blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
cb9b99aa461b45357f30e30ccba0ff2fdd376c3a
29e4d393351c87741f069092eb8d0ab6f1221d6f
/venv/lib/python3.6/site-packages/pdfminer/ascii85.py
b0af08c8b04af97930de0d7ab9ac088154718fef
[ "MIT" ]
permissive
masora1030/eigoyurusan
f0eb7d9761aa150379b558c13fc2477daf504417
fa82044a2dc2f0f1f7454f5394e6d68fa923c289
refs/heads/master
2022-12-01T09:31:17.330620
2020-07-22T14:51:59
2020-07-22T14:51:59
279,682,018
11
2
MIT
2020-07-22T22:02:57
2020-07-14T20:03:45
Python
UTF-8
Python
false
false
2,490
py
#!/usr/bin/env python """ Python implementation of ASCII85/ASCIIHex decoder (Adobe version). This code is in the public domain. """ import re import struct # ascii85decode(data) def ascii85decode(data): """ In ASCII85 encoding, every four bytes are encoded with five ASCII letters, using 85 different types of characters (as 256**4 < 85**5). When the length of the original bytes is not a multiple of 4, a special rule is used for round up. The Adobe's ASCII85 implementation is slightly different from its original in handling the last characters. The sample string is taken from: http://en.wikipedia.org/w/index.php?title=Ascii85 >>> ascii85decode(b'9jqo^BlbD-BleB1DJ+*+F(f,q') b'Man is distinguished' >>> ascii85decode(b'E,9)oF*2M7/c~>') b'pleasure.' """ n = b = 0 out = b'' for c in data: if 33 <= c and c <= 117: # b'!' <= c and c <= b'u' n += 1 b = b*85+(c-33) if n == 5: out += struct.pack('>L', b) n = b = 0 elif c == 122: # b'z' assert n == 0 out += b'\0\0\0\0' elif c == 126: # b'~' if n: for _ in range(5-n): b = b*85+84 out += struct.pack('>L', b)[:n-1] break return out # asciihexdecode(data) hex_re = re.compile(r'([a-f\d]{2})', re.IGNORECASE) trail_re = re.compile(r'^(?:[a-f\d]{2}|\s)*([a-f\d])[\s>]*$', re.IGNORECASE) def asciihexdecode(data): """ ASCIIHexDecode filter: PDFReference v1.4 section 3.3.1 For each pair of ASCII hexadecimal digits (0-9 and A-F or a-f), the ASCIIHexDecode filter produces one byte of binary data. All white-space characters are ignored. A right angle bracket character (>) indicates EOD. Any other characters will cause an error. If the filter encounters the EOD marker after reading an odd number of hexadecimal digits, it will behave as if a 0 followed the last digit. >>> asciihexdecode(b'61 62 2e6364 65') b'ab.cde' >>> asciihexdecode(b'61 62 2e6364 657>') b'ab.cdep' >>> asciihexdecode(b'7>') b'p' """ data = data.decode('latin1') out = [ int(hx,16) for hx in hex_re.findall(data) ] m = trail_re.search(data) if m: out.append(int(m.group(1),16) << 4) return bytes(out) if __name__ == '__main__': import doctest print('pdfminer.ascii85', doctest.testmod())
[ "soraemonpockt@icloud.com" ]
soraemonpockt@icloud.com
0ea758e348df140e2e167621fa3bc788a8118685
e2eefb2da7f1a113e44bde5c09074bc8c368e94f
/threadingx/thread1.py
e16003387239d6402f37ce96e21356419e3a8a81
[]
no_license
piyushbhadauriya/WJU_OS
88c73001c30c116f8f59b587ad27ade33561137d
7d70f23bcb0485abe91abceaedb4a41c3e911e4f
refs/heads/master
2020-03-28T22:10:25.391954
2019-01-15T01:00:55
2019-01-15T01:00:55
149,210,169
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
import time import threading def countdown(aname, account): while account > 0: print(aname, " : counting down ",account) account -=1 time.sleep(2) print(aname,' :exit') return t1 = threading.Thread(target = countdown, args = ('t1',10,)) t1.start() t2 = threading.Thread(target = countdown, args = ('t2',20,)) t2.start() print('exit main thread')
[ "coolpiyushsingh@gmail.com" ]
coolpiyushsingh@gmail.com
1e7ab58e067aa60cdb37f60639f963b9c658b7d7
cb1711f4bb5d77994738b034a264eb9a1f96e86d
/basic/dojo/views_cbv.py
8c032acdda55dfce8706fbc3bd94f44c28afbfde
[]
no_license
Junhong-Kim/ask-django-lesson
8cd8826ecaac2d8b9ff246256de893fe4431b91a
af475bfb9f52c5a243a3a12861c7644db43de7f2
refs/heads/master
2021-05-14T12:38:10.698709
2018-01-13T17:46:17
2018-01-13T17:46:17
116,348,535
0
0
null
null
null
null
UTF-8
Python
false
false
1,658
py
import os from django.http import JsonResponse, HttpResponse from django.views.generic import View, TemplateView # HttpResponse class PostListView1(View): def get(self, request): name = 'Kim' html = self.get_template_string().format(name=name) return HttpResponse(html) def get_template_string(self): return ''' <h1>Ask Django</h1> <p>{name}</p> <p>Life is too short, You need Python<p> ''' post_list1 = PostListView1.as_view() # Template class PostListView2(TemplateView): template_name = 'dojo/post_list.html' def get_context_data(self, **kwargs): context = super().get_context_data() context['name'] = 'Kim' return context post_list2 = PostListView2.as_view() # JsonResponse class PostListView3(View): def get(self, request): return JsonResponse(self.get_data(), json_dumps_params={'ensure_ascii': False}) def get_data(self): return { 'message': 'Hello, Python & Django', 'items': ['Python', 'Django'], } post_list3 = PostListView3.as_view() # FileDownload class ExcelDownloadView(View): filepath = '/Users/INMA/Downloads/work.xlsx' def get(self, request): # os.path.join(settings.BASE_DIR, 'work.xlsx') filename = os.path.basename(self.filepath) with open(self.filepath, 'rb') as f: response = HttpResponse(f, content_type='application/vnd.ms-excel') response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename) return response excel_download = ExcelDownloadView.as_view()
[ "jhk1005jhk@gmail.com" ]
jhk1005jhk@gmail.com
6e26412342eb240df11bbd524eeca3b26f04bf20
dce57a9b68a9dbc4ef9da3a7e193bffcadf6a03b
/benchmarks/migrations/0027_auto_20160202_1303.py
b3873d6f6346ff7e310a1705470df3ea6c418fbe
[]
no_license
Linaro/art-reports
263579d5e47e3b14c0d97309c067a3a3f0f54335
a2efe96174b11b0f438fea6fafc976f2f8cf29b0
refs/heads/master
2020-07-12T00:04:40.441291
2019-05-17T19:18:53
2019-05-17T19:28:02
54,223,014
2
3
null
2018-08-06T14:56:53
2016-03-18T18:25:40
Python
UTF-8
Python
false
false
696
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models def migrate(apps, schema_editor): Result = apps.get_model("benchmarks", "Result") for result in Result.objects.filter(name="linaro-art-tip-build-nexus9-MicroBenchmarks-Baseline"): result.gerrit_change_number = None result.gerrit_patchset_number = None result.gerrit_change_url = None result.gerrit_change_id = "" result.save() class Migration(migrations.Migration): dependencies = [ ('benchmarks', '0026_auto_20160129_1011'), ] operations = [ migrations.RunPython(migrate, migrations.RunPython.noop), ]
[ "sebastian.pawlus@gmail.com" ]
sebastian.pawlus@gmail.com
5889762761a190b70a9ae493826cbb071ec02449
5afdb507921d990702cd7ca1e532d804ec852c73
/vqvae/VQVAE/esoftmax.py
a304952a90f2cc883158f789190a74ca3361b059
[ "MIT" ]
permissive
Zirui0623/EvSoftmax
1c07c9c8789beb3b7e54f176dcb1330abc16a22e
e161e55432f5e30fedf7eae8ae11189c01bcd54a
refs/heads/main
2023-08-30T05:03:39.393930
2021-10-25T00:03:41
2021-10-25T00:03:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,127
py
import torch import torch.nn.functional as F INF = 1e6 EPS = 1e-6 def log_esoftmax(input: torch.Tensor, dim: int, training: bool = True) -> torch.Tensor: return torch.log(esoftmax(input, dim, training)) def esoftmax(input: torch.Tensor, dim: int, training: bool = False) -> torch.Tensor: mask = input < torch.mean(input, dim=dim, keepdim=True) mask_offset = torch.ones(input.shape, device=input.device, dtype=input.dtype) mask_offset[mask] = EPS if training else 0 probs_unnormalized = F.softmax(input, dim=dim) * mask_offset probs = probs_unnormalized / torch.sum(probs_unnormalized, dim=dim, keepdim=True) return probs def esoftmax_loss( input: torch.Tensor, target: torch.Tensor, reduction: str = "none", dim: int = -1, training: bool = True, ignore_index: int = -100 ) -> torch.Tensor: return F.nll_loss( log_esoftmax(input, dim=dim, training=training), target, reduction=reduction, ignore_index=ignore_index, ) class LogESoftmax(torch.nn.Module): def __init__(self, dim: int = -1): super(LogESoftmax, self).__init__() self.dim = dim def forward(self, X: torch.Tensor) -> torch.Tensor: return log_esoftmax(X, self.dim, self.training) class ESoftmax(torch.nn.Module): def __init__(self, dim: int = -1): super(ESoftmax, self).__init__() self.dim = dim def forward(self, X: torch.Tensor) -> torch.Tensor: return esoftmax(X, self.dim, self.training) class ESoftmaxLoss(torch.nn.Module): def __init__( self, reduction: str = "none", dim: int = -1, ignore_index: int = -100 ): super(ESoftmaxLoss, self).__init__() self.log_esoftmax = LogESoftmax(dim) self.reduction = reduction self.dim = dim self.ignore_index = ignore_index def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return torch.nn.functional.nll_loss( self.log_esoftmax(input), target, reduction=self.reduction, ignore_index=self.ignore_index, )
[ "phil@Phils-MacBook-Pro.local" ]
phil@Phils-MacBook-Pro.local
04e9181223e4bd97243feb5684e728af7ed5b29d
2945ac394970e1fbbf46fbcfdbd74d8095b89428
/lifelong_rl/core/rl_algorithms/offline/offline_rl_algorithm.py
0fed211317dedc771d9ff0d1edbb5550b0088fcd
[ "MIT" ]
permissive
snu-mllab/EDAC
fbca5fec29407dd3ddc03e8585cdf341c4b834c0
198d5708701b531fd97a918a33152e1914ea14d7
refs/heads/main
2023-04-18T05:57:14.753222
2022-08-14T04:44:27
2022-08-14T04:44:27
415,660,116
64
4
null
null
null
null
UTF-8
Python
false
false
5,617
py
import gtimer as gt import abc from lifelong_rl.core import logger from lifelong_rl.core.rl_algorithms.rl_algorithm import _get_epoch_timings from lifelong_rl.util import eval_util class OfflineRLAlgorithm(object, metaclass=abc.ABCMeta): def __init__( self, trainer, evaluation_policy, evaluation_env, evaluation_data_collector, replay_buffer, batch_size, max_path_length, num_epochs, num_eval_steps_per_epoch, num_trains_per_train_loop, num_train_loops_per_epoch=1, save_snapshot_freq=1000, ): self.trainer = trainer self.eval_policy = evaluation_policy self.eval_env = evaluation_env self.eval_data_collector = evaluation_data_collector self.replay_buffer = replay_buffer self.batch_size = batch_size self.max_path_length = max_path_length self.num_epochs = num_epochs self.num_eval_steps_per_epoch = num_eval_steps_per_epoch self.num_trains_per_train_loop = num_trains_per_train_loop self.num_train_loops_per_epoch = num_train_loops_per_epoch self.save_snapshot_freq = save_snapshot_freq self._start_epoch = 0 self.post_epoch_funcs = [] def _train(self): for epoch in gt.timed_for( range(self._start_epoch, self.num_epochs), save_itrs=True, ): if hasattr(self.trainer, 'log_alpha'): curr_alpha = self.trainer.log_alpha.exp() else: curr_alpha = None self.eval_data_collector.collect_new_paths( max_path_length=self.max_path_length, num_samples=self.num_eval_steps_per_epoch, discard_incomplete_paths=True, alpha=curr_alpha, ) gt.stamp('evaluation sampling') self.training_mode(True) for _ in range(self.num_train_loops_per_epoch): for _ in range(self.num_trains_per_train_loop): train_data, indices = self.replay_buffer.random_batch( self.batch_size, return_indices=True) self.trainer.train(train_data, indices) self.training_mode(False) gt.stamp('training') self._end_epoch(epoch) def train(self, start_epoch=0): self._start_epoch = start_epoch self._train() def _end_epoch(self, epoch): snapshot = self._get_snapshot() if self.save_snapshot_freq is not None and \ (epoch + 1) % self.save_snapshot_freq == 0: logger.save_itr_params(epoch + 1, snapshot, prefix='offline_itr') gt.stamp('saving', unique=False) self._log_stats(epoch) self._end_epochs(epoch) for post_epoch_func in self.post_epoch_funcs: post_epoch_func(self, epoch) def _get_snapshot(self): snapshot = {} for k, v in self.trainer.get_snapshot().items(): snapshot['trainer/' + k] = v ''' for k, v in self.eval_data_collector.get_snapshot().items(): snapshot['evaluation/' + k] = v for k, v in self.replay_buffer.get_snapshot().items(): snapshot['replay_buffer/' + k] = v ''' return snapshot def _end_epochs(self, epoch): self.eval_data_collector.end_epoch(epoch) self.trainer.end_epoch(epoch) if hasattr(self.eval_policy, 'end_epoch'): self.eval_policy.end_epoch(epoch) def _get_trainer_diagnostics(self): return self.trainer.get_diagnostics() def _get_training_diagnostics_dict(self): return {'policy_trainer': self._get_trainer_diagnostics()} def _log_stats(self, epoch): logger.log("Epoch {} finished".format(epoch), with_timestamp=True) """ Replay Buffer """ logger.record_dict(self.replay_buffer.get_diagnostics(), prefix='replay_buffer/') """ Trainer """ training_diagnostics = self._get_training_diagnostics_dict() for prefix in training_diagnostics: logger.record_dict(training_diagnostics[prefix], prefix=prefix + '/') """ Evaluation """ if self.num_eval_steps_per_epoch > 0: logger.record_dict( self.eval_data_collector.get_diagnostics(), prefix='evaluation/', ) eval_paths = self.eval_data_collector.get_epoch_paths() if hasattr(self.eval_env, 'get_diagnostics'): logger.record_dict( self.eval_env.get_diagnostics(eval_paths), prefix='evaluation/', ) logger.record_dict( eval_util.get_generic_path_information(eval_paths), prefix="evaluation/", ) """ Misc """ # time stamp logging early for csv format gt.stamp('logging', unique=False) logger.record_dict(_get_epoch_timings()) logger.record_tabular('Epoch', epoch) logger.dump_tabular(with_prefix=False, with_timestamp=False) #gt.stamp('logging', unique=False) @abc.abstractmethod def training_mode(self, mode): """ Set training mode to `mode`. :param mode: If True, training will happen (e.g. set the dropout probabilities to not all ones). """ pass
[ "white0234@snu.ac.kr" ]
white0234@snu.ac.kr
42f83313223bdf6899a7aa3bc49e3dbd77685249
a79032631c21fb07b93b467569b2e82e7e912c48
/venv/Lib/site-packages/slider/tests/test_beatmap.py
73b6997565aa3340691dbb5ec8de7143f50c0808
[]
no_license
Rishikathegenius/django-miniproj-rishika
c2107db8db2386d320b044f57afd61d8e7d0fdfd
4cb2fbe7c54bdb6079228be65d88b32a9219f1df
refs/heads/master
2023-04-21T16:07:17.390623
2021-05-19T07:52:34
2021-05-19T07:52:34
364,608,353
0
0
null
null
null
null
UTF-8
Python
false
false
7,524
py
import pytest import slider.example_data.beatmaps import slider.beatmap import slider.curve from slider.position import Position from datetime import timedelta from math import isclose @pytest.fixture def beatmap(): return slider.example_data.beatmaps.miiro_vs_ai_no_scenario('Tatoe') def test_parse_beatmap_format_v3(): # v3 is a very old beatmap version. We just want to make sure it doesn't # error, see #79 and #87 on github. slider.example_data.beatmaps.example_beatmap( "Sambomaster - Sekai wa Sore wo Ai to Yobunda ze (ZZT the Fifth) " "[Normal].osu" ) def test_version(beatmap): assert beatmap.format_version == 14 def test_display_name(beatmap): assert beatmap.display_name == ( 'AKINO from bless4 & CHiCO with HoneyWorks - MIIRO ' 'vs. Ai no Scenario [Tatoe]' ) def test_parse_section_general(beatmap): assert beatmap.audio_filename == "tatoe.mp3" assert beatmap.audio_lead_in == timedelta() assert beatmap.preview_time == timedelta(milliseconds=6538) assert not beatmap.countdown assert beatmap.sample_set == "Normal" assert beatmap.stack_leniency == 0.7 assert beatmap.mode == 0 assert not beatmap.letterbox_in_breaks assert not beatmap.widescreen_storyboard def test_parse_section_editor(beatmap): assert beatmap.distance_spacing == 1.1 assert beatmap.beat_divisor == 6 assert beatmap.grid_size == 4 assert beatmap.timeline_zoom == 1.8 def test_parse_section_metadata(beatmap): assert beatmap.title == "MIIRO vs. Ai no Scenario" assert beatmap.title_unicode == "海色 vs. アイのシナリオ" assert beatmap.artist == "AKINO from bless4 & CHiCO with HoneyWorks" assert beatmap.artist_unicode == ( "AKINO from bless4 & CHiCO with HoneyWorks" ) assert beatmap.creator == "monstrata" assert beatmap.version == "Tatoe" assert beatmap.source == "" assert beatmap.tags == [ 'kyshiro', 'sukinathan', 'ktgster', 'pishifat', 'smoothie', 'world', 'walaowey', 'toybot', 'sheela901', 'yuii-', 'Sharkie', 'みいろ', 'tv', 'size', 'opening', 'kantai', 'collection', 'kancolle', 'fleet', 'girls', 'magic', 'kaito', '1412', 'まじっく快斗1412', '艦隊これくしょん', '-艦これ-' ] assert beatmap.beatmap_id == 735272 assert beatmap.beatmap_set_id == 325158 def test_parse_section_difficulty(beatmap): assert beatmap.hp_drain_rate == 6.5 assert beatmap.circle_size == 4 assert beatmap.overall_difficulty == 9 assert beatmap.approach_rate == 9.5 assert beatmap.slider_multiplier == 1.8 assert beatmap.slider_tick_rate == 1 def test_parse_section_timing_points(beatmap): # currently only checking the first timing point timing_points_0 = beatmap.timing_points[0] assert timing_points_0.offset == timedelta() assert isclose(timing_points_0.ms_per_beat, 307.692307692308) assert timing_points_0.meter == 4 # sample_set and sample_type omitted, see #56 assert timing_points_0.volume == 60 # inherited is not in class parameter assert timing_points_0.kiai_mode == 0 def test_parse_section_hit_objects(beatmap): # Only hit object 0 tested for now hit_objects_0 = beatmap.hit_objects(stacking=False)[0] assert hit_objects_0.position == Position(x=243, y=164) assert hit_objects_0.time == timedelta(milliseconds=1076) # Hit object note `type` is done by subclassing HitObject assert isinstance(hit_objects_0, slider.beatmap.Slider) # Slider specific parameters assert hit_objects_0.end_time == timedelta(milliseconds=1178) assert hit_objects_0.hitsound == 0 assert isinstance(hit_objects_0.curve, slider.curve.Linear) assert hit_objects_0.curve.points == [Position(x=243, y=164), Position(x=301, y=175)] assert round(hit_objects_0.curve.req_length) == 45 assert isclose(hit_objects_0.length, 45.0000017166138) assert hit_objects_0.ticks == 2 assert isclose(hit_objects_0.num_beats, 0.3333333460489903) assert hit_objects_0.tick_rate == 1.0 assert isclose(hit_objects_0.ms_per_beat, 307.692307692308) assert hit_objects_0.edge_sounds == [2, 0] assert hit_objects_0.edge_additions == ['0:0', '0:0'] assert hit_objects_0.addition == "0:0:0:0:" def test_hit_objects_stacking(): hit_objects = [slider.beatmap.Circle(Position(128, 128), timedelta(milliseconds=x*10), hitsound=1) for x in range(10)] beatmap = slider.Beatmap( format_version=14, audio_filename="audio.mp3", audio_lead_in=timedelta(), preview_time=timedelta(), countdown=False, sample_set="soft", stack_leniency=1, mode=0, letterbox_in_breaks=False, widescreen_storyboard=False, bookmarks=[0], distance_spacing=1, beat_divisor=1, grid_size=1, timeline_zoom=1, title="title", title_unicode="title", artist="artist", artist_unicode="artist", creator="creator", version="1.0", source="source", tags=["tags"], beatmap_id=0, beatmap_set_id=0, hp_drain_rate=5, circle_size=5, overall_difficulty=5, approach_rate=5, slider_multiplier=1, slider_tick_rate=1, timing_points=[], hit_objects=hit_objects ) radius = slider.beatmap.circle_radius(5) stack_offset = radius / 10 for i, ob in enumerate(reversed(beatmap.hit_objects(stacking=True))): assert ob.position.y == 128-(i*stack_offset) def test_hit_objects_hard_rock(beatmap): # Only hit object 0 tested for now hit_objects_hard_rock_0 = beatmap.hit_objects(hard_rock=True, stacking=False)[0] assert hit_objects_hard_rock_0.position == Position(x=243, y=220) assert hit_objects_hard_rock_0.curve.points == [Position(x=243, y=220), Position(x=301, y=209)] def test_closest_hitobject(): beatmap = slider.example_data.beatmaps.miiro_vs_ai_no_scenario('Beginner') hit_object1 = beatmap.hit_objects()[4] hit_object2 = beatmap.hit_objects()[5] hit_object3 = beatmap.hit_objects()[6] middle_t = timedelta(milliseconds=11076 - ((11076 - 9692) / 2)) assert hit_object1.time == timedelta(milliseconds=8615) assert hit_object2.time == timedelta(milliseconds=9692) assert hit_object3.time == timedelta(milliseconds=11076) assert beatmap.closest_hitobject(timedelta(milliseconds=8615)) == \ hit_object1 assert beatmap.closest_hitobject(timedelta(milliseconds=(8615 - 30))) == \ hit_object1 assert beatmap.closest_hitobject(middle_t) == hit_object2 assert beatmap.closest_hitobject(middle_t, side="right") == hit_object3 def test_ar(beatmap): assert beatmap.ar() == 9.5 def test_bpm_min(beatmap): assert beatmap.bpm_min() == 180 def test_bpm_max(beatmap): assert beatmap.bpm_max() == 195 def test_cs(beatmap): assert beatmap.cs() == 4 def test_hp(beatmap): assert beatmap.hp() == 6.5 # issue #57 def test_od(beatmap): assert beatmap.od() == 9
[ "dancefivaella@gmail.com" ]
dancefivaella@gmail.com
bd22ad59dd6d627890c5d26d85d4715723be0995
f193fe64b1f71470f8272ececde5520938970eba
/rabbit/RBPub.py
25da4cbc7ccb4563b60efbaff7d184ad9ea01e19
[]
no_license
eduardo-sarmento/Trabalho-2-PPD
917bebac9e0b6b241525ea444e70317c227b956a
988c243b288480125a58af6a185b825ace822507
refs/heads/master
2023-08-14T18:33:33.215841
2021-10-06T22:26:57
2021-10-06T22:26:57
406,138,393
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
#!/usr/bin/env python import pika connection = pika.BlockingConnection( pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.queue_declare(queue='rsv/hello') channel.basic_publish(exchange='', routing_key='rsv/hello', body='Hello World!') print("Sent 'Hello World!'") connection.close()
[ "eduardosarmento49@gmail.com" ]
eduardosarmento49@gmail.com
758f161cf8f14adcbc1f4fe3840d1cf4000f5479
428c97701b166c177256cdd510eac9373e75dea8
/Activity7.py
f8ab7896ba549140951dc70ef46875689ac17bef
[]
no_license
mferri17/lstm-text-generator
2b240e820dbca6dd047645afa6407bc8956265bf
9454dd80c320cf4f476d87752480e8168185b09d
refs/heads/master
2022-12-11T12:38:02.486497
2020-09-07T21:05:18
2020-09-07T21:05:18
293,628,787
1
0
null
null
null
null
UTF-8
Python
false
false
9,684
py
# -------------------------------- # %tensorflow_version 1.x import io import numpy as np import tensorflow as tf import tensorflow.python.util.deprecation as deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False # -------------------------------- # from google.colab import drive # drive.mount('/content/drive') # -------------------------------- # with open('drive/My Drive/_ USI/Deep Learning Lab/datasets/montecristo.txt', 'r') as f: # book = f.read() with open('datasets/montecristo.txt', 'r') as f: book = f.read() book = book.lower() # -------------------------------- ### Characters distribution import pandas from collections import Counter from collections import OrderedDict import string char_counts = Counter(book) char_counts_byletter = OrderedDict(sorted(char_counts.items())) print(f'Characters count ordered alphabetically: {char_counts_byletter}') df_char_counts_byletter = pandas.DataFrame.from_dict(char_counts_byletter, orient='index') df_char_counts_byletter.plot(kind='bar') char_counts_alphabet = dict((i, char_counts_byletter[i]) for i in list(string.ascii_lowercase)) print(f'Alphabet count: {char_counts_alphabet}') df_char_counts_alphabet = pandas.DataFrame.from_dict(char_counts_alphabet, orient='index') df_char_counts_alphabet.plot(kind='bar') top = 20 print(f'Top {top} most common characters') char_counts.most_common()[:top] # -------------------------------- #### Handle text to numerical conversion vocab = sorted(set(book)) char2idx = {u:i for i, u in enumerate(vocab)} idx2char = np.array(vocab) def text_to_num(text): return np.array([char2idx[c] for c in text]) def num_to_text(nums): return ''.join(idx2char[np.array(nums)]) # book = book.lower() # already done before analysis book_to_num = text_to_num(book) # -------------------------------- def generate_batches(source, batch_size, sequence_length): block_length = len(source) // batch_size batches = [] for i in range(0, block_length, sequence_length): batch=[] for j in range(batch_size): start = j * block_length + i end = min(start + sequence_length, j * block_length + block_length) batch.append(source[start:end]) batches.append(np.array(batch, dtype=int)) return batches # -------------------------------- # ## Little example # example_text = 'Mi chiamo Marco e sono un gattino.'.lower() # example_num = text_to_num(example_text) # print(example_text) # print(example_num) # print(generate_batches(example_num, 3, 2)) # -------------------------------- #### Model parameters batch_size = 16 sequence_length = 256 k = len(char_counts) # Input dimension (unique characters in the text) hidden_units = 256 # Number of recurrent units learning_rate = 1e-2 n_epochs = 5 # -------------------------------- ### Creating dataset for training bts = generate_batches(book_to_num, batch_size, sequence_length) print('Number of batches', len(bts)) # ceiling(len(text) / batch_size / sequence_length) print('Batch size', len(bts[0])) print('Sequence length', len(bts[0][0])) # # Just to notice that last batch is incomplete # for i in range(len(bts)): # for j in range(batch_size): # if len(bts[i][j]) != 256: # print(len(bts[i][j]), i, j) bts = np.array(bts[:-1]) # removing last batch because incomplete print('\nbts shape: ' , bts.shape) data_X = bts data_Y = np.copy(data_X) for batch in range(np.shape(bts)[0]): for sequence in range(np.shape(bts)[1]): for character in range(np.shape(bts)[2] - 1): data_Y[batch][sequence][character] = data_X[batch][sequence][character+1] data_Y[batch][sequence][np.shape(bts)[2] - 1] = 0 # last character has no target print('data_X shape: ', data_X.shape) print('data_Y shape: ', data_Y.shape) # -------------------------------- ### Model definition seed = 0 tf.reset_default_graph() tf.set_random_seed(seed=seed) X_int = tf.placeholder(shape=[None, None], dtype=tf.int64) Y_int = tf.placeholder(shape=[None, None], dtype=tf.int64) lengths = tf.placeholder(shape=[None], dtype=tf.int64) batch_size_tf = tf.shape(X_int)[0] max_len = tf.shape(X_int)[1] # TODO # One-hot encoding X_int X = tf.one_hot(X_int, depth=k) # shape: (batch_size, max_len, k) # One-hot encoding Y_int Y = tf.one_hot(Y_int, depth=k) # shape: (batch_size, max_len, k) # Recurrent Neural Network basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=hidden_units) # Long-Short Term Memory Neural Network rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [256, 256]] multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=hidden_units) init_state = lstm_cell.zero_state(batch_size_tf, dtype=tf.float32) current_state = lstm_cell.zero_state(batch_size_tf, dtype=tf.float32) # rnn_outputs shape: (batch_size, max_len, hidden_units) rnn_outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X, sequence_length=lengths, initial_state=current_state) # rnn_outputs_flat shape: ((batch_size * max_len), hidden_units) rnn_outputs_flat = tf.reshape(rnn_outputs, [-1, hidden_units]) # Weights and biases for the output layer Wout = tf.Variable(tf.truncated_normal(shape=(hidden_units, k), stddev=0.1)) bout = tf.Variable(tf.zeros(shape=[k])) # Z shape: ((batch_size * max_len), k) Z = tf.matmul(rnn_outputs_flat, Wout) + bout Y_flat = tf.reshape(Y, [-1, k]) # shape: ((batch_size * max_len), k) # Creates a mask to disregard padding mask = tf.sequence_mask(lengths, dtype=tf.float32) mask = tf.reshape(mask, [-1]) # shape: (batch_size * max_len) # Network prediction pred = tf.squeeze(tf.random.categorical(Z, 1)) * tf.cast(mask, dtype=tf.int64) pred = tf.reshape(pred, [-1, max_len]) # shape: (batch_size, max_len) hits = tf.reduce_sum(tf.cast(tf.equal(pred, Y_int), tf.float32)) hits = hits - tf.reduce_sum(1 - mask) # Disregards padding # Accuracy: correct predictions divided by total predictions accuracy = hits/tf.reduce_sum(mask) # Loss definition (masking to disregard padding) loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y_flat, logits=Z) loss = tf.reduce_sum(loss*mask)/tf.reduce_sum(mask) optimizer = tf.train.AdamOptimizer(learning_rate) train = optimizer.minimize(loss) # -------------------------------- ### Training print('\n\n --- TRAINING --- \n') session = tf.Session() session.run(tf.global_variables_initializer()) batches_number = np.shape(data_X)[0] losses = np.zeros((n_epochs, batches_number)) for e in range(1, n_epochs + 1): cs = session.run(init_state, {X_int: data_X[0], Y_int: data_Y[0]}) # initial state for b in range(batches_number): c_input = data_X[b] c_target = data_Y[b] ls = list([np.shape(c_input)[1]] * np.shape(c_input)[0]) feed = {X_int: data_X[b], Y_int: data_Y[b], lengths: ls, current_state.c: cs.c, current_state.h: cs.h} l, _, cs = session.run([loss, train, final_state], feed) print(f'Epoch {e}, Batch {b}. \t Loss: {l}') losses[e-1][b] = l # saving losses # -------------------------------- ### Loss plot import matplotlib import matplotlib.pyplot as plt print('losses shape', np.shape(losses)) colors = ['#616BB0', '#74C49D', '#FFFF00', '#B02956', '#B3BAFF'] # Total loss ys = losses.reshape(-1) xs = np.arange(len(ys)) plt.plot(xs, ys, '-', c=colors[0], label='training loss over all epochs') plt.legend() plt.show() # By epochs for e in range(len(losses)): ys_e = losses[e] xs_e = np.arange(len(ys_e)) plt.plot(xs_e, ys_e, '-', c=colors[0], label=f'training loss (epoch {e+1})') plt.legend() plt.show() # By epochs all together for e in range(len(losses)): ys_e = losses[e] xs_e = np.arange(len(ys_e)) plt.plot(xs_e, ys_e, '-', c=colors[e], label=f'training loss (epoch {e+1})') plt.legend() plt.show() # -------------------------------- ### Model saving saver = tf.train.Saver() saver.save(session, 'models/Activity7Model_1.ckpt') # -------------------------------- ### Text generation import random import itertools for n in range(20): ri = random.randrange(sum(char_counts.values())) starting_char = next(itertools.islice(char_counts.elements(), ri, None)) gen_input = [text_to_num(starting_char)] # starting character gen_lengths = [1] # generation is done character by character cs = session.run(init_state, {X_int: gen_input}) # initial state gen_text = [gen_input[0][0]] # store the generated text for i in range(255): cs, gen_input = session.run([final_state, pred], {X_int: gen_input, lengths: gen_lengths, current_state: cs}) gen_text.append(gen_input[0][0]) print(f'\n\n------- EXAMPLE {n+1} -------\n') print(num_to_text(gen_text)) # -------------------------------- ### Restore from model # https://stackoverflow.com/questions/33759623/tensorflow-how-to-save-restore-a-model # https://stackoverflow.com/questions/40442098/saving-and-restoring-a-trained-lstm-in-tensor-flow saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, 'models/Activity7Model_1.ckpt') print('Model restored.') ri = random.randrange(sum(char_counts.values())) starting_char = next(itertools.islice(char_counts.elements(), ri, None)) gen_input = [text_to_num(starting_char)] # starting character gen_lengths = [1] # generation is done character by character cs = session.run(init_state, {X_int: gen_input}) # initial state gen_text = [gen_input[0][0]] # store the generated text for i in range(255): cs, gen_input = session.run([final_state, pred], {X_int: gen_input, lengths: gen_lengths, current_state: cs}) gen_text.append(gen_input[0][0]) print(f'\n\n------- EXAMPLE -------\n') print(num_to_text(gen_text)) # --------------------------------
[ "m.ferri17@campus.unimib.it" ]
m.ferri17@campus.unimib.it
cbf8b086ac33bdab4294086c67a15e4d00b65498
69d9ffc34f6f542bcb6f2f5658d23d8dcd72eb7b
/restframework/filtering/api/views.py
ca1e1fe9fdfbf457f9d3b09abca2bb369992e9f6
[]
no_license
golammahmud/rest-framework
9c82254944729d9d669ab38c8bd2cb48f789e66f
913e3630469c14fa67edc419d17184e94d19c9b1
refs/heads/master
2023-08-24T15:59:49.139124
2021-10-12T14:54:53
2021-10-12T14:54:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,069
py
from django.shortcuts import render from rest_framework import viewsets from rest_framework.authentication import SessionAuthentication, BasicAuthentication,TokenAuthentication from rest_framework.permissions import IsAuthenticated,IsAdminUser,DjangoModelPermissions,IsAuthenticatedOrReadOnly from .models import Student from .serializers import StudentSerializer from django.contrib.auth.models import User from rest_framework.authtoken.models import Token from rest_framework.throttling import AnonRateThrottle,UserRateThrottle class StudentViewSet(viewsets.ModelViewSet): queryset = Student.objects.all() serializer_class = StudentSerializer authentication_classes = [SessionAuthentication,BasicAuthentication] permission_classes = [IsAuthenticatedOrReadOnly,] throttle_classes = [AnonRateThrottle,UserRateThrottle] #filter each logged in user basis def get_queryset(self): user=self.request.user return Student.objects.filter(passby__username=user) # for spacified throttle rate each class # from .throttling import JackRateThrottling # class StudentViewSet(viewsets.ModelViewSet): # queryset = Student.objects.all() # serializer_class = StudentSerializer # authentication_classes = [SessionAuthentication,BasicAuthentication] # permission_classes = [IsAuthenticatedOrReadOnly,] # throttle_classes = [AnonRateThrottle,JackRateThrottling] # for user in User.objects.all(): # Token.objects.get_or_create(user=user) from rest_framework.authtoken.models import Token # token = Token.objects.create(user=instance) # print(token.key) #signals for instance user token # from django.conf import settings # from django.db.models.signals import post_save # from django.dispatch import receiver # from rest_framework.authtoken.models import Token # # @receiver(post_save, sender=settings.AUTH_USER_MODEL) # def create_auth_token(sender, instance=None, created=False, **kwargs): # if created: # Token.objects.create(user=instance)
[ "golam.mahmud99@gmail.com" ]
golam.mahmud99@gmail.com
d3b5e91d6fe0172f1293634ddffe96ec82a5abea
5c1afc37f583622c820cdc093210dc4122278f8e
/mummy/models.py
80624c800b41b335ed18ab393be636c57e438d34
[]
no_license
jordangallacher/LucasSite
681474ee2fd9228b33833f959331846769fefb82
9363a702ecf76ade4ecccdc22d8ef4ddfb9d8b3e
refs/heads/master
2022-01-24T07:08:00.152391
2019-07-30T07:37:34
2019-07-30T07:37:34
198,356,378
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
from django.db import models # Create a Blog model here. # title # pub_date # body # image class Mummy(models.Model): image = models.ImageField(upload_to='images/') title = models.CharField(max_length=255) pub_date = models.DateTimeField() body = models.TextField() def __str__(self): return self.title # This function names the posts in the admin panel def summary(self): return self.body[:100] def pub_date_pretty(self): return self.pub_date.strftime('%b %e %Y') # Add the Blog app to settings # Create a migration # Migrate # Add to the Admin
[ "jordan.gallacher@gmail.com" ]
jordan.gallacher@gmail.com
daabf75fa0ee4ee0fca9b3cd286480f785179c3c
c42d708c04d510ba34ab4b7d058a16ca8098d8de
/nogeo/gis.py
f51a1ca2cc43af43f931dba60f5e418ed4979215
[]
no_license
kuki-gs/noweapons
75bb6764b73b92877fb0090ea42bbc3b10186c99
8bbb68d0ffce761f5a556d613babc5bb4a16b1dc
refs/heads/master
2022-02-22T13:43:24.764841
2019-09-19T08:16:01
2019-09-19T08:16:01
209,465,305
0
0
null
null
null
null
UTF-8
Python
false
false
9,454
py
# -*- coding: utf-8 -*- import math import pandas as pd from lxml import etree from pykml.factory import KML_ElementMaker as KML ''' 经纬度转平面直角坐标,米勒投影 输入输出:均为带有经度、纬度或x、y坐标的列表 ''' def GPS_to_XY(gps): L = 6381372 * math.pi * 2 # 地球周长 W = L # 平面展开后,x轴等于周长 H = L / 2 # y轴约等于周长一半 mill = 0.65 # 米勒投影中的一个常数,范围大约在正负2.3之间 x = gps[0] * math.pi / 180 # 将经度从度数转换为弧度 y = gps[1] * math.pi / 180 # 将纬度从度数转换为弧度 y = 1.25 * math.log(math.tan(0.25 * math.pi + 0.4 * y),10) # 米勒投影的转换 # 弧度转为实际距离 #x = (W / 2) + (W / (2 * math.pi)) * x x = (W / (2 * math.pi)) * x #y = (H / 2) - (H / (2 * mill)) * y y = (H / (2 * mill)) * y return [int(x),int(y)] ''' 经纬度转平面直角坐标,Mercator投影 输入输出:均为带有经度、纬度或x、y坐标的列表 参数说明: X:水平直角坐标,单位为米(m); Y:纵向直角坐标,单位为米(m); B:纬度,单位为弧度(rad); L:经度,单位为弧度(rad); Bo:投影基准纬度,Bo =0,单位为弧度((rad); Lo:坐标原点的经度,Lo =0,单位为弧度(rad); a:地球椭球体长半轴,a=6378137.0000,单位为米(m); b:地球椭球体短半轴,b=6356752.3142,单位为米(m); e:第一偏心率; e’:第二偏心率。 N-卯酉圈曲率半径,单位为米(m)=a**2/b / math.sqrt(1+e2**2 * math.cos(B0)**2)。 K=N(B0)*math.cos(B0) ''' def GPS_to_XY2(gps): B0 =0 L0 =0 a=6378137.000 b=6356752.314 e1=math.sqrt(a**2-b**2)/a e2=math.sqrt(a**2-b**2)/b K=a**2/b*math.cos(B0)/math.sqrt(1 + e2**2 * math.cos(B0)**2) B=gps[1]*math.pi/180 L=gps[0]*math.pi/180 x=K*(L-L0) y=K*math.log(math.tan(math.pi/4+B/2) * math.pow((1-e1*math.sin(B))/(1+e1*math.sin(B)),e1/2)) return [int(x),int(y)] ''' GCJ2WGS:GCJ经纬度转换成GWS格式的经纬度 输入输出:均为带有经度、纬度的列表 ''' def gcj2gws(location): # location格式如下:locations[1] = "113.923745,22.530824" lon = float(location[0]) lat = float(location[1]) a = 6378245.0 # 克拉索夫斯基椭球参数长半轴a ee = 0.00669342162296594323 #克拉索夫斯基椭球参数第一偏心率平方 PI = 3.14159265358979324 # 圆周率 # 以下为转换公式 x = lon - 105.0 y = lat - 35.0 # 经度 dLon = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * math.sqrt(abs(x)); dLon += (20.0 * math.sin(6.0 * x * PI) + 20.0 * math.sin(2.0 * x * PI)) * 2.0 / 3.0; dLon += (20.0 * math.sin(x * PI) + 40.0 * math.sin(x / 3.0 * PI)) * 2.0 / 3.0; dLon += (150.0 * math.sin(x / 12.0 * PI) + 300.0 * math.sin(x / 30.0 * PI)) * 2.0 / 3.0; #纬度 dLat = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * math.sqrt(abs(x)); dLat += (20.0 * math.sin(6.0 * x * PI) + 20.0 * math.sin(2.0 * x * PI)) * 2.0 / 3.0; dLat += (20.0 * math.sin(y * PI) + 40.0 * math.sin(y / 3.0 * PI)) * 2.0 / 3.0; dLat += (160.0 * math.sin(y / 12.0 * PI) + 320 * math.sin(y * PI / 30.0)) * 2.0 / 3.0; radLat = lat / 180.0 * PI magic = math.sin(radLat) magic = 1 - ee * magic * magic sqrtMagic = math.sqrt(magic) dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * PI); dLon = (dLon * 180.0) / (a / sqrtMagic * math.cos(radLat) * PI); wgsLon = lon - dLon wgsLat = lat - dLat return [wgsLon,wgsLat] ''' 转换df类型经纬度 输入:类型dataframe,包含字段LONGITUDE和LATITUDE 输出:在输入基础上增加2列wgs_lon和wgs_lat ''' def gcj2wgs_for_df(data_with_gcj): list_gcj = data_with_gcj[['LONGITUDE','LATITUDE']].values.tolist() list_wgs = list(map(gcj2gws,list_gcj)) data_with_gcj=pd.concat([data_with_gcj.reset_index(level=0).drop(['index'],axis=1),pd.DataFrame(list_wgs,columns=["wgs_lon","wgs_lat"])],axis=1) return data_with_gcj """ 生成tac为单位的kml文件 输入:data类型df,包含字段wgs_lon、wgs_lat、ECI、RSRP、SINR以及TAC、tac_cluster;district_name区县名字, path_result保存路径 输出:kml节点,包含采样点集合的cluser的图层节点 """ def gen_kml_tac(data, district_name, path_result): # 创建谷歌图层文件 list_tac = sorted(data['跟踪区'].astype(int).drop_duplicates().tolist()) for tac in list_tac: df_tac_data = data[data['跟踪区'] == tac] list_cluster = sorted(df_tac_data['tac_cluster'].drop_duplicates().tolist()) for cluster in list_cluster: df_cluster_data = df_tac_data[df_tac_data['tac_cluster'] == cluster] # 如果是tac中的第一个cluster,则创建一个tac文件夹,并添加第一个cluster节点 if cluster == list_cluster[0]: kml_tac = KML.Folder(KML.name("跟踪区=" + str(tac)), gen_kml_cluster(df_cluster_data, cluster)) # 添加后面的cluster else: kml_tac.append(gen_kml_cluster(df_cluster_data, cluster)) # 如果是第一个tac,创建kml文件,并添加第一个tac节点 if tac == list_tac[0]: kml_doc= KML.Document(KML.name(district_name), kml_tac) else: kml_doc.append(kml_tac) etree_doc = etree.tostring(etree.ElementTree(kml_doc), pretty_print=True) # with open(path_result + district_name + '.kml', 'wb') as fp: fp.write(etree_doc) """ 生成一个包含采样点集合的cluser的kml图层节点 pykml是在python2下写的,在导入以后,有些地方可能会出错,所以需要修改pykml,主要是一些print格式有问题 输入:类型df,包含字段wgs_lon、wgs_lat、ECI、RSRP、SINR 输出:kml节点,包含采样点集合的cluser的图层节点 """ def gen_kml_cluster(data,cluster_name): lon=data['wgs_lon'] lat=data['wgs_lat'] if len(lon)!=len(lat): print ('lon != lat nums,请检查数据的经纬度信息') sys.exit(0) # 创文件夹,添加第一个点 kml_cluster=KML.Folder(KML.name(str(cluster_name)), KML.styleUrl("#m_ylw-pushpin"), KML.Placemark(KML.styleUrl("#m_ylw-pushpin"), KML.description('ECI:'+str(int(data["ECI"].iloc[0])), 'SINR:'+str(round(data["SINR"].iloc[0],1)), 'RSRP:'+str(round(data["RSRP"].iloc[0],1))), KML.Point(KML.styleUrl("#m_ylw-pushpin"), KML.coordinates(str(lon.iloc[0])+','+str(lat.iloc[0])+',0')))) # 添加后面的采样点 for i in range(1,len(lon)): kml_cluster.append(KML.Placemark(KML.description('ECI:'+str(int(data["ECI"].iloc[i])), 'SINR:'+str(round(data["SINR"].iloc[i], 1)), 'RSRP:'+str(round(data["RSRP"].iloc[i], 1))), KML.Point(KML.coordinates(str(lon.iloc[i])+','+str(lat.iloc[i])+',0')))) # print etree.tostring(etree.ElementTree(kml_file ),pretty_print=True) return kml_cluster def gen_kml_enb(data_wgs,level=3):#level1=tac,level2=enb,level3=cell,如果data_wgs数据已经包含,所以gongcan_l表就不需要了 data_wgs = data_wgs[['p_day', 'CELL_RSRP', 'CELL_SINR', 'CELL_CELLID', 'eNBID', '区县', '频段', '站型', '方位角', 'wgs_lon', 'wgs_lat']] data_wgs["ECI"] = data_wgs["CELL_CELLID"] # print(data_wgs.head()) # data_wgs=pd.merge(data_wgs,gongcan_l[['ECI','eNBID','跟踪区']],left_on='CELL_CELLID',right_on="ECI",how="left") data_wgs.dropna(inplace=True) cell_list=data_wgs.CELL_CELLID.astype(int).drop_duplicates()#用于获得这些小区的共站同方向小区,然后再取其覆盖采样点生成google地图文件 cell_list=cell_list.to_list() ENB_list=data_wgs.eNBID.astype(int).drop_duplicates().to_list() # import os # filename = os.path.basename(file_csv) for i,ENB in enumerate(ENB_list): ENB_data=data_wgs[data_wgs['eNBID']==ENB] classify_list=ENB_data['CELL_CELLID'].drop_duplicates().to_list() # classify_list=sorted(list(classify_list)) for j,clas in enumerate(classify_list):#这里按照ENB输出点,所以用ENB——list替代了cell_list point_data=ENB_data[ENB_data['CELL_CELLID']==clas] if j==0:#clas==classify_list[0]: cell_kml=KML.Folder(KML.name("ENB:"+str(ENB)), gen_kml_point(point_data,clas))#加个document根目录,append的时候避免树结构错乱 else: cell_kml.append(gen_kml_point(point_data,clas)) if i==0: ENB_kml=KML.Folder(KML.name('_反向覆盖小区采样点'+str(ENB)),cell_kml) else: ENB_kml.append(cell_kml) return ENB_kml
[ "noreply@github.com" ]
kuki-gs.noreply@github.com
0e2e8fb97a3cefd834a2f935fe8284b71ce38843
bdbaa26a91b46598a1b77b736639e97e39be5572
/MapPro/orders/migrations/0003_order_is_archived.py
a93d436121cb24c4eddd09c7b70a0675ea53faba
[]
no_license
Armenvardanyan95/mappro_api
457c7bb054909150d1cf1e6b74a9e57fd80c99ff
30d8acf9560097aad92a8379eb1d0c58384ed351
refs/heads/master
2020-03-12T02:24:43.928045
2018-04-20T18:58:32
2018-04-20T18:58:32
130,401,977
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-20 18:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0002_auto_20170812_1437'), ] operations = [ migrations.AddField( model_name='order', name='is_archived', field=models.BooleanField(default=True), ), ]
[ "armenvardanyan95@gmail.com" ]
armenvardanyan95@gmail.com
c89f1bd79b26aa7ced8a1a83e589f2abcbd2a9c4
6a6b9a3f06e1a5bf80b9313428ced8719aafe644
/image_load.py
57d2f3d9259b7443b7fd57f87d27e93e1e1c362f
[]
no_license
PhilCoker/BnP-YGO
fe1b291431313e1d9089c424f28f4a8790ca89ec
892ebe7d5311b0ef17fba2bec04cf991a749d6b9
refs/heads/master
2021-01-20T11:13:44.963048
2014-10-13T01:11:27
2014-10-13T01:11:27
23,847,105
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
import os import sys import urllib if( len(sys.argv) < 2 ): print 'Provide the deck name.' sys.exit(0) base = 'http://static.api5.studiobebop.net/ygo_data/card_images/' #See if img dir exists, if not then create it if 'img' not in os.listdir('.'): os.mkdir( 'img' ) #Go through all cards in deck and download images, put them in img with open('deck\\' + sys.argv[1]) as file: for line in file: replaced = line.replace('\n', '').replace( ' ', '_' ).replace('-','_') url = base + replaced + '.jpg' print 'Looking at url ', url urllib.urlretrieve( url, 'img\\' + replaced + '.png' )
[ "phillip.coker@gmail.com" ]
phillip.coker@gmail.com
da8ed9569251ebd3679be699e72cfe847fd69021
3fbaf156377676d0971275dbbecdb1198c0016d6
/apps/organization/models.py
fe3f16fda9b27443a7a94e65e4df3b9006eab185
[]
no_license
handsome-man/MxOnline
c171848546b0bdcd1d6fc29f2364f3d9f8803f8b
a3253f56552d5cc20b248c39b175815aed297c14
refs/heads/master
2020-04-29T06:34:58.819180
2019-05-17T07:42:42
2019-05-17T07:42:42
175,921,170
0
0
null
null
null
null
UTF-8
Python
false
false
2,471
py
# organization/models.py from datetime import datetime from django.db import models class CityDict(models.Model): name = models.CharField('城市', max_length=20) desc = models.CharField('描述', max_length=200) add_time = models.DateTimeField(default=datetime.now) class Meta: verbose_name = '城市' verbose_name_plural = verbose_name class CourseOrg(models.Model): ORG_CHOICES = ( ("pxjg", u"培训机构"), ("gx", u"高校"), ("gr", u"个人"), ) name = models.CharField('机构名称', max_length=50) desc = models.TextField('机构描述') category = models.CharField(max_length=20, choices=ORG_CHOICES, verbose_name=u"机构类别", default="pxjg") click_nums = models.IntegerField('点击数', default=0) tag = models.CharField('机构标签', max_length=10, default='全国知名') fav_nums = models.IntegerField('收藏数', default=0) students = models.IntegerField("学习人数", default=0) course_nums = models.IntegerField("课程数", default=0) image = models.ImageField('logo', upload_to='org/%Y/%m', max_length=100) address = models.CharField('机构地址', max_length=150, ) city = models.ForeignKey(CityDict, verbose_name='所在城市', on_delete=models.CASCADE) add_time = models.DateTimeField(default=datetime.now) class Meta: verbose_name = '课程机构' verbose_name_plural = verbose_name # 获取教师数 def get_teacher_nums(self): return self.teacher_set.all().count() class Teacher(models.Model): org = models.ForeignKey(CourseOrg, verbose_name='所属机构', on_delete=models.CASCADE) name = models.CharField('教师名', max_length=50) work_years = models.IntegerField('工作年限', default=0) work_company = models.CharField('就职公司', max_length=50) work_position = models.CharField('公司职位', max_length=50) points = models.CharField('教学特点', max_length=50) click_nums = models.IntegerField('点击数', default=0) fav_nums = models.IntegerField('收藏数', default=0) teacher_age = models.IntegerField('年龄', default=25) image = models.ImageField( default='', upload_to="teacher/%Y/%m", verbose_name="头像", max_length=100) add_time = models.DateTimeField(default=datetime.now) class Meta: verbose_name = '教师' verbose_name_plural = verbose_name
[ "lunan.liu@gesion.net" ]
lunan.liu@gesion.net
e6e443870ee55b979e6309a4240301ce1c4bfac1
85284870656a0ce68790492d18fac20dd323d5e1
/ps2.py
9e5745e261a426ce5a3e4b258334b51f842c1d5f
[]
no_license
2018EET2555/Assignment_8
da448c9a2c717632b179091ff4216412216ac1da
f7ef82dfd103bb242e1103f3771662c9391e8c67
refs/heads/master
2020-07-27T20:53:40.862713
2019-09-18T07:04:15
2019-09-18T07:04:15
209,213,079
0
0
null
2019-09-18T03:54:25
2019-09-18T03:54:25
null
UTF-8
Python
false
false
3,355
py
#print welcome message print("Welcome to the Game!") #this function enters the value at position and return 4 ig game is draw returnn 1 if player 1 wins or 2 if player 2 wins and 0 for continue game def enter(p,v,player): flag=4 #inintiallize a flag to check the draw i=(p-1)/3 #array indicis using position j=(p-1)%3 #array indicis using position arr[i][j]=v #assign value # sum_r[i][player]+= sum_r[i][0]+=v #add value to row sum_r[i][1]+=1 #increase count of row if (sum_r[i][0]==15 and sum_r[i][1]==3): #if sum of row is 15 return ooutcome return player sum_c[j][0]+=v #add value to col sum_c[j][1]+=1 #increase count of col if sum_c[j][0]==15 and sum_c[j][1]==3: #if sum of row is 15 return ooutcome return player if(i==j): sum_d[0][0]+=v #add value to diagional sum_d[0][1]+=1 #increase count of diagional if i+j==2: sum_d[1][0]+=v #add value to diagional sum_d[1][1]+=1 #increase count of diagional if (sum_d[0][0]==15 and sum_d[0][1]==3) or (sum_d[1][0]==15 and sum_d[1][1]==3) : #check diagonal for 15 sum and eturn outcome return player var=0 for i in range(3): #checks if all cells filled than draw var+=sum_r[i][1] if(var==9): #draw the match return flag for k in range(3): #this loop check if possibility of any body win if sum_r[k][0]<15 or sum_c[k][0]<15: flag=0 return flag for k in range(2): #this loop check if possibility of any body win if(sum_d[i][0]<15): flag=0 return flag return flag #return draw def isvalid(p,v,player): #check validity of user entered input if p>9 or p<1 or (player==1 and v%2==0) or (player==2 and v%2==1) or v>9 or v<1 or (v in num) or (p in pos): return 0 return 1 #handles the input and game flow def game(): print("Player 1's chance") player=1 while(1) : #ask user want to continue print("player {play}'s chance".format(play=player)) #print which players chance p,v=raw_input("Enter the position and number to be entered: ").split() #take input if(not(p.isdigit() and v.isdigit())): #check if entered digit else give error print("pos or value not valid enter again") continue p=int(p) v=int(v) if isvalid(p,v,player): #check validity dic=enter(p,v,player) #enter value in array cell for i in arr: #prints the array for j in i: print("{v} |".format(v=j)), print("\n") num.append(v) #track numbered enterd pos.append(p) #track position if(dic==4): #print draw print("Game Draw") break if(dic==player): #print if player wins print("player {play} wins".format(play=player)) break if player==1: #chnage the player in every loop player=2 else: player=1 else: print("pos or value not valid enter again") #if not valid [positoin enter again] #----------------------------------------------------- flag="1" #to check whether user wants to continue while flag=="1": #loop till flag 1 sum_r=[[0,0] for i in range(3)] #stores rows sum and elememnt count sum_c=[[0,0] for i in range(3)] #stores column sum and elememnt count sum_d=[[0,0] for i in range(2)]#stores diagonal sum and elememnt count num=[] #contains number enytered pos=[] #contains posiotion entered arr=[[0 for i in range(3)] for j in range(3)] #game array game() #call game flag=str(raw_input("enter 1 for continue enter 0 other key for exit ")) #ask if user wants to continue
[ "eet182555@ee.iitd.ac.in" ]
eet182555@ee.iitd.ac.in
434186f4c4cad82219aec208733f761601a3a107
db73aac3a075276f6917250417dcfa08964bbecd
/src/tests/conftest.py
e05d911358b8777aeb3fb535b1db4f65a78188d8
[]
no_license
alexandershov/aio
3000af9cc699dcf95a6d7bec05b6dfbd7a2d4def
da50e258e8416700ff4d6eff3921b3e95e49ce28
refs/heads/master
2020-04-05T17:41:24.498274
2018-12-02T16:54:34
2018-12-02T16:54:55
157,071,582
0
0
null
null
null
null
UTF-8
Python
false
false
1,048
py
import logging import pytest import aio @pytest.fixture(name='future') def future_fixture(request): del request # unused return aio.Future() @pytest.fixture(name='loop', autouse=True) def loop_fixture(request): del request # unused loop = aio.new_event_loop() aio.set_event_loop(loop) yield loop loop.close() aio.set_event_loop(None) @pytest.fixture(scope='session', autouse=True) def logging_fixture(request): logger = logging.getLogger('aio') level = _get_logging_level(request) if level is not None: logger.setLevel(level) handler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s') handler.setFormatter(formatter) logger.addHandler(handler) def _get_logging_level(request): level_name = request.config.getoption('--log-level') if level_name is None: return None if not hasattr(logging, level_name): raise RuntimeError(f'Unknown log level: {level_name}') return getattr(logging, level_name)
[ "codumentary.com@gmail.com" ]
codumentary.com@gmail.com
52fb348cf10da06e9826fe37f4a38f2cdf289d0e
53405777b878efa8b2200f73455bf47701227dd8
/answer_desc2.py
13de4a8aea39397b335c4ec09c13a8a788732022
[]
no_license
shraddhansahula/AutomaticQA
912ac31e9fc78094900af9987af75effe994315f
fe89d64871b4e5a5cc2622e099641484343cae3a
refs/heads/master
2020-12-30T13:07:54.801108
2017-05-28T19:13:34
2017-05-28T19:13:34
91,323,824
1
1
null
null
null
null
UTF-8
Python
false
false
5,716
py
# -*- coding: utf-8 -*- import sys sys.path.append('./LCS') sys.path.append('./headRelated') sys.path.append('./ngramOverlap') sys.path.append('./skipBigram') sys.path.append('./synHypOverlap') sys.path.append('./treeKernel') import os import re import pickle import nltk from nltk.tokenize import sent_tokenize, word_tokenize from lxml import etree from lcs import lcs_wlcs #returns lcs, wlcs from head import head_related #returns relHeadScore, exactHeadScore from ngram import ngram_overlap #returns 1gram score from skip import skip_bigram #returns skip score from syn import syn_hyp_overlap #returns synOverlap, hypOverlap, glossOverlap from synTreeKernel import syn_tree_kernel #returns treekernel score import pickle import multiprocessing as mp from nltk.corpus import wordnet as wn from nltk.tokenize import sent_tokenize, word_tokenize """ This code requires a chapter number and a question as first two arguments. Also needs a stop_words.txt. """ # iORj = 0 #0 if i else 1 # chapNum = int(sys.argv[1]) # if chapNum <=8: # iORj = 0 # else: # iORj = 1 # chapNum = chapNum - 8 # print chapNum, iORj def extract_sentences(chapNum): # sentences = [] # os.chdir("/home/shraddhan/Honors/DUC Dataset/DUC2006_Summarization_Documents/duc2006_docs/D0601A") # listOfFiles = os.listdir(".") # for file in listOfFiles: # print file # inp = etree.parse(file) # root = inp.getroot() # for child in root.iter(): # if child.tag == "P": # text = child.text.split(".") # for i,j in enumerate(text): # text[i] = text[i].replace("\n", " ") # text[i] = text[i].replace("\t", " ") # if text[i] and not text[i].isspace(): # sentences.append(text[i]) # return sentences classIdentifier = "" if chapNum <= 8: classIdentifier = "i" else: chapNum = chapNum - 8 classIdentifier = "j" file = open("./Dataset_NCERT/Dataset-txt/"+classIdentifier+"ess30"+str(chapNum)+".txt") sentences = file.read() file.close() sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', sentences) for i, s in enumerate(sentences): s = s.replace("\n", " ") sentences[i] = s return sentences # def extract_sentences_anurag(query): # f = open("stop_words.txt", "r") # stopWords = [word for word in f.readlines()] # f.close() # index = {} # with open("inverted_index") as f: # for line in f: # line = line.strip("\n").split("=") # index[line[0]] = line[1].split("||") # queryWords = word_tokenize(query) # q = [word for word in queryWords if word not in stopWords] # queryRel = q[:] # for word in q: # for i, j in enumerate(wn.synsets(word)): # for l in j.lemmas(): # queryRel.append(l.name()) # queryRel = list(set(queryRel)) # sentenceIDs = [] # for i in queryRel: # if i in index: # sentenceIDs += index[i] # sentenceIDs = [int(i) for i in sentenceIDs] # relevantSent = [i for i in sorted(sentenceIDs) if i > 211 and i < 520] # f = open("sentences.txt", "r") # sentence_list = [sent.strip("\n") for sent in f.readlines()] # f.close() # final_list = [sentence_list[i] for i in relevantSent] # return final_list score_feature_candidate = [] global i i = 0 def extract_features(candidate): feature_vector = [] global i i += 1 print "finding features for", i try: feature_vector += list(lcs_wlcs(query, candidate)) feature_vector += list(head_related(query, candidate)) feature_vector.append(ngram_overlap(query, candidate)) feature_vector.append(skip_bigram(query, candidate)) feature_vector += list(syn_hyp_overlap(query, candidate)) feature_vector.append(syn_tree_kernel(query, candidate)) except: feature_vector = [0,0,0,0,0,0,0,0,0,0] #score_feature_candidate.append((0,feature_vector,candidate print "processed", i print feature_vector return (0, feature_vector, candidate) with open("question.txt") as f: for line in f: line = line.split("|") chapNum = int(line[0]) query = str(line[1]) print chapNum, query candidates = extract_sentences(chapNum) print len(candidates) pool = mp.Pool(processes=12) features = pool.map(extract_features, candidates) features = [(x[0], x[1], unicode(x[2], "utf-8")) for x in features] weights = [3.0000000000000013, 6.999999999999991, 6.799999999999992, 0.1, 0.2, 0.1, 1.6000000000000003, 1.0999999999999999, 33.90000000000021, 0.30000000000000004] for k, f in enumerate(features): f = list(f) score = 0 #print f for i,j in enumerate(f[1]): score += weights[i]*j #print score f[0] = score #print f f[:0] = [k] f = tuple(f) features[k] = f lenFeatures = len(features) windowFeature = [] windowSize = 4 for k, f in enumerate(features): if k > lenFeatures - windowSize: break windowScore = 0 windowSentence = "" for i in xrange(0, windowSize): windowScore += features[k+i][1] windowSentence += features[k+i][3]+" " windowFeature.append((windowScore, windowSentence.strip())) windowFeature = sorted(windowFeature, key=lambda x: -x[0]) # for i in xrange(0,5): # print windowFeature[i] wordCount = 0 i = 0 summary = [] #generating summary while(1): sentence = windowFeature[i][1] i += 1 wordList = nltk.word_tokenize(sentence) wordCount += len(wordList) summary.append(sentence) if wordCount>450: break new_summary = [] for sent in summary: # print sent_tokenize(sent) # print "" temp_list = sent_tokenize(sent) for s in temp_list: if s not in new_summary: new_summary.append(s) # new_summary = list(set(new_summary)) answer = "" for s in new_summary: answer += s fileName = open("answers.txt", "a+") fileName.write(query + "\n") fileName.write(answer + "\n\n") fileName.close()
[ "gupta.anu1995@gmail.com" ]
gupta.anu1995@gmail.com
87ddf8d6595c8889f6590dc836af99201a598e30
46dc310cf50c41bd909c22d26060e6e2b525a844
/reports.py
eac1991fd3d4f2e5c0f857836ed7d9c7963e18d0
[]
no_license
mderamus19/student-exercise-reports
090fd224c81975c840314f7e986a35b59ffd28cf
6d45f0e0b3c2f08bdf95b20fd066d11dc7cd3f9b
refs/heads/master
2020-07-26T04:13:02.726894
2019-09-16T18:11:22
2019-09-16T18:11:22
208,530,656
0
0
null
2019-09-16T18:11:16
2019-09-15T02:24:15
Python
UTF-8
Python
false
false
7,154
py
import sqlite3 class Student(): def __init__(self, first, last, handle, cohort): self.first_name = first self.last_name = last self.slack_handle = handle self.student_cohort = cohort def __repr__(self): return f'{self.first_name} {self.last_name} is in {self.student_cohort}' class Cohort(): def __init__(self, cohortName): self.Name = cohortName def __repr__(self): return f'{self.Name}' class Exercise(): def __init__(self, id, name, language): self.id = id self.name = name self.language = language def __repr__(self): return f'{self.name} {self.language}' class Javascript(): def __init__(self, id, name, language): self.id = id self.name = name self.language = language def __repr__(self): return f'{self.name} {self.language}' class Python(): def __init__(self, id, name, language): self.id = id self.name = name self.language = language def __repr__(self): return f'{self.name} {self.language}' class Student_Cohort(): def __init__(self, id, first_name, last_name, cohort): self.id = id self.first_name = first_name self.last_name = last_name self.cohort = cohort def __repr__(self): return f'{self.first_name} {self.last_name } {self.cohort}' class Instructor_Cohort(): def __init__(self, id, first_name, last_name, cohort): self.id = id self.first_name = first_name self.last_name = last_name self.cohort = cohort def __repr__(self): return f'{self.first_name} {self.last_name } {self.cohort}' class StudentExerciseReports(): """Methods for reports on the Student Exercises database""" def __init__(self): self.db_path = "/Users/misty/workspace/python/StudentExercises/studentexercises.db" def all_students(self): """Retrieve all students with the cohort name""" with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Student(row[1], row[2], row[3], row[5]) db_cursor = conn.cursor() db_cursor.execute(""" select student_Id, s.first_name, s.last_name, s.slack_handle, s.student_cohort_Id, c.Name from Student s join Cohort c on s.student_cohort_Id = c.Id order by s.student_cohort_Id """) all_students = db_cursor.fetchall() for student in all_students: print(student) def all_cohorts(self): '''Retrieve all cohorts''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Cohort(row[0]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT c.Name FROM Cohort c """) all_cohorts = db_cursor.fetchall() for cohort in all_cohorts: print(cohort) def all_exercises(self): '''Retrieve all exercises''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Exercise(row[0], row[1], row[2]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT exercise_Id, exercise_name, exercise_language FROM exercise """) all_exercises = db_cursor.fetchall() for exercise in all_exercises: print(exercise) def all_js_exercises(self): '''Retrieve all javascript exercises''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Javascript(row[0], row[1], row[2]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT exercise_Id, exercise_name, exercise_language FROM exercise WHERE exercise_language = "Javascript" """) all_js_exercises = db_cursor.fetchall() for javascript in all_js_exercises: print(javascript) def all_py_exercises(self): '''Retrieve all python exercises''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Python(row[0], row[1], row[2]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT exercise_Id, exercise_name, exercise_language FROM exercise WHERE exercise_language = "Python" """) all_py_exercises = db_cursor.fetchall() for python in all_py_exercises: print(python) def all_csharp_exercises(self): '''Retrieve all C# exercises''' with sqlite3.connect(self.db_path) as conn: db_cursor = conn.cursor() db_cursor.execute(""" SELECT exercise_name, exercise_language FROM exercise WHERE exercise_language = "C#" """) # conditional to check the length of all csharp exercises all_csharp_exercises = db_cursor.fetchall() if len(all_csharp_exercises) == 0: print("There are no C# exercises!") else: for csharp in all_csharp_exercises: print(csharp) def all_students_cohorts(self): '''Retrieve all students and cohort names''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Student_Cohort(row[0], row[1], row[2], row [3]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT student_Id, first_name, last_name, c.Name FROM Cohort c JOIN student s ON c.Id = s.student_cohort_Id """) all_students_cohorts = db_cursor.fetchall() for studentCohort in all_students_cohorts: print(studentCohort) def all_instructors_cohorts(self): '''Retrieve all instructors and cohort names''' with sqlite3.connect(self.db_path) as conn: conn.row_factory = lambda cursor, row: Instructor_Cohort(row [0],row[1], row[2], row[3]) db_cursor = conn.cursor() db_cursor.execute(""" SELECT instructor_Id, first_name, last_name, c.Name FROM Cohort c JOIN instructor i ON c.Id = i.instructor_cohort_Id """) all_instructors_cohorts = db_cursor.fetchall() for instructorCohort in all_instructors_cohorts: print(instructorCohort) reports = StudentExerciseReports() reports.all_students() reports.all_cohorts() reports.all_exercises() reports.all_js_exercises() reports.all_py_exercises() reports.all_csharp_exercises() reports.all_students_cohorts() reports.all_instructors_cohorts()
[ "mistyderamus@gmail.com" ]
mistyderamus@gmail.com
bfcec09fb2a9c0b6cc6a755d255269a6957f56b4
61f12e69b3d7a11f9e0e6cf9cedb43c9af07c245
/Graph_Algorithm/Breadth_First.py
bafe54d3d78ef76eea5bdc2edf0ea9cd3dbc0638
[]
no_license
ananabh/Graph_Algorithm
7bc6c35031fb82638239adb394fa41d27a632e14
c9d3c4b5ee720701d76d65eace00eeab484d4187
refs/heads/master
2021-07-24T13:40:21.312361
2020-01-03T10:19:08
2020-01-03T10:19:08
101,926,480
5
2
null
null
null
null
UTF-8
Python
false
false
447
py
from queue import Queue import numpy as np def search(graph, start=0): queue = Queue() queue.put(start) visited = np.zeros(graph.numVertices) while not queue.empty(): vertex = queue.get() if visited[vertex] == 1: continue print("Visit :", vertex) visited[vertex] = 1 for v in graph.get_adjacent_vertices(vertex): if visited[v] != 1: queue.put(v)
[ "abhianan@users.noreply.github.com" ]
abhianan@users.noreply.github.com
677c1989fdeda9af47f28bd069d7fa5eb7a950dd
8e035733fa236599e7af5ad4819882cf07b38689
/djangoquill/djangorestquill/tests.py
d50f1c8c7871322b46cf521820a65189926ade13
[]
no_license
suhjohn/Django-Rest-Quill-Test
ee0a3a60484c71e73c861c118c6ac60e7e53a9eb
5d7e3075af1e9d6dd16071f0dd7fc86074cecd1f
refs/heads/master
2021-09-03T06:08:24.659637
2018-01-06T06:35:58
2018-01-06T06:35:58
116,368,295
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
from django.test import TestCase # Create your tests here. # Test for Problems such as # What if content doesn't exist? # What if content is in wrong format? # What if content length is 0? # What if content length is super long? # What happens when we update? from rest_framework.test import APITestCase class QuillRelatedModelCreateTest(APITestCase): def test_quillpost_related_model_create(self): url = "/answer/"
[ "johnsuh94@gmail.com" ]
johnsuh94@gmail.com
5d5711105462042d67bf0ef658d2b857aeadfc20
b62ba4f33cca622e78da298afa33f9dcf431e4b3
/server/expenses/migrations/0003_auto_20190920_1259.py
471777671ed4a1e3134dd6ec92966ed2c5c756d3
[ "MIT" ]
permissive
cristicismas/top-budget
98c7c96288a5df1dece195d0e953247188dad509
d61db578287b2f77c12032045fca21e58c9ae1eb
refs/heads/master
2021-10-30T17:26:48.957692
2020-09-29T11:57:18
2020-09-29T11:57:18
189,410,116
0
0
MIT
2021-10-05T22:08:17
2019-05-30T12:30:04
JavaScript
UTF-8
Python
false
false
733
py
# Generated by Django 2.2.4 on 2019-09-20 12:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('expenses', '0002_auto_20190829_1335'), ] operations = [ migrations.AlterField( model_name='expense', name='location', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='expenses.Location'), ), migrations.AlterField( model_name='expense', name='source', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='expenses.Source'), ), ]
[ "cristicismas99@gmail.com" ]
cristicismas99@gmail.com
05d8440c2736146da4ffc999819c9caf857631f5
6cf2b45ee8516c7b65fbe362928bfee90ff50779
/2-EstruturaDeDecisao/exercício11.py
79cbe12f143385a1a86b576402093055d87b9ff0
[]
no_license
nralex/Python
1d719179ebf22507132584b8285380c55499d9da
17cbb5544265aec715c8959699a2f34ccc1f9b01
refs/heads/main
2023-02-17T10:20:10.155394
2021-01-09T23:21:20
2021-01-09T23:21:20
319,101,757
0
0
null
null
null
null
UTF-8
Python
false
false
1,209
py
# As Organizações Tabajara resolveram dar um aumento de salário aos seus colaboradores # e lhe contraram para desenvolver o programa que calculará os reajustes. # Faça um programa que recebe o salário de um colaborador e o reajuste segundo o seguinte critério, baseado no salário atual: # * salários até R$ 280,00 (incluindo) : aumento de 20% # * salários entre R$ 280,00 e R$ 700,00 : aumento de 15% # * salários entre R$ 700,00 e R$ 1500,00 : aumento de 10% # * salários de R$ 1500,00 em diante : aumento de 5% Após o aumento ser realizado, informe na tela: # * o salário antes do reajuste; # * o percentual de aumento aplicado; # * o valor do aumento; # * o novo salário, após o aumento. salário = float(input('Informe o seu salário: R$')) if salário <= 280: percentual = 0.2 elif 280 < salário < 700: percentual = 0.15 elif 700 <= salário < 1500: percentual = 0.1 else: percentual = 0.05 acrescimo = salário * percentual print(f'Salário antes do reajuste R${salário:.2f}') print(f'Percentual de aumento aplicado {percentual * 100}%') print(f'Valor do aumento R${acrescimo:.2f}') print(f'Novo salário R${salário + acrescimo:.2f}')
[ "alexserno@gmail.com" ]
alexserno@gmail.com
8c6def7114c99b3c611a71cb5478f0f823098672
119c82b3c1719753b93bd925e157b10e72cdd11f
/blog/urls.py
693ba80b5090141a7be0bcb3b844403ab0b7fdac
[]
no_license
siddharth007-singh/Blog-Website-
bee83ac276ff4fffda4f6c6a98f93da74e6e15af
ed7a544b0afa2c5df651fdac6fe91745c747e9fd
refs/heads/main
2023-04-12T04:56:18.035098
2021-05-12T08:00:17
2021-05-12T08:00:17
366,699,889
0
0
null
null
null
null
UTF-8
Python
false
false
2,453
py
from django.contrib import admin from django.urls import path from datawork import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', views.home, name="homepage"), path('detail/<int:post_id>', views.detail, name="detailpage"), path('meet_author', views.meet_author, name="meet_author"), path('searchbar', views.searchbar, name="searchbar"), path('category_filter/<int:cat_id>', views.category_filter, name="category_filter"), path('login', views.login, name="login"), path('signin', views.signin, name='signin'), path('user_dashboard', views.user_dashboard, name="user_dashboard"), path('user_insert_cat', views.user_insert_cat, name="insert_category"), path('user_insert_topic', views.user_insert_topic, name="insert_topic"), path('user_insert_post', views.user_insert_post, name="insert_post"), path('user_manage_post', views.user_manage_post, name="manage_post"), path('user_report', views.user_report, name="report"), path('user_profile', views.user_profile, name="profile"), path('user_edit_image/<int:nu_id>', views.user_edit_image, name="user_edit_image"), path('user_edit_info/<int:nu_id>', views.user_edit_info, name="user_edit_info"), path('user_view_post/<int:post_id>', views.user_view_post, name="user_view_post"), path('user_edit_post/<int:post_id>', views.user_edit_post, name="user_edit_post"), path('admin_login/', views.admin_login, name="admin_login"), path('secure_dashboard', views.secure_dashboard, name="secure_dashboard"), path('secure_manage_post', views.secure_manage_post, name="secure_manage_post"), path('secure_viewpost/<int:post_id>', views.secure_viewpost, name="secure_viewpost"), path('secure_edit/<int:post_id>', views.secure_edit, name="secure_edit"), path('secure_manage_user', views.secure_manage_user, name="secure_manage_user"), path('secure_manage_report', views.secure_manage_report, name="secure_manage_report"), path('secure_manage_profile', views.secure_manage_profile, name="secure_manage_profile"), path('like_deslike/<int:id>', views.like_dislike, name="like_deslike"), path('delete_post/<int:post_id>', views.delete_post, name="delete_post"), path('logout', views.logout, name="logout"), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "siddharth.code.cws@gmail.com" ]
siddharth.code.cws@gmail.com
86ffea4bdb21794f082509a02de64082e37e21f9
e9b6e2318d537830b848b9c1c67d6954865fe0c3
/pet/petenv/bin/tkconch
e7c7d8dd4ef6ecced5216302f28bedb98ba94527
[]
no_license
lvkunpeng/webspider
3c59b67a8e9274605366640cd20d4293cbc7232d
681a77586974f4c17673763f8c6f42421cd694b5
refs/heads/master
2022-12-14T04:20:12.921858
2018-02-11T08:28:07
2018-02-11T08:28:07
113,159,632
0
1
null
2022-11-16T23:57:17
2017-12-05T09:14:34
Python
UTF-8
Python
false
false
252
#!/root/Desktop/pet/petenv/bin/python3.5 # -*- coding: utf-8 -*- import re import sys from twisted.conch.scripts.tkconch import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "‘lvkunpeng@163.com’" ]
‘lvkunpeng@163.com’
73c8395ae9161ae8bc73887438f449575c6db641
d055b5225381a86b00a7373440b248e5b016e37c
/flaskforum/users/forms.py
255d85c672c4d85a221e634de885140a4b890f40
[]
no_license
HariRam1998/flask-forum-plant-disease-prediction
a9220d6fff1648c20ae57e514f676ca55532fc38
dd8f61fd2fa74e5c6c670eae89bed43506c93ec8
refs/heads/master
2023-04-10T18:47:09.891687
2021-04-23T11:31:49
2021-04-23T11:31:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,656
py
from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileAllowed from wtforms import StringField, PasswordField, SubmitField, BooleanField from wtforms.validators import DataRequired, Length, EqualTo, ValidationError from flask_login import current_user from flaskforum.models import User class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired()]) password = PasswordField('Password', validators = [DataRequired()]) remember = BooleanField('Remember me') submit = SubmitField('Log in') class RegisterForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired()]) password = PasswordField('Password', validators = [DataRequired()]) confirm_password = PasswordField('Confirm Password', validators = [DataRequired(), EqualTo('password')]) submit = SubmitField('Sign Up') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('That username is taken. Please choose a different one.') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('That email is taken. Please choose a different one.') class UpdateAccountForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(min=2, max=20)]) email = StringField('Email', validators=[DataRequired()]) picture = FileField('Update Profile Picture', validators = [FileAllowed(['jpg', 'png'])]) submit = SubmitField('Update') def validate_username(self, username): if username.data!= current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('That username is taken. Please choose a different one.') def validate_email(self, email): if email.data!= current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('That email is taken. Please choose a different one.') class ChangeAccountForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Change Password') class ForgotAccountForm(FlaskForm): email = StringField('Email', validators=[DataRequired()]) def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if not user: raise ValidationError('That email is taken. Please choose a different one.') submit = SubmitField('Send Mail')
[ "HariRam1998@users.noreply.github.com" ]
HariRam1998@users.noreply.github.com
b26813fea036ee40ff9c130c6296d8e1f3fcd9f7
1e182b7cbedc5bf3696ecaa236990c57983fcc0b
/tests/test_tensor_maps.py
7fcb52c2f635ed4bc6478c68f9d6f05be306bc93
[ "BSD-3-Clause" ]
permissive
mit-ccrg/ml4c3-mirror
c1c87230c5e9f18164bc1d9085328ad0117a1c6e
0e25886083ccefc6cbb6250605c58f018f70a2e9
refs/heads/master
2023-02-28T15:15:36.481784
2021-02-08T15:01:57
2021-02-08T15:01:57
337,133,010
0
0
null
null
null
null
UTF-8
Python
false
false
2,316
py
# Imports: third party import pytest from tensorflow.keras.losses import logcosh # Imports: first party from tensormap.TensorMap import TensorMap # pylint: disable=no-member class TestTensorMaps: """ Class to test ECG tensor maps. """ @staticmethod def test_tensor_map_equality(): tensor_map_1a = TensorMap( name="tm", loss="logcosh", channel_map={"c1": 1, "c2": 2}, metrics=[], tensor_from_file=pytest.TFF, ) tensor_map_1b = TensorMap( name="tm", loss="logcosh", channel_map={"c1": 1, "c2": 2}, metrics=[], tensor_from_file=pytest.TFF, ) tensor_map_2a = TensorMap( name="tm", loss=logcosh, channel_map={"c1": 1, "c2": 2}, metrics=[], tensor_from_file=pytest.TFF, ) tensor_map_2b = TensorMap( name="tm", loss=logcosh, channel_map={"c2": 2, "c1": 1}, metrics=[], tensor_from_file=pytest.TFF, ) tensor_map_3 = TensorMap( name="tm", loss=logcosh, channel_map={"c1": 1, "c2": 3}, metrics=[], tensor_from_file=pytest.TFF, ) tensor_map_4 = TensorMap( name="tm", loss=logcosh, channel_map={"c1": 1, "c2": 3}, metrics=[all], tensor_from_file=pytest.TFF, ) tensor_map_5a = TensorMap( name="tm", loss=logcosh, channel_map={"c1": 1, "c2": 3}, metrics=[all, any], tensor_from_file=pytest.TFF, ) tensor_map_5b = TensorMap( name="tm", loss=logcosh, channel_map={"c1": 1, "c2": 3}, metrics=[any, all], tensor_from_file=pytest.TFF, ) assert tensor_map_1a == tensor_map_1b assert tensor_map_2a == tensor_map_2b assert tensor_map_1a == tensor_map_2a assert tensor_map_5a == tensor_map_5b assert tensor_map_2a != tensor_map_3 assert tensor_map_3 != tensor_map_4 assert tensor_map_3 != tensor_map_5a assert tensor_map_4 != tensor_map_5a
[ "noreply@github.com" ]
mit-ccrg.noreply@github.com
c8b3f6213dc2511271bb7c53d95522854e18f936
5700b2c6bfe55291444d77db74e23e03b2b03681
/MergeSort.py
bbec45bb6ddc236a1dfc6c3384025a0633fa303f
[]
no_license
IrsyadMakarim/TubesAKA
024a579441aa1b3ea43c5e0f9adeb1a28c19c52d
d96838459077bb638e7d3d6162ff4638e3689daf
refs/heads/master
2023-02-20T12:59:49.811746
2020-12-26T09:10:33
2020-12-26T09:10:33
324,094,520
0
0
null
null
null
null
UTF-8
Python
false
false
3,451
py
import pygame import random import time pygame.font.init() startTime = time.time() n = 151 screen = pygame.display.set_mode((900, 650)) pygame.display.set_caption("SORTING VISUALISER") run = True width = 900 length = 600 array = [0] * n arr_clr = [(0, 204, 102)] * n clr_ind = 0 clr = [(0, 204, 102), (255, 0, 0), (0, 0, 153), (255, 102, 0)] fnt = pygame.font.SysFont("comicsans", 30) fnt1 = pygame.font.SysFont("comicsans", 20) def generate_arr(): for i in range(1, n): arr_clr[i] = clr[0] array[i] = random.randrange(1, 100) generate_arr() def refill(): screen.fill((255, 255, 255)) draw() pygame.display.update() pygame.time.delay(20) def mergesort(array, l, r): mid = (l + r) // 2 if l < r: mergesort(array, l, mid) mergesort(array, mid + 1, r) merge(array, l, mid, mid + 1, r) def merge(array, x1, y1, x2, y2): i = x1 j = x2 temp = [] pygame.event.pump() while i <= y1 and j <= y2: arr_clr[i] = clr[1] arr_clr[j] = clr[1] refill() arr_clr[i] = clr[0] arr_clr[j] = clr[0] if array[i] < array[j]: temp.append(array[i]) i += 1 else: temp.append(array[j]) j += 1 while i <= y1: arr_clr[i] = clr[1] refill() arr_clr[i] = clr[0] temp.append(array[i]) i += 1 while j <= y2: arr_clr[j] = clr[1] refill() arr_clr[j] = clr[0] temp.append(array[j]) j += 1 j = 0 for i in range(x1, y2 + 1): pygame.event.pump() array[i] = temp[j] j += 1 arr_clr[i] = clr[2] refill() if y2 - x1 == len(array) - 2: arr_clr[i] = clr[3] else: arr_clr[i] = clr[0] def draw(): txt = fnt.render("PRESS" \ " 'ENTER' TO PERFORM SORTING.", 1, (0, 0, 0)) screen.blit(txt, (20, 20)) txt1 = fnt.render("PRESS 'R' FOR NEW ARRAY.", 1, (0, 0, 0)) screen.blit(txt1, (20, 40)) txt2 = fnt1.render("ALGORITHM USED: " \ "MERGE SORT", 1, (0, 0, 0)) screen.blit(txt2, (600, 60)) txt3 = fnt1.render("RUNNING TIME(sec): "+ \ str(int(time.time() - startTime)), \ 1, (0, 0, 0)) screen.blit(txt3, (600, 20)) element_width = (width - 150) // 150 boundry_arr = 900 / 150 boundry_grp = 550 / 100 pygame.draw.line(screen, (0, 0, 0), (0, 95), (900, 95), 6) for i in range(1, 100): pygame.draw.line(screen, (224, 224, 224), (0, boundry_grp * i + 100), (900, boundry_grp * i + 100), 1) for i in range(1, n): pygame.draw.line(screen, arr_clr[i], \ (boundry_arr * i - 3, 100), \ (boundry_arr * i - 3, array[i] * boundry_grp + 100), \ element_width) while run: screen.fill((255, 255, 255)) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_r: generate_arr() if event.key == pygame.K_RETURN: mergesort(array, 1, len(array) - 1) draw() pygame.display.update() pygame.quit()
[ "1rsy4d.m@gmail.com" ]
1rsy4d.m@gmail.com
2fe1fd45dcf963302d499f8cd39946fc538d073b
aaf772cc4830a98839f6bbba28fc0e7523fdc341
/mme_ave_msk.py
e344d5c0f4f7ab8e747822d48d34dcd48b87bcc5
[]
no_license
eguil/Density_bining
a01df60b79ec3382399062b3f7dfe35f5641f695
a450ecaa784965e4d09453a1b255874bb5a82318
refs/heads/master
2021-09-20T03:05:20.099344
2021-09-15T09:06:38
2021-09-15T09:06:38
18,653,021
4
3
null
2019-05-21T17:12:38
2014-04-10T21:48:22
Python
UTF-8
Python
false
false
15,302
py
import os,glob,sys,resource,socket from libDensityPostpro import mmeAveMsk1D,mmeAveMsk2D, mmeAveMsk3D from modelsDef import defModels from correctBinFiles import correctFile from string import replace import warnings import time as timc warnings.filterwarnings("ignore") # ---------------------------------------------------------------------------- # # Perform model ensemble mean and other statistics for density binning output # run with 'pythoncd mme_ave_msk.py' (cdms python) # # April 2016 : add ToE computation support (for 2D files only) # May 2016 : add obs support # Nov 2016 : add 3D files support # Jan 2017 : add picontrol and 1pctCo2 support # # TODO : add arguments to proc for INIT part (exper, raw, fullTS, test, keepfiles, oneD/twoD, mm/mme, ToE...) or per step # # ---------------------------------------------------------------------------- tcpu0 = timc.clock() # # ---------------------------- # !!! Compulsory work order !!! # ---------------------------- # 0) create ptopsigmaxy and correct grid interpolation issues (hist and histNat) # 0.1) raw, oneD, mm, fullTS = T, correctF = F # 0.2) for file in cmip5.* ; do ncks -A -v ptopsigmaxy $file ../$file ; echo $file; done # 0.3) raw, oneD, mm, fullTS = F, correctF = T # 1) run oneD first (mm and mme) for historical and histNat # 2) run twoD mm for histNat # 3) run twoD + ToE mm for historical (or better use Yona's calculation) # 4) run twoD mme for historical (still to implement for ToE) # # =============================================================================================================== # INIT - work definition # =============================================================================================================== #raw = True raw = False # fullTS = True # to compute for the full range of time (used for raw/oneD to compute ptopsigmaxy) fullTS = False #testOneModel = True testOneModel = False # Initial correction of Raw binned files (longitude interpolation and bowl issues) correctF = False # only active if Raw = True # Keep existing files or replace (if True and file present, ignores the model mm or mme computation) # Use False for testing keepFiles = True oneD = False twoD = False #oneD = True twoD = True mm = False mme = True # experiment #exper = 'historical' #exper = 'historicalNat' #exper = 'piControl' #exper = '1pctCO2' exper = 'rcp85' #exper = 'obs' # Time mean/max bowl calculation used to mask out bowl timeBowl = 'max' if twoD: correctF = False # already done for oneD # ToE #ToE = True ToE = False ToeType = 'histnat' # working from hist and histnat #ToeType = 'picontrol' # working from hist and picontrol if not ToE: ToeType ='F' # Select range of MME #selMME = 'All' # select all models for MME #selMME = 'Hist' # select only models for which there are rcp85 and hist and simulations selMME = 'Nat' # select only models for which there are hist AND histNat simulations #selMME = '1pct' # select only models for which there are piControl AND 1pctCO2 simulations # =============================================================================================================== hostname = socket.gethostname() if 'locean-ipsl.upmc.fr' in hostname: baseDir = '/Volumes/hciclad/data/Density_binning/' #baseDir = '/Volumes/hciclad2/data/Density_binning/' elif 'waippo.local' in hostname or 'canalip.upmc.fr' in hostname or 'waippo-3.local' in hostname: if raw: baseDir = '/Volumes/hciclad/data/Density_binning/' baseDir = '/Volumes/hciclad/data/Density_binning/' else: baseDir ='/Users/ericg/Projets/Density_bining/' baseDir = '/Volumes/hciclad/data/Density_binning/' elif 'private.ipsl.fr' in hostname: baseDir = '/data/ericglod/Density_binning/' elif 'crunchy.llnl.gov' in hostname: baseDir = '/work/guilyardi/' else: print hostname sys.exit('Unknown hostname') if exper <> 'obs': # define all models models = defModels() # Years interval for difference reference iniyear = 1861 peri1 = (1861-iniyear)+1 peri2 = (1950-iniyear)+2 # I/O directories #rootDir = '/Users/ericg/Projets/Density_bining/Prod_density_april15/' #rootDir = '/Volumes/hciclad/data/Density_binning/Prod_density_april15/Raw/' #rootDir = '/data/ericglod/Density_binning/Prod_density_april15/Raw/' #rootdir = '/work/guilyardi/Prod_density_april15/Raw' if raw: rootDir =baseDir+'Prod_density_april15/Raw/' else: rootDir =baseDir+'Prod_density_april15/' histDir = rootDir+'historical' histNatDir = rootDir+'historicalNat' piControlDir = rootDir+'piControl' pctCO2Dir = rootDir+'1pctCO2' rcp85Dir = rootDir+'rcp85' histMMEOut = rootDir+'mme_hist' histNatMMEOut = rootDir+'mme_histNat' picMMEOut = rootDir+'mme_piControl' pctMMEOut = rootDir+'mme_1pctCO2' rcp85MMEOut = rootDir+'mme_rcp85' ToeNatOut = rootDir+'toe_histNat' # output name outroot = 'cmip5.multimodel' inroot = 'cmip5' else: # Specific variables for observations obsm = {'name':'EN4' ,'props':[1,0,0,114], 'picontrol':[0]} #obsm = {'name':'Ishii' ,'props':[1,0,0,67], 'picontrol':[0]} models = [obsm] if models[0]['name'] == 'EN4': # 1900.01 - 2015.04 (115 time steps, ignore last year) Good et al. iniyear = 1900 peri1 = (2014-iniyear)+1 peri2 = (1900-iniyear)+2 idxtime = [0,114] elif models[0]['name'] == 'Ishii': # 1945.01 - 2012.12 (68 time steps) iniyear = 1945 peri1 = (2012-iniyear)+1 peri2 = (1945-iniyear)+2 idxtime = [0,67] #rootDir = '/Users/ericg/Projets/Density_bining/Prod_density_obs_april16/' rootDir ='/Volumes/hciclad/data/Density_binning/Prod_density_obs_april16/' ObsMMEOut = rootDir+'mme_obs' outroot = models[0]['name'] inroot = 'obs' mm = True mme = False # nmodels = len(models) # perform a selection of a few models (for testing or updating)? modelSel = range(nmodels) # modelSel = [3,10,18,19,25,27,28] #modelSel = [22,23] if testOneModel: modelSel = [19] if mme: fullTS = False correctF = False if ToE: if ToeType == 'histnat': selMME = 'Nat' # force if ToE & histnat used if exper == 'historical': indir = [histDir] outdir = histMMEOut idxtime=[0,145] elif exper == 'historicalNat': indir = [histNatDir] outdir = histNatMMEOut idxtime=[0,145] elif exper == 'piControl': indir = [piControlDir] outdir = picMMEOut idxtime=[0,-140] # last 140 years are used for mme selMME = '1pct' # select on runs that also have a 1pctCO2 elif exper == '1pctCO2': indir = [pctCO2Dir] outdir = pctMMEOut idxtime=[0,140] selMME = 'piCtl' # select on runs that also have a piControl elif exper == 'rcp85': indir = [rcp85Dir] outdir = rcp85MMEOut idxtime=[0,95] elif exper == 'obs': indir = [rootDir] outdir = ObsMMEOut if ToE: if ToeType == 'histnat': indir = [histDir, histNatMMEOut] outdir = ToeNatOut if raw: dim = 2 appendDim1d='2D' appendDim2d='3D' if mme: if exper == 'historical': indir = [rootDir+'mme_hist'] outdir = rootDir+'mme_hist' if mme: if exper == 'historicalNat': indir = [rootDir+'mme_histNat'] outdir = rootDir+'mme_histNat' else: dim = 1 appendDim1d='zon1D' appendDim2d='zon2D' if raw & twoD : outdir = outdir+'/mme' if mme: indir[0] = indir[0]+'/mme' if mme: indir[0] = outdir timeInt=[peri1,peri2] listens = [] listens1 = [] print print '-----------------------------------------------------------------------------------------------' print ' Enter mme_ave_mask.py for multi-model ensemble averaging for density bins' print '-----------------------------------------------------------------------------------------------' if oneD: print ' -> work on 1D files' if twoD: print ' -> work on 2D files (using 1D files)' if raw: print ' -> work on raw 4D data' if correctF: print ' -> Correct files for longitude and bowl issues' if ToE: print ' -> computing ToE for type = ',ToeType if mm: print ' -> Performing ensemble(s) for',exper print ' -> Type of time selection on bowl (mean or max):',timeBowl if mme: print ' -> Performing MME for',selMME, 'models for', exper if exper == 'piControl': print ' -> USing' print print ' --> indir = ',indir print ' --> outdir = ',outdir print '-----------------------------------------------------------------------------------------------' print os.chdir(indir[0]) for i in modelSel: mod = models[i]['name'] years = [models[i]['props'][3],models[i]['props'][4]] if exper == 'historical': nens = models[i]['props'][0] chartest = exper elif exper == 'historicalNat': nens = models[i]['props'][1] chartest = exper elif exper == 'piControl': nyears = models[i]['picontrol'][0] nens = 1 years=[0,nyears] if selMME == '1pct' and nyears < 140 and nyears > 0: nens = 1 print ' TOO SHORT: IGNORE model', mod chartest = exper elif exper == '1pctCO2': nens = models[i]['props'][2] years=[0,140] chartest = exper elif exper == 'rcp85': nens = models[i]['props'][5] years=[0,95] chartest = exper elif exper == 'obs': nens = models[i]['props'][0] chartest = 'historical' if ToE: if ToeType == 'histnat': nens = models[i]['props'][1] if years[1] <> 0: # do not ignore model if nens > 0: # only if 1 member or more if raw: listf = glob.glob(inroot+'.'+mod+'.*.nc') listf1 = listf else: listf = glob.glob(inroot+'.'+mod+'.*zon2D*') listf1 = glob.glob(inroot+'.'+mod+'.*zon1D*') if len(listf) == 0: print i, mod sys.exit('### no such file !') start = listf[0].find(chartest)+len(chartest) end = listf[0].find('.an.') rip = listf[0][start:end] if raw: outFile = replace(listf[0],rip,'.ensm') outFile1 = outFile if mm & correctF: # correct file in indir+'/correct' and change indir idxcorr = models[i]['correctFile'] outDirc = indir[0]+'/correct' print ' -> correct',len(listf),'files towards', outDirc for filec in listf: # test if file is here before creating if os.path.isfile(outDirc+'/'+filec): print ' -> corrected file present: ',filec else: print ' -> correct ',filec correctFile(idxcorr, 1, filec, indir[0], filec, outDirc) i#ndirnew = outDirc else: outFile = replace(listf[0],rip,'.ensm') outFile1 = replace(outFile,'2D','1D') # Create lists for mme if mme: if selMME == 'All': listens.append(outFile) listens1.append(outFile1) print ' Add ',i,mod, '(slice', years, nens, 'members) to MME' if selMME == 'Nat': # only select model if histNat mm is present if models[i]['props'][1] > 0: listens.append(outFile) listens1.append(outFile1) print ' Add ',i,mod, '(slice', years, nens, 'members) to MME' if selMME == '1pct': # only select model if 1pctCO2 mm is present if models[i]['props'][2] > 0: listens.append(outFile) listens1.append(outFile1) print ' Add ',i,mod, '(slice', years, nens, 'members) to MME' if selMME == 'piCtl': # only select model if piCtl mm is present if models[i]['picontrol'][0] > 0: listens.append(outFile) listens1.append(outFile1) print ' Add ',i,mod, '(slice', years, nens, 'members) to MME' if selMME == 'Hist': # only select model if hist mm is present if models[i]['props'][0] > 0: listens.append(outFile) listens1.append(outFile1) print ' Add ',i,mod, '(slice', years, nens, 'members) to MME' # Perform model ensemble if mm: if twoD: if os.path.isfile(outdir+'/'+outFile) & keepFiles: print ' -> File exists - IGNORE mm of',outFile,'already in',outdir else: print ' -> working on: ', i,mod, 'slice', years, nens, 'members' if dim == 1: mmeAveMsk2D(listf,years,indir,outdir,outFile,timeInt,mme,timeBowl,ToeType) elif dim == 2: mmeAveMsk3D(listf,years,indir,outdir,outFile,timeInt,mme,ToeType) print 'Wrote ',outdir+'/'+outFile if oneD: if os.path.isfile(outdir+'/'+outFile1) & keepFiles: print ' -> File exists - IGNORE mm of',outFile1,'already in',outdir else: print ' -> working on: ', i,mod, 'slice', years, nens, 'member(s)' mmeAveMsk1D(listf1,dim,years,indir,outdir,outFile1,timeInt,mme,ToeType,fullTS) print 'Wrote ',outdir+'/'+outFile1 if mme: # run 1D MME first if twoD: outFile = outroot+'_'+selMME+'.'+exper+'.ensm.an.ocn.Omon.density_'+appendDim2d+'.nc' if os.path.isfile(outdir+'/'+outFile) & keepFiles: print ' -> IGNORE: mme of',outFile,'already in',outdir else: if dim == 1: mmeAveMsk2D(listens,idxtime,indir,outdir,outFile,timeInt,mme,timeBowl,ToeType) elif dim ==2: mmeAveMsk3D(listens,idxtime,indir,outdir,outFile,timeInt,mme,ToeType) print 'Wrote ',outdir+'/'+outFile if oneD: outFile1 = outroot+'_'+selMME+'.'+exper+'.ensm.an.ocn.Omon.density_'+appendDim1d+'.nc' if os.path.isfile(outdir+'/'+outFile1) & keepFiles: print ' -> IGNORE: mme of',outFile1,'already in',outdir else: mmeAveMsk1D(listens1,dim,idxtime,indir,outdir,outFile1,timeInt,mme,ToeType,False) print 'Wrote ',outdir+'/'+outFile1 tcpu1 = timc.clock() print ' Max memory use',resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1.e6,'GB' print ' CPU use',tcpu1-tcpu0 # --------------------------- #modelsurf = ['ACCESS1-0','ACCESS1-3','CMCC-CESM','CMCC-CM','CMCC-CMS','CNRM-CM5','CSIRO-Mk3-6-0','EC-EARTH','FGOALS-s2','GFDL-ESM2G','GISS-E2-R-CC','GISS-E2-R','MIROC5','MIROC-ESM-CHEM','MIROC-ESM','MPI-ESM-LR','MPI-ESM-MR','MPI-ESM-P','NorESM1-ME','NorESM1-M']
[ "Eric.Guilyardi@locean-ipsl.upmc.fr" ]
Eric.Guilyardi@locean-ipsl.upmc.fr
741da4aa788642759e3693ac73deec10287f9425
66c917eeefbd2eb0d7c2de16c67b1211518cc74e
/k-means.py
5a7d5822410f9f0af41be575c3db2fdad9f97060
[]
no_license
yz-chen18/AndrewML
201d993ee9f834f37dac6d59b896ab8f9c933239
b10e6dffb2f92f8193a1d2a15cdddb72a4529be0
refs/heads/master
2020-07-14T03:48:17.109479
2019-09-10T03:01:16
2019-09-10T03:01:16
205,230,340
0
0
null
null
null
null
UTF-8
Python
false
false
3,255
py
import numpy as np import matplotlib.pyplot as plt def loadData(fpath): mat = [] labels = [] with open(fpath, 'r') as f: for line in f.readlines(): label = line.split()[-1] line = line.split()[:-1] line = [float(num) for num in line] mat.append(line) labels.append(int(label)) mat = np.array(mat) return mat, labels def choose2rand(m): p1 = m p2 = m while (p1 == p2): p1 = np.random.randint(0, m) p2 = np.random.randint(0, m) return p1, p2 def k_means(inX, maxIter, K = 2, looptimes = 1): m = len(inX) times = 0 labelList = [] costList = [] labelMat = [1 for i in range(m)] p0, p1 = choose2rand(m) p0 = inX[p0] p1 = inX[p1] for l in range(looptimes): p0, p1 = choose2rand(m) p0 = inX[p0] p1 = inX[p1] templabel = [0 for i in range(m)] for i in range(maxIter): for j in range(m): d0 = np.multiply(inX[j] - p0, inX[j] - p0).sum() d1 = np.multiply(inX[j] - p1, inX[j] - p1).sum() if (d0 > d1): templabel[j] = 1 p1_sum = np.zeros(inX[0].shape) p1_num = 0 p2_sum = np.zeros(inX[0].shape) p2_num = 0 for p in range(m): if (templabel[p] == 0): p1_sum += inX[p] p1_num += 1 else: p2_sum += inX[p] p2_num += 1 p0 = p1_sum / p1_num p1 = p2_sum / p2_num cost = 0 for i in range(m): if (templabel[i] == 0): d = np.multiply(inX[i] - p0, inX[i] - p0).sum() else: d = np.multiply(inX[i] - p1, inX[i] - p1).sum() cost += d labelList.append(templabel) costList.append(cost) mincost = costList[0] minIndex = 0 for i in range(len(costList)): if (costList[i] < mincost): minIndex = i labelMat = labelList[minIndex] return labelMat, p0, p1 def draw(fpath): inX, labels = loadData(fpath) labelMat, p1, p2 = k_means(inX, 100, 2, 4) fig = plt.figure() m = len(labelMat) error = 0 rate = 0 ax = fig.add_subplot(1, 1, 1) ax.scatter(p1[0], p1[1], color = 'k', s = 50) ax.scatter(p2[0], p2[1], color = 'k', s = 50) for i in range(m): if (labelMat[i] != labels[i]): error += 1 if (labelMat[i] == 1): ax.scatter(inX[i][0], inX[i][1], color='r', s = 20) else: ax.scatter(inX[i][0], inX[i][1], color='b', s = 20) #print(labelMat) #print(labels) plt.show() rate = error / m if (rate > 0.5): rate = 1 - rate print(rate) ''' for j in range(4): labelMat = labelList[j] axj = fig.add_subplot(2, 2, j + 1) for i in range(m): if (labelMat[i] == 1): axj.scatter(inX[i][0], inX[i][1], color = 'r') else: axj.scatter(inX[i][0], inX[i][1], color = 'b') plt.show() ''' draw("C:\\Users\\91969\\Desktop\\testSet.txt")
[ "yz_chen1999@163.com" ]
yz_chen1999@163.com
7d4a92cde5a395b02c3428e9df8b95c0e88be56a
6f6205a6be1377b1f765cd7f752be6d40709e7e2
/core/infer.py
33cc2ee70ce17022f478cd5d42d8f9ac5f04e42d
[]
no_license
imounish/HCR_Flask
5793f6ce2bf98aa995151a49d521b51e0d0026b8
92d4f29f1536bd98a1158b7e644f4d750bcf458c
refs/heads/master
2022-06-19T17:31:10.499946
2020-05-09T17:10:08
2020-05-09T17:10:08
262,615,429
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
import os import cv2 from core.Model import Model, DecoderType from core.SamplePreprocessor import preprocess from core.DataLoader import Batch class FilePaths: fnCharList = os.path.abspath("../hcr_flask/model/charList.txt") fnAccuracy = os.path.abspath("../hcr_flask/model/accuracy.txt") # fnInfer = os.path.abspath("../static/data/test.png") def infer(imgPath): decoderType = DecoderType.BestPath model = Model(open(FilePaths.fnCharList).read(), decoderType, mustRestore = True, dump = False) img = preprocess(cv2.imread(imgPath, cv2.IMREAD_GRAYSCALE), Model.imgSize) batch = Batch(None, [img]) (recognized, probability) = model.inferBatch(batch, True) return (recognized[0], probability[0])
[ "ish.mp98@gmail.com" ]
ish.mp98@gmail.com
7d9d64e560d6b1485394ab64f0bb032a2d1fc7ca
ac8a93c0917945b9a1dc7e0343b016d518424f05
/frexp/test_util.py
715167cb0fb8947120c46e175ac492470d742b78
[ "MIT" ]
permissive
brandjon/frexp
f90af9a7268b191e3ef11c05515dfeaab1d80676
246ca0d9c4f4e7a849fcd0709748a7f7ac0961bc
refs/heads/master
2021-01-18T23:01:00.746997
2014-11-26T04:28:47
2014-11-26T04:28:47
18,230,534
0
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
"""Unit tests for util.py.""" import unittest from frexp.util import * class UtilCase(unittest.TestCase): def test_stopwatch(self): n = 10 def dummytimer(): return n t = StopWatch(dummytimer) # Init. self.assertEqual(t.elapsed, 0) # Basic start/stop/elapsed usage. t.start() n = 13 v = t.elapsed t.stop() self.assertEqual(v, 3) # Context manager usage. with t: n = 15 self.assertEqual(t.elapsed, 5) # Consume while timing. with t: n = 17 v = t.consume() self.assertEqual(v, 7) self.assertEqual(t.elapsed, 0) # Consume outside of timing. with t: n = 18 v = t.consume() self.assertEqual(v, 1) self.assertEqual(t.elapsed, 0) # No double start/stop. t = StopWatch(dummytimer) with self.assertRaises(AssertionError): t.start() t.start() t = StopWatch(dummytimer) with self.assertRaises(AssertionError): t.stop() t.stop() if __name__ == '__main__': unittest.main()
[ "jon.brandvein@gmail.com" ]
jon.brandvein@gmail.com
7a9b82e11189361007fff141564ebe00b71a73c4
65993766064d0973b055103272a5630bf3662ada
/dataset/taskset.py
6ed50019f17bebc315d4d734563780d6d90956b2
[]
no_license
unlimitlife/Temporal-Ensembling
ea0e477345f52bc58b4dce46d7de6aa8b3f8c8df
839857033bdf54e2d80930226913e501a394baf7
refs/heads/master
2022-09-05T19:08:17.192724
2020-06-01T05:46:53
2020-06-01T05:46:53
268,435,060
0
0
null
null
null
null
UTF-8
Python
false
false
6,923
py
import os import pickle import random import copy import numpy as np from torchvision.datasets import ImageFolder from torch.utils.data import IterableDataset from PIL import Image import bisect import torch import torchvision import torchvision.transforms as transforms import torch.utils.data as data from .TinyImageNet import TinyImageNet from .SubImageNet import SubImageNet from .zca_bn import ZCA _datasets = {'cifar10': torchvision.datasets.CIFAR10, 'cifar100': torchvision.datasets.CIFAR100, 'mnist': torchvision.datasets.MNIST, 'stl10': lambda data_path, train, download: torchvision.datasets.STL10(data_path, split='train' if train else 'test', download=download), 'tiny_image': TinyImageNet, 'sub_image': SubImageNet} def zca_to_image(x): x = x.reshape((32,32,3)) m,M = x.min(), x.max() x = (x - m) / (M - m) return Image.fromarray(np.uint8(x*255)) def preprocess(data_path, dataset, ZCA_=False): """ If the dataset does not exist, download it and create a dataset. Args: data_path (str): root directory of dataset. dataset (str): name of dataset. """ il_data_path = os.path.join(data_path, 'zca_' + dataset) train_path = os.path.join(il_data_path, 'train') val_path = os.path.join(il_data_path, 'val') if os.path.isdir(il_data_path): return os.makedirs(train_path) os.makedirs(val_path) train_set = _datasets[dataset](data_path, train=True, download=True) val_set = _datasets[dataset](data_path, train=False, download=True) images = {} labels = {} if ZCA_ == True: for tag, cur_set, cur_path in [['train', train_set, train_path], ['test', val_set, val_path]]: for idx, item in enumerate(cur_set): images.setdefault(tag,[]) images[tag].append(np.asarray(item[0],dtype='float32').reshape(-1,3,32,32) / np.float32(255)) labels.setdefault(tag,[]) labels[tag].append(np.asarray(item[1],dtype='int32')) images[tag] = np.concatenate(images[tag]) labels[tag] = np.asarray(labels[tag]) #import pdb; pdb.set_trace() whitener = ZCA(x=images['train']) #import sys; sys.exit() for tag, cur_path in [['train', train_path],['test', val_path]]: ###images[tag] = whitener.apply(images[tag]) # Pad according to the amount of jitter we plan to have. for idx, (img, label) in enumerate(zip(images[tag], labels[tag])): img = zca_to_image(img) item = (img, label) if not os.path.exists(os.path.join(cur_path, str(label))): os.makedirs(os.path.join(cur_path, str(label))) with open(os.path.join(cur_path, str(label), str(idx) + '.p'), 'wb') as f: pickle.dump(item, f) # dump pickles for each class else: for cur_set, cur_path in [[train_set, train_path], [val_set, val_path]]: for idx, item in enumerate(cur_set): label = item[1] if not os.path.exists(os.path.join(cur_path, str(label))): os.makedirs(os.path.join(cur_path, str(label))) with open(os.path.join(cur_path, str(label), str(idx) + '.p'), 'wb') as f: pickle.dump(item, f) class Taskset(data.Dataset): def __init__(self, root, train=True, transform=None, num_labels=4000, num_classes=10): """ Args: root (str): root directory of dataset prepared for incremental learning (by preper_for_IL) task (list): list of classes that are assigned for the task task_idx (int): index of the task, ex) 2nd task among total 10 tasks train (bool): whether it is for train or not transform (callable) : transforms for dataset target_transform (callable) : transforms for target """ if train: self.root = os.path.expanduser(root) + '/train' else: self.root = self.root = os.path.expanduser(root) + '/val' if not os.path.isdir(self.root): print('Exception: there is no such directory : {}'.format(self.root)) self.train = train # training set or test set self.num_labels = num_labels self.transform = transform self.targets = [] self.filenames = [] self.data = [] self.un_data = [] if self.train: for cls in os.listdir(self.root): chk = 0 file_path = self.root + '/' + str(cls) files = os.listdir(file_path) random.shuffle(files) #for file in os.listdir(file_path): for file in files: with open(file_path + '/' + file, 'rb') as f: if chk < int(self.num_labels/num_classes): entry = pickle.load(f) self.data.append(entry[0]) self.targets.append(entry[1]) self.filenames.append(file) else : entry = pickle.load(f) self.un_data.append(entry[0]) self.filenames.append(file) chk += 1 else: for cls in os.listdir(self.root): file_path = self.root + '/' + str(cls) for file in os.listdir(file_path): with open(file_path + '/' + file, 'rb') as f: entry = pickle.load(f) self.data.append(entry[0]) self.targets.append(entry[1]) self.filenames.append(file) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target, soft_label) where target is index of the target class. """ idx = index if self.train: if idx < self.num_labels: return self.transform(self.data[idx]), self.targets[idx], idx else: return self.transform(self.un_data[idx-self.num_labels]), -1, idx else: img, target = self.data[idx], int(self.targets[idx]) img = self.transform(img) return img, target, idx def __len__(self): return len(self.data) + len(self.un_data) if __name__ == "__main__": import sys sys.path.append(os.getcwd()) from config import config for dataset in _datasets: preprocess(config['data_path'], dataset)
[ "unlimitlife@naver.com" ]
unlimitlife@naver.com
2e90384cfa5f35cd00ef16bf0072d0a2d0e3fd30
5e14dbed4139925544a24cdf299d3db73c31f960
/books/migrations/0001_initial.py
f3f3daf19c9684d6e303193e0f81f26b5e342feb
[]
no_license
JJuniJJuni/book_management
aa0867328f81e4641d5266b0cf2af454ca101962
7068ab109c3477740fb3e1b7fadbdc8d79494272
refs/heads/master
2022-12-16T14:35:52.375170
2019-09-16T14:28:01
2019-09-16T14:28:01
139,111,221
0
0
null
2021-06-10T21:08:14
2018-06-29T06:40:32
Tcl
UTF-8
Python
false
false
1,939
py
# Generated by Django 2.0.6 on 2018-06-11 05:31 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Book', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=45)), ('isbn10', models.CharField(max_length=10)), ('isbn13', models.CharField(max_length=13)), ('book_type', models.CharField(max_length=45)), ('publisher', models.CharField(max_length=45)), ('author', models.CharField(max_length=45)), ], ), migrations.CreateModel( name='BookInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('publication_at', models.DateField(blank=True, null=True)), ('registration_at', models.DateTimeField(auto_now_add=True)), ('book_writing', models.TextField(blank=True)), ('book_contents', models.TextField(blank=True)), ('star_point', models.PositiveSmallIntegerField(blank=True, null=True)), ('author_writing', models.TextField(blank=True)), ('book', models.OneToOneField(on_delete=True, to='books.Book')), ], ), ]
[ "gud305@gmail.com" ]
gud305@gmail.com
921fdfb2ed89dff1c23de5a2ea5c4ddd22590652
b88b6fd3e7965b1df338589f4d7d1db205eb649a
/kindadmin/pager.py
caaac006cd1b8a279e1bcd4e30b88f1a73e9df4f
[]
no_license
xieyousheng/Kindadmin
b47747b0bf65da576f3e7c122285d313be45a3eb
fe65727ec290260a2b20a6972f7b660fcd564d5f
refs/heads/master
2020-11-28T20:58:49.244902
2019-12-24T14:41:28
2019-12-24T14:41:28
229,918,477
0
0
null
null
null
null
UTF-8
Python
false
false
6,127
py
class Pagination: def __init__(self,items,getargs=None,url='',pageItemLs=1,maxPageNum=11): ''' :param items: 数据库查询的数据 :param currenPageNum: 当前页码 --- curren_page_num :param pageItemLs: 一页显示多少条数据--- page_item_list :param maxPageNum: 页面最多显示多少页码---max_page_num :param url: 在哪个页面进行分页 --- url :param getargs: 保留url带有get参数 --- url ''' self.url = url self.items = items self.page_items_max = items.count() self.page_item_list = pageItemLs self.curren_page_num = None #如果最多显示页码大于总页数,那就把总页数赋值给最多显示页码 self.max_page_num = maxPageNum if self.total_page_num > maxPageNum else self.total_page_num ''' 如果传入的当前页码不是整数,当前页码就直接赋值为1, 如果传入的当前页码小于等于0 ,当前页码就直接赋值为1, 如果传入的当前页码大于数据能分出来的最大页码数,就把当前页码赋值为最大页码数 否则就把传入的当前页码赋值给当前页码 ''' self.get_args(getargs) try: v = int(self.curren_page_num) if v <= 0 : self.curren_page_num = 1 elif v > self.total_page_num: self.curren_page_num = self.total_page_num else: self.curren_page_num = v except Exception as e: self.curren_page_num = 1 def get_args(self,getargs): result = '' for k,v in getargs.items(): if k != 'p': if v: result += '&%s=%s' % (k,v) else: self.curren_page_num = v self.url_args = result def get_item(self): ''' 根据分页生成数据返回 :return: ''' return self.items[self.start:self.end] @property def total_page_num(self): ''' 计算总页数 :return: ''' total,b = divmod(self.page_items_max,self.page_item_list) total = total + 1 if b != 0 else total return total @property def start(self): '''计算数据切片的起始切片位置''' return ( self.curren_page_num -1 ) * self.page_item_list @property def end(self): '''计算数据切片的结束切片位置''' return self.curren_page_num * self.page_item_list def pagenum_range(self): ''' 动态生成页码 :return: ''' #以显示页码数量的一半为临界点 page = self.max_page_num // 2 if self.curren_page_num <= page: #如果当前页码小于临界点,页码的显示就是 1 - 最大能分出的页码数 return range(1,self.max_page_num+1) #如果(当前页 + page) 要大于 总页码数量, 页码数就显示 (总页数 - 一页最多显示页码数 +1) - (总页数 + 1) if (self.curren_page_num + page) > self.total_page_num : return range(self.total_page_num - self.max_page_num + 1 ,self.total_page_num +1 ) # 页码数就显示 (当前页码数 - page) - (当前页 + page + 1) return range(self.curren_page_num - page,self.curren_page_num + page + 1) def item_list(self,type='http'): ''' 返回HTML代码 :return: ''' if self.page_items_max: item = ['<nav aria-label="..." ><ul class="pagination">',] if type == 'http': item.append( '<li><a href="%s?p=1%s">首页</a></li>' % (self.url,self.url_args)) if self.curren_page_num == 1: item.append('<li class="disabled"><a>上一页</a></li>') else: item.append('<li><a href="%s?p=%s%s">上一页</a></li>' % (self.url, self.curren_page_num - 1,self.url_args)) for i in self.pagenum_range(): if i == self.curren_page_num: item.append('<li class="active"><a href="%s?p=%s%s">%s</a></li>' % (self.url, i,self.url_args, i)) else: item.append('<li><a href="%s?p=%s%s">%s</a></li>' % (self.url, i,self.url_args, i)) if self.curren_page_num == self.total_page_num: item.append('<li class="disabled"><a>下一页</a></li>') else: item.append('<li><a href="%s?p=%s%s">下一页</a></li>' % (self.url, self.curren_page_num + 1,self.url_args)) item.append('<li><a href="%s?p=%s%s">尾页</a></li>' % (self.url, self.total_page_num,self.url_args)) elif type == 'ajax': item.append('<li><a pager=1>首页</a></li>') if self.curren_page_num == 1: item.append('<li class="disabled"><a>上一页</a></li>') else: item.append('<li><a pager=%s>上一页</a></li>' % (self.curren_page_num - 1)) for i in self.pagenum_range(): if i == self.curren_page_num: item.append('<li class="active"><a pager=%s>%s</a></li>' % ( i, i)) else: item.append('<li><a pager=%s>%s</a></li>' % ( i, i)) if self.curren_page_num == self.total_page_num: item.append('<li class="disabled"><a>下一页</a></li>') else: item.append('<li><a pager=%s>下一页</a></li>' % (self.curren_page_num + 1)) item.append('<li><a pager=%s>尾页</a></li>' % (self.total_page_num)) item.append(' </ul></nav>') return ''.join(item) else: return ''
[ "noreply@github.com" ]
xieyousheng.noreply@github.com
c1b97a227b543d07d9d07e860a85c5260abd350c
9db46d4400247152a3e203f3ea911fb380987cc8
/waits.py
19c6292b19d6b3afbf5924096c6148350590199b
[]
no_license
kren1504/Python_Selenium_DDT_project
354f778f27e19d296309c20c350369e55b487cfa
693ec05c5525767e6b0e65feada44a2e8ca49d1c
refs/heads/main
2023-05-11T15:15:01.196162
2021-06-07T02:20:40
2021-06-07T02:20:40
350,905,512
0
0
null
null
null
null
UTF-8
Python
false
false
1,416
py
import unittest from selenium import webdriver from time import sleep from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC class NavigationTest(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome(executable_path=r'C:\Users\kren1\Documents\curso\Python_con_Selenium\chromedriver.exe') driver =self.driver driver.implicitly_wait(10) driver.maximize_window() driver.get('http://demo-store.seleniumacademy.com/') def test_browse_navigation(self): WebDriverWait(self.driver, 10).until(lambda s: s.find_element_by_id('select-language').get_attribute('length') == '3') account =WebDriverWait(self.driver,10).until(EC.visibility_of_element_located((By.LINK_TEXT,'ACCOUNT'))) account.click() def test_create_new_customer(self): self.driver.find_element_by_link_text('ACCOUNT').click() my_account = WebDriverWait(self.driver, 10).until(EC.visibility_of_element_located((By.LINK_TEXT, "My Account"))) my_account.click() create_account_button = WebDriverWait(self.driver, 20).until(EC.element_to_be_clickable((By.LINK_TEXT,'CREATE AN ACCOUNT'))) create_account_button.click() WebDriverWait(self.driver, 10).until(EC.title_contains('Create New Customer Account')) def tearDown(self): self.driver.close() if __name__ =="__main__": unittest.main(verbosity=2)
[ "kren1504@hotmail.com" ]
kren1504@hotmail.com
ef1344159a67b2724a5f45c55b235d2af12ec257
b53b1f4d3741570c8ad42c1bedd2f3598980730b
/exercise7.py
b44bd190ca11d3596d7d65328f6f63733481d690
[ "MIT" ]
permissive
nikhadif/Advanced-Programming
575912aee51fb59359cfd63b329cf43b10cd2767
e5bf4f5014c17c252bc0cb93c9d44c7c615b79c0
refs/heads/main
2023-01-29T17:57:38.117060
2020-11-21T21:22:35
2020-11-21T21:22:35
314,827,244
1
0
null
null
null
null
UTF-8
Python
false
false
87
py
data_file = open("example.txt", 'r') for line_str in data_file: print(line_str)
[ "hadif.nik@gmail.com" ]
hadif.nik@gmail.com
5ba1360e974bb9d3dcb3cbff20b1de8ea546185d
93c94374aa97e7cfac87506270f1064bc406339c
/Webdriver Commands.py
586617f66f6ece1942df88538552663c4da411bf
[]
no_license
Ravjot03/Selenium-with-Python
66af3f3c05838c03551501e6873acd87efe05b30
9b2ed606252f60385f5478a89e2d6ddce9843eec
refs/heads/master
2022-04-18T11:44:28.344079
2020-04-20T19:06:06
2020-04-20T19:06:06
257,086,761
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
from selenium import webdriver driver= webdriver.Chrome("D:\Chrome Driver\chromedriver.exe") driver.get("https://www.makemytrip.com/") # Returns the title of the page print(driver.title) # Returns the URL of the page print(driver.current_url)
[ "noreply@github.com" ]
Ravjot03.noreply@github.com
4727a1221f0dc2188075fd7838b1d1f0dc1f9c19
a76803a441b76595372329a54e84e2b2d8fd5c6b
/typesan/__init__.py
6dfd5f3f0e862b059bb8c896eb3e868b3ffcd09c
[]
no_license
securesystemslab/sanitizing-for-security-benchmarks
ac66b1e6bd67a954a88e48751df8ea98b2b400b9
c2bf9d922ec8564208a7f926dce56e3a2dfc8355
refs/heads/master
2020-03-19T07:34:23.463598
2018-06-05T06:04:35
2018-10-04T04:28:34
136,126,254
20
4
null
null
null
null
UTF-8
Python
false
false
22
py
from typesan import *
[ "dokyung.song@gmail.com" ]
dokyung.song@gmail.com
ec7f116ef7b00dc8259fa4a5002bc9309c32e10b
f101fe75892da8d7b5258d22bd31534d47f39ec1
/ConvertNpzToMat.py
e137f11a7b1d3f999076ff7217fb1d4f89bf77eb
[]
no_license
xianjunxia/Acoustic-event-detection-with-feature-space-attention-based-convolution-recurrent-neural-network
2ae9d4d0148f5082cc6739f753bf750e1940ecfb
d2a7b36700e798e0da02d3efebb27cd340235f36
refs/heads/master
2020-03-22T17:11:53.028900
2018-07-10T05:15:32
2018-07-10T05:15:32
140,379,734
1
0
null
null
null
null
UTF-8
Python
false
false
388
py
import numpy as np import scipy.io as sio feat_file_fold = '/data/users/21799506/Data/PRL2018/Evaluation/feat/' + 'mbe_mon_fold0' + '.npz' dmp = np.load(feat_file_fold) _X_train, _Y_train, _X_test, _Y_test = dmp['arr_0'], dmp['arr_1'], dmp['arr_2'], dmp['arr_3'] name = '/data/users/21799506/Data/PRL2018/Evaluation/Test.mat' sio.savemat(name,{'testX':_X_test,'testY':_Y_test})
[ "noreply@github.com" ]
xianjunxia.noreply@github.com
324846bdc1a33530a491dd793d925c60de0513e6
90f7f011a3071a5116e5eca293a892b87ca7f9cd
/rich/_log_render.py
b5fb6c26a4f2cbbe10536b126c3057de4b2994b8
[ "MIT" ]
permissive
gkando/rich
862d53b410d4603362de0e8cc7fa88716f2f4be1
9e6ac1e0ee6dc8938daab5f86028aa52ecd6ed05
refs/heads/master
2022-11-15T04:28:12.928279
2020-07-02T19:00:33
2020-07-02T19:00:33
276,956,105
1
0
MIT
2020-07-03T17:40:32
2020-07-03T17:40:32
null
UTF-8
Python
false
false
2,316
py
from datetime import datetime from typing import Iterable, List, Optional, TYPE_CHECKING, Union from .text import Text, TextType if TYPE_CHECKING: from .console import Console, ConsoleRenderable, RenderableType from .table import Table class LogRender: def __init__( self, show_time: bool = True, show_level: bool = False, show_path: bool = True, time_format: str = "[%x %X]", ) -> None: self.show_time = show_time self.show_level = show_level self.show_path = show_path self.time_format = time_format self._last_time: Optional[str] = None def __call__( self, console: "Console", renderables: Iterable["ConsoleRenderable"], log_time: datetime = None, time_format: str = None, level: TextType = "", path: str = None, line_no: int = None, link_path: str = None, ) -> "Table": from .containers import Renderables from .table import Table output = Table.grid(padding=(0, 1)) output.expand = True if self.show_time: output.add_column(style="log.time") if self.show_level: output.add_column(style="log.level", width=8) output.add_column(ratio=1, style="log.message") if self.show_path and path: output.add_column(style="log.path") row: List["RenderableType"] = [] if self.show_time: if log_time is None: log_time = datetime.now() log_time_display = log_time.strftime(time_format or self.time_format) if log_time_display == self._last_time: row.append(Text(" " * len(log_time_display))) else: row.append(Text(log_time_display)) self._last_time = log_time_display if self.show_level: row.append(level) row.append(Renderables(renderables)) if self.show_path and path: path_text = Text() path_text.append( path, style=f"link file://{link_path}" if link_path else "" ) if line_no: path_text.append(f":{line_no}") row.append(path_text) output.add_row(*row) return output
[ "willmcgugan@gmail.com" ]
willmcgugan@gmail.com
3a0e5f00f550ad757fd4e79463d9e1b6f71dba5e
98a435a3d25cc14c6ca807d38012e42f32e3b073
/PythonFile/TestStatus.py
2b380be2669b43f8abbce42171714b1f14412f54
[]
no_license
congnguyen53/FantasticFour
9b0780e284638e1774b9adec3d9131e428e508e3
8576d30e53a97695e1c18fcea16ea595b977f8d8
refs/heads/master
2021-03-05T15:19:00.762662
2020-04-18T02:56:46
2020-04-18T02:56:46
246,130,223
0
2
null
null
null
null
UTF-8
Python
false
false
5,319
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'TestStatus.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Test(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(400, 500) MainWindow.setMinimumSize(QtCore.QSize(400, 500)) MainWindow.setMaximumSize(QtCore.QSize(400, 500)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(50, 180, 161, 51)) font = QtGui.QFont() font.setPointSize(16) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(50, 80, 151, 51)) font = QtGui.QFont() font.setPointSize(16) font.setBold(True) font.setWeight(75) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(50, 280, 171, 51)) font = QtGui.QFont() font.setPointSize(16) font.setBold(True) font.setWeight(75) self.label_3.setFont(font) self.label_3.setObjectName("label_3") self.in_patid = QtWidgets.QTextEdit(self.centralwidget) self.in_patid.setGeometry(QtCore.QRect(220, 90, 161, 41)) font = QtGui.QFont() font.setPointSize(14) self.in_patid.setFont(font) self.in_patid.setObjectName("in_patid") self.in_teststatus = QtWidgets.QTextEdit(self.centralwidget) self.in_teststatus.setGeometry(QtCore.QRect(220, 190, 161, 41)) font = QtGui.QFont() font.setPointSize(14) self.in_teststatus.setFont(font) self.in_teststatus.setObjectName("in_teststatus") self.in_dateorder = QtWidgets.QTextEdit(self.centralwidget) self.in_dateorder.setGeometry(QtCore.QRect(220, 290, 161, 41)) font = QtGui.QFont() font.setPointSize(14) self.in_dateorder.setFont(font) self.in_dateorder.setObjectName("in_dateorder") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 400, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.label.setText(_translate("MainWindow", "Test Status:")) self.label_2.setText(_translate("MainWindow", "Patient ID:")) self.label_3.setText(_translate("MainWindow", "Date Order:")) self.in_patid.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:14pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">jdoe01</p></body></html>")) self.in_teststatus.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:14pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">In Progress</p></body></html>")) self.in_dateorder.setHtml(_translate("MainWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:14pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">2020-01-01</p></body></html>")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_Test() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
congnguyen53.noreply@github.com
277ead3ec5a5cbba60b9ea0253dfa9ef4caa72ba
b44d20c67f9acd5842a1b33245829df2c56477e9
/lesson07/vector.py
8eae1f01d2697bcf52e9ebbeab9fb907a0eec7d2
[]
no_license
yxdragon/python_study
c6f344b2ab0776e97a4527a21b7b78a39dabf7e0
0fdea17598c8d1338919aa66e61a6a0f507bdc83
refs/heads/master
2021-09-03T20:12:36.808985
2018-01-11T17:09:13
2018-01-11T17:09:13
113,181,903
1
0
null
null
null
null
UTF-8
Python
false
false
654
py
import numpy as np import matplotlib.pyplot as plt def vectordot(): v1 = np.array([3,0]) v2 = np.array([2,3]) print(np.dot(v1, v2)) def vectorcross(): v1 = np.array([3,0]) v2 = np.array([2,3]) print(np.cross(v2, v1)) def triarea(p1, p2, p3): v1 = np.array(p2)-np.array(p1) v2 = np.array(p3)-np.array(p1) print(np.abs(np.cross(v1,v2))/2) def polyarea(xys): print(np.abs(np.cross(xys[:-1], xys[1:]).sum())/2) #triarea((0,0),(5,0),(0,-2),(0,0)) #xys = np.array([(0,0),(5,0),(0,-2),(0,0)]) #polyarea(xys) a = np.linspace(0, np.pi*2, 10000) xs = np.cos(a) * 1 ys = np.sin(a) * 1 polyarea(np.array([xs, ys]).T)
[ "imagepy@sina.com" ]
imagepy@sina.com
b58ca56d1b2430ff3129ed9bdc14dbf57d872bc1
11a57d6fb851762ef22248f4c0a83b2bf84734fa
/node_modules/app.js/node_modules/jsdom/node_modules/contextify/build/config.gypi
ae4f56bb1cc85e5f4c33269039cbfe72a4df7202
[ "Apache-2.0", "MIT" ]
permissive
diennguyen90/MongodbBlog
094ebef2eeb893c12219dfd97fa2d3f19d1081b8
e6b4c92871786ba8e119b8ebe3b593d58d162ccb
refs/heads/master
2020-05-21T13:16:12.473729
2015-04-07T10:20:10
2015-04-07T10:20:10
33,200,089
1
0
null
null
null
null
UTF-8
Python
false
false
3,200
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "true", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "openssl_no_asm": 0, "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/Users/diennguyen/.node-gyp/0.10.35", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "prefeix": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/bash", "parseable": "", "shrinkwrap": "true", "email": "", "init_license": "ISC", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "npat": "", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "cafile": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/diennguyen/.npm-init.js", "userconfig": "/Users/diennguyen/.npmrc", "node_version": "0.10.35", "user": "", "editor": "vi", "save": "", "tag": "latest", "global": "", "optional": "true", "username": "", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/diennguyen/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/1.4.28 node/v0.10.35 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "umask": "18", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/g3/cx1qxkrs4_51vpltyj_5psx80000gn/T", "unsafe_perm": "true", "link": "", "prefix": "/usr/local" } }
[ "diennguyen90@yahoo.com" ]
diennguyen90@yahoo.com
5557027ea330017c972d13f21cffde827f4eb448
2825bf6479e08dfead428ff9f29f28d5c23d953e
/24_2/24_11.py
304ba9bae57ecb98b831ca046b177afe5ea24486
[]
no_license
zedaster/ImaevIntensive
bc459187dace7946d8ad75a04e058748134aeac4
b91760fa23f25ce2d19778781f35416c177ab881
refs/heads/main
2023-06-22T00:24:47.039208
2021-07-20T10:40:54
2021-07-20T10:40:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
file = open('24-153.txt') line = file.readline().replace('\n', '') data = {} for i in range(2, len(line)): if line[i-2] == line[i-1]: symb = line[i] if symb not in data: data[symb] = 1 else: data[symb] += 1 print(data)
[ "serzh.kazantseff@gmail.com" ]
serzh.kazantseff@gmail.com
6158c49a8c266213f56fbcfaba232e8b7c064876
e386b999ffb35c267ce237faed9d9a5a444836aa
/import requests.py
45ac6df220e3e4e9d36eaba748c1dbff5ccf9981
[]
no_license
jgotting/test_requests
e7946d8741671d092499e164704a9f4d98e99ab5
c32c27c89e3356e21e93ff90f4be6aacebd2d942
refs/heads/main
2023-07-14T20:36:14.516938
2021-08-26T12:09:58
2021-08-26T12:09:58
397,298,573
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
import requests response = requests.get("https://jsonplaceholder.typicode.com/todos/2") print(response.status_code) res = (response.json()) # Transform JSON to a python dictionary print(res) print(type(res)) # Check the type for key in res: # Iterate through the Dict print(key, " --> ", res[key])
[ "johan@gotting.com" ]
johan@gotting.com
2e1f1061f771d1f7f74627ae140395e510728bee
6c721f3cfce6dc88396cd3b5f6a59d65a2ea5033
/some_learn/Data_Set_handle/Caltech-Dateset/param_copy/copy_param.py
3b86ec1b6b3778a1e258d9286b759fc6c22fe8a2
[ "MIT" ]
permissive
unicoe/PycharmProjects
20a3dabe88c7874da54451c7bb16999afc0eee35
23ff314eb5ac9bfa01a8278089d722b5d0061751
refs/heads/master
2020-03-23T09:16:25.907188
2019-12-21T03:10:49
2019-12-21T03:10:49
141,377,686
4
1
null
null
null
null
UTF-8
Python
false
false
673
py
# -*- coding: utf-8 -*- # @Time : 19-3-4 下午8:31 # @Author : unicoe # @Email : unicoe@163.com # @File : copy_param.py # @Software: PyCharm source_ls = [] target_ls = [] for source_i in open("/home/user/PycharmProjects/some_learn/Data_Set_handle/Caltech-Dateset/param_copy/source.txt"): source_ls.append(source_i.strip("\n")) for target_i in open("/home/user/PycharmProjects/some_learn/Data_Set_handle/Caltech-Dateset/param_copy/source.txt"): target_ls.append(target_i.strip("\n")) print(source_ls) print(target_ls) for i in range(len(source_ls)): print("""if k == '"""+source_ls[i] +"""' :\n\tpretrained_dict1['"""+target_ls[i]+"""'] = v""")
[ "unicoe@163.com" ]
unicoe@163.com
10dd7a08250f2c7156f886c74ef886a92bf41c9b
5419d8d02a7fdec15f542498840d19af939fa130
/LeetCode_June_Challenge/Day_2_Delete_Node_in_a_Linked_List.py
06bd7812d8148323ec6c59a2a6fd2cd9fb5c8a74
[]
no_license
foolchauhan/DataStructureAndAlgorithms
3cf1d4927b6b11592789cb8d1a6800c9de4822e2
d53281a724a8b58ccc67ebe8c0e0af6c4ae63c4a
refs/heads/master
2022-10-10T08:29:14.461248
2020-06-10T16:18:36
2020-06-10T16:18:36
244,270,954
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
''' Delete Node in a Linked List Write a function to delete a node (except the tail) in a singly linked list, given only access to that node. Given linked list -- head = [4,5,1,9], which looks like following: Example 1: Input: head = [4,5,1,9], node = 5 Output: [4,1,9] Explanation: You are given the second node with value 5, the linked list should become 4 -> 1 -> 9 after calling your function. Example 2: Input: head = [4,5,1,9], node = 1 Output: [4,5,9] Explanation: You are given the third node with value 1, the linked list should become 4 -> 5 -> 9 after calling your function. Note: The linked list will have at least two elements. All of the nodes' values will be unique. The given node will not be the tail and it will always be a valid node of the linked list. Do not return anything from your function. ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def deleteNode(self, node): """ :type node: ListNode :rtype: void Do not return anything, modify node in-place instead. """ node.val = node.next.val node.next = node.next.next
[ "chauhanchetan82@gmail.com" ]
chauhanchetan82@gmail.com
bcf8cc6ce6fe953c3fafda864ffdde4f0dc32dae
3b384fd6e34c8df6514a7c22349cb7ba997b2aa8
/prendi.py
97fd4762347ef249a0cd611003a1eff9f9aff0b6
[]
no_license
raspberryveronica/termostato
e428dc819b3ab136a576ee4a61ee8298c64b555d
85ca7b330d94a7d28416c653a112fa7e3d2a50b8
refs/heads/master
2020-03-28T01:23:19.253860
2018-09-05T10:35:06
2018-09-05T10:35:06
146,267,582
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
#!/usr/bin/env python import MySQLdb db = MySQLdb.connect("localhost", "monitor", "password", "temps") curs=db.cursor() #curs.execute ("SELECT * FROM tempdat") curs.execute ("SELECT * FROM tempdat ORDER BY tdate DESC, ttime DESC LIMIT 1") print "\nDate Time Zone Temperature Termostato" print "======================================================================================" for reading in curs.fetchall(): print str(reading[0])+" "+str(reading[1])+" "+\ reading[2]+" "+str(reading[3]+" "+str(reading[4]))
[ "vsmacchia@dg.gostec.it" ]
vsmacchia@dg.gostec.it
bd3157a476e2b4f85fd51c0484bf86d06c75c84f
0a1ed4a884ebc5789a2e6513eba7ee5f1eeb1f6d
/nuxeo-tools-hooks/nxtools/hooks/tests/webhooks/github_handlers/test_push_notify_mail.py
bb316a21543c01c967530c4db9c4a0e0f90fcba6
[ "Apache-2.0" ]
permissive
pombredanne/nuxeo-tools-hooks
0ea4d447d7fa4e61850a35c5d703d9495985cb0f
9f96f91a28c1e42da9e4786efbad1c294a3d0c57
refs/heads/master
2021-01-18T12:48:44.534835
2016-07-21T14:05:33
2016-07-21T14:05:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,633
py
# -*- coding: utf-8 -*- """ (C) Copyright 2016 Nuxeo SA (http://nuxeo.com/) and contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. you may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Contributors: Pierre-Gildas MILLON <pgmillon@nuxeo.com> """ from multiprocessing import Process from mock.mock import Mock, patch from nxtools import services from nxtools.hooks.entities.github_entities import PushEvent from nxtools.hooks.entities.github_entities import RepositoryWrapper from nxtools.hooks.services.config import Config from nxtools.hooks.services.mail import EmailService from nxtools.hooks.tests.webhooks.github_handlers import GithubHookHandlerTest from nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail import GithubPushNotifyMailHandler class MockedProcess(Process): def start(self): self.run() class GithubNotifyMailHandlerTest(GithubHookHandlerTest): def setUp(self): super(GithubNotifyMailHandlerTest, self).setUp() patcher = patch("nxtools.hooks.services.mail.EmailService.sendemail", Mock()) patcher.start() self.addCleanup(patcher.stop) patcher2 = patch("nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail.Process", MockedProcess) patcher2.start() self.addCleanup(patcher2.stop) def get_event_from_body(self, body): """ :rtype: nxtools.hooks.entities.github_entities.PushEvent """ return PushEvent(None, None, body, True) @property def handler(self): """ :rtype: nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail.GithubPushNotifyMailHandler """ return services.get(GithubPushNotifyMailHandler) @property def email_service(self): """ :rtype: nxtools.hooks.services.mail.EmailService """ return services.get(EmailService) @property def config(self): """ :rtype: nxtools.hooks.services.config.Config """ return services.get(Config) def test_bad_branch_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["ref"]) body["ref"] = "refs/wrong/anything" self.assertTrue(self.handler.is_bad_ref(self.get_event_from_body(body))) self.assertTupleEqual((400, GithubPushNotifyMailHandler.MSG_BAD_REF % body["ref"]), self.handler.handle(body)) self.email_service.sendemail.assert_not_called() def test_ignored_stable_branch_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.config._config.set(self.handler.config_section, "ignored_branches", "stable") self.config._config.set(self.handler.config_section, "ignore_checks", "nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail." "branch_ignore") self.assertTrue(body["ref"]) body["ref"] = "refs/heads/stable" event = self.get_event_from_body(body) branch = event.ref[11:] self.assertTupleEqual((False, True, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() self.assertFalse(self.handler.is_jenkins(event)) email = self.handler.get_commit_email(event, event.commits[0], True) self.assertRegexpMatches(email.body, 'WARNING: only Jenkins should commit on this branch') self.assertRegexpMatches(email.body, 'Branch: ' + branch) self.assertRegexpMatches(email.subject, '^\[WARN\] %s: %s \(branch@%s\)$' % ( event.repository.name, event.commits[0].message, branch)) def test_ignored_snapshot_branch_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.config._config.set(self.handler.config_section, "ignored_branch_suffixes", "-SNAPSHOT") self.config._config.set(self.handler.config_section, "ignore_checks", "nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail." "suffix_ignore") self.assertTrue(body["ref"]) body["ref"] = "refs/heads/5.7-SNAPSHOT" event = self.get_event_from_body(body) branch = event.ref[11:] self.assertTupleEqual((False, True, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() self.assertFalse(self.handler.is_jenkins(event)) email = self.handler.get_commit_email(event, event.commits[0], True) self.assertRegexpMatches(email.body, 'WARNING: only Jenkins should commit on this branch') self.assertRegexpMatches(email.body, 'Branch: ' + branch) self.assertRegexpMatches(email.subject, '^\[WARN\] %s: %s \(branch@%s\)$' % ( event.repository.name, event.commits[0].message, branch)) def test_jenkins_ignored_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.config._config.set(self.handler.config_section, "ignored_branches", "stable") self.assertTrue(body["ref"]) self.assertTrue(body["pusher"]) body["ref"] = "refs/heads/stable" body["pusher"] = { "name": self.handler.jenkins_username, "email": self.handler.jenkins_email, } event = self.get_event_from_body(body) response = GithubPushNotifyMailHandler.MSG_IGNORE_BRANCH % event.ref[11:] self.assertTupleEqual((True, False, response), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, response), self.handler.handle(body)) self.email_service.sendemail.assert_not_called() self.assertTrue(self.handler.is_jenkins(event)) def test_jenkins_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["pusher"]) body["pusher"] = { "name": self.handler.jenkins_username, "email": self.handler.jenkins_email, } event = self.get_event_from_body(body) branch = event.ref[11:] self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertEqual(email.sender, "Pierre-Gildas MILLON via Jenkins <%s>" % self.handler.sender) self.assertEqual(email.reply_to, "Pierre-Gildas MILLON via Jenkins <pgmillon@nuxeo.com>") self.assertRegexpMatches(email.body, 'Branch: ' + branch) self.assertRegexpMatches(email.body, 'Author: Pierre-Gildas MILLON via Jenkins <pgmillon@nuxeo.com>') self.assertRegexpMatches(email.body, 'Pusher: %s <%s>' % ( self.handler.jenkins_username, self.handler.jenkins_email )) self.assertRegexpMatches(email.subject, '^%s: %s \(branch@%s\)$' % ( event.repository.name, event.commits[0].message, branch)) def test_jenkins_payload_via_jenkins(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["pusher"]) body["pusher"] = { "name": self.handler.jenkins_username, "email": self.handler.jenkins_email, } self.assertTrue(body["commits"][0]["author"]) self.assertTrue(body["commits"][0]["committer"]) body["commits"][0]["author"] = { "name": self.handler.jenkins_name, "email": self.handler.jenkins_email, "username": self.handler.jenkins_username } body["commits"][0]["committer"] = body["commits"][0]["author"] event = self.get_event_from_body(body) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertEqual(email.sender, "%s <%s>" % (self.handler.jenkins_name, self.handler.sender)) self.assertEqual(email.reply_to, "%s <%s>" % (self.handler.jenkins_name, self.handler.jenkins_email)) self.assertRegexpMatches(email.body, 'Branch: ' + event.ref[11:]) self.assertRegexpMatches(email.body, 'Author: Jenkins Nuxeo <jenkins@nuxeo.com>') def test_payload_with_accents(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["commits"][0]) body["commits"][0]["message"] += u" héhé" body["commits"][0]["committer"]["name"] += u" héhé" event = PushEvent(None, None, body, True) self.assertFalse(self.handler.is_bad_ref(event)) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertEqual(email.sender, "Pierre-Gildas MILLON hehe <noreply@nuxeo.com>") self.assertEqual(email.reply_to, "Pierre-Gildas MILLON hehe <pgmillon@nuxeo.com>") self.assertEqual(email.subject, "%s: %s (branch@%s)" % ( event.repository.name, "NXBT-1074: better comments hehe", event.ref[11:])) def test_private_repository(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["repository"]) body["repository"]["private"] = True event = PushEvent(None, None, body, True) email = self.handler.get_commit_email(event, event.commits[0], False) self.assertEqual(email.to, "interne-checkins@lists.nuxeo.com") def test_diff_retriever(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) event = PushEvent(None, None, body, True) self.mocks.requester.requestJsonAndCheck.side_effect = Exception self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertRegexpMatches(email.body, 'Could not read diff - see %s.diff for raw diff' % event.commits[0].url) def test_jira_regexp(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["commits"][0]) body["commits"][0]["message"] = "check regexp for NXP-8238 and nxp-666 and also NXS-1234 as well as " \ "NXCONNECT-1234" event = PushEvent(None, None, body, True) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertRegexpMatches(email.body, 'JIRA: https://jira.nuxeo.com/browse/NXP-8238') self.assertRegexpMatches(email.body, 'JIRA: https://jira.nuxeo.com/browse/NXP-666') self.assertRegexpMatches(email.body, 'JIRA: https://jira.nuxeo.com/browse/NXS-1234') self.assertRegexpMatches(email.body, 'JIRA: https://jira.nuxeo.com/browse/NXS-1234') def test_jenkins_payload_with_ignore(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.config._config.set(self.handler.config_section, "ignored_repositories", "qapriv.nuxeo.org-conf") self.config._config.set(self.handler.config_section, "ignore_checks", "nxtools.hooks.endpoints.webhook.github_handlers.push_notify_mail." "repository_ignore") event = PushEvent(None, None, body, True) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() self.assertTrue(body["pusher"]) self.assertTrue(body["commits"][0]) self.assertTrue(body["repository"]) body["commits"].append(body["commits"][0].copy()) body["commits"][0]["message"] = "NXP-8238: updated by SYSTEM." body["commits"][1]["message"] = "NXP-8238: yo" body["repository"]["name"] = "qapriv.nuxeo.org-conf" body["pusher"] = { "name": self.handler.jenkins_username, "email": self.handler.jenkins_email, } event = PushEvent(None, None, body, True) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) body["commits"][1]["message"] = "NXP-8238: updated by SYSTEM." event = PushEvent(None, None, body, True) response = GithubPushNotifyMailHandler.MSG_IGNORE_COMMITS % ", ".join([ event.commits[0].url, event.commits[1].url ]) self.assertTupleEqual((True, False, response), self.handler.check_branch_ignored(event)) self.assertTupleEqual((200, response), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() def test_standard_payload(self): with GithubHookHandlerTest.payload_file('github_push') as payload: body = self.get_json_body_from_payload(payload) self.assertTrue(body["commits"][0]) event = PushEvent(None, None, body, True) self.assertTupleEqual((False, False, None), self.handler.check_branch_ignored(event)) with open('nxtools/hooks/tests/resources/github_handlers/github_push.commit.diff') as diff_file, \ open('nxtools/hooks/tests/resources/github_handlers/github_push.email.txt') as email_file: self.mocks.requester.requestJsonAndCheck.return_value = ({}, {'data': diff_file.read()}) self.mocks.repository_url.return_value = event.repository.url self.assertTupleEqual((200, GithubPushNotifyMailHandler.MSG_OK), self.handler.handle(body)) self.email_service.sendemail.assert_called_once() email = self.handler.get_commit_email(event, event.commits[0], False) self.assertEqual(email.sender, "%s <%s>" % (event.commits[0].author.name, self.handler.sender)) self.assertEqual(email.reply_to, "%s <%s>" % (event.commits[0].author.name, event.commits[0].author.email)) self.assertMultiLineEqual(email_file.read(), email.body) self.assertEqual(email.to, "ecm-checkins@lists.nuxeo.com") self.mocks.requester.requestJsonAndCheck.assert_called_with("GET", event.repository.url + '/commits/' + event.commits[0].id, None, RepositoryWrapper.GITHUB_DIFF_ACCEPT_HEADER, None)
[ "pgmillon@nuxeo.com" ]
pgmillon@nuxeo.com
072e2c0969f1deda38a2d236caa3579400bd9720
32d1578c73b8aaf1fa4efe85e6645bf7fd0c13fc
/_WIP/circleDetect.py
21af9cac11da35357c5119a8dac91dd7b7ca517f
[]
no_license
arelroche/AutoCheckers
25a6bd8e290a0d4a56f09692608c879a0c110c65
042d428eb8107af7918a6d3fe7a15695c06ebb11
refs/heads/master
2016-08-12T04:02:06.433157
2016-04-07T22:12:00
2016-04-07T22:12:00
50,674,520
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
import cv2 import numpy as np #CvCapture * camera = cvCaptureFromCAM(CV_CAP_ANY) #camera = cv2.CaptureFromCAM(CV_CAP_ANY) #cvSetCaptureProperty(camera, CV_CAP_PROP_FRAME_WIDTH, 1920) # width of viewport of camera #cvSetCaptureProperty(camera, CV_CAP_PROP_FRAME_HEIGHT, 1080) # height of ... #img = cv2.QueryFrame(camera) cam = cv2.VideoCapture(0) ret_val, img = cam.read() cv2.imshow('WHADDAP', img) #img = cv2.imread('opencv_logo.png',0) img = cv2.medianBlur(img,5) cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR) circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20, param1=50,param2=30,minRadius=0,maxRadius=0) circles = np.uint16(np.around(circles)) for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3) cv2.imshow('detected circles',cimg) cv2.waitKey(0) cv2.destroyAllWindows()
[ "ashisghosh@live.com" ]
ashisghosh@live.com
74798b159143bc4185b94ec639cc3f2139af5665
d8c4f1c25cc3d574b730abf11d7276af71378445
/main.py
cf70cc72c2157591bde6ea955863ac97f669db54
[]
no_license
TeppeiIwaoka/myPortfolio
72f91127b4925864c1bd9de9ddd286bb89926154
4528002974cdb373a99344da1f6fe8971b322e59
refs/heads/master
2023-03-06T15:57:09.093496
2021-02-20T06:43:21
2021-02-20T06:43:21
340,577,867
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
from flask import Flask, render_template, redirect, url_for, flash from flask_bootstrap import Bootstrap import pandas as pd from portfolio import Portfolio app = Flask(__name__) app.config['SECRET_KEY'] = '8BYkEfBA6O6donzWlSihBXox7C0sKR6b' Bootstrap(app) portfolio_list = [] portfolio_df = pd.read_csv("data.csv") for index, row in portfolio_df.iterrows(): portfolio_list.append(Portfolio(row["id"], row["name"], row["img_name"], row["detail"])) @app.route('/') def get_all_posts(): return render_template("index.html", portfolio_list=portfolio_list) @app.route('/portfolio/<int:id>', methods=["GET", "POST"]) def detail_portfolio(id): return render_template("detail.html", portfolio=portfolio_list[id-1]) if __name__ == "__main__": app.run(host='0.0.0.0', port=5000)
[ "tep731kaizi@gmail.com" ]
tep731kaizi@gmail.com
ba8731a70c64645bc17fa5ba6a5c3c163d06baf6
6daa8327721172d133c95535037ba6105265f74a
/other chapters/reverselist.py
db91792734539abb100a8ee53198062a72d03851
[]
no_license
shaheershantk/Anand-Python
9f4a9a226caada1e9e180131d19c02f88571b059
d522b386fbe3ca5ddef6150f2b67a05f4a8adb79
refs/heads/master
2019-03-13T20:17:26.750850
2014-11-10T15:17:19
2014-11-10T15:17:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
a='apple' if a in 'applearrsnncx': print True else: print False
[ "shaheer.shan@gmail.com" ]
shaheer.shan@gmail.com
1d0d9f547edc97c5d5bdfdb642f35d61dfa39938
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/web/v20210115/static_site_user_provided_function_app_for_static_site.py
c88e320226209cca78deb66fd5230b802c3d0415
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,672
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['StaticSiteUserProvidedFunctionAppForStaticSiteArgs', 'StaticSiteUserProvidedFunctionAppForStaticSite'] @pulumi.input_type class StaticSiteUserProvidedFunctionAppForStaticSiteArgs: def __init__(__self__, *, name: pulumi.Input[str], resource_group_name: pulumi.Input[str], function_app_name: Optional[pulumi.Input[str]] = None, function_app_region: Optional[pulumi.Input[str]] = None, function_app_resource_id: Optional[pulumi.Input[str]] = None, is_forced: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a StaticSiteUserProvidedFunctionAppForStaticSite resource. :param pulumi.Input[str] name: Name of the static site. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] function_app_name: Name of the function app to register with the static site. :param pulumi.Input[str] function_app_region: The region of the function app registered with the static site :param pulumi.Input[str] function_app_resource_id: The resource id of the function app registered with the static site :param pulumi.Input[bool] is_forced: Specify <code>true</code> to force the update of the auth configuration on the function app even if an AzureStaticWebApps provider is already configured on the function app. The default is <code>false</code>. :param pulumi.Input[str] kind: Kind of resource. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "resource_group_name", resource_group_name) if function_app_name is not None: pulumi.set(__self__, "function_app_name", function_app_name) if function_app_region is not None: pulumi.set(__self__, "function_app_region", function_app_region) if function_app_resource_id is not None: pulumi.set(__self__, "function_app_resource_id", function_app_resource_id) if is_forced is not None: pulumi.set(__self__, "is_forced", is_forced) if kind is not None: pulumi.set(__self__, "kind", kind) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Name of the static site. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="functionAppName") def function_app_name(self) -> Optional[pulumi.Input[str]]: """ Name of the function app to register with the static site. """ return pulumi.get(self, "function_app_name") @function_app_name.setter def function_app_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "function_app_name", value) @property @pulumi.getter(name="functionAppRegion") def function_app_region(self) -> Optional[pulumi.Input[str]]: """ The region of the function app registered with the static site """ return pulumi.get(self, "function_app_region") @function_app_region.setter def function_app_region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "function_app_region", value) @property @pulumi.getter(name="functionAppResourceId") def function_app_resource_id(self) -> Optional[pulumi.Input[str]]: """ The resource id of the function app registered with the static site """ return pulumi.get(self, "function_app_resource_id") @function_app_resource_id.setter def function_app_resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "function_app_resource_id", value) @property @pulumi.getter(name="isForced") def is_forced(self) -> Optional[pulumi.Input[bool]]: """ Specify <code>true</code> to force the update of the auth configuration on the function app even if an AzureStaticWebApps provider is already configured on the function app. The default is <code>false</code>. """ return pulumi.get(self, "is_forced") @is_forced.setter def is_forced(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_forced", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) class StaticSiteUserProvidedFunctionAppForStaticSite(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, function_app_name: Optional[pulumi.Input[str]] = None, function_app_region: Optional[pulumi.Input[str]] = None, function_app_resource_id: Optional[pulumi.Input[str]] = None, is_forced: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Static Site User Provided Function App ARM resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] function_app_name: Name of the function app to register with the static site. :param pulumi.Input[str] function_app_region: The region of the function app registered with the static site :param pulumi.Input[str] function_app_resource_id: The resource id of the function app registered with the static site :param pulumi.Input[bool] is_forced: Specify <code>true</code> to force the update of the auth configuration on the function app even if an AzureStaticWebApps provider is already configured on the function app. The default is <code>false</code>. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] name: Name of the static site. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. """ ... @overload def __init__(__self__, resource_name: str, args: StaticSiteUserProvidedFunctionAppForStaticSiteArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Static Site User Provided Function App ARM resource. :param str resource_name: The name of the resource. :param StaticSiteUserProvidedFunctionAppForStaticSiteArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(StaticSiteUserProvidedFunctionAppForStaticSiteArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, function_app_name: Optional[pulumi.Input[str]] = None, function_app_region: Optional[pulumi.Input[str]] = None, function_app_resource_id: Optional[pulumi.Input[str]] = None, is_forced: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = StaticSiteUserProvidedFunctionAppForStaticSiteArgs.__new__(StaticSiteUserProvidedFunctionAppForStaticSiteArgs) __props__.__dict__["function_app_name"] = function_app_name __props__.__dict__["function_app_region"] = function_app_region __props__.__dict__["function_app_resource_id"] = function_app_resource_id __props__.__dict__["is_forced"] = is_forced __props__.__dict__["kind"] = kind if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["created_on"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:web:StaticSiteUserProvidedFunctionAppForStaticSite"), pulumi.Alias(type_="azure-native:web/v20201201:StaticSiteUserProvidedFunctionAppForStaticSite"), pulumi.Alias(type_="azure-native:web/v20210101:StaticSiteUserProvidedFunctionAppForStaticSite"), pulumi.Alias(type_="azure-native:web/v20210201:StaticSiteUserProvidedFunctionAppForStaticSite")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(StaticSiteUserProvidedFunctionAppForStaticSite, __self__).__init__( 'azure-native:web/v20210115:StaticSiteUserProvidedFunctionAppForStaticSite', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'StaticSiteUserProvidedFunctionAppForStaticSite': """ Get an existing StaticSiteUserProvidedFunctionAppForStaticSite resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = StaticSiteUserProvidedFunctionAppForStaticSiteArgs.__new__(StaticSiteUserProvidedFunctionAppForStaticSiteArgs) __props__.__dict__["created_on"] = None __props__.__dict__["function_app_region"] = None __props__.__dict__["function_app_resource_id"] = None __props__.__dict__["kind"] = None __props__.__dict__["name"] = None __props__.__dict__["type"] = None return StaticSiteUserProvidedFunctionAppForStaticSite(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdOn") def created_on(self) -> pulumi.Output[str]: """ The date and time on which the function app was registered with the static site. """ return pulumi.get(self, "created_on") @property @pulumi.getter(name="functionAppRegion") def function_app_region(self) -> pulumi.Output[Optional[str]]: """ The region of the function app registered with the static site """ return pulumi.get(self, "function_app_region") @property @pulumi.getter(name="functionAppResourceId") def function_app_resource_id(self) -> pulumi.Output[Optional[str]]: """ The resource id of the function app registered with the static site """ return pulumi.get(self, "function_app_resource_id") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
[ "noreply@github.com" ]
bpkgoud.noreply@github.com
f36b7b0cab0b8035a993b971e4007ba116125864
25418d09c0355c4f4536b87614f09c2d81c14ffc
/snake.py
c1c5a617b54b24f2936dc16e19c8f879d588a41f
[]
no_license
yufangwen/snake
b34da9ceb8b94074e9fd44d2b5cb35489474dfb8
04ec4ee692f412b836ddc6d789ae63d115ea5534
refs/heads/master
2021-01-06T20:40:03.755631
2017-08-07T05:49:11
2017-08-07T05:49:11
99,540,787
0
0
null
null
null
null
UTF-8
Python
false
false
3,385
py
import random import select import sys import termios import time import tty current_milli_time = lambda: int(round(time.time() * 1000)) class Snake: def __init__(self): self.body = [(5, 5), (6, 5), (7, 5)] # tail to head self.direction = 'right' def setdir(self, direction): # cannot turn back dirs = ['left', 'up', 'down', 'right'] if (dirs.index(self.direction) + dirs.index(direction)) != 3: self.direction = direction def move(self, food): direction = self.direction x, y = self.body[-1] if direction == 'right': x += 1 elif direction == 'left': x -= 1 elif direction == 'up': y -= 1 elif direction == 'down': y += 1 newhead = (x, y) self.body.append(newhead) if newhead != (food.x, food.y): # not eating self.body.pop(0) return newhead class Food: def __init__(self, xmax, ymax): self.xmax = xmax self.ymax = ymax def feed(self): self.x = random.randint(0, self.xmax) self.y = random.randint(0, self.ymax) class Game: def __init__(self, height, width): self.board = (height, width) # height and width self.snake = Snake() self.food = Food(width-1, height-1) self.food.feed() def render(self): sys.stdout.write("\x1b[2J\x1b[H") board = [[' ' for x in range(self.board[1])] for y in range(self.board[0])] for c in self.snake.body: board[c[1]][c[0]] = 'x' board[self.food.y][self.food.x] = '*' for line in board: sys.stdout.write(''.join(line) + '<' + '\r\n') sys.stdout.write('^' * (self.board[1] + 1) + '\r\n') sys.stdout.flush() def loop(self, old): while True: # t = threading.Timer(1.0, self.move_by_itself, [old]) # t.start() self.render() ch = None rl, _, _ = select.select([sys.stdin], [], [], 0.15) if rl: ch = sys.stdin.read(1) if ch == 'l': self.snake.setdir('right') elif ch == 'j': self.snake.setdir('left') elif ch == 'k': self.snake.setdir('down') elif ch == 'i': self.snake.setdir('up') elif ch == 'q': self.quit(old) return else: self.snake.setdir(self.snake.direction) newhead = self.snake.move(self.food) if not self.check(newhead): self.quit(old) return if newhead == (self.food.x, self.food.y): # it is eating self.food.feed() def quit(self, oldsetting): sys.stdout.write('life is too long' + '\r\n') termios.tcsetattr(sys.stdin, termios.TCSADRAIN, oldsetting) sys.stdout.write("\033[?25h") def check(self, newhead): x, y = newhead if 0 <= x < self.board[1] and 0 <= y < self.board[0]: return True else: return False def main(self): old = termios.tcgetattr(sys.stdin) tty.setraw(sys.stdin) sys.stdout.write("\033[?25l") self.loop(old) if __name__ == '__main__': g = Game(20, 40) g.main()
[ "yynyygy@gmail.com" ]
yynyygy@gmail.com
34b7687e7ffa5870bb2abf402f4245d6f5a00b60
0636aa9b74672a522d56fa7d3985f6958062caa7
/Solutions/Euler Prob 9.py
4ff18fd8d7f6848257721e0ea04d5440500a0904
[]
no_license
LeonidasRex/Project_Euler
34ad4bcfc123ae3da21589bb42f18f7c86f9dcf7
010faf852db5254661cb16faf0766a8e3b5c93ab
refs/heads/master
2020-08-06T01:59:26.139374
2013-06-05T16:52:05
2013-06-05T16:52:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
''' Project Euler Problem #9: A Pythagorean triplet is a set of three natural numbers, a b c, for which, a2 + b2 = c2 For example, 32 + 42 = 9 + 16 = 25 = 52. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. ''' for a in range(1,1001): for b in range(1,1001): if a<b: c=1000-a-b if a**2+b**2 == c**2: print("Pythagorean Triplet: ", a,b,c) print("Product thereof: ", a*b*c)
[ "stilessc@gmail.com" ]
stilessc@gmail.com
28d108589b0bccabf7c29553384b607a5d6be272
358145111dcc031668e1b3ed9c3b2e0ca874c58a
/复习_python/ProxyPool/run.py
7120f9ec38c6d1fc5863186ca1ebf4dab09e074f
[]
no_license
leibushi/venv_test
63179ed4085bf39719380b225ec99b53cbc36529
2461b0e09726c473b825bad74ba69e5f39ae3404
refs/heads/master
2023-04-08T04:29:51.927671
2021-04-16T09:54:29
2021-04-16T09:54:29
256,421,826
1
0
null
null
null
null
UTF-8
Python
false
false
447
py
# -*- coding: utf-8 -*- # @Time : 2021/3/9 14:52 # @Author : Mqz # @FileName: run.py from proxypool.scheduler import Scheduler import argparse parser = argparse.ArgumentParser(description="ProxyPool") parser.add_argument('--processor', type=str, help='processor to run') args = parser.parse_args() if __name__ == '__main__': if args.processor: getattr(Scheduler(), f'run_({args.processor}')() else: Scheduler().run()
[ "MeI17771982161" ]
MeI17771982161
b416966ec3aa7ac7d57149617c4caa3c750b3ad3
8f75acdcaa44b7b6e7fc614bc097dd5752daeeaf
/app/view.py
7b04a0a284bf73f2d0562b2a04f8a2f085386d9c
[ "MIT" ]
permissive
williamHuang5468/PuppyPicture
f4e97f315d936629239dddeca8219355f3e126d0
c869305f3e499292af2199bda5b6788854fd5732
refs/heads/master
2021-01-22T08:47:46.468871
2017-02-14T16:26:00
2017-02-14T16:26:00
81,920,048
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
from app import app from flask import Flask, jsonify import sqlmodel @app.route("/<slug>") def get_puppy(slug): result = sqlmodel.read(slug) index, name, full, url = result name, url = name.strip(), url.strip() output ={ "name" : name, "image_url" : url, } return jsonify(output)
[ "chobits5468@gmail.com" ]
chobits5468@gmail.com
d6ef8085f2bdcf5ee8a5ac5b1b7805d136bfe8e1
d07070b37eb23a89dd9d697f45a9508f3d5a6290
/app.py
564fcc19160e9c8c4b64e1abec76344dbbd29153
[]
no_license
klazarz/autonomousdata
123bf25dd83f446814607ee9e751129a2d59c1a5
453aced1a9989cf73a81b35c32a28dbd5b1e85c4
refs/heads/main
2023-08-23T14:31:18.081291
2021-10-08T21:00:41
2021-10-08T21:00:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
import socket from bs4 import BeautifulSoup import requests import login url ='https://www.dfb.de/3-liga/spieltagtabelle/?no_cache=1&spieledb_path=%2Fde%2Fcompetitions%2F3-liga%2Fseasons%2F2021-22%2Fmatchday%2Fcurrent' r = requests.get(url) soup = BeautifulSoup(r.content, "lxml") print(soup.prettify())
[ "kevin.lazarz@oracle.com" ]
kevin.lazarz@oracle.com
141f08f366c353ae4acbc123cb2b8bdca0494601
4ffa0ea3526482615da3e4f65d4018706d45e49d
/terraing/settings.py
409c903ed01b0001a20d061aa37b367ceb1eb8c5
[]
no_license
GisHel/pagina
d7afa6ec6d3fce4d5b3d188fba6e6df80a7ebe33
d3cb1b03f964ade59013c9345005a1ec826c4dc3
refs/heads/master
2021-01-15T20:13:14.089104
2015-03-25T18:06:46
2015-03-25T18:06:46
31,960,139
1
0
null
2015-03-10T13:53:42
2015-03-10T13:53:42
null
UTF-8
Python
false
false
2,253
py
""" Django settings for terraing project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'byvdks(cp-wg#r0*0p%ko8ow3^mdl94o&(feus=(fs=$t&$062' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_markdown', 'pagina', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'terraing.urls' WSGI_APPLICATION = 'terraing.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates/'), ) STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'media'), ) STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')
[ "vandermicra@hotmail.com" ]
vandermicra@hotmail.com
560c4a9c0649fceddd4ad231faa46bda18a72dd5
407c3ee381ef44d36d6d82330b1e77fa16bf6122
/distance.py
23f1bec5e35590392c05799578d15bf72bbd8d2f
[]
no_license
AllenShielder1994/MyCode
d8abcf6492915a68d7fffe90d166104a0123aa1a
e01384bcc89e69506c0acf4c098b792dedafbc60
refs/heads/master
2021-03-25T19:52:52.988153
2020-03-20T04:46:14
2020-03-20T04:46:14
247,642,093
0
0
null
null
null
null
UTF-8
Python
false
false
1,696
py
import numpy as np import cv2 from cv2 import cv2 import imutils #Green #lower = np.array([35,43,46]) #upper = np.array([77,255,255]) #RED #lower = np.array([156,43,46]) #upper = np.array([180,255,255]) #YELLOW #lower = np.array([26,43,46]) #upper = np.array([34,255,255]) #BLUE lower = np.array([78,43,46]) upper = np.array([124,255,255]) green = (0, 255, 0) blue = (255, 0, 0) red = (0, 0, 255) #调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2 cap=cv2.VideoCapture(0) while True: sucess,img=cap.read() #从摄像头读取图片 # cv2.imshow("img",img) hsv_frame = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)#将每一帧图片转化HSV空间颜色 mask = cv2.inRange(hsv_frame,lower,upper) #cv2.imshow ("mask", mask) conts,hier = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#找出边界 cv2.drawContours(img,conts,-1,blue,1)#画出边框 dst = cv2.bitwise_and(img,img,mask=mask)#对每一帧进行位与操作,获取追踪图像的颜色 # cv2.imshow ("dst",dst) #cv2.imshow ("img2",img) for i in range(0,len(conts)): x, y, w, h = cv2.boundingRect(conts[i]) cv2.rectangle(img, (x,y), (x+w,y+h), (153,153,0), 2) cv2.imshow("img",img) #print (conts) cv2.imwrite("image2.jpg",img) k=cv2.waitKey(1) #保持画面的持续。 if k == 27: #通过esc键退出摄像 cv2.destroyAllWindows() break elif k==ord("s"): #通过s键保存图片,并退出。 cv2.imwrite("image2.jpg",img) cv2.destroyAllWindows() break #关闭摄像头 cap.release()
[ "AllenShielder1994@gmail" ]
AllenShielder1994@gmail
d1b24a7fefdf62d576205a051ce817d63fb5715b
3d4a813ed74451f99d28d5697511f797c600aa33
/cracking_coding/7_OOP/singleton.py
2fece46f6ef6be0d6e96335f6404c74bf3984529
[]
no_license
921kiyo/algorithms
6af48900c7479f8318df10169c22eee4bb229837
94d27453e5b6ab88f519c405fcb49fedbd12234c
refs/heads/master
2021-10-09T23:51:19.845248
2019-01-04T17:53:28
2019-01-04T17:53:28
76,173,936
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
class Singleton: def __init__(self, decorated): print("decorated ", decorated) self._decorated = decorated def instance(self): try: return self._instance except AttributeError: self._instance = self._decorated() print("self._decorated()", self._decorated()) return self._instance def __call__(self): return TypeError("Singletons must be accessed through 'instance()'.") def __instancecheck__(self, inst): print("instancecheck") return isinstance(inst, self._decorated) @Singleton class Foo: def __init__(self): print("foo created") f = Foo() f = Foo.instance() g = Foo.instance() print(f == g)
[ "kk3317@vm-shell4.doc.ic.ac.uk" ]
kk3317@vm-shell4.doc.ic.ac.uk
477e0bd62704234c4b45393d26431dae1fb08ac0
af147e3493938eba7fbf2001aff7e56520b297e7
/LeetCode-Easy/Most Common Word.py
2cb06cce3932790a5bc77e83cfe4b5c4b1df20cb
[]
no_license
pranita-s/Python-codes
c4f8fa44a07e080953a646f5af9bbb4dd6dddefd
c2b3d19de222c6f7ae135f8c677902b7f7ea701b
refs/heads/master
2021-09-24T04:58:17.312686
2018-10-03T14:04:57
2018-10-03T14:04:57
109,510,407
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
# TIME - O(m + n) # SPACE - O(m + n) import collections def mostCommonWord(paragraph, banned): lookup = set(banned) words = collections.Counter(word.strip("!?';.") for word in paragraph.lower().split()) result = '' for word in counts: if (not result or counts[word] > counts[result]) and \ word not in lookup: result = word return result
[ "noreply@github.com" ]
pranita-s.noreply@github.com
bf71fd4bc7905f9e95be2083dbfc243497e3a581
1433054bc2cd0d6f6f0010cfd5bc9536d64f7de0
/schedule/models.py
b6ad3998a9243cdda967a928528bbb8fbf6f0c62
[]
no_license
Pinaz993/SymposiumTimer
72b3a560394c6c1a327e22b89e37ffe2a6d91b49
c322a388d261c7b9aadd29ae464b21c635519341
refs/heads/master
2023-05-05T14:59:02.324198
2021-05-24T18:59:12
2021-05-24T18:59:12
357,275,692
0
0
null
2021-05-11T19:13:11
2021-04-12T17:06:25
Python
UTF-8
Python
false
false
2,015
py
from datetime import timedelta from django.db import models from django.utils.timezone import now class Program(models.Model): """ A model to represent a program of timers that all have a duration and a label. The program will have a name so that it can be selected in a drop down menu. """ name = models.CharField(max_length=254) def __str__(self): return self.name def to_dict(self): fields = {'start_time', 'name'} return {key: self.__dict__[key] for key in self.__dict__.keys() & fields} class Meta: ordering = ('name',) class Timer(models.Model): """ A model to represent a single timer to be displayed in a program. Each will have a duration in seconds and a label to be displayed on the screen along with the timer itself. Each timer is tied exclusively to one program via a foreign key. """ duration = models.DurationField() label = models.CharField(max_length=62) program = models.ForeignKey(Program, on_delete=models.CASCADE) order = models.IntegerField("Drag to Reorder", default=0, blank=False, null=False,) def __init__(self, *args, actual_duration=0, start_time=0, **kwargs): if isinstance(kwargs.get('duration', None), int): d = kwargs.pop('duration') kwargs['duration'] = timedelta(seconds=d) print(type(kwargs)) super().__init__(*args, **kwargs) self.actual_duration = actual_duration if start_time == 'now': self.start_time = round(now().timestamp()) elif isinstance(start_time, int): self.start_time = start_time def __str__(self): return str(self.label) def to_dict(self): fields = {'duration', 'label', 'start_time', 'actual_duration'} rtn = {key: self.__dict__[key] for key in self.__dict__.keys() & fields} rtn['duration'] = rtn.get('duration').total_seconds() return rtn class Meta: ordering = ('order', 'label')
[ "pinaz993@gmail.com" ]
pinaz993@gmail.com
70769fad60b605dbcb303dbc89427d8eccf77179
543e4a93fd94a1ebcadb7ba9bd8b1f3afd3a12b8
/maza/modules/creds/routers/technicolor/telnet_default_creds.py
980ff68f95cac218e0a1233c2b8c3486f099c9e9
[ "MIT" ]
permissive
ArturSpirin/maza
e3127f07b90034f08ff294cc4afcad239bb6a6c3
56ae6325c08bcedd22c57b9fe11b58f1b38314ca
refs/heads/master
2020-04-10T16:24:47.245172
2018-12-11T07:13:15
2018-12-11T07:13:15
161,144,181
2
0
null
null
null
null
UTF-8
Python
false
false
908
py
from maza.core.exploit import * from maza.modules.creds.generic.telnet_default import Exploit as TelnetDefault class Exploit(TelnetDefault): __info__ = { "name": "Technicolor Router Default Telnet Creds", "description": "Module performs dictionary attack against Technicolor Router Telnet service. " "If valid credentials are found, they are displayed to the user.", "authors": ( "Marcin Bury <marcin[at]threat9.com>", # routersploit module ), "devices": ( "Technicolor Router", ), } target = OptIP("", "Target IPv4, IPv6 address or file with ip:port (file://)") port = OptPort(23, "Target Telnet port") threads = OptInteger(1, "Number of threads") defaults = OptWordlist("admin:admin,admin:password,admin:1234,Administrator:", "User:Pass or file with default credentials (file://)")
[ "a.spirin@hotmail.com" ]
a.spirin@hotmail.com
63a65db3990b1ce57f1e19b376c76051673b6a47
4958810ad94f12731e271ac930ee75046284c0a0
/ImageAI/digitclassifier.py
04851b74af25d990d1db1ccf541ecc102d45fff9
[]
no_license
tensorcoder/AI
366d8b188c994d2d1d57c0dad9de225a74fa5ada
84bc152b6e4d511e519495cc08f70427419b7c70
refs/heads/master
2021-01-25T07:54:30.295346
2017-07-18T18:32:02
2017-07-18T18:32:02
93,680,396
0
0
null
null
null
null
UTF-8
Python
false
false
2,734
py
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784]) # not a specific value but a placeholder that we'll input when we ask TF to run a computation y_ = tf.placeholder(tf.float32, shape=[None, 10]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.matmul(x, W) + b #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) #Weight Initialization def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #Convolution and Pooling def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1,2,2,1], padding='SAME') #First convolutional layer W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #Second convolutional layer W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #Densely connected layer W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) +b_fc1) #dropout layer keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #Readout layer W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" %(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
[ "m.kedziera@gmail.com" ]
m.kedziera@gmail.com
dac9d82403d8aeb3bb3a2476cb84c8b617198acd
ce558d70bb9e6a084f3c29c904a5b38ba4b9574c
/script/greg_model.py
2049316dfb17802df2900c6927ef4945a790b8ad
[]
no_license
lamsking/Intership
964b19dcd647d656d2a996a67410dbdd08ebf79b
20958153a6b615a9e411f45ac86256f0ded0679d
refs/heads/master
2022-07-06T23:58:41.153905
2020-05-18T15:09:52
2020-05-18T15:09:52
262,166,568
0
0
null
null
null
null
UTF-8
Python
false
false
9,318
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 12 15:49:07 2019 @author: pam """ # -*- coding: utf-8 -*- import warnings warnings.filterwarnings("ignore") import os, cv2, random import numpy as np import pandas as pd #%pylab inline import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib import ticker import seaborn as sns #%matplotlib inline from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Input, Dropout, Flatten, Convolution2D, MaxPooling2D, Dense, Activation, SpatialDropout2D, BatchNormalization from keras.optimizers import RMSprop from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping from keras.utils import np_utils import os import sys # loading labels for each image from csv data = pd.read_csv('data.csv') labels = data.iloc[:,0:2] ######################## labels_1 = labels[labels['WD']==1] labels_0 = labels[labels['WD']==0][:200] f = [labels_1,labels_0] ###################################################### os.chdir("/home/inra-cirad/Bureau/MonDossier/") X= labels.iloc[:, :1].values y = labels.iloc[:, 1:3].values # print(len(y)) Xs = [] print(cv2.imread(X[0][0],-1).shape) for p in X: Xs.append(cv2.imread(p[0],-1)) Xs = np.array(Xs) # print(len(p)) #dataset_size = len(Xs) # z = np.random.permutation(len(Xs)) # Xs = Xs[z] #k = np.random.permutation(len(y)) # y = y[z] #Xs2dim = Xs.reshape(dataset_size,-1) # print(Xs) Xs_train, Xs_test, y_train, y_test = train_test_split(Xs, y, test_size=0.3, shuffle=True) Xs_train = Xs_train.reshape(Xs_train.shape[0],1,256,320) Xs_test = Xs_test.reshape(Xs_test.shape[0],1,256,320) #train_data = pd.concat([X_train, y_train]).drop_duplicates(keep=False) #test_data=pd.concat([X_test,y_test]).drop_duplicates(keep=False) # print(y_test) unique, counts = np.unique(y_test, return_counts=True) # print(dict(zip(unique, counts))) # sys.exit(0) ''' # Separating WD labels wd_data = labels[labels['WD'] == 1] print(wd_data) wd_data.head() # Splitting WD data into train and test test_wd_data = wd_data.iloc[-4:,:] train_wd_data = wd_data.iloc[:-4,:] print(len(test_wd_data)) # Separating female labels other_data = labels[labels['WD'] == 0] other_data.head() ''' ''' # Splitting male data into train and test test_other_data = other_data.iloc[-16:,:] train_other_data = other_data.iloc[:-16,:] # total test data test_indices = test_other_data.index.tolist() + test_wd_data.index.tolist() test_data = labels.iloc[test_indices,:] test_data.head() # total train data train_data = pd.concat([labels, test_data, test_data]).drop_duplicates(keep=False) train_data.head() ''' # train and test with image name along with paths path = '' #train_image_name = [path+each for each in train_data['image'].values.tolist()] #test_image_name = [path+each for each in test_data['image'].values.tolist()] # preparing data by processing images using opencv ROWS =256 COLS = 320 CHANNELS = 1 def read_image(file_path): img = cv2.imread(file_path, cv2.IMREAD_COLOR) #cv2.IMREAD_GRAYSCALE return cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) def prep_data(images): count = len(images) data = np.ndarray((count, CHANNELS, ROWS, COLS), dtype=np.uint8) for i, image_file in enumerate(images): image = read_image(image_file) data[i] = image.T if i%5 == 0: print('Processed {} of {}'.format(i, count)) return data ''' train = prep_data(train_image_name) test = prep_data(test_image_name) # checking count of male and females sns.countplot(labels['WD']) # plotting female and male side by side def show_wd_and_other(): other = read_image(train_image_name[0]) wd = read_image(train_image_name[2]) pair = np.concatenate((other, wd), axis=1) plt.figure(figsize=(10,5)) plt.imshow(pair) plt.show() show_wd_and_other() # splitting path of all images train_wd_image = [] train_other_image = [] for each in train_image_name: if each in train_wd_data['image'].values: train_wd_image.append(each) else: train_other_image.append(each) ''' #Creating VGG 16 model for training optimizer = RMSprop(lr=1e-4) #optimizer = 'adam' objective = 'binary_crossentropy' def wd_other(): model = Sequential() model.add(SpatialDropout2D(0.2, input_shape=(CHANNELS, ROWS, COLS))) model.add(BatchNormalization()) model.add(Convolution2D(32, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) model.add(Convolution2D(16, 3, 3, border_mode='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) # model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu')) # model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu')) # model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) # model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) # model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) # model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) # model.add(Convolution2D(256, 3, 3, border_mode='same', activation='relu')) # model.add(Convolution2D(256, 3, 3, border_mode='same', activation='relu')) # #model.add(Convolution2D(256, 3, 3, border_mode='same', activation='relu'))#enlever # model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) model.add(Flatten()) # model.add(Dense(256, activation='relu')) # model.add(Dropout(0.5)) # model.add(Dense(256, activation='softmax')) model.add(Dropout(0.5)) model.add(Dense(18, activation='relu')) model.add(Dense(1, activation='sigmoid')) # model.add(Activation('sigmoid')) #model.add(Activation('softmax')) model.compile(loss='binary_crossentropy', metrics=['accuracy'], optimizer='rmsprop') return model model = wd_other() model.summary() #nb_epoch = 500 #batch_size = 4 #labs = labels.iloc[:,1].values.tolist() #print(Xs2dim) ## Callback for loss logging per epoch class LossHistory(Callback): def on_train_begin(self, logs={}): self.losses = [] self.val_losses = [] def on_epoch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) self.val_losses.append(logs.get('val_loss')) early_stopping = EarlyStopping(monitor='val_loss', patience=250, verbose=1, mode='auto') history = LossHistory() print(y_train) model.fit(Xs_train,y_train,validation_data=(Xs_test,y_test), epochs=10, batch_size=500, verbose=2, shuffle=True, callbacks=[history, early_stopping]) ######### #prediction et matrice de confusion predictions = model.predict(Xs_test, verbose=1) predict = model.predict(Xs.reshape(Xs.shape[0],1,256,320)) np.array(np.c_[predict,y]) np.savetxt("classif_test.csv", np.c_[predict,y], delimiter=";") # print(predictions) # for i in range(0,len(y_test)): # print(predictions[i][0],' = ',y_test[i][0]) loss = history.losses val_loss = history.val_losses # plt.xlabel('Epochs') # plt.ylabel('Loss') # plt.title('VGG-16 Loss Trend') # plt.plot(loss, 'blue', label='Training Loss') # plt.plot(val_loss, 'green', label='Validation Loss') # plt.xticks(range(0,10)[0::2]) # plt.legend() # plt.show() # import seaborn as sn # y_pred = [] # y_actuel = [] # mat_conf = [] # mat_conf.append(y_test) # #print(len(predictions)) # for i in range(0,len(y_test)): # y_actuel.append(y_test[i][0]) # if predictions[i, 0] >= 0.4450765: # print('It is {:.7%} sure this is a WD'.format(predictions[i][0])) # y_pred.append(1) # else: # print('It is {:.7%} sure this is a other'.format(1-predictions[i][0])) # y_pred.append(0) # data = {'yactuel':y_actuel,'ypred':y_pred} # #print(data) # df_mat = pd.DataFrame(data,columns = ['yactuel','ypred']) # confusion_mat = pd.crosstab(df_mat['yactuel'],df_mat['ypred'],rownames=['Actuel'],colnames=['Predictiion']) # print(confusion_mat) # sn.heatmap(confusion_mat,annot=True) # ####################################### # #enregistement des poids et du model # model.save_weights('/home/pam/apprentissage/model/lundi08/wd_5000_other.h5') # model.save('/home/pam/apprentissage/model/lundi08/model_5000.model') #predictions = model.predict(test, verbose=0) #print(predictions) #loss = history.losses #val_loss = history.val_losses # plt.xlabel('Epochs') # plt.ylabel('Loss') # plt.title('VGG-16 Loss Trend') # plt.plot(loss, 'blue', label='Training Loss') # plt.plot(val_loss, 'green', label='Validation Loss') # plt.xticks(range(0,nb_epoch)[0::2]) # plt.legend() # plt.show() # for i in range(0,12): # if predictions[i, 0] >= 0.5: # print('It is {:.2%} sure this is a other'.format(predictions[i][0])) # else: # print('It is {:.2%} sure this is a wd'.format(1-predictions[i][0])) # print(test_image_name[i]) # plt.imshow(test[i].T) # plt.show()
[ "oumaroulamine98@gmail.com" ]
oumaroulamine98@gmail.com
b45d434d1d89a5b013673fd130656faaaa82b14f
b1a68e09ba4a24518ce5ad715b7caf88e7428d56
/schema.py
b171243c3978583d4ae6367209a59375b818de7e
[]
no_license
BEaStia/sanic-graphql-pg
271160945f213775492210ef97f01a6f21472035
4280913399a3f320782823b5b925ff624ccb25c6
refs/heads/master
2021-01-23T22:57:48.525231
2017-09-09T11:10:36
2017-09-09T11:10:36
102,949,372
0
0
null
null
null
null
UTF-8
Python
false
false
745
py
import graphene from graphene import relay from graphene_sqlalchemy import SQLAlchemyConnectionField, SQLAlchemyObjectType from models import User as UserModel from models import Entity as EntityModel class User(SQLAlchemyObjectType): class Meta: model = UserModel interfaces = (relay.Node, ) class Entity(SQLAlchemyObjectType): class Meta: model = EntityModel interfaces = (relay.Node, ) class Query(graphene.ObjectType): node = relay.Node.Field() user = graphene.Field(User) users = graphene.List(User) def resolve_users(self, info): query = User.get_query(info) # SQLAlchemy query return query.all() schema = graphene.Schema(query=Query, types=[User, Entity])
[ "gophan1992@gmail.com" ]
gophan1992@gmail.com
0f5a13ac6079eefa1bb891e6945ac036114eebc9
95f585b11475132c5f7b74a48a9bf08dc939af5a
/blog/migrations/0005_remove_blog_read_num.py
493790a7e730c9d5d09100cafa3f569a6f1bc63f
[]
no_license
yuyukunn/myblog
4c0814c33934b8570e8855f9ea2368eaa51780d9
987383042f587fac4f1ef40adf51e681378006ba
refs/heads/master
2023-01-10T22:16:08.651579
2019-09-28T09:19:44
2019-09-28T09:19:44
209,440,941
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
# Generated by Django 2.2.4 on 2019-08-29 06:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0004_blog_read_num'), ] operations = [ migrations.RemoveField( model_name='blog', name='read_num', ), ]
[ "983249451@qq.com" ]
983249451@qq.com
2fa5e37d3c202e2ae621b5537919c525b196bbe7
663a91c519ec83a452fc09e9a03a0486c4439110
/app/blueprints/base/encryption.py
fc4b10b302274a53d45cb886d6ca67d3f32bfc28
[]
no_license
carthach/schedulr
b6ba695c77f71d71e3ebf9ce8b9efae3afff6b31
e8b933bcfbc4f307d0c37b5eb9f9267cc8ae51e3
refs/heads/main
2023-03-22T16:52:35.845345
2021-03-11T06:12:25
2021-03-11T06:12:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
import os from simplecrypt import encrypt, decrypt def encrypt_string(plaintext): key = os.environ.get('SECRET_KEY') ciphertext = encrypt(key, plaintext) return ciphertext def decrypt_string(cipher): key = os.environ.get('SECRET_KEY') plaintext = decrypt(key, cipher).decode('utf-8') return plaintext
[ "rickycharpentier@gmail.com" ]
rickycharpentier@gmail.com
fda80d7c7873e181ef37a8d5bc9b6fcbf3cde78f
9a7964447d05e98dfc6ec1f2266fd87d3f9f0075
/app/api_1_0/authentication.py
88697043e2ac151688b1afc2c51952eba5f8595b
[ "MIT" ]
permissive
thisisshrocit/ztool-backhend
2932d779eee8b509bf42a1c81f06640dba869d26
65c9f700d245ac434ca22d5aee052a302beeb502
refs/heads/master
2021-01-19T09:55:51.429940
2017-02-16T07:35:14
2017-02-16T07:35:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,759
py
from flask import g, jsonify, request from flask_httpauth import HTTPBasicAuth from ..models import User, AnonymousUser from . import api_1_0 from .errors import unauthorized from .constant import login_required_list auth = HTTPBasicAuth() @auth.verify_password def verify_password(email_or_token, password): if email_or_token == '': g.current_user = AnonymousUser() return True if password == '': g.current_user = User.verify_auth_token(email_or_token) g.token_used = True return g.current_user is not None user = User.query.filter_by(email=email_or_token).first() if not user: return False g.current_user = user g.token_used = False return user.verify_password(password) @auth.error_handler def auth_error(): return unauthorized('Invalid credentials') @api_1_0.before_app_request @auth.login_required def before_request(): if request.method != 'OPTIONS': if g.current_user.is_anonymous and request.endpoint: if '.' in request.endpoint and request.endpoint.startswith('api_1_0') and request.endpoint.split('.')[1] in login_required_list: return unauthorized('Unauthorized account') else: pass @api_1_0.route('/token') def get_token(): if g.current_user.is_anonymous or g.token_used: return unauthorized('Invalid credentials') return jsonify(token=g.current_user.generate_auth_token(expiration=86400), expiration=86400, email=g.current_user.email) @api_1_0.route('/test') @auth.login_required def login_test(): if g.current_user == AnonymousUser(): return jsonify(status='error', data='Anonymous user!'), 401 else: return jsonify(email=g.current_user.email, status='success')
[ "me@jack003.com" ]
me@jack003.com
7dc4f5c7179d89692de7be2c86522194de1cfa3e
e6fef51adfce8cbf70fe1b54bfb71a5bc1b4b4d3
/django/loginRegistration/loginRegistration/settings.py
57efaf0fa2fc9552b34f8a882e85ef2a1fc60ca8
[]
no_license
py1-10-2017/nathan-m-python1
dee4e3ecc4b079929a5da63104507f099271a0de
73bef2f826422158d0838a141e2e4b59cdf83880
refs/heads/master
2021-09-10T15:42:34.264552
2018-03-28T14:16:50
2018-03-28T14:16:50
106,894,965
0
2
null
null
null
null
UTF-8
Python
false
false
3,159
py
""" Django settings for loginRegistration project. Generated by 'django-admin startproject' using Django 1.11.7. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'b(%)@%zoz+%ubb=0o8$)o&jpl#ei(%^myu$fbr*11#y41*2$j&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps.login_registration' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'loginRegistration.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'loginRegistration.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "nortmahoney@gmail.com" ]
nortmahoney@gmail.com
88b87e552ef1adfbb60c80914b314490c65cb183
2b0c08a1b217bedc53b8b67c15a94205f261b3fa
/03_ML/m10_pipeline_gridSearch1_iris.py
1742d10c9e8ea8afb946ad998d488bcc54f29e1f
[]
no_license
kimsoosoo0928/BITCAPM_AI_CLASS
385d1db23a9efebe90b68c9b6595067ff1869b76
e9d093fbb00fdc5b1f0e85f5d6c31fd23d94e366
refs/heads/main
2023-07-18T23:49:02.197472
2021-08-30T06:51:43
2021-08-30T06:51:43
399,345,983
1
1
null
null
null
null
UTF-8
Python
false
false
3,944
py
from sklearn.datasets import load_diabetes, load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold, cross_val_score, GridSearchCV, train_test_split, RandomizedSearchCV import warnings warnings.filterwarnings('ignore') from sklearn.metrics import accuracy_score import time from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import MinMaxScaler, StandardScaler #1. 데이터 datasets = load_iris() x = datasets.data y = datasets.target x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, shuffle=True, random_state=66) n_splits=5 kfold = KFold(n_splits=n_splits, shuffle=True, random_state=66) # parmeters = [ # {'n_jobs' : [-1], 'n_estimators' : [100, 200], 'max_depth' : [6, 8, 10], 'min_samples_leaf' : [5, 7, 10]}, # {'n_jobs' : [-1], 'max_depth' : [6, 8, 10], 'min_samples_leaf' : [3, 6, 9, 11], 'min_samples_split' : [3, 4, 5]}, # {'n_jobs' : [-1], 'min_samples_leaf' : [3, 5, 7], 'min_samples_split' : [3, 4, 5]}, # {'n_jobs' : [-1], 'min_samples_split' : [2, 3, 5, 10]} # ] # parmeters = [ # {'randomforestclassifier__n_jobs' : [-1], 'randomforestclassifier__n_estimators' : [100, 200], 'randomforestclassifier__max_depth' : [6, 8, 10], 'randomforestclassifier__min_samples_leaf' : [5, 7, 10]}, # {'randomforestclassifier__n_jobs' : [-1], 'randomforestclassifier__max_depth' : [6, 8, 10], 'randomforestclassifier__min_samples_leaf' : [3, 6, 9, 11], 'randomforestclassifier__min_samples_split' : [3, 4, 5]}, # {'randomforestclassifier__n_jobs' : [-1], 'randomforestclassifier__min_samples_leaf' : [3, 5, 7], 'randomforestclassifier__min_samples_split' : [3, 4, 5]}, # {'randomforestclassifier__n_jobs' : [-1], 'randomforestclassifier__min_samples_split' : [2, 3, 5, 10]} # ] parmeters = [ {'rf__n_jobs' : [-1], 'rf__n_estimators' : [100, 200], 'rf__max_depth' : [6, 8, 10], 'rf__min_samples_leaf' : [5, 7, 10]}, {'rf__n_jobs' : [-1], 'rf__max_depth' : [6, 8, 10], 'rf__min_samples_leaf' : [3, 6, 9, 11], 'rf__min_samples_split' : [3, 4, 5]}, {'rf__n_jobs' : [-1], 'rf__min_samples_leaf' : [3, 5, 7], 'rf__min_samples_split' : [3, 4, 5]}, {'rf__n_jobs' : [-1], 'rf__min_samples_split' : [2, 3, 5, 10]} ] # 2. 모델 구성 # pipe = make_pipeline(MinMaxScaler(), RandomForestClassifier()) pipe = Pipeline([('scaler', MinMaxScaler()), ('rf', RandomForestClassifier())]) #! Pipeline은 전체를 list로 감싸야 한다. #! 약어를 정할 수 있다. ('rf', RandomForestClassifier()) -> RandomForestClassifier를 rf라고 한다. model = RandomizedSearchCV(pipe, parmeters, cv=kfold, verbose=1) #! pipe라는 모델에는 parmeters를 가지고 있지 않아서 이렇게 사용 불가(parmeters는 RandomForestClassifier 파라미터이다.) #^ 파라미터에 어떤 모델의 파라미터인지 모델명 명시 ex){모델명(소문자)__파라미터 : 0 } -> {randomforestclassifier__n_jobs' : [-1]} #! pipe는 랩핑한 모델 # 3. 컴파일, 훈련 start_time = time.time() model.fit(x_train, y_train) end_time = time.time() - start_time # 4. 평가, 예측 print('최적의 매개변수 : ', model.best_estimator_) print('best_params_ : ', model.best_params_) print('best_score_ : ', model.best_score_) print('model.score : ', model.score(x_test, y_test)) y_predict = model.predict(x_test) print('정답률 : ', accuracy_score(y_test, y_predict)) print('걸린 시간 : ', end_time) ''' 최적의 매개변수 : Pipeline(steps=[('scaler', MinMaxScaler()), ('rf', RandomForestClassifier(max_depth=8, min_samples_leaf=3, min_samples_split=5, n_jobs=-1))]) best_params_ : {'rf__n_jobs': -1, 'rf__min_samples_split': 5, 'rf__min_samples_leaf': 3, 'rf__max_depth': 8} best_score_ : 0.95 model.score : 0.9333333333333333 정답률 : 0.9333333333333333 걸린 시간 : 11.75481629371643 '''
[ "kimsoosoo0928@gmail.com" ]
kimsoosoo0928@gmail.com
93b651e8c698f4f1d5aa832c177c67a6a41cf433
e02ed92f564da0421a124359fad87c467c25d07e
/Part 1 Exercise 9.1.py
6aab72f150db6489e21c47b4f0504598f3d066c3
[]
no_license
ZandbergenM/Homework-week-5_Zandbergen
a5565e23bb44da71d62501166c855be714bf5b9d
5bb6906cd4be1ac121c788ca39b8e833ef6cb7b9
refs/heads/main
2022-12-29T20:02:59.201154
2020-10-18T08:32:53
2020-10-18T08:32:53
305,056,348
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
#!/usr/bin/env python # coding: utf-8 # In[7]: #9.1Write a program that reads words.txt and prints only the words with more than 20 characters fin = open('words.txt') def read(x): for line in fin: word = line.strip() if len(word)>20: print(word) read(fin) # In[6]: pwd # In[ ]: # In[ ]: # In[ ]:
[ "noreply@github.com" ]
ZandbergenM.noreply@github.com
8959da063f764c002ae65ed049748b6291ec43db
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_gooks.py
8a2800a5ed0d45d1b6901685ac2ed2ea326ccdf2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
#calss header class _GOOKS(): def __init__(self,): self.name = "GOOKS" self.definitions = gook self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['gook']
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
85939232ef344819edd0a6ebae7850091ec28d47
aaae9c5b3be233b8953b457977cd5d82e4d9ef12
/contrail-analyticsdb/hooks/contrail_analyticsdb_hooks.py
380f871ea4f8d5b309c44ac83d382bea0e2e032d
[ "Apache-2.0" ]
permissive
mfmsilva/tf-charms
2b615db17c080165f343b5f2f0000c8c28f38794
b0d0283c07740338919d845d47911ecf1496039d
refs/heads/master
2022-07-03T19:50:24.915057
2020-05-11T17:27:47
2020-05-11T18:55:00
263,873,681
0
0
null
2020-05-14T09:38:18
2020-05-14T09:38:18
null
UTF-8
Python
false
false
4,571
py
#!/usr/bin/env python3 import sys from charmhelpers.core.hookenv import ( Hooks, UnregisteredHookError, config, log, relation_get, related_units, relation_ids, status_set, relation_set, ) import contrail_analyticsdb_utils as utils import common_utils import docker_utils hooks = Hooks() config = config() @hooks.hook("install.real") def install(): status_set('maintenance', 'Installing...') # TODO: try to remove this call common_utils.fix_hostname() docker_utils.install() utils.update_charm_status() @hooks.hook("config-changed") def config_changed(): utils.update_nrpe_config() if config.changed("control-network"): settings = {'private-address': common_utils.get_ip()} rnames = ("contrail-analyticsdb", "analyticsdb-cluster") for rname in rnames: for rid in relation_ids(rname): relation_set(relation_id=rid, relation_settings=settings) config["config_analytics_ssl_available"] = common_utils.is_config_analytics_ssl_available() config.save() docker_utils.config_changed() utils.update_charm_status() # leave it as latest - in case of exception in previous steps # config.changed doesn't work sometimes... if config.get("saved-image-tag") != config["image-tag"]: utils.update_ziu("image-tag") config["saved-image-tag"] = config["image-tag"] config.save() @hooks.hook("contrail-analyticsdb-relation-joined") def analyticsdb_joined(): settings = {'private-address': common_utils.get_ip()} relation_set(relation_settings=settings) def _value_changed(rel_data, rel_key, cfg_key): if rel_key not in rel_data: # data is absent in relation. it means that remote charm doesn't # send it due to lack of information return False value = rel_data[rel_key] if value is not None and value != config.get(cfg_key): config[cfg_key] = value return True elif value is None and config.get(cfg_key) is not None: config.pop(cfg_key, None) return True return False @hooks.hook("contrail-analyticsdb-relation-changed") def analyticsdb_changed(): data = relation_get() _value_changed(data, "auth-info", "auth_info") _value_changed(data, "orchestrator-info", "orchestrator_info") _value_changed(data, "maintenance", "maintenance") _value_changed(data, "controller_ips", "controller_ips") _value_changed(data, "controller_data_ips", "controller_data_ips") # TODO: handle changing of all values # TODO: set error if orchestrator is changing and container was started utils.update_ziu("analyticsdb-changed") utils.update_charm_status() @hooks.hook("contrail-analyticsdb-relation-departed") def analyticsdb_departed(): count = 0 for rid in relation_ids("contrail-analyticsdb"): for unit in related_units(rid): if relation_get("unit-type", unit, rid) == "controller": count += 1 if count == 0: for key in ["auth_info", "orchestrator_info"]: config.pop(key, None) utils.update_charm_status() @hooks.hook("analyticsdb-cluster-relation-joined") def analyticsdb_cluster_joined(): settings = {'private-address': common_utils.get_ip()} relation_set(relation_settings=settings) @hooks.hook("analyticsdb-cluster-relation-changed") def analyticsdb_cluster_changed(): utils.update_ziu("cluster-changed") @hooks.hook('tls-certificates-relation-joined') def tls_certificates_relation_joined(): settings = common_utils.get_tls_settings(common_utils.get_ip()) relation_set(relation_settings=settings) @hooks.hook('tls-certificates-relation-changed') def tls_certificates_relation_changed(): if common_utils.tls_changed(utils.MODULE, relation_get()): utils.update_charm_status() @hooks.hook('tls-certificates-relation-departed') def tls_certificates_relation_departed(): if common_utils.tls_changed(utils.MODULE, None): utils.update_charm_status() @hooks.hook("update-status") def update_status(): utils.update_ziu("update-status") utils.update_charm_status() @hooks.hook("upgrade-charm") def upgrade_charm(): utils.update_charm_status() @hooks.hook('nrpe-external-master-relation-changed') def nrpe_external_master_relation_changed(): utils.update_nrpe_config() def main(): try: hooks.execute(sys.argv) except UnregisteredHookError as e: log("Unknown hook {} - skipping.".format(e)) if __name__ == "__main__": main()
[ "andrey-mp@yandex.ru" ]
andrey-mp@yandex.ru
217bc5d3a299667d66483f2cb5c9a3aff2b7f119
ae4969954630c3684f795cfa316537fee8b92386
/splicing_outlier_calling/pre_process.py
de9a5a6eb1fffaf81e6880c1cd8c90ab7ee96387
[]
no_license
BennyStrobes/process_rv_data
d84f024e695c52b1652daf38ee7704c98d5a13b7
32c49470e45f80701ddaea3dba94e9c34cb52005
refs/heads/master
2021-05-02T11:23:25.031244
2018-03-13T13:44:39
2018-03-13T13:44:39
120,776,459
0
0
null
null
null
null
UTF-8
Python
false
false
6,425
py
import numpy as np import os import sys import pdb ##Get list of tuples. Where tuple[0] is GTEx tissue name conventional string and tuple[1] is the string of the tissue name that appears ##in sample_attribute_file def get_tissue_pairs(tissue_list_input_file): f = open(tissue_list_input_file) tissue_pairs = [] for line in f: line = line.rstrip() data = line.split('\t') tissue_pairs.append((data[0], data[1])) return tissue_pairs #Extract individuals (first line) of the covariate file in the form of a dictionary def get_eqtl_indi_ids_from_covariate_file(file_name): ids = {} f = open(file_name) for line in f: line = line.rstrip() data = line.split() for ele in data[1:]: ids[ele] = 1 break return ids ##Extract all GTEx RNAseq samples that belong to this tissue and write them to output_file def extract_tissue_specific_samples(sample_attribute_file, conventional_tissue_name, attribute_file_tissue_name, indis, output_file, covariate_directory_v6): f = open(sample_attribute_file) t = open(output_file, 'w') # Get list of gtex individual ids used in eqtl analysis. Extract this from the covariate files used in the eqtl analysis eqtl_indi_ids = get_eqtl_indi_ids_from_covariate_file(covariate_directory_v6 + conventional_tissue_name + '.covariates.txt') header_count = 0 used_tissue_indis = {} # keep track of which (tissue,indi_ids) have been used to ensure we do not have more than one individual per tissue count = 0 # Keep track of how many samples are in each tissue sample_ids = {} for line in f: line = line.rstrip() data = line.split('\t') if header_count == 0: # skip the header header_count = header_count + 1 continue if len(data) < 31: # Skip Short lines (they are not RNA seq) continue tiss = data[13] sample_id = data[0] # ID corresponding to RNA seq sample info = data[0].split('-') # Extracting individual id from sample id indi_id = info[0] + '-' + info[1] # individual id sample_annotation = data[28] # 'USE ME' or 'FLAGGED' tissue_indi = tiss + '_' + indi_id if indi_id not in eqtl_indi_ids: # Ignore samples not used in eqtl analysis continue if tiss != attribute_file_tissue_name: # We only care about samples with the correct tissue type continue if sample_annotation != 'USE ME': # Ignore flagged samples continue if tissue_indi in used_tissue_indis: # keep track of which (tissue,indi_ids) have been used to ensure we do not have more than one individual per tissue print('ERRRROOROROROR') pdb.set_trace() indis[indi_id] = 1 # keep track of which individuals are used used_tissue_indis[tissue_indi] = 1 count = count + 1 if sample_id in sample_ids: # make sure there are no repeats in sample_ids per tissue (or ever!) print('erororoor') sample_ids[sample_id] = 1 #Write to output in alphabetical order for sample_id in sorted(sample_ids.keys()): t.write(sample_id + '\n') t.close() if len(sample_ids) != len(eqtl_indi_ids): # Double check to ensure that the sample ids we have extracted are the same length as individual ids used in eqtl analysis print('EROROROROROR') pdb.set_trace() return indis, count #Create a file that contains all individuals across all of the tissues. def write_all_individuals(output_file, indis): t = open(output_file, 'w') for indi in sorted(indis): t.write(indi + '\n') t.close() sample_attribute_file = sys.argv[1] # File containing which GTEx samples are to be used for each tissue. Filter list on val(column[28]) == 'USE ME'. Also filter if length(line) < 30 (not full/complete) tissue_list_input_file = sys.argv[2] # List of gtex tissues. First colum is traditional GTEx tissue name. Second column is GTEx tissue name as listed in $sample_attribute_file pre_process_output_dir = sys.argv[3] # output_dir location covariate_directory_v6 = sys.argv[4] # Used to filter tissue specific samples. ################################################################################################################## #This script produces lists of what gtex samples will be used in which tissue #Output files made (all we be written in pre_process_output_dir) ##1. *_rnaseq_sample_ids.txt where * is the conventional_tissue_name. These files are simply a list of all GTEx RNASEQ samples used for this tissue. ##2. all_individuals.txt. A list of all of the individuals across all tissues. ##3. tissue_sample_counts.txt. A table that contains information on how many gtex samples are in each tissue. Column 0 is the gtex tissue name and column 1 is the number of samples in that tissue. #NOTE: By samples, I mean RNA-seq samples. By individuals, I mean actual people. So for gtex 1 individual may have multiple samples. But 1 sample only has 1 individual. ################################################################################################################### tissue_pairs = get_tissue_pairs(tissue_list_input_file) # Extract array of tuples. Where each tuple is the two ways to spell the tissue type indis = {} # Keep track of all individuals we are going to test t1 = open(pre_process_output_dir + 'tissue_sample_counts.txt', 'w') #Loop through tisssues for tissue_pair in tissue_pairs: conventional_tissue_name = tissue_pair[0] attribute_file_tissue_name = tissue_pair[1] # gtex id format used in sample_attribute_file tissue_specific_sample_file = pre_process_output_dir + conventional_tissue_name + '_rnaseq_sample_ids.txt' # tissue_specific file that contains the sample ids in that tissue #main script to extract the samples in this tissue indis, tissue_specific_sample_count = extract_tissue_specific_samples(sample_attribute_file, conventional_tissue_name, attribute_file_tissue_name, indis, tissue_specific_sample_file, covariate_directory_v6) t1.write(conventional_tissue_name + '\t' + str(tissue_specific_sample_count) + '\n') t1.close() #Create a file that contains all individuals across all of the tissues. all_indi_output_file = pre_process_output_dir + 'all_individuals.txt' write_all_individuals(all_indi_output_file, indis)
[ "bstrober3@gmail.com" ]
bstrober3@gmail.com
76a39b53458953ae5c942270504cbf79b9007c50
f70b2ca7e639423ac47097b5a304b31bc8e75ddd
/hbmqtt/__init__.py
6e4ee646c237735f3848b1d90e87274351a9f105
[ "MIT" ]
permissive
gitter-badger/hbmqtt
1bfc0d6b6501acad9595084b916ef223e798dd99
79d07685663a9342f2096487ef682af700b05047
refs/heads/develop
2021-01-24T16:02:50.494238
2015-06-30T12:31:19
2015-06-30T12:31:19
38,318,868
0
0
null
2015-06-30T15:58:00
2015-06-30T15:57:59
null
UTF-8
Python
false
false
123
py
# Copyright (c) 2015 Nicolas JOUANIN # # See the file license.txt for copying permission. VERSION = (0, 2, 0, 'alpha', 0)
[ "nico@beerfactory.org" ]
nico@beerfactory.org
84b24c633b70c909cbcb33987e50db04839f9c23
5a9e78250f7372ef2e19958c06978985a4d21359
/BasicApp/views.py
000632b9ee2eded3f338221c174d7d12eb60f625
[]
no_license
KaptejnSzyma/ClassBasedViews
500c8f105965595404de30649cdc20e2f382b697
727f6d24af44795fbb70aed0e82232ff41f3ab6d
refs/heads/master
2020-03-29T13:30:41.687487
2018-09-27T16:10:44
2018-09-27T16:10:44
149,966,960
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
from django.shortcuts import render from django.views.generic import (View, TemplateView, ListView, DetailView, CreateView, UpdateView, DeleteView) from . import models from django.core.urlresolvers import reverse_lazy class IndexView(TemplateView): template_name = 'index.html' class SchoolListView(ListView): context_object_name = 'schools' model = models.School class SchoolDetailView(DetailView): context_object_name = 'school_detail' model = models.School template_name = 'BasicApp/school_detail.html' class SchoolCreateView(CreateView): fields = ('name', 'principal', 'location') model = models.School class SchoolUpdateView(UpdateView): fields = ('name', 'principal') model = models.School class SchoolDeleteView(DeleteView): model = models.School success_url = reverse_lazy("basic_app:list")
[ "szymon.rzadca@gmail.com" ]
szymon.rzadca@gmail.com
e1a376b6b17541bc109543e9c46855bb10132c87
b2f3a076bb2640f227340cabc5d641ce39632c73
/Week 1/arg.py
46532d860469b5c283e7d6cac150626f25c4540e
[]
no_license
rosmoke/DCU-YEAR2
6694568a48265a7e1d46f20d315753705827d233
a99ee6c3f1090838ac60c6bb9252bbc194181535
refs/heads/master
2021-05-04T06:34:12.791397
2016-10-10T12:43:51
2016-10-10T12:43:51
70,486,522
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
import sys d = sys.argv[1] print(d)
[ "danielasofiei@yahoo.ie" ]
danielasofiei@yahoo.ie
51f4e9020500cd42b9cbb0a6524ddeadd2fbbc9e
0f8b56ae8147577afe811f4e6f1c0c3f263c7eb2
/src/fc_convert.py
689e6af4a64c9cea5389efebc5215b805c6b4118
[]
no_license
JiangQH/Hypercolumns-Based-Surface-Normal-Recovery
ee6ba295e292d8f9ee6660874e56a7c85fa4e987
db8a116b64982e902eda292aa1a6a6016fea7f17
refs/heads/master
2021-06-14T17:45:55.245742
2017-01-15T03:18:34
2017-01-15T03:18:34
55,966,961
1
0
null
null
null
null
UTF-8
Python
false
false
1,512
py
import caffe # load the vgg net vgg_16 = caffe.Net('../model/vgg_16/VGG_16_deploy.prototxt', '../model/vgg_16/VGG_ILSVRC_16_layers.caffemodel', caffe.TEST) params = ['fc6', 'fc7', 'fc8'] fc_params = {pr: (vgg_16.params[pr][0].data, vgg_16.params[pr][1].data) for pr in params} for fc in fc_params: print '{} weights are {} dimensional and bias are {} dimentional'.format(fc, fc_params[fc][0].shape, fc_params[fc][1].shape) #print [(k, v.data.shape) for k, v in vgg_16.blobs.items()] print [(k, v.data.shape) for k, v in vgg_16.blobs.items()] # the fully-conv net vgg_16_full_conv = caffe.Net('../model/vgg_16_full_conv.prototxt', '../model/vgg_16/VGG_ILSVRC_16_layers.caffemodel', caffe.TEST) fc_conv_params = ['fc6-conv', 'fc7-conv', 'fc8-conv'] conv_params = {pr: (vgg_16_full_conv.params[pr][0].data, vgg_16_full_conv.params[pr][1].data) for pr in fc_conv_params} for fc in conv_params: print '{} weights are {} dimensional and bias are {} dimentional'.format(fc, conv_params[fc][0].shape, conv_params[fc][1].shape) for pr, pr_conv in zip(params, fc_conv_params): conv_params[pr_conv][0].flat = fc_params[pr][0].flat conv_params[pr_conv][1][...] = fc_params[pr][1] vgg_16_full_conv.save('../model/VGG_16_full_conv.caffemodel')
[ "qinhongjiang@zju.edu.cn" ]
qinhongjiang@zju.edu.cn
ab42f22a4e3e9f7ce0b09850827ba7ff92854944
b8a77ee310e5a8710706ec940ad50d158c053907
/1/1.18.2xinghao.py
9d1e51895beb2eb0625e99a374ba01ff6a92d5df
[]
no_license
black-star32/cookbook
526308f28aa960a5a2b99ea9a32aff1f1b151430
5e9f69f35258084224621d23d5826ab04268b547
refs/heads/master
2020-04-29T20:55:45.593173
2019-05-05T03:05:29
2019-05-05T03:05:29
176,397,405
0
0
null
null
null
null
UTF-8
Python
false
false
895
py
# python中 * 的用法 # 1.表示乘号 # 2.表示倍数,例如: def T(msg, time=1): print((msg + ' ') * time) T('hi', 3) # 单个 * # (1)、如:*parameter是用来接受任意多个参数并将其放在一个元组中。 def demo(*p): print(p) demo(1, 2, 3) # (2)、函数在调用多个参数时,在列表、元组、集合、字典及其他可迭代对象作为实参,并在前面加 * # 如 *(1,2,3)解释器将自动进行解包然后传递给多个单变量参数(参数个数要对应相等)。 def d(a, b, c): print(a, b, c) d(1, 2, 3) a = [1, 2, 3] b = [1, 2, 3] c = [1, 2, 3] d(a, b, c) d(*a) # 4、两个 ** # 如: **parameter用于接收类似于关键参数一样赋值的形式的多个实参放入字典中(即把该函数的参数转换为字典)。 def demo(**p): for i in p.items(): print(i) demo(x=1, y=2)
[ "453431821@qq.com" ]
453431821@qq.com
46ae371434b34ec1f03902283881e48c229e0ae6
7be056eb23515c8bd42769fe5d5c365dc16d9a76
/Crear_archivo.py
8facf7d97cc31cd5ca9e4d4fc0ccf96324482f6e
[]
no_license
ZayBit/Python-Crear-archivos-simple-proyecto
c31feda203c5dbe4d4dc796157362b077a5c8c6f
e571feebb2a80a4f15694b2ed18cf8901f74d298
refs/heads/master
2020-07-10T10:48:20.026118
2019-08-25T04:18:21
2019-08-25T04:18:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,072
py
# Import de os para limpiar la consola con os.system("cls") import os # Funcion de para crear un nuevo archivo def createFile(): # Nombre del archivo print ("Nombre del archivo") nameFile = input() # Añadir una extension al archivo que se creara print ("Nombre de la extension (Ej: txt,py,etc)") extensionType = input() # Si el nameFile no esta vacio y extensionType igualmente if nameFile != "" and extensionType != "": # Nombre del archivo concatenado con la extension del archivo (Ej. hola.txt) fileName = nameFile + '.' + extensionType # Abre un archivo para escribir, crea el archivo si no existe fileCreate = open(fileName,"w+") print("archivo creado exitosamente") # Para agregar contenido al archivo creado print("Desea crear un contenido para el archivo? (Y / N)") # La entrada que recibira para la siguiente condicion se pasa a minusculas condition = input().lower() # Si la tecla es y == si (deseo continuar) if condition == "y": # Almacenar lo que recibira la entrada con input() para despues crear una condicion print("Escribe el contenido (Finaliza el programa con ENTER)") content = input() # Si el contenido recibido tiene mas de un caracter if content != "": # Abre un archivo para agregar, crea el archivo si no existe f = open(fileName,"a+") # Añade el contenido antes escrito al archivo creado f.write(content) # Cierre del archivo abierto f.close() # Limpiar la consola os.system("cls") print("Contenido agregado, Presiona cualquier tecla para cerrar el programa") input() else: print("Presiona cualquier tecla para cerrar el programa") input() else: print("hay un error: Falto el nombre del archivo o la extension") # Ejecutar la siguiente funcion createFile()
[ "frank_dcoder@hotmail.com" ]
frank_dcoder@hotmail.com
55f5b5e050101220dc734e5ca00dfb61aff7bfc2
615e3cdc2c136b2f66b5c553d375823d3580fd08
/mundo3/venv/Scripts/pip3.7-script.py
5fbeae62b9543b82408d1ca1050366d630a6c596
[]
no_license
Android-Ale/PracticePython
859a084e224cfb52eed573e38d7d9dc91f405885
cab2ac7593deb22e6bb05a95ecd19a8ea2c96b0a
refs/heads/master
2023-05-06T06:33:36.724569
2021-05-15T00:12:06
2021-05-15T00:12:06
369,307,842
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
#!C:\Users\Alpha\PycharmProjects\mundo3\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
[ "alesson9silva@gmail.com" ]
alesson9silva@gmail.com
fd7ea4054b2620b7833e02dfd04cbf0b396aa44b
05a10473091d29db159b3345cfc5bbba52bc7c51
/ex9.py
79e599473fdd5b24b5ea88052bde104547e3661e
[]
no_license
willfu3/Han-Academy-Coding-Class
5b523415ae2a8be62075e1f3ea7b6cb2f588b33b
c35f271093f1596e8c536587780cf4fee0066a8e
refs/heads/master
2021-07-09T18:42:19.325588
2017-10-08T20:13:19
2017-10-08T20:13:19
106,207,369
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
import random number = random.randint(1, 100) tries = 0; prevguess = -1; while True: stringguess = raw_input("guess: ") guess = int (stringguess) if not guess == prevguess: tries += 1 prevguess = guess if guess < number: print("too low") elif guess > number: print("too high") else: print("correct") print("tries: " + str(tries)) break
[ "ziranfu@Zirans-MacBook-Pro.local" ]
ziranfu@Zirans-MacBook-Pro.local
0801b46b6440f1ad1ff3e824b86706f1c12303a5
1d7a2ac35ace0ace728e70a849da7abb4a76f18d
/Escalones/prueba_csv.py
8e1a1d99c1ac3875158c31e892c56b33db15ff08
[]
no_license
Jeisongarcia9713/Control_Robot
df7d740e266e86093b03b40c24fc938346c34e7c
920a846f3b9d41e388f003b0e4139e2c550d0231
refs/heads/master
2021-04-15T20:00:31.877773
2020-04-23T19:52:11
2020-04-23T19:52:11
249,295,556
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
import pandas as pd import csv import numpy as np import matplotlib import matplotlib.pyplot as plt datos=pd.read_csv('VelocidadAngular4.txt',header=0) tiempo=datos['t'] VL=datos['i1']/60 VR=datos['i2']/60 motor1=datos['i3']/60 motor2=datos['i4']/60 motor3=datos['i5']/60 motor4=datos['i6']/60 W=datos['i7'] Angulo=datos['i8'] fig, ax = plt.subplots() ax.plot(tiempo, VR) ax.set(xlabel='time (s)', ylabel='voltage (mV)', title='About as simple as it gets, folks') ax.grid() plt.hold(True); ax.plot(tiempo, VL) ax.plot(tiempo, motor1) ax.plot(tiempo, motor2) ax.plot(tiempo, motor3) ax.plot(tiempo, motor4) ax.plot(tiempo, W) ax.legend(['VR','VL','motor1','motor2','motor3','motor4','W']) plt.show() print(np.mean(motor1)) print(np.mean(motor2)) print(np.mean(motor3)) print(np.mean(motor4)) print(np.mean(W))
[ "jegarciat@correo.udistrital.edu.co" ]
jegarciat@correo.udistrital.edu.co
74c693c36ec36c9029d22123a40817590f16a51c
80e5090a2dda10d982c58224e43575942bfe82d8
/python/py_exception_assertion/challenge/1/exception_assertion_challenge.py
07ed844dd7cb861e13c14b2934cbe522017e0c89
[]
no_license
cskamil/PcExParser
3c2035f064a0f4e117695c2b848c87a9b4e4421a
688638f6c3fa3d31c4f8be6391147d773e1aa9dd
refs/heads/master
2023-05-01T10:45:33.725819
2023-02-16T03:19:09
2023-02-16T03:19:09
94,392,330
1
0
null
2022-11-16T00:39:30
2017-06-15T02:42:19
Java
UTF-8
Python
false
false
2,924
py
''' @goalDescription(Construct a program that takes in a decimal larger than 1.0, and prints whether it is divisible by 0.5. There should be try-except blocks and assertion statements to handle the situation where the entry is not a valid decimal, or it is not greater than 1.0.) @name(Raising Exceptions With Assertions) @distractor{code(assert int(entry) > 1, 'Incorrect entry. Entry is not greater than 1.0.'), helpDescription()} @distractor{code(assert int(entry) >= 1, 'Incorrect entry. Entry is not greater than 1.0.'), helpDescription()} ''' # Step 1: Define the entry used by the program entry = input('Please enter a decimal larger than 1.0: ') # Step 2: Define the program '''@helpDescription(The try blocks tries to execute the code within it. The statements in the try block may throw several types of exceptions.)''' try: '''@helpDescription("assert" statement assumes that the condition is True. If it is not, an AssertionError is thrown with the customizable error statement that follow the comma. If the AssertionError is not handled, it is automatically raised to the outer loop to be handled.)''' '''@helpDescription(In this statement, we assume that a decimal point "." is in the entry. If it is, An AssertionError is thrown that displays the error "Incorrect entry. Please enter a decimal.")''' assert '.' in entry, 'Incorrect entry. Please enter a decimal.' '''@blank(We assume the entry is a float that is greater than 1.0. If it is not, an AssertionError with the line "Incorrect entry. Number is not larger than 1.0" is thrown.)''' assert float(entry) > 1, 'Incorrect entry. Entry is not greater than 1.0.' '''@helpDescription(If the entry is not a valid number resulting in a ValueError being thrown, this "except" block will catch it.)''' except ValueError: '''@helpDescription(If a ValueError is thrown, this line is printed.)''' print('Incorrect entry. Please enter a valid decimal number.') '''@helpDescription(If an AssertionError is thrown by an assertion statement in the "try" block, it will be intercepted here. The custom AssertionError will be saved as the user-defined variable "e".)''' except AssertionError as error: '''@helpDescription(The AssertionError saved as variable "error" will be printed here.)''' print(error) '''@helpDescription("Else" block executes if there are no errors. In this case, the entry must be a decimal greater than 1.0.)''' else: '''@helpDescription(If the entry is valid, the if-else block checks if the entry is divisible by 0.5. If entry modulo 0.5 equals to 0, the number is divisible by 0.5.)''' if float(entry) % 0.5 == 0: print('Correct entry. The number is divisible by 0.5.') '''@helpDescription(If the entry is valid and the entry modulo 0.5 is not 0, then the number is not divisible by 0.5.)''' else: print('Correct entry. The number is not divisible by 0.5.')
[ "cskamil@gmail.com" ]
cskamil@gmail.com
b7d77c8289d285f822abfe65c4847f4f4158ea64
670c844e5cfa1cdf11212cc53972ecd8f7a25949
/python/test/test_OneThreeTwoPattern.py
cda75bb9a052a48f244aadd31e9bb0165a6d143e
[]
no_license
IamConstantine/LeetCodeFiddle
74d580a0741e40397f1283beadd023f9b9323abd
5ec509505a394d53517fb005bbeb36745f06596a
refs/heads/master
2022-05-31T05:25:14.273605
2022-05-23T02:46:47
2022-05-23T02:46:47
100,910,327
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
from unittest import TestCase from OneThreeTwoPattern import find132pattern class Test(TestCase): def test_find132pattern(self): self.assertEqual(False, find132pattern([1, 2, 3, 4])) self.assertEqual(True, find132pattern([3, 1, 4, 2]))
[ "vishalskumar12@gmail.com" ]
vishalskumar12@gmail.com
6b7abd96ecbb7cfa29b2fcac04282fd635e11d40
09d79c3509252cfccac35bb28de9a0379094823a
/alx/manage.py
e8d4eb94d3bf60dfc0acba8fd7b49a23dc8ee099
[]
no_license
marianwitkowski/python2311
73ad491016cd6d0010d0203db43aca2c6debe0ad
9bbeca3fb6d8658a1321ab099ff2102cd7de76e0
refs/heads/master
2023-01-22T13:13:56.695680
2020-12-02T14:58:15
2020-12-02T14:58:15
315,350,865
0
1
null
null
null
null
UTF-8
Python
false
false
659
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'alx.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "marian.witkowski@gmail.com" ]
marian.witkowski@gmail.com
f4d5d09bdb229613906bbbbc629c5eada724940f
ee824fa57eafa8cf54320203da22e70952acf395
/estoque/urls.py
a8fa56f51d4d5083214e158823c70b43c089ea5c
[]
no_license
luizrenatolr/CadastroCompraProdutoDjango
a9e7cbb0b316bad6e50008edbaf2302f5706d2ad
792dc05836eeb732502a18a7441e3a6c66899772
refs/heads/master
2020-03-22T13:32:08.218353
2018-07-07T20:41:03
2018-07-07T20:41:03
140,114,578
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('login/', views.login_view, name='login'), path('lista-compra/', views.listar_compras, name='lista_compra'), path('realizar-compra/', views.realizar_compra, name='realizar_compra'), path('logout/', views.logout_view, name='logout'), path('cadastrar-produto/', views.cadastrar_produto, name='cadastrar_produto'), path('', views.inicio, name='inicio') ]
[ "" ]
101e407c7acc1dbde95edb4fb5860bcf6001cbf0
a508ffe0942f75721d4623fcda9e57808f93f07d
/7a/main.py
580734f6da382e661e5d68fb833a9142dc259c32
[]
no_license
ag8/magic
3a14a81f3c06fa67cd77de07045ee3dc3899ca7f
2768fc7490e6cc55b522be68926ad24d3caa939c
refs/heads/master
2021-01-22T06:49:29.561849
2017-10-30T23:34:57
2017-10-30T23:34:57
102,300,107
0
0
null
null
null
null
UTF-8
Python
false
false
5,170
py
import sys import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import overlap_input from constants import FLAGS from vae import VariationalAutoencoder # Load MNIST data in a format suited for tensorflow. # The script input_data is available under this URL: # https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/mnist/input_data.py # import input_data # mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # n_samples = mnist.train.num_examples # Get input data images_batch, labels_batch = overlap_input.inputs(normalize=True, reshape=True) n_samples = FLAGS.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN class TrainingException(Exception): pass def train(network_architecture, sess, learning_rate=0.001, batch_size=FLAGS.BATCH_SIZE, training_epochs=10, display_step=5): vae = VariationalAutoencoder(network_architecture, sess=sess, transfer_fct=tf.nn.softplus, # FIXME: Fix numerical issues instead of just using tanh learning_rate=learning_rate, batch_size=batch_size) try: # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) # Loop over all batches for i in range(total_batch): # batch_xs, _ = mnist.train.next_batch(batch_size) batch_xs = images_batch.eval() # Fit training using batch data cost = vae.partial_fit(batch_xs) if np.isnan(cost): raise TrainingException("Got cost=nan") print("Epoch: (" + str(epoch) + "/" + str(training_epochs) + "); i: (" + str(i) + "/" + str( total_batch) + "). Current cost: " + str(cost) + "") # Compute average loss avg_cost += cost / n_samples * batch_size # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) except KeyboardInterrupt: pass return vae with tf.Session() as sess: # Define the network architecture network_architecture = \ dict(num_neurons_recognition_layer_1=500, # 1st layer encoder neurons num_neurons_recognition_layer_2=500, # 2nd layer encoder neurons num_neurons_generator_layer_1=500, # 1st layer decoder neurons num_neurons_generator_layer_2=500, # 2nd layer decoder neurons num_input_neurons=FLAGS.IMAGE_SIZE * FLAGS.IMAGE_SIZE * 2, # MNIST data input (img shape: 28*28) n_z=2) # dimensionality of latent space # Start populating the filename queue. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord, sess=sess) try: # Train the autoencoder for 75 epochs vae = train(network_architecture, sess=sess, training_epochs=75) # Initialize all variables # sess.run(tf.global_variables_initializer()) print("Reconstructing test input..."), # Display the input reconstruction x_sample = images_batch.eval() x_sample = np.reshape(x_sample, newshape=[-1, FLAGS.IMAGE_SIZE * FLAGS.IMAGE_SIZE * 2]) x_reconstruct = vae.reconstruct(x_sample) plt.figure(figsize=(8, 12)) for i in range(5): # print("x_sample[i] shape: "), # print(np.shape(x_sample[i])) # print("") # print("x_reconstruct[i] shape: ") # print(np.shape(x_reconstruct[i])) # print("") plt.subplot(5, 2, 2 * i + 1) plt.imshow(x_sample[i].reshape(200, 200, 2)[:, :, 0], vmin=0, vmax=1, cmap="gray") plt.title("Test input") plt.colorbar() plt.subplot(5, 2, 2 * i + 2) plt.imshow(x_reconstruct[i].reshape(200, 200, 2)[:, :, 0], vmin=0, vmax=1, cmap="gray") plt.title("Reconstruction") plt.colorbar() plt.tight_layout() plt.savefig('foo.png') print("Done!") print("Sampling 2d latent space..."), nx = ny = 20 x_values = np.linspace(-3, 3, nx) y_values = np.linspace(-3, 3, ny) canvas = np.empty((200 * ny, 200 * nx)) for i, yi in enumerate(x_values): for j, xi in enumerate(y_values): z_mu = np.array([[xi, yi]] * vae.batch_size) x_mean = vae.generate(z_mu) canvas[(nx - i - 1) * 200:(nx - i) * 200, j * 200:(j + 1) * 200] = x_mean[0].reshape(200, 200, 2)[:, :, 0] plt.figure(figsize=(8, 10)) Xi, Yi = np.meshgrid(x_values, y_values) plt.imshow(canvas, origin="upper", cmap="gray") plt.tight_layout() plt.savefig('latent_space_2d_sampling.png') print("Done!") except KeyboardInterrupt: print("Good-by!") sys.exit(0)
[ "andrew2000g@gmail.com" ]
andrew2000g@gmail.com
de708aaa979599b2d6db0a5f4f2aae32ec9ee164
f21ce1669b00d80e8d064363342bafe6cc2bca71
/personal_website/authuser/models.py
3351f461005ff3e61aa8a39ff00b51dc4986ff0a
[]
no_license
sandipan898/personal-website
760a87b42373c0098d67dd3bedb96bac16147e38
62ae9dc2be63f9b7d4297596dcffa329e2d9b961
refs/heads/main
2023-06-30T03:03:42.374597
2021-07-31T21:31:41
2021-07-31T21:31:41
328,332,461
0
0
null
null
null
null
UTF-8
Python
false
false
832
py
from django.db import models from django.db.models.signals import post_save from django.dispatch import receiver from django.contrib.auth.models import User # Create your models here. class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, null=True, blank=True) bio = models.CharField(max_length=2000, null=True, blank=True) image = models.ImageField(null=True, blank=True) def __str__(self): return self.user.username @property def imageURL(self): try: url = self.image.url except: url = '' return url @receiver(post_save, sender=User) def update_userprofile_signal(sender, instance, created, **kwargs): if created: UserProfile.objects.create(user=instance) instance.userprofile.save()
[ "sandipan.das898@gmail.com" ]
sandipan.das898@gmail.com
5c31db258bef00591c87b00f77fd2d40fa916811
54c8a1c0cb93794cfc1afe1937f50b81345bec0f
/home_page.py
a3ac5319ac75c66cc7ded60d225d78d55bf8f396
[]
no_license
lalitv19/Stock-Prediction-Analysis
5ed2e9200a331b9b5d66b85532b5970fea3b5e63
a79bc9526468f7c2fdb8b2ac06874da19af06338
refs/heads/master
2022-04-25T09:24:16.493313
2020-04-26T22:03:11
2020-04-26T22:03:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,282
py
#Please import all the packages by pip install import pandas_datareader as web import pandas as pd import numpy as np import datetime as dt from datetime import timedelta import calendar import pandas_market_calendars as mcal import descriptive_analytics as da import predictive_analytics as pa import candlestick_timeseries as ct import warnings from PIL import Image #For ignoring the warnings warnings.filterwarnings("ignore") def getCompanyDetails(companyTicker): #Checking if entered ticker is registered on NASDAQ all_symbols= web.get_nasdaq_symbols() company_details = pd.read_csv("http://www.nasdaq.com/screening/companies-by-name.aspx?letter=0&exchan0ge=nasdaq&render=download", usecols = [*range(0,7)]) symbols = list(all_symbols.loc[:, "NASDAQ Symbol"]) # Input from the user for Ticker symbol if companyTicker in symbols: company_details = company_details.loc[company_details['Symbol'] == companyTicker] company_details.index = range(len(company_details)) symbol_details = all_symbols.loc[all_symbols['NASDAQ Symbol'] == companyTicker] symbol_details.index = range(len(symbol_details)) company_name = company_details["Name"][0] print("*" *100) print("\nGeneral Information about the Company\n ") print("Company Name : ",company_details["Name"][0]) # Access elements such as Name, Market cap, etc from the csv for that company print("Last Sale Information : ",company_details["LastSale"][0]) print("Market Cap : ",company_details["MarketCap"][0]) print("IPO years : ",company_details["IPOyear"][0]) print("Sector of the company : ",company_details["Sector"][0]) print("Industry the company belong to : ",company_details["industry"][0]) print("NextShares Information : ",symbol_details["NextShares"][0]) print("*" *100) return companyTicker,company_name else: print("Invalid Ticker Symbol.Please Re-enter Valid ticker symbol") main() #Default mode that is 52 weeks(1 Year) def default_mode(today_date,companyTicker,company_name): startDate = today_date- timedelta(days=364) endDate = today_date getdata(startDate,endDate,companyTicker,company_name) #Custom mode that is user can enter any range of dates def custom_mode(companyTicker,company_name): dateValidation(companyTicker,company_name) #Checks the date validation and convert from string to datetime format and pass to date range function def dateValidation(companyTicker,company_name): date_entry = input('Enter a start date in YYYY-MM-DD format:') isValidStartDate = validate_date_format(date_entry) if(isValidStartDate): year, month, day = map(int, date_entry.split('-')) date1 = dt.datetime(year, month, day) isValidStartDateRange = validate_date_range(date1) if(isValidStartDateRange): endDateValidation(date1,companyTicker,company_name) else: dateValidation(companyTicker,company_name) else: dateValidation(companyTicker,company_name) #It only checks user inputed end dates and validates them def endDateValidation(startDate,companyTicker,company_name): date_entry = input('Enter a end date in YYYY-MM-DD format:') isValidEndDate = validate_date_format(date_entry) year, month, day = map(int, date_entry.split('-')) endDate = dt.datetime(year, month, day) isValidEndDateRange = validate_date_range(endDate) if(isValidEndDate): year, month, day = map(int, date_entry.split('-')) endDate = dt.datetime(year, month, day) isValidEndDateRange = validate_date_range(endDate) if(isValidEndDateRange): if(startDate <= endDate): validateWorkingDays(startDate,endDate,companyTicker,company_name) else: print("Seems the start Date is greater than end Date ..!! Please enter end date past start Date") endDateValidation(startDate,companyTicker,company_name) else: endDateValidation(startDate,companyTicker,company_name) else: endDateValidation(startDate,companyTicker,company_name) #It checks the format of the function which should be year-month-date def validate_date_format(date_string): try: if(dt.datetime.strptime(date_string, '%Y-%m-%d')): return True else: return False except ValueError: print("***Incorrect date format***\n") # Catch int() exception #It checks if the date range is a valid range def validate_date_range(date_string): today_date = dt.datetime.now() #formatted_today_date = ('%s-%s-%s' % (today_date.year, today_date.month, today_date.day)) try: if date_string <= today_date: return True else: print("Date entered seems to be future Date which is not a valid use case\n") return False except TypeError: print("***Date entered seems to be future Date which is not a valid use case***\n") #It checks for valid working days and skips saturdays, sundays and holiday dates def validateWorkingDays(startDate, endDate,companyTicker,company_name): nyse = mcal.get_calendar('NYSE') isValidWorkingDays = False isvaliddate = nyse.valid_days(startDate, endDate) if ((abs(endDate-startDate).days)) <= 1: start_Day = calendar.day_name[startDate.weekday()] end_Day = calendar.day_name[endDate.weekday()] if( (start_Day == "Saturday" and end_Day=="Sunday") or (start_Day == "Saturday" and end_Day=="Saturday") or (start_Day == "Sunday" and end_Day=="Sunday")): print("The Day of end Date:", end_Day) print("The Day of start Date:", start_Day) isValidWorkingDays = False elif((pd.Timestamp(startDate) not in isvaliddate) and (pd.Timestamp(endDate) not in isvaliddate)): isValidWorkingDays = False else: isValidWorkingDays = True else: isValidWorkingDays = True if(isValidWorkingDays): getdata(startDate,endDate,companyTicker,company_name) #This function will fetch data from the website and prints it def getdata(start_date,end_date,company,company_name): dataset= web.DataReader(company,'yahoo',start_date,end_date) print(f"The stock value for first 5 days {company_name} is : \n",dataset.head()) print(f"The stock value for last 5 days {company_name} is : \n",dataset.tail()) close = dataset['Close'] print("*" *100) print(f"\nMaximum Close Price for {company_name} : ",np.max(close)) # Access elements such as Name, Market cap, etc from the csv for that company print(f"\nMinimum Close Price for {company_name} : ",np.min(close)) print("*" *100) mainmenu(dataset,start_date,end_date,company_name,company) #The function where Descriptive, Predective and Visulisation, also this menu has a option to go back to main menu so the user ** #** can traverse between menus fro performing any kind of operations def mainmenu(dataset,start_date,end_date,company_name,company): print("*" *100) print("\nWelcome to Stock Market Analysis") print(f"1) Stock Analysis for {company_name}") print(f"2) Stock Prediction for {company_name}") print(f"3) Visualisation for {company_name}") print("4) Home Menu to Change the Mode") print("*" *100) question = input("\nFrom the given options select any?\n") try: if question == "1": da.descriptive_mode(dataset,start_date,end_date,company_name,company) elif question == "2": pa.predictive_mode(dataset,start_date,end_date,company_name,company) elif question == "3": ct.plotData(dataset,start_date,end_date,company_name,company) mainmenu(dataset,start_date,end_date,company_name,company) elif question == "4": menu(company,company_name) else: print("Invalid Option. Please Re-enter the option you would like to choose. \n") print("\n") mainmenu(dataset,start_date,end_date,company_name,company) except ValueError: print("***Invalid Option. Please Re-enter the option you would like to choose.***\n") mainmenu(dataset,start_date,end_date,company_name,company) #Enter ticker symbol for which you want the data to be printed or analyzed def main(): tickerSymbol = input("Please enter Company Ticker: ").upper() companyTicker, company_name = getCompanyDetails(tickerSymbol) menu(companyTicker, company_name) #Menu for default mode or custom mode and user can only exit the code from this menu if code does not break anywhere def menu(companyTicker,company_name): print("*" *100) print("\t\tWe do have more functionalities to explore.") print("\nChoose from the below option") print("1. Analysis for 1 year(Default mode)\n2. Variable Date Range(Custom mode)\n3. Check for another Company\n4. Exit") print("*" *100) question = input("\nFrom the given options select any?\n") try: if question == "1": print("Welcome to 1 year Analysis(Default mode)\n") today_date = dt.datetime.now() default_mode(today_date,companyTicker,company_name) elif question == "2": print("Welcome to Custom Mode(Variable Date Range)\n") custom_mode(companyTicker,company_name) elif question == "3": main() elif question == "4": exit() else: print("Invalid Option. Please Re-enter the option you would like to choose. \n") menu(companyTicker,company_name) except ValueError: print("***Invalid Option. Please Re-enter the option you would like to choose.***\n") menu(companyTicker,company_name) #Beginning of the code if __name__ == "__main__": print("\n"+"*" *100) print("\t\tWelcome to The Data Whisperers Stock Market Analysis Project") print("*" *100) option = input("Do you want the flow chart for the entire project please Press 1 or press anything to Continue with the normal flow\n") try: if option == "1": img = Image.open('Flow_Chart.jpg') img.show() except ValueError: print("Please enter correct choice Y/N") main()
[ "noreply@github.com" ]
lalitv19.noreply@github.com
9e21a9283b6e462755a39d4174705ef6d4380d1b
2827d7a837eb29c3cb07793ab6d3d5a753e18669
/alipay/aop/api/request/AlipayCommerceLotteryPresentlistQueryRequest.py
3ed44f8e695e01f038dcf08768a6e8f476ae06b2
[ "Apache-2.0" ]
permissive
shaobenbin/alipay-sdk-python
22e809b8f5096bec57d2bb25414f64bdc87fa8b3
5232ad74dff2e8a6e0e7646ab3318feefa07a37d
refs/heads/master
2020-03-21T04:51:39.935692
2018-06-21T07:03:31
2018-06-21T07:03:31
138,131,022
0
0
null
2018-06-21T06:50:24
2018-06-21T06:50:24
null
UTF-8
Python
false
false
4,021
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayCommerceLotteryPresentlistQueryModel import AlipayCommerceLotteryPresentlistQueryModel class AlipayCommerceLotteryPresentlistQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayCommerceLotteryPresentlistQueryModel): self._biz_content = value else: self._biz_content = AlipayCommerceLotteryPresentlistQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._notify_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.commerce.lottery.presentlist.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
[ "liuqun.lq@alibaba-inc.com" ]
liuqun.lq@alibaba-inc.com
31f76246510b89268fc4b16de3d456aac7978a02
3fd82399f9498d9dc03aa3bb76c4526754da5c54
/ijik/monitor.py
df0ba8a7b9e9ad3e5155bd7fe1f6bdfa176f773b
[]
no_license
teknologiakerho/ijik2
ac722190d569700776913920a6fd051836ac6cb9
8f22b544fb86c5661c31c7c93b6dd6c73e0f8b32
refs/heads/master
2023-03-04T00:43:13.809848
2021-02-01T03:59:07
2021-02-01T03:59:07
330,416,868
0
0
null
null
null
null
UTF-8
Python
false
false
7,527
py
import collections import csv import functools import html import io import re import fastapi import ijik class Hooks: @ijik.hookspec def ijik_monitor_setup(monitor, router): pass class Monitor: table_template = "monitor/table.html" main_template = "monitor/index.html" field_template = "monitor/field.html" def __init__(self, *, pluginmanager, templates, get_view): self.pluginmanager = pluginmanager self.table_template = templates.get_template(self.table_template) self.main_template = templates.get_template(self.main_template) self.field_template = templates.get_template(self.field_template) self.get_view = get_view self.fields = {} def view(self, db, key): widgets = self.get_view(key, db) if widgets is None: return None view = View(self) for widget in widgets: widget(view, monitor=self) return view def setup(self, router): self.pluginmanager.hook.ijik_monitor_setup(monitor=self, router=router) def add_field(self, cls, name=None, prio=0, **opt): if name is None: name = next(opt[x] for x in ("plaintext", "html", "json")).__name__ field = Field(name=name, prio=prio, **opt) if cls in self.fields: self.fields[cls].append(field) self.fields[cls].sort(key=lambda c: (c.prio, c.name)) else: self.fields[cls] = [field] return field def field(self, *args, loc="plaintext", **kwargs): def deco(f): if kwargs.get("html") == "auto": kwargs["html"] = self._auto_html(f) return self.add_field(*args, **kwargs, **{loc: f}) return deco def get_fields(self, cls): try: return self.fields[cls] except KeyError: return () def render_view(self, **context): return self.main_template.render(**context) def render_table(self, **context): return self.table_template.render(**context) def _auto_html(self, f): def render_html(entity): return self.field_template.render({"value": f(entity)}) return render_html class View: def __init__(self, monitor): self.monitor = monitor self.widgets = [] self.downloads = {} def add_download(self, id, dl): self.downloads[id] = dl def get_download(self, id): try: dl = self.downloads[id] except KeyError: return None return dl() def add_widget(self, render, navi=None): self.widgets.append((render, navi)) def render(self, **context): return self.monitor.render_view( **context, widgets = (w(**context) for w,_ in self.widgets), navis = (n for _,n in self.widgets if n is not None) ) class Table: def __init__(self, title, get_entities, id=None, columns=None): self.title = title self.get_entities = get_entities self.columns = columns if id: self.id = id def __call__(self, view, monitor): self.monitor = monitor view.add_widget(self.render, navi=(self.id, self.title)) view.add_download(f"{self.id}.csv", self.download) def render(self, **context): return self.monitor.render_table(**context, table=self) def download(self): return "text/csv", self.data.plaintext.csv @functools.cached_property def id(self): return re.sub(r'[^\w-]+', "-", self.title).strip("-").lower() @functools.cached_property def entities(self): return self.get_entities() @functools.cached_property def data(self): colprio = collections.defaultdict(lambda: float("inf")) values = [] for e in self.entities: vals = {} for field in self.monitor.get_fields(e.__class__.__name__): colprio[field.name] = min(field.prio, colprio[field.name]) vals[field.name] = field(e) values.append(vals) if self.columns: columns = [c for c in self.columns if c in colprio] else: columns = sorted(colprio, key=lambda name: colprio[name]) return TableData(columns, values) class TableData: def __init__(self, columns, values): self.columns = columns self.values = values @property def width(self): return len(self.columns) @property def height(self): return len(self.values) @property def rows(self): for v in self.values: yield (v.get(c, Value.empty) for c in self.columns) @functools.cached_property def csv(self): out = io.StringIO() writer = csv.writer(out, delimiter=';') writer.writerow(self.columns) writer.writerows((c.plaintext for c in r) for r in self.rows) return out.getvalue() @functools.cached_property def plaintext(self): return self._filter_attr("plaintext") @functools.cached_property def html(self): return self._filter_attr("html") @functools.cached_property def json(self): return self._filter_attr("json") def _filter_attr(self, attr): # select only columns which have at least one row with `attr` columns = set() for v in self.values: columns.update(c for c,x in v.items() if getattr(x, attr) is not None) # have all columns if len(columns) == len(self.columns): return self return TableData([c for c in self.columns if c in columns], self.values) class Field: def __init__(self, name, prio, *, plaintext=None, html=None, json=None): self.name = name self.prio = prio self._plaintext = plaintext self._html = html self._json = json def plaintext(self, f): self._plaintext = f return self def html(self, f): self._html = f return self def json(self, f): self._json = f return self def __call__(self, entity): return Value(self, entity) class Value: def __init__(self, field, entity): self.field = field self.entity = entity @functools.cached_property def plaintext(self): if self.field._plaintext: return self.field._plaintext(self.entity) @functools.cached_property def html(self): if self.field._html: return self.field._html(self.entity) if self.field._html is False: return if self.plaintext is not None: return html.escape(str(self.plaintext)) @functools.cached_property def json(self): if self.field._json: return self.field._json(self.entity) if self.field._json is False: return return self.plaintext class empty: plaintext = "" html = "" json = None class KeyRegistry: def __init__(self): self.views = {} def __call__(self, key, *args, **kwargs): try: view = self.views[key] except KeyError: return None return view(*args, **kwargs) def add_view(self, key, view): self.views[key] = view return view def view(self, key): def deco(view): return self.add_view(key, view) return deco
[ "tl@cat.pm" ]
tl@cat.pm
73cee0f13c58dcf564d63b0a94b91ed9059b482b
75262e26d53201a2f142fa333e96f6325289843c
/mattstuff/modomics_csv_tool.py
f651e404e8ea0dafb81c1cfa7293bdf814807a22
[]
no_license
ModSquad2020/SD_Matt
4ec705aa41c2250d021fc624a66ac3cd6d1e25c0
56da68fcbd095c3dbf5db3d94d22abf94cfe6e0b
refs/heads/main
2023-03-14T01:06:46.617478
2021-03-03T04:16:57
2021-03-03T04:16:57
305,460,805
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
''' Looks like we want the 5th column and the format wack as heck. I downloaded E.Coli tRNAs, visualized as Modomics Symbols, and it looks like they have a pattern of name-of mod[show modidication pathway]\');return false"> in front of every modification.Potentail use for regular expressions. lowercase|number (for unknown amount of space)[show modification pathway]\');return true|false"> '''
[ "matt.kozu@gmail.com" ]
matt.kozu@gmail.com
553186729974dfaff8398beaca45f2845bf8da60
c234b8c3bfe8cca26a61118a46acbd6dffdef837
/python assignment11/Module4/Question-06/flatter_list.py
72c8294ddad39bb5f88426e1b3798a64567f47fb
[]
no_license
SejalChourasia/python-assignment
6dbd702e340518b0aac094fdee9c3fecfdcb1e48
702fe6b3cba740cd00dbe7b1c78bb9992e77a0d7
refs/heads/master
2020-12-15T11:04:37.367463
2020-01-25T15:49:48
2020-01-25T15:49:48
235,083,900
1
0
null
null
null
null
UTF-8
Python
false
false
265
py
l=[[int(i) for i in range(10)]for j in range(10)] print('Unflattened list',l) flatten=[i for sublist in l for i in sublist if i<5] ''' for sublist in l: for i in sublist: flatten.append(i) ''' print('flattened list with less than 5 ',flatten)
[ "noreply@github.com" ]
SejalChourasia.noreply@github.com
6d8afbb844d2e9fdb38b4fce51cb1183de14c6ab
3f4f2bb867bf46818802c87f2f321a593f68aa90
/smile/bin/activate-global-python-argcomplete
21a6f61e1ff6b53be2b7b307e4aa76a46c62d189
[]
no_license
bopopescu/Dentist
56f5d3af4dc7464544fbfc73773c7f21a825212d
0122a91c1f0d3d9da125234a8758dea802cd38f0
refs/heads/master
2022-11-23T12:42:23.434740
2016-09-19T15:42:36
2016-09-19T15:42:36
282,608,405
0
0
null
2020-07-26T08:30:16
2020-07-26T08:30:16
null
UTF-8
Python
false
false
3,256
#!/SHARED-THINGS/ONGOING/We.smile/smile/bin/python # PYTHON_ARGCOMPLETE_OK # Copyright 2012-2013, Andrey Kislyuk and argcomplete contributors. # Licensed under the Apache License. See https://github.com/kislyuk/argcomplete for more info. ''' Activate the generic bash-completion script for the argcomplete module. ''' import os, sys, argparse, argcomplete, shutil, fileinput parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) dest_opt = parser.add_argument("--dest", help="Specify the bash completion modules directory to install into", default="/etc/bash_completion.d") parser.add_argument("--user", help="Install into user directory (~/.bash_completion.d/)", action='store_true') parser.add_argument("--no-defaults", dest="use_defaults", action="store_false", default=True, help="When no matches are generated, do not fallback to readline\'s default completion") parser.add_argument("--complete-arguments", nargs=argparse.REMAINDER, help="arguments to call complete with; use of this option discards default options") argcomplete.autocomplete(parser) args = parser.parse_args() if args.user: args.dest = os.path.expanduser("~/.bash_completion.d/") if not os.path.exists(args.dest): try: os.mkdir(args.dest) except Exception as e: parser.error("Path {d} does not exist and could not be created: {e}".format(d=args.dest, e=e)) elif not os.path.exists(args.dest) and args.dest != '-': parser.error("Path {d} does not exist".format(d=args.dest)) activator = os.path.join(os.path.dirname(argcomplete.__file__), 'bash_completion.d', 'python-argcomplete.sh') if args.complete_arguments is None: complete_options = '-o nospace -o default -o bashdefault' if args.use_defaults else '-o nospace -o bashdefault' else: complete_options = " ".join(args.complete_arguments) complete_call = "complete{} -D -F _python_argcomplete_global".format(" " + complete_options if complete_options else "") def replaceCompleteCall(line): if line.startswith("complete") and "_python_argcomplete_global" in line: return complete_call+('\n' if line.endswith('\n') else '') else: return line if args.dest == '-': for l in open(activator): sys.stdout.write(replaceCompleteCall(l)) else: dest = os.path.join(args.dest, "python-argcomplete.sh") sys.stdout.write("Installing bash completion script " + dest) if not args.use_defaults: sys.stdout.write(" without -o default") elif args.complete_arguments: sys.stdout.write(" with options: " + complete_options) sys.stdout.write("\n") try: shutil.copy(activator, dest) if not args.complete_arguments is None or not args.use_defaults: for l in fileinput.input(dest, inplace=True): # fileinput with inplace=True redirects stdout to the edited file sys.stdout.write(replaceCompleteCall(l)) except Exception as e: err = str(e) if args.dest == dest_opt.default: err += "\nPlease try --user to install into a user directory, or --dest to specify the bash completion modules directory" parser.error(err)
[ "jamaalaraheem@gmail.com" ]
jamaalaraheem@gmail.com
e39b536d7f60bf324bc7edab967e0ce81795eeaa
aee61ceed0cffd9aa8048ae1ae65277c91c078a8
/create_ec2.py
f7b5ec159c8a2d44edb0a56037a2bb7b7d206c3d
[]
no_license
narayanareddy641/aws_programs
fd87565e9a78223d9d33e5b6a742cf6309ce4170
216caf736574074316bca9e17ce82ac615b6b3e9
refs/heads/master
2021-01-05T19:15:57.921442
2020-02-17T14:19:22
2020-02-17T14:19:22
241,112,901
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
import boto3 ec2 = boto3.resource('ec2') # create a new EC2 instance instances = ec2.create_instances( ImageId='ami-09a4a9ce71ff3f20b', MinCount=1, MaxCount=1, InstanceType='t2.micro', KeyName='reddy-key' ) print(instances)
[ "noreply@github.com" ]
narayanareddy641.noreply@github.com
dcad98b8060b86ce63c094f703ef2726a6debf3a
c0b310a0b8037f92ac431cd694168ea847f8fe09
/fetchingNewStores.py
f6ce685f21be002659817cc2438c6fd8be1ccead
[]
no_license
lndhub/lightningnetworkstores.github.io
192321b81b32374c170f102882e5afd396450c61
b7e2af9453e6d3511a464eadceace6c096ba47d8
refs/heads/master
2020-03-23T03:33:58.541427
2018-07-15T08:21:01
2018-07-15T08:21:01
141,037,097
1
1
null
2018-07-15T15:10:35
2018-07-15T15:10:35
null
UTF-8
Python
false
false
3,877
py
# this script looks at the names of the nodes, detects those that have a name for a website and tries to open the website. # if a positive response is obtained, this might be a new store :) import requests import re # needs to be improved with https://www.robtex.com/lightning/node/?sort=-discovered nodes = requests.get('https://shabang.io/nodes.json') if nodes.status_code != 200: exit() nodes = nodes.json() nodes = nodes['nodes'] nodenames = [x['alias'] for x in nodes if 'alias' in x.keys()] pattern = '[a-zA-Z]{2,}\.{1}[a-zA-Z]{2,3}' selection = [x for x in nodenames if re.match(pattern,x)!=None] selection = [x.replace('?',"") for x in selection] selection = [x.replace(' ',"") for x in selection] old = ['fdisk.ln.node', 'btc.lnetwork.tokyo', 'CryptoAdvisoryGroup.io', 'opennode.co', 'Ionic.Release', 'ozupek.com.tr', 'ZAP.COOL', 'forkliner.com', 'mn.lnd.lightning.rip', 'store.edberg.eu', 'LND.rompert.com', 'QR.CR', 'martijnbolt.com', 'BX.in.th', 'resharesat.com', 'mainnet.yalls.org', 'elec.luggs.co', 'BitStarz.com', 'ln.mempool.co', 'Billfodl.com', 'cryptonoobs.club', 'backup.bbt.tc', 'lncast.com', 'CoinMall.com', 'lnhub.us', 'CL.rompert.com', 'cybergeld.info', 'embedded.cash', 'LNTURKEY.NET', 'BitBargain.co.uk', 'Ionic.Release', 'lightning.exposed', 'lightningpay.me', 'ln.inazuma.cc', 'Stadicus.com', 'ln.bbt.tc', 'BitBargain.co.uk', 'distributed.love', 'the.lightning.land', 'elec.luggs.co', 'FOURLEAF.life', 'livingroomofsatoshi.com', 'mainnet.lnd.resdat', 'quantumgear.io', 'ln.heimburg.se', 'inabottle.io', 'BHB.network', 'ln.keff.org', 'BitBargain.co.uk', 'john.zweng.at', 'lightstorm.cc', 'mainnet.yalls.org', 'lightning.nicolas-dorier.com', 'SQUADSYSTEM.COM', 'ln.hkjn.me', 'POOLIN.COM', 'TokenSoft.io', 'hodl.me.2nyt', 'zbiornik.com', 'coinfinity.co', 'COINMINER.SPACE', 'PARK.IO', 'lnd.rows.io', 'ln.google.com', 'aspinall.io', 'ASTERIOS.TM', 'bitcoin.co', 'gnet.me', 'lightningramp.com', 'thunder.node', 'BIGHT.nl', 'refractionx.com'] old2 = ['inabottle.io', 'ZAP.COOL', 'BitBargain.co.uk', 'ln.mallorn.de', 'ln.taborsky.cz', 'Bight.nl', 'ln.vanovcan.net', 'resharesat.com', 'rompert.com', 'Billfodl.com', 'freedomnode.com', 'DatPay.Me', 'COINMINER.SPACE', 'bitmynt.no', 'POOLIN.COM', 'LightningPay.me', 'BitStarz.com', 'BitBargain.co.uk', 'skyrus.net', 'LEVENTGUNAY.COM', 'inazuma.cc', 'distributed.love', 'lightningbtc.shop', 'skyrus.net', 'lightstorm.cc', 'LivingRoomOfSatoshi.com', 'ln.mempool.co', 'matt.drollette.com', 'BTC.NETWORK', 'bitcoinsupermarkt.de', 'quantumgear.io', 'arihanc.com', 'TheCrypto.City', 'mainnet.yalls.org', 'cryptohead.de', 'BX.in.th', 'embedded.cash', 'lnstat.ideoflux.com', 'btcpay.cash', 'tondro.club', 'cryptopolitics.global', 'PARK.IO', 'mainnet.yalls.org', 'BubbleCoin.lol', 'lngate.tokyo', 'john.zweng.at', 'zbiornik.com', 'martijnbolt.com', 'cybergeld.info', 'TokenSoft.io', 'revealer.cc', 'DavinciCodes.net', 'www.bankofcrypto.info', 'tanjalo.com', 'mainnet.yalls.org', 'ASTERIOS.TM', 'BHB.network', 'FOURLEAF.life', 'zap.wizb.it', 'SQUADSYSTEM.COM', 'CoinMall.com', 'gnet.me', 'graph.lndexplorer.com', 'BitBargain.co.uk', 'QR.CR', 'bitfree.io', 'ln.hkjn.me', 'Waldo.fun', 'CryptoAdvisoryGroup.io', 'coinpanic.com', 'shop.sprovoost.nl'] old3 = old+old2+['ozupek.com.tr', 'startln.com', 'forkliner.com', 'bankless.io', 'BTC.COM', 'lncast.com', 'HodlMonkey.com'] old4 = old3 + ['masteringlightning.com', 'LivingRoomofSatoshi.com', 'mottods.com', 'lightningshop.eu', 'Grunch.fun', 'lightningnode.cz', 'Bitrefill.com', 'Byteball.be', 'moneyclub.network'] newSelection = [] for site in selection: if site not in old4: try: response = requests.get('http://'+site,timeout=7) if response.status_code == 200: newSelection.append(site) except: pass for site in newSelection: print(site)
[ "noreply@github.com" ]
lndhub.noreply@github.com