blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
1381ca116c99cc6ea7e9337e43bb5944241029d8
fd5b8eb6894f51e17f9d918fb8166162832c36fe
/norix/pipelines.py
a342c2a7ebeb241243985a04c1628472009cf86c
[ "Unlicense" ]
permissive
busla/norix-scraper
608d2c912ff18c7d7fbe98364b378f10c1281a93
994c23865039eaa949089b680c881697cb504eb8
refs/heads/master
2020-12-03T05:10:51.615201
2015-10-01T13:48:14
2015-10-01T13:48:14
33,375,845
0
0
null
null
null
null
UTF-8
Python
false
false
3,420
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from norix.items import * from scrapy.conf import settings from scrapy.exceptions import DropItem from scrapy import log import logging import json from bson import BSON from bson import json_util class PlayersPipeline(object): def __init__(self): connection = pymongo.MongoClient( settings['MONGODB_SERVER'], settings['MONGODB_PORT'] ) self.db = connection[settings['MONGODB_DB']] def process_item(self, item, spider): if not isinstance(item,PlayerItem): return item # return the item to let other pipeline to handle it db = self.db players = db['players'] player_seminars = db['player_seminars__seminar_players'] players.update( { 'ssn': item['ssn'] }, { 'ssn': item['ssn'], 'player_name': item['player_name'], 'email': item['email'], 'phone': item['phone'], 'status': item['status'] }, upsert=True) player_seminars.insert_one( { 'seminar_players': item['seminars'], 'player_seminars': item['ssn'] }) valid = True for data in item: if not data: valid = False raise DropItem("Missing {0}!".format(data)) if valid: #self.collection.insert(dict(item)) #self.collection.findAndModify(dict(item), {'upsert':'true'}); spider.logger.info("Player %s added to collection", item['player_name']) return item class SeminarPipeline(object): def __init__(self): connection = pymongo.MongoClient( settings['MONGODB_SERVER'], settings['MONGODB_PORT'] ) self.db = connection[settings['MONGODB_DB']] def process_item(self, item, spider): if not isinstance(item,SeminarItem): return item # return the item to let other pipeline to handle it db = self.db seminar = db['seminars'] #user_db = db['users'] user_seminars = db['seminar_seminar_has_users__user_user_has_seminars'] seminar.update({'seminar_id': item['seminar_id']}, dict(item), upsert=True) #find_user = user_db.find({'username': spider.user, 'club': spider.club}) #spider.logger.info(spider.user_obj['_id']) user_seminars.update({ 'user_user_has_seminars': spider.user_obj['_id'], 'seminar_seminar_has_users': item['seminar_id'] }, { 'user_user_has_seminars': spider.user_obj['_id'], 'seminar_seminar_has_users': item['seminar_id'] }, upsert=True) valid = True for data in item: if not data: valid = False raise DropItem("Missing {0}!".format(data)) if valid: spider.logger.info("Seminar %s added to collection", item['seminar_name']) return item
[ "nonni@nonni.cc" ]
nonni@nonni.cc
fe737470b74d64cbc5ac466cb42e40ada5666b32
ee295a3f82f22d27f2aa4e9697eefa38d3660bd1
/coaches/admin.py
c19ebc5d96cd0347d47c588adf3e64d086a63396
[]
no_license
OlgaChe/pybursa
d8373c730f5384458f402483a82318ee2d967b4b
5acd1645248444da65f4bc4330f5ea60e4e92c58
refs/heads/master
2020-12-11T07:40:24.542960
2015-01-11T16:31:09
2015-01-11T16:31:09
28,009,017
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
from django.contrib import admin from coaches.models import Coach @admin.register(Coach) class CoachAdmin(admin.ModelAdmin): list_display = ['name','surname', 'email', 'phone'] radio_fields = {'job': admin.HORIZONTAL, 'dossier': admin.HORIZONTAL} save_as = True save_on_top = True
[ "olgache73@gmail.com" ]
olgache73@gmail.com
ef671cbf550f126fb9ae19a992829f6fc521cdc6
a71582e89e84a4fae2595f034d06af6d8ad2d43a
/tensorflow/compiler/tests/while_test.py
15a31111cb6b51f6d6e501b86d906d9ba53d1c22
[ "Apache-2.0" ]
permissive
tfboyd/tensorflow
5328b1cabb3e24cb9534480fe6a8d18c4beeffb8
865004e8aa9ba630864ecab18381354827efe217
refs/heads/master
2021-07-06T09:41:36.700837
2019-04-01T20:21:03
2019-04-01T20:26:09
91,494,603
3
0
Apache-2.0
2018-07-17T22:45:10
2017-05-16T19:06:01
C++
UTF-8
Python
false
false
9,093
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for while loops in XLA.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.compiler.tf2xla.python import xla from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class WhileTest(xla_test.XLATestCase): def testSingletonLoopHandrolled(self): # Define a function for the loop body @function.Defun(dtypes.int32) def loop_body(step): step_out = step + constant_op.constant(1, dtype=dtypes.int32) return step_out # Define a function for the loop condition @function.Defun(dtypes.int32) def loop_cond(step): return step < 10 with self.cached_session() as sess: init_index = array_ops.placeholder(dtypes.int32, []) with self.test_scope(): loop_outputs = xla.while_loop([init_index], loop_cond, loop_body) result = sess.run(loop_outputs, {init_index: 0}) self.assertAllClose(result, [10], rtol=1e-3) def testCountingLoopHandrolled(self): # Define a function for the loop body @function.Defun(dtypes.int32, dtypes.float32) def loop_body(step, rsum): step_out = step + constant_op.constant(1, dtype=dtypes.int32) sum_out = rsum + constant_op.constant(1.5, dtype=dtypes.float32) return step_out, sum_out # Define a function for the loop condition @function.Defun(dtypes.int32, dtypes.float32) def loop_cond(step, rsum): del rsum return step < 10 with self.cached_session() as sess: init_index = array_ops.placeholder(dtypes.int32, []) init_sum = array_ops.placeholder(dtypes.float32, []) with self.test_scope(): loop_outputs = xla.while_loop([init_index, init_sum], loop_cond, loop_body) result = sess.run(loop_outputs, {init_index: 0, init_sum: 0.0}) self.assertAllClose(result, [10, 15.0], rtol=1e-3) no_iters_result = sess.run(loop_outputs, {init_index: 10, init_sum: 0.0}) self.assertAllClose(no_iters_result, [10, 0.0], rtol=1e-3) def testCountingLoopHandrolledC64(self): # Define a function for the loop body @function.Defun(dtypes.int32, dtypes.complex64) def loop_body(step, rsum): step_out = step + constant_op.constant(1, dtype=dtypes.int32) sum_out = rsum + constant_op.constant(1.5 + 2j, dtype=dtypes.complex64) return step_out, sum_out # Define a function for the loop condition @function.Defun(dtypes.int32, dtypes.complex64) def loop_cond(step, rsum): del rsum return step < 10 with self.cached_session() as sess: init_index = array_ops.placeholder(dtypes.int32, []) init_sum = array_ops.placeholder(dtypes.complex64, []) with self.test_scope(): loop_outputs = xla.while_loop([init_index, init_sum], loop_cond, loop_body) result = sess.run(loop_outputs, {init_index: 0, init_sum: 0.0}) self.assertAllClose(result[1], np.complex64(15 + 20j), rtol=1e-3) no_iters_result = sess.run(loop_outputs, {init_index: 10, init_sum: 0.0}) self.assertAllClose(no_iters_result[1], np.complex64(0), rtol=1e-3) def testLoopWithConstantOutput(self): # Define a function for the loop body @function.Defun(dtypes.int32, dtypes.int32) def loop_body(step, x): del x step_out = step + constant_op.constant(1, dtype=dtypes.int32) return (step_out, 7) # Define a function for the loop condition @function.Defun(dtypes.int32, dtypes.int32) def loop_cond(step, x): del x return step < 10 with self.cached_session() as sess: init_index = array_ops.placeholder(dtypes.int32, []) with self.test_scope(): loop_outputs = xla.while_loop([init_index, 42], loop_cond, loop_body) result = sess.run(loop_outputs, {init_index: 0}) self.assertAllClose(result, [10, 7], rtol=1e-3) def _testMaxItersSimple(self): if is_compile_on_demand(): self.skipTest("list_ops are not supported in cpu_ondemand") with self.cached_session() as sess, self.test_scope(): xla_context = control_flow_ops.XLAControlFlowContext() xla_context.Enter() v = constant_op.constant(1.0) p = array_ops.placeholder(dtype=dtypes.int32) def create_while_loop(): iterations = array_ops.size(p, name="iterations") r = control_flow_ops.while_loop( lambda *_: True, lambda i, x: (i + 1, v * x), (0, 1.0), maximum_iterations=iterations, name="outer") return array_ops.identity(r[1]) output = create_while_loop() output = gradients_impl.gradients(output, v)[0] result = sess.run(output, feed_dict={p: [0, 0, 0]}) print(result) xla_context.Exit() def testMaxItersSimple(self): self.skipTest("Fails with v1 control flow") # This fails with old control. # self._testMaxItersSimple() @test_util.enable_control_flow_v2 def testMaxItersSimpleV2(self): self._testMaxItersSimple() def _testNestedWhileLoopWithMaxItersFromOuterContext(self): if is_compile_on_demand(): self.skipTest("list_ops are not supported in cpu_ondemand") with self.cached_session() as sess, self.test_scope(): xla_context = control_flow_ops.XLAControlFlowContext() xla_context.Enter() v = constant_op.constant(1.0) p = array_ops.placeholder(dtype=dtypes.int32) def mid_body_builder(iterations): def mid_body(i, x): r = control_flow_ops.while_loop( lambda *_: True, lambda i, x: (i + 1, v * x), (0, x), maximum_iterations=iterations, name="inner") return (i + 1, gradients_impl.gradients(x + r[1], v)[0]) return mid_body def outer_body(i, x): iterations = array_ops.size(p, name="iterations") return (i + 1, x + control_flow_ops.while_loop( lambda *_: True, mid_body_builder(iterations), (0, x), maximum_iterations=iterations, name="mid")[1]) def create_while_loop(): r = control_flow_ops.while_loop( lambda *_: True, outer_body, (0, 1.0), maximum_iterations=5, name="outer") return array_ops.identity(r[1]) # p:placeholder # j = 0 # i, x = 0, 1. # while j++ < 5: # i1, x1 = 0, x # while i1++ < len(p): # i2, x2 = 0, x1 # while i2++ < len(p): # x2 = v * x2 # x1 = grad(x1 + x2, v) # x = x1 # output = x output = create_while_loop() sess.run(output, feed_dict={p: [0, 0, 0]}) xla_context.Exit() def testNestedWhileLoopWithMaxItersFromOuterContext(self): self._testNestedWhileLoopWithMaxItersFromOuterContext() @test_util.enable_control_flow_v2 def testNestedWhileLoopWithMaxItersFromOuterContextV2(self): self._testNestedWhileLoopWithMaxItersFromOuterContext() @test_util.enable_control_flow_v2 def testMap(self): if is_compile_on_demand(): self.skipTest("list_ops are not supported in cpu_ondemand") with self.cached_session(), self.test_scope(): xla_context = control_flow_ops.XLAControlFlowContext() xla_context.Enter() nums = [1, 2, 3, 4, 5, 6] elems = constant_op.constant(nums, name="data") r = map_fn.map_fn(lambda x: math_ops.multiply(math_ops.add(x, 3), 2), elems) self.assertAllEqual(r, np.array([(x + 3) * 2 for x in nums])) xla_context.Exit() def is_compile_on_demand(): return ("TF_XLA_FLAGS" in os.environ and "tf_xla_compile_on_demand" in os.environ["TF_XLA_FLAGS"]) if __name__ == "__main__": os.environ["TF_XLA_FLAGS"] = ("--tf_xla_min_cluster_size=2 " + os.environ.get("TF_XLA_FLAGS", "")) test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
b20d92f82601082dd870674fcdda146fed234b4b
36eb5d43686264e110f0aa6f23ffc725076a067a
/train_exp.py
39312b4a0240b04d70346fbc1a993bf81b29cfcd
[]
no_license
samsdimko/SMOMI5
16edb9535af1759baf5338ea5fad52e4202704cf
21fde8714e5493addb85f8c9bacdeef2bde2e2a6
refs/heads/master
2022-04-21T02:30:32.936304
2020-04-21T16:54:38
2020-04-21T16:54:38
257,272,795
0
0
null
null
null
null
UTF-8
Python
false
false
5,423
py
"""This module implements data feeding and training loop to create model to classify X-Ray chest images as a lab example for BSU students. """ __author__ = 'Alexander Soroka, soroka.a.m@gmail.com' __copyright__ = """Copyright 2020 Alexander Soroka""" import argparse import glob import numpy as np import tensorflow as tf import time import math from tensorflow.python import keras as keras from tensorflow.python.keras.callbacks import LearningRateScheduler from keras.models import load_model from numpy import asarray import PIL from PIL import Image import random LOG_DIR = 'logs' SHUFFLE_BUFFER = 10 BATCH_SIZE = 8 NUM_CLASSES = 2 PARALLEL_CALLS=4 RESIZE_TO = 224 TRAINSET_SIZE = 5216 VALSET_SIZE=624 def parse_proto_example(proto): keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([], tf.int64, default_value=tf.zeros([], dtype=tf.int64)) } example = tf.parse_single_example(proto, keys_to_features) example['image'] = tf.image.decode_jpeg(example['image/encoded'], channels=3) example['image'] = tf.image.convert_image_dtype(example['image'], dtype=tf.float32) example['image'] = tf.image.resize_images(example['image'], tf.constant([RESIZE_TO, RESIZE_TO])) return example['image'], example['image/class/label'] def normalize(image, label): return tf.image.per_image_standardization(image), label def resize(image, label): return tf.image.resize_images(image, tf.constant([RESIZE_TO, RESIZE_TO])), label def create_dataset(filenames, batch_size): """Create dataset from tfrecords file :tfrecords_files: Mask to collect tfrecords file of dataset :returns: tf.data.Dataset """ return tf.data.TFRecordDataset(filenames)\ .map(parse_proto_example)\ .map(resize)\ .map(normalize)\ .shuffle(buffer_size=5 * batch_size)\ .repeat()\ .batch(batch_size)\ .prefetch(2 * batch_size) def create_aug_dataset(filenames, batch_size): return tf.data.TFRecordDataset(filenames)\ .map(parse_proto_example)\ .map(resize)\ .map(normalize)\ .map(augment)\ .map(resize)\ .shuffle(buffer_size=5 * batch_size)\ .repeat()\ .batch(batch_size)\ .prefetch(2 * batch_size) def augment(image,label): degree = 30 dgr = random.uniform(-degree, degree) image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.random_flip_left_right(image) image = tf.image.random_brightness(image, 0.5, seed=None) image = tf.image.random_contrast(image, 0.4, 1.4, seed=None) image = tf.contrib.image.rotate(image, dgr * math.pi / 180, interpolation='BILINEAR') image = tf.image.random_crop(image, size=[180, 180, 3], seed=None, name=None) return image,label def exp_decay(epoch): lrate = initial_lrate * math.exp(-k*epoch) return lrate class Validation(tf.keras.callbacks.Callback): def __init__(self, log_dir, validation_files, batch_size): self.log_dir = log_dir self.validation_files = validation_files self.batch_size = batch_size def on_epoch_end(self, epoch, logs=None): print('The average loss for epoch {} is {:7.2f} '.format( epoch, logs['loss'] )) validation_dataset = create_dataset(self.validation_files, self.batch_size) validation_images, validation_labels = validation_dataset.make_one_shot_iterator().get_next() validation_labels = tf.one_hot(validation_labels, NUM_CLASSES) result = self.model.evaluate( validation_images, validation_labels, steps=int(np.ceil(VALSET_SIZE / float(BATCH_SIZE))) ) callback = tf.keras.callbacks.TensorBoard(log_dir=self.log_dir, update_freq='epoch', batch_size=self.batch_size) callback.set_model(self.model) callback.on_epoch_end(epoch, { 'val_' + self.model.metrics_names[i]: v for i, v in enumerate(result) }) def build_model(): model = keras.models.load_model('model.h5') model.trainable = True return model def main(): args = argparse.ArgumentParser() args.add_argument('--train', type=str, help='Glob pattern to collect train tfrecord files') args.add_argument('--test', type=str, help='Glob pattern to collect test tfrecord files') args = args.parse_args() train_dataset = create_aug_dataset(glob.glob(args.train), BATCH_SIZE) train_images, train_labels = train_dataset.make_one_shot_iterator().get_next() train_labels = tf.one_hot(train_labels, NUM_CLASSES) lrate = LearningRateScheduler(exp_decay) model = build_model() model.compile( optimizer=keras.optimizers.sgd(lr=0.0, momentum=0.9), loss=tf.keras.losses.categorical_crossentropy, metrics=[tf.keras.metrics.categorical_accuracy], target_tensors=[train_labels] ) log_dir='{}/xray-{}'.format(LOG_DIR, time.time()) model.fit( (train_images, train_labels), epochs=120, steps_per_epoch=int(np.ceil(TRAINSET_SIZE / float(BATCH_SIZE))), callbacks=[ lrate, tf.keras.callbacks.TensorBoard(log_dir), Validation(log_dir, validation_files=glob.glob(args.test), batch_size=BATCH_SIZE) ] ) if __name__ == '__main__': main()
[ "noreply@github.com" ]
samsdimko.noreply@github.com
640f0ac472579660bb1ca6b5856e1f775e2eda85
397e125e94f4f139f2bf5055824d81f24b8b1757
/ABC/011/next_month.py
2377071939fa14fe0e525012aedc43caaa3a7802
[]
no_license
tails1434/Atcoder
ecbab6ee238e3f225551297db961b1b502841fa4
e7c7fed36be46bbaaf020a70997842240ba98d62
refs/heads/master
2021-07-07T00:31:49.235625
2020-09-30T01:42:01
2020-09-30T01:42:01
189,009,622
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
N = int(input()) if N == 12: print(1) exit() print(N + 1)
[ "sososo1333@gmail.com" ]
sososo1333@gmail.com
17b1c73deb8173d4bb2d925572a319123a08f653
4afaca0d5f87ec6eb7c04f4decba5d3a0deb0cd5
/contact/migrations/0001_initial.py
d42dbc5fc658c00682f7b070050fc8211c165799
[]
no_license
royell1415/mandala
9cb84f093d72ebf0faabac83e255095c8b3c3ce6
8e1dfb1f756d19cc7f324c3372b7e74a39cacabe
refs/heads/master
2022-11-09T22:45:39.841677
2020-06-26T10:05:58
2020-06-26T10:05:58
275,124,698
0
1
null
null
null
null
UTF-8
Python
false
false
537
py
# Generated by Django 3.0.7 on 2020-06-21 07:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('phone', models.IntegerField()), ], ), ]
[ "royell1415@gmail.com" ]
royell1415@gmail.com
5529c55961a948d29b811b913d32cdb0d55b2f3a
c1dab6818d05c52bdc0347150ce700a73d64fa1d
/build/realsense/realsense-2.2.0/realsense2_camera/cmake/realsense2_camera-genmsg-context.py
6e81dfdd7ec6dfc93ef19b8847ffe4d715d317f0
[]
no_license
Sinchiguano/Perception_ur10
de5ee83f6e930679c045f96d4d3b6a87caeab452
40f18dc771bdcc4372d784f4aa8261774bab2b2a
refs/heads/master
2022-02-16T05:38:00.578173
2019-09-01T15:16:11
2019-09-01T15:16:11
194,514,569
2
0
null
null
null
null
UTF-8
Python
false
false
867
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/casch/ws_moveit/src/realsense/realsense-2.2.0/realsense2_camera/msg/IMUInfo.msg;/home/casch/ws_moveit/src/realsense/realsense-2.2.0/realsense2_camera/msg/Extrinsics.msg" services_str = "" pkg_name = "realsense2_camera" dependencies_str = "sensor_msgs;std_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "realsense2_camera;/home/casch/ws_moveit/src/realsense/realsense-2.2.0/realsense2_camera/msg;sensor_msgs;/opt/ros/melodic/share/sensor_msgs/cmake/../msg;std_msgs;/opt/ros/melodic/share/std_msgs/cmake/../msg;geometry_msgs;/opt/ros/melodic/share/geometry_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python2" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/melodic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
[ "cesarsinchiguano@hotmail.es" ]
cesarsinchiguano@hotmail.es
74a69ff594bc5636f84fca27064f3a1d41602740
cc284bd22cad0552bf306e4d4f4dc3ca39ddbe61
/anderson.py
e3d2e0f35c53475f7a604200dd09078b4d938bbb
[ "MIT" ]
permissive
afcarl/BFS_Sequences
d97dadcc59a419e5bb0992bf1708de69312e9e5b
75d8ecaedc2050ede120015d8a4b17ed72276ded
refs/heads/master
2020-08-22T15:16:29.796535
2019-06-25T18:02:56
2019-06-25T18:02:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
#!/usr/bin/env python # coding: utf-8 # Anderson Darling # use future imports for python 3.x forward compatibility from __future__ import print_function from __future__ import division from __future__ import absolute_import # other imports import math import numpy import random def _phi(x): 'Cumulative distribution function for the standard normal distribution' return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 def anderson_darling(x, mean=None): x = numpy.array(x) x = sorted(x) if mean is None: mean = numpy.mean(x) var = numpy.var(x) std = numpy.std(x) N = len(x) y = [(xi - mean)/std for xi in x] # start list at index 1 y = [None] + y A = 0 for i in range(1, N+1): A += (2*i - 1)*(math.log(_phi(y[i])) + math.log(1 - _phi(y[N+1-i]))) A = -N - 1/N * A return A # Statistic: # 10.00: 1.760 # 5.000: 2.323 # 2.500: 2.904 # 1.000: 3.690
[ "fja0568@gmail.com" ]
fja0568@gmail.com
eb0e4c2d2bd361697b98bb51b25ba54661c9b5dd
2031771d8c226806a0b35c3579af990dd0747e64
/pyobjc-framework-Cocoa/PyObjCTest/test_cfattributedstring.py
e11d40062532f71cdc30338ac39d3f6dc3c7a7a0
[ "MIT" ]
permissive
GreatFruitOmsk/pyobjc-mirror
a146b5363a5e39181f09761087fd854127c07c86
4f4cf0e4416ea67240633077e5665f5ed9724140
refs/heads/master
2018-12-22T12:38:52.382389
2018-11-12T09:54:18
2018-11-12T09:54:18
109,211,701
2
0
null
null
null
null
UTF-8
Python
false
false
5,680
py
from PyObjCTools.TestSupport import * from CoreFoundation import * from Foundation import NSCFAttributedString class TestAttributedString (TestCase): def testTypes(self): try: NSCFAttributedString = objc.lookUpClass('__NSCFAttributedString') except objc.error: NSCFAttributedString = objc.lookUpClass('NSCFAttributedString') self.assertIs(CFAttributedStringRef, NSCFAttributedString ) self.assertIs(CFMutableAttributedStringRef, NSCFAttributedString ) def testTypeID(self): v = CFAttributedStringGetTypeID() self.assertIsInstance(v, (int, long)) def testCreate(self): val = CFAttributedStringCreate(None, b"hello".decode('ascii'), {b'foo'.decode('ascii'): 42}) self.assertIsInstance(val, CFAttributedStringRef) val = CFAttributedStringCreateWithSubstring(None, val, (1,2)) self.assertIsInstance(val, CFAttributedStringRef) val2 = CFAttributedStringCreateCopy(None, val) self.assertIs(val2, val) def testGetting(self): val = CFAttributedStringCreate(None, b"hello".decode('ascii'), {b'foo'.decode('ascii'): 42, b'bar'.decode('ascii'):b'baz'}) self.assertIsInstance(val, CFAttributedStringRef) dta = CFAttributedStringGetString(val) self.assertEqual(dta , b"hello".decode('ascii') ) l = CFAttributedStringGetLength(val) self.assertEqual(l , 5 ) v, rng = CFAttributedStringGetAttributes(val, 1, None) self.assertEqual(v , {b'foo'.decode('ascii'): 42, b'bar'.decode('ascii'): b'baz' } ) self.assertEqual(rng , (0, 5) ) v, rng = CFAttributedStringGetAttributes(val, 1, objc.NULL) self.assertEqual(v , {b'foo'.decode('ascii'): 42, b'bar'.decode('ascii'): b'baz' } ) self.assertEqual(rng , objc.NULL ) v, rng = CFAttributedStringGetAttribute(val, 1, b"foo".decode('ascii'), None) self.assertEqual(v , 42 ) self.assertEqual(rng , (0, 5) ) v, rng = CFAttributedStringGetAttribute(val, 1, b"foo".decode('ascii'), objc.NULL) self.assertEqual(v , 42 ) self.assertEqual(rng , objc.NULL ) v, rng = CFAttributedStringGetAttributesAndLongestEffectiveRange(val, 1, (0,5), None) self.assertEqual(v , {b"foo".decode('ascii'): 42, b"bar".decode('ascii'): b'baz' } ) self.assertEqual(rng , (0, 5) ) v, rng = CFAttributedStringGetAttributesAndLongestEffectiveRange(val, 1, (0,5), objc.NULL) self.assertEqual(v , {b"foo".decode('ascii'): 42, b"bar".decode('ascii'): b'baz' } ) self.assertEqual(rng , objc.NULL ) v, rng = CFAttributedStringGetAttributeAndLongestEffectiveRange(val, 1, b"bar".decode('ascii'), (0,5), None) self.assertEqual(v , b'baz' ) self.assertEqual(rng , (0, 5) ) v, rng = CFAttributedStringGetAttributeAndLongestEffectiveRange(val, 1, b"bar".decode('ascii'), (0,5), objc.NULL) self.assertEqual(v , b'baz' ) self.assertEqual(rng , objc.NULL ) def testMutableCopy(self): val = CFAttributedStringCreateMutable(None, 0) self.assertIsInstance(val, CFAttributedStringRef) orig = CFAttributedStringCreate(None, b"hello".decode("ascii"), {b'foo'.decode("ascii"): 42, b'bar'.decode("ascii"):'baz'}) self.assertIsInstance(orig, CFAttributedStringRef) val = CFAttributedStringCreateMutableCopy(None, 0, orig) self.assertIsInstance(orig, CFAttributedStringRef) self.assertIsNot(val, orig) CFAttributedStringReplaceString(val, (0,3), "Hal") dta = CFAttributedStringGetString(val) self.assertEqual(dta , b"Hallo".decode("ascii") ) v = CFAttributedStringGetMutableString(val) self.assertIs(v, None ) CFAttributedStringSetAttributes(val, (0, 2), {b'ronald'.decode("ascii"):99}, False) v, rng = CFAttributedStringGetAttributes(val, 1, None) self.assertEqual(v , {b'ronald'.decode("ascii"):99, b'foo'.decode("ascii"): 42, b'bar'.decode("ascii"): 'baz' } ) self.assertEqual(rng , (0, 2) ) v, rng = CFAttributedStringGetAttributes(val, 3, None) self.assertEqual(v , {b'foo'.decode("ascii"): 42, b'bar'.decode("ascii"): 'baz' } ) self.assertEqual(rng , (2, 3) ) self.assertIsInstance(rng, CFRange) CFAttributedStringSetAttributes(val, (0, 2), {b'ronald'.decode("ascii"):99}, True) v, rng = CFAttributedStringGetAttributes(val, 1, None) self.assertEqual(v , {b'ronald'.decode("ascii"):99} ) self.assertEqual(rng , (0, 2) ) CFAttributedStringSetAttribute(val, (1, 3), b'color'.decode("ascii"), b'blue'.decode("ascii")) v, rng = CFAttributedStringGetAttributes(val, 1, None) self.assertEqual(v , {b'ronald'.decode("ascii"):99, b'color'.decode("ascii"):b'blue'.decode("ascii")} ) self.assertEqual(rng , (1, 1) ) CFAttributedStringRemoveAttribute(val, (1,3), b'color'.decode("ascii")) v, rng = CFAttributedStringGetAttributes(val, 3, None) self.assertEqual(v , {b'foo'.decode("ascii"): 42, b'bar'.decode("ascii"): 'baz' } ) self.assertEqual(rng , (2, 2) ) rep = CFAttributedStringCreate(None, "dummy", {b'attrib'.decode("ascii"): 99} ) CFAttributedStringReplaceAttributedString(val, (1,3), rep) self.assertEqual(CFAttributedStringGetString(val) , b'Hdummyo'.decode("ascii")) def testEditing(self): val = CFAttributedStringCreateMutable(None, 0) self.assertIsInstance(val, CFAttributedStringRef) CFAttributedStringBeginEditing(val) CFAttributedStringEndEditing(val) if __name__ == "__main__": main()
[ "ronaldoussoren@mac.com" ]
ronaldoussoren@mac.com
0b298d38894ef425ad1305607c706ac8c1028a1c
5168da0fb501135a3c86e4e95679f54a825d69d0
/openquake/hazardlib/gsim/nshmp_2014.py
7414d27cba6bcacae5529a8212acc10c9591c0e2
[ "BSD-3-Clause", "AGPL-3.0-only" ]
permissive
GFZ-Centre-for-Early-Warning/shakyground
266b29c05ea2cfff6d9d61f21b5114282c6fa117
0da9ba5a575360081715e8b90c71d4b16c6687c8
refs/heads/master
2023-06-01T21:41:11.127323
2018-10-09T10:31:48
2018-10-09T10:31:48
144,732,068
1
3
BSD-3-Clause
2019-11-18T07:58:49
2018-08-14T14:32:50
Python
UTF-8
Python
false
false
15,711
py
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2015-2018 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module exports :class:`AbrahamsonEtAl2014NSHMPUpper` :class:`AbrahamsonEtAl2014NSHMPLower` :class:`BooreEtAl2014NSHMPUpper` :class:`BooreEtAl2014NSHMPLower` :class:`CampbellBozorgnia2014NSHMPUpper` :class:`CampbellBozorgnia2014NSHMPLower` :class:`ChiouYoungs2014NSHMPUpper` :class:`ChiouYoungs2014NSHMPLower` :class:`Idriss2014NSHMPUpper` :class:`Idriss2014NSHMPLower` """ import numpy as np from openquake.hazardlib.gsim.base import _norm_sf, _truncnorm_sf from openquake.hazardlib import const # NGA West 2 GMPEs from openquake.hazardlib.gsim.abrahamson_2014 import AbrahamsonEtAl2014 from openquake.hazardlib.gsim.boore_2014 import BooreEtAl2014 from openquake.hazardlib.gsim.campbell_bozorgnia_2014 import \ CampbellBozorgnia2014 from openquake.hazardlib.gsim.chiou_youngs_2014 import ChiouYoungs2014 from openquake.hazardlib.gsim.idriss_2014 import Idriss2014 def nga_west2_epistemic_adjustment(magnitude, distance): """ Applies the "average" adjustment factor for epistemic uncertainty as defined in Table 17 of Petersen et al., (2014):: | R < 10. | 10.0 <= R < 30.0 | R >= 30.0 ----------------------------------------------------------- M < 6.0 | 0.37 | 0.22 | 0.22 6 <= M <7.0 | 0.25 | 0.23 | 0.23 M >= 7.0 | 0.40 | 0.36 | 0.33 """ if magnitude < 6.0: adjustment = 0.22 * np.ones_like(distance) adjustment[distance < 10.0] = 0.37 elif magnitude >= 7.0: adjustment = 0.36 * np.ones_like(distance) adjustment[distance < 10.0] = 0.40 adjustment[distance >= 30.0] = 0.33 else: adjustment = 0.23 * np.ones_like(distance) adjustment[distance < 10.0] = 0.25 return adjustment DEFAULT_WEIGHTING = [(0.185, -1.), (0.63, 0.), (0.185, 1.)] def get_weighted_poes(gsim, sctx, rctx, dctx, imt, imls, truncation_level, weighting=DEFAULT_WEIGHTING): """ This function implements the NGA West 2 GMPE epistemic uncertainty adjustment factor without re-calculating the actual GMPE each time. :param gsim: Instance of the GMPE :param list weighting: Weightings as a list of tuples of (weight, number standard deviations of the epistemic uncertainty adjustment) """ if truncation_level is not None and truncation_level < 0: raise ValueError('truncation level must be zero, positive number ' 'or None') gsim._check_imt(imt) adjustment = nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup) adjustment = adjustment.reshape(adjustment.shape + (1, )) if truncation_level == 0: # zero truncation mode, just compare imls to mean imls = gsim.to_distribution_values(imls) mean, _ = gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt, []) mean = mean.reshape(mean.shape + (1, )) output = np.zeros([mean.shape[0], imls.shape[0]]) for (wgt, fct) in weighting: output += (wgt * (imls <= (mean + (fct * adjustment))).astype(float)) return output else: # use real normal distribution assert (const.StdDev.TOTAL in gsim.DEFINED_FOR_STANDARD_DEVIATION_TYPES) imls = gsim.to_distribution_values(imls) mean, [stddev] = gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt, [const.StdDev.TOTAL]) mean = mean.reshape(mean.shape + (1, )) stddev = stddev.reshape(stddev.shape + (1, )) output = np.zeros([mean.shape[0], imls.shape[0]]) for (wgt, fct) in weighting: values = (imls - (mean + (fct * adjustment))) / stddev if truncation_level is None: output += (wgt * _norm_sf(values)) else: output += (wgt * _truncnorm_sf(truncation_level, values)) return output class AbrahamsonEtAl2014NSHMPUpper(AbrahamsonEtAl2014): """ Implements the positive NSHMP adjustment factor for the Abrahamson et al. (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean + nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class AbrahamsonEtAl2014NSHMPLower(AbrahamsonEtAl2014): """ Implements the negative NSHMP adjustment factor for the Abrahamson et al. (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean - nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class AbrahamsonEtAl2014NSHMPMean(AbrahamsonEtAl2014): """ Implements the Abrahamson et al (2014) GMPE for application to the weighted mean case """ def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Adapts the original `get_poes()` from the :class: openquake.hazardlib.gsim.base.GMPE to call a function that take the weighted sum of the PoEs from the epistemic uncertainty adjustment """ return get_weighted_poes(self, sctx, rctx, dctx, imt, imls, truncation_level) class BooreEtAl2014NSHMPUpper(BooreEtAl2014): """ Implements the positive NSHMP adjustment factor for the Boore et al. (2014) NGA West 2 GMPE """ # Originally Boore et al. (2014) requires only Rjb, but the epistemic # adjustment factors are given in terms of Rrup, so both are required here REQUIRES_DISTANCES = set(("rjb", "rrup")) def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean + nga_west2_epistemic_adjustment( rctx.mag, dctx.rrup), stddevs class BooreEtAl2014NSHMPLower(BooreEtAl2014): """ Implements the negative NSHMP adjustment factor for the Boore et al. (2014) NGA West 2 GMPE """ # See similar comment above REQUIRES_DISTANCES = set(("rjb", "rrup")) def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean - nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class BooreEtAl2014NSHMPMean(BooreEtAl2014): """ Implements the Boore et al (2014) GMPE for application to the weighted mean case """ # See similar comment above REQUIRES_DISTANCES = set(("rjb", "rrup")) def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Adapts the original `get_poes()` from the :class: openquake.hazardlib.gsim.base.GMPE to call a function that take the weighted sum of the PoEs from the epistemic uncertainty adjustment """ return get_weighted_poes(self, sctx, rctx, dctx, imt, imls, truncation_level) class CampbellBozorgnia2014NSHMPUpper(CampbellBozorgnia2014): """ Implements the positive NSHMP adjustment factor for the Campbell and Bozorgnia (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean + nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class CampbellBozorgnia2014NSHMPLower(CampbellBozorgnia2014): """ Implements the negative NSHMP adjustment factor for the Campbell and Bozorgnia (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean - nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class CampbellBozorgnia2014NSHMPMean(CampbellBozorgnia2014): """ Implements the Campbell & Bozorgnia (2014) GMPE for application to the weighted mean case """ def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Adapts the original `get_poes()` from the :class: openquake.hazardlib.gsim.base.GMPE to call a function that take the weighted sum of the PoEs from the epistemic uncertainty adjustment """ return get_weighted_poes(self, sctx, rctx, dctx, imt, imls, truncation_level) class ChiouYoungs2014NSHMPUpper(ChiouYoungs2014): """ Implements the positive NSHMP adjustment factor for the Chiou & Youngs (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean + nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class ChiouYoungs2014NSHMPLower(ChiouYoungs2014): """ Implements the negative NSHMP adjustment factor for the Chiou & Youngs (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean - nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class ChiouYoungs2014NSHMPMean(ChiouYoungs2014): """ Implements the Chiou & Youngs (2014) GMPE for application to the weighted mean case """ def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Adapts the original `get_poes()` from the :class: openquake.hazardlib.gsim.base.GMPE to call a function that take the weighted sum of the PoEs from the epistemic uncertainty adjustment """ return get_weighted_poes(self, sctx, rctx, dctx, imt, imls, truncation_level) class Idriss2014NSHMPUpper(Idriss2014): """ Implements the positive NSHMP adjustment factor for the Idriss (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean + nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class Idriss2014NSHMPLower(Idriss2014): """ Implements the negative NSHMP adjustment factor for the Idriss (2014) NGA West 2 GMPE """ def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ # Get original mean and standard deviations mean, stddevs = super().get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types) # Return mean, increased by the adjustment factor, # and standard devation return mean - nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup),\ stddevs class Idriss2014NSHMPMean(Idriss2014): """ Implements the Idriss (2014) GMPE for application to the weighted mean case """ def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Adapts the original `get_poes()` from the :class: openquake.hazardlib.gsim.base.GMPE to call a function that take the weighted sum of the PoEs from the epistemic uncertainty adjustment """ return get_weighted_poes(self, sctx, rctx, dctx, imt, imls, truncation_level)
[ "mhaas@gfz-potsdam.de" ]
mhaas@gfz-potsdam.de
04c6380edc9d403e0daa8af46e8821b04b91781c
4a23d02c58b95dbdd1616de9b738289f97e5bf43
/SimpleBatch.py
5f507d9b2de8fe97c3edc5f23740e3d8577b1e4c
[]
no_license
ChenKQ/rs_mxnet_reader
5123bb2de2106126da6a356db9e7ca17847ba80f
ad3710c605114cf027d954e8f75372bef17c1b4a
refs/heads/master
2021-08-10T16:10:21.567289
2017-11-12T19:41:39
2017-11-12T19:41:39
110,461,772
4
0
null
null
null
null
UTF-8
Python
false
false
109
py
class SimpleBatch(object): def __init__(self,data,label): self.data=data self.label=label
[ "chenkaiqiang14@mails.ucas.ac.cn" ]
chenkaiqiang14@mails.ucas.ac.cn
832c6f2677b752fed350fdf56b3de06df8dae36d
2d75d4fcc65bbfbc0b160b7205b8fbcb2ecaaf5b
/core/dbt/task/rpc/project_commands.py
e9b3f52c52ea4ebc9d1503c41538f1070eaa13fa
[ "Apache-2.0" ]
permissive
carlineng/dbt
0c78f35db9e1d052de4bf11f48f80aab2638aeec
cf6359803edea6c1c3f4cbe70a4dc02e55f8168e
refs/heads/dev/0.15.2
2020-12-20T19:29:45.211945
2020-01-31T19:07:34
2020-01-31T19:07:34
236,188,153
0
0
Apache-2.0
2020-01-31T19:07:35
2020-01-25T15:27:20
null
UTF-8
Python
false
false
5,043
py
from datetime import datetime from typing import List, Optional, Union from dbt.contracts.rpc import ( RPCCompileParameters, RPCDocsGenerateParameters, RPCRunOperationParameters, RPCSeedParameters, RPCTestParameters, RemoteCatalogResults, RemoteExecutionResult, RemoteRunOperationResult, RPCSnapshotParameters, RPCSourceFreshnessParameters, ) from dbt.rpc.method import ( Parameters, ) from dbt.task.compile import CompileTask from dbt.task.freshness import FreshnessTask from dbt.task.generate import GenerateTask from dbt.task.run import RunTask from dbt.task.run_operation import RunOperationTask from dbt.task.seed import SeedTask from dbt.task.snapshot import SnapshotTask from dbt.task.test import TestTask from .base import RPCTask from .cli import HasCLI class RPCCommandTask( RPCTask[Parameters], HasCLI[Parameters, RemoteExecutionResult], ): @staticmethod def _listify( value: Optional[Union[str, List[str]]] ) -> Optional[List[str]]: if value is None: return None elif isinstance(value, str): return [value] else: return value def handle_request(self) -> RemoteExecutionResult: return self.run() class RemoteCompileProjectTask( RPCCommandTask[RPCCompileParameters], CompileTask ): METHOD_NAME = 'compile' def set_args(self, params: RPCCompileParameters) -> None: self.args.models = self._listify(params.models) self.args.exclude = self._listify(params.exclude) if params.threads is not None: self.args.threads = params.threads class RemoteRunProjectTask(RPCCommandTask[RPCCompileParameters], RunTask): METHOD_NAME = 'run' def set_args(self, params: RPCCompileParameters) -> None: self.args.models = self._listify(params.models) self.args.exclude = self._listify(params.exclude) if params.threads is not None: self.args.threads = params.threads class RemoteSeedProjectTask(RPCCommandTask[RPCSeedParameters], SeedTask): METHOD_NAME = 'seed' def set_args(self, params: RPCSeedParameters) -> None: if params.threads is not None: self.args.threads = params.threads self.args.show = params.show class RemoteTestProjectTask(RPCCommandTask[RPCTestParameters], TestTask): METHOD_NAME = 'test' def set_args(self, params: RPCTestParameters) -> None: self.args.models = self._listify(params.models) self.args.exclude = self._listify(params.exclude) self.args.data = params.data self.args.schema = params.schema if params.threads is not None: self.args.threads = params.threads class RemoteDocsGenerateProjectTask( RPCCommandTask[RPCDocsGenerateParameters], GenerateTask, ): METHOD_NAME = 'docs.generate' def set_args(self, params: RPCDocsGenerateParameters) -> None: self.args.models = None self.args.exclude = None self.args.compile = params.compile def get_catalog_results( self, nodes, generated_at, compile_results ) -> RemoteCatalogResults: return RemoteCatalogResults( nodes=nodes, generated_at=datetime.utcnow(), _compile_results=compile_results, logs=[], ) class RemoteRunOperationTask( RPCTask[RPCRunOperationParameters], HasCLI[RPCRunOperationParameters, RemoteRunOperationResult], RunOperationTask, ): METHOD_NAME = 'run-operation' def set_args(self, params: RPCRunOperationParameters) -> None: self.args.macro = params.macro self.args.args = params.args def _get_kwargs(self): if isinstance(self.args.args, dict): return self.args.args else: return RunOperationTask._get_kwargs(self) def _runtime_initialize(self): return RunOperationTask._runtime_initialize(self) def handle_request(self) -> RemoteRunOperationResult: success, _ = RunOperationTask.run(self) result = RemoteRunOperationResult(logs=[], success=success) return result def interpret_results(self, results): return results.success class RemoteSnapshotTask(RPCCommandTask[RPCSnapshotParameters], SnapshotTask): METHOD_NAME = 'snapshot' def set_args(self, params: RPCSnapshotParameters) -> None: # select has an argparse `dest` value of `models`. self.args.models = self._listify(params.select) self.args.exclude = self._listify(params.exclude) if params.threads is not None: self.args.threads = params.threads class RemoteSourceFreshnessTask( RPCCommandTask[RPCSourceFreshnessParameters], FreshnessTask ): METHOD_NAME = 'snapshot-freshness' def set_args(self, params: RPCSourceFreshnessParameters) -> None: self.args.selected = self._listify(params.select) if params.threads is not None: self.args.threads = params.threads self.args.output = None
[ "jake@fishtownanalytics.com" ]
jake@fishtownanalytics.com
3566c31f10feda9150fe9811c47702d72682d1a0
06c05314b018bb133f34e7052cc315b3cfdcd311
/TP1/data-ex4/mapper4.py
76fe6e1ac8201d274be9ddbcfc56665d261ef1b8
[ "MIT" ]
permissive
tjaskula/dauphine-slpbd-tp
6a29a0e02049998135822de26770b7c5e800958b
ba82d2d3eda16ca6380ad7e1ddb30f9fd962b68c
refs/heads/master
2020-03-30T10:18:58.181528
2018-10-17T18:30:19
2018-10-17T18:30:19
151,114,966
0
0
MIT
2018-10-01T15:51:14
2018-10-01T15:51:14
null
UTF-8
Python
false
false
266
py
#! /usr/bin/env python import sys remeberIdc = None for line in sys.stdin: line = line.strip() idc, d, name = line.split(',') if idc == remeberIdc: print "%s\t%s\t%s" % (idc, d, name) if remeberIdc != idc and name.startswith('G'): remeberIdc = idc
[ "thomasv1000@hotmail.fr" ]
thomasv1000@hotmail.fr
f4bc7a7de3187d89d91b4c6ee55aafc3a8683e27
380a47268c5975473a2e7c38c747bc3bdbd981b1
/benchmark/third_party/transformers/tests/models/bert/test_tokenization_bert.py
dfbcd266c49917d91429910a65a04ecb6ffbf9b5
[ "Apache-2.0" ]
permissive
FMInference/FlexGen
07aa9b1918c19b02077e13ad07e76840843810dd
d34f7b4b43ed87a374f394b0535ed685af66197b
refs/heads/main
2023-07-24T02:29:51.179817
2023-07-21T22:38:31
2023-07-21T22:38:31
602,270,517
6,821
411
Apache-2.0
2023-07-07T22:59:24
2023-02-15T21:18:53
Python
UTF-8
Python
false
false
13,961
py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BertTokenizer rust_tokenizer_class = BertTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_2 + [102] def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
[ "sqy1415@gmail.com" ]
sqy1415@gmail.com
4012a5cd1acbc94fa691959cc75443b63e3e39f1
024d71c9addb15f2da3a7dc4b6cceb15d104f53f
/facial_landmark_detection.py
0b5474b09011117cc2979918d6d83513cd2cea69
[]
no_license
Nishant-Ramakuru/Alcohol-Detection-Based-on-Thermal-Images
e9414b426573c235c2d57ed311952352d8c77a83
f90aafddacd0801a441868975c81581e7d6b639d
refs/heads/master
2022-08-20T21:51:00.017876
2022-07-20T08:29:44
2022-07-20T08:29:44
251,707,712
0
0
null
null
null
null
UTF-8
Python
false
false
3,507
py
# Face landmarks Detection # usage: # python facelandmarkdetect.py --shape-predictor shape_predictor_68_face_landmarks.dat --image images/face1.jpg # import the necessary packages from imutils import face_utils import numpy as np import argparse import os import imutils import dlib import cv2 import matplotlib.pyplot as plt import face_recognition font = cv2.FONT_HERSHEY_SIMPLEX # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--shape-predictor", required=True, help="path to facial landmark predictor") ap.add_argument("-i", "--image", required=True, help="path to input image") args = vars(ap.parse_args()) if os.path.isfile(args["shape_predictor"]): pass else: # print("Oops...! File is not available. Shall I downlaod ?") cmd = "wget -c --progress=bar http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" os.system(cmd) # initialize dlib's face detector (HOG-based) and then create # the facial landmark predictor detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(args["shape_predictor"]) # load the input image, resize it, and convert it to grayscale image = face_recognition.load_image_file(args["image"]) orig = image image = imutils.resize(image, width=500) print(image.shape) print(image.dtype) #gray = np.array(image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) print(gray.shape) print(gray.dtype) # detect faces in the grayscale image rects = detector(gray, 1) # loop over the face detections for (i, rect) in enumerate(rects): # determine the facial landmarks for the face region, then # convert the facial landmark (x, y)-coordinates to a NumPy # array shape = predictor(gray, rect) shape = face_utils.shape_to_np(shape) # convert dlib's rectangle to a OpenCV-style bounding box # [i.e., (x, y, w, h)], then draw the face bounding box (x, y, w, h) = face_utils.rect_to_bb(rect) cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # show the face number cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # loop over the (x, y)-coordinates for the facial landmarks # and draw them on the image s = [shape[17],shape[26],shape[0],shape[3],shape[5],shape[11],shape[13],shape[16]] count = 0 avg_g = [] for (x, y) in shape: cv2.circle(image, (x, y), 1, (0, 0, 255), -1) count+=1 G = [] print(x,y) for i in range(-1,2): for j in range(-1,2): G.append(gray[y-j][x-i]) avg_g.append(sum(G)/9) print(len(G)) print(len(avg_g)) for number, (x, y) in enumerate(shape): r =1 text = str(number) (tw, th), bl = cv2.getTextSize(text, font, 0.5, 2) # So the text can be centred in the circle tw /= 2 th = th / 2 + 2 # draw the circle in the output image, then draw a rectangle # corresponding to the center of the circle cv2.rectangle(image, (int(x - tw), int(y - th)), (int(x + tw), int(y + th)), (0, 128, 255), -1) # number each circle, centred in the rectangle cv2.putText(image, text, (int(x-tw), int(y + bl)), font, 0.5, (0,0,0), 2) # get the average value in specified sample size (20 x 20) # show the output image with the face detections + facial landmarks plt.subplot(121) plt.imshow(orig) plt.xticks([]) plt.yticks([]) plt.title("Intput") plt.subplot(122) plt.imshow(image) plt.xticks([]) plt.yticks([]) plt.title("Output") fname = "result_" + args["image"][1] #plt.savefig(fname) plt.show()
[ "noreply@github.com" ]
Nishant-Ramakuru.noreply@github.com
11b130a31c10fb9e095dcf07a1785c19c8b7458b
a9633fe2a90daf3623047ac0009b54b802d16d0d
/HW/HW2/Code/HW2_q1.py
f17b663928ece0c75692d0a8a6e41b83c5fc0884
[]
no_license
sarasovdat/MMDS
485a6712750a5dc4ac16b8f7f9c4692e1817c206
f73862fbc0d504a223217b7fbb1490b929c81b73
refs/heads/main
2023-08-04T16:07:49.133831
2021-09-15T08:10:02
2021-09-15T08:10:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
import numpy as np from scipy import linalg # SVD of M: M = np.array([[1, 2], [2, 1], [3, 4], [4, 3]]) U, Sigma, V_transpose = linalg.svd(M, full_matrices = False) V = V_transpose.transpose() sig = np.array([[7.61577311, 0], [0, 1.41421356]]) print("----- U -----") print(U) print("----- Sigma -----") print(Sigma) print("----- V_transpose -----") print(V_transpose) print("----- V -----") print(V) # Eigenvalues and eigen vectors of M_transpose x M: M_transpose = M.transpose() mult = M_transpose.dot(M) #print(mult) Evals, Evecs = linalg.eigh(mult) print("----------") print(Evals) print("----------") print(Evecs) print("----------") print("-------- Evals --------") print(Evals) print("-------- Evecs --------") print(Evecs) """ # Test ortogonalnosti : ET = Evecs.transpose() print(" PRODUKT ") print(np.dot(V, V_transpose)) print(np.dot(V_transpose, V)) print("_______________________") print(np.dot(Evecs,ET)) print(np.dot(ET, Evecs)) # Check: print(np.dot(np.dot(U, sig), V_transpose)) """
[ "sarabizjak97@gmail.com" ]
sarabizjak97@gmail.com
193acb5dc5a44ce5eb4800a26e3b5c3263006b47
9f0c84ec676d967af0d3dcebfeb51477797c6f16
/evaluating_expressions.py
13ef43bd1ed72bf605167e95dfc0271ddb67a66f
[]
no_license
monajalal/Python_Playground
71169841d62eff5098af862c4443f022518a6be8
bb07a973d4459a957ca4fda07a6a55ed14c65067
refs/heads/master
2020-04-15T00:01:27.225571
2020-03-12T03:01:46
2020-03-12T03:01:46
60,127,186
2
2
null
null
null
null
UTF-8
Python
false
false
902
py
class Solution: # @param A : list of strings # @return an integer def evalRPN(self, A): operations = set('+-/*') operands = [] for item in A: if item not in operations: operands.append(item) else: operand2 = int(operands.pop()) operand1 = int(operands.pop()) if item == '+': operands.append(operand1+operand2) elif item == '-': operands.append(operand1-operand2) elif item == '*': operands.append(operand1*operand2) elif item == '/': try: operands.append(operand1/operand2) except ZeroDivisionError: return return operands.pop() s = Solution() print(s.evalRPN("12*3-5+"))
[ "jalal@wisc.edu" ]
jalal@wisc.edu
06649657ccf0f10d85bfa2c3ddd68a7de6b02f20
09d557923f726e5a8301d3489d0b0e20f3ecd9c6
/friends.py
0c49a2ee04dc44ca55975c0e533eaf39232d4dd7
[]
no_license
moragbl/checkio
9b3a70301b7195876f0bf176dfdb054f7d6d1092
13761610cc651aeea426f4b61d35c28acc3e2bad
refs/heads/master
2021-01-10T06:47:14.406928
2016-01-10T18:24:13
2016-01-10T18:24:13
49,025,944
0
0
null
null
null
null
UTF-8
Python
false
false
2,044
py
#!/usr/bin/python class Friends: def __init__(self, connections): self.connections = list(connections) return None def add(self, connection): if connection in self.connections: return False else: self.connections = self.connections + [connection] return True def remove(self, connection): new_connections = [] if connection in self.connections: for thing in self.connections: if thing != connection: new_connections = new_connections + [thing] self.connections = new_connections return True else: return False def names(self): stuff = set() for thing in self.connections: stuff = stuff.union(thing) return set(sorted(list(set(stuff)))) def connected(self, name): result = set() for thing in self.connections: if name in thing: result = result.union(thing.difference({name})) return result if __name__ == '__main__': #These "asserts" using only for self-checking and not necessary for auto-testing letter_friends = Friends(({"a", "b"}, {"b", "c"}, {"c", "a"}, {"a", "c"})) digit_friends = Friends([{"1", "2"}, {"3", "1"}]) assert letter_friends.add({"c", "d"}) is True, "Add" assert letter_friends.add({"c", "d"}) is False, "Add again" assert letter_friends.remove({"c", "d"}) is True, "Remove" assert digit_friends.remove({"c", "d"}) is False, "Remove non exists" assert letter_friends.names() == {"a", "b", "c"}, "Names" assert letter_friends.connected("d") == set(), "Non connected name" assert letter_friends.connected("a") == {"b", "c"}, "Connected name" f = Friends([{"1", "2"}, {"3", "1"}]) assert f.add({"2", "4"}) is True, "last add" f = Friends(({"nikola", "sophia"}, {"stephen", "robot"}, {"sophia", "pilot"})) assert f.connected("sophia") == {"nikola", "pilot"}, "connected thing"
[ "moragbl@users.noreply.github.com" ]
moragbl@users.noreply.github.com
e62afdacebeee507bc7b6ffbe8a9a5216896add4
f8a58ae93ff78c59296a136dff721c5ef666790b
/Starting small/Open Concept.py
fc11dd75f69e0575b469b286f4e4b37d2c6c9d47
[]
no_license
Anthonymcqueen21/Python-Programs
cb116b36e3c774ef51dba7f1fd29561767f89c7f
127d5cbab4e7a2d0009d65075508cbaf5a6b6dc2
refs/heads/master
2021-06-26T18:03:30.212592
2017-09-15T19:59:21
2017-09-15T19:59:21
79,636,950
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
message = "Hello World Crash Course reader!" print(message) message = "Hello World" print(message) message = "Python crash course" print(message)
[ "noreply@github.com" ]
Anthonymcqueen21.noreply@github.com
c0d33eecc47b3c11ae377ec4a317558862c0186b
47b4233f1c42a1136f661e2827c185f5a7ae31bf
/milestone3-flask.py
2de40561b15bc5c867b062b3d450be761ff588ac
[]
no_license
RutujaJadhav/Baby-got-Back
ff9c7c2d0ea9ec96cf3d896fe63f0fc754cf97d5
6adaaacd88125b007e47739090739d6c03bed88d
refs/heads/master
2020-04-24T08:08:02.379108
2019-04-23T05:41:08
2019-04-23T05:41:08
171,821,179
0
0
null
null
null
null
UTF-8
Python
false
false
4,595
py
from flask import Flask, render_template, jsonify, request from Adafruit_CCS811 import Adafruit_CCS811 import RPi.GPIO as GPIO from twilio.rest import Client import threading import urllib import os import time import board import neopixel import pandas as pd import numpy as np import math import datetime import json """ INTERNAL FUNCTIONS ------------------------------------------------- """ textAlerts = False riskFactor = False def twilio_alert(msg): global textAlerts if textAlerts: message = client.messages.create(to='+12067909956',from_='+12062080987',body=msg) def alert_on(): pixels.fill((255,0,0)) pixels.show() def alert_all(msg): twilio_alert(msg) alert_on() def alert_off(): pixels.fill((0,0,0)) pixels.show() def init_CCS811(): ccs = Adafruit_CCS811() temp = ccs.calculateTemperature() ccs.tempOffset = temp - 23.0 return ccs def init_NeoPixels(): pixel_pin = board.D18 num_pixels = 1 ORDER = neopixel.GRB pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.2, auto_write=False, pixel_order=ORDER) return pixels def init_StatusLED(): GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(23,GPIO.OUT) def init_twilio(): account_sid = "AC0d464a30a7c6e7fbacd8dab0441ae589" auth_token = "0753453d03c18573e2c09ba41f925a8f" client = Client(account_sid, auth_token) return client def internet_on(): try: urllib2.urlopen('http://216.58.192.142', timeout=1) return True except urllib2.URLError as err: return False def lan_job(): threading.Timer(10.0, lan_job).start() if internet_on: GPIO.output(23,GPIO.HIGH) else: GPIO.output(23,GPIO.LOW) def ccs811_measure(): threading.Timer(1.0, ccs811_measure).start() while not ccs.available(): pass temp = ccs.calculateTemperature() if not ccs.readData(): tt = time.time() co2 = ccs.geteCO2() tvoc = ccs.getTVOC() temp = temp data = [tt,co2,temp,tvoc] df.loc[len(df)] = data def getRiskFactors(): global riskFactor global textAlerts threading.Timer(1.0, getRiskFactors).start() with open('static/data.json') as json_data: d = json.load(json_data) highrisk = len(d['highrisk'])>0 if highrisk: if not riskFactor: if textAlerts: alert_all("High risk factors in the crib: "+','.join(d['highrisk'])) else: alert_on() else: alert_on() else: alert_off() riskFactor = highrisk """ ENDPOINTS ---------------------------------------------------------- """ app = Flask(__name__) ccs = init_CCS811() pixels = init_NeoPixels() client = init_twilio() risk_factors = getRiskFactors() df = pd.DataFrame(columns=['time','co2','temp','tvoc']) alert_off() init_StatusLED() lan_job() ccs811_measure() getRiskFactors() @app.route('/') def index(): return render_template('dashboard.html') @app.route('/text_alerts', methods=['GET', 'POST']) def text_alerts(): global textAlerts global riskFactor if request.method == 'POST': textAlerts = request.values.get('alerts') == 'true' if riskFactor and textAlerts: twilio_alert("There are risk factors in the crib") resp = jsonify(success=True) return resp else: return jsonify(alerts = textAlerts) @app.route('/reading') def reading(): return render_template('updatedchart.html') @app.route('/air_quality') def air_quality(): if len(df)>0: return jsonify(df.iloc[-1].to_dict()) return jsonify() @app.route('/air_quality_history') def air_quality_history(): lookback = request.args.get('lookback',default = 3600,type=int) lookback = time.time()-lookback in_range = df[df['time']>lookback] num_results = len(in_range) if num_results>0: data = in_range.sort_values(by='time') temp_data = data['temp'].tolist() temp_data = [round(x,2) for x in temp_data] tvoc_data = data['tvoc'].tolist() time_data = data['time'].tolist() time_data = [datetime.datetime.fromtimestamp(x).strftime("%X") for x in time_data] return jsonify(temp=temp_data,tvoc=tvoc_data,labels=time_data) else: return jsonify() if __name__ == '__main__': app.run(host='10.19.212.93', debug=True)
[ "noreply@github.com" ]
RutujaJadhav.noreply@github.com
d41231abad772ae1e1447c830b6edba0dd5e0d56
3d66f781359fa22b02764711ce7fefcdf9b7c82a
/zab_parser.py
72cbf1642bf25aee78511b3540211ab3ee11b51c
[]
no_license
lekhasv/parser_airmonitor
0dccdc4167b05ee055676066bcd253cecc0ce01d
b63e60d2b6fe169b75358ed84862b65e92aa7f8a
refs/heads/master
2020-07-31T06:19:29.890927
2020-02-13T09:19:58
2020-02-13T09:19:58
210,513,681
0
0
null
null
null
null
UTF-8
Python
false
false
4,698
py
import datetime import configparser import os import sys import argparse def loadConfig(path,radio,chas,data): now = datetime.datetime.now() hh = 0 log = "" if data == '0': name_file = now.strftime("%Y-%m-%d")+".txt" else: name_file = data+".txt" if chas == "now": chas = now.strftime("%H") elif chas == "0": hh = 1 if radio == "": nf = "" else: nf = radio+"\\" for key in config["radio"]: if hh == 1: chas = config[key]["time"] if radio == "" and config["radio"][key] == "1": log += parser_log(config[key]["path_dir"],chas,config[key]["name"],name_file) elif key == radio: log += parser_log(config[key]["path_dir"],chas,config[key]["name"],name_file) if namespace.analysis: err = analysis(log,radio) #print(err) else: print(log) if not os.path.exists(config["Setting"]["save_path"]+nf): os.makedirs(config["Setting"]["save_path"]+nf) fs = open(config["Setting"]["save_path"]+nf+name_file, "w", encoding='utf-8') fs.write(log) fs.close() def analysis(log,radio): obraz = [] exobraz = [] ok = 0 err = 0 samp = config[radio]["sample"] for key in config[samp]: if key[:4] == 'incl': obraz.append(config[samp][key]) elif key[:4] == 'excl': exobraz.append(config[samp][key]) log = log.rstrip('\r') list_log = log.split("\n") #print(list_log) for st in list_log: for obr in obraz: if st.find(obr) != -1: ok += 1 for exobr in exobraz: if st.find(exobr) != -1: err += 1 return '{"OK": '+str(ok)+', "ERR": '+str(err)+'}' def parser_log(path_dir, period, radio, file_name): period = period.replace("-",",") pr = period.split(",") name_file = file_name if not namespace.noname: txt_log = radio+"\n" else: txt_log = "" prev_str_time = "" prev_str_time_1 = "" try: f = open(path_dir+name_file, "r", encoding='utf-8') except: return "" for line in f.readlines(): line = line.rstrip('\r\n') if line.find("Опознан") != -1: hour_period = False for hr in pr: if hr == line[11:13]: hour_period = True if hour_period: str_time = line[11:16] if (prev_str_time != str_time)&(prev_str_time_1 != str_time): pos_end = line.find(", Ошибок") txt_log += line[11:16]+" "+ line[29:pos_end]+"\n" prev_str_time_1 = line[11:14]+str(int(line[14:16])+1) prev_str_time = str_time txt_log += "\n" return txt_log def createParser (): parser = argparse.ArgumentParser() parser.add_argument ('-r', '--radio', default='', help='Название радио как в конфиге') parser.add_argument ('-c', '--chas', default='0', help='Часы, которые необходимо проверить. Пример: 07,08') parser.add_argument ('-d', '--data', default='0', help='Дата в формате гггг-мм-дд') parser.add_argument ('-n', '--noname', action='store_true', default=False, help='Не добавлять название радио в лог') parser.add_argument ('-a', '--analysis', action='store_true', default=False, help='Анализ лога') parser.add_argument ('-s', '--show', action='store_true', default=False, help='Показать названия радио в конфиге') return parser if __name__ == "__main__": parser = createParser() namespace = parser.parse_args() pathname = os.path.dirname(sys.argv[0]) +'\\' name_config = pathname + "settings.ini" #D:\\Обмен\\logger\\ if not os.path.exists(name_config): print("не верный путь.") exit() config = configparser.ConfigParser() config.read(name_config, encoding='UTF-8') if namespace.show: for key in config["radio"]: print(key) exit() loadConfig(name_config,namespace.radio,namespace.chas,namespace.data) exit()
[ "noreply@github.com" ]
lekhasv.noreply@github.com
0c4fd9e1c44215905b61eecef8c50b3727e7e016
17fe4529fd2772b7d046f039bde140768634d028
/misc/cases/web/boss/test_login.py
e6fe63f8bf3b6493e346ecdf40111d113bcc2878
[]
no_license
namesuqi/tapir
b9c21f30bf781eec314f0ae4f57c232f167e4734
a5d4e9bb45d8cbf7e41d42d9006b43b753f3ecf1
refs/heads/master
2020-03-07T04:16:45.213561
2018-03-29T08:34:46
2018-03-29T08:34:46
127,261,810
0
0
null
null
null
null
UTF-8
Python
false
false
1,839
py
# coding=utf-8 # author: zengyuetian import unittest import time from lib.web.boss.login_page import * from lib.web.boss.summary_page import * from lib.web.boss.const import * from lib.common.HTMLTestRunner import HTMLTestRunner from lib.common.path import * from lib.driver import chrome_driver class TestLogin(unittest.TestCase): def setUp(self): # global chrome_driver print "Test Start ...." opt = webdriver.ChromeOptions() opt.add_argument("test-type") self.chrome_driver = webdriver.Chrome(chrome_options=opt) self.chrome_driver.implicitly_wait(10) self.chrome_driver.maximize_window() def tearDown(self): print "Test End ..." self.chrome_driver.close() def test_login(self): login_page = LoginPage(self.chrome_driver) login_page.open() login_page.input_user_name(WASU_USER) login_page.input_password(WASU_PASSWORD) login_page.submit() time.sleep(1) def test_logout(self): login_page = LoginPage(self.chrome_driver) login_page.open() login_page.input_user_name(WASU_USER) login_page.input_password(WASU_PASSWORD) login_page.submit() time.sleep(1) summary_page = SummaryPage(self.chrome_driver) # time.sleep(5) summary_page.close_exit_btn() summary_page.logout() if __name__ == "__main__": # unittest.main() suite = unittest.TestSuite() suite.addTest(TestLogin("test_logout")) runner = unittest.TextTestRunner() runner.run(suite) # # testunit.addTest(TestLogin("testLogout")) # # fp = open(RESULT_PATH + '/result.html', 'wb') # runner = HTMLTestRunner(stream=fp, # title='boss report') # # runner.run(testunit) # fp.close()
[ "suqi_name@163.com" ]
suqi_name@163.com
f8d9f2cc232063431ad4ba72a77b12166ca49f65
f9a96f02fb59ebb320d48ae7d266a1ba1bb2f7cc
/ex7.py
7d68bff89bed06e79931998e639987c4d066be79
[]
no_license
virtualet/LPTHW
eb54eca5471c179652b1466e604419601a3a082c
e31b703e835640fc9f04ad99b027bcf6d6c1a746
refs/heads/master
2021-01-13T01:53:50.027232
2014-10-06T22:03:27
2014-10-06T22:03:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
print "mary had a little lamb" print "its fleec was white as %s." % 'snow' print "and everywhere that marry went" print "." * 10 end1 = "C" end2 = "h" end3 = "e" end4 = "e" end5 = "s" end6 = "e" end7 = "B" end8 = "u" end9 = "r" end10 = "g" end11 = "e" end12 = "r" print end1 + end2 + end3 + end4 + end5 + end6, print end7 + end8 + end9 + end10 + end11 + end12
[ "echoecho@gmail.com" ]
echoecho@gmail.com
640e384f480d6dde5bb173efa0440e4aac09c5ae
49cddcbe8f80b80a6c8fcd2d6fea6586c65a710f
/face-det-cam.py
3cb06fb17a632c964757e1b7a48f6249f48a88b8
[]
no_license
agurani/Face_Detection
2a9e432c001157ed81cb6dfbca9c341fd528f304
9d8a08ca2c6604366f7d2b98a9f7596afab40a4f
refs/heads/master
2021-06-08T11:45:56.660187
2021-05-10T06:45:18
2021-05-10T06:45:18
166,808,562
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
""" ÖNEMLİ NOT: Çalıştırdıktan sonra programı kapatmak için "Q" tuşuna basın. """ import cv2 # Cascade yükleme face_cascade = cv2.CascadeClassifier('haarcascade-frontalface-default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade-eye.xml') # Tanıma yapacak fonksiyon def detect(frame): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 3) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) return frame # Webcam ile tanıma yapılıyor. # Eğer bilgisayarınızda birden fazla kamera bağlıysa 0'ı 1 yapabilirsiniz. video_capture = cv2.VideoCapture(0) while True: _, frame = video_capture.read() canvas = detect(frame) cv2.imshow('Video', canvas) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
agurani.noreply@github.com
be4c7a95bb2e3dea3e5cef3331037298bb4cf366
cbb5355de11afa6679bcc6157148b64c48fb7d62
/subfun.py
44ca97e1039db74891d53aa462d73a0c46a73129
[]
no_license
SimonWang1995/writeJobsheet
19e6577955759e073f42e72580193b88dc28ebb8
f49968dea46ad5eeffd9172b0fe49c9f138ff1ea
refs/heads/master
2021-05-20T04:20:51.924380
2020-07-20T13:17:25
2020-07-20T13:17:25
252,182,319
0
0
null
null
null
null
UTF-8
Python
false
false
2,631
py
from utils.logsave import * from tkinter.messagebox import * from threading import Thread import re from random import choice def getuserinfo(root,kaoqian): try: logger.info("开始获取用户信息") user_info = kaoqian.getuserinfo() logger.info(user_info) return user_info except Exception as e: logger.error(e) showinfo(message=e) root.quit() def getkaoqian(root,kaoqian): if not kaoqian.table: try: logger.info("开始获取考勤信息") kaoqian_list = kaoqian.get_kaoqian() logger.info(kaoqian_list) return kaoqian_list except Exception as e: logger.error(e) showinfo(message=e) else: return kaoqian.table def get_total(root,kaoqian): work_days = [] kq_list = getkaoqian(root,kaoqian) for value in kq_list: if value[3]=="日班" or value[8]=="加班": pat = re.compile("(\d+).(\d+).(\d+)") date_tuple = pat.search(value[0]).groups() date = '/'.join(date_tuple) work_days.append(date) showinfo(message="你这个月共上班 %s 天 , 详细请查看考勤" % len(work_days)) return work_days def get_productlist(root, jobsheet): if not jobsheet.productList: try: product_list = jobsheet.get_productlist() return product_list except Exception as e: showinfo(message=e) else: return jobsheet.productList def create_treeview(Treeview,page,headers,widths): treeview = Treeview(page, show="headings", columns=headers) for col,v in zip(headers,widths): treeview.column(col,width=v,anchor="center") treeview.heading(col,text=col) return treeview def startwrite(startbutton, treeview, jobsheet): startbutton.config(bg="yellow", text="Ongoing") for item in treeview.get_children(): value = treeview.item(item, option="value") try: jobsheet.readywt() jobsheet.startwrite(value) treeview.delete(item) treeview.update() except Exception as e: print(e) showinfo(message=e) startbutton.config(bg="red", text="Stop") startbutton.config(bg="green", text="Start") def add_value(): pass def thread_it(func, *args): '''将函数放入线程中执行''' # 创建线程 t = Thread(target=func, args=args) # 守护线程 t.setDaemon(True) # 启动线程 t.start()
[ "1069500569@qq.com" ]
1069500569@qq.com
e85679eb12a298bbe947d702485fe04af1f16d37
92f9527ce8c91fb78baa1de13142d2d2dd59c4b5
/src/dailypoker/poker/migrations/0004_auto_20171025_1323.py
327c18a8f422d0db200511f6decda6718f2ad1c4
[]
no_license
wislish/Texas-Holdem-Poker
869f8874d5b277ff78b51246098222ef881cb2e2
4260b3d3b44bbbf56e3faca851e14c12b5f9db8b
refs/heads/master
2021-04-26T16:47:29.233769
2018-04-02T17:35:52
2018-04-02T17:35:52
123,970,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-25 17:23 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('poker', '0003_remove_player_hand_card'), ] operations = [ migrations.RemoveField( model_name='player', name='user', ), migrations.RemoveField( model_name='game', name='players', ), migrations.AlterField( model_name='game', name='pot_size', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='game', name='round_max_bet', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='game', name='round_status', field=models.PositiveSmallIntegerField(default=0), ), migrations.DeleteModel( name='Player', ), ]
[ "maoan119@gmail.com" ]
maoan119@gmail.com
26c7154286d22389cae93c532751367878955fb2
024a2f21e8b1b044f4214090471dc02c411861c5
/oms/controllers/wx_meta_purchase_controller.py
62c26a121d4acb4b4e3d07ba709783c2ed8df2c2
[]
no_license
qiaozhizt/OMS
1e8d1d2fb8e7510576b635cbd8bbdc4908ed0fc0
43d31095b496d7cf0a2cf1ccda05f7891366aae4
refs/heads/master
2023-02-28T23:50:21.867461
2021-02-03T07:57:43
2021-02-03T07:57:43
335,470,983
0
0
null
null
null
null
UTF-8
Python
false
false
17,349
py
# -*- coding: utf-8 -*- import logging import simplejson as json import time import requests from api.controllers.tracking_controllers import tracking_lab_order_controller from vendor.models import WxMetaProductRelationship, LensSpecmap from pg_oms.settings import WX_META_SERVICE, WX_META_PURCHASE from oms.models.order_models import PurchaseOrderRecords class wx_meta_purchase_controller: ''' WX Meta Purchase Controller class ''' def __init__(self): self.orderType = 'meta' self.deliverType = '顺丰寄付' #快递方式指定圆通 self.customerLinkman = '李莲英' #联系人 self.customerTel = '15518639392' #联系电话 self.customerProvince ='上海市' #省 self.customerCity = '上海市' #市 self.customerCounty = '奉贤区' #区 self.customerAddress='大叶公路4601号伟星工业园' #地址 self.name = 'A100311' # 智镜客户码 固定的 A100311 self.pwd = 'zhijin123' # 获取令牌密码 self.host = WX_META_SERVICE if isinstance(WX_META_SERVICE, str) else WX_META_SERVICE[0]#伟星系统地址,写入配置文件 self.token_url = WX_META_PURCHASE.get('TOKEN_URL') #'/all/account/login'#获取令牌URL self.wx_meta_prd_url = WX_META_PURCHASE.get('WX_META_PRD_URL') #'/api/product/listCustomerProducts' #获取现片产品清单 self.add_order_url = WX_META_PURCHASE.get('ADD_ORDER_URL') #'/api/order/addOrder'添加订单URL self.order_status_url= WX_META_PURCHASE.get('ORDER_STATUS_URL')#'/api/order/getOrderStatus' #获取订单状态URL #库存片产品对应关系,需写入对应关系表中 self.meta_product_relation = { 'KD56L': '00000000000000008736', 'KD56': '00000000000000002750', 'KDB56-C': '00000000000000002443', 'KD61L': '00000000000000004648', 'KDB61-H-SHMC': '00000000000000004048', 'KD61': '00000000000000002549', } # 获取令牌 ''' ### 参数 * `name`:名字 * `pwd`:密码 ''' def get_headers(self,content_type='application/json'): headers = { 'Content-Type': 'application/x-www-form-urlencoded;charset=utf-8' } try: url = self.host + self.token_url + "?name=%s&pwd=%s"%(self.name,self.pwd) logging.debug(url) result = requests.post(url, headers=headers, timeout=60) account = json.loads(result.text) if account['code'] == '200' and account['map']['data']['token']: headers = { "Content-Type": content_type, "X-Auth-Token": account['map']['data']['token'] } return {"code":0,"headers":headers,"msg":"成功获取token"} else: return {"code":-1,"token":"","msg":"伟星接口返回信息变化"} except Exception as e: return {"code": -1, "token": "", "msg": "get token failed%s"%str(e)} #获取现片产品列表 ''' /api/product/listCustomerProducts ### 参数 无 ### 响应 ```json { "success": true, "code": "200", "message": null, "map": { "data": [{ productId: `'xxx'`, 销售品名id brand: `'xxx'`, 品牌 lenType: `'xxx'`, 光型 sphStart: `0.00`, 球镜起始值 sphEnd: `0.00`, 球镜结束值 cylStart: `0.00`, 柱镜起始值 cylEnd: `0.00`, 柱镜结束值 addStart: `0.00`, 加光起始值 addEnd: `0.00`, 加光结束值 productName: `'xxx'`, 销售品名 zsl: `'xxx'`, 折射率 dl: `'xxx'`, 大类 price: `100.0`, 单价 rate: `1.0`, 折扣 }] } } ``` ''' def list_wx_meta_products(self): content_type = 'application/x-www-form-urlencoded;' try: result = self.get_headers(content_type) logging.debug(result) if (result['code'] == -1): # 返回出错信息 return result headers = result['headers'] url = self.host + self.wx_meta_prd_url result = requests.post(url, headers=headers, timeout=60) response = json.loads(result.text) if response['code'] == "200": return {"code": 0, "data": response['map']['data'], "msg": "success"} else: return {"code": -1, "msg": response['message']} except Exception as e: return {"code": -1, "msg": "获取车房列表失败,异常信息:%s" % str(e)} #生成订单 ''' * `addOrderDTOStr`: json字符串,json格式: * orderType: 订单类型,`meta/house`分别表示现片/车房 * apiOrderNo: 第三方订单号 * deliveryDate: `'yyyy-MM-dd'`,要求发货日期 * deliverType: `'圆通'`,快递方式 * customerLinkman: `'张三'`,联系人 * customerTel: `'152xxxx'`,联系电话 * customerProvince: `'浙江省'`,省 * customerCity: `'台州市'`,市 * customerCounty: `'xxx'`,区 * customerAddress: `'xxx'`,地址 * note: `'xxx'`,备注 * items: 订单明细列表 * type: `'meta'`, 值为meta/house/frame,分别代表现片/车房/镜架 * productId: `'J123'`,销售品名id * quantity: `1`,数量 * brand: `'白包装'`,品牌 * lr: `'l'`,左右眼 * sphval: `'1.0'`,球镜 * cylval: `'1.0'`,柱镜 * addval: `'1.0'`,加光 * lentype: `'近视'`,光型 * axis: `1`,光轴 * cbase: `'1'`,基弯 * coloring:`'wf-01'`,染色内容 * prismA:`'1'`,棱镜a * directionA:`'内'`,方向a * prismB:`'1'`,棱镜b * directionB:`'上'`,方向b * isAsse:`'Y'`,是否装配 * isCut:`'N'`,是否割边 * framePd:`'65'`,瞳距 * frameIpd:`''`,近用瞳距 * framePh:`''`,瞳高 * glassDistance:`''`,眼距 * frontAngle:`''`,前倾角 * moveIn:`''`,移心-内移 * moveOut:`''`,移心-外移 * processes: `{'镀膜': '蓝光'}`,json格式,`工艺类型:工艺ID`的映射 ### 响应 ```json { "success": true, "code": "200", "message": null, "map": { "data": null } } ``` ''' def add_meta_order(self, dict_data, delveryDate="", brand='白包装', isAsse="N", isCut="N"): result = self.get_headers() if(result['code'] == -1): #返回出错信息 return result headers = result['headers'] try: wx_meta_lens = LensSpecmap.objects.filter(inner_code=dict_data.get('rsku'), active='ACTIVE', vendor=dict_data.get('vendor')) #wx_meta_lens = WxMetaProductRelationship.objects.filter(sku=dict_data.get('rsku')) if len(wx_meta_lens) == 0 or len(wx_meta_lens) > 1: return {"code": -1, "data": '', "msg": "未找到对应关系"} wx_meta_len = wx_meta_lens[0] l_product_id = wx_meta_len.outer_code r_product_id = wx_meta_len.outer_code if(not delveryDate): #默认要求当天发货 delveryDate = time.strftime("%Y-%m-%d", time.localtime()) order_dict = { "orderType": self.orderType,#默认现片 "apiOrderNo": dict_data.get('order_number', ''), "deliveryDate": delveryDate, "deliverType": self.deliverType, "customerLinkman": self.customerLinkman, "customerTel": self.customerTel, "customerProvince": self.customerProvince, "customerCity": self.customerCity, "customerCounty":self.customerCounty, "customerAddress": self.customerAddress, "note": dict_data.get('comments', ''), "items": [ { "type": self.orderType, "productId": l_product_id, "quantity": 1, "brand": brand, "lr": "l", "sphval": dict_data.get('lsph', '0'), "cylval": dict_data.get('lcyl', '0'), "lentype": dict_data.get('l_lens_type', ''), "axis": dict_data.get('laxis', '0'), "addval": "0.00", "cbase": "", "coloring": "", "prismA": 0, "directionA": "", "prismB": 0, "directionB": "", "isAsse": isAsse, #是否装配 "isCut": isCut, #切边 "framePd": 0, "frameIpd": "", "framePh": "", "glassDistance": "", "frontAngle": "", #前倾角 无 "moveIn": "", "moveOut": "", "processes": {} #工艺,无 }, { "type": self.orderType, "productId": r_product_id, "quantity": 1, "brand": brand, "lr": "r", "sphval": dict_data.get('rsph', '0'), "cylval": dict_data.get('rcyl', '0'), "lentype": dict_data.get('r_lens_type', ''), "axis": dict_data.get('raxis', '0'), "addval": "0.00", "cbase": "", "coloring": "", "prismA": 0, "directionA": "", "prismB": 0, "directionB": "", "isAsse": isAsse, # 是否装配 "isCut": isCut, # 切边 "framePd": 0, "frameIpd": "", "framePh": "", "glassDistance": "", "frontAngle": "", # 前倾角 无 "moveIn": "", "moveOut": "", "processes": {} # 工艺,无 }, ] } #{"code":"500","map":{"data":null},"message":"没有价格!产品ID:00000000000000008736 品牌:白包装 光型:近视 球:1 柱:2 加光:0","success":false} url = self.host + self.add_order_url result = requests.post(url, data=json.dumps(order_dict), headers=headers, timeout=60) response = json.loads(result.text) if response['code'] == "200": # 存储下单信息 purchase_order_records = PurchaseOrderRecords.objects.filter(lab_number=dict_data.get('order_number', '')) if len(purchase_order_records) > 0: pur_order_records = purchase_order_records[0] pur_order_records.order_data = json.dumps(order_dict) pur_order_records.vendor = '10' pur_order_records.save() else: pur_order_records = PurchaseOrderRecords() pur_order_records.lab_number = dict_data.get('order_number', '') pur_order_records.order_data = json.dumps(order_dict) pur_order_records.vendor = '10' pur_order_records.save() return {"code": 0, "data": response['map']['data'], "msg": "success!"} else: return {"code": -1, "data": response['map']['data'], "msg": response['message']} except Exception as e: return {"code": -1, "data": "", "msg": "生成订单失败,异常信息:%s"%str(e)} #根据伟星订单号获取伟星订单生产状态 ''' ### 参数 * `orderNo`: 订单号(不是订单ID) ### 响应 ```json { "success": true, "code": "200", "message": null, "map": { "data": { "status": "1", "deliverNo": "123", "deliverCompany": "圆通" } } } ``` #### 订单状态 * "-1": 已删除 * "0": 待引入 * "1": 待审核 * "23": 待确认 * "25": 已终止 * "27": 已取消 * "30": 生产中 * "35": 割边处理 * "37": 单证打印 * "38": 部分发货 * "40": 完成 ''' def getOrderStatus(self,orderNo): if(orderNo == ""): return {"code": -1,"msg": "订单号不能为空"} content_type ='application/x-www-form-urlencoded;' try: result = self.get_headers(content_type) logging.debug(result) if (result['code'] == -1): # 返回出错信息 return result headers = result['headers'] url = self.host + self.order_status_url + "?orderNo=%s"%orderNo result = requests.post(url, headers=headers, timeout=60) response = json.loads(result.text) if response['code'] == "200": return {"code":0,"data":response['map']['data'],"msg":"success"} else: return {"code":-1,"msg":response['message']} except Exception as e: return {"code": -1, "msg": "获取订单状态错误,异常信息:%s"%str(e)} #封装数据 def pack_request_value(self, lab): data_dict = {} try: if float(lab.od_sph) <= 0: r_lens_type = '近视' else: r_lens_type = '老花' if float(lab.os_sph) <= 0: l_lens_type = '近视' else: l_lens_type = '老花' if int(lab.vendor) > 9: act_lens_sku = lab.act_lens_sku[3:] else: act_lens_sku = lab.act_lens_sku[2:] data_dict['order_number'] = lab.lab_number data_dict['vendor'] = lab.vendor data_dict['rsku'] = act_lens_sku data_dict['rsph'] = lab.od_sph data_dict['rcyl'] = lab.od_cyl data_dict['raxis'] = lab.od_axis data_dict['r_lens_type'] = r_lens_type data_dict['lsku'] = act_lens_sku data_dict['lsph'] = lab.os_sph data_dict['lcyl'] = lab.os_cyl data_dict['laxis'] = lab.os_axis data_dict['l_lens_type'] = l_lens_type data_dict['comments'] = lab.comments return data_dict except Exception as e: return data_dict #处理返回结果 def analysis_result(self, request, lbo, purchase_order, res): stat_dict = {} try: if res['code'] == 0: purchase_order.vendor_order_reference = res['data']['orderNo'] purchase_order.save() lbo.vendor_order_reference = res['data']['orderNo'] lbo.save() # 记录日志 tloc = tracking_lab_order_controller() tloc.tracking(lbo, request.user, 'LENS_PURCHASE', '镜片采购', res['data']['orderNo']) stat_dict[lbo.lab_number] = {'Success': True, 'Message': '下单成功'} else: stat_dict[lbo.lab_number] = {'Success': False, 'Message': res['msg']} return stat_dict except Exception as e: stat_dict[lbo.lab_number] = {'Success': False, 'Message': e} return stat_dict
[ "250849686@qq.com" ]
250849686@qq.com
77485e7d02d6ad9aee29932b1412cd93cec7b922
dcc6e06cac54e16e9a4387237f409fbd95c14a07
/dotfiles/newsboat/split-opml-by-tags.py
454f620ae46f429a6c5b85b719ab3869227491ed
[ "MIT" ]
permissive
simshadows/sims-dotfiles
09ee62581ca52abd05500cbba9b252d39a2f1cfb
ce664af873377d74370f5d1398d2165348de33a3
refs/heads/master
2023-04-08T19:09:36.028682
2023-03-27T06:40:02
2023-03-27T06:40:02
103,027,299
2
0
null
null
null
null
UTF-8
Python
false
false
3,020
py
#!/usr/bin/env python3 import os import sys import shutil import collections import re # Reserved tags NO_TAGS_TAG = "NO-TAGS" ORIGINAL_TAG = "ORIGINAL" src_dir = sys.argv[1] # Good enough arg parsing for now # We read these: orig = os.path.join(src_dir, "autogenerated-opml/ORIGINAL.xml") urls = os.path.join(src_dir, ".newsboat/urls") # And we write our OPML files to here: dumpto = os.path.join(src_dir, "autogenerated-opml") print(" Reading tags...") # Populate collections of feeds with particular tags # tags[<tag-name>] = {<feed-url-1>, <feed-url-2>, ...} tags = collections.defaultdict(set) no_tags = set() all_urls = set() with open(urls, "r") as f: for line in f: line = line.strip() if len(line) == 0: continue assert line.startswith("http") substr1 = line.split(maxsplit=1) substr1[0] = substr1[0].replace("&", "&amp;") # A HACK............. if substr1[0] in all_urls: raise ValueError("Found duplicate: {}".format(substr1[0])) all_urls.add(substr1[0]) if len(substr1) == 1: no_tags.add(substr1[0]) elif len(substr1) == 2: # The .split() op below on: # "some tag1" "some tag2" # would return something like: # ['', 'some tag1', ' ', 'some tag2', ''] skip = True # Skip when empty string expected has_tags = False for s in substr1[1].split("\""): s = s.strip() assert (skip and len(s) == 0) or (not skip and len(s) > 0) if not skip and not s.startswith("~"): s = s.replace(" ", "-").replace("_", "-").lower() s = re.sub(r'[^a-z0-9-]+', '', s) assert(len(s) > 0) tags[s].add(substr1[0]) has_tags = True skip = not skip assert not skip # We should finish on an empty string if not has_tags: no_tags.add(substr1[0]) else: raise ValueError # Sanity check on the set union assert no_tags.union(*tags.values()) == all_urls print(" URLs found: {}".format(len(all_urls))) assert (NO_TAGS_TAG not in tags) and (ORIGINAL_TAG not in tags) # Reserved words if len(no_tags) > 0: tags[NO_TAGS_TAG] = no_tags # Feedback on set sizes print(" Tags found:") for k, v in tags.items(): assert len(v) > 0 print(" '{}' with {} URLs.".format(k, len(v))) # Create the new OPML files print(" Writing new OPML files...") with open(orig, "r") as orig_f: for tag, urls_to_keep in tags.items(): newopml = os.path.join(dumpto, tag + ".xml") urls_to_remove = all_urls - urls_to_keep orig_f.seek(0) print(" {}".format(newopml)) with open(newopml, "w") as new_f: for line in orig_f: if all(("xmlUrl=\"{}\"".format(x) not in line) for x in urls_to_remove): new_f.write(line)
[ "contact@simshadows.com" ]
contact@simshadows.com
1d227f48078109297a8c011b71885c3e33db0946
8e07b5b7a8dd38e0ef2c7ffc97d0392d886f32e6
/venv/Lib/site-packages/mypy/typeshed/third_party/2and3/paramiko/win_pageant.pyi
388c2e9d7a61872a1866ea01df0f94007bc377cd
[]
no_license
RodrigoNeto/cursopythonyt
fc064a2e6106324e22a23c54bdb9c31040ac9eb6
279dad531e21a9c7121b73d84fcbdd714f435e7e
refs/heads/master
2023-07-03T00:54:09.795054
2021-08-13T12:42:24
2021-08-13T12:42:24
395,646,798
0
0
null
null
null
null
UTF-8
Python
false
false
365
pyi
import ctypes.wintypes import sys assert sys.platform == "win32" win32con_WM_COPYDATA: int def can_talk_to_agent(): ... class COPYDATASTRUCT(ctypes.Structure): ... class PageantConnection: def __init__(self) -> None: ... def send(self, data: bytes) -> None: ... def recv(self, n: int) -> bytes: ... def close(self) -> None: ...
[ "rodrigoneto.forseti@gmail.com" ]
rodrigoneto.forseti@gmail.com
241d12f0589080f83b03b869cccac1c92f023f75
5f6fa94e87f7607f85d02482a3fee09d4bf02bc2
/db/mysqlclient.py
de8e363b2e47404f86b42c51065dc23937dd7a43
[]
no_license
13718422048/proxypool
802a41335fdc4aa4919cebb4ad56928baa55f6f4
eb7e93965c60c1680791fb4f595326566f3207af
refs/heads/master
2022-04-07T13:14:21.307534
2020-03-18T09:25:19
2020-03-18T09:25:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
#!/usr/bin/env python #coding:utf-8 """ Author: --<> Purpose: Created: 2019/7/10 """ import mysqlclient class CMysqlClient(object): def __init__(self, *args, **kwargs): # 构造函数 user = kwargs.get("user", d=None) password = kwargs.get("password", d=None) ip = kwargs.get("ip", None) database = kwargs.get("ip", None) pass def connect(self): """ 连接数据库 """ pass def
[ "1640498323@qq.com" ]
1640498323@qq.com
f0291c27c5720c0abd84b3e5731be796e60a259c
d65e041389d251bcdc861bfe6c33c8afad972b0e
/src/python/day_four/part_two.py
3b35b1c3f6c18e7d53084db7a1de0341e883bca9
[]
no_license
DSmedley1989/adventofcode2020
674e23df22ccfd75f40592e91e5b57d7cba0d9d3
e9a447fc47779e727087fda4005b436f43403725
refs/heads/master
2023-01-31T21:01:52.736909
2020-12-07T22:57:56
2020-12-07T22:57:56
317,817,992
0
0
null
null
null
null
UTF-8
Python
false
false
2,932
py
from part_one import required_fields, problem_input_raw, parse_passports, validate_passport import re invalid_passports_raw = """ eyr:1972 cid:100 hcl:#18171d ecl:amb hgt:170 pid:186cm iyr:2018 byr:1926 iyr:2019 hcl:#602927 eyr:1967 hgt:170cm ecl:grn pid:012533040 byr:1946 hcl:dab227 iyr:2012 ecl:brn hgt:182cm pid:021572410 eyr:2020 byr:1992 cid:277 hgt:59cm ecl:zzz eyr:2038 hcl:74454a iyr:2023 pid:3556412378 byr:2007 """ valid_passports_raw = """ pid:087499704 hgt:74in ecl:grn iyr:2012 eyr:2030 byr:1980 hcl:#623a2f eyr:2029 ecl:blu cid:129 byr:1989 iyr:2014 pid:896056539 hcl:#a97842 hgt:165cm hcl:#888785 hgt:164cm byr:2001 iyr:2015 cid:88 pid:545766238 ecl:hzl eyr:2022 iyr:2010 hgt:158cm hcl:#b6652a ecl:blu byr:1944 eyr:2021 pid:093154719 """ def validate_birth_year(year): y = int(year) return y >= 1920 and y <= 2002 def validate_issue_year(year): y = int(year) return y >= 2010 and y <= 2020 def validate_expiration_year(year): y = int(year) return y >= 2020 and y <= 2030 def validate_height(height): exp = re.match(r'^([0-9]*)(in|cm)$', height) if exp is None: return False num = int(exp.group(1)) unit = exp.group(2) if unit == 'cm': return num >= 150 and num <= 193 elif unit == 'in': return num >= 59 and num <= 76 else: return False def validate_hair_colour(colour): return re.match(r'^#[0-9a-f]{6}$', colour) is not None def validate_eye_colour(colour): return colour in [ 'amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth' ] def validate_passport_id(pass_id): return re.match(r'[0-9]{9}$', pass_id) validations = { 'byr': validate_birth_year, 'iyr': validate_issue_year, 'eyr': validate_expiration_year, 'hgt': validate_height, 'hcl': validate_hair_colour, 'ecl': validate_eye_colour, 'pid': validate_passport_id } def validate_fields(passport): for field in required_fields: if not validations[field](passport[field]): return False return True if __name__ == '__main__': invalid_passports = parse_passports(invalid_passports_raw) valid_passports = parse_passports(valid_passports_raw) test_invalid_count = 0 test_valid_count = 0 for passport in invalid_passports: if not validate_fields(passport): test_invalid_count += 1 for passport in valid_passports: if validate_fields(passport): test_valid_count += 1 if test_invalid_count != 4 or test_valid_count != 4: print("TEST FAILURE!") print(test_invalid_count) print(test_valid_count) exit() valid_count = 0 pass_with_fields = [ passport for passport in parse_passports(problem_input_raw) if validate_passport(passport) ] for passport in pass_with_fields: if validate_fields(passport): valid_count += 1 print(valid_count)
[ "daniel.smedley@footballradar.com" ]
daniel.smedley@footballradar.com
3fdfd6e33e65ec14df4bae6e7af73d7016887185
54665756c8ef8abb86ea92e927100ae80be60e0f
/application.py
ce61d7cc3bef74fb06a59578259c2d50724f2ef8
[]
no_license
Tamerlan74/eb-app-1
e5e667b64b6fa9eb3afd39e4c5395f7ad14bddbf
e4db117b0e5cbeebec3ec92a4c660f04ae71fad1
refs/heads/main
2023-07-16T13:36:04.330482
2021-09-02T13:20:59
2021-09-02T13:20:59
402,420,637
0
0
null
null
null
null
UTF-8
Python
false
false
4,978
py
import logging.handlers # Create logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Handler LOG_FILE = '/tmp/sample-app.log' handler = logging.handlers.RotatingFileHandler(LOG_FILE, maxBytes=1048576, backupCount=5) handler.setLevel(logging.INFO) # Formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # Add Formatter to Handler handler.setFormatter(formatter) # add Handler to Logger logger.addHandler(handler) welcome = """ <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <!-- Copyright 2012 Amazon.com, Inc. or its affiliates. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://aws.Amazon/apache2.0/ or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Welcome</title> <style> body { color: #ffffff; background-color: #E0E0E0; font-family: Arial, sans-serif; font-size:14px; -moz-transition-property: text-shadow; -moz-transition-duration: 4s; -webkit-transition-property: text-shadow; -webkit-transition-duration: 4s; text-shadow: none; } body.blurry { -moz-transition-property: text-shadow; -moz-transition-duration: 4s; -webkit-transition-property: text-shadow; -webkit-transition-duration: 4s; text-shadow: #fff 0px 0px 25px; } a { color: #0188cc; } .textColumn, .linksColumn { padding: 2em; } .textColumn { position: absolute; top: 0px; right: 50%; bottom: 0px; left: 0px; text-align: right; padding-top: 11em; background-color: #1BA86D; background-image: -moz-radial-gradient(left top, circle, #6AF9BD 0%, #00B386 60%); background-image: -webkit-gradient(radial, 0 0, 1, 0 0, 500, from(#6AF9BD), to(#00B386)); } .textColumn p { width: 75%; float:right; } .linksColumn { position: absolute; top:0px; right: 0px; bottom: 0px; left: 50%; background-color: #E0E0E0; } h1 { font-size: 500%; font-weight: normal; margin-bottom: 0em; } h2 { font-size: 200%; font-weight: normal; margin-bottom: 0em; } ul { padding-left: 1em; margin: 0px; } li { margin: 1em 0em; } </style> </head> <body id="sample"> <div class="textColumn"> <h1>IT WORKED!!</h1> <p>Your first AWS Elastic Beanstalk Python Application is now running on your own dedicated environment in the AWS Cloud</p> <p>This environment is launched with Elastic Beanstalk Python Platform</p> </div> <div class="linksColumn"> <h2>What's Next?</h2> <ul> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/">AWS Elastic Beanstalk overview</a></li> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/index.html?concepts.html">AWS Elastic Beanstalk concepts</a></li> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/create_deploy_Python_django.html">Deploy a Django Application to AWS Elastic Beanstalk</a></li> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/create_deploy_Python_flask.html">Deploy a Flask Application to AWS Elastic Beanstalk</a></li> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/create_deploy_Python_custom_container.html">Customizing and Configuring a Python Container</a></li> <li><a href="http://docs.amazonwebservices.com/elasticbeanstalk/latest/dg/using-features.loggingS3.title.html">Working with Logs</a></li> </ul> </div> </body> </html> """ def application(environ, start_response): path = environ['PATH_INFO'] method = environ['REQUEST_METHOD'] if method == 'POST': try: if path == '/': request_body_size = int(environ['CONTENT_LENGTH']) request_body = environ['wsgi.input'].read(request_body_size) logger.info("Received message: %s" % request_body) elif path == '/scheduled': logger.info("Received task %s scheduled at %s", environ['HTTP_X_AWS_SQSD_TASKNAME'], environ['HTTP_X_AWS_SQSD_SCHEDULED_AT']) except (TypeError, ValueError): logger.warning('Error retrieving request body for async work.') response = '' else: response = welcome start_response("200 OK", [ ("Content-Type", "text/html"), ("Content-Length", str(len(response))) ]) return [bytes(response, 'utf-8')]
[ "noreply@github.com" ]
Tamerlan74.noreply@github.com
41c62ffb7c314661ff39786e0248172dd70cdeda
73a5eca1ddee1d74a3c2be9ca4e5e67ebe3d16f7
/src/tensortools/regress2d.py
3ea96986cf2c264b45bda84fb41642dd8a2b6e8a
[ "MIT" ]
permissive
ychnlgy/Chebyshev-Lagrange
34346692a2925cde620377e8fbcb8d588623fac7
74292e72b83f992d6c42a2f2db04dfdce5a52aea
refs/heads/master
2020-05-23T06:20:10.831035
2020-02-12T16:31:38
2020-02-12T16:31:38
186,661,893
2
1
null
null
null
null
UTF-8
Python
false
false
1,429
py
import torch def regress2d(x, y): ''' Input: x - torch Tensor of shape (d, n), d different sets of n x-points. y - torch Tensor of shape (d, n), corresponding y-values. Output: w - torch Tensor of shape (d, 1), linearly least square weights to map x to y. b - torch Tensor of shape (d, 1), linearly least square bias to map x to y. ''' xm = x.mean(dim=1).unsqueeze(1) ym = y.mean(dim=1).unsqueeze(1) w = _calc_w(x, y, xm, ym) b = _calc_b(x, y, w, xm, ym) return w, b # === PRIVATE === def _calc_b(x, y, w, xm, ym): return ym-w*xm def _calc_w(x, y, xm, ym): dx = x - xm dy = y - ym num = (dx*dy).sum(dim=1).unsqueeze(1) den = (dx**2).sum(dim=1).unsqueeze(1) return num/den if __name__ == "__main__": # Tests for 1d vectors wt = [2.5, -0.2] bt = [-1.25, 50] def f(x): y = torch.zeros(2, 100) y[0] = wt[0]*x +bt[0] + torch.zeros_like(x).normal_(mean=0, std=0.5) y[1] = wt[1]*x +bt[1] + torch.zeros_like(x).normal_(mean=0, std=0.5) return y x = torch.rand(1, 100) * 10 - 5 y = f(x) w, b = regress2d(x, y) def similar(v, t, eps=0.1): print("Output: %.3f, target: %.3f" % (v, t)) return abs(v-t) < eps * abs(t) for i in range(2): assert similar(w[i].item(), wt[i]) assert similar(b[i].item(), bt[i])
[ "ychnlgy@gmail.com" ]
ychnlgy@gmail.com
9189010707a10a16ab13b7ec406f8795e10748f4
80429abf48f2a5cbd93db95416400b0a3c5f12f4
/project2/problem_6.py
9e014ea8a5bdfd9acdda38ced559af2e810d6843
[]
no_license
andrijana-kurtz/Udacity_Data_Structures_and_Algorithms
9b8c452c5d065a4c18419a3de14234887468c515
6bf39e5c20f9c8adef83d6484b9204bbfcb0717c
refs/heads/main
2023-04-27T14:37:55.978222
2021-05-14T02:38:07
2021-05-14T02:38:07
367,224,538
0
0
null
null
null
null
UTF-8
Python
false
false
4,532
py
""" Union and Intersection of Two Linked Lists Your task for this problem is to fill out the union and intersection functions. The union of two sets A and B is the set of elements which are in A, in B, or in both A and B. The intersection of two sets A and B, denoted by A ∩ B, is the set of all objects that are members of both the sets A and B. You will take in two linked lists and return a linked list that is composed of either the union or intersection, respectively. Once you have completed the problem you will create your own test cases and perform your own run time analysis on the code. """ class Node: def __init__(self, value): self.value = value self.next = None def __repr__(self): return str(self.value) class LinkedList: def __init__(self): self.head = None def __iter__(self): self.node = self.head return self def __next__(self): if self.node: node = self.node self.node = self.node.next return node else: raise StopIteration def __str__(self): cur_head = self.head out_string = "" while cur_head: out_string += str(cur_head.value) + " -> " cur_head = cur_head.next return out_string def append(self, value): if self.head is None: self.head = Node(value) return node = self.head while node.next: node = node.next node.next = Node(value) def size(self): size = 0 node = self.head while node: size += 1 node = node.next return size def union(llist_1, llist_2): set1 = {n.value for n in llist_1} set2 = {n.value for n in llist_2} union = set1.union(set2) result_llist = LinkedList() for value in union: result_llist.append(value) return result_llist def intersection(llist_1, llist_2): set1 = {n.value for n in llist_1} set2 = {n.value for n in llist_2} isec = set1.intersection(set2) result_llist = LinkedList() for value in isec: result_llist.append(value) return result_llist # Test case 1 linked_list_1 = LinkedList() linked_list_2 = LinkedList() element_1 = [3,2,4,35,6,65,6,4,3,21] element_2 = [6,32,4,9,6,1,11,21,1] for i in element_1: linked_list_1.append(i) for i in element_2: linked_list_2.append(i) assert(str(union(linked_list_1,linked_list_2)) == '32 -> 65 -> 2 -> 35 -> 3 -> 4 -> 6 -> 1 -> 9 -> 11 -> 21 -> ') assert(str(intersection(linked_list_1,linked_list_2)) == '4 -> 21 -> 6 -> ') # Test case 2 linked_list_3 = LinkedList() linked_list_4 = LinkedList() element_1 = [3,2,4,35,6,65,6,4,3,23] element_2 = [1,7,8,9,11,21,1] for i in element_1: linked_list_3.append(i) for i in element_2: linked_list_4.append(i) assert(str(union(linked_list_3,linked_list_4)) == '65 -> 2 -> 35 -> 3 -> 4 -> 6 -> 1 -> 7 -> 8 -> 9 -> 11 -> 21 -> 23 -> ') assert(str(intersection(linked_list_3,linked_list_4)) == '') # Test case 3 - Two empty lists linked_list_A = LinkedList() linked_list_B = LinkedList() element_1 = [] element_2 = [] for i in element_1: linked_list_A.append(i) for i in element_2: linked_list_B.append(i) assert(str(union(linked_list_A,linked_list_B)) == '') assert(str(intersection(linked_list_A,linked_list_B)) == '') # Test case 4 - Two lists, of which one empty linked_list_A = LinkedList() linked_list_B = LinkedList() element_1 = [1,2,3,4] element_2 = [] for i in element_1: linked_list_A.append(i) for i in element_2: linked_list_B.append(i) assert(str(union(linked_list_A,linked_list_B)) == '1 -> 2 -> 3 -> 4 -> ') assert(str(intersection(linked_list_A,linked_list_B)) == '') # Test case 5 - Two same lists linked_list_A = LinkedList() linked_list_B = LinkedList() element_1 = [1,2,3,4] element_2 = [1,2,3,4] for i in element_1: linked_list_A.append(i) for i in element_2: linked_list_B.append(i) assert(str(union(linked_list_A,linked_list_B)) == '1 -> 2 -> 3 -> 4 -> ') assert(str(intersection(linked_list_A,linked_list_B)) == '1 -> 2 -> 3 -> 4 -> ') # Test case 5 - Two same lists linked_list_A = LinkedList() linked_list_B = LinkedList() element_1 = [2,2,2] element_2 = [3,3,3] for i in element_1: linked_list_A.append(i) for i in element_2: linked_list_B.append(i) assert(str(union(linked_list_A,linked_list_B)) == '2 -> 3 -> ') assert(str(intersection(linked_list_A,linked_list_B)) == '')
[ "andrijana.kurtz@gmail.com" ]
andrijana.kurtz@gmail.com
7d6073ad7cb84d1e921bb255869454481c50ca3d
f1cbbbf53d25b9f03134dcbf8ceb0074b0cb3ab9
/customuser/forms.py
40dfee5d24e2d829f07091de0ce4c1af666b1636
[]
no_license
skiboorg/i_temp
b8be438a0ca2e17d15ba518188dc9c60d918cf25
742366985fe409f0c2ad59025cac9bf4cc63da76
refs/heads/master
2023-01-04T06:32:53.359662
2020-11-02T17:29:12
2020-11-02T17:29:12
291,662,104
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
from django import forms from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import * from django.forms import ModelForm class SignUpForm(UserCreationForm): email = forms.EmailField(max_length=254, help_text='Required. Inform a valid email address.') class Meta: model = User fields = ('email', 'username', 'password1', 'password2', ) error_messages = { 'email': { 'unique': "Указанный адрес уже кем-то используется", }, }
[ "11@11.11" ]
11@11.11
ed1e906f2466f24dbf42f890104a0c0f9e20ef61
eb4731411b97ba2028682c367005183a8039b2e2
/eval_calculator.py
d2e433576c91e29b8eff507221125cab20e48db7
[]
no_license
rezvanieh/practice_python
1f603c8132b7da4e8a78979a53ba4bb7d5bd2887
ec7f627e3bb3af9ced8cba6f71f4e70bd1592c70
refs/heads/master
2023-07-22T08:27:56.151757
2021-09-02T07:12:31
2021-09-02T07:12:31
402,309,650
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
import re print("Using Eval Function for Calculation") print("Type 'quit' to exit\n") previous = 0 run = True def perform_math(): global run global previous equation = "" if previous == 0: equation = input("ٍEnter equation: ") else: equation = input(str(previous)) if equation == 'quit': print('Finished...') run = False else: equation = re.sub('[a-zA-Z,.:()" "]', '' , equation) if previous == 0: previous = eval(equation) else: previous = eval(str(previous) + equation) while run: perform_math()
[ "rezvanieh.talebi@gmail.com" ]
rezvanieh.talebi@gmail.com
7375d9c055ddef901788d0d3a34d84e9bcd60115
2e5afac9380dc05d71ea8ae92488266ce3cb5c94
/Ring/setup.py
710611a70cbd4ff428e5fb3a9aeb8de2c765d601
[]
no_license
rraj29/RealtimeAudioPython
47d692e53f32ad7002df77348329cacccbed4611
bab55ae5410bccae27bf66aca148b1fd673d60f8
refs/heads/master
2022-10-23T10:12:26.388947
2020-06-19T13:15:04
2020-06-19T13:15:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
#!/usr/bin/env python ''' Usage: python setup.py build_ext --inplace ''' from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext from Cython.Compiler.Options import get_directive_defaults directive_defaults = get_directive_defaults() directive_defaults['linetrace'] = True directive_defaults['binding'] = True import numpy setup( cmdclass = {'build_ext': build_ext}, ext_modules = [Extension("diod_cython", sources=["diodcython.pyx"], include_dirs=[numpy.get_include()])], ) setup( cmdclass = {'build_ext': build_ext}, ext_modules = [Extension("c_diod", sources=["c_diod.pyx", "diod_cdef.c"], include_dirs=[numpy.get_include()])], )
[ "noreply@github.com" ]
rraj29.noreply@github.com
9ee7a1390ae377ee6ccb2031080cf90ddfbd4522
0558a02176b4c27b369594d2f2d0070b64b77f32
/app/static_typing.py
69d669ca097703f4c5f3f4a774860d862809b9bb
[]
no_license
marcelh89/projectX
57e77e844197ccf728b1a996a7330472210b2110
580817316ac8dc5cb9bf84fc8f83b0337075590c
refs/heads/master
2021-01-10T07:14:49.231907
2015-10-28T20:24:58
2015-10-28T20:24:58
44,829,069
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
def greeting(name: str) -> str: return 'Hello ' + name print(greeting('Peter')) try: print(greeting(1)) except TypeError as ter: print(ter)
[ "marcelh89@googlemail.com" ]
marcelh89@googlemail.com
48e96cb4959b50297d7f6413e401936fcd538a85
752704eba6977ddaee1c33dc9a8594c0f47eb358
/repositories/artist_repository.py
87b117296e737fcba05fae0aaae34c6f0d5f6266
[]
no_license
JarrodBennie/python-record-shop
6dcce6ade10b5624e13a1e2816d9688204965eff
6758c4309acd919ee7c92a8b033a87d79b369dd1
refs/heads/master
2021-02-18T17:43:08.320906
2020-04-06T10:39:58
2020-04-06T10:39:58
245,218,677
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
from models.artist import Artist from db.run_sql import run_sql def select_all(): artists = [] sql = "SELECT * FROM artists" results = run_sql(sql) for row in results: name = row["name"] id = row["id"] artist = Artist(name, id) artists.append(artist) return artists def select(id): artist = None sql = "SELECT * FROM artists WHERE id = %s" results = run_sql(sql, (id,)) row = results[0] name = row["name"] id = row["id"] artist = Artist(name, id) return artist def save(artist): sql = "INSERT INTO artists (name) VALUES (%s) RETURNING id" results = run_sql(sql, (artist.name,)) id = results[0]["id"] artist.id = id return artist def update(artist): sql = "UPDATE artists SET (name) = (%s) WHERE id = %s" run_sql(sql, (artist.name, artist.id)) def delete(id): sql = "DELETE FROM artists WHERE id = %s" run_sql(sql, (id,)).count
[ "jarrodbennie@icloud.com" ]
jarrodbennie@icloud.com
fbad7287e306066bb1f74d6162618521239bdabd
b8560fcc01d746fde45c2a2c0364cacfc3d6613f
/4常用模块/shutil_module.py
3552f40f7fd23fcca6b3556a9b9b11d5f4753ce6
[]
no_license
RingoSnail/Python_Basic
b76e17675ef29e40f544caccaf0c29f1ba0afdf5
830c472a9f231e3b7402705f6a02b1028bccfe92
refs/heads/master
2023-08-19T18:01:45.096762
2021-10-15T08:30:10
2021-10-15T08:30:10
305,307,563
1
0
null
null
null
null
UTF-8
Python
false
false
53
py
# 高级的文件、文件夹、压缩包处理模块
[ "rain_hugo@yahoo.com" ]
rain_hugo@yahoo.com
9882a77c834b182dafafe702c6450be8ddadef23
75e4e51e6bfb19f00bffb308074bd492a09ec6e0
/NewPic.py
e2607ae2c139f75eaf340cb159c3b36e1eaaf4ef
[]
no_license
canydream/pyautogui
1eba874bf656b6712c7f3e93b3dd28987ce78b2f
a0c880dffea0ac7e28bb49ca5ee3447a2916325a
refs/heads/master
2023-06-21T06:46:32.147508
2021-08-01T11:08:40
2021-08-01T11:08:40
391,299,588
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
import cv2 import numpy as np img3 = np.random.random((600, 800, 3)) while 1: img3 = np.random.random((600, 800, 3)) img3 *= 50 img3 = img3.round() cv2.imshow('img', img3) print(cv2.waitKey(1000)) if 0: break cv2.destroyAllWindows()
[ "canydream@qq.com" ]
canydream@qq.com
f923c988e6a1535d7ed8fffd7072ffde4193bc8a
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/googlecloudsdk/calliope/walker_util.py
5ac7827a51c6e386400e44564a8fdd49c740f037
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
19,357
py
# -*- coding: utf-8 -*- # # Copyright 2015 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A collection of CLI walkers.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import io import os from googlecloudsdk.calliope import actions from googlecloudsdk.calliope import arg_parsers from googlecloudsdk.calliope import cli_tree from googlecloudsdk.calliope import markdown from googlecloudsdk.calliope import walker from googlecloudsdk.core.document_renderers import render_document from googlecloudsdk.core.util import files from googlecloudsdk.core.util import pkg_resources import six _HELP_HTML_DATA_FILES = [ 'favicon.ico', 'index.html', '_menu_.css', '_menu_.js', '_title_.html', ] class DevSiteGenerator(walker.Walker): """Generates DevSite reference HTML in a directory hierarchy. This implements gcloud meta generate-help-docs --manpage-dir=DIRECTORY. Attributes: _directory: The DevSite reference output directory. _need_section_tag[]: _need_section_tag[i] is True if there are section subitems at depth i. This prevents the creation of empty 'section:' tags in the '_toc' files. _toc_root: The root TOC output stream. _toc_main: The current main (just under root) TOC output stream. """ _REFERENCE = '/sdk/gcloud/reference' # TOC reference directory offset. _TOC = '_toc.yaml' def __init__(self, cli, directory, hidden=False, progress_callback=None, restrict=None): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The devsite output directory path name. hidden: Boolean indicating whether to consider the hidden CLI. progress_callback: f(float), The function to call to update the progress bar or None for no progress bar. restrict: Restricts the walk to the command/group dotted paths in this list. For example, restrict=['gcloud.alpha.test', 'gcloud.topic'] restricts the walk to the 'gcloud topic' and 'gcloud alpha test' commands/groups. """ super(DevSiteGenerator, self).__init__(cli) self._directory = directory files.MakeDir(self._directory) self._need_section_tag = [] toc_path = os.path.join(self._directory, self._TOC) self._toc_root = files.FileWriter(toc_path) self._toc_root.write('toc:\n') self._toc_root.write('- title: "gcloud Reference"\n') self._toc_root.write(' path: %s\n' % self._REFERENCE) self._toc_root.write(' section:\n') self._toc_main = None def Visit(self, node, parent, is_group): """Updates the TOC and Renders a DevSite doc for each node in the CLI tree. Args: node: group/command CommandCommon info. parent: The parent Visit() return value, None at the top level. is_group: True if node is a group, otherwise its is a command. Returns: The parent value, ignored here. """ def _UpdateTOC(): """Updates the DevSIte TOC.""" depth = len(command) - 1 if not depth: return title = ' '.join(command) while depth >= len(self._need_section_tag): self._need_section_tag.append(False) if depth == 1: if is_group: if self._toc_main: # Close the current main group toc if needed. self._toc_main.close() # Create a new main group toc. toc_path = os.path.join(directory, self._TOC) toc = files.FileWriter(toc_path) self._toc_main = toc toc.write('toc:\n') toc.write('- title: "%s"\n' % title) toc.write(' path: %s\n' % '/'.join([self._REFERENCE] + command[1:])) self._need_section_tag[depth] = True toc = self._toc_root indent = ' ' if is_group: toc.write('%s- include: %s\n' % ( indent, '/'.join([self._REFERENCE] + command[1:] + [self._TOC]))) return else: toc = self._toc_main indent = ' ' * (depth - 1) if self._need_section_tag[depth - 1]: self._need_section_tag[depth - 1] = False toc.write('%ssection:\n' % indent) title = command[-1] toc.write('%s- title: "%s"\n' % (indent, title)) toc.write('%s path: %s\n' % (indent, '/'.join([self._REFERENCE] + command[1:]))) self._need_section_tag[depth] = is_group # Set up the destination dir for this level. command = node.GetPath() if is_group: directory = os.path.join(self._directory, *command[1:]) files.MakeDir(directory, mode=0o755) else: directory = os.path.join(self._directory, *command[1:-1]) # Render the DevSite document. path = os.path.join( directory, 'index' if is_group else command[-1]) + '.html' with files.FileWriter(path) as f: md = markdown.Markdown(node) render_document.RenderDocument(style='devsite', title=' '.join(command), fin=io.StringIO(md), out=f, command_node=node) _UpdateTOC() return parent def Done(self): """Closes the TOC files after the CLI tree walk is done.""" self._toc_root.close() if self._toc_main: self._toc_main.close() class HelpTextGenerator(walker.Walker): """Generates help text files in a directory hierarchy. Attributes: _directory: The help text output directory. """ def __init__(self, cli, directory, hidden=False, progress_callback=None, restrict=None): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The Help Text output directory path name. hidden: Boolean indicating whether to consider the hidden CLI. progress_callback: f(float), The function to call to update the progress bar or None for no progress bar. restrict: Restricts the walk to the command/group dotted paths in this list. For example, restrict=['gcloud.alpha.test', 'gcloud.topic'] restricts the walk to the 'gcloud topic' and 'gcloud alpha test' commands/groups. """ super(HelpTextGenerator, self).__init__( cli, progress_callback=progress_callback, restrict=restrict) self._directory = directory files.MakeDir(self._directory) def Visit(self, node, parent, is_group): """Renders a help text doc for each node in the CLI tree. Args: node: group/command CommandCommon info. parent: The parent Visit() return value, None at the top level. is_group: True if node is a group, otherwise its is a command. Returns: The parent value, ignored here. """ # Set up the destination dir for this level. command = node.GetPath() if is_group: directory = os.path.join(self._directory, *command[1:]) else: directory = os.path.join(self._directory, *command[1:-1]) files.MakeDir(directory, mode=0o755) # Render the help text document. path = os.path.join(directory, 'GROUP' if is_group else command[-1]) with files.FileWriter(path) as f: md = markdown.Markdown(node) render_document.RenderDocument(style='text', fin=io.StringIO(md), out=f) return parent class DocumentGenerator(walker.Walker): """Generates style manpage files with suffix in an output directory. All files will be generated in one directory. Attributes: _directory: The document output directory. _style: The document style. _suffix: The output file suffix. """ def __init__(self, cli, directory, style, suffix): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The manpage output directory path name. style: The document style. suffix: The generate document file suffix. None for .<SECTION>. """ super(DocumentGenerator, self).__init__(cli) self._directory = directory self._style = style self._suffix = suffix files.MakeDir(self._directory) def Visit(self, node, parent, is_group): """Renders document file for each node in the CLI tree. Args: node: group/command CommandCommon info. parent: The parent Visit() return value, None at the top level. is_group: True if node is a group, otherwise its is a command. Returns: The parent value, ignored here. """ if self._style == 'linter': meta_data = actions.GetCommandMetaData(node) else: meta_data = None command = node.GetPath() path = os.path.join(self._directory, '_'.join(command)) + self._suffix with files.FileWriter(path) as f: md = markdown.Markdown(node) render_document.RenderDocument(style=self._style, title=' '.join(command), fin=io.StringIO(md), out=f, command_metadata=meta_data) return parent class HtmlGenerator(DocumentGenerator): """Generates HTML manpage files with suffix .html in an output directory. The output directory will contain a man1 subdirectory containing all of the HTML manpage files. """ def WriteHtmlMenu(self, command, out): """Writes the command menu tree HTML on out. Args: command: dict, The tree (nested dict) of command/group names. out: stream, The output stream. """ def ConvertPathToIdentifier(path): return '_'.join(path) def WalkCommandTree(command, prefix): """Visit each command and group in the CLI command tree. Args: command: dict, The tree (nested dict) of command/group names. prefix: [str], The subcommand arg prefix. """ level = len(prefix) visibility = 'visible' if level <= 1 else 'hidden' indent = level * 2 + 2 name = command.get('_name_') args = prefix + [name] out.write('{indent}<li class="{visibility}" id="{item}" ' 'onclick="select(event, this.id)">{name}'.format( indent=' ' * indent, visibility=visibility, name=name, item=ConvertPathToIdentifier(args))) commands = command.get('commands', []) + command.get('groups', []) if commands: out.write('<ul>\n') for c in sorted(commands, key=lambda x: x['_name_']): WalkCommandTree(c, args) out.write('{indent}</ul>\n'.format(indent=' ' * (indent + 1))) out.write('{indent}</li>\n'.format(indent=' ' * indent)) else: out.write('</li>\n'.format(indent=' ' * (indent + 1))) out.write("""\ <html> <head> <meta name="description" content="man page tree navigation"> <meta name="generator" content="gcloud meta generate-help-docs --html-dir=."> <title> man page tree navigation </title> <base href="." target="_blank"> <link rel="stylesheet" type="text/css" href="_menu_.css"> <script type="text/javascript" src="_menu_.js"></script> </head> <body> <div class="menu"> <ul> """) WalkCommandTree(command, []) out.write("""\ </ul> </div> </body> </html> """) def _GenerateHtmlNav(self, directory, cli, hidden, restrict): """Generates html nav files in directory.""" tree = CommandTreeGenerator(cli).Walk(hidden, restrict) with files.FileWriter(os.path.join(directory, '_menu_.html')) as out: self.WriteHtmlMenu(tree, out) for file_name in _HELP_HTML_DATA_FILES: file_contents = pkg_resources.GetResource( 'googlecloudsdk.api_lib.meta.help_html_data.', file_name) files.WriteBinaryFileContents(os.path.join(directory, file_name), file_contents) def __init__(self, cli, directory, hidden=False, progress_callback=None, restrict=None): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The HTML output directory path name. hidden: Boolean indicating whether to consider the hidden CLI. progress_callback: f(float), The function to call to update the progress bar or None for no progress bar. restrict: Restricts the walk to the command/group dotted paths in this list. For example, restrict=['gcloud.alpha.test', 'gcloud.topic'] restricts the walk to the 'gcloud topic' and 'gcloud alpha test' commands/groups. """ super(HtmlGenerator, self).__init__( cli, directory=directory, style='html', suffix='.html') self._GenerateHtmlNav(directory, cli, hidden, restrict) class ManPageGenerator(DocumentGenerator): """Generates manpage files with suffix .1 in an output directory. The output directory will contain a man1 subdirectory containing all of the manpage files. """ _SECTION_FORMAT = 'man{section}' def __init__(self, cli, directory, hidden=False, progress_callback=None, restrict=None): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The manpage output directory path name. hidden: Boolean indicating whether to consider the hidden CLI. progress_callback: f(float), The function to call to update the progress bar or None for no progress bar. restrict: Restricts the walk to the command/group dotted paths in this list. For example, restrict=['gcloud.alpha.test', 'gcloud.topic'] restricts the walk to the 'gcloud topic' and 'gcloud alpha test' commands/groups. """ # Currently all gcloud manpages are in section 1. section_subdir = self._SECTION_FORMAT.format(section=1) section_dir = os.path.join(directory, section_subdir) super(ManPageGenerator, self).__init__( cli, directory=section_dir, style='man', suffix='.1') class LinterGenerator(DocumentGenerator): """Generates linter files with suffix .json in an output directory.""" def __init__(self, cli, directory, hidden=False, progress_callback=None, restrict=None): """Constructor. Args: cli: The Cloud SDK CLI object. directory: The linter output directory path name. hidden: Boolean indicating whether to consider the hidden CLI. progress_callback: f(float), The function to call to update the progress bar or None for no progress bar. restrict: Restricts the walk to the command/group dotted paths in this list. For example, restrict=['gcloud.alpha.test', 'gcloud.topic'] restricts the walk to the 'gcloud topic' and 'gcloud alpha test' commands/groups. """ super(LinterGenerator, self).__init__( cli, directory=directory, style='linter', suffix='.json') class CommandTreeGenerator(walker.Walker): """Constructs a CLI command dict tree. This implements the resource generator for gcloud meta list-commands. Attributes: _with_flags: Include the non-global flags for each command/group if True. _with_flag_values: Include flag value choices or :type: if True. _global_flags: The set of global flags, only listed for the root command. """ def __init__(self, cli, with_flags=False, with_flag_values=False, **kwargs): """Constructor. Args: cli: The Cloud SDK CLI object. with_flags: Include the non-global flags for each command/group if True. with_flag_values: Include flags and flag value choices or :type: if True. **kwargs: Other keyword arguments to pass to Walker constructor. """ super(CommandTreeGenerator, self).__init__(cli, **kwargs) self._with_flags = with_flags or with_flag_values self._with_flag_values = with_flag_values self._global_flags = set() def Visit(self, node, parent, is_group): """Visits each node in the CLI command tree to construct the dict tree. Args: node: group/command CommandCommon info. parent: The parent Visit() return value, None at the top level. is_group: True if node is a group, otherwise its is a command. Returns: The subtree parent value, used here to construct a dict tree. """ name = node.name.replace('_', '-') info = {'_name_': name} if self._with_flags: all_flags = [] for arg in node.GetAllAvailableFlags(): value = None if self._with_flag_values: if arg.choices: choices = sorted(arg.choices) if choices != ['false', 'true']: value = ','.join([six.text_type(choice) for choice in choices]) elif isinstance(arg.type, int): value = ':int:' elif isinstance(arg.type, float): value = ':float:' elif isinstance(arg.type, arg_parsers.ArgDict): value = ':dict:' elif isinstance(arg.type, arg_parsers.ArgList): value = ':list:' elif arg.nargs != 0: metavar = arg.metavar or arg.dest.upper() value = ':' + metavar + ':' for f in arg.option_strings: if value: f += '=' + value all_flags.append(f) no_prefix = '--no-' flags = [] for flag in all_flags: if flag in self._global_flags: continue if flag.startswith(no_prefix): positive = '--' + flag[len(no_prefix):] if positive in all_flags: continue flags.append(flag) if flags: info['_flags_'] = sorted(flags) if not self._global_flags: # Most command flags are global (defined by the root command) or # command-specific. Group-specific flags are rare. Separating out # the global flags streamlines command descriptions and prevents # global flag changes (we already have too many!) from making it # look like every command has changed. self._global_flags.update(flags) if is_group: if parent: if cli_tree.LOOKUP_GROUPS not in parent: parent[cli_tree.LOOKUP_GROUPS] = [] parent[cli_tree.LOOKUP_GROUPS].append(info) return info if cli_tree.LOOKUP_COMMANDS not in parent: parent[cli_tree.LOOKUP_COMMANDS] = [] parent[cli_tree.LOOKUP_COMMANDS].append(info) return None class GCloudTreeGenerator(walker.Walker): """Generates an external representation of the gcloud CLI tree. This implements the resource generator for gcloud meta list-gcloud. """ def Visit(self, node, parent, is_group): """Visits each node in the CLI command tree to construct the external rep. Args: node: group/command CommandCommon info. parent: The parent Visit() return value, None at the top level. is_group: True if node is a group, otherwise its is a command. Returns: The subtree parent value, used here to construct an external rep node. """ return cli_tree.Command(node, parent)
[ "cloudsdk.mirror@gmail.com" ]
cloudsdk.mirror@gmail.com
ff71f224008ee670b97d700b32ef94e4a96165ea
33213395f9b7606da83003d9f89966af16a47ed7
/proyecto/api/forms.py
78e5e6a6e54d6fa4fc77fd4d5730201856690ffa
[]
no_license
sofiamanana/proyectoAnalisis
e75866d306424e37296c018da9cb7ee34a6450b4
3d7914dc2f6ef7813bd4672ada1cd57e01e24e26
refs/heads/main
2023-02-10T22:14:28.913022
2021-01-09T00:59:37
2021-01-09T00:59:37
311,785,039
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
from django import forms from .models import File, Plan, Mensajes class FileForm(forms.ModelForm): class Meta: model=File fields=["name","filepath","username","plan"] class FileForm2(forms.ModelForm): class Meta: model=File fields=['filepath'] class FormMensaje(forms.ModelForm): class Meta: model=Mensajes fields=['fiscalizador','mensaje'] class FormPlan(forms.ModelForm): class Meta: model=Plan fields=['nombre','reportador']
[ "sofia.manana@sansano.usm.cl" ]
sofia.manana@sansano.usm.cl
7ed9ede5a5b610fc38980e7998b759468f5dbce6
18899c79fa17d4b15df065db1a83ff25590b9ca0
/model_closedloop.py
027816de79943003c16e064dcbd575ba2294a88e
[ "MIT" ]
permissive
brunopcarv/id4control
0ce3082674f9fdc8c68c3b478c17dec2bb00f927
a1a78aafce08abc94d008ecb9a53a6de771919bc
refs/heads/master
2022-11-28T21:52:56.405327
2020-08-12T00:10:47
2020-08-12T00:10:47
278,949,646
0
0
null
2020-08-12T00:10:48
2020-07-11T22:10:58
Python
UTF-8
Python
false
false
4,336
py
#!/usr/bin/env python # -*- coding: utf-8 vi:noet # Closed-loop system - Plant and Controller import numpy as np class ClosedLoopSystem(): def __init__(self, plant, controller, additive_noise_gen, xo, dt=0.01): self.plant = plant self.controller = controller self.x = xo self.xo = xo self.k = 0 self.dt = dt # delta t: sample period self.additive_noise_gen = additive_noise_gen def next_points(self): x_temp = self.x self.x = self.plant.dynamics(x_temp, self.controller.action(x_temp), self.additive_noise_gen, self.dt) self.k += 1 return self.x def reset(self): self.x = self.xo self.k = 0 def run(self, k): x_list = [self.x] for i in range(1, k): x_list = np.append(x_list, [self.x], axis=0) self.next_points() self.reset() return x_list, range(k) if __name__ == "__main__": from model_plants import LinearPlant, LinearDCMotorPlant, \ InvertedPendulum, PredatorPreyPlant # Scalar zero controller class NoController(): def __init__(self): pass def action(self, x): return 0 controller = NoController() plant = PredatorPreyPlant(1.0, 1.0, 1.0, 1.0) xo = np.array([2.0, 1.0]).T closed_loop = ClosedLoopSystem(plant, controller, xo) final_time_unit = 2000 half = int(final_time_unit*0.25) quarter = int(half*0.05) x, time = closed_loop.run(final_time_unit) x1 = x[:,0] x2 = x[:,1] X = np.array([x1[:half-1], x2[:half-1]]).T Y = np.array([x1[1:half], x2[1:half]]).T from id_kernel_ridge_regression import KernelRidgeRegression, \ kernel_rbf_function_M, kernel_rbf_function_N, kernel_linear_function, \ kernel_poly_function, kernel_tanh_function from id_linear_ridge_regression import LinearRidgeRegression # RBF kernel id lambda_reg = 0.00001 regression = KernelRidgeRegression(lambda_reg) # regression.training(X[:quarter,:], Y[:quarter,:], kernel_rbf_function_M) regression.training(X[:half,:], Y[:half,:], kernel_rbf_function_M) Y_ridge = np.array([x1[:half], x2[:half]]).T for k in range(half,final_time_unit): y = regression.predict(Y_ridge[-1,:], kernel_rbf_function_N) Y_ridge = np.append(Y_ridge, [y], axis=0) # RBF kernel id random_ids = np.random.choice(half-1, size=quarter, replace=False) regression_random = KernelRidgeRegression(lambda_reg) regression_random.training(X[random_ids,:], Y[random_ids,:], kernel_rbf_function_M) Y_ridge_random = np.array([x1[:half], x2[:half]]).T for k in range(half,final_time_unit): y = regression_random.predict(Y_ridge_random[-1,:], kernel_rbf_function_N) Y_ridge_random = np.append(Y_ridge_random, [y], axis=0) # Laplace kernel TODO: update def kernel_laplace_function_M(X, Y, var=1.0, gamma=1.0): import numexpr as ne X_norm = np.sum(X**2, axis=-1) return ne.evaluate('v * exp(-g * (A + B - 2 * C))', { 'A' : X_norm[:,None], 'B' : X_norm[None,:], 'C' : np.dot(X, X.T), 'g' : gamma, 'v' : var }) # Similarity Sampling def similarity_sampling_increment(X, x_candidates, similarity_function): dets = list() # M = similarity_function(X, X) # dets.append(np.linalg.det(M)) for x in x_candidates: X_extended = X X_extended = np.append(X_extended, [x], axis=0) M = similarity_function(X_extended, X_extended) dets.append(np.linalg.det(M)) id_maxdet = dets.index(max(dets)) x_maxdet = x[id_maxdet] return x_maxdet def similarity_sampling(X, m_tilde, similarity_function): m, n = np.shape(X) X_current = X[0:10,:] X_sampled = np.zeros((m_tilde, n)) for i in range(m_tilde): a = X_current[10+i,:] b = X_current[10+(i+1)*2] candidates = list([a,b]) X_sampled[i,:] = similarity_sampling_increment( X_current, candidates, similarity_function, ) # Plot import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1) axs[0].plot(time, x1, time, Y_ridge[:,0], time, Y_ridge_random[:,0]) axs[0].set_xlim(0,final_time_unit) axs[0].set_xlabel('Time units (k)') axs[0].set_ylabel('Prey: x1 (actual) and x1 (ridge)') axs[0].grid(True) axs[1].plot(time, x2, time, Y_ridge[:,1], time, Y_ridge_random[:,1]) axs[1].set_xlim(0,final_time_unit) axs[1].set_xlabel('Time units (k)') axs[1].set_ylabel('Pred: x2 (actual) and x2 (ridge)') axs[1].grid(True) # cxy, f = axs[1].cohere(x1, x2, 5, 1. / dt) fig.tight_layout() plt.show()
[ "brunopcarv@gmail.com" ]
brunopcarv@gmail.com
9ee969ac84ea09647d6a185b3e82eab861cc2331
4feec0d298181dd982103bf0beafd8c42dff3b51
/Prototypes/GUI Prototype/GUI.py
cbb6bf107e8b50afde5af2d86141ee10380df798
[]
no_license
ashbrindle/Programmable_Dynamic_Turning_Machine_Project
1484d23ada220c2ff37ace1972adba2d79a032c6
de1249e0b15b76d6913a9e21863fe6602d6c7e29
refs/heads/master
2021-10-28T03:47:20.271657
2019-04-21T18:21:18
2019-04-21T18:21:18
178,104,273
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
from Tkinter import * instructions = [[]] # 0: state, 1: symbol, 2: direction, 3: new symbol, 4: new state def save(): instructions[0].append(entstate.get()) instructions[0].append(entsymbol.get()) instructions[0].append(entdirection.get()) instructions[0].append(entNsymbol.get()) instructions[0].append(entNstate.get()) print instructions top = Tk() lblstate = Label(top, text = "State") lblstate.pack() entstate = Entry(top, bd = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entstate.pack() lblsymbol = Label(top, text = "Symbol") lblsymbol.pack() entsymbol = Entry(top, bd = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entsymbol.pack() lbldirection = Label(top, text = "Direction") lbldirection.pack() entdirection = Entry(top, bd = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entdirection.pack() lblNsymbol = Label(top, text = "New Symbol") lblNsymbol.pack() entNsymbol = Entry(top, bd = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entNsymbol.pack() lblNstate = Label(top, text = "New State") lblNstate.pack() entNstate = Entry(top, bd = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entNstate.pack() lblTape = Label(top, text = "Tape") lblTape.pack() entTape1 = Entry(top, width = 5) # bd is the bored around the indicator (default at 2px, set to 5px) entTape1.pack(side = RIGHT) entTape2 = Entry(top, width = 5) entTape2.pack(side = RIGHT) entTape3 = Entry(top, width = 5) entTape3.pack(side = RIGHT) entTape4 = Entry(top, width = 5) entTape4.pack(side = RIGHT) entTape5 = Entry(top, width = 5) entTape5.pack(side = RIGHT) entTape6 = Entry(top, width = 5) entTape6.pack(side = RIGHT) entTape7 = Entry(top, width = 5) entTape7.pack(side = RIGHT) AcceptButton = Button(top, text = "Submit", command = save) AcceptButton.pack(side = BOTTOM) top.mainloop()
[ "ash.brindle97@gmail.com" ]
ash.brindle97@gmail.com
4204bd99b9f1ec5958bd3e6f3840050defbbfb1d
317649dde4c3ca8b185d98eda59aff11c3276c88
/POWHEG-BOX-RES/vbs-ssww-nloew/.svn/pristine/42/4204bd99b9f1ec5958bd3e6f3840050defbbfb1d.svn-base
211da05343c92209feaad97890a2596f11e8ce0a
[]
no_license
freejiebao/generator
8b5019cdf53be70006405a4d9547d693f813d9bd
8e658a44e69d770ac57e6bc9d13a66bcebcab07a
refs/heads/master
2021-06-16T14:31:10.174653
2021-05-19T08:13:41
2021-05-19T08:13:41
203,158,169
1
2
null
null
null
null
UTF-8
Python
false
false
10,992
################################################################################ # genplots_shower.py # ################################################################################ """ File: genplots_shower.py Author: J.-N. Lang Email: jlang@physik.uzh.ch Description: vbs + PS plots """ ############# # Globals # ############# from __future__ import unicode_literals import os from matplotlib import ticker from matplotlib import pyplot as plt from matplotlib.gridspec import GridSpec from numpy import linspace, loadtxt, arange from scipy.interpolate import interp1d from math import sqrt fontsize=16 plt.rc('text', usetex=True) plt.rc('text.latex', unicode=True) plt.rc('font', family='serif', size=fontsize) plt.rc('mathtext', fontset='custom', rm='Bitstream Vera Sans', it='Bitstream Vera Sans:italic', bf='Bitstream Vera Sans:bold') fig = plt.figure(num=None, figsize=(5, 6), dpi=120, facecolor='w', edgecolor='k') plot_margin_left = 0.13 plot_margin_right = 0.95 plot_margin_top = 0.98 plot_margin_bottom = 0.1 plt.subplots_adjust(left=plot_margin_left, right=plot_margin_right, top=plot_margin_top, bottom=plot_margin_bottom) gridspec_y_ticks = 13 gridspec_x_ticks = 1 gs = GridSpec(gridspec_y_ticks, gridspec_x_ticks) mid = 9 top_end = 13 up = plt.subplot(gs[1:mid-1, :]) lp = plt.subplot(gs[mid:top_end, :]) yticks = None ylogscale = None ylimup = None powheg_label = '$\\texttt{POWHEG}\;\\mathrm{NLO\; EW}+\\mathrm{PS}$' mocanlo_label_lo = '$\\texttt{MoCaNLO}\;\\mathrm{LO}$' mocanlo_label_nlo = '$\\texttt{MoCaNLO}\;\\mathrm{NLO\; EW}$' ################### # plot settings # ################### obsmclo = 'histogram_transverse_momentum_j1_born.dat' obsmcnlo = 'histogram_transverse_momentum_j1_nlo.dat' obspwhgps = 'tot_j1_pt' rescale_mc=1 rescale_pwgh=1000 uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} p_{\mathrm{T},\mathrm{j}_1}\mathrm{[GeV]}$' lylabel = '$\delta[\%]$' xlabel = '$p_{\\mathrm{T},\mathrm{j}_1} \mathrm{[GeV]}$' oname = 'ptj1.pdf' xlim = (0, 700) ylimup = (0.00001,0.01) ylimlp = (-50,20) yticks = arange(-50,20,10) rebin = 2 bins = 20 ylogscale = True # obsmclo = 'histogram_transverse_momentum_j2_born.dat' # obsmcnlo = 'histogram_transverse_momentum_j2_nlo.dat' # obspwhgps = 'tot_j2_pt' # rescale_mc=1. # rescale_pwgh=1000. # uylabel = '$\mathrm{d}\sigma\mathrm{[pb]}/\mathrm{d} p_{\mathrm{T},j_2}\mathrm{[GeV]}$' # lylabel = '$\delta[\%]$' # xlabel = '$p_{\\mathrm{T},j_2} \mathrm{[GeV]}$' # oname = 'ptj2.pdf' # xlim = (0, 500) # ylim = (-50,-10) # rebin = 3 # bins = 20 # obsmclo = 'histogram_invariant_mass_mjj12_born.dat' # obsmcnlo = 'histogram_invariant_mass_mjj12_nlo.dat' # obspwhgps = 'tot_jj_m' # rescale_mc=1. # rescale_pwgh=1000. # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} m_\mathrm{jj}\mathrm{[GeV]}$' # lylabel = '$\delta[\%]$' # xlabel = '$m_\mathrm{jj} \mathrm{[GeV]}$' # xlim = (500, 2000) # ylimup = (0.00001,0.003) # ylimlp = (-35,-0) # yticks = arange(-50,20,10) # oname = 'mjj.pdf' # rebin = 2 # bins = 2000 # ylogscale = True # obsmclo = 'histogram_transverse_momentum_positron_born.dat' # obsmcnlo = 'histogram_transverse_momentum_positron_nlo.dat' # obspwhgps = 'tot_e_pt' # rescale_mc=10.**3 # rescale_pwgh=10.**6 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} p_{\mathrm{T},e^+}\mathrm{[GeV]}$' # lylabel = '$\delta[\%]$' # xlabel = '$p_{\\mathrm{T},e^+} \mathrm{[GeV]}$' # oname = 'pte.pdf' # xlim = (0, 500) # ylim = (-50,-10) # rebin = 3 # bins = 20 # obsmclo = 'histogram_rapidity_positron_born.dat' # obsmcnlo = 'histogram_rapidity_positron_nlo.dat' # obspwhgps = 'tot_e_y' # rescale_mc=10.**3 # rescale_pwgh=10.**6 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} y_{e^+}$' # lylabel = '$\delta[\%]$' # xlabel = '$y_{e^+}$' # oname = 'ye.pdf' # xlim = (-2.4, 2.4) # ylim = (-50,-10) # rebin = 2 # bins = 800 # obsmclo = 'histogram_rapidity_j1_born.dat' # obsmcnlo = 'histogram_rapidity_j1_nlo.dat' # obspwhgps = 'tot_j1_y' # rescale_mc=10.**3 # rescale_pwgh=10.**6 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} y_{j_1}$' # lylabel = '$\delta[\%]$' # xlabel = '$y_{j_1}$' # oname = 'yj1.pdf' # xlim = (-2.4, 2.4) # ylim = (-50,-10) # rebin = 2 # bins = 800 # obsmclo = 'histogram_rapidity_j2_born.dat' # obsmcnlo = 'histogram_rapidity_j2_nlo.dat' # obspwhgps = 'tot_j2_y' # rescale_mc=10.**3 # rescale_pwgh=10.**6 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} y_{j_2}$' # lylabel = '$\delta[\%]$' # xlabel = '$y_{j_2}$' # oname = 'yj2.pdf' # xlim = (-2.4, 2.4) # ylim = (-50,-10) # rebin = 2 # bins = 800 # obsmclo = 'histogram_rapidity_separation_j1j2_born.dat' # obsmcnlo = 'histogram_rapidity_separation_j1j2_nlo.dat' # obspwhgps = 'tot_jj_dy' # rescale_mc=10.**0 # rescale_pwgh=10.**3 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} \Delta y_\mathrm{jj}$' # lylabel = '$\delta[\%]$' # xlabel = '$\Delta y_\mathrm{jj}$' # oname = 'dyjj.pdf' # xlim = (2.4, 7.) # ylimlp = (-40,-10) # rebin = 2 # bins = 800 # obsmclo = 'histogram_transverse_momentum_truth_missing_born.dat' # obsmcnlo = 'histogram_transverse_momentum_truth_missing_nlo.dat' # obspwhgps = 'tot_miss_pt' # rescale_mc=1 # rescale_pwgh=10.**3 # uylabel = '$\mathrm{d}\sigma\mathrm{[fb]}/\mathrm{d} p_{\mathrm{T}}^\mathrm{miss}\mathrm{[GeV]}$' # lylabel = '$\delta[\%]$' # xlabel = '$p_{\\mathrm{T}}^\mathrm{miss} \mathrm{[GeV]}$' # oname = 'ptmiss.pdf' # xlim = (0, 500) # ylimup = (0.00001,0.02) # yticks = arange(-50,20,10) # ylimlp = (-45,-0) # rebin = 3 # bins = 20 # ylogscale = True def join_value(d,pos,n,err=False): r = 0. for j in range(n): if err: r = sqrt(r**2 + d[pos+j]**2) else: r += d[pos+j] r = r/n return r def join_err(d,pos,n): r = 0. for j in range(n): r = sqrt(r**2 + d[pos+j]**2) r = r/n return r def join_bounds(d,pos,n): r = (d['left'][pos] + d['right'][pos+n-1])/2 return r def parse_data(obs,mcpath, data_structure, rebin=False, rescale_value=None, **kwargs): fname = os.path.join(mcpath, obs) data = loadtxt(fname) bins = len(data) datac = {} for d in data_structure: datac[d] = data[:bins, data_structure[d]-1] if 'left' not in datac and 'right' not in datac: assert('middle' in datac) binsize = datac['middle'][1]-datac['middle'][0] datac['left'] = [u-binsize/2 for u in datac['middle']] datac['right'] = [u+binsize/2 for u in datac['middle']] x = [datac['left'][u] for u in range(bins)] x += [datac['right'][bins-1]] m = [(datac['left'][u] + datac['right'][u])/2. for u in range(bins)] if rescale_value: y = [u*rescale_value for u in datac['value']] y += [y[-1]] yerr = [u*rescale_value for u in datac['error']] else: y = datac['value'] yerr = datac['error'] if rebin: nbins = (bins//rebin)*rebin x = [datac['left'][i] for i in range(0, nbins, rebin)] # TODO: <09-05-19, J.-N. Lang> # # if nbins < bins need to combine last bin by hand (due to smaller size) # I add another (fake0 point to continue the line when plotting with # steps-post option. x += [datac['right'][nbins-1]] y = [join_value(y, i, rebin) for i in range(0, nbins, rebin)] y += [y[-1]] m = [join_bounds(datac, i, rebin) for i in range(0, nbins, rebin)] m += [m[-1]] yerr = [join_err(yerr, i, rebin) for i in range(0, nbins, rebin)] yerr += [yerr[-1]] return x,y,yerr,m def parse_mocanlo_data(obs,**kwargs): mcpath = 'data/MoCaNLO/data_16/' data_structure = {'bin': 1, 'left': 2, 'right': 3, 'value': 4, 'error': 5, 'hits': 6} return parse_data(obs, mcpath, data_structure, **kwargs) def parse_pwhg_data(obs, **kwargs): # pwhgpath = 'data/Powheg/res_pt4_rec01/' pwhgpath = 'data/Powheg/res_pt4_incl_as/' data_structure = {'middle': 1, 'value': 2, 'error': 3} return parse_data(obs, pwhgpath, data_structure, **kwargs) ################ # upper plot # ################ if ylogscale is True: up.axes.set_yscale('log') plotstyle = {'color': 'black', 'drawstyle': 'steps-post', 'linewidth': 1} x,y,yerr,m = parse_mocanlo_data(obsmclo, rebin=rebin, rescale_value=rescale_mc) x2 = x[:bins] y2 = y[:bins] y2err = yerr[:bins] up.plot(x2, y2, label=mocanlo_label_lo, **plotstyle) up.set_xlim(*xlim) plotstyle = {'color': 'blue', 'drawstyle': 'steps-post', 'linestyle': '--', 'linewidth': 1} x,y,yerr,m = parse_mocanlo_data(obsmcnlo, rebin=rebin, rescale_value=rescale_mc) x2nlo = x[:bins] y2nlo = y[:bins] y2errnlo = yerr[:bins] up.plot(x2nlo, y2nlo, label=mocanlo_label_nlo, **plotstyle) up.set_xlim(*xlim) plotstyle = {'color': 'red', 'drawstyle': 'steps-post', 'linestyle': '-.', 'linewidth': 1} x,y,yerr,m = parse_pwhg_data(obspwhgps, rebin=rebin, rescale_value=rescale_pwgh) x1 = x[:bins] m1 = m[:bins] y1 = [u for u in y[:bins]] y1err = [u for u in yerr[:bins]] up.plot(x1, y1, label=powheg_label, **plotstyle) ################ # lower plot # ################ def compare_bins(y1,y1err,y2,y2err): ydiff = [100.*(y1[u]-y2[u])/(abs(y2[u])) for u in range(len(y2))] ydifferr = [100.*sqrt((y1err[u]/y1[u])**2+(y2err[u]/y2[u])**2) for u in range(len(y2))] return ydiff, ydifferr plotstyle = {'color': 'red', 'drawstyle': 'steps-post', 'linewidth': 1} y3, y3err = compare_bins(y1,y1err,y2,y2err) lp.plot(x1, y3, **plotstyle) capsize=2 elinewidth=0.8 lp.errorbar(m1, y3, yerr=y3err, fmt='none', drawstyle='mid', capsize=capsize, elinewidth=elinewidth, color='black') plotstyle = {'color': 'blue', 'drawstyle': 'steps-post', 'linewidth': 1} y4, y4err = compare_bins(y2nlo,y2errnlo,y2,y2err) lp.plot(x1, y4, **plotstyle) capsize=2 elinewidth=0.8 lp.errorbar(m1, y4, yerr=y4err, fmt='none', drawstyle='mid', capsize=capsize, elinewidth=elinewidth, color='black') if yticks is not None: lp.yaxis.set_ticks(yticks) if ylimup is not None: up.set_ylim(*ylimup) lp.set_ylim(*ylimlp) lp.set_xlim(*xlim) ############################## # legend,label,annotations # ############################## handles, labels = up.get_legend_handles_labels() up.legend(handles, labels, handlelength=1.0, frameon=False, fontsize=fontsize, prop={'size': fontsize}, loc='best') plt.text(0.1, 1.05, uylabel, horizontalalignment='center', fontsize=fontsize, transform=up.transAxes) plt.text(0.0, 1.06, lylabel, horizontalalignment='center', fontsize=fontsize, transform=lp.transAxes) lp.set_xlabel(xlabel, fontsize=fontsize) plt.setp(up.axes.get_xticklabels(), visible=False) # plt.show() fig.savefig(oname, dpi=120, bbox='standard', pad_inches=20)
[ "jiexiao@pku.edu.cn" ]
jiexiao@pku.edu.cn
91e40d0f70f0106885be19ffb1c262f22102ec2f
8d8278a835f3fd7f878cf5539f6a09a6346e1812
/solution.py
e06b8d01cfd59a0982d14a7fbecbf337daec5616
[]
no_license
mociadm-w4k2/lab2
40c875cb9c93039c657f6c6c033fab7fcd71fbfa
2a374dae7565898bf5472259fe1c6f6f84c4280e
refs/heads/master
2020-04-06T09:37:52.482974
2018-11-13T16:26:43
2018-11-13T16:26:43
157,350,202
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
# Exercise 1 # Fill with code # Exercise 2 # Fill with code # Exercise 3 # Fill with code # Exercise 4 # Fill with code # Exercise 5 # Fill with code # Exercise 6 def prepare_data(file_name): # Fill with code return X, y
[ "noreply@github.com" ]
mociadm-w4k2.noreply@github.com
f48ee1c2fb841d283cf1a9eeda275639a74825e7
09dbe6f5f4a01d25df5b5783fcf621d4d4e6acab
/python/workflow/__init__.py
68b8c99d8054b5ee7de8d79efbde2f07b363598d
[]
no_license
cjhopp/scripts
b2e925b42e3685713475d15cb4a637e62143778a
89cecfe82532e84a739e26a845b9455df0090ca5
refs/heads/master
2023-05-31T06:35:03.638455
2023-05-15T18:14:44
2023-05-15T18:14:44
71,869,887
7
5
null
2017-07-12T13:59:15
2016-10-25T07:15:46
null
UTF-8
Python
false
false
210
py
#!/usr/bin/python __all__ = ['util', 'data_prep', 'focal_mecs', 'magnitudes', 'obspyck_util', 'process_parties', 'pyfehm_util', 'relocate', 'shelly_focmecs', 'shelly_mags', 'vis_3d_grid']
[ "chopp@lbl.gov" ]
chopp@lbl.gov
4f46318710d0faa395f2befd39d9c72fd1a5173d
0961b605531fa73cb88640b5978572217bdb6554
/excelTitleToNumber.py
d9000b22ae72dcd4fcf299fb2d1d19c302278509
[]
no_license
LYoung-Hub/Algorithm-Data-Structure
e01d8b72c4026d9d4b9788016ca54c4e359e80ba
e42ec45d98f990d446bbf4f1a568b70855af5380
refs/heads/master
2020-07-13T17:17:42.897244
2019-11-11T06:15:59
2019-11-11T06:15:59
205,121,630
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
class Solution(object): def titleToNumber(self, s): """ :type s: str :rtype: int """ length = len(s) if length == 0: return 0 ans = 0 for i in range(0, length - 1): curr = ord(s[i]) - 64 ans = pow(26, length - 1 - i) * curr + ans ans += ord(s[-1]) - 64 return ans
[ "yangliu2@caltech.edu" ]
yangliu2@caltech.edu
54bf05de8cba8f49586ed5ab995b396493f49645
0178f788d9d8aa9bf1d72b63967e07b20b5981e9
/tests/python/kaolin/metrics/test_pointcloud.py
050ec4ba10f94cf81aec55d380d09889e697b090
[ "Apache-2.0" ]
permissive
nexuslrf/kaolin
0ad5a7a92abcea8dc3dc50f8ef3c83d59ea7960d
85a78ef931b2b5231322566a25882ba049b01d26
refs/heads/master
2023-09-06T06:00:20.506722
2021-11-25T21:47:59
2021-11-25T21:47:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,849
py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from kaolin.metrics import pointcloud as pc from kaolin.utils.testing import FLOAT_DTYPES, with_seed @pytest.mark.parametrize('dtype', FLOAT_DTYPES) @pytest.mark.parametrize('device', ['cuda']) class TestSidedDistance: @pytest.fixture(autouse=True) def get_tol(self, device, dtype): if dtype == torch.half: return 1e-3, 1e-3 elif dtype == torch.float: return 1e-5, 1e-4 elif dtype == torch.double: return 1e-6, 1e-5 @with_seed(torch_seed=0) @pytest.fixture(autouse=True) def input_double_p1(self, device, dtype): return torch.randn((5, 20, 3), requires_grad=True, device='cuda', dtype=torch.double) @with_seed(torch_seed=0) @pytest.fixture(autouse=True) def input_double_p2(self, device, dtype): return torch.randn((5, 15, 3), requires_grad=True, device='cuda', dtype=torch.double) @pytest.fixture(autouse=True) def get_input(self, device, dtype): p1 = torch.tensor([[[8.8977, 4.1709, 1.2839], [8.5640, 7.7767, 9.4214]], [[0.5431, 6.4495, 11.4914], [3.2126, 8.0865, 3.1018]]], dtype=dtype, device=device) p2 = torch.tensor([[[6.9340, 6.1152, 3.4435], [0.1032, 9.8181, 11.3350]], [[11.4006, 2.2154, 7.9589], [4.2586, 1.4133, 7.2606]]], dtype=dtype, device=device) return p1, p2 @with_seed(torch_seed=0) @pytest.fixture(autouse=True) def get_large_input(self, device, dtype): N = 100 B = 3 M = 50 p1 = torch.randint(0, 100, (B, N, 3), dtype=dtype, device=device) p2 = torch.randint(0, 100, (B, M, 3), dtype=dtype, device=device) return p1, p2 @pytest.fixture(autouse=True) def target_grad_double(self, input_double_p1, input_double_p2): # if test_gradcheck passed the gradient using torch.double inputs is trustable outputs = torch.sum(pc.sided_distance(input_double_p1, input_double_p2)[0]) outputs.backward() return input_double_p1.grad.clone(), input_double_p2.grad.clone() @pytest.fixture(autouse=True) def target_grad_double_2(self, get_input): # if test_gradcheck passed the gradient using torch.double inputs is trustable p1, p2 = get_input p1 = p1.detach() p2 = p2.detach() p1.requires_grad = True p2.requires_grad = True outputs = torch.sum(pc.sided_distance(p1, p2)[0]) outputs.backward() return p1.grad.clone(), p2.grad.clone() @pytest.fixture(autouse=True) def target_grad_double_large(self, get_large_input): # if test_gradcheck passed the gradient using torch.double inputs is trustable p1, p2 = get_large_input p1 = p1.detach() p2 = p2.detach() p1.requires_grad = True p2.requires_grad = True outputs = torch.sum(pc.sided_distance(p1, p2)[0]) outputs.backward() return p1.grad.clone(), p2.grad.clone() def test_sided_distance(self, device, dtype, get_input, get_tol): p1, p2 = get_input output_p1, output_idx_p1 = pc.sided_distance(p1, p2) expected_p1 = torch.tensor([[12.3003, 41.1528], [57.0679, 62.9213]], device=device, dtype=dtype) expected_idx_p1 = torch.tensor([[0, 0], [1, 1]], device=device, dtype=torch.long) atol, rtol = get_tol assert torch.allclose(output_p1, expected_p1, atol=atol, rtol=rtol) assert torch.equal(output_idx_p1, expected_idx_p1) def test_sided_distance_large_input(self, device, dtype, get_large_input, get_tol): p1, p2 = get_large_input output_p1, output_idx_p1 = pc.sided_distance(p1, p2) expected_p1 = pc._sided_distance(p1, p2) atol, rtol = get_tol assert torch.allclose(output_p1, expected_p1, atol=atol, rtol=rtol) @with_seed(torch_seed=0) def test_directed_distance_batch_size(self, device, dtype): with pytest.raises(RuntimeError, match=r"Expected tensor of size \[3, 3, 3\], but got tensor " r"of size \[2, 3, 3\] for argument #2 'p2' " r"\(while checking arguments for sided_distance_forward_cuda\)"): p1 = torch.randint(0, 10, (3, 2, 3), dtype=dtype, device=device) p2 = torch.randint(0, 10, (2, 3, 3), dtype=dtype, device=device) pc.sided_distance(p1, p2) @with_seed(torch_seed=0) def test_directed_distance_dims(self, device, dtype): with pytest.raises(RuntimeError, match="Expected 3-dimensional tensor, but got " "4-dimensional tensor for argument #1 'p1' " r"\(while checking arguments for sided_distance_forward_cuda\)"): p1 = torch.randint(0, 10, (3, 2, 3, 4), dtype=dtype, device=device) p2 = torch.randint(0, 10, (2, 3, 3), dtype=dtype, device=device) pc.sided_distance(p1, p2) with pytest.raises(RuntimeError, match=r"Expected tensor of size \[2, 2, 3\], but got " r"tensor of size \[2, 2, 2\] for argument #1 'p1' " r"\(while checking arguments for sided_distance_forward_cuda\)"): p1 = torch.randint(0, 10, (2, 2, 2), dtype=dtype, device=device) p2 = torch.randint(0, 10, (2, 3, 3), dtype=dtype, device=device) pc.sided_distance(p1, p2) def test_grad_check(self, device, dtype, input_double_p1, input_double_p2): if dtype != torch.double: pytest.skip("Gradient check only works in double.") input_points = (input_double_p1, input_double_p2) grad_result = torch.autograd.gradcheck(pc.sided_distance, input_points, eps=1e-6, atol=1e-6) assert grad_result def test_grad_check_2(self, device, dtype, get_input): # Test for gradient accumulation w.r.t p2 if dtype != torch.double: pytest.skip("Gradient check only works in double.") p1, p2 = get_input p1.requires_grad = True p2.requires_grad = True grad_result = torch.autograd.gradcheck(pc.sided_distance, (p1, p2), eps=1e-6, atol=1e-6) assert grad_result def test_grad_check_large(self, device, dtype, get_large_input): # Test for gradient accumulation w.r.t p2 if dtype != torch.double: pytest.skip("Gradient check only works in double.") p1, p2 = get_large_input p1.requires_grad = True p2.requires_grad = True grad_result = torch.autograd.gradcheck(pc.sided_distance, (p1, p2), eps=1e-6, atol=1e-6) assert grad_result def test_grad_check_other_type(self, device, dtype, input_double_p1, input_double_p2, target_grad_double): if dtype == torch.double: pytest.skip("Gradient check for double already tested.") p1 = input_double_p1.to(dtype).detach() p2 = input_double_p2.to(dtype).detach() p1.requires_grad = True p2.requires_grad = True output = pc.sided_distance(p1, p2)[0] torch.sum(output).backward() target_grad_p1, target_grad_p2 = target_grad_double target_grad_p1 = target_grad_p1.to(dtype) target_grad_p2 = target_grad_p2.to(dtype) assert torch.allclose(p1.grad, target_grad_p1, rtol=1e-2, atol=1e-2) assert torch.allclose(p2.grad, target_grad_p2, rtol=1e-2, atol=1e-2) def test_grad_check_other_type_2(self, device, dtype, get_input, target_grad_double_2): if dtype == torch.double: pytest.skip("Gradient check for double already tested.") p1, p2 = get_input p1.requires_grad = True p2.requires_grad = True output = pc.sided_distance(p1, p2)[0] torch.sum(output).backward() target_grad_p1, target_grad_p2 = target_grad_double_2 target_grad_p1 = target_grad_p1.to(dtype) target_grad_p2 = target_grad_p2.to(dtype) assert torch.allclose(p1.grad, target_grad_p1, rtol=1e-2, atol=1e-2) assert torch.allclose(p2.grad, target_grad_p2, rtol=1e-2, atol=1e-2) def test_grad_check_other_type_large(self, device, dtype, get_large_input, target_grad_double_large): if dtype == torch.double: pytest.skip("Gradient check for double already tested.") p1, p2 = get_large_input p1.requires_grad = True p2.requires_grad = True output = pc.sided_distance(p1, p2)[0] torch.sum(output).backward() target_grad_p1, target_grad_p2 = target_grad_double_large target_grad_p1 = target_grad_p1.to(dtype) target_grad_p2 = target_grad_p2.to(dtype) assert torch.allclose(p1.grad, target_grad_p1, rtol=1e-2, atol=1e-2) assert torch.allclose(p2.grad, target_grad_p2, rtol=1e-2, atol=1e-2) @pytest.mark.parametrize('dtype', FLOAT_DTYPES) @pytest.mark.parametrize('device', ['cuda']) class TestChamferDistance: @pytest.fixture(autouse=True) def get_tol(self, device, dtype): if dtype == torch.half: return 1e-3, 1e-3 elif dtype == torch.float: return 1e-5, 1e-4 elif dtype == torch.double: return 1e-6, 1e-5 @pytest.fixture(autouse=True) def get_input(self, device, dtype): p1 = torch.tensor([[[8.8977, 4.1709, 1.2839], [8.5640, 7.7767, 9.4214]], [[0.5431, 6.4495, 11.4914], [3.2126, 8.0865, 3.1018]]], dtype=dtype, device=device) p2 = torch.tensor([[[6.9340, 6.1152, 3.4435], [0.1032, 9.8181, 11.3350]], [[11.4006, 2.2154, 7.9589], [4.2586, 1.4133, 7.2606]]], dtype=dtype, device=device) return p1, p2 def test_chamfer_distance1(self, device, dtype, get_input, get_tol): p1, p2 = get_input output1 = pc.chamfer_distance(p1, p2) output2 = pc.chamfer_distance(p2, p1) expected1 = torch.tensor([72.5838, 151.0809], dtype=dtype, device=device) atol, rtol = get_tol assert torch.allclose(output1, expected1, atol=atol, rtol=rtol) def test_chamfer_distance2(self, device, dtype, get_input, get_tol): p1, p2 = get_input output2 = pc.chamfer_distance(p1, p2, w1=1.3, w2=0.8) expected2 = torch.tensor([71.4303, 150.8620], dtype=dtype, device=device) atol, rtol = get_tol assert torch.allclose(output2, expected2, atol=atol, rtol=rtol) @pytest.mark.parametrize('dtype', FLOAT_DTYPES) @pytest.mark.parametrize('device', ['cuda']) class TestFScore: @pytest.fixture(autouse=True) def get_tol(self, device, dtype): if dtype == torch.half: return 1e-3, 1e-3 elif dtype == torch.float: return 1e-5, 1e-4 elif dtype == torch.double: return 1e-6, 1e-5 def test_FScore(self, device, dtype, get_tol): gt_points = torch.tensor([[[8.8977, 4.1709, 1.2839], [8.5640, 7.7767, 9.4214]], [[0.5431, 6.4495, 11.4914], [3.2126, 8.0865, 3.1018]]], dtype=dtype, device=device) pred_points = torch.tensor([[[8.8914, 4.1788, 1.2176], [8.5291, 7.5513, 9.5412]], [[0.4010, 6.4602, 11.5183], [3.2977, 8.0325, 3.1180]]], dtype=dtype, device=device) output1 = pc.f_score(gt_points, pred_points, radius=0.2) output2 = pc.f_score(gt_points, pred_points, radius=0.12) expected1 = torch.tensor([1, 0.5], device=device, dtype=dtype) expected2 = torch.tensor([0.5, 0.5], device=device, dtype=dtype) atol, rtol = get_tol assert torch.allclose(output1, expected1, atol=atol, rtol=rtol) assert torch.allclose(output2, expected2, atol=atol, rtol=rtol)
[ "noreply@github.com" ]
nexuslrf.noreply@github.com
fcb22e747567a162c6efe867fc957b9bc486b356
3529744f2a26e567162df37cbc62193670a61a8e
/rf/registration/admin.py
5d3f7861475c98d2da4bd959fc07e2d09e68bc79
[ "BSD-2-Clause" ]
permissive
ooola/ruggerfest
7d46081e651c514ec4e65f3e6b1ae0cbb24e08ac
20e4b72678a960db4d660d893f82f6cf8c9c9116
refs/heads/master
2020-04-09T14:57:24.200365
2013-08-22T14:30:01
2013-08-22T14:30:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
from django.contrib import admin from models import Team class TeamAdmin(admin.ModelAdmin): list_display = ('teamname', 'division', 'captain', 'email', 'phone_number', 'date', 'paid') admin.site.register(Team, TeamAdmin)
[ "ola.nordstrom@gmail.com" ]
ola.nordstrom@gmail.com
442e6625ffa0755f8423cb17b85506d4ad09d399
1f318aec4903a8a5a024c70b6f2fea1742af3f0c
/python3/VisionTherapyReader.py
a19a65af4a9d6c2dfe21c22f1fee3a350c5b2527
[]
no_license
lightkraken/VisionTherapyReader
5a0aed474615030512cb51853ebeffc474acc04b
2a6284338b7668dd3a21d64de3920eebfd1dc401
refs/heads/master
2020-05-16T14:00:37.729650
2015-04-22T19:27:55
2017-11-13T20:34:31
34,411,316
0
0
null
null
null
null
UTF-8
Python
false
false
12,203
py
from tkinter import * import tkinter.filedialog import tkinter.ttk from files.colorreader import * from files.barreader import * from files.ptadjust import * from files.rbadjust import * from files.ptcalibrate import * from files.rbcalibrate import * from files.paster import * from files import coder class Root(Tk): def __init__(self, *args, **kwargs): Tk.__init__(self, *args, **kwargs) self.title("Vision Therapy Reader") self.start() def start(self): # give the config file some info cnfg.SCREEN_WIDTH = self.winfo_screenwidth() cnfg.SCREEN_HEIGHT = self.winfo_screenheight() # 1x1 grid # grid grows in all directions self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) # content frame # placed at 0,0 # sticky on all sides self.content = Content(self) self.content.grid(column=0, row=0, sticky="NSEW") # menu bar self.option_add('*tearOff', FALSE) self.menubar = MenuBar(self) self.config(menu=self.menubar) # key bindings self.bind("<Up>", self.up_press) self.bind("<Down>", self.down_press) # close click binding self.protocol("WM_DELETE_WINDOW", self.on_close) def on_close(self): cnfg.END_OPTIONS = cnfg.create_options_dict() if cnfg.START_OPTIONS == cnfg.END_OPTIONS: self.destroy() else: self.quit_dialogue = cnfg.QuitDialogue(self) def up_press(self, *args): if cnfg.CURRENT_TAB == 0: self.content.barreaderframe.barstextframe.canvas.yview_scroll(-1,UNITS) elif cnfg.CURRENT_TAB == 1: self.content.colorreaderframe.colorstextframe.coloredtext.yview_scroll(-1,UNITS) def down_press(self, *args): if cnfg.CURRENT_TAB == 0: self.content.barreaderframe.barstextframe.canvas.yview_scroll(1,UNITS) elif cnfg.CURRENT_TAB == 1: self.content.colorreaderframe.colorstextframe.coloredtext.yview_scroll(1,UNITS) def restart(self): self.content.destroy() self.start() class MenuBar(Menu): def __init__(self, *args, **kwargs): Menu.__init__(self, *args, **kwargs) self.parent = args[0] # file self.file_menu = Menu(self) self.file_menu.add_command(label="Open file...", command=self.on_open) self.file_menu.add_command(label="Paste text...", command=self.on_paste) self.file_menu.add_command(label="Close file", command=self.on_close) self.file_menu.add_command(label="Exit", command=self.parent.on_close) self.add_cascade(label="File", menu=self.file_menu) # color self.color_menu = Menu(self) self.color_menu.add_command(label="Calibrate colors...", command=self.calib_menu_start) self.advanced_color_submenu = Menu(self) self.advanced_color_submenu.add_command(label="Manually adjust colors...", command=self.adjust_menu_start) self.color_menu.add_cascade(menu=self.advanced_color_submenu, label="Advanced...") self.add_cascade(menu=self.color_menu, label="Colors") # view self.view_menu = Menu(self) self.show_options_var = IntVar(value=cnfg.SHOW_OPTIONS) self.view_menu.add_checkbutton(label="Show Options Bar", onvalue=1, offvalue=0, variable=self.show_options_var, command=self.show_options_click) self.add_cascade(label="View", menu=self.view_menu) # password self.password_menu = Menu(self) self.password_menu.add_command(label="Enter Config Code...", command=self.enter_password) self.password_menu.add_command(label="Create Config Code", command=self.create_password) self.add_cascade(menu=self.password_menu, label="Config Code") def on_paste(self): self.pastey = Paster(self) def adjust_menu_start(self): self.adjust = AdjustMenu(self) def calib_menu_start(self): self.calib = CalibrateMenu(self) def enter_password(self): self.password_decoder = coder.AskPassword(self) def create_password(self): self.password_creator = coder.RetrievePassWord(self) def show_options_click(self): cnfg.SHOW_OPTIONS = self.show_options_var.get() self.parent.content.barreaderframe.barsbottomoptionsframe.show_options() self.parent.content.colorreaderframe.colorsbottomoptionsframe.show_options() def calib_purpleteal(self): self.calibpt_menu = PTCalibrate(self) def calib_redblue(self): self.calibrb_menu = RBCalibrate(self) def adjust_purpleteal(self): self.adjustpt_menu = PTAdjustMenu(self) def adjust_redblue(self): self.adjustrb_menu = RBAdjustMenu(self) def on_open(self): dialog = tkinter.filedialog.Open(self, filetypes = [('Text files', '*.txt')]) openfile = dialog.show() if openfile != "": cnfg.load_file(openfile) self.refresh_all() def on_close(self): cnfg.TEXT = [] cnfg.TEXT.append("") cnfg.TEXT_INDEX = 0 self.refresh_all() def on_quit(self): self.parent.destroy() def refresh_all(self): self.parent.content.barreaderframe.barstextframe.refresh_text() self.parent.content.barreaderframe.barstextframe.create_bars() self.parent.content.barreaderframe.barstextframe.refresh_text() self.parent.content.barreaderframe.barstextframe.update_scroll_region() self.parent.content.colorreaderframe.colorstextframe.create_new_text() self.parent.content.colorreaderframe.colorstextframe.refresh_text() self.parent.content.update_page_buttons() class Content(tkinter.ttk.Notebook): def __init__(self, *args, **kwargs): tkinter.ttk.Notebook.__init__(self, *args, takefocus=False) self.parent = args[0] # common variables self.palette_var = StringVar(value=cnfg.PALETTE_CHOICE) self.font_chooser_var = StringVar(value=cnfg.FONT) self.font_size_var = IntVar(value=cnfg.FONT_SIZE) self.font_bold_var = IntVar() if cnfg.FONT_BOLD == "": self.font_bold_var.set(0) elif cnfg.FONT_BOLD == "bold": self.font_bold_var.set(1) self.barreaderframe = BarReaderFrame(self) self.colorreaderframe = ColorReaderFrame(self) self.add(self.barreaderframe, text="Bar reader") self.add(self.colorreaderframe, text="Color reader") self.bind("<<NotebookTabChanged>>", self.set_current_tab_var) self.select(cnfg.CURRENT_TAB) self.update_page_buttons() self.palette_click() def set_current_tab_var(self, *args): cnfg.CURRENT_TAB = self.index(self.select()) def palette_click(self, *args): if self.palette_var.get() == " ": self.palette_var.set(cnfg.PALETTE_CHOICE) cnfg.PALETTE_CHOICE = self.palette_var.get() cnfg.update_palette() self.parent.focus() # bar reader self.barreaderframe.barstextframe.canvas.config(background=cnfg.PALETTE[3]) self.barreaderframe.barstextframe.font_update() # color reader self.colorreaderframe.colorstextframe.create_new_tags() self.colorreaderframe.colorstextframe.refresh_text() def font_chooser_click(self, *args): if self.font_chooser_var.get() == " ": self.font_chooser_var.set(cnfg.FONT) cnfg.FONT = self.font_chooser_var.get() self.parent.focus() # bar reader self.barreaderframe.barstextframe.font_update() # color reader self.colorreaderframe.colorstextframe.refresh_text() def font_size_cursor_click(self, *args): try: self.font_size_previous = self.font_size_var.get() except: pass def font_size_click(self, *args, **kwargs): try: if self.font_size_var.get() < 8: self.font_size_var.set(8) elif self.font_size_var.get() > 80: self.font_size_var.set(80) except: self.font_size_var.set(self.font_size_previous) cnfg.FONT_SIZE = self.font_size_var.get() self.parent.focus() self.barreaderframe.barstextframe.font_update() self.colorreaderframe.colorstextframe.refresh_text() def font_bold_click(self): if self.font_bold_var.get() == 0: cnfg.FONT_BOLD = "" if self.font_bold_var.get() == 1: cnfg.FONT_BOLD = "bold" # bar reader self.barreaderframe.barstextframe.font_update() # color reader self.colorreaderframe.colorstextframe.refresh_text() def on_prev_press(self): cnfg.TEXT_INDEX -= 1 # bar reader self.barreaderframe.barstextframe.font_update() # color reader self.colorreaderframe.colorstextframe.delete_tags() self.colorreaderframe.colorstextframe.create_new_tags() self.colorreaderframe.colorstextframe.create_new_text() self.colorreaderframe.colorstextframe.refresh_text() self.update_page_buttons() def on_next_press(self): cnfg.TEXT_INDEX += 1 # bar reader self.barreaderframe.barstextframe.font_update() # color reader self.colorreaderframe.colorstextframe.delete_tags() self.colorreaderframe.colorstextframe.create_new_tags() self.colorreaderframe.colorstextframe.create_new_text() self.colorreaderframe.colorstextframe.refresh_text() self.update_page_buttons() def update_page_buttons(self): if len(cnfg.TEXT) == 1: #if the text is only one page long self.barreaderframe.barsbottomoptionsframe.prevbutton.configure(state=DISABLED) self.barreaderframe.barsbottomoptionsframe.nextbutton.configure(state=DISABLED) self.colorreaderframe.colorsbottomoptionsframe.prevbutton.configure(state=DISABLED) self.colorreaderframe.colorsbottomoptionsframe.nextbutton.configure(state=DISABLED) elif len(cnfg.TEXT) > 1: #if the text is more than one page... if cnfg.TEXT_INDEX == 0: #and at the beginning self.barreaderframe.barsbottomoptionsframe.prevbutton.configure(state=DISABLED) self.barreaderframe.barsbottomoptionsframe.nextbutton.configure(state=NORMAL) self.colorreaderframe.colorsbottomoptionsframe.prevbutton.configure(state=DISABLED) self.colorreaderframe.colorsbottomoptionsframe.nextbutton.configure(state=NORMAL) elif cnfg.TEXT_INDEX == len(cnfg.TEXT)-1: #and at the end self.barreaderframe.barsbottomoptionsframe.prevbutton.configure(state=NORMAL) self.barreaderframe.barsbottomoptionsframe.nextbutton.configure(state=DISABLED) self.colorreaderframe.colorsbottomoptionsframe.prevbutton.configure(state=NORMAL) self.colorreaderframe.colorsbottomoptionsframe.nextbutton.configure(state=DISABLED) else: self.barreaderframe.barsbottomoptionsframe.prevbutton.configure(state=NORMAL) #and in the middle self.barreaderframe.barsbottomoptionsframe.nextbutton.configure(state=NORMAL) self.colorreaderframe.colorsbottomoptionsframe.prevbutton.configure(state=NORMAL) self.colorreaderframe.colorsbottomoptionsframe.nextbutton.configure(state=NORMAL) try: self.barreaderframe.barstextframe.canvas.yview_moveto(0.0) except: pass self.colorreaderframe.colorsbottomoptionsframe.current_page.set(value="{0} / {1}".format(cnfg.TEXT_INDEX+1, len(cnfg.TEXT))) self.barreaderframe.barsbottomoptionsframe.current_page.set(value="{0} / {1}".format(cnfg.TEXT_INDEX+1, len(cnfg.TEXT))) root = Root() root.mainloop()
[ "joshua.behan@gmail.com" ]
joshua.behan@gmail.com
62ea2cf617b2827d170b1172c33ef87418de9112
6d967da5fd95aa5e66ddbb211da40041006ca5ec
/myvenv/Lib/site-packages/pip/_vendor/idna/package_data.py
5c7a356106d74de03558d9b069f42a36e8724c2a
[]
no_license
gevorkyannaira/my-first-blog
96e4458045a1dd0aa9c1f3ec69f4c829428200e0
42ab12a8c2b0e402b5fa1b8e5a7cdd2629d06c16
refs/heads/master
2022-09-03T21:14:18.946448
2020-05-18T18:15:39
2020-05-18T18:15:39
264,909,108
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
<<<<<<< HEAD __version__ = '2.8' ======= __version__ = '2.9' >>>>>>> e585743114c1741ec20dc76010f96171f3516589
[ "gevorkyannaira5@gmail.com" ]
gevorkyannaira5@gmail.com
4a8fc58e050c984be3b4182514e57e8c3d48b934
55169883340a5fd9c405156238035afac169cff6
/boston_example.py
019fa6284578eb1b971dcbf279bf8d73fbcbb840
[]
no_license
attakhan/DataScience-and-AI
1d16dbb4634c64c162847821d0ebce68bba091d8
2037e6bc2412e99831a3c63c0f9e4c4169df755e
refs/heads/master
2021-09-20T08:42:48.655821
2018-08-07T07:41:32
2018-08-07T07:41:32
111,201,330
0
0
null
null
null
null
UTF-8
Python
false
false
1,699
py
# -*- coding: utf-8 -*- """ Created on Sun Jun 10 13:08:55 2018 @author: muhammad.atta """ from keras.datasets import boston_housing from keras import models from keras import layers import numpy as np (train_data,train_targets) , (test_data , test_targets) = boston_housing.load_data() print(train_data.shape) mean = train_data.mean(axis=0) train_data -= mean std = train_data.std(axis = 0) train_data /= std test_data -= mean test_data /= std print(train_data) def model_method() : model = models.Sequential() model.add(layers.Dense(64, activation='relu',input_shape=(train_data.shape[1],))) model.add(layers.Dense(64,activation='relu')) model.add(layers.Dense(64,activation='relu')) model.add(layers.Dense(1)) model.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) return model k = 4 num_val_samples = len(train_data) // k num_epochs = 100 all_scores = [] for i in range(k): print('processing fold #', i) val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples] val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples] partial_train_data = np.concatenate([train_data[:i * num_val_samples],train_data[(i + 1) * num_val_samples:]],axis=0) partial_train_targets = np.concatenate([train_targets[:i * num_val_samples], train_targets[(i + 1) * num_val_samples:]],axis=0) model = model_method() model.fit(partial_train_data, partial_train_targets, epochs=num_epochs, batch_size=1, verbose=0) val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) all_scores.append(val_mae) print(np.mean(all_scores))
[ "noreply@github.com" ]
attakhan.noreply@github.com
f5e0381785565c4cf6fa682343001d5bd8f1aeff
40ed785aabe76003d6416bcdef858ab25a8b6cd8
/back_service/apps.py
b095178eafc2c740b69bc7e4e02744c91403bbbb
[]
no_license
Takaklas/mobility-offloading-server-side
ece5164c51960b1f963763e5fd007d86af7a49ac
4acd709a1a702d783769d273f633f6fda20c1282
refs/heads/master
2020-04-06T09:41:08.428712
2019-03-29T20:57:23
2019-03-29T20:57:23
157,352,448
0
1
null
null
null
null
UTF-8
Python
false
false
98
py
from django.apps import AppConfig class BackServiceConfig(AppConfig): name = 'back_service'
[ "takgate7@gmail.com" ]
takgate7@gmail.com
bfe903ff472179fdfe59c5d045c065182ac0ec97
517c863520bbe7652586b3095c0b7359755453ad
/main.py
09164c211d31e1342476bb8b7859e4db3660f2da
[]
no_license
Wallar1/card_chemistry
b5309950f6fb266c72d2149d5712eabeb2f7ad11
e42509996722ccaa0569b2a7702f0ee08af5285b
refs/heads/master
2023-03-03T17:09:12.615042
2021-02-14T10:23:53
2021-02-14T10:23:53
326,491,089
0
0
null
null
null
null
UTF-8
Python
false
false
1,337
py
from flask import Flask, jsonify, send_file, make_response, send_from_directory from player import Player from scientist import ALL_SCIENTISTS app = Flask(__name__) @app.route('/') def home_page(): return send_file('./static/scientist_scroller.html') @app.route('/service_worker.js') def service_worker(): """ Normally this would just be served directly from the static directly where it lives. But we need to add this 'Service-Worker-Allowed' header so that the worker can have access to all requests. That way we can cache all pages """ response = make_response(send_from_directory('static',filename='service_worker.js')) #change the content header file response.headers['Content-Type'] = 'application/javascript' response.headers['Service-Worker-Allowed'] = '/' return response @app.route('/scientists') def scientists(): scientists = sorted(ALL_SCIENTISTS, key=lambda s: s.year) scientists_json = [scientist.toJSON() for scientist in scientists] return jsonify(scientists_json) @app.route('/player') def player(): return jsonify(Player().toJSON()) # def play_game(): # os.system('clear') # player = Player() # # TODO: make this some kind of loop # won = player.start_battle(heat={}, lifelines={}) # if __name__ == '__main__': # play_game()
[ "Robertwallace.naples@gmail.com" ]
Robertwallace.naples@gmail.com
f6fc270193bc949f831597b37c31160cd44d1ebf
983dd371747f70473e0445aa810d98f555dc626e
/lispypy/__init__.py
0edbd20c3b77041467d0673f5d66ad19b041757f
[ "BSD-2-Clause" ]
permissive
cg123/lispypy
6a2d9f54b5f3b0886b5591d1ff8f9e2fdf6304d8
04df5ea55c646342c8d5537787f9c0ce90aaf31b
refs/heads/master
2020-03-27T22:29:06.479280
2013-08-20T00:35:28
2013-08-20T00:35:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,462
py
# Copyright (c) 2013, Charles O. Goddard # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from . import common from . import tokenizer from . import parser from . import lispobj from . import interpreter
[ "Charles.Goddard@students.olin.edu" ]
Charles.Goddard@students.olin.edu
d2c4033b46d5dd98b49f6fb13115f128c2f1873a
a3e9f51d0d7c086852421590c3fb8d2412bd013c
/test_models.py
83b521ccf839dcbf43fb2d65ec8e6d096f9da63a
[]
no_license
Sprivideo4/Samsung-Prism-Project
db6b32b8f2cec58a756dea5b21b456d7e3329071
7e9b69f94ed17a151101c52f05f85efc7d95ce40
refs/heads/main
2022-12-18T21:21:49.767313
2020-10-06T02:45:36
2020-10-06T02:45:36
301,395,184
0
0
null
null
null
null
UTF-8
Python
false
false
12,650
py
# Code for "TSM: Temporal Shift Module for Efficient Video Understanding" # arXiv:1811.08383 # Ji Lin*, Chuang Gan, Song Han # {jilin, songhan}@mit.edu, ganchuang@csail.mit.edu # Notice that this file has been modified to support ensemble testing import argparse import time import torch.nn.parallel import torch.optim from sklearn.metrics import confusion_matrix from ops.dataset import TSNDataSet from ops.models import TSN from ops.transforms import * from ops import dataset_config_test from torch.nn import functional as F # options parser = argparse.ArgumentParser(description="TSM testing on the full validation set") parser.add_argument('dataset', type=str) # may contain splits parser.add_argument('--weights', type=str, default=None) parser.add_argument('--test_segments', type=str, default=25) parser.add_argument('--dense_sample', default=False, action="store_true", help='use dense sample as I3D') parser.add_argument('--twice_sample', default=False, action="store_true", help='use twice sample for ensemble') parser.add_argument('--full_res', default=False, action="store_true", help='use full resolution 256x256 for test as in Non-local I3D') parser.add_argument('--test_crops', type=int, default=1) parser.add_argument('--coeff', type=str, default=None) parser.add_argument('--batch_size', type=int, default=1) parser.add_argument('-j', '--workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') # for true test parser.add_argument('--test_list', type=str, default='/content/drive/My Drive/samsung/labels/test_videofolder.txt') parser.add_argument('--csv_file', type=str, default='/content/drive/My Drive/samsung/labels/CVAE_test_results.csv') parser.add_argument('--softmax', default=False, action="store_true", help='use softmax') parser.add_argument('--max_num', type=int, default=-1) parser.add_argument('--input_size', type=int, default=224) parser.add_argument('--crop_fusion_type', type=str, default='avg') parser.add_argument('--gpus', nargs='+', type=int, default=None) parser.add_argument('--img_feature_dim',type=int, default=256) parser.add_argument('--num_set_segments',type=int, default=1,help='TODO: select multiply set of n-frames from a video') parser.add_argument('--pretrain', type=str, default='imagenet') args = parser.parse_args() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def parse_shift_option_from_log_name(log_name): if 'shift' in log_name: strings = log_name.split('_') for i, s in enumerate(strings): if 'shift' in s: break return True, int(strings[i].replace('shift', '')), strings[i + 1] else: return False, None, None weights_list = args.weights.split(',') test_segments_list = [int(s) for s in args.test_segments.split(',')] assert len(weights_list) == len(test_segments_list) if args.coeff is None: coeff_list = [1] * len(weights_list) else: coeff_list = [float(c) for c in args.coeff.split(',')] if args.test_list is not None: test_file_list = args.test_list.split('\n') else: test_file_list = [None] * len(weights_list) data_iter_list = [] net_list = [] modality_list = [] total_num = None for this_weights, this_test_segments, test_file in zip(weights_list, test_segments_list, test_file_list): is_shift, shift_div, shift_place = parse_shift_option_from_log_name(this_weights) if 'RGB' in this_weights: modality = 'RGB' else: modality = 'Flow' this_arch = this_weights.split('TSM_')[1].split('_')[2] modality_list.append(modality) num_class, test_file, root_path, prefix = dataset_config_test.return_dataset(args.dataset, modality) print('=> shift: {}, shift_div: {}, shift_place: {}'.format(is_shift, shift_div, shift_place)) net = TSN(num_class, this_test_segments if is_shift else 1, modality, base_model=this_arch, consensus_type=args.crop_fusion_type, img_feature_dim=args.img_feature_dim, pretrain=args.pretrain, is_shift=is_shift, shift_div=shift_div, shift_place=shift_place, non_local='_nl' in this_weights, ) if 'tpool' in this_weights: from ops.temporal_shift import make_temporal_pool make_temporal_pool(net.base_model, this_test_segments) # since DataParallel checkpoint = torch.load(this_weights) checkpoint = checkpoint['state_dict'] # base_dict = {('base_model.' + k).replace('base_model.fc', 'new_fc'): v for k, v in list(checkpoint.items())} base_dict = {'.'.join(k.split('.')[1:]): v for k, v in list(checkpoint.items())} replace_dict = {'base_model.classifier.weight': 'new_fc.weight', 'base_model.classifier.bias': 'new_fc.bias', } for k, v in replace_dict.items(): if k in base_dict: base_dict[v] = base_dict.pop(k) net.load_state_dict(base_dict) input_size = net.scale_size if args.full_res else net.input_size if args.test_crops == 1: cropping = torchvision.transforms.Compose([ GroupScale(net.scale_size), GroupCenterCrop(input_size), ]) elif args.test_crops == 3: # do not flip, so only 5 crops cropping = torchvision.transforms.Compose([ GroupFullResSample(input_size, net.scale_size, flip=False) ]) elif args.test_crops == 5: # do not flip, so only 5 crops cropping = torchvision.transforms.Compose([ GroupOverSample(input_size, net.scale_size, flip=False) ]) elif args.test_crops == 10: cropping = torchvision.transforms.Compose([ GroupOverSample(input_size, net.scale_size) ]) else: raise ValueError("Only 1, 5, 10 crops are supported while we got {}".format(args.test_crops)) data_loader = torch.utils.data.DataLoader( TSNDataSet(root_path, test_file, num_segments=this_test_segments, new_length=1 if modality == "RGB" else 5, modality=modality, image_tmpl=prefix, test_mode=True, remove_missing=len(weights_list) == 1, transform=torchvision.transforms.Compose([ cropping, Stack(roll=(this_arch in ['BNInception', 'InceptionV3'])), ToTorchFormatTensor(div=(this_arch not in ['BNInception', 'InceptionV3'])), GroupNormalize(net.input_mean, net.input_std), ]), dense_sample=args.dense_sample, twice_sample=args.twice_sample), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) if args.gpus is not None: devices = [args.gpus[i] for i in range(args.workers)] else: devices = list(range(args.workers)) net = torch.nn.DataParallel(net.cuda()) net.eval() data_gen = enumerate(data_loader) if total_num is None: total_num = len(data_loader.dataset) else: assert total_num == len(data_loader.dataset) data_iter_list.append(data_gen) net_list.append(net) output = [] def eval_video(video_data, net, this_test_segments, modality): net.eval() with torch.no_grad(): i, data, label = video_data batch_size = label.numel() num_crop = args.test_crops if args.dense_sample: num_crop *= 10 # 10 clips for testing when using dense sample if args.twice_sample: num_crop *= 2 if modality == 'RGB': length = 3 elif modality == 'Flow': length = 10 elif modality == 'RGBDiff': length = 18 else: raise ValueError("Unknown modality "+ modality) data_in = data.view(-1, length, data.size(2), data.size(3)) if is_shift: data_in = data_in.view(batch_size * num_crop, this_test_segments, length, data_in.size(2), data_in.size(3)) rst = net(data_in) rst = rst.reshape(batch_size, num_crop, -1).mean(1) if args.softmax: # take the softmax to normalize the output to probability rst = F.softmax(rst, dim=1) rst = rst.data.cpu().numpy().copy() if net.module.is_shift: rst = rst.reshape(batch_size, num_class) else: rst = rst.reshape((batch_size, -1, num_class)).mean(axis=1).reshape((batch_size, num_class)) return i, rst, label proc_start_time = time.time() max_num = args.max_num if args.max_num > 0 else total_num top1 = AverageMeter() top5 = AverageMeter() for i, data_label_pairs in enumerate(zip(*data_iter_list)): with torch.no_grad(): if i >= max_num: break this_rst_list = [] this_label = None for n_seg, (_, (data, label)), net, modality in zip(test_segments_list, data_label_pairs, net_list, modality_list): rst = eval_video((i, data, label), net, n_seg, modality) this_rst_list.append(rst[1]) this_label = label assert len(this_rst_list) == len(coeff_list) for i_coeff in range(len(this_rst_list)): this_rst_list[i_coeff] *= coeff_list[i_coeff] ensembled_predict = sum(this_rst_list) / len(this_rst_list) for p, g in zip(ensembled_predict, this_label.cpu().numpy()): output.append([p[None, ...], g]) cnt_time = time.time() - proc_start_time prec1, prec5 = accuracy(torch.from_numpy(ensembled_predict), this_label, topk=(1, 5)) top1.update(prec1.item(), this_label.numel()) top5.update(prec5.item(), this_label.numel()) if i % 20 == 0: print('video {} done, total {}/{}, average {:.3f} sec/video, ' 'moving Prec@1 {:.3f} Prec@5 {:.3f}'.format(i * args.batch_size, i * args.batch_size, total_num, float(cnt_time) / (i+1) / args.batch_size, top1.avg, top5.avg)) video_pred = [np.argmax(x[0]) for x in output] video_pred_top5 = [np.argsort(np.mean(x[0], axis=0).reshape(-1))[::-1][:5] for x in output] video_labels = [x[1] for x in output] if args.csv_file is not None: print('=> Writing result to csv file: {}'.format(args.csv_file)) with open(test_file_list[0].replace('/content/drive/My Drive/samsung/labels/test_videofolder.txt', '/content/drive/My Drive/samsung/labels/category.txt')) as f: categories = f.readlines() categories = [f.strip() for f in categories] with open(test_file_list[0]) as f: vid_names = f.readlines() vid_names = [n.split(' ')[0] for n in vid_names] assert len(vid_names) == len(video_pred) if args.dataset != 'somethingv2': # only output top1 with open(args.csv_file, 'w') as f: for n, pred in zip(vid_names, video_pred): f.write('{};{}\n'.format(n, categories[pred])) else: with open(args.csv_file, 'w') as f: for n, pred5 in zip(vid_names, video_pred_top5): fill = [n] for p in list(pred5): fill.append(p) f.write('{};{};{};{};{};{}\n'.format(*fill)) cf = confusion_matrix(video_labels, video_pred).astype(float) np.save('cm.npy', cf) cls_cnt = cf.sum(axis=1) cls_hit = np.diag(cf) cls_acc = cls_hit / cls_cnt print(cls_acc) upper = np.mean(np.max(cf, axis=1) / cls_cnt) print('upper bound: {}'.format(upper)) print('-----Evaluation is finished------') print('Class Accuracy {:.02f}%'.format(np.mean(cls_acc) * 100)) print('Overall Prec@1 {:.02f}% Prec@5 {:.02f}%'.format(top1.avg, top5.avg))
[ "somandra.bhl2015@gmail.com" ]
somandra.bhl2015@gmail.com
46680f13ec78eb01cf69e406dab8be4e25fa0251
9538e8a5719ea0d9e4759b357f368b80f0a9c2a4
/basic-knowledge-penetration/py_penetration_1_网络基础/client_udp.py
66ac22fc686b4cd2934528cb4004f558dc6502d4
[]
no_license
BLACKGOATGG/python
c7019e0c6b476a9ff6cb46f50237ee7b6a9da16e
230eb48153ee6c691e5ffdaec5c7ca1fa6d4254b
refs/heads/master
2021-06-30T02:47:07.771983
2019-04-18T09:18:27
2019-04-18T09:18:27
144,562,485
1
0
null
2019-02-02T09:58:34
2018-08-13T10:09:07
Python
UTF-8
Python
false
false
1,762
py
""" python编写的udp客户端和tcp客户端差别不大,仅需要做两处简单的修改,将数据包以udp格式发出 UDP:用户数据报协议,是一个面向无连接的协议。 采用该协议不需要两个应用程序先建立连接。 UDP协议不提供差错恢复,不能提供数据重传,因此该协议传输数据安全性差。 UDP应用于及时通信,而TCP协议用来传送文件、命令等操作,因为这些数据不允许丢失,否则会造成文件错误或命令混乱。 下面代码就是模拟客户端通过命令行操作服务器。 客户端输入命令,服务器执行并且返回结果。 """ import socket from lib import * host_ip = helper.get_host_ip() target_host = '127.0.0.1' #标准的ipv4地址或主机名 target_port = 80 # 建立一个socket对象 client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 发送一些数据 contents = 'GET / HTTP/1.1\r\nHost:'+ target_host +'\r\n\r\n' client.sendto(contents.encode(),(target_host,target_port)) # 接受一些数据 data, addr = client.recvfrom(4096) print(data, addr) """ 在创建嵌套字对象时,将嵌套字的类型改为SOCK_DGRAM 之后调用sendto将数据传到你想发送的服务器上 因为udp是一个无连接状态的传输协议,所以不需要在此之前调用connect()函数, 最后一步是调用recvfrom()接受返回的udp数据包, 你将接受回传的数据以及远程主机的信息和端口号 """ """ 注意: 1. sendto() 向服务器端发送编码后的数据(二进制字节),编码方法encode(),解码decode() :::py3需要如此,py2书上列子没有 python3只能收发二进制数据,需要显式转码 """
[ "hzgjl@tairanchina.com" ]
hzgjl@tairanchina.com
a068aa8f19d1906f4996e1b50e34fdd2d1c23dd3
e3875fe665b5090a705d5c14caccb80cae46eaa5
/bench/bench.py
dbc6a823edec8932d8ccf4b0d1f54184811c8189
[ "BSD-3-Clause" ]
permissive
pankajp/pysph
0664b4efb069def53f6fa3d1103d300977b14e6a
5bb1fc46a9c84aefd42758356a9986689db05454
refs/heads/master
2021-01-23T13:55:43.269572
2011-05-11T09:06:15
2011-05-11T09:06:15
1,721,136
1
2
null
null
null
null
UTF-8
Python
false
false
5,230
py
#! /usr/bin/env python """module to run timings test code Modules to time-test can be specified in two ways * bench modules can be automatically collected from directory where this file is present if they are cython modules with sources having extension `.pyx`. The modules are compiled if they are not already * modules (python/cython module name w/o extension) can be passed as commandline arguments to time-test the specified modules The bench modules are special modules having a callable `bench` defined which returns a list of a dict having string (name of bench) keys and float (time taken) values. The list is only as a way group different tests. The modules may implement the bench function in whichever way they deem fit. To run bench modules which need mpi to execute multiple processes, name the bench module as "mpi<num_procs>_<bench_name>.pyx", replacing <num_procs> with the number of processes in which to run the bench and <bench_name> with the name of you would use for the file. An easy way to run in different number of processes is to create symlinks with different names. The result of a parallel bench is that returned by the bench function of the root process. The results of all the bench tests are displayed in a tabular format Any output from the test modules id redirected to file `bench.log` Output from mpi runs is redirected to `mpirunner.log.<rank>' """ import os import sys import traceback import subprocess import pickle # local relative import import setup def list_pyx_extensions(path): """list the files in the path having .pyx extension w/o the extension""" ret = [f[:-4] for f in os.listdir(path) if f[-3:]=='pyx' and f[0]!='_'] ret.sort() return ret def mpirun(bench_name, num_procs): ret = subprocess.check_output(['mpiexec', '-n', str(num_procs), sys.executable, 'mpirunner.py', 'p', bench_name]) return pickle.loads(ret) def run(extns=None, dirname=None, num_runs=1): """run the benchmarks in the modules given `extns` is names of python modules to benchmark (None => all cython extensions in dirname) `dirname` is the directory where the modules are found (None implies current directory `num_runs` is the number of times to run the tests, the minimum value is reported over all the runs """ if dirname is None: dirname = os.path.abspath(os.curdir) olddir = os.path.abspath(os.curdir) os.chdir(dirname) if extns is None: extns = list_pyx_extensions(os.curdir) print 'Running benchmarks:', ', '.join(extns) # this is needed otherwise setup will take arguments and do something else sys.argvold = sys.argv[:] sys.argv = sys.argv[:1] # compile the bench .pyx files setup.compile_extns(extns, dirname)#, [os.path.join(dirname,'..','..')]) logfile = open('bench.log', 'w') outtext = '' for bench_name in extns: stdout_orig = sys.stdout stderr_orig = sys.stderr sys.stdout = sys.stderr = logfile mpi = False if bench_name.startswith('mpi'): mpi = True num_procs = int(bench_name.lstrip('mpi').split('_')[0]) try: # bench to be run in mpi if mpi: res = mpirun(bench_name, num_procs) # normal single process bench else: bench_mod = __import__(bench_name) res = bench_mod.bench() except: stderr_orig.write('Failure running bench %s\n' %(bench_name)) traceback.print_exc(file=stderr_orig) continue # take minimum over `num_runs` runs for i in range(num_runs-1): # bench to be run in mpi if mpi: r = mpirun(bench_name, num_procs) # normal single process bench else: r = bench_mod.bench() for jn,j in enumerate(res): for k,v in j.items(): j[k] = min(v, r[jn].get(k, 1e1000)) sys.stdout = stdout_orig sys.stderr = stderr_orig if mpi: s = bench_name.split('_',1)[1]+' %d\n'%num_procs s += '#'*len(s) print s outtext += s + '\n' else: s = bench_name + '\n' + '#'*len(bench_name) print s outtext += s + '\n' for func in res: for k in sorted(func.keys()): s = k.ljust(40) + '\t%g'%func[k] print s outtext += s + '\n' print outtext += '\n' logfile.write(outtext) logfile.close() sys.argv = sys.argvold os.chdir(olddir) if __name__ == '__main__': print sys.argv if '-h' in sys.argv or '--help' in sys.argv: print '''usage: python setup.py [extension1, [extension2, [...]]] runs the bench extensions present in the current directory ''' elif len(sys.argv) > 1: # run specified extensions run(sys.argv[1:]) else: # run all extensions found in current directory run()
[ "pankaj86@gmail.com" ]
pankaj86@gmail.com
e5d73f03edf687e56a5bb4d04835d977c7935337
a7d41aa056165fc33b0c1d8edd50b8557f642548
/Python/List-2/no14.py
b1c7bc74951a9915a65187483d298fff9381c562
[]
no_license
jemtca/CodingBat
3243ec9c5309f8581e1a54fba0b076069cec7d74
8545a70348dd621070c8b3efa280ca79a24f9d5a
refs/heads/master
2023-04-05T03:20:17.416495
2023-03-31T06:35:08
2023-03-31T06:35:08
147,287,514
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
# given an array of ints, return true if it contains no 1's or it contains no 4's def no14(nums): b = True one = False four = False for x in range(len(nums)): if nums[x] == 1: one = True for x in range(len(nums)): if nums[x] == 4: four = True if one and four: b = False return b print(no14([1, 2, 3])) print(no14([1, 2, 3, 4])) print(no14([2, 3, 4]))
[ "30645648+jemtca@users.noreply.github.com" ]
30645648+jemtca@users.noreply.github.com
ecfb2b0c2bbeb0959aaecb984d03c3768a12ee18
7e47a0079d2eef72b3bcd4c566b0ee233f0e2fc6
/alaska/venv/bin/wheel
5a4e689dc3106306caf8f67b03a06ccbdc51a9ae
[]
no_license
jlyonthinks/28July15
6781b3aee6140d3edcb05aa2e804f3d5429fd8a1
cf5c716a67cc2e48dc0cf7d4690859587cf45dfb
refs/heads/master
2023-01-14T00:43:42.315018
2015-07-29T00:40:51
2015-07-29T00:40:51
39,864,986
0
0
null
2022-12-26T19:49:43
2015-07-29T00:45:48
Python
UTF-8
Python
false
false
237
#!/home/jlyonthinks/alaska/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "jlyonthinks@gmail.com" ]
jlyonthinks@gmail.com
e4c7fa728fc770c8d90def3d56e9a6d7f2e07661
0e228bea5d374ea2a01401908547066932bce8e8
/sypt_ptree.py
8af00271125bafba927367ba0e483344a5a460db
[ "MIT" ]
permissive
marjanhs/phan_style_change
c4c2cdcec80fc35f3727e156350f3ebfbde09bfa
76c47ff751ec8d4318364b1f3d1272f50a94e06e
refs/heads/master
2020-03-22T22:41:43.767233
2019-02-08T16:56:23
2019-02-08T16:56:23
140,766,204
1
2
MIT
2018-07-19T21:19:45
2018-07-12T21:25:05
Python
UTF-8
Python
false
false
3,392
py
from pycorenlp import StanfordCoreNLP from nltk.tree import ParentedTree import re, os, subprocess from nltk.tokenize import sent_tokenize, word_tokenize arrow = ' => ' def leaf_to_root(node, ignoreleaf=True): rules=[] while node.label()!="ROOT": rule= node.label() + arrow for s in node: if type(s)== ParentedTree: rule += s.label() +' ' else: rule += s +' ' rules.append(rule) node = node.parent() if ignoreleaf and len(rules) >1: return rules[1:] else: return rules def traverse(parsed_sentence, ignoreleaf=True): t = ParentedTree.fromstring(parsed_sentence) q = [t] rules = [] while len(q) > 0: current = q.pop() for s in current: if type(s) == ParentedTree: q.append(s) else: rules.append(leaf_to_root(current, ignoreleaf=ignoreleaf)) return rules def get_pt_features_coreNLP(doc, ignoreleaf=True): en = doc.encode('utf-8') de = en.decode('utf-8') doc = de chars_to_remove = ['{', '}', '(', ')'] rx = '[' + re.escape(''.join(chars_to_remove)) + ']' doc = re.sub(rx, '', doc) nlp = StanfordCoreNLP('http://localhost:9000') sentences = sent_tokenize(doc) ptree_features = list() for sentence in sentences: try: if sentence != "" and len(word_tokenize(sentence)) <= 80: # less than 50 words output = nlp.annotate(sentence, properties={ 'annotators': 'parse', 'outputFormat': 'json' }) parsed = (output['sentences'][0]['parse']) rules = traverse(parsed, ignoreleaf=ignoreleaf) ptree_features.append(rules) except: print('Problem in parsing sentece = %s' % sentence) return ptree_features def get_pt_features_standalone(doc, tmp_path='', ignoreleaf=True): tmp_path = os.path.join(tmp_path, 'tmp_marjan') args = ['java','-mx3000m', '-cp', 'stanford-parser-full-2018-02-27/stanford-parser.jar', 'edu.stanford.nlp.parser.lexparser.LexicalizedParser', '-encoding', 'utf-8', '-model', 'stanford-parser-full-2018-02-27/englishPCFG.ser.gz', '-maxLength', '50', '-sentences', 'newline', '-outputFormat', 'penn', tmp_path] en = doc.encode('utf-8') de = en.decode('utf-8') doc = de chars_to_remove = ['{', '}', '(', ')'] rx = '[' + re.escape(''.join(chars_to_remove)) + ']' doc = re.sub(rx, '', doc) sentences = sent_tokenize(doc) ptree_features = list() with open(tmp_path, 'wt') as fw: for sentence in sentences: if sentence.strip() != '': fw.write(sentence+'\n') p = subprocess.Popen(args, stdin=None, stdout=-1, stderr=-1) outs, err = p.communicate() outs = outs.decode('utf-8').replace('(())\n', '') # removing output of long sentences for parsed in outs.split('\n\n'): if parsed != "": try: rules = traverse(parsed, ignoreleaf= ignoreleaf) ptree_features.append(rules) except ValueError: print('Problem in converting parsed sentence = %s ' % (parsed)) raise return ptree_features
[ "ma.hosseinia@gmail.com" ]
ma.hosseinia@gmail.com
74cdeeaefa73433d6ba79843dc152782e3814a80
c4e377c125cd02c2cd6a7ac8baaa92498ec0c0b5
/light_sensor.py
799b6eb435851f140095b6245bc9fc00670961ce
[]
no_license
carlhdr/raspberry_pi
5f32d4900e153c82cdb20422b9ee569f98dba0a0
922e2c61f3028f3ab73350165261ea264b324401
refs/heads/master
2020-12-14T08:54:27.896296
2016-05-03T04:16:11
2016-05-03T04:16:11
58,165,160
0
0
null
2016-05-05T22:44:30
2016-05-05T22:44:30
null
UTF-8
Python
false
false
606
py
#!/usr/bin/env python # Example for RC timing reading for Raspberry Pi # Must be used with GPIO 0.3.1a or later - earlier verions # are not fast enough! import RPi.GPIO as GPIO, time, os DEBUG = 1 GPIO.setmode(GPIO.BCM) def RCtime (RCpin): reading = 0 GPIO.setup(RCpin, GPIO.OUT) GPIO.output(RCpin, GPIO.LOW) time.sleep(0.1) GPIO.setup(RCpin, GPIO.IN) # This takes about 1 millisecond per loop cycle while (GPIO.input(RCpin) == GPIO.LOW): reading += 1 return reading print RCtime(18) # Read RC timing using pin #18
[ "pannii.orosz@gmail.com" ]
pannii.orosz@gmail.com
68665a1bae1103716df96bc7d8a47e9d199f37f2
8535a64935c9f94269029d3c018dd0ed34686b78
/Coursera-Machine-Learning/Python-Code/ex2/gradient.py
da53eeb0f02f9c81c999121951c60e4fd2a0a218
[]
no_license
hosjiu1702/ML-Self-Study-Training-Course
929647a73b04dd1529f2882da9cf2187001c32d3
71d9f00e0460a6f8f43bf0276ec67d75a7a02936
refs/heads/master
2022-12-13T11:29:16.343033
2019-03-13T07:08:19
2019-03-13T07:08:19
175,346,159
0
0
null
2022-12-09T15:37:52
2019-03-13T04:27:25
JavaScript
UTF-8
Python
false
false
300
py
import numpy as np from sigmoid import sigmoid def gradient(theta, X, y, lam_bda): m = len(y) grad_J = np.zeros((theta.shape)) h = sigmoid(X.dot(theta)) grad_J = (1 / m) * X.T.dot(h-y) + (lam_bda / m) * theta grad_J[0] = grad_J[0] - (lam_bda / m) * theta[0] return grad_J
[ "hosjiu1702@gmail.com" ]
hosjiu1702@gmail.com
d33ede4c779f29fb5299d2cd5d13206c63fba933
76d319fb1cebc730feb0e730d4fc3ac328bb5e93
/backend/settings.py
237f324df8acfc60a2f124ef74e0ca13e972d583
[]
no_license
RAlanWright/django-react-todo
2a801af06eab530a04a15ca0d98d357d34657b34
aeebe1ff1d9a5a24e6399f604bc338cbb5b9c983
refs/heads/main
2023-01-11T18:56:52.600981
2020-11-09T16:29:24
2020-11-09T16:29:24
306,974,752
0
0
null
null
null
null
UTF-8
Python
false
false
3,278
py
""" Django settings for backend project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get("D_T_D_SECRET") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'rest_framework', 'todo' ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'backend.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'backend.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # Whitelist localhost:3000 for the frontend CORS_ALLOWED_ORIGINS = ( 'http://localhost:3000', 'http://localhost:8000', )
[ "wright.alan88@gmail.com" ]
wright.alan88@gmail.com
701da3c11fa30fb3121be3633c9e8150d1062c84
0b17f21b3447700e99ad376b88d1440c3546a29b
/engine.py
c27cd41e816ebea8508ab9faa735ab80de98286b
[]
no_license
juniferd/terminal-boggle
4580d0253c52b7a38db2d9604a33b62703dbc592
c2abbdfae1f881da1c9d0bee476bc2c8613b1061
refs/heads/master
2021-01-10T09:27:06.046285
2016-02-22T23:13:57
2016-02-22T23:13:57
51,971,610
1
0
null
null
null
null
UTF-8
Python
false
false
2,992
py
import threading import mechanics ## engine for game play GAME_TIME=15 class Engine(object): def __init__(self): self.__timer_on = True self.__remaining_time = GAME_TIME self.__round_score = 0 """ menu_map = { 'h': full_menu, 'e': exit_round, 's': start_round, 'n': new_board, 'r': rotate_board, } """ # present a menu def menu(self): print "\ntype S to start playing" player_input = raw_input("> ").lower() ## FIX THIS LATER if player_input == 's': self.start_round() elif player_input == 'e': self.stop_round() # start a round def start_round(self): ##FIX THIS LATER game_words = self.play_game() print "Here are your valid words from the game: " for word in game_words: print word # show total words all_words = self.game.find_all_words() print "You found %s out of %s words" % (len(game_words), all_words) game_score = self.score_game(game_words) # score a game print "Your game score: ", game_score # add score to round_score self.__round_score += game_score print "Your round score: ", self.__round_score self.game_reset() print "-------------" # present the menu self.menu() # manually stop a round def stop_round(self): self.__round_score = 0 self.menu() # change board to size nxn # score def score_game(self, words): scoring = { 3 : 1, 4 : 1, 5 : 2, 6 : 3, 7 : 5, 8 : 11 } score = 0 for word in words: length = int(words[word]) if length >= 8: score = score + 11 else: score = score + scoring[length] return score def game_reset(self): self.__timer_on = True self.__remaining_time = GAME_TIME def tick_timer(self): self.__remaining_time -= 1 if self.__remaining_time <= 0: self.__timer_on = False print "%s seconds are up! press enter" % GAME_TIME if self.__timer_on: t = threading.Timer(1.0, self.tick_timer) t.start() # play a game of boggle def play_game(self): checked_words = {} boggle_game = mechanics.Boggle() self.game = boggle_game self.tick_timer() # play a timed game while self.__timer_on is True: boggle_game.show_board() user_word = raw_input("> ") if not self.__timer_on: break this_word = boggle_game.check_word(user_word.lower(),True) if this_word is not None: checked_words[this_word] = len(this_word) return checked_words
[ "jyk@jyk" ]
jyk@jyk
71e18a1184fee5d651e67b275dbcebed8c58628c
fcb053bd5cb1e43d6d02818c8683f31c58f5b678
/Collections/Collections.OrderedDict().py
a6f7fa9957c3a737b6bd8b1f36cee83f5e604ec7
[]
no_license
12akshat12/Hackerrank-Python-Practice
40b20df8fadd925a0bc01ca52daa9cd3a6052340
d0c14da3d32e717b506614216f098a9729545f7a
refs/heads/master
2022-11-07T05:37:18.368939
2020-06-29T05:22:38
2020-06-29T05:22:38
275,672,136
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
from collections import OrderedDict def main(): d=OrderedDict() N=int(input()) for i in range (N): item_name, space, net_price=input().rpartition(' ') if(item_name not in d): d[item_name]=int(net_price) else: d[item_name]=d[item_name]+int(net_price) for i in d.items(): print(i[0], i[1]) main()
[ "akshat.minocha@quovantis.com" ]
akshat.minocha@quovantis.com
6cd92e60f7754b6ce14be9c99f3185a81c39fc5f
74a09ecda56217babdb1e13bece699ca603267f2
/blog_api/views.py
f201e662cc47703c6e01c215275e98b59d7f485c
[]
no_license
shz699/blogapi_django
6e2266f35d505c86a687e6c3fd908ceb5debb44a
a7b28e4f0d5666c58bbf8b6599d18b4b9c604af3
refs/heads/master
2023-06-11T15:50:28.360309
2021-07-02T15:47:51
2021-07-02T15:47:51
382,393,273
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
from rest_framework import generics, serializers from blog.models import Post from .serializers import PostSerializer # Create your views here. class PostList(generics.ListCreateAPIView): queryset = Post.postobjects.all() serializer_class = PostSerializer class PostDetail(generics.RetrieveDestroyAPIView): queryset = Post.objects.all() serializer_class = PostSerializer """ Concrete View Classes #CreateAPIView Used for create-only endpoints. #ListAPIView Used for read-only endpoints to represent a collection of model instances. #RetrieveAPIView Used for read-only endpoints to represent a single model instance. #DestroyAPIView Used for delete-only endpoints for a single model instance. #UpdateAPIView Used for update-only endpoints for a single model instance. ##ListCreateAPIView Used for read-write endpoints to represent a collection of model instances. RetrieveUpdateAPIView Used for read or update endpoints to represent a single model instance. #RetrieveDestroyAPIView Used for read or delete endpoints to represent a single model instance. #RetrieveUpdateDestroyAPIView Used for read-write-delete endpoints to represent a single model instance. """
[ "shahidula699@gmail.com" ]
shahidula699@gmail.com
1b5a79a4089a68bc7d9a2514d8c1f9c8638bf771
533d11ec5e56b22ade009213c36cdb5fca1a4073
/TD3/agent.py
24d9b2bf71c0a538e62a681451aa868ac5c5595f
[]
no_license
joelseytre/advanced-machine-learning
309735f1fa0cfe6f3cf41f49e5c94853813f9d69
579ebece149669673b956914849adcadb941277c
refs/heads/master
2021-05-12T08:18:01.638194
2018-02-11T19:06:59
2018-02-11T19:06:59
117,275,645
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
from agents.RandomAgent import RandomAgent from agents.QAgent import QAgent # Agent = RandomAgent Agent = QAgent
[ "joel.seytre@student.ecp.fr" ]
joel.seytre@student.ecp.fr
bd48a7891bb09bfcada77c9f790b924d43f78d56
b5d3f6c6da601013b761ae302bfa8beea31852d7
/flask_api/modules/meteorological_img.py
8be8f522b77b258ad60a9b29fef7d400ef7fd254
[]
no_license
is0363hr/ste_api_server
113d9cc90a7d6341e5dcd72d972ed529e2c39637
63cbced7e3466c667e884d6c6fc9d55897aa6557
refs/heads/main
2023-05-26T03:39:37.335804
2021-06-11T03:30:13
2021-06-11T03:30:13
348,591,770
0
0
null
null
null
null
UTF-8
Python
false
false
6,349
py
# 気象庁画像取得(2021/3/11) from flask.app import Flask from modules.line_api import LinePush import requests from datetime import datetime, timedelta import os import cv2 import base64 def strToDate(year, month, day, hour, minute): tstr = year + month + day + hour + minute tdate = datetime.strptime(tstr, '%Y%m%d%H%M') return tdate def image_file_to_base64(file_path): with open(file_path, "rb") as image_file: data = base64.b64encode(image_file.read()) return data.decode('utf-8') class MeteImg: def __init__( self, dateTime, lon, lat, zoom, ) -> None: self.tag = "" self.dateTime = dateTime self.lon = lon self.lat = lat self.zoom = zoom self.column = 0 self.line = 0 self.get_time = '' def get_img(self, datetime_set=False): if not datetime_set: date_data = datetime.now() else: date_data = self.dateTime h = sum([int(s) for s in str(date_data.strftime("%H"))]) m = int(date_data.strftime("%M")[-1]) temp_time = date_data - timedelta(minutes=5 + m % 5) time = list(temp_time.strftime("%Y%m%d%H%M")) if h < 10: time[-4:-2] = "0" + str(h) else: time[-4:-2] = str(h) time = "".join(time) + '00' self.get_time = time # print(time) # time = "202101060955" # self.img_time = temp_time.strftime("%Y年%m月%d日%H時%M分") self.img_time = temp_time if self.tag == "map": base_url = "https://cyberjapandata.gsi.go.jp/xyz/pale/" elif self.tag == "cloud": base_url = ("https://www.jma.go.jp/bosai/jmatile/data/nowc/{}/none/{}/surf/hrpns/").format(time, time) z, x, y = self.get_column_line() for i in range(z): for j in range(z): url = (base_url + "{}/{}/{}.png").format( self.zoom, x+i, y+j, ) output_path = (SAVE_DIR+"/{}/{}/{}_{}.png").format( self.tag, self.zoom, x+i, y+j ) dir = os.path.dirname(output_path) + "/"+ str(date_data.strftime("%Y_%m_%d")) + "/" os.makedirs(os.path.dirname(output_path), exist_ok=True) self.save_img(url, output_path) print(url) return dir # 指定したURLの画像を保存 def save_img(self, url, output_path): try: req = requests.get(url) with open(output_path, "wb") as w: w.write(req.content) w.close() except requests.exceptions.HTTPError as request_error: print("{}へのアクセス失敗".format(url)) line_push = LinePush() line_push.push_scraping_error(request_error) except Exception as e: print("アクセス失敗!!!") line_push = LinePush() line_push.push_scraping_error(e) print(e) # 画像結合 def img_connect(self, path): z, x, y = self.get_column_line() v_list = [] for i in range(z): for j in range(z): file = path + str(x+i) + "_" + str(y+j) + ".png" if not (j==0): if self.tag == "cloud": im = cv2.imread(file, -1) else: im = cv2.imread(file) base_img = cv2.vconcat([base_img, im]) elif j==0: if self.tag == "cloud": base_img = cv2.imread(file, -1) else: base_img = cv2.imread(file) v_list.append(base_img) base_img = v_list[0] for v in v_list[1:]: base_img = cv2.hconcat([base_img, v]) output_path = path + self.get_time + ".png" cv2.imwrite(output_path, base_img) return output_path # 透過画像の合成 def sye(self, cloud_path): cartopy = False base_path = SAVE_DIR if cartopy: map = "cartopy/" else: map = "map/" map_path = ("{}/{}/{}/result.png").format(base_path, "map", self.zoom) # cloud_path = ("{}/{}/{}/{}.png").format(base_path, "cloud", self.zoom, self.get_time) map = cv2.imread(map_path) # height, width = map.shape[0], map.shape[1] # map = cv2.resize(map, (512, 512)) cloud = cv2.imread(cloud_path, -1) # 貼り付け先座標の設定。とりあえず左上に x1, y1, x2, y2 = 0, 0, cloud.shape[1], cloud.shape[0] map[y1:y2, x1:x2] = map[y1:y2, x1:x2] * (1 - cloud[:, :, 3:] / 255) + cloud[ :, :, :3 ] * (cloud[:, :, 3:] / 255) output_path = ("{}/{}/{}/{}.png").format(base_path, "sye", self.zoom, self.get_time) os.makedirs(os.path.dirname(output_path), exist_ok=True) cv2.imwrite(output_path, map) return output_path def get_column_line(self): self.line = LINE_INITIALIZE_NUMBER self.column = COLUMN_INITIALIZE_NUMBER zoom_range = self.zoom - ZOOM_INITIALIZE + 1 return zoom_range+1, zoom_range*self.line, zoom_range*self.column def map_create(self): self.tag = "map" path = self.get_img() self.img_connect(path) return def cloud_create(self, datetime_set=False): self.tag = "cloud" path = self.get_img(datetime_set) cloud_path = self.img_connect(path) sye_path = self.sye(cloud_path) return cloud_path, sye_path def meteoro_img_create(dateTime, lon, lat, zoom): meteoro = MeteImg( dateTime, lon, lat, zoom ) meteoro.map_create() return meteoro.cloud_create() # 日本地図の初期位置 ZOOM_INITIALIZE = 4 LINE_INITIALIZE_NUMBER = 13 COLUMN_INITIALIZE_NUMBER = 5 SAVE_DIR = './static' def main(): zoom = 4 now = datetime.now() now = strToDate( '2021', '4', '10', '22', '35' ) mimg = MeteImg( now, '34', '135', 4, ) print(mimg.cloud_create(True)) if __name__ == "__main__": main()
[ "tan_tan_tanuki-73@softbank.ne.jp" ]
tan_tan_tanuki-73@softbank.ne.jp
0d873babbf620fae68abe2c32e8a1578624ca799
ff6248be9573caec94bea0fa2b1e4b6bf0aa682b
/log-20190927/132.230.102.123-10.21.9.70/1569573569.py
dc5839f67d211337395137ed458b092a279d00b4
[]
no_license
LennartElbe/codeEvo
0e41b1a7705204e934ef71a5a28c047366c10f71
e89b329bc9edd37d5d9986f07ca8a63d50686882
refs/heads/master
2020-12-21T17:28:25.150352
2020-03-26T10:22:35
2020-03-26T10:22:35
236,498,032
0
0
null
null
null
null
UTF-8
Python
false
false
2,932
py
import functools import typing import string import random import pytest ## Lösung Teil 1. def divisors(n) """ Nimmt positive ganze Zahl und gibt die Listee aller ihrer Teiler ohne wiederholung zurück args: n: int (positives integer) returns: result: lst (aller Teiler ohne Wdh) """ result = [] if n == 0 or type(n) != int: return "Nanana" else: for i in range(1, n + 1): if n % i == 0 and i not in result: result.append(i) return result ###################################################################### ## hidden code def mk_coverage(): covered = set() target = set(range(6)) count = 0 def coverage(func): nonlocal covered, target, count def wrapper(n): nonlocal covered, count if n <= 0: covered.add(0) if n == 1: covered.add(1) r = func (n) lenr = len (r) if lenr == 1: covered.add(2) if lenr == 2: covered.add(3) if (lenr > 2) and ( lenr % 2 == 0): covered.add(4) if lenr > 2 and lenr % 2 == 1: covered.add(5) count += 1 return r if func == "achieved": return len(covered) if func == "required": return len(target) if func == "count" : return count if func.__doc__: wrapper.__doc__ = func.__doc__ wrapper.__hints__ = typing.get_type_hints (func) return wrapper return coverage coverage = mk_coverage() try: divisors = coverage(divisors) except: pass ## Lösung Teil 2. (Tests) def test_divisors(): a = 5 b = 12 c = 0 assert divisors(a) == [1, 5] assert divisors(b) == [1, 2, 3, 4, 6, 12] assert divisors(c) == "Nanana" ###################################################################### ## hidden tests pytest.main (["-v", "--assert=plain", "-p", "no:cacheprovider"]) from inspect import getfullargspec class TestNames: def test_divisors (self): assert divisors assert 'n' in getfullargspec(divisors).args class TestGrades: def test_docstring_present(self): assert divisors.__doc__ is not None def test_typing_present(self): assert divisors.__hints__ == typing.get_type_hints(self.divisors_oracle) def test_coverage(self): assert coverage("achieved") == coverage("required") def divisors_oracle(self, n:int)->list: return [ d for d in range (1, n + 1) if n % d == 0 ] def check_divisors (self, x): assert set(divisors (x)) == set(self.divisors_oracle (x)) def test_correctness(self): for i in range (100): self.check_divisors (i) n = random.randrange (10000) self.check_divisors (n)
[ "lenni.elbe@gmail.com" ]
lenni.elbe@gmail.com
b36d2685c58c8d2b9e060a1ba82ec9a7e2d959f8
a92e506fb1ef8f6cd0ee9a5215c0a402b47920d1
/Divisor Game.py
8bd673e843645b6928df7b2c2cee00793328ca95
[]
no_license
NikitaFir/Leetcode
81e6d9cce43a69584279ccdd41f5af833c49cc3f
b179f637c7587836cf1047b27514587b4db0776f
refs/heads/master
2022-06-30T17:47:37.915052
2020-05-12T16:21:58
2020-05-12T16:21:58
263,385,656
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
class Solution(object): def divisorGame(self, N): k = 0 x = 1 while N != x: if N % x==0: k += 1 N -= x x = 1 else: x += 1 if k % 2 != 0: return True else: return False print(Solution.divisorGame(0,3))
[ "noreply@github.com" ]
NikitaFir.noreply@github.com
f3a2a0af14fc312520e401d23a530a671f70d031
68c92b50fa7eebd4edd93240252ad7cfdaa36d45
/semisup/train.py
0b19fed904b4cdcefb906781c5e799e91e09a7e4
[ "Apache-2.0" ]
permissive
xu-ji/associative_deep_clustering
dcda58c1a8a391b91201789f55bd91dd9a041d0b
fb324f3749c1dedcde685640dc6143606bc6527b
refs/heads/master
2020-03-31T15:37:24.337726
2018-10-12T21:16:37
2018-10-12T21:16:37
152,344,260
0
1
null
null
null
null
UTF-8
Python
false
false
15,352
py
#! /usr/bin/env python """ Copyright 2016 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Association-based semi-supervised training module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from functools import partial from importlib import import_module import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.platform import app from tensorflow.python.platform import flags from tensorflow.python.training import saver as tf_saver import semisup FLAGS = flags.FLAGS flags.DEFINE_string('dataset', 'svhn', 'Which dataset to work on.') flags.DEFINE_string('target_dataset', None, 'If specified, perform domain adaptation using dataset as ' 'source domain and target_dataset as target domain.') flags.DEFINE_string('target_dataset_split', 'unlabeled', 'Which split of the target dataset to use for domain ' 'adaptation.') flags.DEFINE_string('architecture', 'svhn_model', 'Which network architecture ' 'from architectures.py to use.') flags.DEFINE_integer('sup_per_class', 100, 'Number of labeled samples used per class in total.' ' -1 = all') flags.DEFINE_integer('unsup_samples', -1, 'Number of unlabeled samples used in total. -1 = all.') flags.DEFINE_integer('sup_seed', -1, 'Integer random seed used for labeled set selection.') flags.DEFINE_integer('sup_per_batch', 10, 'Number of labeled samples per class per batch.') flags.DEFINE_integer('unsup_batch_size', 100, 'Number of unlabeled samples per batch.') flags.DEFINE_integer('emb_size', 128, 'Size of the embeddings to learn.') flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.') flags.DEFINE_float('minimum_learning_rate', 1e-6, 'Lower bound for learning rate.') flags.DEFINE_float('decay_factor', 0.33, 'Learning rate decay factor.') flags.DEFINE_float('decay_steps', 60000, 'Learning rate decay interval in steps.') flags.DEFINE_float('visit_weight', 0.0, 'Weight for visit loss.') flags.DEFINE_string('visit_weight_envelope', None, 'Increase visit weight with an envelope: [None, sigmoid, linear]') flags.DEFINE_integer('visit_weight_envelope_steps', -1, 'Number of steps (after delay) at which envelope ' 'saturates. -1 = follow walker loss env.') flags.DEFINE_integer('visit_weight_envelope_delay', -1, 'Number of steps at which envelope starts. -1 = follow ' 'walker loss env.') flags.DEFINE_float('walker_weight', 1.0, 'Weight for walker loss.') flags.DEFINE_string('walker_weight_envelope', None, 'Increase walker weight with an envelope: [None, sigmoid, linear]') flags.DEFINE_integer('walker_weight_envelope_steps', 100, 'Number of steps (after delay) at which envelope ' 'saturates.') flags.DEFINE_integer('walker_weight_envelope_delay', 3000, 'Number of steps at which envelope starts.') flags.DEFINE_float('logit_weight', 1.0, 'Weight for logit loss.') flags.DEFINE_integer('max_steps', 100000, 'Number of training steps.') flags.DEFINE_bool('augmentation', False, 'Apply data augmentation during training.') flags.DEFINE_integer('new_size', 0, 'If > 0, resize image to this width/height.') flags.DEFINE_integer('virtual_embeddings', 0, 'How many virtual embeddings to add.') flags.DEFINE_string('logdir', '/tmp/semisup', 'Training log path.') flags.DEFINE_integer('save_summaries_secs', 150, 'How often should summaries be saved (in seconds).') flags.DEFINE_integer('save_interval_secs', 300, 'How often should checkpoints be saved (in seconds).') flags.DEFINE_integer('log_every_n_steps', 100, 'Logging interval for slim training loop.') flags.DEFINE_integer('max_checkpoints', 5, 'Maximum number of recent checkpoints to keep.') flags.DEFINE_float('keep_checkpoint_every_n_hours', 5.0, 'How often checkpoints should be kept.') flags.DEFINE_float('batch_norm_decay', 0.99, 'Batch norm decay factor ' '(only used for STL-10 at the moment.') flags.DEFINE_integer('remove_classes', 0, 'Remove this number of classes from the labeled set, ' 'starting with highest label number.') flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.') flags.DEFINE_integer('ps_tasks', 0, 'The number of parameter servers. If the value is 0, ' 'then the parameters ' 'are handled locally by the worker.') flags.DEFINE_integer('task', 0, 'The Task ID. This value is used when training with ' 'multiple workers to identify each worker.') def logistic_growth(current_step, target, steps): """Logistic envelope from zero to target value. This can be used to slowly increase parameters or weights over the course of training. Args: current_step: Current step (e.g. tf.get_global_step()) target: Target value > 0. steps: Twice the number of steps after which target/2 should be reached. Returns: TF tensor holding the target value modulated by a logistic function. """ assert target > 0., 'Target value must be positive.' alpha = 5. / steps current_step = tf.cast(current_step, tf.float32) steps = tf.cast(steps, tf.float32) return target * (tf.tanh(alpha * (current_step - steps / 2.)) + 1.) / 2. def apply_envelope(type, step, final_weight, growing_steps, delay): assert growing_steps > 0, "Growing steps for envelope must be > 0." step = tf.cast(step - delay, tf.float32) final_step = growing_steps + delay if type is None: value = final_weight elif type in ['sigmoid', 'sigmoidal', 'logistic', 'log']: value = logistic_growth(step, final_weight, final_step) elif type in ['linear', 'lin']: m = float(final_weight) / ( growing_steps) if not growing_steps == 0.0 else 999. value = m * step else: raise NameError('Invalid type: ' + str(type)) return tf.clip_by_value(value, 0., final_weight) def main(argv): del argv # Load data. dataset_tools = import_module('tools.' + FLAGS.dataset) train_images, train_labels = dataset_tools.get_data('train') if FLAGS.target_dataset is not None: target_dataset_tools = import_module('tools.' + FLAGS.target_dataset) train_images_unlabeled, _ = target_dataset_tools.get_data( FLAGS.target_dataset_split) else: train_images_unlabeled, _ = dataset_tools.get_data('unlabeled') architecture = getattr(semisup.architectures, FLAGS.architecture) num_labels = dataset_tools.NUM_LABELS image_shape = dataset_tools.IMAGE_SHAPE # Sample labeled training subset. seed = FLAGS.sup_seed if FLAGS.sup_seed != -1 else None sup_by_label = semisup.sample_by_label(train_images, train_labels, FLAGS.sup_per_class, num_labels, seed) # Sample unlabeled training subset. if FLAGS.unsup_samples > -1: num_unlabeled = len(train_images_unlabeled) assert FLAGS.unsup_samples <= num_unlabeled, ( 'Chose more unlabeled samples ({})' ' than there are in the ' 'unlabeled batch ({}).'.format(FLAGS.unsup_samples, num_unlabeled)) rng = np.random.RandomState(seed=seed) train_images_unlabeled = train_images_unlabeled[rng.choice( num_unlabeled, FLAGS.unsup_samples, False)] graph = tf.Graph() with graph.as_default(): with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks, merge_devices=True)): # Set up inputs. t_unsup_images = semisup.create_input(train_images_unlabeled, None, FLAGS.unsup_batch_size) t_sup_images, t_sup_labels = semisup.create_per_class_inputs( sup_by_label, FLAGS.sup_per_batch) if FLAGS.remove_classes: t_sup_images = tf.slice( t_sup_images, [0, 0, 0, 0], [FLAGS.sup_per_batch * ( num_labels - FLAGS.remove_classes)] + image_shape) # Resize if necessary. if FLAGS.new_size > 0: new_shape = [FLAGS.new_size, FLAGS.new_size, image_shape[-1]] else: new_shape = None # Apply augmentation if FLAGS.augmentation: # TODO(haeusser) generalize augmentation def _random_invert(inputs, _): randu = tf.random_uniform( shape=[FLAGS.sup_per_batch * num_labels], minval=0., maxval=1., dtype=tf.float32) randu = tf.cast(tf.less(randu, 0.5), tf.float32) randu = tf.expand_dims(randu, 1) randu = tf.expand_dims(randu, 1) randu = tf.expand_dims(randu, 1) inputs = tf.cast(inputs, tf.float32) return tf.abs(inputs - 255 * randu) augmentation_function = _random_invert else: augmentation_function = None # Create function that defines the network. model_function = partial( architecture, new_shape=new_shape, img_shape=image_shape, augmentation_function=augmentation_function, batch_norm_decay=FLAGS.batch_norm_decay, emb_size=FLAGS.emb_size) # Set up semisup model. model = semisup.SemisupModel(model_function, num_labels, image_shape) # Compute embeddings and logits. t_sup_emb = model.image_to_embedding(t_sup_images) t_unsup_emb = model.image_to_embedding(t_unsup_images) # Add virtual embeddings. if FLAGS.virtual_embeddings: t_sup_emb = tf.concat(0, [ t_sup_emb, semisup.create_virt_emb(FLAGS.virtual_embeddings, FLAGS.emb_size) ]) if not FLAGS.remove_classes: # need to add additional labels for virtual embeddings t_sup_labels = tf.concat(0, [ t_sup_labels, (num_labels + tf.range(1, FLAGS.virtual_embeddings + 1, tf.int64)) * tf.ones([FLAGS.virtual_embeddings], tf.int64) ]) t_sup_logit = model.embedding_to_logit(t_sup_emb) # Add losses. visit_weight_envelope_steps = ( FLAGS.walker_weight_envelope_steps if FLAGS.visit_weight_envelope_steps == -1 else FLAGS.visit_weight_envelope_steps) visit_weight_envelope_delay = ( FLAGS.walker_weight_envelope_delay if FLAGS.visit_weight_envelope_delay == -1 else FLAGS.visit_weight_envelope_delay) visit_weight = apply_envelope( type=FLAGS.visit_weight_envelope, step=model.step, final_weight=FLAGS.visit_weight, growing_steps=visit_weight_envelope_steps, delay=visit_weight_envelope_delay) walker_weight = apply_envelope( type=FLAGS.walker_weight_envelope, step=model.step, final_weight=FLAGS.walker_weight, growing_steps=FLAGS.walker_weight_envelope_steps, # pylint:disable=line-too-long delay=FLAGS.walker_weight_envelope_delay) tf.summary.scalar('Weights_Visit', visit_weight) tf.summary.scalar('Weights_Walker', walker_weight) if FLAGS.unsup_samples != 0: model.add_semisup_loss(t_sup_emb, t_unsup_emb, t_sup_labels, visit_weight=visit_weight, walker_weight=walker_weight) model.add_logit_loss(t_sup_logit, t_sup_labels, weight=FLAGS.logit_weight) # Set up learning rate t_learning_rate = tf.maximum( tf.train.exponential_decay( FLAGS.learning_rate, model.step, FLAGS.decay_steps, FLAGS.decay_factor, staircase=True), FLAGS.minimum_learning_rate) # Create training operation and start the actual training loop. train_op = model.create_train_op(t_learning_rate) config = tf.ConfigProto() config.gpu_options.allow_growth = True # config.log_device_placement = True saver = tf_saver.Saver(max_to_keep=FLAGS.max_checkpoints, keep_checkpoint_every_n_hours=FLAGS.keep_checkpoint_every_n_hours) # # pylint:disable=line-too-long slim.learning.train( train_op, logdir=FLAGS.logdir + '/train', save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs, master=FLAGS.master, is_chief=(FLAGS.task == 0), startup_delay_steps=(FLAGS.task * 20), log_every_n_steps=FLAGS.log_every_n_steps, session_config=config, trace_every_n_steps=1000, saver=saver, number_of_steps=FLAGS.max_steps, ) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) app.run()
[ "johannes.plapp@logivations.com" ]
johannes.plapp@logivations.com
e88fe4c04c5aeb05fbd2703796f983a9c004218c
2b38f4398a1b54ed45c4e30219b02bec704a71c6
/110.平衡二叉树/isBalanced.py
f0bccf81238571051c49250bd09866788b0f55e3
[]
no_license
johnmaster/Leetcode
7a1f6bd39d43d262f4436bf9e34e2fb9a984e475
ceecad205a5809036e59c726a1baa42918f97619
refs/heads/master
2020-07-21T06:00:22.290353
2019-12-27T09:19:50
2019-12-27T09:19:50
206,766,255
0
0
null
null
null
null
UTF-8
Python
false
false
2,069
py
""" 一个高度平衡的二叉搜索树(平衡二叉搜索树)是在插入和删除任何节点之后 可以自动保持其高度最小。也就是说,有N个节点的平衡二叉搜索树,它的高 度是logN。并且,每个节点的两个子树的高度不会相差超过1。 根据定义,我们可以判断一个二叉搜索树是否是高度平衡的(平衡二叉树)。 正入我们之前提到的,一个有N个节点的平衡二叉搜索树的高度总是LogN。 因此,我们可以计算节点总数和树的高度,以确定这个二叉搜索树是否是高 度平衡的。 同样,在定义中,我们提到了高度平衡的二叉树一个特性:每个节点的两个子 树的深度不会相差超过1。我们也可以根据这个性质,递归的验证树。 为什么需要用到高度平衡的二叉搜索树? 当分析二叉搜索树的相关操作时,我们需要注意的是树的高度是十分重要的, 如果树的高度为h,则时间复杂度为O(h),二叉搜索树的高度的确很重要。 所以,我们来讨论一下树的节点总数N和高度h之间的关系。对于一个平衡二叉树 前文提过,h>logN。但对一个普通的二叉搜索树,在最坏的情况下,它可以退化 为一个链。 因此,具有N个节点的二叉搜索树的高度在logN和N区间变化,也就是说,搜索 操作的时间复杂度可以从logN变化到N。这是一个巨大的性能差异。 所以说,高度平衡的二叉搜索树对提高性能起着重要作用。 """ class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def isBalanced(self, root): return self.dfs(root) != -1 def dfs(self, root): if not root: return 0 left = self.dfs(root.left) if left == -1: return -1 right = self.dfs(root.right) if right == -1: return -1 return max(left, right) + 1 if abs(right - left) < 2 else -1
[ "noreply@github.com" ]
johnmaster.noreply@github.com
7cc3a8bcd234a170d28a60514da557484369ec59
87b8e3090f33e73892ef79b6d52c37d66ba21ea3
/src/huffman.py
09b5c0fbaf70a1ba80a5d32a97ea3c93d63bb906
[ "CC0-1.0" ]
permissive
jwhang627/DigitalImageCompressor
97abdb6bb1757b244ae07ff699a0d2eab1253997
7d2d20ac98f6c6e8baf2c98410846d7b4a7c4388
refs/heads/master
2022-07-30T23:16:48.113088
2020-05-18T20:37:12
2020-05-18T20:37:12
261,240,154
0
0
null
null
null
null
UTF-8
Python
false
false
997
py
# src/huffman.py class NodeTree(object): def __init__(self, left=None, right=None): self.left = left self.right = right def children(self): return (self.left, self.right) def nodes(self): return (self.left, self.right) def __str__(self): return '%s-%s' % (self.left, self.right) def huffmanCodeTree(node, left=True, binString=''): if type(node) is str: return {node: binString} (l, r) = node.children() d = dict() d.update(huffmanCodeTree(l, True, binString + '0')) d.update(huffmanCodeTree(r, False, binString + '1')) return d def huffmanDecode(data,tree): rev = {} for v,k in tree.items(): rev[k] = v start_idx = 0 end_idx = 1 max_idx = len(data) decode = '' while start_idx != max_idx: if data[start_idx : end_idx] in rev: decode += rev[data[start_idx : end_idx]] + " " start_idx = end_idx end_idx += 1 return decode
[ "jw8n5@mail.missouri.edu" ]
jw8n5@mail.missouri.edu
73cf0ef2cb9fe2e438f97e2903b8c4922208754c
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_262/ch133_2020_04_01_11_12_20_875320.py
d6b43f8de09fc367129e32985f549dbeebf2944e
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
fun=input("está funcionando?") if fun=='n': fun=input("você sabe corrigir?") if fun=='n': fun=input("você precisa corrigir?") if fun=='n': print("Apague tudo e tente novamente") else: print("sem problemas!") else: print("sem problemas!")
[ "you@example.com" ]
you@example.com
f532a8bb80293ee3fadcc4683d18bd6e07ffd0cf
7224f79adb11e02f17068a48cb0650266db8560c
/blog/migrations/0001_initial.py
5caeed9db7c25da82dcf89f0ad550e83e62223f2
[]
no_license
kirbycbressler/blog_posts
5e994490861d31bb22fa235f2d4c2d4ecb2907d5
2bbaf6c2de989a9d43914ab7976b8d7d8b7a9adf
refs/heads/main
2023-07-15T19:37:55.806798
2021-08-22T17:07:11
2021-08-22T17:07:11
397,456,605
0
0
null
null
null
null
UTF-8
Python
false
false
788
py
# Generated by Django 3.2.6 on 2021-08-18 02:24 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('body', models.TextField()), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "kirbycbressler@yahoo.com" ]
kirbycbressler@yahoo.com
05e555436bf655e00619796225111cd597e83c09
5123fb89f99bf6f109f3ac5a64b5ee7473ba8517
/CellularAutomata.py
6ee51c49a8c168170494acc544962b1c6e22a162
[]
no_license
RyanSamman/ElementaryCellularAutomata
cf051d00a346a362dcf4cb0959304b76e6c7e187
5a7628a0528d66b869896a7055a940d733dadfba
refs/heads/master
2023-03-30T12:26:55.273514
2021-04-07T11:40:21
2021-04-07T11:40:21
286,540,558
0
0
null
null
null
null
UTF-8
Python
false
false
2,041
py
from random import randrange class CellularAutomata: def __init__(self, width=11, rule=0, initialState=None) -> None: if initialState is None: # Create an array with stuff in the center sides = (width - 1) // 2 middle = width - 2 * sides initialState = [0] * sides + [1] * middle + [0] * sides self.CELLS_WIDTH = width self.cellsHistory = [[*initialState]] # Record the history of the cells self.cells = initialState self.rule = rule self.updateRuleArray() def updateRuleArray(self): # Converts bytes to little endian array of bytes self.ruleArray = [self.rule >> i & 1 for i in range(8)] def generateRuleIndex(self, left, middle, right): index = 0b000 if self.cells[left]: index ^= 0b001 # 0b000 -> 0b001 if self.cells[middle]: index ^= 0b010 # 0b000 -> 0b010 if self.cells[right]: index ^= 0b100 # 0b000 -> 0b100 return self.ruleArray[index] def applyRule(self): newCells = [] for currentPosition, _ in enumerate(self.cells): left = (currentPosition - 1) % self.CELLS_WIDTH right = (currentPosition + 1) % self.CELLS_WIDTH newCells.append(self.generateRuleIndex(left, currentPosition, right)) self.cells = newCells self.cellsHistory.append(newCells) return newCells @staticmethod def displayCells(cells): [print("[]" if c else "__", end="") for c in cells] print() if __name__ == "__main__": # Testing in the CLI, the main entrypoint is UI.py inputRule = randrange(0, 256) # int(input("Enter a rule: ")) print(f"Rule {inputRule}") width = 61 height = 40 startarr = [randrange(0, 2) for i in range(width)] print("Starting cells are", startarr) ca = CellularAutomata(rule=inputRule, width=width, initialState=startarr) ca.displayCells(ca.cells) for _ in range(height): ca.applyRule() ca.displayCells(ca.cells)
[ "RyanSamman@outlook.com" ]
RyanSamman@outlook.com
0bd8081080edffef12ace581f49e14a0cfcdd932
c37f5b94eff116e9b2ea3bb17ba3390e12ff8265
/drf_shoestore/settings.py
7d5e5a831a5fbd2cc2ae3d7649e59b6b36d42576
[]
no_license
DJJD2150/drf_shoestore
67f74fe7d179934bf723bdd67c387cb350388a65
7a66a2cd6b06705c36850a338649fc1595f5f3cf
refs/heads/dev2
2022-12-19T14:09:01.217579
2020-10-03T00:25:36
2020-10-03T00:25:36
300,011,999
0
1
null
2020-10-03T00:25:37
2020-09-30T18:15:19
Python
UTF-8
Python
false
false
3,280
py
""" Django settings for drf_shoestore project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!bu_hs8(0i(zef)c9d%7z2-22rtzi033jh_vi6fq)s4j8loi#@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'corsheaders', 'api', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'drf_shoestore.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'drf_shoestore.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' CORS_ALLOWED_ORIGINS = ["http://localhost:3000"] CSRF_TRUSTED_ORIGINS = ["http://localhost:3000"]
[ "jndetke2150@gmail.com" ]
jndetke2150@gmail.com
130d2e97b46cd60325c75df08f8304805de254a7
1f8e6d593740241012941b530faea20f0560880e
/summer_pre_assign_package1/summer_pre_assign_package2/module2.py
f6ea2b7b5609a4d619d734abff1e4803331ee929
[]
no_license
durgaprasad1997/missionrnd_python_course
0c576d41985e83f96a0359160fdc606953bc5b1e
30e26b2a255a3387d2a2810559050ccb281e3fef
refs/heads/master
2020-03-22T07:57:33.983821
2018-07-04T14:59:38
2018-07-04T14:59:38
139,735,519
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
import logging def f3(): logger = logging.getLogger(__name__) logger.info('Entering function f3') logger.warning('This cannot be done using function f3') logger.error('Error occurred in function f3') logger.debug('Leaving function f3') def f4(): logger = logging.getLogger(__name__) logger.info("Entering method f4") logger.warning("This is a log from f4 at WARNING level") logger.error("This is a log from f4 at ERROR level") logger.debug("Leaving method f4")
[ "noreply@github.com" ]
durgaprasad1997.noreply@github.com
5cb372ed429f9cc84f45f4986d19d7db6de2a6ff
9f45fe47cf6e6556118d59310af4652292231673
/eleventry.py
a51e1663f429fa7060f642a9861a9ee625981235
[]
no_license
zubairrv/Python-basics-programs-practice
683d93d3a1f28bae9246d2bd3c898a7637e96f2b
5b0f7b9da56c67b4620e3421973d87c3e5607bd5
refs/heads/master
2022-12-29T11:48:44.816036
2020-10-08T11:38:13
2020-10-08T11:38:13
287,947,390
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
while True: for i in ["/","- ","|","\\","|"]: print "%s\r" % i,
[ "noreply@github.com" ]
zubairrv.noreply@github.com
624671d487dd50b1558eb59e9f858d68e6edc44d
21b5d639df0157d4b93780ef12104ed0b3ae3d89
/examples/iris.py
2c0ee17611d0d8eb4e80903e0192c7f718c0eb3b
[]
no_license
lwthatcher/mlp
54564e5bd2c3ffbff6c2aa6528c07e158986bd07
a57bf621c31884659c0df9bab52e048b82f4776d
refs/heads/master
2021-01-23T00:34:38.011259
2017-04-05T23:00:42
2017-04-05T23:00:42
85,741,442
6
3
null
null
null
null
UTF-8
Python
false
false
1,370
py
import numpy as np from mlp import NeuralNet from mlp import util from sklearn.preprocessing import normalize from mlp.activation_functions import ReLU, Sigmoid from sklearn.model_selection import cross_val_score def run_iris(): features, labels = util.load_data_file("iris.txt") features = normalize(features, axis=0) # train/test set X = features Y = util.to_output_vector(labels) args = [4, 10, 3] kwargs = {"max_epochs": 100, "a_func": Sigmoid} cross_fold(X, Y, 10, *args, **kwargs) def cross_fold(X, Y, n, *model_args, **model_kwargs): num_examples = len(Y) # shuffle data first idx = np.arange(num_examples) np.random.shuffle(idx) # split into n sets splits = np.split(idx, n) for i in range(n): # get train/test sets idx_test = splits[i] tr1 = splits[:i] tr2 = splits[i+1:] tr1.extend(tr2) idx_train = np.concatenate(tr1) X_train = X[idx_train,:] X_test = X[idx_test,:] Y_train = Y[idx_train] Y_test = Y[idx_test] # create new model model = NeuralNet(*model_args, **model_kwargs) # train num_epochs = model.fit(X_train, Y_train) # compare out = model.predict(X_test) print(i, model.score(X_train, Y_train), num_epochs) if __name__ == '__main__': run_iris()
[ "lwthatcher@msn.com" ]
lwthatcher@msn.com
6123625e902a2d37a7242f0f539d4af1f68662e8
4a040bbd3e463c37095dd955440aa12e3c9f2e1f
/exam/4_structure/package/ex2.py
9bb227231d3ee712ebfb8a9b3571b18eab8f7c59
[]
no_license
ace2267/pythonExam
7a06b898237938a6f7036087160fb57efee33b09
6b6a4227c711b426114249c4993a738328bb4950
refs/heads/master
2020-05-07T08:30:59.891136
2019-05-25T00:04:33
2019-05-25T00:04:53
180,332,578
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
# from exam.package.packEx import testPakage import exam.package.packEx packEx.testPakage(1, 50)
[ "ace22672@gmail.com" ]
ace22672@gmail.com
0e450cd56fbe42980d5a7104818eb4074accb3b1
5c60daf869242848c7ef2e15e143d470a7e9e50c
/pypokerengine/api/game.py
1c1bb310697aafe2f121e93e7f38362d279c92db
[]
no_license
cfacundus/artificial-intelligence
32c30b7f27d112a799c07da2c93cf9c39645b8f2
ec4b2d1c41f416f3c73c62d027e20b19fcd0b99f
refs/heads/main
2023-01-29T21:35:48.976810
2020-11-29T22:18:11
2020-11-29T22:18:11
317,053,124
1
0
null
null
null
null
UTF-8
Python
false
false
2,047
py
from pypokerengine.engine.dealer import Dealer from pypokerengine.players import BasePokerPlayer def setup_config(max_round, initial_stack, small_blind_amount, ante=0): return Config(max_round, initial_stack, small_blind_amount, ante) def start_poker(config, verbose=2): config.validation() dealer = Dealer(config.sb_amount, config.initial_stack, config.ante) dealer.set_verbose(verbose) dealer.set_blind_structure(config.blind_structure) for info in config.players_info: dealer.register_player(info["name"], info["algorithm"]) result_message = dealer.start_game(config.max_round) return _format_result(result_message) def _format_result(result_message): return { "rule": result_message["message"]["game_information"]["rule"], "players": result_message["message"]["game_information"]["seats"] } class Config(object): def __init__(self, max_round, initial_stack, sb_amount, ante): self.players_info = [] self.blind_structure = {} self.max_round = max_round self.initial_stack = initial_stack self.sb_amount = sb_amount self.ante = ante def register_player(self, name, algorithm): if not isinstance(algorithm, BasePokerPlayer): base_msg = 'Poker player must be child class of "BasePokerPlayer". But its parent was "%s"' raise TypeError(base_msg % algorithm.__class__.__bases__) info = { "name" : name, "algorithm" : algorithm } self.players_info.append(info) def set_blind_structure(self, blind_structure): self.blind_structure = blind_structure def validation(self): player_num = len(self.players_info) if player_num < 2: detail_msg = "no player is registered yet" if player_num==0 else "you registered only 1 player" base_msg = "At least 2 players are needed to start the game" raise Exception("%s (but %s.)" % (base_msg, detail_msg))
[ "noreply@github.com" ]
cfacundus.noreply@github.com
79c37e2cdea99cda4a653a7d2446f0cfc4ac29d2
58d500012a959a07b9560000886ddcb6140da175
/user_interface/neo4j_scene.py
9d795edf52b99f4cd7935130f22404b09c504fa4
[]
no_license
daisy-ua/chat-application
b0f4520d6f4e13b791355b6493223e85a3b0162c
377b1d1b07fcb00a48dbfed3dde2fb733b2deb4c
refs/heads/master
2023-05-27T22:00:02.202621
2021-06-07T20:15:42
2021-06-07T20:15:42
354,841,629
1
1
null
null
null
null
UTF-8
Python
false
false
861
py
from services.neo4j_server import neo4j tags = [ 'ads', 'swag', 'kpop', 'vegan', 'solotravel', 'puppylove', 'vr', 'bts', 'bantansonyendan', 'fitfam', 'cardio', 'giveaway', 'weddinghair' ] OPTIONS = [] def get_users_by_tags(): for tag in tags: users = neo4j.get_users_by_tag(tag) users = list(set(users)) if len(users) != 0: print("For tag '{0}'".format(tag)) for user in users: print(user['username']) def get_pairs_by_msg_len(len): pairs = neo4j.get_pairs_by_msg_len(len) pairs = list(set(pairs)) for pair in pairs: print(pair['u1'] + " : " + pair['u2']) def load_neo4j_scene(): get_users_by_tags() # get_pairs_by_msg_len(2) # users = neo4j.get_unrelated_by_tags('cardio') # print(len(users)) # for lis in users: # print(lis)
[ "eightnum.81@gmail.com" ]
eightnum.81@gmail.com
c9aa318b9b0c13d3782326990ef227fa50314c45
66f7814e54fbae6473d4226ce843257ede1c6724
/scripts/websockets.py
1826ba78aaacafb8ff70725a322641fa5c70b41d
[]
no_license
kgz/Maple
cb1b094563467fa6c720193f98e893926683b64b
0a801563ebbf9a6cf9bb24f69ee067e81d89661a
refs/heads/master
2020-04-16T19:33:58.486930
2019-01-15T14:40:17
2019-01-15T14:40:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,259
py
""".""" from PyLog import Log import json from quart import websocket, request class Sock(): """.""" def __init__(self, app, *args, **kwargs): """.""" self.socks = {} self.clients = [] @app.websocket("/ws") async def connect(): """.""" while True: conn = websocket._get_current_object() if conn not in self.clients: self.clients.append(conn) await self.emit(websocket.host) data = await websocket.receive() Log(data) try: js = json.loads(data) for key in js.keys(): if key in self.socks: self.socks.get(key)(js.get(key)) except Exception as exc: Log(exc, level=5) Log(self.socks) def on(self, string): def decorate(func): self.socks[string] = func return decorate async def emit(self, data): """.""" for x in self.clients: try: await x.send(data) except: self.clients.remove(websocket._get_current_object())
[ "mat.frayne@gmail.com" ]
mat.frayne@gmail.com
5ad570ef73816ca4ebb5fc3842c9f429ae06ab16
2a7c72c37a3ad3b3c839a9363f07baa5bf7e8366
/omnizart/models/chord_model.py
69b2fa024b8b1c383730a1732c6c287902fadad1
[ "MIT" ]
permissive
Hadiaz1/omnizart
4bc3be58073e61f9b67650ec365bc10916226076
4188e6e193a4d5de6a0bec9f8dc2f0e847310e26
refs/heads/master
2023-08-16T11:20:26.060034
2021-10-02T08:53:18
2021-10-02T08:53:18
414,891,261
0
0
null
null
null
null
UTF-8
Python
false
false
23,730
py
# pylint: disable=W0102,W0221 import tensorflow as tf from tensorflow.python.framework import ops from omnizart.models.t2t import positional_encoding, MultiHeadAttention from omnizart.models.utils import shape_list class FeedForward(tf.keras.layers.Layer): """Feedfoward layer of the transformer model. Paramters --------- n_units: list[int, int] A two-element integer list. The first integer represents the output embedding size of the first convolution layer, and the second integer represents the embedding size of the second convolution layer. activation_func: str Activation function of the first covolution layer. Available options can be found from the tensorflow.keras official site. dropout_rate: float Dropout rate of all dropout layers. """ def __init__(self, n_units=[2048, 512], activation_func="relu", dropout_rate=0): super().__init__() self.n_units = n_units self.activation_func = activation_func self.dropout_rate = dropout_rate self.conv_1 = tf.keras.layers.Conv1D(n_units[0], kernel_size=1, activation=activation_func) self.conv_2 = tf.keras.layers.Conv1D(n_units[1], kernel_size=1) self.dropout = tf.keras.layers.Dropout(dropout_rate) self.layer_norm = tf.keras.layers.LayerNormalization() def call(self, inp): outputs = self.conv_1(inp) outputs = self.conv_2(outputs) outputs = self.dropout(outputs) outputs += inp return self.layer_norm(outputs) def get_config(self): config = super().get_config().copy() config.update( { "activation_func": self.activation_func, "n_units": self.n_units, "dropout_rate": self.dropout_rate } ) return config class EncodeSegmentTime(tf.keras.layers.Layer): """Encode feature along the time axis. Parameters ---------- n_units: int Output embedding size. n_steps: int Time length of the feature. segment_width: int Context width of each frame. Nearby frames will be concatenated to the feature axis. Default to 21, which means past 10 frames and future 10 frames will be concatenated to the current frame, resulting a feature dimenstion of *segment_width x freq_size*. freq_size: int Feature size of the input representation. dropout_rate: float Dropout rate of all dropout layers. """ def __init__(self, n_units=512, dropout_rate=0, n_steps=100, freq_size=24, segment_width=21): super().__init__() self.n_steps = n_steps self.freq_size = freq_size self.segment_width = segment_width self.n_units = n_units self.dropout_rate = dropout_rate self.attn_layer = MultiHeadAttention( n_units=freq_size, n_heads=2, activation_func="relu", relative_position=True, max_dist=4, dropout_rate=dropout_rate ) self.feed_forward = FeedForward(n_units=[freq_size * 4, freq_size], dropout_rate=dropout_rate) self.dropout = tf.keras.layers.Dropout(dropout_rate) self.dense = tf.keras.layers.Dense(n_units, activation="relu") self.layer_norm = tf.keras.layers.LayerNormalization() def call(self, inp): # output dim: [batch_size*n_steps, tonal_size, segment_width] inp_reshape = tf.reshape(inp, shape=[-1, self.freq_size, self.segment_width]) # output dim: [batch_size*n_steps, segment_width, tonal_size] inp_permute = tf.transpose(a=inp_reshape, perm=[0, 2, 1]) inp_permute += positional_encoding( batch_size=shape_list(inp_permute)[0], timesteps=self.segment_width, n_units=self.freq_size ) * 0.01 + 0.01 attn_output = self.attn_layer(q=inp_permute, k=inp_permute, v=inp_permute) forward_output = self.feed_forward(attn_output) # restore shape outputs = tf.transpose(a=forward_output, perm=[0, 2, 1]) outputs = tf.reshape(outputs, shape=[-1, self.n_steps, self.freq_size * self.segment_width]) outputs = self.dropout(outputs) outputs = self.dense(outputs) return self.layer_norm(outputs) def get_config(self): config = super().get_config().copy() config.update( { "n_steps": self.n_steps, "n_units": self.n_units, "dropout_rate": self.dropout_rate, "freq_size": self.freq_size, "segment_width": self.segment_width } ) return config class EncodeSegmentFrequency(tf.keras.layers.Layer): """Encode feature along the frequency axis. Parameters ---------- n_units: int Output embedding size. n_steps: int Time length of the feature. segment_width: int Context width of each frame. Nearby frames will be concatenated to the feature axis. Default to 21, which means past 10 frames and future 10 frames will be concatenated to the current frame, resulting a feature dimenstion of *segment_width x freq_size*. freq_size: int Feature size of the input representation. dropout_rate: float Dropout rate of all dropout layers. """ def __init__(self, n_units=512, dropout_rate=0, n_steps=100, freq_size=24, segment_width=21): super().__init__() self.freq_size = freq_size self.segment_width = segment_width self.n_steps = n_steps self.n_units = n_units self.dropout_rate = dropout_rate self.attn_layer = MultiHeadAttention( n_units=segment_width, n_heads=1, activation_func="relu", relative_position=False, max_dist=4, dropout_rate=dropout_rate ) self.feed_forward = FeedForward(n_units=[segment_width * 4, segment_width], dropout_rate=dropout_rate) self.dropout = tf.keras.layers.Dropout(dropout_rate) self.out_dense = tf.keras.layers.Dense(n_units, activation="relu") self.layer_norm = tf.keras.layers.LayerNormalization() def call(self, inp): inp_reshape = tf.reshape(inp, [-1, self.freq_size, self.segment_width]) inp_reshape += positional_encoding( batch_size=shape_list(inp_reshape)[0], timesteps=self.freq_size, n_units=self.segment_width ) * 0.01 + 0.01 attn_output = self.attn_layer(q=inp_reshape, k=inp_reshape, v=inp_reshape) forward_output = self.feed_forward(attn_output) # restore shape outputs = tf.reshape(forward_output, shape=[-1, self.n_steps, self.freq_size * self.segment_width]) outputs = self.dropout(outputs) outputs = self.out_dense(outputs) return self.layer_norm(outputs) def get_config(self): config = super().get_config().copy() config.update( { "n_steps": self.n_steps, "n_units": self.n_units, "dropout_rate": self.dropout_rate, "freq_size": self.freq_size, "segment_width": self.segment_width } ) return config def chord_block_compression(hidden_states, chord_changes): block_ids = tf.cumsum(chord_changes, axis=1) modify_ids = lambda x: tf.cond(pred=tf.equal(x[0], 0), true_fn=lambda: x, false_fn=lambda: x - 1) block_ids = tf.map_fn(modify_ids, block_ids) num_blocks = tf.reduce_max(input_tensor=block_ids, axis=1) + 1 max_steps = tf.reduce_max(input_tensor=num_blocks) segment_mean_pad = lambda x: tf.pad( # pylint: disable=E1123,E1120 tensor=tf.math.segment_mean(data=x[0], segment_ids=x[1]), paddings=tf.convert_to_tensor([[0, max_steps - x[2]], [0, 0]]) ) chord_blocks = tf.map_fn(segment_mean_pad, (hidden_states, block_ids, num_blocks), dtype=tf.float32) return chord_blocks, block_ids def chord_block_decompression(compressed_seq, block_ids): gather_chords = lambda x: tf.gather(params=x[0], indices=x[1]) # pylint: disable=E1120 return tf.map_fn(gather_chords, (compressed_seq, block_ids), dtype=compressed_seq.dtype) def binary_round(inp, cast_to_int=False): graph = tf.compat.v1.get_default_graph() with ops.name_scope("BinaryRound") as name: if cast_to_int: with graph.gradient_override_map({"Round": "Identity", "Cast": "Identity"}): return tf.cast(tf.round(inp), tf.int32, name=name) else: with graph.gradient_override_map({"Round": "Identity"}): return tf.round(inp, name=name) class Encoder(tf.keras.layers.Layer): """Encoder layer of the transformer model. Parameters ---------- num_attn_blocks: Number of attention blocks. n_steps: int Time length of the feature. enc_input_emb_size: int Embedding size of the encoder's input. segment_width: int Context width of each frame. Nearby frames will be concatenated to the feature axis. Default to 21, which means past 10 frames and future 10 frames will be concatenated to the current frame, resulting a feature dimenstion of *segment_width x freq_size*. freq_size: int Feature size of the input representation. dropout_rate: float Dropout rate of all the dropout layers. **kwargs: Other keyword parameters that will be passed to initialize keras.layers.Layer. """ def __init__( self, dropout_rate=0, num_attn_blocks=2, n_steps=100, enc_input_emb_size=512, freq_size=24, segment_width=21, **kwargs ): super().__init__(**kwargs) self.n_steps = n_steps self.num_attn_blocks = num_attn_blocks self.enc_input_emb_size = enc_input_emb_size self.dropout_rate = dropout_rate self.freq_size = freq_size self.segment_width = segment_width self.layer_weights = tf.Variable(initial_value=tf.zeros(num_attn_blocks), trainable=True) self.encode_segment_time = EncodeSegmentTime( n_units=enc_input_emb_size, dropout_rate=dropout_rate, n_steps=n_steps, freq_size=freq_size, segment_width=segment_width ) self.attn_layers = [ MultiHeadAttention( n_units=enc_input_emb_size, n_heads=8, max_dist=16, dropout_rate=dropout_rate ) for _ in range(num_attn_blocks) ] self.ff_layers = [ FeedForward(n_units=[enc_input_emb_size * 4, enc_input_emb_size], dropout_rate=dropout_rate) for _ in range(num_attn_blocks) ] self.logit_dense = tf.keras.layers.Dense(1) self.dropout = tf.keras.layers.Dropout(dropout_rate) def call(self, inp, slope=1): segment_encodings = self.encode_segment_time(inp) segment_encodings += positional_encoding( batch_size=shape_list(segment_encodings)[0], timesteps=self.n_steps, n_units=self.enc_input_emb_size ) segment_encodings = self.dropout(segment_encodings) weight = tf.nn.softmax(self.layer_weights) weighted_hidden_enc = tf.zeros(shape=shape_list(segment_encodings)) for idx, (attn_layer, feed_forward) in enumerate(zip(self.attn_layers, self.ff_layers)): segment_encodings = attn_layer(q=segment_encodings, k=segment_encodings, v=segment_encodings) segment_encodings = feed_forward(segment_encodings) weighted_hidden_enc += weight[idx] * segment_encodings chord_change_logits = tf.squeeze(self.logit_dense(weighted_hidden_enc)) chord_change_prob = tf.sigmoid(slope * chord_change_logits) chord_change_pred = binary_round(chord_change_prob, cast_to_int=True) return weighted_hidden_enc, chord_change_logits, chord_change_pred def get_config(self): config = super().get_config().copy() config.update( { "n_steps": self.n_steps, "enc_input_emb_size": self.enc_input_emb_size, "num_attn_blocks": self.num_attn_blocks, "dropout_rate": self.dropout_rate, "freq_size": self.freq_size, "segment_width": self.segment_width } ) return config class Decoder(tf.keras.layers.Layer): """Decoder layer of the transformer model. Parameters ---------- out_classes: int Number of output classes. Currently supports 26 types of chords. num_attn_blocks: Number of attention blocks. n_steps: int Time length of the feature. dec_input_emb_size: int Embedding size of the decoder's input. segment_width: int Context width of each frame. Nearby frames will be concatenated to the feature axis. Default to 21, which means past 10 frames and future 10 frames will be concatenated to the current frame, resulting a feature dimenstion of *segment_width x freq_size*. freq_size: int Feature size of the input representation. dropout_rate: float Dropout rate of all the dropout layers. **kwargs: Other keyword parameters that will be passed to initialize keras.layers.Layer. """ def __init__( self, out_classes=26, dropout_rate=0, num_attn_blocks=2, n_steps=100, dec_input_emb_size=512, freq_size=24, segment_width=21, **kwargs ): super().__init__(**kwargs) self.n_steps = n_steps self.dec_input_emb_size = dec_input_emb_size self.num_attn_blocks = num_attn_blocks self.out_classes = out_classes self.dropout_rate = dropout_rate self.freq_size = freq_size self.segment_width = segment_width self.encode_segment_frequency = EncodeSegmentFrequency( n_units=dec_input_emb_size, dropout_rate=dropout_rate, n_steps=n_steps, freq_size=freq_size, segment_width=segment_width ) self.attn_layers_1 = [ MultiHeadAttention( n_units=dec_input_emb_size, n_heads=8, relative_position=True, max_dist=16, self_mask=False, dropout_rate=dropout_rate ) for _ in range(num_attn_blocks) ] self.attn_layers_2 = [ MultiHeadAttention( n_units=dec_input_emb_size, n_heads=8, relative_position=False, max_dist=16, self_mask=False, dropout_rate=dropout_rate ) for _ in range(num_attn_blocks) ] self.ff_layers = [ FeedForward(n_units=[dec_input_emb_size * 4, dec_input_emb_size], dropout_rate=dropout_rate) ] self.dropout = tf.keras.layers.Dropout(dropout_rate) self.out_dense = tf.keras.layers.Dense(out_classes) def call(self, inp, encoder_input_emb, chord_change_pred): segment_encodings = self.encode_segment_frequency(inp) segment_encodings_blocked, block_ids = chord_block_compression(segment_encodings, chord_change_pred) segment_encodings_blocked = chord_block_decompression(segment_encodings_blocked, block_ids) segment_encodings_blocked.set_shape([None, self.n_steps, self.dec_input_emb_size]) decoder_inputs = segment_encodings + segment_encodings_blocked + encoder_input_emb decoder_inputs += positional_encoding( batch_size=shape_list(decoder_inputs)[0], timesteps=self.n_steps, n_units=self.dec_input_emb_size ) decoder_inputs_drop = self.dropout(decoder_inputs) layer_weights = tf.nn.softmax(tf.zeros((self.num_attn_blocks))) weighted_hiddens_dec = tf.zeros(shape=shape_list(segment_encodings)) layer_stack = zip(self.attn_layers_1, self.attn_layers_2, self.ff_layers) for idx, (attn_1, attn_2, feed_forward) in enumerate(layer_stack): decoder_inputs_drop = attn_1(q=decoder_inputs_drop, k=decoder_inputs_drop, v=decoder_inputs_drop) decoder_inputs_drop = attn_2(q=decoder_inputs_drop, k=encoder_input_emb, v=encoder_input_emb) decoder_inputs_drop = feed_forward(decoder_inputs_drop) weighted_hiddens_dec += layer_weights[idx] * decoder_inputs_drop logits = self.out_dense(weighted_hiddens_dec) chord_pred = tf.argmax(input=logits, axis=-1, output_type=tf.int32) return logits, chord_pred def get_config(self): config = super().get_config().copy() config.update( { "n_steps": self.n_steps, "dec_input_emb_size": self.dec_input_emb_size, "num_attn_blocks": self.num_attn_blocks, "out_classes": self.out_classes, "dropout_rate": self.dropout_rate, "freq_size": self.freq_size, "segment_width": self.segment_width } ) return config class ChordModel(tf.keras.Model): # pylint: disable=R0901 """Chord model in written in keras. Keras model of ``chord`` submodule. The original implementation is written in tensorflow 1.11 and can be found `here <https://github.com/Tsung-Ping/Harmony-Transformer>`_. The model also implements the custom training/test step due to the specialized loss computation. Parameters ---------- num_enc_attn_blocks: int Number of attention blocks in the encoder. num_dec_attn_blocks: int Number of attention blocks in the decoder. segment_width: int Context width of each frame. Nearby frames will be concatenated to the feature axis. Default to 21, which means past 10 frames and future 10 frames will be concatenated to the current frame, resulting a feature dimenstion of *segment_width x freq_size*. freq_size: int Feature size of the input representation. out_classes: int Number of output classes. Currently supports 26 types of chords. n_steps: int Time length of the feature. enc_input_emb_size: int Embedding size of the encoder's input. dec_input_emb_size: int Embedding size of the decoder's input. dropout_rate: float Dropout rate of all the dropout layers. annealing_rate: float Rate of modifying the slope value for each epoch. **kwargs: Other keyword parameters that will be passed to initialize the keras.Model. See Also -------- omnizart.chord.app.chord_loss_func: The customized loss computation function. """ def __init__( self, num_enc_attn_blocks=2, num_dec_attn_blocks=2, segment_width=21, freq_size=24, out_classes=26, n_steps=100, enc_input_emb_size=512, dec_input_emb_size=512, dropout_rate=0, annealing_rate=1.1, **kwargs ): super().__init__(**kwargs) self.segment_width = segment_width self.freq_size = freq_size self.out_classes = out_classes self.n_steps = n_steps self.enc_input_emb_size = enc_input_emb_size self.dec_input_emb_size = dec_input_emb_size self.dropout_rate = dropout_rate self.annealing_rate = annealing_rate self.slope = 1 self.loss_func_name = "chord_loss_func" self.encoder = Encoder( num_attn_blocks=num_enc_attn_blocks, dropout_rate=dropout_rate, n_steps=n_steps, enc_input_emb_size=enc_input_emb_size, freq_size=freq_size, segment_width=segment_width ) self.decoder = Decoder( num_attn_blocks=num_dec_attn_blocks, out_classes=out_classes, dropout_rate=dropout_rate, n_steps=n_steps, dec_input_emb_size=dec_input_emb_size, freq_size=freq_size, segment_width=segment_width ) self.loss_tracker = tf.keras.metrics.Mean(name="loss") def call(self, feature): encoder_input_emb, chord_change_logits, chord_change_pred = self.encoder(feature, slope=self.slope) logits, chord_pred = self.decoder(feature, encoder_input_emb, chord_change_pred) return chord_pred, chord_change_pred, logits, chord_change_logits def step_in_slope(self): self.slope *= self.annealing_rate def train_step(self, data): # Input feature: (60, 100, 504) # Chord change: (60, 100) # Chord: (60, 100) # Slope: 1.0 feature, (gt_chord, gt_chord_change) = data with tf.GradientTape() as tape: chord_pred, chord_change_pred, logits, chord_change_logits = self(feature) if self.loss_func_name in self.loss.__name__: loss = self.loss(gt_chord, gt_chord_change, logits, chord_change_logits) trainable_vars = self.trainable_variables loss_l2 = 2e-4 * tf.add_n([tf.nn.l2_loss(var) for var in trainable_vars if "bias" not in var.name]) loss += loss_l2 else: loss_c = self.compiled_loss(gt_chord, chord_pred) loss_cc = self.compiled_loss(gt_chord_change, chord_change_pred) loss = loss_c + loss_cc # Compute gradients trainable_vars = self.trainable_variables grads = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(grads, trainable_vars)) # Update the metrics self.compiled_metrics.update_state(gt_chord, chord_pred) self.loss_tracker.update_state(loss) result = {m.name: m.result() for m in self.metrics} result.update({"loss": self.loss_tracker.result()}) return result def test_step(self, data): feature, (gt_chord, gt_chord_change) = data chord_pred, chord_change_pred, logits, chord_change_logits = self(feature) if self.loss_func_name in self.loss.__name__: loss = self.loss(gt_chord, gt_chord_change, logits, chord_change_logits) trainable_vars = self.trainable_variables loss_l2 = 2e-4 * tf.add_n([tf.nn.l2_loss(var) for var in trainable_vars if "bias" not in var.name]) loss += loss_l2 else: loss_c = self.compiled_loss(gt_chord, chord_pred) loss_cc = self.compiled_loss(gt_chord_change, chord_change_pred) loss = loss_c + loss_cc # Update the metrics self.compiled_metrics.update_state(gt_chord, chord_pred) self.loss_tracker.update_state(loss) result = {m.name: m.result() for m in self.metrics} result.update({"loss": self.loss_tracker.result()}) return result def get_config(self): config = { "encoder": self.encoder, "decoder": self.decoder, "loss_tracker": self.loss_tracker } return config class ReduceSlope(tf.keras.callbacks.Callback): """Custom keras callback for reducing slope value after each epoch.""" def on_epoch_end(self, epoch, logs=None): self.model.step_in_slope() if __name__ == "__main__": model = ChordModel() model.compile(optimizer="adam", loss=tf.keras.losses.BinaryCrossentropy()) output = model(tf.zeros((16, 60, 100, 504)))
[ "freedombluewater@gmail.com" ]
freedombluewater@gmail.com
003cadbd97efb17c22d41fca3bf34dc5e842bda4
a05f65967b8f7b09d0e56bb7571abfcd25bc2bd6
/prime.py
37d11a9f6082decf449e2164eb1fcd6c665a8f7c
[]
no_license
jyothi1802/python-programs
b5d793a1f5540aa1b7311a6c188123d65acc7c74
78273a9737973e282de46f83dd1119d3d5a96617
refs/heads/master
2020-04-14T15:22:32.320671
2019-01-03T11:46:39
2019-01-03T11:46:39
163,924,519
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
#Write a python program to check whether given number is prime or not def find_prime(): try: num = int(input("Enter a Number:")) if(num>0): for i in range(2,num//2+1) : if (num % i == 0): print(b,"is not prime") break else: return num else: print("Enter positive number") except: print('enter valid number') def main(): print(find_prime(),"is prime") main()
[ "noreply@github.com" ]
jyothi1802.noreply@github.com
03213bed7a200f336273927a512d357e0510ab02
d6f6f7267fd94fb2b912f667a97519fda7e60743
/tragetory/extrator3.py
dc839d94564ea827576236643bce74088305bf95
[]
no_license
marcosvro/FrankIA
7d2af8dcae5c1a530d33a651eb3848bd056a7d91
e850b4c8794972b583ed80f64989126596d1ec3d
refs/heads/master
2021-07-25T09:06:58.079365
2017-11-08T03:27:23
2017-11-08T03:27:23
106,047,027
0
0
null
null
null
null
UTF-8
Python
false
false
8,452
py
import numpy as np import math import threading #import cv2 import time import os import ikpy as ik from ikpy import plot_utils #v1 = 250 estados #CONFIGS +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ deslocamentoZpes = 3. deslocamentoXpes = 5. deslocamentoYpes = 0. deslocamentoYpelves = 1.3 periodo = 20. nEstados = 125 dMovx = deslocamentoXpes/nEstados frameRate = periodo/nEstados data_foot = np.zeros((nEstados,8), dtype=np.uint8) data_pelv = np.zeros((nEstados,8), dtype=np.uint8) #perna - quadril = target link0 = ik.link.URDFLink("calc_lateral", [0,0, 0], [0,0,0], [1,0,0], use_symbolic_matrix=True, bounds=(-90,90)) link1 = ik.link.URDFLink("calc_frontal", [0,0, 0], [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds=(-90,90)) link2 = ik.link.URDFLink("joelho", [0,0,8.24] , [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds=(-90,90)) link3 = ik.link.URDFLink("quadril", [0,0,6.45], [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds=(-90,90)) #link4 = ik.link.URDFLink("pelves", [0, 1.7, 4], [0, 0, 0], [1, 0, 0], use_symbolic_matrix=True, bounds=(-50,50)) #perna - pe = target #link5 = ik.link.URDFLink("pelves", [0,0,0], [0,0,0], [1,0,0], use_symbolic_matrix=True, bounds = (-50, 50)) link6 = ik.link.URDFLink("quadril", [0, 0, 0], [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds = (-180, 180)) link7 = ik.link.URDFLink("joelho", [0,0,-6.45], [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds = (-180, 180)) link8 = ik.link.URDFLink("calc_frontal", [0,0,-8.24], [0,0,0], [0,1,0], use_symbolic_matrix=True, bounds = (-180, 180)) #link9 = ik.link.URDFLink("calc_lateral", [0,0,-4.48], [0,0,0], [1,0,0], use_symbolic_matrix=True, bounds = (-30, 30)) #link10 = ik.link.URDFLink("pe", [0,0,-2], [0,0,0], [0,0,0], use_symbolic_matrix=True) #chains foot2pelv = ik.chain.Chain([link0, link1, link2, link3], [True, True, True, False]) pelv2foot = ik.chain.Chain([link0, link1, link2, link3], [True, True, True, False]) #start joint positions jointsf2p = np.deg2rad([0., 15.3, -35., 0.]) jointsp2f = np.deg2rad([0., 15.3, -35., 0.]) #jointsp2f = np.deg2rad([-5., 15., 0.]) """ pos_test = foot2pelv.forward_kinematics(np.deg2rad([0.,23., -22., 0.])) print (pos_test[:3, 3]) exit() """ #start target position pos_inicial_pelves = [3.33, 0., 14.] pos_inicial_pe = [3.33, 0., 14.] frame_target = np.eye(4) frame_target[:3, 3] = pos_inicial_pelves ik1 = foot2pelv.inverse_kinematics(frame_target,initial_position=jointsf2p) frame_target2 = np.eye(4) frame_target2[:3, 3] = pos_inicial_pe ik2 = pelv2foot.inverse_kinematics(frame_target2, initial_position=jointsp2f) jointsf2p = ik1; jointsp2f = ik2; #FUNCOES +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ '''Calcula cinematica inversa da pelves. parm: indice(int) - diz em qual posicao do vetor de tragetoria deve ser armazenada a cinematica e qual momento da tragetoria calcular''' def thread_cinematica_pelves(indice): pos = pos_inicial_pelves p = (deslocamentoXpes/2)*((np.exp((2*(indice-nEstados/2))/50) - np.exp((2*(indice-nEstados/2))/-50))/(np.exp((2*(indice-nEstados/2))/50)+np.exp((2*(indice-nEstados/2))/-50))) pos[0] = 0.5*p + 3.33 pos[1] = -deslocamentoYpelves*np.sin(indice*np.pi/nEstados) frame_target = np.eye(4) frame_target[:3, 3] = pos lastpos = [] ik = foot2pelv.inverse_kinematics(frame_target,initial_position=jointsf2p) ik = np.rad2deg(ik) roll = -ik[0] aux = 8.24*math.sin(np.deg2rad(ik[1])) aux = pos[0] - aux pitch = math.asin(aux/6.45) ik = ik.astype(np.int8) pitch = np.rad2deg(pitch).astype(np.int8) print (indice, " -- position: ", pos) #salva dados no array tragetoria #calc_lateral data_pelv[indice][0] = 90 + ik[0] #calc_frontal data_pelv[indice][1] = 90 + ik[1] #joelho data_pelv[indice][2] = 90 + ik[2] #quadril data_pelv[indice][3] = 90 + pitch #pelves data_pelv[indice][4] = 90 + roll #torso data_pelv[indice][5] = 90 #braco data_pelv[indice][6] = 90 #cotovelo data_pelv[indice][7] = 90 '''Calcula cinematica inversa dos pes. parm: indice(int) - diz em qual posicao do vetor de tragetoria deve ser armazenada a cinematica e qual momento da tragetoria calcular''' def thread_cinematica_pe(indice): pos = pos_inicial_pe pos[0] = 3.33 + 0.5*(-deslocamentoXpes/2)*((np.exp((2*(indice-nEstados/2))/50) - np.exp((2*(indice-nEstados/2))/-50))/(np.exp((2*(indice-nEstados/2))/50)+np.exp((2*(indice-nEstados/2))/-50))) pos[2] = 14. - deslocamentoZpes*np.exp(-((indice-nEstados/2)**2)/600) frame_target = np.eye(4) frame_target[:3, 3] = pos lastpos = [] if(indice): last_pos = jointsp2f else: last_pos = [np.deg2rad(float(data_foot[indice-1][0]-90)),np.deg2rad(float(data_foot[indice-1][1]-90)),np.deg2rad(float(data_foot[indice-1][2]-90)),0.] ik = pelv2foot.inverse_kinematics(frame_target,initial_position=last_pos) ik = np.rad2deg(ik) roll = 4*(data_pelv[indice][0]-90) aux = 8.24*math.sin(np.deg2rad(ik[1])) aux = pos[0] - aux pitch = math.asin(aux/6.45) ik = ik.astype(np.int8) pitch = np.rad2deg(pitch).astype(np.int8) print (indice, " -- position: ", pos) #salva dados no array tragetoria #calc_lateral data_foot[indice][0] = 90 + roll #calc_frontal data_foot[indice][1] = 90 + ik[1] #joelho data_foot[indice][2] = 90 + ik[2] #quadril data_foot[indice][3] = 90 + pitch #pelves data_foot[indice][4] = 90 - roll #torso data_foot[indice][5] = 90 #braco data_foot[indice][6] = 90 #cotovelo data_foot[indice][7] = 90 if indice < 2: return erro = 0. for i in range(8): erro += (float(data_foot[indice-1][i])-float(data_foot[indice][i]))**2 erro = math.sqrt(erro) print ("Erro : ", erro) if erro > 60: for i in range(8): data_foot[indice][i] = data_foot[indice-1][i] '''Cria nEstados threads para calcular a cinematica inversa considerando que o intervalo de execucao T esta particionado em nEstados.''' def calculaTragetoria_pelves(): i = 0 while i < nEstados: #cria threads para calcular cinematica invesa dos pes thread = threading.Thread(target=thread_cinematica_pelves, args=(i, )) thread.daemon=True thread.start() thread.join() i += 1 def calculaTragetoria_pe(): i = 0 while i < nEstados: #cria threads para calcular cinematica invesa da pelves thread = threading.Thread(target=thread_cinematica_pe, args=(i, )) thread.daemon=True thread.start() thread.join() i += 1 #SETUP +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ print(np.rint(np.rad2deg(jointsf2p))) print(np.rint(np.rad2deg(jointsp2f))) #plot_chain(foot2pelv, juntas=jointsf2p) #plot_chain(pelv2foot, juntas=jointsp2f) iner = np.array([0., 0., 0., 0.], dtype=np.float) #reading file try: with open('data_pelv.txt', 'r') as f: data_pelv = np.loadtxt('data_pelv.txt').reshape((nEstados,8)) print ("File data_pelv loaded!") except IOError: print ("Calculando tragetoria.. ") calculaTragetoria_pelves() while threading.active_count() != 1: os.system("clear") print ("Calculando tragetoria.. (", threading.active_count(),"/",nEstados,")") np.savetxt('data_pelv.txt', data_pelv) try: with open('data_foot.txt', 'r') as f: data_foot = np.loadtxt('data_foot.txt').reshape((nEstados,8)) print ("File data_foot loaded!") except IOError: print ("Calculando tragetoria.. ") calculaTragetoria_pe() while threading.active_count() != 1: os.system("clear") print ("Calculando tragetoria.. (", threading.active_count(),"/",nEstados,")") np.savetxt('data_foot.txt', data_foot) print (data_foot.shape) print (data_pelv.shape) #LOOP +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ start = time.time() t = 0. t_fps = 0. t_state = 0. t_inercial = 0. state = 0 fps = 0 while 1: #sending data ######################################## incluir iner no vetor de rotacao ############################################## #thread_cinematica_pe(693) to_send = [666]+[it - 90 for it in data_pelv[state]]+["---"]+[it - 90 for it in data_foot[state]]+[666] #timers dTime = time.time() - start start = time.time() t += dTime t_fps += dTime t_state += dTime t_inercial += dTime #change state if(t_state >= frameRate): t_state = 0 state = (state+1)%nEstados print (state, " -- ", to_send) #END +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ f.close()
[ "marcos.v.rodrigues@hotmail.com" ]
marcos.v.rodrigues@hotmail.com
c1d2095b70735c2304cbced854cabac380d14209
0843e27390fc52a4095931097cf357eebe6fa666
/blender_scripts/tools/svg_bobject.py
3803574344e5f68041a40a4000259146fcdc995e
[]
no_license
DowLucas/primer
d087380adbbeffa3b1255b78708a131b4dfd1ba3
0b59bdaef5310d52eaa5b7a68e5e4a5ec707263d
refs/heads/master
2022-01-27T02:21:36.075525
2019-05-02T21:52:27
2019-05-02T21:52:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
58,480
py
import imp from copy import deepcopy import winsound import sys sys.path.append('C:\\Users\\justi\\Documents\\CodeProjects\\Primer\\blender_scripts') import bobject imp.reload(bobject) from bobject import * import constants imp.reload(constants) from constants import * import helpers imp.reload(helpers) from helpers import * class SVGBobject(Bobject): """docstring for .""" def __init__(self, *filenames, **kwargs): super().__init__(**kwargs) if 'vert_align_centers' in kwargs: self.vert_align_centers = kwargs['vert_align_centers'] else: self.vert_align_centers = 'x_and_y' if 'centered' in kwargs: self.centered = kwargs['centered'] else: self.centered = False if 'color' in kwargs: self.default_color = kwargs['color'] else: self.default_color = 'color2' if RENDER_QUALITY == 'medium' or RENDER_QUALITY == 'high': default_transition_type = 'morph' else: default_transition_type = 'instant' self.transition_type = self.get_from_kwargs('transition_type', default_transition_type) self.reindex_points_before_morph = \ self.get_from_kwargs('reindex_points_before_morph', True) self.lazy_morph = self.get_from_kwargs('lazy_morph', True) self.min_length = self.get_from_kwargs('min_length', 1) self.get_file_paths(filenames) self.import_svg_data() self.align_figures() if self.transition_type == 'morph': print("Making morph chains") self.make_morph_chains() print("Processing morph chains") self.process_morph_chains() #Add splines and points for centering #and smooth morphing print("Making rendered curve objects") self.make_rendered_curve_bobjects() self.make_lookup_table() elif self.transition_type == 'instant': self.rendered_bobject_lists = [] for svg in self.paths: rendered_bobject_list = [] for curve in self.imported_svg_data[svg]['curves']: new_curve = curve.ref_obj.children[0].copy() new_curve.data = curve.ref_obj.children[0].data.copy() apply_material(new_curve, self.default_color) new_curve_bobj = bobject.Bobject( objects = [new_curve], location = curve.ref_obj.location ) rendered_bobject_list.append(new_curve_bobj) self.rendered_bobject_lists.append(rendered_bobject_list) self.make_lookup_table() print("SVG Bobject initialized " + str(filenames[0])) self.copyable_null = None #I think this might be unnecessary self.active_path = self.paths[0] def add_to_blender(self, **kwargs): if 'appear_mode' in kwargs: appear_mode = kwargs['appear_mode'] else: appear_mode = 'per_curve' if self.transition_type == 'instant': initial_shape = self.rendered_bobject_lists[0] for bobj in initial_shape: self.add_subbobject(bobj) super().add_to_blender(**kwargs) for shape in self.rendered_bobject_lists[1:]: for bobj in shape: bobj.ref_obj.parent = self.ref_obj bobj.superbobject = self else: #This part is a bit fragile because it assumes appear_frame is in kwargs if appear_mode == 'per_curve': #Convert time args to frames. Need to do this before passing to #super so timing can be manipulated. if 'appear_time' in kwargs: if 'appear_frame' in kwargs: raise Warning("You defined both start frame and start time." + \ "Just do one, ya dick.") kwargs['appear_frame'] = kwargs['appear_time'] * FRAME_RATE kwargs['appear_time'] = None #Avoid passing non-None appear #time to super #Bobject appears early but with each curve at size zero, then #the curves morph to non-zero size, making it look like the #curves appear independently. kwargs['appear_frame'] -= DEFAULT_MORPH_TIME if 'subbobject_timing' in kwargs: if isinstance(kwargs['subbobject_timing'], list): for time in kwargs['subbobject_timing']: time += DEFAULT_MORPH_TIME else: kwargs['subbobject_timing'] = DEFAULT_MORPH_TIME if 'transition_time' in kwargs: transition_time = kwargs['transition_time'] else: transition_time = DEFAULT_MORPH_TIME super().add_to_blender(**kwargs) self.morph_figure( 0, start_frame = self.appear_frame + DEFAULT_MORPH_TIME, duration = transition_time ) def disappear(self, **kwargs): if 'disappear_mode' in kwargs: disappear_mode = kwargs['appear_mode'] else: disappear_mode = 'per_curve' if 'animate' in kwargs: animate = kwargs['animate'] else: animate = True if disappear_mode == 'per_curve' and \ self.transition_type == 'morph' and animate == True: if 'disappear_time' in kwargs: if 'disappear_frame' in kwargs: raise Warning("You defined both disappear frame and disappear time." +\ "Just do one, ya dick.") kwargs['disappear_frame'] = kwargs['disappear_time'] * FRAME_RATE kwargs['disappear_time'] = None #Avoid passing non-None appear #time to super #Bobject appears early but with each curve at size zero, then #the curves morph to non-zero size, making it look like the #curves appear independently. for bobj in self.rendered_curve_bobjects: bobj.disappear(disappear_frame = kwargs['disappear_frame']) kwargs['disappear_frame'] += DEFAULT_MORPH_TIME super().disappear(**kwargs) else: super().disappear(**kwargs) def make_rendered_curve_bobjects(self): null = new_null_curve( parent = self.ref_obj, location = self.ref_obj.location, rotation = self.ref_obj.rotation_euler ) #print("Max spline count is " + str(max_spline_count)) equalize_spline_count(null.objects[0], self.max_spline_count) bpy.context.scene.objects.link(null.objects[0]) add_points_to_curve_splines(null.objects[0], total_points = self.max_point_count) bpy.context.scene.objects.unlink(null.objects[0]) self.rendered_curve_bobjects = [] for i in range(len(self.morph_chains)): #Would just deepcopy null, but that doesn't work on Blender data blocks dup = null.ref_obj.children[0].copy() dup.data = null.ref_obj.children[0].data.copy() apply_material(dup, self.default_color) rendered_curve = bobject.Bobject(objects = [dup], name = 'rendered') rendered_curve.ref_obj.location = \ self.morph_chains[i][0].ref_obj.location rendered_curve.ref_obj.rotation_euler = \ self.morph_chains[i][0].ref_obj.rotation_euler self.add_subbobject(rendered_curve) self.rendered_curve_bobjects.append(rendered_curve) def make_lookup_table(self): #print('Making lookup table') if self.transition_type == 'morph': #This function makes it easier to find the bobjects associated with #individual curves/characters when coding a scene. This would otherwise #be hard because the imported curves are copied and mixed into morph #chains. self.lookup_table = [] for curve_list in self.lists_of_copies: self.lookup_table.append([]) for cur in curve_list: #Find the morph chain where cur appears and add the #corresponding rendered curve to self.lookup_table[-1]. for i, chain in enumerate(self.morph_chains): if cur in chain: self.lookup_table[-1].append(self.rendered_curve_bobjects[i]) break elif self.transition_type == 'instant': self.lookup_table = self.rendered_bobject_lists else: raise Warning('Lookup table not defined for transition type: ' + \ str(self.transition_type)) def import_svg_data(self): self.imported_svg_data = {} #Build dictionary of imported svgs to use #shape keys later and to avoid duplicate #imports for path in self.paths: #Import svg and get list of new curves in Blender if path not in self.imported_svg_data.keys(): self.imported_svg_data[path] = {'curves' : []} #This is a dict of dicts for metadata, e.g., center and length #of tex expressions if path == None: null = new_null_curve() cur = null.ref_obj.children[0] equalize_spline_count(cur, 1) self.imported_svg_data[path]['curves'].append(cur) #print(self.imported_svg_data[path]['curves']) #print('length: ' + str(len(cur.data.splines))) #print('length: ' + str(len(cur.data.splines[0].bezier_points))) continue previous_curves = [x for x in bpy.data.objects if x.type == 'CURVE'] bpy.ops.import_curve.svg(filepath = path) new_curves = [x for x in bpy.data.objects if \ x.type == 'CURVE' and x not in previous_curves] #Arrange new curves relative to tex object's ref_obj scale_up = TEX_LOCAL_SCALE_UP #* self.scale[0] for curve in new_curves: for spline in curve.data.splines: for point in spline.bezier_points: point.handle_left_type = 'FREE' point.handle_right_type = 'FREE' #This needs to be in a separate loop because moving points before #they're all 'Free' type makes the shape warp. #It makes a cool "disappear in the wind" visual, though. for spline in curve.data.splines: for point in spline.bezier_points: for i in range(len(point.co)): point.co[i] *= scale_up point.handle_left[i] *= scale_up point.handle_right[i] *= scale_up bpy.ops.object.select_all(action = 'DESELECT') curve.select = True bpy.ops.object.origin_set(type = "ORIGIN_GEOMETRY") #This part is just meant for tex_objects if self.vert_align_centers == True: loc = curve.location new_y = new_curves[0].location[1] bpy.context.scene.cursor_location = (loc[0], new_y, loc[2]) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') curve.select = False bpy.context.scene.objects.unlink(curve) self.imported_svg_data[path]['curves'] = new_curves #Make imported curve objects into bobjects for path in self.imported_svg_data: for i, curve in enumerate(self.imported_svg_data[path]['curves']): curve_bobj = bobject.Bobject(objects = [curve]) #Make the bobject's ref_obj handle location curve_bobj.ref_obj.location = curve.location curve.location = [0, 0, 0] #curve_bobj.add_to_blender(appear_frame = 0) self.imported_svg_data[path]['curves'][i] = curve_bobj #if path == None: # print() # print(self.imported_svg_data[path]) # print() #if path == None: #self.add_subbobject(curve_bobj) #print(self.imported_svg_data) bpy.context.scene.update() def get_file_paths(self, filenames): self.paths = [] for name in filenames: path = os.path.join( SVG_DIR, name ) + ".svg" if not os.path.exists(path): raise Warning("Could not find " + name + ".svg") self.paths.append(path) def make_morph_chains(self): #Need to copy curves to avoid reusing them when looping and linking into #chains below self.lists_of_copies = [] for path in self.paths: copies = [] for curve in self.imported_svg_data[path]['curves']: obj = curve.ref_obj.children[0].copy() obj.data = curve.ref_obj.children[0].data.copy() bobj = bobject.Bobject( objects = [obj], location = curve.ref_obj.location, rotation_euler = curve.ref_obj.rotation_euler, name = 'curve_copy') copies.append(bobj) self.lists_of_copies.append(copies) self.morph_chains = [] for i, path in enumerate(self.paths): #print("Adding curves to morph chains for shape " + str(i + 1) + " of " + str(len(self.paths))) #print() #print('######################################################') #print('### Morph chains round ' + str(i) + ' ####################') #print('######################################################') #print() try: #initial = self.imported_svg_data[self.paths[i]]['curves'] #final = self.imported_svg_data[self.paths[i + 1]]['curves'] initial = self.lists_of_copies[i] final = self.lists_of_copies[i + 1] except: if i + 1 == len(self.paths): #If there's just one path, add the corresponding curves to #self.morph_chains so the first figure can still be #morphed to. if i == 0: for j in range(len(initial)): self.morph_chains.append([initial[j]]) #print("That's the last one!") break else: raise Warning('Something went wrong in make_morph_chains') if self.lazy_morph == True: destinations = self.find_lazy_morph_plan(initial, final) #For convenience, get inverse of destinations, caleed 'sources', #which is from the perspective of the 'final' expression. sources = [] for j in range(len(final)): if j in destinations: sources.append(destinations.index(j)) else: sources.append(None) else: #length = max(len(initial), len(final)) while len(initial) < len(final): null_curve = new_null_curve( parent = initial[-1].ref_obj.parent, location = initial[-1].ref_obj.location, rotation = initial[-1].ref_obj.rotation_euler ) initial.append(null_curve) while len(final) < len(initial): null_curve = new_null_curve( parent = final[-1].ref_obj.parent, location = final[-1].ref_obj.location, rotation = final[-1].ref_obj.rotation_euler ) final.append(null_curve) destinations = range(len(initial)) sources = destinations #print('Destinations and sources before pairing:') #print(' Destinations', destinations) #print(' Sources', sources) #print() #print(" Adding curves to chains") for j, (cur, dest) in enumerate(zip(initial, destinations)): if dest != None: self.add_to_or_make_morph_chain(i, cur, final[dest]) else: k = j #curves without a destination will look forward to try to #pair with a curve that has no source, but won't jump past #other curves with destinations. while k < len(sources): #Don't jump past a char with a destination if k < len(destinations): #Doing this so the next line works if destinations[k] != None: break if sources[k] == None: self.add_to_or_make_morph_chain(i, cur, final[k]) sources[k] = j dest = destinations[j] = k break k += 1 #print('Destinations and sources after dest -> source match:') #print(' Destinations', destinations) #print(' Sources', sources) #print() for j, (cur, src) in enumerate(zip(final, sources)): if src == None: k = j #curves without a source will look forward to try to #pair with a curve that has no source, but won't jump past #other curves with sources. #max_index = min(len(destinations), len(sources)) while k < len(destinations): #Don't jump past a char with a destination if k < len(sources): #Doing this so the next line works if sources[k] != None: break if destinations[k] == None: self.add_to_or_make_morph_chain(i, initial[k], cur) sources[j] = k dest = destinations[k] = j break k += 1 #bpy.context.scene.update() #print('Destinations and sources after source -> dest match:') #print(' Destinations', destinations) #print(' Sources', sources) #print() #print(" Adding null curves for destination-less curves") #If dest is still None after trying to pair it with a source, #just insert a zero-size curve for cur to morph to. #This section is pretty hacky for j, dest in enumerate(destinations): if dest == None: cur = initial[j] if j > 0: k = j while k >= len(final): k -= 1 loc_cur = final[k] else: loc_cur = final[j] #print("Discontinuing chain ") null_curve = new_null_curve( parent = final[0].ref_obj.parent, location = loc_cur.ref_obj.location, rotation = loc_cur.ref_obj.rotation_euler #reuse_object = self.reusable_empty_curve ) self.add_to_or_make_morph_chain(i, cur, null_curve) #print(" Adding null curves for sourceless curves") #If sources[j] is still None after trying to pair final[j] with #a source, just insert a zero-size curve for final[j] to morph from. for j, src in enumerate(sources): if src == None: cur = final[j] if j > 0: k = j while k >= len(initial): k -= 1 loc_cur = initial[k] else: loc_cur = initial[j] #Make the null curve if i == 1, because that means the curve #to morph from is one that is actually rendered. Otherwise, #reuse the reusable empty curve. '''if i == 1: reuse = None else: pass''' #reuse = self.reusable_empty_curve #bpy.context.scene.update() null_curve = new_null_curve( parent = initial[0].ref_obj.parent, location = loc_cur.ref_obj.location, rotation = loc_cur.ref_obj.rotation_euler #reuse_object = reuse ) #self.expressions[0]['curves'].append(null_curve) #print(i) self.add_to_or_make_morph_chain(i, null_curve, cur) '''print(destinations) print(sources) print()''' #print(" Okay, done with that chain") #print(" Adding null curves to extend chains") #Make sure all the chains are the same length. Relevant, e.g., if #a char in the first expression disappears in the second expression, #and a third expression exists. We need to extend the chain of #zero-size curves to keep later functions from tripping. chain_length = 0 for chain in self.morph_chains: chain_length = max(len(chain), chain_length) for chain in self.morph_chains: while len(chain) < chain_length: null_curve = new_null_curve( parent = final[0].ref_obj.parent, location = chain[-1].ref_obj.location, rotation = chain[-1].ref_obj.rotation_euler #reuse_object = self.reusable_empty_curve ) chain.append(null_curve) #self.add_to_or_make_morph_chain(i, chain[-1], null_curve) #Print chain info '''for i, chain in enumerate(self.morph_chains): print( "Chain " + str(i + 1) + " of " + str(len(self.morph_chains)) + \ " which are each of length " + str(len(chain)) ) chain = [x.ref_obj.children[0].name for x in chain] print(chain)''' def add_to_or_make_morph_chain(self, index, char1, char2): for chain in self.morph_chains: if char1 == chain[-1]: chain.append(char2) '''if 'null' in char2.name: chain_index = self.morph_chains.index(chain) print('Discontinuing chain ' + str(chain_index) + \ ' after inserting null curve at index ' + str(index + 1)) chain_names = [x.ref_obj.children[0].name for x in chain] print(chain_names)''' if len(chain) != index + 2: raise Warning("Chain lengths messed up") return #If that doesn't exit the function, we have a new chain working_chain = [] scavenged = False #Scavenge for dropped chains that have ended near the right location for chain in self.morph_chains: if len(chain) <= index: working_chain = chain scavenged = True chain_index = self.morph_chains.index(chain) #print("Scavenged chain") break for i in range(len(working_chain), index): #-1 because we're actually adding two curves to the chain, so the #chain will have length equal to index + 1 at the end of this. null_curve = new_null_curve( parent = self.ref_obj, location = char1.ref_obj.location, rotation = char1.ref_obj.rotation_euler #reuse_object = self.reusable_empty_curve ) working_chain.append(null_curve) working_chain.append(char1) working_chain.append(char2) if scavenged == False: #print("A new chain, which means a curve had no source ") self.morph_chains.append(working_chain) if len(working_chain) != index + 2: raise Warning("Chain lengths messed up") def find_lazy_morph_plan(self, expr1, expr2, min_length = None): #max length of substring we bother keeping #Increments if shared is still too long if min_length == None: min_length = self.min_length #Default = 1 max_shared = 10 #8! is 40320 shared = get_shared_substrings(expr1, expr2) for i in range(len(shared)): if shared[-i][2] < min_length: shared[-i] = None shared = [sub for sub in shared if sub != None] while len(shared) > max_shared: min_length += 1 removed = 0 for i in range(len(shared)): if len(shared) - removed <= max_shared: break if shared[-i][2] <= min_length: shared[-i] = None removed += 1 shared = [sub for sub in shared if sub != None] #raise Warning("Shit's cray") combos = get_substring_combos(shared) best_option = [[0, 0, 0]] highest_total = 0 for combo in combos: total = 0 for substring in combo: total += substring[2] ** 2 if total > highest_total: highest_total = total best_option = combo destinations = [] for j in range(len(expr1)): destination = None for plan in best_option: if j in range(plan[0], plan[0] + plan[2]): destination = j + plan[1] - plan[0] destinations.append(destination) #print(best_option) #print("Here's the plan:") #print(destinations) return destinations def process_morph_chains(self): self.max_spline_count = 0 self.max_point_count = CONTROL_POINTS_PER_SPLINE for chain in self.morph_chains: for link in chain: spline_count = len(link.ref_obj.children[0].data.splines) self.max_spline_count = max(spline_count, self.max_spline_count) for spline in link.ref_obj.children[0].data.splines: point_count = len(spline.bezier_points) self.max_point_count = max(point_count, self.max_point_count) #print(self.max_spline_count) self.prep_log = [] count = 0 for chain in self.morph_chains: count += 1 #print('Processing morph chain ' + str(count) + ' of ' + str(len(self.morph_chains))) for link in chain: already_processed = False #cur = link.ref_obj.children[0] '''for entry in self.prep_log: if are_chars_same(link.ref_obj.children[0], entry[0]): already_processed = True #Out with the old old = link.ref_obj.children[0] try: link.objects.remove(old) except: pass old.parent = None #In with the new new = entry[1].copy() new.data = entry[1].data.copy() new.parent = link.ref_obj link.objects.append(new) break''' if already_processed == False: #print("Processing new curve") #entry = [] #unprocessed = link.ref_obj.children[0].copy() #unprocessed.data = link.ref_obj.children[0].data.copy() #bpy.context.scene.objects.link(unprocessed) #entry.append(unprocessed) equalize_spline_count(link.ref_obj.children[0], self.max_spline_count) bpy.context.scene.objects.link(link.ref_obj.children[0]) #for spline in link.ref_obj.children[0].data.splines: # print('There were ' + str(len(spline.bezier_points))) add_points_to_curve_splines(link.ref_obj.children[0], total_points = self.max_point_count) bpy.context.scene.objects.unlink(link.ref_obj.children[0]) #for spline in link.ref_obj.children[0].data.splines: # print('Now there are ' + str(len(spline.bezier_points))) #processed = link.ref_obj.children[0].copy() #processed.data = link.ref_obj.children[0].data.copy() #entry.append(processed) #self.prep_log.append(entry) def morph_figure( self, final_index, start_time = None, start_frame = None, duration = DEFAULT_MORPH_TIME, transition_type = None ): if start_time != None: if start_frame != None: raise Warning("You defined both start frame and start time." +\ "Just do one, ya dick.") start_frame = int(start_time * FRAME_RATE) #print('Morphing ' + str(self.ref_obj.name) + ' to shape ' + str(final_index + 1) + \ # ' of ' + str(len(self.paths))) self.active_path = self.paths[final_index] #duration = 60 end_frame = start_frame + duration morph_pairs = [] #print('Start frame = ' + str(start_frame)) #print('End frame = ' + str(end_frame)) if transition_type == None: transition_type = self.transition_type if transition_type == 'morph': for curve, chain in zip(self.rendered_curve_bobjects, self.morph_chains): morph_pairs.append([curve, chain[final_index]]) for char1, char2 in morph_pairs: char1 = char1.objects[0] char2 = char2.objects[0] self.morph_curve(char1, char2) #Keyframes #Character location relative to parent #This ensures preservation of overall expression arrangement char1.parent.keyframe_insert(data_path = "location", frame = start_frame) char1.parent.location = char2.parent.location char1.parent.keyframe_insert(data_path = "location", frame = end_frame) char1.parent.keyframe_insert(data_path = "rotation_euler", frame = start_frame) char1.parent.rotation_euler = char2.parent.rotation_euler char1.parent.keyframe_insert(data_path = "rotation_euler", frame = end_frame) #Shape keys eval_time = char1.data.shape_keys.key_blocks[-2].frame char1.data.shape_keys.eval_time = eval_time char1.data.shape_keys.keyframe_insert( data_path = 'eval_time', frame = start_frame ) eval_time = char1.data.shape_keys.key_blocks[-1].frame char1.data.shape_keys.eval_time = eval_time char1.data.shape_keys.keyframe_insert( data_path = 'eval_time', frame = end_frame ) char1.data.shape_keys.eval_time = 0 else: initial = self.rendered_bobject_lists[final_index - 1] for bobj in initial: bobj.disappear( animate = False, disappear_frame = start_frame ) final = self.rendered_bobject_lists[final_index] for bobj in final: bobj.add_to_blender( animate = False, appear_frame = start_frame ) def add_morph_shape_keys(self, initial, final): if len(initial.data.splines) != len(final.data.splines): #winsound.MessageBeep(type = MB_ICONEXCLAMATION) print("#" + str(initial.name) + " has " + str(len(initial.data.splines)) + \ " splines and " + str(final.name) + " has " + \ str(len(final.data.splines)) + " splines, which is not the same number.") print("#This means something went wrong when processing morph chains.") print('#I gotchu this time, but you might wanna take a look back and fix the underlying issue.') if len(initial.data.splines) < len(final.data.splines): raise Warning("Oh dang. I actually don't gotchu. The rendered " + \ "curve is missing splines, I think.") bpy.context.scene.objects.link(final) equalize_spline_count(final, self.max_spline_count) add_points_to_curve_splines(final) bpy.context.scene.objects.unlink(final) was_hidden = False if initial.hide: was_hidden = True initial.hide = False bpy.context.scene.objects.active = initial bpy.ops.object.mode_set(mode = 'OBJECT') #If absolute shape keys exist, set eval_time to zero try: initial.data.shape_keys.eval_time = 0 except: pass bpy.ops.object.shape_key_add(from_mix=False) initial.data.shape_keys.use_relative = False #For some reason, the default 'CARDINAL' interpolation setting caused #bouncing, which would occasionally enlarge splines that should have #been size zero, messing with the fill. initial.data.shape_keys.key_blocks[-1].interpolation = 'KEY_LINEAR' #bpy.ops.object.shape_key_retime() #If there's only one shape key, it's the basis shape key. if len(initial.data.shape_keys.key_blocks) == 1: #We should add another shape key, which will get a keyframe bpy.ops.object.shape_key_add(from_mix=False) initial.data.shape_keys.key_blocks[-1].interpolation = 'KEY_LINEAR' #initial.data.shape_keys.use_relative = False #bpy.ops.object.shape_key_retime() bpy.ops.object.mode_set(mode = 'EDIT') #This might be a bit confusing, caused by the fact that I mixed up #length rank and index in my original names and implementation. #Could probably reimplement or at least change names. initial_spline_length_ranks = get_list_of_spline_length_ranks(initial) final_spline_length_ranks = get_list_of_spline_length_ranks(final) for i in range(len(initial.data.splines)): #Get the points of the ith spline initial_points = initial.data.splines[i].bezier_points #Okay, before we get the final points, we need to find the index of #the spline with the same length rank as the ith initial spline. #In the initial char, what is the length rank of the ith spline? initial_length_rank = initial_spline_length_ranks[i] #In the final char, what is the index of the corresponding length rank? final_index = final_spline_length_ranks.index(initial_length_rank) #Get the points of the final spline with the right length index final_points = final.data.splines[final_index].bezier_points #Double check that the splines have the same number of points if len(initial_points) != len(final_points): print('#' + str(initial.name) + " has " + str(len(initial_points)) + \ " points in spline " + str(i+1) + " and " + \ str(final.name) + " has " + str(len(final_points)) + \ " points in spline " + str(i+1) + \ " which is not the same number.") print("#This means something went wrong when processing morph chains.") print('#I gotchu this time, but you might wanna take a look back and fix the underlying issue.') num_points = max(len(final_points), len(initial_points)) if len(initial_points) < len(final_points): #bpy.context.scene.objects.link(initial) add_points_to_curve_splines(initial, total_points = num_points) #bpy.context.scene.objects.unlink(initial) #raise Warning("Oh dang. I actually don't gotchu. The rendered " + \ # "curve is missing points, I think.") else: bpy.context.scene.objects.link(final) add_points_to_curve_splines(final, total_points = num_points) bpy.context.scene.objects.unlink(final) #Assign final_points values to initial_points for j in range(len(initial_points)): initial_points[j].co = final_points[j].co initial_points[j].handle_left = final_points[j].handle_left initial_points[j].handle_right = final_points[j].handle_right bpy.ops.object.mode_set(mode = 'OBJECT') if was_hidden: initial.hide = True def morph_curve(self, initial, final): #equalize_spline_count(initial, final) char_set = [initial, final] for char in char_set: if self.reindex_points_before_morph == True: for spline in char.data.splines: reindex_to_top_point(spline) #add_points_to_curve_splines(char, CONTROL_POINTS_PER_SPLINE) self.add_morph_shape_keys(initial, final) def calc_lengths(self): for expr in self.imported_svg_data: curves = self.get_figure_curves(expr) right_most_x = -math.inf for char in curves: #char is a bobject, so reassign to the contained curve char = char.objects[0] for spline in char.data.splines: for point in spline.bezier_points: candidate = char.matrix_local.translation[0] + \ char.parent.matrix_local.translation[0] + \ point.co[0] * char.scale[0] if right_most_x < candidate: right_most_x = candidate left_most_x = math.inf for char in curves: char = char.objects[0] for spline in char.data.splines: for point in spline.bezier_points: candidate = char.matrix_local.translation[0] + \ char.parent.matrix_local.translation[0] + \ point.co[0] * char.scale[0] if left_most_x > candidate: left_most_x = candidate length = right_most_x - left_most_x center = left_most_x + length / 2 self.imported_svg_data[expr]['length'] = length * self.scale[0] #Tbh, I don't remember why only the length is scaled self.imported_svg_data[expr]['centerx'] = center self.imported_svg_data[expr]['beginning'] = left_most_x #Untested self.imported_svg_data[expr]['end'] = right_most_x #Vertical stuff top_most_y = -math.inf for char in curves: #char is a bobject, so reassign to the contained curve char = char.objects[0] for spline in char.data.splines: for point in spline.bezier_points: candidate = char.matrix_local.translation[1] + \ char.parent.matrix_local.translation[1] + \ point.co[1] * char.scale[1] if top_most_y < candidate: top_most_y = candidate bottom_most_y = math.inf for char in curves: char = char.objects[0] for spline in char.data.splines: for point in spline.bezier_points: candidate = char.matrix_local.translation[1] + \ char.parent.matrix_local.translation[1] + \ point.co[1] * char.scale[1] if bottom_most_y > candidate: bottom_most_y = candidate height = top_most_y - bottom_most_y center = bottom_most_y + height / 2 self.imported_svg_data[expr]['top'] = top_most_y self.imported_svg_data[expr]['bottom'] = bottom_most_y self.imported_svg_data[expr]['height'] = height * self.scale[1] self.imported_svg_data[expr]['centery'] = (top_most_y + bottom_most_y) / 2 def get_figure_curves(self, fig): #Really just here to be overridden by tex_bobject return self.imported_svg_data[fig]['curves'] def align_figures(self): self.calc_lengths() for fig in self.imported_svg_data: self.align_figure(fig) def align_figure(self, fig): data = self.imported_svg_data curve_list = data[fig]['curves'] offset = list(curve_list[0].ref_obj.location) if self.centered == True: cen = data[fig]['centerx'] offset[0] = cen elif self.centered == 'right': offset[0] = data[fig]['end'] elif self.centered == 'top_centered': offset[0] = data[fig]['centerx'] offset[1] = data[fig]['top'] elif self.centered == 'x_and_y': offset[0] = data[fig]['centerx'] offset[1] = data[fig]['centery'] else: offset[0] = data[fig]['beginning'] for i in range(len(curve_list)): #For some reason, just subtracting the vector-valued locations #doesn't work here. I'm baffled. Anyway, it works to convert to #lists and subtract by element. loc = list(curve_list[i].ref_obj.location) new_loc = add_lists_by_element(loc, offset, subtract = True) curve_list[i].ref_obj.location = new_loc curve_list[i].ref_obj.parent = self.ref_obj return curve_list #Used in subclass class SVGFromBlend(SVGBobject): def __init__(self, *filenames, **kwargs): super().__init__(*filenames, **kwargs) def get_file_paths(self, filenames): #Should just be one file for SVGFromBlend, prepping to import. #Might be multiple strings in the format helpers.import_object takes self.paths = list(filenames) def import_svg_data(self): #import from the .blend file and add curves to self.imported_svg_data, #mimicking the data structure of regular svg bobjects paths = self.paths self.imported_svg_data = {} #For this type of object, the path list items are lists, which can #have multiple strings to feed to import_objects() for i, path in enumerate(paths): if path == None: name = path #null = new_null_curve() #cur = null.ref_obj.children[0] #equalize_spline_count(cur, 1) #self.imported_svg_data[path]['curves'].append(cur) #print(self.imported_svg_data[path]['curves']) #print('length: ' + str(len(cur.data.splines))) #print('length: ' + str(len(cur.data.splines[0].bezier_points))) #continue else: name = str(path) '''if isinstance(name, list): name = name[0] name = str(name) print(name)''' self.imported_svg_data[name] = {'curves' : []} new_curve_bobj = self.import_and_modify_curve(i, path) #self.modify_curves(new_curve_bobj.ref_obj.children[0].children[0]) #self.modify_curves() new_curves = [] #These will all have container objects because they were likely #made as regular svgbobjects the first time, so just take the actual #curves. for obj in new_curve_bobj.ref_obj.children: new_curves.append(obj.children[0]) #print(new_curves[-1].type) #self.imported_svg_data[name]['curves'] = new_curves #After calling import_objects(), it's best for paths to not be lists #for i in range(len(self.paths)): # self.paths[i] = str(self.paths[i]) for j, curve in enumerate(new_curves): curve_bobj = bobject.Bobject(objects = [curve]) #Make the bobject's ref_obj handle location curve_bobj.ref_obj.location = curve.location curve.location = [0, 0, 0] curve_bobj.ref_obj.rotation_euler = curve.rotation_euler curve.rotation_euler = [0, 0, 0] self.imported_svg_data[name]['curves'].append(curve_bobj) #print(self.imported_svg_data) #print(self.paths) def import_and_modify_curve(self, index, path): #This is unfinished. Something is wrong with the way it makes the #rendered curve objects out of the imported ones. #Extended by subclass #index is needed for subclass implementation to know which curve it's #modifying. imported = import_object(path, 'svgblend') new_curve_bobj = bobject.Bobject( objects = imported.ref_obj.children[0].children, name = 'imported_svg_object' ) #new_curve_bobj.add_to_blender(appear_frame = 0) return new_curve_bobj def reindex_to_top_point(spline): #Make it so the highest control point is at index 0 #This eliminates net rotation of points around the curve as they transition #from the starting char to the target char #Rotation would be fine, but they actually just go in a straight line, #causing the curve to sometimes fold on itself points = spline.bezier_points #Find index of highest point in curve index_highest = 0 for i in range(len(points)): if points[i].co[1] > points[index_highest].co[1]: #Compare y values index_highest = i #copy point data to lists positions = [] left_handles = [] right_handles = [] for point in points: positions.append(deepcopy(point.co)) left_handles.append(deepcopy(point.handle_left)) right_handles.append(deepcopy(point.handle_right)) #re-index copied lists for i in range(index_highest): positions.append(positions.pop(0)) left_handles.append(left_handles.pop(0)) right_handles.append(right_handles.pop(0)) #Would just do this: # points.append(points.pop(0)) #but points has type bpy_prop_collection, which is doesn't have #list methods and is immutable #assign values to blender bezier points for i in range(len(points)): points[i].co = positions[i] points[i].handle_left = left_handles[i] points[i].handle_right = right_handles[i] def add_points_to_curve_splines( curve, total_points = CONTROL_POINTS_PER_SPLINE, closed_loop = True ): #if len(curve.data.splines[0].bezier_points) < total_points: was_hidden = False if curve.hide: was_hidden = True curve.hide = False bpy.context.scene.objects.active = curve bpy.ops.object.mode_set(mode = 'EDIT') #Use subdivides to make control points that don't affect shape for spline in curve.data.splines: points = spline.bezier_points while len(spline.bezier_points) < total_points: #find longest segment to subdivide, ignores curvature longest = 0 start_index = 0 end_index = 1 for j in range(len(points)): if closed_loop == True: k = (j + 1) % len(points) sep = points[k].co - points[j].co length = sep.length else: if j == len(points) - 1: k = j else: k = j + 1 length = points[k].co[0] - points[j].co[0] #This is a hacky way of making it work for graph curves #bpy making it as uniform as possible along x. #Doesn't make sense in general. if length > longest: start_index = j end_index = k longest = length #subdivide longest segments points[start_index].select_control_point = True points[end_index].select_control_point = True #execute_and_time("Get ready to subdivide") #execute_and_time( # "Subdivide", bpy.ops.curve.subdivide() #) for point in points: point.select_control_point = False bpy.ops.object.mode_set(mode = 'OBJECT') if was_hidden: curve.hide = True def equalize_spline_count(curve1, target): splines1 = curve1.data.splines if isinstance(target, int): spline_count = target else: splines2 = target.data.splines spline_count = max(len(splines1), len(splines2)) while len(splines1) < spline_count: new_spline = splines1.new('BEZIER') new_spline.bezier_points.add(count = 2) new_spline.use_cyclic_u = True if not isinstance(target, int): while len(splines2) < spline_count: new_spline = splines2.new('BEZIER') new_spline.bezier_points.add(count = 2) new_spline.use_cyclic_u = True def get_list_of_spline_length_ranks(curve): splines = curve.data.splines curve_splines_ranked_by_length = [] #get a list of splines and sort them by length #we have to do this because 'splines' is a bpy_prop_collection, not a list #meaning it doesn't have list methods. for spline in splines: curve_splines_ranked_by_length.append(spline) curve_splines_ranked_by_length.sort(key = lambda x: get_spline_length(x), \ reverse=True) list_of_length_ranks = [] for spline in splines: rank = curve_splines_ranked_by_length.index(spline) list_of_length_ranks.append(rank) return list_of_length_ranks def get_spline_length(spline): points = spline.bezier_points length = 0 for j in range(len(points)): k = (j + 1) % len(points) sep = points[k].co - points[j].co length += sep.length return length def new_null_curve( parent = None, location = (0, 0, 0), rotation = (0, 0, 0), #color = 'color5', reuse_object = None ): #print(" Adding null curve") #if reuse_object == None: data = bpy.data.curves.new(name = 'no_curve_data', type = 'CURVE') obj = bpy.data.objects.new(name = 'no_curve', object_data = data) #else: # print('Reusing object!!!!!!') # obj = reuse_object bobj = bobject.Bobject(objects = [obj], name = 'null') #obj.parent = bobj.ref_obj #bobj.objects.append(obj) bobj.ref_obj.parent = parent #print(matrix_local) bobj.ref_obj.location = location bobj.ref_obj.rotation_euler = rotation #print(bobj.ref_obj.matrix_local) #bpy.context.scene.objects.link(new_null) #if reuse_object == None: # bobj.add_to_blender(animate = False) #apply_material(obj, color) #bpy.data.scenes[0].update() #print(' Done adding null curve') return bobj def get_shared_substrings(expr1, expr2): #not actually strings, but a series of curves that represent letters, mostly curves1 = expr1 curves2 = expr2 shared = [] for i in range(len(curves1)): j = 0 for j in range(len(curves2)): length = 0 length = get_match_length(length, i, j, curves1, curves2) if length > 0: candidate = [i, j, length] #Check whether candidate is redundant with a substring we #already found. E.g., without this, comparing '01' with '012' #would find the '01' and '1' substrings. We just want the longer #one. redundant = False ''' #Actually, think we want redundancy, at least until speed becomes #an issue. Without redundancy, morphing '123' to '1223' would #result in the shared '3' being discarded, since it's redundant #with the shared '23'. This is usually good, but because the #original '2' is in two shared substrings, one (the '23') is #discarded. In this case, the '3' won't be captured, even though #it's not redundant with any substring that actually gets used. #The truly redundant substrings will get tossed later when #choosing the highest-scoring set to actually morph. #Only smaller redundant substrings toward the right of larger #substrings will be preserved. That's okay, because when #substrings overlap, the left-most overlapping string is used. #Since the left-most strings are never tossed, no redundancy is #needed for backup. ''' ''' Aaaaaaaactually, fuck redundancy. Things got slow. ''' for substring in shared: start1_diff = candidate[0] - substring[0] start2_diff = candidate[1] - substring[1] length_diff = candidate[2] - substring[2] if start1_diff == start2_diff == -length_diff: redundant = True if redundant == False: shared.append(candidate) return(shared) def are_chars_same(char1, char2): splines1 = char1.data.splines splines2 = char2.data.splines if len(splines1) != len(splines2): return False for spline1, spline2 in zip(splines1, splines2): points1 = spline1.bezier_points points2 = spline2.bezier_points for point1, point2 in zip(points1, points2): for coord1, coord2 in zip(point1.co, point2.co): if round(coord1, 3) == round(coord2, 3): #When the svg is imported, coords are stored to many decimal #points. Even in characters we'd call equivalent, there is #some fluctuation in the less significant digits, so #rounding here yields the desired behavior. pass else: return False return True def get_match_length(length, char1_index, char2_index, curves1, curves2): if are_chars_same(curves1[char1_index].objects[0], curves2[char2_index].objects[0]): length += 1 char1_index += 1 char2_index += 1 try: length = get_match_length(length, char1_index, char2_index, curves1, curves2) return length except: return length else: if length > 0: pass return length def get_substring_combos(substrings): combos = [] combo_in_progress = [] combos = add_non_overlapping_substrings(combo_in_progress, combos, substrings) return combos def add_non_overlapping_substrings(combo_in_progress, combos, substrings): if len(combo_in_progress) > 0: #Start checking substrings with the one after the last one added. starting_index = substrings.index(combo_in_progress[-1]) + 1 #starting_index = 0 else: starting_index = 0 for i in range(starting_index, len(substrings)): #check if substring works candidate = substrings[i] no_overlap = True #check if substring overlaps with any substring alredy #in combo_in_progress. If so, don't add it to combos. for sub in combo_in_progress: #E.g., sub = [0, 0, 1] and candidate = [3, 0, 1] overlap no_overlap_in_1 = candidate[0] >= sub[0] + sub[2] or \ candidate[0] + candidate[2] <= sub[0] no_overlap_in_2 = candidate[1] >= sub[1] + sub[2] or \ candidate[1] + candidate[2] <= sub[1] no_overlap = (no_overlap_in_1 and no_overlap_in_2) if no_overlap == False: break if no_overlap == True: new_combo = deepcopy(combo_in_progress) new_combo.append(candidate) combos.append(new_combo) combos = add_non_overlapping_substrings(new_combo, combos, substrings) return combos def main(): print_time_report() if __name__ == "__main__": main()
[ "justin.r.helps@gmail.com" ]
justin.r.helps@gmail.com
94142f103a81d05da488cf0826ef22b6aefe9da9
43800bc4600961119339c7e1dd6fd9e685d8f991
/reto.py
e2792bdadc539bf5854a405a72039a1b7f6dc173
[]
no_license
KevinMichelle/Repositorio_RSA
91219ae5f35c04516dddbf34f86ca4a1f1199ebf
c347cee2a50e577039611312773dd79744ed4e24
refs/heads/master
2016-09-05T15:19:41.881708
2014-10-16T10:15:56
2014-10-16T10:15:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,055
py
import sys import random def sonNumeros(arreglo): areNumber = True for i in xrange(1, len(arreglo)): if not arreglo[i].isdigit(): # Si alguno de los argumentos no son numeros areNumber = False break return areNumber def f_x(x): return (x * 2) def encrip(mensaje, clave, n): return pow(mensaje, clave, n) if len(sys.argv) != 5: print 'El numero de argumentos es invalido' else: areNumber = sonNumeros(sys.argv) if areNumber: x_servidor = int(sys.argv[1]) fx_servidor = int(sys.argv[2]) e_servidor = int(sys.argv[3]) n_servidor = int(sys.argv[4]) fx_cliente = f_x(x_servidor) recuperar_mensaje = pow(fx_servidor, e_servidor, n_servidor) print print "La f(x) que se espera del servidor es {}.".format(fx_cliente) print "El mensaje recuperado es {}.".format(recuperar_mensaje) print if fx_cliente == recuperar_mensaje: print 'El servidor es quien dice que es' else: print 'El servidor no es quien dice que es, puede ser un sitio peligroso.' else: print 'Todos los argumentos deben ser numeros enteros.'
[ "michelleglz93@gmail.com" ]
michelleglz93@gmail.com
373796447841d57b9fab8651bb3abfafb95db738
9b129a2b02072914d34e3c170e4ccc7655d4cdcf
/app.py
4171781ce3ff2814f010747a825c4da66f913074
[]
no_license
Vsevololod/docker-web
7b69cafd1af88c8b34f4d94593ce3b9eea7b54e2
cdd895590a5218b37a65bbe850057060ce4b6042
refs/heads/master
2020-03-12T20:44:17.407642
2018-04-24T07:28:22
2018-04-24T07:28:22
130,812,629
1
0
null
null
null
null
UTF-8
Python
false
false
3,814
py
from flask import * from flask_bootstrap import Bootstrap from flask_ldap import LDAP from flask_ldap import login_required import requests import docker app = Flask(__name__) Bootstrap(app) app.debug = True app.config['LDAP_HOST'] = '195.19.252.68' app.config['LDAP_DOMAIN'] = 'cc.spbu.ru' app.config['LDAP_SEARCH_BASE'] = 'CN=Users,DC=cc,DC=spbu,DC=ru' app.config['LDAP_REQUIRED_GROUP'] = 'CN=docker,CN=Users,DC=cc,DC=spbu,DC=ru' ldap = LDAP(app) app.secret_key = "welfhwdlhwdlfhwelfhwlehfwlehfelwehflwefwlehflwefhlwefhlewjfhwelfjhweflhweflhwel" app.add_url_rule('/login', 'login', ldap.login, methods=['GET', 'POST']) @app.route('/') @login_required def index(): if 'username' in session: if 'volume' in session: return redirect("/run_containers".format(escape(session['username']))) else: return redirect("/virtual_drive_setup") return 'You are not logged in' @app.route('/run_containers', methods=['GET']) @login_required def run_get(): if 'username' in session: r = requests.get('https://docker-hub.cc.spbu.ru/v2/_catalog') cont = r.json()['repositories'] return render_template("settings.html", name=session["username"], volume=session["volume"], containers=cont) return 'error' @app.route('/run_containers', methods=['POST']) @login_required def run_post(): if 'username' in session: cli = docker.APIClient(base_url='unix://var/run/docker.sock') container_name = request.form.get("container") full_container_name = "docker-hub.cc.spbu.ru:443/" + container_name pull_res = cli.pull(full_container_name) command = request.form.get("command") create_instance = cli.create_container(full_container_name, command, volumes=["/test"], name=session['username'] +"_"+ container_name, host_config=cli.create_host_config(binds={ session["volume"]: { 'bind': '/test', 'mode': 'rw', }}), ) cli.start(create_instance["Id"]) return str(create_instance) return 'error' @app.route('/virtual_drive_setup', methods=['POST']) @login_required def virtual_drive_setup_post(): if 'username' in session: url2 = request.form.get("url") name2 = request.form.get("name") pass2 = request.form.get("pass") path2 = request.form.get("path") r2 = requests.request('PROPFIND', url2, auth=(name2, pass2)) if 199 < r2.status_code < 300: cli = docker.APIClient(base_url='unix://var/run/docker.sock') volume = cli.create_volume(name=name2 + "_user_cont", driver='fentas/davfs', driver_opts={ 'url': "https://{}:{}@{}/{}".format(name2, pass2, url2[8:], path2), 'uid': '1000', 'gid': '1000', }, labels={"key": "value"}) session["volume"] = volume["Name"] return redirect('/run_containers') return redirect("/virtual_drive_setup") return 'error' @app.route('/virtual_drive_setup', methods=['GET']) @login_required def virtual_drive_setup_get(): if 'username' in session: return render_template("virtual_drive_setup.html", user=session["mail"]) return 'error' if __name__ == '__main__': app.run()
[ "vsevolodtachii@gmail.com" ]
vsevolodtachii@gmail.com
2efa64d46e5d91e597a0c42442ffc6eb5ff9156b
c925a13ca720d085bb661be1466e0c56456af97e
/src/antpy/path.py
6a1843628d0dc6d42358145ef94d7c280f34768b
[ "MIT" ]
permissive
IvanAntipov/AntPy
0e754727e6c090cce554ede6ef07f052ac1eb705
361a569141518bebd13a46917267567add8e138e
refs/heads/main
2023-08-06T04:29:33.149181
2021-09-14T10:11:36
2021-09-14T10:11:36
389,035,321
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
import datetime import string import random def generate_random_filename(): ts = datetime.datetime.now().strftime("%Y%m%d%H%M%S") file_name = ''.join(random.choice(string.ascii_lowercase) for i in range(5)) return f"{ts}_{file_name}"
[ "imantipov@activebc.ru" ]
imantipov@activebc.ru
252d0b54e5f8b124952be5653984cfe5aa8991e7
b2ecdc83c8d8b7038ff293daa442d3162fc3772b
/rkWebApp/views.py
00df447c7995029f3c1090fae25d3b33db7b7cae
[]
no_license
simonrakovic/RakovicKarmenDjango
efef88316f45876cf658acd774ece58693099ecc
83f88b5a62fc1dcc5a99bddfba91b1af149b7251
refs/heads/master
2021-01-21T13:17:50.001362
2016-05-26T09:27:27
2016-05-26T09:27:27
45,276,154
0
0
null
null
null
null
UTF-8
Python
false
false
3,123
py
# -*- coding: utf-8 -*- from django.contrib import messages from django.core.mail import EmailMessage from django.shortcuts import render, render_to_response from django.template.loader import render_to_string # Create your views here. from django.template import RequestContext from rkWebApp.forms import QuestionForm from rkWebApp.models import Novica, Files def home(request): novice = Novica.objects.all().order_by('-id')[:3] return render_to_response('home.html', locals(), context_instance=RequestContext(request)) def podjetje(request): return render_to_response('podjetje.html', locals(), context_instance=RequestContext(request)) def storitve(request): return render_to_response('storitve.html', locals(), context_instance=RequestContext(request)) def povprasevanje(request): form = QuestionForm() if request.method == 'POST': form = QuestionForm(request.POST) if form.is_valid(): ime_kontaktne_osebe = form.cleaned_data['ime_kontaktne_osebe'] email = form.cleaned_data['email'] naziv_podjetja = form.cleaned_data['naziv_podjetja'] sedez_podjetja = form.cleaned_data['sedez_podjetja'] vrsta_dejavnosti = form.cleaned_data['vrsta_dejavnosti'] davcni_zavezanec = form.cleaned_data['davcni_zavezanec'] st_zaposlenih = form.cleaned_data['st_zaposlenih'] st_prejetnih_racunov = form.cleaned_data['st_prejetnih_racunov'] st_izdanih_racunov = form.cleaned_data['st_izdanih_racunov'] dodatna_vprasanja = form.cleaned_data['dodatna_vprasanja'] msg = render_to_string('povprasevanje_mail.html', {'ime_kontaktne_osebe':ime_kontaktne_osebe,'email':email,'naziv_podjetja':naziv_podjetja,'sedez_podjetja':sedez_podjetja,'vrsta_dejavnosti':vrsta_dejavnosti,'davcni_zavezanec':davcni_zavezanec,'st_zaposlenih':st_zaposlenih,'st_prejetnih_racunov':st_prejetnih_racunov,'st_izdanih_racunov':st_izdanih_racunov,'dodatna_vprasanja':dodatna_vprasanja}) try: msg = EmailMessage('Povprasevanje spletna', msg, email, ['karmen.rakovic@siol.net']) msg.content_subtype = "html" # Main content is now text/html msg.send() messages.success(request, 'Povpraševanje je uspešno poslano.') form = QuestionForm() except: messages.success(request, 'Prišlo je do napake!') form = QuestionForm() return render_to_response('povprasevanje.html', locals(), context_instance=RequestContext(request)) def kontakti(request): return render_to_response('kontakti.html', locals(), context_instance=RequestContext(request)) def novice(request): novice = Novica.objects.all() return render_to_response('novice.html', locals(), context_instance=RequestContext(request)) def novica(request, id): novica = Novica.objects.get(pk=id) files = Files.objects.filter(novica=id) return render_to_response('novica.html', locals(), context_instance=RequestContext(request))
[ "simonrakovic@gmail.com" ]
simonrakovic@gmail.com
67e6a589520d73111095f3a72afd004de6c4c1f8
bfc885bbe60e80fb295ef711666518200889adc1
/peyecoder/panels.py
5a9e2d2de512910e1618a92a2618cb56f1152cd8
[ "MIT" ]
permissive
rholson1/peyecoder
470151c1cd189117fb88ffbc40d945facf04a60a
8a30b2ae44d0a9be1f4c6b51be0d63a49dff6c6a
refs/heads/master
2022-11-29T11:55:01.585022
2022-08-05T15:36:15
2022-08-05T15:36:15
242,180,640
1
0
MIT
2022-11-22T10:43:44
2020-02-21T16:16:03
Python
UTF-8
Python
false
false
10,332
py
from PySide2.QtWidgets import QWidget, QLabel, QPushButton, QSpinBox, QComboBox, \ QRadioButton, QVBoxLayout, QHBoxLayout, QTableWidget, QTableWidgetItem, QCheckBox, \ QButtonGroup, QHeaderView, QApplication from PySide2.QtGui import Qt from PySide2 import QtGui from peyecoder.models import Reason, Event class Prescreen(QWidget): REASONS = ( 'Inattentive', 'Child Talking', 'Parent Talking', 'Parent Interference', 'Child Not Looking Before Sound', 'Equipment Malfunction', 'Experiment Ended Early', 'Other' ) def __init__(self, callback): super().__init__() self.callback = callback trial_label = QLabel('Trial:') self.trial_box = QSpinBox() self.trial_box.setFixedWidth(64) self.trial_box.setValue(1) # self.trial_box.setFocusPolicy(Qt.NoFocus) reason_label = QLabel('Reason:') self.reason_box = QComboBox() self.reason_box.addItems(self.REASONS) self.reason_box.setFocusPolicy(Qt.NoFocus) self.code_radio = QRadioButton('Code') self.nocode_radio = QRadioButton('Do Not Code') self.code_radio.setChecked(True) self.code_radio.setFocusPolicy(Qt.NoFocus) self.nocode_radio.setFocusPolicy(Qt.NoFocus) radio_layout = QVBoxLayout() radio_layout.addStretch() radio_layout.addWidget(self.code_radio) radio_layout.addWidget(self.nocode_radio) radio_layout.addStretch() self.group_code = QButtonGroup() self.group_code.addButton(self.code_radio) self.group_code.addButton(self.nocode_radio) self.record_button = QPushButton('Record Reason') self.record_button.clicked.connect(self.record_reason) self.record_button.setEnabled(False) self.record_button.setFocusPolicy(Qt.NoFocus) self.both_checkbox = QCheckBox('Display both coders') self.both_checkbox.setFocusPolicy(Qt.NoFocus) self.radio_primary = QRadioButton('Primary') self.radio_secondary = QRadioButton('Secondary') self.radio_primary.setChecked(True) self.radio_primary.setFocusPolicy(Qt.NoFocus) self.radio_secondary.setFocusPolicy(Qt.NoFocus) who_layout = QVBoxLayout() who_layout.addWidget(self.both_checkbox) who_layout.addWidget(self.radio_primary) who_layout.addWidget(self.radio_secondary) self.group_who = QButtonGroup() self.group_who.addButton(self.radio_primary, id=1) self.group_who.addButton(self.radio_secondary, id=2) layout = QHBoxLayout() layout.addWidget(trial_label) layout.addWidget(self.trial_box) layout.addWidget(reason_label) layout.addWidget(self.reason_box) layout.addLayout(radio_layout) layout.addWidget(self.record_button) layout.addStretch() layout.addLayout(who_layout) self.setLayout(layout) def record_reason(self): reason = Reason(trial=self.trial_box.value(), include=self.code_radio.isChecked(), reason=self.reason_box.currentText()) self.callback(reason) def prescreener(self): if self.both_checkbox.isChecked(): return 0 else: return self.group_who.checkedId() class Code(QWidget): TRIAL_STATUS = ('on', 'off') def __init__(self, callback): super().__init__() self.callback = callback trial_label = QLabel('Trial:') self.trial_box = QSpinBox() self.trial_box.setFixedWidth(64) self.trial_box.setValue(1) #self.trial_box.setFocusPolicy(Qt.NoFocus) trial_status_label = QLabel('Trial Status:') self.trial_status = QComboBox() self.trial_status.addItems(self.TRIAL_STATUS) self.trial_status.setFocusPolicy(Qt.NoFocus) response_label = QLabel('Response:') self.response_box = QComboBox() self.response_box.setFocusPolicy(Qt.NoFocus) self.record_button = QPushButton('Record Event') self.record_button.clicked.connect(self.record_event) self.record_button.setEnabled(False) self.record_button.setFocusPolicy(Qt.NoFocus) layout = QHBoxLayout() layout.addWidget(trial_label) layout.addWidget(self.trial_box) layout.addWidget(trial_status_label) layout.addWidget(self.trial_status) layout.addWidget(response_label) layout.addWidget(self.response_box) layout.addStretch() layout.addWidget(self.record_button) self.setLayout(layout) def set_responses(self, responses): self.response_box.clear() self.response_box.addItems(responses) def record_event(self): event = Event(trial=self.trial_box.value(), status=self.trial_status.currentText() == 'on', response=self.response_box.currentText()) if self.trial_status.currentText() == 'off': self.trial_box.setValue(self.trial_box.value() + 1) self.trial_status.setCurrentText('on') self.callback(event) class LogTable(QTableWidget): class Labels: Code = ('Trial #', 'Trial Status', 'Response', 'Time Code') Prescreen1 = ('Trial #', 'PS 1 Code?', 'PS 1 Reason?') Prescreen2 = ('Trial #', 'PS 2 Code?', 'PS 2 Reason?') Prescreen12 = ('Trial #', 'PS 1 Code?', 'PS 1 Reason?', 'PS 2 Code?', 'PS 2 Reason?') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.verticalHeader().setVisible(False) self.setSelectionBehavior(QTableWidget.SelectRows) self.setFocusPolicy(Qt.NoFocus) self.setVerticalScrollMode(self.ScrollPerPixel) self.data = [] # list of iterables def keyPressEvent(self, event: QtGui.QKeyEvent): """Add repaint call to address failure to repaint on MacOS when using arrows to navigate past top or bottom of the logtable. """ super().keyPressEvent(event) self.repaint() def add_entry(self, entry): """ Append an entry to the table data and to the table""" self.data.append(entry) self._add_row(entry) self.repaint() def _add_row(self, entry): # Add a row to the table, given an iterable new_row = self.rowCount() self.setRowCount(new_row + 1) for col, v in enumerate(entry): item = QTableWidgetItem(str(v)) item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable) # Do not want ItemIsEditable self.setItem(new_row, col, item) def load_data(self, data): self.data = data # update table from self.data self.setRowCount(0) for entry in self.data: self._add_row(entry) def redden_selected(self): for item in self.selectedItems(): item.setForeground(Qt.red) def redden_rows(self, rows): for r in rows: for c in range(self.columnCount()): self.item(r, c).setForeground(Qt.red) def delete_selected(self): """Delete selected rows""" deleted_rows = [] for row in reversed(range(self.rowCount())): if self.item(row, 0).isSelected(): self.data.pop(row) self.removeRow(row) deleted_rows.append(row) self.repaint() return deleted_rows def increment_selected(self): """Increment the value in the first cell of selected rows""" for row in range(self.rowCount()): if self.item(row, 0).isSelected(): self.data[row][0] += 1 self.item(row, 0).setText(str(self.data[row][0])) def decrement_selected(self): """Decrement the value in the first cell of selected rows""" for row in range(self.rowCount()): if self.item(row, 0).isSelected(): self.data[row][0] -= 1 self.item(row, 0).setText(str(self.data[row][0])) def has_selection(self): return len(self.selectedItems()) > 0 def selected_rows(self): # Return rows as dictionary with the keys the row numbers # and the values the text of the first cell in the row rows = {} for row in range(self.rowCount()): if self.item(row, 0).isSelected(): rows[row] = self.item(row, 0).text() return rows def select_rows(self, rows): """Select rows in the table specified as keys in a dictionary""" first = True for r in rows: for c in range(self.columnCount()): if self.item(r, c): self.item(r, c).setSelected(True) if first: self.setCurrentCell(r, 0) first = False def set_code_labels(self): self.set_labels(self.Labels.Code) def set_prescreen_labels(self, ps): if ps == 0: self.set_labels(self.Labels.Prescreen12) elif ps == 1: self.set_labels(self.Labels.Prescreen1) elif ps == 2: self.set_labels(self.Labels.Prescreen2) def set_labels(self, labels): self.setColumnCount(len(labels)) self.setHorizontalHeaderLabels(labels) def scroll_to_row(self, row): # scrolling to the item doesn't work very well for the last item, so scrollToBottom instead if row == self.rowCount() - 1: self.scrollToBottom() else: self.scrollToItem(self.item(row, 0), self.PositionAtCenter) def copy_selection(self): # copy text from selected rows, or if no rows are selected, the entire table, to the clipboard rows = [] if self.has_selection(): for r in self.selected_rows(): rows.append('\t'.join([self.item(r, c).text() for c in range(self.columnCount())])) else: for r in range(self.rowCount()): rows.append('\t'.join([self.item(r, c).text() for c in range(self.columnCount())])) app = QApplication.instance() app.clipboard().setText('\n'.join(rows))
[ "rholson1@wisc.edu" ]
rholson1@wisc.edu
c18c6a803556cb3d4779e0ae99b912b6b15ebaa3
c960fe2d453043123db739cc3e5521231fb028d4
/units/models.py
eb93e96017ad4d60f34e7d7a0b849971baa4616d
[]
no_license
RaphaelQuem/bitsweet
d74590c366219161c911d21aa05dedf0de258766
66e90177544e0754a1dcc71409f16163e530b92f
refs/heads/master
2020-09-01T22:19:01.012848
2019-11-12T18:36:56
2019-11-12T18:36:56
219,073,139
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
from django.db import models class MeasurementUnit(models.Model): unit_id = models.AutoField(primary_key=True) unit_name = models.CharField(max_length=100, null=False) unit_abbreviation = models.CharField(max_length=10,null=True) def __str__(self): return self.unit_name
[ "raphzmaia@gmail.com" ]
raphzmaia@gmail.com
199a343f605d4cb6ba0cf1a2b56902993154ff5d
24e7e0dfaaeaca8f911b40fcc2937342a0f278fd
/venv/Lib/site-packages/toolz/recipes.py
89de88db2b46d9a50231ffdf18aa0aa280f051f0
[ "MIT" ]
permissive
BimiLevi/Covid19
90e234c639192d62bb87364ef96d6a46d8268fa0
5f07a9a4609383c02597373d76d6b6485d47936e
refs/heads/master
2023-08-04T13:13:44.480700
2023-08-01T08:36:36
2023-08-01T08:36:36
288,455,446
1
0
MIT
2021-01-22T19:36:26
2020-08-18T12:53:43
HTML
UTF-8
Python
false
false
1,256
py
import itertools from .itertoolz import frequencies, pluck, getter __all__ = ('countby', 'partitionby') def countby(key, seq): """ Count elements of a collection by a key function >>> countby(len, ['cat', 'mouse', 'dog']) {3: 2, 5: 1} >>> def iseven(x): return x % 2 == 0 >>> countby(iseven, [1, 2, 3]) # doctest:+SKIP {True: 1, False: 2} See Also: groupby """ if not callable(key): key = getter(key) return frequencies(map(key, seq)) def partitionby(func, seq): """ Partition a sequence according to a function Partition `s` into a sequence of lists such that, when traversing `s`, every time the output of `func` changes a new list is started and that and subsequent items are collected into that list. >>> is_space = lambda c: c == " " >>> list(partitionby(is_space, "I have space")) [('I',), (' ',), ('h', 'a', 'v', 'e'), (' ',), ('s', 'p', 'a', 'c', 'e')] >>> is_large = lambda x: x > 10 >>> list(partitionby(is_large, [1, 2, 1, 99, 88, 33, 99, -1, 5])) [(1, 2, 1), (99, 88, 33, 99), (-1, 5)] See also: partition groupby itertools.groupby """ return map(tuple, pluck(1, itertools.groupby(seq, key=func)))
[ "50989568+BimiLevi@users.noreply.github.com" ]
50989568+BimiLevi@users.noreply.github.com
66106037a9117fd9b932a27781f87dc77cf935c9
4afd23a55aad4634db84969f8019eabee7cfa27e
/restaurant/user/migrations/0001_initial.py
6a26f973f322015ce03ae345861273b9ad65af92
[]
no_license
fdfdd12345628/uidd2019_restaurant
bb8d9ac72acb047c347cf04567c733d3ced3ac1d
3768fbbcaf419ea72661b93b58d5494387e1ab7e
refs/heads/master
2020-05-02T04:40:15.601828
2019-07-09T04:00:25
2019-07-09T04:00:25
177,755,308
0
0
null
null
null
null
UTF-8
Python
false
false
3,625
py
# Generated by Django 2.1.7 on 2019-04-15 17:42 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
[ "fdfdd12345628@gmail.com" ]
fdfdd12345628@gmail.com
707fff8e60eb4a656961574d96ad9a1c5683f7e3
f8fbdd49b3af8cd159fab32f5af6f35f6d8a38a6
/jeevih14.py
92fc8ed1f5ba1fb91d865c139ae6c14d126a8354
[]
no_license
JEEVITHAVIJAYAN/jeeviv
f2e8393f2a8d45eb781ff054127f561183ac45cc
0c6e34788528feeb0d124ef92d6e8e3702563685
refs/heads/master
2020-07-04T15:03:20.293758
2019-08-14T10:37:07
2019-08-14T10:37:07
202,319,885
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
#h from itertools import permutations p=input() q=permutations(p) r=[] for i in list(q): s="".join(i) if s not in r: r.append(s) for i in r: print(i)
[ "noreply@github.com" ]
JEEVITHAVIJAYAN.noreply@github.com