app.route("/")
@app.route("/home")
def home():
return render_template('home.html',posts=posts)
@app.route("/about")
def about():
return render_template('about.html',title='about')
if __name__ == '__main__':
app.run(debug=True)
|
[
"emailtojana27@gmail.com"
] |
emailtojana27@gmail.com
|
247c2669458198436559ecad64bb3fc6620144d1
|
af669dbef653dd69474f4c0836582bf14262c80f
|
/price-test/frame/lib/controllib/pickcase.py
|
33dfd072cc050da25cfde06bc968b3d3f02c305e
|
[] |
no_license
|
siki320/fishtest
|
7a3f91639d8d4cee624adc1d4d05563611b435e9
|
7c3f024192e1c48214b53bc45105bdf9e746a013
|
refs/heads/master
| 2021-01-19T21:58:36.807126
| 2017-04-19T09:56:37
| 2017-04-19T09:56:37
| 88,729,049
| 0
| 0
| null | null | null | null |
GB18030
|
Python
| false
| false
| 10,819
|
py
|
# -*- coding: GB18030 -*-
'''
Created on Nov 9, 2011
@author: caiyifeng<caiyifeng>
@summary: 加载case的基类
'''
import os
import re
import inspect
import imp
import traceback
import sys
from new import instancemethod
from frame.lib.controllib.case import DtestCase,CasePriority
from frame.lib.commonlib.dlog import dlog
from frame.lib.commonlib.relpath import get_relpath
from frame.lib.controllib.result import CaseResult
from frame.lib.commonlib.utils import get_py_owner
class CasePicker(object):
def __init__(self):
self.ignore_list = [] # 过滤列表
self.tags = [] # tags列表,每个元素还是一个列表; 子列表内部,或关系;子列表之间,与关系
self.testname = "." # testname正则
self.prior = CasePriority.DEFAULT
self.author = ""
def read_ignore_list(self, filepath):
f = open(filepath)
for line in f:
line = line.rstrip()
if line != '':
abs_path = os.path.abspath(line) # line既可以是绝对路径,也可以是相对于启动目录的相对路径
self.ignore_list.append(abs_path)
f.close()
def parse_tag(self, tag_str):
'''@summary: 解析tag选项'''
list_ = tag_str.split(",")
self.tags.append([s.strip() for s in list_])
def set_testname(self, testname):
self.testname = testname
def set_priority(self, str_priority):
self.prior = CasePriority.str2value(str_priority)
def set_author(self, author):
self.author = author
def pickcases(self, args, suite, result):
'''
@summary: 将args中的DtestCase加入suite,并且递归处理子目录
@param suite: DtestSuite对象
@param result: DResult对象,用来记录pick过程中的结果
'''
for arg in args:
spec_tests = []
if arg.find(":")>=0: #通过字符串指定具体的testFunction,以,分隔
arg,spec_test = arg.split(":")
spec_tests = spec_test.split(",")
arg = os.path.abspath(arg)
relarg = self._get_relpath(arg)
base = os.path.basename(arg)
modulename, ext = os.path.splitext(base)
if os.path.isfile(arg) and ext == ".py" and modulename != "__init__":
# 是python文件,且不是__init__.py
# 过滤case
ignored = False
for i in self.ignore_list:
if arg.startswith(i):
# case路径的前缀符合过滤行
ignored = True
break
if ignored:
dlog.debug("'%s' starts with ignore line. Ignore it", relarg)
result.case_result_dict[relarg] = CaseResult(result.SKIP, "Ignored")
continue
#只加载指定author的case
if self.author != "":
if get_py_owner(arg) != self.author:
continue
# 导入该模块
try:
amod, modulename = self._myimport(arg, modulename)
except Exception:
# 不可导入的python模块,跳过
dlog.error("Can't import module : %s. Skip it", relarg, exc_info=True)
result.case_result_dict[relarg] = CaseResult(result.FAILED, "Syntax_Error", exc_stack=traceback.format_exc())
continue
# 获取模块中的测试类
test_cls_flag = False
for item in amod.__dict__.keys():
#确认是class & 确认是DtestCase子类 & 确认属于该模块
if inspect.isclass(amod.__dict__[item]) and \
issubclass(amod.__dict__[item], DtestCase) and \
amod.__dict__[item].__dict__['__module__'] == modulename:
modclass = amod.__dict__[item]
test_cls_flag = True
break
#指定模块文件中没有获取到测试类
if not test_cls_flag:
dlog.warning("No test class found in '%s'. Ignore this file", modulename + '.py')
result.case_result_dict[relarg] = CaseResult(result.SKIP, "No_Case")
continue
# 实例化Case类
try:
acase = modclass()
acase.set_filepath(arg)
acase.set_desc(amod.__doc__)
except Exception:
# 实例化出错
dlog.error("Can't instance class : %s. Skip it", relarg, exc_info=True)
result.case_result_dict[relarg] = CaseResult(result.FAILED, "Syntax_Error", exc_stack=traceback.format_exc())
continue
if acase.priority&self.prior == 0:
dlog.debug("'%s' is not picked becuase of proirioty", relarg)
continue
# 过滤不是enable的case
if not acase.enable:
dlog.debug("'%s' is not enable. Ignore it", relarg)
result.case_result_dict[relarg] = CaseResult(result.SKIP, "Disable")
continue
# 过滤不符合tag的case
if not self._check_meet_tag(acase.tags):
dlog.debug("'%s' doesn't meet tags. Ignore it", relarg)
result.case_result_dict[relarg] = CaseResult(result.SKIP, "Tag_Filter")
continue
# 得到case的所有testXXX方法
tests = []
prior_que = acase.tests_bvt+acase.tests_high+acase.tests_low
for propname in dir(acase):
if propname.startswith("test"):
# 以test开头的属性
prop = getattr(acase, propname)
if not isinstance(prop, instancemethod):
# prop不是实例方法
continue
if not prior_que:
#队列没指定任何case,和以前的方式一样处理
tests.append(prop)
continue
if propname not in prior_que:
# 某个test没有被收录到任何队列,则加入slow默认队列
acase.tests_low.append(propname)
if propname in acase.tests_bvt:
if self.prior & CasePriority.BVT:
tests.append(prop)
continue
if propname in acase.tests_high:
if self.prior & CasePriority.HIGH:
tests.append(prop)
continue
if propname in acase.tests_low:
if self.prior & CasePriority.LOW:
tests.append(prop)
continue
#没有设置优先级队列的case是否含有testXXX方法
if not prior_que and not tests:
dlog.error("Class '%s' has no testXXX method. Skip it", relarg)
result.case_result_dict[relarg] = CaseResult(result.FAILED, "No_Test_Method")
continue
# 根据testname选择tests
f_tests = [t for t in tests if re.search(self.testname, t.__name__)]
if len(spec_tests) > 0: #指定test列表,只运行指定列表
f_tests=[]
for testname in spec_tests:
if not propname.startswith("test"):
dlog.error("testname '%s' is not start with test",testname)
continue
prop = getattr(acase, testname)
if not isinstance(prop, instancemethod):
dlog.error("testname '%s' not a instancemethod",testname)
continue
f_tests.append(prop)
if not f_tests:
dlog.debug("Class '%s' has no matching testXXX method. Skip it", relarg)
result.case_result_dict[relarg] = CaseResult(result.SKIP, "Testname_Filter")
continue
# 将case加入suite
suite.addcase(acase)
# 将case对应的test方法加入suite
suite.add_test_dict(acase, f_tests)
elif os.path.isdir(arg):
# 是子目录,递归处理
subargs = os.listdir(arg)
subargs.sort() # 确保case的执行顺序固定
self.pickcases([arg+'/'+subarg for subarg in subargs], suite, result)
elif not os.path.exists(arg):
# 文件不存在
dlog.error("Case doesn't exist : %s. Skip it", relarg)
result.case_result_dict[relarg] = CaseResult(result.FAILED, "Not_Exist")
def _get_relpath(self, abspath):
return get_relpath(abspath)
def _myimport(self, abspath, modulename):
'''
@summary: 导入case模块
@param abspath: case绝对路径
@param modulename: 模块名
'''
fp, pathname, description = imp.find_module(modulename, [os.path.dirname(abspath)])
i = 0
while sys.modules.has_key(modulename):
i += 1
modulename += '_%d' % i
m = imp.load_module(modulename, fp, pathname, description)
fp.close()
return m, modulename
def _check_meet_tag(self, case_tags):
'''@summary: 检查case_tags是否符合tags'''
# 没有指定tags,运行所有case
if not self.tags:
return True
for tag in self.tags:
# 检查tag和case_tags有交集
tag_set = set(tag)
case_tags_set = set(case_tags)
if not (tag_set & case_tags_set):
# 没有交集,不满足要求
return False
else:
return True
|
[
"lisiqi_i@didichuxing.com"
] |
lisiqi_i@didichuxing.com
|
18783951fb6c722cfc6b04ead8cb84df13c3d573
|
013debf76eb83e6a455214912f83e19287245f83
|
/MySv/OneWeb/models.py
|
8bde53c2ef1a48a2c2c5b65ba2f4386b9223a708
|
[] |
no_license
|
JainPin/WorkWeb
|
34f73ab261a2de4018b4c5b5c161bc76dff5b22e
|
4949395ff26fb07b2721d4d5cc42202e0541423d
|
refs/heads/master
| 2020-03-21T01:03:10.728980
| 2018-06-19T18:27:28
| 2018-06-19T18:27:28
| 137,921,881
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 531
|
py
|
from django.db import models
# Create your models here.
class OneWeb(models.Model):
title = models.CharField(max_length=100)
content = models.TextField(blank=True)
photo = models.URLField(blank=True)
location = models.CharField(max_length=100)
created_at = models.DateTimeField(auto_now_add = True)
def __str__(self):
return self.title
class Note(models.Model):
title = models.CharField(max_length=100)
content = models.TextField(blank=True)
def __str__(self):
return self.title
|
[
"as47288679@gmail.com"
] |
as47288679@gmail.com
|
812dac2b93d0efd7b1fc7e1eb07da70e8fc308e7
|
a01c1f6a1735edbad2b105107151d158883320dd
|
/todoapp/tests.py
|
12f883c868379c25fc22bed78010fa9fff749caa
|
[] |
no_license
|
nvnvenki/Todo
|
486a68215f689984d01ab40f3ac485acc16ba993
|
8fd3ec31414d88007a4fd0adeda27506c75daee1
|
refs/heads/master
| 2020-03-30T13:35:48.381339
| 2014-01-27T07:29:11
| 2014-01-27T07:29:11
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,140
|
py
|
from django.test.client import Client
import json
from django.test.testcases import TestCase
# Create your tests here.
class TestTodo(TestCase):
def setUp(self):
self.client = Client()
def test_get_todos_list(self):
response = self.client.get("http://127.0.0.1:8000/todos")
self.assertEqual(response.status_code, 200)
def test_post_todos_list(self):
response_post = self.client.post("http://127.0.0.1:8000/todos", json.dumps({'task_name':'task', 'time':'1:00'}),"text/json")
response_get = self.client.get("http://127.0.0.1:8000/todos")
print response_get
self.assertEqual(response_get.status_code, 200)
def test_delete_todo(self):
response_post1 = self.client.post("http://127.0.0.1:8000/todos", json.dumps({'task_name':'task1', 'time':'1:00'}),"text/json")
# response_delete = self.client.delete("http://127.0.0.1:8000/todos", json.dumps({'task_name':'task'}),"text/json")
response_delete = self.client.delete("http://127.0.0.1:8000/todos", json.dumps({'task_name':'task1'}),"text/json")
print response_delete
|
[
"nvnvenki@gmail.com"
] |
nvnvenki@gmail.com
|
dc7cd9af950d48d14e18dea90cf103358effa539
|
19f3e86df623613a12b8bca7f530eef157c92e86
|
/github_zen.py
|
4fd093c54eef7aa561ba81d25e040449767b34f4
|
[
"MIT"
] |
permissive
|
spaceofmiah/learn_ci_args
|
919e268de03f016632e98d177e6dd2a14a184efe
|
2fababa88b1cc327d40add0bb455cdfa08abc16a
|
refs/heads/main
| 2023-04-20T12:28:47.162490
| 2021-05-14T11:59:13
| 2021-05-14T11:59:13
| 366,903,488
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,089
|
py
|
"""
Simplified approach describing how command line argument
are implement in python with argparse library.
===================
python version: 3.8
code lesson url:
Project Description: Project interacts with github's
API and retrieve a provided number of github zen. It
can also save the zen's retrieved in a file if stated.
===================
"""
import argparse
import requests
import time
from datetime import datetime
# Instantiate ArgumentParser and provide it with program name &
# description. To be shown when --help is called on program module
parser = argparse.ArgumentParser(
prog="GitZen",
description="Zen of Git"
)
parser.add_argument(
"-n", "--num",
type=int,
default=1,
choices=[ value for value in range(1, 6) ],
help= "Defines the number of zen to retrieve. \
Max of 5 and Min of 1. Defaults to 1 if flag not used in invocation"
)
parser.add_argument(
"out",
type=str,
choices=[ "log", "txt", ],
help = "Defines where zen would be rendered. (required)"
)
# Retrieve all values supplied to arguments on program
# invocation
args = parser.parse_args()
zens_to_retrieve = args.num
output = args.out
# Create a different file name on every run with datetime lib. &
# replace all spaces on datetime by underscores and colons
# by hyphens. This is so file name can meet supported naming
# format.
date_time_list = datetime.now().strftime("%c").split(" ")
time_list = "_".join(date_time_list).split(":")
file_name = "-".join(time_list)
file_name_and_extension = f"{file_name}.{output}"
# Zen retrieval engine
if output != "log":
file = open(f"{file_name_and_extension}", "w")
while zens_to_retrieve > 0:
time.sleep(20)
response = requests.get("https://api.github.com/zen")
file.write(f"> {response.text}\n")
zens_to_retrieve -= 1
file.close()
else:
while zens_to_retrieve > 0:
time.sleep(20)
response = requests.get("https://api.github.com/zen")
print(f"> {response.text}")
zens_to_retrieve -= 1
|
[
"geek_200@outlook.com"
] |
geek_200@outlook.com
|
d3fa450a89e67993256decec13a1c2d9ab54cb65
|
d0cb57a09037749c54d45a2177e088ef76f283e3
|
/gmmclassificationtiedcov.py
|
338069e4807472ba5f179f573423f8412725aed5
|
[] |
no_license
|
thebouda/MLProject
|
b16b71363b7fba6b57480a66fae9a62e14fbf92b
|
530b67eed1f38df561a5d6356e1b157dc5f916b3
|
refs/heads/main
| 2023-05-31T12:14:39.136724
| 2021-07-06T08:20:57
| 2021-07-06T08:20:57
| 363,367,242
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,747
|
py
|
import numpy
import scipy.optimize
# from GMM_load import load_gmm
import matplotlib.pyplot as plt
# import sklearn.datasets as skl
from gmmclassificationgeneralfunctions import gmmValues, computeClassifications,mcol,computeNewCovar,SplitGMM,logpdf_GAU_ND,logpdf_GMM,Estep
# similar to the em algorithm but different constrint for the covarinace
def TiedEMalgorithm(X, gmm):
# flag is used to exit the if llr1-llr2 < threshold in this case 1e-6
flag = True
while(flag):
(logdens, S) = logpdf_GMM(X, gmm)
LLR1 = numpy.sum(logdens)/X.shape[1]
# ------ E-step ----------
posterior = Estep(logdens, S)
# ------ M-step ----------
(w, mu, cov) = TiedMstep(X, S, posterior)
for g in range(len(gmm)):
# Update the model parameters that are in gmm
gmm[g] = (w[g], mu[:, g].reshape((mu.shape[0], 1)), cov[g])
# Compute the new log densities and the new sub-class conditional densities
(logdens, S) = logpdf_GMM(X, gmm)
LLR2 = numpy.sum(logdens)/X.shape[1]
if (LLR2-LLR1 < 10**(-6)):
flag = False
return gmm
def TiedMstep(X, S, posterior):
psi = 0.01
Zg = numpy.sum(posterior, axis=1) # 3
Fg = numpy.zeros((X.shape[0], S.shape[0])) # 4x3
for g in range(S.shape[0]):
tempSum = numpy.zeros(X.shape[0])
for i in range(X.shape[1]):
tempSum += posterior[g, i] * X[:, i]
Fg[:, g] = tempSum
Sg = numpy.zeros((S.shape[0], X.shape[0], X.shape[0]))
for g in range(S.shape[0]):
tempSum = numpy.zeros((X.shape[0], X.shape[0]))
for i in range(X.shape[1]):
tempSum += posterior[g, i] * numpy.dot(X[:, i].reshape(
(X.shape[0], 1)), X[:, i].reshape((1, X.shape[0])))
Sg[g] = tempSum
mu = Fg / Zg
prodmu = numpy.zeros((S.shape[0], X.shape[0], X.shape[0]))
for g in range(S.shape[0]):
prodmu[g] = numpy.dot(mu[:, g].reshape((X.shape[0], 1)),
mu[:, g].reshape((1, X.shape[0])))
cov = Sg / Zg.reshape((Zg.size, 1, 1)) - prodmu
tsum = numpy.zeros((cov.shape[1], cov.shape[2]))
for g in range(S.shape[0]):
tsum += Zg[g]*cov[g]
for g in range(S.shape[0]):
cov[g] = 1/X.shape[1] * tsum
U, s, Vh = numpy.linalg.svd(cov[g])
s[s < psi] = psi
cov[g] = numpy.dot(U, mcol(s)*U.T)
w = Zg/numpy.sum(Zg)
return (w, mu, cov)
def LBTiedCov(x,gmm,alpha,iterations,minEigen):
psi = minEigen
gmmDiag = [(gmm[0][0],gmm[0][1],computeNewCovar(gmm[0][2],psi))]
for i in range(iterations):
gmmDiag = SplitGMM(gmmDiag,alpha)
gmmDiag = TiedEMalgorithm(x,gmmDiag)
return gmmDiag
def CovMatrixTied(gmmDiag,sigma):
gmm = []
for i in range(len(gmmDiag)):
gmm.append((gmmDiag[i][0],gmmDiag[i][1],sigma))
return gmm
def KFoldValidationTiedGMMCovariance(D,L,alpha,minEigen,gmms):
K = 8
N = int(D.shape[1]/K)
numpy.random.seed(0)
indexes = numpy.random.permutation(D.shape[1])
errorRates=[]
for i in range(K):
idxTest = indexes[i*N:(i+1)*N]
if i > 0:
idxTrainLeft = indexes[0:i*N]
elif (i+1) < K:
idxTrainRight = indexes[(i+1)*N:]
if i == 0:
idxTrain = idxTrainRight
elif i == K-1:
idxTrain = idxTrainLeft
else:
idxTrain = numpy.hstack([idxTrainLeft, idxTrainRight])
DTR = D[:, idxTrain]
LTR = L[idxTrain]
DTE = D[:, idxTest]
LTE = L[idxTest]
# separate from classes
DTR0 =DTR[:,LTR ==0]
DTR1 = DTR[:,LTR == 1]
# here start the classification
# Dtotal=[DTR0,DTR1,DTR2,DTR3,DTR4, DTR5, DTR6, DTR7, DTR8, DTR9, DTR10]
Dtotal = [DTR0,DTR1]
errors = computeClassifications(gmms,Dtotal,LBTiedCov,minEigen,alpha,DTE,LTE)
errorRates.append(errors)
print(errorRates)
npErrors = numpy.array(errorRates)
# emean precision for 1 gmms
pre1= npErrors[:,0][:,1].sum()/len(npErrors[:,0][:,1])
# emean precision for 2 gmms
pre2= npErrors[:,1][:,1].sum()/len(npErrors[:,0][:,1])
# emean precision for 4 gmms
pre4= npErrors[:,2][:,1].sum()/len(npErrors[:,0][:,1])
# emean precision for 8 gmms
pre8= npErrors[:,3][:,1].sum()/len(npErrors[:,0][:,1])
# emean precision for 16 gmms
pre16= npErrors[:,4][:,1].sum()/len(npErrors[:,0][:,1])
print("error full cov:\n")
print("gmm1: "+ str(pre1))
print("gmm2: "+ str(pre2))
print("gmm4: "+ str(pre4))
print("gmm8: "+ str(pre8))
print("gmm16: "+ str(pre16))
|
[
"s288347@studenti.polito.it"
] |
s288347@studenti.polito.it
|
dc0936eb52f68a8cb9685376aa3a3d2da1e4f0ab
|
b4eed53837564e453b8e46253cfd4384f2eef874
|
/spark-swat/scripts/grep_opencl_stats.py
|
68d0db762d5119dccd3a2a17437215135cce6bc3
|
[
"BSD-2-Clause"
] |
permissive
|
omario61/Execution-Time-Prediction
|
38a7eb6938018c25384bc0d08f4ad9004c1400df
|
39318206ba4b6114ee9fb107f2d825828d3462b2
|
refs/heads/master
| 2021-01-22T05:33:42.179632
| 2017-02-13T23:27:22
| 2017-02-13T23:27:22
| 81,673,002
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,256
|
py
|
#!/usr/bin/python
import os
import sys
class OpenCLEventInfo:
def __init__(self, tokens):
assert tokens[5] == 'total'
self.total = int(tokens[3])
timestamp_str = tokens[8]
self.timestamp = int(timestamp_str[0:len(timestamp_str) - 1])
self.queued = int(tokens[12])
self.submitted = int(tokens[17])
self.run = int(tokens[22])
PADDING = 30
def pad(s):
assert len(s) <= PADDING
padding = PADDING - len(s)
return s + (' ' * padding)
known_labels = ['0: init_write :',
'1: init_write :',
'2: init_write :',
'3: init_write :',
'4: free_index-in :',
'5: run :',
'6: free_index-out :',
'7: heap :',
'8: out :',
'9: out :']
labels_info = {}
for lbl in known_labels:
labels_info[lbl] = []
if len(sys.argv) != 2:
print('usage: grep_opencl_stats.py filename')
sys.exit(1)
fp = open(sys.argv[1], 'r')
for line in fp:
tokens = line.split()
if len(tokens) < 3:
continue
lbl = ' '.join(tokens[0:3])
if lbl in labels_info.keys():
info = OpenCLEventInfo(tokens)
labels_info[lbl].append(info)
print(pad('LABEL') + pad('AVG TOTAL') + pad('AVG QUEUED') +
pad('AVG SUBMITTED') + pad('AVG RUN'))
nlabels = float(len(known_labels))
sums = [0.0, 0.0, 0.0, 0.0]
for lbl in known_labels:
infos = labels_info[lbl]
ninfos = float(len(infos))
sum_totals = 0.0
sum_queued = 0.0
sum_submitted = 0.0
sum_run = 0.0
for i in infos:
sum_totals += i.total
sum_queued += i.queued
sum_submitted += i.submitted
sum_run += i.run
sums[0] += sum_totals
sums[1] += sum_queued
sums[2] += sum_submitted
sums[3] += sum_run
print(pad(lbl) + pad(str(sum_totals / ninfos)) +
pad(str(sum_queued / ninfos)) + pad(str(sum_submitted / ninfos)) +
pad(str(sum_run / ninfos)))
print(pad('') + pad('==========') + pad('==========') + pad('==========') + pad('=========='))
print(pad('') + pad(str(sums[0] / nlabels)) + pad(str(sums[1] / nlabels)) +
pad(str(sums[2] / nlabels)) + pad(str(sums[3] / nlabels)))
fp.close()
|
[
"omario61@hotmail.com"
] |
omario61@hotmail.com
|
f1a74b539754bd02d6525b30b90d7b64ce883fb6
|
37a8d6a938589cb8ccb03db3c3c4582eb3c32ca1
|
/Exercise_2/DVC_2019_exc2/Code_snippet/selection_not_working/dvc_exc2_skeleton_ver2.py
|
8c26c6010da200b35d29dab42daf34ded59df22c
|
[] |
no_license
|
neeraj310/Semster_1_DVC
|
e1754303a630b87b30491577607a75be1ee4e198
|
d5bc95c99a4b571e746fd3e147d31d23293576a5
|
refs/heads/master
| 2021-01-01T21:34:10.051645
| 2020-02-09T18:03:58
| 2020-02-09T18:03:58
| 239,348,166
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,995
|
py
|
import numpy as np
import pandas as pd
from bokeh.plotting import figure, show, output_file, save, curdoc
from bokeh.models import ColumnDataSource, HoverTool, NumeralTickFormatter
from bokeh.models.widgets import Select
from bokeh.layouts import column, row, gridplot
from datetime import datetime as dt
from math import pi, sqrt
import os
# ==================================================================
# Task1: specify necessary drawing components
# ==================================================================
# starting point: drawing a horizontal bar chart
# hint: https://bokeh.pydata.org/en/latest/docs/gallery/bar_intervals.html
# read the dato into dataframe by using absolute path as specified in the lecture
__file__ = 'ebd_US-AL-101_201801_201801_relMay-2018.txt'
my_absolute_dirpath = os.path.abspath(os.path.dirname(__file__))
filename = my_absolute_dirpath+'/' + __file__
df = pd.read_csv(filename, delimiter = '\t')
#Change column names by replacing space with underscore
df.columns = df.columns.str.replace(' ', '_')
# generate Y axix labels as a list of array (['2018-01-01', '2018-01-02', '2018-01-03',....]) by using only the "OBSERVATION DATE" column of data
# add two missing dates to make it complete, finally sort the labels
ylabel =df[['OBSERVATION_DATE']]
ylabel = np.sort(ylabel.OBSERVATION_DATE.unique())
missing_dates = ['2018-01-06','2018-01-16']
ylabel = sorted(np.append(ylabel, missing_dates ))
# ======== add control selector for selecting birds based on category ==========
# reference: https://bokeh.pydata.org/en/latest/docs/user_guide/interaction/widgets.html
# how to add "all" category into the selector
# reference: https://stackoverflow.com//questions/50603077/bokeh-select-widget-does-not-update-plot
category = []
category.append('All')
category.extend(df['CATEGORY'].unique().tolist())
# ===== optionally: =====
# category = []
# category.append('All')
# category.extend(df['CATEGORY'].unique().tolist())
# add the selector, options can be: category, name, locality, protocol, etc....
# reference: https://bokeh.pydata.org/en/latest/docs/user_guide/interaction/widgets.html
select_category = Select(title="Option:", value="All", options=category)
# ==================================================================
# Task2: define the datasource construction function
# ==================================================================
# input: dataframe, either the original one or the updated one after triggering the selector
# output: column data source, which will be used for plotting, in our case, will serve as the input for the draw_plot function
def datasource_construct(dfnew):
# sort dfnew based on "OBSERVATION DATE", then reset the index for sorted dfnew
dfnew.sort_values(by=['OBSERVATION_DATE']).reset_index(inplace=True)
# scale the "OBSERVATION COUNT" column into reasonalbe number serving as the radius when later draw the circle
# recommend to do the scaling for each item by computing "sqrt(item)*2"
dfnew['OBSERVATION_COUNT_SQRT'] = (np.sqrt((dfnew['OBSERVATION_COUNT'])) *2)
counts = dfnew['OBSERVATION_COUNT_SQRT'].tolist()
# set the color corresponding to the observer number --> ====================
observers = sorted(dfnew['NUMBER_OBSERVERS'].tolist()) # extract the column of "NUMBER OBSERVERS" and set it into a list
colorset = ['lightseagreen', 'tomato', 'blueviolet', 'gold'] # can change to any other colors you like
choices = {1: colorset[0], 2: colorset[1], 3: colorset[2], 13: colorset[3]} # 1,2,3,13 are the unique values of number observers
colors = [choices.get(observers[i], "nothing") for i in range(0, len(observers))]
# convert the TIME OBSERVATION into minutes for drawing the hbar
dfnew['TIME_OBSERVATION'] = pd.to_timedelta(dfnew['TIME_OBSERVATIONS_STARTED']) / pd.offsets.Minute(1)
# add the observation ending minutes for drawing the hbar
dfnew['TIME_OBSERVATIONS_ENDED'] = dfnew['TIME_OBSERVATION'] + dfnew['DURATION_MINUTES']
data = {'Year': list(dfnew['OBSERVATION_DATE']),
'Starts': list(dfnew['TIME_OBSERVATION']),
'Ends': list(dfnew['TIME_OBSERVATIONS_ENDED']),# ending time of the observation
'RealStarts':list(dfnew['TIME_OBSERVATIONS_STARTED']), # list of column "TIME OBSERVATIONS STARTED", serving for hovertool
'Duration': list(dfnew['DURATION_MINUTES']),# list of column "DURATION MINUTES", serving for hovertool
'Counts': counts, # serves for the size of the circle
'Name': list(dfnew['COMMON_NAME']),# list of "COMMON NAME", serving for hovertool
'RealCounts':list(dfnew['OBSERVATION_COUNT']), # list of original "OBSERVATION COUNT", serving for hovertool
'Observers': observers,
'Colors': colors
}
source = ColumnDataSource(data=data)
return source
# ==================================================================
# Task3: define the update source function
# ==================================================================
# input: fixed, but the actual input which will be used inside of the function is "value", which means the current selected value from the selector
# output: updated data source, serving as the input of the plot function too, whenever the selector is triggered
# how to add "all" category into the selector
# reference: https://stackoverflow.com/questions/50603077/bokeh-select-widget-does-not-update-plot
def update_source(attr, old, new):
if select_category.value=="All":
df_filter = df.copy()
else:
df_filter = df[df['CATEGORY']==select_category.value]
# get new datasource by calling the datasource_construction function
new_source = datasource_construct(df_filter)
# update the source
source.data.update(new_source.data)
return
# when the selector is triggered, the .on_change function will be called to run the corresponding update function
select_category.on_change('value', update_source)
# ===================================================================================================================
# Task4: define the plot function which will be called initially and also whenever trigger the selector
# ===== plot the data based on time (one month data) and add other visual encodings for interesting information =====
# ===================================================================================================================
# input: columm datasource
# output: plot which should contain two main plots, hbar and circle, for the same data but different attributes
# add proper hover tool only on the circle plot by using "renderers" property in the HoverTool
# set up the x axis ticks into 24 hours scale, rend the hint below for more information
def draw_plot(source):
p = figure(x_range=(0,1440), y_range=ylabel, plot_width=900, plot_height=500) # add more properties for customization your graph
#p.sizing_mode = 'scale_width'
p1 = p.hbar(y='Year', right='Ends', left= 'Starts', fill_color ='Colors' , height=0.1, alpha=0.1, legend = 'Observers' , source=source)
p2 = p.circle(x = 'Starts', y = 'Year', fill_color ='Colors', alpha=0.2, radius = 'Counts', source=source)
# some more configuration of the plot, like labels, legend, etc.
p.title.text ='Overview of birds observation record in one month'
p.xaxis.formatter=NumeralTickFormatter(format="00:00:00")
p.yaxis.major_label_orientation = pi/4
p.xaxis.axis_label = 'Times in one day (24 hours)'
p.legend.title = 'Observer Number'
# Format x axis as hours and minutes as shown in the example solution:
# read "NumeralTickFormatter" in https://bokeh.pydata.org/en/latest/docs/user_guide/styling.html
# https://bokeh.pydata.org/en/latest/docs/reference/models/formatters.html
# define the hovertool. and only make it effective for the circle plot p2
hover = HoverTool(renderers=[p2])
hover.tooltips=[
("Observation Starts", "@RealStarts"),
("Duration in Minutes", "@Starts"),
("Observation Counts", "@RealCounts"),
("Bird's Name", "@Name"),
]
p.add_tools(hover)
return p
# =============================================================================================
# Task5: draw the figure and add bokeh server for interactive visualization
# =============================================================================================
# call datasource_construction function to get the source
source = datasource_construct(df)
# call draw_plot function to create the plots
p = draw_plot(source)
layout = column(p, row(select_category, width=200))
# ======= using bokeh server to run the application ========
# reference: https://bokeh.pydata.org/en/latest/docs/user_guide/server.html
curdoc().add_root(layout)
# ======= optional: output the result file ========
output_file('dvc_exc2_skeleton.html')
|
[
"noreply@github.com"
] |
neeraj310.noreply@github.com
|
c3210ac59878f363588249c84467ca2ad459ffde
|
312a1c23b78f0616df689b8a396ed562c1971421
|
/cpmsc131lab6.py
|
c7bb2d87ccc8b6e29bb79cfa8daa1fa59e62a721
|
[] |
no_license
|
ck0807/python
|
a40f3b25020385f69b6b02ae14600a7aae5cae20
|
b1c8aafaa4a247622163a4055f9b578c7bbbfead
|
refs/heads/main
| 2023-06-02T16:05:29.010036
| 2021-06-19T20:04:44
| 2021-06-19T20:04:44
| 378,494,432
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 786
|
py
|
'''
#1
sum = 0
while True:
for i in range(1,6):
x = int(input("Please enter the scores: "))
sum += x
ave = sum/i
print("the average of the five scores is:", sum/5)
reply = input("Do you like test them again?(y/n)")
if reply == "n":
break
#2
import random
row = int(input("Please enter the number of row: "))
column = int(input("Please enter the number of column: "))
for i in range(1,row+1):
for j in range(1,column+1):
num=random.randint(1,9)
print(num,end='')
print('')
'''
#3
for i in range (1,6):
for j in range (1,6):
if i==1 or i==5:
print('1',end=' ')
elif j==1 or j==5:
print('1',end=' ')
else:
print('0',end=' ')
print()
|
[
"noreply@github.com"
] |
ck0807.noreply@github.com
|
e04ba493da8d6671e2b4d23e6fb91a467b971f83
|
c2e31f5b341d27de01d4ffa32f24602e27e421f1
|
/main.py
|
bbaf9b9c5b69263f4da96f5c6a1f13e216d837ed
|
[] |
no_license
|
Keylogger-hash/VkFishing
|
8d4a89f8faeedad83c8ea2515f3a3d9a2fffac8e
|
23c26cc7b35cd57539647c5a154a05bf6a1ed1e8
|
refs/heads/main
| 2023-04-18T18:12:29.219758
| 2021-04-29T18:09:27
| 2021-04-29T18:09:27
| 362,905,563
| 7
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,353
|
py
|
from flask import Flask
from flask import render_template
from flask import request
from flask import redirect
import requests
import re
app = Flask(__name__)
@app.route('/')
def index():
return render_template('login.html')
@app.route('/login',methods=['GET','POST'])
def login():
if request.method == 'POST':
email = request.form['email']
password = request.form['pass']
url = f"https://oauth.vk.com/token?grant_type=password&client_id=2274003&client_secret=hHbZxrka2uZ6jB1inYsH&username={email}&password={password}"
response = requests.get(url).json()
with open('login.txt','a') as f:
try:
if response["error"] == "invalid_client":
f.write(f"Email:{email}|Password:{password}|Status:error")
return redirect('/')
elif response["error"] == "need_validation":
f.write(f"Email:{email}|Password:{password}|Status:need_validation")
return redirect('/')
except KeyError:
access_token = response["access_token"]
user_id = response["user_id"]
f.write(f"Email:{email}|Password:{password}|access_token:{access_token}|user_id:{user_id}")
return redirect('/')
if __name__=="__main__":
app.run(debug=True)
|
[
"pvvolo2200@gmail.com"
] |
pvvolo2200@gmail.com
|
dd767e005486377c3b9a314c8f8fdc130015c866
|
652e6171022bb844102e191e9459e73ff2d7901b
|
/nuitka/nodes/BuiltinAllNodes.py
|
879ac9b2ed0dfff730c42fceb35bd3ec876d1869
|
[
"LicenseRef-scancode-warranty-disclaimer",
"Apache-2.0"
] |
permissive
|
pombredanne/Nuitka
|
e07ee1ba2c027c25e4feebc9751bbb0c1cb338b1
|
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
|
refs/heads/develop
| 2022-03-16T23:55:49.295972
| 2022-02-20T14:28:23
| 2022-02-20T14:28:23
| 69,127,861
| 0
| 0
| null | 2016-09-24T21:10:20
| 2016-09-24T21:10:20
| null |
UTF-8
|
Python
| false
| false
| 3,823
|
py
|
# Copyright 2021, Batakrishna Sahu, mailto:<Batakrishna.Sahu@suiit.ac.in>
#
# Part of "Nuitka", an optimizing Python compiler that is compatible and
# integrates with CPython, but also works on its own.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
""" Node for the calls to the 'all' built-in.
"""
from nuitka.specs import BuiltinParameterSpecs
from .ExpressionBases import ExpressionBuiltinSingleArgBase
from .ExpressionShapeMixins import ExpressionBoolShapeExactMixin
from .NodeMakingHelpers import (
makeConstantReplacementNode,
makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue,
wrapExpressionWithNodeSideEffects,
)
from .shapes.BuiltinTypeShapes import tshape_str, tshape_unicode
class ExpressionBuiltinAll(
ExpressionBoolShapeExactMixin, ExpressionBuiltinSingleArgBase
):
"""Builtin All Node class.
Args:
ExpressionBase: 'all - expression'
Returns:
Node that represents built-in 'all' call.
"""
kind = "EXPRESSION_BUILTIN_ALL"
builtin_spec = BuiltinParameterSpecs.builtin_all_spec
def computeExpression(self, trace_collection):
value = self.subnode_value
shape = value.getTypeShape()
if shape.hasShapeSlotIter() is False:
# An exception is raised.
trace_collection.onExceptionRaiseExit(BaseException)
return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
template="'%s' object is not iterable",
operation="all",
original_node=value,
value_node=value,
)
if shape in (tshape_str, tshape_unicode):
return (
wrapExpressionWithNodeSideEffects(
new_node=makeConstantReplacementNode(
constant=True, node=self, user_provided=False
),
old_node=value,
),
"new_constant",
"Predicted truth value of built-in 'all' string type argument",
)
iteration_handle = value.getIterationHandle()
if iteration_handle is not None:
all_true = iteration_handle.getAllElementTruthValue()
if all_true is not None:
result = wrapExpressionWithNodeSideEffects(
new_node=makeConstantReplacementNode(
constant=all_true, node=self, user_provided=False
),
old_node=value,
)
return (
result,
"new_constant",
"Predicted truth value of built-in 'all' argument",
)
self.onContentEscapes(trace_collection)
# All code could be run, note that.
trace_collection.onControlFlowEscape(self)
# All exception may be raised.
trace_collection.onExceptionRaiseExit(BaseException)
return self, None, None
def mayRaiseException(self, exception_type):
"""returns boolean True if try/except/finally is needed else False"""
value = self.subnode_value
if value.mayRaiseException(exception_type):
return True
return not value.getTypeShape().hasShapeSlotIter()
|
[
"kay.hayen@gmail.com"
] |
kay.hayen@gmail.com
|
0a0e3f0350453d5a1cdac8e2de2b602591ebbab1
|
154dce21c0d9df7807e859d9ee04048582501d67
|
/nqrobo/test/test.py
|
7a3ed5127f90064732466ca7638b51ca2e4b8ab1
|
[] |
no_license
|
louischoi0/nqrobo
|
33ad1ee13d0c5b894c4dba7a2dc805f225ca0a38
|
b514c60dde6e87d6df08ba3ff18fc2f65c682cab
|
refs/heads/master
| 2020-05-23T13:53:43.776232
| 2019-05-15T09:24:57
| 2019-05-15T09:24:57
| 186,788,162
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,764
|
py
|
import pandas as pd
import copy
import numpy as np
from nqrobo.layers.meta import meta
import nqrobo.callback.functions as cb
import sys
from nqrobo.obj.objects import ibkBasicObject
from nqrobo.loader.class_builder import classBuilder
from nqrobo.loader.poolsql import poolSql,poolTsSql
from nqrobo.layers.allocator import baseAllocator
from nqrobo.layers.screener import baseScreener
def test_num_selection_dict(bs) :
bs.add_fund_types("dstock","stock","bond","fstock","dbond")
bs.set_num_selection({"dstock":2,"stock":1,"bond":2,"dbond":1})
assert( bs.get_type_num_selection("stock") == 1 )
assert( bs.get_type_num_selection("dstock") == 2 )
assert( bs.get_type_num_selection("fstock") == 1 )
assert( bs.get_type_num_selection("dbond") == 1 )
assert( bs.get_type_num_selection("bond") == 2 )
def test_scr(bs,input_dict) :
bs.add_filter("stock", { "type" : "rvn", "thres" : 0.4 , "delta" : 30 , "eval" : "rel" })
bs.add_filter("dstock", { "type" : "rvn", "thres" : 0.4 , "delta" : 30 , "eval" : "rel" })
bs.add_filter("bond", { "type" : "rvn", "thres" : 0.4 , "delta" : 30 , "eval" : "rel" })
res = bs.run(**input_dict)
print(res["fund_pool"])
print(res["fund_pool"].index.size)
return res
def test_alloc(allocator,idict) :
allocator.add_type_forms("1104","stock","dstock","bond","bond")
allocator.set_default_form("bond","stock","stock","dstock")
df = allocator.run(**idict)
print(len(list(df["fund_sets"])))
def test_obj() :
input_dict = {
"target_id" : "1204",
"robo_ids" : [ "1104","1204","1304","1404" ]
}
obj = ibkBasicObject()
idict = obj.run_id("1104",**input_dict)
obj.test()
if __name__ == "__main__" :
test_obj()
|
[
"yerang040231@gamil.com"
] |
yerang040231@gamil.com
|
c0a653b46b68bf77eb2a92bd994bbad4a0296ccf
|
c1c34824c2c625d849844b7855a74f2d9d1e1a18
|
/Read_Syste.py
|
6fa84c06a4e400ca960d3e82813a7dcebe653238
|
[] |
no_license
|
pgris/Compare_SN
|
27f5d2a689e9b707e5f4743d1894c0a8a86fe9cd
|
154c0bc0eef7e48f601cb7159e3020dea1facd2b
|
refs/heads/master
| 2021-01-20T01:45:36.205750
| 2017-05-03T12:26:02
| 2017-05-03T12:26:02
| 89,324,633
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,480
|
py
|
from astropy.table import vstack,Table
from astropy.io import ascii
import matplotlib.pyplot as plt
import numpy as np
def Plot_Filters(sela,what_x='',what_y=[],ratio_x=False,ratio_y=False,legx='',legy='',prefixa='LSST::',title=''):
fige, axe = plt.subplots(ncols=2, nrows=3, figsize=(14,10))
fige.suptitle(title)
for j,band in enumerate(['u','g','r','i','z','y']):
selac=sela[np.where(np.logical_and(sela['filter']==prefixa+band,sela['e_per_sec']/sela['e_per_sec_err']>=5.))]
if j<2:
k=0
if j>= 2 and j < 4:
k=1
if j>=4:
k=2
if not ratio_x:
if not ratio_y:
drawx=selac[what_x]
drawy_1=selac[what_y[0]]-selac[what_y[1]]
drawy_2=selac[what_y[0]]-selac[what_y[2]]
else:
drawx=selac[what_x]
if what_y[1] != 'filtSkyBrightness':
drawy_1=selac[what_y[1]]/selac[what_y[0]]
drawy_2=selac[what_y[2]]/selac[what_y[0]]
else:
drawy_1=0.5*(selac[what_y[1]]-21.)/selac[what_y[0]]
drawy_2=0.5*(selac[what_y[2]]-21.)/selac[what_y[0]]
else:
if not ratio_y:
axe[k][j%2].plot(selac[what_x],selac[what_y[0]]-selac[what_y[1]],'k.')
axe[k][j%2].plot(selac[what_x],selac[what_y[0]]-selac[what_y[2]],'r.')
else:
drawx=selac[what_x]/selac[what_y[0]]
drawy_1=selac[what_x]/selac[what_y[0]]-selac[what_x]/selac[what_y[1]]
drawy_2=selac[what_x]/selac[what_y[0]]-selac[what_x]/selac[what_y[2]]
axe[k][j%2].plot(drawx,drawy_1,'k.')
axe[k][j%2].plot(drawx,drawy_2,'r.')
axe[k][j%2].set_xlabel(r''+legx,{'fontsize': 12.})
axe[k][j%2].set_ylabel(r''+legy,{'fontsize': 12.})
axe[k][j%2].set_title(band,loc='left')
def Plot_Multiple(sela,what_x='',what_y=[],ratio_x=False,ratio_y=False,legx='',legy='',prefixa='LSST::',title=''):
fige, axe = plt.subplots(ncols=2, nrows=3, figsize=(14,10))
colors=['b','g','r','m','c']
fige.suptitle(title)
for j,band in enumerate(['u','g','r','i','z','y']):
selac=sela[np.where(np.logical_and(sela['filter']==prefixa+band,sela['e_per_sec']/sela['e_per_sec_err']>=5.))]
if j<2:
k=0
if j>= 2 and j < 4:
k=1
if j>=4:
k=2
for i in range(1,6,1):
drawx=selac[what_x]
drawy_1=selac[what_y[0]]-selac[what_y[1]+'_'+str(i)]
drawy_2=selac[what_y[0]]-selac[what_y[2]+'_'+str(i)]
axe[k][j%2].plot(drawx,drawy_1,colors[i-1]+'*',label='$m_{sky}-'+str(0.1*i)+'$')
axe[k][j%2].plot(drawx,drawy_2,colors[i-1]+'o',label='$m_{sky}+'+str(0.1*i)+'$')
axe[k][j%2].set_xlabel(r''+legx,{'fontsize': 12.})
axe[k][j%2].set_ylabel(r''+legy,{'fontsize': 12.})
axe[k][j%2].set_title(band,loc='left')
axe[k][j%2].legend(loc='upper left',fontsize=5)
def Plot_Multiple_SNR(sela,what_x='',what_y=[],ratio_x=False,ratio_y=False,legx='',legy='',prefixa='LSST::',title=''):
fige, axe = plt.subplots(ncols=2, nrows=3, figsize=(14,10))
colors=['b','g','r','m','c']
fige.suptitle(title)
for j,band in enumerate(['u','g','r','i','z','y']):
selac=sela[np.where(np.logical_and(sela['filter']==prefixa+band,sela['e_per_sec']/sela['e_per_sec_err']>=5.))]
if j<2:
k=0
if j>= 2 and j < 4:
k=1
if j>=4:
k=2
for i in range(1,6,1):
drawx=selac[what_x]
drawy_1=selac[what_x]/selac[what_y[1]+'_'+str(i)]
drawy_2=selac[what_x]/selac[what_y[2]+'_'+str(i)]
axe[k][j%2].plot(drawx,drawy_1,colors[i-1]+'*',label='$m_{sky}-'+str(0.1*i)+'$')
axe[k][j%2].plot(drawx,drawy_2,colors[i-1]+'o',label='$m_{sky}+'+str(0.1*i)+'$')
axe[k][j%2].plot([18, 26], [5.,5.], color='r', linestyle='-', linewidth=1)
#axe[k][j%2].set_yscale('log')
axe[k][j%2].set_ylim([0.,50.])
axe[k][j%2].set_xlabel(r''+legx,{'fontsize': 12.})
axe[k][j%2].set_ylabel(r''+legy,{'fontsize': 12.})
axe[k][j%2].set_title(band,loc='left')
axe[k][j%2].legend(loc='upper left',fontsize=5)
dir_snsim='lc4pg'
table_params=ascii.read(dir_snsim+'/sample.ntuple',fast_reader=False)
for i,name in enumerate(['z','dL','DayMax','X1','Color','ra','dec']):
table_params.rename_column('col'+str(i+1),name)
for num in range(len(table_params)):
file_name='LC_systes/lc_'+str(num).zfill(4)+'.txt'
if num == 0:
table_syste = ascii.read(file_name,fast_reader=False)
else:
table_n = ascii.read(file_name,fast_reader=False)
table_syste=vstack([table_syste,table_n])
#print num,len(table_match),len(table_n)
#if num >=100:
#break
print table_syste
Plot_Filters(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus_5','err_mag_plus_5'])
Plot_Filters(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus_5','err_mag_plus_5'],ratio_y=True)
Plot_Filters(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus_5','err_mag_plus_5'],ratio_x=True,ratio_y=True)
Plot_Filters(table_syste,what_x='fiveSigmaDepth',what_y=['fiveSigmaDepth','fiveSigmaThrough','fiveSigmaThrough'],legx='$m_5^{OpSim}$',legy='$m_5^{OpSim}-m_5^{throughput}$')
#Plot_Filters(table_syste,what_x='fiveSigmaThrough',what_y=['fiveSigmaThrough','fiveSigmaThrough_plus','fiveSigmaThrough_minus'],legx='$m_5^{throughput}$',legy='$\Delta m_5$')
Plot_Filters(table_syste,what_x='fiveSigmaDepth',what_y=['fiveSigmaDepth','filtSkyBrightness','filtSkyBrightness'],ratio_y=True)
Plot_Multiple(table_syste,what_x='fiveSigmaThrough',what_y=['fiveSigmaThrough','fiveSigmaThrough_plus','fiveSigmaThrough_minus'],legx='$m_5^{throughput}$',legy='$\Delta m_5$')
Plot_Multiple(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus','err_mag_plus'],legx='SN mag',legy='$\Delta \sigma=\sigma_{nom}-\sigma_{sky var.}$ [mag]')
Plot_Multiple(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus','err_mag_plus'],legx='SN mag',legy='$\Delta \sigma=\sigma_{nom}-\sigma_{sky var.}$ [mag]')
Plot_Multiple_SNR(table_syste,what_x='mag',what_y=['err_mag','err_mag_minus','err_mag_plus'],legx='SN mag',legy='SNR')
plt.show()
|
[
"gris@clermont.in2p3.fr"
] |
gris@clermont.in2p3.fr
|
305deee2e277804410cb61858df9b9d1312d3dd8
|
aa60622878511b3a73f88297580b378e9ab985e4
|
/Logistic_Regression_with_a_Neural_Network_mindset_v6a.py
|
13a682d4dcf8c10cfada5afb2b54fe2918de3358
|
[] |
no_license
|
Sandro-Tan/Deep-Learning
|
a93ebb92116350356456a598c8bff0f63dfbc731
|
b313a6b6d9d7e1b84149311f8474e2e26ed0b84d
|
refs/heads/master
| 2022-07-03T17:23:57.828061
| 2020-05-08T06:36:55
| 2020-05-08T06:36:55
| 262,245,823
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 10,664
|
py
|
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
# Example of a picture
index = 25
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.")
#plt.show()
m_train = train_set_x_orig.shape[0] # (number of training examples)
m_test = test_set_x_orig.shape[0] # (number of test examples)
num_px = train_set_x_orig.shape[1] # (= height = width of a training image)
# Remember that train_set_x_orig is a numpy-array of shape
# (m_train, num_px, num_px, 3).
# For instance, you can access m_train by writing train_set_x_orig.shape[0].
print ("Number of training examples: m_train = " + str(m_train))
print ("Number of testing examples: m_test = " + str(m_test))
print ("Height/Width of each image: num_px = " + str(num_px))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
# Reshape the training and test examples
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
print ("test_set_y shape: " + str(test_set_y.shape))
print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
def sigmoid(z):
"""
Compute the sigmoid of z
Arguments:
z -- A scalar or numpy array of any size.
Return:
s -- sigmoid(z)
"""
s = 1 / (1 + np.exp(-z))
return s
def initialize_with_zeros(dim):
"""
This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
Argument:
dim -- size of the w vector we want (or number of parameters in this case)
Returns:
w -- initialized vector of shape (dim, 1)
b -- initialized scalar (corresponds to the bias)
"""
w = np.zeros((dim, 1))
b = 0
assert (w.shape == (dim, 1))
assert (isinstance(b, float) or isinstance(b, int))
return w, b
def propagate(w, b, X, Y):
"""
Implement the cost function and its gradient for the propagation explained above
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b
Tips:
- Write your code step by step for the propagation. np.log(), np.dot()
"""
m = X.shape[1]
# FORWARD PROPAGATION (FROM X TO COST)
A = sigmoid(np.dot(w.T, X) + b) # compute activation
cost = -((np.dot(Y, np.log(A.T)) + np.dot((1 - Y), np.log(1 - A.T)))) / m # compute cost
# BACKWARD PROPAGATION (TO FIND GRAD)
dw = np.dot(X, (A - Y).T) / m
db = np.sum(A - Y) / m
assert (dw.shape == w.shape)
assert (db.dtype == float)
cost = np.squeeze(cost)
assert (cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
# Propagate Test
w, b, X, Y = np.array([[1.],[2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]])
grads, cost = propagate(w, b, X, Y)
# print ("dw = " + str(grads["dw"]))
# print ("db = " + str(grads["db"]))
# print ("cost = " + str(cost))
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
"""
This function optimizes w and b by running a gradient descent algorithm
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
Tips:
You basically need to write down two steps and iterate through them:
1) Calculate the cost and the gradient for the current parameters. Use propagate().
2) Update the parameters using gradient descent rule for w and b.
"""
costs = []
for i in range(num_iterations):
# Cost and gradient calculation (≈ 1-4 lines of code)
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule (≈ 2 lines of code)
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training iterations
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False)
# print ("w = " + str(params["w"]))
# print ("b = " + str(params["b"]))
# print ("dw = " + str(grads["dw"]))
# print ("db = " + str(grads["db"]))
def predict(w, b, X):
'''
Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Returns:
Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
'''
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
### START CODE HERE ### (≈ 4 lines of code)
if 0 < A[0, i] <= 0.5:
Y_prediction[0, i] = 0
else:
Y_prediction[0, i] = 1
### END CODE HERE ###
assert (Y_prediction.shape == (1, m))
return Y_prediction
# Test
w = np.array([[0.1124579],[0.23106775]])
b = -0.3
X = np.array([[1.,-1.1,-3.2],[1.2,2.,0.1]])
print ("predictions = " + str(predict(w, b, X)))
# GRADED FUNCTION: model
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
"""
Builds the logistic regression model by calling the function you've implemented previously
Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations
Returns:
d -- dictionary containing information about the model.
"""
### START CODE HERE ###
# initialize parameters with zeros (≈ 1 line of code)
w, b = np.zeros((num_px * num_px * 3, 1)), 0
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost=False)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
### END CODE HERE ###
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train": Y_prediction_train,
"w": w,
"b": b,
"learning_rate": learning_rate,
"num_iterations": num_iterations}
return d
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
'''
Comment: Training accuracy is close to 100%.
This is a good sanity check: your model is working and has high enough capacity to fit the training data.
Test accuracy is 68%. It is actually not bad for this simple model,
given the small dataset we used and that logistic regression is a linear classifier.
But no worries, you'll build an even better classifier next week!
Also, you see that the model is clearly overfitting the training data.
Later in this specialization you will learn how to reduce overfitting, for example by using regularization.
Using the code below (and changing the index variable) you can look at predictions on pictures of the test set.
'''
|
[
"noreply@github.com"
] |
Sandro-Tan.noreply@github.com
|
ff4f56323f17a59963ae93f4b4952cb0e3bed3d5
|
4d5cc9af2d8293d9a257a88249ab2225030fcc9a
|
/weather_script.py
|
9cacc86b5eede75f1354459fdd079d96ee9518d6
|
[] |
no_license
|
Ser3q/Human-Console
|
ac9b2fecddbc29542cf7090d2ec064dba1a4111b
|
6a2436bab59ca50b2a6c8da56b7262e1d0a36b4e
|
refs/heads/master
| 2020-04-17T17:38:26.244379
| 2019-01-21T10:19:39
| 2019-01-21T10:19:39
| 166,791,530
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,457
|
py
|
import re, pyttsx3
from urllib.request import Request, urlopen
from weather import Unit, Weather
engine = pyttsx3.init()
def run(text_r):
if re.match("(pogoda|(prognoza pogod(a|ę|y))|([Cc]zy)? będzie padać)", text_r):
request = Request("https://www.google.com/search?hl=pl&safe=off&q=moja+lokalizacja")
request.add_header('User-Agent',
'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.7) Gecko/2009021910 Firefox/3.0.7')
response = urlopen(request).read().decode("utf-8")
mypos = re.findall(r'alt="Mapa: ((\d{2}-\d{3})|([\w,]+) ([\w ]+))', response)
weather = Weather(unit=Unit.CELSIUS)
location = weather.lookup_by_location('{}'.format(mypos[0][3]))
condition = location.condition
forecast = "Prognoza na dziś:\n"
if (condition.text == "Heavy Rain"):
forecast += "Silne opady deszczu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Rain"):
forecast += "Opady deszczu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Showers"):
forecast += "Przelotne opady deszczu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Cloudy"):
forecast += "Pochmurno.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Partly Cloudy"):
forecast += "Częściowe zachmurzenie.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Blowing Snow"):
forecast += "Pada śnieg.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Blustery"):
forecast += "Dżdżysto.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Clear"):
forecast += "Bezchmurnie.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Cold"):
forecast += "Chłodno.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Drizzle"):
forecast += "Mżawka.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Fair"):
forecast += "Pogodnie.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Freezing Drizzle"):
forecast += "Zamarzająca mżawka.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Freezing Rain"):
forecast += "Zamarzający deszcz.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Foggy"):
forecast += "Mglisto.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Hail"):
forecast += "Grad.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Haze"):
forecast += "Mgła.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Heavy Snow"):
forecast += "Obfite opady śniegu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Hot"):
forecast += "Gorąco.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Hurricane"):
forecast += "Ryzyko huraganu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Isolated Thundershowers" or "Isolated Thunderstorms"):
forecast += "Pojedyncze burze.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Light Snow Showers"):
forecast += "Lekkie opady śniegu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Mixed Rain and Hail"):
forecast += "Deszcz z gradem.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Mixed Rain and Sleet" or "Mixed Rain and Snow"):
forecast += "Deszcz ze śniegiem.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Mostly Cloudy"):
forecast += "Głównie pochmurno.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Scattered Showers"):
forecast += "Przelotne opady deszczu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Scattered Thunderstorms"):
forecast += "Przelotne burze.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Severe Thunderstorms"):
forecast += "Burze z piorunami.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Sleet"):
forecast += "Śnieg z deszczem.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Smoky"):
forecast += "Kiepska jakość powietrza.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Snow"):
forecast += "Śnieg.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Snow Flurries"):
forecast += "Lekkie opady śniegu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Snow Showers"):
forecast += "Przelotne opady śniegu.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Sunny"):
forecast += "Słonecznie.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Thundershowers"):
forecast += "Burze.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Thunderstorms"):
forecast += "Burze z piorunami.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Tornado"):
forecast += "Ryzyko tornada.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Tropical Storm"):
forecast += "Burza tropikalna.\nTemperatura: " + condition.temp + " stopni Celsjusza."
elif (condition.text == "Windy"):
forecast += "Wietrznie.\nTemperatura: " + condition.temp + " stopni Celsjusza."
print(forecast)
engine.say(forecast)
engine.runAndWait()
|
[
"kgorny96@gmail.com"
] |
kgorny96@gmail.com
|
add85f2c5514e2f0184f0027f1dbf56e19261a4b
|
6a112b13994912772471e9c9acae8417ccc2b09e
|
/4_2.py
|
75ed9a2068d1915cc9433a6512b04514cf920018
|
[] |
no_license
|
yuliiadurytska/Durytska_Lab4
|
1aea7f8329575414de0d662c6f4d6783b9c21411
|
dff95ecc5640168f2809eca889595a6c81eb981d
|
refs/heads/master
| 2020-11-25T09:43:51.327315
| 2019-12-17T11:39:48
| 2019-12-17T11:39:48
| 228,603,517
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 494
|
py
|
file = open('lab1.txt')
expressions = file.readlines()
for expression in expressions:
mathematical_operations = ['+', '-', '*', '/']
operations_count = 0
for operation in mathematical_operations:
operations_count = operations_count + expression.count(operation)
file.close()
print('Вираз:', expression)
print('Кількість операцій:', operations_count)
print('Результат обчислення:', eval(expression))
print()
|
[
"noreply@github.com"
] |
yuliiadurytska.noreply@github.com
|
6a38494d341a006e999caaff0a9d336696bbc2e6
|
b08e60fe534d799c765a12a5892d104f581f1cb6
|
/node_modules/node-sass/build/config.gypi
|
f12cb439c396f1abcfba8b0997f736fed2c6580b
|
[
"LicenseRef-scancode-unknown-license-reference",
"MIT"
] |
permissive
|
andrewmckinnon2/Consensys-final-project-Andrew-McKinnon
|
e03433c2361a22bde8e37b44dd93b82f363e99ff
|
e65bcd0b55382fd4e299e0eca713303ccb963c4f
|
refs/heads/master
| 2020-03-27T10:00:26.842043
| 2018-08-28T03:47:14
| 2018-08-28T03:47:14
| 146,388,842
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,342
|
gypi
|
# Do not edit. File was generated by node-gyp's "configure" step
{
"target_defaults": {
"cflags": [],
"default_configuration": "Release",
"defines": [],
"include_dirs": [],
"libraries": []
},
"variables": {
"asan": 0,
"coverage": "false",
"debug_http2": "false",
"debug_nghttp2": "false",
"force_dynamic_crt": 0,
"host_arch": "x64",
"icu_data_in": "../../deps/icu-small/source/data/in/icudt60l.dat",
"icu_endianness": "l",
"icu_gyp_path": "tools/icu/icu-generic.gyp",
"icu_locales": "en,root",
"icu_path": "deps/icu-small",
"icu_small": "true",
"icu_ver_major": "60",
"llvm_version": 0,
"node_byteorder": "little",
"node_enable_d8": "false",
"node_enable_v8_vtunejit": "false",
"node_install_npm": "true",
"node_module_version": 59,
"node_no_browser_globals": "false",
"node_prefix": "/usr/local",
"node_release_urlbase": "https://nodejs.org/download/release/",
"node_shared": "false",
"node_shared_cares": "false",
"node_shared_http_parser": "false",
"node_shared_libuv": "false",
"node_shared_nghttp2": "false",
"node_shared_openssl": "false",
"node_shared_zlib": "false",
"node_tag": "",
"node_target_type": "executable",
"node_use_bundled_v8": "true",
"node_use_dtrace": "true",
"node_use_etw": "false",
"node_use_lttng": "false",
"node_use_openssl": "true",
"node_use_perfctr": "false",
"node_use_v8_platform": "true",
"node_without_node_options": "false",
"openssl_fips": "",
"openssl_no_asm": 0,
"shlib_suffix": "59.dylib",
"target_arch": "x64",
"v8_enable_gdbjit": 0,
"v8_enable_i18n_support": 1,
"v8_enable_inspector": 1,
"v8_no_strict_aliasing": 1,
"v8_optimized_debug": 0,
"v8_promise_internal_field_count": 1,
"v8_random_seed": 0,
"v8_trace_maps": 0,
"v8_use_snapshot": "true",
"want_separate_host_toolset": 0,
"xcode_version": "7.0",
"nodedir": "/Users/andrewmckinnon2/.node-gyp/9.7.1",
"standalone_static_library": 1,
"libsass_ext": "",
"libsass_cflags": "",
"libsass_ldflags": "",
"libsass_library": "",
"save_dev": "",
"legacy_bundling": "",
"dry_run": "",
"viewer": "man",
"only": "",
"commit_hooks": "true",
"browser": "",
"also": "",
"sign_git_commit": "",
"rollback": "true",
"usage": "",
"audit": "true",
"globalignorefile": "/usr/local/etc/npmignore",
"shell": "/bin/bash",
"maxsockets": "50",
"init_author_url": "",
"shrinkwrap": "true",
"parseable": "",
"metrics_registry": "https://registry.npmjs.org/",
"timing": "",
"init_license": "ISC",
"if_present": "",
"sign_git_tag": "",
"init_author_email": "",
"cache_max": "Infinity",
"preid": "",
"long": "",
"local_address": "",
"git_tag_version": "true",
"cert": "",
"registry": "https://registry.npmjs.org/",
"fetch_retries": "2",
"no_proxy": "",
"versions": "",
"message": "%s",
"key": "",
"globalconfig": "/usr/local/etc/npmrc",
"prefer_online": "",
"logs_max": "10",
"always_auth": "",
"global_style": "",
"cache_lock_retries": "10",
"update_notifier": "true",
"heading": "npm",
"audit_level": "low",
"searchlimit": "20",
"read_only": "",
"offline": "",
"fetch_retry_mintimeout": "10000",
"json": "",
"access": "",
"allow_same_version": "",
"https_proxy": "",
"engine_strict": "",
"description": "true",
"userconfig": "/Users/andrewmckinnon2/.npmrc",
"init_module": "/Users/andrewmckinnon2/.npm-init.js",
"cidr": "",
"user": "",
"node_version": "9.7.1",
"save": "true",
"ignore_prepublish": "",
"editor": "vi",
"auth_type": "legacy",
"tag": "latest",
"script_shell": "",
"progress": "true",
"global": "",
"searchstaleness": "900",
"optional": "true",
"ham_it_up": "",
"save_prod": "",
"force": "",
"bin_links": "true",
"searchopts": "",
"node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js",
"depth": "Infinity",
"sso_poll_frequency": "500",
"rebuild_bundle": "true",
"unicode": "true",
"fetch_retry_maxtimeout": "60000",
"tag_version_prefix": "v",
"strict_ssl": "true",
"sso_type": "oauth",
"scripts_prepend_node_path": "warn-only",
"save_prefix": "^",
"ca": "",
"save_exact": "",
"group": "20",
"fetch_retry_factor": "10",
"dev": "",
"version": "",
"prefer_offline": "",
"cache_lock_stale": "60000",
"otp": "",
"cache_min": "10",
"searchexclude": "",
"cache": "/Users/andrewmckinnon2/.npm",
"color": "true",
"package_lock": "true",
"package_lock_only": "",
"save_optional": "",
"ignore_scripts": "",
"user_agent": "npm/6.4.0 node/v9.7.1 darwin x64",
"cache_lock_wait": "10000",
"production": "",
"send_metrics": "",
"save_bundle": "",
"umask": "0022",
"node_options": "",
"init_version": "1.0.0",
"init_author_name": "",
"git": "git",
"scope": "",
"unsafe_perm": "true",
"tmp": "/var/folders/sl/237_wvw960j_wpq95x2ftmqc0000gn/T",
"onload_script": "",
"prefix": "/usr/local",
"link": ""
}
}
|
[
"andrewmckinnon2@gmail.com"
] |
andrewmckinnon2@gmail.com
|
b43732cfbfc7173753f1b264c51da09b36a11fac
|
633ab8880dc367feefdb6ef565ed0e70a4094bc1
|
/10001-11000/10951.py
|
344e4ca8721432ff30ea47445a48febd4a14a805
|
[] |
no_license
|
winston1214/baekjoon
|
2e9740ee2824d7777f6e64d50087b5c040baf2c6
|
20125255cd5b359023a6297f3761b2db1057d67d
|
refs/heads/master
| 2023-03-04T09:07:27.688072
| 2021-02-16T13:51:49
| 2021-02-16T13:51:49
| 284,832,623
| 3
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 142
|
py
|
# @Author YoungMinKim
# baekjoon
while True:
try:
a,b = map(int,input().split())
print(a+b)
except:
break
|
[
"winston1214@naver.com"
] |
winston1214@naver.com
|
c7e53240cbdadeb3f3b35fd1a36fd1b855939960
|
b2fab56bd637f4ac82b2fd0e2f4a12b7a3846458
|
/LC66_Plus_One.py
|
9266a16cab22f061f3a615e4b1f71c5e8cf67ffb
|
[] |
no_license
|
tongyijia/python_leetcode_and_Sword-means-offer
|
e7957602e04830ea306cfaed3782f55ee7ee5ca2
|
0456f011a5a50b02bd5056dd1d98827fcd8f90cf
|
refs/heads/master
| 2020-09-08T01:51:46.059267
| 2019-11-22T08:07:46
| 2019-11-22T08:07:46
| 220,977,096
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 467
|
py
|
class Solution:
def plusOne(self, digits: List[int]) -> List[int]:
if len(digits) == 0: return False
l1 = [0,1,2,3,4,5,6,7,8]
l2 = [9]
if digits[-1] in l1:
digits[-1] += 1
return digits
elif digits[-1] in l2 and len(digits) == 1:
return [1,0]
else:
digits[-1] = 0
digits[:len(digits)-1] = self.plusOne(digits[:len(digits)-1])
return digits
|
[
"tongyijialinux@163.com"
] |
tongyijialinux@163.com
|
f03561d2788a4bb0b7d5d2706508ce0ede8bbadb
|
86a2c72a245971348fecb7cf01b838079aa055d9
|
/produtos/urls.py
|
15588be5e8115757d6be44ec788272dd219c071b
|
[
"MIT"
] |
permissive
|
WesGtoX/gestao-clientes
|
af9c9b637e2ac687479547c2d5ccc82824c49db1
|
851b1c89e7b86f6d0b60d9b8d9c2bed3b629d8bf
|
refs/heads/main
| 2023-03-29T21:24:07.823985
| 2021-03-25T00:09:54
| 2021-03-25T00:09:54
| 215,177,263
| 0
| 0
|
MIT
| 2021-04-07T01:59:00
| 2019-10-15T01:21:58
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 229
|
py
|
from django.urls import path
from produtos import views
urlpatterns = [
path('list/', views.produtos_list, name='produtos_list'),
path('produto_bulk/', views.ProdutoBulk.as_view(), name='produto_bulk'), # CreateView
]
|
[
"wesley_gto_x@yahoo.com.br"
] |
wesley_gto_x@yahoo.com.br
|
6571516054a65575f196eb125bf11eb8155fca0e
|
70e72c1fc10607ca94f03f01672c2c7b85793dc2
|
/codeowners/__init__.py
|
79fa59368b5ea8c287ed8919b909f882d989ac10
|
[
"MIT"
] |
permissive
|
sbdchd/codeowners
|
6c1d7797e86f759ef62a5467c09bdea7c9b118e9
|
04b18b38ee0399c258cf3d200bf2eabf7182982c
|
refs/heads/master
| 2022-08-08T01:46:53.901640
| 2022-07-26T05:33:19
| 2022-07-26T05:33:19
| 200,386,032
| 27
| 14
|
MIT
| 2022-07-27T14:33:01
| 2019-08-03T14:40:16
|
Python
|
UTF-8
|
Python
| false
| false
| 6,224
|
py
|
import re
from typing import Generator, List, Optional, Pattern, Tuple
from typing_extensions import Literal
__all__ = ["CodeOwners"]
OwnerTuple = Tuple[Literal["USERNAME", "TEAM", "EMAIL"], str]
TEAM = re.compile(r"^@\S+/\S+")
USERNAME = re.compile(r"^@\S+")
EMAIL = re.compile(r"^\S+@\S+")
MASK = "/" * 20
def path_to_regex(pattern: str) -> Pattern[str]:
"""
ported from https://github.com/hmarr/codeowners/blob/d0452091447bd2a29ee508eebc5a79874fb5d4ff/match.go#L33
MIT License
Copyright (c) 2020 Harry Marr
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
regex = ""
slash_pos = pattern.find("/")
anchored = slash_pos > -1 and slash_pos != len(pattern) - 1
regex += r"\A" if anchored else r"(?:\A|/)"
matches_dir = pattern[-1] == "/"
matches_no_subdirs = pattern[-2:] == "/*"
pattern_trimmed = pattern.strip("/")
in_char_class = False
escaped = False
iterator = enumerate(pattern_trimmed)
for i, ch in iterator:
if escaped:
regex += re.escape(ch)
escaped = False
continue
if ch == "\\":
escaped = True
elif ch == "*":
if i + 1 < len(pattern_trimmed) and pattern_trimmed[i + 1] == "*":
left_anchored = i == 0
leading_slash = i > 0 and pattern_trimmed[i - 1] == "/"
right_anchored = i + 2 == len(pattern_trimmed)
trailing_slash = (
i + 2 < len(pattern_trimmed) and pattern_trimmed[i + 2] == "/"
)
if (left_anchored or leading_slash) and (
right_anchored or trailing_slash
):
regex += ".*"
next(iterator, None)
next(iterator, None)
continue
regex += "[^/]*"
elif ch == "?":
regex += "[^/]"
elif ch == "[":
in_char_class = True
regex += ch
elif ch == "]":
if in_char_class:
regex += ch
in_char_class = False
else:
regex += re.escape(ch)
else:
regex += re.escape(ch)
if in_char_class:
raise ValueError(f"unterminated character class in pattern {pattern}")
if matches_dir:
regex += "/"
elif matches_no_subdirs:
regex += r"\Z"
else:
regex += r"(?:\Z|/)"
return re.compile(regex)
def parse_owner(owner: str) -> Optional[OwnerTuple]:
if TEAM.match(owner):
return ("TEAM", owner)
if USERNAME.match(owner):
return ("USERNAME", owner)
if EMAIL.match(owner):
return ("EMAIL", owner)
return None
class CodeOwners:
def __init__(self, text: str) -> None:
section_name = None
paths: List[Tuple[Pattern[str], str, List[OwnerTuple], int, Optional[str]]] = []
for line_num, line in enumerate(text.splitlines(), start=1):
line = line.strip()
if line == "" or line.startswith("#"):
continue
# Track the GitLab section name (if used)
# https://docs.gitlab.com/ee/user/project/code_owners.html#code-owners-sections
elif line.startswith("[") and line.endswith("]"):
section_name = line[1:-1]
continue
elif line.startswith("^[") and line.endswith("]"):
section_name = line[2:-1]
continue
elements = iter(line.replace("\\ ", MASK).split())
path = next(elements, None)
if path is None:
continue
owners: List[OwnerTuple] = []
for owner in elements:
owner_res = parse_owner(owner)
if owner_res is not None:
owners.append(owner_res)
paths.append(
(
path_to_regex(path),
path.replace(MASK, "\\ "),
owners,
line_num,
section_name,
)
)
paths.reverse()
self.paths = paths
def matching_lines(
self, filepath: str
) -> Generator[
Tuple[List[OwnerTuple], Optional[int], Optional[str], Optional[str]], None, None
]:
for pattern, path, owners, line_num, section_name in self.paths:
if pattern.search(filepath.replace(" ", MASK)) is not None:
yield (owners, line_num, path, section_name)
def matching_line(
self, filepath: str
) -> Tuple[List[OwnerTuple], Optional[int], Optional[str], Optional[str]]:
return next(self.matching_lines(filepath), ([], None, None, None))
def section_name(self, filepath: str) -> Optional[str]:
"""
Find the section name of the specified file path.
None is returned when no matching section information
was found (or sections are not used in the CODEOWNERS file)
"""
return self.matching_line(filepath)[3]
def of(self, filepath: str) -> List[OwnerTuple]:
return self.matching_line(filepath)[0]
|
[
"noreply@github.com"
] |
sbdchd.noreply@github.com
|
faf6939df77af078f8359a2e9f30b6df4ffc6cd9
|
f98960a21f60be089aca5d54bcfc67661a819757
|
/common/libs/user/UserService.py
|
5b168a11306cf4fb73e98cdd6c2efbccab5ba2e7
|
[] |
no_license
|
767073632/question_bank_flask
|
7d7ed70af3b9f8e6c692e0e556f28a03e0a6398c
|
d3fae99f389fac408195fbf4d5812b7f9c26c33a
|
refs/heads/master
| 2022-12-03T16:52:34.349843
| 2020-08-23T07:36:48
| 2020-08-23T07:36:48
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 683
|
py
|
import base64
import hashlib
import string
import random
class UserService():
@staticmethod
def gene_auth_code(user_info):
m = hashlib.md5()
str = "%s-%s-%s-%s"%(user_info.uid,user_info.login_name,user_info.login_pwd,user_info.login_salt)
m.update(str.encode('utf-8'))
return m.hexdigest()
@staticmethod
def gene_pwd(pwd,salt):
m = hashlib.md5()
str = "%s-%s"%(base64.encodebytes(pwd.encode('utf-8')),salt)
m.update(str.encode('utf-8'))
return m.hexdigest()
@staticmethod
def gene_salt():
return "".join(random.choices(string.ascii_letters+string.digits,k=16))
|
[
"zhilong.wang@ly.com"
] |
zhilong.wang@ly.com
|
b326df97c204e9190ac03e42cf89e198cff1a2b2
|
a2362576001e0f9e22dc69c623170e108908c1b4
|
/testing_sys/todos/urls.py
|
6904f3751932fe8f272a980e49cd322ecafbba5d
|
[] |
no_license
|
mdigbazova/TestSystem
|
c1a694eb1877567bcc63a2cc3f615469ba4f8fd9
|
e5cca7a3aa31f1af4e1f7807895124e36348b9af
|
refs/heads/master
| 2022-12-15T22:20:14.812166
| 2019-06-11T08:14:24
| 2019-06-11T08:14:24
| 183,647,017
| 0
| 1
| null | 2022-11-22T03:50:12
| 2019-04-26T14:53:54
|
Python
|
UTF-8
|
Python
| false
| false
| 1,004
|
py
|
from django.urls import path
from rest_framework.urlpatterns import format_suffix_patterns
from rest_framework.schemas import get_schema_view
from . import views
schema_view = get_schema_view(title='Pastebin API')
urlpatterns = [
path('schema/', schema_view),
path('todos_list/', views.TodosList.as_view(), name="todos-list"),
path('todo/<pk>/', views.TodosDetail.as_view(), name="todos-detail"),
path('todo/<pk>/highlight/', views.TodoDetail.as_view(), name='todo-detail'),
path('users/', views.UserList.as_view(), name="user-list"),
path('user/<pk>/', views.UserDetail.as_view (), name="user-detail"),
path('', views.api_root),
]
"""Including format_suffix_patterns is an optional choice that provides a simple, DRY way to refer to a specific file format for a URL endpoint. It means our API will be able to handle URls
such as http://example.com/api/items/4.json
rather than just http://example.com/api/items/4.
"""
urlpatterns = format_suffix_patterns(urlpatterns)
|
[
"mdigbazova@gmail.com"
] |
mdigbazova@gmail.com
|
0cc9f6522d31661b42ca34270fb6039f9874c64e
|
ad58ceeada5ad7c1a6a9fc370969a7d7306b6397
|
/graphviz/quoting.py
|
34b75016bccbee5fbc090ae5efd00e9245582f93
|
[
"MIT"
] |
permissive
|
kianmeng/graphviz
|
35e65f9895130ca12c6b4fa54efb064ddbdbcdde
|
2861bdea2dcc0ec90bd257b56ab546eb95537221
|
refs/heads/master
| 2023-08-30T16:48:43.526661
| 2021-11-02T20:51:16
| 2021-11-02T20:51:16
| 424,044,748
| 0
| 0
|
MIT
| 2021-11-03T00:47:06
| 2021-11-03T00:47:05
| null |
UTF-8
|
Python
| false
| false
| 5,327
|
py
|
"""Quote strings to be valid DOT identifiers, assemble quoted attribute lists."""
import functools
import re
import typing
from . import tools
__all__ = ['quote', 'quote_edge',
'a_list', 'attr_list',
'escape', 'nohtml']
# https://www.graphviz.org/doc/info/lang.html
# https://www.graphviz.org/doc/info/attrs.html#k:escString
HTML_STRING = re.compile(r'<.*>$', re.DOTALL)
ID = re.compile(r'([a-zA-Z_][a-zA-Z0-9_]*|-?(\.[0-9]+|[0-9]+(\.[0-9]*)?))$')
KEYWORDS = {'node', 'edge', 'graph', 'digraph', 'subgraph', 'strict'}
COMPASS = {'n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw', 'c', '_'} # TODO
QUOTE_OPTIONAL_BACKSLASHES = re.compile(r'(?P<bs>(?:\\\\)*)'
r'\\?(?P<quote>")')
ESCAPE_UNESCAPED_QUOTES = functools.partial(QUOTE_OPTIONAL_BACKSLASHES.sub,
r'\g<bs>\\\g<quote>')
def quote(identifier: str,
is_html_string=HTML_STRING.match,
is_valid_id=ID.match,
dot_keywords=KEYWORDS,
escape_unescaped_quotes=ESCAPE_UNESCAPED_QUOTES) -> str:
r"""Return DOT identifier from string, quote if needed.
>>> quote('')
'""'
>>> quote('spam')
'spam'
>>> quote('spam spam')
'"spam spam"'
>>> quote('-4.2')
'-4.2'
>>> quote('.42')
'.42'
>>> quote('<<b>spam</b>>')
'<<b>spam</b>>'
>>> quote(nohtml('<>'))
'"<>"'
>>> print(quote('"'))
"\""
>>> print(quote('\\"'))
"\""
>>> print(quote('\\\\"'))
"\\\""
>>> print(quote('\\\\\\"'))
"\\\""
"""
if is_html_string(identifier) and not isinstance(identifier, NoHtml):
pass
elif not is_valid_id(identifier) or identifier.lower() in dot_keywords:
return f'"{escape_unescaped_quotes(identifier)}"'
return identifier
def quote_edge(identifier: str) -> str:
"""Return DOT edge statement node_id from string, quote if needed.
>>> quote_edge('spam')
'spam'
>>> quote_edge('spam spam:eggs eggs')
'"spam spam":"eggs eggs"'
>>> quote_edge('spam:eggs:s')
'spam:eggs:s'
"""
node, _, rest = identifier.partition(':')
parts = [quote(node)]
if rest:
port, _, compass = rest.partition(':')
parts.append(quote(port))
if compass:
parts.append(compass)
return ':'.join(parts)
def a_list(label: typing.Optional[str] = None,
kwargs=None, attributes=None) -> str:
"""Return assembled DOT a_list string.
>>> a_list('spam', {'spam': None, 'ham': 'ham ham', 'eggs': ''})
'label=spam eggs="" ham="ham ham"'
"""
result = [f'label={quote(label)}'] if label is not None else []
if kwargs:
items = [f'{quote(k)}={quote(v)}'
for k, v in tools.mapping_items(kwargs) if v is not None]
result.extend(items)
if attributes:
if hasattr(attributes, 'items'):
attributes = tools.mapping_items(attributes)
items = [f'{quote(k)}={quote(v)}'
for k, v in attributes if v is not None]
result.extend(items)
return ' '.join(result)
def attr_list(label: typing.Optional[str] = None,
kwargs=None, attributes=None) -> str:
"""Return assembled DOT attribute list string.
Sorts ``kwargs`` and ``attributes`` if they are plain dicts
(to avoid unpredictable order from hash randomization in Python < 3.7).
>>> attr_list()
''
>>> attr_list('spam spam', kwargs={'eggs': 'eggs', 'ham': 'ham ham'})
' [label="spam spam" eggs=eggs ham="ham ham"]'
>>> attr_list(kwargs={'spam': None, 'eggs': ''})
' [eggs=""]'
"""
content = a_list(label, kwargs, attributes)
if not content:
return ''
return f' [{content}]'
class Quote:
"""Quote strings to be valid DOT identifiers, assemble quoted attribute lists."""
_quote = staticmethod(quote)
_quote_edge = staticmethod(quote_edge)
_a_list = staticmethod(a_list)
_attr_list = staticmethod(attr_list)
def escape(s: str) -> 'NoHtml':
r"""Return ``s`` as literal disabling special meaning of backslashes
and ``'<...>'``.
see also https://www.graphviz.org/doc/info/attrs.html#k:escString
Args:
s: String in which backslashes and ``'<...>'``
should be treated as literal.
Returns:
Escaped string subclass instance.
Raises:
TypeError: If ``s`` is not a ``str``.
Example:
>>> import graphviz
>>> print(graphviz.escape(r'\l'))
\\l
"""
return nohtml(s.replace('\\', '\\\\'))
class NoHtml(str):
"""String subclass that does not treat ``'<...>'`` as DOT HTML string."""
__slots__ = ()
def nohtml(s: str) -> NoHtml:
"""Return copy of ``s`` that will not treat ``'<...>'``
as DOT HTML string in quoting.
Args:
s: String in which leading ``'<'`` and trailing ``'>'``
should be treated as literal.
Returns:
String subclass instance.
Raises:
TypeError: If ``s`` is not a ``str``.
Example:
>>> import graphviz
>>> g = graphviz.Graph()
>>> g.node(graphviz.nohtml('<>-*-<>'))
>>> print(g.source) # doctest: +NORMALIZE_WHITESPACE
graph {
"<>-*-<>"
}
"""
return NoHtml(s)
|
[
"sebastian.bank@uni-leipzig.de"
] |
sebastian.bank@uni-leipzig.de
|
1b9e47c4782c223749556fcc26edde71958cf0b7
|
09c8e2ead4c8d76e76bfd5fd7b8abaed709b913b
|
/data_common/machine_learning/utils/word_utils.py
|
90fe9fd19d8ff9c93cc1a17255f430ed27707ce3
|
[] |
no_license
|
jiangsiwei2018/BigData
|
c004f8e1bb290e6591745aec0dcaeb8542765e3b
|
568a627f32c2f4526d508096e1ded942bdf7b425
|
refs/heads/master
| 2023-08-19T14:48:24.244248
| 2021-10-19T18:56:18
| 2021-10-19T18:56:18
| 345,369,365
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,164
|
py
|
def createVocabList(dataSet):
'''
创建所有文档中出现的不重复词汇列表
Args:
dataSet: 所有文档
Return:
包含所有文档的不重复词列表,即词汇表
'''
vocabSet = set([])
# 创建两个集合的并集
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
# 词袋模型(bag-of-words model):词在文档中出现的次数
def bagOfWords2Vec(vocabList, inputSet):
'''
依据词汇表,将输入文本转化成词袋模型词向量
Args:
vocabList: 词汇表
inputSet: 当前输入文档
Return:
returnVec: 转换成词向量的文档
例子:
vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']
inputset = ['python', 'machine', 'learning', 'python', 'machine']
returnVec = [0, 0, 2, 0, 2, 1]
长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print
'''
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
else:
print("the word: %s is not in my vocabulary!" % word)
return returnVec
# 词集模型(set-of-words model):词在文档中是否存在,存在为1,不存在为0
def setOfWord2Vec(vocabList, inputSet):
'''
依据词汇表,将输入文本转化成词集模型词向量
Args:
vocabList: 词汇表
inputSet: 当前输入文档
Return:
returnVec: 转换成词向量的文档
例子:
vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']
inputset = ['python', 'machine', 'learning']
returnVec = [0, 0, 1, 0, 1, 1]
长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print
'''
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my vocabulary!" % word)
return returnVec
|
[
"1910479313@qq.com"
] |
1910479313@qq.com
|
2e4a196d264e7391673866250f0d8235569d7a90
|
6268777dc14e1870f122c3f6d9eb159ae64e71d2
|
/plugin/py/lib/evernote/edam/limits/constants.py
|
5894682f0f534b679148c3dee10634237d1500e2
|
[
"Apache-2.0",
"BSD-2-Clause"
] |
permissive
|
vim-scripts/evervim
|
9b36bb2caf4344850e12a85eac187357fe0d07e8
|
fd333a0757c27b3fd737786cdf9bb4f6cffadb0c
|
refs/heads/master
| 2020-05-19T09:22:53.141709
| 2012-06-03T00:00:00
| 2012-06-09T22:20:03
| 4,316,143
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,554
|
py
|
#
# Autogenerated by Thrift
#
# DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING
#
from thrift.Thrift import *
from ttypes import *
EDAM_ATTRIBUTE_LEN_MIN = 1
EDAM_ATTRIBUTE_LEN_MAX = 4096
EDAM_ATTRIBUTE_REGEX = "^[^\\p{Cc}\\p{Zl}\\p{Zp}]{1,4096}$"
EDAM_ATTRIBUTE_LIST_MAX = 100
EDAM_GUID_LEN_MIN = 36
EDAM_GUID_LEN_MAX = 36
EDAM_GUID_REGEX = "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$"
EDAM_EMAIL_LEN_MIN = 6
EDAM_EMAIL_LEN_MAX = 255
EDAM_EMAIL_LOCAL_REGEX = "^[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(\\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*$"
EDAM_EMAIL_DOMAIN_REGEX = "^[A-Za-z0-9-]+(\\.[A-Za-z0-9-]+)*\\.([A-Za-z]{2,})$"
EDAM_EMAIL_REGEX = "^[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+(\\.[A-Za-z0-9!#$%&'*+/=?^_`{|}~-]+)*@[A-Za-z0-9-]+(\\.[A-Za-z0-9-]+)*\\.([A-Za-z]{2,})$"
EDAM_TIMEZONE_LEN_MIN = 1
EDAM_TIMEZONE_LEN_MAX = 32
EDAM_TIMEZONE_REGEX = "^([A-Za-z_-]+(/[A-Za-z_-]+)*)|(GMT(-|\\+)[0-9]{1,2}(:[0-9]{2})?)$"
EDAM_MIME_LEN_MIN = 3
EDAM_MIME_LEN_MAX = 255
EDAM_MIME_REGEX = "^[A-Za-z]+/[A-Za-z0-9._+-]+$"
EDAM_MIME_TYPE_GIF = "image/gif"
EDAM_MIME_TYPE_JPEG = "image/jpeg"
EDAM_MIME_TYPE_PNG = "image/png"
EDAM_MIME_TYPE_WAV = "audio/wav"
EDAM_MIME_TYPE_MP3 = "audio/mpeg"
EDAM_MIME_TYPE_AMR = "audio/amr"
EDAM_MIME_TYPE_INK = "application/vnd.evernote.ink"
EDAM_MIME_TYPE_PDF = "application/pdf"
EDAM_MIME_TYPE_DEFAULT = "application/octet-stream"
EDAM_MIME_TYPES = set([
"image/gif",
"image/jpeg",
"image/png",
"audio/wav",
"audio/mpeg",
"audio/amr",
"application/vnd.evernote.ink",
"application/pdf",
])
EDAM_COMMERCE_SERVICE_GOOGLE = "Google"
EDAM_COMMERCE_SERVICE_PAYPAL = "Paypal"
EDAM_COMMERCE_SERVICE_GIFT = "Gift"
EDAM_COMMERCE_SERVICE_TRIALPAY = "TrialPay"
EDAM_COMMERCE_SERVICE_TRIAL = "Trial"
EDAM_COMMERCE_SERVICE_GROUP = "Group"
EDAM_COMMERCE_SERVICE_CYBERSOURCE = "CYBERSRC"
EDAM_COMMERCE_DEFAULT_CURRENCY_COUNTRY_CODE = "USD"
EDAM_SEARCH_QUERY_LEN_MIN = 0
EDAM_SEARCH_QUERY_LEN_MAX = 1024
EDAM_SEARCH_QUERY_REGEX = "^[^\\p{Cc}\\p{Zl}\\p{Zp}]{0,1024}$"
EDAM_HASH_LEN = 16
EDAM_USER_USERNAME_LEN_MIN = 1
EDAM_USER_USERNAME_LEN_MAX = 64
EDAM_USER_USERNAME_REGEX = "^[a-z0-9]([a-z0-9_-]{0,62}[a-z0-9])?$"
EDAM_USER_NAME_LEN_MIN = 1
EDAM_USER_NAME_LEN_MAX = 255
EDAM_USER_NAME_REGEX = "^[^\\p{Cc}\\p{Zl}\\p{Zp}]{1,255}$"
EDAM_TAG_NAME_LEN_MIN = 1
EDAM_TAG_NAME_LEN_MAX = 100
EDAM_TAG_NAME_REGEX = "^[^,\\p{Cc}\\p{Z}]([^,\\p{Cc}\\p{Zl}\\p{Zp}]{0,98}[^,\\p{Cc}\\p{Z}])?$"
EDAM_NOTE_TITLE_LEN_MIN = 1
EDAM_NOTE_TITLE_LEN_MAX = 255
EDAM_NOTE_TITLE_REGEX = "^[^\\p{Cc}\\p{Z}]([^\\p{Cc}\\p{Zl}\\p{Zp}]{0,253}[^\\p{Cc}\\p{Z}])?$"
EDAM_NOTE_CONTENT_LEN_MIN = 0
EDAM_NOTE_CONTENT_LEN_MAX = 5242880
EDAM_NOTEBOOK_NAME_LEN_MIN = 1
EDAM_NOTEBOOK_NAME_LEN_MAX = 100
EDAM_NOTEBOOK_NAME_REGEX = "^[^\\p{Cc}\\p{Z}]([^\\p{Cc}\\p{Zl}\\p{Zp}]{0,98}[^\\p{Cc}\\p{Z}])?$"
EDAM_NOTEBOOK_STACK_LEN_MIN = 1
EDAM_NOTEBOOK_STACK_LEN_MAX = 100
EDAM_NOTEBOOK_STACK_REGEX = "^[^\\p{Cc}\\p{Z}]([^\\p{Cc}\\p{Zl}\\p{Zp}]{0,98}[^\\p{Cc}\\p{Z}])?$"
EDAM_PUBLISHING_URI_LEN_MIN = 1
EDAM_PUBLISHING_URI_LEN_MAX = 255
EDAM_PUBLISHING_URI_REGEX = "^[a-zA-Z0-9.~_+-]{1,255}$"
EDAM_PUBLISHING_URI_PROHIBITED = set([
"..",
])
EDAM_PUBLISHING_DESCRIPTION_LEN_MIN = 1
EDAM_PUBLISHING_DESCRIPTION_LEN_MAX = 200
EDAM_PUBLISHING_DESCRIPTION_REGEX = "^[^\\p{Cc}\\p{Z}]([^\\p{Cc}\\p{Zl}\\p{Zp}]{0,198}[^\\p{Cc}\\p{Z}])?$"
EDAM_SAVED_SEARCH_NAME_LEN_MIN = 1
EDAM_SAVED_SEARCH_NAME_LEN_MAX = 100
EDAM_SAVED_SEARCH_NAME_REGEX = "^[^\\p{Cc}\\p{Z}]([^\\p{Cc}\\p{Zl}\\p{Zp}]{0,98}[^\\p{Cc}\\p{Z}])?$"
EDAM_USER_PASSWORD_LEN_MIN = 6
EDAM_USER_PASSWORD_LEN_MAX = 64
EDAM_USER_PASSWORD_REGEX = "^[A-Za-z0-9!#$%&'()*+,./:;<=>?@^_`{|}~\\[\\]\\\\-]{6,64}$"
EDAM_NOTE_TAGS_MAX = 100
EDAM_NOTE_RESOURCES_MAX = 1000
EDAM_USER_TAGS_MAX = 100000
EDAM_USER_SAVED_SEARCHES_MAX = 100
EDAM_USER_NOTES_MAX = 100000
EDAM_USER_NOTEBOOKS_MAX = 250
EDAM_USER_RECENT_MAILED_ADDRESSES_MAX = 10
EDAM_USER_MAIL_LIMIT_DAILY_FREE = 50
EDAM_USER_MAIL_LIMIT_DAILY_PREMIUM = 200
EDAM_USER_UPLOAD_LIMIT_FREE = 62914560
EDAM_USER_UPLOAD_LIMIT_PREMIUM = 1073741824
EDAM_NOTE_SIZE_MAX_FREE = 26214400
EDAM_NOTE_SIZE_MAX_PREMIUM = 52428800
EDAM_RESOURCE_SIZE_MAX_FREE = 26214400
EDAM_RESOURCE_SIZE_MAX_PREMIUM = 52428800
EDAM_USER_LINKED_NOTEBOOK_MAX = 100
EDAM_NOTEBOOK_SHARED_NOTEBOOK_MAX = 250
|
[
"scraper@vim-scripts.org"
] |
scraper@vim-scripts.org
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.