blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
b6d33955bebbc64147d3979731aa39d330a4225c
5b3d819753ad2b2b2ec1e7a47a1e8e15ad9f191d
/src/classifiers.py
810dfde902fa1f2f5817e3c1fc90df978af8cab2
[]
no_license
dmelis/interpretwoe
517d48f959fb1a9a54619c681a4762fc9282f3be
3debdf583ca2771627d390fec6fcfc1b547d4de0
refs/heads/master
2023-08-31T04:45:04.119795
2021-10-20T16:01:51
2021-10-20T16:01:51
144,336,557
5
0
null
null
null
null
UTF-8
Python
false
false
664
py
import sklearn.naive_bayes import sklearn.ensemble from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score import pickle as pkl def factory(dataset, model_type, load_trained=False): if not load_trained: if dataset == 'boston' and model_type == 1: classifier = sklearn.naive_bayes.GaussianNB() if dataset == 'online_news' and model_type == 2: classifier = sklearn.ensemble.RandomForestClassifier(n_estimators=100) else: if dataset == 'online_news' and model_type == 2: classifier = pkl.load( open('../models/userstudy/news_classifier.pkl', 'rb')) return classifier
[ "dalvmel@mit.edu" ]
dalvmel@mit.edu
49240bb2697840e83be185607f3e0edbe71c7580
d40343711cd7af3e466d89785cb0f43f687f58d8
/Leetcode/Minimum_Numbers_of_Function_Calls_to_Make.py
eb8c37f5d941da5ded624f1cb7e34cbe9336ecda
[]
no_license
Ashoksugu7/DSA
d0cd8708afa5f259646a028dc907a673ef694acf
b3963727d0cbc13e9b642e0a1a141d92d2a485df
refs/heads/master
2023-02-25T20:39:50.458716
2021-01-24T18:01:38
2021-01-24T18:01:38
281,011,744
0
0
null
null
null
null
UTF-8
Python
false
false
2,033
py
""" Minimum Numbers of Function Calls to Make Target Array User Accepted:0 User Tried:0 Total Accepted:0 Total Submissions:0 Difficulty:Medium Your task is to form an integer array nums from an initial array of zeros arr that is the same size as nums. Return the minimum number of function calls to make nums from arr. The answer is guaranteed to fit in a 32-bit signed integer. Example 1: Input: nums = [1,5] Output: 5 Explanation: Increment by 1 (second element): [0, 0] to get [0, 1] (1 operation). Double all the elements: [0, 1] -> [0, 2] -> [0, 4] (2 operations). Increment by 1 (both elements) [0, 4] -> [1, 4] -> [1, 5] (2 operations). Total of operations: 1 + 2 + 2 = 5. Example 2: Input: nums = [2,2] Output: 3 Explanation: Increment by 1 (both elements) [0, 0] -> [0, 1] -> [1, 1] (2 operations). Double all the elements: [1, 1] -> [2, 2] (1 operation). Total of operations: 2 + 1 = 3. Example 3: Input: nums = [4,2,5] Output: 6 Explanation: (initial)[0,0,0] -> [1,0,0] -> [1,0,1] -> [2,0,2] -> [2,1,2] -> [4,2,4] -> [4,2,5](nums). Example 4: Input: nums = [3,2,2,4] Output: 7 Example 5: Input: nums = [2,4,8,16] Output: 8 Constraints: 1 <= nums.length <= 10^5 0 <= nums[i] <= 10^9 """ class Solution: def alleven(self, nums): temp=True for i in range(len(nums)): if nums[i] %2 !=0: return False return temp def minOperations(self, nums): count=0 n=len(nums) zero_num=[0]*n print(nums) while(zero_num != nums): for i in range(n): if nums[i]%2 ==1 and nums[i]!=0 and zero_num != nums: nums[i]-=1 count+=1 print(nums, count) if self.alleven(nums) and zero_num != nums: nums=[ int(i/2) for i in nums] count+=1 print(nums, count) return count obj=Solution() print(obj.minOperations([2,4,8,16]))
[ "realsugu@gmail.com" ]
realsugu@gmail.com
32a3ad79591182c9ba50204847a810b156de646f
87914d69a6e13f83cae06e96567b5b99499fd407
/gamse/pipelines/common.py
dce153f4876ac9e00dfa4e8b65babfe1ea17d05f
[ "Apache-2.0" ]
permissive
wangleon/gamse
10c38c0bbd44c2342e54e789d5eb7568f7c0c920
eda4c82fc304485b08fdb931b3acdbbb75a67e85
refs/heads/master
2023-06-15T23:05:20.990993
2023-06-08T02:46:47
2023-06-08T02:46:47
113,046,520
10
2
Apache-2.0
2023-06-08T02:46:48
2017-12-04T13:32:14
Python
UTF-8
Python
false
false
5,556
py
import os import re import time import configparser import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as tck from ..utils.obslog import read_obslog def load_config(pattern, verbose=True): """Load the config file. Args: pattern (str): verbose (bool): Returns: config """ # load config files config = configparser.ConfigParser( inline_comment_prefixes = (';','#'), interpolation = configparser.ExtendedInterpolation(), ) # find local config file for fname in os.listdir(os.curdir): if re.match(pattern, fname): config.read(fname) if verbose: message = 'Load congfig file: "{}"'.format(fname) print(message) break return config def load_obslog(pattern, fmt='obslog', verbose=True): """Find and read the observing log file. Args: pattern (str): Pattern of the filename of observing log. fmt (str): verbose (bool): Returns: :class:`astropy.io.Table`: Observing log table. """ # find observing log in the current workin gdirectory logname_lst = [fname for fname in os.listdir(os.curdir) if re.match(pattern, fname)] if len(logname_lst)==0: print('No observation log found') return None elif len(logname_lst)==1: select_logname = logname_lst[0] elif len(logname_lst)>1: nlog = len(logname_lst) # maximum length of log filename maxlen = max([len(logname) for logname in logname_lst]) # maximum length of log number maxdgt = len(str(nlog)) fmt_string = (' - [{{:{:d}d}}] {{:{:d}s}} ' 'Last modified in {{:s}}').format(maxdgt, maxlen) # build a list of (filename, modified time) nametime_lst = [(logname, os.path.getmtime(logname)) for logname in logname_lst] # sort with last modified time nametime_lst = sorted(nametime_lst, key=lambda v:v[1]) # print lognames one by one for i, (logname, mtime) in enumerate(nametime_lst): t = time.localtime(mtime) time_str = '{0:02d}-{1:02d}-{2:02d} {3:02d}:{4:02d}:{5:02d}'.format( *t) print(fmt_string.format(i, logname, time_str)) # repeat the loop until user give a valid logname ID while(True): string = input('Select an observing log: ') if string.isdigit() and int(string) < nlog: select_logname = nametime_lst[int(string)][0] break elif len(string.strip())==0: print('Warning: no logfile selected') else: print('Warning: {} is not a valid log ID'.format(string)) else: pass if verbose: message = 'Load obslog file: "{}"'.format(select_logname) print(message) logtable = read_obslog(select_logname, fmt=fmt) return logtable def plot_spectra1d(): """Plot 1d spectra. """ config = read_config('') obslog_file = find_log(os.curdir) log = read_log(obslog_file) section = config['data'] midproc = section['midproc'] report = section['report'] steps_string = config['reduction']['steps'] step_lst = steps_string.split(',') suffix = config[step_lst[-1].strip()]['suffix'] image_path = 'images' if not os.path.exists(image_path): os.mkdir(image_path) color_lst = 'rgbcmyk' for item in log: if item.imagetype == 'sci': filename = os.path.join(midproc, '%s%s.fits'%(item.fileid, suffix)) if not os.path.exists(filename): continue data = fits.getdata(filename) omin = data['order'].min() omax = data['order'].max() order_lst = np.arange(omin, omax+1) for io, order in enumerate(order_lst): if io%10 == 0: fig = plt.figure(figsize=(14.14,10), dpi=150) ax = fig.add_axes([0.055+(io%2)*0.50, 0.06 + (4-int((io%10)/2.))*0.188, 0.43, 0.16]) wavemin, wavemax = 1e9, 0 channels = sorted(np.unique(data['channel'])) for ich, channel in enumerate(channels): mask1 = (data['channel']==channel) mask2 = (data['order']==order) mask = mask1*mask2 if mask.sum()==0: continue row = data[mask][0] wave = row['wavelength'] flux = row['flux'] color = color_lst[ich%7] ax.plot(wave, flux, color+'-', lw=0.7, alpha=0.7) wavemin = min(wavemin, wave.min()) wavemax = max(wavemax, wave.max()) ax.set_xlabel(u'Wavelength (\xc5)') x1, x2 = wavemin, wavemax y1, y2 = ax.get_ylim() ax.text(0.97*x1+0.03*x2, 0.8*y2, 'Order %d'%order) ax.set_xlim(x1, x2) ax.set_ylim(0, y2) if io%10 == 9: fig.savefig(os.path.join(image_path, 'spec_%s_%02d.png'%(item.fileid, int(io/10.)))) plt.close(fig) fig.savefig(os.path.join(image_path, 'spec_%s_%02d.png'%(item.fileid, int(io/10.)))) plt.close(fig)
[ "wang.leon@gmail.com" ]
wang.leon@gmail.com
162ac1a38bcb646310eea02176cfec098ea658c5
31beaa6ffbfa80b1dfcc6e863a127d30366c716d
/online_trajectory_process/scripts/downsampling_interpolation_process.py
e192cc7af9e86ec03fb849e0777ce643de078852
[]
no_license
ThanasisTs/trajectory_process_utils
26492b3050839cc4968c413e82ea63acaa2efe18
6f7c538f75bfac71f74c2e01afb3b082646b7e07
refs/heads/master
2023-03-11T23:14:41.341566
2021-03-03T16:18:13
2021-03-03T16:18:13
258,867,312
2
0
null
null
null
null
UTF-8
Python
false
false
5,776
py
#!/usr/bin/env python import rospy from geometry_msgs.msg import Point from geometry_msgs.msg import PointStamped from keypoint_3d_matching_msgs.msg import Keypoint3d_list import math import numpy as np from scipy.spatial import distance x, y, z = [], [], [] xRaw, yRaw, zRaw = [], [], [] xV_tmp, yV_tmp, zV_tmp = [], [], [] pub, pub_stamp = None, None ds_thres = 0.012 ip_thres = 0.024 start_flag = False end_flag = False init_point = True start_threshold = 24 count = 0 sum_time = 0 num_points = 0 times = [] init_point = True count_points = [] count_inter = 0 time_debug = {} timestamp = None x_init, y_init, z_init = [], [], [] num_points_std, std_threshold = None, None outlier_dis = None # Interpolate points in the line segment between p1 and p2 def interpolation(p1, p2, dis, dur): global timestamp, x, y, z, ds_thres, pub, num_points, count_inter, outlier_dis num_inter_points = dis//ds_thres pub_rate = dur/(num_inter_points+1) # rospy.loginfo("Num of points %d"%num_inter_points) rospy.loginfo("Duration and number of points and pub rate: %f %d %f"%(dur, num_points, pub_rate)) # rospy.loginfo("Duration and fake Duration %f %f"%(dur, num_points*0.047)) # pub_rate = (num_points+1)*0.047/(num_inter_points) try: time_inter = np.linspace(times[-1], timestamp, num_inter_points) except Exception as e: rospy.loginfo(e) for index, i in enumerate(np.linspace(0,1,num_inter_points + 1)): if i==0 or i==1: continue x.append((1-i)*p1[0] + i*p2[0]) y.append((1-i)*p1[1] + i*p2[1]) z.append((1-i)*p1[2] + i*p2[2]) times.append(time_inter[index]) point = PointStamped() point.point.x = (1-i)*p1[0] + i*p2[0] point.point.y = (1-i)*p1[1] + i*p2[1] point.point.z = (1-i)*p1[2] + i*p2[2] rospy.sleep(pub_rate) pub.publish(point) def callback(data): global timestamp, init_point, times, num_points, sum_time, x, y, z, xRaw, yRaw, zRaw, xV_tmp, yV_tmp, zV_tmp, start_threshold, ds_thres, ip_thres, init_point, end_flag, start_flag, count global x_init, y_init, z_init, num_points_std, std_threshold start_time = rospy.get_time() # Get RWrist keypoint for i in range(len(data.keypoints)): if (data.keypoints[i].name == "RWrist"): x_tmp = data.keypoints[i].points.point.x y_tmp = data.keypoints[i].points.point.y z_tmp = data.keypoints[i].points.point.z timestamp = data.keypoints[i].points.header.stamp.to_sec() if len(x_init) >= 1 and abs(x_init[-1]-x_tmp) < outlier_dis and abs(y_init[-1]-y_tmp) < outlier_dis and abs(z_init[-1]-z_tmp) < outlier_dis: x_init.append(x_tmp) y_init.append(y_tmp) z_init.append(z_tmp) elif len(x_init) == 0: x_init.append(x_tmp) y_init.append(y_tmp) z_init.append(z_tmp) count_points.append(count) count += 1 # Average the 15 first points to get the first point # in order to avoid the case where the first point is outlier if init_point and len(x_init) == 15: point = PointStamped() point.point.x = np.mean(x_init) point.point.y = np.mean(y_init) point.point.z = np.mean(y_init) pub.publish(point) init_point = False rospy.loginfo("Published initial point") if not init_point: if not end_flag: # Check for outliers or zeros (invalid trajectory points) if x_tmp != 0 and y_tmp != 0 and z_tmp != 0: if len(xRaw) == 0 or (len(xRaw) >= 1 and abs(xRaw[-1] - x_tmp) < outlier_dis and abs(yRaw[-1] - y_tmp) < outlier_dis and abs(zRaw[-1] - z_tmp) < outlier_dis): xRaw.append(x_tmp) yRaw.append(y_tmp) zRaw.append(z_tmp) if len(xV_tmp) == start_threshold: del xV_tmp[0] del yV_tmp[0] del zV_tmp[0] xV_tmp.append(x_tmp) yV_tmp.append(y_tmp) zV_tmp.append(z_tmp) if len(xV_tmp) >= 2: std_x = np.std(xV_tmp) std_y = np.std(yV_tmp) std_z = np.std(zV_tmp) if (not start_flag) and (std_x > std_threshold or std_y > std_threshold or std_z > std_threshold): print("Start movement at sample %d" %count) start_flag = True # If motion has started, check if there is a need to downsample # the points (high points density) or interpolate points (sparse points) if start_flag: if len(x) == 0: x.append(x_tmp) y.append(y_tmp) z.append(z_tmp) times.append(timestamp) time_debug[count] = timestamp point = PointStamped() point.point.x = x_tmp point.point.y = y_tmp point.point.z = z_tmp pub.publish(point) else: dis = distance.euclidean(list(zip(x, y, z))[-1], [x_tmp, y_tmp, z_tmp]) if dis > ds_thres: if dis < ip_thres: x.append(x_tmp) y.append(y_tmp) z.append(z_tmp) times.append(timestamp) point = PointStamped() point.point.x = x_tmp point.point.y = y_tmp point.point.z = z_tmp time_debug[count] = timestamp pub.publish(point) else: interpolation(list(zip(x, y, z))[-1], [x_tmp, y_tmp, z_tmp], dis, timestamp-times[-1]) num_points = 0 end_time = rospy.get_time() sum_time += end_time - start_time else: num_points += 1 # print (num_points) def movement_detection_node(): global pub, std_threshold, num_points_std, outlier_dis rospy.init_node("movement_detection_downsampling_node") num_points_std = rospy.get_param('trajectory_process/num_points_std', 25) std_threshold = rospy.get_param('trajectory_process/std_threshold', 0.01) outlier_dis = rospy.get_param("raw_poitns/outlier_dis", 0.1) pub = rospy.Publisher("trajectory_points", PointStamped, queue_size=10, latch=True) sub = rospy.Subscriber("transform_topic", Keypoint3d_list, callback) rospy.spin() if __name__ == "__main__": movement_detection_node()
[ "thtsitos@gmail.com" ]
thtsitos@gmail.com
55bd083fb1dc1c3a0325dd006dbf44eb622be8ef
c6f260cc6aa09647fae97d344a375ddf28bfe839
/orgs/views.py
54ea027b0465550810960cc318b238412295de86
[ "MIT" ]
permissive
jpaav/comm
573f36bea67297ab0b1d060947d939acede1c894
514d62b8c3ed301dee559538825ad8f253e25fc8
refs/heads/master
2020-03-19T12:59:48.104353
2018-06-28T22:57:42
2018-06-28T22:57:42
136,554,741
0
0
null
null
null
null
UTF-8
Python
false
false
11,114
py
from django.contrib.auth.models import User from django.contrib.sites.shortcuts import get_current_site from django.http import HttpResponse from django.shortcuts import render, redirect from django.utils.encoding import force_text, force_bytes from django.utils.http import urlsafe_base64_decode, urlsafe_base64_encode from comm import settings from orgs.forms import CreateOrgForm, CreateTagForm, CreateResidentForm, UpdateTagForm, UpdateResidentForm from orgs.models import Org from orgs.tokens import join_org_token from patientlog.models import Log, Tag, Resident def org(request, org_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) if request.user not in org.members.all(): return render(request, 'accounts/not_authorized.html') if request.user == org.owner: uid = urlsafe_base64_encode(force_bytes(org.pk)) token = join_org_token.make_token(org) return render(request, 'orgs/org.html', {'org': org, 'uid': uid, 'token': token, 'domain': get_current_site(request).domain}) return render(request, 'orgs/org.html', {'org': org}) def create_org(request): if not request.user.is_authenticated(): return redirect('/login/') if request.method == 'GET': form = CreateOrgForm() else: form = CreateOrgForm(request.POST) if form.is_valid(): org = form.save(commit=False) org.owner = request.user org.save() return redirect('/orgs/') return render(request, 'orgs/create_org.html', {'form': form}) def org_dash(request): if not request.user.is_authenticated(): return redirect('/login/') approved_orgs = Org.objects.filter(members=request.user) unapproved_orgs = Org.objects.filter(unapproved=request.user) return render(request, 'orgs/org_dash.html', {'approved_orgs': approved_orgs, 'unapproved_orgs': unapproved_orgs}) def get_form_kwargs(self): kwargs = super(self).get_form_kwargs() kwargs.update({'org': Org()}) return kwargs def logs(request, org_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) if request.user not in org.members.all(): return render(request, 'accounts/not_authorized.html') logs = Log.objects.filter(org=org) if logs.count() == 1 and settings.SIMPLE_UI: return redirect('/logs/' + str(logs.first().id)) return render(request, 'orgs/logs.html', {'logs': logs}) def tags(request, org_id): if not request.user.is_authenticated(): return redirect('/login/') org = Org.objects.get(pk=org_id) if not request.user == org.owner: return render(request, 'accounts/not_authorized.html') tags = Tag.objects.filter(org=org) if request.method == 'GET': create_form = CreateTagForm() else: create_form = CreateTagForm(request.POST) if create_form.is_valid(): tag = create_form.save(commit=False) tag.org = org tag.save() return render(request, 'orgs/tags.html', {'create_form': create_form, 'tags': tags}) def residents(request, org_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) residents = Resident.objects.filter(org=org) if request.user not in org.members.all(): return render(request, 'accounts/not_authorized.html') if request.method == 'GET': create_form = CreateResidentForm(org=org) else: create_form = CreateResidentForm(request.POST, org=org) if create_form.is_valid(): resident = create_form.save(commit=False) resident.org = org resident.save() for advocate in create_form.cleaned_data['advocates']: resident.advocates.add(advocate) return redirect('/orgs/' + str(org_id) + '/residents/' + str(resident.id)) return render(request, 'orgs/residents.html', {'create_form': create_form, 'residents': residents}) def join(request, uidb64, token): if not request.user.is_authenticated(): return redirect('/login/') # Tries to decode the uid and use it as a key to find a user try: uid = force_text(urlsafe_base64_decode(uidb64)) org = Org.objects.get(pk=uid) # Catches if the activation link is bad except(TypeError, ValueError, OverflowError, Org.DoesNotExist): org = None if org.unapproved.filter(pk=request.user.id).exists(): return HttpResponse('You are already unapproved for this organization.') if org.members.filter(pk=request.user.id).exists(): return HttpResponse('You are already a member for this organization.') if org is not None and join_org_token.check_token(org, token): # Adds current user to org org.unapproved.add(request.user) return render(request, 'orgs/join_confirmed.html', {'org_name': org.name}) else: return HttpResponse('Activation link is invalid!') def approve(request, org_id, user_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) try: user = User.objects.get(pk=user_id) except User.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'user'}) if request.user == org.owner: if org.unapproved.get(pk=user_id) is not None: org.unapproved.remove(user) org.members.add(user) return redirect('/orgs/' + str(org_id)) else: return render(request, 'accounts/not_authorized.html') def residents_detail(request, org_id, res_id): if not request.user.is_authenticated(): return redirect('/login/') org = Org.objects.get(pk=org_id) try: detail = Resident.objects.get(pk=res_id) except Resident.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'resident'}) residents = Resident.objects.filter(org=org) if request.method == 'GET': create_form = CreateResidentForm(org=org) update_form = UpdateResidentForm( initial={ 'name': detail.name, 'room': detail.room, 'timestamp_admitted': detail.timestamp_admitted, 'timestamp_left': detail.timestamp_left, 'advocates': detail.advocates.all(), }, org=org ) else: create_form = CreateResidentForm(request.POST, org=org) update_form = UpdateResidentForm(request.POST, org=org) if update_form.is_valid(): update = update_form.save(commit=False) detail.name = update['name'] detail.room = update['room'] detail.timestamp_admitted = update['timestamp_admitted'] detail.timestamp_left = update['timestamp_left'] detail.save() detail.residents.clear() for advocate in update_form.cleaned_data['advocates']: detail.advocates.add(advocate) return redirect('/orgs/' + str(org_id) + '/residents/' + str(res_id)) if create_form.is_valid(): resident = create_form.save(commit=False) resident.org = org resident.save() for advocate in create_form.cleaned_data['advocates']: resident.advocates.add(advocate) return redirect('/orgs/' + str(org_id) + '/residents/' + str(res_id)) return render(request, 'orgs/residents.html', {'create_form': create_form, 'update_form': update_form, 'residents': residents, 'detail': detail}) def residents_delete(request, org_id, res_id): if not request.user.is_authenticated(): return redirect('/login/') org = Org.objects.get(pk=org_id) if not request.user == org.owner: return render(request, 'accounts/not_authorized.html') try: resident = Resident.objects.get(pk=res_id) resident.delete() except Resident.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'resident'}) return redirect('/orgs/' + str(org_id) + '/residents/') def tags_delete(request, org_id, tag_id): if not request.user.is_authenticated(): return redirect('/login/') org = Org.objects.get(pk=org_id) if not request.user == org.owner: return render(request, 'accounts/not_authorized.html') try: tag = Tag.objects.get(pk=tag_id) tag.delete() except Tag.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'tag'}) return redirect('/orgs/' + str(org_id) + '/tags/') def tags_detail(request, org_id, tag_id): if not request.user.is_authenticated(): return redirect('/login/') org = Org.objects.get(pk=org_id) if not request.user == org.owner: return render(request, 'accounts/not_authorized.html') try: detail = Tag.objects.get(pk=tag_id) except Tag.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'resident'}) tags = Tag.objects.filter(org=org) if request.method == 'GET': create_form = CreateTagForm() update_form = UpdateTagForm( initial={ 'title': detail.title, 'color': detail.color, 'importance': detail.importance, 'should_email': detail.should_email } ) else: create_form = CreateTagForm(request.POST) update_form = UpdateTagForm(request.POST) if update_form.is_valid(): update = update_form.save(commit=False) detail.title = update.title detail.color = update.color detail.importance = update.importance detail.should_email = update.should_email detail.save() return redirect('/orgs/' + str(org_id) + '/tags/' + str(tag_id)) if create_form.is_valid(): tag = create_form.save(commit=False) tag.org = org tag.save() return redirect('/orgs/' + str(org_id) + '/tags/' + str(tag_id)) return render(request, 'orgs/tags.html', {'create_form': create_form, 'update_form': update_form, 'tags': tags, 'detail': detail}) def unapprove(request, org_id, user_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) try: user = User.objects.get(pk=user_id) except User.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'user'}) if request.user == org.owner: if org.members.get(pk=user_id) is not None: org.members.remove(user) org.unapproved.add(user) return redirect('/orgs/' + str(org_id)) else: return render(request, 'accounts/not_authorized.html') def remove_unapproved(request, org_id, user_id): if not request.user.is_authenticated(): return redirect('/login/') try: org = Org.objects.get(pk=org_id) except Org.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'org'}) try: user = User.objects.get(pk=user_id) except User.DoesNotExist: return render(request, 'patientlogs/object_does_not_exist.html', {'obj_type': 'user'}) if request.user == org.owner: if org.unapproved.get(pk=user_id) is not None: org.unapproved.remove(user) return redirect('/orgs/' + str(org_id)) else: return render(request, 'accounts/not_authorized.html')
[ "joepaavola@gmail.com" ]
joepaavola@gmail.com
423ad321a753ab4c0c03d697b64e240e9e2d244e
d898284595e462f0f06e9439b9cead382497be06
/dumpcomputer/demo.py
527fd50a1a4dbbb231ab0e8072aa15c98bcec766
[]
no_license
yingjianjian/learner
d41cb2af76b5ab6973b652421c08f831dfa8431f
fc023e0adbabeaff952e521d5e87f46f2e080549
refs/heads/master
2020-12-30T10:49:28.197998
2017-08-01T03:08:11
2017-08-01T03:08:11
98,859,630
0
0
null
2017-08-01T03:08:11
2017-07-31T07:15:50
Python
UTF-8
Python
false
false
5,209
py
#!/usr/bin/env python #1 Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY #1 Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. import base64 from binascii import hexlify import getpass import os import select import socket import sys import time import traceback from paramiko.py3compat import input import paramiko import interactive def agent_auth(transport, username): """ Attempt to authenticate to the given transport using any of the private keys available from an SSH agent. """ agent = paramiko.Agent() agent_keys = agent.get_keys() if len(agent_keys) == 0: return for key in agent_keys: print('Trying ssh-agent key %s' % hexlify(key.get_fingerprint())) try: transport.auth_publickey(username, key) print('... success!') return except paramiko.SSHException: print('... nope.') def manual_auth(username, hostname,pw): '''default_auth = 'p' auth = input('Auth by (p)assword, (r)sa key, or (d)ss key? [%s] ' % default_auth) if len(auth) == 0: auth = default_auth if auth == 'r': default_path = os.path.join(os.environ['HOME'], '.ssh', 'id_rsa') path = input('RSA key [%s]: ' % default_path) if len(path) == 0: path = default_path try: key = paramiko.RSAKey.from_private_key_file(path) except paramiko.PasswordRequiredException: password = getpass.getpass('RSA key password: ') key = paramiko.RSAKey.from_private_key_file(path, password) t.auth_publickey(username, key) elif auth == 'd': default_path = os.path.join(os.environ['HOME'], '.ssh', 'id_dsa') path = input('DSS key [%s]: ' % default_path) if len(path) == 0: path = default_path try: key = paramiko.DSSKey.from_private_key_file(path) except paramiko.PasswordRequiredException: password = getpass.getpass('DSS key password: ') key = paramiko.DSSKey.from_private_key_file(path, password) t.auth_publickey(username, key) else: pw = getpass.getpass('Password for %s@%s: ' % (username, hostname))''' pw=base64.b64decode(pw) t.auth_password(username, pw) # setup logging paramiko.util.log_to_file('demo.log') username = '' if len(sys.argv) > 1: hostname = sys.argv[1] if hostname.find('@') >= 0: username, hostname = hostname.split('@') else: hostname = raw_input('Hostname: ') if len(hostname) == 0: print('*** Hostname required.') sys.exit(1) port = 22 if hostname.find(':') >= 0: hostname, portstr = hostname.split(':') port = int(portstr) # now connect try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((hostname, port)) except Exception as e: print('*** Connect failed: ' + str(e)) traceback.print_exc() sys.exit(1) try: t = paramiko.Transport(sock) try: t.start_client() except paramiko.SSHException: print('*** SSH negotiation failed.') sys.exit(1) try: keys = paramiko.util.load_host_keys(os.path.expanduser('~/.ssh/known_hosts')) except IOError: try: keys = paramiko.util.load_host_keys(os.path.expanduser('~/ssh/known_hosts')) except IOError: print('*** Unable to open host keys file') keys = {} # check server's host key -- this is important. key = t.get_remote_server_key() if hostname not in keys: print('*** WARNING: Unknown host key!') elif key.get_name() not in keys[hostname]: print('*** WARNING: Unknown host key!') elif keys[hostname][key.get_name()] != key: print('*** WARNING: Host key has changed!!!') sys.exit(1) else: print('*** Host key OK.') # get username ''' if username == '': default_username = getpass.getuser() username = input('Username [%s]: ' % default_username) if len(username) == 0: username = default_username''' username = sys.argv[2] password = sys.argv[3] author=sys.argv[4] agent_auth(t, username) if not t.is_authenticated(): manual_auth(username, hostname,password) if not t.is_authenticated(): print('*** Authentication failed. :(') t.close() sys.exit(1) chan = t.open_session() chan.get_pty() chan.invoke_shell() print('*** Here we go!\n') interactive.interactive_shell(chan,hostname,username,author) chan.close() t.close() except Exception as e: print('*** Caught exception: ' + str(e.__class__) + ': ' + str(e)) traceback.print_exc() try: t.close() except: pass sys.exit(1)
[ "root@vm33-ysj.(none)" ]
root@vm33-ysj.(none)
3c8caf718092e757093f24383c72c9fef8b37672
4d1437ba20e513c56aa3fc8b84946f15133370b9
/src/lcd_maker.py
6dd5aa6e23b93300dcae7b9b0e73b97fd832114e
[]
no_license
lvlarco/name_sign
ceba9df255915ecf02d53c01015a79a2edfa7eae
7814d784a06045267b20b66f516938458bd29c56
refs/heads/master
2021-06-27T20:12:08.059582
2020-10-07T20:18:49
2020-10-07T20:18:49
166,124,370
0
0
null
null
null
null
UTF-8
Python
false
false
2,263
py
import RPi.GPIO as GPIO import time from RPLCD.gpio import CharLCD import requests, json from pprint import pprint import harvesine as hv import fetch_weather as fw GPIO.setwarnings(False) #configure LCD and define GPIO mode cols = 16 rows = 2 gpio_mode = "BOARD" if gpio_mode == "BOARD": lcd = CharLCD(pin_rs = 19, pin_rw = None, pin_e = 16, pins_data = [21,18,23,24], numbering_mode = GPIO.BOARD, cols=cols, rows=rows, dotsize=8) else: lcd = CharLCD(pin_rs = 10, pin_rw = None, pin_e = 23, pins_data = [9,24,11,8], numbering_mode = GPIO.BCM) #define weather API access api_key = "19c2e8d2c714c0c7423d8126fe94224f" base_url = "https://api.openweathermap.org/data/2.5/weather?q=" city_name = "boston" units = "imperial" complete_url = base_url + city_name + "&units=" + units + "&appid=" + api_key response = requests.get(complete_url) x = response.json() wait_time = 3 # temperature = int(round(fw.fetch_weather(x))) # day_status = hv.day_status(temperature) temperature = "56" day_status = "hot" if units == "imperial": temp_units = " degrees F" else: temp_units = " degrees" #first screen message01 = "Weather forecast" message11 = "" pos01 = hv.center_cursor(message01, cols) pos11 = hv.center_cursor(message11, cols) #second screen message02 = str("It is so " + day_status) message12 = str("in " + city_name.capitalize() + " today") pos02 = hv.center_cursor(message02, cols) pos12 = hv.center_cursor(message12, cols) #third screen message03 = "We are at" message13 = "{0}{1}".format(str(temperature), temp_units) pos03 = hv.center_cursor(message03, cols) pos13 = hv.center_cursor(message13, cols) while True: lcd.clear() lcd.cursor_pos = (0, pos01) lcd.write_string(message01) lcd.cursor_pos = (1, pos11) lcd.write_string(message11) time.sleep(wait_time) lcd.clear() lcd.cursor_pos = (0, pos02) lcd.write_string("It is so " + day_status) lcd.cursor_pos = (1, pos12) lcd.write_string("in " + city_name.capitalize() + " today") time.sleep(wait_time) lcd.clear() lcd.cursor_pos = (0, pos03) lcd.write_string(message03) lcd.cursor_pos = (1, pos13) lcd.write_string(str(temperature) + temp_units) time.sleep(wait_time) lcd.close() GPIO.cleanup()
[ "marco.campos001@gmail.com" ]
marco.campos001@gmail.com
a18e9a1b42952ec22c0953b9bebd3e5d9d1bb746
cef31bc305699e6f9ac0afc318cf90b26d3f48c8
/venv/bin/pip3
737eff885dfa5acf709874cc64ba6931761bb05d
[]
no_license
nail1021734/apriori_algorithm
18bd31106b2210af2f180385f4eb74a3476d2457
8adbd11ed63ab205efff8ceaa4317184851dc52e
refs/heads/master
2023-01-04T10:39:51.651370
2020-10-24T13:11:05
2020-10-24T13:11:05
302,863,165
0
0
null
null
null
null
UTF-8
Python
false
false
257
#!/home/neil/Desktop/aprioi_algorithm/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "nail1021734@gmail.com" ]
nail1021734@gmail.com
0312f021af7a059e4433dda7db189643c71a65fc
5d72b2c36e2f5ef5aa53cb017bf93f53164d1cbd
/PCA.py
4d4bc52f1e3403944fca25fb4f7020545014e2ba
[]
no_license
artvive/Machine-Learning-basics
c87747a55391b263d86e506576b9556da6319a65
aa808a051232568e97a9060d97964069f4a3c44f
refs/heads/master
2021-01-11T17:19:45.970747
2017-04-22T17:00:04
2017-04-22T17:00:04
79,749,750
0
0
null
2017-04-22T17:00:05
2017-01-22T22:17:39
Python
UTF-8
Python
false
false
476
py
import numpy as np from scipy.linalg import eigh class PCA(object): """docstring for PCA""" def __init__(self, n_components=2): super(PCA, self).__init__() self.n_components = n_components def fit_transform(self, x): dim = x.shape[1] x = np.copy(x) x = x - np.mean(x, axis=0) cov = np.cov(x.transpose()) val, vect = eigh(cov, eigvals=(dim - self.n_components, dim - 1)) return np.matmul(x, vect)
[ "arthur.vive@student.ecp.fr" ]
arthur.vive@student.ecp.fr
9a831b0de04f242a14d0827843a05ec645d4709f
e7e497b20442a4220296dea1550091a457df5a38
/main_project/AdHot/feed_tpl_admin/feedtpladmin/model/applypublish.py
f8438691ee2721113ee4bb79595f504a3ae8cd6a
[]
no_license
gunner14/old_rr_code
cf17a2dedf8dfcdcf441d49139adaadc770c0eea
bb047dc88fa7243ded61d840af0f8bad22d68dee
refs/heads/master
2021-01-17T18:23:28.154228
2013-12-02T23:45:33
2013-12-02T23:45:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,159
py
from sqlalchemy import Column from sqlalchemy import types from sqlalchemy.types import Integer, String from feedtpladmin.model.meta import Base from sqlalchemy.sql.expression import text class ApplyPublish(Base): __tablename__ = "apply_publish" apply_id = Column(Integer, primary_key=True) stype_id = Column(Integer) version = Column(Integer) tpl_id = Column(Integer) pm_names = Column(String(128)) pm_emails = Column(String(128)) dev_names = Column(String(128)) dev_emails = Column(String(128)) publish_desc = Column(String(512)) apply_time = Column(types.TIMESTAMP()) status = Column(Integer) def __init__(self, apply_id, stype_id, version, tpl_id, pm_names, pm_emails, dev_names, dev_emails, publish_desc, status, apply_time): self.apply_id = apply_id self.stype_id = stype_id self.version = version self.tpl_id = tpl_id self.pm_names = pm_names self.pm_emails = pm_emails self.dev_names = dev_names self.dev_emails = dev_emails self.publish_desc = publish_desc self.status = status self.apply_time = apply_time def __repr__(self): return "<FeedKeys %s>" % (self.apply_id)
[ "liyong19861014@gmail.com" ]
liyong19861014@gmail.com
b3eef9bf297a294647d6016f103c422c4600ba40
07dfe52200c70ac0c8e86da1344a1e3284bf2164
/animeScript.py
939612ec3380e47e8480546fbc5f7b86cbf8a331
[]
no_license
kearnie/horriblesubs_book
934d7f3b6a31103f0f3496a09d88bbad2c00a347
b565649066b6a683321f907a0ae32034217667f9
refs/heads/master
2021-06-10T05:12:50.560320
2017-02-14T11:03:30
2017-02-14T11:03:30
72,269,805
1
0
null
null
null
null
UTF-8
Python
false
false
2,794
py
import subprocess import shutil import shlex import re import ass import os def takeSnapshots(fileName,ep): amountPerEp = 10 episodeTime = 20*60 ignoreTime = 60*3 interval = int((episodeTime - 2*ignoreTime)/amountPerEp - 0.01) base = "kearnie/screencaps/" extractTimes = [i for i in range(ignoreTime,episodeTime-ignoreTime,interval)] for i in range(len(extractTimes)): time = extractTimes[i] args = ["mpv","-ao","null","-sid","no","-ss",str(int(time)),"-frames","1","-vo","image", "--vo-image-format=png", fileName] try: subprocess.run(args) shutil.move("00000001.png",base + "%d.png" % (ep*amountPerEp+i)) except: print("fal") trackRegex = re.compile("mkvextract:\s(\d)") removeBrackets = regex = re.compile(".*?\((.*?)\}") def getSubtitleTracks(fileName): output = subprocess.check_output(["mkvinfo",fileName],universal_newlines=True).splitlines() currentTrack = None sub_tracks = [] for line in output: if "Track number:" in line: trackNumber = trackRegex.search(line).group(1) currentTrack = trackNumber if "S_TEXT/ASS" in line: sub_tracks.append(currentTrack) return sub_tracks def exportSRT(fileName, track): srtName = fileName + "-%s.srt" % track args = ["mkvextract", "tracks",fileName, "%s:%s" % (track,srtName)] subprocess.run(args) return srtName def cleanLine(line): newLine = "" inBracket = False lastBackSlash = False for c in line: if c == "{": inBracket = True elif c == "}": inBracket == False elif not inBracket: if c == "\\": lastBackSlash = True elif c != "N" or not lastBackSlash: newLine += c lastBackSlash = False return newLine def extractTextFromSubtitles(fileName): tracks = getSubtitleTracks(fileName) output = "" for track in tracks: srtName = exportSRT(fileName, track) lines = [] with open(srtName,"r") as f: doc = ass.parse(f) for event in doc.events: lines.append(cleanLine(event.text)) combined = "\n".join(lines) if "in" in combined or "to" in combined or "for" in combined: output += combined return output def extractFromFile(fileName,ep): os.makedirs("kearnie/screencaps/",exist_ok=True) text = extractTextFromSubtitles(fileName) with open("kearnie/subs.txt","a") as f: f.write(text) takeSnapshots(fileName,ep) def extractSeries(): ep = 0 for filename in os.listdir("."): if filename.endswith(".mkv"): extractFromFile(filename,ep) ep += 1 extractSeries()
[ "Kearnie Lin" ]
Kearnie Lin
7d5200dc07c4ab8e35337e63713f0a2e2b852c85
8778a5a8188e238d83264b65d04ec727147d9440
/auto_log/autolog.py
a31c30c25e94b080339d3c891cccb1f33e7e61b0
[]
no_license
RainFrost1/AutoLog
21bcb2e0a6b5e08225fd095f55c9d5986b12c65f
a1d1cf9b0e519601a48d047218c7a34525989fef
refs/heads/main
2023-06-20T08:57:51.051738
2021-07-20T03:30:40
2021-07-20T03:30:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,674
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import time import pynvml import psutil import GPUtil import os import paddle from pathlib import Path import logging from .env import get_env_info from .utils import Times from .device import MemInfo, SubprocessGetMem class RunConfig: def __init(self, run_devices="cpu", ir_optim=False, enable_tensorrt=False, enable_mkldnn=False, cpu_threads=0, enable_mem_optim=True): self.run_devices = run_devices self.ir_optim = ir_optim self.enable_mkldnn = enable_mkldnn self.enable_tensorrt = enable_tensorrt self.cpu_math_library_num_threads = self.cpu_threads self.enable_mem_optim = enable_mem_optim class AutoLogger(RunConfig): def __init__(self, model_name, model_precision, batch_size, data_shape, save_path, inference_config=None, pids=None, process_name=None, gpu_ids=None, time_keys=['preprocess_time', 'inference_time', 'postprocess_time'], warmup=0, logger=None, **kwargs): super(AutoLogger, self).__init__() self.autolog_version = 1.0 self.save_path = save_path self.model_name = model_name self.precision = model_precision self.batch_size = batch_size self.data_shape = data_shape self.paddle_infer_config = inference_config self.config_status = self.parse_config(self.paddle_infer_config) self.time_keys = time_keys self.times = Times(keys=time_keys,warmup=warmup) self.get_paddle_info() self.logger = self.init_logger() if logger is None else logger self.get_mem = SubprocessGetMem(pid=pids, gpu_id=gpu_ids) self.start_subprocess_get_mem() self.pids = pids self.gpu_ids = gpu_ids def start_subprocess_get_mem(self): self.get_mem.get_mem_subprocess_run(0.2) def end_subprocess_get_mem(self): self.get_mem.get_mem_subprocess_end() cpu_infos = self.get_mem.cpu_infos gpu_infos = self.get_mem.gpu_infos self.cpu_infos = cpu_infos[str(self.pids)] if self.gpu_ids is None: self.gpu_infos = {} else: self.gpu_infos = gpu_infos[str(self.gpu_ids)] return self.cpu_infos, self.gpu_infos def init_logger(self): """ benchmark logger """ # Init logger FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' log_output = f"{self.save_path}" if not os.path.exists(os.path.dirname(log_output)): os.makedirs(os.path.dirname(log_output)) logging.basicConfig( level=logging.INFO, format=FORMAT, handlers=[ logging.FileHandler( filename=log_output, mode='w'), logging.StreamHandler(), ]) logger = logging.getLogger(__name__) logger.info( f"Paddle Inference benchmark log will be saved to {log_output}") return logger def parse_config(self, config) -> dict: """ parse paddle predictor config args: config(paddle.inference.Config): paddle inference config return: config_status(dict): dict style config info """ config_status = {} config_status['runtime_device'] = "gpu" if config.use_gpu() else "cpu" config_status['ir_optim'] = config.ir_optim() config_status['enable_tensorrt'] = config.tensorrt_engine_enabled() config_status['precision'] = self.precision config_status['enable_mkldnn'] = config.mkldnn_enabled() config_status[ 'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads( ) return config_status def get_paddle_info(self): self.paddle_version = paddle.__version__ self.paddle_commit = paddle.__git_commit__ def report(self, identifier=None): #TODO: support multi-model report """ print log report args: identifier(string): identify log """ if identifier: identifier = f"[{identifier}]" else: identifier = "" # report time _times_value = self.times.value(key=self.time_keys, mode='mean') preprocess_time_ms = round(_times_value['preprocess_time'] * 1000, 4) inference_time_ms = round(_times_value['inference_time'] * 1000, 4) postprocess_time_ms = round(_times_value['postprocess_time'] * 1000, 4) data_num = self.times._num_counts() total_time_s = round(self.times._report_total_time(mode='sum'), 4) # report memory cpu_infos, gpu_infos = self.end_subprocess_get_mem() cpu_rss_mb = self.cpu_infos['cpu_rss'] gpu_rss_mb = self.gpu_infos['used'] if self.gpu_ids is not None else None gpu_util = self.gpu_infos['util'] if self.gpu_ids is not None else None # report env envs = get_env_info() self.logger.info("\n") self.logger.info( "---------------------- Env info ----------------------") # envs['nvidia_driver_version'] envs['cudnn_version']envs['cuda_version'] envs['os_info'] self.logger.info(f"{identifier} OS_version: {envs['os_info']}") self.logger.info(f"{identifier} CUDA_version: {envs['cuda_version']}") self.logger.info(f"{identifier} CUDNN_version: {envs['cudnn_version']}") self.logger.info(f"{identifier} drivier_version: {envs['nvidia_driver_version']}") self.logger.info( "---------------------- Paddle info ----------------------") self.logger.info(f"{identifier} paddle_version: {self.paddle_version}") self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}") self.logger.info(f"{identifier} log_api_version: {self.autolog_version}") self.logger.info( "----------------------- Conf info -----------------------") self.logger.info( f"{identifier} runtime_device: {self.config_status['runtime_device']}" ) self.logger.info( f"{identifier} ir_optim: {self.config_status['ir_optim']}") self.logger.info(f"{identifier} enable_memory_optim: {True}") self.logger.info( f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}" ) self.logger.info( f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}") self.logger.info( f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}" ) self.logger.info( "----------------------- Model info ----------------------") self.logger.info(f"{identifier} model_name: {self.model_name}") self.logger.info(f"{identifier} precision: {self.precision}") self.logger.info( "----------------------- Data info -----------------------") self.logger.info(f"{identifier} batch_size: {self.batch_size}") self.logger.info(f"{identifier} input_shape: {self.data_shape}") self.logger.info(f"{identifier} data_num: {data_num}") self.logger.info( "----------------------- Perf info -----------------------") self.logger.info( f"{identifier} cpu_rss(MB): {cpu_rss_mb}, gpu_rss(MB): {gpu_rss_mb}, gpu_util: {gpu_util}%" ) self.logger.info( f"{identifier} total time spent(s): {total_time_s}") self.logger.info( f"{identifier} preprocess_time(ms): {preprocess_time_ms}, inference_time(ms): {inference_time_ms}, postprocess_time(ms): {postprocess_time_ms}" ) def print_help(self): """ print function help """ print("""Usage: ==== Print inference benchmark logs. ==== config = paddle.inference.Config() model_info = {'model_name': 'resnet50' 'precision': 'fp32'} data_info = {'batch_size': 1 'shape': '3,224,224' 'data_num': 1000} perf_info = {'preprocess_time_s': 1.0 'inference_time_s': 2.0 'postprocess_time_s': 1.0 'total_time_s': 4.0} resource_info = {'cpu_rss_mb': 100 'gpu_rss_mb': 100 'gpu_util': 60} log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info) log('Test') """) # if __name__ == "__main__": # get_os_info() # print(envs['os_info']) # get_cudnn_info() # print(envs['cudnn_version'])
[ "liuvv0203@outlook.com" ]
liuvv0203@outlook.com
9dc7b3340119e22850b84c68782778ccc8616e18
b6302c926fbcd65cd7300aca7af5ae6e05aee8dc
/02_reto_programas_ramificados.py
604be5301a9b7e11f2aae64719728f69f810751e
[]
no_license
danhiel98/pensamento-computacional-python
0efc899ebc1abbf56f5dbbb794d254449adc4a83
1f2b9209a768738f90826372db595bb7f619af31
refs/heads/master
2022-12-21T15:35:30.388084
2020-09-23T19:47:35
2020-09-23T19:47:35
298,077,898
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
nombre1 = input('Introduzca el nombre del primer usuario: ') edad1 = int(input('Introduzca la edad del primer usuario: ')) nombre2 = input('Introduzca el nombre del segundo usuario: ') edad2 = int(input('Introduzca la edad del segundo usuario: ')) if edad1 > edad2: print(f'La edad de {nombre1} es mayor que la de {nombre2}') elif edad1 < edad2: print(f'La edad de {nombre2} es mayor que la de {nombre1}') else: print(f'La edad de {nombre1} es la misma que la de {nombre2}')
[ "danhiel.garcia98@gmail.com" ]
danhiel.garcia98@gmail.com
13f183ad4d985b6f8f788da3e3cdd36f339659ea
e730d4ca31ab039ba1b6cef12feba7fee2b47415
/src/old/multimodal_code/train_tfidf.py
420d8c58c13e0679ddd3195bee514dad7d468fc3
[ "Apache-2.0" ]
permissive
trungnt13/digisami_journal
f1f49ffbdba17cd864c4cf9fe32eb238db2924e5
671486d0fe7b65cad80daf8e8b96d475245c5fed
refs/heads/master
2021-03-24T12:14:20.139103
2018-11-17T18:09:49
2018-11-17T18:09:49
97,585,287
0
0
null
null
null
null
UTF-8
Python
false
false
7,835
py
from __future__ import print_function, division, absolute_import from odin.utils import ArgController, stdio, get_logpath, get_modelpath args = ArgController( ).add('-ds', 'sami, estonia, finnish', 'estonia' # for training ).add('-bs', 'batch size', 8 ).add('-lr', 'learning rate', 0.0001 ).add('-epoch', 'number of epoch', 8 # for features ).parse() # Identical name for model MODEL_NAME = (args['ds'][:3] + '_texts') # store log stdio(path=get_logpath(name=MODEL_NAME, override=True)) import os os.environ['ODIN'] = 'float32,gpu,tensorflow,cnmem=0.2,seed=1208' from six.moves import cPickle import numpy as np np.random.seed(1208) from odin import backend as K, nnet as N, fuel as F from odin import training, visual from odin.utils import Progbar from odin.basic import has_roles, WEIGHT, PARAMETER from utils import get_data, laugh_labels, evaluate, CODE_PATH, SEED # =========================================================================== # Load data # =========================================================================== print('Model:', MODEL_NAME) tokenizer = cPickle.load( open(os.path.join(CODE_PATH, 'nlp', '%s_tokenizer' % args['ds']), 'r')) data_matrix = cPickle.load( open(os.path.join(CODE_PATH, 'nlp', '%s_matrix' % args['ds']), 'r')) for i, j in tokenizer.summary.iteritems(): print(i, ':', j) # =========================================================================== # Extract data # =========================================================================== X = [] y = [] longest_conversation = data_matrix['longest_conversation'][0] for f, data in data_matrix.iteritems(): if f == 'longest_conversation': continue for (topic, topic_seq, convs_seq, topic_tfidf, convs_tfidf, laugh, alllaugh, time) in data: shape = (longest_conversation, topic_tfidf.shape[1]) x = np.zeros(shape=shape) x[-convs_tfidf.shape[0]:] = convs_tfidf # ====== store ====== # X.append(x.reshape((1,) + shape)) y.append(len(alllaugh)) # ====== finalize data ====== # X = np.concatenate(X, axis=0) y = np.array(y, dtype='float32') y = (y - np.min(y)) / (np.max(y) - np.min(y)) print('Data Shape:', X.shape, y.shape) # ====== train test split ====== # np.random.seed(SEED) n = len(y) idx = np.random.permutation(n) X = X[idx]; y = y[idx] SPLIT = 0.8 X_train = X[:int(SPLIT * n)] y_train = y[:int(SPLIT * n)] X_valid = X[int(SPLIT * n):] y_valid = y[int(SPLIT * n):] print('Training:', X_train.shape) print('Validing:', X_valid.shape) # =========================================================================== # Different model # =========================================================================== def model1(): f = N.Sequence([ N.Dimshuffle(pattern=(0, 1, 'x', 2)), N.Conv(num_filters=512, filter_size=(5, 1), pad='valid', strides=(1, 1), activation=K.linear), N.BatchNorm(activation=K.relu), N.Conv(num_filters=256, filter_size=(5, 1), pad='valid', strides=(1, 1), activation=K.linear), N.BatchNorm(activation=K.relu), N.Flatten(outdim=3), N.CudnnRNN(num_units=128, rnn_mode='lstm', input_mode='linear', num_layers=2, direction_mode='unidirectional'), N.BatchNorm(axes='auto'), N.Flatten(outdim=2), N.Dense(1, activation=K.sigmoid), ], debug=True, name=MODEL_NAME) return f def model3(): f = N.Sequence([ N.Dimshuffle(pattern=(0, 1, 2, 'x')), N.Conv(num_filters=32, filter_size=(5, 126), pad='valid', strides=(1, 1), activation=K.linear), N.BatchNorm(activation=K.relu), N.Pool(pool_size=(2, 5), mode='max'), N.Flatten(outdim=3), N.CudnnRNN(num_units=256, rnn_mode='lstm', input_mode='linear', num_layers=2, direction_mode='unidirectional'), N.BatchNorm(axes='auto'), N.Flatten(outdim=2), N.Dense(1, activation=K.sigmoid), ], debug=True, name=MODEL_NAME) return f def model2(): f = N.Sequence([ N.CudnnRNN(num_units=256, rnn_mode='lstm', input_mode='linear', num_layers=2, direction_mode='bidirectional'), N.BatchNorm(axes=0), N.Flatten(outdim=2), N.Dense(1, activation=K.sigmoid), ], debug=True, name=MODEL_NAME) return f # =========================================================================== # Create model # =========================================================================== X_ = K.placeholder(shape=(None,) + X_train.shape[1:], name='X') y_ = K.placeholder(shape=(None,), name='y', dtype='float32') f = model2() K.set_training(1); y_pred_train = f(X_) K.set_training(0); y_pred_eval = f(X_) # ====== weights and params ====== # weights = [w for w in f.parameters if has_roles(w, WEIGHT)] L1 = K.L1(weights) L2 = K.L2(weights) params = f.parameters print('Params:', [p.name for p in params]) # ====== cost function ====== # cost_train = K.mean(K.binary_crossentropy(y_pred_train, y_)) cost_pred_1 = K.mean(K.binary_crossentropy(y_pred_eval, y_)) cost_pred_2 = K.mean(K.squared_error(y_pred_eval, y_)) optimizer = K.optimizers.RMSProp(lr=args['lr']) updates = optimizer.get_updates(cost_train, params) print('Building train function ...') f_train = K.function([X_, y_], cost_train, updates) print('Building score function ...') f_eval = K.function([X_, y_], [cost_pred_1, cost_pred_2]) print('Building pred function ...') f_pred = K.function(X_, y_pred_eval) # =========================================================================== # Create traning # =========================================================================== print("Preparing main loop ...") main = training.MainLoop(batch_size=args['bs'], seed=12082518, shuffle_level=2) main.set_save( get_modelpath(name=MODEL_NAME, override=True), [f, args] ) main.set_task(f_train, data=(X_train, y_train), epoch=args['epoch'], name='Train') main.set_subtask(f_eval, data=(X_valid, y_valid), freq=0.6, name='Valid') main.set_callback([ training.ProgressMonitor(name='Train', format='Results: {:.4f}'), training.ProgressMonitor(name='Valid', format='Results: {:.4f}, {:.4f}'), # training.NaNDetector(name='Train', patience=3, rollback=True), training.History(), training.EarlyStopGeneralizationLoss(name='Valid', threshold=5, patience=5), ]) main.run() # =========================================================================== # Visualization # =========================================================================== main['History'].print_batch('Train') main['History'].print_epoch('Valid') try: print('[Train] Benchmark batch:', main['History'].benchmark('Train', 'batch_end').mean) print('[Train] Benchmark epoch:', main['History'].benchmark('Train', 'epoch_end').mean) print('[Valid] Benchmark batch:', main['History'].benchmark('Valid', 'batch_end').mean) print('[Valid] Benchmark epoch:', main['History'].benchmark('Valid', 'epoch_end').mean) except: pass # =========================================================================== # Evaluate # =========================================================================== from sklearn.metrics import accuracy_score, f1_score, confusion_matrix def report(ytrue, ypred): print() print("Accuracy:", accuracy_score(ytrue, ypred)) print("F1:", f1_score(ytrue, ypred)) print("Confustion:") print(confusion_matrix(ytrue, ypred)) f = cPickle.load(open(get_modelpath(name=MODEL_NAME, override=False), 'r'))[0] y_pred = f_pred(X_valid).ravel() y_true = y_valid for i, j in zip(y_pred, y_true): print(i, j) report(y_true >= 0.1, y_pred >= 0.1) report(y_true >= 0.5, y_pred >= 0.5)
[ "nickartin13@gmail.com" ]
nickartin13@gmail.com
bc817a1f834cee5b11559787a13f9d98dbbc6e45
6dcb820a5bb558e794eede6c74c7bf0a92170a6b
/Player/astar.py
478bc76c7d82e92961b41d7ee0ff4fc5a925d43b
[ "MIT" ]
permissive
xenofyxus/bc18-scaffold
d69644ffc2bdeeb11cd2e9f547551978f449de19
21cb58d470908aa739ff802f828dbb1ee9e0d3dc
refs/heads/master
2020-05-14T06:04:32.903759
2019-04-24T23:23:02
2019-04-24T23:23:02
181,704,175
0
0
null
2019-04-16T14:18:38
2019-04-16T14:18:37
null
UTF-8
Python
false
false
3,197
py
import battlecode as bc import sys import math directions = [dir for dir in bc.Direction if dir is not bc.Direction.Center] class Node(): """A node class for A* Pathfinding""" def __init__(self, parent=None, position=None): self.parent = parent self.position = position self.g = 0 self.h = 0 self.f = 0 def __eq__(self, other): return ((self.position.x == other.position.x) and (self.position.y == other.position.y)) def astar(maze,friendly_units, start, end, max_path_length=math.inf): """Returns a list of tuples as a path from the given start to the given end in the given maze""" # Create start and end node start_node = Node(None, start) start_node.g = start_node.h = start_node.f = 0 end_node = Node(None, end) end_node.g = end_node.h = end_node.f = 0 # Initialize both open and closed list open_list = [] closed_list = [] # Add the start node open_list.append(start_node) # Loop until you find the end while len(open_list) > 0: # Get the current node current_node = open_list[0] current_index = 0 for index, item in enumerate(open_list): if item.f < current_node.f: current_node = item current_index = index # Pop current off open list, add to closed list open_list.pop(current_index) closed_list.append(current_node) # Found the goal if current_node == end_node or current_node.g > max_path_length : path = [] current = current_node while current is not None: path.append(current.position) current = current.parent return path[::-1] # Return reversed path # Generate children for dir in directions: # Adjacent squares # Get node position node_position = current_node.position.add(dir) # Make sure within range if node_position.x > (len(maze) - 1) or node_position.x < 0 or node_position.y > (len(maze[len(maze)-1]) -1) or node_position.y < 0: continue # Make sure walkable terrain if not maze[node_position.x][node_position.y] or friendly_units[node_position.x][node_position.y]: continue # Create new node new_node = Node(current_node, node_position) if new_node in closed_list: continue new_node.g = current_node.g + 1 new_node.h = ((new_node.position.x - end_node.position.x) ** 2) + ((new_node.position.y - end_node.position.y) ** 2) new_node.f = new_node.g + new_node.h found_node = False for (index, node) in enumerate(open_list): if node == new_node: found_node = True if new_node.g < node.g: open_list[index] = new_node break if not found_node: open_list.append(new_node) return []
[ "alex.lindstrom92@hotmail.com" ]
alex.lindstrom92@hotmail.com
aad379ec45612f9fc3a2c8c9759a8ae8f9c97972
a23d09676dcd3af65793ba1b71213e47f4bc06d7
/start.py
9a751701c32ce887ad946177dc7b74dbadcf27c5
[]
no_license
macnaer/YoutubeDownloader
913d36cb5bd10825c55b999403fdc76aa577b50f
417cc5dc1c0fe3b88e9f460b9eb3226edf03381c
refs/heads/master
2020-12-23T20:26:29.627077
2020-02-02T20:30:49
2020-02-02T20:30:49
237,264,525
1
0
null
null
null
null
UTF-8
Python
false
false
45
py
from lib.YouDownloader import start start()
[ "master@rivne.itstep.org" ]
master@rivne.itstep.org
a80686c1c0e866961160612e3415c4ec00d47d91
98c441f8e676690ff5edab22441bdca485e95b5d
/thesis/code/numpy_dace/scipy_dace.py
99dda541a9cf492e008ade2637601f21caba0875
[]
no_license
drewblount/2014-2015
096cc62c162340b7e48a2405d4c9d1493ab09901
64b04a9b3e1b3e138e6589efa99f6129393004ad
refs/heads/master
2016-09-06T03:14:17.005613
2015-04-30T16:35:24
2015-04-30T16:35:24
24,079,375
0
1
null
null
null
null
UTF-8
Python
false
false
4,859
py
## This is a copy of dace.py, but using scipy.linalg instead ## of numpy.matrix. Two reasons for the switch: scipy alwaY ## uses BLAS, numpy not alwaY, and scipy.linalg makes classes ## less ambiguous ## see: http://docs.scipy.org/doc/scipy-0.14.0/reference/tutorial/linalg.html ## The goal of this file is to build a minimum working model of the ## EGO algorithm as put forth in Jones, Schonlau, Welch 1998 from math import exp, pi import numpy as np from scipy import linalg as la from random import random import scipy.optimize as op ## X is a vector of the input values which have been evaluated already ## by the black box function, and Y is the vector of corresponding outputs. ## Q and P are regression terms--thetas and P from Jones Eq(1) ## returns the DACE predictor function as defined in Jones etc Eq (7) ## the type of each variable is assumed to def dace_predictor(X, Y, P, Q, verbose=False): # include a length check? |X| = |Y|, and |Q| = |P| = dim(elt of X) # makes X, Y are numpy arraY X, Y = np.array(X), np.array(Y) R = corr_matrix(X, P, Q) # R is now a numpy array R_inv = la.inv(R) # naming vars so they aren't computed more than once -- Y is transposed # to change it from a row matrix to a vector R_inv_y = R_inv.dot(Y) ones = np.array( [[ 1 ]for i in range(len(X)) ] ) # ones is a vector (column matrix) ones_T_R_inv = ones.T.dot(R_inv) # Regression term -- Jones Eq 5 mu_hat = ones.T.dot(R_inv_y) / (ones_T_R_inv.dot(ones)) ## 2d array -> float mu_hat = mu_hat[0][0] if verbose: print('mu_hat = %.4f' % mu_hat) corr = corr_func(P, Q) def pred_func(x_new): # vector of correlations between x_new and X r = np.array( [ [corr(x_new, x_old)] for x_old in X] ) # a transcription of Eq 7 temp = R_inv.dot( ones * mu_hat ) temp2 = R_inv_y - temp temp3 = r.T.dot(temp2) t3val = temp3[0][0] return (mu_hat + t3val) return pred_func ## Jones Eq(1)--takes vectors of regressors Q (thetas in Jones) and P, ## and returns a dist_funcance function for input vectors def dist_func(P, Q): def dist(x1, x2): diff = [ abs( x1[i] - x2[i] ) for i in range( len(x1) ) ] return sum( [ Q[i] * (diff[i] ** P[i]) for i in range( len(Q) ) ] ) return dist ## Jones Eq(2)--takes vectors of regression terms, returns a ## correlation function between input vectors def corr_func(P, Q): dist = dist_func(Q,P) def corr(x1, x2): return np.exp(-dist(x1, x2)) return corr ## Returns R, a matrix whose i,jth entry is the correlation between ## x_i and x_j. First makes a 2d list, then transforms it to a numpy matrix ## according to stackexchange: http://stackoverflow.com/questions/7133885/fastest-way-to-grow-a-numpy-numeric-array ## it's fastest to construct with python lists def corr_matrix(X, P, Q): corr = corr_func(P, Q) out_arr = [] for i in range(len(X)): this_row = [] for j in range(len(X)): ## save time by exploiting diagonal symmetry if i > j: this_row.append(out_arr[j][i]) elif i < j: this_row.append(corr(X[i],X[j])) else: this_row.append(1) out_arr.append(this_row) return np.array(out_arr) ## the best prediction of the mean mu, Jones Eq(5), given the output vect Y ## and the correlation matrix R def mu_hat(Y, R_inv): ones = np.array( [[ 1 ]for i in range(len(Y)) ] ) ones_T_R_inv = ones.T.dot(R_inv) return ones_T_R_inv.dot(Y) / ones_T_R_inv.dot(ones) ## the best prediction of the stdev, jones Eq(6). Assumes Y is already a ## column matrix in numpy. R is the correlation matrix. def stdev_hat(Y, R_inv, mu): n = len(Y) ones = np.array( [[ 1 ]for i in range(len(Y)) ] ) return ( (Y - ones*mu).T.dot( R_inv.dot(Y - ones*mu) ) ) / n ## The concentrated likelihood function, EQ 4-6 from Jones et al. ## takes args X, Y (evaluated inputs and outputs) ## ands P, Q (regression variables) and returns the ## likelihood of observing the X, Y given the ## P, Q. This is the function we wish to optimize when choosing P, Q ## to maximize likelihood. def conc_likelihood(X, Y, P, Q): R = corr_matrix(X, P, Q) R_inv = la.inv(R) mu = mu_hat(Y, R_inv) stdev = stdev_hat(Y, R_inv, mu) n = len(Y) ones = np.array( [[ 1 ]for i in range(len(X)) ] ) # linear term lin_term = 1 / ( (2 * pi * stdev)**(n/2.0) * la.det(R) ** (0.5) ) # combining the right half of 4 with 6 gives this simplified expression exp_term = exp(n/2.0) return lin_term*exp_term ## for a given X, Y, finds P and Q that optimize the above function #def max_likelihood_params(X, Y):
[ "dblount@reed.edu" ]
dblount@reed.edu
10218606bc41a31bc1a6be5c657e397952013755
7608a4c0e2252f53aa632e89b9dcab94ad195391
/crop/forms.py
43761cc37f1bf266d84a48af2f19d527217c209c
[]
no_license
gokulacko/agri
505369099aab4098e8adcfee3ec2d9708be59d4e
604bde1f3583456fcd6a1d83122e77cd688a9cad
refs/heads/master
2020-04-30T16:29:14.225155
2019-04-03T13:53:17
2019-04-03T13:53:17
176,949,516
0
0
null
null
null
null
UTF-8
Python
false
false
7,781
py
import crop.models as m from django import forms from django.forms import widgets class LandForm(forms.ModelForm): water = forms.CharField(widget=forms.TextInput(attrs={'class': 'water', 'placeholder':'Water(Rate 0 to 10)'})) avg_temp = forms.CharField(widget=forms.TextInput(attrs={'class': 'avg_temp', 'placeholder':'Average Temperature(Celsius)'})) pincode = forms.CharField(widget=forms.TextInput(attrs={'class': 'pincode', 'placeholder':'Pincode'})) # water = forms.CharField(widget=forms.TextInput(attrs={'class': 'water', 'placeholder':'Water(Rate 0 to 10)'})) class Meta: model = m.Land fields = [ # 'area', 'water', 'avg_temp', 'pincode', 'soil_type', 'ph', # 'user' ] class SoilForm(forms.ModelForm): class Meta: model = m.SoilTest fields = [ 'ph', 'phosporus', 'potassium', 'nitrogen', 'sulfate', 'boron', 'copper', 'iron', 'zinc', 'magnesium', 'land', ] class CropForm(forms.ModelForm): name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) description = forms.CharField(widget=forms.Textarea(attrs={'class': 'description', 'placeholder':'Description:'})) duration = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'duration', 'placeholder':'Duration(In days):'})) min_temp = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'min_temp', 'placeholder':'Minimun temperature(Celcius):'})) max_temp = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'max_temp', 'placeholder':'Max Temperature(celcius):'})) month_plant = forms.CharField(widget=forms.TextInput(attrs={'class': 'month_plant', 'placeholder':'Time to Plant:'})) cultivation = forms.CharField(widget=forms.TextInput(attrs={'class': 'cultivation', 'placeholder':'Cultivation:'})) harvest = forms.CharField(widget=forms.Textarea(attrs={'class': 'harvest', 'placeholder':'Harvest:'})) water = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'water', 'placeholder':'Water(Rate 0 to 10):'})) ph_min = forms.DecimalField(widget=forms.TextInput(attrs={'class': 'ph_min', 'placeholder':'Minimum Ph:'})) ph_min = forms.DecimalField(widget=forms.TextInput(attrs={'class': 'ph_min', 'placeholder':'Minimum Ph:'})) class Meta: model = m.Crop fields = '__all__' class VarityForm(forms.ModelForm): name = models.CharField(max_length=30) description = models.TextField(blank=True, null=True) duration = models.IntegerField(blank=True, null=True) min_temp = models.IntegerField(blank=True, null=True) max_temp = models.IntegerField(blank=True, null=True) month_plant = models.CharField(max_length=30, blank=True, null=True) cultivation = models.TextField(blank=True, null=True) water = models.IntegerField(blank=True, null=True) harvest = models.TextField(blank=True, null=True) name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) description = forms.Textarea(widget=forms.Textarea(attrs={'class': 'description', 'placeholder':'Description:'})) duration = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'duration', 'placeholder':'Duration(In days):'})) min_temp = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'min_temp', 'placeholder':'Minimun temperature(Celcius):'})) max_temp = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'max_temp', 'placeholder':'Max Temperature(celcius):'})) month_plant = forms.CharField(widget=forms.TextInput(attrs={'class': 'month_plant', 'placeholder':'Time to Plant:'})) cultivation = forms.CharField(widget=forms.TextInput(attrs={'class': 'cultivation', 'placeholder':'Cultivation:'})) harvest = forms.Textarea(widget=forms.Textarea(attrs={'class': 'harvest', 'placeholder':'Harvest:'})) water = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'water', 'placeholder':'Water(Rate 0 to 10):'})) class Meta: model = m.Varity fields = '__all__' class DiseaseForm(forms.ModelForm): name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) Symptoms = forms.Textarea(widget=forms.TextInput(attrs={'class': 'symptoms', 'placeholder':'Symptoms:'})) effect = forms.Textarea(widget=forms.TextInput(attrs={'class': 'effect', 'placeholder':'Effect:'})) prevention = forms.Textarea(widget=forms.TextInput(attrs={'class': 'prevention', 'placeholder':'Prevention:'})) class Meta: model = m.Disease fields = '__all__' class SolutionForm(forms.ModelForm): name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) Procedure = forms.Textarea(widget=forms.TextInput(attrs={'class': 'procedure', 'placeholder':'Procedure:'})) quantity = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'quantity', 'placeholder':'Quantity:'})) duration = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'duration', 'placeholder':'Duration:'})) items = forms.Textarea(widget=forms.TextInput(attrs={'class': 'items', 'placeholder':'Items:'})) class Meta: model = m.Solution fields = '__all__' class ProfileForm(forms.ModelForm): name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) area = forms.CharField(widget=forms.TextInput(attrs={'class': 'area', 'placeholder':'Area:'})) city = forms.CharField(widget=forms.TextInput(attrs={'class': 'city', 'placeholder':'City:'})) phone = forms.CharField(widget=forms.TextInput(attrs={'class': 'phone', 'placeholder':'Phone:'})) alt_phone = forms.CharField(widget=forms.TextInput(attrs={'class': 'alt_phone', 'placeholder':'Alternate Phone:'})) pincode = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'pincode', 'placeholder':'Pincode:'})) address = forms.CharField(widget=forms.Textarea(attrs={'class': 'address', 'placeholder':'Address:'})) class Meta: model = m.Profile fields = [ 'name', 'area', 'city', 'pincode', 'address', 'phone', 'alt_phone', 'is_farmer', 'is_buyer', ] class ProductForm(forms.ModelForm): name = forms.CharField(widget=forms.TextInput(attrs={'class': 'name', 'placeholder':'Name:'})) quantity = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'quantity', 'placeholder':'Quantity:'})) expected_price = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'expected_price', 'placeholder':'Expected price:'})) class Meta: model = m.Product fields = [ 'name', 'quantity', 'expected_price', ] class BuyerForm(forms.ModelForm): expected_product = forms.CharField(widget=forms.TextInput(attrs={'class': 'expected_product', 'placeholder':'Expected product:'})) quantity = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'quantity', 'placeholder':'Quantity:'})) expected_price = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'expected_price', 'placeholder':'Expected price:'})) class Meta: model = m.Buyer fields = [ 'expected_product', 'quantity', 'expected_price', ] class EventForm(forms.ModelForm): event_name = forms.CharField(widget=forms.TextInput(attrs={'class': 'event_name', 'placeholder':'Event Name:'})) description = forms.CharField(widget=forms.Textarea(attrs={'class': 'description', 'placeholder':'Description'})) location = forms.CharField(widget=forms.Textarea(attrs={'class': 'location', 'placeholder':'Location'})) # pincode = forms.IntegerField(widget=forms.TextInput(attrs={'class': 'pincode', 'placeholder':'Pincode'})) class Meta: model = m.Event fields = [ 'event_name', 'description', 'location', 'date', 'time', ]
[ "gokulakrishna@admins-MacBook-Pro-6.local" ]
gokulakrishna@admins-MacBook-Pro-6.local
859f09c0d3a81ea9d6185389e14eba77f8111778
31780af7a5558523def1aae5f25df3e0b084be9b
/Ex8.py
83c3f99e15c117b70d491154a61cb1d530c30620
[]
no_license
sevilaybayatli/PYTHS19
1796615ff939f2e98ce657feeaa3efd47a2e66c6
ae0607e215a0d8205475d124c0362c39881e5eda
refs/heads/master
2020-07-23T16:12:17.922548
2020-03-23T22:03:00
2020-03-23T22:03:00
207,624,169
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
#Exercise Question 8: Find all occurrences of “USA” in given string ignoring the case #input_str = "Welcome to USA. usa awesome, isn't it?" #The USA count is: 2 import sys inputStr= "Welcome to USA USA. usa usa awesome, isn't it?" words=inputStr.split() count=0 for string in words: if(string=='usa'): count+=1 if (string=='USA'): count+=1 print("the number of usa or USA in input string: ", count)
[ "sevilaybayatli@gmail.com" ]
sevilaybayatli@gmail.com
792c101ee370e6e54da0bf9882f8979fe03c7a1f
113c576d565bb22da1c7d9b6a7e2d2ae41040d0c
/wsgi_dashboard.py
80e29ee034bf777f843654367e99643e90052c21
[]
no_license
kaiXlee/itinerum-dashboard-api
e250d6cd730b2603fffe7110858867fd223d0d7f
9501f6ecf3b65558bb27df336c1f26e0e8e6a13e
refs/heads/master
2023-02-21T09:29:24.411765
2021-01-18T13:43:56
2021-01-18T13:43:56
330,678,909
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
#!/usr/bin/env python # Kyle Fitzsimmons, 2016 '''WSGI entry script for allowing API to be managed by gunicorn''' from dashboard.server import create_app application = app = create_app() if __name__ == "__main__": if app.config.get('CONF') in ['development', 'testing']: app.run(host=app.config['APP_HOST'], port=app.config['APP_PORT'], debug=True) else: app.run(port=app.config['APP_PORT'])
[ "kyle96921@hotmail.com" ]
kyle96921@hotmail.com
559458267e3ecc40de1fd72a828827e2bf280126
04be75e9d1cca617216f0323e0521e83132f5a1d
/ex16_read.py
f989e948b3fedf5c22438376faccc763b06ca370
[]
no_license
musalappa/python_exercises
38d1c791b668028d8a73fdebbd5332267999f30a
459c01547c962404785296d2cb8d75e7344454a8
refs/heads/master
2016-09-13T16:30:34.512697
2016-04-29T05:27:55
2016-04-29T05:27:55
57,356,202
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
from sys import argv script, filename = argv file = open(filename, 'r') line1 = file.readline() print line1 line2 = file.readline() print line2 line3 = file.readline() print line3 file.close()
[ "sai@localhost.localdomain" ]
sai@localhost.localdomain
7e480e4dc6bdcdfadec1cb67702ec7c01682db41
0e8bca906671e3f00e7053ace4caedac4ac5170d
/server/routes.py
ac250bb43a5b53d9b773f4ba65c5e248bc6b2f3b
[ "MIT" ]
permissive
akatama-ai/exp
f1be5439319fc54d0d41507f4cfca707a9d8a941
3853e1731621069c4e68c56830712e2a565c7381
refs/heads/master
2022-12-25T22:26:07.120431
2020-10-13T15:17:50
2020-10-13T15:17:50
303,739,324
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
from flask import jsonify, render_template from server import stats from server import utils def init(app): @app.route("/stats") def app_stats(): return jsonify(stats.info()) @app.route("/") def frontend(): return render_template("index.html") @app.route("/explorer") def explorer(): return render_template("chain.html") @app.errorhandler(404) def page_404(error): return jsonify(utils.dead_response("Method not found"))
[ "support@quantex.live" ]
support@quantex.live
d0048b864ae3aa6a2d0bcf6304faa67c5134e843
5e90faf04599d8ed1d051c7bbfe60da7b97ec465
/aprior/ap_exec.py
a9ebbba42b85e6d1397f5d9c727628b12493656f
[]
no_license
sc1000y/dataminingLearn
beb2dbe225d35098e802a42f95ec5916b9880d17
078243a877ff4860be5f7c60781ff9b98e1ad6c1
refs/heads/master
2021-05-07T07:23:23.940589
2017-11-01T11:33:57
2017-11-01T11:33:57
109,125,296
2
0
null
null
null
null
UTF-8
Python
false
false
7,206
py
# -*- coding:utf-8 -*- import sys import IDBKit def getDataSet(): db=IDBKit.IDBKit(); RAWNAME=["BREAD","BUTTER","NOODLE","CHIP","COKE"] sql="select "+",".join(RAWNAME)+" from DM_EXEC1"; list=db.find(sql) return list,RAWNAME def createC1( dataSet ): ''''' 构建初始候选项集的列表,即所有候选项集只包含一个元素, C1是大小为1的所有候选项集的集合 ''' C1 = [] for transaction in dataSet: for item in transaction: if item is not None: if [ item ] not in C1: C1.append( [ item ] ) C1.sort() #return map( frozenset, C1 ) #return [var for var in map(frozenset,C1)] return [frozenset(var) for var in C1] def scanD( D, Ck, minSupport ): ''''' 计算Ck中的项集在数据集合D(记录或者transactions)中的支持度, 返回满足最小支持度的项集的集合,和所有项集支持度信息的字典。 ''' ssCnt = {} for tid in D: # 对于每一条transaction for can in Ck: # 对于每一个候选项集can,检查是否是transaction的一部分 # 即该候选can是否得到transaction的支持 if can.issubset( tid ): ssCnt[ can ] = ssCnt.get( can, 0) + 1 numItems = float( len( D ) ) retList = [] supportData = {} for key in ssCnt: support = ssCnt[ key ] / numItems # 每个项集的支持度 if support >= minSupport: # 将满足最小支持度的项集,加入retList retList.insert( 0, key ) supportData[ key ] = support # 汇总支持度数据 return retList, supportData def aprioriGen( Lk, k ): # Aprior算法 ''''' 由初始候选项集的集合Lk生成新的生成候选项集, k表示生成的新项集中所含有的元素个数 ''' retList = [] lenLk = len( Lk ) for i in range( lenLk ): for j in range( i + 1, lenLk ): L1 = list( Lk[ i ] )[ : k - 2 ]; L2 = list( Lk[ j ] )[ : k - 2 ]; L1.sort();L2.sort() if L1 == L2: retList.append( Lk[ i ] | Lk[ j ] ) return retList def apriori( dataSet, minSupport = 0.5 ): C1 = createC1( dataSet ) # 构建初始候选项集C1 #D = map( set, dataSet ) # 将dataSet集合化,以满足scanD的格式要求 #D=[var for var in map(set,dataSet)] D=[set(var) for var in dataSet] L1, suppData = scanD( D, C1, minSupport ) # 构建初始的频繁项集,即所有项集只有一个元素 L = [ L1 ] # 最初的L1中的每个项集含有一个元素,新生成的 k = 2 # 项集应该含有2个元素,所以 k=2 while ( len( L[ k - 2 ] ) > 0 ): Ck = aprioriGen( L[ k - 2 ], k ) Lk, supK = scanD( D, Ck, minSupport ) suppData.update( supK ) # 将新的项集的支持度数据加入原来的总支持度字典中 L.append( Lk ) # 将符合最小支持度要求的项集加入L k += 1 # 新生成的项集中的元素个数应不断增加 return L, suppData # 返回所有满足条件的频繁项集的列表,和所有候选项集的支持度信息 def calcConf( freqSet, H, supportData, brl, minConf=0.7 ): # 规则生成与评价 ''''' 计算规则的可信度,返回满足最小可信度的规则。 freqSet(frozenset):频繁项集 H(frozenset):频繁项集中所有的元素 supportData(dic):频繁项集中所有元素的支持度 brl(tuple):满足可信度条件的关联规则 minConf(float):最小可信度 ''' prunedH = [] for conseq in H: conf = supportData[ freqSet ] / supportData[ freqSet - conseq ] if conf >= minConf: print(freqSet - conseq, '-->', conseq, 'conf:', conf) brl.append( ( freqSet - conseq, conseq, conf ) ) prunedH.append( conseq ) return prunedH def rulesFromConseq( freqSet, H, supportData, brl, minConf=0.7 ): ''''' 对频繁项集中元素超过2的项集进行合并。 freqSet(frozenset):频繁项集 H(frozenset):频繁项集中的所有元素,即可以出现在规则右部的元素 supportData(dict):所有项集的支持度信息 brl(tuple):生成的规则 ''' m = len( H[ 0 ] ) if len( freqSet ) > m + 1: # 查看频繁项集是否足够大,以到于移除大小为 m的子集,否则继续生成m+1大小的频繁项集 Hmp1 = aprioriGen( H, m + 1 ) Hmp1 = calcConf( freqSet, Hmp1, supportData, brl, minConf ) #对于新生成的m+1大小的频繁项集,计算新生成的关联规则的右则的集合 if len( Hmp1 ) > 1: # 如果不止一条规则满足要求(新生成的关联规则的右则的集合的大小大于1),进一步递归合并, #这样做的结果就是会有“[1|多]->多”(右边只会是“多”,因为合并的本质是频繁子项集变大, #而calcConf函数的关联结果的右侧就是频繁子项集)的关联结果 rulesFromConseq( freqSet, Hmp1, supportData, brl, minConf ) def generateRules( L, supportData, minConf=0.7 ): ''''' 根据频繁项集和最小可信度生成规则。 L(list):存储频繁项集 supportData(dict):存储着所有项集(不仅仅是频繁项集)的支持度 minConf(float):最小可信度 ''' bigRuleList = [] for i in range( 1, len( L ) ): for freqSet in L[ i ]: # 对于每一个频繁项集的集合freqSet H1 = [ frozenset( [ item ] ) for item in freqSet ] if i > 1:# 如果频繁项集中的元素个数大于2,需要进一步合并,这样做的结果就是会有“[1|多]->多”(右边只会是“多”, #因为合并的本质是频繁子项集变大,而calcConf函数的关联结果的右侧就是频繁子项集),的关联结果 rulesFromConseq( freqSet, H1, supportData, bigRuleList, minConf ) else: calcConf( freqSet, H1, supportData, bigRuleList, minConf ) return bigRuleList def Apriori(): print("Hello World!") if __name__=="__main__": myDat,RA=getDataSet() #print(myDat) L, suppData = apriori( myDat, 0.2 ) # 选择频繁项集 print(u"频繁项集L:", L) print(u"所有候选项集的支持度信息:", suppData) rules = generateRules( L, suppData, minConf=0.5 )
[ "sc1000y@qq.com" ]
sc1000y@qq.com
f8a59288deec752423b2c72090556006824d29a1
639b7ed3b8632bf5fa33329d2250587cfaad0c49
/bin/smartserver/smartserver.py
0b83a17d7267aa79a3fdf44bd4972fe3e3807565
[ "BSD-3-Clause" ]
permissive
martiancrow/x12_engine
597597b5d880594ca4dd19e1d2bc8b265183bb26
b68d636880f07b65b2224eeebb2300d67a1f8c4b
refs/heads/master
2021-01-01T19:26:58.017351
2017-07-31T17:20:08
2017-07-31T17:20:08
98,589,260
0
0
null
null
null
null
UTF-8
Python
false
false
1,776
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- ''' Filename : hello.py author : Crow creat time: 2017-06-03 updata time: 2017-06-03 ''' import sys import datetime #sys.path.append('/Volumes/DATA/virtualboxHost/ubuntu16.04_64/x12_engine/bin') sys.path.append('./bin') import x12_python def smartserverinit(): #print("this is smartserverinit") #path = '/Volumes/DATA/virtualboxHost/ubuntu16.04_64/x12_engine/bin/smartserver' path = './bin/smartserver' drvid = x12_python.x12_coap_udp_listen('ALL', 9095) print("drvid = " + str(drvid)) routelist = [ { 'uri':'/time', 'path':path, 'module':'smartserver', 'func':'time' }, { 'uri':'/login/:uid/:pwd', 'path':path, 'module':'smartserver', 'func':'login' } ] x12_python.x12_coap_route_add(drvid, routelist) def time(send, msg): print("this is time action") #print(send) #print(msg) #print("") #print(msg["HEAD"].keys()) #print(msg["HEAD"].items()) #print("") #print('username = ' + msg['GET']['id']) #print('password = ' + msg['GET']['pwd']) res = {'code': 'Content', 'ver': 1, 'msgid': msg["HEAD"]["msgid"], 'tkl': 0, 't': 'ACK', 'uri-port': 9095, 'payload': str(datetime.datetime.now())} #print(res) sendlen = x12_python.x12_coap_msg_send(send, res) #print('sendlen = ' + str(sendlen)) def login(send, msg): print("this is login action") print('username = ' + msg['GET']['uid']) print('password = ' + msg['GET']['pwd']) res = {'code': 'Content', 'ver': 1, 'msgid': msg["HEAD"]["msgid"], 'tkl': 0, 't': 'ACK', 'uri-port': 9095, 'payload': 'OK'} #print(res) sendlen = x12_python.x12_coap_msg_send(send, res) #print('sendlen = ' + str(sendlen)) #print("----------------------login-------------------------") if __name__ == '__main__': smartinit()
[ "xiaolongliu@xiaolonutekiMBP.lan" ]
xiaolongliu@xiaolonutekiMBP.lan
2a8492f318cc40ad1d0a3b439477ef6a062477ff
de706b4cd4c02ec71486fbd4a262aacf337e7a8c
/lesson_2/hw02.py
080ce0d466165b748b5c8c7f9cbfb6e621884b36
[]
no_license
DuDaria/Homework_backend
c896a30af4db9c0e118f230b5f01c351d68ff695
fa9e06e79c7b61896e53417e8b91fd69e87d6061
refs/heads/master
2023-03-19T17:39:56.364082
2021-03-11T21:53:39
2021-03-11T21:53:39
319,733,707
0
0
null
null
null
null
UTF-8
Python
false
false
3,250
py
__author__ = 'Дю Д.Н.' # Задача-1: Запросите у пользователя его возраст. # Если ему есть 18 лет, выведите: "Доступ разрешен", # иначе "Извините, пользоваться данным ресурсом можно только с 18 лет" age = int(input("Привет, Сколько Вам лет: ")) if age >= 18: print ("Доступ разрешен!") else: print("Извините, пользоваться данным ресурсом можно только с 18 лет") print("") # Задача-2: Напишите программу, которая спрашивает "Четные или нечетные?", # в зависимости от ответа, используя цикл с предусловием while или for in # вывести в одну строку через пробел соотвествующие числа от 0 до 20 # Пример работы: # $ "Четные или нечетные?" # четные # 0 2 4 6 8 10 12 14 16 18 20 # $ "Четные или нечетные?" # нечетные # 1 3 5 7 9 11 13 15 17 19 # $ "Четные или нечетные?" # qwerty (или любая другая строка) # Я не понимаю, что вы от меня хотите... #1_Решение с while even_or_odd = input ("Четные или нечетные? ") a = 0 if even_or_odd == "четные": while a < 21: if a % 2 == 0: print(a, end = " ") a +=1 elif even_or_odd == "нечетные": while a < 20: if a % 2 == 1: print(a, end = " ") a +=1 else: print("Я не понимаю, что вы от меня хотите...") print("\n") #2_Решение с for in even_or_odd = input ("Четные или нечетные? ") if even_or_odd == "четные": for i in range(21): if i%2 == 0: print(i , end = " ") elif even_or_odd == "нечетные": for i in range(21): if i%2 != 0: print(i , end = " ") else: print("Я не понимаю, что вы от меня хотите...") print("\n") # Задача-3: Дано произвольное целое число, вывести самую большую цифру этого числа. # Например, дается x = 58375. # Нужно вывести максимальную цифру в данном числе, т.е. 8. # Подразумевается, что мы не знаем это число заранее. # Число приходит в виде целого беззнакового. # Подсказки: # * постарайтесь решить задачу с применением арифметики и цикла while; # * при желании и понимании решите задачу с применением цикла for. # арифметика и цикл while x = 58375 m = x%10 x = x//10 while x > 0: if x%10 > m: m = x%10 x = x//10 print("max number = ", m) print("") #с применением цикла for num = 58375 lst = list(str(num)) maximum = lst[0] for number in lst: if int(number) > int(maximum): maximum = int(number) print("max number = ", maximum)
[ "60156592+DuDaria@users.noreply.github.com" ]
60156592+DuDaria@users.noreply.github.com
25475c8cd28fea1964462e2f3074d5c639fc00c0
9eb5c0e840d91b0752eadc3ca212886bd983619f
/andrewvoss.org/downloads/RoboPiLib.py
6e88efca825e081fd09eff77a63903724974844e
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
avoss19/Server
f5437a76a3ddbd029cd89ca512e97828f4458ebb
3e49ff2be6000d4488259d048f685aa24bb9b2bb
refs/heads/master
2021-05-06T20:39:21.205688
2018-04-09T03:54:12
2018-04-09T03:54:12
112,486,369
0
0
MIT
2017-12-11T04:28:08
2017-11-29T14:35:37
CSS
UTF-8
Python
false
false
8,406
py
#***************************************************************************** # # RoboPyLib_v0_98.py # # Copyright 2016 William Henning # # http://Mikronauts.com # # April 27, 2016: Initial Release # May 20, 2016: First "Real" Release # June 21, 2016: updated pulseGen # March 3, 2017: added pwmWrite(pin,pulse,period) # # Pure Python support library for RoboPi firmware, for use with RoboPi # # This version does not rely on the C RoboPiLib.o library and swc, and as such # is multi-platform and should work on any SBC # # Currently the resetRoboPi(pin) call is an ugly hack dependant on pigpiod # it will be replaced by generic sysfs gpio handling for multi-platform use # # This is a work in progress, and subject to change. I used non-blocking I/O as # I intend to add timeouts at a future date. # # The code is NOT publication quality, not enough comments, later versions will # be nicer :) # #****************************************************************************** import serial # import the pyser library #import pigpio # import the pigpio library import time # import the time library # control characters used to indicate start & end of packet SOH = '\x01' EOT = '\x04' # packet identifiers GETINFO = 0 # returns product string READMODE = 11 # write pin mode WRITEMODE = 12 # write pin mode DIGREAD = 13 # digital read DIGWRITE = 14 # digital write ANREAD = 15 # analog read 10 bit result ANREADRAW = 16 # analog read at raw resolution ANWRITE = 17 # analog write 0..255 used for PWM SERVOWRITE = 18 # write a servo 0..20000us, normally 500-2500us SERVOREAD = 19 # read last value written to servo READDIST = 20 # read distance sensor PULSEGEN = 21 # start high frequency pulse train generator PULSESTOP = 22 # stop pulse train generator PWMWRITE = 23 # arbitrary PWM generator # pin types INPUT = 0 OUTPUT = 1 PWM = 16 SERVO = 32 # API API_REVISION = 0.97 # Global variables myaddr = 1 # default RoboPi address ser = -1 #********************************************************************************** # # Low level packet handling routines # # buff = bytearray(100) # creates 0 filled 100 long array of bytes # buff = bytearray([32] * 100) # creates 100 space (val 32) array # #********************************************************************************** def putPacket(cmd, buffr, plen): global myaddr chk = int(myaddr)+int(cmd)+int(plen) for i in range(0,plen): chk += int(buffr[i]) packet = bytearray([SOH, myaddr, cmd, plen]) + buffr + bytearray([chk&255, EOT]) ser.write(packet) def getPacket(): count=0 while (ser.read(1) != SOH): count = count+1 # print "Received garbage chars", count header = bytearray(ser.read(3)) addr = header[0] cmd = header[1] plen = header[2] # print "Header ", addr, cmd, plen checksum = addr + cmd + plen # print "b4" buf2 = bytearray(ser.read(plen)) # print "buf2 length is",len(buf2) for i in range(0,plen): # print "byte",i,"=",buf2[i] checksum += buf2[i] chk = bytearray(ser.read(1))[0] if (checksum&255) != chk: print "Checksum Error!" # print "Waiting for EOT" while (ser.read(1) != EOT): count = count+1 # print "Dropped ", count # 0 1 2 3 4 return [addr, cmd, plen, buf2, chk] #********************************************************************************** # # Rest RoboPi - ugly hack version, next release will use sysfs to make it generic # # Does not seem to work when called right before / right after RoboPiInit # suspect unusual interaction between python, pigpio, serial # works fine stand-alone in resetRoboPi.py script # #********************************************************************************** def RoboPiReset(pin): # pin is 17 on a Pi # pi3 = pigpio.pi() time.sleep(0.1) # pi3.set_mode(pin, pigpio.OUTPUT) # pi3.write(pin,0) # time.sleep(0.01) # pi3.write(pin,1) # time.sleep(0.5) # pi3.stop() #********************************************************************************** # # RoboPi API - please see RoboPi User Manual for usage # #********************************************************************************** def RoboPiExit(): global ser if ser != -1: ser.close() #********************************************************************************** def RoboPiInit(device, bps): global ser if device == '': device = '/dev/ttyAMA0' ser = serial.Serial(device,bps) if ser == -1: print "Error - Unable to open ", device exit(1) return ser #********************************************************************************** def Address(n): global myaddr myaddr = n & 255 #********************************************************************************** def getProductID(): # max 255 bytes plus 0, TESTED OK putPacket(GETINFO, bytearray(1), 1) buff = getPacket() return buff[3] #********************************************************************************** def getAPIRev(): return API_REVISION #********************************************************************************** def pinMode(pin, mode): putPacket(WRITEMODE, bytearray([pin, mode]), 2); getPacket() #********************************************************************************** def readMode(pin): putPacket(READMODE, bytearray([pin]), 1) buff = getPacket() return buff[3][1] #********************************************************************************** def digitalWrite(pin, val): putPacket(DIGWRITE, bytearray([pin, val]), 2) getPacket() #********************************************************************************** def digitalRead(pin): putPacket(DIGREAD, bytearray([pin]), 1) buff = getPacket() return buff[3][1] #********************************************************************************** def analogRead(pin): putPacket(ANREAD, bytearray([pin]), 1) buff = getPacket() return int(buff[3][1]) | (int(buff[3][2]) << 8) #********************************************************************************** def analogReadRaw(pin): putPacket(ANREADRAW, bytearray([pin]), 1) buff = getPacket() return int(buff[3][1]) | (int(buff[3][2]) << 8) #********************************************************************************** def analogWrite(pin, val): putPacket(ANWRITE, bytearray([pin, val]), 2) getPacket() #********************************************************************************** def servoWrite(pin, val): putPacket(SERVOWRITE, bytearray([pin, val & 255, val >> 8]), 3) getPacket() #********************************************************************************** def pwmWrite(pin, pulse, period): if pulse < 0: pulse = 0 if pulse >= period: pulse = 0 digitalWrite(pin,1) puls = pulse/5 perio = period/5 putPacket(PWMWRITE, bytearray([pin, puls & 255, puls >> 8, perio & 255, perio >> 8]), 5) print getPacket() #********************************************************************************** def servoRead(pin): putPacket(SERVOREAD, bytearray([pin]), 1) buff = getPacket() return int(buff[3][1]) | (int(buff[3][2]) << 8) #********************************************************************************** def readDistance(pin): putPacket(READDIST, bytearray([pin]), 1) buff = getPacket() return int(buff[3][1]) | (int(buff[3][2]) << 8) #********************************************************************************** def w2ba(x): return bytearray([x & 255, (x >> 8) & 255]) def wl2ba(lst): cl = w2ba(lst[0]) for ix in range(1,len(lst)): cl = cl + w2ba(lst[ix]) return cl def pba(a): for ix in range(0,len(a)): print ix,a[ix] #********************************************************************************** def pulseGen(pin, dbg, stp, low_period, pls, pulse_list): putPacket(PULSEGEN, bytearray([pin,dbg,stp,pls])+w2ba(low_period)+wl2ba(pulse_list),pls+pls+6) buff = getPacket() return buff[3][0] #********************************************************************************** def pulseList(pin, low_period, pulse_list): return pulseGen(pin, 33, 33, low_period, len(pulse_list), pulse_list) #********************************************************************************** def pulseStop(): putPacket(PULSESTOP,bytearray([0]),1) buff = getPacket() return buff[3][0]
[ "voss1167@gmail.com" ]
voss1167@gmail.com
dc0b3e92359841527eb725eab414c555165243b7
acecbde132f01594ba5917073f4e5c2e9c14baef
/basedata.py
5ed4918d12c683092ecf87eab65d57ef50c5adc9
[]
no_license
Fandref/encyclopedia_api
f4f1dd1eebe92c3947183059166099cc896128f2
f848ec4ab616e6ef85bed73da14a461bdcb873da
refs/heads/master
2021-06-13T04:40:16.358545
2020-04-09T16:32:05
2020-04-09T16:32:05
254,424,621
0
0
null
null
null
null
UTF-8
Python
false
false
4,885
py
import psycopg2 # from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT conn = psycopg2.connect(dbname = 'encyclopedia', user='postgres', password='', host='127.0.0.1') cursor = conn.cursor() # cursor.execute('CREATE DATABASE encyclopedia') cursor.execute('CREATE table IF NOT EXISTS world_areas (id serial PRIMARY KEY, name varchar(40) UNIQUE NOT NULL, description text)') cursor.execute('CREATE table IF NOT EXISTS countries (id serial PRIMARY KEY, name varchar(40) UNIQUE NOT NULL, world_area_id integer NOT NULL, description text, FOREIGN KEY (world_area_id) REFERENCES world_areas (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS domains (id serial PRIMARY KEY, name varchar(40) UNIQUE NOT NULL, description text NOT NULL)') cursor.execute('CREATE table IF NOT EXISTS kinds (id serial PRIMARY KEY, name varchar(40) UNIQUE NOT NULL, domain_id integer NOT NULL, description text, FOREIGN KEY(domain_id) REFERENCES domains (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS types (id serial PRIMARY KEY, name varchar(40) UNIQUE NOT NULL, kind_id integer NOT NULL, description text, FOREIGN KEY(kind_id) REFERENCES kinds (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS sub_types (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS types_sub_types (type_id integer NOT NULL, sub_type_id integer NOT NULL, FOREIGN KEY (type_id) REFERENCES types (id) ON DELETE CASCADE, FOREIGN KEY (sub_type_id) REFERENCES sub_types (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS classes (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS sub_types_classes (sub_type_id integer NOT NULL, class_id integer NOT NULL, FOREIGN KEY (sub_type_id) REFERENCES sub_types (id) ON DELETE CASCADE, FOREIGN KEY (class_id) REFERENCES classes (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS sub_classes (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS classes_sub_classes (class_id integer NOT NULL, sub_class_id integer NOT NULL, FOREIGN KEY (class_id) REFERENCES classes (id) ON DELETE CASCADE, FOREIGN KEY (sub_class_id) REFERENCES sub_classes (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS ordos (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS sub_classes_ordos (sub_class_id integer, ordo_id integer, FOREIGN KEY (sub_class_id) REFERENCES sub_classes (id) ON DELETE CASCADE, FOREIGN KEY (ordo_id) REFERENCES ordos (id));') cursor.execute('CREATE table IF NOT EXISTS familias (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS ordos_familias (ordo_id integer, familia_id integer, FOREIGN KEY (ordo_id) REFERENCES ordos (id) ON DELETE CASCADE, FOREIGN KEY (familia_id) REFERENCES familias (id))') cursor.execute('CREATE table IF NOT EXISTS genuses (id serial PRIMARY KEY, name varchar(40) UNIQUE , description text);') cursor.execute('CREATE table IF NOT EXISTS familias_genuses (familia_id integer, genus_id integer, FOREIGN KEY (familia_id) REFERENCES familias (id) ON DELETE CASCADE, FOREIGN KEY (genus_id) REFERENCES genuses (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS specieses (id serial PRIMARY KEY, name varchar(40) UNIQUE , image varchar(255) NOT NULL, description text);') cursor.execute('CREATE table IF NOT EXISTS genuses_specieses (genus_id integer, species_id integer, FOREIGN KEY (genus_id) REFERENCES genuses (id) ON DELETE CASCADE, FOREIGN KEY (species_id) REFERENCES specieses (id) ON DELETE CASCADE);') cursor.execute('CREATE table IF NOT EXISTS countries_specieses (country_id integer, species_id integer, FOREIGN KEY (country_id) REFERENCES countries (id) ON DELETE CASCADE, FOREIGN KEY (species_id) REFERENCES specieses (id) ON DELETE CASCADE);') #FUNCTION # cursor.execute(""" # CREATE FUNCTION world_area_delete(int id) RETURNS integer # AS 'select $1 + $2;' # LANGUAGE SQL # RETURNS NULL ON NULL INPUT; # """) # TRIGGERS # cursor.execute(CREATE TRIGGER log_update # AFTER UPDATE ON accounts # FOR EACH ROW # WHEN (OLD.* IS DISTINCT FROM NEW.*) # EXECUTE PROCEDURE log_account_update(); # ) def check(): count = 0 s = "" s += "SELECT" s += " table_schema" s += ", table_name" s += " FROM information_schema.tables" s += " WHERE" s += " (" s += " table_schema = 'public'" s += " )" s += " ORDER BY table_schema, table_name;" cursor.execute(s) list_tables = cursor.fetchall() for t_name_table in list_tables: print(t_name_table) count += 1 print(count) check() conn.commit() cursor.close() conn.close()
[ "fazanwin@gmail.com" ]
fazanwin@gmail.com
78a5a63f542ae9feddb4fac15b4b7755a0acc35a
4e28bca1ee83f734698d1fe39a0bc976b090f3d6
/Pyiiko/__init__.py
86fe9e233fccd5ef20261a5ee82437045ed27c56
[ "Apache-2.0" ]
permissive
rnd137/pyiiko
e3a4ad6b8d60781abf977b291542d3bf11adec8a
a702858c2ee597cbcc32317f45c2a79ec6c19035
refs/heads/master
2020-04-17T04:13:59.702107
2018-12-24T18:28:15
2018-12-24T18:28:15
166,220,810
1
0
Apache-2.0
2019-01-17T12:17:58
2019-01-17T12:17:58
null
UTF-8
Python
false
false
132
py
__version__ = '0.2.1' from Pyiiko.server import * from Pyiiko.biz import * from Pyiiko.card5 import * from Pyiiko.frontWeb import *
[ "gadzhi@yandex.ru" ]
gadzhi@yandex.ru
4c0874ae8e3969c644c69f902e55c0eb10c0ee8a
51a48244d08b63501130b8c7091aa66587ac1413
/parse_data.py
60e1be0c7fbc2e9d94497672ed148eadcaa6e06e
[]
no_license
amlight/events_visualizer
cfd0233ebda2e544b2c74707899a78c0e8b021e3
9fcbbac185939dbd3bb2f97f9d20fca9ac08495a
refs/heads/main
2023-04-18T14:47:41.338862
2021-04-23T22:15:32
2021-04-23T22:15:32
357,566,303
0
0
null
null
null
null
UTF-8
Python
false
false
2,455
py
import pandas as pd # parse_data takes the data.csv and dictionary.txt files and creates a dataframe displaying the counts # of flap events for each link. # custom split function for get_dictionary def split(line, sep, pos): line = line.split(sep) return sep.join(line[:pos]), sep.join(line[pos:]) def get_dictionary(): # This function opens dictionary.txt and creates a dictionary of tuples consisting of the format # ['Device,Port': 'Label'] to label those links in the dataframe with open("dictionary.txt", "r") as f: content = f.read().splitlines() return dict([tuple(map(str, split(sub, ',', 2))) for sub in content]) def process_data(): # This function returns a dataframe from the events that are given in data.csv # and creates a count of events based on the given timestamps. # It also replaces the device names with the labels given in the dictionary # pandas options to display the dataframe in console, use print(df) to see the dataframe for testing pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', -1) df = pd.read_csv("data.csv", header=None, names=('Device', 'Port', 'Date', 'Time', 'Event'), parse_dates={'Timestamp': ['Date', 'Time']}) # merge device and port values together to later rename them according to dictionary.txt labels df.Device = df.Device.astype(str) + ',' + df.Port.astype(str) df.drop(['Port'], axis=1, inplace=True) # look for duplicates of (Timestamp, Device) values and put that summation in a new 'Count' column df = df.pivot_table(index=['Timestamp', 'Device'], aggfunc='size').to_frame('Count').reset_index() # this turns the 'Device' column values into column headers (and timestamps into the new index) df = df.pivot(index='Timestamp', columns='Device', values='Count') df.fillna(0, inplace=True) # group counts based on day df = df.resample('D').sum() res = get_dictionary() # traverse through columns in dataframe and label them for column in df: if column in res: df.rename(columns={column: res[column]}, inplace=True) else: df.drop(column, axis=1, inplace=True) # removes the column header name when the 'Timestamp' column was assigned as index of the dataframe del df.index.name return df
[ "33048372+mjt98@users.noreply.github.com" ]
33048372+mjt98@users.noreply.github.com
b5267886e52d4f26f06f7b57765cf73595a070da
2254e3c5e17955d654994d388a5babe20eab2516
/api/loadenv.py
ac4226a590f228155b4bdb7de3c96b9ab7f41e43
[]
no_license
webclinic017/bauskslashtrader-monorepo
5069b001e214198e62c99c588db91f7707753de4
0a42d0eed4fb90bbf3178caac3ff00f16d0f0d5b
refs/heads/master
2023-07-12T18:25:21.505747
2020-07-25T00:49:24
2020-07-25T00:49:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from dotenv import load_dotenv from pathlib import Path import os # Set home directory project_dir = Path(__file__).parent os.chdir(project_dir) # Load development vars env_path = Path('.') / '.env' load_dotenv(dotenv_path=env_path)
[ "bauskas@gmail.com" ]
bauskas@gmail.com
3c02dfa0a6825a233462d9bf9303390430c747a0
f529b5f3de211ecde43d094e85a062acfa612840
/framework/__init__.py
0e34f418c834cb5d3f20facf60ae96e1b5b625be
[]
no_license
ashwins-code/neural-network-library
251453444d9391b2a285db01a13a186464ca87bb
85ca9a6399fa281dd091907835efb2a253f67f01
refs/heads/master
2023-01-03T00:22:26.309362
2020-10-31T19:08:24
2020-10-31T19:08:24
308,945,939
1
0
null
null
null
null
UTF-8
Python
false
false
21
py
from .tensor import *
[ "ashwinbose6@gmail.com" ]
ashwinbose6@gmail.com
94b849b44b714027b0e55f0fb64ab69f8c31279a
11730493cfd1aa88610894809a0b71128bae2c0f
/src/python_utilities/src/python_utilities/light_status.py
0566e61b597c7005fab32b56c71b6ceacc619dc8
[]
no_license
Pencilvesterr/ros_robot_controller
dc0edb6a5a5f500599663cc72e6f897ad070fd1c
bd2a817452300f9cb3105f0a62415326fde3e7f2
refs/heads/master
2023-08-31T08:45:52.896557
2021-10-08T03:25:35
2021-10-08T03:25:35
407,418,826
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
from enum import Enum class LightStatus(Enum): unselected = 0 red = 1 yellow = 2
[ "m8crouch@gmail.com" ]
m8crouch@gmail.com
a2fc6b67823b389fa5e113148a4c74bb481da9c5
142d2fc8080203174567a2ecb270f9ed2064e006
/08_list_manipulation/list_manipulation.py
1a485a1adddbc5d162359a2d7b8c17a3d616e111
[]
no_license
bricruz/pythonpractice
e917b687063c2c5848e5d0c2e306578265a443b7
c05a85956ac7db7cf3e5d8838ae3769b50ff4621
refs/heads/main
2023-09-02T22:51:01.816662
2021-11-18T03:36:24
2021-11-18T03:36:24
428,284,583
0
0
null
null
null
null
UTF-8
Python
false
false
1,621
py
def list_manipulation(lst, command, location, value=None): """Mutate lst to add/remove from beginning or end. - lst: list of values - command: command, either "remove" or "add" - location: location to remove/add, either "beginning" or "end" - value: when adding, value to add remove: remove item at beginning or end, and return item removed >>> lst = [1, 2, 3] >>> list_manipulation(lst, 'remove', 'end') 3 >>> list_manipulation(lst, 'remove', 'beginning') 1 >>> lst [2] add: add item at beginning/end, and return list >>> lst = [1, 2, 3] >>> list_manipulation(lst, 'add', 'beginning', 20) [20, 1, 2, 3] >>> list_manipulation(lst, 'add', 'end', 30) [20, 1, 2, 3, 30] >>> lst [20, 1, 2, 3, 30] Invalid commands or locations should return None: >>> list_manipulation(lst, 'foo', 'end') is None True >>> list_manipulation(lst, 'add', 'dunno') is None True """ if command == 'remove': if location == 'beginning': lst.pop(0) elif location == 'end': lst.pop(-1) else: return None elif command == 'add': if value != None: if location == 'beginning': lst.insert(0,value) elif location == 'end': lst.append(value) else: return None else: return None else: return None return lst print(list_manipulation([1,2,3,4],'remove','beginning','Hi'))
[ "cruz.b.james@gmail.com" ]
cruz.b.james@gmail.com
103f7be254649415a24450fe958b3718c8e1c050
95e3fb7930365261e0fe4055dacac47b5330b4aa
/src/predectorutils/analyses/tmbed.py
b71ee4f67e427c39231ddd2486990ca5b52e9fd7
[ "Apache-2.0" ]
permissive
ccdmb/predector-utils
66af68fd07fa17556cbb9149d0be6b7eabf247cd
b394f101019151f07bf56242158c9e1345172c6c
refs/heads/master
2023-06-23T13:13:12.854325
2023-06-14T12:28:13
2023-06-14T12:28:13
237,380,937
0
0
null
2020-01-31T07:29:09
2020-01-31T07:27:52
Python
UTF-8
Python
false
false
4,821
py
#!/usr/bin/env python3 from typing import TypeVar from typing import TextIO from collections.abc import Iterator, Sequence from ..gff import ( GFFRecord, Strand ) from ..parsers import ( FieldParseError, BlockParseError, parse_field, raise_it, parse_str, parse_sequence, ) from .base import Analysis, GFFAble __all__ = ["TMBed"] tm_name = raise_it(parse_field(parse_str, "name")) tm_topology = raise_it(parse_field( parse_sequence(["S", "B", "b", "H", "h", "."]), "topology" )) T = TypeVar("T") def parse_topology(s: str): if len(s) == 0: return s current_type = s[0] start = 0 i = 1 while i < len(s): if s[i] != current_type: yield (current_type, start, i) current_type = s[i] start = i i += 1 yield (current_type, start, i) return class TMBed(Analysis, GFFAble): """ . """ columns = ["name", "has_sp", "has_tm", "topology"] types = [str, bool, bool, str] analysis = "tmbed" software = "TMBed" def __init__( self, name: str, has_sp: bool, has_tm: bool, topology: str, ) -> None: self.name = name self.has_sp = has_sp self.has_tm = has_tm self.topology = topology return @classmethod def from_block(cls, lines: Sequence[str]) -> "TMBed": """ Parse a tmbed line as an object. """ ilines = list(lines) try: name = tm_name(ilines[0]) except FieldParseError as e: raise e.as_block_error(0) name = name.lstrip(">") try: top = tm_topology(ilines[2].strip()) except FieldParseError as e: raise e.as_block_error(2) # Slice is because model doesn't seem to have proper statemodel # so i think SPs could _potentially_ happen in middle of protein. has_sp = top.lower()[:30].count("s") > 10 longest_run = {"B": 0, "b": 0, "H": 0, "h": 0, ".": 0, "S": 0} prev = top[:1] # Slice prevents error if empty current_run = 1 for this in top[1:]: if this == prev: current_run += 1 elif (this != prev) and (current_run > longest_run[prev]): longest_run[prev] = current_run prev = this current_run = 1 else: prev = this current_run = 1 if current_run > longest_run[prev]: longest_run[prev] = current_run del longest_run["."] del longest_run["S"] has_tm = any([v > 10 for v in longest_run.values()]) return cls(name, has_sp, has_tm, top) @classmethod def from_file(cls, handle: TextIO) -> Iterator["TMBed"]: block: list[str] = [] # Avoid case where handle is empty and we raise BlockParseError i = 0 for i, line in enumerate(handle): sline = line.strip() if sline.startswith("#"): continue elif sline == "": continue elif sline.startswith(">") and len(block) > 0: try: yield cls.from_block(block) except BlockParseError as e: raise ( e.as_parse_error(line=i - len(block)) .add_filename_from_handle(handle) ) block = [sline] else: block.append(sline) if len(block) > 0: try: yield cls.from_block(block) except BlockParseError as e: raise ( e.as_parse_error(line=i - len(block)) .add_filename_from_handle(handle) ) return def as_gff( self, software_version: str | None = None, database_version: str | None = None, keep_all: bool = False, id_index: int = 1 ) -> Iterator[GFFRecord]: for (type_, start, end) in parse_topology(self.topology): mapp = { "B": "transmembrane_polypeptide_region", "b": "transmembrane_polypeptide_region", "H": "transmembrane_polypeptide_region", "h": "transmembrane_polypeptide_region", "S": "signal_peptide", } if type_ == ".": continue yield GFFRecord( seqid=self.name, source=self.gen_source(software_version, database_version), type=mapp[type_], start=start, end=end, strand=Strand.UNSTRANDED, attributes=None ) return
[ "darcy.ab.jones@gmail.com" ]
darcy.ab.jones@gmail.com
8129e2a0cd766c799cb6243ba4faa2d109475333
c9eda3c0342d8cf51ecddcceba555f3556af5ee5
/slicer_gui.py
ec838d9798b5ca7c6fd246cdceb9ff84472986b4
[]
no_license
nerginer/3dlp-host-software
4b5c9902fa16059127ad6cef8db7ad84c75cf8f0
32c957989baef9a2a92d31b73891b0eeee37cfb2
refs/heads/master
2021-01-10T18:33:36.498509
2013-07-06T00:20:09
2013-07-06T00:20:09
40,202,402
0
1
null
null
null
null
UTF-8
Python
false
false
34,240
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '3dlp_slicer.ui' # # Created: Sat Jun 01 20:47:44 2013 # by: PyQt4 UI code generator 4.8.5 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(1324, 768) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(217, 217, 217)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(217, 217, 217)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(217, 217, 217)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(217, 217, 217)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(217, 217, 217)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(90, 90, 90)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(180, 180, 180)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) MainWindow.setPalette(palette) MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow", "3DLP Slicer", None, QtGui.QApplication.UnicodeUTF8)) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/transform.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.frame = QtGui.QFrame(self.centralwidget) self.frame.setFrameShape(QtGui.QFrame.StyledPanel) self.frame.setFrameShadow(QtGui.QFrame.Raised) self.frame.setObjectName(_fromUtf8("frame")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.frame) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.verticalLayout = QtGui.QVBoxLayout() self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.groupBox = QtGui.QGroupBox(self.frame) self.groupBox.setMinimumSize(QtCore.QSize(0, 200)) self.groupBox.setMaximumSize(QtCore.QSize(254, 16777215)) self.groupBox.setTitle(QtGui.QApplication.translate("MainWindow", "Model Information", None, QtGui.QApplication.UnicodeUTF8)) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.verticalLayout.addWidget(self.groupBox) self.groupBox_2 = QtGui.QGroupBox(self.frame) self.groupBox_2.setMinimumSize(QtCore.QSize(0, 100)) self.groupBox_2.setMaximumSize(QtCore.QSize(254, 16777215)) self.groupBox_2.setTitle(QtGui.QApplication.translate("MainWindow", "Model List", None, QtGui.QApplication.UnicodeUTF8)) self.groupBox_2.setObjectName(_fromUtf8("groupBox_2")) self.horizontalLayout_7 = QtGui.QHBoxLayout(self.groupBox_2) self.horizontalLayout_7.setObjectName(_fromUtf8("horizontalLayout_7")) self.verticalLayout_4 = QtGui.QVBoxLayout() self.verticalLayout_4.setObjectName(_fromUtf8("verticalLayout_4")) self.horizontalLayout_6 = QtGui.QHBoxLayout() self.horizontalLayout_6.setObjectName(_fromUtf8("horizontalLayout_6")) self.addModel = QtGui.QPushButton(self.groupBox_2) self.addModel.setText(QtGui.QApplication.translate("MainWindow", "Add", None, QtGui.QApplication.UnicodeUTF8)) self.addModel.setObjectName(_fromUtf8("addModel")) self.horizontalLayout_6.addWidget(self.addModel) spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_6.addItem(spacerItem) self.removeModel = QtGui.QPushButton(self.groupBox_2) self.removeModel.setText(QtGui.QApplication.translate("MainWindow", "Remove", None, QtGui.QApplication.UnicodeUTF8)) self.removeModel.setObjectName(_fromUtf8("removeModel")) self.horizontalLayout_6.addWidget(self.removeModel) self.verticalLayout_4.addLayout(self.horizontalLayout_6) self.modelList = QtGui.QListWidget(self.groupBox_2) self.modelList.setFrameShadow(QtGui.QFrame.Plain) self.modelList.setAlternatingRowColors(False) self.modelList.setSpacing(1) self.modelList.setModelColumn(0) self.modelList.setObjectName(_fromUtf8("modelList")) self.verticalLayout_4.addWidget(self.modelList) self.horizontalLayout_7.addLayout(self.verticalLayout_4) self.verticalLayout.addWidget(self.groupBox_2) self.Transform_groupbox = QtGui.QGroupBox(self.frame) self.Transform_groupbox.setEnabled(False) self.Transform_groupbox.setMaximumSize(QtCore.QSize(254, 16777215)) self.Transform_groupbox.setTitle(QtGui.QApplication.translate("MainWindow", "Transform Model", None, QtGui.QApplication.UnicodeUTF8)) self.Transform_groupbox.setObjectName(_fromUtf8("Transform_groupbox")) self.horizontalLayout_5 = QtGui.QHBoxLayout(self.Transform_groupbox) self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.label_12 = QtGui.QLabel(self.Transform_groupbox) self.label_12.setText(QtGui.QApplication.translate("MainWindow", "Position:", None, QtGui.QApplication.UnicodeUTF8)) self.label_12.setObjectName(_fromUtf8("label_12")) self.verticalLayout_3.addWidget(self.label_12) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.label_9 = QtGui.QLabel(self.Transform_groupbox) self.label_9.setText(QtGui.QApplication.translate("MainWindow", "X:", None, QtGui.QApplication.UnicodeUTF8)) self.label_9.setObjectName(_fromUtf8("label_9")) self.horizontalLayout_4.addWidget(self.label_9) self.positionX = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.positionX.setMinimumSize(QtCore.QSize(55, 0)) self.positionX.setMinimum(-99.99) self.positionX.setObjectName(_fromUtf8("positionX")) self.horizontalLayout_4.addWidget(self.positionX) self.label_10 = QtGui.QLabel(self.Transform_groupbox) self.label_10.setText(QtGui.QApplication.translate("MainWindow", "Y:", None, QtGui.QApplication.UnicodeUTF8)) self.label_10.setObjectName(_fromUtf8("label_10")) self.horizontalLayout_4.addWidget(self.label_10) self.positionY = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.positionY.setMinimumSize(QtCore.QSize(55, 0)) self.positionY.setMinimum(-99.99) self.positionY.setObjectName(_fromUtf8("positionY")) self.horizontalLayout_4.addWidget(self.positionY) self.label_11 = QtGui.QLabel(self.Transform_groupbox) self.label_11.setText(QtGui.QApplication.translate("MainWindow", "Z:", None, QtGui.QApplication.UnicodeUTF8)) self.label_11.setObjectName(_fromUtf8("label_11")) self.horizontalLayout_4.addWidget(self.label_11) self.positionZ = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.positionZ.setMinimumSize(QtCore.QSize(55, 0)) self.positionZ.setMinimum(-99.99) self.positionZ.setObjectName(_fromUtf8("positionZ")) self.horizontalLayout_4.addWidget(self.positionZ) self.verticalLayout_3.addLayout(self.horizontalLayout_4) self.label_4 = QtGui.QLabel(self.Transform_groupbox) self.label_4.setText(QtGui.QApplication.translate("MainWindow", "Rotation:", None, QtGui.QApplication.UnicodeUTF8)) self.label_4.setObjectName(_fromUtf8("label_4")) self.verticalLayout_3.addWidget(self.label_4) self.horizontalLayout_2 = QtGui.QHBoxLayout() self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.label = QtGui.QLabel(self.Transform_groupbox) self.label.setText(QtGui.QApplication.translate("MainWindow", "X:", None, QtGui.QApplication.UnicodeUTF8)) self.label.setObjectName(_fromUtf8("label")) self.horizontalLayout_2.addWidget(self.label) self.rotationX = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.rotationX.setMinimumSize(QtCore.QSize(55, 0)) self.rotationX.setDecimals(0) self.rotationX.setMinimum(-360.0) self.rotationX.setMaximum(360.0) self.rotationX.setObjectName(_fromUtf8("rotationX")) self.horizontalLayout_2.addWidget(self.rotationX) self.label_2 = QtGui.QLabel(self.Transform_groupbox) self.label_2.setText(QtGui.QApplication.translate("MainWindow", "Y:", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setObjectName(_fromUtf8("label_2")) self.horizontalLayout_2.addWidget(self.label_2) self.rotationY = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.rotationY.setMinimumSize(QtCore.QSize(55, 0)) self.rotationY.setDecimals(0) self.rotationY.setMinimum(-360.0) self.rotationY.setMaximum(360.0) self.rotationY.setObjectName(_fromUtf8("rotationY")) self.horizontalLayout_2.addWidget(self.rotationY) self.label_3 = QtGui.QLabel(self.Transform_groupbox) self.label_3.setText(QtGui.QApplication.translate("MainWindow", "Z:", None, QtGui.QApplication.UnicodeUTF8)) self.label_3.setObjectName(_fromUtf8("label_3")) self.horizontalLayout_2.addWidget(self.label_3) self.rotationZ = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.rotationZ.setMinimumSize(QtCore.QSize(55, 0)) self.rotationZ.setDecimals(0) self.rotationZ.setMinimum(-360.0) self.rotationZ.setMaximum(360.0) self.rotationZ.setObjectName(_fromUtf8("rotationZ")) self.horizontalLayout_2.addWidget(self.rotationZ) self.verticalLayout_3.addLayout(self.horizontalLayout_2) self.horizontalLayout_3 = QtGui.QHBoxLayout() self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.label_8 = QtGui.QLabel(self.Transform_groupbox) self.label_8.setText(QtGui.QApplication.translate("MainWindow", "Scaling Factor:", None, QtGui.QApplication.UnicodeUTF8)) self.label_8.setObjectName(_fromUtf8("label_8")) self.horizontalLayout_3.addWidget(self.label_8) self.scale = QtGui.QDoubleSpinBox(self.Transform_groupbox) self.scale.setMinimumSize(QtCore.QSize(55, 0)) self.scale.setMinimum(-99.99) self.scale.setObjectName(_fromUtf8("scale")) self.horizontalLayout_3.addWidget(self.scale) spacerItem1 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem1) self.verticalLayout_3.addLayout(self.horizontalLayout_3) self.horizontalLayout_5.addLayout(self.verticalLayout_3) self.verticalLayout.addWidget(self.Transform_groupbox) self.verticalLayout_2.addLayout(self.verticalLayout) spacerItem2 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.verticalLayout_2.addItem(spacerItem2) self.horizontalLayout.addWidget(self.frame) self.ModelFrame = QtGui.QFrame(self.centralwidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.ModelFrame.sizePolicy().hasHeightForWidth()) self.ModelFrame.setSizePolicy(sizePolicy) self.ModelFrame.setMinimumSize(QtCore.QSize(1024, 0)) self.ModelFrame.setFrameShape(QtGui.QFrame.Box) self.ModelFrame.setFrameShadow(QtGui.QFrame.Plain) self.ModelFrame.setLineWidth(1) self.ModelFrame.setObjectName(_fromUtf8("ModelFrame")) self.horizontalLayout.addWidget(self.ModelFrame) MainWindow.setCentralWidget(self.centralwidget) self.toolBar = QtGui.QToolBar(MainWindow) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(227, 227, 227)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(227, 227, 227)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(227, 227, 227)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(227, 227, 227)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(227, 227, 227)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Midlight, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(133, 133, 133)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Mid, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.BrightText, brush) brush = QtGui.QBrush(QtGui.QColor(100, 100, 100)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(200, 200, 200)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.AlternateBase, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 220)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipBase, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) self.toolBar.setPalette(palette) self.toolBar.setWindowTitle(QtGui.QApplication.translate("MainWindow", "toolBar", None, QtGui.QApplication.UnicodeUTF8)) self.toolBar.setAutoFillBackground(True) self.toolBar.setMovable(False) self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.toolBar.setFloatable(False) self.toolBar.setObjectName(_fromUtf8("toolBar")) MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar) self.actionQuit = QtGui.QAction(MainWindow) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/delete2.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionQuit.setIcon(icon1) self.actionQuit.setText(QtGui.QApplication.translate("MainWindow", "Quit", None, QtGui.QApplication.UnicodeUTF8)) self.actionQuit.setObjectName(_fromUtf8("actionQuit")) self.actionOpen_Model = QtGui.QAction(MainWindow) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/import1.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionOpen_Model.setIcon(icon2) self.actionOpen_Model.setText(QtGui.QApplication.translate("MainWindow", "Open Model", None, QtGui.QApplication.UnicodeUTF8)) self.actionOpen_Model.setObjectName(_fromUtf8("actionOpen_Model")) self.actionSet_Model_Opacity = QtGui.QAction(MainWindow) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/replace.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSet_Model_Opacity.setIcon(icon3) self.actionSet_Model_Opacity.setText(QtGui.QApplication.translate("MainWindow", "Set Model Opacity", None, QtGui.QApplication.UnicodeUTF8)) self.actionSet_Model_Opacity.setObjectName(_fromUtf8("actionSet_Model_Opacity")) self.actionPreferences = QtGui.QAction(MainWindow) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/gear.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionPreferences.setIcon(icon4) self.actionPreferences.setText(QtGui.QApplication.translate("MainWindow", "Slicing Preferences", None, QtGui.QApplication.UnicodeUTF8)) self.actionPreferences.setObjectName(_fromUtf8("actionPreferences")) self.actionSlice_Model = QtGui.QAction(MainWindow) icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(_fromUtf8(":/Icons/icons/media_play_green.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSlice_Model.setIcon(icon5) self.actionSlice_Model.setText(QtGui.QApplication.translate("MainWindow", "Slice Model", None, QtGui.QApplication.UnicodeUTF8)) self.actionSlice_Model.setObjectName(_fromUtf8("actionSlice_Model")) self.toolBar.addAction(self.actionOpen_Model) self.toolBar.addAction(self.actionSlice_Model) self.toolBar.addAction(self.actionSet_Model_Opacity) self.toolBar.addAction(self.actionPreferences) self.toolBar.addSeparator() self.toolBar.addAction(self.actionQuit) self.retranslateUi(MainWindow) QtCore.QObject.connect(self.actionQuit, QtCore.SIGNAL(_fromUtf8("triggered()")), MainWindow.close) QtCore.QObject.connect(self.actionOpen_Model, QtCore.SIGNAL(_fromUtf8("triggered()")), MainWindow.AddModel) QtCore.QObject.connect(self.actionSlice_Model, QtCore.SIGNAL(_fromUtf8("triggered()")), MainWindow.SliceModel) QtCore.QObject.connect(self.actionSet_Model_Opacity, QtCore.SIGNAL(_fromUtf8("triggered()")), MainWindow.UpdateModelOpacity) QtCore.QObject.connect(self.actionPreferences, QtCore.SIGNAL(_fromUtf8("triggered()")), MainWindow.OpenSettingsDialog) QtCore.QObject.connect(self.positionX, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Position_X) QtCore.QObject.connect(self.positionY, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Position_Y) QtCore.QObject.connect(self.positionZ, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Position_Z) QtCore.QObject.connect(self.rotationX, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Rotation_X) QtCore.QObject.connect(self.rotationY, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Rotation_Y) QtCore.QObject.connect(self.rotationZ, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Rotation_Z) QtCore.QObject.connect(self.scale, QtCore.SIGNAL(_fromUtf8("valueChanged(QString)")), MainWindow.Update_Scale) QtCore.QObject.connect(self.modelList, QtCore.SIGNAL(_fromUtf8("currentItemChanged(QListWidgetItem*,QListWidgetItem*)")), MainWindow.ModelIndexChanged) QtCore.QObject.connect(self.addModel, QtCore.SIGNAL(_fromUtf8("pressed()")), MainWindow.AddModel) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): pass import resource_rc
[ "oswaldonfire@4cfbdd0b-1efc-a790-3b7a-4779d8d2eca3" ]
oswaldonfire@4cfbdd0b-1efc-a790-3b7a-4779d8d2eca3
993fae64ed448bd384cd9874345f1c6c7a511337
2f3d66965dbec4021c3819dce093a8b40724af33
/mirage/libs/zigbee_utils/encoders.py
81e74803e0c94aed5ca55b2bc7c77a345f2d0585
[ "MIT" ]
permissive
RCayre/mirage
92bfa2c2822c06238976dbba6df993b10f2dc25d
f73f6c4442e4bfd239eb5caf5e1283c125d37db9
refs/heads/master
2023-02-04T06:23:05.985200
2022-11-24T19:16:53
2022-11-24T19:16:53
203,883,338
199
35
MIT
2023-01-26T03:06:32
2019-08-22T22:36:00
Python
UTF-8
Python
false
false
684
py
from mirage.libs.common.sdr.encoders import SDREncoder from mirage.libs.zigbee_utils.chip_tables import * class ZigbeeEncoder(SDREncoder): ''' Software Defined Radio encoder for Zigbee protocol. ''' def _getChips(self,bits): for i in SYMBOL_TO_CHIP_MAPPING: if bits == i["symbols"]: return i["chip_values"] return None def encode(self,data): if data[0] == 0xA7: data = b"\x00\x00\x00\x00" + data elif data[0] != 0x00: data = b"\x00\x00\x00\x00\xA7" + data bits = [] for i in bytes(data): byte = "{:08b}".format(i) bits += [byte[4:8][::-1], byte[0:4][::-1]] sequence = "" for bit in bits: sequence += self._getChips(bit) return sequence
[ "rcayre@laas.fr" ]
rcayre@laas.fr
4b50f06cfdc691ef3c0d26607ce65b2d26a4dfe8
2bb04faa91f1bd6dbda1c5fa1d77963456a89f85
/nombres/settings.py
2bfd2678c65335221b9c156ec22c65cb8c1cab97
[]
no_license
jevelezse/blog
8d8a0a771431487b5648ad74d5e7a5af134ebd24
607522200b59f48793e2d6b7c2a6141f3e7eb3b7
refs/heads/master
2021-01-22T06:23:17.295328
2017-02-12T23:05:28
2017-02-12T23:05:28
81,754,672
0
0
null
null
null
null
UTF-8
Python
false
false
3,215
py
""" Django settings for nombres project. Generated by 'django-admin startproject' using Django 1.10.5. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2+y(_-(kg(qf3z=w_hhwngiws0!#_c=h*ux=h$aizq0^00w9-*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['jenniferbio.pythonanywhere.com','127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'nombres.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'nombres.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Bogota' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "jevelezse@unal.edu.co" ]
jevelezse@unal.edu.co
f679afceadef48ea4dfbb7be731d33ebf7c0048d
a61819ed872820725e6266faa4ebe5a9791dbe7d
/listogram.py
fb6607f28add7096fd7aeaa81baf20fb020388e4
[]
no_license
NinjaAung/Tweeter-Gen
4ee2387956154e414c325da93b2282b7b945918d
0912acb08aaeecdf6f51cbd168feb5375eaccbe8
refs/heads/master
2021-07-12T09:51:31.643775
2020-03-05T17:46:53
2020-03-05T17:46:53
238,708,413
0
0
null
2021-03-20T02:58:21
2020-02-06T14:33:59
Python
UTF-8
Python
false
false
5,079
py
from __future__ import division, print_function # Python 2 and 3 compatibility import random class Listogram(list): """Listogram is a histogram implemented as a subclass of the list type.""" def __init__(self, word_list=None): """Initialize this histogram as a new list and count given words.""" super(Listogram, self).__init__() # Initialize this as a new list # Add properties to track useful word counts for this histogram self.types = 0 # Count of distinct word types in this histogram self.tokens = 0 # Total count of all word tokens in this histogram # Count words in given list, if any if word_list is not None: for word in word_list: self.add_count(word) def add_count(self, word, count=1): """Increase frequency count of given word by given count amount.""" word_in_list = False self.tokens += count for index in range (0, len(self)): if self[index][0] == word: self[index][1] += count word_in_list = True break if word_in_list == False: self.types += 1 self.append([word, count]) def frequency(self, word): """Return frequency count of given word, or 0 if word is not found.""" index = self.index_of(word) if index != None: return self[index][1] else: return 0 def __contains__(self, word): """Return boolean indicating if given word is in this histogram.""" index = self.index_of(word) if index != None: return True else: return False def index_of(self, target): """Return the index of entry containing given target word if found in this histogram, or None if target word is not found.""" index = None for i in range (0, len(self)): if self [i][0] == target: index = i break return index def sample(self): """Return a word from this histogram, randomly sampled by weighting each word's probability of being chosen by its observed frequency.""" rand_num = random.randint(1, self.tokens) num = 0 for item in self: num += item[1] if num >= rand_num: return item[0] def print_histogram(word_list): print() print('Histogram:') print(f'word list: {word_list}') # Create a listogram and display its contents histogram = Listogram(word_list) print(f'listogram: {histogram}') print(f'{histogram.tokens} tokens, {histogram.types} types') for word in word_list[-2:]: freq = histogram.frequency(word) print(f'{repr(word)} occurs {freq} times') print() print_histogram_samples(histogram) def print_histogram_samples(histogram): print('Histogram samples:') # Sample the histogram 10,000 times and count frequency of results samples_list = [histogram.sample() for _ in range(10000)] samples_hist = Listogram(samples_list) print(f'samples: {samples_hist}') print() print('Sampled frequency and error from observed frequency:') header = '| word type | observed freq | sampled freq | error |' divider = '-' * len(header) print(divider) print(header) print(divider) # Colors for error green = '\033[32m' yellow = '\033[33m' red = '\033[31m' reset = '\033[m' # Check each word in original histogram for word, count in histogram: # Calculate word's observed frequency observed_freq = count / histogram.tokens # Calculate word's sampled frequency samples = samples_hist.frequency(word) sampled_freq = samples / samples_hist.tokens # Calculate error between word's sampled and observed frequency error = (sampled_freq - observed_freq) / observed_freq color = green if abs(error) < 0.05 else yellow if abs(error) < 0.1 else red print('| {!r:<9} '.format(word) + '| {:>4} = {:>6.2%} '.format(count, observed_freq) + '| {:>4} = {:>6.2%} '.format(samples, sampled_freq) + '| {}{:>+7.2%}{} |'.format(color, error, reset)) print(divider) print() def main(): import sys arguments = sys.argv[1:] # Exclude script name in first argument if len(arguments) >= 1: # Test histogram on given arguments print_histogram(arguments) else: # Test histogram on letters in a word word = 'abracadabra' print_histogram(list(word)) # Test histogram on words in a classic book title fish_text = 'one fish two fish red fish blue fish' print_histogram(fish_text.split()) # Test histogram on words in a long repetitive sentence woodchuck_text = ('how much wood would a wood chuck chuck' ' if a wood chuck could chuck wood') print_histogram(woodchuck_text.split()) if __name__ == '__main__': main()
[ "ninja.aung02@gmail.com" ]
ninja.aung02@gmail.com
ca58378ef29f0e1780b97d43010cb3a9819c329d
8fba37f0b439c26d61673a01d5aae8c27384b0a6
/Final/pathfinding.py
665c3a2e18da775a5a9c0a712fd6222bf65080b8
[]
no_license
jlicht27/cmps1500
c0ecc531d63e7c2a029c304b0ded73c739cc2f2c
7ec5ee445e913729eacf7d1554c4de4443fb6751
refs/heads/master
2023-02-09T20:17:59.097041
2021-01-05T19:41:07
2021-01-05T19:41:07
327,102,506
0
0
null
null
null
null
UTF-8
Python
false
false
908
py
grid = {'a': ['b', 'f'], 'b': ['a', 'c', 'g'], 'c': ['b', 'd'], 'd': ['c', 'e'], 'e': ['d'], 'f': ['a', 'g', 'h'], 'g': ['b', 'f', 'i'], 'h': ['f', 'i'], 'i': ['g', 'h', 'j'], 'j': ['i', 'k'], 'k': ['j', 'l', 'm'], 'l': ['k', 'n'], 'm': ['k', 'n', 'q'], 'n': ['l', 'm'], 'o': ['p'], 'p': ['o', 'q'], 'q': ['m', 'p', 'r'], 'r': ['n', 'q'] } def findPath(G,start,end): if end in G[start]: #base case return end else: #recursive case for i in G[start]: return [start] + [findPath(G,i,end)] print(findPath(grid,'e','r')) '''It throws up a recursion error, not sure how to change this into finding only the shortest path. I know BFS has to be involved in some way.'''
[ "jlicht@Jonathans-MBP-2.fios-router.home" ]
jlicht@Jonathans-MBP-2.fios-router.home
21adb5fe26148007f1bdf9ddd5b7e1ea8a60d049
050bd514f7878190a61878d319e7bb6d44799f39
/app/shop/api_views.py
c48521c4748dc3fc7f6b7b574a51288eba142343
[]
no_license
MikhailoVL/api_automation
a29cbcff3d1c3ef4c559d6ebbd1f63a6387b2c0f
bcfba9855c1106602edd90631d6d7c6073881227
refs/heads/main
2023-03-14T09:49:47.930090
2021-03-03T08:43:55
2021-03-03T08:43:55
342,175,022
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
from rest_framework.generics import ListAPIView, CreateAPIView,\ UpdateAPIView, RetrieveAPIView from .serializers import OrderSerializer, ScoreSerializer from .models import Order, Score from .permissions import HasGroupPermission from .util_s_filter import DateRangeFilter from django_filters import rest_framework as filters class OrderListAPIView(ListAPIView): permission_classes = [HasGroupPermission] # set group that have permission required_groups = { 'GET': ['Booker', 'Cashier', 'Sales_assistant'], } serializer_class = OrderSerializer queryset = Order.objects.all() filter_backends = [filters.DjangoFilterBackend] filterset_class = DateRangeFilter class OrderCreateAPIView(CreateAPIView): permission_classes = [HasGroupPermission] # set group that have permission required_groups = { 'GET': ['Cashier'], 'POST': ['Cashier'], 'PUT': ['Cashier'], } serializer_class = OrderSerializer queryset = Order.objects.all() class OrderUpdateAPIView(UpdateAPIView, RetrieveAPIView): permission_classes = [HasGroupPermission] # set group that have permission required_groups = { 'GET': ['Cashier', 'Sales_assistant'], 'POST': ['Cashier', 'Sales_assistant'], 'PUT': ['Cashier', 'Sales_assistant'], } serializer_class = OrderSerializer queryset = Order.objects.all() class ScoreCreateAPIView(CreateAPIView): permission_classes = [HasGroupPermission] # set group that have permission required_groups = { 'GET': ['Cashier'], 'POST': ['Cashier'], 'PUT': ['Cashier'], } serializer_class = ScoreSerializer queryset = Score.objects.all()
[ "mykhailo.liutyi@introlab-systems.com" ]
mykhailo.liutyi@introlab-systems.com
7a43ee47815996296f8211326aaaa908d8cd4e74
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nndefunct.py
a6668d2bbc5efa937e3a225b5521fa0fc1b30293
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
232
py
ii = [('SadlMLP.py', 1), ('PettTHE.py', 8), ('CarlTFR.py', 5), ('CookGHP2.py', 1), ('ClarGE.py', 1), ('MedwTAI.py', 1), ('WadeJEB.py', 2), ('KirbWPW2.py', 1), ('SoutRD.py', 1), ('JacoWHI.py', 1), ('DibdTRL.py', 2), ('TaylIF.py', 1)]
[ "varunwachaspati@gmail.com" ]
varunwachaspati@gmail.com
76f9aab1e2a377a6f833911580d749f2a1040ff4
9b40158304af99888bb473814151bacf8873c8b5
/lists/views.py
846475ffbc67bf27a1ae84accafd681d2fd2f26f
[]
no_license
bjweiqm/ddtt
0503f16b5982f7d9fea5358ceecad85427f5d705
3fac475230da4e1a01d6ed60ba4736e7b9b6079d
refs/heads/master
2016-08-11T21:08:18.438065
2016-02-24T10:30:21
2016-02-24T10:30:21
52,411,063
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
#! /usr/bin/env python3 #encoding:utf-8 from django.shortcuts import render from django.http import HttpResponse # Create your views here. #在这儿编写视图 def home_page(request): return render(request, 'home.html')
[ "weimegn@126.com" ]
weimegn@126.com
f2dc4a4849474e33b6122176af5ac9b4ec1419f3
7328d5cdad3a201953c750aaa04f6c197e9eb858
/apps/result/views.py
42a320a488ad6e199b6210e822d71d11f9464235
[]
no_license
asfaqahmed/School-management-system-Django
9a2bbae13fbbaa6333dde0a166e7501d488f84c1
56f8c419c8c41b8c73f660ccd5ce0185e00a5894
refs/heads/main
2023-08-23T02:12:59.912450
2021-10-13T16:52:23
2021-10-13T16:52:23
416,824,014
1
0
null
null
null
null
UTF-8
Python
false
false
4,251
py
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.shortcuts import redirect, render from django.views.generic import DetailView, ListView, View from apps.students.models import Student from .forms import CreateResults, EditResults from .models import Result @login_required def create_result(request): students = Student.objects.all() if request.method == "POST": # after visiting the second page if "finish" in request.POST: form = CreateResults(request.POST) if form.is_valid(): subjects = form.cleaned_data["subjects"] session = form.cleaned_data["session"] term = form.cleaned_data["term"] students = request.POST["students"] results = [] for student in students.split(","): stu = Student.objects.get(pk=student) if stu.current_class: for subject in subjects: check = Result.objects.filter( session=session, term=term, current_class=stu.current_class, subject=subject, student=stu, ).first() if not check: results.append( Result( session=session, term=term, current_class=stu.current_class, subject=subject, student=stu, ) ) Result.objects.bulk_create(results) return redirect("edit-results") # after choosing students id_list = request.POST.getlist("students") if id_list: form = CreateResults( initial={ "session": request.current_session, "term": request.current_term, } ) studentlist = ",".join(id_list) return render( request, "result/create_result_page2.html", {"students": studentlist, "form": form, "count": len(id_list)}, ) else: messages.warning(request, "You didnt select any student.") return render(request, "result/create_result.html", {"students": students}) @login_required def edit_results(request): if request.method == "POST": form = EditResults(request.POST) if form.is_valid(): form.save() messages.success(request, "Results successfully updated") return redirect("edit-results") else: results = Result.objects.filter( session=request.current_session, term=request.current_term ) form = EditResults(queryset=results) return render(request, "result/edit_results.html", {"formset": form}) class ResultListView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): results = Result.objects.filter( session=request.current_session, term=request.current_term ) bulk = {} for result in results: test_total = 0 exam_total = 0 subjects = [] for subject in results: if subject.student == result.student: subjects.append(subject) test_total += subject.test_score exam_total += subject.exam_score bulk[result.student.id] = { "student": result.student, "subjects": subjects, "test_total": test_total, "exam_total": exam_total, "total_total": test_total + exam_total, } context = {"results": bulk} return render(request, "result/all_results.html", context)
[ "asfaqahmed356@gmail.com" ]
asfaqahmed356@gmail.com
f44596aea4d37e1378e087af1f88953f0c088cf2
54d8a05e0238e96eb43e4893bacba024e490bf11
/python-projects/algo_and_ds/task_scheduler_leetcode621.py
4aeb5a5c1e5db5792764f6e1ed7d8104f82af46e
[]
no_license
infinite-Joy/programming-languages
6ce05aa03afd7edeb0847c2cc952af72ad2db21e
0dd3fdb679a0052d6d274d19040eadd06ae69cf6
refs/heads/master
2023-05-29T10:34:44.075626
2022-07-18T13:53:02
2022-07-18T13:53:02
30,753,185
3
5
null
2023-05-22T21:54:46
2015-02-13T11:14:25
Jupyter Notebook
UTF-8
Python
false
false
2,126
py
""" # TODO this is not working task scheduler leetcode 621 Input: tasks = ["A","A","A","B","B","B"], n = 2 Output: 8 Explanation: A -> B -> idle -> A -> B -> idle -> A -> B There is at least 2 units of time between any two same tasks. we can try this using a max heap [(3, 0, a), (3, 0, b)] a=0, b=0 i = 0 so a and [(2, 2, a), (3, 0, b)] and a=3 i=1 and nothing in b so b and [(2, a), (2, b)] and a=3, b=4 i = 2 and less than a so idle and [(2, a), (2, b)] and a=3, b=4 i = 3 and = a so a and [(1, a), (2, b)] and a=6, b=4 i = 4 and = b so b and [(1, a), (1, b)] and a = 6, b=7 null and time complexity so basically i can keep a max heap of the elements and a counter to see any of the items are still hot time complexity: O(number of distinct items) space complexity: O(number of distinct items) """ from heapq import heappop, heappush, heapreplace, heapify from collections import Counter from collections import defaultdict from typing import List class Solution: def preprocess(self, tasks): counts = Counter(tasks) heap = [(-c, t) for t, c in counts.items()] heapify(heap) return heap def units_count(self, heap, n): availability = defaultdict(int) counter = 0 #__import__('pdb').set_trace() while heap: rem, next_task = heap[0] if availability[next_task] <= counter: heappop(heap) if rem < -1: heappush(heap, (rem + 1, next_task)) counter += 1 availability[next_task] = counter + n print(heap, availability) return counter def leastInterval(self, tasks: List[str], n: int) -> int: heap = self.preprocess(tasks) print(heap) return self.units_count(heap, n) # test cases tasks = ["A","A","A","B","B","B"] n = 2 sol = Solution() print(sol.leastInterval(tasks, n)) tasks = ["A","A","A","B","B","B"] n = 0 sol = Solution() print(sol.leastInterval(tasks, n)) tasks = ["A","A","A","A","A","A","B","C","D","E","F","G"] n = 2 sol = Solution() print(sol.leastInterval(tasks, n))
[ "joydeepubuntu@gmail.com" ]
joydeepubuntu@gmail.com
3a6a5df5f8a628756abc9856951e29d2fcb67018
ebc31d1c4ef8d1a28688a3822353d0312f7805a6
/entree/host/profiles/admin.py
da5b4f67ccd86b0e08491bc57590270d8c3fb27b
[]
no_license
yedpodtrzitko/django-entree
4cf63232a9c3a975e8a682bb3e7250d6bb543166
7bca1bd13dc29a0310b2047f3d9095c7b35e6947
refs/heads/master
2021-01-04T14:07:25.874683
2013-07-04T23:17:05
2013-07-04T23:17:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,517
py
from cache_tools.utils import get_cached_object from django.conf import settings from django.contrib import admin from django.forms import BaseInlineFormSet from django.utils.translation import ugettext_lazy as _ from entree.host.models import EntreeSite from entree.host.profiles.models import SiteProperty class ResidentBlahFormSet(BaseInlineFormSet): def __init__(self, *args, **kwargs): try: kwargs['instance'] = get_cached_object(EntreeSite, pk=settings.ENTREE['NOSITE_ID']) except EntreeSite.DoesNotExist: kwargs['instance'] = None super(ResidentBlahFormSet, self).__init__(*args, **kwargs) class SitePropertiesAdmin(admin.TabularInline): model = SiteProperty prepopulated_fields = {"slug": ("name",)} verbose_name_plural = _("Site properties (available only for current site)") class ResidentSitePropertiesAdmin(admin.TabularInline): model = SiteProperty #formset = ResidentBlahFormSet prepopulated_fields = {"slug": ("name",)} verbose_name_plural = _("Resident properties (applied to all sites)") verbose_name = _("Resident property (applies to all sites)") def get_formset(self, request, obj=None, **kwargs): try: obj = get_cached_object(EntreeSite, pk=settings.ENTREE['NOSITE_ID']) except EntreeSite.DoesNotExist: pass return super(ResidentSitePropertiesAdmin, self).get_formset(request, obj, **kwargs) admin.site.register(SiteProperty, SitePropertiesAdmin)
[ "yed@vanyli.net" ]
yed@vanyli.net
c1a2bb3a2f2d23bb9480bbc734db437ea0e088b0
53c3f5e9bbaa52b80b2644a04e3ff336218ab4e8
/Year 2/Saul Burgess/Labs/2020-10-01/Lab6(3-B).py
089f8aabc4dac642caaf69010ddb640c39d3ef4e
[]
no_license
DT211C-2019/programming
085011a709e0f8729df8184c3b71c82d06723398
dd15978e7b8059834e5a11f7036cb380ed52b202
refs/heads/master
2021-06-23T17:41:59.463000
2021-05-05T00:04:50
2021-05-05T00:04:50
216,625,686
10
3
null
null
null
null
UTF-8
Python
false
false
99
py
for i in range(1, 10): for j in range(1, 10): print(i, "Multiplied by", j, "is", (i*j))
[ "C19349793@mytudublin.ie" ]
C19349793@mytudublin.ie
ea2335cf507636acb309773f21249b1500c086a9
f3ac41b803545a7a272afaf25ed173598ce5b3bc
/aggressive_pipe_test.py
db766c521fc36c589272a9d36b13dffcab6f39b5
[]
no_license
rynstewart/ECE_P4_Advanced_MIPS_Sim
4ec83eab3c19dbd504d1137d4e8a51d05ba6db9c
72f4cddc69d76b6075ac55045f659da97143a421
refs/heads/master
2020-09-16T14:05:04.161919
2019-12-09T03:50:01
2019-12-09T03:50:01
223,792,445
0
0
null
2019-12-09T03:50:02
2019-11-24T18:43:10
Python
UTF-8
Python
false
false
35,540
py
import time class Statistics_Pipeine: def __init__(self, debugMode): self.I= "" #current instruction being executed self.name = "" # name of the instruction self.cycle = 0 # Total cycles in simulation self.NOPcount = 0 #keeps track of NOP self.branch_taken_stall = 0 #keeps track of flush self.lw_use_stall = 0 #keeps track of stall count self.compute_branch_stall = 0 #keeps track of stall count self.lw_branch_stall = 0 self.ALUoutM_ALUSrcB = 0 self.ALUoutM_ALUSrcA = 0 self.ALUoutM_EqualD = 0 self.ALUoutM_WriteDataE = 0 self.ResultW_ALUSrcA = 0 self.ResultW_ALUSrcB = 0 self.ResultW_EqualD = 0 self.ResultW_WriteDataE = 0 self.debugMode = debugMode def log_forward(self, cycle, ALUoutM_ALUSrcB, ALUoutM_ALUSrcA, ALUoutM_EqualD, ALUoutM_WriteDataE, ResultW_ALUSrcA, ResultW_ALUSrcB, ResultW_EqualD,ResultW_WriteDataE): self.cycle += cycle self.ALUoutM_ALUSrcB += ALUoutM_ALUSrcB self.ALUoutM_ALUSrcA += ALUoutM_ALUSrcA self.ALUoutM_EqualD += ALUoutM_EqualD self.ALUoutM_WriteDataE += ALUoutM_WriteDataE self.ResultW_ALUSrcA += ResultW_ALUSrcA self.ResultW_ALUSrcB += ResultW_ALUSrcB self.ResultW_EqualD += ResultW_EqualD self.ResultW_WriteDataE += ResultW_WriteDataE def log_stall(self, branch_taken_stall, lw_use_stall, compute_branch_stall, lw_branch_stall): self.branch_taken_stall += branch_taken_stall self.lw_use_stall += lw_use_stall self.compute_branch_stall += compute_branch_stall self.lw_branch_stall += lw_branch_stall def exitSim(self): print("***Finished simulation***") print("Total # of cycles: " + str(self.cycle)) print("\nDelay Statistics:") print(" " + str(self.branch_taken_stall) + " taken branch stalls" ) print(" " + str(self.lw_use_stall) + " lw use stall" ) print(" " + str(self.compute_branch_stall) + " compute branch stall" ) print(" " + str(self.lw_branch_stall) + " lw then branch stall" ) print("\n Forwarding Path Statistics:") print(" " + str(self.ALUoutM_ALUSrcA) + " ALUOutM ‐> SrcAE" ) print(" " + str(self.ALUoutM_ALUSrcB) + " ALUOutM ‐> SrcBE" ) print(" " + str(self.ALUoutM_EqualD) + " ALUOutM ‐> EqualD" ) print(" " + str(self.ALUoutM_WriteDataE) + " ALUOutM ‐> WriteDataE" ) print(" " + str(self.ResultW_ALUSrcA) + " ResultW ‐> SrcAE" ) print(" " + str(self.ResultW_ALUSrcB) + " ResultW ‐> SrcBE" ) print(" " + str(self.ResultW_EqualD) + " ResultW ‐> WriteDataE" ) print(" " + str(self.ResultW_WriteDataE) + " ResultW ‐> EqualD" ) def saveJumpLabel(asm, labelIndex, labelName, labelAddr): lineCount = 0 for line in asm: line = line.replace(" ","") if(line.count(":")): labelName.append(line[0:line.index(":")]) # append the label name labelIndex.append(lineCount) # append the label's index\ labelAddr.append(lineCount*4) #asm[lineCount] = line[line.index(":")+1:] lineCount += 1 for item in range(asm.count('\n')): # Remove all empty lines '\n' asm.remove('\n') def regNameInit(regName): i = 0 while i<=23: regName.append(str(i)) i = i + 1 regName.append('lo') regName.append('hi') def final_print(regval, MEM, PC, DIC): print("REGISTERS:") print("-----------") for x in range(len(regval)): if(x == 24): print("lo: ", hex(regval[x])) elif(x == 25): print("hi: ", hex(regval[x])) else: print("$", x,": ", hex(regval[x])) print("PC: ", hex(PC)) print("DIC: ", hex(DIC)) print("\n*************************************** Used Memory values ***************************************\n") print("offset: ", end="") for x in range(0,8,1): print("0x"+ format((x*4),"08x"), end=" ") print("\n") print("--------------------------------------------------------------------------------------------------",end="") count = 0 print("\n") y=0 for x in range(0x2000,0x2041,1): if((x-0x2000) % 0x20 ==0): print("0x" +format(0x2000+ y,"08x") + '|', end=" ") y += 0x20 if count == 8: count = 0 print(" ", end = "\n") if((x-0x2000)%4==0): print('0x'+format(MEM[x], "08x"), end=" ") count += 1 def get_imm(instr, index): #first check base if '0x' in instr[index]: imm = int(instr[index][2:],16) else: imm = int(instr[index]) return imm ############################################################################# # this is the main cycle information tracker, it looks at the list # instr_cycles to see the first entry for which cycle an instruction is on # then removes that cycle. It repeats this process for the next instructins # as well. True is returned if an instruction still has cycles, false once # the list has no more cycles. ############################################################################# def cycle_tracker(instr_cycles, DIC): index = DIC print('\n************************ CYCLE INFORMATION ************************\n') if "Fetch" in instr_cycles[index][1]: print("\n"+instr_cycles[index][0] +" in Fetch Cycle") del instr_cycles[index][1] return True if "Decode" in instr_cycles[index][1]: print("\n" + instr_cycles[index][0] + " in Decode Cycle") del instr_cycles[index][1] try: if "Fetch" in instr_cycles[index+1][1]: print("\n"+instr_cycles[index+1][0] +" in Fetch Cycle") del instr_cycles[index+1][1] except: return False return True if "Execute" in instr_cycles[index][1]: print("\n" + instr_cycles[index][0] + " in Execute Cycle") if(instr_cycles[index][1][1] != ""): print("\n\tForwarding Path(s):") for k in range(1,len(instr_cycles[index][1]),1): print("\n\t" + instr_cycles[index][1][k]) del instr_cycles[index][1] try: if "Decode" in instr_cycles[index+1][1]: print("\n"+instr_cycles[index+1][0] +" in Decode Cycle") del instr_cycles[index+1][1] except: return False try: if "Fetch" in instr_cycles[index+2][1]: print("\n"+instr_cycles[index+2][0] +" in Fetch Cycle") del instr_cycles[index+2][1] except: return False return True if "Memory" in instr_cycles[index][1]: print("\n" + instr_cycles[index][0] + " in Memory Cycle") del instr_cycles[index][1] try: if "Execute" in instr_cycles[index+1][1]: print("\n"+instr_cycles[index+1][0] +" in Execute Cycle") if(instr_cycles[index+1][1][1] != ""): for k in range(1,len(instr_cycles[index+1][1]),1): print("\n\t" + instr_cycles[index+1][1][k]) del instr_cycles[index+1][1] except: return False try: if "Decode" in instr_cycles[index+2][1]: print("\n"+instr_cycles[index+2][0] +" in Decode Cycle") del instr_cycles[index+2][1] except: return False try: if "Fetch" in instr_cycles[index+3][1]: print("\n"+instr_cycles[index+3][0] +" in Fetch Cycle") del instr_cycles[index+3][1] except: return False return True if "Write Back" in instr_cycles[index][1]: print("\n" + instr_cycles[index][0] + " in Write Back Cycle") if(instr_cycles[index][1][1] != ""): for k in range(1,len(instr_cycles[index][1]),1): print("\n\t" + instr_cycles[index][1][k]) instr_cycles[index][1] try: if "Memory" in instr_cycles[index+1][1]: print("\n"+instr_cycles[index+1][0] +" in Memory Cycle") del instr_cycles[index+1][1] except: return False try: if "Execute" in instr_cycles[index+2][1]: print("\n"+instr_cycles[index+2][0] +" in Execute Cycle") if(instr_cycles[index+2][1][1] != ""): for k in range(1,len(instr_cycles[index+2][1]),1): print("\n\t" + instr_cycles[index+2][1][k]) del instr_cycles[index+2][1] except: return False try: if "Decode" in instr_cycles[index+3][1]: print("\n"+instr_cycles[index+3][0] +" in Decode Cycle") del instr_cycles[index+3][1] except: return False try: if "Fetch" in instr_cycles[index+4][1]: print("\n"+instr_cycles[index+4][0] +" in Fetch Cycle") del instr_cycles[index+4][1] except: return False return False ############################################################################# # This function handles hazard detection. If a hazard is detected it modifies # the inst_cycles list to include a fowarding path in the cycle # for the cases that a forwarding path is not enough to avoid a hazard this # function inserts an NOP to stall in the asn list ############################################################################# def hazards_handle(stats, instr_cycles, asm, instr): NOP = "STALL INSTRUCTION" add_in = [NOP,["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]] DIC = len(instr_cycles) - 1 try: instr_cycles[DIC-1] except: return instr i = 1 if ":" in asm[instr-i] or "#" in asm[instr-i]: i = 2 if ":" in asm[instr-i] or "#" in asm[instr-i]: i = 3 if instr - i < 0: return instr current = asm[instr] current = current.replace("\n","") # Removes extra chars current = current.replace("$","") current = current.replace(" ","") current_name = instr_cycles[DIC][0] current = current.replace(current_name,"") current = current.replace("(",",") current = current.replace(")","") current = current.split(",") prev = asm[instr-i] prev = prev.replace("\n","") # Removes extra chars prev = prev.replace("$","") prev = prev.replace(" ","") prev_name = instr_cycles[DIC-1][0] prev = prev.replace(prev_name,"") prev = prev.replace("(",",") prev = prev.replace(")","") prev = prev.split(",") norm_instri = ["addi", "ori", "sll"] norm_instrr = ["xor", "addu", "sltu", "slt", "sub"] branch = ["beq", "bne"] if prev_name in norm_instrr or prev_name in norm_instri: prd = int(prev[0]) if current_name in norm_instri: rs = int(current[1]) if rs == prd: stats.log_forward(0,0,1,0,0,0,0,0,0) instr_cycles[DIC-1][3][1] = "ALUoutM --> ALUSrcA" if current_name in norm_instrr: rt = int(current[2]) rs = int(current[1]) if rs == prd: stats.log_forward(0,0,1,0,0,0,0,0,0) if instr_cycles[DIC-1][3][1] == "": instr_cycles[DIC-1][3].append("ALUoutM --> ALUSrcA") else: instr_cycles[DIC-1][3][1] = "ALUoutM --> ALUSrcA" if rt == prd: stats.log_forward(0,1,0,0,0,0,0,0,0) if instr_cycles[DIC-1][3][1] == "": instr_cycles[DIC-1][3].append("ALUoutM --> ALUSrcB") else: instr_cycles[DIC-1][3][1] = "ALUoutM --> ALUSrcB" if prev_name in norm_instrr or prev_name in norm_instri: prd = int(prev[0]) if current_name == "sw": rt = int(current[2]) if rt == prd: stats.log_forward(0,1,0,0,0,0,0,0,0) instr_cycles[DIC-1][3][1] = "ALUoutM --> ALUSrcB" if prev_name in norm_instrr or prev_name in norm_instri: prd = int(prev[0]) if current_name in branch: rt = int(current[1]) rs = int(current[0]) if rs == prd or rt == prd: stats.log_forward(0,0,0,1,0,0,0,0,0) instr_cycles[DIC-1][3][1] = "ALUoutM --> EqualD" stats.log_stall(0,0,1,0) if instr_cycles[DIC-1] != NOP: instr_cycles.insert(DIC, add_in) if prev_name in norm_instrr or prev_name in norm_instri: prd = int(prev[0]) if current_name == "lw": rt = int(current[2]) if rt == prd: stats.log_forward(0,1,0,0,0,0,0,0,0) instr_cycles[DIC-1][3][1] = "ALUoutM --> ALUSrcB" if prev_name == "lw": prd = int(prev[0]) if current_name in branch: rt = int(current[2]) rs = int(current[1]) if rs == prd or rt == prd: stats.log_forward(0,0,0,0,0,0,0,1,0) instr_cycles[DIC - 1][5][1] = "ResultW --> EqualD" stats.log_stall(0,0,0,2) if instr_cycles[DIC-1] != NOP: instr_cycles.insert(DIC, add_in) instr_cycles.insert(DIC, add_in) if prev_name in "lw": prd = int(prev[0]) if current_name in norm_instrr or prev_name in norm_instri: rt = int(current[2]) rs = int(current[1]) if rs == prd: stats.log_forward(0,0,0,0,0,1,0,0,0) if instr_cycles[DIC-1][3][1] == "": instr_cycles[DIC-1][5].append("ResultW --> ALUSrcA") else: instr_cycles[DIC-1][5][1] = "ResultW --> ALUSrcA" if rt == prd: stats.log_forward(0,0,0,0,0,0,1,0,0) if instr_cycles[DIC-1][5][1] == "": instr_cycles[DIC-1][5].append("ResultW --> ALUSrcB") else: instr_cycles[DIC-1][5][1] = "ResultW --> ALUSrcB" if rt == prd or rs == prd: stats.log_stall(0,1,0,0) if instr_cycles[DIC-1] != NOP: instr_cycles.insert(DIC, add_in) def simulate(Instructions, f, debugMode): labelIndex = [] labelName = [] labelAddr = [] regName = [] regNameInit(regName) LO = 24 HI = 25 stats = Statistics_Pipeine(debugMode) NOP = "STALL INSTRUCTION" saveJumpLabel(Instructions,labelIndex,labelName, labelAddr) instr_cycles = [] f = open(f,"w+") for loop in range(2): DIC = 0 PC = 0 MEM = [0]*12288 #intialize array to all 0s for 0x3000 indices regval = [0]*26 #0-23 and lo, hi lineCount = 0 i = 0 not_Done = True if loop == 1: tot_cycles = len(instr_cycles) + 4 stats.log_forward(tot_cycles,0,0,0,0,0,0,0,0) while lineCount < len(Instructions): line = Instructions[lineCount] if(debugMode == 1 and loop == 1): while(True): if not_Done: user_pause = input("Press enter to continue or q to quit diagnosis mode:\n\n") if(user_pause == ""): print('MIPS Instruction: ' + line + '\n') break if(user_pause == "q"): print("Continuing in non-stop mode\n") debugMode = 2 break else: continue break f.write('------------------------------ \n') if(not(':' in line)): f.write('MIPS Instruction: ' + line + '\n') line = line.replace("\n","") # Removes extra chars line = line.replace("$","") line = line.replace(" ","") line = line.replace("zero","0") # assembly can also use both $zero and $0 if(line[0:4] == "addi"): # ADDI, $t = $s + imm; advance_pc (4); addi $t, $s, imm if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("addi","") line = line.split(",") imm = get_imm(line,2) regval[int(line[0])] = (regval[int(line[1])] + imm) & 0xFFFFFFFF f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' + ' + line[2] + '; ' + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') if(debugMode != 1): DIC += 1 PC += 4 if(loop == 0): if(int(line[0])==23): instr_cycles.append(["addi-NOP INSTRUCTION", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) else: instr_cycles.append(["addi", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) elif(line[0:3] == "xor"): #$d = $s ^ $t; advance_pc (4); xor $d, $s, $t if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("xor","") line = line.split(",") x = regval[int(line[1])] y = regval[int(line[2])] z = int(x)^int(y) regval[int(line[0])] = z & 0xFFFFFFFF f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' ^ $' + line[2] + '; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["xor", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) #addu elif(line[0:4] == "addu"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("addu","") line = line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["addu", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) regval[int(line[0])] = (abs(regval[int(line[1])]) + abs(regval[int(line[2])])) & 0xFFFFFFFF f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' + ' + '$' + line[2] + '; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') elif(line[0:4] == "sltu"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("sltu","") line = line.split(",") if(abs(regval[int(line[1])]) < abs(regval[int(line[2])])): regval[int(line[0])] = 1 else: regval[int(line[0])] = 0 PC = PC + 4 if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["sltu", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' < $' + line[2] + '? 1 : 0 ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[ int(line[0]) ]) + '\n') elif(line[0:3] == "slt"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("slt","") line = line.split(",") if(regval[int(line[1])] < regval[int(line[2])]): regval[int(line[0])] = 1 else: regval[int(line[0])] = 0 PC = PC + 4 if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["sltu", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' < $' + line[2] + '? 1 : 0 ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[ int(line[0]) ]) + '\n') elif(line[0:3] == "ori"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("ori", "") line = line.split(",") imm = get_imm(line,2) PC = PC + 4 regval[int(line[0])] = (imm | regval[int(line[1])]) & 0xFFFFFFFF if(loop == 0): instr_cycles.append(["ori", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) if(debugMode != 1): DIC += 1 f.write('Operation: $' + line[0] + '= $' + line[1] + " | " + line[2] + '\n'), f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + '=' + line[2] + '\n') #bne elif(line[0:3] == "bne"): # BNE if (debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("bne","") line = line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["bne", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) if(regval[int(line[0])]!=regval[int(line[1])]): if(line[2].isdigit()): # First,test to see if it's a label or a integer PC = int(line[2])*4 lineCount = int(line[2]) f.write('PC is now at ' + str(line[2]) + '\n') else: # Jumping to label for i in range(len(labelName)): if(labelName[i] == line[2]): PC = labelAddr[i] lineCount = labelIndex[i] f.write('PC is now at ' + str(labelAddr[i]) + '\n') break if Instructions[lineCount+1] != NOP and loop == 0: instr_cycles.append([NOP,["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) stats.log_stall(1, 0, 0, 0) f.write('No Registers have changed. \n') continue f.write('No Registers have changed. \n') #beq elif(line[0:3] == "beq"): # Beq if (debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("beq","") line = line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["beq", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) if(regval[int(line[0])]==regval[int(line[1])]): if(line[2].isdigit()): # First,test to see if it's a label or a integer PC = int(line[2])*4 lineCount = int(line[2]) f.write('PC is now at ' + str(line[2]) + '\n') f.write('PC is now at ' + str(labelAddr[i]) + '\n') f.write('No Registers have changed. \n') else: # Jumping to label for i in range(len(labelName)): if(labelName[i] == line[2]): PC = labelAddr[i] lineCount = labelIndex[i] f.write('PC is now at ' + str(labelAddr[i]) + '\n') f.write('No Registers have changed. \n') break if Instructions[lineCount+1] != NOP and loop == 0: instr_cycles.append([NOP,["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) stats.log_stall(1, 0, 0, 0) continue f.write('No Registers have changed. \n') elif(line[0:2] =="lw" and not('lw_loop' in line)): if (debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line= line.replace("lw","") line= line.replace("(",",") line= line.replace(")","") line= line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["lw", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) rs = regval[int(line[2])] imm = get_imm(line, 1) MEM_val = MEM[ rs + imm ] & 0xFFFFFFFF bin_str = format(MEM_val, '32b') if bin_str[0] == '1': MEM_val = MEM_val ^ 0xffffffff MEM_val +=1 MEM_val = -MEM_val regval[int(line[0])]= MEM_val f.write('Operation: $' + line[0] + ' = ' + 'MEM[$' + line[2] + ' + ' + line[1] + ']; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') elif(line[0:2] =="sw" and not('sw_' in line)): if (debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line= line.replace("sw","") line= line.replace("(",",") line= line.replace(")","") line= line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["sw", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) imm = get_imm(line, 1) MEM_val = regval[int(line[0])] MEM[ regval[int(line[2])] + imm ] = MEM_val f.write('Operation: MEM[ $' + line[2] + ' + ' + line[1] + ' ] = $' + line[0] + '; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: None\n') elif(line[0:3] =="sub"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("sub","") line = line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["sub", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) regval[int(line[0])] = (regval[int(line[1])] - regval[int(line[2])]) & 0xFFFFFFFF f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' - ' + '$' + line[2] + '; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') elif(line[0:3] == "sll"): if(debugMode == 1 and loop == 1): if not_Done: not_Done = cycle_tracker(instr_cycles, DIC) continue DIC += 1 not_Done = True line = line.replace("sll","") line = line.split(",") if(debugMode != 1): DIC += 1 if(loop == 0): instr_cycles.append(["sll", ["Fetch",""], ["Decode",""], ["Execute",""], ["Memory", ""], ["Write Back", ""]]) hazards_handle(stats, instr_cycles, Instructions, lineCount) imm = get_imm(line,2) regval[int(line[0])] = (regval[int(line[1])] << imm) & 0xFFFFFFFF f.write('Operation: $' + line[0] + ' = ' + '$' + line[1] + ' << ' + line[2] + '; ' + '\n') f.write('PC is now at ' + str(PC) + '\n') f.write('Registers that have changed: ' + '$' + line[0] + ' = ' + str(regval[int(line[0])]) + '\n') lineCount += 1 PC = (len(Instructions)-len(labelName)) * 4 final_print(regval,MEM, PC, DIC) print("\n\n**************************************** FINAL CYCLE INFO ****************************************\n") print("PIPLINED CYCLES: ", stats.cycle) stats.exitSim() f.close() def splitText(text): return text.split("\n") def readIn(s): text = "" with open(s, "r") as f: for line in f: if (line != "\n" and line[0]!='#'): text += line return text def main(): while(True): file_Name = input("Please type input file name or enter for default (proj_A.asm), or q to quit:\n") if(file_Name == "q"): print("Bye!") return if(file_Name == ""): file_Name = "proj_A.asm" try: f = open(file_Name) f.close() break except FileNotFoundError: print('File does not exist') while(True): file_NameOut = input("Please type output file name or enter for default (mc.txt), or q to quit:\n") if(file_NameOut == "q"): print("Bye!") return if(file_NameOut == ""): file_NameOut = "mc.txt" break while(True): user_select = input("select one of the below or q to quit:\n" + \ "\ta) Diagnosis mode\n" +\ "\tb) Non-stop mode\n") if(user_select == "a"): select = 1 break if(user_select == "b"): select = 2 break if(user_select == "q"): return else: print("ERROR: Please type valid input\n") continue h = open(file_Name,"r") asm = h.readlines() for item in range(asm.count('\n')): # Remove all empty lines '\n' asm.remove('\n') simulate(asm, file_NameOut, select) main()
[ "rynstewart10@gmail.com" ]
rynstewart10@gmail.com
688973944544c6f2ad0c18a1f82d05ccfc259f1a
f82e67dd5f496d9e6d42b4fad4fb92b6bfb7bf3e
/scripts/client/gui/battle_control/dynsquadviewlistener.py
46819f433e680bed108cdf012b7912d40ccedadf
[]
no_license
webiumsk/WOT0.10.0
4e4413ed4e7b00e22fb85d25fdae9400cbb4e76b
a84f536c73f86d9e8fab559e97f88f99f2ad7e95
refs/heads/master
2021-01-09T21:55:00.662437
2015-10-23T20:46:45
2015-10-23T20:46:45
44,835,654
1
0
null
null
null
null
UTF-8
Python
false
false
3,046
py
# Embedded file name: scripts/client/gui/battle_control/DynSquadViewListener.py import BigWorld from constants import INVITATION_TYPE from gui.battle_control import g_sessionProvider from gui.battle_control.requests.context import SendInvitesCtx from gui.prb_control.prb_helpers import prbInvitesProperty from adisp import process class DynSquadViewListener(object): def __init__(self, battleUI): super(DynSquadViewListener, self).__init__() self.__battleUI = battleUI self.__battleUI.addExternalCallbacks({'Battle.UsersRoster.LeaveSquad': self.__onLeaveSquad, 'Battle.UsersRoster.ExcludedFromSquad': self.__onExcludedFromSquad, 'Battle.UsersRoster.SendInvitationToSquad': self.__onSentInviteToSquad, 'Battle.UsersRoster.WithdrawInvitationToSquad': self.__onWithdrawInviteToSquad, 'Battle.UsersRoster.AcceptInvitationToSquad': self.__onAcceptInviteToSquad, 'Battle.UsersRoster.RejectInvitationToSquad': self.__onRejectInviteToSquad, 'Battle.addToDynamicSquad': self.__onSentInviteToSquad, 'Battle.acceptInviteToDynamicSquad': self.__onAcceptInviteToSquad}) @prbInvitesProperty def prbInvites(self): return None def destroy(self): if self.__battleUI: self.__battleUI.removeExternalCallbacks(('Battle.UsersRoster.LeaveSquad', 'Battle.UsersRoster.ExcludedFromSquad', 'Battle.UsersRoster.SendInvitationToSquad', 'Battle.UsersRoster.WithdrawInvitationToSquad', 'Battle.UsersRoster.AcceptInvitationToSquad', 'Battle.UsersRoster.RejectInvitationToSquad', 'Battle.addToDynamicSquad', 'Battle.acceptInviteToDynamicSquad')) self.__battleUI = None return def __onLeaveSquad(self, _, userId): pass def __onExcludedFromSquad(self, _, userId): pass @process def __onSentInviteToSquad(self, _, userId): yield g_sessionProvider.sendRequest(SendInvitesCtx(databaseIDs=(userId,))) def __onAcceptInviteToSquad(self, _, userId): inviteID = self.__getInviteID(userId, True, True) if inviteID is not None: self.prbInvites.acceptInvite(inviteID) return def __onWithdrawInviteToSquad(self, _, userId): inviteID = self.__getInviteID(userId, False, False) if inviteID is not None: self.prbInvites.revokeInvite(inviteID) return def __onRejectInviteToSquad(self, _, userId): inviteID = self.__getInviteID(userId, True, True) if inviteID is not None: self.prbInvites.declineInvite(inviteID) return def __getInviteID(self, userId, isCreator, incomingInvites): invites = self.prbInvites.getInvites(incoming=incomingInvites, onlyActive=True) if isCreator: idGetter = lambda i: i.creatorDBID else: idGetter = lambda i: i.receiverDBID for invite in invites: if invite.type == INVITATION_TYPE.SQUAD and idGetter(invite) == userId: return invite.clientID return None
[ "info@webium.sk" ]
info@webium.sk
dab71c7c7ca10f4fa9d20b9077001ab35b0c0475
2fe41c6d3968a8acad6afb37333134c828462492
/binary_to_float-tqdm.py
3e38702b5dafad030ff886a8a45f5f2139f76fb2
[]
no_license
alex-meadows/binaryparse
6d1f9bc65e2b24200c141ceb9d62682323893bd4
ecadc1cb64e433ac108b417f1edd47362f60fa72
refs/heads/master
2022-12-11T07:35:28.460321
2020-09-09T22:54:54
2020-09-09T22:54:54
294,243,144
0
0
null
null
null
null
UTF-8
Python
false
false
1,671
py
import struct import sys from tqdm import tqdm #initialize the 'fileName' list with file names for, xi, eta, Dg, and GH fileName = "", "", "", "" fileContent = [] numbytes = [] for z in fileName: with open(z, mode='rb') as file: v = file.read() fileContent.append(v) numbytes.append(int(len(v)/4))#the four comes from the buffer size of float byte #the below variables of xi, eta, Dg, GH are the parsed float values xi = struct.unpack(str(numbytes[0]) + 'f', fileContent[0][0:4*int(numbytes[0])]) eta = struct.unpack(str(numbytes[1]) + 'f', fileContent[1][0:4*int(numbytes[1])]) Dg = struct.unpack(str(numbytes[2]) + 'f', fileContent[2][0:4*int(numbytes[2])]) GH = struct.unpack(str(numbytes[3]) + 'f', fileContent[3][0:4*int(numbytes[3])]) #the below portion is just for writing the floats to text files, it takes a couple of minutes for each file ans = input("Write data to txt file? (y/n)") if (ans == 'y'): xi_data = open(fileName[0].replace('.', '')+'.txt','w') xi_data.write('\n') for x in tqdm(xi): xi_data.write(str(x)) xi_data.write('\n') xi_data.close() eta_data = open(fileName[1].replace('.', '')+'.txt','w') eta_data.write('\n') for x in tqdm(eta): eta_data.write(str(x)) eta_data.write('\n') eta_data.close() Dg_data = open(fileName[2].replace('.', '')+'.txt','w') Dg_data.write('\n') for x in tqdm(Dg): Dg_data.write(str(x)) Dg_data.write('\n') Dg_data.close() GH_data = open(fileName[3].replace('.', '')+'.txt','w') GH_data.write('\n') for x in tqdm(GH): GH_data.write(str(x)) GH_data.write('\n') GH_data.close() sys.exit()
[ "noreply@github.com" ]
alex-meadows.noreply@github.com
f092071813dfa5e13e3b8190ae4b7e3c3fb549fd
815151e83df53382eba9fbd34b9fec84e11714f0
/AWS_IOT/aws_publisher.py
9af2f2aceaa341680b3e35e8425be931dca6a448
[]
no_license
tadeuamaral/pfc
65d65642dcb8b4ab4a01c46c0ab29970af951de9
6118c24626fb992fce7bb87f029888a01ba98684
refs/heads/master
2020-04-22T02:14:35.247752
2019-01-30T02:30:34
2019-01-30T02:30:34
170,041,671
0
1
null
2019-02-10T23:56:13
2019-02-10T23:56:12
null
UTF-8
Python
false
false
2,397
py
# -*- coding: utf-8 -*- #!/bin/bash import os import sys from datetime import datetime from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient import time import json import argparse sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from configure import pfc_conf from configure import pfc_mqtt_topic class aws_publisher: IOT_MQTT_CLIENT = None QOS_LEVEL = 1 def __init__(self,QOS_LEVEL=1): self.QOS_LEVEL = QOS_LEVEL self.IOT_MQTT_CLIENT = AWSIoTMQTTClient(pfc_conf.PFC_AWS_IOT_CLIENT_ID) self.IOT_MQTT_CLIENT.configureEndpoint(pfc_mqtt_topic.AWS_ENDPOINT,8883) self.IOT_MQTT_CLIENT.configureCredentials(pfc_conf.CA_PATH, pfc_conf.PRIVATE_KEY_PATH, pfc_conf.CERTIFICATE_PATH) self.IOT_MQTT_CLIENT.configureAutoReconnectBackoffTime(1, 32, 20) self.IOT_MQTT_CLIENT.configureOfflinePublishQueueing(-1) self.IOT_MQTT_CLIENT.configureDrainingFrequency(2) self.IOT_MQTT_CLIENT.configureConnectDisconnectTimeout(10) self.IOT_MQTT_CLIENT.configureMQTTOperationTimeout(20) def publish_mqtt_broker(self,topic,messageJson): if messageJson == None: print("message is none.") sys.exit() elif "PFC_SERIAL" not in messageJson or "DEVICE_DT" not in messageJson: print("PFC_SERIAL, DEVICE_DT is a demandable.") sys.exit() self.IOT_MQTT_CLIENT.connect() self.IOT_MQTT_CLIENT.publish(topic, messageJson, self.QOS_LEVEL) self.IOT_MQTT_CLIENT.disconnect() print("Pbulished MQTT topic: " + str(topic)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-t","--topic",action="store",required=True,dest="topic", help="MQTT message `Topic` name") parser.add_argument("-m","--message",action="store",required=True,dest="message", help="MQTT message data") parser.add_argument("-q","--qos_level",action="store",dest="qos_level", help="MQTT QOS_LEVEL", default=1) qos_level = 1 topic = 'EZFARM/PFC/V1/DEV/00000001/order_subscribe' # topic = 'EZFARM/PFC/V1/DEV' message = { "PFC_SERIAL": "00000000", "DEVICE_DT" : str(datetime.now()), # "ORDER" : "UPLOAD", # "TARGET" : "S3_UPLOAD", # "TYPE" : "DATA_LAKE", "ORDER" : "ON", "TARGET" : "LED", "TYPE" : "ACTUATOR", "ORDER_DT" : str(datetime.now()) } message['ORDER_DT'] = str(datetime.now()) messageJson = json.dumps(message) publisher_aws = aws_publisher(QOS_LEVEL = qos_level) publisher_aws.publish_mqtt_broker(topic,messageJson)
[ "house9737@gmail.com" ]
house9737@gmail.com
c4140a667a35b2d8e8c828993ec52a8eca4ca50f
58fcbbde289b4c0575c06542986e5d1f3a95ff6d
/app/main/model/calificacion_producto.py
94c1eb261df26b8e1dc6a791943b2794ae2eff2f
[]
no_license
Team-3-TCS/api-my-store
045691196aa019efe0188912ead4f7fe32c68a9a
e3e6d716102280e73932e5eba65b2ff27eec45e0
refs/heads/dev
2023-04-09T23:43:49.973791
2021-04-26T00:21:43
2021-04-26T00:21:43
351,312,190
1
0
null
2021-04-26T00:21:44
2021-03-25T04:49:31
Python
UTF-8
Python
false
false
570
py
from .. import db class Calificacion_producto(db.Model): __tablename__ = "calificacion_producto" id_calificacion = db.Column( db.Integer, primary_key=True, autoincrement=True) id_producto = db.Column(db.Integer, db.ForeignKey( 'producto.id_producto'), nullable=False) id_cliente = db.Column(db.Integer, db.ForeignKey( 'cliente.id_cliente'), nullable=False) puntuacion = db.Column(db.Integer) comentario = db.Column(db.String(200)) def __repr__(self): return "<Calificacion_producto '{}'>".format(self.id_producto)
[ "eisten.flores@unmsm.edu.pe" ]
eisten.flores@unmsm.edu.pe
10585dad5b6446bed09db2ec7320848d018b4d5e
a330f3ba0431b397206cdb02df8e0ac923be2dcb
/LyndaCourse7.2.py
b03e496140cc8898fb81402685d6b3bbe1038259
[]
no_license
coreyderosa/Python-Tkinter
d53a5776346eead5e1ced6b688d8ec8c85b22cf8
3b7c642f90378db132ac6436fb4509cdde1fdf1d
refs/heads/master
2021-01-10T22:58:32.650462
2016-10-06T02:12:26
2016-10-06T02:12:26
69,717,974
0
1
null
null
null
null
UTF-8
Python
false
false
972
py
#can use this with Keyboard events such as ButtonPress, ButtonRelease, Enter, Leave, Motion, KeyPress, KeyRelease, FocusIn, FocusOut from tkinter import * from tkinter import ttk root = Tk() def key_press(event): print('type:{}'.format(event.type)) #displays key type event- type 2 is key press print('widget:{}'.format(event.widget)) print('char:{}'.format(event.char)) #actual key character pressed print('keysym:{}'.format(event.keysym)) #symbol of the key- if shift + 3 this will show #- if left shift key is pressed Shift_L is displayed print('keycode:{}'.format(event.keycode)) #numeric code of key- a = 65 def shortcut(action): print(action) #root.bind('<KeyPress>', key_press) root.bind('<Control-c>', lambda e: shortcut('Copy')) #needed tto add variable 'e' inorder for the lambda to work root.bind('<Control-v>', lambda e: shortcut('Paste')) #needed tto add variable 'e' inorder for the lambda to work root.mainloop()
[ "coreyderosa@gmail.com" ]
coreyderosa@gmail.com
b8dae0aba14861e40314b608502313c768f9ecb4
62bb149a207550c2ad6a6c319e24d23b08f0bb07
/page/admin.py
3deb51ee981b51f98cfe44821986dd8e95b522a0
[]
no_license
onr20/kaft
4a1ab3b9454dd3cc05a24b609c98ef9e667ad235
2f52d180963d4a0e3f7c58352b3c88af5c600ec1
refs/heads/master
2023-04-19T06:23:58.564336
2021-05-08T21:50:00
2021-05-08T21:50:00
365,242,279
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
from django.contrib import admin from .models import Page, Carousel class PageModify(admin.ModelAdmin): prepopulated_fields = {"slug": ("title",)} list_display = ( 'pk', 'title', 'slug', 'status', 'updated_at', ) list_filter = ('status',) list_editable = ('status','title',) admin.site.register(Page, PageModify) admin.site.register(Carousel)
[ "onrozcan20@gmail.com" ]
onrozcan20@gmail.com
a115ec089052a5f20b7c8d7cc33f4f75f2e6b2b9
eb98ad1577f052f72dedc530191132f55bfbb6ce
/code_and_data/core/ppo.py
5b424a553c6c2ddc931d84d21f3febac63e671c0
[]
no_license
zchaoking/VAKLIL-Supplementary-Files---AAAI-2020
9ca3ae540aeff8353e255e3699779848c5d50175
37b73a9030f56578de920d77bae7ba41403a3ba8
refs/heads/master
2022-03-10T07:52:47.451663
2019-11-21T15:38:01
2019-11-21T15:38:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,385
py
import torch def ppo_step(policy_net, value_net, optimizer_policy, optimizer_value, optim_value_iternum, states, actions, returns, advantages, fixed_log_probs, clip_epsilon, l2_reg): # debug #policy_net, value_net, optimizer_policy, optimizer_value, optim_value_iternum, states, actions, \ #returns, advantages, fixed_log_probs, clip_epsilon, l2_reg = \ #policy_net, value_net, optimizer_policy, optimizer_value, 1, states_b, actions_b, returns_b, \ #advantages_b, fixed_log_probs_b, args.clip_epsilon, args.l2_reg """update critic""" for _ in range(optim_value_iternum): values_pred = value_net(states) value_loss = (values_pred - returns).pow(2).mean() # weight decay for param in value_net.parameters(): value_loss += param.pow(2).sum() * l2_reg optimizer_value.zero_grad() value_loss.backward() optimizer_value.step() """update policy""" log_probs = policy_net.get_log_prob(states, actions) ratio = torch.exp(log_probs - fixed_log_probs) surr1 = ratio * advantages surr2 = torch.clamp(ratio, 1.0 - clip_epsilon, 1.0 + clip_epsilon) * advantages policy_surr = -torch.min(surr1, surr2).mean() optimizer_policy.zero_grad() policy_surr.backward() torch.nn.utils.clip_grad_norm_(policy_net.parameters(), 40) optimizer_policy.step()
[ "fanyang@dhcp-morris-3166.redrover.cornell.edu" ]
fanyang@dhcp-morris-3166.redrover.cornell.edu
cc1e3ec045322da5e27aa08c83831635d126cfb1
2e92d3fec5046f0052c40c9b078fe27314b49af4
/rekog-working.py
0065e4c253222b8d89027b1f1140ec9fca65a69b
[]
no_license
mondiman/rekog-ss
b2b3f3757bf63aa9dba67ea7f47bbdd10d3228ba
f2add14a2d34ab5bf74fad44231d2ce03bbeda71
refs/heads/master
2020-03-23T14:08:54.192860
2018-07-20T19:01:33
2018-07-20T19:01:33
141,659,371
0
0
null
null
null
null
UTF-8
Python
false
false
3,310
py
from __future__ import print_function import boto3 from decimal import Decimal import json import urllib from copy import deepcopy print('Loading function') rekognition = boto3.client('rekognition') client = boto3.client('sns') rekog_max_labels = 10 rekog_min_conf = 80.0 label_watch_list = ["Human", "People", "Person", "Automobile", "Car"] label_watch_min_conf = 80.0 # --------------- Helper Functions to call Rekognition APIs ------------------ def detect_labels(bucket, key): response = rekognition.detect_labels(Image={"S3Object": {"Bucket": bucket, "Name": key}}, MaxLabels=rekog_max_labels, MinConfidence=rekog_min_conf,) return response # --------------- Main handler ------------------ def lambda_handler(event, context): '''Demonstrates S3 trigger that uses Rekognition APIs to detect faces, labels and index faces in S3 Object. ''' #print("Received event: " + json.dumps(event, indent=2)) # Get the object from the event bucket = event['Records'][0]['s3']['bucket']['name'] key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8')) try: # Calls rekognition DetectFaces API to detect faces in S3 object # response = detect_faces(bucket, key) # Calls rekognition DetectLabels API to detect labels in S3 object response = detect_labels(bucket, key) for record in event['Records']: filename = record['s3']['object']['key']; #filesize = record['s3']['object']['size']; #source = record['requestParameters']['sourceIPAddress']; eventTime = record['eventTime']; #Iterate on rekognition labels. Enrich and prep them for storage in DynamoDB labels_on_watch_list = [] for label in response['Labels']: lbl = label['Name'] conf = label['Confidence'] label['OnWatchList'] = False #Print labels and confidence to lambda console print('{} .. conf %{:.2f}'.format(lbl, conf)) #Check label watch list and trigger action if (lbl.upper() in (label.upper() for label in label_watch_list) and conf >= label_watch_min_conf): label['OnWatchList'] = True labels_on_watch_list.append(deepcopy(label)) tosend="" for Label in response["Labels"]: print ('{0} - {1}%'.format(Label["Name"], Label["Confidence"])) tosend+= '{0} - {1}%'.format(Label["Name"], round(Label["Confidence"], 2)) # Calls rekognition IndexFaces API to detect faces in S3 object and index faces into specified collection #response = index_faces(bucket, key) # Print response to console. print(response) if len(labels_on_watch_list) > 0: message = client.publish(TargetArn='arn:aws:sns:us-west-2:126009388920:image-recognition-SNS', Message=filename+" "+tosend, Subject=filename) return response except Exception as e: print(e) print("Error processing object {} from bucket {}. ".format(key, bucket) + "Make sure your object and bucket exist and your bucket is in the same region as this function.") raise e
[ "noreply@github.com" ]
mondiman.noreply@github.com
d8e0f174795778a50f9f731e86cd07665ffab752
4559498420ef7a3de7c8d49761bbb5a38ae6403f
/stackGAN/solver_stackGAN.py
72fc6a2dd1a9ae806480a9e3d4e219382842017d
[]
no_license
Dylan199602/CS230_StackedGAN
02163be3c26c92f61602f5718c945d65e881b1c7
a335044b9a65c525922f03f908bdff376e7b2626
refs/heads/master
2021-03-23T23:21:19.031777
2019-12-08T17:28:23
2019-12-08T17:28:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
48,221
py
from model import Generator from model import Discriminator from generator import Generator as G2 from discriminator import Discriminator as D2 from torch.autograd import Variable from torchvision.utils import save_image import torch import torch.nn.functional as F import numpy as np import os import time import datetime import gc from glob import glob from itertools import product from random import choice from imageio import imwrite import tensorflow as tf from tqdm import tqdm from logger_cartoonGAN import get_logger @tf.function def gram(x): shape_x = tf.shape(x) b = shape_x[0] c = shape_x[3] x = tf.reshape(x, [b, -1, c]) return tf.matmul(tf.transpose(x, [0, 2, 1]), x) / tf.cast((tf.size(x) // b), tf.float32) # for StarGAN class Solver(object): def __init__(self,rafdb_loader, config): """Initialize configurations.""" "StarGAN." # Data loader. self.rafdb_loader = rafdb_loader # Model configurations. self.c_dim = config.c_dim self.image_size = config.image_size self.g_conv_dim = config.g_conv_dim self.d_conv_dim = config.d_conv_dim self.g_repeat_num = config.g_repeat_num self.d_repeat_num = config.d_repeat_num self.lambda_cls = config.lambda_cls self.lambda_rec = config.lambda_rec self.lambda_gp = config.lambda_gp # Training configurations. # self.dataset = config.dataset self.batch_size_starGAN = config.batch_size_starGAN self.num_iters = config.num_iters self.num_iters_decay = config.num_iters_decay self.g_lr = config.g_lr self.d_lr = config.d_lr self.n_critic = config.n_critic self.beta1 = config.beta1 self.beta2 = config.beta2 self.resume_iters = config.resume_iters # self.selected_attrs = config.selected_attrs # Test configurations. self.test_iters = config.test_iters # Miscellaneous. self.use_tensorboard = config.use_tensorboard self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # self.device = torch.device('cpu') # Directories. self.log_dir = config.log_dir self.sample_dir = config.sample_dir self.model_save_dir = config.model_save_dir #Adding this directory to self.intermediate_dir = config.intermediate_dir self.result_dir_starGAN = config.result_dir_starGAN # Step size. self.log_step = config.log_step self.sample_step = config.sample_step self.model_save_step = config.model_save_step self.lr_update_step = config.lr_update_step # Build the model and tensorboard. self.build_model() if self.use_tensorboard: self.build_tensorboard() "CartoonGAN" self.debug = config.debug self.ascii = os.name == "nt" self.dataset_name = config.dataset_name self.light = config.light self.source_domain = config.source_domain self.target_domain = config.target_domain self.gan_type = config.gan_type self.epochs = config.epochs self.input_size = config.input_size self.multi_scale = config.multi_scale self.batch_size_cartoonGAN = config.batch_size_cartoonGAN self.sample_size = config.sample_size self.reporting_steps = config.reporting_steps self.content_lambda = float(config.content_lambda) self.style_lambda = float(config.style_lambda) self.g_adv_lambda =config. g_adv_lambda self.d_adv_lambda = config.d_adv_lambda self.generator_lr = config.generator_lr self.discriminator_lr = config.discriminator_lr self.data_dir =config.data_dir self.log_dir_cartoonGAN = config.log_dir_cartoonGAN self.result_dir_cartoonGAN = config.result_dir_cartoonGAN self.checkpoint_dir = config.checkpoint_dir self.generator_checkpoint_prefix = config.generator_checkpoint_prefix self.discriminator_checkpoint_prefix = config.discriminator_checkpoint_prefix self.pretrain_checkpoint_prefix = config.pretrain_checkpoint_prefix self.pretrain_model_dir = config.pretrain_model_dir self.model_dir = config.model_dir self.disable_sampling = config.disable_sampling self.ignore_vgg = config.ignore_vgg self.pretrain_learning_rate = config.pretrain_learning_rate self.pretrain_epochs = config.pretrain_epochs self.pretrain_saving_epochs = config.pretrain_saving_epochs self.pretrain_reporting_steps = config.pretrain_reporting_steps self.pretrain_generator_name = config.pretrain_generator_name self.generator_name = config.generator_name self.discriminator_name = config.discriminator_name self.logger_cartoonGAN = get_logger("Solver", debug=False) # NOTE: just minimal demonstration of multi-scale training self.sizes = [self.input_size - 32, self.input_size, self.input_size + 32] if not self.ignore_vgg: self.logger_cartoonGAN.info("Setting up VGG19 for computing content loss...") from tensorflow.keras.applications import VGG19 from tensorflow.keras.layers import Conv2D input_shape = (self.input_size, self.input_size, 3) # download model using kwarg weights="imagenet" base_model = VGG19(weights="imagenet", include_top=False, input_shape=input_shape) tmp_vgg_output = base_model.get_layer("block4_conv3").output tmp_vgg_output = Conv2D(512, (3, 3), activation='linear', padding='same', name='block4_conv4')(tmp_vgg_output) self.vgg = tf.keras.Model(inputs=base_model.input, outputs=tmp_vgg_output) self.vgg.load_weights(os.path.expanduser(os.path.join( "~", ".keras", "models", "vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5")), by_name=True) else: self.logger_cartoonGAN.info("VGG19 will not be used. " "Content loss will simply imply pixel-wise difference.") self.vgg = None self.logger_cartoonGAN.info(f"Setting up objective functions and metrics using {self.gan_type}...") self.mae = tf.keras.losses.MeanAbsoluteError() self.generator_loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True) if self.gan_type == "gan": self.discriminator_loss_object = tf.keras.losses.BinaryCrossentropy( from_logits=True) elif self.gan_type == "lsgan": self.discriminator_loss_object = tf.keras.losses.MeanSquaredError() else: wrong_msg = f"Non-recognized 'gan_type': {self.gan_type}" self.logger_cartoonGAN.critical(wrong_msg) raise ValueError(wrong_msg) self.g_total_loss_metric = tf.keras.metrics.Mean("g_total_loss", dtype=tf.float32) self.g_adv_loss_metric = tf.keras.metrics.Mean("g_adversarial_loss", dtype=tf.float32) if self.content_lambda != 0.: self.content_loss_metric = tf.keras.metrics.Mean("content_loss", dtype=tf.float32) if self.style_lambda != 0.: self.style_loss_metric = tf.keras.metrics.Mean("style_loss", dtype=tf.float32) self.d_total_loss_metric = tf.keras.metrics.Mean("d_total_loss", dtype=tf.float32) self.d_real_loss_metric = tf.keras.metrics.Mean("d_real_loss", dtype=tf.float32) self.d_fake_loss_metric = tf.keras.metrics.Mean("d_fake_loss", dtype=tf.float32) self.d_smooth_loss_metric = tf.keras.metrics.Mean("d_smooth_loss", dtype=tf.float32) self.metric_and_names = [ (self.g_total_loss_metric, "g_total_loss"), (self.g_adv_loss_metric, "g_adversarial_loss"), (self.d_total_loss_metric, "d_total_loss"), (self.d_real_loss_metric, "d_real_loss"), (self.d_fake_loss_metric, "d_fake_loss"), (self.d_smooth_loss_metric, "d_smooth_loss"), ] if self.content_lambda != 0.: self.metric_and_names.append((self.content_loss_metric, "content_loss")) if self.style_lambda != 0.: self.metric_and_names.append((self.style_loss_metric, "style_loss")) self.logger_cartoonGAN.info("Setting up checkpoint paths...") self.pretrain_checkpoint_prefix = os.path.join( self.checkpoint_dir, "pretrain", self.pretrain_checkpoint_prefix) self.generator_checkpoint_dir = os.path.join( self.checkpoint_dir, self.generator_checkpoint_prefix) self.generator_checkpoint_prefix = os.path.join( self.generator_checkpoint_dir, self.generator_checkpoint_prefix) self.discriminator_checkpoint_dir = os.path.join( self.checkpoint_dir, self.discriminator_checkpoint_prefix) self.discriminator_checkpoint_prefix = os.path.join( self.discriminator_checkpoint_dir, self.discriminator_checkpoint_prefix) ################################################################################################# "functions for StarGAN" def build_model(self): """Create a generator and a discriminator.""" self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num) self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num) self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2]) self.print_network(self.G, 'G') self.print_network(self.D, 'D') self.G.to(self.device) self.D.to(self.device) def print_network(self, model, name): """Print out the network information.""" num_params = 0 for p in model.parameters(): num_params += p.numel() print(model) print(name) print("The number of parameters: {}".format(num_params)) def restore_model(self, resume_iters): """Restore the trained generator and discriminator.""" print('Loading the trained models from step {}...'.format(resume_iters)) G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters)) self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage)) self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage)) def build_tensorboard(self): """Build a tensorboard logger.""" from logger import Logger self.logger = Logger(self.log_dir) def update_lr(self, g_lr, d_lr): """Decay learning rates of the generator and discriminator.""" for param_group in self.g_optimizer.param_groups: param_group['lr'] = g_lr for param_group in self.d_optimizer.param_groups: param_group['lr'] = d_lr def reset_grad(self): """Reset the gradient buffers.""" self.g_optimizer.zero_grad() self.d_optimizer.zero_grad() def denorm(self, x): """Convert the range from [-1, 1] to [0, 1].""" out = (x + 1) / 2 return out.clamp_(0, 1) def gradient_penalty(self, y, x): """Compute gradient penalty: (L2_norm(dy/dx) - 1)**2.""" weight = torch.ones(y.size()).to(self.device) dydx = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=weight, retain_graph=True, create_graph=True, only_inputs=True)[0] dydx = dydx.view(dydx.size(0), -1) dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1)) return torch.mean((dydx_l2norm-1)**2) def label2onehot(self, labels, dim): """Convert label indices to one-hot vectors.""" batch_size = labels.size(0) out = torch.zeros(batch_size, dim) out[np.arange(batch_size), labels.long()] = 1 return out def create_labels(self, c_org, c_dim=5): """Generate target domain labels for debugging and testing.""" c_trg_list = [] for i in range(c_dim): c_trg = self.label2onehot(torch.ones(c_org.size(0))*i, c_dim) c_trg_list.append(c_trg.to(self.device)) return c_trg_list def classification_loss(self, logit, target): """Compute binary or softmax cross entropy loss.""" return F.cross_entropy(logit, target) ################################################################################################# "functions for CartoonGAN" def _save_generated_images(self, batch_x, image_name, nrow=2, ncol=4, dir_): # NOTE: 0 <= batch_x <= 1, float32, numpy.ndarray if not isinstance(batch_x, np.ndarray): batch_x = batch_x.numpy() n, h, w, c = batch_x.shape out_arr = np.zeros([h * nrow, w * ncol, 3], dtype=np.uint8) for (i, j), k in zip(product(range(nrow), range(ncol)), range(n)): out_arr[(h * i):(h * (i+1)), (w * j):(w * (j+1))] = batch_x[k] if not os.path.isdir(self.dir_): os.makedirs(self.dir_) imwrite(os.path.join(self.dir_, image_name), out_arr) gc.collect() return out_arr @tf.function def random_resize(self, x): size = choice(self.sizes) return tf.image.resize(x, (size, size)) @tf.function def image_processing(self, filename, is_train=True): crop_size = self.input_size if self.multi_scale and is_train: crop_size += 32 x = tf.io.read_file(filename) x = tf.image.decode_jpeg(x, channels=3) if is_train: sizes = tf.cast( crop_size * tf.random.uniform([2], 0.9, 1.1), tf.int32) shape = tf.shape(x)[:2] sizes = tf.minimum(sizes, shape) x = tf.image.random_crop(x, (sizes[0], sizes[1], 3)) x = tf.image.random_flip_left_right(x) x = tf.image.resize(x, (crop_size, crop_size)) img = tf.cast(x, tf.float32) / 127.5 - 1 return img def get_dataset(self, dataset_name, domain, _type, batch_size): files = glob(os.path.join(self.data_dir, dataset_name, f"{_type}{domain}", "*")) num_images = len(files) self.logger_cartoonGAN.info( f"Found {num_images} domain{domain} images in {_type}{domain} folder." ) ds = tf.data.Dataset.from_tensor_slices(files) ds = ds.apply(tf.data.experimental.shuffle_and_repeat(num_images)) def fn(fname): if self.multi_scale: return self.random_resize(self.image_processing(fname, True)) else: return self.image_processing(fname, True) ds = ds.apply(tf.data.experimental.map_and_batch(fn, batch_size)) steps = int(np.ceil(num_images/batch_size)) # user iter(ds) to avoid generating iterator every epoch return iter(ds), steps @tf.function def pass_to_vgg(self, tensor): # NOTE: self.vgg should be fixed if self.vgg is not None: tensor = self.vgg(tensor) return tensor @tf.function def content_loss(self, input_images, generated_images): return self.mae(input_images, generated_images) @tf.function def style_loss(self, input_images, generated_images): input_images = gram(input_images) generated_images = gram(generated_images) return self.mae(input_images, generated_images) @tf.function def discriminator_loss(self, real_output, fake_output, smooth_output): real_loss = self.discriminator_loss_object(tf.ones_like(real_output), real_output) fake_loss = self.discriminator_loss_object(tf.zeros_like(fake_output), fake_output) smooth_loss = self.discriminator_loss_object( tf.zeros_like(smooth_output), smooth_output) total_loss = real_loss + fake_loss + smooth_loss return real_loss, fake_loss, smooth_loss, total_loss @tf.function def generator_adversarial_loss(self, fake_output): return self.generator_loss_object(tf.ones_like(fake_output), fake_output) @tf.function def pretrain_step(self, input_images, generator, optimizer): with tf.GradientTape() as tape: generated_images = generator(input_images, training=True) c_loss = self.content_lambda * self.content_loss( self.pass_to_vgg(input_images), self.pass_to_vgg(generated_images)) gradients = tape.gradient(c_loss, generator.trainable_variables) optimizer.apply_gradients(zip(gradients, generator.trainable_variables)) self.content_loss_metric(c_loss) @tf.function def train_step(self, source_images, target_images, smooth_images, generator, discriminator, g_optimizer, d_optimizer): with tf.GradientTape() as g_tape, tf.GradientTape() as d_tape: real_output = discriminator(target_images, training=True) generated_images = generator(source_images, training=True) fake_output = discriminator(generated_images, training=True) smooth_out = discriminator(smooth_images, training=True) d_real_loss, d_fake_loss, d_smooth_loss, d_total_loss = \ self.discriminator_loss(real_output, fake_output, smooth_out) g_adv_loss = self.g_adv_lambda * self.generator_adversarial_loss(fake_output) g_total_loss = g_adv_loss # NOTE: self.*_lambdas are fixed if self.content_lambda != 0. or self.style_lambda != 0.: vgg_generated_images = self.pass_to_vgg(generated_images) if self.content_lambda != 0.: c_loss = self.content_lambda * self.content_loss( self.pass_to_vgg(source_images), vgg_generated_images) g_total_loss = g_total_loss + c_loss if self.style_lambda != 0.: s_loss = self.style_lambda * self.style_loss( self.pass_to_vgg(target_images[:vgg_generated_images.shape[0]]), vgg_generated_images) g_total_loss = g_total_loss + s_loss d_grads = d_tape.gradient(d_total_loss, discriminator.trainable_variables) g_grads = g_tape.gradient(g_total_loss, generator.trainable_variables) d_optimizer.apply_gradients(zip(d_grads, discriminator.trainable_variables)) g_optimizer.apply_gradients(zip(g_grads, generator.trainable_variables)) self.g_total_loss_metric(g_total_loss) self.g_adv_loss_metric(g_adv_loss) if self.content_lambda != 0.: self.content_loss_metric(c_loss) if self.style_lambda != 0.: self.style_loss_metric(s_loss) self.d_total_loss_metric(d_total_loss) self.d_real_loss_metric(d_real_loss) self.d_fake_loss_metric(d_fake_loss) self.d_smooth_loss_metric(d_smooth_loss) def pretrain_generator(self): summary_writer = tf.summary.create_file_writer(os.path.join(self.log_dir_cartoonGAN, "pretrain")) self.logger_cartoonGAN.info(f"Starting to pretrain generator with {self.pretrain_epochs} epochs...") self.logger_cartoonGAN.info( f"Building `{self.dataset_name}` dataset with domain `{self.source_domain}`..." ) dataset, steps_per_epoch = self.get_dataset(dataset_name=self.dataset_name, domain=self.source_domain, _type="train", batch_size=self.batch_size_cartoonGAN) if self.multi_scale: self.logger_cartoonGAN.info(f"Initializing generator with " f"batch_size_cartoonGAN: {self.batch_size_cartoonGAN}, input_size: multi-scale...") else: self.logger_cartoonGAN.info(f"Initializing generator with " f"batch_size_cartoonGAN: {self.batch_size_cartoonGAN}, input_size: {self.input_size}...") generator = G2(base_filters=2 if self.debug else 64, light=self.light) generator(tf.keras.Input( shape=(self.input_size, self.input_size, 3), batch_size=self.batch_size_cartoonGAN)) generator.summary() self.logger_cartoonGAN.info("Setting up optimizer to update generator's parameters...") optimizer = tf.keras.optimizers.Adam( learning_rate=self.pretrain_learning_rate, beta_1=0.5) self.logger_cartoonGAN.info(f"Try restoring checkpoint: `{self.pretrain_checkpoint_prefix}`...") try: checkpoint = tf.train.Checkpoint(generator=generator) status = checkpoint.restore(tf.train.latest_checkpoint( os.path.join(self.checkpoint_dir, "pretrain"))) status.assert_consumed() self.logger_cartoonGAN.info(f"Previous checkpoints has been restored.") trained_epochs = checkpoint.save_counter.numpy() epochs = self.pretrain_epochs - trained_epochs if epochs <= 0: self.logger_cartoonGAN.info(f"Already trained {trained_epochs} epochs. " "Set a larger `pretrain_epochs`...") return else: self.logger_cartoonGAN.info(f"Already trained {trained_epochs} epochs, " f"{epochs} epochs left to be trained...") except AssertionError: self.logger_cartoonGAN.info(f"Checkpoint is not found, " f"training from scratch with {self.pretrain_epochs} epochs...") trained_epochs = 0 epochs = self.pretrain_epochs if not self.disable_sampling: val_files = glob(os.path.join( self.data_dir, self.dataset_name, f"test{self.source_domain}", "*")) val_real_batch = tf.map_fn( lambda fname: self.image_processing(fname, False), tf.constant(val_files), tf.float32, back_prop=False) real_batch = next(dataset) while real_batch.shape[0] < self.sample_size: real_batch = tf.concat((real_batch, next(dataset)), 0) real_batch = real_batch[:self.sample_size] with summary_writer.as_default(): img = np.expand_dims(self._save_generated_images( tf.cast((real_batch + 1) * 127.5, tf.uint8), image_name="pretrain_sample_images.png"), 0,result_dir_cartoonGAN) tf.summary.image("pretrain_sample_images", img, step=0) img = np.expand_dims(self._save_generated_images( tf.cast((val_real_batch + 1) * 127.5, tf.uint8), image_name="pretrain_val_sample_images.png",result_dir_cartoonGAN), 0,) tf.summary.image("pretrain_val_sample_images", img, step=0) gc.collect() else: self.logger_cartoonGAN.info("Proceeding pretraining without sample images...") self.logger_cartoonGAN.info("Starting pre-training loop, " "setting up summary writer to record progress on TensorBoard...") for epoch in range(epochs): epoch_idx = trained_epochs + epoch + 1 for step in tqdm( range(1, steps_per_epoch + 1), desc=f"Pretrain Epoch {epoch + 1}/{epochs}"): # NOTE: not following official "for img in dataset" example # since it generates new iterator every epoch and can # hardly be garbage-collected by python image_batch = dataset.next() self.pretrain_step(image_batch, generator, optimizer) if step % self.pretrain_reporting_steps == 0: global_step = (epoch_idx - 1) * steps_per_epoch + step with summary_writer.as_default(): tf.summary.scalar('content_loss', self.content_loss_metric.result(), step=global_step) if not self.disable_sampling: fake_batch = tf.cast( (generator(real_batch, training=False) + 1) * 127.5, tf.uint8) img = np.expand_dims(self._save_generated_images( fake_batch, image_name=(f"pretrain_generated_images_at_epoch_{epoch_idx}" f"_step_{step}.png"),result_dir_cartoonGAN), 0, ) tf.summary.image('pretrain_generated_images', img, step=global_step) self.content_loss_metric.reset_states() with summary_writer.as_default(): if not self.disable_sampling: val_fake_batch = tf.cast( (generator(val_real_batch, training=False) + 1) * 127.5, tf.uint8) img = np.expand_dims(self._save_generated_images( val_fake_batch, image_name=("pretrain_val_generated_images_at_epoch_" f"{epoch_idx}_step_{step}.png"),result_dir_cartoonGAN), 0, ) tf.summary.image('pretrain_val_generated_images', img, step=epoch) if epoch % self.pretrain_saving_epochs == 0: self.logger_cartoonGAN.info(f"Saving checkpoints after epoch {epoch_idx} ended...") checkpoint.save(file_prefix=self.pretrain_checkpoint_prefix) gc.collect() del dataset gc.collect() ############################################################################################################# "Train StarGAN and CartoonGAN in a stacked model" def train(self): """Train StarGAN setting""" # Set data loader. data_loader = self.rafdb_loader # Fetch fixed inputs for debugging. data_iter = iter(data_loader) x_fixed_db, c_org_db = next(data_iter) x_fixed_db = x_fixed_db.to(self.device) c_fixed_list_db = self.create_labels(c_org_db, self.c_dim) # Get 15*16*5 faked data for second gan for i in range(16): data_iter = iter(data_loader) x_fixed, c_org = next(data_iter) x_fixed = x_fixed.to(self.device) if i == 0: x_fixed_all = x_fixed c_org_all = c_org else: x_fixed_all = torch.cat((x_fixed_all,x_fixed),0) c_org_all = torch.cat((c_org_all,c_org),0) c_fixed_list = self.create_labels(c_org_all, self.c_dim) # Learning rate cache for decaying. g_lr = self.g_lr d_lr = self.d_lr # Start training from scratch or resume training. start_iters = 0 if self.resume_iters: start_iters = self.resume_iters self.restore_model(self.resume_iters) "Train CartoonGAN setting" self.logger_cartoonGAN.info("Setting up summary writer to record progress on TensorBoard...") summary_writer = tf.summary.create_file_writer(self.log_dir_cartoonGAN) self.logger_cartoonGAN.info( f"Starting adversarial training with {self.epochs} epochs, " f"batch size: {self.batch_size_cartoonGAN}..." ) self.logger_cartoonGAN.info(f"Building `{self.dataset_name}` " "datasets for source/target/smooth domains...") ds_source, steps_per_epoch = self.get_dataset(dataset_name=self.dataset_name, domain=self.source_domain, _type="train", batch_size=self.batch_size_cartoonGAN) ds_target, _ = self.get_dataset(dataset_name=self.dataset_name, domain=self.target_domain, _type="train", batch_size=self.batch_size_cartoonGAN) ds_smooth, _ = self.get_dataset(dataset_name=self.dataset_name, domain=f"{self.target_domain}_smooth", _type="train", batch_size=self.batch_size_cartoonGAN) self.logger_cartoonGAN.info("Setting up optimizer to update generator and discriminator...") g_optimizer = tf.keras.optimizers.Adam(learning_rate=self.generator_lr, beta_1=.5) d_optimizer = tf.keras.optimizers.Adam(learning_rate=self.discriminator_lr, beta_1=.5) if self.multi_scale: self.logger_cartoonGAN.info(f"Initializing generator with " f"batch_size: {self.batch_size_cartoonGAN}, input_size: multi-scale...") else: self.logger_cartoonGAN.info(f"Initializing generator with " f"batch_size: {self.batch_size_cartoonGAN}, input_size: {self.input_size}...") generator = G2(base_filters=2 if self.debug else 64, light=self.light) generator(tf.keras.Input( shape=(self.input_size, self.input_size, 3), batch_size=self.batch_size_cartoonGAN)) self.logger_cartoonGAN.info(f"Searching existing checkpoints: `{self.generator_checkpoint_prefix}`...") try: g_checkpoint = tf.train.Checkpoint(generator=generator) g_checkpoint.restore( tf.train.latest_checkpoint( self.generator_checkpoint_dir)).assert_existing_objects_matched() self.logger_cartoonGAN.info(f"Previous checkpoints has been restored.") trained_epochs = g_checkpoint.save_counter.numpy() epochs = self.epochs - trained_epochs if epochs <= 0: self.logger_cartoonGAN.info(f"Already trained {trained_epochs} epochs. " "Set a larger `epochs`...") return else: self.logger_cartoonGAN.info(f"Already trained {trained_epochs} epochs, " f"{epochs} epochs left to be trained...") except AssertionError as e: self.logger_cartoonGAN.warning(e) self.logger_cartoonGAN.warning( "Previous checkpoints are not found, trying to load checkpoints from pretraining..." ) try: g_checkpoint = tf.train.Checkpoint(generator=generator) g_checkpoint.restore(tf.train.latest_checkpoint( os.path.join( self.checkpoint_dir, "pretrain"))).assert_existing_objects_matched() self.logger_cartoonGAN.info("Successfully loaded " f"`{self.pretrain_checkpoint_prefix}`...") except AssertionError: self.logger_cartoonGAN.warning("specified pretrained checkpoint is not found, " "training from scratch...") trained_epochs = 0 epochs = self.epochs if self.multi_scale: self.logger_cartoonGAN.info(f"Initializing discriminator with " f"batch_size: {self.batch_size_cartoonGAN}, input_size: multi-scale...") else: self.logger_cartoonGAN.info(f"Initializing discriminator with " f"batch_size: {self.batch_size_cartoonGAN}, input_size: {self.input_size}...") if self.debug: d_base_filters = 2 elif self.light: d_base_filters = 24 else: d_base_filters = 32 d = D2(base_filters=d_base_filters) d(tf.keras.Input( shape=(self.input_size, self.input_size, 3), batch_size=self.batch_size_cartoonGAN)) self.logger_cartoonGAN.info("Searching existing checkpoints: " f"`{self.discriminator_checkpoint_prefix}`...") try: d_checkpoint = tf.train.Checkpoint(d=d) d_checkpoint.restore( tf.train.latest_checkpoint( self.discriminator_checkpoint_dir)).assert_existing_objects_matched() self.logger_cartoonGAN.info(f"Previous checkpoints has been restored.") except AssertionError: self.logger_cartoonGAN.info("specified checkpoint is not found, training from scratch...") if not self.disable_sampling: val_files = glob(os.path.join( self.data_dir, self.dataset_name, f"test{self.source_domain}", "*")) val_real_batch = tf.map_fn( lambda fname: self.image_processing(fname, False), tf.constant(val_files), tf.float32, back_prop=False) real_batch = next(ds_source) while real_batch.shape[0] < self.sample_size: real_batch = tf.concat((real_batch, next(ds_source)), 0) real_batch = real_batch[:self.sample_size] with summary_writer.as_default(): img = np.expand_dims(self._save_generated_images( tf.cast((real_batch + 1) * 127.5, tf.uint8), image_name="gan_sample_images.png",result_dir_cartoonGAN), 0,) tf.summary.image("gan_sample_images", img, step=0) img = np.expand_dims(self._save_generated_images( tf.cast((val_real_batch + 1) * 127.5, tf.uint8), image_name="gan_val_sample_images.png",result_dir_cartoonGAN), 0,) tf.summary.image("gan_val_sample_images", img, step=0) gc.collect() else: self.logger_cartoonGAN.info("Proceeding training without sample images...") self.logger_cartoonGAN.info("Starting training loop...") self.logger_cartoonGAN.info(f"Number of trained epochs: {trained_epochs}, " f"epochs to be trained: {epochs}, " f"batch size: {self.batch_size_cartoonGAN}") "Start Training!" # Start training. print('Start training...') start_time = time.time() for i in range(start_iters, self.num_iters): "StarGAN" # =================================================================================== # # 1. Preprocess input data # # =================================================================================== # # Fetch real images and labels. try: x_real, label_org = next(data_iter) except: data_iter = iter(data_loader) x_real, label_org = next(data_iter) # Generate target domain labels randomly. rand_idx = torch.randperm(label_org.size(0)) label_trg = label_org[rand_idx] c_org = self.label2onehot(label_org, self.c_dim) c_trg = self.label2onehot(label_trg, self.c_dim) x_real = x_real.to(self.device) # Input images. c_org = c_org.to(self.device) # Original domain labels. c_trg = c_trg.to(self.device) # Target domain labels. label_org = label_org.to(self.device) # Labels for computing classification loss. label_trg = label_trg.to(self.device) # Labels for computing classification loss. # =================================================================================== # # 2. Train the discriminator # # =================================================================================== # # Compute loss with real images. out_src, out_cls = self.D(x_real) d_loss_real = - torch.mean(out_src) d_loss_cls = self.classification_loss(out_cls, label_org) # Compute loss with fake images. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake.detach()) d_loss_fake = torch.mean(out_src) # Compute loss for gradient penalty. alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True) out_src, _ = self.D(x_hat) d_loss_gp = self.gradient_penalty(out_src, x_hat) # Backward and optimize. d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp self.reset_grad() d_loss.backward() self.d_optimizer.step() # Logging. loss = {} loss['D/loss_real'] = d_loss_real.item() loss['D/loss_fake'] = d_loss_fake.item() loss['D/loss_cls'] = d_loss_cls.item() loss['D/loss_gp'] = d_loss_gp.item() # =================================================================================== # # 3. Train the generator # # =================================================================================== # if (i+1) % self.n_critic == 0: # Original-to-target domain. x_fake = self.G(x_real, c_trg) out_src, out_cls = self.D(x_fake) g_loss_fake = - torch.mean(out_src) g_loss_cls = self.classification_loss(out_cls, label_trg) # Target-to-original domain. x_reconst = self.G(x_fake, c_org) g_loss_rec = torch.mean(torch.abs(x_real - x_reconst)) # Backward and optimize. g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls self.reset_grad() g_loss.backward() self.g_optimizer.step() # Logging. loss['G/loss_fake'] = g_loss_fake.item() loss['G/loss_rec'] = g_loss_rec.item() loss['G/loss_cls'] = g_loss_cls.item() # =================================================================================== # # 4. Miscellaneous # # =================================================================================== # # Print out training information. if (i+1) % self.log_step == 0: et = time.time() - start_time et = str(datetime.timedelta(seconds=et))[:-7] log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters) for tag, value in loss.items(): log += ", {}: {:.4f}".format(tag, value) print(log) if self.use_tensorboard: for tag, value in loss.items(): self.logger.scalar_summary(tag, value, i+1) self.logger.writer.flush() # Translate fixed images for debugging. if (i+1) % self.sample_step == 0: with torch.no_grad(): x_fake_list = [x_fixed_db] for c_fixed in c_fixed_list_db: x_fake_list.append(self.G(x_fixed_db, c_fixed)) x_concat = torch.cat(x_fake_list, dim=3) sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1)) save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0) print('Saved real and fake images into {}...'.format(sample_path)) # Saving images for next generator. # The iteration should be consistent with the next generator if stack_mode=='A': if (i+1) % ((self.n_critic)*200) == 0: with torch.no_grad(): #create labels for the data for j in range(len(c_fixed_list)): photos = self.denorm(self.G(x_fixed_all, c_fixed_list[j])) for index in range(len(c_fixed_list[0])): intermediate_path = os.path.join(self.intermediate_dir, '{0}-{1}-images.jpg'.format(index,j)) save_image(photos[index],intermediate_path) print('Saved intermediate images for next GAN into {}...'.format(intermediate_path)) # Save model checkpoints. if (i+1) % self.model_save_step == 0: G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1)) D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1)) torch.save(self.G.state_dict(), G_path) torch.save(self.D.state_dict(), D_path) print('Saved model checkpoints into {}...'.format(self.model_save_dir)) # Decay learning rates. if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay): g_lr -= (self.g_lr / float(self.num_iters_decay)) d_lr -= (self.d_lr / float(self.num_iters_decay)) self.update_lr(g_lr, d_lr) print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr)) "CartoonGAN" if (i+1)% ((self.n_critic)*200) ==0: epoch= i epoch_idx= i +1 for step in tqdm( range(1, steps_per_epoch + 1), desc=f'Train {epoch + 1}/{epochs}', total=steps_per_epoch): source_images, target_images, smooth_images = ( ds_source.next(), ds_target.next(), ds_smooth.next()) self.train_step(source_images, target_images, smooth_images, generator, d, g_optimizer, d_optimizer) if step % self.reporting_steps == 0: global_step = (epoch_idx - 1) * steps_per_epoch + step with summary_writer.as_default(): for metric, name in self.metric_and_names: tf.summary.scalar(name, metric.result(), step=global_step) metric.reset_states() if not self.disable_sampling: fake_batch = tf.cast( (generator(real_batch, training=False) + 1) * 127.5, tf.uint8) img = np.expand_dims(self._save_generated_images( fake_batch, image_name=("gan_generated_images_at_epoch_" f"{epoch_idx}_step_{step}.png"),result_dir_cartoonGAN), 0,) tf.summary.image('gan_generated_images', img, step=global_step) # output intermediate images for next GAN if stack_mode=='B': img = np.expand_dims(self._save_generated_images( fake_batch, image_name=("gan_generated_images_at_epoch_" f"{epoch_idx}_step_{step}.png"),result_dir_cartoonGAN), 0,dir_='datasets/RaFDB/train') tf.summary.image('gan_generated_images', img, step=global_step) self.logger_cartoonGAN.debug(f"Epoch {epoch_idx}, Step {step} finished, " f"{global_step * self.batch_size_cartoonGAN} images processed.") with summary_writer.as_default(): if not self.disable_sampling: val_fake_batch = tf.cast( (generator(val_real_batch, training=False) + 1) * 127.5, tf.uint8) img = np.expand_dims(self._save_generated_images( val_fake_batch, image_name=("gan_val_generated_images_at_epoch_" f"{epoch_idx}_step_{step}.png")), 0, ) tf.summary.image('gan_val_generated_images', img, step=epoch) self.logger_cartoonGAN.info(f"Saving checkpoints after epoch {epoch_idx} ended...") g_checkpoint.save(file_prefix=self.generator_checkpoint_prefix) d_checkpoint.save(file_prefix=self.discriminator_checkpoint_prefix) generator.save_weights(os.path.join(self.model_dir, "generator")) gc.collect() # del ds_source, ds_target, ds_smooth gc.collect() def test(self): """Translate images using StarGAN trained on a single dataset.""" # Load the trained generator. self.restore_model(self.test_iters) # Set data loader. data_loader = self.rafdb_loader with torch.no_grad(): for i, (x_real, c_org) in enumerate(data_loader): # Prepare input images and target domain labels. x_real = x_real.to(self.device) c_trg_list = self.create_labels(c_org, self.c_dim) # Translate images. cnt = 1 for c_trg in c_trg_list: for j in range(16): result_path = os.path.join(self.result_dir, '{0}-{1}-images.jpg'.format((i*16 + j),cnt)) file = self.denorm(self.G(x_real, c_trg)) save_image(file[j],result_path) cnt= cnt+1
[ "noreply@github.com" ]
Dylan199602.noreply@github.com
5c2f65f3d8265e99550da60ed7b4a8cf09a5c48b
6f7e071edf7845c44688d2aa2a7882e3b33c449f
/chapter22-lesson4.py
b7a6e921285a5a17a8210f51e38fe4b53b44bb8f
[]
no_license
amano7/LearningPython
af7ead578fcb0e86cecc01becc6d5f02a87bd021
6a72f8c80fa6a1e665d89b9912894414dce9c0e8
refs/heads/master
2020-06-19T05:57:48.407094
2019-09-01T05:39:59
2019-09-01T05:39:59
196,588,866
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
def anagram(w1,w2): w1 = w1.lower() w2 = w2.lower() return sorted(w1) == sorted(w2) if __name__ == "__main__": print(anagram("Iceman","cinema")) print(anagram("leaf","tree")) print(sorted([1,2,5,4,3])[::-1])
[ "super7.amano@gmail.com" ]
super7.amano@gmail.com
9bbed5650b78a27c595b8d6796994c735b5bf023
4028a44fcd7349f8169260c3817ad7085a3f4919
/apps/goods/migrations/0001_initial.py
17f3512decc546c70695aa67fb9bd7dcf8d909bf
[]
no_license
benjieqiang/dailyfresh
1fbae02b293cd38de88c564512cef65864eb222d
3116935fd1bf382b9c3ed5126b5ba36f024100a4
refs/heads/master
2022-12-11T22:40:50.494114
2019-09-03T00:49:50
2019-09-03T00:49:50
205,858,693
1
0
null
2022-12-08T02:34:30
2019-09-02T13:03:27
Python
UTF-8
Python
false
false
7,981
py
# Generated by Django 2.1 on 2018-12-06 06:10 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='GoodsImage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('image', models.ImageField(upload_to='./static/upload/goods', verbose_name='图片路径')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='GoodsSKU', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('name', models.CharField(max_length=20, verbose_name='商品名称')), ('desc', models.CharField(max_length=256, verbose_name='商品描述')), ('price', models.CharField(max_length=10, verbose_name='商品价格')), ('unite', models.CharField(max_length=20, verbose_name='商品单位')), ('image', models.ImageField(upload_to='./static/upload/goods', verbose_name='商品图片')), ('stock', models.IntegerField(default=1, verbose_name='商品库存')), ('status', models.SmallIntegerField(choices=[(0, '下线'), (1, '上线')], default=1, verbose_name='商品状态')), ], options={ 'verbose_name_plural': '商品SKU', 'db_table': 'df_goods_sku', }, ), migrations.CreateModel( name='GoodsSPU', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('name', models.CharField(max_length=20, verbose_name='商品SPU名称')), ('detail', models.CharField(max_length=128, verbose_name='详情')), ], options={ 'verbose_name_plural': '商品SPU', 'db_table': 'df_goods_spu', }, ), migrations.CreateModel( name='GoodsType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('name', models.CharField(max_length=20, verbose_name='种类名称')), ('logo', models.CharField(max_length=20, verbose_name='标识')), ('image', models.ImageField(upload_to='upload/type', verbose_name='商品类型图片')), ], options={ 'verbose_name_plural': '商品种类', 'db_table': 'df_goods_type', }, ), migrations.CreateModel( name='IndexGoodsBanner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('image', models.ImageField(upload_to='./static/upload/banner', verbose_name='图片')), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ('sku', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsSKU', verbose_name='商品')), ], options={ 'verbose_name_plural': '首页轮播图', 'db_table': 'df_index_banner', }, ), migrations.CreateModel( name='IndexPromotionBanner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('name', models.CharField(max_length=20, verbose_name='活动名称')), ('url', models.URLField(verbose_name='活动链接')), ('image', models.ImageField(upload_to='./static/upload/banner', verbose_name='活动图片')), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ], options={ 'verbose_name_plural': '主页促销活动', 'db_table': 'df_index_promotion', }, ), migrations.CreateModel( name='IndexTypeGoodsBanner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now_add=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='删除标记')), ('display_type', models.SmallIntegerField(choices=[(0, '文字'), (1, '图片')], default=1)), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ('sku', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsSKU', verbose_name='商品SKU')), ('type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsType', verbose_name='商品类型')), ], options={ 'verbose_name_plural': '主页分类展示商品', 'db_table': 'df_index_tupe_goods', }, ), migrations.AddField( model_name='goodssku', name='goods', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsSPU', verbose_name='商品SPU'), ), migrations.AddField( model_name='goodssku', name='type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsType', verbose_name='商品种类'), ), migrations.AddField( model_name='goodsimage', name='name', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='goods.GoodsSKU', verbose_name='商品'), ), ]
[ "benjieqiang@163.com" ]
benjieqiang@163.com
cd26a97a9b5a11a42584b1b09d43489d5196cbae
77be6786ca1b176987aa1f23a992a039b16bd9b6
/LeetCode/二叉树/144.py
a58c9dd3ad92c087a64f635734d702921846d229
[]
no_license
yuyaxiong/interveiw_algorithm
b854fb952e94c5d204657a6cd6a90b3775d14a49
907a60702ef94e4f79313b0d0c7fe999bc508051
refs/heads/master
2022-03-20T07:04:14.944704
2022-02-07T10:12:25
2022-02-07T10:12:25
170,670,091
0
0
null
null
null
null
UTF-8
Python
false
false
1,185
py
# Definition for a binary tree node. from typing import List, Optional # 144.二叉树的前序遍历 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 递归版本 class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] self.preorder(root, result) return result def preorder(self, root, result): if root is None: return result.append(root.val) self.preorder(root.left, result) self.preorder(root.right, result) # 非递归版本 class Solution1: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: if root is None: return [] node_list = [root] result = [] while len(node_list) > 0: node = node_list.pop(0) tmp = [] result.append(node.val) if node.left is not None: tmp.append(node.left) if node.right is not None: tmp.append(node.right) node_list = tmp + node_list return result
[ "chinayuyaxiong@sina.com" ]
chinayuyaxiong@sina.com
2d1d47ab6569f49eb7676644d902bb9501b95b6c
3978985f6cf08f141cb9d780be4f8b7b2347c16b
/part-data/test-hex.py
ace3c362bebd65ef1741f086274328e456212db3
[ "MIT" ]
permissive
wuljchange/interesting_python
1ee5f2474645267fca9eb4e391700dcb5db051e3
3fdf9f7f17f7b361be030bb4eadf7aab889b15fe
refs/heads/master
2020-05-02T18:47:18.087498
2020-03-09T04:02:08
2020-03-09T04:02:08
178,139,898
1
0
null
null
null
null
UTF-8
Python
false
false
291
py
import base64 import binascii if __name__ == "__main__": s = b'hello world!' # 2进制转换成16进制 h = binascii.b2a_hex(s) print(h) # 16进制转换成2进制 print(binascii.a2b_hex(h)) h1 = base64.b16encode(s) print(h1) print(base64.b16decode(h1))
[ "wulinjiang1@kingsoft.com" ]
wulinjiang1@kingsoft.com
7f73826c85e81db663f9b34aed4a3145967e7f40
42ff9e20d828aee1497a819037e0f215c8e9313a
/start.py
681cfd14b6a23b849b0b649a2a2a7f6ed151aaf7
[ "MIT" ]
permissive
yangshyrmei24/connecting_flights
c11fa7113339cb1a20b92d647ac8a50bcd13a638
a0e9ce1c98985755bebadce4d047cd979e90936d
refs/heads/master
2023-04-09T18:10:23.305800
2019-05-27T17:39:03
2019-05-27T17:39:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from shortest import Database, ConnectingFlights, console if __name__ == '__main__': db = Database('localhost', 27017, "connecting_flight") cf = ConnectingFlights(db) console.menu(db, cf) console.clear()
[ "nuttysalmon@gmail.com" ]
nuttysalmon@gmail.com
97e7426c257696024e0ab90fca3023b7aa6b13d9
e790278fa154798103ce11d593502e4841b09cce
/Custom_Layers.py
b0983c35661e0b1965eff79f2b550d3c252f3ced
[]
no_license
enix45/Recommender_keras
1ae6c7843ba3492ee00c7ecc2ea7d5c85a606bd4
d65bbdec0547b8d1ef88e0c1034710f1729a3b67
refs/heads/master
2021-09-09T23:54:34.749926
2018-03-20T09:05:01
2018-03-20T09:05:01
125,987,282
0
0
null
null
null
null
UTF-8
Python
false
false
5,735
py
from keras import backend as K from keras.engine.topology import Layer class interaction(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(interaction, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( name = 'kernel', shape = (input_shape[1], self.output_dim), initializer = 'uniform', trainable = True) def call(self, x): return 0.5 * (K.pow(K.dot(x, self.kernel), 2) - K.dot(K.pow(x, 2), K.pow(self.kernel, 2))) def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim) class ans_fm(Layer): def __init__(self, sigmoid, **kwargs): self.output_dim = 1 self.sigmoid = sigmoid super(ans_fm, self).__init__(**kwargs) def call(self, inputs): ans = inputs[0] + K.sum(inputs[1], axis = 1) if self.sigmoid: return K.sigmoid(ans) else: return ans def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim) class dfm(Layer): def __init__(self, input_dims, emb_dim, hid_dims, **kwargs): self.input_dims = input_dims self.emb_dim = emb_dim self.hid_dims = hid_dims self.n_cates = len(input_dims) super(dfm, self).__init__(**kwargs) def build(self, input_shape): self.emb_kernels = list() self.mlp_kernels = list() self.mlp_bias = list() for i in range(self.n_cates): self.emb_kernels.append( self.add_weight( name = 'emb_' + str(i), shape = (self.input_dims[i], self.emb_dim), initializer = 'uniform', trainable = True)) def call(self, x): embs = [K.dot(x[i], self.emb_kernels[i]) for i in range(self.n_cates)] for i in range(self.n_cates): if i == 0: emb = embs[0] q_emb = K.dot(K.pow(x[i], 2), K.pow(self.emb_kernels[i], 2)) else: emb = emb + embs[i] q_emb = q_emb + K.dot(K.pow(x[i], 2), K.pow(self.emb_kernels[i], 2)) fm_ans = 0.5 * (K.pow(emb, 2) - q_emb) embs = K.concatenate(embs, axis = -1) return K.concatenate([fm_ans, embs], axis = -1) def compute_output_shape(self, input_shape): #return [(input_shape[0][0], 1), (input_shape[0][0], self.n_cates * self.emb_dim) ] return (input_shape[0][0], (self.n_cates + 1) * self.emb_dim) class ans_dfm(Layer): def __init__(self, input_dim, **kwargs): self.output_dim = 1 self.input_dim = input_dim super(ans_dfm, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( name = 'kernel', #shape = (input_shape[1][1], self.output_dim), shape = (self.input_dim, self.output_dim), initializer = 'uniform', trainable = True) self.bias = self.add_weight( name = 'bias', shape = (self.output_dim,), initializer = 'uniform', trainable = True) def call(self, inputs): # Note that the following did not have the linear term of FM component ans1 = K.sum(inputs[0], axis = 1, keepdims = True) ans2 = K.bias_add(K.dot(inputs[1], self.kernel), self.bias) #return K.sigmoid(ans1 + ans2 + inputs[2]) return K.sigmoid(ans1 + ans2) def compute_output_shape(self, input_shape): #return (input_shape[1][0], self.output_dim) return (input_shape[0][0], self.output_dim) class inner_product(Layer): def __init__(self, nb_cate, hidden_dim, **kwargs): self.nb_cate = nb_cate self.hidden_dim = hidden_dim super(inner_product, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( name = 'kernel', shape = (self.hidden_dim, self.nb_cate), initializer = 'uniform', trainable = True) def call(self, x): return K.transpose(K.sum(K.pow(K.dot(self.kernel, K.stack(x, axis = 1)), 2), axis = -1)) def compute_output_shape(self, input_shape): return (input_shape[0][0], self.hidden_dim) class outer_product(Layer): def __init__(self, emb_dim, hidden_dim, **kwargs): self.emb_dim = emb_dim self.hidden_dim = hidden_dim super(outer_product, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( name = 'kernel', shape = (self.emb_dim ** 2, self.hidden_dim), initializer = 'uniform', trainable = True) def call(self, x): # x is f_sigma in the paper x = K.expand_dims(x, axis = -1) prod = x * K.permute_dimensions(x, (0, 2, 1)) prod = K.batch_flatten(prod) # prod is now of the shape (batch_size, emb_dim*emb_dim) return K.dot(prod, self.kernel) def compute_output_shape(self, input_shape): return (input_shape[0], self.hidden_dim) class cross_layer(Layer): def __init__(self, hidden_dim, **kwargs): self.hidden_dim = hidden_dim super(cross_layer, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( name = 'kernel', shape = (self.hidden_dim, 1), initializer = 'uniform', trainable = True) self.bias = self.add_weight( name = 'bias', shape = (self.hidden_dim, ), initializer = 'uniform', trainable = True) def call(self, x): return K.bias_add(K.dot(x[1], self.kernel) * x[0] + x[1], self.bias) def compute_output_shape(self, input_shape): return input_shape class Gen_prob(Layer): def __init__(self, **kwargs): #self.nb_item = nb_item super(Gen_prob, self).__init__(**kwargs) def call(self, x): return K.sum(x[0] * x[1], axis = 1) def compute_output_shape(self, input_shape): return (input_shape[0], 1) class Gen_sim(Layer): def __init__(self, **kwargs): super(Gen_sim, self).__init__(**kwargs) def call(self, x): return K.sigmoid(K.sum(x, axis = 1, keepdims = True)) def compute_output_shape(self, input_shape): return (input_shape[0], 1)
[ "ubuntu@ip-10-152-8-137.ap-northeast-1.compute.internal" ]
ubuntu@ip-10-152-8-137.ap-northeast-1.compute.internal
681455c58163656fd7be32f57a4dbd6258269b02
8dceed86beea3a9f84ba68d8345f1686786d12ff
/mtcnn-pytorch-master/test_on_image.py
058ad1941fb4b4f17395654a1918c6094817137d
[ "MIT" ]
permissive
nishino123/detection-recognization
6beb503f24a28dbc07600d72989a16ebcc482028
ee74ed41830083adc4301664abb6a08b1c63d332
refs/heads/master
2022-04-13T07:13:26.040655
2020-04-13T12:28:18
2020-04-13T12:28:18
255,317,963
1
0
null
null
null
null
UTF-8
Python
false
false
465
py
# -*- coding: UTF-8 -*- #@Time : 2020/3/23 @Author : SUNLIN from src import detect_faces, show_bboxes from PIL import Image def face_detect(filename,save_file_name): img = Image.open(filename) print(img) bounding_boxes, landmarks = detect_faces(img) img_copy=show_bboxes(img, bounding_boxes, landmarks) img_copy.save(save_file_name) return img_copy if __name__=='__main__': face_detect('images/office1.jpg','images/office1_copy.jpg')
[ "your email" ]
your email
3fbdcdb01d4eff3aefb6d1b33806471e8d35d230
a69597f476b069ef3dadac8f90187b3d90df8ae8
/scripts/perf/alltime.py
9eb3d31ba74dd8687f993d46793851f768ffce1d
[ "MIT" ]
permissive
duzhuqi/rocFFT
b1b917e85d434c8fa48a0670b0b88c9403e33545
ebd54e7124deacec29be382d66c78a37bf2ac133
refs/heads/master
2023-06-18T19:04:30.743400
2021-07-06T03:27:37
2021-07-06T03:27:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
38,939
py
#!/usr/bin/python3 import sys, getopt import numpy as np from math import * import subprocess import os import re # regexp package import shutil import tempfile import perflib import timing usage = '''A timing script to generate perf data and plot for major fft 1D/2D/3D cases Usage: \talltime.py \t\t-b Specify dload executable(optional) \t\t-i Specify test libraries for dload or test executables \t\t for regular test(appendable) \t\t-o Specify output directories for raw data \t\t appendable; defaults to "dir0", "dir1", etc. \t\t-l Specify labels for runs \t\t appendable; defaults to "dir0", "dir1", etc. \t\t-w output directory for graphs and final document \t\t-S plot speedup (default: 1, disabled: 0) \t\t-t data type: time (default) or gflops or roofline \t\t-y secondary axis type: none or gflops or efficiency \t\t-s short run \t\t-T do not perform FFTs; just generate document \t\t-f document format: pdf (default) or docx \t\t-g generate graphs via Asymptote: 0(default) or 1 \t\t-d device number (default: 0) \t\t-N Number of samples (default: 10) \t\t-D dims to test. default: 1,2,3 \t\t-R runtype: report benchmark or efficiency \t\t-F filename to read problem sizes from \t\t-p precision: single or double(default) \t\t-B specify bandwidth for efficiency computation \t\t-v verbose output ''' def nextpow(val, radix): x = 1 while(x <= val): x *= radix return x # A class for generating data for figures. class rundata: def __init__(self, label, dimension, minsize, maxsize, nbatch, radix, ratio, ffttype, direction, inplace, precision): self.dimension = dimension self.minsize = minsize self.maxsize = maxsize self.nbatch = nbatch self.radix = radix self.ratio = ratio self.ffttype = ffttype self.precision = precision self.inplace = inplace self.direction = direction self.label = label def outfilename(self, odir): outfile = "" outfile += "radix" + str(self.radix) outfile += "_dim" + str(self.dimension) outfile += "_" + self.precision outfile += "_n" + str(self.nbatch) if self.direction == 1: outfile += "_inv" if self.dimension > 1: outfile += "_ratio" + "_" + str(self.ratio[0]) if self.dimension > 2: outfile += "_" + str(self.ratio[1]) outfile += "_" + self.ffttype if self.inplace: outfile += "_inplace" else: outfile += "_outofplace" outfile += ".dat" outfile = os.path.join(odir, outfile) return outfile def runcmd(self, nsample, inlist, outdirlist, dloadexe, problem_file): timer = timing.Timer() if dloadexe == None: # When not using dload, we just have one input and output dir. timer.prog = os.path.abspath(inlist[0]) timer.out = [ self.outfilename(outdirlist[0]) ] else: timer.prog = dloadexe timer.lib = inlist timer.out = [ self.outfilename(x) for x in outdirlist ] timer.ntrial = nsample timer.nbatch = self.nbatch timer.xmin = self.minsize timer.xmax = self.maxsize if self.dimension > 1: timer.ymin = self.minsize * self.ratio[0] timer.ymax = self.maxsize * self.ratio[0] if self.dimension > 2: timer.zmin = self.minsize * self.ratio[1] timer.zmax = self.maxsize * self.ratio[1] timer.radix = self.radix timer.inplace = self.inplace timer.direction = self.direction timer.dimension = self.dimension timer.precision = self.precision timer.real = self.ffttype == "r2c" timer.problem_file = problem_file return timer def executerun(self, nsample, inlist, outdirlist, dloadexe, problem_file): if dloadexe != None: self.runcmd(nsample, inlist, outdirlist, dloadexe, problem_file).run_cases() else: for idx in range(min(len(inlist), len(outdirlist))): print(idx, ":", inlist[idx], "->", outdirlist[idx]) self.runcmd(nsample, [inlist[idx]], [outdirlist[idx]], None, problem_file).run_cases() # Figure class, which contains runs and provides commands to generate figures. class figure: def __init__(self, name, caption): self.name = name self.runs = [] self.caption = caption def inputfiles(self, outdirlist): import os files = [] for run in self.runs: for outdir in outdirlist: files.append(run.outfilename(outdir)) print(files) return files def labels(self, labellist): labels = [] for run in self.runs: for label in labellist: labels.append(label + run.label) return labels def filename(self, outdir, docformat): outfigure = self.name outfigure += ".pdf" # if docformat == "pdf": # outfigure += ".pdf" # if docformat == "docx": # outfigure += ".png" return os.path.join(outdir, outfigure) def asycmd(self, docdir, outdirlist, labellist, docformat, datatype, ncompare, secondtype, just1dc2crad2, bandwidth): asycmd = ["asy"] asycmd.append("-f") asycmd.append("pdf") # if docformat == "pdf": # asycmd.append("-f") # asycmd.append("pdf") # if docformat == "docx": # asycmd.append("-f") # asycmd.append("png") # asycmd.append("-render") # asycmd.append("8") asycmd.append(os.path.join(sys.path[0],"datagraphs.asy")) asycmd.append("-u") inputfiles = self.inputfiles(outdirlist) asycmd.append('filenames="' + ",".join(inputfiles) + '"') asycmd.append("-u") labels = self.labels(labellist) asycmd.append('legendlist="' + ",".join(labels) + '"') asycmd.append("-u") asycmd.append('speedup=' + str(ncompare)) if just1dc2crad2 : asycmd.append("-u") asycmd.append('just1dc2crad2=true') if secondtype != "": asycmd.append("-u") asycmd.append('secondaryaxis="'+secondtype +'"') if datatype == "gflops": asycmd.append("-u") asycmd.append('primaryaxis="gflops"') if bandwidth != None: asycmd.append("-u") asycmd.append('bandwidth=' + str(bandwidth) + '') if datatype == "roofline": asycmd.append("-u") asycmd.append('primaryaxis="roofline"') # roofline on multiple devices doesn't really make sense; just use the first device with open(os.path.join(outdirlist[0], "gpuid.txt"), "r") as f: gpuid = f.read() asycmd.append("-u") asycmd.append('gpuid="' + gpuid.strip() + '"') if len(self.runs) > 0: asycmd.append("-u") asycmd.append('batchsize=' + str(self.runs[0].nbatch)) asycmd.append("-u") asycmd.append('problemdim=' + str(self.runs[0].dimension)) asycmd.append("-u") val = 1 for rat in self.runs[0].ratio: val *= rat asycmd.append('problemratio=' + str(val)) asycmd.append("-u") if self.runs[0].ffttype == "r2c": asycmd.append("realcomplex=true") else: asycmd.append("realcomplex=false") asycmd.append("-o") asycmd.append(self.filename(docdir, docformat) ) return asycmd def executeasy(self, docdir, outdirs, labellist, docformat, datatype, ncompare, secondtype, just1dc2crad2, bandwidth, verbose): fout = tempfile.TemporaryFile(mode="w+") ferr = tempfile.TemporaryFile(mode="w+") asyproc = subprocess.Popen(self.asycmd(docdir, outdirs, labellist, docformat, datatype, ncompare, secondtype, just1dc2crad2, bandwidth), stdout=fout, stderr=ferr, env=os.environ.copy(), cwd = sys.path[0]) asyproc.wait() asyrc = asyproc.returncode if asyrc != 0: print("****asy fail****") if verbose or (asyrc != 0): fout.seek(0) cout = fout.read() print(cout) ferr.seek(0) cerr = ferr.read() print(cerr) return asyrc # Function for generating figures for benchmark output def benchfigs(rundims, shortrun, precision): figs = [] # FFT directions forwards = -1 backwards = 1 if 1 in rundims: dimension = 1 nbatch = 1 min1d = 256 if shortrun else 1024 max1d = 4000 if shortrun else 536870912 for inplace in [True, False]: fig = figure("1d_c2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "1D complex transforms " + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "c2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("1d_r2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "1D real-to-complex transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "r2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("1d_c2r" + ("inplace" if inplace else "outofplace") + "_" + precision, "1D complex-to-real transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix) , dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "r2c", backwards, inplace, precision) ) figs.append(fig) if 2 in rundims: dimension = 2 nbatch = 1 min2d = 64 if shortrun else 128 max2d = 8192 if shortrun else 32768 for inplace in [True, False]: fig = figure("2d_c2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "2D complex transforms " + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "c2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("2d_r2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "2D real-to-complex transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "r2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("2d_c2r" + ("inplace" if inplace else "outofplace") + "_" + precision, "2D complex-to-real transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "r2c", backwards, inplace, precision) ) figs.append(fig) if 3 in rundims: dimension = 3 min3d = 16 max3d = 128 if shortrun else 1024 nbatch = 1 for inplace in [True, False]: fig = figure("3d_c2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "3D complex transforms " + ("in-place" if inplace else "out-of-place")) for radix in [2, 3, 5]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "c2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("3d_r2c" + ("inplace" if inplace else "outofplace") + "_" + precision, "3D real-to-complex transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "r2c", forwards, inplace, precision) ) figs.append(fig) for inplace in [True, False]: fig = figure("3d_c2r" + ("inplace" if inplace else "outofplace") + "_" + precision, "3D complex-to-real transforms " \ + ("in-place" if inplace else "out-of-place")) for radix in [2, 3]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "r2c", backwards, inplace, precision) ) figs.append(fig) return figs def efficiencyfigs(rundims, shortrun, precision): figs = [] # FFT directions forwards = -1 backwards = 1 inplace = True dimension = 1 radix = 2 min1d = 1024 max1d = 1048576 if shortrun else 268435456 #pow(2,28) gives a floating type :( nbatch = 1 while max1d > min1d: fig = figure("1d_c2c_batch" + str(nbatch) + "_radix" + str(radix) + "_" + precision, "1D complex transforms " + ("in-place" if inplace else "out-of-place") + " radix " + str(radix) + " batch " + str(nbatch) ) fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "c2c", forwards, inplace, precision) ) figs.append(fig) nbatch *= 2 max1d //= 2 min1d //= 2 min1d = max(min1d, 2^5) return figs # Function for generating figures for a performance report def reportfigs(rundims, shortrun, precision): figs = [] # FFT directions forwards = -1 backwards = 1 inplace = True if 1 in rundims: dimension = 1 for min1d, max1d, nbatch in [[1024,536870912,1], [8,32768,100000]]: for radix in [2, 3, 5, 7]: fig = figure("1d_c2c" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "1D complex transforms with radix " + str(radix)\ + " and batch size " + str(nbatch) + "." ) fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "c2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2, 3, 5, 7]: fig = figure("1d_r2c"\ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "1D real-to-complex transforms with radix "\ + str(radix) \ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "r2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2, 3, 5, 7]: fig = figure("1d_c2r" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "1D complex-to-real transforms with radix " \ + str(radix) \ + " and batch size " + str(nbatch) + "." ) fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min1d, radix), max1d, nbatch, radix, [], "r2c", backwards, inplace, precision) ) figs.append(fig) if 2 in rundims: dimension = 2 for min2d, max2d, nbatch in [[128,32768,1], [64,8192,100]]: for radix in [2, 3, 5]: fig = figure("2d_c2c" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "2D complex transforms with radix " + str(radix)\ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata( "radix "+ str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "c2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2, 3, 5]: fig = figure("2d_r2c" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "2D real-to-complex transforms with radix "\ + str(radix) \ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata( "radix " + str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "r2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2, 3, 5]: fig = figure("2d_c2r" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "2D complex-to-real transforms with radix "\ + str(radix) +\ " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min2d, radix), max2d, nbatch, radix, [1], "r2c", backwards, inplace, precision) ) figs.append(fig) for radix in [2]: fig = figure("2d_c2c_r2" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "2D complex transforms "\ + "with aspect ratio N:2N with radix "\ + str(radix) + " and batch size " + str(nbatch) \ + ".") fig.runs.append( rundata( "radix 2", dimension, min2d, max2d, nbatch, 2, [2], "c2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2]: fig = figure("2d_r2c_r2" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "2D real-to-complex transforms with radix "\ + str(radix) \ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix 2", dimension, min2d, max2d, nbatch, 2, [2], "r2c", forwards, inplace, precision) ) figs.append(fig) if 3 in rundims: dimension = 3 for min3d, max3d, nbatch in [[16,128,1],[4,64,100]]: for radix in [2, 3, 5]: fig = figure("3d_c2c" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "3D complex transforms with radix "\ + str(radix) \ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "c2c", forwards, inplace, precision) ) figs.append(fig) for radix in [2, 3]: fig = figure("3d_r2c" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "3D real-to-complex transforms with radix "\ + str(radix)\ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "r2c", forwards, inplace, precision) ) figs.append(fig) fig = figure("3d_c2r" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "3D complex-to-real transforms with radix "\ + str(radix) + " and batch size " + str(nbatch) + ".") for radix in [2]: fig.runs.append( rundata("radix " + str(radix), dimension, nextpow(min3d, radix), max3d, nbatch, radix, [1,1], "r2c", backwards, inplace, precision) ) figs.append(fig) fig = figure("3d_c2c_aspect" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "3D complex transforms "\ + "with aspect ratio N:N:16N with radix "\ + str(radix)\ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix 2", dimension, min3d, max3d, nbatch, 2, [1,16], "c2c", forwards, inplace, precision) ) figs.append(fig) fig = figure("3d_r2c_aspect" \ + "_radix" + str(radix) \ + "_batch" + str(nbatch) + "_" + precision, "3D real-to-complex transforms " \ + "with aspect ratio N:N:16N with radix " \ + str(radix)\ + " and batch size " + str(nbatch) + ".") fig.runs.append( rundata("radix 2", dimension, min3d, max3d, nbatch, 2, [1,16], "r2c", forwards, inplace, precision) ) figs.append(fig) return figs def main(argv): dloadexe = None inlist = [] outdirlist = [] labellist = [] docdir = "doc" dryrun = False nbatch = 1 speedup = True datatype = "time" shortrun = False docformat = "pdf" devicenum = 0 doAsy = True nsample = 10 rundims = [1,2,3] runtype = "benchmark" secondtype = "none" precision = "double" problem_file = None verbose = False bandwidth = None try: opts, args = getopt.getopt(argv,"hb:D:f:Tt:i:o:l:S:sg:d:N:R:w:y:F:p:B:v") except getopt.GetoptError: print("error in parsing arguments.") print(usage) sys.exit(2) for opt, arg in opts: if opt in ("-h"): print(usage) exit(0) elif opt in ("-b"): dloadexe = os.path.abspath(arg) elif opt in ("-i"): inlist.append(arg) elif opt in ("-o"): outdirlist.append(arg) elif opt in ("-l"): labellist.append(arg) elif opt in ("-w"): docdir = arg elif opt in ("-T"): dryrun = True elif opt in ("-s"): shortrun = True elif opt in ("-g"): if int(arg) == 0: doAsy = False if int(arg) == 1: doAsy = True elif opt in ("-d"): devicenum = int(arg) elif opt in ("-D"): rundims = [] for val in arg.split(','): rundims.append(int(val)) elif opt in ("-N"): nsample = int(arg) elif opt in ("-S"): if int(arg) == 0: speedup = False if int(arg) == 1: speedup = True elif opt in ("-t"): if arg not in ["time", "gflops", "roofline"]: print("data type must be time or gflops or roofline") print(usage) sys.exit(1) datatype = arg elif opt in ("-y"): if arg not in ["none", "gflops", "efficiency"]: print("data type must be gflops or none") print(usage) sys.exit(1) secondtype = arg elif opt in ("-R"): if arg not in ["report", "benchmark", "efficiency"]: print("data type must be gflops or none") print(usage) sys.exit(1) runtype = arg if runtype == "efficiency": datatype = "roofline" elif opt in ("-f"): goodvals = ["pdf", "docx"] if arg not in goodvals: print("error: format must in " + " ".join(goodvals)) print(usage) sys.exit(1) docformat = arg elif opt in ("-p"): if arg not in ["single", "double"]: print("precision type must be single or double") print(usage) sys.exit(1) precision = arg elif opt in ("-F"): problem_file = arg elif opt in ("-B"): bandwidth = float(arg) elif opt in ("-v"): verbose = True print("rundims:") print(rundims) if not dryrun: if dloadexe != None: if not os.path.isfile(dloadexe): print("unable to find " + dloadexe) sys.exit(1) for i in inlist: if not os.path.isfile(i): print("unable to find " + i) print("please specify with -i") sys.exit(1) print("inputs:", inlist) if len(inlist) > len(labellist): for i in range(len(labellist), len(inlist)): labellist.append("dir" + str(i)) print("run labels:", labellist) for idx in range(len(inlist)): inlist[idx] = os.path.abspath(inlist[idx]) if len(inlist) > len(outdirlist): for i in range(len(outdirlist), len(inlist)): outdirlist.append(os.path.abspath("dir" + str(i))) for idx in range(len(outdirlist)): outdirlist[idx] = os.path.abspath(outdirlist[idx]) print("data output directories:", outdirlist) if shortrun: print("short run") print("output format: " + docformat) print("device number: " + str(devicenum)) print("precision: " + precision) docdir = os.path.abspath(docdir) print("document output in", docdir) if not os.path.exists(docdir): os.makedirs(docdir) for outdir in outdirlist: if not os.path.exists(outdir): os.makedirs(outdir) if not dryrun: machine_specs = perflib.get_machine_specs(devicenum) for outdir in outdirlist: with open(os.path.join(outdir, "specs.txt"), "w+") as f: f.write(str(machine_specs)) with open(os.path.join(outdir, "gpuid.txt"), "w") as f: f.write(machine_specs.gpuid) figs = [] if runtype == "benchmark": figs = benchfigs(rundims, shortrun, precision) if runtype == "report": figs = reportfigs(rundims, shortrun, precision) if runtype == "efficiency": figs = efficiencyfigs(rundims, shortrun, precision) just1dc2crad2 = runtype == "efficiency" for idx, fig in enumerate(figs): for idx2, fig2 in enumerate(figs): if idx != idx2 and fig.name == fig2.name: print("figures have the same name!") print(fig.name) print(fig2.name) sys.exit(1) for fig in figs: print(fig.name) # Run the tests and put output in the outdirs: for run in fig.runs: if not dryrun: run.executerun(nsample, inlist, outdirlist, dloadexe, problem_file) # HACK: problem file should have all the problem sizes # that need running, so just one execution should produce # all the data we need if problem_file: break # Compile the data in the outdirs into figures in docdir: ncompare = 0 if speedup: ncompare = len(labellist) if dryrun else len(inlist) print(fig.labels(labellist)) if doAsy: #plotgflops = runtype == "submission" and not datatype == "gflops" print(fig.asycmd(docdir, outdirlist, labellist, docformat, datatype, ncompare, secondtype, just1dc2crad2, bandwidth)) fig.executeasy(docdir, outdirlist, labellist, docformat, datatype, ncompare, secondtype, just1dc2crad2, bandwidth, verbose) if doAsy: # Make the document in docdir: # # HACK: problem file implies html report if problem_file: from html_report import graph_dirs graph_dirs(outdirlist, problem_file, docdir) else: # otherwise, make other doc types using asymptote figs if docformat == "pdf": maketex(figs, docdir, outdirlist, labellist, nsample, secondtype, precision) if docformat == "docx": makedocx(figs, docdir, nsample, secondtype, precision) print("Finished! Output in " + docdir) def binaryisok(dirname, progname): prog = os.path.join(dirname, progname) return os.path.isfile(prog) gflopstext = '''\ GFLOP/s are computed based on the Cooley--Tukey operation count \ for a radix-2 transform, and half that for in the case of \ real-complex transforms. The rocFFT operation count may differ from \ this value: GFLOP/s is provided for the sake of comparison only.''' efficiencytext = '''\ Efficiency is computed for an idealised FFT which requires exactly \ one read and one write to global memory. In practice, this \ isn't possible for most problem sizes, as the data does \ not fit into cache, and one must use global memory to store \ intermediary results. As FFTs are bandwidth-limited on modern hardware, \ the efficiency is measured against the theoretical maximum bandwidth \ for the device.''' # Function for generating a tex document in PDF format. def maketex(figs, docdir, outdirlist, labellist, nsample, secondtype, precision): header = '''\ \\documentclass[12pt]{article} \\usepackage[margin=1in]{geometry} \\usepackage{graphicx} \\usepackage{url} \\begin{document} ''' texstring = header texstring += "\n\\section{Introduction}\n" texstring += "Each data point represents the median of " + str(nsample) + " values, with error bars showing the 95\\% confidence interval for the median. All transforms are " + precision + "-precision.\n\n" if secondtype == "gflops": texstring += gflopstext + "\n\n" texstring += "\\vspace{1cm}\n" # texstring += "\\begin{tabular}{ll}" # texstring += labelA +" &\\url{"+ dirA+"} \\\\\n" # if not dirB == None: # texstring += labelB +" &\\url{"+ dirB+"} \\\\\n" # texstring += "\\end{tabular}\n\n" # texstring += "\\vspace{1cm}\n" texstring += "\n\\section{Device Specification}\n" for idx in range(len(outdirlist)): texstring += "\n\\subsection{" + labellist[idx] + "}\n" specfilename = os.path.join(outdirlist[idx], "specs.txt") if os.path.isfile(specfilename): specs = "" with open(specfilename, "r") as f: specs = f.read() for line in specs.split("\n"): if line.startswith("Host info"): texstring += "\\noindent " + line texstring += "\\begin{itemize}\n" elif line.startswith("Device info"): texstring += "\\end{itemize}\n" texstring += line texstring += "\\begin{itemize}\n" else: if line.strip() != "": texstring += "\\item \\verb|" + line + "|\n" texstring += "\\end{itemize}\n" texstring += "\n" texstring += "\\clearpage\n" texstring += "\n\\section{Figures}\n" for idx, fig in enumerate(figs): print(fig.filename(docdir, "pdf")) print(fig.caption) texstring += ''' \\centering \\begin{figure}[htbp] \\includegraphics[width=\\textwidth]{''' texstring += fig.filename("", "pdf") texstring += '''} \\caption{''' + fig.caption + '''} \\end{figure} ''' if (idx % 2) == 0: texstring += "\\clearpage\n" texstring += "\n\\end{document}\n" fname = os.path.join(docdir, 'figs.tex') with open(fname, 'w') as outfile: outfile.write(texstring) fout = open(os.path.join(docdir, "texcmd.log"), 'w+') ferr = open(os.path.join(docdir, "texcmd.err"), 'w+') latexcmd = ["latexmk", "-pdf", 'figs.tex'] print(" ".join(latexcmd)) texproc = subprocess.Popen(latexcmd, cwd=docdir, stdout=fout, stderr=ferr, env=os.environ.copy()) texproc.wait() fout.close() ferr.close() texrc = texproc.returncode if texrc != 0: print("****tex fail****") # Confert a PDF to an EMF using pdf2svg and inkscape. def pdf2emf(pdfname): svgname = pdfname.replace(".pdf",".svg") cmd_pdf2svg = ["pdf2svg", pdfname, svgname] proc = subprocess.Popen(cmd_pdf2svg, env=os.environ.copy()) proc.wait() if proc.returncode != 0: print("pdf2svg failed!") sys.exit(1) emfname = pdfname.replace(".pdf",".emf") cmd_svg2emf = ["inkscape", svgname, "-M", emfname] proc = subprocess.Popen(cmd_svg2emf, env=os.environ.copy()) proc.wait() if proc.returncode != 0: print("svg2emf failed!") sys.exit(1) return emfname # Function for generating a docx using emf files and the docx package. def makedocx(figs, outdir, nsample, secondtype, precision): import docx document = docx.Document() document.add_heading('rocFFT benchmarks', 0) document.add_paragraph("Each data point represents the median of " + str(nsample) + " values, with error bars showing the 95% confidence interval for the median. Transforms are " + precision + "-precision, forward, and in-place.") if secondtype == "gflops": document.add_paragraph(gflopstext) if secondtype == "efficiency": document.add_paragraph(efficiencytext) specfilename = os.path.join(outdir, "specs.txt") if os.path.isfile(specfilename): with open(specfilename, "r") as f: specs = f.read() for line in specs.split("\n"): document.add_paragraph(line) for fig in figs: print(fig.filename(outdir, "docx")) print(fig.caption) emfname = pdf2emf(fig.filename(outdir, "docx")) document.add_picture(emfname, width=docx.shared.Inches(6)) document.add_paragraph(fig.caption) document.save(os.path.join(outdir,'figs.docx')) if __name__ == "__main__": main(sys.argv[1:])
[ "noreply@github.com" ]
duzhuqi.noreply@github.com
d8e049a229f3a22afbce372b735887be1c31d193
f1e293397a23629261cd162862914d6d5e7c456c
/src/polls/views.py
3931e666647bbe9a5cc3ad6138fe31c3fb2b48c3
[ "Apache-2.0" ]
permissive
s4boys/serveling
0a2c469a8e7829e738fa3dbbd68edaa9e0a58e09
c49063b154deea51cd401e2c02b7092ddfad22b3
refs/heads/master
2020-04-05T04:43:11.645764
2018-11-15T11:16:38
2018-11-15T11:16:38
156,563,616
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def index(request): return HttpResponse("hi2")
[ "71duha1bif@hft-stuttgart.de" ]
71duha1bif@hft-stuttgart.de
1ed0f4d3aefd0f204f6d3172550834342f343de7
f6b1d01a7b31427a2a5e424d7725f8f5c08d1b39
/alg/swap-node-pair/index.py
0fbcb891db00e7477b4def031310845bab1fc72d
[]
no_license
thainam83vn/learns
5ce3b89af5b70982554d64f77569abb5ae1cd805
239f69b50cf689b46270d6ee097ef62cb9309ad7
refs/heads/master
2023-01-08T17:57:18.126709
2020-12-19T02:55:28
2020-12-19T02:55:28
197,106,240
0
0
null
2023-01-07T11:49:54
2019-07-16T02:31:06
Python
UTF-8
Python
false
false
415
py
from libs.node import ListNode, NodeLib class Solution: def swapPairs(self, head: ListNode) -> ListNode: if head is None or head.next is None: return head next = head.next temp = next.next next.next = head head.next = self.swapPairs(temp) return next libs = NodeLib() sol = Solution() libs.printListNode(sol.swapPairs(libs.createList([1, 2, 3, 4])))
[ "thainam83vn@gmail.com" ]
thainam83vn@gmail.com
16db426e69fbbf5f00eebc5b166fe294c8ba0245
dc38691dc76478290b52efe2cfd9a814d5d5f510
/code/python/338.counting-bits.py
68ca9877516c00ff5db3eea2d0be028ba8c25c7c
[ "Apache-2.0" ]
permissive
ANYALGO/ANYALGO
f6b947a2e5d7f2e07b936e1371902064868359fe
09060bd4605d112b7ee66b4571ef309bfac06b6a
refs/heads/master
2021-08-02T13:05:35.762982
2021-07-24T01:57:09
2021-07-24T01:57:09
254,394,046
1
0
null
null
null
null
UTF-8
Python
false
false
120
py
class Solution: def countBits(self, num: int) -> [int]: return [bin(i).count("1") for i in range(num + 1)]
[ "Kirin.Toudou@protonmail.com" ]
Kirin.Toudou@protonmail.com
16e0b7ce242e8efacebf2e5f1d3a610e46dd3fda
0dd849243d8fc7930d267277a2ee251bc35273ba
/library/nxos_vlan
269a4ed0a2943ff99aea87d391cf347a3e081d2a
[ "Apache-2.0" ]
permissive
my76128/nxos-ansible
bd95e49b95fb8b057f67b7932ab6c280cb457173
8cfa8b0803a7645d39ef6e44cb994b6e72225d54
refs/heads/master
2021-01-12T21:01:56.823450
2015-04-29T13:57:04
2015-04-29T13:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,628
#!/usr/bin/env python # Copyright 2015 Jason Edelman <jedelman8@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DOCUMENTATION = ''' --- module: nxos_vlan short_description: Manages VLAN resources and attributes description: - Manages VLAN configurations on NX-API enabled switches author: Jason Edelman (@jedelman8) requirements: - NX-API 1.0 - NX-OS 6.1(2)I3(1) - pycsco notes: - While username and password are not required params, they are if you are not using the .netauth file. .netauth file is recommended as it will clean up the each task in the playbook by not requiring the username and password params for every tasks. - Using the username and password params will override the .netauth file options: vlan_id: description: - vlan id or range of VLANs required: true default: null choices: [] aliases: [] name: description: - name of VLAN (not supported when using range of VLANs) required: false default: null choices: [] aliases: [] vlan_state: description: - Manage the vlan oper state of the VLAN (equiv to state {active | suspend} command required: false default: active choices: ['active','suspend'] aliases: [] admin_state: description: - Manage the vlan admin state of the VLAN (equiv to shut/no shut in vlan config mode required: false default: up choices: ['up','down'] aliases: [] state: description: - Manage the state of the resource required: true default: present choices: ['present','absent'] aliases: [] host: description: - IP Address or hostname (resolvable by Ansible control host) of the target NX-API enabled switch required: true default: null choices: [] aliases: [] username: description: - Username used to login to the switch required: false default: null choices: [] aliases: [] password: description: - Password used to login to the switch required: false default: null choices: [] aliases: [] protocol: description: - Dictates connection protocol to use for NX-API required: false default: http choices: ['http'] aliases: [] ''' EXAMPLES = ''' # Ensure VLAN 50 exists with the name WEB and is in the shutdown state - nxos_vlan: vlan_id=50 host={{ inventory_hostname }} admin_state=down name=WEB # Ensure VLAN is NOT on the device - nxos_vlan: vlan_id=50 host={{ inventory_hostname }} state=absent # Ensure a range of VLANs are present on the switch - nxos_vlan: vlan_id="2-10,20,50,55-60" host={{ inventory_hostname }} state=present # Ensure a group of VLANs are present with the given names - nxos_vlan: vlan_id={{ item.vlan_id }} name={{ item.name }} host={{ inventory_hostname }} state=present with_items: - vlan_id: 10 name: web - vlan_id: 20 name: app - { vlan_id: 30, name: db } - vlan_id: 40 name: misc - vlan_id: 99 name: native_vlan ''' try: import socket from pycsco.nxos.device import Device from pycsco.nxos.device import Auth from pycsco.nxos.utils import nxapi_lib except ImportError as e: print '*' * 30 print e print '*' * 30 def main(): module = AnsibleModule( argument_spec=dict( vlan_id=dict(required=True, type='str'), name=dict(default=None), vlan_state=dict(choices=['active', 'suspend'], default='active'), state=dict(choices=['present', 'absent'], default='present'), admin_state=dict(choices=['up', 'down'], default='up'), host=dict(required=True), username=dict(type='str'), password=dict(type='str'), ), supports_check_mode=True ) auth = Auth(vendor='cisco', model='nexus') username = module.params['username'] or auth.username password = module.params['password'] or auth.password host = socket.gethostbyname(module.params['host']) vlan_id = module.params['vlan_id'] name = module.params['name'] vlan_state = module.params['vlan_state'] admin_state = module.params['admin_state'] state = module.params['state'] device = Device(ip=host, username=username, password=password) changed = False proposed = dict(vlan_id=vlan_id, name=name, vlan_state=vlan_state, admin_state=admin_state) proposed_vlans_list = nxapi_lib.vlan_range_to_list(vlan_id) proposed_vlans_list.sort() existing_vlans_list = nxapi_lib.get_list_of_vlans(device) existing_vlans_list.sort() # These are all of the VLANs being proposed that don't already exist # on the switch vlans_delta = set(proposed_vlans_list).difference(existing_vlans_list) # VLANs that are common between what is being proposed and what is on # the switch vlans_common = set(proposed_vlans_list).intersection(existing_vlans_list) if state == 'absent' and (vlan_id == '1' or '1' in vlans_common): module.fail_json(msg="You cannot remove VLAN 1. Doh!!") if len(proposed_vlans_list) > 1: if state == 'present': my_vlans = list(vlans_delta) name_param = proposed.get('name', None) if name_param and vlans_delta: module.fail_json(msg="You cannot set the name for multiple " + "VLANs. Remove the name parameter from " + "being used.") elif state == 'absent': my_vlans = list(vlans_common) else: my_vlans = proposed_vlans_list # my_vlans holds the VLANs that will be manipulated in some way final_existing = {} final_proposed = {} final_commands = {} final_postrun = {} for vlan in my_vlans: existing = nxapi_lib.get_vlan(device, vlan) delta = set() commands = [] if state == 'absent': if existing: command = nxapi_lib.get_remove_vlan_commands(device, vlan) commands.append(command) elif state == 'present': if int(vlan) > 1005 and admin_state == 'down': module.fail_json(msg='You cannot shutdown VLANs > 1005') proposed = dict(vlan_id=vlan, vlan_state=vlan_state, admin_state=admin_state, name=name) delta = set(proposed.iteritems()).difference(existing.iteritems()) if delta: command = nxapi_lib.get_vlan_config_commands(device, delta, vlan) commands.append(command) cmds = '' if commands: for each in commands: cmds = nxapi_lib.cmd_list_to_string(each) final_commands[vlan] = cmds final_existing[vlan] = existing final_proposed[vlan] = dict(vlan_id=vlan, vlan_state=vlan_state, admin_state=admin_state) if final_commands: if module.check_mode: module.exit_json(changed=True, commands=final_commands) else: for vlan, commands in final_commands.iteritems(): device.config(commands) changed = True for vlan in my_vlans: final_postrun[vlan] = nxapi_lib.get_vlan(device, vlan) results = {} results['proposed'] = proposed results['existing'] = final_existing results['new'] = final_postrun results['state'] = state results['commands'] = final_commands results['changed'] = changed module.exit_json(**results) from ansible.module_utils.basic import * main()
[ "jedelman8@gmail.com" ]
jedelman8@gmail.com
4501c661e8f14f94c93296355442f997beee8ef4
8e5c37560d9b03e30b00a1d4b423013882eb2d55
/hzpzp/scripts/template_cff.py
8949802b6bbb32c422040223bc0e14cc5646a148
[]
no_license
syuvivida/MonoHiggsSignal_13TeV
ac363aab91fe4a2f5562884fce3bffb8471fc8eb
5428633898c61dbf021e82c630a08da23192ccd4
refs/heads/master
2021-05-25T11:42:22.048512
2020-04-16T11:44:02
2020-04-16T11:44:02
42,017,135
0
1
null
2015-10-05T15:40:44
2015-09-06T20:03:32
Python
UTF-8
Python
false
false
550
py
import FWCore.ParameterSet.Config as cms # link to cards: # https://github.com/cms-sw/genproductions/tree/31b6e7510443b74e0f9aac870e4eb9ae30c19d65/bin/MadGraph5_aMCatNLO/cards/production/13TeV/monoHiggs/PROCESS/TYPE externalLHEProducer = cms.EDProducer("ExternalLHEProducer", args = cms.vstring('LOCATION'), nEvents = cms.untracked.uint32(5000), numberOfParameters = cms.uint32(1), outputFile = cms.string('cmsgrid_final.lhe'), scriptName = cms.FileInPath('GeneratorInterface/LHEInterface/data/run_generic_tarball_cvmfs.sh') )
[ "dburns@ucdavis.edu" ]
dburns@ucdavis.edu
b8b43d0e7996b984d9e9323ff65e77ef77928c37
c88082a909c5d6bb741465bd37063ceb7bb4d887
/crawler_ex00_1 2.py
a37a8f05ce7f44c91e41e905d718b363a0747033
[]
no_license
raningtky/python
38b0ad18b716de53e58c0a4b6d56d458986a090b
b8a1557afa32140ff05e4ae9c5943441bef74af6
refs/heads/master
2021-01-01T03:34:20.197627
2017-08-10T09:26:19
2017-08-10T09:26:19
56,868,239
0
0
null
null
null
null
UTF-8
Python
false
false
493
py
# -*- coding: utf-8 -*- # CopyRight by heibanke import urllib from bs4 import BeautifulSoup import re url='http://www.heibanke.com/lesson/crawler_ex00/' number=[''] loops = 0 while True: content = urllib.urlopen(url+number[0]) bs_obj = BeautifulSoup(content,"html.parser") tag_number = bs_obj.find("h3") number= re.findall(r'\d+',tag_number.get_text()) if not number or loops>100: break else: print number[0] loops+=1 print bs_obj.text
[ "hxt1108@163.com" ]
hxt1108@163.com
fb6d30d0717d9671573299e2c339d1946962da2f
16fcf452e6165a0de5bc540c57b6e6b82d822bb1
/Learntek_code/25_Sep_18/fun12.py
25339a75bfd72a9f1490f439cc1c26fc2eb07c0f
[]
no_license
mohitraj/mohitcs
e794e9ad2eb536e3b8e385fb8d222e8ade95c802
d6399b2acf69f5667c74f69715a0b55060bf19d1
refs/heads/master
2021-09-09T00:21:23.099224
2021-09-07T16:39:07
2021-09-07T16:39:07
87,798,669
5
6
null
null
null
null
UTF-8
Python
false
false
145
py
k = 10 def fun1(): global k #k = k+10 # k = k+10 a = k+10 print (k) print (a) fun1() print ("outside ", k) print (len("hello"))
[ "mohitraj.cs@gmail.com" ]
mohitraj.cs@gmail.com
b862cd7a47b8262ef7b59d3a12ff63f1fbe58f40
274f6fc92de000145d19bf1d8fc3d6ec1f33dc15
/thegame/settings.py
64ca557e0e2563961c85949accff4ec7b537c914
[]
no_license
Harsh77480/ONLINE_GAME-using-websockets
ebc3cfe95bcfc67ca5973394f6c95ce2c090e0e8
355af45119ddb49d18e12bf1f585b15a3c2e85ef
refs/heads/master
2023-05-06T06:54:10.464592
2021-05-26T19:19:16
2021-05-26T19:19:16
370,670,077
0
0
null
null
null
null
UTF-8
Python
false
false
3,813
py
""" Django settings for thegame project. Generated by 'django-admin startproject' using Django 3.2.3. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get('game_secret_key') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'game.apps.GameConfig', 'channels', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'thegame.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] # WSGI_APPLICATION = 'thegame.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'game', 'USER': 'postgres', 'PASSWORD': os.environ.get('game_db_password'), 'HOST': 'localhost', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' ASGI_APPLICATION = 'thegame.asgi.application' # ASGI_APPLICATION = 'mysite.asgi.application' CHANNEL_LAYERS = { 'default': { 'BACKEND': 'channels_redis.core.RedisChannelLayer', 'CONFIG': { "hosts": [('127.0.0.1', 6379)], }, }, }
[ "haesh77@gmai.com" ]
haesh77@gmai.com
f083dced3502518dab0883992fa9044778b96520
fef8f43025cff430d9aea080885173d9c22b3cb6
/etalia/library/migrations/0005_paperuser_store.py
cae9e7afa809c463d95225ed65b389504668cf50
[]
no_license
GemmaAA1/etalia-open
30a083141330e227ac1de9855894bfb6e476e3cc
260ce54d2da53c943d8b82fa9d40bb0c0df918a6
refs/heads/master
2023-03-28T03:33:13.771987
2017-10-30T00:55:27
2017-10-30T00:55:27
351,120,827
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('library', '0004_paperuserhistory'), ] operations = [ migrations.AddField( model_name='paperuser', name='store', field=models.PositiveIntegerField(choices=[(1, 'Pinned'), (2, 'Trashed')], default=None, null=True), ), ]
[ "nicolas.pannetier@gmail.com" ]
nicolas.pannetier@gmail.com
ed772c7502b6135f7aacb792dc4ee4125b01e12e
e2e470577eb6ec34b581dbcc718ea74a00d19fa5
/account/views.py
4dbb2eb47e131d91884926c5f97fa5c9dec19397
[]
no_license
Bob-Al-Max/bookmarks
ce8b6264ef0c69f4571627d556d3cbe6ba9fe4d7
955c726ee8712a4ce7f2a574ed26b8a13b1f9264
refs/heads/master
2022-12-06T03:35:53.620897
2020-08-31T10:55:27
2020-08-31T10:55:27
291,689,650
0
0
null
null
null
null
UTF-8
Python
false
false
5,419
py
from django.shortcuts import render from django.http import HttpResponse from django.shortcuts import render from django.contrib.auth import authenticate, login from .forms import LoginForm from django.contrib.auth.decorators import login_required from .forms import LoginForm, UserRegistrationForm from .models import Profile from .forms import LoginForm, UserRegistrationForm, UserEditForm, ProfileEditForm from django.contrib import messages from django.shortcuts import get_object_or_404 from django.contrib.auth.models import User from django.http import JsonResponse from django.views.decorators.http import require_POST from common.decorators import ajax_required from .models import Contact from actions.utils import create_action from actions.models import Action def user_login(request): if request.method == 'POST': form = LoginForm(request.POST) if form.is_valid(): cd = form.cleaned_data user = authenticate(request,username=cd['username'], password=cd['password']) if user is not None: if user.is_active: login(request, user) return HttpResponse('Authenticated successfully') else: return HttpResponse('Disabled account') else: return HttpResponse('Invalid login') else: form = LoginForm() return render(request, 'account/login.html', {'form': form}) @login_required def dashboard(request): # Display all actions by default actions = Action.objects.exclude(user=request.user) following_ids = request.user.following.values_list('id', flat=True) if following_ids: # If user is following others, retrieve only their actions actions = actions.filter(user_id__in=following_ids) actions = actions.select_related('user', 'user__profile')\ .prefetch_related('target')[:10] return render(request, 'account/dashboard.html', {'section': 'dashboard', 'actions': actions}) def register(request): if request.method == 'POST': user_form = UserRegistrationForm(request.POST) if user_form.is_valid(): # Создаем нового пользователя, но пока не сохраняем в базу данных. new_user = user_form.save(commit=False) # Задаем пользователю зашифрованный пароль. new_user.set_password(user_form.cleaned_data['password']) # Сохраняем пользователя в базе данных. new_user.save() # Создание профиля пользователя. Profile.objects.create(user=new_user) create_action(new_user, 'has created an account') return render(request, 'account/register_done.html', {'new_user': new_user}) else: user_form = UserRegistrationForm() return render(request,'account/register.html',{'user_form': user_form}) @login_required def edit(request): if request.method == 'POST': user_form = UserEditForm(instance=request.user, data=request.POST) profile_form = ProfileEditForm(instance=request.user.profile, data=request.POST, files=request.FILES) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() messages.success(request, 'Profile updated successfully') else: messages.error(request, 'Error updating your profile') else: user_form = UserEditForm(instance=request.user) profile_form = ProfileEditForm(instance=request.user.profile) return render(request, 'account/edit.html', {'user_form': user_form, 'profile_form': profile_form}) @login_required def user_list(request): users = User.objects.filter(is_active=True) return render(request, 'account/user/list.html', {'section': 'people', 'users': users}) @login_required def user_detail(request, username): user = get_object_or_404(User, username=username, is_active=True) return render(request, 'account/user/detail.html', {'section': 'people', 'user': user}) @ajax_required @require_POST @login_required def user_follow(request): user_id = request.POST.get('id') action = request.POST.get('action') if user_id and action: try: user = User.objects.get(id=user_id) if action == 'follow': Contact.objects.get_or_create(user_from=request.user, user_to=user) create_action(request.user, 'is following', user) else: Contact.objects.filter(user_from=request.user, user_to=user).delete() return JsonResponse({'status':'ok'}) except User.DoesNotExist: return JsonResponse({'status':'ko'}) return JsonResponse({'status':'ko'})
[ "borq_10@mail.ru" ]
borq_10@mail.ru
13a9f4b483fbac1ac0450b8685ceba8953d86c21
cd0bb37a673983ce1cf1a2a378c95976a64650e2
/WEBRTC_Angular_7_Typescript/node_modules/uws/build/config.gypi
0be03fb11bdfb341b50a679727994305b6032520
[ "Zlib" ]
permissive
FuriousTurtle/Refrac-AngularJS-To-Angular7-Typescript
bd935153bf7b0d4c8bc810928912cb54b394b791
8eb003ec37a9dd09167b96612bb5e34cdab44374
refs/heads/master
2023-01-23T13:38:28.998476
2019-06-14T10:55:31
2019-06-14T10:55:31
189,003,204
0
0
null
2023-01-07T20:38:57
2019-05-28T10:02:53
JavaScript
UTF-8
Python
false
false
5,381
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "debug_nghttp2": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "gas_version": "2.27", "host_arch": "x64", "icu_data_in": "../../deps/icu-small/source/data/in/icudt62l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "62", "llvm_version": 0, "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 64, "node_no_browser_globals": "false", "node_prefix": "/", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "false", "node_use_large_pages": "false", "node_use_openssl": "true", "node_use_pch": "false", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_with_ltcg": "false", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.64", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_typed_array_max_size_in_heap": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "/home/tonym/.node-gyp/10.15.3", "standalone_static_library": 1, "cache_lock_stale": "60000", "ham_it_up": "", "legacy_bundling": "", "sign_git_tag": "", "user_agent": "npm/6.9.0 node/v10.15.3 linux x64", "always_auth": "", "bin_links": "true", "key": "", "allow_same_version": "", "description": "true", "fetch_retries": "2", "heading": "npm", "if_present": "", "init_version": "1.0.0", "user": "", "prefer_online": "", "noproxy": "", "force": "", "only": "", "read_only": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "tag_version_prefix": "v", "cache_max": "Infinity", "timing": "", "userconfig": "/home/tonym/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "preid": "", "tmp": "/tmp", "depth": "Infinity", "package_lock_only": "", "save_dev": "", "usage": "", "metrics_registry": "https://registry.npmjs.org/", "otp": "", "package_lock": "true", "progress": "true", "https_proxy": "", "save_prod": "", "audit": "true", "cidr": "", "onload_script": "", "sso_type": "oauth", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr/local", "dry_run": "", "scope": "", "browser": "", "cache_lock_wait": "10000", "ignore_prepublish": "", "registry": "https://registry.npmjs.org/", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/tonym/.npm", "send_metrics": "", "global_style": "", "ignore_scripts": "", "version": "", "local_address": "", "viewer": "man", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "audit_level": "low", "prefer_offline": "", "color": "true", "sign_git_commit": "", "fetch_retry_mintimeout": "10000", "maxsockets": "50", "offline": "", "sso_poll_frequency": "500", "umask": "0002", "fetch_retry_maxtimeout": "60000", "logs_max": "10", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "access": "", "also": "", "save": "true", "unicode": "true", "before": "", "long": "", "production": "", "searchlimit": "20", "unsafe_perm": "true", "update_notifier": "true", "auth_type": "legacy", "node_version": "10.15.3", "tag": "latest", "git_tag_version": "true", "commit_hooks": "true", "script_shell": "", "shrinkwrap": "true", "fetch_retry_factor": "10", "save_exact": "", "strict_ssl": "true", "globalconfig": "/etc/npmrc", "dev": "", "init_module": "/home/tonym/.npm-init.js", "parseable": "", "globalignorefile": "/etc/npmignore", "cache_lock_retries": "10", "searchstaleness": "900", "node_options": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "json": "" } }
[ "tmourier@xivo.solutions" ]
tmourier@xivo.solutions
2aaa8256b36374a734450a22978b2e29400e882b
0723be4044582ef43d36368b8a5638656e5d9889
/venv/lib/bullet.py
ebf2320394386bc0f9a87b9a913996634bc659ee
[]
no_license
Encyf/Space_invaders
e94ff464905f639dc2fce33f364528994a26e07f
ff70b8dd59a2f2070f78b565973e4818dcf4afdf
refs/heads/master
2022-11-24T03:08:38.351649
2020-07-19T10:58:26
2020-07-19T10:58:26
279,367,038
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
import pygame from pygame.sprite import Sprite class Bullet(Sprite): def __init__(self, ai_game): super().__init__() self.screen = ai_game.screen self.settings = ai_game.settings self.color = self.settings.bullet_color self.rect = pygame.Rect(0, 0, self.settings.bullet_width, self.settings.bullet_height) self.rect.midright = ai_game.ship.rect.midright self.x = float(self.rect.x) def update(self): self.x += self.settings.bullet_speed self.rect.x = self.x def draw_bullet(self): pygame.draw.rect(self.screen, self.color, self.rect)
[ "67859752+Encyf@users.noreply.github.com" ]
67859752+Encyf@users.noreply.github.com
53372f4846a7d187b171c35df0aa90005f3f6c75
4e3763a5136576d77cd10d8bae2e66b0925688c8
/AWS_CICD/libs/job.py
44349c1ad41a8230010889595418f61ffb86d6de
[]
no_license
lePaulo/AWSDatalakeDataTransformationOrchestration
99159027e4b5c0f09b05997a7b511d1068cd0912
c339d42a8062705dcfc5367bca186b5bd5cfcd8a
refs/heads/master
2020-03-21T13:56:04.963067
2019-03-08T09:26:04
2019-03-08T09:26:04
138,632,646
5
6
null
2018-06-26T13:38:15
2018-06-25T18:11:08
Python
UTF-8
Python
false
false
776
py
import boto3 import os BATCH_CLIENT = boto3.client('batch') def send_command(bucket_name, input_prefix, output_prefix, timestr, job_name, job_dependencies=[], environment_variables=[], command=[], memory = None, vcpus = None): container = { 'environment': environment_variables } if memory : container.update({'memory' : memory}) if vcpus : container.update({'vcpus' : vcpus}) response = BATCH_CLIENT.submit_job( jobName= ('pricing-data-transformation' + '-' + job_name + '-' + timestr), jobQueue=os.getenv('JobQueue'), dependsOn=job_dependencies, jobDefinition=os.getenv('JobDefinition'), containerOverrides=container ) return response['jobId']
[ "monchyp@amazon.fr" ]
monchyp@amazon.fr
9dad92a32edc5005e54baa1ad84ff10789f971f0
6eacbf7828396f0e13ffb0ac0f8d0135bc480055
/test.py
7ff82bd3365b494993be09a4e4fd1b147fbf3aa5
[]
no_license
Abdel-Fadhyl/France_Inter
1a40e11d47acb767b0ae74f3671513e875710a9c
faafccb84cc8a999a23e47eb42155fc28c63a5ef
refs/heads/master
2023-08-24T22:35:12.031275
2021-10-13T13:44:13
2021-10-13T13:44:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,839
py
import requests, uuid, json from azure.cognitiveservices.speech import AudioDataStream, SpeechConfig, SpeechSynthesizer, SpeechSynthesisOutputFormat from azure.cognitiveservices.speech.audio import AudioOutputConfig import tkinter as tk gui = tk.Tk() gui.geometry("500x200") def getEntry(): speech_config = SpeechConfig(subscription="c138fb721a42436caa2709a946f19b7d", region="francecentral") audio_config = AudioOutputConfig(filename="FranceInter.wav") synthesizer = SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config) synthesizer.speak_text_async(myEntry.get()) subscription_key = "8460cf8fbcd642d898f99e3c78207689" endpoint = "https://api.cognitive.microsofttranslator.com/" location = "francecentral" path = '/translate' constructed_url = endpoint + path params = { 'api-version': '3.0', 'from': 'fr', 'to': ['en'] } constructed_url = endpoint + path headers = { 'Ocp-Apim-Subscription-Key': subscription_key, 'Ocp-Apim-Subscription-Region': location, 'Content-type': 'application/json', 'X-ClientTraceId': str(uuid.uuid4()) } body = [{ 'text': ' ' }] body[0]['text'] = myEntry.get() request = requests.post(constructed_url, params=params, headers=headers, json=body) response = request.json() text_trad = response[0]['translations'][0]['text'] audio_config = AudioOutputConfig(filename="Traduction.wav") synthesizer_traduction = SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config) synthesizer_traduction.speak_text_async(text_trad) print(text_trad) myEntry = tk.Entry(gui, width=40) myEntry.pack(pady=20) btn = tk.Button(gui, height=1, width=10, text="Traduire", bg="red", command=getEntry) btn.pack() gui.mainloop()
[ "djoi_a@etna-alternance.net" ]
djoi_a@etna-alternance.net
d1ac8f2d290ad912ee598b9de46bc0a8af886db2
aa0a367248df4833d3165c318e5b03544a93acb4
/des.py
e373e5350086d2911a406142d4bbffb42ad655f9
[]
no_license
rojla123/selmi
c7fe387bbd9d6f9d17cd62246cc721f00d2af918
d328c6c6d3cd7e449b0e71fc629028fb30c5036b
refs/heads/master
2022-11-30T00:22:44.514911
2020-08-04T13:51:33
2020-08-04T13:51:33
284,993,964
0
0
null
null
null
null
UTF-8
Python
false
false
2,523
py
import dash import dash_core_components as dcc import dash_html_components as html import plotly.express as px import pandas as pd import os import sqlite3 from pathlib import Path import pandas as pd import streamlit as st import time import numpy as np def load_data(): data=pd.read_csv('ammar.csv') return data df=load_data() st.sidebar.success("# L ecole nationale des sciences de l informatique") st.success("# my first app" ) st.success(" # SELMI NIZAR") st.video("3.Mp4") # Create a list of possible values and multiselect menu with them in it. COUNTRIES = df['location'].unique() se = st.sidebar.multiselect('Select countries', COUNTRIES) mask = df['location'].isin(se) df=df[mask] st.write(" # le nombre maximale de cases ",se ,df["total_cases"].max()) st.write(" # le nombre maximale de deaths ",se ,df["total_deaths"].max()) st.write(df) if st.button('Say hello'): fig2 = px.area(df, x='date', y='total_cases',color='location') fig1= px.scatter(df, x='date', y='total_deaths',color='location') st.success(" # l volution de la pandemie_19 dans le monde") ts_chart = st.plotly_chart(fig2) st.success('# l volution de la pandemie_19 dans le monde') ts_char= st.plotly_chart(fig1) time.sleep(60) # This makes the function take 2s to run st.image("ensi.png") pics = { "Cat":"https://cdn.pixabay.com/photo/2019/03/15/19/19/puppy-4057786_960_720.jpg", "Puppy": "https://cdn.pixabay.com/photo/2019/03/15/19/19/puppy-4057786_960_720.jpg", "Sci-fi city": "https://storage.needpix.com/rsynced_images/science-fiction-2971848_1280.jpg" } for i in list(pics.keys()): st.image(pics[i], use_column_width=True, caption=pics[i]) x=st.text_area("your comment") ret = st.radio('Select countries', ('help','contact')) a=st.slider("choose",1,8) a=st.button("valider") if(st=="valider"): st.write("nizar selmi est u fondateur de rhrvgrveytvrygtrygtyrtyrytreytyrgtyrgtyrgtyregtgreytgryegtyregtyergeryyrygtyr") v=st.slider('hour',1,4,3) db_loc = sqlite3.connect('Nizar.db') cursor = db_loc.cursor() if(ret=="contact"): name=x cursor.execute(''' insert into sel (?)''' ,values(name)) cursor.execute('''SELECT * FROM sel;''') first_eleve = cursor.fetchone() # récupère le premier élève st.write(first_eleve) st.markdown('Streamlit is **_really_ cool**.') map_data = pd.DataFrame( np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4], columns=['lat', 'lon']) st.map(map_data)
[ "noreply@github.com" ]
rojla123.noreply@github.com
52cc4176f1a4d4bc97320e8ad23192457f7d5695
0b9f4d621264fc643bc13758e59b9b81df250862
/fantastic_lamp/fantastic_lamp/asgi.py
3f871a77e8fe45d1d74ee3b64cb92a63a3fe38c7
[ "MIT" ]
permissive
XrossFox/fantastic-lamp-django-framework
f50b09b4cd4c3ed9045da885952b45294296d140
61f3e252237bb3ea2e9929237e3701b68f78c226
refs/heads/main
2023-02-01T04:58:38.065041
2020-12-21T00:32:16
2020-12-21T00:32:16
322,911,911
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" ASGI config for fantastic_lamp project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fantastic_lamp.settings') application = get_asgi_application()
[ "warhead_1090@hotmail.com" ]
warhead_1090@hotmail.com
2a0581eafc31abc7fc1ad21c4a8ee84f9e530959
713014c2050a7e25e8f25bfb941a5a59c6510010
/venv/bin/easy_install-3.7
5a732bb81b4936a000412e2cabb4987e9943dd6d
[]
no_license
darckwind/face_of-_china
20a9ff04af9161ac558dc75bc6afb6e196fb64d0
a946663f04fe720d918f58338d0cae5d1e8ac587
refs/heads/master
2020-06-25T06:05:12.881170
2019-07-31T19:41:37
2019-07-31T19:41:37
199,224,945
0
0
null
null
null
null
UTF-8
Python
false
false
459
7
#!/Users/franciscolagos/PycharmProjects/untitled8/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "f.bunout01@ufromail.cl" ]
f.bunout01@ufromail.cl
241094939f15196f1c39915afe3c309568d1eaa9
4d40e4f747ee5b2e2a7b63ca62a7edaecd5e9bfe
/phrases.py
84b7c1a3df5cf38dfdc301fa4238b3e6b15caf73
[]
no_license
mike-conner/Unit-3
5700a57cfe00606df7e5b16041a3c0c665cefb16
9385ecec4987a35411cc5e2d2250ab4c16bc06e2
refs/heads/master
2022-08-07T00:12:36.553800
2020-05-16T17:35:32
2020-05-16T17:35:32
263,072,090
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
# phrases to be used for the game PHRASE_LIST = [ 'BETTER LATE THAN NEVER', 'HANG IN THERE', 'HELLO WORLD', 'A DIAMOND IN THE ROUGH', 'BEST OF BOTH WORLDS', 'PIECE OF CAKE', 'YOUR GUESS IS AS GOOD AS MINE', 'SO FAR SO GOOD', 'HANG IN THERE', ]
[ "noreply@github.com" ]
mike-conner.noreply@github.com
fab197008b9ba50ab6d79be8054d8b56f37a35d0
bf06236de52938e8bb8491bdde56edcad0562356
/Vorna/Vorna/asgi.py
e6f53b14326b3cc2b35e3c84c15f4cd4d8ec31cc
[]
no_license
webclinic017/Mt_v
a68603753e629ed3f3e65f06f924ad80befaf241
08b90c5edf0da588fe4b5f3756797c02ab4ed0d7
refs/heads/main
2023-01-05T03:12:24.481276
2020-09-29T20:17:32
2020-09-29T20:17:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
""" ASGI config for Vorna project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Vorna.settings') application = get_asgi_application()
[ "pooriaxana@gmail.com" ]
pooriaxana@gmail.com
a167d5dc2cdec2921991ce9f4f2c0efe7f0d135e
71c1e6a2c376815ca0a4f96191f971bdff90ebf5
/ryu/tests/integrated/vrrp_common.py
6ab48e69b127581975afe0c0eae51c555a418412
[ "Apache-2.0" ]
permissive
ntts-clo/ryu
d0ba49e281327fca0d5321bbd137f401436a779e
abafab91493f40be60d3fe0e580ee0f01709f09f
refs/heads/master
2021-01-18T14:38:11.539342
2014-05-06T09:57:39
2014-05-09T16:14:57
8,921,181
2
0
null
2013-05-27T01:57:36
2013-03-21T04:31:47
Python
UTF-8
Python
false
false
8,658
py
# Copyright (C) 2013 Nippon Telegraph and Telephone Corporation. # Copyright (C) 2013 Isaku Yamahata <yamahata at valinux co jp> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import time import random from ryu.base import app_manager from ryu.lib import hub from ryu.lib import mac as lib_mac from ryu.lib.packet import vrrp from ryu.services.protocols.vrrp import api as vrrp_api from ryu.services.protocols.vrrp import event as vrrp_event _VRID = 7 _PRIMARY_IP_ADDRESS0 = '10.0.0.2' _PRIMARY_IP_ADDRESS1 = '10.0.0.3' class VRRPCommon(app_manager.RyuApp): _IFNAME0 = None _IFNAME1 = None def __init__(self, *args, **kwargs): super(VRRPCommon, self).__init__(*args, **kwargs) def _main(self): self._main_version(vrrp.VRRP_VERSION_V3) self._main_version(vrrp.VRRP_VERSION_V2) print "done!" def _main_version(self, vrrp_version): self._main_version_priority(vrrp_version, vrrp.VRRP_PRIORITY_ADDRESS_OWNER) self._main_version_priority(vrrp_version, vrrp.VRRP_PRIORITY_BACKUP_MAX) self._main_version_priority(vrrp_version, vrrp.VRRP_PRIORITY_BACKUP_DEFAULT) self._main_version_priority(vrrp_version, vrrp.VRRP_PRIORITY_BACKUP_MIN) def _main_version_priority(self, vrrp_version, priority): self._main_version_priority_sleep(vrrp_version, priority, False) self._main_version_priority_sleep(vrrp_version, priority, True) def _check(self, vrrp_api, instances): while True: while True: rep = vrrp_api.vrrp_list(self) if len(rep.instance_list) >= len(instances) * 2: if any(i.state == vrrp_event.VRRP_STATE_INITIALIZE for i in rep.instance_list): continue break print len(rep.instance_list), '/', len(instances) * 2 time.sleep(1) # for i in rep.instance_list: # print i.instance_name, i.monitor_name, i.config, \ # i.interface, i.state assert len(rep.instance_list) == len(instances) * 2 num_of_master = 0 d = dict(((i.instance_name, i) for i in rep.instance_list)) bad = 0 for i in rep.instance_list: assert i.state in (vrrp_event.VRRP_STATE_MASTER, vrrp_event.VRRP_STATE_BACKUP) if i.state == vrrp_event.VRRP_STATE_MASTER: num_of_master += 1 vr = instances[i.config.vrid] if (vr[0].config.priority > vr[1].config.priority and i.instance_name == vr[1].instance_name) or \ (vr[0].config.priority < vr[1].config.priority and i.instance_name == vr[0].instance_name): if i.state == vrrp_event.VRRP_STATE_MASTER: print "bad master:" print d[vr[0].instance_name].state, \ d[vr[0].instance_name].config.priority print d[vr[1].instance_name].state, \ d[vr[1].instance_name].config.priority bad += 1 # assert i.state != vrrp_event.VRRP_STATE_MASTER if bad > 0: # this could be a transient state print bad, "bad masters" time.sleep(1) continue if num_of_master >= len(instances): assert num_of_master == len(instances) break print num_of_master, '/', len(instances) time.sleep(1) continue def _main_version_priority_sleep(self, vrrp_version, priority, do_sleep): app_mgr = app_manager.AppManager.get_instance() self.logger.debug('%s', app_mgr.applications) vrrp_mgr = app_mgr.applications['VRRPManager'] step = 5 instances = {} for vrid in xrange(1, 256, step): if vrid == _VRID: continue print "vrid", vrid l = {} prio = max(vrrp.VRRP_PRIORITY_BACKUP_MIN, min(vrrp.VRRP_PRIORITY_BACKUP_MAX, vrid)) rep0 = self._configure_vrrp_router(vrrp_version, prio, _PRIMARY_IP_ADDRESS0, self._IFNAME0, vrid) assert not rep0.instance_name is None l[0] = rep0 prio = max(vrrp.VRRP_PRIORITY_BACKUP_MIN, min(vrrp.VRRP_PRIORITY_BACKUP_MAX, 256 - vrid)) rep1 = self._configure_vrrp_router(vrrp_version, prio, _PRIMARY_IP_ADDRESS1, self._IFNAME1, vrid) assert not rep1.instance_name is None l[1] = rep1 instances[vrid] = l print "vrid", _VRID l = {} rep0 = self._configure_vrrp_router(vrrp_version, priority, _PRIMARY_IP_ADDRESS0, self._IFNAME0, _VRID) assert not rep0.instance_name is None l[0] = rep0 rep1 = self._configure_vrrp_router( vrrp_version, vrrp.VRRP_PRIORITY_BACKUP_DEFAULT, _PRIMARY_IP_ADDRESS1, self._IFNAME1, _VRID) assert not rep1.instance_name is None l[1] = rep1 instances[_VRID] = l self.logger.debug('%s', vrrp_mgr._instances) if do_sleep: print "priority", priority print "waiting for instances starting" self._check(vrrp_api, instances) for vrid in instances.keys(): if vrid == _VRID: continue which = vrid & 1 new_priority = int(random.uniform(vrrp.VRRP_PRIORITY_BACKUP_MIN, vrrp.VRRP_PRIORITY_BACKUP_MAX)) i = instances[vrid][which] vrrp_api.vrrp_config_change(self, i.instance_name, priority=new_priority) i.config.priority = new_priority if do_sleep: print "priority shuffled" self._check(vrrp_api, instances) for vrid in instances.keys(): if vrid == _VRID: continue which = vrid & 1 vrrp_api.vrrp_shutdown(self, instances[vrid][which].instance_name) vrrp_api.vrrp_shutdown(self, instances[_VRID][0].instance_name) if do_sleep: print "shutting down instances" while True: rep = vrrp_api.vrrp_list(self) if len(rep.instance_list) <= len(instances): break print "left", len(rep.instance_list) time.sleep(1) assert len(rep.instance_list) == len(instances) print "waiting for the rest becoming master" while True: rep = vrrp_api.vrrp_list(self) if all(i.state == vrrp_event.VRRP_STATE_MASTER for i in rep.instance_list): break time.sleep(1) vrrp_api.vrrp_shutdown(self, instances[_VRID][1].instance_name) for vrid in instances.keys(): if vrid == _VRID: continue which = 1 - (vrid & 1) vrrp_api.vrrp_shutdown(self, instances[vrid][which].instance_name) print "waiting for instances shutting down" while True: rep = vrrp_api.vrrp_list(self) if not rep.instance_list: break print "left", len(rep.instance_list) time.sleep(1)
[ "fujita.tomonori@lab.ntt.co.jp" ]
fujita.tomonori@lab.ntt.co.jp
4d29b40f431711f553ef332c6c2ebe3ff2b4f174
3da522a5f394b2520e727651b2a5b5a9bec0be41
/app/views/user.py
db7c28d90738cf9ce167ed9e34177436a6c31b5b
[]
no_license
unicode-tech/django-project-starter
2dcd29e17579a91c65c1120f4e64555b6b3ec4aa
ab64486f53da230846492506576a883794d2654a
refs/heads/master
2023-07-17T20:11:59.044487
2021-08-24T16:17:57
2021-08-24T16:17:57
392,238,225
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
from django.db.models import Q from django.template.loader import render_to_string from django.urls import reverse_lazy from django.views.generic import TemplateView, UpdateView, DeleteView, CreateView from django_datatables_view.base_datatable_view import BaseDatatableView from src.models import User from app.forms import UserForm, UserPasswordChangeForm, UserProfileEditForm from src.libraries import AuthGuard class UserDataView(AuthGuard, BaseDatatableView): model = User columns = [ 'email', 'name', 'is_active', 'action', ] def render_column(self, row, column): if column == 'action': return render_to_string( 'app/snippets/action.html', { 'password_link': reverse_lazy('user_password', kwargs={'pk': row.id}), 'update_link': reverse_lazy('user_update', kwargs={'pk': row.id}), 'delete_link': reverse_lazy('user_delete', kwargs={'pk': row.id}), }, ) return super().render_column(row, column) def filter_queryset(self, qs): search = self.request.GET.get('search[value]', None) if search: qs = qs.filter( Q(id__icontains=search) | Q(email__icontains=search) | Q(name__icontains=search) ) return qs class UserListView(AuthGuard, TemplateView): template_name = 'app/user/index.html' class UserCreateView(AuthGuard, CreateView): model = User template_name = 'app/user/create.html' form_class = UserForm success_url = reverse_lazy('user_index') class UserUpdateView(AuthGuard, UpdateView): model = User template_name = 'app/user/update.html' form_class = UserProfileEditForm success_url = reverse_lazy('user_list') class UserDeleteView(AuthGuard, DeleteView): model = User template_name = 'app/user/delete.html' success_url = reverse_lazy('user_list') class UserPasswordChangeView(AuthGuard, UpdateView): model = User template_name = 'app/user/change_password.html' form_class = UserPasswordChangeForm success_url = reverse_lazy('user_list') def get_initial(self): initial = super().get_initial() initial['password'] = '' return initial
[ "calvinbenhardi@gmail.com" ]
calvinbenhardi@gmail.com
438537c819c1db70d5539ab1446160e25797b3cc
73e4a072c283a58854abcaeab0e1ac33eb11a6bf
/mrb_automation_test/api_automation/api_automation_perfect/mrb_api_perfectreport.py
1faedaa3e713f8c0cc0bf0a8fa8226691a82a049
[]
no_license
amez7089/mrbtest
d52e3b3d6eea6aa836e259c563a3e2f755ff8794
2113f58b551d17ec792dffeb9fcbaea5885b8f54
refs/heads/master
2020-04-06T13:48:44.750285
2019-09-30T09:43:41
2019-09-30T09:43:41
157,515,551
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
# -*- coding: utf-8 -*- import time import unittest # import HTMLTestRunner import HTMLTestRunnerCN def Suite(): testunit=unittest.TestSuite() test_dir = "E:\\PythonProject\\mrbtest\\mrbtest\\mrb_automation_test\\api_automation\\api_automation_perfect" discover=unittest.defaultTestLoader.discover(test_dir,pattern='mrb_api_perfect.py',top_level_dir=None) for test_suite in discover: for test_case in test_suite: testunit.addTests(test_case) print(testunit) return testunit if __name__=="__main__": #测试报告的存放路径 test_report = "E:\\PythonProject\\mrbtest\\mrbtest\\mrb_automation_test\\api_automation\\api_automation_perfect" #按照一定的格式获取当前的时间 now = time.strftime("%Y-%m-%d_%H-%M-%S") #定义报告存放路径 filename = test_report+'\\'+'Reportresult_'+now+'.html' fp = open(filename,'wb') #定义测试报告 runner = HTMLTestRunnerCN.HTMLTestRunner( stream=fp, tester=u'周楚奇', title=u'美容邦API接口测试报告:', description=u'测试用例执行情况:' ) runner.run(Suite()) #关闭报告文件 fp.close()
[ "1269758616@qq.com" ]
1269758616@qq.com
29f0a079f6e5a4b601f5c4bbc7925986e11e105d
bc70b275257d0e19ee8d3983edaf6a0aa6068b4f
/custom_env/__init__.py
6a1e5222426c1d4b0aad3da0b34a3c9cc78cbb34
[ "MIT" ]
permissive
x2ever/delay_control_rl
bc2bcd72e4d4010b8be13688ca4bcca7508d816d
1427c024f36320f976e3eef736d433d123bce324
refs/heads/master
2023-04-05T09:22:17.876993
2021-03-21T01:00:00
2021-04-06T17:01:14
298,260,254
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
from .delay_env import DelayWrapper
[ "x2ever@naver.com" ]
x2ever@naver.com
b34c91a555ccc75421794ee67d4b0c298663856e
a40c0f432804b42bef9bf4790f0445ac3d6da36f
/lab7/example1.py
a88afdbf2166141adff6e1a845573353891bdf54
[]
no_license
b55888938/270201050
c1c2ec7d47d33abde2627d29b758214b274a6f09
142c751047f6b2733ea8e3ecb99e2e58687557a3
refs/heads/master
2023-02-07T18:22:03.728359
2020-12-27T20:38:22
2020-12-27T20:38:22
305,070,573
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
def funct(number): sum = 0 for i in range(number): sum += a_list[i] return sum**2 a_list = [12, -7, 5, -89.4, 3, 27, 56, 57.3] a = funct(len(a_list)) print(a)
[ "ahmetozdemir@std.iyte.edu.tr" ]
ahmetozdemir@std.iyte.edu.tr
d1ad93b138e8063d8d19f43af0d411ce7c5d9886
6c99d2ddc48847155f9863c8c0d86ed1d98eafef
/homework_!_softmax/baseuse_softmax.py
a1a6424d3ece2df91705bf89eae228cb9297d5b3
[]
no_license
sakurasakura1996/cs231n_homework
9fb15231ffff972241ad1b31ecc24182c2255489
aed4e88bcdff4aa7e3c7dd7c1a3f5b8688b42414
refs/heads/master
2020-09-09T05:26:51.188240
2019-11-15T08:37:26
2019-11-15T08:37:26
221,361,036
2
0
null
null
null
null
UTF-8
Python
false
false
717
py
import math import numpy as np socres = np.array([[1,2,3], [1,2,3]]) scores = np.array([1,2,3]) exp_scores = np.exp(socres) #numpy 还是很灵活的,exp操作记住不需要math包,numpy直接有 print(socres) print(exp_scores) # 下面测试对numpy二维数组每行进行归一化 socres_normalize = socres / np.sum(socres) print(socres_normalize) a = np.array([1,2,3]) a_normalize = a / np.sum(a) print(a_normalize) print(-np.log(a_normalize)) # np.dot, np.outer outer_1 = np.array([1,2,3]) outer_2 = np.array([2,2,3]) print(np.outer(outer_1,outer_2)) # 第一个参数的每个数和第二个向量分别相乘,这尼玛也太灵活了 print(np.dot(outer_1,outer_2)) # 内积
[ "2470375551@qq.com" ]
2470375551@qq.com
8bd97f6ce4e21e6e1e0cdfc3b3ecfe1ee2a583cf
838f6e9e242c380e99cfca9d10210dd662355776
/data.py
58eb4dccd2280dcf929cc286c03a51e0ec57cc41
[]
no_license
yukunfeng/char_word_lm
087c9caf090a46cd9d9e99fa26f61574bb5e0d54
881fef9c8bb5cdbc6ef18288d11b3c3e9bff7e7a
refs/heads/master
2022-01-22T08:46:24.313462
2021-08-29T05:51:19
2021-08-29T05:51:19
208,559,799
1
0
null
null
null
null
UTF-8
Python
false
false
11,727
py
from collections import Counter import collections import os import torch def get_word_len(counter, confidence): word2len = {} character_num = 0 for word in counter.keys(): word_len = len(word) word2len[word] = word_len character_num += (word_len * counter[word]) word_num = sum(counter.values()) avg_len_per_word = character_num / word_num sorted_word2len = collections.OrderedDict( sorted(word2len.items(), reverse=False, key=lambda t: t[1]) ) accumulated_len = 0 for word, word_len in sorted_word2len.items(): freq = counter[word] accumulated_len += freq percentage = accumulated_len / word_num if percentage > confidence: break most_long_word_len = word_len return avg_len_per_word, most_long_word_len def test_get_word_len(): counter = Counter() file_path = "/home/lr/yukun/pytorch_examples/word_lm/data/50lm/penn/valid.txt" lines = [ counter.update(line.strip().split()) for line in open(file_path, 'r').readlines() ] avg_len_per_word, most_long_word_len = get_word_len(counter, 0.998) # most_long_word_len = min(most_long_word_len, 30) print(avg_len_per_word) print(most_long_word_len) class Dictionary(object): def __init__(self): self.word2idx = {} self.idx2word = [] def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) class CharNgrams(object): def __init__(self, n, add_begin_end, max_len, specials=None): self.specials = specials self.counter = Counter() self.chars2idx = {} # add special ngrams self.pad = "<pad>" self.idx2chars = [self.pad] self.chars2idx[self.pad] = len(self.idx2chars) - 1 self.unk_char = "<unk_chars>" self.idx2chars.append(self.unk_char) self.chars2idx[self.unk_char] = len(self.idx2chars) - 1 self.pad_index = self.chars2idx[self.pad] self.unk_char_index = self.chars2idx[self.unk_char] # adding specials if specials is not None: for special in specials: self.idx2chars.append(special) self.chars2idx[special] = len(self.idx2chars) - 1 self.n = n self.max_len = max_len self.add_begin_end = add_begin_end def get_ngrams(self, word): if self.specials is not None and word in self.specials: return [word] if self.add_begin_end: word = f"${word}^" n = self.n chars_list = [word[i:i+n] for i in range(len(word)-n+1)] return chars_list def get_ngrams_index(self, word, padding=True): chars_list = self.get_ngrams(word) chars_list = chars_list[0:self.max_len] real_length = len(chars_list) if padding: chars_list.extend([self.pad] * (self.max_len - len(chars_list))) index_list = [] for chars in chars_list: index = self.unk_char_index if chars in self.chars2idx: index = self.chars2idx[chars] index_list.append(index) return index_list, real_length def add_word(self, word): chars_list = self.get_ngrams(word) chars_list = chars_list[0:self.max_len] self.counter.update(chars_list) for chars in chars_list: if chars not in self.chars2idx: self.idx2chars.append(chars) self.chars2idx[chars] = len(self.idx2chars) - 1 class Corpus(object): def __init__(self, path, use_ngram=True, max_gram_n=3, add_begin_end=True, max_ngram_len=20, input_freq=None, input_extra_unk="<input_extra_unk>"): """ input_extra_unk: when using fixed input vocab decided by input_freq. If this param is None and input_freq is 1. This tag will not be appended to input vocab and thus can tie input and output word embedding. """ self.dictionary = Dictionary() self.input_dict = Dictionary() self.dict_for_ngram = Dictionary() # sometimes unk_tag appears in the corpus self.unk_tag = "<unk>" # real tags to represents words not appearing in training data for input data self.input_extra_unk = input_extra_unk self.eos_tag = "<eos>" train_path = os.path.join(path, 'train.txt') self.counter = Counter() lines = [ self.counter.update(line.strip().split()) for line in open(train_path, 'r').readlines() ] if input_freq is None: type_token_ratio = f"{len(self.counter.keys()) / sum(self.counter.values()):5.2f}" self.type_token = float(type_token_ratio) * 100 self.type_token = int(self.type_token) if self.type_token <= 5: self.input_freq = 5 elif self.type_token >= 10: self.input_freq = 10 else: self.input_freq = self.type_token print(f"automatically chosen input_freq: {self.input_freq}") else: self.input_freq = input_freq self.use_ngram = use_ngram if self.use_ngram: avg_len_per_word, most_long_word_len = get_word_len(self.counter, 0.99999) most_long_word_len = min(most_long_word_len + 1, 40) gram_n = min(max_gram_n, int(avg_len_per_word)) print(f"max length of word:{most_long_word_len}") print(f"n value in n-gram: {gram_n}") specials = [self.unk_tag, self.eos_tag] self.char_ngrams = CharNgrams( gram_n, add_begin_end, most_long_word_len, specials ) if self.use_ngram: self.train, self.train_ngram = self.tokenize( train_path, add_to_vocab=True, return_ngram=True ) self.valid, self.valid_ngram = self.tokenize( os.path.join(path, 'valid.txt'), return_ngram=True ) self.test, self.test_ngram = self.tokenize( os.path.join(path, 'test.txt'), return_ngram=True ) else: self.train = self.tokenize(train_path, add_to_vocab=True) self.valid = self.tokenize(os.path.join(path, 'valid.txt')) self.test = self.tokenize(os.path.join(path, 'test.txt')) # preprare for fixed-vocab input self.train_fixed = self.get_fixed_input_data(self.train) self.valid_fixed = self.get_fixed_input_data(self.valid) self.test_fixed = self.get_fixed_input_data(self.test) if self.input_extra_unk is not None and self.input_extra_unk in self.input_dict.word2idx: self.input_unseen_idx = self.input_dict.word2idx[self.input_extra_unk] else: self.input_unseen_idx = self.input_dict.word2idx[self.unk_tag] # add ngram input if self.use_ngram: self.ngram_train, self.ngram_train_len = self.get_ngram_data(self.train_ngram) self.ngram_test, self.ngram_test_len = self.get_ngram_data(self.test_ngram) self.ngram_valid, self.ngram_valid_len = self.get_ngram_data(self.valid_ngram) def get_fixed_input_data(self, data): fixed_data = torch.zeros( data.size(0), dtype=data.dtype ) for word_int_index, word_int in enumerate(data, 0): word_str = self.dictionary.idx2word[word_int] if word_str not in self.input_dict.word2idx: word_str = self.unk_tag if self.input_extra_unk in self.input_dict.word2idx: word_str = self.input_extra_unk fixed_data[word_int_index] = self.input_dict.word2idx[word_str] return fixed_data def get_ngram_data(self, data): ngram_data = torch.zeros( data.size(0), self.char_ngrams.max_len, dtype=data.dtype ) ngram_length = torch.zeros( data.size(0), dtype=data.dtype ) for word_int_index, word_int in enumerate(data, 0): word_str = self.dict_for_ngram.idx2word[word_int] ngram_list, real_length = self.char_ngrams.get_ngrams_index(word_str) ngram_data[word_int_index] = torch.tensor(ngram_list, dtype=data.dtype) ngram_length[word_int_index] = real_length return ngram_data, ngram_length def id_to_words(self, idx_list): word_list = [] for idx in idx_list: word = self.dictionary.idx2word[idx] word_list.append(word) return word_list def tokenize(self, path, add_to_vocab=False, return_ngram=False): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, 'r', encoding="utf8") as f: tokens = 0 for line in f: words = line.split() + [self.eos_tag] tokens += len(words) for word in words: if add_to_vocab: self.dictionary.add_word(word) if word in self.counter and self.counter[word] >= self.input_freq: self.input_dict.add_word(word) elif word == self.eos_tag: self.input_dict.add_word(word) if self.use_ngram: self.char_ngrams.add_word(word) self.dict_for_ngram.add_word(word) if add_to_vocab: # no unk_tag in this corpus if self.unk_tag not in self.dictionary.word2idx: self.dictionary.add_word(self.unk_tag) self.dict_for_ngram.add_word(self.unk_tag) self.input_dict.add_word(self.unk_tag) else: # unk_tag already exists in this corpus. Define a another tag for fixed input # vocab. Thus the orginal unk_tag will be treated as normal word. if self.input_extra_unk is not None: self.input_dict.add_word(self.input_extra_unk) # Tokenize file content with open(path, 'r', encoding="utf8") as f: ids = torch.LongTensor(tokens) if self.use_ngram: ids_for_ngram = torch.LongTensor(tokens) token = 0 for line in f: words = line.split() + [self.eos_tag] for word in words: if self.use_ngram: ids_for_ngram[token] = self.dict_for_ngram.word2idx[word] if word not in self.dictionary.word2idx: word = self.unk_tag ids[token] = self.dictionary.word2idx[word] token += 1 if return_ngram: return ids, ids_for_ngram else: return ids def test_charngrams(): cn = CharNgrams(2, True, 8) cn.add_word("happniess") cn.add_word("am") print("dict") print(cn.chars2idx) print(cn.idx2chars) print(f"max_len: {cn.max_len}") word = "happniess" print(f"word {word} ngrams") print(cn.get_ngrams(word)) word = "happysdfsdfsdfdsf" print(f"word {word} ngrams index") print(cn.get_ngrams_index(word)) if __name__ == "__main__": # test_charngrams() test_get_word_len()
[ "yukunfg@gmail.com" ]
yukunfg@gmail.com
bebdae1318fbbbe9bc0e9c03a7ef871a75950c2d
cbdef2e8ed259adc4653ade34db12d8bcc0cea9f
/dominion/cards/Card_Astrolabe.py
3671e3165a04e13e64994d68ab481283b3dc43d6
[]
no_license
dwagon/pydominion
8dd5afef8ec89c63ade74c4ae6c7473cd676799f
545709f0a41529de74f33aa83b106c456900fa5b
refs/heads/main
2023-08-29T10:02:26.652032
2023-08-23T02:25:00
2023-08-23T02:25:00
18,776,204
1
0
null
2023-08-23T02:25:02
2014-04-14T20:49:28
Python
UTF-8
Python
false
false
1,941
py
#!/usr/bin/env python """ http://wiki.dominionstrategy.com/index.php/Astrolabe""" import unittest from dominion import Card, Game, Piles ############################################################################### class Card_Astrolabe(Card.Card): """Astrolabe""" def __init__(self): Card.Card.__init__(self) self.cardtype = [Card.CardType.TREASURE, Card.CardType.DURATION] self.base = Card.CardExpansion.SEASIDE self.desc = "Now and at the start of your next turn: $1, +1 Buy" self.name = "Astrolabe" self.buys = 1 self.coin = 1 self.cost = 3 def duration(self, game, player): """+1 coin, +1 buy""" player.coins.add(1) player.buys.add(1) ############################################################################### class Test_Astrolabe(unittest.TestCase): """Test Astrolabe""" def setUp(self): self.g = Game.TestGame(numplayers=1, initcards=["Astrolabe"]) self.g.start_game() self.plr = self.g.player_list(0) self.card = self.g["Astrolabe"].remove() self.plr.add_card(self.card, Piles.HAND) def test_playcard(self): """Play an astrolabe""" self.plr.play_card(self.card) self.assertEqual(self.plr.buys.get(), 2) self.assertEqual(self.plr.coins.get(), 1) self.assertEqual(self.plr.piles[Piles.DURATION].size(), 1) self.plr.end_turn() self.plr.start_turn() self.assertEqual(self.plr.coins.get(), 1) self.assertEqual(self.plr.piles[Piles.DURATION].size(), 0) self.assertEqual(self.plr.piles[Piles.PLAYED].size(), 1) self.assertEqual(self.plr.piles[Piles.PLAYED][-1].name, "Astrolabe") self.assertEqual(self.plr.buys.get(), 2) ############################################################################### if __name__ == "__main__": # pragma: no cover unittest.main() # EOF
[ "dougal.scott@gmail.com" ]
dougal.scott@gmail.com
cf636381529d19dad2768d8600e76d832662df5c
991cd70073c162f637fbec3a9e921707aa434b8e
/opentelemetry-propagator-gcp/src/opentelemetry/propagators/cloud_trace_propagator/__init__.py
8470ad90390c3c75818db36d8aebc5886c723d30
[ "Apache-2.0" ]
permissive
GoogleCloudPlatform/opentelemetry-operations-python
700a59c954cd18ae6428032339d01908580a4f2d
b0ca7decb6a5bb01409822e746b7463f4a7a76ba
refs/heads/main
2023-08-18T11:24:59.282098
2023-08-15T17:02:54
2023-08-15T17:02:54
244,484,614
49
42
Apache-2.0
2023-09-01T14:42:48
2020-03-02T22:00:22
Python
UTF-8
Python
false
false
4,960
py
# Copyright 2021 The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cloud Trace Span Propagator for X-Cloud-Trace-Context format. Usage ----- .. code-block:: python from opentelemetry.propagate import set_global_textmap from opentelemetry.propagators.cloud_trace_propagator import ( CloudTraceFormatPropagator, ) # Set the X-Cloud-Trace-Context header set_global_textmap(CloudTraceFormatPropagator()) Auto-instrumentation -------------------- This exporter can also be used with the :envvar:`OTEL_PROPAGATORS` environment variable as ``OTEL_PROPAGATORS=gcp_trace``. This also works with `OpenTelemetry auto-instrumentation <https://opentelemetry.io/docs/instrumentation/python/automatic/>`_: .. code-block:: sh opentelemetry-instrument --propagator gcp_trace <command> <args> API --- """ import re import typing import opentelemetry.trace as trace from opentelemetry.context.context import Context from opentelemetry.propagators import textmap from opentelemetry.trace.span import SpanContext, TraceFlags, format_trace_id _TRACE_CONTEXT_HEADER_NAME = "x-cloud-trace-context" _TRACE_CONTEXT_HEADER_FORMAT = r"(?P<trace_id>[0-9a-f]{32})\/(?P<span_id>[\d]{1,20})(;o=(?P<trace_flags>\d+))?" _TRACE_CONTEXT_HEADER_RE = re.compile(_TRACE_CONTEXT_HEADER_FORMAT) _FIELDS = {_TRACE_CONTEXT_HEADER_NAME} class CloudTraceFormatPropagator(textmap.TextMapPropagator): """This class is for injecting into a carrier the SpanContext in Google Cloud format, or extracting the SpanContext from a carrier using Google Cloud format. """ @staticmethod def _get_header_value( getter: textmap.Getter, carrier: textmap.CarrierT, ) -> typing.Optional[str]: # first try all lowercase header header = getter.get(carrier, _TRACE_CONTEXT_HEADER_NAME) if header: return header[0] # otherwise try to find in keys for mixed case for key in getter.keys(carrier): if key.lower() == _TRACE_CONTEXT_HEADER_NAME: header = getter.get(carrier, key) if header: return header[0] return None def extract( self, carrier: textmap.CarrierT, context: typing.Optional[Context] = None, getter: textmap.Getter = textmap.default_getter, ) -> Context: if context is None: context = Context() header = self._get_header_value(getter, carrier) if not header: return context match = re.fullmatch(_TRACE_CONTEXT_HEADER_RE, header) if match is None: return context trace_id = match.group("trace_id") span_id = match.group("span_id") trace_options = match.group("trace_flags") or "0" if trace_id == "0" * 32 or int(span_id) == 0: return context span_context = SpanContext( trace_id=int(trace_id, 16), span_id=int(span_id), is_remote=True, trace_flags=TraceFlags(trace_options), ) return trace.set_span_in_context( trace.NonRecordingSpan(span_context), context ) def inject( self, carrier: textmap.CarrierT, context: typing.Optional[Context] = None, setter: textmap.Setter = textmap.default_setter, ) -> None: span = trace.get_current_span(context) span_context = span.get_span_context() if span_context == trace.INVALID_SPAN_CONTEXT: return header = "{}/{};o={}".format( format_trace_id(span_context.trace_id), span_context.span_id, int(span_context.trace_flags.sampled), ) setter.set(carrier, _TRACE_CONTEXT_HEADER_NAME, header) @property def fields(self) -> typing.Set[str]: return _FIELDS class CloudTraceOneWayPropagator(CloudTraceFormatPropagator): """This class extracts Trace Context in the Google Cloud format, but does not inject this header. It is intended for use in a Composite Propagator to inject context in a different format than was received. """ def inject( self, carrier: textmap.CarrierT, context: typing.Optional[Context] = None, setter: textmap.Setter = textmap.default_setter, ) -> None: return @property def fields(self) -> typing.Set[str]: return set()
[ "noreply@github.com" ]
GoogleCloudPlatform.noreply@github.com
d1656ae9e0c55bf483e9bb2b3f5bc11f49b140f0
35076aa3d703bd10dcc0652e9da05b0e4e1aebbe
/models/ingredients_db.py
970ac2a5e1f0960677160546c769375e7a770439
[]
no_license
dfortuna/Leftoven_Backend
d33bf23775b786c169c620623d63e454e35fbaec
92b5d3aa20d5866d77259119dab4148ed74b7628
refs/heads/master
2020-04-19T08:49:44.390403
2019-01-29T04:25:38
2019-01-29T04:25:38
168,090,575
0
0
null
null
null
null
UTF-8
Python
false
false
2,473
py
from db import db class Ingredient(db.Model): __tablename__ = 'ingredient' id = db.Column(db.Integer, primary_key=True) ingredient_label = db.Column(db.String(80), unique=True, nullable=False) classifier_trained = db.Column(db.Integer, nullable=False) def __repr__(self): return '<Ingredient %r>' % self.ingredient_label def __init__(self, ingredient_label, classifier_trained): self.ingredient_label = ingredient_label self.classifier_trained = classifier_trained # INSERT ********************************************************************************** #creating -------> ing = Ingredient(ingredient_label='blabla', classifier_trained=0) #adding to db ---> db.session.add(ing) # db.session.commit def insert(self): db.session.add(self) db.session.commit() #SELECT ********************************************************************************* #@classmethod allows the method to be called without an instance of the class #'cls' is the representation of the class #convert instance of INGREDIENT to a list that can be sent as JSON format to a GET request @classmethod def select_ingredient_name(cls, _name): return cls.query.filter_by(ingredient_label=_name).first() @classmethod def select_by_id(cls, _id): return cls.query.filter_by(id=_id).first() @classmethod def select_by_classifier_trained(cls, _classifier_trained): ingredients_result = cls.query.filter(Ingredient.classifier_trained>=_classifier_trained).all() ingredient_list = [] for i in ingredients_result: ingredient = {'ingredient_label': i.ingredient_label, 'classifier_trained': i.classifier_trained} ingredient_list.append(ingredient) return {"Ingredient":ingredient_list} #UPDATE ********************************************************************************** #by querying the entity, changing it and commiting, updates it #cls.query.filter_by(my_field_1 = 'value1').update(my_field2 = 'new_value') -> updates all objects @classmethod def update_classifier_trained(cls, name): #ingredient = cls.query.filter_by(ingredient_label=name).first() ingredient = db.session.query(Ingredient).filter_by(ingredient_label=name).first() number = ingredient.classifier_trained + 1 ingredient.classifier_trained = number db.session.commit #DELETE ********************************************************************************* @classmethod def delete_row(cls, row): db.session.delete(row) db.session.commit()
[ "denisfortuna@Deniss-MacBook-Pro.local" ]
denisfortuna@Deniss-MacBook-Pro.local
c8d1be0c9067f432037453243688615f33aa2e12
171e781bf129a647df520ac04cfeb2343fab1c2d
/skin-lesion-detection-service/test/test_lesion_detection_model.py
5607d00d4afd5b0b05f625f9b5ae002b1686c0f8
[ "MIT" ]
permissive
Joro97/microservices-hospital-webapp
f21624e093c04b2fc8a639e30a21d4e14a96bf87
0300d115f15b33832f1035c609945bd47685f06f
refs/heads/master
2022-12-09T13:40:30.878751
2020-01-06T08:48:36
2020-01-06T08:48:36
160,716,929
13
2
MIT
2022-12-08T01:30:56
2018-12-06T18:42:34
CSS
UTF-8
Python
false
false
2,648
py
import os import unittest import src.model.lesion_detection_model as ldm from keras.preprocessing import image class LesionDetectionTest(unittest.TestCase): RESOURCES_PATH = os.path.abspath(os.path.dirname(__file__)) def setUp(self): self._model = ldm.LesionDetectionModel() def tearDown(self): self._model = None def _load_image(self, path): img = image.load_img(path, target_size=(224, 224)) return img def test_nv_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/nv.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_bcc_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/bcc.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_akiec_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/akiec.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_bkl_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/bkl.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_df_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/df.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_mel_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/mel.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(label) print(probability) def test_vasc_lesion(self): img = self._load_image(os.path.join(self.RESOURCES_PATH, 'resources/vasc.jpg')) result = self._model.predict(img) print(result) label, probability = self._model.get_most_probable_result(result) print(probability) if __name__ == '__main__': unittest.main()
[ "tsvetkovt@tsvetkovt-a02.vmware.com" ]
tsvetkovt@tsvetkovt-a02.vmware.com
c81d09b9d8607b73e3502e7e3e7c8a23a362894d
8d8e886fd873d3d2955628f39263661a6d2140b1
/mediplus_backend/project/settings/production.py
ea53cf2c3e53aa9c78f06d6d7eb676fe7a793be2
[]
no_license
mikietechie/mediplus_backend
187a9e3ccc54f2a6a47fc6cfda12bbc0f7ab1754
16cb5f1f85c54fcaf4b2d02cd4963fd697581501
refs/heads/master
2023-07-12T17:25:35.727586
2021-08-20T14:44:06
2021-08-20T14:44:06
394,951,846
1
0
null
null
null
null
UTF-8
Python
false
false
512
py
from .base import * ALLOWED_HOSTS = ["mediplus.co.zw"] CORS_ORIGIN_WHITELIST = ["mediplus.co.zw"] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.getenv('mediplus_db_password', 'a1mtwstdb'), 'USER': os.getenv('mediplus_db_password', 'postgres'), 'PASSWORD': os.getenv('mediplus_db_password', 'mediplus1234'), 'HOST': os.getenv('mediplus_db_password', '127.0.0.1'), 'PORT': os.getenv('mediplus_db_password', '5432') } }
[ "mzinyoni7@outlook.com" ]
mzinyoni7@outlook.com
69f9bacc67a6e72c89930a9ce1ec7fff866b1469
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_outplay.py
3b5a7058b53f990bc21deadc6ccbc62f475177fb
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
#calss header class _OUTPLAY(): def __init__(self,): self.name = "OUTPLAY" self.definitions = [u'to play a game more cleverly and successfully than another person or team: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
ac880b2de85169f05e40a1abe6a70c57ddef7333
3411e7d0d8876089668735a37208dda295d6ee08
/src/orig/MLiP_setup.py
4bbd44ddb2f87211ee7180755bb7d245d67bc887
[]
no_license
Wassasin/atpscheduler
eddfa77b639828e99acb706136c5f22820d978f9
aad64f2da546461071b6e682298d73832809f043
refs/heads/master
2021-01-10T21:08:35.903181
2014-04-21T21:19:54
2014-04-21T21:19:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,242
py
''' Created on Mar 23, 2014 @author: Daniel Kuehlwein ''' import logging import os from readData import get_e_features from Strategy import load_strategies from random import shuffle PATH = '/scratch/kuehlwein/males/E' def create_data_file(fileName,problemList): with open(fileName,'w') as OS: OS.write(' #') OS.write(','.join(['f'+str(i) for i in range(fLength)])) OS.write('#') OS.write(','.join(names)) OS.write('\n') for p in problemList: OS.write(p+'#') OS.write(','.join([str(f) for f in featureDict[p]])) OS.write('#') p_extended = '/scratch/kuehlwein/TPTP-v5.4.0/' + p stratTimes = [] for n in names: s = stratDict[n] try: stratTimes.append(str(s.solvedProblems[p_extended])) except: stratTimes.append('-1') OS.write(','.join(stratTimes)) OS.write('\n') logging.basicConfig(level=logging.INFO, format='%% %(message)s', datefmt='%d-%m %H:%M:%S') logger = logging.getLogger('MLiP Setup') # Create Train/Test problems problemFile = os.path.join(PATH,'data','CASC24Training') problems = [] with open(problemFile,'r') as pFile: for p in pFile: problems.append((p.strip())) shuffle(problems) problemsTrain = problems[:900] problemsTest = problems[900:] stratFolder = os.path.join(PATH,'results') strategies = load_strategies(stratFolder) names = sorted([s.name for s in strategies]) stratDict = {} for s in strategies: stratDict[s.name] = s featureDict = {} #problemsTrain = problemsTrain[:30] for p in problems: featureDict[p] = get_e_features(p) fLength = len(featureDict[problems[0]]) create_data_file('MLiP_train',problemsTrain) create_data_file('MLiP_test',problemsTest) with open('MLiP_train_example_schedule','w') as OS: for p in problemsTrain: OS.write(p+'#NewStrategy101164:150.0,NewStrategy101980:150.0') OS.write('\n') with open('MLiP_test_features','w') as OS: for p in problemsTest: OS.write(p+'#') OS.write(','.join([str(f) for f in featureDict[p]])) OS.write('\n')
[ "git@woutergeraedts.nl" ]
git@woutergeraedts.nl
79f5aef07082705f1d3fab093de1f12036af1c58
c092cc56f30507e80db8e647f529c10e7f9dc9e1
/app/venv/bin/easy_install-3.8
ea67c002831e03e40d532b8aab2c1774d52cd47e
[]
no_license
admin341/INSTA341
bc023541029e6f7cc8b75f0d31265446e236566b
475f35e87391786a4fee249cadff11dc21435418
refs/heads/develop
2022-04-13T17:22:05.757339
2020-03-27T23:22:10
2020-03-27T23:22:10
237,218,348
0
2
null
2020-03-24T03:05:43
2020-01-30T13:25:30
Python
UTF-8
Python
false
false
451
8
#!/Users/zubairnurie/Desktop/INSTA341/app/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.8' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.8')() )
[ "mznurie@msn.com" ]
mznurie@msn.com
ab96fd42f458840cbde4665fa536683c1496eebb
08f8f1ab5d16bff856381467de03502e353ff9c5
/results/views.py
1983364fadf8dc4e37d7d54c8daaaa7db92dfaa0
[]
no_license
kevin8519/Python_django_Project
934bbb3923e7af4cb7f1c8bcfe8b7a02b18b8032
cb8cc8b3f521053d3acc1e0a498a9f63abed2651
refs/heads/master
2021-01-12T08:46:01.303002
2016-12-16T20:00:13
2016-12-16T20:00:13
76,681,622
0
0
null
null
null
null
UTF-8
Python
false
false
5,514
py
from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth.mixins import LoginRequiredMixin,\ PermissionRequiredMixin from django.db import connection from django.http.response import HttpResponse from django.shortcuts import render, render_to_response from django.template.context import RequestContext from django.utils.decorators import method_decorator from django.views.generic.base import View from django.views.generic.detail import DetailView from django.views.generic.edit import CreateView, DeleteView, UpdateView from django.views.generic.list import ListView from results.forms import Studentform, Markform from results.models import Student, Marks # Create your views here. def dear(request): return HttpResponse('welcome to django kevin'+request.META['HTTP_USER_AGENT']) def display(request): name=request.GET['name'] city=request.GET['city'] age=request.GET['age'] phone=request.GET['phone'] email=request.GET['email'] sql="INSERT INTO projectweb.webproject (name, city, age, phone, email) VALUES ('"+name+"','"+city+"','"+age+"','"+phone+"','"+email+"') " print(name,city,age,phone,email) print sql cursor=connection.cursor() cursor.execute(sql) return HttpResponse(" form uploaded done") def display_projectweb(request,id): sql="select name, city, age, phone, email from webproject where id='"+id+"' " cursor=connection.cursor() cursor.execute(sql) result=cursor.fetchall() my_html='' for r in result: print r print my_html my_html="<html><head><style>body {background-color: powderblue;}th,td{color:red;}</style></head><body><table border=3><tr><th><label>Name</label></th><td>"+r[0]+"</td></tr><tr><th><label>City</label></th><td>"+r[1]+"</td></tr><tr><th><label>Age</label></th><td>"+str(r[2])+"</td></tr><tr><th><label>Phone</label></th><td>"+str(r[3])+"</td> </tr><tr><th><label>Email</label></th><td>"+r[4]+"</td></tr></table> </body></html>" return HttpResponse(my_html) def index(request): template='my_form.html' data={ } return render_to_response(template,data,RequestContext(request)) def index1(request): template='student_registration.html' data={'student_form': Studentform() } return render(request,template,data) @login_required def registrationstudent(request): student=Student() student.name=request.POST['name'] student.city=request.POST['city'] student.age=request.POST['age'] student.gender=request.POST['gender'] student.address=request.POST['address'] student.phone=request.POST['phone'] student.save() return HttpResponse('User successfully registered') class Greeting(View): greet='hi man how are you' def get(self,request): return HttpResponse(self.greet) @login_required def index2(request): template='welcome.html' data={} return render(request,template,data) def searh(request): template='search.html' data={} return render(request,template,data) @login_required def stureg(request): template='student_registrationclass.html' data={'student_form': Studentform() } return render(request,template,data) class Studentcreate(LoginRequiredMixin,CreateView): model=Student success_url='/welcome/stureg/student_list/' form_class=Studentform class Studentlist(PermissionRequiredMixin,ListView): model=Student context_object_name='student_list' template_name='student_list.html' permission_required='results.change_student' class StudentDetail(DetailView): model=Student #template_name='student_list.html' class DeleteStudent(DeleteView): model=Student success_url='/welcome/stureg/student_list/' def get_object(self, queryset=None): obj=Student.objects.get(id=self.kwargs['id']) return obj class StudentUpdate(UpdateView): model=Student success_url='/welcome/stureg/student_list/' form_class=Studentform def get_object(self, queryset=None): obj=Student.objects.get(id=self.kwargs['id']) return obj class Markcreate(CreateView): model=Marks success_url='/welcome/stureg/results/createmarks/' form_class=Markform def ajaxstudentresults(request): if request.is_ajax(): querry_string=request.GET.get('search_text') if querry_string is not None: results=Marks.objects.filter(studentmark_id=querry_string).order_by('subject') try: studentmark=Student.objects.get(pk=querry_string) studentmark=studentmark.name except: studentmark='' template='results/student_results.html' data={ 'results':results, 'student_name':studentmark } return render_to_response(template, data, RequestContext(request)) def contactus(request): template='contactus.html' data={} return render(request,template,data)
[ "thanakevin85@gmail.com" ]
thanakevin85@gmail.com
a00e528dba063a65c21e0ebd0fe662e0500a3217
58ee1dc37b57e0b4f06cf383c6a9e0654f490150
/pypy3-armv6h/lilac.py
cdd21f6434f234e6e816d4abc95161d6f4918ff3
[]
no_license
MikeyBaldinger/arch4edu
f3af87ef3a8d4cd78fde7e0ef75658c17dbe8c06
c1775bf7fe0ffc87f3c8b4109fb1e8acde12a430
refs/heads/master
2022-12-23T16:40:55.513537
2020-09-28T21:00:59
2020-09-28T21:00:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
#!/usr/bin/env python3 from lilaclib import * maintainers = [{'github': 'petronny', 'email': 'Jingbei Li <i@jingbei.li>'}] update_on = [{'archpkg': 'pypy3'}] build_prefix = 'extra-armv6h' time_limit_hours = 24 def pre_build(): download_official_pkgbuild('pypy3') add_arch(['armv6h']) def post_build(): git_add_files('PKGBUILD') git_commit() if __name__ == '__main__': single_main('extra-x86_64')
[ "i@jingbei.li" ]
i@jingbei.li