blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
86afa0e5e88a8970004df2cfeba52d5e44b8418e
d933cfa05e370c6f02bece2dd30b89745bf0fbed
/frozen_happines/urls.py
ac88c05a79715ebfae73f58f7efb14c0c34862db
[]
no_license
pynef/frozen_happiness
828c98e428eccaf3fc74ccb57b4c7c62808e98b5
84829f44e5c133a4d7143285a5d32ddbc38d56bc
refs/heads/master
2020-12-24T21:36:52.701366
2016-05-16T12:07:43
2016-05-16T12:07:43
58,926,394
1
0
null
null
null
null
UTF-8
Python
false
false
277
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import patterns, include, url from django.conf import settings from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^',include('frozen_happines.apps.web.urls')), ]
[ "nefinef@gmail.com" ]
nefinef@gmail.com
755a9ec32509ad9fbac62ad3e09dbc46fc24ba6c
10af1202867e07ec4769670efbd3f32e6a297511
/captioning/neuraltalk2-master/coco-caption/pycocoevalcap/tokenizer/ptbtokenizer.py
990d342cddddc5c9a71fd2ed17c79d5e6509e241
[ "BSD-2-Clause-Views" ]
permissive
amritasaha1812/bridge_seq_learning
75ab692fec6be3a650c6cd73f6a94d8c5181f49e
d8d383e35942584a13f18caf28a5f68a1eeb9642
refs/heads/master
2021-01-11T06:23:59.009266
2016-10-07T12:17:17
2016-10-07T12:17:17
69,964,832
0
0
null
null
null
null
UTF-8
Python
false
false
2,866
py
#!/usr/bin/env python # # File Name : ptbtokenizer.py # # Description : Do the PTB Tokenization and remove punctuations. # # Creation Date : 29-12-2014 # Last Modified : Thu Mar 19 09:53:35 2015 # Authors : Hao Fang <hfang@uw.edu> and Tsung-Yi Lin <tl483@cornell.edu> import os import sys import subprocess import tempfile import itertools # path to the stanford corenlp jar STANFORD_CORENLP_3_4_1_JAR = 'stanford-corenlp-3.4.1.jar' # punctuations to be removed from the sentences PUNCTUATIONS = ["''", "'", "``", "`", "-LRB-", "-RRB-", "-LCB-", "-RCB-", \ ".", "?", "!", ",", ":", "-", "--", "...", ";"] class PTBTokenizer: """Python wrapper of Stanford PTBTokenizer""" def tokenize(self, captions_for_image): cmd = ['java', '-cp', STANFORD_CORENLP_3_4_1_JAR, \ 'edu.stanford.nlp.process.PTBTokenizer', \ '-preserveLines', '-lowerCase'] # ====================================================== # prepare data for PTB Tokenizer # ====================================================== final_tokenized_captions_for_image = {} image_id = [k for k, v in captions_for_image.items() for _ in range(len(v))] #print captions_for_image.items() sentences = '\n'.join([c['caption'].replace('\n', ' ') for k, v in captions_for_image.items() for c in v]) # ====================================================== # save sentences to temporary file # ====================================================== path_to_jar_dirname=os.path.dirname(os.path.abspath(__file__)) tmp_file = tempfile.NamedTemporaryFile(delete=False, dir=path_to_jar_dirname) tmp_file.write(sentences.encode('utf-8')) tmp_file.close() # ====================================================== # tokenize sentence # ====================================================== cmd.append(os.path.basename(tmp_file.name)) p_tokenizer = subprocess.Popen(cmd, cwd=path_to_jar_dirname, \ stdout=subprocess.PIPE) token_lines = p_tokenizer.communicate(input=sentences.rstrip())[0] lines = token_lines.split('\n') # remove temp file os.remove(tmp_file.name) # ====================================================== # create dictionary for tokenized captions # ====================================================== for k, line in zip(image_id, lines): if not k in final_tokenized_captions_for_image: final_tokenized_captions_for_image[k] = [] tokenized_caption = ' '.join([w for w in line.rstrip().split(' ') \ if w not in PUNCTUATIONS]) final_tokenized_captions_for_image[k].append(tokenized_caption) return final_tokenized_captions_for_image
[ "amrita.saha87@gmail.com" ]
amrita.saha87@gmail.com
4fb1758cee4308cc464a65c8c616aa9e471991af
2c542b4fb1bb3b313911524ac3ea03528150ca1e
/saisie.py
579e348749fbca3bdf6b9c818a40415f777ef8d5
[]
no_license
tnemelck/crypto
d5c2a4926da0d9fb2b5944fc199000e7de406a9f
5a2f797d2b137c14b792730bce9c9980cf7ceda1
refs/heads/master
2021-05-13T13:27:45.118081
2018-01-08T17:40:03
2018-01-08T17:40:03
116,707,863
0
0
null
null
null
null
UTF-8
Python
false
false
6,990
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 3 17:17:51 2018 @author: tnemelk """ import generateurDeNombrePremier as gnp import os def saisie_int(inf, sup): s = input("Choisissez bien. \n") try: r = int(s) assert (r >= inf) and (r <= sup) except (ValueError, AssertionError) as e: print("La saisie est incorrecte, vous êtes négligeant, ce n'est pas grave, recommencez.") r = saisie_int(inf, sup) return r def saisie_Tbloc(): s = input("Choisissez judicieusement. \n") try: r = int(s) assert (r == 256) or (r==512) or (r==1024) except (ValueError, AssertionError) as e: print("Vous n'avez que 3 choix possibles, appliquez vous s'il vous plaît.") r = saisie_Tbloc() return r def saisie_oui_non(): dic = {"oui":1, "non":0} s = input("""Veuillez marquer "oui" ou "non" en toute lettre. \n""") try: r = dic[s] except KeyError: print("""Mon programmmeur ne m'a pas voulu flexible, ainsi, je suis navrée d'avoir à vous demander de recommencer.""") r = saisie_oui_non() return r def affiche_cle_3f(tf): [co, t1, t2, tb] = tf.cle_secrete.split(":") print("""La clé originale est """, co, "\n" """Les deux tweaks sont :""", t1, "et", t2, "\n" """Les blocs mesurent """, tb * 8, "bits") def saisie_adr(): adr = input("Veuillez rentrer l'adresse de votre fichier. \n") try: assert os.path.isfile(adr) except AssertionError: """L'adresse saisie ne renvoie pas à un fichier, et ... je ne sais pas quoi faire, vous pourriez recommencer ... s'il vous-plaît ?""" adr = saisie_adr() return adr def saisie_nBits(nbit): lim = (2**nbit)-1 txt = "Entrez un nombre de" + nbit + ", soit inférieur à," + lim + "\n" s = input(txt) try: r = int(s) assert (r <= lim) and (r >= 0) except (ValueError, AssertionError) as e: print(""" Et non, dommage, recommence maintenant.""") r = saisie_nBits(nbit) print("\n") return r def saisie_cle_tf(): print("Choisissez la taille des blocs.") t_bloc = saisie_Tbloc() print("Entrez la clé originale") cr = saisie_nBits(t_bloc) print("Entrez le premier tweak") t1 = saisie_nBits(64) print("Entrez le second tweak") t2 = saisie_nBits(64) cle = [cr, t1, t2, t_bloc] cle = map(str, cle) print("\n") return ":".join(cle) def saisie_adr_cle_3f(): adr = saisie_adr() f = open(adr,"r") k = f.read() f.close() try: Ks = k.split(":") assert (len(Ks) == 4) and (all([k.isdigit() for k in Ks])) and \ (int(Ks[0]) < 2 ** (8 * int(Ks[3]))) and (int(Ks[1]) < 2**64) and (int(Ks[2]) < 2**64) except AssertionError: print("""La clé stockée dans le fichier est invalide, essaye encore.""") adr = saisie_adr_cle_3f() print("\n") return adr def affiche_cle_pblc_cs(cs): [p, a1, a2, X, Y, W] = cs.cle_public.split(":") print("Le grand nombre premier p vaut", p, "\n" "Le premier nombre générateur a1 est", a1, "\n" "Le second nombre générateur a2 est", a2, "\n" "L'entier X vaut", X, "\n" "L'entier Y vaut", Y, "\n" "L'entier W vaut", W, "\n") def affiche_cle_prive_cs(cs): [p, a1, a2, x1, x2, y1, y2, w] = cs.cle_prive.split(":") print("Le grand nombre premier p vaut", p, "\n" "Le premier nombre générateur a1 est", a1, "\n" "Le second nombre générateur a2 est", a2, "\n" "L'entier x1 vaut", x1, "\n" "L'entier x2 vaut", x2, "\n" "L'entier y1 vaut", y1, "\n" "L'entier y2 vaut", y2, "\n" "L'entier w vaut", w, "\n") def saisie_nb_prm_sur(): snp = input("Veuillez entrer votre nombre premier sûr.\n") try: np = int(snp) assert gnp.test_premier_sur(np) except (ValueError, AssertionError) as e: print("Mais ... ce n'est pas un nombre premier sûr ! Hop hop hop, on recommence !") np = saisie_nb_prm_sur() print("\n") return np def saisie_nb_gen(p): txt = "Veuillez entrer un nombre générateur a1 de" + str(p) + "\n" sg = input(txt) try: g = int(sg) assert gnp.test_gen_prem_sur(g, p) except (ValueError, AssertionError) as e: print("Pff, c'est pas un nombre générateur ça ! Ça, c'est juste nul.") g = saisie_nb_gen(p) return g def saisie_entier(e): txt = "Entrez votre nombre entier positif " + str(e) + "\n" s = input(txt) try: n = int(s) assert n >= 0 except (ValueError, AssertionError) as e: print("Ce n'est pas un nombre entier positif, ah ça non !") n = saisie_entier(e) return n def saisie_entier_pos(e): txt = "Entrez votre nombre entier positif " + str(e) + "\n" s = input(txt) try: n = int(s) assert n > 0 except (ValueError, AssertionError) as e: print("Ce n'est pas un nombre entier positif, ah ça non !") n = saisie_entier(e) return n def saisie_cle_pblc_cs(): p = saisie_nb_prm_sur() a1 = saisie_nb_gen() % p a2 = saisie_nb_gen() % p X = saisie_entier("X") % p Y = saisie_entier("Y") % p W = saisie_entier("W") % p result = [p, a1, a2, X, Y, W] result = map(str, result) result = ":".join(result) return result def saisie_cle_prive_cs(): p = saisie_nb_prm_sur() a1 = saisie_nb_gen() % p a2 = saisie_nb_gen() % p x1 = saisie_entier("x1") % p y1 = saisie_entier("y1") % p x2 = saisie_entier("x2") % p y2 = saisie_entier("y2") % p w = saisie_entier("w") % p result = [p, a1, a2, x1, x2, y1, y2, w] result = map(str, result) result = ":".join(result) return result def saisie_adr_cle_pblc_cs(): adr = saisie_adr() f = open(adr,"r") k = f.read() f.close() try: Ks = k.split(":") assert (len(Ks) == 6) and (all([k.isdigit() for k in Ks])) and \ (gnp.test_premier_sur(Ks[0])) and \ gnp.test_gen_prem_sur(Ks[1], Ks[0]) and gnp.test_gen_prem_sur(Ks[2], Ks[0]) except AssertionError: print("""La clé stockée dans le fichier est invalide, essaye encore.""") adr = saisie_adr_cle_pblc_cs() print("\n") return adr def saisie_adr_cle_prive_cs(): adr = saisie_adr() f = open(adr,"r") k = f.read() f.close() try: Ks = k.split(":") assert (len(Ks) == 8) and (all([k.isdigit() for k in Ks])) and \ (gnp.test_premier_sur(int(Ks[0]))) and \ gnp.test_gen_prem_sur(int(Ks[1]), int(Ks[0])) and gnp.test_gen_prem_sur(int(Ks[2]), int(Ks[0])) except AssertionError: print("""La clé stockée dans le fichier est invalide, essaye encore.""") adr = saisie_adr_cle_pblc_cs() print("\n") return adr
[ "tnemelkb@gmail.com" ]
tnemelkb@gmail.com
3502fcc6b3e92025f05f524cabb5ac4cba7720bc
7d6f4321de756fc2b4daec3b05551c5b1e311ec4
/Web_Spider/spiders/Scanner.py
3d89674ba2f08682724fa05006441cf5834420cc
[]
no_license
serdaraltin/Scrapy-Web-Spider
c84be73a80e1fba0c656ca865dd13ba2384c56d4
0af0331c5982094dde2ea56a66e3bba6aefed95b
refs/heads/master
2021-02-08T04:00:37.800524
2020-03-01T07:40:44
2020-03-01T07:40:44
244,106,633
1
0
null
null
null
null
UTF-8
Python
false
false
746
py
import scrapy class QuotesSpider(scrapy.Spider): name = "lamerhaber" start_urls = [ 'https://lamerhaber.com/', 'https://lamerhaber.com/category/hack-haber/', 'https://lamerhaber.com/category/ozel-haberler/', 'https://lamerhaber.com/category/hack-gruplari/', 'https://lamerhaber.com/category/haberler/', 'https://lamerhaber.com/category/teknoloji/', 'https://lamerhaber.com/category/duyurular/' ] def parse(self, response): for icerik in response.css('header.post-header'): yield { 'kategori': icerik.css('p.post-categories a::text').get(), 'baslik': icerik.css('h2 a::text').get(), 'tarih': icerik.css('p.post-meta a::text').get() }
[ "noreply@github.com" ]
serdaraltin.noreply@github.com
25e73d0f46e4a57b1c947f110db94b2853e7fc10
79aa4b99a48bb16a907916ad63c902443420541a
/0056.py
680d3134344eab5388e4c0b5d48fd531d58e8b3f
[]
no_license
mach8686devops/leetcode-100
62dec66c719d7cfa120ca9505701df49d8d5b982
f90526c9b073165b86b933cdf7d1dc496e68f2c6
refs/heads/main
2023-04-11T06:28:15.059587
2021-04-13T12:11:54
2021-04-13T12:11:54
329,346,572
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
# 合并空间 # 排序的做法 class Solution: def merge(self, intervals): if len(intervals) < 2: return intervals result = [] intervals.sort(key=lambda x: x[0]) for interval in intervals: if len(result) == 0 or interval[0] > result[-1][-1]: result.append(interval) else: result[-1][-1] = max(result[-1][-1], interval[1]) return result
[ "zhangjohn202@gmail.com" ]
zhangjohn202@gmail.com
0b1e26ac589857328e504db76cfa69134a2cb7b6
181cf26a68637707a1b2aae0be250b606a92ef07
/venv/Scripts/pip-script.py
6f5372c0fac373569bf15cf02192a2bcb7d2bc6e
[]
no_license
sunnypig2/SocialNetworkCode
bbc1b7fe731d19be88ef53008950785632b4b679
5c7b7d1b3caf5c1ae97c4309e30b701bbe224ea3
refs/heads/master
2020-05-16T16:56:59.397774
2019-06-03T09:37:40
2019-06-03T09:37:40
183,174,120
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#!C:\Users\lenovo\Desktop\socialNetworkCode\venv\Scripts\python3.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.3','console_scripts','pip' __requires__ = 'pip==9.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.3', 'console_scripts', 'pip')() )
[ "email@example.com" ]
email@example.com
f3260fb9bc4046cb9560d2d3f9ace38b07a48d39
ec47104831406b4fbba42ae09de842c41cdd7bad
/final_project.py
8bd75285e033b50d7b972082aac52ac6775229aa
[]
no_license
kairzhan8/ml-project
c162cf25dcccfbcd3264576d76f88420ccf8aba8
ef27c2228d218b69173b0637f8f734db0c20b6d5
refs/heads/master
2021-08-30T22:45:02.723707
2017-12-19T17:40:19
2017-12-19T17:40:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,496
py
from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score, ShuffleSplit import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from show_confusion_matrix import show_confusion_matrix import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression import pandas as pd from sklearn.naive_bayes import GaussianNB from pandas.tools.plotting import scatter_matrix import random import statsmodels.api as sm import time from sklearn.preprocessing import normalize from sklearn.svm import SVC from sklearn.metrics import (brier_score_loss, precision_score, recall_score,f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import pylab as pl from sklearn.neural_network import MLPClassifier from threading import Thread from sklearn.feature_selection import RFE from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel import itertools filename = '/Users/Kairzhan/Desktop/ml_final_project/KidCreative.csv' features=['Buy','Income','Is_Female','Is_Married','Has_College','Is_Professional','Is_Retired','Unemployed','Residence_Length','Dual_Income','Minors','Own','House','White','English','Prev_Child_Mag','Parent'] csv=pd.read_csv(filename,sep=',') datasets=csv.as_matrix() dataset=[] target=[] data=[] for i in range(0,len(datasets)): data.append([]) dataset.append([]) for j in range (len(datasets[i])): if j==0: continue else: dataset[i].append(datasets[i][j]) if j==1: target.append(datasets[i][j]) else: data[i].append(datasets[i][j]) dataset=np.asarray(dataset) X=np.asarray(data) Y=np.asarray(target) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=3) X_train,X_val, y_train, y_val = train_test_split(X_train,y_train, test_size=0.25,random_state=3) frame =pd.DataFrame(dataset) frame.columns=features cols_to_norm = ['Income','Residence_Length'] frame[cols_to_norm] = frame[cols_to_norm].apply(lambda x: (x - x.mean()) / (x.max() - x.min())) columns=[(frame.Buy),(frame.Income),(frame.Is_Female),(frame.Is_Married),(frame.Has_College),(frame.Is_Professional),(frame.Is_Retired),(frame.Unemployed),(frame.Residence_Length),(frame.Dual_Income),(frame.Minors),(frame.Own),(frame.House),(frame.White),(frame.English),(frame.Prev_Child_Mag),(frame.Parent)] forplot=[] column=[] row=[] k=0 for i in range(0,len(columns)): for j in range(i+1,len(columns)-1): if columns[i].corr(columns[j])>0.6 or columns[i].corr(columns[j])<-0.6: forplot.append(columns[i].corr(columns[j])) column.append(features[i]) row.append(features[j]) k+=1 def get_correlations(): for i in range(0,len(columns)): for j in range(i+1,len(columns)-1): print ('corr btw',features[i],'and',features[j],columns[i].corr(columns[j])) def draw_high_cor(): fig = plt.figure(figsize=(45, 15)) plots = len(forplot) ax=[] s=0 f=0 for i in range(0,plots): ax.append(plt.subplot2grid((5,4), (s,f))) f+=1 ax[i].scatter(frame[row[i]],frame[column[i]], s=10, c=[random.random(),random.random(),random.random()], marker="o") ax[i].set_ylabel(column[i]) ax[i].set_xlabel(row[i]) if (i+1)%4==0: s+=1 f=0 plt.show() plt.close(fig) def correlation_fig(): correlations = frame.corr() sm.graphics.plot_corr(correlations, xnames=features,ynames=features) plt.show() def scatter_matrix_fig(): scatter_matrix(frame,alpha=0.5, figsize=(20, 20), diagonal='kde') plt.show() def hist_fig(): frame.hist() plt.show() #Bayes nb=GaussianNB() nb.fit(X_train,y_train) nbpred=[] #KNN knn=KNeighborsClassifier(n_neighbors=3) knn.fit(X_train,y_train) knnpred=[] #DT model = DecisionTreeClassifier(min_samples_split=5) model.fit(X_train, y_train) dtpred=[] #LR logit = LogisticRegression() logit.fit(X_train,y_train) logitpred=[] #SVM svc = SVC(kernel='rbf') svc.fit(X_train,y_train) svcpred=[] #ANN ann = MLPClassifier() ann.fit(X_train,y_train) annpred=[] data_arr=list(X_val) for i in range(0,len(data_arr)): knnpred.append(knn.predict([data_arr[i]])) dtpred.append(model.predict([data_arr[i]])) nbpred.append(nb.predict([data_arr[i]])) logitpred.append(logit.predict([data_arr[i]])) svcpred.append(svc.predict([data_arr[i]])) annpred.append(ann.predict([data_arr[i]])) def general_accuracy(): print ("accuracy KNN Algorithm:",accuracy_score(y_val, knnpred)) print ("accuracy Data Tree:",accuracy_score(y_val, dtpred)) print ("accuracy Gaussian Normal:",accuracy_score(y_val,nbpred)) print ("accuracy Logistic Regression:",accuracy_score(y_val, logitpred)) print ("accuracy SVM :",accuracy_score(y_val, svcpred)) print ("accuracy ANN :",accuracy_score(y_val, annpred)) def get_conf(predicted): tn, fp, fn, tp = confusion_matrix(y_val, predicted).ravel() print ('True positives:',tp,'\nTrue negatives:',tn,'\nFalse negatives:',fn,'\nFalse positives',fp) print(classification_report(np.asarray(y_val), np.asarray(predicted))) print ('********************') def model_implementation(): k_range=range(1,41) k_scores=[] p_name=['Value of K for KNN','Value of C in Logit','Value of Max iterations for Logit','Value of Max_depth for Decition Tree','Value of alpha for ANN','Value of C for SVM'] Max_range=pl.frange(0,200,5) C_range=pl.frange(0.1,1,0.1) n_folds=10 C_scores=[] Max_scores=[] scores_stds=[] scores_std=[] p_i=[] p_j=[] for k in k_range: knn2 = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn2, X_train, y_train, cv=10) k_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) k_scores, scores_std = np.array(k_scores), np.array(scores_std) p_i.append(k_scores) p_j.append(k_range) scores_std=[] for c in C_range: log = LogisticRegression(C=c) scores = cross_val_score(log, X_train, y_train, cv=10) C_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) C_scores, scores_std = np.array(C_scores), np.array(scores_std) p_i.append(C_scores) p_j.append(C_range) scores_std=[] for M in Max_range: log = LogisticRegression(max_iter=M) scores = cross_val_score(log, X_train, y_train, cv=10) Max_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) Max_scores, scores_std = np.array(Max_scores), np.array(scores_std) p_i.append(Max_scores) p_j.append(Max_range) #Tree tree_scores=[] tree_range=range(3,10) scores_std=[] for M in tree_range: dt = DecisionTreeClassifier(max_depth=M) scores = cross_val_score(dt, X_train, y_train, cv=10) tree_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) tree_scores, scores_std = np.array(tree_scores), np.array(scores_std) p_i.append(tree_scores) p_j.append(tree_range) #ANN ann_scores=[] ann_range=pl.frange(0.0001,1,0.01) scores_std=[] for M in ann_range: Ann = MLPClassifier(alpha=M) scores = cross_val_score(Ann, X_train, y_train, cv=10) ann_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) ann_scores, scores_std = np.array(ann_scores), np.array(scores_std) p_i.append(ann_scores) p_j.append(ann_range) #CVM cvm_scores=[] cvm_range=pl.frange(0.1,10,0.1) scores_std=[] for M in cvm_range: Cvm = SVC(C=M) scores = cross_val_score(Cvm, X_train, y_train, cv=10) cvm_scores.append(scores.mean()) scores_std.append(scores.std()*2) scores_stds.append(scores_std) cvm_scores, scores_std = np.array(cvm_scores), np.array(scores_std) p_i.append(cvm_scores) p_j.append(cvm_range) plt.figure(figsize=(45, 20)) ax=[] s=0 f=0 for i in range(0,len(p_i)): ax.append(plt.subplot2grid((5,4), (s,f))) f+=1 ax[i].semilogx(p_j[i], p_i[i],color='red') std_error = scores_stds[i] / np.sqrt(n_folds) ax[i].semilogx(p_j[i], p_i[i] + std_error, 'b--') ax[i].semilogx(p_j[i], p_i[i] - std_error, 'b--') ax[i].set_ylabel("Cross-validated accuracy") ax[i].set_xlabel(p_name[i]) ax[i].fill_between(p_j[i], p_i[i] + std_error, p_i[i] - std_error) ax[i].axhline(np.max(p_i[i]), linestyle='--', alpha=0.2) ax[i].set_xlim([p_j[i][0], p_j[i][-1]]) if (i+1)%4==0: s+=1 f=0 plt.show() def new_models(): global logit2 print ("**********************************************") print ("Neighbors = 27 is for best model KNeighborsClassifier") knn2= KNeighborsClassifier(n_neighbors=27) knn2.fit(X_train,y_train) knnpred2=[] print ("C=0.2 is best model for Logistic Regression for ") logit2 = LogisticRegression(C=0.2) logit2.fit(X_train,y_train) logitpred2=[] #DT print ("max_depth=4 is best model for DT ") d_tree1 = DecisionTreeClassifier(max_depth=4) d_tree1.fit(X_train,y_train) dtreepred=[] #SVM print ("Best Feature Selection - SVM 1.5") s_v_m1 = SVC(C=1.5) s_v_m1.fit(X_train,y_train) s_v_pred=[] #ANN print ("Best Feature Selection - ANN 0.071") a_n_n1 = MLPClassifier(alpha=0.071) a_n_n1.fit(X_train,y_train) a_n_npred=[] for i in range(0,len(X_val)): knnpred2.append(knn2.predict([X_val[i]])) logitpred2.append(logit2.predict([X_val[i]])) dtreepred.append(d_tree1.predict([X_val[i]])) s_v_pred.append(s_v_m1.predict([X_val[i]])) a_n_npred.append(a_n_n1.predict([X_val[i]])) print ("accuracy Of New KNN:",accuracy_score(y_val, knnpred2)) print ("accuracy Of New LogisticRegression:",accuracy_score(y_val, logitpred2)) print ("accuracy Of New Decision Tree:",accuracy_score(y_val, dtreepred)) print ("accuracy Of New SVM:",accuracy_score(y_val, s_v_pred)) print ("accuracy Of New ANN:",accuracy_score(y_val, a_n_npred)) print ("\n********************LOGISTIC*********************") print ("New Model VS OLD Model For Logit") print('Logit Variance OLD: %.2f' % logit.score(X_val, y_val)) print('Logit Variance NEW: %.2f' % logit2.score(X_val, y_val)) y_pred=logit.predict(X_val) get_mse_rmse_model(y_pred,'OLD','LOGIT') y_pred=logit2.predict(X_val) get_mse_rmse_model(y_pred,'NEW','LOGIT') print ("\n***************************KNN***********************") print ("New Model VS OLD Model For Knn") print('KNN Variance OLD: %.2f' % knn.score(X_val, y_val)) print('KNN Variance NEW: %.2f' % knn2.score(X_val, y_val)) y_pred=knn.predict(X_val) get_mse_rmse_model(y_pred,'OLD','KNN') y_pred=knn2.predict(X_val) get_mse_rmse_model(y_pred,'NEW','KNN') print ("*******************************************************") print ("New Model VS OLD Model For DT") print('DT Variance OLD: %.2f' % model.score(X_val, y_val)) print('DT Variance NEW: %.2f' % d_tree1.score(X_val, y_val)) y_pred=model.predict(X_val) get_mse_rmse_model(y_pred,'OLD','DT') y_pred=d_tree1.predict(X_val)# get_mse_rmse_model(y_pred,'NEW','DT') print ("*******************************************************") print ("New Model VS OLD Model For SVM") print('SVM Variance OLD: %.2f' % svc.score(X_val, y_val)) print('SVM Variance NEW: %.2f' % s_v_m1.score(X_val, y_val)) y_pred=model.predict(X_val) get_mse_rmse_model(y_pred,'OLD','SVM') y_pred=d_tree1.predict(X_val) get_mse_rmse_model(y_pred,'NEW','SVM') print ("*******************************************************") print ("New Model VS OLD Model For ANN") print('ANN Variance OLD: %.2f' % ann.score(X_val, y_val)) print('ANN Variance NEW: %.2f' % a_n_n1.score(X_val, y_val)) y_pred=model.predict(X_val) get_mse_rmse_model(y_pred,'OLD','ANN') y_pred=d_tree1.predict(X_val) get_mse_rmse_model(y_pred,'NEW','ANN') #TEST print ("********************TEST best parameters**************************") knnpred_test=[] logitpred_test=[] svm_test=[] ann_test=[] dt_test=[] for i in range(0,len(X_test)): knnpred_test.append(knn2.predict([X_test[i]])) logitpred_test.append(logit2.predict([X_test[i]])) svm_test.append(s_v_m1.predict([X_test[i]])) ann_test.append(a_n_n1.predict([X_test[i]])) dt_test.append(d_tree1.predict([X_test[i]])) print ("accuracy knn TEST:",accuracy_score(y_test, knnpred_test)) print ("accuracy logistic TEST:",accuracy_score(y_test, logitpred_test)) print ("accuracy SVM TEST:",accuracy_score(y_test, svm_test)) print ("accuracy DT TEST:",accuracy_score(y_test, dt_test)) print ("accuracy ANN TEST:",accuracy_score(y_test, ann_test)) #Checking Accuracy and ERRORs def Tree_class(): model_Tree = ExtraTreesClassifier() model_Tree.fit(X_train,y_train) print (model_Tree.feature_importances_) def get_mse_rmse(y_val_new,y_pred): print("MSE3: %.2f" % (metrics.mean_squared_error(y_val_new,y_pred))) print("MAE3: %.2f" % (metrics.mean_absolute_error(y_val_new,y_pred))) print("RMSE3: %.2f" % (np.sqrt(metrics.mean_squared_error(y_val_new,y_pred)))) def accuracy_metrics_for_selected_features(): global logit2 xx=frame[['Income','Residence_Length']] yy=frame['Buy'] xx= list(np.array(xx)) yy=list(np.array(yy)) X_train_new, X_test_new, y_train_new, y_test_new = train_test_split(xx, yy, test_size=0.2, random_state=3)#20% Test, 80%Train X_train_new,X_val_new, y_train_new, y_val_new = train_test_split(X_train,y_train, test_size=0.25,random_state=3)#20% Validation 60%Train print ("Best Feature Selection - Logistic Regression") logit3 = LogisticRegression(C=0.2) logit3.fit(X_train_new,y_train_new) logitpred3=[] for i in range(0,len(X_val_new)): logitpred3.append(logit3.predict([X_val_new[i]])) print ("accuracy Of New LogisticRegression:",accuracy_score(y_val_new, logitpred3)) y_pred=logit3.predict(X_val_new) get_mse_rmse(y_val_new,y_pred) print ("\nBest Feature Selection - Decision Tree") d_tree = DecisionTreeClassifier(max_depth=4) d_tree.fit(X_train_new,y_train_new) dtreepred=[] for i in range(0,len(X_val_new)): dtreepred.append(d_tree.predict([X_val_new[i]])) print ("accuracy Of New Decision Tree:",accuracy_score(y_val_new, dtreepred)) y_pred=d_tree.predict(X_val_new) get_mse_rmse(y_val_new,y_pred) print ("\nBest Feature Selection - KNN ") k_nn = KNeighborsClassifier(n_neighbors=27) k_nn.fit(X_train_new,y_train_new) k_nnpred=[] for i in range(0,len(X_val_new)): k_nnpred.append(k_nn.predict([X_val_new[i]])) print ("accuracy Of New KNN:",accuracy_score(y_val_new, k_nnpred)) y_pred=k_nn.predict(X_val_new) get_mse_rmse(y_val_new,y_pred) print ("Best Feature Selection - SVM") s_v_m = SVC(C=1.5) s_v_m.fit(X_train_new,y_train_new) s_v_pred=[] for i in range(0,len(X_val_new)): s_v_pred.append(s_v_m.predict([X_val_new[i]])) print ("accuracy Of New SVM:",accuracy_score(y_val_new, s_v_pred)) y_pred=s_v_m.predict(X_val_new) get_mse_rmse(y_val_new,y_pred) print ("Best Feature Selection - ANN") a_n_n = MLPClassifier(alpha=0.071) a_n_n.fit(X_train_new,y_train_new) a_n_npred=[] for i in range(0,len(X_val_new)): a_n_npred.append(a_n_n.predict([X_val_new[i]])) print ("accuracy Of New ANN:",accuracy_score(y_val_new, a_n_npred)) y_pred=a_n_n.predict(X_val_new) get_mse_rmse(y_val_new,y_pred) def feature_importance_random_forest(): names = features[1:] rf = RandomForestRegressor(n_estimators=20, max_depth=4) scores = [] for i in range(X.shape[1]): score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2", cv=ShuffleSplit(len(X), 3, .3)) scores.append((round(np.mean(score), 3), names[i])) print (sorted(scores, reverse=True)) inp='' while inp!='x': print ("1 - Correlations") print ("2 - Visualize correlation figure ") print ('3 - Visualize scatter_matrix figure') print ('4 - Visualize only highly correlated features') print ('5 - Visualize histogram figure') print ('6 - Print General accuracy for all appropriate algorithms') print ("7 - Show newly generated Model's performation and accuracy") print ("8 - Get feature Importance using ExtraTreeClassifier") print ("9 - New_Model from Selecting important features, and their accuracy,errors,etc") print ("10 - Get feature Importance using RandomForestClassifier") print ('x - To exit') inp=input('Enter The command: ') if inp=='1': Thread(target=get_correlations).start() elif inp=='2': correlation_fig() elif inp=='3': scatter_matrix_fig() elif inp=='4': draw_high_cor() elif inp=='5': hist_fig() elif inp=='6': Thread(target=general_accuracy).start() elif inp=='7': Thread(target=new_models).start() elif inp=='8': Tree_class() elif inp=='9': accuracy_metrics_for_selected_features() elif inp=='10': print ('You have to wait until it performes... about 3-5minutes...') feature_importance_random_forest() elif inp=='x': print ('Exiting...') else: print ('No such command') time.sleep(2)
[ "noreply@github.com" ]
kairzhan8.noreply@github.com
85c31fdea8edee5bcfbb326f2c65874eca7eb679
910786e6fcc1021a523b71071225256f07444c8a
/env/lib/python3.8/tokenize.py
009b6cf237995eb246a8696f83f80473e7b1cef2
[]
no_license
Hugo-cruz/birdie-ps-webcrawler
c71c115b440252b53a9280b5b97c0205acb20bcc
a64399f0aa00e9391ab386dac44fb69beef235c3
refs/heads/main
2023-01-02T23:59:00.370237
2020-10-21T01:31:30
2020-10-21T01:31:30
304,638,747
0
0
null
null
null
null
UTF-8
Python
false
false
48
py
/home/olodum/anaconda3/lib/python3.8/tokenize.py
[ "cruz@raccoon.ag" ]
cruz@raccoon.ag
4425d2dc2406f7ea3aab5326e6b47153da11058a
2356ff9946a3122838b8c505c52eb922a614154e
/expenses_tracker/expenses_tracker/profiles/views.py
1d7e97ee4f9886cf0212fdb3d2a6ed97c7dcab05
[ "MIT" ]
permissive
BoyanPeychinov/python_web_basics
8587a10c9e36fd0ebedd7bfefc636a73949410d4
2f892ac119f7fe3a5c03fc5e7b35670dc609a70f
refs/heads/main
2023-07-03T05:09:21.037914
2021-08-06T12:44:01
2021-08-06T12:44:01
374,112,261
1
0
null
null
null
null
UTF-8
Python
false
false
1,439
py
from django.shortcuts import render, redirect from expenses_tracker.core.profile_utills import get_profile from expenses_tracker.expenses.models import Expense from expenses_tracker.profiles.forms import CreateProfileForm, EditProfileForm def profile_details(request): profile = get_profile() context = { 'profile': profile, } return render(request, 'profile.html', context) def create_profile(request): if request.method == "POST": form = CreateProfileForm(request.POST) if form.is_valid(): form.save() return redirect('home') else: form = CreateProfileForm() context = { 'form': form, } return render(request, 'home-no-profile.html', context) def edit_profile(request): profile = get_profile() if request.method == "POST": form = EditProfileForm(request.POST, instance=profile) if form.is_valid(): form.save() return redirect('home') else: form = EditProfileForm(instance=profile) context = { 'form': form, } return render(request, 'profile-edit.html', context) def delete_profile(request): profile = get_profile() if request.method == "POST": profile.delete() Expense.objects.all.delete() return redirect('home') else: context = { } return render(request, 'profile-delete.html', context)
[ "BoyanPeychinov@gmail.com" ]
BoyanPeychinov@gmail.com
85bb2ea2d537ece6edc6ae1a6168ca2cbddc5380
d05b3cd50e1b0732eb487fba451bab6aaf713a02
/beginner/69c.py
95dc80b1a7f5b1bb9811e7feb7afaba2e19855a9
[]
no_license
shiba24/atcoder-solutions
bf85319bee7ad742c58bc22e5ea3a1d5b7a2a733
1b30c017d6c8ac874a724039909cfec61f0bdc3b
refs/heads/master
2020-12-30T15:30:46.732647
2018-04-08T03:49:24
2018-04-08T03:49:24
91,154,147
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
import numpy as np N = int(raw_input()) l = np.array(map(int, raw_input().split())) mod_4 = len(np.where((l % 4 == 0))[0]) mod_2 = len(np.where(l % 4 == 2)[0]) if N <= 2 and mod_4 == 0 and mod_2 <= 1: print 'No' elif N <= mod_4 * 2 + 1: print 'Yes' elif N <= mod_4 * 2 + mod_2 and mod_2 >= 2: print 'Yes' elif N <= mod_4 * 2 + mod_2: print 'Yes' else: print 'No'
[ "shiba.shintaro@gmail.com" ]
shiba.shintaro@gmail.com
28b2e3ab1b084406129198cd83bff23f6079048a
9d3b3be57f15d5b3b45f81c5788922d80ed02477
/mr_base.py
3e4b4ef464342a64e1c01bdd480c9db710a67d20
[]
no_license
wang-ye/python_mr
b465578537f0f9ef11a37226d52270eaeea6d7d9
9673cb462d1cd8aa174aa1e9fd478a08eacce746
refs/heads/master
2018-12-27T23:20:00.154300
2013-08-21T15:07:01
2013-08-21T15:07:01
12,272,821
1
1
null
null
null
null
UTF-8
Python
false
false
5,419
py
#!/usr/bin/python '''author: Ye Wang The base file for MR.''' import config import os import os.path import sys class MapReduceBase(object): '''The Basic mapreduce framework. User supplies map_func and reduce_func. ''' def __init__(self, num_processes, num_input_files, input_file_dir, output_file_dir): self.num_processes = num_processes self.num_input_files = num_input_files self.input_file_dir = input_file_dir self.output_file_dir = output_file_dir # Constants definition. self._HOME_DIR = config._BASE_DIR self._TEMP_FILE_DIR = config._TMP_DIR + '/temp_dir/' self._MAP_SUFFIX = '.map' self._MERGE_SUFFIX = '.merge' self._REDUCE_SUFFIX = '.red' self._SEPERATOR = '#:-:#' # Create the directories if they do not exist. os.system('mkdir -p ' + self._TEMP_FILE_DIR) os.system('mkdir -p ' + self.output_file_dir) def get_input_path(self, input_dir, input_name): input_base_name = int(input_name) p1 = os.path.join(input_dir, str(input_base_name)) p2 = os.path.join(input_dir, '%05d' % input_base_name) if p1 == p2: return p2 elif not os.path.exists(p1) and os.path.exists(p2): return p2 elif os.path.exists(p1) and not os.path.exists(p2): return p1 else: assert False, 'p1 = %s, p2 = %s.' % (p1, p2) def pre_mr(self): """This will be run only once before any MR job starts.""" pass def _start(self, partition_id): pass def map_on_file(self, partition_id): '''Operate on file with the name partition_id. If the partition_id = "001" and _TEMP_FILE_DIR = '~/home' and there are 8 processes, then the intermediate output files could be ~/home/1.0.map, ~/home/1.1.map, ..., ~/home/1.7.map Two formats are accepted for the partition_id. It could be integers or integer padded by 0 at the beginning. So both 3, and 00003 can be accepted. All the partition_id s is padded by 0 at the beginning to form 5 digits, i.e., 00001, 00007, 00128, 00013. We remove the left 0s in the mapper. ''' self._start(partition_id) self.input_partition_id = partition_id print 'In map, processing ', partition_id sys.stdout.flush() out_fp_list = [] for i in range(self.num_processes): id_after_removal = str(partition_id).lstrip('0') if not id_after_removal: # 000 case id_after_removal = '0' tmp_name = id_after_removal +'.'+ str(i) + self._MAP_SUFFIX f = open(self._TEMP_FILE_DIR + os.sep + tmp_name, 'w') out_fp_list.append(f) input_file = open(self.input_file_dir + os.sep + partition_id) # User code starts here. for line in input_file: line = line.strip() # Remove the '\n' in the line. kv_list = self.map_func(line) for key, val in kv_list: output_str = '%s%s%s\n' % (key, self._SEPERATOR, val) pkey = self.hash_func(key) out_fp_list[pkey].write(output_str) # User code ends here. input_file.close() for fp in out_fp_list: fp.close() print 'Finshed mapping ', partition_id sys.stdout.flush() def hash_func(self, key): '''Return a integer smaller than self.num_processes.''' return hash(key)%self.num_processes def sort_merge_file(self, merge_file): # Sort the data in the merge_file. Maybe out-of-core. os.system('LC_ALL=C sort ' + ' --output=' + merge_file + '.tmp' + ' ' + merge_file) os.system('mv ' + merge_file + '.tmp ' + merge_file) def shuffle_on_file(self, thread_id): '''Merge the intermediate files having the same id, and sort the data.''' print 'In merge, merging ', thread_id merge_file = self._TEMP_FILE_DIR + os.sep + str(thread_id) + self._MERGE_SUFFIX if os.path.exists(merge_file): # Remove the existing files. os.remove(merge_file) os.system('touch ' + merge_file) # Concatnate all files ending with .{thread_id}.map. for i in range(self.num_input_files): map_file_name = str(i) + '.' + str(thread_id) + self._MAP_SUFFIX map_file_path = self._TEMP_FILE_DIR + os.sep + map_file_name os.system('cat ' + map_file_path + ' >>' + merge_file) # Sometimes, we do not need to sort. This decision is left to the actual # implementation. self.sort_merge_file(merge_file) print 'Finshed merging ', thread_id sys.stdout.flush() def reduce_on_file(self, thread_id): '''Reduce func.''' print 'In Reduce ', thread_id sys.stdout.flush() reduce_file = self.output_file_dir + os.sep + str(thread_id) + self._REDUCE_SUFFIX out_f = open(reduce_file, 'w') merge_file = self._TEMP_FILE_DIR + os.sep + str(thread_id) + self._MERGE_SUFFIX input_f = open(merge_file) # User code. The file contains reduce tuples from multiple keys. # The key/value pairs are sorted. self.reduce_func(input_f, out_f) # User codes end here. print 'Finished Reduce ' + str(thread_id) sys.stdout.flush() input_f.close() out_f.close() def map_func(self, line): '''Process the line and return a list of (key, val) pairs. It must be implemented.''' assert False def reduce_func(self, input_f, output_f): '''Read the input, and write the output_f or somewhere else. It must be implemented.''' assert False if __name__ == '__main__': assert (sys.argv[1] == 'True' or sys.argv[1] == 'False') run_mr_mode = sys.argv[1] pass
[ "wangye880191@gmail.com" ]
wangye880191@gmail.com
58871d6a211a6c7a2638e33078d578c29251118d
e389a8b4d4d7a21b3049f191e9600666e69d51ec
/_Archived/DT_GUI/NeuroportDBS-master/NeuroportDBS-master/PlotDBSTrack/brpylib.py
2400bbd5c6df419a2eddbe0c60da5df1daaa669a
[]
no_license
Doug1983/MRI_GUI
01f8a593ab135b79e39f0d9ac142a7137c7b5fa8
35d9409ecf6409caa33c0ff4a6a6a37eb1ad7f73
refs/heads/master
2020-04-07T09:56:48.612452
2019-02-27T18:47:16
2019-02-27T18:47:16
158,270,267
0
0
null
null
null
null
UTF-8
Python
false
false
69,243
py
# -*- coding: utf-8 -*- """ Collection of classes used for reading headers and data from Blackrock files current version: 1.3.2 --- 08/12/2016 @author: Mitch Frankel - Blackrock Microsystems Version History: v1.0.0 - 07/05/2016 - initial release - requires brMiscFxns v1.0.0 v1.1.0 - 07/08/2016 - inclusion of NsxFile.savesubsetnsx() for saving subset of Nsx data to disk4 v1.1.1 - 07/09/2016 - update to NsxFile.savesubsetnsx() for option (not)overwriting subset files if already exist bug fixes in NsxFile class as reported from beta user v1.2.0 - 07/12/2016 - bug fixes in NsxFile.savesubsetnsx() added version control and checking for brMiscFxns requires brMiscFxns v1.1.0 v1.3.0 - 07/22/2016 - added 'samp_per_s' to NsxFile.getdata() output added close() method to NsxFile and NevFile objects NsxFile.getdata() now pre-allocates output['data'] as zeros - speed and safety v1.3.1 - 08/02/2016 - bug fixes to NsxFile.getdata() for usability with Python 2.7 as reported from beta user patch for use with multiple NSP sync (overwriting of initial null data from initial data packet) __future__ import for use with Python 2.7 (division) minor modifications to allow use of Python 2.6+ v1.3.2 - 08/12/2016 - bug fixes to NsXFile.getdata() """ from __future__ import division # for those using Python 2.6+ import numpy as np from collections import namedtuple from datetime import datetime from math import ceil from os import path as ospath from struct import calcsize, pack, unpack, unpack_from from brMiscFxns import openfilecheck, brmiscfxns_ver # Version control set/check brpylib_ver = "1.3.2" brmiscfxns_ver_req = "1.2.0" if brmiscfxns_ver.split('.') < brmiscfxns_ver_req.split('.'): raise Exception("brpylib requires brMiscFxns " + brmiscfxns_ver_req + " or higher, please use latest version") # Patch for use with Python 2.6+ try: input = raw_input except NameError: pass # Define global variables to remove magic numbers # <editor-fold desc="Globals"> WARNING_SLEEP_TIME = 5 DATA_PAGING_SIZE = 1024**3 DATA_FILE_SIZE_MIN = 1024**2 * 10 STRING_TERMINUS = '\x00' UNDEFINED = 0 ELEC_ID_DEF = 'all' START_TIME_DEF = 0 DATA_TIME_DEF = 'all' DOWNSAMPLE_DEF = 1 START_OFFSET_MIN = 0 STOP_OFFSET_MIN = 0 UV_PER_BIT_21 = 0.25 WAVEFORM_SAMPLES_21 = 48 NSX_BASIC_HEADER_BYTES_22 = 314 NSX_EXT_HEADER_BYTES_22 = 66 DATA_BYTE_SIZE = 2 TIMESTAMP_NULL_21 = 0 NO_FILTER = 0 BUTTER_FILTER = 1 SERIAL_MODE = 0 RB2D_MARKER = 1 RB2D_BLOB = 2 RB3D_MARKER = 3 BOUNDARY_2D = 4 MARKER_SIZE = 5 DIGITAL_PACKET_ID = 0 NEURAL_PACKET_ID_MIN = 1 NEURAL_PACKET_ID_MAX = 2048 COMMENT_PACKET_ID = 65535 VIDEO_SYNC_PACKET_ID = 65534 TRACKING_PACKET_ID = 65533 BUTTON_PACKET_ID = 65532 CONFIGURATION_PACKET_ID = 65531 PARALLEL_REASON = 1 PERIODIC_REASON = 64 SERIAL_REASON = 129 LOWER_BYTE_MASK = 255 FIRST_BIT_MASK = 1 SECOND_BIT_MASK = 2 CLASSIFIER_MIN = 1 CLASSIFIER_MAX = 16 CLASSIFIER_NOISE = 255 CHARSET_ANSI = 0 CHARSET_UTF = 1 CHARSET_ROI = 255 COMM_RGBA = 0 COMM_TIME = 1 BUTTON_PRESS = 1 BUTTON_RESET = 2 CHG_NORMAL = 0 CHG_CRITICAL = 1 ENTER_EVENT = 1 EXIT_EVENT = 2 # </editor-fold> # Define a named tuple that has information about header/packet fields FieldDef = namedtuple('FieldDef', ['name', 'formatStr', 'formatFnc']) # <editor-fold desc="Header processing functions"> def processheaders(curr_file, packet_fields): """ :param curr_file: {file} the current BR datafile to be processed :param packet_fields : {named tuple} the specific binary fields for the given header :return: a fully unpacked and formatted tuple set of header information Read a packet from a binary data file and return a list of fields The amount and format of data read will be specified by the packet_fields container """ # This is a lot in one line. First I pull out all the format strings from # the basic_header_fields named tuple, then concatenate them into a string # with '<' at the front (for little endian format) packet_format_str = '<' + ''.join([fmt for name, fmt, fun in packet_fields]) # Calculate how many bytes to read based on the format strings of the header fields bytes_in_packet = calcsize(packet_format_str) packet_binary = curr_file.read(bytes_in_packet) # unpack the binary data from the header based on the format strings of each field. # This returns a list of data, but it's not always correctly formatted (eg, FileSpec # is read as ints 2 and 3 but I want it as '2.3' packet_unpacked = unpack(packet_format_str, packet_binary) # Create a iterator from the data list. This allows a formatting function # to use more than one item from the list if needed, and the next formatting # function can pick up on the correct item in the list data_iter = iter(packet_unpacked) # create an empty dictionary from the name field of the packet_fields. # The loop below will fill in the values with formatted data by calling # each field's formatting function packet_formatted = dict.fromkeys([name for name, fmt, fun in packet_fields]) for name, fmt, fun in packet_fields: packet_formatted[name] = fun(data_iter) return packet_formatted def format_filespec(header_list): return str(next(header_list)) + '.' + str(next(header_list)) # eg 2.3 def format_timeorigin(header_list): year = next(header_list) month = next(header_list) _ = next(header_list) day = next(header_list) hour = next(header_list) minute = next(header_list) second = next(header_list) millisecond = next(header_list) return datetime(year, month, day, hour, minute, second, millisecond * 1000) def format_stripstring(header_list): string = bytes.decode(next(header_list), 'latin-1') return string.split(STRING_TERMINUS, 1)[0] def format_none(header_list): return next(header_list) def format_freq(header_list): return str(float(next(header_list)) / 1000) + ' Hz' def format_filter(header_list): filter_type = next(header_list) if filter_type == NO_FILTER: return "none" elif filter_type == BUTTER_FILTER: return "butterworth" def format_charstring(header_list): return int(next(header_list)) def format_digconfig(header_list): config = next(header_list) & FIRST_BIT_MASK if config: return 'active' else: return 'ignored' def format_anaconfig(header_list): config = next(header_list) if config & FIRST_BIT_MASK: return 'low_to_high' if config & SECOND_BIT_MASK: return 'high_to_low' else: return 'none' def format_digmode(header_list): dig_mode = next(header_list) if dig_mode == SERIAL_MODE: return 'serial' else: return 'parallel' def format_trackobjtype(header_list): trackobj_type = next(header_list) if trackobj_type == UNDEFINED: return 'undefined' elif trackobj_type == RB2D_MARKER: return '2D RB markers' elif trackobj_type == RB2D_BLOB: return '2D RB blob' elif trackobj_type == RB3D_MARKER: return '3D RB markers' elif trackobj_type == BOUNDARY_2D: return '2D boundary' elif trackobj_type == MARKER_SIZE: return 'marker size' else: return 'error' def getdigfactor(ext_headers, idx): max_analog = ext_headers[idx]['MaxAnalogValue'] min_analog = ext_headers[idx]['MinAnalogValue'] max_digital = ext_headers[idx]['MaxDigitalValue'] min_digital = ext_headers[idx]['MinDigitalValue'] return float(max_analog - min_analog) / float(max_digital - min_digital) # </editor-fold> # <editor-fold desc="Header dictionaries"> nev_header_dict = { 'basic': [FieldDef('FileTypeID', '8s', format_stripstring), # 8 bytes - 8 char array FieldDef('FileSpec', '2B', format_filespec), # 2 bytes - 2 unsigned char FieldDef('AddFlags', 'H', format_none), # 2 bytes - uint16 FieldDef('BytesInHeader', 'I', format_none), # 4 bytes - uint32 FieldDef('BytesInDataPackets', 'I', format_none), # 4 bytes - uint32 FieldDef('TimeStampResolution', 'I', format_none), # 4 bytes - uint32 FieldDef('SampleTimeResolution', 'I', format_none), # 4 bytes - uint32 FieldDef('TimeOrigin', '8H', format_timeorigin), # 16 bytes - 8 x uint16 FieldDef('CreatingApplication', '32s', format_stripstring), # 32 bytes - 32 char array FieldDef('Comment', '256s', format_stripstring), # 256 bytes - 256 char array FieldDef('NumExtendedHeaders', 'I', format_none)], # 4 bytes - uint32 'ARRAYNME': FieldDef('ArrayName', '24s', format_stripstring), # 24 bytes - 24 char array 'ECOMMENT': FieldDef('ExtraComment', '24s', format_stripstring), # 24 bytes - 24 char array 'CCOMMENT': FieldDef('ContComment', '24s', format_stripstring), # 24 bytes - 24 char array 'MAPFILE': FieldDef('MapFile', '24s', format_stripstring), # 24 bytes - 24 char array 'NEUEVWAV': [FieldDef('ElectrodeID', 'H', format_none), # 2 bytes - uint16 FieldDef('PhysicalConnector', 'B', format_charstring), # 1 byte - 1 unsigned char FieldDef('ConnectorPin', 'B', format_charstring), # 1 byte - 1 unsigned char FieldDef('DigitizationFactor', 'H', format_none), # 2 bytes - uint16 FieldDef('EnergyThreshold', 'H', format_none), # 2 bytes - uint16 FieldDef('HighThreshold', 'h', format_none), # 2 bytes - int16 FieldDef('LowThreshold', 'h', format_none), # 2 bytes - int16 FieldDef('NumSortedUnits', 'B', format_charstring), # 1 byte - 1 unsigned char FieldDef('BytesPerWaveform', 'B', format_charstring), # 1 byte - 1 unsigned char FieldDef('SpikeWidthSamples', 'H', format_none), # 2 bytes - uint16 FieldDef('EmptyBytes', '8s', format_none)], # 8 bytes - empty 'NEUEVLBL': [FieldDef('ElectrodeID', 'H', format_none), # 2 bytes - uint16 FieldDef('Label', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('EmptyBytes', '6s', format_none)], # 6 bytes - empty 'NEUEVFLT': [FieldDef('ElectrodeID', 'H', format_none), # 2 bytes - uint16 FieldDef('HighFreqCorner', 'I', format_freq), # 4 bytes - uint32 FieldDef('HighFreqOrder', 'I', format_none), # 4 bytes - uint32 FieldDef('HighFreqType', 'H', format_filter), # 2 bytes - uint16 FieldDef('LowFreqCorner', 'I', format_freq), # 4 bytes - uint32 FieldDef('LowFreqOrder', 'I', format_none), # 4 bytes - uint32 FieldDef('LowFreqType', 'H', format_filter), # 2 bytes - uint16 FieldDef('EmptyBytes', '2s', format_none)], # 2 bytes - empty 'DIGLABEL': [FieldDef('Label', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('Mode', '?', format_digmode), # 1 byte - boolean FieldDef('EmptyBytes', '7s', format_none)], # 7 bytes - empty 'NSASEXEV': [FieldDef('Frequency', 'H', format_none), # 2 bytes - uint16 FieldDef('DigitalInputConfig', 'B', format_digconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh1Config', 'B', format_anaconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh1DetectVal', 'h', format_none), # 2 bytes - int16 FieldDef('AnalogCh2Config', 'B', format_anaconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh2DetectVal', 'h', format_none), # 2 bytes - int16 FieldDef('AnalogCh3Config', 'B', format_anaconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh3DetectVal', 'h', format_none), # 2 bytes - int16 FieldDef('AnalogCh4Config', 'B', format_anaconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh4DetectVal', 'h', format_none), # 2 bytes - int16 FieldDef('AnalogCh5Config', 'B', format_anaconfig), # 1 byte - 1 unsigned char FieldDef('AnalogCh5DetectVal', 'h', format_none), # 2 bytes - int16 FieldDef('EmptyBytes', '6s', format_none)], # 2 bytes - empty 'VIDEOSYN': [FieldDef('VideoSourceID', 'H', format_none), # 2 bytes - uint16 FieldDef('VideoSource', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('FrameRate', 'f', format_none), # 4 bytes - single float FieldDef('EmptyBytes', '2s', format_none)], # 2 bytes - empty 'TRACKOBJ': [FieldDef('TrackableType', 'H', format_trackobjtype), # 2 bytes - uint16 FieldDef('TrackableID', 'H', format_none), # 2 bytes - uint16 FieldDef('PointCount', 'H', format_none), # 2 bytes - uint16 FieldDef('VideoSource', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('EmptyBytes', '2s', format_none)] # 2 bytes - empty } nsx_header_dict = { 'basic_21': [FieldDef('Label', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('Period', 'I', format_none), # 4 bytes - uint32 FieldDef('ChannelCount', 'I', format_none)], # 4 bytes - uint32 'basic': [FieldDef('FileSpec', '2B', format_filespec), # 2 bytes - 2 unsigned char FieldDef('BytesInHeader', 'I', format_none), # 4 bytes - uint32 FieldDef('Label', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('Comment', '256s', format_stripstring), # 256 bytes - 256 char array FieldDef('Period', 'I', format_none), # 4 bytes - uint32 FieldDef('TimeStampResolution', 'I', format_none), # 4 bytes - uint32 FieldDef('TimeOrigin', '8H', format_timeorigin), # 16 bytes - 8 uint16 FieldDef('ChannelCount', 'I', format_none)], # 4 bytes - uint32 'extended': [FieldDef('Type', '2s', format_stripstring), # 2 bytes - 2 char array FieldDef('ElectrodeID', 'H', format_none), # 2 bytes - uint16 FieldDef('ElectrodeLabel', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('PhysicalConnector', 'B', format_none), # 1 byte - uint8 FieldDef('ConnectorPin', 'B', format_none), # 1 byte - uint8 FieldDef('MinDigitalValue', 'h', format_none), # 2 bytes - int16 FieldDef('MaxDigitalValue', 'h', format_none), # 2 bytes - int16 FieldDef('MinAnalogValue', 'h', format_none), # 2 bytes - int16 FieldDef('MaxAnalogValue', 'h', format_none), # 2 bytes - int16 FieldDef('Units', '16s', format_stripstring), # 16 bytes - 16 char array FieldDef('HighFreqCorner', 'I', format_freq), # 4 bytes - uint32 FieldDef('HighFreqOrder', 'I', format_none), # 4 bytes - uint32 FieldDef('HighFreqType', 'H', format_filter), # 2 bytes - uint16 FieldDef('LowFreqCorner', 'I', format_freq), # 4 bytes - uint32 FieldDef('LowFreqOrder', 'I', format_none), # 4 bytes - uint32 FieldDef('LowFreqType', 'H', format_filter)], # 2 bytes - uint16 'data': [FieldDef('Header', 'B', format_none), # 1 byte - uint8 FieldDef('Timestamp', 'I', format_none), # 4 bytes - uint32 FieldDef('NumDataPoints', 'I', format_none)] # 4 bytes - uint32] } # </editor-fold> # <editor-fold desc="Safety check functions"> def check_elecid(elec_ids): if type(elec_ids) is str and elec_ids != ELEC_ID_DEF: print("\n*** WARNING: Electrode IDs must be 'all', a single integer, or a list of integers.") print(" Setting elec_ids to 'all'") elec_ids = ELEC_ID_DEF if elec_ids != ELEC_ID_DEF and type(elec_ids) is not list: if type(elec_ids) == range: elec_ids = list(elec_ids) elif type(elec_ids) == int: elec_ids = [elec_ids] return elec_ids def check_starttime(start_time_s): if not isinstance(start_time_s, (int, float)) or \ (isinstance(start_time_s, (int, float)) and start_time_s < START_TIME_DEF): print("\n*** WARNING: Start time is not valid, setting start_time_s to 0") start_time_s = START_TIME_DEF return start_time_s def check_datatime(data_time_s): if (type(data_time_s) is str and data_time_s != DATA_TIME_DEF) or \ (isinstance(data_time_s, (int, float)) and data_time_s < 0): print("\n*** WARNING: Data time is not valid, setting data_time_s to 'all'") data_time_s = DATA_TIME_DEF return data_time_s def check_downsample(downsample): if not isinstance(downsample, int) or downsample < DOWNSAMPLE_DEF: print("\n*** WARNING: Downsample must be an integer value greater than 0. " " Setting downsample to 1 (no downsampling)") downsample = DOWNSAMPLE_DEF return downsample def check_dataelecid(elec_ids, all_elec_ids): unique_elec_ids = set(elec_ids) all_elec_ids = set(all_elec_ids) # if some electrodes asked for don't exist, reset list with those that do, or throw error and return if not unique_elec_ids.issubset(all_elec_ids): if not unique_elec_ids & all_elec_ids: print('\nNone of the elec_ids passed exist in the data, returning None') return None else: print("\n*** WARNING: Channels " + str(sorted(list(unique_elec_ids - all_elec_ids))) + " do not exist in the data") unique_elec_ids = unique_elec_ids & all_elec_ids return sorted(list(unique_elec_ids)) def check_filesize(file_size): if file_size < DATA_FILE_SIZE_MIN: print('\n file_size must be larger than 10 Mb, setting file_size=10 Mb') return DATA_FILE_SIZE_MIN else: return int(file_size) # </editor-fold> class NevFile: """ attributes and methods for all BR event data files. Initialization opens the file and extracts the basic header information. """ def __init__(self, datafile=''): self.datafile = datafile self.basic_header = {} self.extended_headers = [] # Run openfilecheck and open the file passed or allow user to browse to one self.datafile = openfilecheck('rb', file_name=self.datafile, file_ext='.nev', file_type='Blackrock NEV Files') # extract basic header information self.basic_header = processheaders(self.datafile, nev_header_dict['basic']) # Extract extended headers for i in range(self.basic_header['NumExtendedHeaders']): self.extended_headers.append({}) header_string = bytes.decode(unpack('<8s', self.datafile.read(8))[0], 'latin-1') self.extended_headers[i]['PacketID'] = header_string.split(STRING_TERMINUS, 1)[0] self.extended_headers[i].update( processheaders(self.datafile, nev_header_dict[self.extended_headers[i]['PacketID']])) # Must set this for file spec 2.1 and 2.2 if header_string == 'NEUEVWAV' and float(self.basic_header['FileSpec']) < 2.3: self.extended_headers[i]['SpikeWidthSamples'] = WAVEFORM_SAMPLES_21 def getdata(self, elec_ids='all', get_waveforms=True): """ This function is used to return a set of data from the NSx datafile. :param elec_ids: [optional] {list} User selection of elec_ids to extract specific spike waveforms (e.g., [13]) :return: output: {Dictionary} with one or more of the following dictionaries (all include TimeStamps) dig_events: Reason, Data, [for file spec 2.2 and below, AnalogData and AnalogDataUnits] spike_events: Units='nV', ChannelID, NEUEVWAV_HeaderIndices, Classification, Waveforms comments: CharSet, Flag, Data, Comment video_sync_events: VideoFileNum, VideoFrameNum, VideoElapsedTime_ms, VideoSourceID tracking_events: ParentID, NodeID, NodeCount, PointCount, TrackingPoints button_trigger_events: TriggerType configuration_events: ConfigChangeType, ConfigChanged Note: For digital and neural data - TimeStamps, Classification, and Data can be lists of lists when more than one digital type or spike event exists for a channel """ # Initialize output dictionary and reset position in file (if read before, may not be here anymore) output = dict() self.datafile.seek(self.basic_header['BytesInHeader'], 0) # Safety checks elec_ids = check_elecid(elec_ids) # Must go through each data packet and process separately until end of file filesize = ospath.getsize(self.datafile.name) while self.datafile.tell() != filesize: time_stamp = unpack('<I', self.datafile.read(4))[0] packet_id = unpack('<H', self.datafile.read(2))[0] # skip unwanted neural data packets if only asking for certain channels if not (elec_ids == 'all' or ( (packet_id in elec_ids) and NEURAL_PACKET_ID_MIN <= packet_id <= NEURAL_PACKET_ID_MAX )): self.datafile.seek(self.basic_header['BytesInDataPackets'] - 6, 1) continue # For digital event data, read reason, skip one byte (reserved), read digital value, # and skip X bytes (reserved) if packet_id == DIGITAL_PACKET_ID: # See if the dictionary exists in output if 'dig_events' not in output: output['dig_events'] = {'Reason': [], 'TimeStamps': [], 'Data': []} reason = unpack('B', self.datafile.read(1))[0] if reason == PARALLEL_REASON: reason = 'parallel' elif reason == PERIODIC_REASON: reason = 'periodic' elif reason == SERIAL_REASON: reason = 'serial' else: reason = 'unknown' self.datafile.seek(1, 1) # Check if this type of data already exists, if not, create an empty list, and then append data if reason in output['dig_events']['Reason']: idx = output['dig_events']['Reason'].index(reason) else: idx = -1 output['dig_events']['Reason'].append(reason) output['dig_events']['TimeStamps'].append([]) output['dig_events']['Data'].append([]) output['dig_events']['TimeStamps'][idx].append(time_stamp) output['dig_events']['Data'][idx].append(unpack('<H', self.datafile.read(2))[0]) # For serial data, strip off upper byte if reason == 'serial': output['dig_events']['Data'][idx][-1] &= LOWER_BYTE_MASK # For File Spec < 2.3, also capture analog Data, otherwise skip remaining packet bytes if float(self.basic_header['FileSpec']) < 2.3: if 'AnalogDataUnits' not in output['dig_events']: output['dig_events']['AnalogDataUnits'] = 'mv' output['dig_events']['AnalogData'].append([]) for j in range(5): output['dig_events']['AnalogData'][-1].append(unpack('<h', self.datafile.read(2))[0]) else: self.datafile.seek(self.basic_header['BytesInDataPackets'] - 10, 1) # For neural waveforms, read classifier, skip one byte (reserved), and read waveform data elif NEURAL_PACKET_ID_MIN <= packet_id <= NEURAL_PACKET_ID_MAX: # See if the dictionary exists in output, if not, create it if 'spike_events' not in output: output['spike_events'] = {'Units': 'nV', 'ChannelID': [], 'TimeStamps': [], 'NEUEVWAV_HeaderIndices': [], 'Classification': [], 'Waveforms': []} classifier = unpack('B', self.datafile.read(1))[0] if classifier == UNDEFINED: classifier = 'none' elif CLASSIFIER_MIN <= classifier <= CLASSIFIER_MAX: classifier = classifier elif classifier == CLASSIFIER_NOISE: classifier = 'noise' else: classifier = 'error' self.datafile.seek(1, 1) # Check if data for this electrode exists and update parameters accordingly if packet_id in output['spike_events']['ChannelID']: idx = output['spike_events']['ChannelID'].index(packet_id) else: idx = -1 output['spike_events']['ChannelID'].append(packet_id) output['spike_events']['TimeStamps'].append([]) output['spike_events']['Classification'].append([]) # Find neuevwav extended header for this electrode for use in calculating data info output['spike_events']['NEUEVWAV_HeaderIndices'].append( next(item for (item, d) in enumerate(self.extended_headers) if d["ElectrodeID"] == packet_id and d["PacketID"] == 'NEUEVWAV')) output['spike_events']['TimeStamps'][idx].append(time_stamp) output['spike_events']['Classification'][idx].append(classifier) # Use extended header idx to get specific data information ext_header_idx = output['spike_events']['NEUEVWAV_HeaderIndices'][idx] samples = self.extended_headers[ext_header_idx]['SpikeWidthSamples'] dig_factor = self.extended_headers[ext_header_idx]['DigitizationFactor'] num_bytes = self.extended_headers[ext_header_idx]['BytesPerWaveform'] if num_bytes <= 1: data_type = np.int8 elif num_bytes == 2: data_type = np.int16 # Extract and scale the data if get_waveforms: if idx == -1: output['spike_events']['Waveforms'].append( [np.fromfile(file=self.datafile, dtype=data_type, count=samples).astype(np.int32) * dig_factor]) else: output['spike_events']['Waveforms'][idx] = \ np.append(output['spike_events']['Waveforms'][idx], [np.fromfile(file=self.datafile, dtype=data_type, count=samples).astype(np.int32) * dig_factor], axis=0) else: self.datafile.seek(self.basic_header['BytesInDataPackets'] - 8, 1) # For comment events elif packet_id == COMMENT_PACKET_ID: # See if the dictionary exists in output, if not, create it if 'comments' not in output: output['comments'] = {'TimeStamps': [], 'CharSet': [], 'Flag': [], 'Data': [], 'Comment': []} output['comments']['TimeStamps'].append(time_stamp) char_set = unpack('B', self.datafile.read(1))[0] if char_set == CHARSET_ANSI: output['comments']['CharSet'].append('ANSI') elif char_set == CHARSET_UTF: output['comments']['CharSet'].append('UTF-16') elif char_set == CHARSET_ROI: output['comments']['CharSet'].append('NeuroMotive ROI') else: output['comments']['CharSet'].append('error') comm_flag = unpack('B', self.datafile.read(1))[0] if comm_flag == COMM_RGBA: output['comments']['Flag'].append('RGBA color code') elif comm_flag == COMM_TIME: output['comments']['Flag'].append('timestamp') else: output['comments']['Flag'].append('error') output['comments']['Data'].append(unpack('<I', self.datafile.read(4))[0]) samples = self.basic_header['BytesInDataPackets'] - 12 comm_string = bytes.decode(self.datafile.read(samples), 'latin-1') output['comments']['Comment'].append(comm_string.split(STRING_TERMINUS, 1)[0]) # For video sync event elif packet_id == VIDEO_SYNC_PACKET_ID: # See if the dictionary exists in output, if not, create it if 'video_sync_events' not in output: output['video_sync_events'] = {'TimeStamps': [], 'VideoFileNum': [], 'VideoFrameNum': [], 'VideoElapsedTime_ms': [], 'VideoSourceID': []} output['video_sync_events']['TimeStamps'].append( time_stamp) output['video_sync_events']['VideoFileNum'].append( unpack('<H', self.datafile.read(2))[0]) output['video_sync_events']['VideoFrameNum'].append( unpack('<I', self.datafile.read(4))[0]) output['video_sync_events']['VideoElapsedTime_ms'].append( unpack('<I', self.datafile.read(4))[0]) output['video_sync_events']['VideoSourceID'].append( unpack('<I', self.datafile.read(4))[0]) self.datafile.seek((self.basic_header['BytesInDataPackets'] - 20), 1) # For tracking event elif packet_id == TRACKING_PACKET_ID: # See if the dictionary exists in output, if not, create it if 'tracking_events' not in output: output['tracking_events'] = {'TimeStamps': [], 'ParentID': [], 'NodeID': [], 'NodeCount': [], 'PointCount': [], 'TrackingPoints': []} output['tracking_events']['TimeStamps'].append( time_stamp) output['tracking_events']['ParentID'].append( unpack('<H', self.datafile.read(2))[0]) output['tracking_events']['NodeID'].append( unpack('<H', self.datafile.read(2))[0]) output['tracking_events']['NodeCount'].append( unpack('<H', self.datafile.read(2))[0]) output['tracking_events']['PointCount'].append( unpack('<H', self.datafile.read(2))[0]) samples = (self.basic_header['BytesInDataPackets'] - 14) // 2 output['tracking_events']['TrackingPoints'].append( np.fromfile(file=self.datafile, dtype=np.uint16, count=samples)) # For button trigger event elif packet_id == BUTTON_PACKET_ID: # See if the dictionary exists in output, if not, create it if 'button_trigger_events' not in output: output['button_trigger_events'] = {'TimeStamps': [], 'TriggerType': []} output['button_trigger_events']['TimeStamps'].append(time_stamp) trigger_type = unpack('<H', self.datafile.read(2))[0] if trigger_type == UNDEFINED: output['button_trigger_events']['TriggerType'].append('undefined') elif trigger_type == BUTTON_PRESS: output['button_trigger_events']['TriggerType'].append('button press') elif trigger_type == BUTTON_RESET: output['button_trigger_events']['TriggerType'].append('event reset') else: output['button_trigger_events']['TriggerType'].append('error') self.datafile.seek((self.basic_header['BytesInDataPackets'] - 8), 1) # For configuration log event elif packet_id == CONFIGURATION_PACKET_ID: # See if the dictionary exists in output, if not, create it if 'configuration_events' not in output: output['configuration_events'] = {'TimeStamps': [], 'ConfigChangeType': [], 'ConfigChanged': []} output['configuration_events']['TimeStamps'].append(time_stamp) change_type = unpack('<H', self.datafile.read(2))[0] if change_type == CHG_NORMAL: output['configuration_events']['ConfigChangeType'].append('normal') elif change_type == CHG_CRITICAL: output['configuration_events']['ConfigChangeType'].append('critical') else: output['configuration_events']['ConfigChangeType'].append('error') samples = self.basic_header['BytesInDataPackets'] - 8 output['configuration_events']['ConfigChanged'].append(unpack(('<' + str(samples) + 's'), self.datafile.read(samples))[0]) # Otherwise, packet unknown, skip to next packet else: self.datafile.seek((self.basic_header['BytesInDataPackets'] - 6), 1) return output def processroicomments(self, comments): """ used to process the comment data packets associated with NeuroMotive region of interest enter/exit events. requires that read_data() has already been run. :return: roi_events: a dictionary of regions, enter timestamps, and exit timestamps for each region """ roi_events = {'Regions': [], 'EnterTimeStamps': [], 'ExitTimeStamps': []} for i in range(len(comments['TimeStamps'])): if comments['CharSet'][i] == 'NeuroMotive ROI': temp_data = pack('<I', comments['Data'][i]) roi = unpack_from('<B', temp_data)[0] event = unpack_from('<B', temp_data, 1)[0] # Determine the label of the region source source_label = next(d['VideoSource'] for d in self.extended_headers if d["TrackableID"] == roi) # update the timestamps for events if source_label in roi_events['Regions']: idx = roi_events['Regions'].index(source_label) else: idx = -1 roi_events['Regions'].append(source_label) roi_events['EnterTimeStamps'].append([]) roi_events['ExitTimeStamps'].append([]) if event == ENTER_EVENT: roi_events['EnterTimeStamps'][idx].append(comments['TimeStamp'][i]) elif event == EXIT_EVENT: roi_events['ExitTimeStamps'][idx].append(comments['TimeStamp'][i]) return roi_events def close(self): name = self.datafile.name self.datafile.close() print('\n' + name.split('/')[-1] + ' closed') class NsxFile: """ attributes and methods for all BR continuous data files. Initialization opens the file and extracts the basic header information. """ def __init__(self, datafile=''): self.datafile = datafile self.basic_header = {} self.extended_headers = [] # Run openfilecheck and open the file passed or allow user to browse to one self.datafile = openfilecheck('rb', file_name=self.datafile, file_ext='.ns*', file_type='Blackrock NSx Files') # Determine File ID to determine if File Spec 2.1 self.basic_header['FileTypeID'] = bytes.decode(self.datafile.read(8), 'latin-1') # Extract basic and extended header information based on File Spec if self.basic_header['FileTypeID'] == 'NEURALSG': self.basic_header.update(processheaders(self.datafile, nsx_header_dict['basic_21'])) self.basic_header['FileSpec'] = '2.1' self.basic_header['TimeStampResolution'] = 30000 self.basic_header['BytesInHeader'] = 32 + 4 * self.basic_header['ChannelCount'] shape = (1, self.basic_header['ChannelCount']) self.basic_header['ChannelID'] = \ list(np.fromfile(file=self.datafile, dtype=np.uint32, count=self.basic_header['ChannelCount']).reshape(shape)[0]) else: self.basic_header.update(processheaders(self.datafile, nsx_header_dict['basic'])) for i in range(self.basic_header['ChannelCount']): self.extended_headers.append(processheaders(self.datafile, nsx_header_dict['extended'])) def getdata(self, elec_ids='all', start_time_s=0, data_time_s='all', downsample=1): """ This function is used to return a set of data from the NSx datafile. :param elec_ids: [optional] {list} List of elec_ids to extract (e.g., [13]) :param start_time_s: [optional] {float} Starting time for data extraction (e.g., 1.0) :param data_time_s: [optional] {float} Length of time of data to return (e.g., 30.0) :param downsample: [optional] {int} Downsampling factor (e.g., 2) :return: output: {Dictionary} of: data_headers: {list} dictionaries of all data headers elec_ids: {list} elec_ids that were extracted (sorted) start_time_s: {float} starting time for data extraction data_time_s: {float} length of time of data returned downsample: {int} data downsampling factor samp_per_s: {float} output data samples per second data: {numpy array} continuous data in a 2D numpy array Parameters: elec_ids, start_time_s, data_time_s, and downsample are not mandatory. Defaults will assume all electrodes and all data points starting at time(0) are to be read. Data is returned as a numpy 2d array with each row being the data set for each electrode (e.g. output['data'][0] for output['elec_ids'][0]). """ # Safety checks start_time_s = check_starttime(start_time_s) data_time_s = check_datatime(data_time_s) downsample = check_downsample(downsample) elec_ids = check_elecid(elec_ids) # initialize parameters output = dict() output['elec_ids'] = elec_ids output['start_time_s'] = float(start_time_s) output['data_time_s'] = data_time_s output['downsample'] = downsample output['data'] = [] output['data_headers'] = [] output['ExtendedHeaderIndices'] = [] datafile_samp_per_sec = self.basic_header['TimeStampResolution'] / self.basic_header['Period'] data_pt_size = self.basic_header['ChannelCount'] * DATA_BYTE_SIZE elec_id_indices = [] front_end_idxs = [] analog_input_idxs = [] front_end_idx_cont = True analog_input_idx_cont = True hit_start = False hit_stop = False d_ptr = 0 # Move file position to start of datafile (if read before, may not be here anymore) self.datafile.seek(self.basic_header['BytesInHeader'], 0) # Based on FileSpec set other parameters if self.basic_header['FileSpec'] == '2.1': output['elec_ids'] = self.basic_header['ChannelID'] output['data_headers'].append({}) output['data_headers'][0]['Timestamp'] = TIMESTAMP_NULL_21 output['data_headers'][0]['NumDataPoints'] = (ospath.getsize(self.datafile.name) - self.datafile.tell()) \ // (DATA_BYTE_SIZE * self.basic_header['ChannelCount']) else: output['elec_ids'] = [d['ElectrodeID'] for d in self.extended_headers] # Determine start and stop index for data if start_time_s == START_TIME_DEF: start_idx = START_OFFSET_MIN else: start_idx = int(round(start_time_s * datafile_samp_per_sec)) if data_time_s == DATA_TIME_DEF: stop_idx = STOP_OFFSET_MIN else: stop_idx = int(round((start_time_s + data_time_s) * datafile_samp_per_sec)) # If a subset of electrodes is requested, error check, determine elec indices, and reduce headers if elec_ids != ELEC_ID_DEF: elec_ids = check_dataelecid(elec_ids, output['elec_ids']) if not elec_ids: return output else: elec_id_indices = [output['elec_ids'].index(e) for e in elec_ids] output['elec_ids'] = elec_ids num_elecs = len(output['elec_ids']) # Determine extended header indices and idx for Front End vs. Analog Input channels if self.basic_header['FileSpec'] != '2.1': for i in range(num_elecs): idx = next(item for (item, d) in enumerate(self.extended_headers) if d["ElectrodeID"] == output['elec_ids'][i]) output['ExtendedHeaderIndices'].append(idx) if self.extended_headers[idx]['PhysicalConnector'] < 5: front_end_idxs.append(i) else: analog_input_idxs.append(i) # Determine if front_end_idxs and analog_idxs are contiguous (default = False) if any(np.diff(np.array(front_end_idxs)) != 1): front_end_idx_cont = False if any(np.diff(np.array(analog_input_idxs)) != 1): analog_input_idx_cont = False # Pre-allocate output data based on data packet info (timestamp + num pts) and/or data_time_s # 1) Determine number of samples in all data packets to set possible number of output pts # 1a) For file spec > 2.1, get to last data packet quickly to determine total possible output length # 2) If possible output length is bigger than requested, set output based on requested if self.basic_header['FileSpec'] == '2.1': timestamp = TIMESTAMP_NULL_21 num_data_pts = output['data_headers'][0]['NumDataPoints'] else: while self.datafile.tell() != ospath.getsize(self.datafile.name): self.datafile.seek(1, 1) # skip header byte value timestamp = unpack('<I', self.datafile.read(4))[0] num_data_pts = unpack('<I', self.datafile.read(4))[0] self.datafile.seek(num_data_pts * self.basic_header['ChannelCount'] * DATA_BYTE_SIZE, 1) stop_idx_output = ceil(timestamp / self.basic_header['Period']) + num_data_pts if data_time_s != DATA_TIME_DEF and stop_idx < stop_idx_output: stop_idx_output = stop_idx total_samps = int(ceil((stop_idx_output - start_idx) / downsample)) if (total_samps * self.basic_header['ChannelCount'] * DATA_BYTE_SIZE) > DATA_PAGING_SIZE: print("\nOutput data requested is larger than 1 GB, attempting to preallocate output now") # If data output is bigger than available, let user know this is too big and they must request at least one of: # subset of electrodes, subset of data, or use savensxsubset to smaller file sizes, otherwise, pre-allocate data try: output['data'] = np.zeros((total_samps, num_elecs), dtype=np.float32) except MemoryError as err: err.args += (" Output data size requested is larger than available memory. Use the parameters\n" " for getdata(), e.g., 'elec_ids', to request a subset of the data or use\n" " NsxFile.savesubsetnsx() to create subsets of the main nsx file\n", ) raise # Reset file position to start of data header #1, loop through all data packets, process header, and add data self.datafile.seek(self.basic_header['BytesInHeader'], 0) while not hit_stop: # Read header, check to make sure the header is valid (ie Header field != 0). There is currently a # bug with the NSP where pausing creates a 0 sample packet before the next real data packet, these need to # be skipped, including any tiny packets that have less samples than downsample if self.basic_header['FileSpec'] != '2.1': output['data_headers'].append(processheaders(self.datafile, nsx_header_dict['data'])) if output['data_headers'][-1]['Header'] == 0: print('Invalid Header. File may be corrupt') if output['data_headers'][-1]['NumDataPoints'] < downsample: self.datafile.seek(self.basic_header['ChannelCount'] * output['data_headers'][-1]['NumDataPoints'] * DATA_BYTE_SIZE, 1) continue # Determine sample value for current packet timestamp timestamp_sample = int(round(output['data_headers'][-1]['Timestamp'] / self.basic_header['Period'])) # For now, we need a patch for file sync which syncs 2 NSP clocks, starting a new data packet which # may be backwards in time wrt the end of data packet 1. Thus, when this happens, we need to treat # data packet 2 as if it was 1, and start this process over. if timestamp_sample < d_ptr: d_ptr = 0 hit_start = False output['data_headers'] = [] self.datafile.seek(-9, 1) continue # Check to see if stop index is before the first data packet if len(output['data_headers']) == 1 and (STOP_OFFSET_MIN < stop_idx < timestamp_sample): print("\nData requested is before any data was saved, which starts at t = {0:.6f} s".format( output['data_headers'][0]['Timestamp'] / self.basic_header['TimeStampResolution'])) return # For the first data packet to be read if not hit_start: # Check for starting point of data request start_offset = start_idx - timestamp_sample # If start_offset is outside of this packet, skip the current packet # if we've reached the end of file, break, otherwise continue to next packet if start_offset > output['data_headers'][-1]['NumDataPoints']: self.datafile.seek(output['data_headers'][-1]['NumDataPoints'] * data_pt_size, 1) if self.datafile.tell() == ospath.getsize(self.datafile.name): break else: continue else: # If the start_offset is before the current packet, check to ensure that stop_index # is not also in the paused area, then create padded data for during pause time if start_offset < 0: if STOP_OFFSET_MIN < stop_idx < timestamp_sample: print("\nBecause of pausing, data section requested is during pause period") return else: print("\nFirst data packet requested begins at t = {0:.6f} s, " "initial section padded with zeros".format( output['data_headers'][-1]['Timestamp'] / self.basic_header['TimeStampResolution'])) start_offset = START_OFFSET_MIN d_ptr = (timestamp_sample - start_idx) // downsample hit_start = True # for all other packets else: # check to see if padded data is needed, including hitting the stop index if STOP_OFFSET_MIN < stop_idx < timestamp_sample: print("\nSection padded with zeros due to file pausing") hit_stop = True; break elif (timestamp_sample - start_idx) > d_ptr: print("\nSection padded with zeros due to file pausing") start_offset = START_OFFSET_MIN d_ptr = (timestamp_sample - start_idx) // downsample # Set number of samples to be read based on if start/stop sample is during data packet if STOP_OFFSET_MIN < stop_idx <= (timestamp_sample + output['data_headers'][-1]['NumDataPoints']): total_pts = stop_idx - timestamp_sample - start_offset hit_stop = True else: total_pts = output['data_headers'][-1]['NumDataPoints'] - start_offset # Need current file position because memory map will reset file position curr_file_pos = self.datafile.tell() # Determine starting position to read from memory map file_offset = int(curr_file_pos + start_offset * data_pt_size) # Extract data no more than 1 GB at a time (or based on DATA_PAGING_SIZE) # Determine shape of data to map based on file sizing and position, then map it downsample_data_size = data_pt_size * downsample max_length = (DATA_PAGING_SIZE // downsample_data_size) * downsample_data_size num_loops = int(ceil(total_pts * data_pt_size / max_length)) for loop in range(num_loops): if loop == 0: if num_loops == 1: num_pts = total_pts else: num_pts = max_length // data_pt_size else: file_offset += max_length if loop == (num_loops - 1): num_pts = ((total_pts * data_pt_size) % max_length) // data_pt_size else: num_pts = max_length // data_pt_size if num_loops != 1: print('Data extraction requires paging: {0} of {1}'.format(loop + 1, num_loops)) num_pts = int(num_pts) shape = (num_pts, self.basic_header['ChannelCount']) mm = np.memmap(self.datafile, dtype=np.int16, mode='r', offset=file_offset, shape=shape) # append data based on downsample slice and elec_ids indexing, then clear memory map if downsample != 1: mm = mm[::downsample] if elec_id_indices: output['data'][d_ptr:d_ptr + mm.shape[0]] = np.array(mm[:, elec_id_indices]).astype(np.float32) else: output['data'][d_ptr:d_ptr + mm.shape[0]] = np.array(mm).astype(np.float32) d_ptr += mm.shape[0] del mm # Reset current file position for file position checking and possibly next header curr_file_pos += self.basic_header['ChannelCount'] * output['data_headers'][-1]['NumDataPoints'] \ * DATA_BYTE_SIZE self.datafile.seek(curr_file_pos, 0) if curr_file_pos == ospath.getsize(self.datafile.name): hit_stop = True # Safety checks for start and stop times if not hit_stop and start_idx > START_OFFSET_MIN: raise Exception('Error: End of file found before start_time_s') elif not hit_stop and stop_idx: print("\n*** WARNING: End of file found before stop_time_s, returning all data in file") # Transpose the data so that it has entries based on each electrode, not each sample time output['data'] = output['data'].transpose() # All data must be scaled based on scaling factors from extended header if self.basic_header['FileSpec'] == '2.1': output['data'] *= UV_PER_BIT_21 else: if front_end_idxs: if front_end_idx_cont: output['data'][front_end_idxs[0]:front_end_idxs[-1] + 1] *= \ getdigfactor(self.extended_headers, output['ExtendedHeaderIndices'][front_end_idxs[0]]) else: for i in front_end_idxs: output['data'][i] *= getdigfactor(self.extended_headers, output['ExtendedHeaderIndices'][i]) if analog_input_idxs: if analog_input_idx_cont: output['data'][analog_input_idxs[0]:analog_input_idxs[-1] + 1] *= \ getdigfactor(self.extended_headers, output['ExtendedHeaderIndices'][analog_input_idxs[0]]) else: for i in analog_input_idxs: output['data'][i] *= getdigfactor(self.extended_headers, output['ExtendedHeaderIndices'][i]) # Update parameters based on data extracted output['samp_per_s'] = float(datafile_samp_per_sec / downsample) output['data_time_s'] = len(output['data'][0]) / output['samp_per_s'] return output def savesubsetnsx(self, elec_ids='all', file_size=None, file_time_s=None, file_suffix=''): """ This function is used to save a subset of data based on electrode IDs, file sizing, or file data time. If both file_time_s and file_size are passed, it will default to file_time_s and determine sizing accordingly. :param elec_ids: [optional] {list} List of elec_ids to extract (e.g., [13]) :param file_size: [optional] {int} Byte size of each subset file to save (e.g., 1024**3 = 1 Gb). If nothing is passed, file_size will be all data points. :param file_time_s: [optional] {float} Time length of data for each subset file, in seconds (e.g. 60.0). If nothing is passed, file_size will be used as default. :param file_suffix: [optional] {str} Suffix to append to NSx datafile name for subset files. If nothing is passed, default will be "_subset". :return: None - None of the electrodes requested exist in the data SUCCESS - All file subsets extracted and saved """ # Initializations elec_id_indices = [] file_num = 1 pausing = False datafile_datapt_size = self.basic_header['ChannelCount'] * DATA_BYTE_SIZE self.datafile.seek(0, 0) # Run electrode id checks and set num_elecs elec_ids = check_elecid(elec_ids) if self.basic_header['FileSpec'] == '2.1': all_elec_ids = self.basic_header['ChannelID'] else: all_elec_ids = [x['ElectrodeID'] for x in self.extended_headers] if elec_ids == ELEC_ID_DEF: elec_ids = all_elec_ids else: elec_ids = check_dataelecid(elec_ids, all_elec_ids) if not elec_ids: return None else: elec_id_indices = [all_elec_ids.index(x) for x in elec_ids] num_elecs = len(elec_ids) # If file_size or file_time_s passed, check it and set file_sizing accordingly if file_time_s: if file_time_s and file_size: print("\nWARNING: Only one of file_size or file_time_s can be passed, defaulting to file_time_s.") file_size = int(num_elecs * DATA_BYTE_SIZE * file_time_s * self.basic_header['TimeStampResolution'] / self.basic_header['Period']) if self.basic_header['FileSpec'] == '2.1': file_size += 32 + 4 * num_elecs else: file_size += NSX_BASIC_HEADER_BYTES_22 + NSX_EXT_HEADER_BYTES_22 * num_elecs + 5 print("\nBased on timing request, file size will be {0:d} Mb".format(int(file_size / 1024**2))) elif file_size: file_size = check_filesize(file_size) # Create and open subset file as writable binary, if it already exists ask user for overwrite permission file_name, file_ext = ospath.splitext(self.datafile.name) if file_suffix: file_name += '_' + file_suffix else: file_name += '_subset' if ospath.isfile(file_name + "_000" + file_ext): if 'y' != input("\nFile '" + file_name.split('/')[-1] + "_xxx" + file_ext + "' already exists, overwrite [y/n]: "): print("\nExiting, no overwrite, returning None"); return None else: print("\n*** Overwriting existing subset files ***") subset_file = open(file_name + "_000" + file_ext, 'wb') print("\nWriting subset file: " + ospath.split(subset_file.name)[1]) # For file spec 2.1: # 1) copy the first 28 bytes from the datafile (these are unchanged) # 2) write subset channel count and channel ID to file # 3) skip ahead in datafile the number of bytes in datafile ChannelCount(4) plus ChannelID (4*ChannelCount) if self.basic_header['FileSpec'] == '2.1': subset_file.write(self.datafile.read(28)) subset_file.write(np.array(num_elecs).astype(np.uint32).tobytes()) subset_file.write(np.array(elec_ids).astype(np.uint32).tobytes()) self.datafile.seek(4 + 4 * self.basic_header['ChannelCount'], 1) # For file spec 2.2 and above # 1) copy the first 10 bytes from the datafile (unchanged) # 2) write subset bytes-in-headers and skip 4 bytes in datafile, noting position of this for update later # 3) copy the next 296 bytes from datafile (unchanged) # 4) write subset channel-count value and skip 4 bytes in datafile # 5) append extended headers based on the channel ID. Must read the first 4 bytes, determine if correct # Channel ID, repack first 4 bytes, write to disk, then copy remaining 62 (66-4) bytes else: subset_file.write(self.datafile.read(10)) bytes_in_headers = NSX_BASIC_HEADER_BYTES_22 + NSX_EXT_HEADER_BYTES_22 * num_elecs num_pts_header_pos = bytes_in_headers + 5 subset_file.write(np.array(bytes_in_headers).astype(np.uint32).tobytes()) self.datafile.seek(4, 1) subset_file.write(self.datafile.read(296)) subset_file.write(np.array(num_elecs).astype(np.uint32).tobytes()) self.datafile.seek(4, 1) for i in range(len(self.extended_headers)): h_type = self.datafile.read(2) chan_id = self.datafile.read(2) if unpack('<H', chan_id)[0] in elec_ids: subset_file.write(h_type) subset_file.write(chan_id) subset_file.write(self.datafile.read(62)) else: self.datafile.seek(62, 1) # For all file types, loop through all data packets, extracting data based on page sizing while self.datafile.tell() != ospath.getsize(self.datafile.name): # pull and set data packet header info if self.basic_header['FileSpec'] == '2.1': packet_pts = (ospath.getsize(self.datafile.name) - self.datafile.tell()) \ / (DATA_BYTE_SIZE * self.basic_header['ChannelCount']) else: header_binary = self.datafile.read(1) timestamp_binary = self.datafile.read(4) packet_pts_binary = self.datafile.read(4) packet_pts = unpack('<I', packet_pts_binary)[0] if packet_pts == 0: continue subset_file.write(header_binary) subset_file.write(timestamp_binary) subset_file.write(packet_pts_binary) # get current file position and set loop parameters datafile_pos = self.datafile.tell() file_offset = datafile_pos mm_length = (DATA_PAGING_SIZE // datafile_datapt_size) * datafile_datapt_size num_loops = int(ceil(packet_pts * datafile_datapt_size / mm_length)) packet_read_pts = 0 subset_file_pkt_pts = 0 # Determine shape of data to map based on file sizing and position, map it, then append to file for loop in range(num_loops): if loop == 0: if num_loops == 1: num_pts = packet_pts else: num_pts = mm_length // datafile_datapt_size else: file_offset += mm_length if loop == (num_loops - 1): num_pts = ((packet_pts * datafile_datapt_size) % mm_length) // datafile_datapt_size else: num_pts = mm_length // datafile_datapt_size shape = (int(num_pts), self.basic_header['ChannelCount']) mm = np.memmap(self.datafile, dtype=np.int16, mode='r', offset=file_offset, shape=shape) if elec_id_indices: mm = mm[:, elec_id_indices] start_idx = 0 # Determine if we need to start an additional file if file_size and (file_size - subset_file.tell()) < DATA_PAGING_SIZE: # number of points we can possibly write to current subset file pts_can_add = int((file_size - subset_file.tell()) // (num_elecs * DATA_BYTE_SIZE)) + 1 stop_idx = start_idx + pts_can_add # If the pts remaining are less than exist in the data, we'll need an additional subset file while pts_can_add < num_pts: # Write pts to disk, set old file name, update pts in packet, and close last subset file if elec_id_indices: subset_file.write(np.array(mm[start_idx:stop_idx]).tobytes()) else: subset_file.write(mm[start_idx:stop_idx]) prior_file_name = subset_file.name prior_file_pkt_pts = subset_file_pkt_pts + pts_can_add subset_file.close() # We need to copy header information from last subset file and adjust some headers. # For file spec 2.1, this is just the basic header. # For file spec 2.2 and above: # 1) copy basic and extended headers # 2) create data packet header with new timestamp and num data points (dummy numpts value) # 3) overwrite the number of data points in the old file last header packet with true value prior_file = open(prior_file_name, 'rb+') if file_num < 10: numstr = "_00" + str(file_num) elif 10 <= file_num < 100: numstr = "_0" + str(file_num) else: numstr = "_" + str(file_num) subset_file = open(file_name + numstr + file_ext, 'wb') print("Writing subset file: " + ospath.split(subset_file.name)[1]) if self.basic_header['FileSpec'] == '2.1': subset_file.write(prior_file.read(32 + 4 * num_elecs)) else: subset_file.write(prior_file.read(bytes_in_headers)) subset_file.write(header_binary) timestamp_new = unpack('<I', timestamp_binary)[0] \ + (packet_read_pts + pts_can_add) * self.basic_header['Period'] subset_file.write(np.array(timestamp_new).astype(np.uint32).tobytes()) subset_file.write(np.array(num_pts - pts_can_add).astype(np.uint32).tobytes()) prior_file.seek(num_pts_header_pos, 0) prior_file.write(np.array(prior_file_pkt_pts).astype(np.uint32).tobytes()) num_pts_header_pos = bytes_in_headers + 5 # Close old file and update parameters prior_file.close() packet_read_pts += pts_can_add start_idx += pts_can_add num_pts -= pts_can_add file_num += 1 subset_file_pkt_pts = 0 pausing = False pts_can_add = int((file_size - subset_file.tell()) // (num_elecs * DATA_BYTE_SIZE)) + 1 stop_idx = start_idx + pts_can_add # If no additional file needed, write remaining data to disk, update parameters, and clear memory map if elec_id_indices: subset_file.write(np.array(mm[start_idx:]).tobytes()) else: subset_file.write(mm[start_idx:]) packet_read_pts += num_pts subset_file_pkt_pts += num_pts del mm # Update num_pts header position for each packet, while saving last packet num_pts_header_pos for later if self.basic_header['FileSpec'] != '2.1': curr_hdr_num_pts_pos = num_pts_header_pos num_pts_header_pos += 4 + subset_file_pkt_pts * num_elecs * DATA_BYTE_SIZE + 5 # Because memory map resets the file position, reset position in datafile datafile_pos += self.basic_header['ChannelCount'] * packet_pts * DATA_BYTE_SIZE self.datafile.seek(datafile_pos, 0) # If using file_timing and there is pausing in data (multiple packets), let user know if file_time_s and not pausing and (self.datafile.tell() != ospath.getsize(self.datafile.name)): pausing = True print("\n*** Because of pausing in original datafile, this file may be slightly time shorter\n" " than others, and will contain multiple data packets offset in time\n") # Update last data header packet num data points accordingly (spec != 2.1) if self.basic_header['FileSpec'] != '2.1': subset_file_pos = subset_file.tell() subset_file.seek(curr_hdr_num_pts_pos, 0) subset_file.write(np.array(subset_file_pkt_pts).astype(np.uint32).tobytes()) subset_file.seek(subset_file_pos, 0) # Close subset file and return success subset_file.close() print("\n *** All subset files written to disk and closed ***") return "SUCCESS" def close(self): name = self.datafile.name self.datafile.close() print('\n' + name.split('/')[-1] + ' closed')
[ "guillaume.doucet2@mail.mcgill.ca" ]
guillaume.doucet2@mail.mcgill.ca
7f63c9542d741b1f878c60b4bf2129b95b9de527
2084aacbcc299561ff7b76fff02a0710786c6052
/B4162/Kozlov/Homework 2018-12-01.py
097c778eefb31dff47e3e0c1d267478d8b0df8cc
[]
no_license
kuperchal/python-course-2018
8d5c2c5005b859a31417e22066077bc3aadb0809
eec0af6892190abe2244424fc05fa679154938bc
refs/heads/master
2020-03-29T10:20:02.175730
2019-01-27T11:53:07
2019-01-27T11:53:07
149,799,897
0
3
null
2019-01-27T11:53:25
2018-09-21T18:03:54
Python
UTF-8
Python
false
false
1,955
py
import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt x = np.arange(-10, 10, 0.1) #Задаём диапазон значений для ох для разных графиков x1 = np.arange(-1.56,1.57,0.05) x2 = np.arange(0,3.15, 0.1) fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10,7), dpi=85, facecolor='white', frameon=True, edgecolor='lightblue', linewidth=4) #Создаём графики fig.subplots_adjust(wspace=0.4, hspace=0.5, left=0.1, right=0.95, top=0.95, bottom=0.1) #Задаём отступы между графиками, сверху, снизу, по бокам #First graph axes[0,0].plot(x, np.sin(x), color='red') axes[0,0].grid(True, c='lightblue', alpha=0.5) axes[0, 0].set_title('sin(x)', fontsize=10) axes[0,0].set_xlabel('x', fontsize=8) axes[0,0].set_ylabel('y=sin(x)', fontsize=8) axes[0,0].annotate('local max', xy=(1.57, 1), xytext=(3.5, 0.5), arrowprops=dict(facecolor='black', shrink=0.01)) axes[0,0].annotate('local min', xy=(-1.57, -1), xytext=(1, -0.5), arrowprops=dict(facecolor='black', shrink=0.01)) #Second graph axes[0,1].plot(x, np.cos(x), color='green') axes[0,1].grid(True, c='lightblue', alpha=0.5) axes[0,1].set_title('cos(x)', fontsize=10) axes[0,1].set_xlabel('x', fontsize=8) axes[0,1].set_ylabel('y=cos(x)', fontsize=8) axes[0,1].annotate('local max', xy=(0, 1), xytext=(2, 0.5), arrowprops=dict(facecolor='black', shrink=0.01)) axes[0,1].annotate('local min', xy=(-3.14, -1), xytext=(-1.5, -0.5), arrowprops=dict(facecolor='black', shrink=0.01)) #Third graph axes[1,0].plot(x1, np.tan(x1), color='green') axes[1,0].set_title('tg(x)', fontsize=10) axes[1,0].set_xlabel('x', fontsize=8) axes[1,0].set_ylabel('y=tg(x)', fontsize=8) #Fourth graph axes[1,1].plot(x2, 1/np.tan(x2), color='yellow') axes[1,1].set_title('ctg(x)', fontsize=10) axes[1,1].set_xlabel('x', fontsize=8) axes[1,1].set_ylabel('y=ctg(x)', fontsize=8) plt.show()
[ "noreply@github.com" ]
kuperchal.noreply@github.com
56b60992b52817b496456c67420676c2dbb9af53
980852f3fe17b3f40ec70d45e1d4f64bb0270230
/gginfo/spiders/daqing.py
d327d0b1270864c5de7cdea55ff29c35b56150c6
[]
no_license
logonmy/Data-Crawler
332bb1aa6f1abecd8249c48585f22a6cc44a4f17
6d862f0617356accde5260766ff0251336157529
refs/heads/master
2022-09-01T00:33:29.500311
2020-05-27T16:03:54
2020-05-27T16:03:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
# -*- coding: utf-8 -*- import scrapy import bs4 import re from gginfo import items class DaqingSpider(scrapy.Spider): name = 'daqing' # allowed_domains = ['http://www.dqsbwg.com/view.asp?id='] # start_urls = ['http://http://www.dqsbwg.com/view.asp?id=/'] def start_requests(self): start_page = 50 end_page = 110 base_url = "http://www.dqsbwg.com/view.asp?id=" count = 0 for i in range(start_page, end_page): url = base_url + str(i) count += 1 yield scrapy.Request(url=url, callback=self.parse, meta={'id': count}) def parse(self, response): if (response.status == '404'): return Items = items.GginfoItem() Items['id'] = 37 name = response.css('body > table:nth-child(3) > tr > td > table > tr > td:nth-child(2) > table > tr:nth-child(2) > td > div > table > tr > td > table > tr > td > table:nth-child(1) > tr:nth-child(2) > td > font > b::text').extract() if (len(name) == 0): return Items['name'] = str(name[0]).strip() pic = response.css('body > table:nth-child(3) > tr > td > table > tr > td:nth-child(2) > table > tr:nth-child(2) > td > div > table > tr > td > table > tr > td > table:nth-child(1) > tr:nth-child(3) > td > div > p > img::attr(src)').extract() if (len(pic) == 0): return base_url = "https://www.wmhg.com.cn" url = base_url + str(pic[0]).strip() Items['pic'] = url # text = response.css('body > div.x-container > div > div.section1 > div > div.slick-cont > div *::text').extract() # if (len(text) == 0): Items['text'] = "" # else: # s = "" # for item in text: # s += str(str(item).strip()).replace('\xa0', '') # Items['text'] = s # if Items['text'] == "": # return yield Items
[ "1012668100@qq.comgit commit -m Collectionexitgit config --global user.name x-coder-Lgit config --global user.email 1012668100@qq.com" ]
1012668100@qq.comgit commit -m Collectionexitgit config --global user.name x-coder-Lgit config --global user.email 1012668100@qq.com
bd006143c55c546974bbb237ad7d8a80d54be85f
850370ad34b40bc3332e8954a79798568331a4a4
/Number Guess.py
182cf760d7a1f763174ba413eb962d26ea6041de
[]
no_license
romil-rc/Game-of-Guess
d91e323002a77ca342f5a755d06662679c4d2a3d
d3faa7166e918ad21a801f8e8b641dcbcccb8767
refs/heads/master
2023-03-05T10:51:08.910733
2021-02-16T13:12:00
2021-02-16T13:12:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
887
py
# Set a key number. # Set number of guesses. # Take a number input from user. # Print, is the number smaller or greater than the key. # Print, number of guesses left. # If number of guesses is over print "game over". key = 63 chance = 0 guess = 10 print("Game of Guess") while(chance < guess): num = int(input("Enter a number : ")) if (num>key): chance = chance + 1 if(chance < guess): print("Enter smaller number.") print("Chances left : ", guess - chance) else: print("Game over") continue elif (num<key): chance = chance + 1 if(chance < guess): print("Enter greater number.") print("Chances left : ", guess - chance) else: print("Game over.") continue else: print("You won the game.") break chance = chance + 1
[ "itssaahil208@gmail.com" ]
itssaahil208@gmail.com
22d62da0dd7376888e5e477d9481a578a6638fb8
eaeb5e71b0b5b03e4cb8d60ca206160a7bdc3488
/Inventory/store_app/urls.py
6a5d5548d308aa7dff06c734890b2b3e8195a728
[]
no_license
aonchicken/Dev
a15d79c8399fb63eb376b57c4bb2f49a73a250d6
6fe3510d1fe1b877376afa21d082f1230c025b35
refs/heads/master
2022-10-22T02:03:06.641148
2018-07-19T10:02:49
2018-07-19T10:02:49
141,110,191
0
1
null
2022-10-10T16:12:27
2018-07-16T08:32:44
Python
UTF-8
Python
false
false
3,246
py
#!python # log/urls.py from django.conf.urls import url from .import views #2pdf #from store_app.views import GeneratePdf #from django_pdfkit import PDFView #log in from django.contrib.auth.decorators import login_required #from easy_pdf.views import PDFTemplateView #from .views import PDF_View from django.template import Context, loader #from .views import PDFTemplateView #from .models import Product #from wkhtmltopdf.views import PDFTemplateView #from django_pdfkit.views import PDFView #product = Product.objects.get(id=1) '''context = { 'amount': 39.99, 'customer_name': 'Cooper Mann', 'order_id': 'เอกสารใบส่งมอบสินค้า', 'name': 'TTTTT',#product.device_name, }''' #context = Context({'amount': 39.99,}) context = { 'date' : '24 พฤษภาคม 2561', 'customer_tel' : '0859078578', 'customer_address' : 'Bankok', 'no': 1, 'contract_no': 'สอ.2/2561', 'customer_name': 'สมมติ ขึ้นมา', 'detail_pd': 'Router 892w ', 'staff_name': 'รัฐกานต์ บันที', 'count_pd' : 1, 'key_pd': '-', 'serial_pd' : 84003446789236, 'ref' : '-', 'note' : '1กล่อง', 'range': range(1,15+1), } # We are adding a URL called /home urlpatterns = [ url(r'^$', views.home, name='home'), url(r'^product/(?P<id>[0-9]+)/', views.detail, name='detail'),#localhost:8000/product/10/ url(r'^addnew/', views.addnew, name="addnew"), url(r'^edit/(?P<id>[0-9]+)/', views.edit, name="edit"), url(r'^document/', views.document, name="document"), url(r'^doc_pdf/', views.doc_pdf, name="doc_pdf"), url(r'^my-pdf/', views.doc_pdf, name="my-pdf"), url(r'^display/', views.display, name="display"), #url(r'^pdf/', PDFTemplateView.as_view(filename='doc_pdf.pdf',template_name='doc_pdf.html'),name='pdf'),4 url(r'^pdf/$', views.PDFTemplateView.as_view( cmd_options = { 'page-size': 'A4', 'margin-top': 80, 'margin-bottom': 90, #'footer-right': 'Page [page] of [toPage]', #'margin-right' => 5, #'margin-left' => 5, #'orientation' => 'Landscape', #'footer-center' => 'Page [page] of [toPage]', #'footer-font-size' => 8, #'footer-left' => 'Confidential' },template_name='content.html',header_template='header.html',footer_template='footer.html',show_content_in_browser = True), name='pdf'), url(r'^mail/', views.mail,name="mail"), #url(r'^pdf/$', PDFTemplateView.as_view(template_name='content.html',show_content_in_browser = True), name='pdf'), url(r'^pdf-inline/', views.PDFView.as_view(inline=True, template_name='doc_pdf.html'), name='pdf-inline'), #url(r'^pdf-filename/', PDFView.as_view(filename='foo.pdf', template_name='doc_pdf.html'), name='pdf-filename'), url(r'^upload2csv/', views.upload, name='uplink'), url(r'^import/', views.import_data, name="import"), url(r'^handson_view/', views.handson_table, name="handson_view"), ]
[ "aonchicken@gmail.com" ]
aonchicken@gmail.com
da88233a14db93263b4ee9e6ad8f520f0e6afa9c
b52e27c68a2a2b03c39c0698fde0acbd988f52a5
/test4.py
9e70c57fa08eabd6f98a82ee81bf496991f2f25c
[]
no_license
nmcnwr/python_test
fae0b3e6ee981abce5a43ae26fe590f4083aa6e9
52ac4522c7d6d022254aeb348fdf82c4ea302dc9
refs/heads/master
2021-07-23T17:09:17.116262
2020-05-28T08:17:04
2020-05-28T08:17:04
178,802,667
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
filename ="FILE1.txt" print("Filename: ",filename) file = open(filename, "r") for line in file: line = line.replace("\n", "") print(line) file.close()
[ "pavel.b.kuznetsov@gmail.com" ]
pavel.b.kuznetsov@gmail.com
0609c654e9cd175e77f91139ee849e861fc9e1e0
2f831410a345fe44b385eb4453a3777150db3eea
/retriever/dense_retriever.py
84bf96056114fb8411e26e5e5b79b5173ef087e4
[ "MIT", "CC-BY-4.0" ]
permissive
michaelmccracken90/Quin
89a2b5e7796440cfe72fb0af01b4963674b469c2
461af08123757840fcc6cbbd08e7c2862a28ebbd
refs/heads/master
2023-02-17T12:45:55.230655
2021-01-10T11:43:40
2021-01-10T11:43:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,614
py
import logging import pickle import torch from .vector_index import VectorIndex class DenseRetriever: def __init__(self, model, batch_size=16): self.model = model self.vector_index = VectorIndex(768) self.batch_size = batch_size self.use_gpu = torch.cuda.is_available() def create_index_from_documents(self, documents): logging.info('Building index...') self.vector_index.vectors = self.model.encode(documents, batch_size=self.batch_size) self.vector_index.build(self.use_gpu) logging.info('Built index') def create_index_from_vectors(self, vectors_path): logging.info('Building index...') self.vector_index.vectors = pickle.load(open(vectors_path, 'rb')) self.vector_index.build(self.use_gpu) logging.info('Built index') def search(self, queries, limit=1000, probes=512, min_similarity=0): query_vectors = self.model.encode(queries, batch_size=self.batch_size) ids, similarities = self.vector_index.search(query_vectors, k=limit, probes=probes) results = [] for j in range(len(ids)): results.append([ (ids[j][i], similarities[j][i]) for i in range(len(ids[j])) if similarities[j][i] > min_similarity ]) return results def load_index(self, path): self.vector_index.load(path) def save_index(self, index_path='', vectors_path=''): if vectors_path != '': self.vector_index.save_vectors(vectors_path) if index_path != '': self.vector_index.save(index_path)
[ "algoprog@users.noreply.github.com" ]
algoprog@users.noreply.github.com
3bce62061ed8d284331b3570797e87de8c2eefc3
503e97b5c0bb77e923fe135ff14a8b5ca5e6ba07
/mxshop/mxshop/urls.py
ff2b7608058cef6c3f850164773fe310905e259e
[]
no_license
pshyms/dianshang-1
72345de3ce769efeb2b17c975b586590524dcdbe
788b7950f52cb7979a8b73e5d9193243f2e69cad
refs/heads/master
2021-05-21T10:11:38.248170
2020-04-03T06:25:13
2020-04-03T06:25:13
252,649,823
0
0
null
null
null
null
UTF-8
Python
false
false
748
py
"""mxshop URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), ]
[ "1816635208@qq.com" ]
1816635208@qq.com
04d569ac26879a082158c2acffd50077389bf00c
ae323b6e8407576249c4f1300c2261f63ee57610
/bootstrap.py
57adc1466694c5178b4fdc1782e6600609583191
[ "MIT" ]
permissive
silx-kit/dynamix
b3e22ccaebeef35c97604a2188e8790e55241ce2
445a85b331278097a0c997dfecd73c39dc8f1afd
refs/heads/master
2023-08-08T03:23:01.963283
2021-09-13T15:14:37
2021-09-13T15:14:37
191,756,780
3
7
MIT
2023-06-29T13:53:58
2019-06-13T12:15:12
Python
UTF-8
Python
false
false
9,058
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Bootstrap helps you to test scripts without installing them by patching your PYTHONPATH on the fly example: ./bootstrap.py ipython """ __authors__ = ["Frédéric-Emmanuel Picca", "Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __date__ = "05/09/2019" import sys import os import distutils.util import subprocess import logging import collections from argparse import ArgumentParser logging.basicConfig() logger = logging.getLogger("bootstrap") def is_debug_python(): """Returns true if the Python interpreter is in debug mode.""" try: import sysconfig except ImportError: # pragma nocover # Python < 2.7 import distutils.sysconfig as sysconfig if sysconfig.get_config_var("Py_DEBUG"): return True return hasattr(sys, "gettotalrefcount") def _distutils_dir_name(dname="lib"): """ Returns the name of a distutils build directory """ platform = distutils.util.get_platform() architecture = "%s.%s-%i.%i" % (dname, platform, sys.version_info[0], sys.version_info[1]) if is_debug_python(): architecture += "-pydebug" return architecture def _distutils_scripts_name(): """Return the name of the distrutils scripts sirectory""" f = "scripts-{version[0]}.{version[1]}" return f.format(version=sys.version_info) def _get_available_scripts(path): res = [] try: res = " ".join([s.rstrip('.py') for s in os.listdir(path)]) except OSError: res = ["no script available, did you ran " "'python setup.py build' before bootstrapping ?"] return res if sys.version_info[0] >= 3: # Python3 def execfile(fullpath, globals=None, locals=None): "Python3 implementation for execfile" with open(fullpath) as f: try: data = f.read() except UnicodeDecodeError: raise SyntaxError("Not a Python script") code = compile(data, fullpath, 'exec') exec(code, globals, locals) def run_file(filename, argv): """ Execute a script trying first to use execfile, then a subprocess :param str filename: Script to execute :param list[str] argv: Arguments passed to the filename """ full_args = [filename] full_args.extend(argv) try: logger.info("Execute target using exec") # execfile is considered as a local call. # Providing globals() as locals will force to feed the file into # globals() (for examples imports). # Without this any function call from the executed file loses imports try: old_argv = sys.argv sys.argv = full_args logger.info("Patch the sys.argv: %s", sys.argv) logger.info("Executing %s.main()", filename) print("########### EXECFILE ###########") module_globals = globals().copy() module_globals['__file__'] = filename execfile(filename, module_globals, module_globals) finally: sys.argv = old_argv except SyntaxError as error: logger.error(error) logger.info("Execute target using subprocess") env = os.environ.copy() env.update({"PYTHONPATH": LIBPATH + os.pathsep + os.environ.get("PYTHONPATH", ""), "PATH": os.environ.get("PATH", "")}) print("########### SUBPROCESS ###########") run = subprocess.Popen(full_args, shell=False, env=env) run.wait() def run_entry_point(entry_point, argv): """ Execute an entry_point using the current python context (http://setuptools.readthedocs.io/en/latest/setuptools.html#automatic-script-creation) :param str entry_point: A string identifying a function from a module (NAME = PACKAGE.MODULE:FUNCTION [EXTRA]) """ import importlib elements = entry_point.split("=") target_name = elements[0].strip() elements = elements[1].split(":") module_name = elements[0].strip() # Take care of entry_point optional "extra" requirements declaration function_name = elements[1].split()[0].strip() logger.info("Execute target %s (function %s from module %s) using importlib", target_name, function_name, module_name) full_args = [target_name] full_args.extend(argv) try: old_argv = sys.argv sys.argv = full_args print("########### IMPORTLIB ###########") module = importlib.import_module(module_name) if hasattr(module, function_name): func = getattr(module, function_name) func() else: logger.info("Function %s not found", function_name) finally: sys.argv = old_argv def find_executable(target): """Find a filename from a script name. - Check the script name as file path, - Then checks if the name is a target of the setup.py - Then search the script from the PATH environment variable. :param str target: Name of the script :returns: Returns a tuple: kind, name. """ if os.path.isfile(target): return ("path", os.path.abspath(target)) # search the file from setup.py import setup config = setup.get_project_configuration(dry_run=True) # scripts from project configuration if "scripts" in config: for script_name in config["scripts"]: if os.path.basename(script_name) == target: return ("path", os.path.abspath(script_name)) # entry-points from project configuration if "entry_points" in config: for kind in config["entry_points"]: for entry_point in config["entry_points"][kind]: elements = entry_point.split("=") name = elements[0].strip() if name == target: return ("entry_point", entry_point) # search the file from env PATH for dirname in os.environ.get("PATH", "").split(os.pathsep): path = os.path.join(dirname, target) if os.path.isfile(path): return ("path", path) return None, None def main(argv): parser = ArgumentParser(prog="bootstrap", usage="./bootstrap.py <script>", description=__doc__) parser.add_argument("script", nargs="*") parser.add_argument("-m", help="run library module as a script (terminates option list)") Options = collections.namedtuple("Options", ["script", "module"]) if len(argv) == 1: options = Options(script=None, module=None) else: if argv[1] in ["-h", "--help"]: parser.print_help() return if argv[1] == "-m": if len(argv) < 3: parser.parse_args(argv[1:]) return options = Options(script=None, module=argv[2:]) else: options = Options(script=argv[1:], module=None) if options.script is not None: logger.info("Executing %s from source checkout", options.script) script = options.script[0] argv = options.script[1:] kind, target = find_executable(script) if kind == "path": run_file(target, argv) elif kind == "entry_point": run_entry_point(target, argv) else: logger.error("Script %s not found", options.script) elif options.module is not None: logging.info("Running module %s", options.module) import runpy module = options.module[0] try: old = sys.argv sys.argv = [None] + options.module[1:] runpy.run_module(module, run_name="__main__", alter_sys=True) finally: sys.argv = old else: logging.info("Running IPython by default") logger.info("Patch the sys.argv: %s", sys.argv) sys.path.insert(2, "") try: from IPython import start_ipython except Exception as err: logger.error("Unable to execute iPython, using normal Python") logger.error(err) import code code.interact() else: start_ipython(argv=[]) if __name__ == "__main__": home = os.path.dirname(os.path.abspath(__file__)) LIBPATH = os.path.join(home, 'build', _distutils_dir_name('lib')) cwd = os.getcwd() os.chdir(home) build = subprocess.Popen([sys.executable, "setup.py", "build"], shell=False, cwd=os.path.dirname(os.path.abspath(__file__))) build_rc = build.wait() if not os.path.exists(LIBPATH): logger.warning("`lib` directory does not exist, trying common Python3 lib") LIBPATH = os.path.join(os.path.split(LIBPATH)[0], "lib") os.chdir(cwd) if build_rc == 0: logger.info("Build process ended.") else: logger.error("Build process ended with rc=%s", build_rc) sys.exit(-1) sys.path.insert(0, LIBPATH) logger.info("Patched sys.path with %s", LIBPATH) main(sys.argv)
[ "jerome.kieffer@esrf.fr" ]
jerome.kieffer@esrf.fr
01acfe330f914e60e16edd354e09a95e5f455717
c887464a73c249f3a6bc4e344c001724a46d2bd2
/web_app/views/misc.py
cd26cb069637e94c4b08058e2edc18da001b3a39
[ "Beerware" ]
permissive
erikdeluca/beer-analytics
004017229fa32574bbf58d703023c455d9a57e69
630cfb1dcd409a1b449a54a99aa9b3f73da0f756
refs/heads/main
2023-04-26T20:18:22.794454
2021-03-06T18:45:17
2021-03-06T18:45:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,834
py
from django.http import HttpResponse, HttpRequest from django.shortcuts import render from django.urls import reverse from recipe_db.models import Recipe, Style, Hop, Fermentable, Yeast from web_app.charts.fermentable import FermentableChartFactory from web_app.charts.hop import HopChartFactory from web_app.charts.style import StyleChartFactory from web_app.charts.yeast import YeastChartFactory from web_app.meta import PageMeta, HomeMeta def home(request: HttpRequest) -> HttpResponse: recipes = Recipe.objects.count() meta = HomeMeta().get_meta() return render(request, 'index.html', {'recipes': recipes, 'meta': meta}) def legal(request: HttpRequest) -> HttpResponse: meta = PageMeta.create('Legal', 'Legal information about Beer Analytics', url=reverse('legal')) meta.extra_props = {'robots': 'noindex'} return render(request, 'legal.html', {'meta': meta}) def about(request: HttpRequest) -> HttpResponse: recipes = Recipe.objects.count() meta = PageMeta.create('About', url=reverse('about')) return render(request, 'about.html', {'recipes': recipes, 'meta': meta}) def sitemap(request: HttpRequest) -> HttpResponse: styles = Style.objects.filter(recipes_count__gt=0) hops = Hop.objects.filter(recipes_count__gt=0) fermentables = Fermentable.objects.filter(recipes_count__gt=0) yeasts = Yeast.objects.filter(recipes_count__gt=0) return render(request, 'sitemap.xml', { 'styles': styles, 'hops': hops, 'fermentables': fermentables, 'yeasts': yeasts, 'style_chart_types': StyleChartFactory.get_types(), 'hop_chart_types': HopChartFactory.get_types(), 'fermentable_chart_types': FermentableChartFactory.get_types(), 'yeast_chart_types': YeastChartFactory.get_types(), }, content_type='text/xml')
[ "privat@stylemotion.de" ]
privat@stylemotion.de
3c2c8682ab6ffc62a2a322782250bbe1881dc6b3
5fc9cad39efe2eb4020d604540d3adc38a89114a
/Restanta/NLP/Lab4/venv/Scripts/easy_install-3.6-script.py
b3ec84eafe341f92b593dab5a84d306ca45ff789
[]
no_license
daneel95/Master_Homework
bf16db69366fe09140c5cdf71c5e98c875611d79
7987341c78a6572342b6823ff610d9222d8c3b62
refs/heads/master
2022-12-27T04:38:18.358573
2020-10-08T12:23:20
2020-10-08T12:23:20
156,966,214
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
#!C:\Users\Daniel\Desktop\Master_Homework\Restanta\NLP\Lab4\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.6' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.6')() )
[ "holteiu.daniel@gmail.com" ]
holteiu.daniel@gmail.com
858ac55278eb1e921054886e184330cd3adb1dcc
a454671bb5df86f99496a20ad0dd0648617cd2cb
/orders/migrations/0001_initial.py
cb04c20c429c6aacaed6b91bf73ea6e9e01433e4
[]
no_license
ppcs50/project3
7a86d6d34682fc29a887b94dae975feb0f1a91ae
27909fa6b48325c026e7913b604e1333469bdc5e
refs/heads/master
2020-03-25T03:40:38.637545
2018-08-02T23:20:04
2018-08-02T23:20:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,436
py
# Generated by Django 2.0.7 on 2018-07-29 21:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateField(auto_now_add=True, verbose_name='Date')), ('time', models.TimeField(auto_now_add=True, verbose_name='Time')), ], ), migrations.CreateModel( name='Dinplat', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ], ), migrations.CreateModel( name='Pizza', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ], ), migrations.CreateModel( name='SaladPasta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ], ), migrations.CreateModel( name='Size', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=2)), ], ), migrations.CreateModel( name='Style', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Sub', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ('size', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sub_size', to='orders.Size')), ], ), migrations.CreateModel( name='Topping', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Type', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=2)), ], ), migrations.AddField( model_name='sub', name='topping', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sub_topping', to='orders.Topping'), ), migrations.AddField( model_name='pizza', name='size', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pizza_size', to='orders.Size'), ), migrations.AddField( model_name='pizza', name='style', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pizza_style', to='orders.Style'), ), migrations.AddField( model_name='pizza', name='topping', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pizza_topping', to='orders.Topping'), ), migrations.AddField( model_name='pizza', name='type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pizza_type', to='orders.Type'), ), migrations.AddField( model_name='dinplat', name='size', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='dinnerplatter_size', to='orders.Size'), ), migrations.AddField( model_name='cart', name='dinplat', field=models.ManyToManyField(blank=True, related_name='dinnerplatter_order', to='orders.Dinplat'), ), migrations.AddField( model_name='cart', name='pizza', field=models.ManyToManyField(blank=True, related_name='pizza_order', to='orders.Pizza'), ), migrations.AddField( model_name='cart', name='saladpast', field=models.ManyToManyField(blank=True, related_name='saladpast_order', to='orders.SaladPasta'), ), migrations.AddField( model_name='cart', name='sub', field=models.ManyToManyField(blank=True, related_name='sub_order', to='orders.Sub'), ), ]
[ "eg60125@meiji.ac.jp" ]
eg60125@meiji.ac.jp
37e328f83c46f0f167e1ed7dec7853f184aed7db
376120dc62be6868331e77e6fcd9b3f44c0f247b
/main_app/migrations/0001_initial.py
fe895754b3dc3ae26ab7bfea39c75bcd366ade53
[]
no_license
kevinka58/cardcollector
279a57ad9f7731aef9b28545fa9629dba9da62c7
d9395dc53c17ac88abf183ec3371a58e6dd40502
refs/heads/main
2023-07-05T21:33:12.695174
2021-08-18T23:31:11
2021-08-18T23:31:11
395,808,358
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
# Generated by Django 3.2.6 on 2021-08-16 18:06 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Card', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], ), ]
[ "kevinayala6969@gmail.com" ]
kevinayala6969@gmail.com
1f250ec8288fb8e6ae009a8ed472731dd54824ca
466e5e56d2f350bcea90683af67e160138af836c
/Onsite/Week-4/Monday/Pancake V.2.py
5366d063ab28ea1aa0f95f78a73ddb562d2f9689
[]
no_license
max180643/Pre-Programming-61
bafbb7ed3069cda5c2e64cf1de590dfb4a542273
e68d4a69ffeedd4269fffc64b9b81e845a10da4d
refs/heads/master
2021-06-17T14:10:44.889814
2019-08-01T09:35:42
2019-08-01T09:35:42
135,553,863
0
0
null
null
null
null
UTF-8
Python
false
false
932
py
"""Pancake V.2""" def main(): """Main Function""" promo_buy = int(input()) # ซื้อถึงแล้วได้แถม promo_give = int(input()) # จำนวนแถม want = int(input()) # ต้องการ price = int(input()) # ราคาต่อชิ้น pack = promo_buy + promo_give #จำนวนชิ้นในแพ็ค buypack = want // pack #จำนวนแพ็คที่ต้องซื้อ other = want - (buypack * pack) # เศษที่เหลือจากการซื้อแพค if other >= promo_buy: # ถ้าเศษมากกว่าหรือเท่ากับ จำนวนโปรโมชั่น buypack += 1 other = 0 get = (pack * buypack) + other pay = ((promo_buy * buypack) + other) * price # Output print("Pay: %i" % (pay)) print("Get: %i" % (get)) main()
[ "noreply@github.com" ]
max180643.noreply@github.com
621bedf5d75156e92bf5e1ec10226d82735cf03c
801268d9ff5b2e74986646c5469017ba98e2368f
/examples/information_extraction/DuIE/data_loader.py
71554cfc47c9cbef94a5766477c0049f511bcd52
[ "Apache-2.0" ]
permissive
Amy-l-iu/PaddleNLP
1e3f699b7b2ecc1d7600afad19c721652a5eb18f
cbcb958eb561550f38224b5b51cf027dd891f4cc
refs/heads/develop
2023-05-13T21:34:18.886738
2021-06-10T08:49:53
2021-06-10T08:49:53
375,710,949
1
0
Apache-2.0
2021-06-10T13:40:02
2021-06-10T13:40:02
null
UTF-8
Python
false
false
13,221
py
# Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import os from typing import Optional, List, Union, Dict from dataclasses import dataclass import numpy as np import paddle from tqdm import tqdm from paddlenlp.transformers import ErnieTokenizer from paddlenlp.utils.log import logger from extract_chinese_and_punct import ChineseAndPunctuationExtractor InputFeature = collections.namedtuple("InputFeature", [ "input_ids", "seq_len", "tok_to_orig_start_index", "tok_to_orig_end_index", "labels" ]) def parse_label(spo_list, label_map, tokens, tokenizer): # 2 tags for each predicate + I tag + O tag num_labels = 2 * (len(label_map.keys()) - 2) + 2 seq_len = len(tokens) # initialize tag labels = [[0] * num_labels for i in range(seq_len)] # find all entities and tag them with corresponding "B"/"I" labels for spo in spo_list: for spo_object in spo['object'].keys(): # assign relation label if spo['predicate'] in label_map.keys(): # simple relation label_subject = label_map[spo['predicate']] label_object = label_subject + 55 subject_tokens = tokenizer._tokenize(spo['subject']) object_tokens = tokenizer._tokenize(spo['object']['@value']) else: # complex relation label_subject = label_map[spo['predicate'] + '_' + spo_object] label_object = label_subject + 55 subject_tokens = tokenizer._tokenize(spo['subject']) object_tokens = tokenizer._tokenize(spo['object'][spo_object]) subject_tokens_len = len(subject_tokens) object_tokens_len = len(object_tokens) # assign token label # there are situations where s entity and o entity might overlap, e.g. xyz established xyz corporation # to prevent single token from being labeled into two different entity # we tag the longer entity first, then match the shorter entity within the rest text forbidden_index = None if subject_tokens_len > object_tokens_len: for index in range(seq_len - subject_tokens_len + 1): if tokens[index:index + subject_tokens_len] == subject_tokens: labels[index][label_subject] = 1 for i in range(subject_tokens_len - 1): labels[index + i + 1][1] = 1 forbidden_index = index break for index in range(seq_len - object_tokens_len + 1): if tokens[index:index + object_tokens_len] == object_tokens: if forbidden_index is None: labels[index][label_object] = 1 for i in range(object_tokens_len - 1): labels[index + i + 1][1] = 1 break # check if labeled already elif index < forbidden_index or index >= forbidden_index + len( subject_tokens): labels[index][label_object] = 1 for i in range(object_tokens_len - 1): labels[index + i + 1][1] = 1 break else: for index in range(seq_len - object_tokens_len + 1): if tokens[index:index + object_tokens_len] == object_tokens: labels[index][label_object] = 1 for i in range(object_tokens_len - 1): labels[index + i + 1][1] = 1 forbidden_index = index break for index in range(seq_len - subject_tokens_len + 1): if tokens[index:index + subject_tokens_len] == subject_tokens: if forbidden_index is None: labels[index][label_subject] = 1 for i in range(subject_tokens_len - 1): labels[index + i + 1][1] = 1 break elif index < forbidden_index or index >= forbidden_index + len( object_tokens): labels[index][label_subject] = 1 for i in range(subject_tokens_len - 1): labels[index + i + 1][1] = 1 break # if token wasn't assigned as any "B"/"I" tag, give it an "O" tag for outside for i in range(seq_len): if labels[i] == [0] * num_labels: labels[i][0] = 1 return labels def convert_example_to_feature( example, tokenizer: ErnieTokenizer, chineseandpunctuationextractor: ChineseAndPunctuationExtractor, label_map, max_length: Optional[int]=512, pad_to_max_length: Optional[bool]=None): spo_list = example['spo_list'] if "spo_list" in example.keys() else None text_raw = example['text'] sub_text = [] buff = "" for char in text_raw: if chineseandpunctuationextractor.is_chinese_or_punct(char): if buff != "": sub_text.append(buff) buff = "" sub_text.append(char) else: buff += char if buff != "": sub_text.append(buff) tok_to_orig_start_index = [] tok_to_orig_end_index = [] orig_to_tok_index = [] tokens = [] text_tmp = '' for (i, token) in enumerate(sub_text): orig_to_tok_index.append(len(tokens)) sub_tokens = tokenizer._tokenize(token) text_tmp += token for sub_token in sub_tokens: tok_to_orig_start_index.append(len(text_tmp) - len(token)) tok_to_orig_end_index.append(len(text_tmp) - 1) tokens.append(sub_token) if len(tokens) >= max_length - 2: break else: continue break seq_len = len(tokens) # 2 tags for each predicate + I tag + O tag num_labels = 2 * (len(label_map.keys()) - 2) + 2 # initialize tag labels = [[0] * num_labels for i in range(seq_len)] if spo_list is not None: labels = parse_label(spo_list, label_map, tokens, tokenizer) # add [CLS] and [SEP] token, they are tagged into "O" for outside if seq_len > max_length - 2: tokens = tokens[0:(max_length - 2)] labels = labels[0:(max_length - 2)] tok_to_orig_start_index = tok_to_orig_start_index[0:(max_length - 2)] tok_to_orig_end_index = tok_to_orig_end_index[0:(max_length - 2)] tokens = ["[CLS]"] + tokens + ["[SEP]"] # "O" tag for [PAD], [CLS], [SEP] token outside_label = [[1] + [0] * (num_labels - 1)] labels = outside_label + labels + outside_label tok_to_orig_start_index = [-1] + tok_to_orig_start_index + [-1] tok_to_orig_end_index = [-1] + tok_to_orig_end_index + [-1] if seq_len < max_length: tokens = tokens + ["[PAD]"] * (max_length - seq_len - 2) labels = labels + outside_label * (max_length - len(labels)) tok_to_orig_start_index = tok_to_orig_start_index + [-1] * ( max_length - len(tok_to_orig_start_index)) tok_to_orig_end_index = tok_to_orig_end_index + [-1] * ( max_length - len(tok_to_orig_end_index)) token_ids = tokenizer.convert_tokens_to_ids(tokens) return InputFeature( input_ids=np.array(token_ids), seq_len=np.array(seq_len), tok_to_orig_start_index=np.array(tok_to_orig_start_index), tok_to_orig_end_index=np.array(tok_to_orig_end_index), labels=np.array(labels), ) class DuIEDataset(paddle.io.Dataset): """ Dataset of DuIE. """ def __init__( self, input_ids: List[Union[List[int], np.ndarray]], seq_lens: List[Union[List[int], np.ndarray]], tok_to_orig_start_index: List[Union[List[int], np.ndarray]], tok_to_orig_end_index: List[Union[List[int], np.ndarray]], labels: List[Union[List[int], np.ndarray, List[str], List[Dict]]]): super(DuIEDataset, self).__init__() self.input_ids = input_ids self.seq_lens = seq_lens self.tok_to_orig_start_index = tok_to_orig_start_index self.tok_to_orig_end_index = tok_to_orig_end_index self.labels = labels def __len__(self): if isinstance(self.input_ids, np.ndarray): return self.input_ids.shape[0] else: return len(self.input_ids) def __getitem__(self, item): return { "input_ids": np.array(self.input_ids[item]), "seq_lens": np.array(self.seq_lens[item]), "tok_to_orig_start_index": np.array(self.tok_to_orig_start_index[item]), "tok_to_orig_end_index": np.array(self.tok_to_orig_end_index[item]), # If model inputs is generated in `collate_fn`, delete the data type casting. "labels": np.array( self.labels[item], dtype=np.float32), } @classmethod def from_file(cls, file_path: Union[str, os.PathLike], tokenizer: ErnieTokenizer, max_length: Optional[int]=512, pad_to_max_length: Optional[bool]=None): assert os.path.exists(file_path) and os.path.isfile( file_path), f"{file_path} dose not exists or is not a file." label_map_path = os.path.join( os.path.dirname(file_path), "predicate2id.json") assert os.path.exists(label_map_path) and os.path.isfile( label_map_path ), f"{label_map_path} dose not exists or is not a file." with open(label_map_path, 'r', encoding='utf8') as fp: label_map = json.load(fp) chineseandpunctuationextractor = ChineseAndPunctuationExtractor() input_ids, seq_lens, tok_to_orig_start_index, tok_to_orig_end_index, labels = ( [] for _ in range(5)) dataset_scale = sum(1 for line in open(file_path, 'r')) logger.info("Preprocessing data, loaded from %s" % file_path) with open(file_path, "r", encoding="utf-8") as fp: lines = fp.readlines() for line in tqdm(lines): example = json.loads(line) input_feature = convert_example_to_feature( example, tokenizer, chineseandpunctuationextractor, label_map, max_length, pad_to_max_length) input_ids.append(input_feature.input_ids) seq_lens.append(input_feature.seq_len) tok_to_orig_start_index.append( input_feature.tok_to_orig_start_index) tok_to_orig_end_index.append( input_feature.tok_to_orig_end_index) labels.append(input_feature.labels) return cls(input_ids, seq_lens, tok_to_orig_start_index, tok_to_orig_end_index, labels) @dataclass class DataCollator: """ Collator for DuIE. """ def __call__(self, examples: List[Dict[str, Union[list, np.ndarray]]]): batched_input_ids = np.stack([x['input_ids'] for x in examples]) seq_lens = np.stack([x['seq_lens'] for x in examples]) tok_to_orig_start_index = np.stack( [x['tok_to_orig_start_index'] for x in examples]) tok_to_orig_end_index = np.stack( [x['tok_to_orig_end_index'] for x in examples]) labels = np.stack([x['labels'] for x in examples]) return (batched_input_ids, seq_lens, tok_to_orig_start_index, tok_to_orig_end_index, labels) if __name__ == "__main__": tokenizer = ErnieTokenizer.from_pretrained("ernie-1.0") d = DuIEDataset.from_file("./data/train_data.json", tokenizer) sampler = paddle.io.RandomSampler(data_source=d) batch_sampler = paddle.io.BatchSampler(sampler=sampler, batch_size=2) collator = DataCollator() loader = paddle.io.DataLoader( dataset=d, batch_sampler=batch_sampler, collate_fn=collator, return_list=True) for dd in loader(): model_input = { "input_ids": dd[0], "seq_len": dd[1], "tok_to_orig_start_index": dd[2], "tok_to_orig_end_index": dd[3], "labels": dd[4] } print(model_input)
[ "noreply@github.com" ]
Amy-l-iu.noreply@github.com
d9196cc3a173854616ff24c78864a891732ea5fb
dc3755709936a2ad4ac7e8f4dba87ee545ae1e12
/detector.py
b20d1ea1a4efaae513717be042c0963a24d7cb3d
[]
no_license
umeshkh-Official/Python-Project-Facerecognition-system-
f8174a49c2832889bc84236e7f3f9b40da534d19
4b46cf1970fac1d42c18ccfef969cf065b205c2e
refs/heads/master
2022-03-26T03:16:10.234549
2019-12-14T06:28:17
2019-12-14T06:28:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,258
py
import cv2 from tkinter import messagebox import mysql.connector import numpy as np from datetime import datetime now=datetime.now() formatted_date= now.strftime('%Y-%m-%d %H:%M:%S') def getProfile(id): conn = mysql.connector.connect(host="127.0.0.1", user="root", password="tiger",database="employee") cmd="SELECT *FROM emp WHERE ID=" +str(id) mycur = conn.cursor() mycur.execute(cmd) q=mycur profile= None for row in q: profile=row conn.close() return profile def facedetecting(): faceDetect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml'); cam = cv2.VideoCapture(0) rec = cv2.face.LBPHFaceRecognizer_create(); rec.read("trainner//training.yml") id=0 font = cv2.FONT_HERSHEY_SIMPLEX while True: ret, img = cam.read(); gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceDetect.detectMultiScale(gray,1.3,5); for(x,y,w,h) in faces: cv2.rectangle(img, (x + 2, y + 2), (x + w + 2, y + h + 2), (255, 0, 0), 2) id,conf = rec.predict(gray[y:y+h, x:x+w]) profile=getProfile(id) #NAME = NameFind.ID2Name(id) cv2.putText(img, str(id), (x + 5, y + h +30), font, 1, (255, 255, 255), 1) #cv2.putText(img, str(NAME), (x + 5, y + h + 60), font, 1, (255, 255, 255), 1) cv2.putText(img, str(profile[1]), (x + 5, y + h + 60), font, 1, (255, 255, 255), 1) cv2.putText(img, str(profile[2]), (x + 5, y + h + 90), font, 1, (255, 255, 255), 1) cv2.imshow('camera', img) conn = mysql.connector.connect(host="127.0.0.1", user="root", password="tiger", database="employee") try: cmd2 = "INSERT INTO attend(id,name,datatime) VALUES("+str(id)+",'"+profile[1]+"','"+formatted_date+"')" mycur = conn.cursor() mycur.execute(cmd2) conn.commit() conn.close() except Exception: print("duplicate entry") if cv2.waitKey(10) & 0xFF == ord('q'): # Press 'ESC' for exiting video break cam.release() cv2.destroyAllWindows() facedetecting()
[ "noreply@github.com" ]
umeshkh-Official.noreply@github.com
a0e49acc8c730929c378924c601b41a8d7cf4485
a0602756643d613fb35bccc6f364a729beffd1d6
/pipeline/edges/EdgeDetectionTemplateMatching.py
dd97b93886cd1245218eb34aa5783236736f50dc
[ "MIT" ]
permissive
sunsided/CarND-Advanced-Lane-Lines
02ec7f73ae9813050b098a91c2509eb0ee26d48c
9692cf242f6d531fe37dca9ec462c632f1bcf832
refs/heads/master
2020-03-23T00:35:03.777640
2018-09-03T07:57:12
2018-09-03T07:57:12
140,871,683
1
0
null
2018-07-13T16:50:21
2018-07-13T16:50:21
null
UTF-8
Python
false
false
2,342
py
import glob import os from concurrent.futures import ThreadPoolExecutor import cv2 import numpy as np from typing import Optional from pipeline.edges.EdgeDetectionBase import EdgeDetectionBase class EdgeDetectionTemplateMatching(EdgeDetectionBase): """ Obtains edges for for further processing. """ def __init__(self, path: str, workers: int = 8, mask: Optional[np.ndarray] = None, detect_lines: bool = False): """ Initializes a new instance of the EdgeDetection class. """ super().__init__(detect_lines, detect_lines=detect_lines) self._negatives = [np.float32(cv2.imread(path, cv2.IMREAD_GRAYSCALE)) / 255 for path in glob.glob(os.path.join(path, '**', 'negative-*.png'), recursive=True)] self._positives = [np.float32(cv2.imread(path, cv2.IMREAD_GRAYSCALE)) / 255 for path in glob.glob(os.path.join(path, '**', 'positive-*.png'), recursive=True)] self._roi_mask = mask self._pe = ThreadPoolExecutor(max_workers=workers) self._mode = cv2.TM_CCOEFF def filter(self, img: np.ndarray) -> np.ndarray: """ Filters the specified image. :param img: The image to obtain masks from. :return: The pre-filtered image. """ gray = img gray = cv2.GaussianBlur(gray, (3, 3), 0) mode = self._mode def process(template): m = cv2.matchTemplate(gray, template, mode) m[m < 0] = 0 return m pos_matched = self._pe.map(process, self._positives) neg_matched = self._pe.map(process, self._negatives) pos_sum = np.zeros_like(gray) for result in pos_matched: pos_sum[8:745 + 8, 8:285 + 8] += result pos_sum /= len(self._positives) neg_sum = np.zeros_like(gray) for result in neg_matched: neg_sum[8:745 + 8, 8:285 + 8] += result neg_sum /= len(self._negatives) mask = (1 - neg_sum) * pos_sum mask[mask < 0] = 0 mask = cv2.normalize(mask, 1, cv2.NORM_MINMAX) mask = cv2.GaussianBlur(mask, (5, 5), 0) mask[mask < 0.05] = 0 mask = cv2.normalize(mask, 1, cv2.NORM_MINMAX) if self._roi_mask is not None: mask *= self._roi_mask return mask
[ "widemeadows@gmail.com" ]
widemeadows@gmail.com
682abb270f0c3d71384d9f1422f488a142fd684f
3e5d9f0cd81a6d60002819a1fda56007f407a614
/ProjetosimulacaoDiscreta/listaFinal/questao01a.py
439b6f4aebe27e00a712cbe4e1763c0478f25dfd
[]
no_license
anderson89marques/simulacaoDiscreta
b305258766bbbe5f66e65a333a84528a7e2e9a64
849b042a89271447ec38dd881effa9b2e27e0083
refs/heads/master
2021-01-15T18:03:49.983979
2014-12-02T02:28:39
2014-12-02T02:28:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
__author__ = 'andersonmarques' from random import randint experimentos = 10000 cont = 0 for x in range(experimentos): dado1 = randint(1, 6) dado2 = randint(1, 6) dado3 = randint(1, 6) if 9 <= dado1 + dado2 + dado3 <= 15: cont += 1 print("Probabilidade: %.4f" % (cont/experimentos))
[ "Andersonoanjo18@gmail.com" ]
Andersonoanjo18@gmail.com
6209d6c126116ec3ac5e03684a649997b76d1a92
81a29997e5ad3ff6194b961aaa60ad262b590458
/tests/test_url_generating.py
0ba2c0fcbf217bab1202f39b12bbcdff9585ee95
[ "MIT" ]
permissive
maxzhenzhera/python-freeDictionaryAPI
71143679aeba49b770d51a2f802c69bf22763773
556415527835ef6e559756f6ed9fa5da387ceb3c
refs/heads/main
2023-05-06T08:41:56.001247
2021-05-24T02:38:52
2021-05-24T02:38:52
365,132,988
4
0
null
null
null
null
UTF-8
Python
false
false
1,713
py
""" Contains tests for API url generation. .. class:: TestApiUrlGeneration """ import typing import pytest from freedictionaryapi.languages import LanguageCodes from freedictionaryapi.urls import ApiUrl class TestApiUrlGeneration: """ Contains tests for * API url generator (``ApiUrl``). Checking that API url generator correctly init instance and generate url. """ # fixtures --------------------------------------------------------------------------------------------------------- @pytest.fixture(name='data_list', scope='class') def fixture_data_list(self) -> typing.List[dict]: """ Get ``list`` of ``dict`` that contains arguments for ``ApiUrl`` instances """ data_list = [ { 'word': 'hello', 'language_code': LanguageCodes.ENGLISH_US }, { 'word': 'Olá', 'language_code': LanguageCodes.BRAZILIAN_PORTUGUESE } ] return data_list # tests ------------------------------------------------------------------------------------------------------------ def test_error_raising_on_empty_word(self): empty_word = ' ' with pytest.raises(ValueError) as raised_error: _ = ApiUrl(empty_word) def test_generated_url_with_some_data(self, data_list: typing.List[dict]): for data in data_list: word = data['word'] language = data['language_code'] fact_url = f'https://api.dictionaryapi.dev/api/v2/entries/{language.value}/{word.strip()}' expected_url = ApiUrl(**data).get_url() assert expected_url == fact_url
[ "megashurik@urk.net" ]
megashurik@urk.net
ddd3e8c757d55624ec472097294af1b6b986fb9f
9c91119fe567df359d83c1453148967ce9830304
/deprecated/scripts/vaders-mc2xml/vaders-mc2xml.py
c9465eb14b16fb53bbc46dbe69f7552f08cb1ea9
[ "MIT" ]
permissive
oottppxx/enigma2
f2425646b756272f6515bafcfac583b0f7613dcd
2ceb21a787f6a656985e2aa1cd5ea537e08bff30
refs/heads/master
2022-11-08T09:45:21.037355
2022-11-01T00:16:35
2022-11-01T00:16:35
130,276,423
24
33
MIT
2022-04-13T18:42:33
2018-04-19T21:52:38
Python
UTF-8
Python
false
false
2,762
py
#!/usr/bin/python import json import re import sys import time import urllib2 import zlib VAPI_MC_SCHED='http://vapi.vaders.tv/mc/schedule?username=%(USER)s&password=%(PWD)s' TIME_FMT='%Y-%m-%d %H:%M:%S' def getJsonURL(url): request = urllib2.Request(url) request.add_header('User-Agent', 'MC2XML script @oottppxx') request.add_header('Accept-Encoding', 'gzip') response = urllib2.urlopen(request) gzipped = response.info().get('Content-Encoding') == 'gzip' data = '' dec_obj = zlib.decompressobj(16+zlib.MAX_WBITS) while True: res_data = response.read() if not res_data: break if gzipped: data += dec_obj.decompress(res_data) else: data += res_data return json.loads(data) if len(sys.argv) < 4: print "Usage: %s <user> <pass> <offset>" % sys.argv[0] sys.exit(-1) mc = getJsonURL(VAPI_MC_SCHED % {'USER': sys.argv[1], 'PWD': sys.argv[2]}) offset = sys.argv[3] channels = {} programmes = [] if mc: for program in mc: cat = str(program['category']['name']) logo = str(program['category']['logo']) title = program['title'].encode('ascii', 'replace') start = re.sub('[^0-9]', '', str(program['startTime']).split('+')[0]) stop = re.sub('[^0-9]', '', str(program['endTime']).split('+')[0]) for stream in program['streams']: sid = str(stream['id']) + '.vaders.tv' sname = str(stream['name']) ptitle = title if "1080" in sname: ptitle += ' [1080]' channels[sid] = sname programmes.append({'START': start, 'STOP': stop, 'CHANNEL': sid, 'TITLE': ptitle, 'CAT': cat, 'LOGO': logo}) else: print "No info!" sys.exit(0) HEADER="""<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE tv SYSTEM "xmltv.dtd"> <tv source-info-url="http://vaders.tv" source-info-name="VS" generator-info-name="VS" generator-info-url="http://www.xmltv.org/">""" TRAILER=""" </tv> """ CHANNEL_TMPL=""" <channel id="%(ID)s"> <display-name>%(SDN)s</display-name> <icon src="none" /> </channel>""" PROGRAMME_TMPL=""" <programme start="%(START)s%(OFFSET)s" stop="%(STOP)s%(OFFSET)s" channel="%(ID)s"> <title lang="en">%(TITLE)s</title> <category lang="en">%(CAT)s</category> <category lang="en">Sports</category> <icon src="%(LOGO)s"/> </programme>""" print HEADER for channel_id, channel_name in channels.iteritems(): print CHANNEL_TMPL % {'ID': channel_id, 'SDN': channel_name} for p in programmes: print PROGRAMME_TMPL % {'START': p['START'], 'STOP': p['STOP'], 'ID': p['CHANNEL'], 'TITLE': p['TITLE'], 'CAT': p['CAT'], 'LOGO': p['LOGO'], 'OFFSET': offset} print TRAILER
[ "@oottppxx" ]
@oottppxx
2d64c3d2dcb4340084edf32824852cf49b1bb2d1
11c30d4e8418c0ecae1131af2868d9ddaa58e7e6
/Exercício 114.py
e7732565a9a8fa21ba6e85e255cc02fcafb4f885
[]
no_license
FabianoJanisch/CursoEmVideo-Python
6a99453cdf891086450fe05416318347ef8f4da2
b3e238256af11cb48013bd57eb1815698f41142c
refs/heads/main
2023-02-19T07:31:45.048125
2021-01-18T19:34:12
2021-01-18T19:34:12
330,767,953
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
import urllib import urllib.request try: online = urllib.request.urlopen('http://www.pudim.com.br') except urllib.error.URLError: ('O site não está online') else: print ('O site está online')
[ "fabianoaugustojanisch@hotmail.com" ]
fabianoaugustojanisch@hotmail.com
752ccdcaaecb2bf67fcdec7cb60e92757e101071
bc20be4024b159c47c12780f8840c47ed991b449
/setup.py
4742049596cbe85ecd278a05db7cdd66eb49acbd
[]
no_license
jhrdinka/FCChhAnalyses
704c827798571a24d65c1ef3a164f39b652ee189
b47f355910633267d926e571e3cac4a3345238c3
refs/heads/master
2020-05-06T13:43:42.557528
2019-03-26T15:39:04
2019-03-26T15:39:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
#!/usr/bin/env python2 from setuptools import setup, find_packages import glob setup(name='FCChhAnalyses', version='0.1.0', description='Produce flat ROOT trees using FCCSW EDM in heppy', author='Clement Helsens', author_email='clement.helsens@cern.ch', url='https://github.com/HEP-FCC/FCChhAnalyses', requires=['heppy', 'ROOT'], # heppy is called heppyfwk if installed with pip packages=find_packages(), package_dir={"FCChhAnalyses": "../FCChhAnalyses"}, scripts=glob.glob('scripts/*') )
[ "javier.cervantes.villanueva@cern.ch" ]
javier.cervantes.villanueva@cern.ch
3bf025ca6b569587910ee9310692ef856bc9759e
c6431cdf572dd10f0f4d45839e6081124b246f90
/code/lc179.py
3aaa4820cd2d067a5c93a9bd7ec62299708b2b99
[]
no_license
bendanwwww/myleetcode
1ec0285ea19a213bc629e0e12fb8748146e26d3d
427846d2ad1578135ef92fd6549235f104f68998
refs/heads/master
2021-09-27T19:36:40.111456
2021-09-24T03:11:32
2021-09-24T03:11:32
232,493,899
2
0
null
null
null
null
UTF-8
Python
false
false
952
py
""" 给定一组非负整数,重新排列它们的顺序使之组成一个最大的整数。 示例 1: 输入: [10,2] 输出: 210 示例 2: 输入: [3,30,34,5,9] 输出: 9534330 说明: 输出结果可能非常大,所以你需要返回一个字符串而不是整数。 """ class Solution(object): def largestNumber(self, nums): res = '' for i in range(len(nums)): for x in range(i + 1, len(nums)): if self.compare(str(nums[i]), str(nums[x])): tmp = nums[i] nums[i] = nums[x] nums[x] = tmp if nums[len(nums) - 1] == 0: return "0" for i in range(len(nums) - 1, -1, -1): res+= str(nums[i]) return res def compare(self, a, b): if int(a + b) > int(b + a): return True else: return False s = Solution() res = s.largestNumber([12, 121]) print(res)
[ "461806307@qq.com" ]
461806307@qq.com
5dc9e6d9ca09f4d108701e06c92e18d3768a1d0a
251e7002f2ecc218447c0602cb5e02920adfb548
/python/sitemonitor/lib/splunked.py
102b5f1d83f0715dd0d6f60eb4a54be6725a378c
[]
no_license
useEvil/site-monitor
d0018bfccdaa38acb42d61384410114f94d613b2
392412797f61ebddd3855030777e1f935e780147
refs/heads/master
2020-05-29T17:20:32.759687
2012-10-29T17:32:47
2012-10-29T17:32:47
4,162,859
1
1
null
null
null
null
UTF-8
Python
false
false
3,404
py
"""The Splunk Controller API Provides the Splink class for subclassing. """ import time import splunk from splunk import auth, search from pylons import config HOST = config.get('splunk.host') splunk.mergeHostPath(HOST, True) class Splunk: # first get the session key # (the method will automatically cache during the interactive session) auth.getSessionKey('admin','changeme') def searchSplunk(self): # ///////////////////////////////////////////////////////////////////////////// # Scenario 1: do a simple search for all web server logs # ///////////////////////////////////////////////////////////////////////////// # start search job = search.dispatch('search index="coherence" host="*hou" source="coherence_gc_log" sourcetype="garbagecollection" | timechart max(gctime) by host') # at this point, Splunk is running the search in the background; how long it # takes depends on how much data is indexed, and the scope of the search # # from this point, we explore some of the things you can do: # # # Option A: return all of the matched events # this will stream events back until the last event is reached # for event in job: # print event # Option B: just return the host field all of the matched events # for event in job: # print event['host'] # Option C: return specific events # wait until the job has completed before trying to access arbirary indices while not job.isDone: time.sleep(1) # print the total number of matched events print len(job) print job.count # print the second event (remember that python is 0-indexed) print job[1] # print the first 10 for event in job[0:10]: print event # print the last 5 for event in job[:-5]: print event # clean up job.cancel() def searchSplunkSummarize(self): # ///////////////////////////////////////////////////////////////////////////// # Scenario 2: do a search for all web server logs and summarize # ///////////////////////////////////////////////////////////////////////////// # start search job = search.dispatch('search sourcetype="access_combined" | timechart count') # the 'job' object has 2 distinct result containers: 'events' and 'results' # 'events' contains the data in a non-transformed manner # 'results' contains the data that is post-transformed, i.e. after being # processed by the 'timechart' operator # wait for search to complete, and make the results available while not job.isDone: time.sleep(1) # print out the results for result in job.results: print result # because we used the 'timechart' operator, the previous loop will output a # compacted string; to get at a native dictionary of fields: for result in job.results: print result.fields # prints a standard python str() of a dict object # or, if we just want the raw events # for event in job.events: # print event # print event.time # returns a datetime.datetime object # clean up job.cancel()
[ "useEvil@gmail.com" ]
useEvil@gmail.com
e7db557128138182a4636941585056d2d674a53e
b55aa5b0642a19a62acb996d3c5a1e87cd1b9d63
/model/generate_ai_customer_service.py
35e1c7cdeb41e2692779fc86b99971952dbd3542
[]
no_license
Innerface/qarobot
b01913c034770dca9d75d81a853b30e09edd8a4c
ed51d09621d567e16d3d15c79696028d3059d7ee
refs/heads/master
2023-02-24T03:32:58.905942
2018-05-11T07:52:08
2018-05-11T07:52:08
133,007,690
1
0
null
2023-02-15T17:49:39
2018-05-11T07:49:51
Python
UTF-8
Python
false
false
4,427
py
# Author: YuYuE (1019303381@qq.com) 2018.03.16 import re from itertools import groupby from extend.data_optimization import keywords_sorted as doks from model import generate_word_vector as vectormodel from model import nlp_pinyin_hanzi_transfer as phtransfer def remove_special_tags(str_): """ 特殊字符处理,可选择性配置 :param str_: :return: """ r = '[’!"#$%&\'()*+,-./:;<=>??。!¥……【】、,:;‘’”“@[\\]^_`{|}~]+' result = re.sub(r, '', str_) return result def remove_modal_particle(str_): """ 语气助词处理,可选择性配置 :param str_: :return: """ modal_particle = ['阿','啊','呃','欸','哇','呀','哦','耶','哟','欤','呕','噢','呦','吧','罢','呗','啵','嘞','哩','咧','咯','啰','喽','吗','嘛','呢','呐','噻','嘢'] for particle in modal_particle: if str_.find(particle) != -1: str_ = str_.replace(particle,'') return str_ def remove_partial_and_special(sent): sent = remove_special_tags(sent) sent = remove_modal_particle(sent) return sent def replace_synonyms_words(main_sent_set,words,synonyms_words=False): """ 同义词替换 :param words: :return: """ if words and main_sent_set and synonyms_words: words_str = ' '.join(words) main_sent_set_str = ' '.join(main_sent_set) synonyms = doks.default_synonyms() if synonyms: for key in synonyms.keys(): if main_sent_set_str.find(key) != -1 and words_str.find(synonyms[key]) != -1: words_str = words_str.replace(synonyms[key],key) words = words_str.split() return words def siphon_synonyms_words(main_sent_set): """ 根据问题找到可能的同义词,较上一个方法效率 :param main_sent_set: :return: """ synonyms_words= False if main_sent_set: main_sent_set_str = ' '.join(main_sent_set) synonyms = doks.default_synonyms() if synonyms: for key in synonyms.keys(): if main_sent_set_str.find(key) != -1: synonyms_words = True return synonyms_words def groupby_subscript(lst): """ 连续下标分组 :param lst: :return: """ groups = [] fun = lambda x: x[1] - x[0] for k, g in groupby(enumerate(lst), fun): groups.append([v for i, v in g]) return groups def remove_useless_and_correction(inp): """ 去除与语义无关的杂项,并做中文纠正 1.去除多余标点符号 2.拼音识别 3.拼音转换 4.去语气助词 :param inp: :return: """ step_one_str = remove_special_tags(inp) is_with_alphabet = False inner_alphabet = '' pos_alphabet = [] i = 0 for vchar in step_one_str: if phtransfer.is_alphabet(vchar): is_with_alphabet =True inner_alphabet += vchar pos_alphabet.append(i) i += 1 if is_with_alphabet: groups = groupby_subscript(pos_alphabet) if len(groups) > 1: increase_or_decrease = 0 for group in groups: item = '' for index in group: item += step_one_str[index-increase_or_decrease] item_to_hanzi = phtransfer.transfer_continue_pinyin_to_hanzi(item) item_to_hanzi_ = ''.join(item_to_hanzi) eval_item = vectormodel.words_evaluation(item,item_to_hanzi_) if eval_item != None and eval_item != item: step_one_str = step_one_str.replace(item,item_to_hanzi_) increase_or_decrease = len(item) - len(''.join(item_to_hanzi)) else: alphabet_to_hanzi = phtransfer.transfer_continue_pinyin_to_hanzi(inner_alphabet) alphabet_to_hanzi_ = ''.join(alphabet_to_hanzi) eval_item = vectormodel.words_evaluation(inner_alphabet, alphabet_to_hanzi_) if eval_item != None and inner_alphabet != eval_item: step_one_str = step_one_str.replace(inner_alphabet,eval_item) step_two_str = remove_modal_particle(step_one_str) return step_two_str def split_sentence_to_words(inp, method='method', mode='HMM'): return doks.siphon_keywords_and_sort(inp) def siphon_keywords_by_tfidf(inp): return inp def siphon_ners_by_nlp(inp, keywords, method='method', mode='HMM'): return inp def siphon_relations_by_nlp(ners, sent, method='method', mode='HMM'): return ners def text_classification(inp, keywords=''): return inp def generate_response(inp, keywords='', ners=None, relations=None, type=None): """ 答案抽取模块,基本流程 1.FAQ匹配 2.知识图谱 3.文档 4.互联网资源 :param words_split: :param keywords: :param ners: :param relations: :param type: :return: """ response = faq_search(keywords,inp) return response def faq_search(keywords,inp): return inp
[ "yuy@workway.com.cn" ]
yuy@workway.com.cn
6daf8b4f3c24f4b8b3d3dc70540f2ea7d90a499d
773e55fe106852600adff8ff886c4890414e4540
/sample.py
e01cd32223797f9c1e57ccfb44d68bb075f9e380
[]
no_license
gloveboxes/Python-DMX-Client
a7702d416b42b9cfa2cef031dbfa79c29f1a1c5b
503626826d4e34b9b0cb08ae3b57b8965c646cd1
refs/heads/master
2020-05-31T21:16:25.863307
2019-06-05T12:15:24
2019-06-05T12:15:24
190,494,080
1
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
import dmxclient import time import random dmx = dmxclient.DmxClient(dmxServerAddress='dmxserver.local', fixtureIds=[1, 2, 3]) def cycleColours(): for cycles in range(10): for colour in range(100, 255): dmx.colours(red=colour) dmx.publish([1, 3]) dmx.colours(blue=colour) dmx.publish([2]) time.sleep(0.1) def cyclePalette(): palette = [[255, 0, 0], [0, 255, 0], [0, 0, 255]] for cycles in range(100): for colour in palette: # dmx.colours(red=colour[0], green=colour[1], blue=colour[2]) # dmx.colours(colour[0], colour[1], colour[2]) # alternatively set colour by property dmx.red = colour[0] dmx.green = colour[1] dmx.blue = colour[2] dmx.white = 0 dmx.publish() time.sleep(0.5) def simple(): dmx.colours(255, 0, 255) # magenta dmx.publish() time.sleep(3) dmx.clear() dmx.red = 255 dmx.publish(fixtureIds=[2]) time.sleep(3) def lightsOff(): dmx.clear() # will default to black dmx.publish() # defaults to all fixtures simple() cycleColours() cyclePalette() lightsOff()
[ "dglover@microsoft.com" ]
dglover@microsoft.com
7c3cd07ebf63dfc48ef91adefa1a240b5a5f9ea2
06cff881a57a161763cd9ca532118dd545d5d7e7
/src/profiling_command.py
6b5b79bdd119944db8ece8ca89c7c7084b7b3974
[ "MIT" ]
permissive
chilin0525/modelstat
d72d78c66659397dc90a3a13034cbb1d3899ba5f
a6db805b48b2a2a064eb41cb1a50ddda0f5ed79d
refs/heads/main
2023-08-01T14:09:43.136206
2021-09-14T08:08:34
2021-09-14T08:08:34
402,698,086
0
1
null
null
null
null
UTF-8
Python
false
false
306
py
def generate_command(model_type, gpu_idx, command): dlprof = "dlprof --reports all" + \ " --force=true" + \ " --mode=" + model_type + \ " --formats=json" + \ " --output_path=log " + command return dlprof
[ "sky707070.cv07@nctu.edu.tw" ]
sky707070.cv07@nctu.edu.tw
1a633e6391da83a80c5b9071eb7f440b90a5e856
0523c56528465acfb4a4107d3960f85dc23e395e
/mod_cycle/r_diagram.py
c81636d245eb0c497fd3f5243957b49caaecf0f6
[]
no_license
Nathanzhn/GA4
46e0eccc1050740c45da70c603e67c60f0b3be85
6843fd139ff2355b98eac0ac9cf09aee6fede7cd
refs/heads/master
2020-05-19T13:43:57.655145
2019-06-07T09:30:24
2019-06-07T09:30:24
185,046,708
0
0
null
null
null
null
UTF-8
Python
false
false
1,560
py
import CoolProp.CoolProp as CP import numpy as NP def r_diagram(): #ofile = open ('sat.txt','w') #fluid = input ('Enter fluid name: ') fluid = 'R134a' pc = CP.PropsSI(fluid, 'pcrit') pt = CP.PropsSI(fluid, 'ptriple') # Create lists of properties on saturation line with GP variation in p pr = (0.9999 * pc / pt) pr = NP.power(pr, 0.001) plt_TT = [] plt_sf = [] plt_sg = [] plt_pp = [] plt_hf = [] plt_hg = [] p = pt #ofile.write ('\t P (Pa) \t T (deg C) \t sf (kJ/kg.K) \t sg (kJ/kg.K) \t hf (kJ/kg.K) \t hg (kJ/kg.K)\n') for i in range(1000): TT = CP.PropsSI('T', 'P', p, 'Q', 0.0, fluid) - 273.15 sf = CP.PropsSI('S', 'P', p, 'Q', 0.0, fluid) / 1000.0 sg = CP.PropsSI('S', 'P', p, 'Q', 1.0, fluid) / 1000.0 hf = CP.PropsSI('H', 'P', p, 'Q', 0.0, fluid) / 1000.0 hg = CP.PropsSI('H', 'P', p, 'Q', 1.0, fluid) / 1000.0 #ofile.write ('\t%10.2f \t%10.2f \t%10.2f \t%10.2f \t%10.2f \t%10.2f \n' % (p,TT,sf,sg,hf,hg)) p = p * pr plt_TT.append(TT) plt_sf.append(sf) plt_sg.append(sg) plt_pp.append(p) plt_hf.append(hf) plt_hg.append(hg) # ofile.close() plt_TT = plt_TT[600:] plt_pp = plt_pp[600:] plt_sf = plt_sf[600:] plt_sg = plt_sg[600:] plt_hf = plt_hf[600:] plt_hg = plt_hg[600:] plt_TT += plt_TT[::-1] plt_pp += plt_pp[::-1] plt_sfg = plt_sf + plt_sg[::-1] plt_hfg = plt_hf + plt_hg[::-1] return plt_pp, plt_hfg, plt_TT, plt_sfg
[ "hz325@cam.ac.uk" ]
hz325@cam.ac.uk
09242a62a09ba5ba8535db7d793e49b3b2eb14a9
d2a030f7a050a641fddd657e895651ee0310ae41
/givers/migrations/0010_auto_20210909_1153.py
d07c21117cc4a4aa04ffcaf388c9d91eb2b085fe
[]
no_license
Shawen17/Giveawaynow
f052a1055a96f2d0a392aaf748adcafbec2a5135
92f3bc0b359a712776661348e239b492894b81a1
refs/heads/master
2023-09-05T00:28:59.237486
2021-10-24T21:12:37
2021-10-24T21:12:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
# Generated by Django 3.1.7 on 2021-09-09 10:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('givers', '0009_give_gift_recipient'), ] operations = [ migrations.RenameField( model_name='give', old_name='phone_number', new_name='giver_number', ), migrations.RenameField( model_name='vendor', old_name='phone_number', new_name='giver_number', ), ]
[ "shawen022@yahoo.com" ]
shawen022@yahoo.com
834ec6a6d8f6eb46399cf5c9441e992f04caf2a3
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_138/1236.py
914087508eb86863c5f11d9d67e00191230d743f
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
import copy T = int(raw_input()) for t in range(0,T): N = int(raw_input()) nb = [float(x) for x in raw_input().split()] kb = [float(x) for x in raw_input().split()] nb.sort() kb.sort() dkb = copy.deepcopy(kb) #print nb #print kb # deceitful war dw_p = 0 ln = len(nb) index = ln - 1; lost = 0; while(index >= lost): for i in range(len(dkb)-1, -1, -1): if nb[index] > dkb[i]: dkb.remove(dkb[i]) break; else: lost = lost + 1 dkb.remove(dkb[i]) index = index - 1 dw_p = ln - lost # optimal war ow_p = 0 index = 0 ln = len(nb) while(index < ln): state = False for i in range(0, len(kb)): if(nb[index] < kb[i]): kb.remove(kb[i]) state = True break; else: continue if not state: kb.pop(0) ow_p = ow_p + 1 index = index + 1 print "Case #%d: %d %d" %(t+1, dw_p, ow_p)
[ "miliar1732@gmail.com" ]
miliar1732@gmail.com
2f4d9a096f13e77f9c74695299c6b3647424473a
56b5e0ca548c805973494ed0e2fd06ac2b583827
/beast/tools/star_type_probability.py
c88ea0d2ad93b9269f7dde4b761b9a5276ac886b
[ "BSD-3-Clause" ]
permissive
dthilker/beast
1fa4124a5bfdafc0c2225a9b118058adb8324d9f
892940813f4b22d545b501cc596c72967d9a45bc
refs/heads/master
2022-07-01T06:53:14.129362
2020-05-04T19:34:37
2020-05-04T19:34:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,674
py
import numpy as np from collections import defaultdict from astropy.table import Table from astropy.io import fits def star_type_probability( pdf1d_files, pdf2d_files, output_filebase=None, ext_O_star_params=None, dusty_agb_params=None, ): """ Calculate the probabilities of a set of star types by integrating either the 1D or 2D PDF across the relevant range of parameter values. Currently does probabilities for these types. See the docstrings of their respective functions for more details. If the required parameters are not present in the PDFs, the function returns None. * extinguished O star (M_ini, Av) * dusty AGB star (Av, logT) Note that if more functions for different stellar types are added (please add more!), `params_to_save` needs to be updated. This variable ensures that only the necessary parameters are stored in memory. Parameters ---------- pdf1d_files : string or list of strings Name of the file(s) with the 1D PDFs. If a list, it's each part of the subgrid. pdf2d_files : string or list of strings Name of the file(s) with the 2D PDFs. If a list, it's in the same order as the subgrids above. output_filebase : string (default=None) Prefix for saving the file of probabilities ("_startype.fits" will be appended). If None, will return the table rather than saving it. ext_O_star_params : dict or None Set to a dictionary to override the default cuts for extinguished early type stars. Allowed keywords are 'min_M_ini' (float), 'min_Av' (float), and 'max_Av' (float). dusty_agb_params : dict or None Set to a dictionary to override the default cuts for dusty AGB stars (the high Av failure mode). Allowed keywords are 'min_Av' (float), 'min_logT' (float), and 'max_logT' (float). Returns ------- star_prob : dict if output_filebase is None, a dictionary of probabilities is returned. """ # read in the data # - set up dictionaries to hold PDFs and bins pdf1d_data = defaultdict(list) pdf1d_bins = defaultdict(list) pdf2d_data = defaultdict(list) pdf2d_bins = defaultdict(list) # - parameters to save params_to_save = ['Av', 'M_ini', 'logT'] # - go through each pair of files for (pdf1d_file, pdf2d_file) in zip(np.atleast_1d(pdf1d_files), np.atleast_1d(pdf2d_files)): # 1D PDF data with fits.open(str(pdf1d_file)) as hdu: for ext in hdu: # only save the data if the parameter is in params_to_save if ext.name in params_to_save: pdf1d_data[ext.name].append(ext.data[:-1,:]) pdf1d_bins[ext.name].append(ext.data[-1,:]) # 2D PDF data with fits.open(str(pdf2d_file)) as hdu: for ext in hdu: # skip extensions without '+' if '+' not in ext.name: continue # break up the name into the two parameters p1, p2 = ext.name.split('+') # only save the data if both parameters are in params_to_save if (p1 in params_to_save) and (p2 in params_to_save): pdf2d_data[ext.name].append(ext.data[:-2,:,:]) pdf2d_bins[ext.name].append(ext.data[-2:,:,:]) # combine arrays from each file for key in pdf1d_data: # check that the bins are the same for all bin_list = pdf1d_bins[key] bin_check = [ not np.array_equal(bin_list[i], bin_list[i+1]) for i in range(len(bin_list)-1) ] if np.sum(bin_check) > 0: raise ValueError('1D PDF bins not the same for each input file') # if so, just save the first one pdf1d_bins[key] = pdf1d_bins[key][0] # concatenate the PDFs pdf1d_data[key] = np.concatenate(pdf1d_data[key]) for key in pdf2d_data: # check that the bins are the same for all bin_list = pdf2d_bins[key] bin_check = [ not np.array_equal(bin_list[i], bin_list[i+1]) for i in range(len(bin_list)-1) ] if np.sum(bin_check) > 0: raise ValueError('2D PDF bins not the same for each input file') # if so, just save the first one pdf2d_bins[key] = pdf2d_bins[key][0] # concatenate the PDFs pdf2d_data[key] = np.concatenate(pdf2d_data[key]) # evaluate probabilities of things star_prob = {} # - extinguished O star if ext_O_star_params is None: star_prob['ext_O_star'] = ext_O_star(pdf2d_data, pdf2d_bins) else: star_prob['ext_O_star'] = ext_O_star(pdf2d_data, pdf2d_bins, **ext_O_star_params) # - dusty AGB star (high Av failure mode) if dusty_agb_params is None: star_prob['dusty_agb'] = dusty_agb(pdf2d_data, pdf2d_bins) else: star_prob['dusty_agb'] = dusty_agb(pdf2d_data, pdf2d_bins, **dusty_agb_params) # - other things # write out the table if output_filebase is not None: Table(star_prob).write(output_filebase+"_startype.fits", overwrite=True) else: return star_prob def ext_O_star(pdf2d_data, pdf2d_bins, min_M_ini=10, min_Av=0.5, max_Av=99): """ Calculate the probability that each star is an extinguished O star: * initial mass >= 10 Msun * A_V >= 0.5 mag There's a max A_V option to avoid possible high-Av artifacts. Some useful references for O/B stars https://ui.adsabs.harvard.edu/abs/2019A%26A...625A.104R/abstract https://ui.adsabs.harvard.edu/abs/2018A%26A...615A..40R/abstract https://ui.adsabs.harvard.edu/abs/2018A%26A...609A...7R/abstract Parameters ---------- pdf2d_data : dict 2D PDF data, each key has an array with shape (n_stars, nbin1, nbin2) pdf2d_bins : dict dictionary with corresponding bin values min_M_ini : float (default=10) minimum mass (in solar masses) min_Av : float (default=0.5) minimum Av (magnitudes) max_Av : float (default=99) maximum Av (magnitudes) Returns ------- star_prob : array probability for each star """ if 'Av+M_ini' in pdf2d_data.keys(): prob_data = pdf2d_data['Av+M_ini'] av_bins = pdf2d_bins['Av+M_ini'][0,:,:] mass_bins = pdf2d_bins['Av+M_ini'][1,:,:] elif 'M_ini+Av' in pdf2d_data.keys(): prob_data = pdf2d_data['M_ini+Av'] av_bins = pdf2d_bins['M_ini+Av'][1,:,:] mass_bins = pdf2d_bins['M_ini+Av'][0,:,:] else: print("2D PDFs don't contain M_ini and Av data") tot_stars = pdf2d_data[list(pdf2d_data)[0]].shape[0] return [np.nan] * tot_stars # reshape the arrays prob_data = prob_data.reshape(prob_data.shape[0], -1) av_bins = av_bins.reshape(-1) mass_bins = mass_bins.reshape(-1) keep = np.where( (mass_bins >= min_M_ini) & (av_bins >= min_Av) & (av_bins <= max_Av) )[0] return np.sum(prob_data[:,keep], axis=1) def dusty_agb(pdf2d_data, pdf2d_bins, min_Av=7, min_logT=3.7, max_logT=4.2): """ Calculate the probability that each star is a dusty AGB star, using the high Av failure mode: * A_V >= 7 mag * Log T_eff from 3.7 to 4.2 Parameters ---------- pdf2d_data : dict 2D PDF data, each key has an array with shape (n_stars, nbin1, nbin2) pdf2d_bins : dict dictionary with corresponding bin values min_Av : float (default=0.5) minimum Av (magnitudes) min_logT, max_logT : float (default=3.7, 4.2) minimum and maximum logT Returns ------- star_prob : array probability for each star """ if 'Av+logT' in pdf2d_data.keys(): prob_data = pdf2d_data['Av+logT'] av_bins = pdf2d_bins['Av+logT'][0,:,:] logT_bins = pdf2d_bins['Av+logT'][1,:,:] elif 'logT+Av' in pdf2d_data.keys(): prob_data = pdf2d_data['logT+Av'] av_bins = pdf2d_bins['logT+Av'][1,:,:] logT_bins = pdf2d_bins['logT+Av'][0,:,:] else: print("2D PDFs don't contain Av and logT (T_eff) data") tot_stars = pdf2d_data[list(pdf2d_data)[0]].shape[0] return [np.nan] * tot_stars # reshape the arrays prob_data = prob_data.reshape(prob_data.shape[0], -1) av_bins = av_bins.reshape(-1) logT_bins = logT_bins.reshape(-1) keep = np.where( (av_bins >= min_Av) & (logT_bins >= min_logT) & (logT_bins <= max_logT) )[0] return np.sum(prob_data[:,keep], axis=1)
[ "lhagen@stsci.edu" ]
lhagen@stsci.edu
a694c0f308be0902485e4db6142cc6874788303a
d9eafe91bd585f46cc896c5c6704863b00e1a6d7
/experiments/2015_02_20_mnist/1/experiment.py
3b7a53cda6faa1157774e0ce1d15e3fc1f2e5965
[]
no_license
davidbonet/maxwells-daemon
b2145412c65a8645261d60509f350736683515a0
c947afac67b992676a44c9615edba46fa40531c0
refs/heads/master
2023-06-15T14:32:14.778557
2021-07-13T15:20:58
2021-07-13T15:20:58
379,681,838
0
0
null
2021-06-23T17:31:15
2021-06-23T17:31:14
null
UTF-8
Python
false
false
5,765
py
"""First real experiment - how well do we do on MNIST?""" import numpy as np from numpy.linalg import norm import pickle from collections import defaultdict from funkyyak import grad from maxwell_d.util import RandomState from maxwell_d.optimizers import entropic_descent2 from maxwell_d.nn_utils import make_nn_funs from maxwell_d.data import load_data_subset # ------ Problem parameters ------- layer_sizes = [784, 200, 10] batch_size = 200 N_train = 10**3 N_tests = 10**3 # ------ Variational parameters ------- seed = 0 init_scale = 1.0 epsilon = 0.1 gamma = 0.1 N_iter = 1000 alpha = 0.1 annealing_schedule = np.linspace(0, 1, N_iter) # ------ Plot parameters ------- N_samples = 3 N_checkpoints = 10 thin = np.ceil(N_iter/N_checkpoints) def run(): (train_images, train_labels),\ (tests_images, tests_labels) = load_data_subset(N_train, N_tests) parser, pred_fun, nllfun, frac_err = make_nn_funs(layer_sizes) print "Running experiment..." results = defaultdict(list) for i in xrange(N_samples): x_init_scale = np.full(len(parser.vect), init_scale) def indexed_loss_fun(w, i_iter): rs = RandomState((seed, i, i_iter)) idxs = rs.randint(N_train, size=batch_size) return nllfun(w, train_images[idxs], train_labels[idxs]) gradfun = grad(indexed_loss_fun) def callback(x, t, v, entropy): results[("entropy", i)].append(entropy) results[("v_norm", i)].append(norm(v)) results[("minibatch_likelihood", i)].append(-indexed_loss_fun(x, t)) if t % thin == 0 or t == N_iter or t == 0: results[('iterations', i)].append(t) results[("train_likelihood", i)].append(-nllfun(x, train_images, train_labels)) results[("tests_likelihood", i)].append(-nllfun(x, tests_images, tests_labels)) results[("tests_error", i)].append(frac_err(x, tests_images, tests_labels)) print "Iteration {0:5i} Train likelihood {1:2.4f} Test likelihood {2:2.4f}" \ " Test Err {3:2.4f}".format(t, results[("train_likelihood", i)][-1], results[("tests_likelihood", i)][-1], results[("tests_error", i)][-1]) rs = RandomState((seed, i)) entropic_descent2(gradfun, callback=callback, x_scale=x_init_scale, epsilon=epsilon, gamma=gamma, alpha=alpha, annealing_schedule=annealing_schedule, rs=rs) return results def estimate_marginal_likelihood(likelihood, entropy): return likelihood + entropy def plot(): print "Plotting results..." import matplotlib.pyplot as plt with open('results.pkl') as f: results = pickle.load(f) fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[("entropy", i)]) ax = fig.add_subplot(212) plt.plot([np.mean([results[("entropy", i)][t] for i in xrange(N_samples)]) for t in xrange(N_iter)]) plt.savefig("entropy.png") fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[("v_norm", i)]) ax = fig.add_subplot(212) plt.plot([np.mean([results[("v_norm", i)][t] for i in xrange(N_samples)]) for t in xrange(N_iter)]) plt.savefig("v_norms.png") fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[("minibatch_likelihood", i)]) ax = fig.add_subplot(212) plt.plot([np.mean([results[("minibatch_likelihood", i)][t] for i in xrange(N_samples)]) for t in xrange(N_iter)]) plt.savefig("minibatch_likelihoods.png") fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[('iterations', i)], [estimate_marginal_likelihood(results[("train_likelihood", i)][t_ix], results[("entropy", i)][t]) for t_ix, t in enumerate(results[('iterations', i)])]) ax = fig.add_subplot(212) plt.plot(results[('iterations', i)], [np.mean([estimate_marginal_likelihood(results[("train_likelihood", i)][t_ix], results[("entropy", i)][t]) for i in xrange(N_samples)]) for t_ix, t in enumerate(results[('iterations', 0)])]) plt.savefig("marginal_likelihoods.png") fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[('iterations', i)], [results[("tests_likelihood", i)][t] for t in xrange(len(results[('iterations', i)]))],) ax = fig.add_subplot(212) plt.plot(results[('iterations', i)], [np.mean([results[("tests_likelihood", i)][t] for i in xrange(N_samples)]) for t in xrange(len(results[('iterations', 0)]))]) plt.savefig("test_likelihoods.png") fig = plt.figure(0); fig.clf() ax = fig.add_subplot(211) for i in xrange(N_samples): plt.plot(results[('iterations', i)], [results[("tests_error", i)][t] for t in xrange(len(results[('iterations', i)]))]) ax = fig.add_subplot(212) plt.plot(results[('iterations', 0)], [np.mean([results[("tests_error", i)][t] for i in xrange(N_samples)]) for t in xrange(len(results[('iterations', 0)]))]) plt.savefig("test_errors.png") if __name__ == '__main__': results = run() with open('results.pkl', 'w') as f: pickle.dump(results, f, 1) plot()
[ "dduvenaud@seas.harvard.edu" ]
dduvenaud@seas.harvard.edu
50e83cdef85a998a42841277e6aeb8552d6c9e4b
c7979f4f6435fe8d0d07fff7a430da55e3592aed
/ABC035/C.py
3896d58a52d5cbdff09b32a7a1e9ace983db5d2b
[]
no_license
banboooo044/AtCoder
cee87d40bb98abafde19017f4f4e2f984544b9f8
7541d521cf0da848ecb5eb10ffea7d75a44cbbb6
refs/heads/master
2020-04-14T11:35:24.977457
2019-09-17T03:20:27
2019-09-17T03:20:27
163,818,272
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
N,Q = map(int,input().split(" ")) s = 0 for i in range(Q): l,r = map(int,input().split(" ")) bit = (1 << (N-l+1)) - (1 << (N-r)) s ^= bit ans = "" for i in range(N-1,-1,-1): if (s >> i) & 1: ans += '1' else: ans += '0' print(ans)
[ "touhoucrisis7@gmail.com" ]
touhoucrisis7@gmail.com
af581fa5b0a483c2f126c59fbcaebea7e27c9491
102ad7bc61d20d9ea92ed3c4b872c5748adb81c5
/AromaAnnounce/models.py
ab639f7d3d4ca889ac5140b76e4c989631054207
[]
no_license
neofyte/aroma
ae3e53943418d202b32f7af814bb10bc6163848c
0cea963fc58848fbf36251770959d4177faf11a7
refs/heads/master
2021-01-22T10:17:50.180961
2013-09-10T14:52:27
2013-09-10T14:52:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,255
py
from django.db import models from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from django.dispatch import Signal, receiver from AromaFriend.models import Relationship from AromaFriend.signals import relationship_created class AromaEvent(models.Model): content = models.CharField(max_length=150) announcer = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='announcer_to_event', db_index=True) created_date = models.DateTimeField('时间', auto_now_add=True) content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() event = generic.GenericForeignKey() def __str__(self): return '{0} @ {1}'.format(self.announcer, self.created_date) @property def description(self): return self.event.description @classmethod def AromaEvent_post_save(self, sender, instance, *args, **kwargs): event = AromaEvent( content = instance.description, announcer = instance.announcer, event = instance, ) event.save() #relationship_created.connect(AromaEvent_post_save, sender=Relationship)
[ "nikegu@gmail.com" ]
nikegu@gmail.com
bd449ec4e27a83d7f61f5a3a0271fb13f1f0645f
dd9b64651b7761401e4f8bce1f56a231892a4946
/inplace_swap.py
e0b0527aa58e84815702c781f2e55a9d1983aa4c
[]
no_license
richnakasato/ctci-py
793bf33c3e2c5d5f9f597e6574aa32185145a801
81e79ef75d8f8f8770b2e13bcd05f2ea3011895b
refs/heads/master
2020-03-27T08:14:15.918723
2019-01-10T02:28:16
2019-01-10T02:28:16
146,235,144
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
''' Perform swap inplace using only XOR Takeaways: - This works because XOR of a^b^a == b (think about finding missing number from [1, 2, ..., n+1] in arr of size n) - So... a^b=c, c^a==b, c^b==a (because c==a^b, c^ a or b cancels out a or b) ''' import random def inplace_swap(a, b): print(a, b) a = a^b # c (aka a^b) b = a^b # (a^b)^b, b == a a = a^b # (a^b)^a, from above, (a == b) print(a, b) def main(): lo = 1 hi = 100 a = random.randint(lo, hi) b = random.randint(lo, hi) inplace_swap(a, b) if __name__ == "__main__": main()
[ "richnakasato@hotmail.com" ]
richnakasato@hotmail.com
71ae0fad47ff3c1ef04664f1dff4da8471053cdd
36f35ecfc54ca57ed9a5444242286c3b5905b9de
/Python/TriangleQuest.py
4cb887412f3fe43efe308f080335bdd7a83d4fb8
[ "MIT" ]
permissive
anujitm2007/Hackerrank-Codes
7e447e8ba0e76c3ef0fb9da0fc73b3feefc11d3e
3afe9d1ec1c3563916a32815e5133f4cbb5234dd
refs/heads/master
2023-01-04T06:18:10.605095
2020-10-28T14:37:01
2020-10-28T14:37:01
302,840,781
0
0
MIT
2020-10-28T14:37:03
2020-10-10T07:19:44
null
UTF-8
Python
false
false
631
py
''' You are given a positive integer . Print a numerical triangle of height like the one below: 1 22 333 4444 55555 ...... Can you do it using only arithmetic operations, a single for loop and print statement? Use no more than two lines. The first line (the for statement) is already written for you. You have to complete the print statement. Note: Using anything related to strings will give a score of . Input Format A single line containing integer, . Constraints Output Format Print lines as explained above. Sample Input 5 Sample Output 1 22 333 4444 ''' for i in range(1,int(input())): print((10**(i)//9)*i)
[ "noreply@github.com" ]
anujitm2007.noreply@github.com
495f547d5bada6337f2891daadb8866a8e134d79
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/KQ5H9aFBZDKEJuP6C_21.py
fd6ff8f60e7ca560d02d17a9ef74b3d81df4ccad
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
import re ​ pattern = "(?<!good )cookie"
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
e525b56f6061196df2ad2a70f0aee00b6682f319
e4288c575d10ad31bb2b7b8217bec2f7fda5a0fd
/simbert/models/bert/BertForRanking.py
571f6642c093d94f97c9dd203f8d977ef42f9241
[]
no_license
serafima-ai/SimBert
3f2beb92ced1f6a71933d2435b3ecc7b07668624
fada20ceee9ca9559a5f8cee59d631038d197157
refs/heads/master
2021-03-24T21:44:49.741371
2020-05-07T21:57:29
2020-05-07T21:57:29
247,567,129
6
0
null
null
null
null
UTF-8
Python
false
false
6,944
py
import pytorch_lightning as pl from dotmap import DotMap from torch import nn from torch.utils.data import DataLoader from simbert.models.lightning import SimbertLightningModule from simbert.models.model import Model from transformers import * import torch from simbert.datasets.processor import DataProcessor from simbert.optimizers.optimizer import Optimizer class BertForRanking(SimbertLightningModule, Model): def __init__(self, configs: DotMap = DotMap(), *args, **kwargs): pl.LightningModule.__init__(self, *args, **kwargs) Model.__init__(self, configs) self.bert = None self.num_classes = 0 self.classifier = None self.DataProcessor = None self.apply_configs(self.configs) self.sigmoid = nn.Sigmoid() if configs is not None: self.DataProcessor = self.data_processor() def __bert_model(self): if self.bert is not None and self.configs.get('bert_model') is None: return self.bert return BertModel.from_pretrained(self.configs.get('bert_model', 'bert-base-multilingual-cased')) def __calculate_classes(self): if self.num_classes != 0 and self.configs.dataset.processor.features.get('labels') is None: return self.num_classes return len(self.configs.dataset.processor.features.labels) def __classifier(self, num_classes=2): num_classes = self.configs.get(num_classes, num_classes) return nn.Linear(self.bert.config.hidden_size, num_classes) def data_processor(self): if self.DataProcessor is not None and self.configs.dataset.get( 'processor') is None or self.configs.dataset.processor.get('data_processor_name') is None: return self.DataProcessor return DataProcessor().get(self.configs.dataset.processor.data_processor_name)( self.configs.dataset.processor) def new_tokenizer(self): if self.tokenizer is not None and self.configs.get('tokenizer') is None: return self.tokenizer return BertTokenizer.from_pretrained( self.configs.get('tokenizer', 'bert-base-multilingual-cased')) def apply_configs(self, configs: DotMap): Model.apply_configs(self, configs) self.bert = self.__bert_model() self.num_classes = self.__calculate_classes() self.classifier = self.__classifier() def predict(self, inputs): examples = [] results = [] for sample in inputs: query, paragraph = sample examples.append(InputExample(text_a=query, text_b=paragraph, label=0, guid='prediction')) features = self.DataProcessor.FeaturesProcessor.convert_examples_to_features(examples, tokenizer=self.tokenizer) tokenized = self.DataProcessor.create_tensor_dataset(features) bert_test_dataloader = DataLoader(tokenized) for batch in bert_test_dataloader: input_ids, attention_mask, token_type_ids, label = batch results.append( self.forward(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0][ 0].tolist()) return results def forward(self, input_ids, attention_mask, token_type_ids): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) pooler_output, attn = outputs[1], outputs[-1] logits = self.classifier(pooler_output) sigmoids = self.sigmoid(logits) return sigmoids, attn def training_step(self, batch, batch_nb): # batch input_ids, attention_mask, token_type_ids, label = batch # fwd y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids) y = torch.zeros(label.shape[0], 2, device='cuda') y[range(y.shape[0]), label] = 1 # loss # loss = F.binary_cross_entropy_with_logits(y_hat, y) loss = self.loss_func(y_hat, label) # logs tensorboard_logs = {'train_loss': loss} return {'loss': loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_nb): # batch input_ids, attention_mask, token_type_ids, label = batch # fwd y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids) y = torch.zeros(label.shape[0], 2, device='cuda') y[range(y.shape[0]), label] = 1 # print(y_hat,'label',label,'new',y) # loss # loss = F.binary_cross_entropy_with_logits(y_hat, y) # print(loss) loss = self.loss_func(y_hat, label) # acc a, y_hat = torch.max(y_hat, dim=1) return {**{'val_loss': loss}, **self.calculate_metrics(label.cpu(), y_hat.cpu(), stage='val', apply=lambda x: torch.tensor(x, dtype=torch.float64))} def validation_end(self, outputs): avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() avg_metrics = {} for _, metric in self.metrics.items(): key_name = 'val_' + metric.get_metric_name() avg_metrics.update({'avg_' + key_name: torch.stack([x[key_name] for x in outputs]).mean()}) tensorboard_logs = {**{'val_loss': avg_loss}, **avg_metrics} return {'avg_val_loss': avg_loss, 'progress_bar': tensorboard_logs} def test_step(self, batch, batch_nb): input_ids, attention_mask, token_type_ids, label = batch y_hat, attn = self.forward(input_ids, attention_mask, token_type_ids) a, y_hat = torch.max(y_hat, dim=1) return self.calculate_metrics(label.cpu(), y_hat.cpu(), stage='test', apply=lambda x: torch.tensor(x, dtype=torch.float64)) def test_end(self, outputs): avg_metrics = {} for _, metric in self.metrics.items(): key_name = 'test_' + metric.get_metric_name() avg_metrics.update({'avg_' + key_name: torch.stack([x[key_name] for x in outputs]).mean()}) tensorboard_logs = avg_metrics self.test_results = avg_metrics return {**avg_metrics, **{'log': tensorboard_logs, 'progress_bar': tensorboard_logs}} def configure_optimizers(self): return Optimizer().get(self.configs.optimizer.optimizer_name)(self.configs.optimizer).optimizer( [p for p in self.parameters() if p.requires_grad]) @pl.data_loader def train_dataloader(self): return self.train_dataset @pl.data_loader def val_dataloader(self): return self.val_dataset @pl.data_loader def test_dataloader(self): return self.test_dataset def train_model(self): pass def evaluate_model(self): pass
[ "nik@serafima.ai" ]
nik@serafima.ai
281977c6331e0b79883b8bad6d90ca9f317bcded
b91a14f051de65ab315d43f4f2c3baadb72de0bb
/venv/Desktop/python2021Projects/bin/flask
f75d81f5f46ba528503205bd4f916080d99c6b5b
[]
no_license
tnak1126/day70-blog
807e298c41c934091e49ec8d840355c48d284b5b
0f5fc3bb12a8bb96039ad119226fd806503e886d
refs/heads/master
2023-07-04T00:00:29.916463
2021-08-16T19:33:54
2021-08-16T19:33:54
396,068,884
0
0
null
null
null
null
UTF-8
Python
false
false
297
#!/Volumes/10T_082020/Python100_May2021_projects/day64_movielist/venv/Desktop/python2021Projects/bin/python # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "terrynakamura@gmail.com" ]
terrynakamura@gmail.com
05a3ebcb2a64f2590133f058fc593b972c008a1e
1e035ce830ea1b1671efab5c890b899e58f1cace
/addbook.py
d6205cbdc02f9a71d8b5efd2f2b9b7e4b92d76b5
[]
no_license
Shantanu03-ux/Library-Management-System
39bb74d8b8371f9c4b957291af1847678852917f
21058c53f25a7e895d64aa12ccaa7ad79f666565
refs/heads/main
2023-08-30T04:14:32.983785
2021-10-07T10:23:03
2021-10-07T10:23:03
414,553,493
0
0
null
null
null
null
UTF-8
Python
false
false
2,912
py
from tkinter import * from tkinter import messagebox import sqlite3 con = sqlite3.connect('library.db') cur = con.cursor() class AddBook(Toplevel): def __init__(self): Toplevel.__init__(self) self.geometry("1300x1300") self.title("Add Book") self.resizable(False,False) #Frames #Top Frame self.topFrame=Frame(self,height=150,bg='yellow') self.topFrame.pack(fill=X) #Bottom Frame self.bottomFrame=Frame(self,height=600,bg='#fcc324') self.bottomFrame.pack(fill=X) #name self.lbl_name=Label(self.bottomFrame,text=' Name : ',font='arial 15 bold',fg='white',bg='#fcc324') self.lbl_name.place(x=40,y=40) self.ent_name=Entry(self.bottomFrame,width=30,bd=4) self.ent_name.insert(0,'Please enter a book name') self.ent_name.place(x=150,y=45) #author self.lbl_author = Label(self.bottomFrame, text=' Author : ', font='arial 15 bold', fg='white', bg='#fcc324') self.lbl_author.place(x=40, y=80) self.ent_author = Entry(self.bottomFrame, width=30, bd=4) self.ent_author.insert(0, 'Please enter author name') self.ent_author.place(x=150, y=85) #page self.lbl_page = Label(self.bottomFrame, text=' Pages : ', font='arial 15 bold', fg='white', bg='#fcc324') self.lbl_page.place(x=40, y=120) self.ent_page = Entry(self.bottomFrame, width=30, bd=4) self.ent_page.insert(0, 'Please enter page size') self.ent_page.place(x=150, y=125) #language self.lbl_language = Label(self.bottomFrame, text='Language :', font='arial 15 bold', fg='white', bg='#fcc324') self.lbl_language.place(x=40, y=160) self.ent_language = Entry(self.bottomFrame, width=30, bd=4) self.ent_language.insert(0, 'Please enter a language') self.ent_language.place(x=150, y=165) #Button button=Button(self.bottomFrame,text='Add Book',command=self.addBook) button.place(x=270,y=200) def addBook(self): name = self.ent_name.get() author = self.ent_author.get() page = self.ent_page.get() language = self.ent_language.get() if name and author and page and language != "": try: query = "INSERT INTO 'books' (book_name,book_author,book_page,book_language) VALUES(?,?,?,?)" cur.execute(query,(name,author,page,language)) con.commit() messagebox.showinfo("Success","Successfully added to database",icon='info') except: messagebox.showerror("Error","Cant add to database",icon='warning') else: messagebox.showerror("Error","Fields cant be empty",icon='warning') def clCON(self,b): con.close()
[ "noreply@github.com" ]
Shantanu03-ux.noreply@github.com
4bab841b23056527667cd539e0600260a63727ec
a71c0634fda6161571fcff26855eb324983939ee
/account/migrations/0014_auto_20191024_1636.py
89d2c44019e502a7594b6ff379a07dbea2942700
[]
no_license
Jincykk1996/mydjang
19b7acab68f50aee83d6cf604739d087f766d92c
877bc84a66a835bc15a49f8dd0fa51f4b52bdb64
refs/heads/master
2020-08-30T19:41:31.662945
2019-10-30T08:18:23
2019-10-30T08:18:23
218,471,570
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
# Generated by Django 2.2.4 on 2019-10-24 11:06 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0013_auto_20191024_1632'), ] operations = [ migrations.AlterField( model_name='cart', name='order_date', field=models.DateField(default=datetime.datetime(2019, 10, 24, 16, 36, 2, 416952)), ), migrations.AlterField( model_name='coupon', name='codes', field=models.CharField(blank=True, max_length=10, null=True), ), ]
[ "jincykalarikunumal@gmail.com" ]
jincykalarikunumal@gmail.com
1338b206aae85f69c1fb457f6bfa740573d2ff60
a353a4b535edce2f12b125205d7ffc1964d26cda
/app.py
a901f23e78a634331e655a2c9ecb6e881e3bfe81
[]
no_license
asu1610/lineBot2
bee992114dfc5f113e8f25657d700bd39442eb37
cfdb8898b049370ef05fd284c85a0a8f047cb711
refs/heads/master
2020-06-18T01:08:52.620122
2019-10-10T04:45:12
2019-10-10T04:45:12
196,117,839
0
0
null
2019-07-10T02:41:26
2019-07-10T02:41:26
null
UTF-8
Python
false
false
1,537
py
from flask import Flask, jsonify, request import os import json import requests app = Flask(__name__) @app.route('/') def index(): a=os.environ['Authorization'] return "นางสาวคณิศร วงษ์สุวรรณ์ เลขที่ 7 ชั้น ม.4/1" @app.route("/webhook", methods=['POST']) def webhook(): if request.method == 'POST': return "OK" @app.route('/callback', methods=['POST']) def callback(): json_line = request.get_json() json_line = json.dumps(json_line) decoded = json.loads(json_line) user = decoded['originalDetectIntentRequest']['payload']['data']['replyToken'] userText = decoded['queryResult']['intent']['displayName'] #sendText(user,userText) if (userText == 'สวัสดี') : sendText(user,'ดีจ้ะ') elif (userText == 'ไปแหละ') : sendText(user,'เอ่อ! ไปเหอะ') else : sendText(user,'หมายควายว่าไง') return '',200 def sendText(user, text): LINE_API = 'https://api.line.me/v2/bot/message/reply' headers = { 'Content-Type': 'application/json; charset=UTF-8', 'Authorization': os.environ['Authorization'] # ตั้ง Config vars ใน heroku พร้อมค่า Access token } data = json.dumps({ "replyToken":user, "messages":[{"type":"text","text":text}] }) r = requests.post(LINE_API, headers=headers, data=data) # ส่งข้อมูล if __name__ == '__main__': app.run()
[ "noreply@github.com" ]
asu1610.noreply@github.com
792683deda5f938d090c31bf671fec709f1b6178
04ca6a06be3861bfb8d4bc0e839e8b78e7d76eb7
/bot/handlers/__init__.py
7103b81d1ce26b26c87090619ddd37ea645a256b
[ "MIT" ]
permissive
rashidovich2/Russian-Qiwi-Bot
70cb9f0f4796abafd96ca7a56666b011aad5539d
d5b0f23516343205ca7bad15b2d2fae7b675f584
refs/heads/main
2023-08-25T02:58:17.796592
2021-10-20T19:12:27
2021-10-20T19:12:27
576,804,780
0
0
MIT
2022-12-11T03:01:25
2022-12-11T03:01:24
null
UTF-8
Python
false
false
21
py
from . import users
[ "noreply@github.com" ]
rashidovich2.noreply@github.com
8983bc7b01719b00420a52a9a90148f67588ba26
a17eeaedb059b11dbaaf7dd2dedf31bc5251008b
/Python/function/sorted.py
379eb7a72f83a7314fd57a0842144a24f2229f48
[ "MIT" ]
permissive
KrisCheng/HackerPractice
b94c575bf136c06b4ea563147ac94cae74947d22
778948db4836e85c9af90267dc9b03d50f29d8e9
refs/heads/master
2021-01-19T20:24:35.466720
2017-10-09T05:47:11
2017-10-09T05:47:11
88,504,300
1
0
null
null
null
null
UTF-8
Python
false
false
261
py
# 排序算法 a = sorted([1,3,23,-5,-344,23]) print(a) L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)] def by_name(t): return t[0] L2 = sorted(L, key=by_name) print(L2) def by_score(t): return t[1] L3 = sorted(L, key=by_score) print(L3)
[ "743628145@qq.com" ]
743628145@qq.com
431300dc169839d8a8781e7751dddbc9007a6f2d
be1c3e70f12124f6ce402aed54cdbd9f41e052ca
/Day 2/Q3.py
655174032af027b752bf2a0a71632f35a9d6b66d
[]
no_license
vapoorva/LetsUpgradeDataScience
de0858854950673021ffeeca0f70df0bdc430110
b2962f69c68f9dd00a46531f62302c125870739a
refs/heads/master
2023-01-13T14:28:55.998656
2020-11-20T07:21:11
2020-11-20T07:21:11
312,668,976
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
n= int(input()) d={} for i in range(1,n+1): d[i] = i*i print(d)
[ "apoorva200299@gmail.com" ]
apoorva200299@gmail.com
c697c259d8e52b844afbe7f1737ba3b929bdf1ab
a7943c40d294e6088408967303b4af4867fc8bae
/analyse/migrations/0001_initial.py
8fb4e0cb931113f000243727df25beb9b7481723
[]
no_license
mudassir2700/Sentometer-Aspect-based-Sentiment-Analysis-
ce2a0d22eca9aefda862b2be352d8ade3aa359fc
ade4d70b33a342683eb26a14504b9e4fa385cb86
refs/heads/master
2021-02-23T21:37:29.627121
2020-03-06T12:52:03
2020-03-06T12:52:03
245,411,981
0
0
null
2020-03-06T12:22:25
2020-03-06T12:18:02
HTML
UTF-8
Python
false
false
1,553
py
# Generated by Django 2.1.7 on 2019-04-13 20:10 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Features', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('camera_pos', models.CharField(blank=True, max_length=100)), ('camera_neg', models.CharField(blank=True, max_length=100)), ('battery_pos', models.CharField(blank=True, max_length=100)), ('battery_neg', models.CharField(blank=True, max_length=100)), ('performance_pos', models.CharField(blank=True, max_length=100)), ('performance_neg', models.CharField(blank=True, max_length=100)), ('storage_pos', models.CharField(blank=True, max_length=100)), ('storage_neg', models.CharField(blank=True, max_length=100)), ('budget_pos', models.CharField(blank=True, max_length=100)), ('url', models.TextField(blank=True)), ('name', models.CharField(blank=True, max_length=500)), ('price', models.CharField(blank=True, max_length=100)), ('img_url', models.CharField(blank=True, max_length=1000)), ('rating', models.CharField(blank=True, max_length=100)), ('details', models.TextField(blank=True)), ], ), ]
[ "mudassirali2700@gmail.com" ]
mudassirali2700@gmail.com
9759212dbdc123e208cb9b58fcb04caf51495317
295f068e817882e14a8fdcd765a6582c1b35e506
/tests/mock_google/case.py
f15a4119efdb3051132c823feaf77e7659711467
[ "Apache-2.0" ]
permissive
shafaypro/mrjob
57a40dd072f60c4a5cda6e14d72ac74ec0025a83
2a7d1c3c7917efed0118ebffd52865c4a50298f4
refs/heads/master
2020-05-15T13:56:27.752415
2019-04-16T01:05:55
2019-04-16T01:05:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,243
py
# Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Limited mock of google-cloud-sdk for tests """ from io import BytesIO from google.cloud.logging.entries import StructEntry from google.cloud.logging.resource import Resource from google.oauth2.credentials import Credentials from mrjob.fs.gcs import parse_gcs_uri from .dataproc import MockGoogleDataprocClusterClient from .dataproc import MockGoogleDataprocJobClient from .logging import MockGoogleLoggingClient from .storage import MockGoogleStorageClient from tests.mr_two_step_job import MRTwoStepJob from tests.py2 import Mock from tests.py2 import patch from tests.sandbox import SandboxedTestCase _TEST_PROJECT = 'test-mrjob:test-project' class MockGoogleTestCase(SandboxedTestCase): def setUp(self): super(MockGoogleTestCase, self).setUp() # maps (project_id, region, cluster_name) to a # google.cloud.dataproc_v1beta2.types.Cluster self.mock_clusters = {} # maps (project_id, region, job_name) to a # google.cloud.dataproc_v1beta2.types.Job self.mock_jobs = {} # set this to False to make jobs ERROR self.mock_jobs_succeed = True # a list of StructEntry objects for mock logging client to return self.mock_log_entries = [] # mock OAuth token, returned by mock google.auth.default() self.mock_token = 'mock_token' # mock project ID, returned by mock google.auth.default() self.mock_project_id = 'mock-project-12345' # Maps bucket name to a dictionary with the keys # *blobs* and *location*. *blobs* maps object name to # a dictionary with the key *data*, which is # a bytestring. self.mock_gcs_fs = {} self.start(patch('google.api_core.grpc_helpers.create_channel', self.create_channel)) self.start(patch('google.auth.default', self.auth_default)) self.start(patch( 'google.cloud.dataproc_v1beta2.ClusterControllerClient', self.cluster_client)) self.start(patch('google.cloud.dataproc_v1beta2.JobControllerClient', self.job_client)) self.start(patch('google.cloud.logging.Client', self.logging_client)) self.start(patch('google.cloud.storage.client.Client', self.storage_client)) self.start(patch('time.sleep')) def auth_default(self, scopes=None): credentials = Credentials(self.mock_token, scopes=scopes) return (credentials, self.mock_project_id) def create_channel(self, target, credentials=None): channel = Mock() channel._channel = Mock() channel._channel.target = Mock(return_value=target) return channel def cluster_client(self, channel=None, credentials=None): return MockGoogleDataprocClusterClient( channel=channel, credentials=credentials, mock_clusters=self.mock_clusters, mock_gcs_fs=self.mock_gcs_fs, mock_jobs=self.mock_jobs, mock_jobs_succeed=self.mock_jobs_succeed, ) def job_client(self, channel=None, credentials=None): return MockGoogleDataprocJobClient( channel=channel, credentials=credentials, mock_clusters=self.mock_clusters, mock_gcs_fs=self.mock_gcs_fs, mock_jobs=self.mock_jobs, mock_jobs_succeed=self.mock_jobs_succeed, ) def logging_client(self, project=None, credentials=None): return MockGoogleLoggingClient( credentials=credentials, mock_log_entries=self.mock_log_entries, project=project, ) def storage_client(self, project=None, credentials=None): return MockGoogleStorageClient(mock_gcs_fs=self.mock_gcs_fs) def add_mock_log_entry( self, payload, logger, insert_id=None, timestamp=None, labels=None, severity=None, http_request=None, resource=None): if isinstance(resource, dict): resource = Resource(**resource) entry = StructEntry( http_request=http_request, insert_id=insert_id, labels=labels, logger=logger, payload=payload, resource=resource, severity=severity, timestamp=timestamp, ) self.mock_log_entries.append(entry) def make_runner(self, *args): """create a dummy job, and call make_runner() on it. Use this in a with block: with self.make_runner() as runner: ... """ stdin = BytesIO(b'foo\nbar\n') mr_job = MRTwoStepJob(['-r', 'dataproc'] + list(args)) mr_job.sandbox(stdin=stdin) return mr_job.make_runner() def put_gcs_multi(self, gcs_uri_to_data_map): client = self.storage_client() for uri, data in gcs_uri_to_data_map.items(): bucket_name, blob_name = parse_gcs_uri(uri) bucket = client.bucket(bucket_name) if not bucket.exists(): bucket.create() blob = bucket.blob(blob_name) blob.upload_from_string(data) def put_job_output_parts(self, dataproc_runner, raw_parts): """Generate fake output on GCS for the given Dataproc runner.""" assert type(raw_parts) is list base_uri = dataproc_runner.get_output_dir() gcs_multi_dict = dict() for part_num, part_data in enumerate(raw_parts): gcs_uri = base_uri + 'part-%05d' % part_num gcs_multi_dict[gcs_uri] = part_data self.put_gcs_multi(gcs_multi_dict)
[ "dave@davemarin.com" ]
dave@davemarin.com
f8adb41d307eafa204c095eb025eed155b7ac3e0
0bf6356518fc0b7ae503a5be8b8852ada6395353
/video_8/p1.py
9a71f0aad0a2652e4a0545e309c813abaeae6fb3
[]
no_license
thatfellarobin/w2021-ta-manim
13fdc511aa86582f499a6da343f61540e7f8bc12
93f57222b5381886d60daf8c3227ef47f611ad5d
refs/heads/main
2023-04-07T18:06:43.026901
2021-04-12T15:16:00
2021-04-12T15:16:00
331,493,770
0
0
null
null
null
null
UTF-8
Python
false
false
17,566
py
from manim import * import numpy as np GOLD_DARK = '#5c4326' EVERGREEN = '#077319' GREEN_DARK = '#2b4022' BLUE_DARK = '#26545e' BROWN = '#8f4a04' MED_DARK_GREY = '#666666' BLUE_E_DARK = '#0c343d' DIM_A=1.25 class T8P1(Scene): def construct(self): attribution = Tex('Robin Liu, 2021', color=MED_DARK_GREY).scale(0.4).to_corner(DOWN+RIGHT, buff=0.2) self.add(attribution) #region Diagram objects disk = Circle( radius=DIM_A, stroke_color=BLUE_E, fill_color=BLUE_E_DARK, stroke_width=10, fill_opacity=1 ) disk_center = Dot( point=disk.get_center(), radius=0.1, color=BLUE_E ) disk_group = Group(disk, disk_center) pin = Dot( point=disk.get_edge_center(LEFT), color=LIGHT_GRAY ) rod = Line( start=disk.get_edge_center(LEFT), end=disk.get_edge_center(LEFT)+(DIM_A*2)*np.array([-np.cos(PI/6), -np.sin(PI/6), 0]), color=RED_E, stroke_width=15 ) ground = Rectangle( width=7, height=0.3, color=GREY, stroke_opacity=0, fill_opacity=1 ).next_to(DIM_A*(LEFT+DOWN), DOWN, buff=0) #endregion diagram = Group(disk_group, rod, pin, ground).move_to(ORIGIN) self.add(diagram) self.wait() #region annotate region radius_arrow = DoubleArrow( start=disk.get_center(), end=disk.get_center()+DIM_A*np.array([np.cos(PI/4), np.sin(PI/4), 0]), color=YELLOW, buff=0.0, stroke_width=5, tip_length=0.15, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) radius_annot = MathTex('a', color=YELLOW).scale(0.7).next_to(radius_arrow, UP+RIGHT, buff=0.15) rodlength_arrow = DoubleArrow( start=rod.get_start(), end=rod.get_end(), color=YELLOW, buff=0.0, stroke_width=5, tip_length=0.15, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ).shift(0.25*rod.copy().rotate(-PI/2).get_unit_vector()) rodlength_annot = MathTex( '2a', color=YELLOW ).scale(0.7).next_to(rodlength_arrow.get_center(), rodlength_arrow.copy().rotate(-PI/2).get_unit_vector(), buff=0.15) self.play( Write(radius_arrow), Write(radius_annot), Write(rodlength_arrow), Write(rodlength_annot) ) self.wait() #endregion diagram = Group( diagram, radius_arrow, radius_annot, rodlength_arrow, rodlength_annot ) #region Cleanup and show coordinate system diagram_newpos = diagram.copy().scale(0.6).to_corner(DOWN+RIGHT, buff=0.5) rod_copy = rod.copy().set_opacity(0) rod_newpos = rod.copy().scale(0.75).to_corner(UP+RIGHT, buff=1.25) disk_copy = disk_group.copy() for item in disk_copy: item.set_opacity(0) disk_newpos = disk_group.copy().scale(0.75).to_edge(RIGHT, buff=0.5) self.play( Transform(rod_copy, rod_newpos), Transform(disk_copy, disk_newpos), Transform(diagram, diagram_newpos) ) self.wait() # Create coordinate system i_arrow = Arrow( start=ORIGIN, end=RIGHT, color=YELLOW, buff=0.0, stroke_width=5, tip_length=0.2, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) i_label = MathTex('\\hat{i}', color=YELLOW).scale(0.7).next_to(i_arrow, RIGHT, buff=0.15) j_arrow = Arrow( start=ORIGIN, end=UP, color=YELLOW, buff=0.0, stroke_width=5, tip_length=0.2, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) j_label = MathTex('\\hat{j}', color=YELLOW).scale(0.7).next_to(j_arrow, UP, buff=0.15) k_dot = Dot( point=i_arrow.get_start(), color=YELLOW ) k_circle = Circle( arc_center=k_dot.get_center(), radius=0.15, color=YELLOW ) k_label = MathTex('\\hat{k}', color=YELLOW).scale(0.7).next_to(k_circle, LEFT, buff=0.15) coordsys = Group(i_arrow, j_arrow, i_label, j_label, k_dot, k_circle, k_label).scale(0.75).next_to(diagram, LEFT, buff=0.5, aligned_edge=DOWN) self.play( Write(i_arrow), Write(j_arrow), Write(i_label), Write(j_label), Write(k_dot), Write(k_circle), Write(k_label) ) self.wait() #endregion #region Explain pure rolling fixed_point = Dot( point=disk_copy.get_edge_center(DOWN), color=YELLOW ) fixed_point_annot = MathTex('R', color=YELLOW).scale(0.6).next_to(fixed_point, DOWN, buff=0.15) self.play(FadeIn(fixed_point)) for _ in range(2): self.play(Flash(fixed_point)) self.play(Write(fixed_point_annot)) self.wait() #endregion #region Velocity # Velocity of A r_AR_arrow = Arrow( start=fixed_point.get_center(), end=disk_copy.get_edge_center(LEFT), color=GREEN, buff=0.0, stroke_width=5, tip_length=0.15, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) r_AR_label = MathTex('r_{A/R}', color=GREEN).scale(0.6).next_to(r_AR_arrow.get_center(), UP+RIGHT, buff=0.075) self.play( FadeIn(r_AR_arrow), Write(r_AR_label) ) self.wait() eq_a = MathTex( '\\vec{v}_A = \\vec{v}_R + \\vec{v}_{A/R}' ).scale(0.55).to_corner(UP+LEFT, buff=0.5) eq_a_sub = MathTex( '\\vec{v}_A', '=', '0 + \\vec{\\omega}_{disk} \\times \\vec{r}_{A/R}', '=', '\\omega\\hat{k} \\times (-a\\hat{i} + a\\hat{j})', '\\Rightarrow', '\\vec{v}_A = -a\\omega\\hat{i} - a\\omega\\hat{j}', ).scale(0.55).next_to(eq_a, DOWN, buff=0.2, aligned_edge=LEFT) eq_a_sub[3:].next_to(eq_a_sub[1:3], DOWN, aligned_edge=LEFT, buff=0.15) eq_a_sub[5:].next_to(eq_a_sub[3:5], DOWN, aligned_edge=LEFT, buff=0.15) self.play(Write(eq_a)) self.wait() self.play(Write(eq_a_sub[:3])) self.wait(0.5) self.play(Write(eq_a_sub[3:5])) self.wait(0.5) self.play(Write(eq_a_sub[5:])) self.wait() self.play( FadeOut(eq_a), FadeOut(eq_a_sub[:-1]), Transform(eq_a_sub[-1], eq_a_sub[-1].copy().to_corner(UP+LEFT, buff=0.5)) ) self.wait() # velocity of B # Label assumptions assume_text = Tex('Purple:', ' assumed direction').scale(0.6).to_corner(UP+RIGHT) assume_text[0].set_color(PURPLE) v_b_arrow = Arrow( start=rod_copy.get_end(), end=rod_copy.get_end()+RIGHT, color=PURPLE, buff=0.0, stroke_width=5, tip_length=0.15, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) v_b_label = MathTex('\\vec{v}_B', color=PURPLE).scale(0.6).next_to(v_b_arrow, RIGHT, buff=0.15) omega_ab_arrow = Arc( arc_center=rod_copy.get_center(), radius=0.2, start_angle=PI, angle=1.5*PI, color=PURPLE ).add_tip(tip_length=0.15) omega_ab_arrow.move_arc_center_to(rod_copy.get_center()) omega_ab_annot = MathTex('\\omega_{AB}', color=PURPLE).scale(0.6).next_to(omega_ab_arrow, UP, buff=0.15) self.play( Write(assume_text), Write(v_b_arrow), Write(v_b_label), Write(omega_ab_arrow), Write(omega_ab_annot) ) self.wait() eq_b = MathTex( '\\vec{v}_B = \\vec{v}_A + \\vec{v}_{B/A}' ).scale(0.55).next_to(eq_a_sub[-1], DOWN, aligned_edge=LEFT) eq_b_sub = MathTex( '|\\vec{v}_B|\\hat{i}', '=', '-a\\omega\\hat{i}-a\\omega\\hat{j} + \\vec{\\omega}_{AB}\\times\\vec{r}_{B/A}', '=', '-a\\omega\\hat{i}-a\\omega\\hat{j} + |\\vec{\\omega}_{AB}|\\hat{k} \\times (-2a\\cos(30^\\circ)\\hat{i} -a\\hat{j})', '=', '-a\\omega\\hat{i}-a\\omega\\hat{j} + a|\\vec{\\omega}_{AB}|\\hat{i}-2a\\cos(30^\\circ)|\\vec{\\omega}_{AB}|\\hat{j}', ).scale(0.55).next_to(eq_b, DOWN, buff=0.2, aligned_edge=LEFT) eq_b_sub[3:].next_to(eq_b_sub[1:3], DOWN, aligned_edge=LEFT, buff=0.15) eq_b_sub[5:].next_to(eq_b_sub[3:5], DOWN, aligned_edge=LEFT, buff=0.15) eq_b_dir_i = MathTex( '\\hat{i}:', '|\\vec{v}_B|', '=', '-a\\omega+a|\\vec{\\omega}_{AB}|' ).scale(0.55).next_to(eq_b_sub, DOWN, aligned_edge=LEFT, buff=0.2).shift(0.5*RIGHT) eq_b_dir_i[0].set_color(YELLOW) eq_b_dir_j = MathTex( '\\hat{j}:', '0', '=', '-a\\omega-2a\\cos(30^\\circ)|\\vec{\\omega}_{AB}|', ).scale(0.55).next_to(eq_b_dir_i, DOWN, aligned_edge=LEFT, buff=0.2) eq_b_dir_j[0].set_color(YELLOW) omega_ab_ans = MathTex( '|\\vec{\\omega}_{AB}| = \\frac{-\\omega}{2\\cos(30^\\circ)}', '\\Rightarrow', '\\vec{\\omega}_{AB} = -0.577\\omega\\hat{k}' ).scale(0.55).next_to(eq_b_dir_j, DOWN, aligned_edge=LEFT) v_b_ans = MathTex( '|\\vec{v}_B| = -a\\omega \\left(1 + \\frac{1}{2\\cos(30^\\circ)}\\right)', '\\Rightarrow', '\\vec{v}_B = -1.58a\\omega\\hat{i}' ).scale(0.55).next_to(omega_ab_ans, DOWN, aligned_edge=LEFT) ansbox1 = SurroundingRectangle(v_b_ans[2]) ansgroup1 = Group(v_b_ans[2], ansbox1) omega_ab_ans_newpos = omega_ab_ans[-1].copy().next_to(eq_a_sub[-1], DOWN, aligned_edge=LEFT) ansgroup1_newpos = ansgroup1.copy().next_to(omega_ab_ans_newpos, DOWN, aligned_edge=LEFT) self.play(Write(eq_b)) self.wait() self.play(Write(eq_b_sub[:3])) self.wait(0.5) self.play(Write(eq_b_sub[3:5])) self.wait(0.5) self.play(Write(eq_b_sub[5:])) self.wait(0.5) self.play( Write(eq_b_dir_i), Write(eq_b_dir_j) ) self.wait(0.5) self.play( Write(v_b_ans[0]), Write(omega_ab_ans[0]) ) self.wait(0.5) self.play( Write(v_b_ans[1:]), Write(omega_ab_ans[1:]) ) self.play(ShowCreation(ansbox1)) self.wait() self.play( FadeOut(eq_b), FadeOut(eq_b_sub), FadeOut(eq_b_dir_i), FadeOut(eq_b_dir_j), FadeOut(omega_ab_ans[:-1]), FadeOut(v_b_ans[:-1]), Transform(omega_ab_ans[-1], omega_ab_ans_newpos), Transform(ansgroup1, ansgroup1_newpos) ) self.wait() #endregion #region Acceleration #region Explain pure rolling acceleration point_O = Dot( point=disk_copy.get_center(), color=YELLOW ) point_O_annot = MathTex('O', color=YELLOW).scale(0.6).next_to(point_O, UP+RIGHT, buff=0) self.play( FadeIn(point_O), Write(point_O_annot) ) for _ in range(2): self.play(Flash(point_O)) a_O_arrow = Arrow( start=point_O.get_center(), end=point_O.get_center()+0.75*LEFT, color=TEAL_D, buff=0.0, stroke_width=5, tip_length=0.15, max_stroke_width_to_length_ratio=999, max_tip_length_to_length_ratio=1 ) a_O_label = MathTex('a_O', color=TEAL_D).scale(0.6).next_to(a_O_arrow.get_center(), UP, buff=0.15) self.play( Write(a_O_arrow), Write(a_O_label) ) self.wait() a_O_eq = MathTex( '\\vec{a}_O = \\vec{r}_{R/O}\\times\\vec{\\alpha}', '\\Rightarrow', '\\vec{a}_O = -a\\alpha\\hat{i}' ).scale(0.55).next_to(ansgroup1, DOWN, aligned_edge=LEFT) self.play(Write(a_O_eq[0])) self.wait() self.play(Write(a_O_eq[1:])) self.wait() #endregion # Acceleration of A eq_a_accel = MathTex( '\\vec{a}_A = \\vec{a}_O + \\vec{\\alpha}_{OA}\\times\\vec{r}_{A/O} - |\\vec{\\omega}_{OA}|^2\\vec{r}_{A/O}' ).scale(0.55).next_to(a_O_eq, DOWN, aligned_edge=LEFT) eq_a_accel_sub = MathTex( '\\vec{a}_A', '=', '-a\\alpha\\hat{i} + (\\alpha\\hat{k}\\times (-a\\hat{i})) - \\omega^2 (-a\\hat{i})', '=', '-a\\alpha\\hat{i} - a\\alpha\\hat{j} + a\\omega^2\\hat{i}', '\\Rightarrow', '\\vec{a}_A = a(\\omega^2-\\alpha)\\hat{i} - a\\alpha\\hat{j}', ).scale(0.55).next_to(eq_a_accel, DOWN, buff=0.2, aligned_edge=LEFT) eq_a_accel_sub[3:].next_to(eq_a_accel_sub[1:3], DOWN, aligned_edge=LEFT, buff=0.15) eq_a_accel_sub[5:].next_to(eq_a_accel_sub[3:5], DOWN, aligned_edge=LEFT, buff=0.15) self.play(Write(eq_a_accel)) self.wait() self.play(Write(eq_a_accel_sub[:3])) self.wait(0.5) self.play(Write(eq_a_accel_sub[3:5])) self.wait(0.5) self.play(Write(eq_a_accel_sub[5:])) self.wait() self.play( FadeOut(eq_a_accel), FadeOut(eq_a_accel_sub[:-1]), Transform(eq_a_accel_sub[-1], eq_a_accel_sub[-1].copy().next_to(a_O_eq, DOWN, aligned_edge=LEFT)) ) self.wait() # Acceleration of B # Label assumptions a_b_label = MathTex('\\vec{v}_B,\\,\\vec{a}_B', color=PURPLE).scale(0.6).next_to(v_b_arrow, RIGHT, buff=0.15) alpha_ab_annot = MathTex('\\omega_{AB},\\,\\alpha_{AB}', color=PURPLE).scale(0.6).next_to(omega_ab_arrow, UP, buff=0.15) self.play( ReplacementTransform(v_b_label, a_b_label), ReplacementTransform(omega_ab_annot, alpha_ab_annot) ) self.wait() eq_b_accel = MathTex( '\\vec{a}_B = \\vec{a}_A + \\vec{\\alpha}_{AB}\\times\\vec{r}_{B/A} - |\\vec{\\omega}_{AB}|^2\\vec{r}_{B/A}' ).scale(0.55).next_to(eq_a_accel_sub[-1], DOWN, aligned_edge=LEFT) eq_b_accel_sub = MathTex( '|\\vec{a}_B|\\hat{i}', '=', '(a(\\omega^2-\\alpha)\\hat{i} - a\\alpha\\hat{j}) + (|\\vec{\\alpha}_{AB}|\\hat{k}\\times (-2a\\cos(30^\\circ)\\hat{i} - a\\hat{j})) - (0.577\\omega)^2 (-2a\\cos(30^\\circ)\\hat{i} - a\\hat{j})', '=', '(a(\\omega^2-\\alpha)\\hat{i} - a\\alpha\\hat{j}) - |\\vec{\\alpha}_{AB}|(-a\\hat{i}+2a\\cos(30^\\circ)\\hat{j}) + 0.333a\\omega^2(2\\cos(30^\\circ)\\hat{i} + \\hat{j})' ).scale(0.55).next_to(eq_b_accel, DOWN, buff=0.2, aligned_edge=LEFT) eq_b_accel_sub[3:].next_to(eq_b_accel_sub[1:3], DOWN, aligned_edge=LEFT, buff=0.15) eq_b_accel_dir_i = MathTex( '\\hat{i}:', '|\\vec{a}_B|', '=', 'a(\\omega^2-\\alpha) + a|\\vec{\\alpha}_{AB}| + 0.577a\\omega^2' ).scale(0.55).next_to(eq_b_accel_sub, DOWN, aligned_edge=LEFT, buff=0.2).shift(0.5*RIGHT) eq_b_accel_dir_i[0].set_color(YELLOW) eq_b_accel_dir_j = MathTex( '\\hat{j}:', '0', '=', '-a\\alpha - 2a\\cos(30^\\circ)|\\vec{\\alpha}_{AB}| + 0.333a\\omega^2', ).scale(0.55).next_to(eq_b_accel_dir_i, DOWN, aligned_edge=LEFT, buff=0.2) eq_b_accel_dir_j[0].set_color(YELLOW) alpha_ab_ans = MathTex( '|\\vec{\\alpha}_{AB}| = 0.192\\omega^2-0.577\\alpha', '\\Rightarrow', '\\vec{\\alpha}_{AB} = (0.192\\omega^2-0.577\\alpha)\\hat{k}' ).scale(0.55).next_to(eq_b_accel_dir_j, DOWN, aligned_edge=LEFT).shift(0.5*LEFT) a_b_ans = MathTex( '|\\vec{a}_B| = 1.769a\\omega^2 - 1.577a\\alpha', '\\Rightarrow', '\\vec{a}_B = (1.769a\\omega^2 - 1.577a\\alpha)\\hat{i}' ).scale(0.55).next_to(alpha_ab_ans, DOWN, aligned_edge=LEFT) ansbox2 = SurroundingRectangle(a_b_ans[2]) self.play(Write(eq_b_accel)) self.wait() self.play(Write(eq_b_accel_sub[:3])) self.wait(0.5) self.play(Write(eq_b_accel_sub[3:5])) self.wait(0.5) self.play( Write(eq_b_accel_dir_i), Write(eq_b_accel_dir_j) ) self.wait(0.5) self.play( Write(a_b_ans[0]), Write(alpha_ab_ans[0]) ) self.wait(0.5) self.play( Write(a_b_ans[1:]), Write(alpha_ab_ans[1:]) ) self.play(ShowCreation(ansbox2)) self.wait() #endregion
[ "Robin.Liu.831@gmail.com" ]
Robin.Liu.831@gmail.com
86f0df1cdc3565a1f7596669eaecdfb925a1eb5e
179b85c1170939c31f26b4fab3459c6d0c636cef
/ftp_send.py
670d42f4ab369885a6b33a68c0f5b92d81a77424
[]
no_license
rezabehjani/python_Example
872c239352523e01bd2ae3e8e9551aaedba74ec3
665a925242ec4226c04c823d907fe351f2a796e4
refs/heads/master
2021-01-03T22:04:59.054087
2020-04-21T07:44:06
2020-04-21T07:44:06
240,253,012
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
from ftplib import FTP ftp = FTP('136.243.87.101') ftp.login('reza', '19972910') #show list file in ftp ftp.dir() #cd to file in ftp ftp.cwd("/files") ftp.dir() fp = open("D:\\music Reza\\video\\Baran - Tazahor [1080].mp4", 'rb') # upload file ftp.storbinary("STOR Tazahor.mp4", fp, 1024) fp.close() print("ok send") #file = open('kitten.jpg','rb') #ftp.storbinary('STOR kitten.jpg', file)
[ "rezabehjani13@gmail.com" ]
rezabehjani13@gmail.com
88a16982ff77ebb5084720c3eb36c664ee5dbf4e
7e16c5cb801dae422fc408c422f97c2a32c5e33f
/internal2cartesian.py
f4dd29a6a0996d17bd91dfb2195ec6e567ee9be3
[]
no_license
Jussmith01/Internal-to-Cartesian
18e230275fa731e62a5f0612c5a6f4994456ea7f
1a7f6b72d1e9343e4359705248145331ee44af3e
refs/heads/master
2021-01-10T15:56:24.048690
2015-10-07T19:48:40
2015-10-07T19:48:40
43,840,840
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import re from vectors import * from functions import readZmat, getdist, createCSVstring import sys # Inputs a = 0.5 b = 4.0 inc = 0.01 type = 0# 0 = bonds; 1 = angles; 2 = dihedrals tidx = 0 icfile = 'inputexample.txt' fnout = 'distances.dat' # -------------------CODE---------------------- a1idx = [];idx = [];bl = [];ba = [];bdi = [] readZmat(bl, ba, bdi, idx, a1idx, icfile) # Variables N = int((b-a)/inc) fout = open(fnout, "w") for i in range(0, N): it = i * inc + a if type == 0: bl[tidx] = it elif type == 1: ba[tidx] = it elif type == 2: bdi[tidx] = it else: print "Run failed. Enter acceptable value for 'type'" sys.exit(0) dists = getdist(bl, a1idx, ba, idx, bdi) output = createCSVstring(dists) fout.write(output) fout.close()
[ "jussmith48@gmail.com" ]
jussmith48@gmail.com
30ae1b5c5ef14f56cba710bc9a40d1d1cd0d84dc
bc00bdc08d76c8be38c51b1f1caeced2a4668592
/abjad_demo/env/lib/python3.6/site-packages/uqbar/_version.py
a135f3b2259762ca39cbc026a3990ae925bbc05a
[]
no_license
gsy/gmajor
769afd6e87f6712e4059f3f779f41932cbca962d
7f5f20a19494256615fbaaa840b2a0bbbf6e311f
refs/heads/master
2023-02-08T07:00:44.479895
2019-05-20T13:58:03
2019-05-20T13:58:03
161,866,236
0
0
null
2023-02-02T06:26:34
2018-12-15T03:32:48
Scheme
UTF-8
Python
false
false
87
py
__version_info__ = (0, 2, 16) __version__ = ".".join(str(x) for x in __version_info__)
[ "chenxuanguang@chuangxin.com" ]
chenxuanguang@chuangxin.com
17d2c400a107de5d20d5eafa4ed9af255198d7f4
ba1f77bea85efa1bf9de89c17b4940728ae3db52
/plot_loss.py
9b1a8bb536c4e77b74ef780191004a639fa59319
[]
no_license
andrewbo29/feedforward_network
3b93a43f7efeb21b52fddc56149f7e774d495d7f
267cd97f35149855818240e1e3f3164fa71eca1a
refs/heads/master
2021-01-18T21:11:10.840803
2016-06-03T11:06:23
2016-06-03T11:06:23
52,079,943
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
import numpy as np import seaborn as sns import matplotlib.pyplot as plt def plot_loss(log_fname): loss = [] with open(log_fname) as f: for line in f: words = line.strip() loss.append(float(words)) sns.set(style='whitegrid') fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_ylim([-0.5, 1]) ax.plot(loss, linewidth=3) ax.set_title('Train loss') ax.set_xlabel('iterations') plt.show() if __name__ == '__main__': log_file = '/home/boyarov/Projects/cpp/feedforward_network/log_loss.txt' # log_file = '/media/datac/andrew_workspace/darknet_1/log.txt' plot_loss(log_file)
[ "andrewbo29@yandex.ru" ]
andrewbo29@yandex.ru
0279409e67cf584ba24a2a24308967d9c568e754
20d461f0414f16c4c2b906e8871a96d85d46d734
/src/item.py
3ead9670c78135b4736e35ab3841527089bc39f0
[]
no_license
beccacauthorn/Intro-Python-II
e3ec8ef4bb8e8d6f6f07ab02ef07f15d84257583
82b3605bc0283b1d7d01bc9803797cf1fbac3c49
refs/heads/master
2022-11-17T05:52:50.194511
2020-07-17T03:48:19
2020-07-17T03:48:19
279,744,375
0
0
null
2020-07-15T02:42:26
2020-07-15T02:42:25
null
UTF-8
Python
false
false
546
py
#Create a file called `item.py` and add an `Item` class in there. # The item should have `name` and `description` attributes. # Hint: the name should be one word for ease in parsing later. class Item: def __init__(self, name, item_description): self.name = name self.item_description = item_description def __str__(self): return f'{self.name}: {self.item_description}' def on_take(self): print(f"You have picked up {self.name}") def on_drop(self): print(f"You have dropped {self.name}")
[ "beccacauthorn@gmail.com" ]
beccacauthorn@gmail.com
8ec20d3340c9e4975c2289bcb569bbb74f0b4721
e20bbe07bba9f9c86dfe40e394079b7c527b0ba2
/4_Iterators and Generators/4.4_Implementing the Iterator Protocol.py
2ae96c3785cc6ff4802c70f032d558fe4bf0441e
[]
no_license
gavinloverqq/Python_Cookbook_Notes
f819b0a30efb399277bd81c3bc85e6419b7e8845
422c3740940554eaaca3fd8f873bd3b36f91dca3
refs/heads/master
2020-03-19T13:26:08.002941
2018-06-17T13:38:39
2018-06-17T13:38:39
136,579,303
0
0
null
null
null
null
UTF-8
Python
false
false
2,108
py
class Node: def __init__(self, value): self._value = value self._children = [] def __repr__(self): return 'Node({!r})'.format(self._value) def add_child(self, node): self._children.append(node) def __iter__(self): return iter(self._children) def depth_first(self): yield self for c in self: yield from c.depth_first() class Node2: def __init__(self, value): self._value = value self._children = [] def __repr__(self): return 'Node({!r})'.format(self._value) def add_child(self, node): self._children.append(node) def __iter__(self): return iter(self._children) def depth_first(self): return DepthFirstIterator(self) class DepthFirstIterator(object): ''' Depth-first traversal ''' def __init__(self, start_node): self._node = start_node self._children_iter = None self._child_iter = None def __iter__(self): return self # TODO: I am not understand this code ... def __next__(self): # Return myself if just started; create an iterator for children if self._children_iter is None: self._children_iter = iter(self._node) return self._node # If processing a child, return its next item elif self._child_iter: try: nextchild = next(self._child_iter) return nextchild except StopIteration: self._child_iter = None return next(self) # Advance to the next child and start its iteration else: print("advance ...") self._child_iter = next(self._children_iter).depth_first() return next(self) # Example if __name__ == '__main__': root = Node2(0) child1 = Node2(1) child2 = Node2(2) root.add_child(child1) root.add_child(child2) child1.add_child(Node2(3)) child1.add_child(Node2(4)) child2.add_child(Node2(5)) for ch in root.depth_first(): print(ch)
[ "779483309@qq.com" ]
779483309@qq.com
07d9d74ffddb92feb9918379f74c35e641baa1f9
977abdcd089b5f19fefdb1ab8d2c284dde9ea7c9
/hikyuu/indicator/indicator_doc.py
221dbb2e52f27891e5627f4852905dafe2c5e4ba
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
fei090620/hikyuu
51f8ece1ab4ab366cb09e7c8c78d34155e167d26
161b9317f20e411468f2c1e4b0985d7a45fc141b
refs/heads/master
2020-05-18T21:25:40.171535
2019-05-02T12:02:41
2019-05-02T12:02:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,026
py
#!/usr/bin/python # -*- coding: utf8 -*- # cp936 # # The MIT License (MIT) # # Copyright (c) 2017 fasiondog # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .indicator import * ABS.__doc__ = """ ABS([data]) 求绝对值 :param Indicator data: 输入数据 :rtype: Indicator """ ACOS.__doc__ = """ ACOS([data]) 反余弦值 :param Indicator data: 输入数据 :rtype: Indicator """ AMA.__doc__ = """ AMA([data, n=10, fast_n=2, slow_n=30]) 佩里.J 考夫曼(Perry J.Kaufman)自适应移动平均 [BOOK1]_ :param Indicator data: 输入数据 :param int n: 计算均值的周期窗口,必须为大于2的整数 :param int fast_n: 对应快速周期N :param int slow_n: 对应慢速EMA线的N值 :return: Indicator * result(0): AMA * result(1): ER """ IAMO.__doc__ = """ IAMO([data]) 获取成交金额,包装KData的成交金额成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ ASIN.__doc__ = """ ASIN([data]) 反正弦值 :param Indicator data: 输入数据 :rtype: Indicator """ ATAN.__doc__ = """ ATAN([data]) 反正切值 :param Indicator data: 输入数据 :rtype: Indicator """ ICLOSE.__doc__ = """ ICLOSE([data]) 获取收盘价,包装KData的收盘价成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ COS.__doc__ = """ COS([data]) 余弦值 :param Indicator data: 输入数据 :rtype: Indicator """ COUNT.__doc__ = """ COUNT([data, n=20]) 统计满足条件的周期数。 用法:COUNT(X,N),统计N周期中满足X条件的周期数,若N=0则从第一个有效值开始。 例如:COUNT(CLOSE>OPEN,20)表示统计20周期内收阳的周期数 :param Indicator data: 条件 :param int n: 周期 :rtype: Indicator """ CROSS.__doc__ = """ CROSS(x, y) 交叉函数 :param x: 变量或常量,判断交叉的第一条线 :param y: 变量或常量,判断交叉的第二条线 :rtype: Indicator """ CVAL.__doc__ = """ CVAL([data, value=0.0, discard=0]) data 为 Indicator 实例,创建和 data 等长的常量指标,其值和为value,抛弃长度discard和data一样 :param Indicator data: Indicator实例 :param float value: 常数值 :param int len: 长度 :param int discard: 抛弃数量 :return: Indicator """ DIFF.__doc__ = """ DIFF([data]) 差分指标,即data[i] - data[i-1] :param Indicator data: 输入数据 :return: Indicator """ DOWNNDAY.__doc__ = """ DOWNNDAY(data[, n=3]) 连跌周期数, DOWNNDAY(CLOSE,M)表示连涨M个周期 :param Indicator data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ EMA.__doc__ = """ EMA([data, n=22]) 指数移动平均线(Exponential Moving Average) :param Indicator data: 输入数据 :param int n: 计算均值的周期窗口,必须为大于0的整数 :return: Indicator """ EVERY.__doc__ = """ EVERY([data, n=20]) 一直存在 用法:EVERY (X,N) 表示条件X在N周期一直存在 例如:EVERY(CLOSE>OPEN,10) 表示前10日内一直是阳线 :param data: 输入数据 :param int n: 计算均值的周期窗口,必须为大于0的整数 :rtype: Indicator """ EXIST.__doc__ = """ 存在, EXIST(X,N) 表示条件X在N周期有存在 :param data: 输入数据 :param int n: 计算均值的周期窗口,必须为大于0的整数 :rtype: Indicator """ EXP.__doc__ = """ EXP([data]) EXP(X)为e的X次幂 :param Indicator data: 输入数据 :rtype: Indicator """ HHV.__doc__ = """ HHV([data, n=20]) N日内最高价, N=0则从第一个有效值开始。 :param Indicator data: 输入数据 :param int n: N日时间窗口 :return: Indicator """ HHVBARS.__doc__ = """ HHVBARS([data, n=20]) 上一高点位置 求上一高点到当前的周期数。 用法:HHVBARS(X,N):求N周期内X最高值到当前周期数N=0表示从第一个有效值开始统计 例如:HHVBARS(HIGH,0)求得历史新高到到当前的周期数 :param Indicator data: 输入数据 :param int n: N日时间窗口 :rtype: Indicator """ IHIGH.__doc__ = """ IHIGH([data]) 获取最高价,包装KData的最高价成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ HSL.__doc__ = """ HSL(kdata) 获取换手率,等于 VOL(k) / CAPITAL(k) :param KData kdata: k线数据 :rtype: Indicator """ IF.__doc__ = """ IF(x, a, b) 条件函数, 根据条件求不同的值。 用法:IF(X,A,B)若X不为0则返回A,否则返回B 例如:IF(CLOSE>OPEN,HIGH,LOW)表示该周期收阳则返回最高值,否则返回最低值 :param Indicator x: 条件指标 :param Indicator a: 待选指标 a :param Indicator b: 待选指标 b :rtype: Indicator """ INTPART.__doc__ = """ INTPART([data]) 取整(绝对值减小取整,即取得数据的整数部分) :param data: 输入数据 :rtype: Indicator """ IKDATA.__doc__ = """ IKDATA([data]) 包装KData成Indicator,用于其他指标计算 :param data: KData 或 具有6个返回结果的Indicator(如KDATA生成的Indicator) :return: Indicator """ KDATA_PART.__doc__ = """ KDATA_PART([data, kpart]) 根据字符串选择返回指标KDATA/OPEN/HIGH/LOW/CLOSE/AMO/VOL,如:KDATA_PART("CLOSE")等同于CLOSE() :param data: 输入数据(KData 或 Indicator) :param string kpart: KDATA|OPEN|HIGH|LOW|CLOSE|AMO|VOL :return: Indicator """ CAPITAL = LIUTONGPAN LIUTONGPAN.__doc__ = """ LIUTONGPAN(kdata) 获取流通盘 :param KData kdata: k线数据 :rtype: Indicator """ LAST.__doc__ = """ LAST([data, m=10, n=5]) 区间存在。 用法:LAST (X,M,N) 表示条件 X 在前 M 周期到前 N 周期存在。 例如:LAST(CLOSE>OPEN,10,5) 表示从前10日到前5日内一直阳线。 :param data: 输入数据 :param int m: m周期 :param int n: n周期 :rtype: Indicator """ LLV.__doc__ = """ LLV([data, n=20]) N日内最低价, N=0则从第一个有效值开始。 :param data: 输入数据 :param int n: N日时间窗口 :return: Indicator """ LN.__doc__ = """ LN([data]) 求自然对数, LN(X)以e为底的对数 :param data: 输入数据 :rtype: Indicator """ LOG.__doc__ = """ LOG([data]) 以10为底的对数 :param data: 输入数据 :rtype: Indicator """ LONGCROSS.__doc__ = """ LONGCROSS(a, b[, n=3]) 两条线维持一定周期后交叉 用法:LONGCROSS(A,B,N)表示A在N周期内都小于B,本周期从下方向上穿过B时返 回1,否则返回0 例如:LONGCROSS(MA(CLOSE,5),MA(CLOSE,10),5)表示5日均线维持5周期后与10日均线交金叉 :param Indicator a: :param Indicator b: :param int n: :rtype: Indicator """ ILOW.__doc__ = """ ILOW([data]) 获取最低价,包装KData的最低价成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ MA.__doc__ = """ MA([data, n=22, type="SMA"]) 移动平均数包装,默认为简单平均数 :param Indicator data: 输入数据 :param int n: 时间窗口 :param string type: "EMA"|"SMA"|"AMA" :return: Indicator """ MACD.__doc__ = """ MACD([data, n1=12, n2=26, n3=9]) 平滑异同移动平均线 :param Indicator data: 输入数据 :param int n1: 短期EMA时间窗 :param int n2: 长期EMA时间窗 :param int n3: (短期EMA-长期EMA)EMA平滑时间窗 :return: 具有三个结果集的 Indicator * result(0): MACD_BAR:MACD直柱,即MACD快线-MACD慢线 * result(1): DIFF: 快线,即(短期EMA-长期EMA) * result(2): DEA: 慢线,即快线的n3周期EMA平滑 """ MAX.__doc__ = """ MAX(ind1, ind2) 求最大值, MAX(A,B)返回A和B中的较大值。 :param Indicator ind1: A :param Indicator ind2: B :rtype: Indicator """ MIN.__doc__ = """ MIN(ind1, ind2) 求最小值, MIN(A,B)返回A和B中的较小值。 :param Indicator ind1: A :param Indicator ind2: B :rtype: Indicator """ MOD.__doc__ = """ MOD(ind1, ind2) 取整后求模。该函数仅为兼容通达信。实际上,指标求模可直接使用 % 操作符 用法:MOD(A,B)返回A对B求模 例如:MOD(26,10) 返回 6 :param Indicator ind1: :param Indicator ind2: :rtype: Indicator """ NDAY.__doc__ = """ NDAY(x, y[, n=3]) 连大, NDAY(X,Y,N)表示条件X>Y持续存在N个周期 :param Indicator x: :param Indicator y: :param int n: 时间窗口 :rtype: Indicator """ NOT.__doc__ = """ NOT([data]) 求逻辑非。NOT(X)返回非X,即当X=0时返回1,否则返回0。 :param Indicator data: 输入数据 :rtype: Indicator """ IOPEN.__doc__ = """ IOPEN([data]) 获取开盘价,包装KData的开盘价成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ POW.__doc__ = """ POW(data, n) 乘幂 用法:POW(A,B)返回A的B次幂 例如:POW(CLOSE,3)求得收盘价的3次方 :param data: 输入数据 :param int n: 幂 :rtype: Indicator """ REF.__doc__ = """ REF([data, n]) 向前引用 (即右移),引用若干周期前的数据。 用法:REF(X,A) 引用A周期前的X值。 :param Indicator data: 输入数据 :param int n: 引用n周期前的值,即右移n位 :return: Indicator """ REVERSE.__doc__ = """ REVERSE([data]) 求相反数,REVERSE(X)返回-X :param Indicator data: 输入数据 :rtype: Indicator """ ROUND.__doc__ = """ ROUND([data, ndigits=2]) 四舍五入 :param data: 输入数据 :param int ndigits: 保留的小数点后位数 :rtype: Indicator """ ROUNDDOWN.__doc__ = """ ROUNDDOWN([data, ndigits=2]) 向下截取,如10.1截取后为10 :param data: 输入数据 :param int ndigits: 保留的小数点后位数 :rtype: Indicator """ ROUNDUP.__doc__ = """ ROUNDUP([data, ndigits=2]) 向上截取,如10.1截取后为11 :param data: 输入数据 :param int ndigits: 保留的小数点后位数 :rtype: Indicator """ SAFTYLOSS.__doc__ = """ SAFTYLOSS([data, n1=10, n2=3, p=2.0]) 亚历山大 艾尔德安全地带止损线,参见 [BOOK2]_ 计算说明:在回溯周期内(一般为10到20天),将所有向下穿越的长度相加除以向下穿越的次数,得到噪音均值(即回溯期内所有最低价低于前一日最低价的长度除以次数),并用今日最低价减去(前日噪音均值乘以一个倍数)得到该止损线。为了抵消波动并且保证止损线的上移,在上述结果的基础上再取起N日(一般为3天)内的最高值 :param Indicator data: 输入数据 :param int n1: 计算平均噪音的回溯时间窗口 :param int n2: 对初步止损线去n2日内的最高值 :param float p: 噪音系数 :return: Indicator """ SIN.__doc__ = """ SIN([data]) 正弦值 :param Indicator data: 输入数据 :rtype: Indicator """ SGN.__doc__ = """ SGN([data]) 求符号值, SGN(X),当 X>0, X=0, X<0分别返回 1, 0, -1。 :param Indicator data: 输入数据 :rtype: Indicator """ SMA.__doc__ = """ SMA([data, n=22]) 简单移动平均线 :param Indicator data: 输入数据 :param int n: 时间窗口 :return: Indicator """ SQRT.__doc__ = """ SQRT([data]) 开平方 用法:SQRT(X)为X的平方根 例如:SQRT(CLOSE)收盘价的平方根 :param data: 输入数据 :rtype: Indicator """ STD = STDEV STDEV.__doc__ = """ STDEV([data, n=10]) 计算N周期内样本标准差 :param Indicator data: 输入数据 :param int n: 时间窗口 :return: Indicator """ STDP.__doc__ = """ STDP([data, n=10]) 总体标准差,STDP(X,N)为X的N日总体标准差 :param data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ SUM.__doc__ = """ SUM([data, n=20]) 求总和。SUM(X,N),统计N周期中X的总和,N=0则从第一个有效值开始。 :param Indicator data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ TAN.__doc__ = """ TAN([data]) 正切值 :param Indicator data: 输入数据 :rtype: Indicator """ UPNDAY.__doc__ = """ UPNDAY(data[, n=3]) 连涨周期数, UPNDAY(CLOSE,M)表示连涨M个周期 :param Indicator data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ VAR.__doc__ = """ VAR([data, n=2]) 估算样本方差, VAR(X,N)为X的N日估算样本方差 :param Indicator data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ VARP.__doc__ = """ VARP([data, n=2]) 总体样本方差, VARP(X,N)为X的N日总体样本方差 :param Indicator data: 输入数据 :param int n: 时间窗口 :rtype: Indicator """ VIGOR.__doc__ = """ VIGOR([kdata, n=2]) 亚历山大.艾尔德力度指数 [BOOK2]_ 计算公式:(收盘价今-收盘价昨)*成交量今 :param KData data: 输入数据 :param int n: EMA平滑窗口 :return: Indicator """ IVOL.__doc__ = """ IVOL([data]) 获取成交量,包装KData的成交量成Indicator :param data: 输入数据(KData 或 Indicator) :return: Indicator """ WEAVE.__doc__ = """ WEAVE(ind1, ind2) 将ind1和ind2的结果组合在一起放在一个Indicator中。如ind = WEAVE(ind1, ind2), 则此时ind包含多个结果,按ind1、ind2的顺序存放。 :param Indicator ind1: 指标1 :param Indicator ind2: 指标2 :rtype: Indicator """
[ "fasiondog@163.com" ]
fasiondog@163.com
640b13b1987767b0a3d0b86bd3125925a4a237cb
49982c52a56e86bc24605bf6bdb3e239036b2e32
/api_server.py
654c51eb6a237dd312a07462eaed96fb6e321057
[ "Apache-2.0" ]
permissive
forkpool/GeeProxy
d75bdaa88018a7d49c5245268c749e88de5cc3bf
6f2f57ef1e1e8ea9a295cf987577dab5f1cadfe5
refs/heads/master
2023-05-12T17:05:36.562844
2020-08-17T06:36:09
2020-08-17T06:36:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
''' @Author: qinzhonghe96@163.com @Date: 2020-03-10 01:23:39 @LastEditors: qinzhonghe96@163.com @LastEditTime: 2020-03-10 01:23:58 @Description: ''' from GeeProxy.api.api import run_app run_app()
[ "qinzhonghe96@163.com" ]
qinzhonghe96@163.com
a6fa541aae3131eab1654b88551c903a078be740
6a1117f9a5671780c78c423c7bd54c3f7a469c81
/learn_temp/basic_app/templatetags/my_extras.py
a6cbad23344f161ea907215c79f57ca33c55011f
[]
no_license
mahmoudgobba/django-deployment-example
533e14d00d7d50653195869dc961a550ab948ea0
9a83736cfe609fe59f3ed0403d31e88358475d32
refs/heads/master
2022-11-14T03:14:43.242344
2020-07-03T00:57:00
2020-07-03T00:57:00
276,688,639
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
from django import template register = template.Library() @register.filter(name='cut') def Cut(value,arg): """ This cuts out all value of "arg" from the string """ return value.replace(arg,'') # register.filtter('cut',Cut)
[ "mahmoud.aid55@yahoo.com" ]
mahmoud.aid55@yahoo.com
eb9d465c0fdcbf5ae8e749b5c00705a8bacaabd5
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/EightTeV/VH_TTH/TTH_HToGG_M_125_TuneZ2star_8TeV_pythia6_cff.py
0e74691e62089d8fbb3ef01c45eec1f2489f987a
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
3,033
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.PythiaUEZ2starSettings_cfi import * from GeneratorInterface.ExternalDecays.TauolaSettings_cff import * generator = cms.EDFilter("Pythia6GeneratorFilter", pythiaPylistVerbosity = cms.untracked.int32(1), # put here the efficiency of your filter (1. if no filter) filterEfficiency = cms.untracked.double(1.0), pythiaHepMCVerbosity = cms.untracked.bool(False), # put here the cross section of your process (in pb) crossSection = cms.untracked.double(1.0), maxEventsToPrint = cms.untracked.int32(1), comEnergy = cms.double(8000.0), ExternalDecays = cms.PSet( Tauola = cms.untracked.PSet( TauolaPolar, TauolaDefaultInputCards ), parameterSets = cms.vstring('Tauola') ), PythiaParameters = cms.PSet( pythiaUESettingsBlock, processParameters = cms.vstring('PMAS(25,1)=125.0 !mass of Higgs', 'MSEL=0 ! user selection for process', 'MSUB(102)=0 !ggH', 'MSUB(123)=0 !ZZ fusion to H', 'MSUB(124)=0 !WW fusion to H', 'MSUB(24)=0 !ZH production', 'MSUB(26)=0 !WH production', 'MSUB(121)=1 !gg to ttH', 'MSUB(122)=1 !qq to ttH', 'MDME(210,1)=0 !Higgs decay into dd', 'MDME(211,1)=0 !Higgs decay into uu', 'MDME(212,1)=0 !Higgs decay into ss', 'MDME(213,1)=0 !Higgs decay into cc', 'MDME(214,1)=0 !Higgs decay into bb', 'MDME(215,1)=0 !Higgs decay into tt', 'MDME(216,1)=0 !Higgs decay into', 'MDME(217,1)=0 !Higgs decay into Higgs decay', 'MDME(218,1)=0 !Higgs decay into e nu e', 'MDME(219,1)=0 !Higgs decay into mu nu mu', 'MDME(220,1)=0 !Higgs decay into tau nu tau', 'MDME(221,1)=0 !Higgs decay into Higgs decay', 'MDME(222,1)=0 !Higgs decay into g g', 'MDME(223,1)=1 !Higgs decay into gam gam', 'MDME(224,1)=0 !Higgs decay into gam Z', 'MDME(225,1)=0 !Higgs decay into Z Z', 'MDME(226,1)=0 !Higgs decay into W W'), # This is a vector of ParameterSet names to be read, in this order parameterSets = cms.vstring('pythiaUESettings', 'processParameters') ) ) configurationMetadata = cms.untracked.PSet( version = cms.untracked.string('$Revision: 1.1 $'), name = cms.untracked.string('$Source: /cvs_server/repositories/CMSSW/CMSSW/Configuration/GenProduction/python/Attic/TTH_HToGG_M_125_TuneZ2star_8TeV_pythia6_cff.py,v $'), annotation = cms.untracked.string('PYTHIA6 ttH, H->2gamma mH=125GeV with TAUOLA at 8TeV') )
[ "sha1-c8b28d70dd1f4235246c4a027e80dcdcf397db6f@cern.ch" ]
sha1-c8b28d70dd1f4235246c4a027e80dcdcf397db6f@cern.ch
4575d91d96b7789dc79ceaf32dede3a23ddf0dd9
b17f799e05ced53a70bc088fe49cd0ab072f88db
/str2.py
d8b34c431a27f1d2994db3d82ed9ec006f20065d
[]
no_license
sharabao13/mypython_t
99cfb11bf6932d1e3a64b3214a72bcc01520a4a3
5783dfa274902254928ad5d53db813e4b20a8d65
refs/heads/master
2020-12-03T03:15:57.440612
2020-01-08T14:14:15
2020-01-08T14:14:15
231,194,242
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
# 字符串分隔 # 方法 partition 返回元祖 (heap,sep,tail) # # startwith # endwith
[ "sharahong13@gmail.com" ]
sharahong13@gmail.com
8894d154163de31d129e692a1299c8f470930ed8
71966cb76360f818c09dd4464c7d999ee2cd5ff8
/import.py
36a28219089b223e1a8425bd24ec058e34e44ebf
[ "MIT" ]
permissive
gatesata/my-beancount-scripts
2f27b5998f35ee5c6305ccc0c13bfd2b63e8c5d0
c13a95985e847814f13c2d18ea56422ec956d482
refs/heads/master
2020-07-26T06:03:13.062182
2019-09-14T11:05:30
2019-09-14T11:05:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
from datetime import date from beancount.core import data from beancount.parser import parser, printer from beancount import loader from modules.imports.alipay import Alipay from modules.imports.wechat import WeChat from modules.imports.citic_credit import CITICCredit import re import argparse parser = argparse.ArgumentParser("import") parser.add_argument("path", help = "CSV Path") parser.add_argument("--entry", help = "Entry bean path (default = main.bean)", default = 'main.bean') parser.add_argument("--out", help = "Output bean path", default = 'out.bean') args = parser.parse_args() entries, errors, option_map = loader.load_file(args.entry) importers = [Alipay, WeChat, CITICCredit] instance = None for importer in importers: try: with open(args.path, 'rb') as f: file_bytes = f.read() instance = importer(args.path, file_bytes, entries, option_map) break except: pass if instance == None: print("No suitable importer!") exit(1) new_entries = instance.parse() with open(args.out, 'w') as f: printer.print_entries(new_entries, file = f) print('Outputed to ' + args.out) exit(0) file = parser.parse_one(''' 2018/01/15 * "测试" "测试" Assets:Test 300 CNY Income:Test ''') print(file.postings) file.postings[0] = file.postings[0]._replace(units = file.postings[0].units._replace(number = 100)) print(file.postings[0]) data = printer.format_entry(file) print(data)
[ "git@zsxsoft.com" ]
git@zsxsoft.com
9807e0d279b139e81f7f4a461b64f14634c105c1
a0e603abe4855c7cf8c0247299e57dfe30b0f36e
/src/update_tags.py
1b55d73b72feba925f7600893acadf28b49c7ea6
[ "MIT" ]
permissive
massens/alfred-notion
2e275b475cc08263986104298fe4c5e8100f067d
9582299d7b4022f2d0f8debf72827b840634eefd
refs/heads/master
2020-06-22T16:57:27.143506
2019-06-18T02:31:31
2019-06-18T02:31:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
#!/usr/bin/env -S PATH="${PATH}:/usr/local/bin" python3 import sys import json from notion_api import tagsDatabase from config import tagsFilePath try: database = tagsDatabase() results = database.default_query().execute() tags = [{ "uid": row.id, "title": row.title, "variables": {"tagName": row.title}, "arg": row.get_browseable_url(), "match": row.title, "copy": row.title, "largetype": row.title } for row in results] doneTag = [{ "uid": "done", "title": "Done", "variables": {"tagName": "Done"}, "arg": "Done", "match": "Done", "copy": "Done", "largetype": "Done" }] with open(tagsFilePath(), "w") as outfile: json.dump({"items": doneTag + tags}, outfile) print(str(len(tags)) + " tags") except Exception as e: # Print out nothing on STDOUT (missing value means means operation was unsuccessful) sys.stderr.write(e)
[ "kevin.j.jalbert@gmail.com" ]
kevin.j.jalbert@gmail.com
51bde64b6e8c44be8a7bca91c0d160b83b678fef
3d66286c210de64e52b0fa71acc0440bdd59fda7
/app/models/reviews.py
23bf4475ae9f8fdeff5b40d2ffd15e5d863b8e40
[ "MIT" ]
permissive
YomZsamora/Watchlist
678f875d39d5ddac84623327b839ec47500331e5
d808f2b1fc569b7541f240a3b4f96256322ab863
refs/heads/main
2022-08-14T21:09:20.765769
2022-05-09T03:08:26
2022-05-09T03:08:26
485,275,242
2
0
null
null
null
null
UTF-8
Python
false
false
915
py
class Reviews: all_reviews = [] def __init__(self, movie_id, title, imageurl, review): self.movie_id = movie_id self.title = title self.imageurl = imageurl self.review = review def save_review(self): # save_review method that appends the review object to a class variable all_reviews that is an empty list. Reviews.all_reviews.append(self) @classmethod def clear_reviews(cls): # clears all the Items from the list. Reviews.all_reviews.clear() @classmethod def get_reviews(cls, id): response = [] for review in cls.all_reviews: # loops through all the reviews in the all_reviews list if review.movie_id == id: # checks for reviews that have the same movie ID as the id passed. response.append(review) # append those reviews to a new response list return response
[ "samaurah@gmail.com" ]
samaurah@gmail.com
3e3325a7c0a4e4cbc896466a9b9210bee03d20ac
e1021f41e4426ec326665da35ced1579a452d248
/TFVariable.py
650d3df2a0aa38de446132d43e7ccbc0aa3b52b0
[]
no_license
weizhenzhao/Tensorflow
ccf47d68402e2c73df3e0e7c71c6bce0ded92c8e
cdbeb367cccc1db38440fb6abda7671a11734a6f
refs/heads/master
2021-01-20T00:20:43.723276
2017-06-25T02:41:59
2017-06-25T02:41:59
89,114,924
0
0
null
null
null
null
UTF-8
Python
false
false
12,113
py
''' Created on Apr 21, 2017 @author: P0079482 ''' #如何通过tf.variable_scope函数来控制tf.ger_variable函数获取已经创建过的变量 #在名字为foo的命名空间内创建名字为v的变量 import tensorflow as tf with tf.variable_scope("foo"): v = tf.get_variable("v",shape=[1],initializer=tf.constant_initializer(1.0)) #因为在命名空间foo中已经存在名为v的变量,所有下面的代码将会报错: #Variable foo/v already exists, with tf.variable_scope("foo"): v = tf.get_variable("v",[1]) #在生成上下文管理器时,将参数reuse设置为True.这样tf.get_variable函数将直接获取已经声明的变量 with tf.variable_scope("foo",reuse=True): v1 = tf.get_variable("v",[1]) print(v==v1) #输出为True,代表v,v1代表的是相同的Tensorflow中的变量 #将参数reuse设置为True是,tf.variable_scope将只能获取已经创建过的变量。 #因为在命名空间bar中还没有创建变量v,所以下面的代码将会报错 with tf.variable_scope("bar",reuse=True): v = tf.get_variable("v",[1]) #如果tf.variable_scope函数使用reuse=None或者reuse=False创建上下文管理器 #tf.get_variable操作将创建新的变量。 #如果同名的变量已经存在,则tf.get_variable函数将报错 #Tensorflow中tf.variable_scope函数是可以嵌套的 with tf.variable_scope("root"): #可以通过tf.get_variable_scope().reuse函数来获取上下文管理器中reuse参数的值 print(tf.get_variable_scope().reuse) #输出False,即最外层reuse是False with tf.variable_scope("foo",reuse=True): #新建一个嵌套的上下文管理器并指定reuse为True print(tf.get_variable_scope().reuse) #输出True with tf.variable_scope("bar"): #新建一个嵌套的上下文管理器,但不指定reuse,这时reuse的取值会和外面一层保持一致 print(tf.get_variable_scope().reuse) #输出True print(tf.get_variable_scope().reuse) #输出False #tf.variable_scope函数生成的上下文管理器也会创建一个Tensorflow中的命名空间 #在命名空间内创建的变量名称都会带上这个命名空间作为前缀 #所以tf.variable_scope函数除了可以控制tf.get_variable执行的功能之外 #这个函数也提供了一个管理命名空间的方式 v1 = tf.get_variable("v",[1]) print(v1.name)#输出v:0 "v"为变量的名称,":0"表示这个变量是生成变量这个运算的第一个结果 with tf.variable_scope("foo"): v2 = tf.get_variable("v",[1]) print(v2.name)#输出foo/v:0 在tf.variable_scope中创建的变量,名称前面会 #加入命名空间的名称,并通过/来分隔命名空间的名称和变量的名称 with tf.variable_scope("foo"): with tf.variable_scope("bar"): v3 = tf.get_variable("v",[1]) print(v3.name) #输出foo/bar/v:0 命名空间可以嵌套,同时变量的名称也会加入所有命名空间的名称作为前缀 v4 = tf.get_variable("v1",[1]) print(v4.name) #输出foo/v1:0 当命名空间退出之后,变量名称也就不会再被加入其前缀了 #创建一个名称为空的命名空间,并设置reuse=True with tf.variable_scope("",reuse=True): v5=tf.get_variable("foo/bar/v",[1])#可以直接通过带命名空间名称的变量名来获取其他命名空间下的变量。 print(v5==v3) v6=tf.get_variable("foo/v1",[1]) print(v6==v4) #通过tf.variable_scope和tf.get_variable函数,以下代码对inference函数的前向传播结果做了一些改进 def inference(input_tensor,reuse=False): #定义第一层神经网络的变量和前向传播过程 with tf.variable_scope('layer1',reuse=reuse): #根据传进来的reuse来判断是创建新变量还是使用已经创建好了。在第一次构造网络时需要创建新的变量, #以后每次调用这个函数都直接使用reuse=True就不需要每次将变量传进来了 weights= tf.get_variable("weights",[INPUT_NODE,LAYER1_NODE],initializer=tf.truncated_normal_initializer(stddev=0.1)) biases= tf.get_variable("biases",[LAYER1_NODE],initializer=tf.constant_initializer(0.0)) layer1 = tf.nn.relu(tf.matmul(input_tensor,weights)+biases) #类似地定义第二层神经网络的变量和前向传播过程 with tf.variable_scope('layer2',reuse=reuse): weights=tf.get_variable("weights",[LAYER1_NODE,OUTPUT_NODE],initializer=tf.truncated_normal_initializer(stddev=0.1)) biases=tf.get_variable("biases",[OUTPUT_NODE],initializer=tf.constant_initializer(0.0)) layer2=tf.matmul(layer1,weights)+biases #返回最后的前向传播结果 return layer2 x=tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input') y=inference(x) #在程序中需要使用训练好的神经网络进行推倒时,可以直接调用inference(new_x,True) #Tensorflow模型持久化 import tensorflow as tf v1=tf.Variable(tf.constant(1.0,shape=[1]),name="v1") v2=tf.Varibale(tf.constant(2.0,shape=[1]),name="v2") result=v1+v2 init_op=tf.initialize_all_variables() #声明tf.train.Saver类用于保存模型 saver=tf.train.Saver() with tf.Session() as sess: sess.run(init_op) #将模型保存到/path/to/model/model.ckpt文件 saver.save(sess,"/path/to/model/model.ckpt") #生成的文件 #model.ckpt.meta保存了TensorFlow计算图的结构 #model.ckpt这个文件保存了TensorFlow程序中每一个变量的取值 #checkpoint文件 保存了一个目录下所有的模型文件列表 #加载保存的文件 import tensorflow as tf #使用和保存模型代码中一样的方式来声明变量 v1=tf.Variable(tf.constant(1.0,shape=[1]),name="v1") v2=tf.Variable(tf.constant(2.0,shpae=[1]),name="v2") result=v1+v2 saver=tf.train.Saver() with tf.Session() as sess: #加载已经保存的模型,并通过已经保存的模型中变量的值来计算加法 saver.restore(sess,"/path/to/model/model.ckpt") print(sess.run(result)) import tensorflow as tf #直接加载持久化的图 saver=tf.train.import_meta_graph("/path/to/model/model.ckpt/model.ckpt.meta") with tf.Session() as sess: saver.restore(sess,"/path/to/model/model.ckpt") #通过张量的名称来获取张量 print(sess.run(tf.get_default_graph().get_tensorflow_by_name("add:0"))) #输出[ 3.] #加载指定的变量 #可能之前有一个训练好的五层神经网络模型,但现在想尝试一个六层的神经网络 #那么可以将前面五层神经网络中的参数直接加载到新的模型,而仅仅将最后一层神经网络重新训练 #在加载模型的代码中使用saver=tf.train.Saver([v1])命令来构建tf.train.Saver类 v1=tf.Variable(tf.constant(1.0,shape=[1]),name="other-v1") v2=tf.Variable(tf.constant(2.0,shape=[1]),name="other-v2") #如果直接使用tf.train.Saver()来加载模型会报找不到的错误 #使用字典来重命名就可以加载原来的模型了,这个字典指定了原来名称为v1的变量现在加载到变量v1中(名称为other-v1) #名称为v2的变量加载到变量v2中(名称为other-v2) saver=tf.train.Saver({"v1":v1,"v2",v2}) #这样做的主要目的之一就是方便使用变量的滑动平均值 #给出了一个保存滑动平均模型的样例 import tensorflow as tf v=tf.Variable(0,dtype=tf.float32,name="v") #在没有申明滑动平均模型时只有一个变量v,所以下面的语句只会输出"v:0 for variables in tf.all_variables(): print(variables.name) ema = tf.train.ExponentialMovingAverage(0.99) maintain_averages_op=ema.apply(tf.all_variables()) #在申明滑动平均模型之后,Tensorflow会自动生成一个影子变量 #v/ExponentialMoving Average 于是下面的语句会输出 #"v:0" 和 "v/ExponentialMovingAverage:0" for variables in tf.all_variables(): print(variables.name) saver = tf.train.Saver() with tf.Session() as sess: init_op=tf.initialize_all_variables() sess.run(init_op) sess.run(tf.assign(v,10)) sess.run(maintain_averages_op) #保存时Tensorflow会将v:0和v/ExponentialMovingAverage:0两个变量都存下来 saver.save(sess,"/path/to/model/model.ckpt") print(sess.run([v,ema.average(v)])) #输出[10.0,0.099999905] #一下代码给出了如何通过变量重命名直接读取变量的滑动平均值 v=tf.Variable(0,dtype=tf.float32,name="v") #通过变量重命名将原来变量v的滑动平均值直接赋值给v saver = tf.train.Saver({"v/ExponentialMovingAverage":v}) with tf.Session() as sess: saver.restore(sess,"/path/to/model/model.ckpt") print(sess.run(v)) #为了方便加载时重命名滑动平均变量,tf.train.ExponentialMovingAverage类提供了 #variables_to_restore函数来生成tf.train.Saver类所需要的变量重命名字典 import tensorflow as tf v=tf.Variable(0,dtype=tf.float32,name="v") ema=tf.train.ExponentialMovingAverage(0.99) #通过使用variables_to_restore函数可以直接生成上面代码中提供的字典 #{"v/ExponentialMovingAverage":v} print(ema.variables_to_restore()) saver = tf.train.Saver(ema.variables_to_restore()) with tf.Session() as sess: saver.restore(sess,"/path/to/model/model.ckpt") print(sess.run(v)) #输出0.099999905,即原来模型中变量v的滑动平均值 #下面代码给出了如何通过变量重命名直接读取变量的滑动平均值 #读取的变量v的值实际上是上面代码中变量v的滑动平均值 #通过这个方法就可以只用完全一样的代码来计算滑动平均模型前向传播的结果 v=tf.Variable(0,dtype=tf.float32,name="v") #通过变量重命名将原来变量v的滑动平均值直接赋值给v saver = tf.train.Saver({"v/ExponentialMovingAverage":v}) with tf.Session() as sess: saver.restore(sess,"/path/to/model/model.ckpt") print(sess.run(v)) #输出0.099999905 这个值就是原来模型中变量v的滑动平均值 import tensorflow as tf from tensorflow.python.framework import graph_util v1=tf.Variable(tf.constant(1.0,shape=[1]),name="v1") v2=tf.Variable(tf.constant(2.0,shape=[2]),name="v2") result=v1+v2 init_op=tf.initialize_all_variables() with tf.Session() as sess: sess.run(init_op) #导出当前计算图的GraphDef部分,只需要这一个部分就可以完成从输入层到输出层的计算过程 graph_def=tf.get_default_graph().as_graph_def() output_graph_def=graph_util.convert_variables_to_constants(sess,graph_def,['add']) #将导出的模型存入文件 with tf.gfile.GFile("/path/to/model/combined_model.pb","wb") as f: f.write(output_graph_def.SerializeToString()) #当只需要得到计算图中某个节点的取值时,这提供了一个更加方便的方法。 import tensorflow as tf from tensorflow.python.platform import gfile with tf.Session() as sess: model_filename="/path/to/model/combined_model.pb" #读取保存的模型文件,并将文件解析成对应的GraphDef Protocol Buffer with gfile.FastGFile(model_filename,'rb') as f: graph_def = tf.GraphDef() graph_def,ParseFromString(f.read()) #将graph_def中保存的图加载到当前的图中。 #return_elements=["add":0]给出了返回的张量的名称。在保存 #的时候给出的是计算节点的名称,所以为"add"。在加载的时候给出 #的是张量的名称,所以是add:0 result = tf.import_graph_def(graph_def,return_elements=["add:0"]) print(sess.run(result)) import tensorflow as tf #tf.train.NewCheckpointReader可以读取checkpoint文件中保存的所有变量 reader = tf.train.NewCheckpointReader('/path/to/model/model.ckpt') #获取所有变量列表。这个事一个从变量名到变量维度的字典 all_variables=reader.get_variable_to_shape_map() for variable_name in all_variables: #variable_name为变量名称,all_variable[variable_name]为变量的维度 print(variable_name,all_variables[variable_name]) #获取名称为v1的变量 print("Value for variable v1 is",reader.get_tensor("v1"))
[ "958904120@qq.com" ]
958904120@qq.com
ed5507ca40f694aaeb3f0fd6c7cea9ccbffd46ff
0ef88e57246d46aac70e49905f8394f63b0874c7
/logger.py
1c0ce0ed70e53f95dc2bb7e05acc1cfdfa6d0066
[]
no_license
liko006/Image_Segmentation_practice
06924a60cba11b936582b5188116830d8d6efb8e
f4e4d93d170f3959aa96e2398b0c68f276993eb7
refs/heads/main
2023-04-25T06:23:56.247648
2021-05-14T06:53:36
2021-05-14T06:53:36
359,327,090
0
0
null
null
null
null
UTF-8
Python
false
false
1,061
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import logging import os import sys __all__ = ['setup_logger'] # reference from: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/utils/logger.py def setup_logger(name, save_dir, distributed_rank, filename="log.txt", mode='w'): logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # don't log results for the non-master process if distributed_rank > 0: return logger ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s: %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) fh = logging.FileHandler(os.path.join(save_dir, filename), mode=mode) # 'a+' for add, 'w' for overwrite fh.setLevel(logging.DEBUG) fh.setFormatter(formatter) logger.addHandler(fh) return logger
[ "noreply@github.com" ]
liko006.noreply@github.com
b01109d3234d3e5a2c1000f7c0150a5e91f60ab6
46732d613208ee4096fbbd3fd74f22146471d1ce
/wangyiyun_songs&lyrics/all_singer歌手情绪分析/郝云/jieba分词并统计词频后输出结果到Excel和txt文档.py
f9eb64a2d25577b8f29969ec4dc7b43cf3e4d8fa
[]
no_license
cassieeric/python_crawler
7cb02f612382801ae024e2cee70e0c2bcdba927c
6d2b4db3d34183d729f6fd30555c6d6f04514260
refs/heads/master
2022-11-30T20:30:50.031960
2022-11-27T02:53:22
2022-11-27T02:53:22
118,204,154
322
283
null
2022-12-21T09:33:08
2018-01-20T03:17:14
HTML
UTF-8
Python
false
false
1,588
py
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import sys import jieba import jieba.analyse import xlwt # 写入Excel表的库 # reload(sys) # sys.setdefaultencoding('utf-8') if __name__ == "__main__": wbk = xlwt.Workbook(encoding='ascii') sheet = wbk.add_sheet("wordCount") # Excel单元格名字 word_lst = [] key_list = [] for line in open('郝云歌词汇总_outputs.txt', encoding='gbk'): # 1.txt是需要分词统计的文档 item = line.strip('\n\r').split('\t') # 制表格切分 # print item tags = jieba.analyse.extract_tags(item[0]) # jieba分词 for t in tags: word_lst.append(t) word_dict = {} with open("wordCount_郝云歌词.txt", 'w') as wf2: # 打开文件 for item in word_lst: if item not in word_dict: # 统计数量 word_dict[item] = 1 else: word_dict[item] += 1 orderList = list(word_dict.values()) orderList.sort(reverse=True) # print orderList for i in range(len(orderList)): for key in word_dict: if word_dict[key] == orderList[i]: wf2.write(key + ' ' + str(word_dict[key]) + '\n') # 写入txt文档 key_list.append(key) word_dict[key] = 0 for i in range(len(key_list)): sheet.write(i, 1, label=orderList[i]) sheet.write(i, 0, label=key_list[i]) wbk.save('wordCount_郝云歌词.xls') # 保存为 wordCount.xls文件
[ "noreply@github.com" ]
cassieeric.noreply@github.com
8d192b1eceecea7cb7705301da9a7f46f6f2ab93
2aa82f6809da72301bd40ebbfc47a1470d8d340c
/log.py
0514f0627f43aee6ce3581d411d9e165188756ae
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
norangLemon/snuBot
ea5f47bfeab0e7e6ccc524c04efbe38df68207bb
02123052d9e53b6b2a8c2c304f97c670de8f01df
refs/heads/master
2021-01-09T20:52:15.538934
2019-05-22T10:48:25
2019-05-22T10:48:25
60,683,563
2
2
null
2019-05-22T10:48:26
2016-06-08T08:55:11
Python
UTF-8
Python
false
false
1,630
py
import logging import logging.handlers import sys # log file 만들기 # '/'로 시작하는 command와 샤샤의 심심이 기능을 분리해서 로그를 남긴다 # 일반 채팅은 로그를 남기지 않는다 # 최상위 loger에게 stdout으로 출력하도록 한다 root = logging.getLogger() root.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s|%(name)s - %(message)s') ch.setFormatter(formatter) root.addHandler(ch) # child logger는 file에 출력한다 # command log용 hander 생성 cmd_logger = logging.getLogger('cmdLoger') cmd_fileHandler = logging.FileHandler('Logs/command.log') cmd_streamHandler = logging.StreamHandler() # 심심이 log용 handler 생성 chat_logger = logging.getLogger('chatLoger') chat_fileHandler = logging.FileHandler('Logs/chat.log') chat_streamHandler = logging.StreamHandler() # 동등한 파일 형식 사용 # [파일명: 줄번호] <레벨> # 메시지 formatter = logging.Formatter('\t[%(filename)s: %(lineno)s] <%(levelname)s> %(asctime)s\n%(message)s') # 형식 적용, 핸들러를 로거에 추가, 레벨 설정 chat_fileHandler.setFormatter(formatter) cmd_fileHandler.setFormatter(formatter) chat_logger.addHandler(chat_fileHandler) cmd_logger.addHandler(cmd_fileHandler) chat_logger.addHandler(chat_streamHandler) chat_logger.addHandler(cmd_streamHandler) cmd_logger.setLevel(logging.DEBUG) chat_logger.setLevel(logging.DEBUG) # 함수명 alias cmd_prtErr = cmd_logger.error cmd_prtLog = cmd_logger.debug chat_prtErr = chat_logger.error chat_prtLog = chat_logger.debug
[ "pinethee@naver.com" ]
pinethee@naver.com
e7be973356287b1f6f9f3adf7daae099cff5e85d
6fc13c46caf0b64f0e4b128378fb205dee87bd43
/gallery/migrations/0003_auto__add_field_galleryimage_description.py
db70b888fdd6a79acca5b359a38d95da13a072c8
[]
no_license
wreckage/sammy-pjax
dc48b01d5cc48544d7a08cbd490ee428e4a84316
3b294fcfcd84892c3308551876bc8e4d156abbf3
refs/heads/master
2021-01-11T23:53:14.133047
2017-01-11T13:14:29
2017-01-11T13:14:29
78,640,519
0
0
null
null
null
null
UTF-8
Python
false
false
1,439
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'GalleryImage.description' db.add_column(u'gallery_galleryimage', 'description', self.gf('django.db.models.fields.CharField')(default='none', max_length=1000), keep_default=False) def backwards(self, orm): # Deleting field 'GalleryImage.description' db.delete_column(u'gallery_galleryimage', 'description') models = { u'gallery.gallery': { 'Meta': {'object_name': 'Gallery'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'gallery.galleryimage': { 'Meta': {'object_name': 'GalleryImage'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'gallery': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['gallery.Gallery']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'img': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}) } } complete_apps = ['gallery']
[ "reubenurbina@gmail.com" ]
reubenurbina@gmail.com
99d58e8cc76b55254b312749479d7bf54baae87e
8c9712b40d184fcb0ed1d2e1bc5369312f4086c4
/trojhackproj/ptfoapp/ptfoapp/settings.py
33dba0ee0a0d647528ab35c50c35625c4c59aa38
[]
no_license
medhivya/2d4e-trial
6f738126d14a0eda8357f9fcba1caf859bd68426
d59c487d6ba534ab45a84f8f69536a6016666904
refs/heads/master
2020-04-26T11:24:47.178911
2019-03-03T11:13:36
2019-03-03T11:13:36
173,515,324
0
0
null
null
null
null
UTF-8
Python
false
false
3,528
py
""" Django settings for ptfoapp project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gs^^d-wu!rqxc&eerkbap9t_j@^rr8ljni%1-36xf^@8zeb+u@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'update.apps.UpdateConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ptfoapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ptfoapp.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # """ DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql', # 'NAME': 'mydatabase', # 'USER': 'mydatabaseuser', # 'PASSWORD': 'mypassword', # 'HOST': '127.0.0.1', # 'PORT': '5432', # } #} """ # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Los_Angeles' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "noreply@github.com" ]
medhivya.noreply@github.com
b9930750f13f33f681ca4d714cfb85b0de95c5ea
e1585b905cbf76a344bc7b73dd14b445d3c5d70c
/packages/_LibreOffice/_LibreOffice.py
be5c9c6ab08e7d618f606d3a6d5aa5582c43402a
[ "MIT" ]
permissive
camilleC/windows-installer
4584408bc6e3651d6e0907fd98985f17430d5bb7
2410240bed7559afaf458819ee1f9695ad647614
refs/heads/master
2021-01-16T22:46:50.910132
2012-09-04T22:50:06
2012-09-04T22:50:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
''' @author: ''' from ..defaultpackage.package import Package class _LibreOffice(Package): def __init__(self): Package.__init__(self)
[ "nycteaa@students.wwu.edu" ]
nycteaa@students.wwu.edu
0ae63594cd647e083be2093d5d31eba3b47fa930
714268a27bd4cc34ec053cb3d991012151554aad
/CodeChef/May Lunchtime/LOSTWKND.py
13d3ab6d379aba7ff6968174279243e54554f2d9
[]
no_license
yashhR/competitive
2b649011c2cea74eea8d9646bcfafc73743651eb
37f2ec68b33828df4692bc23f28d532cb8d4a358
refs/heads/master
2022-11-10T04:53:47.634062
2020-06-22T16:43:03
2020-06-22T16:43:03
274,190,602
0
0
null
2020-06-22T16:36:02
2020-06-22T16:36:02
null
UTF-8
Python
false
false
449
py
t = int(input()) while t: info = list(map(int, input().split())) p = info[-1] info.pop(-1) work = list(map(lambda x: x*p, info)) for i in range(5): if i == 4: if work[i] > 24: print("Yes") else: print("No") break elif work[i] > 24: work[i+1] += work[i] - 24 elif work[i] < 24: work[i+1] -= 24 - work[i] t -= 1
[ "17131a05h5@gvpce.ac.in" ]
17131a05h5@gvpce.ac.in
ca055970b0ed963a1c28b40c99b3a2c958095e72
1fc7fc8cc0ad49133ba9a4dae910fd7d6e9b242c
/pyqtgraph/examples/multiprocess.py
2e32b041aa44c70ff2198f1041646ce0ef6291df
[ "MIT" ]
permissive
Yingzhang1122/DiffractionLimitedAnalysis
2a67ac2ac87e9fdaf9262a565cc717899e439561
6ea260b738a624962a329dcb7ae19ee048515edf
refs/heads/main
2023-06-03T16:12:15.684375
2021-05-26T18:47:40
2021-05-26T18:47:40
368,825,659
0
0
MIT
2021-05-19T10:11:17
2021-05-19T10:11:17
null
UTF-8
Python
false
false
1,539
py
# -*- coding: utf-8 -*- import initExample ## Add path to library (just for examples; you do not need this) import numpy as np import pyqtgraph.multiprocess as mp import pyqtgraph as pg import time print("\n=================\nStart Process") proc = mp.Process() import os print("parent:", os.getpid(), "child:", proc.proc.pid) print("started") rnp = proc._import('numpy') arr = rnp.array([1,2,3,4]) print(repr(arr)) print(str(arr)) print("return value:", repr(arr.mean(_returnType='value'))) print( "return proxy:", repr(arr.mean(_returnType='proxy'))) print( "return auto: ", repr(arr.mean(_returnType='auto'))) proc.join() print( "process finished") print( "\n=================\nStart ForkedProcess") proc = mp.ForkedProcess() rnp = proc._import('numpy') arr = rnp.array([1,2,3,4]) print( repr(arr)) print( str(arr)) print( repr(arr.mean())) proc.join() print( "process finished") import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui app = pg.mkQApp("Multiprocess Example") print( "\n=================\nStart QtProcess") import sys if (sys.flags.interactive != 1): print( " (not interactive; remote process will exit immediately.)") proc = mp.QtProcess() d1 = proc.transfer(np.random.normal(size=1000)) d2 = proc.transfer(np.random.normal(size=1000)) rpg = proc._import('pyqtgraph') plt = rpg.plot(d1+d2) ## Start Qt event loop unless running in interactive mode or using pyside. #import sys #if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): #QtGui.QApplication.instance().exec_()
[ "zengjie.xia7@gmail.com" ]
zengjie.xia7@gmail.com
800ad800104a7a948b97070e18c41fc42e2b2e44
5b3140819d8a1b531746b57403e976c2ced0cf56
/foundation/test.py
6b5e8fb4bce38b122b00a34aa47a108aad2cca43
[]
no_license
celcoco/PythonExercise
53ff756f0f970b58b8aada4dab833f858f2be5ff
5906d7752374757a98a8a7454b11b8a23d7cd239
refs/heads/master
2021-01-19T05:18:36.517714
2016-09-26T02:53:55
2016-09-26T02:53:55
63,924,844
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
def traverse(seq_len): idx = 1 traversed = [] while len(traversed) < seq_len : traversed.append(idx) traversed.append(2*len(traversed) + 1) idx += 2 if idx > seq_len: idx -= seq_len print traversed,len(traversed) sum = 0 for idx in traversed: print idx i = traversed.pop() sum += (i * idx) print(sum) traverse(7)
[ "enle.chen@gmail.com" ]
enle.chen@gmail.com
4a548acbd2e82977a69418ac05f42ad040b90671
c89a53455f295b777bcf1f7b0d373566bbd57356
/Vilgaxeye/mainfindpathfordemopathtwo20201207.py
8afbc5245f338e8eb837f6e7ed7a9607e5350088
[]
no_license
KarnMatas/Vilgalaxy
9fe5133abcf8d60bae852848a578b69b3ca850ff
d7338fd5dfd98a26c0fce4dce331c2d281f53c90
refs/heads/main
2023-02-04T04:24:25.629964
2020-12-23T17:36:29
2020-12-23T17:36:29
313,986,716
0
1
null
2020-12-04T13:54:46
2020-11-18T16:05:48
Python
UTF-8
Python
false
false
13,664
py
import cv2 import math import imutils import numpy as np from mpl_toolkits import mplot3d import matplotlib.pyplot as plt from matplotlib import pyplot as plt # from CardDetect import * # cropsize = 40 # def resize(frame,cropsize): # oldframe = frame[cropsize:-cropsize, cropsize:-cropsize] # return oldframe def map(x, in_min, in_max, out_min, out_max): return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min def edgedetect(frame): # imgGrey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # newimg = frame[40:-86, 40:-55] # พอมีไฟแล้วมาแก้ cropsize kernel = np.ones((3,3),np.uint8)/ 10 average = cv2.filter2D(frame, -1, kernel) edge = cv2.Canny(average, 6, 98) # 10 71 # ส่องไฟ 6 98 return edge def adjustment_markpath(frame): # kernel = np.ones((2, 2), np.uint8) / 10 kernelc = np.ones((3, 3), np.uint8) / 10 opening = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, kernelc) dirate1 = cv2.dilate(opening, kernelc, iterations= 20) #31 มีไฟ 10 erode1 = cv2.erode(dirate1, kernelc, iterations= 15) #28 5 , 7 # cv2.imshow('test',erode1) return erode1 def adjustment_chessboard(frame): # kernel = np.ones((2, 2), np.uint8) / 10 kernelc = np.ones((3, 3), np.uint8) / 10 opening = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, kernelc) dirate1 = cv2.dilate(opening, kernelc, iterations= 9) # 8 มีไฟ 9 erode1 = cv2.erode(dirate1, kernelc, iterations= 25) # 28 25 return erode1 def findendp(frame): pix = np.copy(frame) for p in range(pix.shape[0]): for q in range(pix.shape[1]): if (pix[p][q] != 0): pix[p][q] = 1 fakernelme = np.array([[1,1,1], [1,10,1], [1,1,1]]) filterme = cv2.filter2D(pix,-1,fakernelme) return np.argwhere(filterme == 11) pathcontours=[] thinedpath=[] markercontours=[] centermarkers=[] # ใช้ [x,y] ได้เลย finishcontours=[] centerfinish=[] X = [] Y = [] Z = [] minpix=[] maxpix=[] valuepic=[] rawZ = [] cornerpoints_skel = [] end_skel=[] sortpoint=[] anglespath=[] world_position=[] rf_list=[] def spreadline(endpoints,thispath,picgrey): for i in range(len(centermarkers)): #endpoint สั่งสลับ [x,y] เป็น [y,x] for j in range(len(endpoints)): # ep x , ep y length = math.sqrt(pow((endpoints[j][1]-centermarkers[i][0]),2) + pow((endpoints[j][0]-centermarkers[i][1]),2)) print('dolength=',length) if length <= 155.00: # print(length) markcolor = picgrey[endpoints[j][0],endpoints[j][1]] cv2.circle(picgrey, (endpoints[j][1],endpoints[j][0]), 7, int(markcolor), -1) # print('mark1=',markcolor) cv2.line(thispath, (centermarkers[i][0],centermarkers[i][1]), (endpoints[j][1],endpoints[j][0]), (255,255,255), 1) cv2.line(picgrey, (centermarkers[i][0],centermarkers[i][1]), (endpoints[j][1],endpoints[j][0]), int(markcolor), 10) for i in range(len(centerfinish)): #endpoint สั่งสลับ [xcc,y] เป็น [y,x] for j in range(len(endpoints)): # ep x , ep y length = math.sqrt(pow((endpoints[j][1]-centerfinish[i][0]),2) + pow((endpoints[j][0]-centerfinish[i][1]),2)) # print('dolength2=',length) if length <= 155.00: # print(length) markcolor2 = picgrey[endpoints[j][0],endpoints[j][1]] cv2.circle(picgrey, (endpoints[j][1],endpoints[j][0]), 7, int(markcolor2), -1) # print('mark2=',markcolor2) cv2.line(thispath, (centerfinish[i][0],centerfinish[i][1]), (endpoints[j][1],endpoints[j][0]), (255,255,255), 1) cv2.line(picgrey, (centerfinish[i][0],centerfinish[i][1]), (endpoints[j][1],endpoints[j][0]), int(markcolor2), 10) def plotmypath(frame,picgrey,order): # picgrey = newimg global rawZ,valuepic,temp temp = np.argwhere(frame == 255) x,y = temp.T # print(len(temp)) # print("x=",len(x)) for j in range(len(temp)): valuepic.append(picgrey[x[j], y[j]]) # X.append(j[1]) # Y.append(j[0]) rawZ.append(picgrey[x[j], y[j]]) # print(len(valuepic)) maxpix.append(max(valuepic)) minpix.append(min(valuepic)) valuepic = [] # print(maxpix) for k in range(len(rawZ)): # if (maxpix[i] - minpix[i]) > 10.0: Z.append(map(rawZ[k], minpix[order], maxpix[order], 20.0, 10.0)) # สลับ 10 20 # print(rawZ) # print(Z) rawZ = [] def convert_coordinate(lstpixel): yworld = (lstpixel[0] / 530) * 370 xworld = (lstpixel[1] / 530) * 370 yworld = (yworld - 370) * (-1) xworld = (xworld - 370) * (-1) return [xworld,yworld] def PathFinder(frame): global cornerpoints_skel clone = frame.copy()[35:-35, 35:-35] # cv2.imshow("120",clone) # return clone imgGrey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) newimg = imgGrey[35:-35, 35:-35] #40:-86, 40:-55 newgrey = newimg.copy() denoiseimg = cv2.fastNlMeansDenoising(newgrey, None, 10, 7, 21) cv2.imshow('raw',newimg) keepedge = edgedetect(newimg) adjustimg_markpath = adjustment_markpath(keepedge) adjustimg_chessboard = adjustment_chessboard(keepedge) contours, hierarchy = cv2.findContours(adjustimg_markpath, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) contours1, hierarchy1 = cv2.findContours(adjustimg_chessboard, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) for path in range(len(contours)): look = np.zeros(keepedge.shape, np.uint8) cv2.drawContours(look,contours,path,(255,255,255),-1) cv2.imshow('cnt',look) cv2.waitKey(0) if (cv2.contourArea(contours[path]) > 25000 and cv2.contourArea(contours[path]) < 50000) : pathcontours.append(np.zeros(keepedge.shape, np.uint8)) cv2.drawContours(pathcontours[len(pathcontours)-1],contours,path,(255,255,255),-1) cv2.imshow('thinpath',pathcontours[0]) cv2.waitKey(0) elif (cv2.contourArea(contours[path]) > 10000 and cv2.contourArea(contours[path]) < 25000) : # compute the center of the contour M = cv2.moments(contours[path]) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) markercontours.append(np.zeros(keepedge.shape, np.uint8)) cv2.drawContours(markercontours[len(markercontours)-1],contours,path,(255,255,255),-1) # cv2.circle(markercontours[len(markercontours)-1], (cX, cY), 7, (0, 0, 255), -1) print(len(markercontours)) cv2.waitKey(0) centermarkers.append([cX, cY]) Mcb = cv2.moments(contours1[0]) cXcb = int(Mcb["m10"] / Mcb["m00"]) cYcb = int(Mcb["m01"] / Mcb["m00"]) finishcontours.append(np.zeros(keepedge.shape, np.uint8)) cv2.drawContours(finishcontours[0],contours1,-1,(255,255,255),-1) # cv2.circle(finishcontours[0], (cXcb, cYcb), 7, (0, 0, 255), -1) centerfinish.append([cXcb,cYcb]) cv2.imshow('finishpls',finishcontours[0]) cv2.imshow('marker',markercontours[0]) cv2.waitKey(0) for path in range(len(pathcontours)): # gray = cv2.cvtColor(pathcontours[path], cv2.COLOR_BGR2GRAY) thined = cv2.ximgproc.thinning(pathcontours[path]) thinedpath.append(thined) endpoints = findendp(thined) cv2.imshow('circle',thinedpath[0]) cv2.waitKey(0) # gradientpath = cv2.bitwise_and(,) ################################## ต้องมาทำเป็นสำหรับหลาย path [0] เป็น [i] spreadline(endpoints,thinedpath[path],newimg) # endp ,รูปที่ thined, รูปดั้งเดิมสีเทา fullskel = cv2.bitwise_and(pathcontours[0],thinedpath[0]) # minus = cv2.addWeighted(fullskel,-1,thinedpath[0],1,0) endpoints2= findendp(fullskel) # หา จุดปลายใหม่ของ เส้นที่ ตเิมความยาวั้ง คอนทัวทั้งหมดแล้ว spreadline(endpoints2,fullskel,denoiseimg) contours2, hierarchy2 = cv2.findContours(fullskel, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # print(len(contours2)) epsilon = 0.05*cv2.arcLength(contours2[0],True) approx = cv2.approxPolyDP(contours2[0],epsilon,True) approximg = np.zeros(keepedge.shape, np.uint8) cv2.drawContours(approximg,approx,-1,(255,255,255),3) for ap in range(len(approx)): if list(approx[ap][0]) not in cornerpoints_skel: cornerpoints_skel.append(list(approx[ap][0])) for n in range(len(endpoints2)): end_skel.append(list(endpoints2[n])) # ปรับ พิกัดของ endpoints for e in end_skel: e.reverse() for n in range(len(end_skel)): if list(end_skel[n]) not in cornerpoints_skel: cornerpoints_skel.append(list(end_skel[n])) print("corner=",cornerpoints_skel) cv2.imshow("approximg",approximg) pcolor = 10 for p in range(len(cornerpoints_skel)): cv2.circle(clone, (cornerpoints_skel[p][0],cornerpoints_skel[p][1]), 7, (255-(3*pcolor),255-(2*pcolor),255-(pcolor)), -1) pcolor+=20 cv2.circle(clone, (422,100), 7, (0,255,0), -1) ##################### sort points in line ############################################## startpoint = centermarkers[0] print("start",startpoint) sortpoint.append(startpoint) # print(contours2[0][0]) count = 0 for p in range(len(contours2[0])): for q in range(len(cornerpoints_skel)): if count == 0: if list(contours2[0][p][0]) == sortpoint[0] : count = 1 if count == 1: if list(contours2[0][p][0]) == cornerpoints_skel[q] : # print(list(contours2[0][p][0]),cornerpoints_sskel[q]) if cornerpoints_skel[q] not in sortpoint: sortpoint.append(cornerpoints_skel[q]) print(cornerpoints_skel[q]) if len(sortpoint) == len(cornerpoints_skel): break for p in range(len(contours2[0])): for q in range(len(cornerpoints_skel)): if list(contours2[0][p][0]) == cornerpoints_skel[q] : if cornerpoints_skel[q] not in sortpoint: sortpoint.append(cornerpoints_skel[q]) print(cornerpoints_skel[q]) if len(sortpoint) == len(cornerpoints_skel): break print("sort=",sortpoint) qcolor = 10 clone2 = frame.copy()[35:-35, 35:-35] for p in range(len(sortpoint)): cv2.circle(clone2, (sortpoint[p][0],sortpoint[p][1]), 7, (255-(3*qcolor),255-(2*qcolor),255-(qcolor)), -1) qcolor+=20 for poi in range(len(sortpoint)-1): cv2.line(clone2, (sortpoint[poi][0],sortpoint[poi][1]), (sortpoint[poi+1][0],sortpoint[poi+1][1]), (255,255,255), 1) cv2.circle(clone2, (sortpoint[3][0],sortpoint[3][1]), 7, (0,255,0), -1) ########### sortpoint เป็น list ของ เส้นทางที่เรียงจุดกันแล้ว ########################## หามุม ############################## for p in range(len(sortpoint)-1): ang = math.degrees(math.atan2(sortpoint[p+1][1]-sortpoint[p][1],sortpoint[p+1][0]-sortpoint[p][0])) if ang < 0 : ang += 360 # ang+=90 print('p',sortpoint[p]) print('p+1',sortpoint[p+1]) print('now-ang= ',ang) anglespath.append(ang) ######################### เปลี่ยน coordinate ################### for p in range(len(sortpoint)): world_position.append(convert_coordinate(sortpoint[p])) print("world_position",world_position) for p in range(len(world_position)-1): normy = math.sqrt(math.pow((world_position[p+1][1]-world_position[p][1]),2)+math.pow((world_position[p+1][0]-world_position[p][0]),2)) rf_list.append(normy) print(rf_list) print(newimg.shape) ################ plot 3d ###################### plotmypath(fullskel,denoiseimg,0) cv2.imshow('grey',newimg) cv2.imshow('denosie',denoiseimg) cv2.imshow('point',clone) cv2.imshow('point2',clone2) fig = plt.figure() ax = plt.axes(projection="3d") x, y = temp.T # ax.plot3D(X, Y, Z, 'gray') ax.scatter3D(x,y, Z, c=Z, cmap='hsv') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') # x, y = temp.T # plt.scatter(x,y) plt.show() cv2.waitKey(0) # return adjustimg_chessboard ######################################## main ######################################################## # img = cv2.imread('fieldimages/myfield.png', cv2.IMREAD_COLOR) img = cv2.imread('fieldimages/myfieldgogo.png', cv2.IMREAD_COLOR) cv2.namedWindow('tuner') def nothing(x): pass # create min cv2.createTrackbar('min','tuner',10,200,nothing) # create trackbars for max cv2.createTrackbar('max','tuner',10,200,nothing) # create tratrackbars for erosion contours # cv2.createTrackbar('erodeCon','tuner',1,10,nothing) # while(1): # tune1 = cv2.getTrackbarPos('min','tuner') # tune2 = cv2.getTrackbarPos('max','tuner') # x = img.copy() # func = PathFinder(x,tune1,tune2) # cv2.imshow('tuner',func) # cv2.imwrite('fieldimages/adjustfield.png', func) # cv2.waitKey(10) x = img.copy() # func = PathFinder(x,tune1,tune2)
[ "56544166+KarnMatas@users.noreply.github.com" ]
56544166+KarnMatas@users.noreply.github.com
430efca059ba8e99ce07e28c0118ee8db7567ddd
08f4bc2751ec9d9a312e8a11ddf79c86df94a4fa
/AV_control_host/build/catkin_generated/installspace/_setup_util.py
aa91c1058d2eacf79b43d0e77e1e68893df12082
[]
no_license
physicsdolphin/Agile_Vehicle
4b2750d4dcad0a1dcba7db19be8fefaf5ff91459
c409f0e2e30769f19cf47f7163db6b1b8e073d46
refs/heads/main
2023-08-26T12:32:56.441728
2021-10-25T02:34:01
2021-10-25T02:34:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,355
py
#!/home/wbc/anaconda3/bin/python3 # -*- coding: utf-8 -*- # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """This file generates shell code for the setup.SHELL scripts to set environment variables.""" from __future__ import print_function import argparse import copy import errno import os import platform import sys CATKIN_MARKER_FILE = '.catkin' system = platform.system() IS_DARWIN = (system == 'Darwin') IS_WINDOWS = (system == 'Windows') PATH_TO_ADD_SUFFIX = ['bin'] if IS_WINDOWS: # while catkin recommends putting dll's into bin, 3rd party packages often put dll's into lib # since Windows finds dll's via the PATH variable, prepend it with path to lib PATH_TO_ADD_SUFFIX.extend([['lib', os.path.join('lib', 'x86_64-linux-gnu')]]) # subfolder of workspace prepended to CMAKE_PREFIX_PATH ENV_VAR_SUBFOLDERS = { 'CMAKE_PREFIX_PATH': '', 'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')], 'PATH': PATH_TO_ADD_SUFFIX, 'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')], 'PYTHONPATH': 'lib/python3/dist-packages', } def rollback_env_variables(environ, env_var_subfolders): """ Generate shell code to reset environment variables. by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH. This does not cover modifications performed by environment hooks. """ lines = [] unmodified_environ = copy.copy(environ) for key in sorted(env_var_subfolders.keys()): subfolders = env_var_subfolders[key] if not isinstance(subfolders, list): subfolders = [subfolders] value = _rollback_env_variable(unmodified_environ, key, subfolders) if value is not None: environ[key] = value lines.append(assignment(key, value)) if lines: lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH')) return lines def _rollback_env_variable(environ, name, subfolders): """ For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolders: list of str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. """ value = environ[name] if name in environ else '' env_paths = [path for path in value.split(os.pathsep) if path] value_modified = False for subfolder in subfolders: if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) value_modified = True new_value = os.pathsep.join(env_paths) return new_value if value_modified else None def _get_workspaces(environ, include_fuerte=False, include_non_existing=False): """ Based on CMAKE_PREFIX_PATH return all catkin workspaces. :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` """ # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' value = environ[env_name] if env_name in environ else '' paths = [path for path in value.split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))] return workspaces def prepend_env_variables(environ, env_var_subfolders, workspaces): """Generate shell code to prepend environment variables for the all workspaces.""" lines = [] lines.append(comment('prepend folders of workspaces to environment variables')) paths = [path for path in workspaces.split(os.pathsep) if path] prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '') lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix)) for key in sorted(key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH'): subfolder = env_var_subfolders[key] prefix = _prefix_env_variable(environ, key, paths, subfolder) lines.append(prepend(environ, key, prefix)) return lines def _prefix_env_variable(environ, name, paths, subfolders): """ Return the prefix to prepend to the environment variable NAME. Adding any path in NEW_PATHS_STR without creating duplicate or empty items. """ value = environ[name] if name in environ else '' environ_paths = [path for path in value.split(os.pathsep) if path] checked_paths = [] for path in paths: if not isinstance(subfolders, list): subfolders = [subfolders] for subfolder in subfolders: path_tmp = path if subfolder: path_tmp = os.path.join(path_tmp, subfolder) # skip nonexistent paths if not os.path.exists(path_tmp): continue # exclude any path already in env and any path we already added if path_tmp not in environ_paths and path_tmp not in checked_paths: checked_paths.append(path_tmp) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def assignment(key, value): if not IS_WINDOWS: return 'export %s="%s"' % (key, value) else: return 'set %s=%s' % (key, value) def comment(msg): if not IS_WINDOWS: return '# %s' % msg else: return 'REM %s' % msg def prepend(environ, key, prefix): if key not in environ or not environ[key]: return assignment(key, prefix) if not IS_WINDOWS: return 'export %s="%s$%s"' % (key, prefix, key) else: return 'set %s=%s%%%s%%' % (key, prefix, key) def find_env_hooks(environ, cmake_prefix_path): """Generate shell code with found environment hooks for the all workspaces.""" lines = [] lines.append(comment('found environment hooks in workspaces')) generic_env_hooks = [] generic_env_hooks_workspace = [] specific_env_hooks = [] specific_env_hooks_workspace = [] generic_env_hooks_by_filename = {} specific_env_hooks_by_filename = {} generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh' specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None # remove non-workspace paths workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))] for workspace in reversed(workspaces): env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d') if os.path.isdir(env_hook_dir): for filename in sorted(os.listdir(env_hook_dir)): if filename.endswith('.%s' % generic_env_hook_ext): # remove previous env hook with same name if present if filename in generic_env_hooks_by_filename: i = generic_env_hooks.index(generic_env_hooks_by_filename[filename]) generic_env_hooks.pop(i) generic_env_hooks_workspace.pop(i) # append env hook generic_env_hooks.append(os.path.join(env_hook_dir, filename)) generic_env_hooks_workspace.append(workspace) generic_env_hooks_by_filename[filename] = generic_env_hooks[-1] elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext): # remove previous env hook with same name if present if filename in specific_env_hooks_by_filename: i = specific_env_hooks.index(specific_env_hooks_by_filename[filename]) specific_env_hooks.pop(i) specific_env_hooks_workspace.pop(i) # append env hook specific_env_hooks.append(os.path.join(env_hook_dir, filename)) specific_env_hooks_workspace.append(workspace) specific_env_hooks_by_filename[filename] = specific_env_hooks[-1] env_hooks = generic_env_hooks + specific_env_hooks env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace count = len(env_hooks) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count)) for i in range(count): lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i])) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i])) return lines def _parse_arguments(args=None): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context') parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment') return parser.parse_known_args(args=args)[0] if __name__ == '__main__': try: try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) sys.exit(1) if not args.local: # environment at generation time CMAKE_PREFIX_PATH = r'/home/wbc/SRT/AV_control/devel;/opt/ros/noetic'.split(';') else: # don't consider any other prefix path than this one CMAKE_PREFIX_PATH = [] # prepend current workspace if not already part of CPP base_path = os.path.dirname(__file__) # CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent # base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison if os.path.sep != '/': base_path = base_path.replace(os.path.sep, '/') if base_path not in CMAKE_PREFIX_PATH: CMAKE_PREFIX_PATH.insert(0, base_path) CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH) environ = dict(os.environ) lines = [] if not args.extend: lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS) lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH) lines += find_env_hooks(environ, CMAKE_PREFIX_PATH) print('\n'.join(lines)) # need to explicitly flush the output sys.stdout.flush() except IOError as e: # and catch potential "broken pipe" if stdout is not writable # which can happen when piping the output to a file but the disk is full if e.errno == errno.EPIPE: print(e, file=sys.stderr) sys.exit(2) raise sys.exit(0)
[ "glaciercoder@github.com" ]
glaciercoder@github.com
cff59f646f6b18df9aba102a124e6b05941d94bf
cf88dbdda8803f77036fa51d1cc9968006754166
/tests/test_code_style.py
068bbc74436fd0e267247968d9cddb5a4c84cc8f
[ "MIT" ]
permissive
saymedia/python-coal
b11cab7e0de92bd74ca35b25c0d11dff90fb5ae2
5aefaaaf56727a61cee7e37fae1e7f25ef97c952
refs/heads/master
2021-01-20T06:25:46.990699
2013-11-19T00:49:21
2013-11-19T00:49:21
14,349,835
1
0
null
null
null
null
UTF-8
Python
false
false
464
py
import unittest import pep8 import os.path tests_dir = os.path.dirname(__file__) modules_dir = os.path.abspath(os.path.join(tests_dir, "..", "coal")) class TestCodeStyle(unittest.TestCase): def test_pep8_conformance(self): pep8style = pep8.StyleGuide() result = pep8style.check_files([tests_dir, modules_dir]) self.assertEqual( result.total_errors, 0, "Found pep8 conformance issues", )
[ "matkins@saymedia.com" ]
matkins@saymedia.com
65cdeb847c52630545c176d506c77e08da15e5a7
3469a778edcc959050f54a0c68c27db6efa643e2
/D2/re_ip.py
e78b3e212c52e1454ed1493481cccf791001b6ef
[]
no_license
ciscowh/Python-test
d8e3ddfac1725259f1c39c0ddbc9cca34cc719a1
0260aa2aac6c0a81e697c53b82930339df2ccf8c
refs/heads/master
2022-12-07T00:37:41.153998
2020-08-02T16:17:32
2020-08-02T16:17:32
281,024,128
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
import re str1='Port-channel1.189 192.168.189.254 YES CONFIG up' re_result = re.match('(\w+.\w+\d.\d\d\d)\s*(\d\d\d.\d\d\d.\d\d\d.\d\d\d)\s?\w+\s?\w+\s?(\w+)',str1).groups() port = re_result[0] IP = re_result[1] status = re_result[2] str_po = '接口' str_ip = 'IP地址' str_status = '状态' line1 = f'{str_po:<6}:{port:<10}' line2 = f'{str_ip:<6}:{IP:<10}' line3 = f'{str_status:<6}:{status:<10}' print('-'*80) print(line1) print(line2) print(line3) # line1='{:8}:{}' .format('接口',str_port) # line2='{:8}:{}' .format('IP地址',str_ip) # line3='{:8}:{}' .format('状态',str_status) # # # print('-'*100) # print(line1) # print(line2) # print(line3)
[ "95636521@qq.com" ]
95636521@qq.com
abe62a0645c07773cd8b8c0817344736bb804b0a
624d5a364fb1a6f7c0b56e02429ac1280b116c02
/django_crud/urls.py
91724291b37e72b08fb1d45cd35d0a11f223a59e
[]
no_license
yeojinhwang/django_crud
c167dd10ccd0947b030967b6f9540807e82f83ec
7b9fce1503c169f3e9b21b40c550459acdc2ce83
refs/heads/master
2020-04-23T14:45:37.223417
2019-02-19T07:21:14
2019-02-19T07:21:14
171,242,940
0
0
null
null
null
null
UTF-8
Python
false
false
848
py
"""django_crud URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('boards/', include('boards.urls')), path('jobs/', include('jobs.urls')), ]
[ "hwangyj0202@gmail.com" ]
hwangyj0202@gmail.com
dbe51e99e91db517aeb0e986569300a370b3791b
d599358cc35b883e0ba007f58067b2e9818cd365
/3sum_Closet.py
69a4b51d8cfe22a1df6d6ae3da7c25c80578183f
[]
no_license
San1357/Leetcode-july-challenge-2021
b4a992492a398480ba72719259963d27d30e2f36
0de1916dd84b82b0126a790c936655959fd26ad0
refs/heads/main
2023-06-28T14:12:04.455490
2021-07-31T15:48:31
2021-07-31T15:48:31
389,917,604
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
class Solution(object): def threeSumClosest(self, nums, target): result, min_diff = 0, float("inf") nums.sort() for i in reversed(range(2, len(nums))): if i+1 < len(nums) and nums[i] == nums[i+1]: continue left, right = 0, i-1 while left < right: total = nums[left]+nums[right]+nums[i] if total < target: left += 1 elif total > target: right -= 1 else: return target if abs(total-target) < min_diff: min_diff = abs(total-target) result = total return result
[ "noreply@github.com" ]
San1357.noreply@github.com
3a4a81507b810e8c3de2c5d62a86f33c9cc9dba4
371c3eb56a0e0044f53209c457c7d1982511ccec
/server/venv/Scripts/pilprint.py
72ff8f5b6bd60a9b2789dee8906d1fa2e7ff1e78
[]
no_license
oceanixinc/lingohop
1e4e9e2602691e8720d8e45ed0d682a0d9e65666
cb0595675fd31c0589757e5e0551e0ca6e1ac91b
refs/heads/master
2021-03-24T11:50:40.020683
2017-05-03T21:09:05
2017-05-03T21:09:05
66,260,003
0
0
null
null
null
null
UTF-8
Python
false
false
2,628
py
#!d:\work\lingohop\server\venv\scripts\python.exe # # The Python Imaging Library. # $Id$ # # print image files to postscript printer # # History: # 0.1 1996-04-20 fl Created # 0.2 1996-10-04 fl Use draft mode when converting. # 0.3 2003-05-06 fl Fixed a typo or two. # from __future__ import print_function import getopt import os import sys import subprocess VERSION = "pilprint 0.3/2003-05-05" from PIL import Image from PIL import PSDraw letter = (1.0*72, 1.0*72, 7.5*72, 10.0*72) def description(filepath, image): title = os.path.splitext(os.path.split(filepath)[1])[0] format = " (%dx%d " if image.format: format = " (" + image.format + " %dx%d " return title + format % image.size + image.mode + ")" if len(sys.argv) == 1: print("PIL Print 0.3/2003-05-05 -- print image files") print("Usage: pilprint files...") print("Options:") print(" -c colour printer (default is monochrome)") print(" -d debug (show available drivers)") print(" -p print via lpr (default is stdout)") print(" -P <printer> same as -p but use given printer") sys.exit(1) try: opt, argv = getopt.getopt(sys.argv[1:], "cdpP:") except getopt.error as v: print(v) sys.exit(1) printerArgs = [] # print to stdout monochrome = 1 # reduce file size for most common case for o, a in opt: if o == "-d": # debug: show available drivers Image.init() print(Image.ID) sys.exit(1) elif o == "-c": # colour printer monochrome = 0 elif o == "-p": # default printer channel printerArgs = ["lpr"] elif o == "-P": # printer channel printerArgs = ["lpr", "-P%s" % a] for filepath in argv: try: im = Image.open(filepath) title = description(filepath, im) if monochrome and im.mode not in ["1", "L"]: im.draft("L", im.size) im = im.convert("L") if printerArgs: p = subprocess.Popen(printerArgs, stdin=subprocess.PIPE) fp = p.stdin else: fp = sys.stdout ps = PSDraw.PSDraw(fp) ps.begin_document() ps.setfont("Helvetica-Narrow-Bold", 18) ps.text((letter[0], letter[3]+24), title) ps.setfont("Helvetica-Narrow-Bold", 8) ps.text((letter[0], letter[1]-30), VERSION) ps.image(letter, im) ps.end_document() if printerArgs: fp.close() except: print("cannot print image", end=' ') print("(%s:%s)" % (sys.exc_info()[0], sys.exc_info()[1]))
[ "mrinalmech@gmail.com" ]
mrinalmech@gmail.com
cea81827eb196d2bd0479583275edcbe40891b5b
93cc7d1297c202f561cb0faf1dbf852b6b4611fd
/sprites/metalgear.py
dab6de90ff64a9266044416b4f646df9a06d8a6e
[ "CC-BY-4.0" ]
permissive
carloartieri/8bit_raspi_pixel_art_display
60ebbc1b4d5fc0f6eecef3bd0c579bbf7e8a9473
f8afc8a03460d07d1151b4cbd7bb62e35283fe35
refs/heads/master
2020-03-23T02:40:55.605446
2018-09-29T16:10:50
2018-09-29T16:10:50
140,986,084
11
0
null
2018-09-29T16:10:51
2018-07-15T00:03:57
Python
UTF-8
Python
false
false
7,344
py
import sys sys.path.append("../") from settings import (NES_PALETTE_HEX, animation_settings) from core import sprite SolidSnakeWalkRightGun01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "g":NES_PALETTE_HEX[1, 9], "s":NES_PALETTE_HEX[3, 7], }, matrix = [ "x8b3x5", "x7b5x4", "x7b2g2b1x4", "x5b4s2b1x4", "x3b1g1b1g1b2g1s1b2x3", "x2b1g3s1b1s1b5x2", "x2b2g2s1g1s1b2s1b1g1b1x1", "x1b1s1g1b1s1b1g1s1b2s1b1g1b1x1", "x1b1s2b1s1g3b1g1s1g2b1x1", "x1b1g1s1b2g4b2g1b2x1", "x2b1s1g1b4g1b5x1", "b3g1s1b11", "b3g1s1b8s1b1x1", "x4b9x3", "x4b2g1s1g1b1g1b2x3", "x4b1g4b1g2b1x3", "x5b1g4b1g1b1x3", "x6b2g2b1g1b1x3", "x6b1g3b1g1b1x3", "x6b2g2b2x4", "x6b1g3b2x4", "x6g1b1g1b3x4", "x5b1g1b5x4", "x4b4x1g1b2x4", "x5b3x1b4x3", "x6b2x2b6", "x7b6x3", "x9b3x4", ] ) SolidSnakeWalkRightGun02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "g":NES_PALETTE_HEX[1, 9], "s":NES_PALETTE_HEX[3, 7], }, matrix = [ "x8b3x5", "x7b5x4", "x7b2g2b1x4", "x6b3s2b1x4", "x4b2g1b2g1s1b2x3", "x3b1g1b2s2b3g1b1x2", "x2b1g2s1g1s1b1s1b2g1b1x2", "x2b1g1s1g1b1s1b1s1b2s1b1x2", "x1b3g1b1s1g2b1g1b3x2", "x1b1s1g1b2s1g3b4x2", "x1b1g1s2b4g1b6", "b3g2s2b5g1s1b1x1", "b5s2b7x2", "x3b4g1b2g1b2x3", "x3b2g1s1g2b2s1g1b1x2", "x3b1g2s1g1b1g3s1g1b1x1", "x4b1g4b3g3b1", "x4b2g2b1x2b3g1b1", "x3b1g4b1x3b1g2b1", "x2b1g4b1x4b1g2b1", "x1b1x1b1g1b2x5b1g1b2", "b1x2g1b1x7b2g1b1", "b1x1b2x6b3x1g1b1", "b1g1b1x4b6x1b2", "x1b1x2b10x1b1", "x3b12x1", "x3b11x2", "x4b7x5", ] ) SolidSnakeWalkRight01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "g":NES_PALETTE_HEX[1, 9], "s":NES_PALETTE_HEX[3, 7], }, matrix = [ "x8b3x5", "x7b5x4", "x7b2g2b1x4", "x3b1g1b4s2b1x4", "x1b2g3b3g1s1b2x3", "b1g1b1g1s1g1s1b1s1b2s1g1b1x2", "g1s2b1g2s1g1b1s1b1s1g1b1x2", "s2b2g1b1s1g1b1s1b1g2b2x1", "b1s1g1b4g2b1g2b1s2b1", "x1b1s2b2g5b1s1g2b1", "x2g1s1b4g2b2g1b2x1", "x3b4s1b1s1b3x3", "x3b1g2b5x5", "x3b1g1s1g3b2x5", "x4g2s1g1b1g2b1x4", "x4b1g4b1g2b1x3", "x5b1g4b1g1b1x3", "x6b2g2b1g1b1x3", "x6b1g3b1g1b1x3", "x6b2g2b2x4", "x6b1g3b2x4", "x6g1b1g1b3x4", "x5b1g1b5x4", "x4b4x1g1b2x4", "x5b3x1b4x3", "x6b2x2b6", "x7b6x3", "x9b3x4", ] ) SolidSnakeWalkRight02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "g":NES_PALETTE_HEX[1, 9], "s":NES_PALETTE_HEX[3, 7], }, matrix = [ "x8b3x5", "x7b5x4", "x7b2g2b1x4", "x6b3s2b2x3", "x4b2g1b2g1s1b2x3", "x3b1g2s1b1s1b2g1b1x3", "x2b1g1s1g2s1b1s1b1g1b1x3", "x2b1g1b2g1s1g1b1g2b1x3", "x3b1g1s1b4g1b1x4", "x3b1s1g1b2s2b2x4", "x3b1s3g3b2x4", "x4b1g2b4g1b1x3", "x5b3g1b1g3b1x2", "x5b1g1s1g4s1g1b1x1", "x4b1g2s1g2b1g2s1b1x1", "x4b1g1s1g3b3g1b1x1", "x4b1g4b3g3b1", "x4b2g2b1x2b3g1b1", "x3b1g4b1x3b1g2b1", "x2b1g4b1x4b1g2b1", "x1b1x1b1g1b2x5b1g1b2", "b1x2g1b1x7b2g1b1", "b1x1b2x6b3x1g1b1", "b1g1b1x4b6x1b2", "x1b1x2b10x1b1", "x3b12x1", "x3b11x2", "x4b7x5", ] ) MetalGearBG01 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "l":NES_PALETTE_HEX[2, 0], "d":NES_PALETTE_HEX[1, 0], "g":NES_PALETTE_HEX[2, 10], "r":NES_PALETTE_HEX[0, 11], }, matrix = [ "b11l1b4" + "b16", "l9b2l5" + "l16", "d10b1d3b1d1" + "d16", "d9b2d2b2l1" + "d16", "d9b2l1b4" + "d16", "d9b2l1b2l1d1" + "d16", "d12b2l1d1" + "d16", "d9b1l1d1b2l1d1" + "d16", "d16" + "d16", "b2d5b1d8" + "d8b2d5b1", "b1d3b1d5b2d4" + "d2b2d4b1d3b1d3", "d2b1d4b1d1b2d1b3d1" + "d1b2d1b3d3b1d4b1", "b3d1b1d2b7d1b1" + "b6d1b4d1b1d2b1", "d2b7d1b1d1b1d1b2" + "b1d1b1d1b1d1b2d2b6", "b4d1b2d1b8" + "b12d1b2d1", "b32", "b32", "b1r6b2r6b1" + "b1r6b2r6b1", "b1r1b5r1b1r1b5r1" + "b1r1b5r1b1r1b5r1", "b1r1b5r1b1r1b5r1" + "b1r1b5r1b1r1b5r1", "b1r1b5r1b1r1b5r1" + "b1r1b5r1b1r1b5r1", "b1r1b5r1b1r1b5r1" + "b1r1b5r1b1r1b5r1", "b1r1b5r1b1r1b5r1" + "b1r1b5r1b1r1b5r1", "b2r6b2r6" + "b2r6b2r6", "b16" + "b16", "b1g7b1g7" + "b1g7b1g7", "b1g1b5l1b1g1b5l1" + "b1g1b5l1b1g1b5l1", "b1g1b1r4l1b1g1b1r4l1" + "b1g1b1r4l1b1g1b1r4l1", "b1g1b1r4l1b1g1b1r4l1" + "b1g1b1r4l1b1g1b1r4l1", "b1g1b1r4l1b1g1b1r4l1" + "b1g1b1r4l1b1g1b1r4l1", "b1g1b1r4l1b1g1b1r4l1" + "b1g1b1r4l1b1g1b1r4l1", "b1g1l6b1g1l6" + "b1g1l6b1g1l6", ] ) MetalGearBG02 = sprite( palette = { "b":NES_PALETTE_HEX[0, 13], "l":NES_PALETTE_HEX[3, 1], "d":NES_PALETTE_HEX[1, 1], "r":NES_PALETTE_HEX[1, 7], "g":NES_PALETTE_HEX[2, 7], "y":NES_PALETTE_HEX[0, 0], }, matrix = [ "b1r2b3r5b3r2" + "r1b3g1r5y1b5", "b1r1b1g1b2r5b5" + "b4g1r5y1b1y1b3", "b2g2b2r5b1g4" + "g3b1g1r5y1b1y2b2", "b1g3b2r5b5" + "b4g1r5y1b1y3b1", "b1g2b2r5b3r3" + "r2b3g1r5y1b1y2b1", "b1g2b2r1g1r1g1r1b6" + "b5g1r1g1r1g1r1y1b1y2b1", "b1g2b2r1b1r1b1r1b1g5" + "g4b1g1r1b1r1b1r1y1b1y2b1", "b1g2b2r5b6" + "b5g1r5y1b1y2b1", "b1g1b2r5b3r4" + "r3b3g1r5y1b1y1b1", "b1g1b2r5b7" + "b6g1r5y1b1y1b1", "b1g1b2r5b1g6" + "g5b1g1r5y1b1y1b1", "b1g1b2r5b7" + "b6g1r5y1b1y1b1", "b3r5b3r5" + "r4b3g1r5y1b2", "b3r1g1r1g1r1b8" + "b7g1r1g1r1g1r1y1b2", "b3r1b1r1b1r1b1g7" + "g6b1g1r1b1r1b1r1y1b2", "b3r5b8" + "b7g1r5y1b2", "b2r5b2r7" + "r6b2g1r5y1b1", "b2r5b2r7" + "r6b2g1r5y1b1", "b2r5b2r7" + "r6b2g1r5y1b1", "b16" + "b16", "b16" + "b16", "b2d13b1" + "b1d14b1", "b1l1b12d1b1" + "b1d1b12d1b1", "b1l1b12d1b1" + "b1d1b12d1b1", "b1l1b1d1b10d1b1" + "b1d1b12d1b1", "b1l1b1d2b9d1b1" + "b1d1b12d1b1", "b1d1l4d9b1" + "b1l1d13b1", "b1d6b9" + "b16", "b16" + "b16", "b1l14d1" + "b1l14d1", "b1l1b12l1d1" + "b1l1b12l1d1", "b1l1b1d11l1b1" + "b1l1b1d11l1b1", ] ) metalgear_animation = animation_settings( sprite_list=[[SolidSnakeWalkRightGun01, SolidSnakeWalkRightGun02,], [SolidSnakeWalkRight01, SolidSnakeWalkRight02,], ], bg_sprites=[MetalGearBG01, MetalGearBG02,], xoffs=[[0, 0], [0, 0], ], yoffs=[[-1, 0], [-1, 0], ], frame_time=0.040, spbg_ratio=9, center=True, bg_scroll_speed=(1, 0), cycles_per_char=5, reversible=False, )
[ "cartieri@guardanthealth.com" ]
cartieri@guardanthealth.com
3ddc451d381de33b7a2ad5da04358f63c4d38f1e
612c128a31cd2b34534142fcb45c4bd83d17ab2c
/src/core_game/coregame_manager.py
696323e8c8f667e78215c4aa0179a1d6f6938970
[ "MIT" ]
permissive
sskkrrttt/valorant-skin-cli
7c14559e69c78eeeaa5af2a88af98cba43c62a39
65c78990bada8ab963757fea2d0f4d55fa2569b3
refs/heads/master
2023-06-15T06:51:39.158404
2021-07-13T23:10:00
2021-07-13T23:10:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
''' async manager calls to coregame to update session session keeps track of inmatch/map/other data about live match ''' import asyncio from .session import Session # important imports or something from ..flair_management.skin_manager.skin_manager import Skin_Manager class Coregame_Manager: def __init__(self,client): self.client = client self.skin_manager = Skin_Manager(self.client) self.session = Session(self.client,self.skin_manager) async def main_loop(self): await self.session.update_presence()
[ "colinjoe9@gmail.com" ]
colinjoe9@gmail.com
d410bec00a2a34da61f0af3a62839e82e95192d3
0abe3c336e8f8a6f807b0c43d4c0f2b1e98640c2
/pelix/remote/discovery/mdns.py
b49121ea060f46d1692945a999006b35aac3e395
[ "Apache-2.0" ]
permissive
tcalmant/ipopo
0c9109b4e3e8fbc373c49d897f87a5e351428c76
1d0add361ca219da8fdf72bb9ba8cb0ade01ad2f
refs/heads/v1
2023-08-29T07:51:28.650303
2022-12-08T15:27:20
2022-12-08T16:01:25
4,015,794
67
34
Apache-2.0
2022-12-08T16:01:26
2012-04-13T12:53:13
Python
UTF-8
Python
false
false
14,493
py
#!/usr/bin/env python # -- Content-Encoding: UTF-8 -- """ Pelix remote services: Zeroconf (mDNS) discovery and event notification This module depends on the zeroconf package :author: Thomas Calmant :copyright: Copyright 2020, Thomas Calmant :license: Apache License 2.0 :version: 1.0.1 .. Copyright 2020 Thomas Calmant Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Standard library import json import logging import socket # Zeroconf import zeroconf # iPOPO decorators from pelix.ipopo.decorators import ( ComponentFactory, Requires, Provides, Invalidate, Validate, Property, ) import pelix.constants # Remote services import pelix.remote import pelix.remote.beans as beans from pelix.utilities import is_bytes, is_string, to_str # ------------------------------------------------------------------------------ # Module version __version_info__ = (1, 0, 1) __version__ = ".".join(str(x) for x in __version_info__) # Documentation strings format __docformat__ = "restructuredtext en" # ------------------------------------------------------------------------------ _logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------ @ComponentFactory(pelix.remote.FACTORY_DISCOVERY_ZEROCONF) @Provides(pelix.remote.SERVICE_EXPORT_ENDPOINT_LISTENER) @Property("_rs_type", pelix.remote.PROP_ZEROCONF_TYPE, "_pelix-rs._tcp.local.") @Property("_ttl", "zeroconf.ttl", 60) @Requires("_access", pelix.remote.SERVICE_DISPATCHER_SERVLET) @Requires("_registry", pelix.remote.SERVICE_REGISTRY) class ZeroconfDiscovery(object): """ Remote services discovery and notification using the module zeroconf """ # Service type for the Pelix dispatcher servlet DNS_DISPATCHER_TYPE = "_rs-dispatcher._tcp.local." def __init__(self): """ Sets up the component """ # Imported endpoints registry self._registry = None # Dispatcher access self._access = None # Remote Service type self._rs_type = None # Zeroconf TTL self._ttl = 60 # Framework UID self._fw_uid = None # Address of this framework self._address = None # Zeroconf self._zeroconf = None # type: zeroconf.Zeroconf self._browsers = [] # Endpoint UID -> ServiceInfo self._export_infos = {} # mDNS name -> Endpoint UID self._imported_endpoints = {} @Invalidate def invalidate(self, _): """ Component invalidated """ # Stop listeners for browser in self._browsers: browser.cancel() # Close Zeroconf self._zeroconf.unregister_all_services() self._zeroconf.close() # Clean up self._export_infos.clear() self._zeroconf = None self._fw_uid = None _logger.debug("Zeroconf discovery invalidated") @Validate def validate(self, context): """ Component validated """ # Get the framework UID self._fw_uid = context.get_property(pelix.constants.FRAMEWORK_UID) # Get the host address self._address = socket.inet_aton( socket.gethostbyname(socket.gethostname()) ) # Prepare Zeroconf self._zeroconf = zeroconf.Zeroconf() # Register the dispatcher servlet as a service self.__register_servlet() # Listen to our types self._browsers.append( zeroconf.ServiceBrowser( self._zeroconf, ZeroconfDiscovery.DNS_DISPATCHER_TYPE, self ) ) self._browsers.append( zeroconf.ServiceBrowser(self._zeroconf, self._rs_type, self) ) _logger.debug("Zeroconf discovery validated") @staticmethod def _serialize_properties(props): """ Converts properties values into strings """ new_props = {} for key, value in props.items(): if is_string(value): new_props[key] = value else: try: new_props[key] = json.dumps(value) except ValueError: new_props[key] = "pelix-type:{0}:{1}".format( type(value).__name__, repr(value) ) # FIXME: to simplify the usage with ECF, send single strings instead of # arrays for key in ( pelix.constants.OBJECTCLASS, pelix.remote.PROP_IMPORTED_CONFIGS, ): try: new_props[key] = props[key][0] except KeyError: pass return new_props @staticmethod def _deserialize_properties(props): """ Converts properties values into their type """ new_props = {} for key, value in props.items(): key = to_str(key) if is_bytes(value): # Convert value to string if necessary value = to_str(value) try: try: new_props[key] = json.loads(value) except (TypeError, ValueError): if is_string(value) and value.startswith("pelix-type:"): # Pseudo-serialized value_type, value = value.split(":", 3)[2:] if "." in value_type and value_type not in value: # Not a builtin type... _logger.warning( "Won't work: %s (%s)", value, value_type ) new_props[key] = eval(value) else: # String new_props[key] = value except Exception as ex: _logger.error("Can't deserialize %s: %s", value, ex) return new_props def __register_servlet(self): """ Registers the Pelix Remote Services dispatcher servlet as a service via mDNS """ # Get the dispatcher servlet access access = self._access.get_access() # Convert properties to be stored as strings properties = { "pelix.version": pelix.__version__, pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID: self._fw_uid, "pelix.access.port": access[0], "pelix.access.path": access[1], } properties = self._serialize_properties(properties) # Prepare the service type svc_name = "{0}.{1}".format( self._fw_uid, ZeroconfDiscovery.DNS_DISPATCHER_TYPE ) # Prepare the mDNS entry info = zeroconf.ServiceInfo( ZeroconfDiscovery.DNS_DISPATCHER_TYPE, # Type svc_name, # Name self._address, # Access address access[0], # Access port properties=properties, ) # Register the service self._zeroconf.register_service(info, self._ttl) def endpoints_added(self, endpoints): """ Multiple endpoints have been added :param endpoints: A list of ExportEndpoint beans """ # Get the dispatcher servlet port access_port = self._access.get_access()[0] # Handle each one separately for endpoint in endpoints: self._endpoint_added(endpoint, access_port) def _endpoint_added(self, exp_endpoint, access_port): """ A new service is exported :param exp_endpoint: An ExportEndpoint bean :param access_port: The dispatcher access port """ # Convert the export endpoint into an EndpointDescription bean endpoint = beans.EndpointDescription.from_export(exp_endpoint) # Get its properties properties = endpoint.get_properties() # Convert properties to be stored as strings properties = self._serialize_properties(properties) # Prepare the service name svc_name = "{0}.{1}".format( endpoint.get_id().replace("-", ""), self._rs_type ) # Prepare the mDNS entry info = zeroconf.ServiceInfo( self._rs_type, # Type svc_name, # Name self._address, # Access address access_port, # Access port properties=properties, ) self._export_infos[exp_endpoint.uid] = info # Register the service self._zeroconf.register_service(info, self._ttl) @staticmethod def endpoint_updated(endpoint, old_properties): # pylint: disable=W0613 """ An end point is updated :param endpoint: The updated endpoint :param old_properties: Previous properties of the endpoint """ # Not available... # TODO: register a temporary service while the update is performed ? return def endpoint_removed(self, endpoint): """ An end point is removed :param endpoint: Endpoint being removed """ try: # Get the associated service info info = self._export_infos.pop(endpoint.uid) except KeyError: # Unknown service _logger.debug("Unknown removed endpoint: %s", endpoint) else: # Unregister the service self._zeroconf.unregister_service(info) def _get_service_info(self, svc_type, name, max_retries=10): # type: (str, str, int) -> zeroconf.ServiceInfo """ Tries to get information about the given mDNS service :param svc_type: Service type :param name: Service name :param max_retries: Number of retries before timeout :return: A ServiceInfo bean """ info = None retries = 0 while ( self._zeroconf is not None and info is None and retries < max_retries ): # Try to get information about the service... info = self._zeroconf.get_service_info(svc_type, name) retries += 1 return info def add_service(self, zeroconf_, svc_type, name): """ Called by Zeroconf when a record is updated :param zeroconf_: The Zeroconf instance than notifies of the modification :param svc_type: Service type :param name: Service name """ # Get information about the service info = self._get_service_info(svc_type, name) if info is None: _logger.warning( "Timeout reading service information: %s - %s", svc_type, name ) return # Read properties properties = self._deserialize_properties(info.properties) try: sender_uid = properties[pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID] if sender_uid == self._fw_uid: # We sent this message return except KeyError: # Not a Pelix message _logger.warning("Not a Pelix record: %s", properties) return if svc_type == ZeroconfDiscovery.DNS_DISPATCHER_TYPE: # Dispatcher servlet found, get source info address = to_str(socket.inet_ntoa(info.address)) port = info.port self._access.send_discovered( address, port, properties["pelix.access.path"] ) elif svc_type == self._rs_type: # Remote service # Get the first available configuration configuration = properties[pelix.remote.PROP_IMPORTED_CONFIGS] if not is_string(configuration): configuration = configuration[0] # Ensure we have a list of specifications specs = properties[pelix.constants.OBJECTCLASS] if is_string(specs): specs = [specs] try: # Make an import bean endpoint = beans.ImportEndpoint( properties[pelix.remote.PROP_ENDPOINT_ID], properties[pelix.remote.PROP_ENDPOINT_FRAMEWORK_UUID], [configuration], None, specs, properties, ) except KeyError as ex: # Log a warning on incomplete endpoints _logger.warning( "Incomplete endpoint description, missing %s: %s", ex, properties, ) return else: # Register the endpoint if self._registry.add(endpoint): # Associate the mDNS name to the endpoint on success self._imported_endpoints[name] = endpoint.uid def remove_service(self, zeroconf_, svc_type, name): """ Called by Zeroconf when a record is removed :param zeroconf_: The Zeroconf instance than notifies of the modification :param svc_type: Service type :param name: Service name """ if svc_type == self._rs_type: # Get information about the service try: # Get the stored endpoint UID uid = self._imported_endpoints.pop(name) except KeyError: # Unknown service return else: # Remove it self._registry.remove(uid) elif svc_type == ZeroconfDiscovery.DNS_DISPATCHER_TYPE: # A dispatcher servlet is gone fw_uid = name.split(".", 1)[0] if fw_uid == self._fw_uid: # Local message: ignore return # Remote framework is lost self._registry.lost_framework(fw_uid)
[ "thomas.calmant@gmail.com" ]
thomas.calmant@gmail.com
80a16c5d0c1017c5a638a61803ede4759b34201e
bbbe070b22d97da33bb19abd22c79d4ea1f9e409
/django_app/Tipo_de_Ingrediente/admin.py
1c1a2ef128e2302f976521844f8b4eda05f153b2
[]
no_license
danielyoshizawa/projeto_db_subway
1928f7c999c8087858619a4a8382c55ae1538b80
ead6959297487db29c9dbdbcb1dde5ddd6f84eed
refs/heads/master
2021-01-12T14:17:57.828602
2016-11-28T18:01:52
2016-11-28T18:01:52
68,964,762
0
1
null
2016-11-22T20:06:12
2016-09-22T21:45:30
Ruby
UTF-8
Python
false
false
163
py
from django.contrib import admin from Tipo_de_Ingrediente.models import Tipo_de_Ingrediente # Register your models here. admin.site.register(Tipo_de_Ingrediente)
[ "yoshidanielcwb@gmail.com" ]
yoshidanielcwb@gmail.com
86f86654dcc045f2c536af73fa39685c25c5c29d
0184fa50190412dd2cf5eb1da0305b43259f9a72
/productos/migrations/0001_initial.py
4e8b6d962e4e003163afc495a568939bb5266772
[]
no_license
CARocha/mcampesino
20c88975e992aecdf7371e760d76d5a46883565f
79dae67c2c2cbad5167a624a3f89a8117b5cb8e4
refs/heads/master
2021-01-19T00:41:08.919529
2013-04-05T16:12:36
2013-04-05T16:12:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,691
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ProductosFrescos' db.create_table('productos_productosfrescos', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('nombre', self.gf('django.db.models.fields.CharField')(max_length=200)), ('unidad', self.gf('django.db.models.fields.CharField')(max_length=15, null=True, blank=True)), ('picture', self.gf('mcampesino.thumbs.ImageWithThumbsField')(max_length=100, null=True, blank=True)), )) db.send_create_signal('productos', ['ProductosFrescos']) # Adding model 'ProductosProcesados' db.create_table('productos_productosprocesados', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('nombre', self.gf('django.db.models.fields.CharField')(max_length=200)), ('unidad', self.gf('django.db.models.fields.CharField')(max_length=15, null=True, blank=True)), ('picture', self.gf('mcampesino.thumbs.ImageWithThumbsField')(max_length=100, null=True, blank=True)), )) db.send_create_signal('productos', ['ProductosProcesados']) def backwards(self, orm): # Deleting model 'ProductosFrescos' db.delete_table('productos_productosfrescos') # Deleting model 'ProductosProcesados' db.delete_table('productos_productosprocesados') models = { 'productos.productosfrescos': { 'Meta': {'object_name': 'ProductosFrescos'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'picture': ('mcampesino.thumbs.ImageWithThumbsField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'unidad': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}) }, 'productos.productosprocesados': { 'Meta': {'object_name': 'ProductosProcesados'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nombre': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'picture': ('mcampesino.thumbs.ImageWithThumbsField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'unidad': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['productos']
[ "crocha09.09@gmail.com" ]
crocha09.09@gmail.com
eb8e0958019cdf56a28622415948ecb82da8035c
074d417b3e468562bfb8ae6a1ec09a9e86bdc391
/.ipynb_checkpoints/app-checkpoint.py
a60d526c9317b5da096937d874c6d209cc9e148a
[]
no_license
hamzachataoui/NLP-for-arabic_dialect_Detection-TopicDetection-SentimentAnalysis
6e7d2176d6520d4716c666867a30005088af8d06
94d2e156fa563890c1aff9792f23b7ea77e4b7d7
refs/heads/main
2023-08-05T01:55:38.786053
2021-09-25T10:36:48
2021-09-25T10:36:48
308,471,554
6
2
null
null
null
null
UTF-8
Python
false
false
9,820
py
# -*- coding: utf-8 -*- import numpy as np from flask import Flask, request, jsonify, render_template import pickle import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer import nltk import re app = Flask(__name__) lr = pickle.load(open('lr.pkl', 'rb')) mulNb = pickle.load(open('MultinomialNB_topic.pkl', 'rb')) nb = pickle.load(open('nb.pkl', 'rb')) vectorizer = pickle.load(open('vectorizer.pkl', 'rb')) topicVect = pickle.load(open('tfidf_topic.pkl', 'rb')) dialectVect = pickle.load(open('tfidf.pkl', 'rb')) @app.route('/') def home(): return render_template('index.html',variable=None, variables=None) def cleanPunc(sentence): cleaned = re.sub(r'[?|؟|،|:|!|\'|"]',r'',sentence) cleaned = re.sub(r'[.|-|,|)|(|\|/]',r' ',cleaned) cleaned = cleaned.strip() cleaned = cleaned.replace("\n"," ") cleaned = re.sub(r'^هه+', '', cleaned) return cleaned def remove_emoji(string): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U00002500-\U00002BEF" # chinese char u"\U00002702-\U000027B0" u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" u"\U0001f926-\U0001f937" u"\U00010000-\U0010ffff" u"\u2640-\u2642" u"\u2600-\u2B55" u"\u200d" u"\u23cf" u"\u23e9" u"\u231a" u"\ufe0f" # dingbats u"\u3030" "]+", flags=re.UNICODE) string = emoji_pattern.sub(r'', string) return string def clean_NonArabs(Twits): Twits = re.sub(r'[A-Za-z0-9]+', '', Twits) return Twits def stopWords(text): stemSentence = "" for word in str(text).split(): if word not in arb_stopwords: stemSentence += word stemSentence += " " return stemSentence # + arb_stopwords = nltk.corpus.stopwords.words('arabic') c = pd.read_excel('stop.xlsx') c = c['Unnamed: 1'].tolist() arb_stopwords.extend(c) # - from nltk.stem import ISRIStemmer stemmer = ISRIStemmer() def stemming(sentence): stemSentence = "" for word in sentence.split(): stem = stemmer.stem(word) stemSentence += stem stemSentence += " " stemSentence = stemSentence.strip() return stemSentence @app.route('/predict',methods=['POST']) def predict(): tweet = request.form['text'] result = list() result.append(dict()) result[0]['tweet'] = tweet sentiment_tweet = stopWords(tweet) sentiment_tweet = stemming(sentiment_tweet) sentiment_tweet = cleanPunc(sentiment_tweet) sentiment_vectTweet = vectorizer.transform([sentiment_tweet]) prediction = lr.predict(sentiment_vectTweet).toarray()[0] proba = lr.predict_proba(sentiment_vectTweet).toarray()[0] result[0]['sentiment'] = {} if prediction[0] == 1: result[0]['sentiment']["Negative"] = round(proba[0]*100, 2) if prediction[1] == 1: result[0]['sentiment']["Neutre"] = round(proba[1]*100, 2) if prediction[2] == 1: result[0]['sentiment']["Positive"] = round(proba[2]*100, 2) topic_tweet = remove_emoji(tweet) #topic_tweet = stopWords(tweet) #topic_tweet = stemming(topic_tweet) topic_tweet = cleanPunc(topic_tweet) #topic_tweet = clean_NonArabs(topic_tweet) topic_vectTweet = topicVect.transform([topic_tweet]) topic_prediction = mulNb.predict(topic_vectTweet) topic_proba = mulNb.predict_proba(topic_vectTweet)[0] result[0]['topic'] = {} if topic_prediction == "autre": result[0]['topic']["autre"] = round(topic_proba[0]*100, 2) if topic_prediction == "politique": result[0]['topic']["politique"] = round(topic_proba[1]*100, 2) if topic_prediction == "sante": result[0]['topic']["sante"] = round(topic_proba[2]*100, 2) if topic_prediction == "social": result[0]['topic']["social"] = round(topic_proba[3]*100, 2) if topic_prediction == "sport": result[0]['topic']["sport"] = round(topic_proba[4]*100, 2) if topic_prediction == "économique": result[0]['topic']["économique"] = round(topic_proba[5]*100, 2) #dialect_tweet = remove_emoji(tweet) dialect_tweet = stopWords(tweet) dialect_tweet = stemming(dialect_tweet) dialect_tweet = cleanPunc(dialect_tweet) #dialect_tweet = clean_NonArabs(dialect_tweet) dialect_vectTweet = dialectVect.transform([dialect_tweet]) dialect_prediction = nb.predict(dialect_vectTweet) dialect_proba = nb.predict_proba(dialect_vectTweet)[0] result[0]['dialect'] = {} if dialect_prediction == "Algerian": result[0]['dialect']["Algerian"] = round(dialect_proba[0]*100, 2) if dialect_prediction == "Lebanon": result[0]['dialect']["Lebanon"] = round(dialect_proba[1]*100, 2) if dialect_prediction == "Morocco": result[0]['dialect']["Morocco"] = round(dialect_proba[2]*100, 2) if dialect_prediction == "Tunisian": result[0]['dialect']["Tunisian"] = round(dialect_proba[3]*100, 2) if dialect_prediction == "egypt": result[0]['dialect']["egypt"] = round(dialect_proba[4]*100, 2) return render_template('index.html', variable=result, variables=None) @app.route('/predictFile',methods=['POST']) def predictFile(): tweets = request.files['csvFile'] data = pd.read_excel(tweets) result = list() sentiment_tweets = pd.DataFrame() sentiment_tweets['Twits'] = data['Twits'].apply(stopWords) sentiment_tweets['Twits'] = sentiment_tweets['Twits'].apply(stemming) sentiment_tweets['Twits'] = sentiment_tweets['Twits'].apply(cleanPunc) vectTweets = vectorizer.transform(sentiment_tweets['Twits']) sentiment_predictions = lr.predict(vectTweets).toarray() sentiment_probas = lr.predict_proba(vectTweets).toarray() topic_tweets = pd.DataFrame() topic_tweets['Twits'] = data['Twits'].apply(remove_emoji) topic_tweets['Twits'] = topic_tweets['Twits'].apply(cleanPunc) topic_vectTweets = topicVect.transform(topic_tweets['Twits']) topic_predictions = mulNb.predict(topic_vectTweets) topic_probas = mulNb.predict_proba(topic_vectTweets) dialect_tweets = pd.DataFrame() #dialect_tweets['Twits'] = data['Twits'].apply(stopWords) #dialect_tweets['Twits'] = dialect_tweets['Twits'].apply(stemming) dialect_tweets['Twits'] = data['Twits'].apply(cleanPunc) dialect_vectTweets = dialectVect.transform(dialect_tweets['Twits']) dialect_predictions = nb.predict(dialect_vectTweets) dialect_probas = nb.predict_proba(dialect_vectTweets) for i, prediction in enumerate(sentiment_predictions): tmp = {} tmp['tweet'] = data.iloc[i][0] tmp['sentiment'] = {} tmp['topic'] = {} tmp['dialect'] = {} if prediction[0] == 1: tmp['sentiment']["Negative"] = round(sentiment_probas[i][0]*100, 2) if prediction[1] == 1: tmp['sentiment']["Neutre"] = round(sentiment_probas[i][1]*100, 2) if prediction[2] == 1: tmp['sentiment']["Positive"] = round(sentiment_probas[i][2]*100, 2) if topic_predictions[i] == "autre": tmp['topic']["autre"] = round (topic_probas[i][0]*100, 2) if topic_predictions[i] == "politique": tmp['topic']["politique"] = round (topic_probas[i][1]*100, 2) if topic_predictions[i] == "sante": tmp['topic']["sante"] = round (topic_probas[i][2]*100, 2) if topic_predictions[i] == "social": tmp['topic']["social"] = round (topic_probas[i][3]*100, 2) if topic_predictions[i] == "sport": tmp['topic']["sport"] = round (topic_probas[i][4]*100, 2) if topic_predictions[i] == "économique": tmp['topic']["économique"] = round (topic_probas[i][5]*100, 2) if dialect_predictions[i] == "Algerian": tmp['dialect']["Algerian"] = round(dialect_probas[i][0]*100, 2) if dialect_predictions[i] == "Lebanon": tmp['dialect']["Lebanon"] = round(dialect_probas[i][1]*100, 2) if dialect_predictions[i] == "Morocco": tmp['dialect']["Morocco"] = round(dialect_probas[i][2]*100, 2) if dialect_predictions[i] == "Tunisian": tmp['dialect']["Tunisian"] = round(dialect_probas[i][3]*100, 2) if dialect_predictions[i] == "egypt": tmp['dialect']["egypt"] = round(dialect_probas[i][4]*100, 2) result.append(tmp) return render_template('index.html',variable=None, variables=result) if __name__ == "__main__": app.run(debug=False) vectTweet = vectorizer.transform(["tweet"]) prediction = model.predict(vectTweet).toarray()[0] proba = model.predict_proba(vectTweet).toarray()[0] result = list() result.append(dict()) result[0]['tweet'] = "de" result[0]['sentiment'] = {} if 1== 1: result[0]['sentiment']["Negative"] = round(proba[0]*100, 2) if 1 == 1: result[0]['sentiment']["Neutre"] = round(proba[1]*100, 2) if prediction[2] == 1: result[0]['sentiment']["Positive"] = round(proba[2]*100, 2) teest = [{'tweet': 'de', 'sentiment': {'Negative': 0.0, 'Neutre': 0.98}}] dd = pd.DataFrame(['cc','dd']) dd.iloc[1][0]
[ "noreply@github.com" ]
hamzachataoui.noreply@github.com
88003dac9146455ec30d6d23ac9b2b742b15c289
a7b21e187141b19ecd1163ddbc99cb2925abca6e
/ex/pyhxbc/tsUserv.py
327a739f2be0b9fb43377df2b6bc770f92d46ab6
[]
no_license
zhangyue0503/python
b387b955aafeecad254e1bdc0b2115c94ca6667b
4b7014d80b325eed37af9f280f7c92a5edcdbb19
refs/heads/master
2023-04-04T19:45:31.190018
2023-03-20T06:57:36
2023-03-20T06:57:36
70,409,084
0
1
null
null
null
null
UTF-8
Python
false
false
407
py
#!/usr/bin/env python from socket import * from time import ctime HOST = '' PORT = 21568 BUFSIZ = 1024 ADDR = (HOST,PORT) udpSerSock = socket(AF_INET,SOCK_STREAM) udpSerSock.bind(ADDR) while True: print 'waiting for message...' data, addr = udpSerSock.recvfrom(BUFSIZ) udpSerSock.sendto('[%s] %s' % (ctime(), data), addr) print '...received from and returned to:', addr udpSerSock.close()
[ "zhangyue0503@hotmail" ]
zhangyue0503@hotmail
92fca1268b7584330755792319953fa74a501063
86dc940f511c5550447acb0a44b2fd845ad64db5
/dymos/transcriptions/solve_ivp/components/solve_ivp_control_group.py
01a47867dad5a126c387673fbc10327c6f975ba6
[ "Apache-2.0" ]
permissive
thearn/dymos
5900c9e456d4bed32082aa787baff63ab9caf8b0
1f36a4472fdeb93d337904955c012f254a5db06c
refs/heads/master
2020-04-06T15:23:05.374083
2019-11-26T14:51:01
2019-11-26T14:51:01
157,576,764
0
0
null
2018-11-14T16:20:44
2018-11-14T16:20:43
null
UTF-8
Python
false
false
9,922
py
from __future__ import print_function, division from six import string_types, iteritems import numpy as np from scipy.linalg import block_diag import openmdao.api as om from ...grid_data import GridData from dymos.utils.misc import get_rate_units from ....utils.lagrange import lagrange_matrices class SolveIVPControlInterpComp(om.ExplicitComponent): """ Compute the approximated control values and rates given the values of a control at output nodes and the approximated values at output nodes, given values at the control input nodes. Notes ----- .. math:: u = \\left[ L \\right] u_d \\dot{u} = \\frac{d\\tau_s}{dt} \\left[ D \\right] u_d \\ddot{u} = \\left( \\frac{d\\tau_s}{dt} \\right)^2 \\left[ D_2 \\right] u_d where :math:`u_d` are the values of the control at the control discretization nodes, :math:`u` are the values of the control at all nodes, :math:`\\dot{u}` are the time-derivatives of the control at all nodes, :math:`\\ddot{u}` are the second time-derivatives of the control at all nodes, :math:`L` is the Lagrange interpolation matrix, :math:`D` is the Lagrange differentiation matrix, and :math:`\\frac{d\\tau_s}{dt}` is the ratio of segment duration in segment tau space [-1 1] to segment duration in time. """ def initialize(self): self.options.declare('control_options', types=dict, desc='Dictionary of options for the dynamic controls') self.options.declare('time_units', default=None, allow_none=True, types=string_types, desc='Units of time') self.options.declare('grid_data', types=GridData, desc='Container object for grid info') self.options.declare('output_nodes_per_seg', default=None, types=(int,), allow_none=True, desc='If None, results are provided at the all nodes within each' 'segment. If an int (n) then results are provided at n ' 'equally distributed points in time within each segment.') # Save the names of the dynamic controls/parameters self._dynamic_names = [] self._input_names = {} self._output_val_names = {} self._output_val_all_names = {} self._output_rate_names = {} self._output_rate2_names = {} def _setup_controls(self): control_options = self.options['control_options'] num_nodes_all = self.num_nodes_all num_nodes_output = self.num_nodes_output num_control_input_nodes = self.options['grid_data'].subset_num_nodes['control_input'] time_units = self.options['time_units'] for name, options in iteritems(control_options): self._input_names[name] = 'controls:{0}'.format(name) self._output_val_all_names[name] = 'control_values_all:{0}'.format(name) self._output_val_names[name] = 'control_values:{0}'.format(name) self._output_rate_names[name] = 'control_rates:{0}_rate'.format(name) self._output_rate2_names[name] = 'control_rates:{0}_rate2'.format(name) shape = options['shape'] input_shape = (num_control_input_nodes,) + shape all_shape = (num_nodes_all,) + shape output_shape = (num_nodes_output,) + shape units = options['units'] rate_units = get_rate_units(units, time_units) rate2_units = get_rate_units(units, time_units, deriv=2) self._dynamic_names.append(name) self.add_input(self._input_names[name], val=np.ones(input_shape), units=units) self.add_output(self._output_val_all_names[name], shape=all_shape, units=units) self.add_output(self._output_val_names[name], shape=output_shape, units=units) self.add_output(self._output_rate_names[name], shape=output_shape, units=rate_units) self.add_output(self._output_rate2_names[name], shape=output_shape, units=rate2_units) def setup(self): output_nodes_per_seg = self.options['output_nodes_per_seg'] time_units = self.options['time_units'] gd = self.options['grid_data'] num_seg = gd.num_segments num_nodes_all = gd.subset_num_nodes['all'] if output_nodes_per_seg is None: num_nodes_output = num_nodes_all else: num_nodes_output = num_seg * output_nodes_per_seg self.add_input('dt_dstau', shape=num_nodes_output, units=time_units) self.val_jacs = {} self.rate_jacs = {} self.rate2_jacs = {} self.val_jac_rows = {} self.val_jac_cols = {} self.rate_jac_rows = {} self.rate_jac_cols = {} self.rate2_jac_rows = {} self.rate2_jac_cols = {} self.sizes = {} self.num_nodes_all = num_nodes_all self.num_nodes_output = num_nodes_output num_disc_nodes = gd.subset_num_nodes['control_disc'] num_input_nodes = gd.subset_num_nodes['control_input'] # Find the indexing matrix that, multiplied by the values at the input nodes, # gives the values at the discretization nodes L_id = np.zeros((num_disc_nodes, num_input_nodes), dtype=float) L_id[np.arange(num_disc_nodes, dtype=int), gd.input_maps['dynamic_control_input_to_disc']] = 1.0 # Matrices L_do and D_do interpolate values and rates (respectively) at output nodes from # values specified at control discretization nodes. L_da, _ = gd.phase_lagrange_matrices('control_disc', 'all') L_do_blocks = [] D_do_blocks = [] for iseg in range(num_seg): i1, i2 = gd.subset_segment_indices['control_disc'][iseg, :] indices = gd.subset_node_indices['control_disc'][i1:i2] nodes_given = gd.node_stau[indices] if output_nodes_per_seg is None: i1, i2 = gd.subset_segment_indices['all'][iseg, :] indices = gd.subset_node_indices['all'][i1:i2] nodes_eval = gd.node_stau[indices] else: nodes_eval = np.linspace(-1, 1, output_nodes_per_seg) L_block, D_block = lagrange_matrices(nodes_given, nodes_eval) L_do_blocks.append(L_block) D_do_blocks.append(D_block) L_do = block_diag(*L_do_blocks) D_do = block_diag(*D_do_blocks) self.L = np.dot(L_do, L_id) self.L_all = np.dot(L_da, L_id) self.D = np.dot(D_do, L_id) # Matrix D_dd interpolates rates at discretization nodes from values given at control # discretization nodes. _, D_dd = gd.phase_lagrange_matrices('control_disc', 'control_disc') # Matrix D2 provides second derivatives at output nodes given values at input nodes. self.D2 = np.dot(D_do, np.dot(D_dd, L_id)) self._setup_controls() self.set_check_partial_options('*', method='cs') def compute(self, inputs, outputs): control_options = self.options['control_options'] for name, options in iteritems(control_options): u = inputs[self._input_names[name]] a = np.tensordot(self.D, u, axes=(1, 0)).T b = np.tensordot(self.D2, u, axes=(1, 0)).T # divide each "row" by dt_dstau or dt_dstau**2 outputs[self._output_val_names[name]] = np.tensordot(self.L, u, axes=(1, 0)) outputs[self._output_val_all_names[name]] = np.tensordot(self.L_all, u, axes=(1, 0)) outputs[self._output_rate_names[name]] = (a / inputs['dt_dstau']).T outputs[self._output_rate2_names[name]] = (b / inputs['dt_dstau'] ** 2).T class SolveIVPControlGroup(om.Group): def initialize(self): self.options.declare('control_options', types=dict, desc='Dictionary of options for the dynamic controls') self.options.declare('time_units', default=None, allow_none=True, types=string_types, desc='Units of time') self.options.declare('grid_data', types=GridData, desc='Container object for grid info') self.options.declare('output_nodes_per_seg', default=None, types=(int,), allow_none=True, desc='If None, results are provided at the all nodes within each' 'segment. If an int (n) then results are provided at n ' 'equally distributed points in time within each segment.') def setup(self): gd = self.options['grid_data'] control_options = self.options['control_options'] time_units = self.options['time_units'] if len(control_options) < 1: return opt_controls = [name for (name, opts) in iteritems(control_options) if opts['opt']] if len(opt_controls) > 0: ivc = self.add_subsystem('indep_controls', subsys=om.IndepVarComp(), promotes_outputs=['*']) self.add_subsystem( 'control_interp_comp', subsys=SolveIVPControlInterpComp(time_units=time_units, grid_data=gd, control_options=control_options, output_nodes_per_seg=self.options['output_nodes_per_seg']), promotes_inputs=['*'], promotes_outputs=['*']) for name, options in iteritems(control_options): if options['opt']: num_input_nodes = gd.subset_num_nodes['control_input'] ivc.add_output(name='controls:{0}'.format(name), val=options['val'], shape=(num_input_nodes, np.prod(options['shape'])), units=options['units'])
[ "noreply@github.com" ]
thearn.noreply@github.com
dda4965db6bc90ff683653d69741ba78636b1639
ded519cf89b578109b2874b425ac99bac0470e13
/tests/test_malicious_uploads.py
b7e5c32a18d643c2719337e64dc92dd5221f0fbe
[]
no_license
Tubbz-alt/arxiv-filemanager
6fa21225a0c75f86c008fe57405d0a04568a9916
59c72d037518f343753145148461fbcb4aeb34bc
refs/heads/master
2022-04-12T04:20:03.821659
2019-06-05T14:08:47
2019-06-05T14:08:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
"""Tests specifically focused on security vulnerabilities.""" import os from unittest import TestCase, mock from datetime import datetime import tempfile from werkzeug.datastructures import FileStorage from werkzeug.utils import secure_filename import shutil from filemanager.process import upload TEST_FILES_DIRECTORY = os.path.join(os.getcwd(), 'tests/test_files_upload') class TestRelativePaths(TestCase): """Test uploaded archives that include relative paths.""" @mock.patch(f'{upload.__name__}._get_base_directory') def test_relative_path(self, mock_get_base_dir): """Uploaded tarball contains a relative path two levels up.""" UPLOAD_BASE_DIRECTORY = tempfile.mkdtemp() mock_get_base_dir.return_value = UPLOAD_BASE_DIRECTORY file_path = os.path.join(TEST_FILES_DIRECTORY, 'relative_path.tar.gz') with open(file_path, 'rb') as fp: file = FileStorage(fp) # Now create upload instance u = upload.Upload(12345) # Process upload u.process_upload(file) self.assertNotIn('ir.png', os.listdir(UPLOAD_BASE_DIRECTORY), 'File should be prevented from escaping upload' ' workspace.')
[ "brp53@cornell.edu" ]
brp53@cornell.edu
fc71f5ef9510879b616faee6fc4371a43f8b7e01
7c292ca8a627b96eb74f9b9dfbb47dc2bbaeef24
/Parciales/TallerGrupal.py
3e5ae974c029adf760e2f5ef86d98f4c1b46aa93
[]
no_license
DuvanDu/ProgramacionI
b2469a0fba12f8ace520b265cc738da4339beafd
71869d74698157ddb048076936d0e48fb75789bc
refs/heads/main
2023-05-26T23:27:58.824162
2021-05-27T12:56:51
2021-05-27T12:56:51
335,283,280
0
0
null
null
null
null
UTF-8
Python
false
false
3,132
py
class ElementosDigitales(): def __init__(self, nombreEntrada, creadorEntrada, fechapuEntrada): self.nombre = nombreEntrada self.creador = creadorEntrada self.fechapu = fechapuEntrada def mostrarAtributos(self): print(f'''El nombre del autor {self.nombre} Su creador es {self.creador} Su fecha de publicacion {self.fechapu} ''') class Usuario(): def __init__(self, nombreEntrada, edadEntrada, sexoEntrada, nacionalidadEntrada): self.nombre = nombreEntrada self.edad = edadEntrada self.sexo = sexoEntrada self.nacionalidad = nacionalidadEntrada def mostrarAtributos(self): print(f'''El nombre del usuario {self.nombre} Su edad es {self.edad} Sexo {self.sexo} Su nacionalidad es {self.nacionalidad} ''') def cancion(self,nombreCancion): '''Expresa que esta escuchando una cancion''' print(f'Hola soy {self.nombre} y estoy escuchando {nombreCancion}') class Pagina(): def __init__(self, tipoEntrada, formatoEntrada, fechapuEntrada): self.tipo = tipoEntrada self.formato = formatoEntrada self.fechapu = fechapuEntrada def mostrarAtributos(self): print(f'''Su tipo de entrada es {self.tipo} Su formato es {self.formato} Se publico el {self.fechapu} ''') class Cancion(ElementosDigitales): def __init__(self, nombreEntrada, creadorEntrada, fechapuEntrada, generoEntrada, duracionEntrada): ElementosDigitales.__init__(self, nombreEntrada, creadorEntrada, fechapuEntrada) self.genero = generoEntrada self.duracion = duracionEntrada def nueCancion(self,nombreCancion, fecha): '''Expresa que esta escuchando una cancion''' print(f'Hola soy {self.nombre} y estoy escuchando {nombreCancion} de {fecha} ') def bucleCancion(self, cantidadRepro, nombreCancion): for i in range (cantidadRepro): print(f'{nombreCancion} sonando {i+1} vez') class Artista(Usuario): def __init__(self, nombreEntrada, edadEntrada, sexoEntrada, nacionalidadEntrada, generoEntrada, numeroCanEntrada, numeroAlbEntrada): Usuario.__init__(self, nombreEntrada, edadEntrada, sexoEntrada, nacionalidadEntrada) self.genero = generoEntrada self.numeroCan = numeroCanEntrada self.numeroAlb = numeroAlbEntrada def concierto(self,nombreCiudad): '''Expresa que dara un concierto en dicha ciudad''' print(f'Hola soy {self.nombre} y dare un concierto en {nombreCiudad}') class Favoritos(Pagina): def __init__(self, tipoEntrada, formatoEntrada, fechapuEntrada, favoritosComEntrada, listaFavEntrada, fechaUpEntrada): Pagina.__init__(self, tipoEntrada, formatoEntrada, fechapuEntrada) self.favoritosCom = favoritosComEntrada self.listaFav = listaFavEntrada self.fechaUp = fechaUpEntrada #-----Integrantes: Mariana Villegas y Duvan Duque-----#
[ "duque.duvan@uces.edu.co" ]
duque.duvan@uces.edu.co