blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
5593ce842b79c29877bb25941b0b6530c4ce8540
66767138fb776ed9d91dc22bc4796f625824275a
/rss_fetcher_test.py
a22a0c31a1879f8475d85a74b80c0d887c7d727a
[]
no_license
jamalzkhan/Twitter-News
f4441957a238e3230e49c5df31b6544bcf69f8c0
d7c053e12cd74cc459b80af8177f8d8ad1f604a1
refs/heads/master
2020-04-06T06:39:49.273043
2012-01-14T19:40:55
2012-01-14T19:40:55
3,179,810
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
import rss_fetcher import loggers.log as log import loggers.logger as logger import unittest class RssFetcherTest(unittest.TestCase): def setUp (self, rss_file="dummy_rss.rss", rss_url=None): self.rss_file = rss_file self.main_logger = logger.Logger() self.r_log = log.Log("RSS Test Fetcher", self.main_logger) f = open(self.rss_file, 'r+') rss = f.read() # print rss f.close() self.rss = rss self.rss_fetcher = rss_fetcher.RssFetcher(rss=self.rss, log=self.r_log) def test_rss_is_broken_url(self): """ Test to see what happens if the RSS Feed that is passed is broken""" self.rss_fetcher.rss_link = "http://thisisfake.com" self.rss_fetcher.getNews() print self.rss_fetcher.news_stories self.assertTrue(len(self.rss_fetcher.news_stories) == 0) def test_rss_returns_correct_format(self): """Test to see that given a dummy feed we get the correct stories""" self.rss_fetcher.getNews() stories = self.rss_fetcher.news_stories # Various checks for the dummy rss feed, whose values are known self.assertTrue(len(stories) == 2) if __name__ == "__main__": print "Starting Unit Testing for RSS Fetcher Thread" unittest.main()
[ "me@jamalkhan.com" ]
me@jamalkhan.com
3802578c4bdb8ff686f1ca7901c16d4bf7ab1688
7a784eb73f13c1df4bb60cad26774a76abceb475
/day7.py
a85150ceb77b3f1fa0a60c98a5f135374d64e4a5
[]
no_license
albarralnunez/advent-of-code-16
8e98e3d08643a53208e66b770eb7cf877bf283f6
776616ec82325126259324c9edfc0d5e0596bcb7
refs/heads/master
2021-06-08T17:12:21.540471
2016-12-19T23:43:37
2016-12-19T23:43:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
732
py
#!/usr/local/bin/python import logging from collections import Counter from libs import commons from libs7.ipv7 import IPv7 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def get_ips(input_file): return (IPv7(x[:-1]) for x in open(input_file, 'r').xreadlines()) @commons.speed_test def problem_1(ips): return len(filter(lambda x: x.has_tls(), ips)) @commons.speed_test def problem_2(ips): return len(filter(lambda x: x.has_ssl(), ips)) def main(): ips = get_ips('inputs/day_7.in') print 'Problem 1: %s IPs supports TLS' % problem_1(ips) ips = get_ips('inputs/day_7.in') print 'Problem 2: %s IPs supports SSL' % problem_2(ips) if __name__ == "__main__": main()
[ "danielalbarral@gmail.com" ]
danielalbarral@gmail.com
48075fcc4afeaf9cb88f2c15f4919d29e15f5a03
e8a6fcaf493d4a03691e949993d3e26989b4e742
/code/lmfit_PseudoVoigt_CP_D_RT.py
dfe244a5aece902d850fc87a400a300c70e69ce6
[]
no_license
andrewkim47/local_pithy
93183235425a2ee8681e960c1f18f1e2c4b1d65a
259acd8d2b48ac29d1d9328a1744402c111834d5
refs/heads/master
2020-03-29T22:39:18.600081
2018-10-22T18:48:33
2018-10-22T18:48:33
150,433,215
0
0
null
null
null
null
UTF-8
Python
false
false
4,936
py
from Histogram_Band import * from lmfit.models import PseudoVoigtModel bins = range(256) fdir = '/Users/andrewkim/Documents/AA_Discharge/TIFFS/' x = arange(256) #Grab Data key = 'CP_D_RT' code = datas[key]['code'] folder = fdir + code + '/Histogram/' endp = datas[key]['endpoint'] ndata,adata,bands = getBandHist(folder) #################################### ############ FIRST PASS , grab peak positions #################################### # numband = 1 # datas[key]['zband'] = mergeBand(ndata,endp[0],endp[1],numband) # #Y = Total Histogram of Zinc: # band = 0 # Y = array(mergeBand(ndata,endp[0],endp[1],1)[band]) # y = Y # pv1 = PseudoVoigtModel(prefix='pv1_') # pars = pv1.guess(y, x=x) # pars['pv1_amplitude'].set(0.33,min=0) # pars['pv1_sigma'].set(13) # pars['pv1_center'].set(73.9) # pars['pv1_fraction'].set(0.10) # pars['pv1_fwhm'].set(50) # pars['pv1_height'].set(0.05) # pv2 = PseudoVoigtModel(prefix='pv2_') # pars.update(pv2.make_params()) # pars['pv2_amplitude'].set(0.33,min=0) # pars['pv2_sigma'].set(13) # pars['pv2_center'].set(88.7) # pars['pv2_fraction'].set(0.10) # pars['pv2_fwhm'].set(50) # pars['pv2_height'].set(0.05) # pv3 = PseudoVoigtModel(prefix='pv3_') # pars.update(pv3.make_params()) # pars['pv3_amplitude'].set(0.33,min=0) # pars['pv3_sigma'].set(13) # pars['pv3_center'].set(112.) # pars['pv3_fraction'].set(0.10) # pars['pv3_fwhm'].set(50) # pars['pv3_height'].set(0.05) # # mod = pv1 # mod = pv1 + pv2 + pv3 # init = mod.eval(pars, x=x) # out = mod.fit(y, pars, x=x) # comps = out.eval_components(x=x) # figure(figsize=(6.4,4.8*3)) # subplot(6,1,1) # plot(x,y,lw=3) # plot(x,out.best_fit,c='k',lw=3,ls='--') # for subkey in comps.keys(): # plot(x,comps[subkey],ls='--') # # title(key+'_B'+str(band)) # title(key+ ' Total Zinc Region') # grid() # xlim(50,200) # # showme() # # clf() # results = out.fit_report(min_correl=0.5) # print results.split('[[')[3] # numband = 5 # datas[key]['zband'] = mergeBand(ndata,endp[0],endp[1],numband) # for band in range(5): # # for band in [0,4]: # y = array(datas[key]['zband'][band]) # # mod = pv1 # mod = pv1 + pv2 + pv3 # init = mod.eval(pars, x=x) # out = mod.fit(y, pars, x=x) # comps = out.eval_components(x=x) # subplot(6,1,band+2) # plot(x,y,lw=3) # plot(x,out.best_fit,c='k',lw=3,ls='--') # for subkey in comps.keys(): # plot(x,comps[subkey],ls='--') # # title(key+'_B'+str(band)) # title(key+ ' Zinc SubRegion '+str(band)) # grid() # xlim(50,200) # results = out.fit_report(min_correl=0.5) # print results.split('[[')[3] # tight_layout() # showme() # clf() # # #################################### # # ############ 2nd pass # # #################################### numband = 1 datas[key]['zband'] = mergeBand(ndata,endp[0],endp[1],numband) #Y = Total Histogram of Zinc: band = 0 Y = array(mergeBand(ndata,endp[0],endp[1],1)[band]) y = Y pv1 = PseudoVoigtModel(prefix='pv1_') pars = pv1.guess(y, x=x) pars['pv1_amplitude'].set(0.27,min=0) pars['pv1_sigma'].set(16) pars['pv1_center'].set(73.9, vary = False) pars['pv1_fraction'].set(0.10) pars['pv1_fwhm'].set(50) pars['pv1_height'].set(0.03) pv2 = PseudoVoigtModel(prefix='pv2_') pars.update(pv2.make_params()) pars['pv2_amplitude'].set(0.39,min=0) pars['pv2_sigma'].set(13) pars['pv2_center'].set(88.7, vary = False) pars['pv2_fraction'].set(0.10) pars['pv2_fwhm'].set(50) pars['pv2_height'].set(0.05) pv3 = PseudoVoigtModel(prefix='pv3_') pars.update(pv3.make_params()) pars['pv3_amplitude'].set(0.34,min=0) pars['pv3_sigma'].set(12) pars['pv3_center'].set(112., vary = False) pars['pv3_fraction'].set(0.10) pars['pv3_fwhm'].set(50) pars['pv3_height'].set(0.05) # mod = pv1 mod = pv1 + pv2 + pv3 init = mod.eval(pars, x=x) out = mod.fit(y, pars, x=x) comps = out.eval_components(x=x) figure(figsize=(6.4,4.8*3)) subplot(6,1,1) plot(x,y,lw=3) plot(x,out.best_fit,c='k',lw=3,ls='--') for subkey in comps.keys(): plot(x,comps[subkey],ls='--') # title(key+'_B'+str(band)) title(key+ ' Total Zinc Region') grid() xlim(50,150) # showme() # clf() results = out.fit_report(min_correl=0.5) print results.split('[[')[3] numband = 5 datas[key]['zband'] = mergeBand(ndata,endp[0],endp[1],numband) print array_split(arange(endp[0],endp[1]),numband) for band in range(5): # for band in [0,4]: y = array(datas[key]['zband'][band]) # mod = pv1 mod = pv1 + pv2 + pv3 init = mod.eval(pars, x=x) out = mod.fit(y, pars, x=x) comps = out.eval_components(x=x) subplot(6,1,band+2) plot(x,y,lw=3) plot(x,out.best_fit,c='k',lw=3,ls='--') for subkey in comps.keys(): plot(x,comps[subkey],ls='--') # title(key+'_B'+str(band)) title(key+ ' Zinc SubRegion '+str(band)) grid() xlim(50,150) results = out.fit_report(min_correl=0.5) print results.split('[[')[3] tight_layout() showme() clf()
[ "noreply@github.com" ]
andrewkim47.noreply@github.com
4f54a215ed076c56c7ce649c75f4e4cb4637d034
302ef0325c80692957d389a28e06a683b55858e8
/UX/auth/views.py
11af3883855be4212aaf98ad1ad5533038ac1afc
[]
no_license
souhagaa/markov_link_prediction
6cf4534c4bea7d8fa1a815c9fd65d98f6ad3fc5f
3f9997ef757d640814b480b7b330bd55b5aa2114
refs/heads/master
2020-07-02T18:55:01.218815
2019-12-03T21:42:17
2019-12-03T21:42:17
201,630,178
1
0
null
null
null
null
UTF-8
Python
false
false
2,569
py
from flask import request, jsonify, Blueprint, current_app as app from flask_jwt_extended import ( create_access_token, create_refresh_token, jwt_required, jwt_refresh_token_required, get_jwt_identity, get_raw_jwt ) from UX.models import User from UX.extensions import pwd_context, jwt from UX.auth.helpers import ( revoke_token, is_token_revoked, add_token_to_database ) blueprint = Blueprint('auth', __name__, url_prefix='/auth') @blueprint.route('/login', methods=['POST']) def login(): """Authenticate user and return token """ if not request.is_json: return jsonify({"msg": "Missing JSON in request"}), 400 username = request.json.get('username', None) password = request.json.get('password', None) if not username or not password: return jsonify({"msg": "Missing username or password"}), 400 user = User.query.filter_by(username=username).first() if user is None or not pwd_context.verify(password, user.password): return jsonify({"msg": "Bad credentials"}), 400 access_token = create_access_token(identity=user.id) refresh_token = create_refresh_token(identity=user.id) add_token_to_database(access_token, app.config['JWT_IDENTITY_CLAIM']) add_token_to_database(refresh_token, app.config['JWT_IDENTITY_CLAIM']) ret = { 'access_token': access_token, 'refresh_token': refresh_token } return jsonify(ret), 200 @blueprint.route('/refresh', methods=['POST']) @jwt_refresh_token_required def refresh(): current_user = get_jwt_identity() access_token = create_access_token(identity=current_user) ret = { 'access_token': access_token } add_token_to_database(access_token, app.config['JWT_IDENTITY_CLAIM']) return jsonify(ret), 200 @blueprint.route('/revoke_access', methods=['DELETE']) @jwt_required def revoke_access_token(): jti = get_raw_jwt()['jti'] user_identity = get_jwt_identity() revoke_token(jti, user_identity) return jsonify({"message": "token revoked"}), 200 @blueprint.route('/revoke_refresh', methods=['DELETE']) @jwt_refresh_token_required def revoke_refresh_token(): jti = get_raw_jwt()['jti'] user_identity = get_jwt_identity() revoke_token(jti, user_identity) return jsonify({"message": "token revoked"}), 200 @jwt.user_loader_callback_loader def user_loader_callback(identity): return User.query.get(identity) @jwt.token_in_blacklist_loader def check_if_token_revoked(decoded_token): return is_token_revoked(decoded_token)
[ "souha.echelon20@gmail.com" ]
souha.echelon20@gmail.com
9481547229af17b8ed0134a977c9a946bdf8de00
24a15591f9ff280d030cd9f966b3977dc11fd027
/ImarketBD/Departments/apps.py
cfc5d3de8de21eda26f01447d389e65418751744
[]
no_license
Arfin99/Integrated-Market-Platform
54ae1d67226b24c0d259af129e96f090ccb598b4
8a3340edbe8a9629f2d41f7e063a657e8d710db4
refs/heads/master
2023-09-03T20:57:48.188204
2021-02-10T10:37:04
2021-02-10T10:37:04
337,688,153
2
0
null
null
null
null
UTF-8
Python
false
false
97
py
from django.apps import AppConfig class DepartmentsConfig(AppConfig): name = 'Departments'
[ "jobyerarfin1997@gmail.com" ]
jobyerarfin1997@gmail.com
475e321d312d173b6927057ffe431fb59be085fb
d4795c386ba45a884ff125736ca70a0813531f9b
/Carrier_Assign1.py
225ba602b3a9beea6fec903fdab0cf66a809f95f
[]
no_license
AhamadHussainD/TakeHomeAssign_Carrier
4399e9d758978f71ec19fbdf14d160e459b11621
77b8735131851515b5337609e4736e8ea51d2f8e
refs/heads/main
2023-03-18T22:38:22.311000
2021-03-11T18:16:37
2021-03-11T18:16:37
343,303,113
0
0
null
null
null
null
UTF-8
Python
false
false
18,572
py
# -*- coding: utf-8 -*- """ Created on Sat Feb 27 19:05:49 2021 @author: Ahamad Husssain, D Carrier Inc. Data Science & Innovation Take Home Challenge THE CHALLENGE: Zeta Disease Predictio Note: the Code is Confidential, needs author prior approval """ import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sklearn # Function to Get the current # working directory def current_path(): print("Current working directory before") print(os.getcwd()) print() current_path() # Changing the CWD os.chdir('F:/Analytics_course/Python_practice/TakeHome_Carrier') # Printing CWD after current_path() data=pd.read_csv('2021-01-21_zeta-disease_training-data_dsi-take-home-challenge.csv',index_col=False) print(len(data)) print(len(data.columns)) data.info() print(data.describe) df=data df.shape ######Pre processing Steps/ Feature selection/DAta Visuvalization steps******** dupli_df=df[df.duplicated()] print("no of duplicate rows:",dupli_df.shape) dupli_df df.sum(axis = 0, skipna = True) df['zeta_disease'].sum(axis = 0, skipna = True) df.iloc[:,-1:].sum() df=df.drop_duplicates() df.info() plt.hist(df['zeta_disease']) plt.xlabel('Zeta_Desease') plt.ylabel('Frequency') plt.xticks([0,1]) plt.title("Zeta Disease Distribution") plt.show() df=df.dropna() print(len(df)) df.isnull().sum() #histogram of all variables df.hist(figsize=(10,10)) plt.show() df1=df.iloc[:,0:8] df1.info() df1.describe() dfo=[] dfo=df.iloc[:,8:9] dfo.info() dfo.describe() corrmat=df1.corr() top_corr_features=corrmat.index print(corrmat) plt.figure(figsize=(10,10)) plt.title('Variables Correlation map') g=sns.heatmap(df1[top_corr_features].corr(),annot=True,cmap="RdYlGn") #sns.pairplot(df1) sns.pairplot(df, hue = 'zeta_disease') corrmat['age'].sort_values(ascending=False) from scipy import stats import pylab df2=df1 summary1=df2.describe() print(summary1) for i in range(len(df1.columns)): mean1=summary1.iloc[1,i] std1=summary1.iloc[2,i] df2.iloc[:,i:(i+1)]=(df1.iloc[:,i:(i+1)]-mean1)/std1 print(df2.describe()) plt.figure(figsize=(10,10)) plotray= df2.values #boxplot(plotray) #plot.xticks(range(1,9),abalone.columns[1:9]) sns.boxplot(data=plotray) plt.xlabel('Varialbes in the order of Data Frame') plt.ylabel('Standard Deviations') plt.title("Standardised Varialbes Box Plots") plt.show() z=np.abs(stats.zscore(plotray)) print(z) q=np.amax(z) print(q) df2['zeta_disease']=dfo df3 = df2[np.abs(z < 6).all(axis=1)] df2.info() df3.describe() df2.describe() X=df3.iloc[:,0:8] Y=df3.iloc[:,8:9] from sklearn import* from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel clf=ExtraTreesClassifier() clf.fit(X, Y) clf.feature_importances_ model = SelectFromModel(clf, prefit=True) X_new = model.transform(X) X_new.shape from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X=df3.iloc[:,0:8] y=df3.iloc[:,8:9] # Build a forest and compute the impurity-based feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the impurity-based feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show() ################Model Buildings***************** from sklearn.model_selection import * from sklearn.metrics import * from sklearn.preprocessing import * from sklearn.linear_model import * # Creating an empty Dataframe with column names only AlSumm = pd.DataFrame(columns=['Model','ModelParameter','TN','FP','FN','TP','Accuracy','F1 Score','Precesion','Recall','FNR']) #Logistic Regression X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42) cv = KFold(n_splits=5, random_state=1, shuffle=True) # create model model = LogisticRegression() # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'LogisticRegression','ModelParameter':0,'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #apply the below code to store all confusion parameters #print(metrics.classification_report(y_test, y_pred, *)) #LDA # grid search solver for lda from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # define dataset model = LinearDiscriminantAnalysis() # define model evaluation method # define grid grid = dict() grid['solver'] = ['svd', 'lsqr', 'eigen'] # define search search = GridSearchCV(model, grid, scoring='accuracy', cv=cv) # perform the search results = search.fit(X_train, y_train) y_pred=search.predict(X_test) lrcm=confusion_matrix(y_test,y_pred) # summarize #print('Mean Accuracy: %.3f' % results.best_score_) #print('Config: %s' % results.best_params_) AlSumm= AlSumm.append({'Model':'LDA','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #QDA from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis qda = QuadraticDiscriminantAnalysis() qda.fit(X_train,y_train.values.ravel()) y_pred=(qda.predict(X_test)) qdacm=confusion_matrix(y_pred,y_test) # create model model = QuadraticDiscriminantAnalysis() # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'QDA','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #Support Vector Classifier from sklearn.svm import * clf1=SVC(kernel='linear',coef0=1,C=5) model = clf1 # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'SVC_linear','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) clf1=SVC(kernel='rbf',gamma=0.01) model = clf1 # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'SVC_rbf','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #Random Forest Classifier from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=15, random_state=0) model = rf # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'Random Forest Classifier','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #ExtraTreesClassifier from sklearn.ensemble import ExtraTreesClassifier model = ExtraTreesClassifier(n_estimators=500, random_state=0) # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'ExtraTreesClassifier','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier for i in range(1,100,5): model = KNeighborsClassifier(n_neighbors=i) # evaluate model y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'KNN','ModelParameter':i, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #*******SDG Classifier import sklearn from sklearn.linear_model import SGDClassifier model=SGDClassifier(random_state=42) y_train_pred=cross_val_predict(model,X_train,y_train.values.ravel(),cv=cv) #lrcm=confusion_matrix(y_train,y_train_pred) #scores = cross_val_score(model, X_train,y_train.values.ravel(), scoring='accuracy', cv=cv) # report performance #print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) y_pred=cross_val_predict(model,X_test,y_test.values.ravel(),cv=cv) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'SGD Classifier','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) ################## #DNN import tensorflow as tf from keras.models import Sequential import pandas as pd from keras.layers import Dense from keras.models import Sequential from keras.layers import Dense model = Sequential() #Swish model.add(Dense(8, activation='swish', input_shape=(8,))) model.add(Dense(8, activation='swish')) model.add(Dense(8, activation='swish')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(X_train, y_train,epochs=5, batch_size=1, verbose=1) y_pred = model.predict_classes(X_test) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'DNN-Swish','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) mode2 = Sequential() #Swish mode2.add(Dense(8, activation='relu', input_shape=(8,))) mode2.add(Dense(8, activation='relu')) mode2.add(Dense(8, activation='relu')) mode2.add(Dense(1, activation='sigmoid')) mode2.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) mode2.fit(X_train, y_train,epochs=5, batch_size=1, verbose=1) y_pred = mode2.predict_classes(X_test) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'DNN-ReLU','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) ###********* Bagging, Out of Bag, Ada Boosting from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier bag_clf = BaggingClassifier( DecisionTreeClassifier(),max_samples=100, bootstrap=True) bag_clf.fit(X_train, y_train) y_pred = bag_clf.predict(X_test) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'Bagging','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) bag_clf = BaggingClassifier(DecisionTreeClassifier(),bootstrap=True, oob_score=True) bag_clf.fit(X_train, y_train) y_pred = bag_clf.predict(X_test) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'OOB','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) from sklearn.ensemble import AdaBoostClassifier ada_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), n_estimators=500, algorithm="SAMME.R", learning_rate=0.4 ) ada_clf.fit(X_train, y_train) lrcm=confusion_matrix(y_test,y_pred) AlSumm= AlSumm.append({'Model':'AdaBoost','ModelParameter':0, 'TN':lrcm[0][0],'FP':lrcm[0][1],'FN':lrcm[1][0],'TP':lrcm[1][1], 'Accuracy':accuracy_score(y_test, y_pred),'F1 Score':f1_score(y_test, y_pred), 'Precesion':precision_score(y_test, y_pred),'Recall':recall_score(y_test, y_pred), 'FNR':(1-recall_score(y_test, y_pred))}, ignore_index=True) #### ****** Selecting Best Model ********* AlSumm['score']=AlSumm['Accuracy']+AlSumm['F1 Score']-AlSumm['FNR'] maxs=max(AlSumm['score']) for i in range(len(AlSumm)): if (AlSumm['score'][i])==maxs: poli=i print(poli) AlSumm.iloc[poli,:] ######FINAL Testing With Data******** tdf=pd.read_csv('2021-01-21_zeta-disease_prediction-data_dsi-take-home-challenge.csv',index_col=False) tdf2=tdf.iloc[:,0:8] tdf2.info() tdf.head() for i in range(len(tdf.columns)-1): mean1=summary1.iloc[1,i] std1=summary1.iloc[2,i] tdf2.iloc[:,i:(i+1)]=(tdf.iloc[:,i:(i+1)]-mean1)/std1 tdf2.head() #Select the Final Model based on confusion matrix and predict using that final Model tdf.iloc[:,8:9]=(mode2.predict_classes(tdf2)) tdf.head() tdf.to_csv('zeta-disease_predictions_AhamadHussain.csv') AlSumm.to_csv('All_Models_Summary_AhamadHussain.csv')
[ "noreply@github.com" ]
AhamadHussainD.noreply@github.com
63fee9bed9fb25aa6626ce7ec9c02f43b7d2bfbe
cb751afc18cde24e3974adbe60f55534a0b6e0cf
/gdgsite/settings.py
86605eddaec2afeebe0d52e2a06297aa9b5501b6
[]
no_license
HargovindArora/website
6d7f5c9571615f23c39c1ebde0d866f37de12b21
f9024048f37cccdaa3ffa504d05efce92020a464
refs/heads/master
2021-01-21T02:10:38.613307
2017-08-30T16:50:26
2017-08-30T16:50:26
101,881,662
0
0
null
2017-08-30T12:59:30
2017-08-30T12:59:30
null
UTF-8
Python
false
false
3,099
py
""" Django settings for gdgsite project. Generated by 'django-admin startproject' using Django 1.11.3. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'v6$8b53a&74w2_eyh&*g7^@dm6v!!=ra$cm)1l*adqxav&bt%0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'gdgsite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'gdgsite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "himanshuagrawal1998@gmail.com" ]
himanshuagrawal1998@gmail.com
60cd8b2aebcdbe232e347a8235a5b108d9419628
28729bdabcb1c83429752bc15b14f2ac1950028f
/firmware/python_modules/shared/dashboard/terminal/launcher.py
4d84887ce0cca0ac96378c72ae7a94d700de5ff0
[]
no_license
badgeteam/ESP32-platform-firmware
434020769b36df164fd1719b3bcf996851d55294
04282f7fe84ddd0f0c3887fa948da68a9ade8126
refs/heads/master
2023-08-17T07:07:51.048777
2023-08-14T20:53:37
2023-08-14T20:53:37
194,534,857
31
49
null
2023-08-15T21:00:09
2019-06-30T15:59:30
C
UTF-8
Python
false
false
2,103
py
import term, system, sys, uos as os, ujson system.serialWarning() apps = [] def add_app(app,information): global apps try: title = information["name"] except: title = app try: category = information["category"] except: category = "" info = {"file":app,"title":title,"category":category} apps.append(info) def populate_apps(): global apps apps = [] try: userApps = os.listdir('apps') except OSError: userApps = [] try: userApps.extend(os.listdir('lib')) except OSError: pass for app in userApps: add_app(app,read_metadata(app)) currentListTitles = [] currentListTargets = [] def populate_category(category="",system=True): global apps global currentListTitles global currentListTargets currentListTitles = [] currentListTargets = [] for app in apps: if (category=="" or category==app["category"] or (system and app["category"]=="system")) and (not app["category"]=="hidden"): currentListTitles.append(app["title"]) currentListTargets.append(app) def read_metadata(app): try: install_path = get_install_path() info_file = "%s/%s/metadata.json" % (install_path, app) print("Reading "+info_file+"...") with open(info_file) as f: information = f.read() return ujson.loads(information) except BaseException as e: print("[ERROR] Can not read metadata for app "+app) sys.print_exception(e) information = {"name":app,"title":"---", "category":""} return information def expandhome(s): if "~/" in s: h = os.getenv("HOME") s = s.replace("~/", h + "/") return s def get_install_path(): global install_path if install_path is None: # sys.path[0] is current module's path install_path = sys.path[1] install_path = expandhome(install_path) return install_path install_path = None term.empty_lines() term.header("Loading application list...") populate_apps() populate_category() currentListTitles.append("< Back to the main menu") selected = term.menu("Application launcher", currentListTitles) if selected == len(currentListTitles) - 1: system.home() else: system.start(currentListTargets[selected]['file'])
[ "renze@rnplus.nl" ]
renze@rnplus.nl
2f018fb4a4dcd300694252c10fb0a589577d9c18
62b0c608a4f3839f3443903b666b19632c13cac2
/ComicEnv/lib/python3.2/sre_constants.py
b766b82e7f13ed1382fa318a9df1c120c5d9b238
[ "MIT" ]
permissive
Silight/ComicEnv
a26e77c390e997de456e0e3ef7ce513dd8a908bd
2909f5405923f8767969aae7a6b36eda26571002
refs/heads/master
2020-04-01T08:19:17.463999
2015-04-21T15:05:11
2015-04-21T15:05:11
33,143,359
1
1
null
null
null
null
UTF-8
Python
false
false
35
py
/usr/lib/python3.2/sre_constants.py
[ "silight@silight-Virtual-Machine.(none)" ]
silight@silight-Virtual-Machine.(none)
ab4056f63a320739dcf5b284af25ffb7e8e5cc4b
6ee24ed025a3dce06716c60180e8acb7ea382074
/Data_Manipulation/data_processing/nodeJson_import_mongo.py
4a6a2ad0858287aa35111d7123f0d55bf9e3b4f8
[]
no_license
wxy000/MHKG
54ebaa6bde115981a734557c0595eb62e053ca23
b0f70bc2e185154f651958499a1632ce879075c8
refs/heads/master
2021-10-28T10:31:49.401982
2019-04-23T15:18:06
2019-04-23T15:18:06
175,953,209
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
# -*- coding:utf-8 -*- import os from pymongo import * import json class JsonToMongo(object): def __init__(self): self.local_url = os.path.abspath(os.path.join(os.getcwd(), "../data")) self.host = 'localhost' self.port = 27017 # 读取json文件 def __open_file(self): self.file = open(os.path.join(self.local_url, 'final_node.json'), 'r') # 创建mongodb客户端 self.client = MongoClient(self.host, self.port) # 创建数据库 self.db = self.client.mhkg # 创建集合 self.collection = self.db.node # 关闭文件 def __close_file(self): self.file.close() # 写入数据库 def write_database(self): self.__open_file() # 转换为python对象 data = json.load(self.file) try: self.collection.insert_many(data) print('写入成功') except Exception as e: print(e) finally: self.__close_file() if __name__ == '__main__': j2m = JsonToMongo() j2m.write_database()
[ "396310583@qq.com" ]
396310583@qq.com
226a7bcfbe6f2eb263aab65dbe5beeebf1b5d173
237162607427106ae9564670d47427a62356861f
/core/migrations/0101_merge_20180116_1453.py
06162ec4e37501aaf9fff70de7035df75ad94e97
[]
no_license
pitipund/basecore
8648c1f4fa37b6e6075fd710ca422fe159ba930e
a0c20cec1e17dd0eb6abcaaa7d2623e38b60318b
refs/heads/master
2020-09-13T20:16:02.622903
2019-11-20T09:07:15
2019-11-20T09:07:15
221,885,342
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-01-16 14:53 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0099_procedure_active'), ('core', '0100_auto_20180112_1623'), ] operations = [ ]
[ "longman_694@hotmail.com" ]
longman_694@hotmail.com
d0843099546bd3768c362e42f6bb8f28d9fe269f
68bfa9d7a6b267f52354415fc72fada1ddfdc9ab
/src/lamplib/src/genny/cmd_runner.py
9839bdab7da4894de4a389ec42df53c64eb8f86f
[ "Apache-2.0" ]
permissive
mongodb/genny
5aa3c3be01d8bd8e5b7c9a9d019c5b206d7e97fb
788eaf26e3b8b08d76c71d54fb0013befee9b032
refs/heads/master
2023-09-06T09:25:21.933670
2023-09-05T15:59:07
2023-09-05T15:59:07
121,291,048
44
76
Apache-2.0
2023-09-14T16:50:21
2018-02-12T19:23:44
C++
UTF-8
Python
false
false
1,971
py
import subprocess import os import shlex from uuid import uuid4 import structlog from typing import List, NamedTuple SLOG = structlog.get_logger(__name__) class RunCommandOutput(NamedTuple): returncode: int stdout: List[str] stderr: List[str] def run_command( cmd: List[str], check: bool, cwd: str, shell: bool = False, env: dict = None, capture: bool = True, ) -> RunCommandOutput: env = os.environ.copy() if env is None else env uuid = str(uuid4())[:8] SLOG.debug("Running command", uuid=uuid, cwd=cwd, command=" ".join(shlex.quote(x) for x in cmd)) genny_repo_root = os.environ.get("GENNY_REPO_ROOT", None) assert genny_repo_root, "Code error: env GENNY_REPO_ROOT not set" env["LSAN_OPTIONS"] = f"suppressions={genny_repo_root}/lsan.ignorelist" success = False old_cwd = os.getcwd() try: if not os.path.exists(cwd): raise Exception(f"Cannot chdir to {cwd} from cwd={os.getcwd()}") os.chdir(cwd) result: subprocess.CompletedProcess = subprocess.run( cmd, env=env, shell=shell, check=check, text=capture, # capture implies text. No binary output from genny. capture_output=capture, bufsize=0, ) success = result.returncode == 0 return RunCommandOutput( returncode=result.returncode, stdout=[] if not capture else result.stdout.strip().split("\n"), stderr=[] if not capture else result.stderr.strip().split("\n"), ) except subprocess.CalledProcessError as e: SLOG.error( "Error in command", uuid=uuid, cmd=cmd, env=env, cwd=cwd, returncode=e.returncode, output=e.output, ) raise e finally: SLOG.debug("Finished command", uuid=uuid, success=success) os.chdir(old_cwd)
[ "noreply@github.com" ]
mongodb.noreply@github.com
0eb00156414dc60670691a31f453d8a8e2fdc0bb
4c77c3f68ddd280ad26ed78a9f4927ff9eb5e1f1
/src/ledger/lib/python2.7/site-packages/pip/_internal/cmdoptions.py
58854e34f9b269a44463a8de48e2a181f83bbc36
[ "MIT" ]
permissive
neoscoin/neos-core
5f4a4e9fcdf13a21d1dbedfc7c01a8a8ba454a98
22cecda54875e3554e7c2a4569551c042fa6c0a2
refs/heads/master
2020-03-23T18:54:58.602764
2019-08-04T16:44:27
2019-08-04T16:44:27
141,940,658
4
4
MIT
2018-07-28T21:39:26
2018-07-23T00:05:03
C++
UTF-8
Python
false
false
16,679
py
""" shared options and groups The principle here is to define options once, but *not* instantiate them globally. One reason being that options with action='append' can carry state between parses. pip parses general options twice internally, and shouldn't pass on state. To be consistent, all options will follow this design. """ from __future__ import absolute_import import warnings from functools import partial from optparse import SUPPRESS_HELP, Option, OptionGroup from pip._internal.index import ( FormatControl, fmt_ctl_handle_mutual_exclude, fmt_ctl_no_binary, ) from pip._internal.locations import USER_CACHE_DIR, src_prefix from pip._internal.models import PyPI from pip._internal.utils.hashes import STRONG_HASHES from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.ui import BAR_TYPES if MYPY_CHECK_RUNNING: from typing import Any def make_option_group(group, parser): """ Return an OptionGroup object group -- assumed to be dict with 'name' and 'options' keys parser -- an optparse Parser """ option_group = OptionGroup(parser, group['name']) for option in group['options']: option_group.add_option(option()) return option_group def check_install_build_global(options, check_options=None): """Disable wheels if per-setup.py call options are set. :param options: The OptionParser options to update. :param check_options: The options to check, if not supplied defaults to options. """ if check_options is None: check_options = options def getname(n): return getattr(check_options, n, None) names = ["build_options", "global_options", "install_options"] if any(map(getname, names)): control = options.format_control fmt_ctl_no_binary(control) warnings.warn( 'Disabling all use of wheels due to the use of --build-options ' '/ --global-options / --install-options.', stacklevel=2, ) ########### # options # ########### help_ = partial( Option, '-h', '--help', dest='help', action='help', help='Show help.', ) # type: Any isolated_mode = partial( Option, "--isolated", dest="isolated_mode", action="store_true", default=False, help=( "Run pip in an isolated mode, ignoring environment variables and user " "configuration." ), ) require_virtualenv = partial( Option, # Run only if inside a virtualenv, bail if not. '--require-virtualenv', '--require-venv', dest='require_venv', action='store_true', default=False, help=SUPPRESS_HELP ) # type: Any verbose = partial( Option, '-v', '--verbose', dest='verbose', action='count', default=0, help='Give more output. Option is additive, and can be used up to 3 times.' ) no_color = partial( Option, '--no-color', dest='no_color', action='store_true', default=False, help="Suppress colored output", ) version = partial( Option, '-V', '--version', dest='version', action='store_true', help='Show version and exit.', ) # type: Any quiet = partial( Option, '-q', '--quiet', dest='quiet', action='count', default=0, help=( 'Give less output. Option is additive, and can be used up to 3' ' times (corresponding to WARNING, ERROR, and CRITICAL logging' ' levels).' ), ) # type: Any progress_bar = partial( Option, '--progress-bar', dest='progress_bar', type='choice', choices=list(BAR_TYPES.keys()), default='on', help=( 'Specify type of progress to be displayed [' + '|'.join(BAR_TYPES.keys()) + '] (default: %default)' ), ) # type: Any log = partial( Option, "--log", "--log-file", "--local-log", dest="log", metavar="path", help="Path to a verbose appending log." ) # type: Any no_input = partial( Option, # Don't ask for input '--no-input', dest='no_input', action='store_true', default=False, help=SUPPRESS_HELP ) # type: Any proxy = partial( Option, '--proxy', dest='proxy', type='str', default='', help="Specify a proxy in the form [user:passwd@]proxy.server:port." ) # type: Any retries = partial( Option, '--retries', dest='retries', type='int', default=5, help="Maximum number of retries each connection should attempt " "(default %default times).", ) # type: Any timeout = partial( Option, '--timeout', '--default-timeout', metavar='sec', dest='timeout', type='float', default=15, help='Set the socket timeout (default %default seconds).', ) # type: Any skip_requirements_regex = partial( Option, # A regex to be used to skip requirements '--skip-requirements-regex', dest='skip_requirements_regex', type='str', default='', help=SUPPRESS_HELP, ) # type: Any def exists_action(): return Option( # Option when path already exist '--exists-action', dest='exists_action', type='choice', choices=['s', 'i', 'w', 'b', 'a'], default=[], action='append', metavar='action', help="Default action when a path already exists: " "(s)witch, (i)gnore, (w)ipe, (b)ackup, (a)bort).", ) cert = partial( Option, '--cert', dest='cert', type='str', metavar='path', help="Path to alternate CA bundle.", ) # type: Any client_cert = partial( Option, '--client-cert', dest='client_cert', type='str', default=None, metavar='path', help="Path to SSL client certificate, a single file containing the " "private key and the certificate in PEM format.", ) # type: Any index_url = partial( Option, '-i', '--index-url', '--pypi-url', dest='index_url', metavar='URL', default=PyPI.simple_url, help="Base URL of Python Package Index (default %default). " "This should point to a repository compliant with PEP 503 " "(the simple repository API) or a local directory laid out " "in the same format.", ) # type: Any def extra_index_url(): return Option( '--extra-index-url', dest='extra_index_urls', metavar='URL', action='append', default=[], help="Extra URLs of package indexes to use in addition to " "--index-url. Should follow the same rules as " "--index-url.", ) no_index = partial( Option, '--no-index', dest='no_index', action='store_true', default=False, help='Ignore package index (only looking at --find-links URLs instead).', ) # type: Any def find_links(): return Option( '-f', '--find-links', dest='find_links', action='append', default=[], metavar='url', help="If a url or path to an html file, then parse for links to " "archives. If a local path or file:// url that's a directory, " "then look for archives in the directory listing.", ) def trusted_host(): return Option( "--trusted-host", dest="trusted_hosts", action="append", metavar="HOSTNAME", default=[], help="Mark this host as trusted, even though it does not have valid " "or any HTTPS.", ) # Remove after 1.5 process_dependency_links = partial( Option, "--process-dependency-links", dest="process_dependency_links", action="store_true", default=False, help="Enable the processing of dependency links.", ) # type: Any def constraints(): return Option( '-c', '--constraint', dest='constraints', action='append', default=[], metavar='file', help='Constrain versions using the given constraints file. ' 'This option can be used multiple times.' ) def requirements(): return Option( '-r', '--requirement', dest='requirements', action='append', default=[], metavar='file', help='Install from the given requirements file. ' 'This option can be used multiple times.' ) def editable(): return Option( '-e', '--editable', dest='editables', action='append', default=[], metavar='path/url', help=('Install a project in editable mode (i.e. setuptools ' '"develop mode") from a local project path or a VCS url.'), ) src = partial( Option, '--src', '--source', '--source-dir', '--source-directory', dest='src_dir', metavar='dir', default=src_prefix, help='Directory to check out editable projects into. ' 'The default in a virtualenv is "<venv path>/src". ' 'The default for global installs is "<current dir>/src".' ) # type: Any def _get_format_control(values, option): """Get a format_control object.""" return getattr(values, option.dest) def _handle_no_binary(option, opt_str, value, parser): existing = getattr(parser.values, option.dest) fmt_ctl_handle_mutual_exclude( value, existing.no_binary, existing.only_binary, ) def _handle_only_binary(option, opt_str, value, parser): existing = getattr(parser.values, option.dest) fmt_ctl_handle_mutual_exclude( value, existing.only_binary, existing.no_binary, ) def no_binary(): return Option( "--no-binary", dest="format_control", action="callback", callback=_handle_no_binary, type="str", default=FormatControl(set(), set()), help="Do not use binary packages. Can be supplied multiple times, and " "each time adds to the existing value. Accepts either :all: to " "disable all binary packages, :none: to empty the set, or one or " "more package names with commas between them. Note that some " "packages are tricky to compile and may fail to install when " "this option is used on them.", ) def only_binary(): return Option( "--only-binary", dest="format_control", action="callback", callback=_handle_only_binary, type="str", default=FormatControl(set(), set()), help="Do not use source packages. Can be supplied multiple times, and " "each time adds to the existing value. Accepts either :all: to " "disable all source packages, :none: to empty the set, or one or " "more package names with commas between them. Packages without " "binary distributions will fail to install when this option is " "used on them.", ) cache_dir = partial( Option, "--cache-dir", dest="cache_dir", default=USER_CACHE_DIR, metavar="dir", help="Store the cache data in <dir>." ) no_cache = partial( Option, "--no-cache-dir", dest="cache_dir", action="store_false", help="Disable the cache.", ) no_deps = partial( Option, '--no-deps', '--no-dependencies', dest='ignore_dependencies', action='store_true', default=False, help="Don't install package dependencies.", ) # type: Any build_dir = partial( Option, '-b', '--build', '--build-dir', '--build-directory', dest='build_dir', metavar='dir', help='Directory to unpack packages into and build in. Note that ' 'an initial build still takes place in a temporary directory. ' 'The location of temporary directories can be controlled by setting ' 'the TMPDIR environment variable (TEMP on Windows) appropriately. ' 'When passed, build directories are not cleaned in case of failures.' ) # type: Any ignore_requires_python = partial( Option, '--ignore-requires-python', dest='ignore_requires_python', action='store_true', help='Ignore the Requires-Python information.' ) # type: Any no_build_isolation = partial( Option, '--no-build-isolation', dest='build_isolation', action='store_false', default=True, help='Disable isolation when building a modern source distribution. ' 'Build dependencies specified by PEP 518 must be already installed ' 'if this option is used.' ) # type: Any install_options = partial( Option, '--install-option', dest='install_options', action='append', metavar='options', help="Extra arguments to be supplied to the setup.py install " "command (use like --install-option=\"--install-scripts=/usr/local/" "bin\"). Use multiple --install-option options to pass multiple " "options to setup.py install. If you are using an option with a " "directory path, be sure to use absolute path.", ) # type: Any global_options = partial( Option, '--global-option', dest='global_options', action='append', metavar='options', help="Extra global options to be supplied to the setup.py " "call before the install command.", ) # type: Any no_clean = partial( Option, '--no-clean', action='store_true', default=False, help="Don't clean up build directories)." ) # type: Any pre = partial( Option, '--pre', action='store_true', default=False, help="Include pre-release and development versions. By default, " "pip only finds stable versions.", ) # type: Any disable_pip_version_check = partial( Option, "--disable-pip-version-check", dest="disable_pip_version_check", action="store_true", default=False, help="Don't periodically check PyPI to determine whether a new version " "of pip is available for download. Implied with --no-index.", ) # type: Any # Deprecated, Remove later always_unzip = partial( Option, '-Z', '--always-unzip', dest='always_unzip', action='store_true', help=SUPPRESS_HELP, ) # type: Any def _merge_hash(option, opt_str, value, parser): """Given a value spelled "algo:digest", append the digest to a list pointed to in a dict by the algo name.""" if not parser.values.hashes: parser.values.hashes = {} try: algo, digest = value.split(':', 1) except ValueError: parser.error('Arguments to %s must be a hash name ' 'followed by a value, like --hash=sha256:abcde...' % opt_str) if algo not in STRONG_HASHES: parser.error('Allowed hash algorithms for %s are %s.' % (opt_str, ', '.join(STRONG_HASHES))) parser.values.hashes.setdefault(algo, []).append(digest) hash = partial( Option, '--hash', # Hash values eventually end up in InstallRequirement.hashes due to # __dict__ copying in process_line(). dest='hashes', action='callback', callback=_merge_hash, type='string', help="Verify that the package's archive matches this " 'hash before installing. Example: --hash=sha256:abcdef...', ) # type: Any require_hashes = partial( Option, '--require-hashes', dest='require_hashes', action='store_true', default=False, help='Require a hash to check each requirement against, for ' 'repeatable installs. This option is implied when any package in a ' 'requirements file has a --hash option.', ) # type: Any ########## # groups # ########## general_group = { 'name': 'General Options', 'options': [ help_, isolated_mode, require_virtualenv, verbose, version, quiet, log, no_input, proxy, retries, timeout, skip_requirements_regex, exists_action, trusted_host, cert, client_cert, cache_dir, no_cache, disable_pip_version_check, no_color, ] } index_group = { 'name': 'Package Index Options', 'options': [ index_url, extra_index_url, no_index, find_links, process_dependency_links, ] }
[ "kris@blockchaindatasystems.com" ]
kris@blockchaindatasystems.com
20e145131223914cc0e519e20273c104a72d4688
4ccf02e5712d742daf524b70b6ebc77c7f64a502
/extras/annotation_pipeline/quality_assurance/check_jigs_up_annotations.py
2679fadc2929b330112e0c3bd3ed0e23fe837b4c
[ "MIT" ]
permissive
rajammanabrolu/jiminy-cricket
e77ebae6e02ad68dfd13c8e564b5f7203c59d564
35a0d979d8ddc77371ead991f04230495279fa99
refs/heads/main
2023-08-21T01:28:16.814615
2021-09-23T03:28:33
2021-09-23T03:28:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,629
py
import argparse import os import re import csv import pprint pp = pprint.PrettyPrinter() # This script is for finding annotations of JIGS-UP functions where the line # noted in the spreadsheet is not the line where the JIGS-UP function starts. # We print out these instances and the line that they should be corrected to. def main(args): # get list of annotations from CSV annotations = [] with open(args.csv_path) as f: reader = csv.reader(f) for i, row in enumerate(reader): # discard the first row (header info) and rows between files (these typically have the second column empty) if (i > 0) and (row[1] != '') and (row[6] != 'N/A'): annotations.append({'filename': row[0], 'line_number': row[1]}) # get list of paths to ZIL files for the indicated game zil_paths = [] for root, dirs, files in os.walk(args.game_folder_path): for name in files: if name.split('.')[-1] == 'zil': zil_paths.append({'filename': name, 'full_path': os.path.join(root, name)}) # For each ZIL file, find the range of lines spanned by each JIGS-UP call. # Then, for each annotation, if it is inside the range of a JIGS-UP call, # make sure it is at the first line. Keep track of violations. jigs_up_annotations = [] violations = [] for path in zil_paths: print('Checking {}'.format(path['filename'])) with open(path['full_path'], 'r') as f: zil_lines = f.readlines() # get span of each JIGS-UP call jigs_up_calls = [] start = -1 for i, line in enumerate(zil_lines): if start != -1: if '>' in line: jigs_up_calls.append([start, i]) start = -1 if '<JIGS-UP' in line: start = i if len(re.findall('<JIGS-UP .*>', line)) > 0: # starts and ends on same line jigs_up_calls.append([start, i]) start = -1 # make sure each annotation of a JIGS-UP call is on the first line of the JIGS-UP for annotation in annotations: if annotation['filename'] != path['filename']: continue # annotation is from a different file than the one we're focusing on line_number = re.sub('\([a-z]\)', '', annotation['line_number']) # transform "1312(a)", "1312(b)", etc. into "1312" line_number = int(line_number) - 1 # convert to 0-indexing for call in jigs_up_calls: if call[0] <= line_number <= call[1]: jigs_up_annotations.append([annotation['filename'], annotation['line_number']]) if line_number != call[0]: violations.append([annotation['filename'], annotation['line_number'], 'should be {}'.format(call[0] + 1)]) print('\n\nFound {} JIGS-UP annotations:\n'.format(len(jigs_up_annotations))) pp.pprint(jigs_up_annotations) print('\n\n') if len(violations) == 0: print('Found no errors! Good job.') else: print('\nFound {} errors:\n'.format(len(violations))) pp.pprint(violations) if __name__ == '__main__': parser = argparse.ArgumentParser(description='See comments for description.') parser.add_argument('--game_folder_path', type=str, default='', help='path to the game folder, e.g. ./zork1/') parser.add_argument('--csv_path', type=str, default='', help='path to the annotation CSV, e.g. ./zork1/zork1_annotations.csv') args = parser.parse_args() main(args)
[ "mrmazeika@gmail.com" ]
mrmazeika@gmail.com
de6682fbf0a6b2307883950d8adbb07e38918215
134c79f0d526dc3f48bd352cdff1d4e55a919d5e
/TextRendering/src/doc/lowlevel.py
0e493533ea451cfc556fa8f20646fb5d40c78978
[]
no_license
KrbAlmryde/cs524-Journal
ff4a85c0021da49b39fa12376d87856fb2a316fe
1db769c81825eaad12dc4c7326daebebebe24371
refs/heads/master
2021-01-25T05:27:50.549574
2015-04-10T16:49:18
2015-04-10T16:49:18
29,946,150
0
0
null
null
null
null
UTF-8
Python
false
false
1,542
py
#! /usr/bin/env python from pyevtk.vtk import VtkFile, VtkRectilinearGrid import numpy as np # ************************************************************** # * Example of how to use the low level VtkFile class. * # ************************************************************** nx, ny, nz = 6, 6, 2 lx, ly, lz = 1.0, 1.0, 1.0 dx, dy, dz = lx/nx, ly/ny, lz/nz ncells = nx * ny * nz npoints = (nx + 1) * (ny + 1) * (nz + 1) x = np.arange(0, lx + 0.1*dx, dx, dtype='float64') y = np.arange(0, ly + 0.1*dy, dy, dtype='float64') z = np.arange(0, lz + 0.1*dz, dz, dtype='float64') start, end = (0, 0, 0), (nx, ny, nz) w = VtkFile("./evtk_test", VtkRectilinearGrid) w.openGrid(start=start, end=end) w.openPiece(start=start, end=end) # Point data temp = np.random.rand(npoints) vx = vy = vz = np.zeros([nx + 1, ny + 1, nz + 1], dtype="float64", order = 'F') w.openData("Point", scalars = "Temperature", vectors = "Velocity") w.addData("Temperature", temp) w.addData("Velocity", (vx,vy,vz)) w.closeData("Point") # Cell data pressure = np.zeros([nx, ny, nz], dtype="float64", order='F') w.openData("Cell", scalars = "Pressure") w.addData("Pressure", pressure) w.closeData("Cell") # Coordinates of cell vertices w.openElement("Coordinates") w.addData("x_coordinates", x); w.addData("y_coordinates", y); w.addData("z_coordinates", z); w.closeElement("Coordinates"); w.closePiece() w.closeGrid() w.appendData(data = temp) w.appendData(data = (vx,vy,vz)) w.appendData(data = pressure) w.appendData(x).appendData(y).appendData(z) w.save()
[ "kyle.almryde@gmail.com" ]
kyle.almryde@gmail.com
7608751f89cc4ada8d4a85a974c37bb44e7dc50b
29cabe70d48a3ba9493ad8d4b7d3973b4782c7ab
/src/Baseline.py
004c6eeeb23fc020bf4d47403389239909c0b958
[]
no_license
drawdoowmij/salaryprediction
8d1e7321b7d06da3f9edcd3ab3fea0931a3a017c
ae6156ecc47322067f33d6503ae3c88e3a9d154c
refs/heads/master
2020-05-31T17:33:27.390380
2019-06-30T22:52:30
2019-06-30T22:52:30
190,411,791
1
0
null
null
null
null
UTF-8
Python
false
false
1,554
py
class Baseline: """ Runs a basline linear regression model with limited features just to get a basline measure of the mean squared errorr. Future models will be compared to this one for validity. Parameters ---------- df: feature DataFrame est: estimator to use for baseline measure yrsExp: feature to use mileMetro: feature to use sal: target Returns ------- Nothing """ def __init__(self, df, est, yrsExp, milesMetro, sal): self.df = df self.sal = sal self.est = est self.yrsExp = yrsExp self.milesMetro = milesMetro def baseline_model(self): ## baseline features X = self.df.loc[:, self.yrsExp:self.milesMetro] ## target y = self.df[self.sal] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101) ## instantiate linear regression lr = self.est lr.fit(X_train, y_train) ## Predict our model predict = lr.predict(X_test) lr_scores = cross_val_score(lr, X, y, scoring='neg_mean_squared_error', cv=5) print('\n') print(color.BOLD + 'Baseline Model Information' + color.END) print('Linear Regression score is {}'.format(lr.score(X_test, y_test))) print('The mean squared errors are {}'.format(lr_scores)) print('The average mean squared error is {}'.format(-np.mean(lr_scores))) print('\n')
[ "noreply@github.com" ]
drawdoowmij.noreply@github.com
1660fc1e774c3881a875f18ebffd5dfe52106f81
fe300a07894111acaf1f9eb38d8d2e4d57ce470a
/Function/2-1.py
10791ea323cf2109991f375a740bcea49b200c3b
[]
no_license
lienero/-2019
d26c73e506b41deb383ca0a9e5dcfb406e6c52b1
a53cc3e4e05224070c24f0afb005415fd55fec4f
refs/heads/master
2020-05-24T11:05:40.700815
2019-09-16T10:23:58
2019-09-16T10:23:58
187,240,839
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
def times_tables(num): n=1 while n <= 9: print(num, " x ", n, " = ", n*num) n = n+1
[ "lienero@naver.com" ]
lienero@naver.com
d7949c88d9a7edbfea31dbd0ba7ab967b033b518
8dca64dd11b23a7d59413ac8e28e92a0ab80c49c
/804. Unique Morse Code Words/solution.py
8dcc8c84f34f57b973a8d917edf02c942dffc095
[]
no_license
huangruihaocst/leetcode-python
f854498c0a1d257698e10889531c526299d47e39
8f88cae7cc982ab8495e185914b1baeceb294060
refs/heads/master
2020-03-21T20:52:17.668477
2018-10-08T20:29:35
2018-10-08T20:29:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
class Solution: def uniqueMorseRepresentations(self, words): """ :type words: List[str] :rtype: int """ morse = ['.-', '-...', '-.-.', '-..', '.', '..-.', '--.', '....', '..', '.---', '-.-', '.-..', '--', '-.', '---', '.--.', '--.-', '.-.', '...', '-', '..-', '...-', '.--', '-..-', '-.--', '--..'] ms = list() for word in words: m = str() for c in word: m += morse[ord(c) - ord('a')] ms.append(m) return len(set(ms)) if __name__ == '__main__': solution = Solution() print(solution.uniqueMorseRepresentations(["gin", "zen", "gig", "msg"]))
[ "huangruihaocst@126.com" ]
huangruihaocst@126.com
c6bb44a4b00a0210af19a85c3a485a6a6a5a3c72
f0e2643cf8a015b581f509a4f87f92136424b0c9
/Cryptage_Decryptage_Polybe.py
86535ba889fab89bb609e8c31e1c795aad1bcdbb
[]
no_license
MrVyM/Cypher
0ddbf0b1205e87718f8d9d96c0435c1797c0af93
b28be87f17f5a6439a852477bb1f2352d6d71799
refs/heads/main
2023-04-01T22:56:50.276107
2021-04-03T10:20:39
2021-04-03T10:20:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,309
py
import Enlever_Caractere as EC import Open_Write_Fichier as OpenWrite carre_polybe_codage=[('', '11'), ('', '21'), ('', '31'), ('', '41'), ('', '51'), ('', '12'), ('', '22'), ('', '32'), ('', '42'), ('', '52'), ('', '13'), ('', '23'), ('', '33'), ('', '43'), ('', '53'), ('', '14'), ('', '24'), ('', '34'), ('', '44'), ('', '54'), ('', '15'), ('', '25'), ('', '35'), ('', '45'), ('', '55')] carre_polybe_decodage=[('11',''), ('21',''), ('31',''), ('41',''), ('51',''), ('12',''), ('22',''), ('32',''), ('42',''), ('52',''), ('13',''), ('23',''), ('33',''), ('43',''), ('53',''), ('14',''), ('24',''), ('34',''), ('44',''), ('54',''), ('15',''), ('25',''), ('35',''), ('45',''), ('55','')] def correction_tableau(cle) : global carre_polybe_codage #je declare que j'utilise la liste de __main__ global carre_polybe_decodage #je declare que j'utilise la liste de __main__ #je remet a zero les listes carre_polybe_codage=[('', '11'), ('', '21'), ('', '31'), ('', '41'), ('', '51'), ('', '12'), ('', '22'), ('', '32'), ('', '42'), ('', '52'), ('', '13'), ('', '23'), ('', '33'), ('', '43'), ('', '53'), ('', '14'), ('', '24'), ('', '34'), ('', '44'), ('', '54'), ('', '15'), ('', '25'), ('', '35'), ('', '45'), ('', '55')] carre_polybe_decodage=[('11',''), ('21',''), ('31',''), ('41',''), ('51',''), ('12',''), ('22',''), ('32',''), ('42',''), ('52',''), ('13',''), ('23',''), ('33',''), ('43',''), ('53',''), ('14',''), ('24',''), ('34',''), ('44',''), ('54',''), ('15',''), ('25',''), ('35',''), ('45',''), ('55','')] temp="" #je declare une variable tampo for carac in cle : #boucle for pour enlever toutes les ponctuation et les nombres de la clef if carac in ",?;/:§!°]=}[({'-_&0123456789 " : pass else : #si le carac n'est pas dans la chaine des interdits temp+=carac #alors j'ajoute carac a temp cle=temp #je dit que la cle est egale a temp qui est la variable tampon qui m'a servi dans ma boucle for cle=EC.enlever_carac_accent(cle.lower()) #je corrige encore la clef temp="" #je remet a zero temp increment=0 #je dit que l'increment est a 0 if cle!="" : #si la cle est vide cela veut dire que on fait un polybe sans cle donc je passe for carac in cle : #boucle for dans la cle if carac not in temp : #si le caractere n'est pas dans la variable tampon alors if str(carac)=="j" : #si le caractere est j alors je ne fait rien pass else : #sinon je continue a faire les listes de codage et de decodage carre_polybe_codage[increment]=str(carac),carre_polybe_codage[increment][1] #je dit que l'element'increment' de la liste est un tuple de carac et de son nombre carre_polybe_decodage[increment]=carre_polybe_decodage[increment][1],str(carac) #je dit que l'element'increment' de la liste est un tuple de nombre et de carac temp+=carac #j'ajoute le carac a temp qui est la liste qui contient tous les caracteres deja mis dans les listes increment+=1 #j'incremente incremente for carac in range(0,26) : #for de 0 a 26 if chr((97+carac)) not in temp : #si le carac n'est pas dans temp if chr((97+carac))=="j" : #si c'est j alors je fait rien pass else : #sinon je continue a faire les listes de codage et de decodage carre_polybe_codage[increment]=chr(carac+97),carre_polybe_codage[increment][1] #je dit que l'element'increment' de la liste est un tuple de carac et de son nombre carre_polybe_decodage[increment]=carre_polybe_decodage[increment][0],chr(carac+97) #je dit que l'element'increment' de la liste est un tuple de nombre et de carac temp+=chr(carac+97) #j'ajoute le carac a temp qui est la liste qui contient tous les caracteres deja mis dans les listes increment+=1 #j'incremente incremente carre_polybe_codage=dict(carre_polybe_codage) #je transforme la liste de codage en dictionnaires carre_polybe_decodage=dict(carre_polybe_decodage) #je transforme la liste de codage en dictionnaires def cryptage(cle,chemin_original,chemin_final) : texte=EC.enlever_carac_accent(OpenWrite.ouvrir_fichier(chemin_original)) #on ouvre le fichier cela nous donne une longue chaine de caractere texte.lower() if texte!=False : #si le texte n'est pas vide correction_tableau(cle) #je modifie les dictionnaires de codage et de decodage texte_crypter="" #textecrypter est vide for carac in texte :# for de tous les caracteres dans le texte if carac in "j" : #si le caractere est j alors je le code avec la cle i texte_crypter+=(carre_polybe_codage["i"]+",") elif carac in "abcdefghiklmnopqrstuvwxyz" : #sinon je demande la valeurs dans le dictionnaires puis je rajoute une virgule texte_crypter+=(carre_polybe_codage[carac]+",") else : texte_crypter+='"'+carac+'",'# si je ne conait pas le caractere alors je ne le code pas mais je l'entoure de " OpenWrite.ecrire_fichier(chemin_final,texte_crypter[:-1]) #on ecrit le texte sans la derniere virgule dans un fichier def decryptage(cle,chemin_original,chemin_final) : texte=EC.enlever_carac_accent(OpenWrite.ouvrir_fichier(chemin_original)) #on ouvre le fichier cela nous donne une longue chaine de caractere texte=texte.lower() #je ne gere que les minuscules if texte!=False : #si le texte n'est pas vide correction_tableau(cle) #je modifie les dictionnaires de codage et de decodage texte=texte.split(",") #je separe le texte grace au virgule texte_decrypter="" #textedecrypter est vide for carac in texte : # for de tous les caracteres dans le texte if '"' not in carac : #si il n'y a pas de " alors je prends la valeur du dictionnaires texte_decrypter+=carre_polybe_decodage[carac] else : #si il y a des " alors je ne l'est pas coder donc je prend le caractere entre " texte_decrypter+=carac[1] OpenWrite.ecrire_fichier(chemin_final,texte_decrypter) #on ecrit le texte dans un fichier
[ "noreply@github.com" ]
MrVyM.noreply@github.com
b1e22bf9ed41b1f3607a1bad07394668a0b1f99f
2e6c379a22e87ad15f6d9c0356e615f42609e0eb
/Codility/4CountingElements/MissingInteger.py
46a95f94c673ed01a4975c312cbd7e077517f1c1
[]
no_license
opethe1st/CompetitiveProgramming
49f24b1b0c6bf737c5698a15edfdf5009a308a52
84ab62144f6b389ef74b7e8956b7e02e0f2ab108
refs/heads/master
2021-01-13T10:35:08.339291
2020-09-14T21:23:34
2020-09-14T21:23:34
69,969,077
7
2
null
2019-02-17T18:36:34
2016-10-04T13:46:21
Python
UTF-8
Python
false
false
206
py
def solution(A): arr = [False]*100001 for a in A: if 0 < a <= 100000: arr[a] = True for i in range(1, 100001): if not arr[i]: return i return 100001
[ "ogunks@live.com" ]
ogunks@live.com
46d0d21c4da3de754acdc3335de44520de01be80
53a21ab982c8bf6695c2c103fcef7e2d9b535269
/youtube_dl.py
b382272741de9b7771816d56945c3defdfbfccfe
[ "MIT" ]
permissive
Naaatan/PyTube
f3cf87548d845b86f4be64b0e3b2f845a09719dc
87d0f210ccb880b4b4593379441f98da92e5fcf4
refs/heads/main
2023-05-11T21:46:12.506210
2021-06-07T01:48:36
2021-06-07T01:48:36
374,491,115
0
0
null
null
null
null
UTF-8
Python
false
false
3,843
py
#!/usr/bin/env python # coding: utf-8 import glob import time import os import re import subprocess from pytube import Playlist, YouTube from tqdm import tqdm # consts MUSIC_DIR = os.path.join(os.getcwd(), "music") VIDEO_DIR = os.path.join(os.getcwd(), "videos") pbar = None def download_video(url): """ Download video from YouTube. Parameters ---------- url : str YouTube video URL Returns ---------- info : dict Downloaded video info. """ print("Downloading {url}".format(url=url)) yt = YouTube(url) yt.register_on_progress_callback(show_progress_bar) yt.register_on_complete_callback(complete_download) stream = yt.streams.filter(progressive=True, file_extension='mp4').first() return (stream.download(VIDEO_DIR), stream.title) def download_playlist(url): """ Download playlist from YouTube. Parameters ---------- url : str YouTube playlist URL Returns ---------- info : dict Downloaded video info. """ print("Downloading {url}".format(url=url)) pl = Playlist(url) video_infos = {} for video in pl.videos: try: video.register_on_progress_callback(show_progress_bar) video.register_on_complete_callback(complete_download) stream = video.streams.filter(progressive=True, file_extension='mp4').first() video_path = stream.download(VIDEO_DIR) video_infos[video_path] = stream.title except Exception as e: print(e) continue return video_infos def is_playlist(video_url) -> bool : pattern_playlist = r'^(https|http)://www.youtube.com/playlist\?list=\.*' match = re.search(pattern_playlist, video_url) return True if match is not None else False def convertMP3(video_path, title): if video_path: music_path = os.path.join(MUSIC_DIR, "{title}.mp3".format(title=title)) subprocess.call([ 'ffmpeg', '-i', video_path, '-loglevel', # 標準出力設定 'error', # エラーすべて # '-progress', # 進捗表示 # '-', # 進捗を標準出力 music_path ]) return music_path return None def show_progress_bar(stream, chunk, bytes_remaining): global pbar if pbar is None: print(stream.default_filename) pbar = tqdm(total=stream.filesize) progress = stream.filesize - bytes_remaining pbar.update(progress) time.sleep(0.01) def complete_download(stream, file_path): global pbar if pbar is not None: pbar.close() pbar = None def download_with_convert(url): if is_playlist(url): video_infos = download_playlist(url) for video_path, title in video_infos.items(): music_path = convertMP3(video_path, title) convert_result_print(video_path, music_path) else: video_path, title = download_video(url) music_path = convertMP3(video_path, title) convert_result_print(video_path, music_path) def convert_result_print(video_path, music_path): print() print("================== Result ==================") if video_path and music_path: print("video_path={video}".format(video=video_path)) print("music_path={music}".format(music=music_path)) elif video_path and (music_path is None): print("video_path={video}".format(video=video_path)) print("music mp3 Convert Failed..") else: print("Download Failed") print("============================================") if __name__ == "__main__": print("Please input youtube video URL or playlist URL") print() url = input(">> ") download_with_convert(url)
[ "nagura@avancesys.co.jp" ]
nagura@avancesys.co.jp
a5d8335443fdf0a6e06452af44b450abf01e00c8
f72c9f33046fa17b19dbb0c5f91b7fee64888f81
/blue_custom_branding/helpers/less.py
dc89119db20b02a0e848659d13f49efe685fcb79
[]
no_license
eisaferreterias/newcode
7c6922a21459b0d2ddc7027d75df66c2d9747463
bf5df7e50acd116992c1da1498dd27d0f4b553f0
refs/heads/master
2020-04-14T09:59:46.831636
2019-01-02T06:11:25
2019-01-02T06:11:25
163,774,755
1
0
null
null
null
null
UTF-8
Python
false
false
14,763
py
# -*- coding: utf-8 -*- import os import re import logging _logger = logging.getLogger(__name__) def write_less(env): """ Write the company theme details as less variables in a database-specific less file. :raise Exception: if there is an error opening or writing to files :return: None """ dbname = env.cr.dbname addon_path = env['ir.config_parameter'].get_param( 'blue_custom_branding.addon_path') fname = "{}/static/src/less/variables_{}.less".format(addon_path, dbname) companies = env['res.company'].search([]) try: f = open(fname, "w") for company in companies: less_string = """ @brand-primary-{database}-{company_id}: #{primary}; @brand-success-{database}-{company_id}: #{success}; @brand-info-{database}-{company_id}: #{info}; @brand-warning-{database}-{company_id}: #{warning}; @brand-danger-{database}-{company_id}: #{danger}; @navbar-default-bg-{database}-{company_id}: @brand-primary-{database}-{company_id}; // @brand-primary @navbar-inverse-bg-{database}-{company_id}: @brand-info-{database}-{company_id}; // @brand-info @label-primary-bg-{database}-{company_id}: @brand-primary-{database}-{company_id}; // @brand-primary """.format( primary=company.theme_color_primary, success=company.theme_color_success, info=company.theme_color_info, warning=company.theme_color_warning, danger=company.theme_color_danger, database=dbname, company_id=company.id, ) f.write(less_string) f.close() except Exception as e: _logger.debug('Theme error writing to file : %s' % e) def write_bootswatch_less(env): """ Write the company theme details as bootswatch-compatible less variables in a database-specific bootswatch less file. :raise Exception: if there is an error opening or writing to files :return: None """ dbname = env.cr.dbname addon_path = env['ir.config_parameter'].get_param( 'blue_custom_branding.addon_path') fname = "{}/static/src/less/bootswatch_{}.less".format(addon_path, dbname) companies = env['res.company'].search([]) try: f = open(fname, "w") for company in companies: # &#123; = { &#125; = } // They get converted back when the files are merged. css_string = """ body.blue_theme__{database}__{company_id} a.oe_menu_toggler:hover, body.blue_theme__{database}__{company_id} a.oe_menu_toggler:focus &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; /* main navigation bar */ body.blue_theme__{database}__{company_id} a.oe_menu_toggler, body.blue_theme__{database}__{company_id} #oe_main_menu_navbar, body.blue_theme__{database}__{company_id} .o_main_navbar &#123; background-color: @brand-primary-{database}-{company_id} !important ; border-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} a.o_menu_toggle:hover, body.blue_theme__{database}__{company_id} a.o_menu_toggle:focus, body.blue_theme__{database}__{company_id} button.o_mobile_menu_toggle:hover, body.blue_theme__{database}__{company_id} button.o_mobile_menu_toggle:focus, body.blue_theme__{database}__{company_id} .o_main_navbar ul.o_menu_systray li > a:hover, body.blue_theme__{database}__{company_id} .o_main_navbar ul.o_menu_systray li > a:focus &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; @media (min-width: @grid-float-breakpoint-max) &#123; body.blue_theme__{database}__{company_id} body .o_main_navbar > ul > li > a[data-toggle="collapse"]:hover, body.blue_theme__{database}__{company_id} body .o_main_navbar > ul > li > a[data-toggle="collapse"]:focus &#123; background-color: @brand-info-{database}-{company_id} !important; &#125; &#125; body.blue_theme__{database}__{company_id} .o_list_view tfoot &#123; background-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} .o_searchview .o_searchview_facet .o_searchview_facet_label &#123; background-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} .o_form_view.o_form_editable .o_form_field .o_list_view td.o_readonly &#123; background-color: transparent; &#125; body.blue_theme__{database}__{company_id} .navbar &#123; &-default &#123; .badge &#123; background-color: #fff; color: @navbar-default-bg-{database}-{company_id}; &#125; &#125; &-inverse &#123; .badge &#123; background-color: #fff; color: @navbar-inverse-bg-{database}-{company_id}; &#125; &#125; &#125; body.blue_theme__{database}__{company_id} .o_form_view .o_notebook > ul.nav-tabs > li.active > a, body.blue_theme__{database}__{company_id} .o_form_view .o_notebook > ul.nav-tabs > li.active > a:hover, body.blue_theme__{database}__{company_id} .o_form_view .o_notebook > ul.nav-tabs > li.active > a:focus, body.blue_theme__{database}__{company_id} .o_form_view .o_notebook > ul.nav-tabs > li.active > a:active &#123; color: @brand-primary-{database}-{company_id}; &#125; /* For the community version */ /* This gets the developer mode button. */ body.blue_theme__{database}__{company_id} .label-primary:hover, body.blue_theme__{database}__{company_id} .label-primary:focus, body.blue_theme__{database}__{company_id} .label-primary &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) ; &#125; body.blue_theme__{database}__{company_id} .o_main_navbar &#123; background-color: @brand-primary-{database}-{company_id}; border-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} .o_main_navbar button:hover, body.blue_theme__{database}__{company_id} .o_main_navbar button:focus &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; /* This picks up the menu items that are open but lost focus. */ body.blue_theme__{database}__{company_id} .o_main_navbar > li.open > a:focus, body.blue_theme__{database}__{company_id} .o_main_navbar > li.open > a[aria-expanded="true"] &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%); &#125; /* This is the "X" button that closes debug mode */ body.blue_theme__{database}__{company_id} a[data-action="leave_debug_mode"]:hover &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%); &#125; @media (min-width: @grid-float-breakpoint-max) &#123; body.blue_theme__{database}__{company_id} .o_main_navbar > li > a.oe_menu_toggler &#123; background-color: @brand-primary-{database}-{company_id} !important; &#125; &#125; @media (max-width: @grid-float-breakpoint-max) &#123; body.blue_theme__{database}__{company_id} .o_main_navbar a:hover, body.blue_theme__{database}__{company_id} .o_main_navbar a:focus &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; &#125; @media (min-width: @grid-float-breakpoint-max) &#123; body.blue_theme__{database}__{company_id} .o_main_navbar > li > a.oe_menu_toggler:focus, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a.oe_menu_toggler:active, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a.oe_menu_toggler:hover, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a[data-toggle="dropdown"]:hover, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a[data-toggle="dropdown"]:focus, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a[data-toggle="collapse"]:hover, body.blue_theme__{database}__{company_id} .o_main_navbar > li > a[data-toggle="collapse"]:focus, body.blue_theme__{database}__{company_id} .o_main_navbar > .open > a &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; &#125; body.blue_theme__{database}__{company_id} .o_main_navbar &#123; border-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; body.blue_theme__{database}__{company_id} .o_main_navbar .o_menu_brand &#123; border-bottom: 1px solid darken(@brand-primary-{database}-{company_id}, 10%); &#125; body.blue_theme__{database}__{company_id}.o_web_client .navbar .o_menu_toggle:hover &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; body.blue_theme__{database}__{company_id}.o_web_client .o_main_navbar > ul > li > a:hover, body.blue_theme__{database}__{company_id}.o_web_client .o_main_navbar > ul > li > a:hover, body.blue_theme__{database}__{company_id}.o_web_client .o_main_navbar .dropdown-toggle:hover, body.blue_theme__{database}__{company_id}.o_web_client .o_main_navbar .dropdown-toggle:focus &#123; background-color: darken(@brand-primary-{database}-{company_id}, 10%) !important; &#125; body.blue_theme__{database}__{company_id} .o_list_view tfoot &#123; background-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} .o_searchview .o_searchview_facet .o_searchview_facet_label &#123; background-color: @brand-primary-{database}-{company_id}; &#125; body.blue_theme__{database}__{company_id} .o_form_view.o_form_editable .o_form_field .o_list_view td.o_readonly &#123; background-color: transparent; &#125; body.blue_theme__{database}__{company_id} .navbar &#123; &-default &#123; .badge &#123; background-color: #fff; color: @navbar-default-bg-{database}-{company_id}; &#125; &#125; &-inverse &#123; .badge &#123; background-color: #fff; color: @navbar-inverse-bg-{database}-{company_id}; &#125; &#125; &#125; """.format( database=dbname, company_id=company.id) if company.override_home: css_string += ''' body.blue_theme__{database}__{company_id} .o_application_switcher &#123; background: -webkit-gradient(linear, left top, right bottom, from(@brand-info-{database}-{company_id}), to(darken(@brand-info-{database}-{company_id}, 10%)) ); &#125; '''.format( database=dbname, company_id=company.id) f.write(css_string) f.close() except Exception as e: _logger.debug('Theme error writing to file : %s' % e) def combine_bootswatch_less(env): """ Write the company theme details as bootswatch-compatible less variables in a bootswatch less file. :raise Exception: if there is an error opening or writing to files :return: None """ addon_path = env['ir.config_parameter'].get_param( 'blue_custom_branding.addon_path') if addon_path: outname = "{}/static/src/less/bootswatch.less".format(addon_path) filepath = "{}/static/src/less/".format(addon_path) infiles = [fn for fn in os.listdir( filepath) if re.match("bootswatch_.*.less", fn)] try: f = open(outname, "w") for file in infiles: with open(filepath + file, 'r') as datafile: inless = datafile.read() inless = inless.replace('&#123;', '{') inless = inless.replace('&#125;', '}') f.write(inless) datafile.close() f.close() except Exception as e: _logger.debug('Theme error writing to file : %s' % e) def combine_variables_less(env): """ Write the company theme details as less variables in a less file. :raise Exception: if there is an error opening or writing to files :return: None """ addon_path = env['ir.config_parameter'].get_param( 'blue_custom_branding.addon_path') if addon_path: outname = "{}/static/src/less/variables.less".format(addon_path) filepath = "{}/static/src/less/".format(addon_path) infiles = [fn for fn in os.listdir( filepath) if re.match("variables_.*.less", fn)] try: f = open(outname, "w") for file in infiles: with open(filepath + file, 'r') as datafile: inless = datafile.read() f.write(inless) datafile.close() f.close() except Exception as e: _logger.debug('Theme error writing to file : %s' % e)
[ "noreply@github.com" ]
eisaferreterias.noreply@github.com
d5db198ca07bdb534c74600e5996092ed4d583d8
8e8a961a7b4e9ee012bd7e8e18de6abce9c189fb
/playground.py
99a1af554249edb32f33190c86854e6abd0a393f
[]
no_license
youkaede77/LeetCode_Python
628eb74b835463b86f129eed37cbf4515b5eccc0
1e43fdac9d9baec899e10e1983a916a95fa59e84
refs/heads/master
2022-01-23T04:54:55.414576
2019-05-17T13:08:45
2019-05-17T13:08:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
class Solution(object): def getRow(self, rowIndex): """ :type rowIndex: int :rtype: List[int] """ ans = [1]+[0]*rowIndex for i in range(rowIndex): for j in range(i+1, 0, -1): ans[j] = ans[j] + ans[j-1] print(i,j,ans) return ans x = Solution() x.getRow(5)
[ "weidafeng.edu@gmail.com" ]
weidafeng.edu@gmail.com
deb02443f9433006c687b7c6430df80bc872c14c
1dd2bdcee28f17011401da44882534d0db441031
/exceptions.py
dfe2fc16cf94d709f395a6d3d58d34241db21d27
[]
no_license
DjDeMi/bq78412
dc89adc97becd25bac4db3db1d44f036d6f4a87b
4c771b12de4812fb2ab6157d8c2a3c5df1cce345
refs/heads/master
2020-06-08T09:59:52.464844
2013-11-24T22:38:18
2013-11-24T22:38:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
628
py
class CRCError(Exception): def __init__(self, value): self.value = value def __str__(self): return "Error " + str(self.value) class timeoutError(Exception): def __init__(self, value): self.value = value def __str__(self): return "Error " + str(self.value) class sizeError(Exception): def __init__(self, value): self.value = value def __str__(self): return "Error " + str(self.value) class ACKError(Exception): def __init__(self, value): self.value = value def __str__(self): return "Error " + str(self.value)
[ "djdemi@gmail.com" ]
djdemi@gmail.com
dac582a4280341b6432f8c1dde055370905ef637
67fff1dfe06865b78a159efec9c7a3416a1170d3
/Snakefile
b87ac8edff111e3390cf9c6aadac2ea925ba9baa
[]
no_license
marcoralab/SumHer_pipeline
32cece59926bd11eec42913b47778155166b18d5
4901b0bbacf3ad3d79f4164f57429583456909c7
refs/heads/master
2021-05-20T08:47:20.290634
2020-04-01T19:14:02
2020-04-01T19:14:02
252,205,780
0
0
null
null
null
null
UTF-8
Python
false
false
9,735
'''Snakefile for sex stratified GWAS Version 0.2''' from scripts.parse_config import parser, getcom, getloads, subs from scripts.parse_config import proc_cohorts, proc_covars from getpass import getuser import glob import os import socket isMinerva = "hpc.mssm.edu" in socket.getfqdn() configfile: "config.yaml" shell.executable("/bin/bash") BPLINK = ["bed", "bim", "fam"] CHROM = parser(config) def gsc(wildcards, k): return study_cohorts[wildcards.sample][k] study_cohorts = {k: proc_cohorts(config['studies'][k], config) for k in config['studies'].keys()} study_covars = {k: proc_covars(k, config, study_cohorts) for k in config['studies'].keys()} if isMinerva: anacondapath = sys.exec_prefix + "/bin" shell.prefix(". ~/.bashrc; PATH={}:$PATH; ".format(anacondapath)) tempdir = "/sc/orga/scratch/{}/temp/".format(getuser()) else: import tempfile tempdir = tempfile.gettempdir() + '/' com = getcom({'plink': 'plink --keep-allele-order', 'plink2': 'plink', 'plink3': 'plink --keep-allele-order', 'bcftools': 'bcftools', 'R': 'Rscript', 'R2': 'R', 'METAL': 'metal'}, {'plink': '--memory 3800', 'plink3': '--memory 15800'}) loads = getloads(config, {'plink': 'plink', 'bcftools': 'bcftools', 'METAL': 'metal', 'R': ['R', 'pandoc', 'udunits']}, lsfextra={'R': 'RSTUDIO_PANDOC=$(which pandoc)'}) def filldir(string): if '{basedir}' in string: return string.format(basedir=config['base_dir']) return string infiles = {k: {kk: filldir(vv) for kk, vv in v.items() if isinstance(vv, str)} for k, v in config['studies'].items()} maf = config['maf'] COV = list(list(study_covars.values())[0].keys()) MAF = list(maf.keys()) MANEXT = ["manhattan.png", "qq.png"] GWASMAN = ["empP", "filtered"] if config['perm'] else ["filtered"] def maybetemp(x): return x if config['keepgenos'] else temp(x) OUTFILES = expand( "GWAS/cov-{cov}.maf-{maf}/{sample}.{allsex}_{Ptype}.assoc.{tt}.{ext}", cov=COV, maf=MAF, Ptype=GWASMAN, ext=MANEXT, tt=config['test'], sample='ADGC', allsex=['male', 'female', 'interaction']) if config['keepgenos']: OUTFILES += expand( "filtered/cov-{cov}.maf-{maf}/{sample}.{allsex}.chr{chrom}.{ext}", cov=COV, maf=MAF, sample='ADGC', chrom=CHROM, ext=BPLINK, allsex=['male', 'female', 'interaction']) rule all: input: OUTFILES rule make_samplist: input: lambda wildcards: infiles[wildcards.sample]["pheno"] output: pheno = "phenotypes/{sample}.pheno", ikeep = "{sample}.chosen.ikeep" params: default_cht = lambda wildcards: gsc(wildcards, 'DEFAULT_COHORT'), filts = lambda wildcards: subs(config[wildcards.sample]['filter']), ec = lambda wildcards: gsc(wildcards, 'EXCLUDECOHORTS') shell: """ {loads[R]} {com[R]} scripts/make_plink_phenos.R {input} {output.pheno} {output.ikeep} \ {params.filts} {params.default_cht} {params.ec} """ rule filter_adgc: input: plink = lambda wildcards: expand(infiles[wildcards.sample]["geno"] + ".{ext}", ext=BPLINK), keep = "{sample}.chosen.ikeep" output: temp(expand("genotypes/{{sample}}.{{sex}}.maf-{{maf}}.chr{{chrom}}.{ext}", ext=BPLINK)) params: i = lambda wildcards: infiles[wildcards.sample]["geno"], o = "genotypes/{sample}.{sex}.maf-{maf}.chr{chrom}", maf = lambda wildcards: maf[wildcards.maf], shell: """ {loads[plink]} {com[plink]} --bfile {params.i} --keep {input.keep} --filter-{wildcards.sex}s \ --maf {params.maf} --mac 10 --chr {wildcards.chrom} --geno 0.05 \ --hwe 0.000001 midp --hardy midp gz --make-bed --out {params.o} """ #look for significant nonrandom missingness #make sure case-control is in file rule test_miss: input: rules.filter_adgc.params.o + '.bim' output: "miss/{sample}.{sex}.maf-{maf}.chr{chrom}.missing", "miss/{sample}.{sex}.maf-{maf}.chr{chrom}.exclude", "miss/{sample}.{sex}.maf-{maf}.chr{chrom}.include" params: i = rules.filter_adgc.params.o, o = "miss/{sample}.{sex}.maf-{maf}.chr{chrom}", shell: """ {loads[plink]} {com[plink]} --bfile {params.i} --test-missing midp \ --out {params.o} sed -r 's/[[:blank:]]+/ /g;s/^\s|\s$//g' {output[0]} | \ awk 'NR > 1 && $5 < 0.000001 {{print $2}}' > {output[1]} awk 'NR == FNR {{a[$1]; next}} !($2 in a) {{print $2}}' \ <(cat <(echo exclude) {output[1]}) {input} > {output[2]} """ rule combine_miss: input: expand("miss/{{sample}}.{sex}.maf-{{maf}}.chr{{chrom}}.include", sex=['male', 'female']) output: "miss/allsex/{sample}.maf-{maf}.chr{chrom}.include" shell: """ awk 'NR == FNR {{a[$1]; next}} $1 in a {{print}}' {input} > {output} """ rule prep_GWAS: input: geno = rules.filter_adgc.output, keep = "miss/{sample}.{sex}.maf-{maf}.chr{chrom}.exclude", output: maybetemp(multiext("filtered/cov-{cov}.maf-{maf}/{sample}.{sex,male|female}.chr{chrom}", ".bed", ".bim", ".fam")) params: i = rules.filter_adgc.params.o, o = "filtered/cov-{cov}.maf-{maf}/{sample}.{sex}.chr{chrom}", shell: """ {loads[plink]} {com[plink]} --bfile {params.i} --exclude {input.keep} --make-bed --out {params.o} """ rule prep_GWAS_interact: input: geno = lambda wildcards: expand(infiles[wildcards.sample]["geno"] + ".{ext}", ext=BPLINK), ikeep = "{sample}.chosen.ikeep", keep = "miss/allsex/{sample}.maf-{maf}.chr{chrom}.include", output: maybetemp(multiext("filtered/cov-{cov}.maf-{maf}/{sample}.interaction.chr{chrom}", ".bed", ".bim", ".fam")) params: i = rules.filter_adgc.params.i, o = "filtered/cov-{cov}.maf-{maf}/{sample}.interaction.chr{chrom}", shell: """ {loads[plink]} {com[plink]} --bfile {params.i} --extract {input.keep} --keep {input.ikeep} --make-bed --out {params.o} """ rule do_GWAS: input: geno = rules.prep_GWAS.output, phen = "phenotypes/{sample}.pheno" output: "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{sex,male|female}}.chr{{chrom}}.assoc.{tt}".format(tt=config['test']), "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{sex,male|female}}.chr{{chrom}}.assoc.{tt}.perm".format(tt=config['test']) if config['perm'] else [] params: i = rules.prep_GWAS.params.o, o = "GWAS/cov-{cov}.maf-{maf}/{sample}.{sex,male|female}.chr{chrom}", cov = lambda wildcards: study_covars[wildcards.study][wildcards.cov], perm = 'perm ' if config['perm'] else '', pname = lambda wildcards: config['studies'][wildcards.sample]['phenoname'] shell: """ {loads[plink]} {com[plink3]} --bfile {params.i} \ --pheno {input.phen} --pheno-name {params.pname} \ --covar {input.phen} --covar-name {params.cov} \ --{config[test]} {params.perm} genotypic beta --ci 0.99 --out {params.o} """ def gettests(wildcards): ncov = len(covariates[wildcards.cov].split(', ')) return '1, 3-{}, {}-{}'.format( ncov + 2, 3 * ncov + 3, 3 * ncov + 4) rule do_GWAS_interact: input: geno = rules.prep_GWAS_interact.output, phen = "phenotypes/{sample}.pheno" output: "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.interaction.chr{{chrom}}.assoc.{tt}".format(tt=config['test']), "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.interaction.chr{{chrom}}.assoc.{tt}.perm".format(tt=config['test']) if config['perm'] else [] params: i = rules.prep_GWAS_interact.params.o, o = "GWAS/cov-{cov}.maf-{maf}/{sample}.interaction.chr{chrom}", cov = lambda wildcards: study_covars[wildcards.study][wildcards.cov], perm = 'perm ' if config['perm'] else '', pname = lambda wildcards: config['studies'][wildcards.sample]['phenoname'], tests = gettests shell: """ {loads[plink]} {com[plink3]} --bfile {params.i} --parameters {params.tests} \ --pheno {input.phen} --pheno-name {params.pname} \ --covar {input.phen} --covar-name {params.cov} \ --{config[test]} {params.perm} genotypic sex interaction beta \ --ci 0.99 --out {params.o} """ #--parameters 1, 4, 6-7 rule fix_gwas: input: expand("GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{allsex}}.chr{chrom}.assoc.{tt}", chrom=CHROM, tt=config['test']) output: "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{allsex}}_filtered.assoc.{tt}".format(tt=config['test']) shell: r""" sed -r 's/[[:blank:]]+/ /g;s/^\s|\s$//g' {input} | \ awk 'NR == 1 || ($5 == "ADD" && $7 != "NA")' | \ awk 'BEGIN {{FS=" |:"}} NR == 1 {{print $0, "A2"}} NR != 1 {{print $0, $4}}' > \ {output} """ rule gwas_manhattan: input: rules.fix_gwas.output output: [rules.fix_gwas.output[0] + '.' + x for x in MANEXT] log: "GWAS/cov-{cov}.maf-{maf}/{sample}.{allsex}_filtered.plots.log" shell: """ {loads[R]} scripts/manhattan.R {input} &> {log} """ rule add_emp: input: sstats = rules.fix_gwas.output, emp = expand("GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{allsex}}.chr{chrom}.assoc.{tt}.perm", chrom=CHROM, tt=config['test']) output: "GWAS/cov-{{cov}}.maf-{{maf}}/{{sample}}.{{allsex}}_empP.assoc.{tt}".format(tt=config['test']) shell: r""" awk 'NR == FNR {{emp[$2] = $3}} NR != FNR {{print $0, emp[$2]}}' \ <(cat {input.emp} | sed -r 's/[[:blank:]]+/ /g;s/^\s|\s$//g') \ {input.sstats} > {output} """ rule emp_manhattan: input: rules.add_emp.output output: [rules.add_emp.output[0] + '.' + x for x in MANEXT] log: "GWAS/cov-{cov}.maf-{maf}/{sample}.{allsex}_empP.plots.log" shell: """ {loads[R]} scripts/manhattan.emp.R {input} &> {log} """
[ "fultonh1@gmail.com" ]
fultonh1@gmail.com
01bdaa76d7b26697d8497b9ccf1047896d67e5cb
3b9b4049a8e7d38b49e07bb752780b2f1d792851
/src/ui/base/ui_base_tests_bundle.gypi
2eeabe88a68f15af2e9b303ac363da4d95b3f8e7
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
webosce/chromium53
f8e745e91363586aee9620c609aacf15b3261540
9171447efcf0bb393d41d1dc877c7c13c46d8e38
refs/heads/webosce
2020-03-26T23:08:14.416858
2018-08-23T08:35:17
2018-09-20T14:25:18
145,513,343
0
2
Apache-2.0
2019-08-21T22:44:55
2018-08-21T05:52:31
null
UTF-8
Python
false
false
1,793
gypi
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This file contains resources for the ui_base_unittests test bundle. # See chrome_dll_bundle.gypi for a description of the techniques here. { 'product_name': 'ui_unittests Framework', 'variables': { # There is no executable in the mock framework, and so nothing to strip. 'mac_strip': 0, }, 'mac_bundle': 1, 'xcode_settings': { 'CHROMIUM_BUNDLE_ID': 'com.google.ChromiumUITests', 'DYLIB_COMPATIBILITY_VERSION': '1.0.0', 'DYLIB_CURRENT_VERSION': '1.0.0', 'DYLIB_INSTALL_NAME_BASE': '@executable_path/../Versions/1.0.0.0', 'LD_DYLIB_INSTALL_NAME': '$(DYLIB_INSTALL_NAME_BASE:standardizepath)/$(WRAPPER_NAME)/$(PRODUCT_NAME)', 'INFOPLIST_FILE': 'test/framework-Info.plist', }, 'mac_bundle_resources': [ 'test/framework-Info.plist', '<(PRODUCT_DIR)/ui_test.pak', # Just include the English-US locale made by ui_resources.gyp:ui_test_pak. '<(PRODUCT_DIR)/ui/en.lproj/locale.pak', ], 'mac_bundle_resources!': [ 'test/framework-Info.plist', ], 'postbuilds': [ { 'postbuild_name': 'Symlink Resources', 'action': [ 'ln', '-fns', 'Versions/A/Resources', '${BUILT_PRODUCTS_DIR}/${WRAPPER_NAME}/Resources' ], }, { # Resource bundle pak names are hardcoded. This allows ui_test.pak to be # found while running the ResourceBundle tests. 'postbuild_name': 'Symlink chrome_100_percent for test', 'action': [ 'ln', '-fns', 'ui_test.pak', '${BUILT_PRODUCTS_DIR}/${WRAPPER_NAME}/Versions/A/Resources/chrome_100_percent.pak' ], }, ], }
[ "changhyeok.bae@lge.com" ]
changhyeok.bae@lge.com
6f1d0db25e6a71e4e3a0e6767b8cec85b3d52da2
395f7556c69c15ef97377842a104233624dcc30f
/votes/models.py
2a87657a1fdfe843d6b9cdb3e4e6b590b71bf860
[]
no_license
Morelromain/rocket_vote
6441b7be2ed9da7fc17cae0c44f081456c0f396e
b575b39344bdf8bf37cb8b5f5c7581b0d9eebe11
refs/heads/main
2023-06-27T07:42:13.219112
2021-07-28T14:10:31
2021-07-28T14:10:31
385,236,126
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
from django.db import models from django.contrib.auth.models import AbstractUser from django.conf import settings class Voter(models.Model): name = models.CharField(max_length=15) def __str__(self): return self.name class Vote(models.Model): title = models.CharField(max_length=50) result = models.CharField(max_length=20, null=True, blank=True) nb_choice = models.IntegerField(null=True, blank=True) nb_all_vote = models.IntegerField(default=0, null=True, blank=True) """date_created = models.DateTimeField(auto_now_add=True)""" """date_end = models.DateTimeField()""" """creator = models.ForeignKey( to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)""" """voter = models.ForeignKey( to=Voter, on_delete=models.CASCADE)""" def __str__(self): return self.title class Choice(models.Model): description = models.CharField(max_length=30, null=True, blank=True) nb_vote = models.IntegerField(default=0) percent_vote = models.IntegerField(default=0, null=True, blank=True) num_id_choice = models.IntegerField(null=True, blank=True) voters_names = models.CharField(default="", max_length=120) vote = models.ForeignKey( to=Vote, on_delete=models.CASCADE, null=True, blank=True ) def __str__(self): return self.description
[ "morelromain86@gmail.com" ]
morelromain86@gmail.com
97cd3a49ac81326732594597d2ce787fb3fdc961
34c5467042b9f1f4dd83be6f56519fb93b82951e
/dataset/BSD500.py
c7c7387f75e6af83e554e70000a2fb835e35f9e4
[ "MIT" ]
permissive
mmmuuuuua/pytorch-HED
34c5057c13707a0dc5d38ea49125b42968a41032
0a614537dd8aa0d5f7ae5812b235351d89832540
refs/heads/master
2022-03-03T10:30:20.750807
2019-10-20T10:10:21
2019-10-20T10:10:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,251
py
import os import torchvision.transforms as transforms import torchvision.transforms.functional as F from PIL import Image import numpy as np import random import pdb class BSD500Dataset(): def __init__(self, cfg): self.cfg = cfg self.rootdir = cfg.DATA.root self.train_list = cfg.DATA.train_list ### data self.all_path_list = [] with open('/'.join([self.rootdir, self.train_list]), 'r') as f: lines = f.readlines() for line in lines: line = line[:-1] cur_pair = line.split(' ') self.all_path_list.append( cur_pair ) print('in data_loader: Train data preparation done') ''' ### transformer mean = [float(item) / 255.0 for item in cfg.DATA.mean] std = [1,1,1] self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean,std) ]) self.targetTransform = transforms.Compose([ transforms.ToTensor() ]) ''' def mytransfrom(self, img, gt): ''' input: img,gt, PIL image output: tensor ''' ### ColorJitterUG: if self.cfg.DATA.AUG.ColorJitter: color_jitter = transforms.ColorJitter(brightness = self.cfg.DATA.AUG.brightness, contrast = self.cfg.DATA.AUG.contrast, saturation = self.cfg.DATA.AUG.saturation, hue = self.cfg.DATA.AUG.hue ) color_jitter_transform = color_jitter.get_params(color_jitter.brightness, color_jitter.contrast, color_jitter.saturation, color_jitter.hue) img = color_jitter_transform(img) if self.cfg.DATA.AUG.HFlip: if random.random() > 0.5: img = F.hflip(img) gt = F.hflip(gt) ### ToTensor img = F.to_tensor(img) gt = F.to_tensor(gt) ### Normalization mean = [float(item) / 255.0 for item in self.cfg.DATA.mean] std = [1,1,1] normalizer = transforms.Normalize(mean=mean, std=std) img = normalizer(img) return img, gt def __getitem__(self, idx): img_path, gt_path = [ '/'.join([self.rootdir, item]) for item in self.all_path_list[idx] ] img = Image.open(img_path).convert('RGB') gt = Image.open(gt_path).convert('L') img_t, gt_t = self.mytransfrom(img, gt) if self.cfg.DATA.gt_mode=='gt_half': gt_t[gt_t>=0.5] = 1 gt_t[gt_t<0.5] = 0 return img_t, gt_t def __len__(self): return len(self.all_path_list) #################################################################################################### class BSD500DatasetTest(): def __init__(self, cfg): self.rootdir = cfg.DATA.root self.train_list = cfg.DATA.test_list ### data self.all_path_list = [] with open('/'.join([self.rootdir, self.train_list]), 'r') as f: lines = f.readlines() for line in lines: line = line[:-1] self.all_path_list.append( line ) print('in data_loader: Test data preparation done') ### transformer mean = [float(item) / 255.0 for item in cfg.DATA.mean] std = [1,1,1] self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean,std) ]) def __getitem__(self, idx): img_path = '/'.join([self.rootdir, self.all_path_list[idx]]) img_filename = img_path.split('/')[-1].split('.')[0] img = Image.open(img_path).convert('RGB') img_t = self.transform(img) return (img_t, img_filename) def __len__(self): return len(self.all_path_list)
[ "chongruo@gmail.com" ]
chongruo@gmail.com
1f305d103ada09c4e3c1dadf0a5b42070d953e56
3ead5aedee381cd264c268220fbb3f7e4545f7c6
/keyboard.py
82868ea33b6bf18d77d99a2b0e6a2db697ac5b85
[ "MIT" ]
permissive
AmineSoukara/OneSecMailBot
e48866b0b5e8ece9095da97cde2797c5ba3ba5eb
45a046890dac7ca8a10f3c48a4969aedf34cd04b
refs/heads/main
2023-07-16T15:07:07.872438
2021-09-04T16:03:55
2021-09-04T16:03:55
403,098,692
2
2
null
null
null
null
UTF-8
Python
false
false
150
py
from aiogram import types menu = types.ReplyKeyboardMarkup(resize_keyboard=True) menu.add( types.KeyboardButton('استلام البريد') )
[ "noreply@github.com" ]
AmineSoukara.noreply@github.com
9f664c31e97af59857c6cdf03b82180d5f75e483
24b3352991931cbc68a9f5f3a84354bf3a561e07
/review/restviews.py
f7fad7f4972ca6d5a8d930fed79f676059445776
[]
no_license
kangsm0903/bongtoo_restapi
ac883dea82c77e1038564321b9c9b65272797825
ee7aaa9346892bec8a80383dcf8f961c14acb44a
refs/heads/master
2020-07-02T07:39:08.864468
2019-08-09T11:19:43
2019-08-09T11:19:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,434
py
# django from django.shortcuts import get_object_or_404 # rest framework from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.generics import GenericAPIView, RetrieveUpdateDestroyAPIView, ListAPIView from rest_framework.permissions import IsAuthenticated, AllowAny, IsAuthenticatedOrReadOnly from rest_framework.pagination import PageNumberPagination from rest_framework import mixins # my app # review from .models import Review, Image, Like, Comment from .serializers import ImageSerializer, ReviewSerializer, CommentSerializer, ReviewListSerializer # users from users.models import User from users.serializers import UserSerializer class SearchReviewList(APIView, PageNumberPagination): page_size = 8 def get(self, request, format=None): filters = { 'activity__in': request.GET.getlist('activites'), 'subject__in': request.GET.getlist('subjects'), 'region__city': request.GET.get('city'), 'region__town': request.GET.get('town') } items = filters.items() filters = dict(filter(lambda item: item[1], items)) review = Review.objects.filter( **filters) result = self.paginate_queryset(review, request, view=self) serializer = ReviewListSerializer(result, many=True) return self.get_paginated_response(serializer.data) class ReviewView(APIView): def get(self, request, format=None): filters = { 'activity__in': request.GET.getlist('activites'), 'subject__in': request.GET.getlist('subjects'), 'region__city': request.GET.get('city'), 'region__town': request.GET.get('town') } items = filters.items() filters = dict(filter(lambda item: item[1], items)) review = Review.objects.filter( **filters) serializer = ReviewSerializer(review, many=True) return Response(serializer.data) def post(self, request): user = request.user data = request.data if 'activity' in data: activity = data.pop('activity') else: activity = [] if 'subject' in data: subject = data.pop('subject') else: subject = [] if 'region' in data: region = data.pop('region') else: region = [] serializer = ReviewSerializer(data=request.data) # images = ImageSerializer() try: if serializer.is_valid(): serializer.save(user=user, activity=activity, subject=subject, region=region) return Response(data=serializer.data, status=status.HTTP_200_OK) except: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class ReviewDetailView(APIView): def find_own_Review(self, review_id, user): try: review = Review.objects.get(id=review_id, creator=user) return review except Review.DoesNotExist: return None def get(self, request, review_id, format=None): reivew = get_object_or_404(Review, id=review_id) serializer = ReviewSerializer(reivew) return Response(data=serializer.data, status=status.HTTP_200_OK) def put(self, request, review_id, format=None): user = request.user review = self.find_own_Review(review_id, user) if review is None: return Response(status=status.HTTP_401_UNAUTHORIZED) serializer = ReviewSerializer(review, data=request.data, partial=True) if serializer.is_valid(): serializer.save(user=user) return Response(data=serializer.data, status=status.HTTP_204_NO_CONTENT) else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class MyReviewView(APIView): def get(self, request, pk, format=None): reviews = User.objects.get(id=pk).reviews serializer = ReviewListSerializer(reviews, many=True) return Response(serializer.data) # 리뷰 좋아요 하기 위한 뷰 class LikeReview(APIView): # 리뷰 좋아요 def post(self, request, review_id, format=None): user = request.user review = get_object_or_404(Review, id=review_id) try: Like.objects.get(creator=user, review=review) return Response(status=status.HTTP_304_NOT_MODIFIED) except Like.DoesNotExist: Like.objects.create(creator=user, review=review) return Response(status=status.HTTP_201_CREATED) # 좋아요 취소 def delete(self, request, review_id, format=None): user = request.user review = get_object_or_404(Review, id=review_id) try: like = Like.objects.get(creator=user, review=review) like.delete() return Response(status=status.HTTP_204_NO_CONTENT) except Like.DoesNotExist: return Response(status=status.HTTP_304_NOT_MODIFIED) class ReviewCommentView(APIView): def get(self, reqeust, review_id, format=None): review = get_object_or_404(Review, id=review_id) comments = review.comments.all() serializer = CommentSerializer(comments, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK) def post(self, request, review_id, format=None): user = request.user review = get_object_or_404(Review, id=review_id) serializer = CommentSerializer(data=request.data) if serializer.is_valid(): serializer.save(created_by=user, review=review) return Response(data=serializer.data, status=status.HTTP_201_CREATED) else: return Response(data=serializer.errors, status=status.HTTP_400_BAD_REQUEST) class CommentsView(ListAPIView): queryset = Comment.objects.all() serializer_class = CommentSerializer permission_classes = [IsAuthenticatedOrReadOnly] class CommetDetailView(RetrieveUpdateDestroyAPIView): queryset = Comment.objects.all() serializer_class = CommentSerializer permission_classes = [IsAuthenticatedOrReadOnly]
[ "gtah2yk@gmail.com" ]
gtah2yk@gmail.com
8b5d3ec3cfaa50228532f727bea9f0114cbb6040
fd2965d30b61567052738888079f174937d31fd8
/tests/test_application.py
f1ecab8593d3d11f649d4b410a8451168db8aa60
[ "MIT" ]
permissive
AlexMathew/vial
16d39220cbacc2a0ecfab0d041e410acff6259ab
2d8bb09915a3ccd84549ed68e365ea843bcc1865
refs/heads/master
2023-01-08T01:50:18.885588
2021-03-19T05:55:16
2021-03-19T05:55:16
161,334,656
4
3
MIT
2022-12-23T19:35:11
2018-12-11T13:02:39
Python
UTF-8
Python
false
false
622
py
from nose import with_setup from nose.tools import (assert_equal, assert_in, assert_is_none, assert_is_not_none) from vial.server.application import Application app = Application('test_runner') def setup(): @app.route(methods=['GET'], path='/$') def route1(): return '1' @with_setup(setup) def test_application_routes(): assert_in('get', app._routes) assert_is_none(app.validate_route('get', '/')) assert_is_not_none(app.validate_route('post', '/')) assert_is_not_none(app.validate_route('get', '/1')) assert_equal('1', app.get_controller('get', '/')[0]())
[ "alexmathew003@gmail.com" ]
alexmathew003@gmail.com
d2e62ae7d228a189efbf53aa40a08bced02d5fef
cf40d5061b6459f984651f92a5ec1ad442886ec0
/node_modules/watchpack-chokidar2/node_modules/fsevents/build/config.gypi
7435f3d786baf8fe6bd368baea139d464a8e0776
[ "MIT" ]
permissive
MathGL92/react-intro-portals-and-refs
2db988ab3050c9ccf498498195a9c03bdc58fb04
033271009c52e9fc744505c5eb7a3aadfbf848c3
refs/heads/master
2023-07-15T06:13:27.920968
2021-08-29T04:46:29
2021-08-29T04:46:29
400,952,224
0
0
null
null
null
null
UTF-8
Python
false
false
2,846
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "dcheck_always_on": 0, "debug_nghttp2": "false", "debug_node": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "error_on_warn": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_gyp_path": "tools/icu/icu-system.gyp", "icu_small": "false", "icu_ver_major": "68", "is_debug": 0, "llvm_version": "12.0", "napi_build_version": "7", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_install_npm": "false", "node_module_version": 88, "node_no_browser_globals": "false", "node_prefix": "/usr/local/Cellar/node/15.10.0_1", "node_release_urlbase": "", "node_shared": "false", "node_shared_brotli": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_node_code_cache": "true", "node_use_node_snapshot": "true", "node_use_openssl": "true", "node_use_v8_platform": "true", "node_with_ltcg": "false", "node_without_node_options": "false", "openssl_fips": "", "openssl_is_fips": "false", "ossfuzz": "false", "shlib_suffix": "88.dylib", "target_arch": "x64", "v8_enable_31bit_smis_on_64bit_arch": 0, "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_enable_lite_mode": 0, "v8_enable_object_print": 1, "v8_enable_pointer_compression": 0, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 1, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_siphash": 1, "want_separate_host_toolset": 0, "xcode_version": "12.0", "nodedir": "/Users/mathieulonge/Library/Caches/node-gyp/15.10.0", "standalone_static_library": 1, "metrics_registry": "https://registry.npmjs.org/", "globalconfig": "/usr/local/etc/npmrc", "init.module": "/Users/mathieulonge/.npm-init.js", "init_module": "/Users/mathieulonge/.npm-init.js", "userconfig": "/Users/mathieulonge/.npmrc", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "cache": "/Users/mathieulonge/.npm", "user_agent": "npm/7.5.3 node/v15.10.0 darwin x64", "prefix": "/usr/local" } }
[ "mathieu.longe@orange.fr" ]
mathieu.longe@orange.fr
2dfddc1e33cbd66f5b0d212c97211597b790b360
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/BillRepayResult.py
fb5b8f38c9de1fe638c540d2a34f43874b6375cf
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,810
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class BillRepayResult(object): def __init__(self): self._error_code = None self._error_msg = None self._result = None @property def error_code(self): return self._error_code @error_code.setter def error_code(self, value): self._error_code = value @property def error_msg(self): return self._error_msg @error_msg.setter def error_msg(self, value): self._error_msg = value @property def result(self): return self._result @result.setter def result(self, value): self._result = value def to_alipay_dict(self): params = dict() if self.error_code: if hasattr(self.error_code, 'to_alipay_dict'): params['error_code'] = self.error_code.to_alipay_dict() else: params['error_code'] = self.error_code if self.error_msg: if hasattr(self.error_msg, 'to_alipay_dict'): params['error_msg'] = self.error_msg.to_alipay_dict() else: params['error_msg'] = self.error_msg if self.result: if hasattr(self.result, 'to_alipay_dict'): params['result'] = self.result.to_alipay_dict() else: params['result'] = self.result return params @staticmethod def from_alipay_dict(d): if not d: return None o = BillRepayResult() if 'error_code' in d: o.error_code = d['error_code'] if 'error_msg' in d: o.error_msg = d['error_msg'] if 'result' in d: o.result = d['result'] return o
[ "jishupei.jsp@alibaba-inc.com" ]
jishupei.jsp@alibaba-inc.com
f6ed7d2d772b2c228ddc3e8665375c38ea5fbc00
64e918d603f3673160019bc1fd339359f774181d
/Encapsulation project.py
9769b5b803a1500f96b0849213d425a122a19d11
[]
no_license
wbennett84/Python-Projects
becacf14d2f7041853a68a33979c79aeda3ee30e
e99d6bfce8718341138f13a8d7c9ec47a18730d3
refs/heads/master
2023-06-07T03:41:40.304549
2021-07-01T02:06:57
2021-07-01T02:06:57
374,774,733
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
#here we are defining our class and setting up some variables with initial values. # These are private and protected variables, respectively. #Next we are setting up some print and value-setting functions for use # later on when we call them. class Private: def __init__(self): self.__private = 30 self._protected = 0 def getitprivate(self): print(self.__private) def getitprotected(self): print(self._protected) def setit(self, priv): self.__private = priv def setit2(self, priv): self._protected = priv # All the below is doing is instantiating an object(instance2, which is from the Private class) # it is then calling a couple print functions. # Then it is changing the values of some variables with set functions. # Then it is printing the new values after having been reset # This is an instantiation of a class which is utilizing both # the private and protected aspects. instance2 = Private() instance2.getitprivate() instance2.getitprotected() instance2.setit(39) instance2.getitprivate() instance2.setit2(399) instance2.getitprotected()
[ "81777304+wbennett84@users.noreply.github.com" ]
81777304+wbennett84@users.noreply.github.com
dd2828173e9ba99516e67147bc939f0500f6c8b9
9b20161b91400238b0c6e6ee3282a328d42935e2
/tensorflow_datasets/core/utils/generic_path.py
19967f951b9471036227c762a4c899090a58d51d
[ "Apache-2.0" ]
permissive
okyanusoz/datasets
61c0ced07c420d7e900080e851890def74a37d94
8997c4140cd4fc145f0693787b1da78691930459
refs/heads/master
2023-05-31T23:19:30.153499
2021-05-06T19:56:49
2021-05-06T19:58:56
365,308,067
1
1
Apache-2.0
2021-07-04T11:15:13
2021-05-07T17:32:53
null
UTF-8
Python
false
false
3,599
py
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pathlib-like generic abstraction.""" import os import typing from typing import Callable, Dict, Tuple, Type, Union, TypeVar from tensorflow_datasets.core.utils import gpath from tensorflow_datasets.core.utils import type_utils PathLike = type_utils.PathLike ReadOnlyPath = type_utils.ReadOnlyPath ReadWritePath = type_utils.ReadWritePath PathLikeCls = Union[Type[ReadOnlyPath], Type[ReadWritePath]] T = TypeVar('T') _PATHLIKE_CLS: Tuple[PathLikeCls, ...] = ( gpath.PosixGPath, gpath.WindowsGPath, ) _URI_PREFIXES_TO_CLS: Dict[str, PathLikeCls] = { # Even on Windows, `gs://`,... are PosixPath uri_prefix: gpath.PosixGPath for uri_prefix in gpath.URI_PREFIXES } # pylint: disable=g-wrong-blank-lines @typing.overload def register_pathlike_cls(path_cls_or_uri_prefix: str) -> Callable[[T], T]: ... @typing.overload def register_pathlike_cls(path_cls_or_uri_prefix: T) -> T: ... def register_pathlike_cls(path_cls_or_uri_prefix): """Register the class to be forwarded as-is in `as_path`. ```python @utils.register_pathlike_cls('my_path://') class MyPath(pathlib.PurePosixPath): ... my_path = tfds.core.as_path('my_path://some-path') ``` Args: path_cls_or_uri_prefix: If a uri prefix is given, then passing calling `tfds.core.as_path('prefix://path')` will call the decorated class. Returns: The decorator or decoratorated class """ global _PATHLIKE_CLS if isinstance(path_cls_or_uri_prefix, str): def register_pathlike_decorator(cls: T) -> T: _URI_PREFIXES_TO_CLS[path_cls_or_uri_prefix] = cls return register_pathlike_cls(cls) return register_pathlike_decorator else: _PATHLIKE_CLS = _PATHLIKE_CLS + (path_cls_or_uri_prefix,) return path_cls_or_uri_prefix # pylint: enable=g-wrong-blank-lines def as_path(path: PathLike) -> ReadWritePath: """Create a generic `pathlib.Path`-like abstraction. Depending on the input (e.g. `gs://`, `github://`, `ResourcePath`,...), the system (Windows, Linux,...), the function will create the right pathlib-like abstraction. Args: path: Pathlike object. Returns: path: The `pathlib.Path`-like abstraction. """ is_windows = os.name == 'nt' if isinstance(path, str): uri_splits = path.split('://', maxsplit=1) if len(uri_splits) > 1: # str is URI (e.g. `gs://`, `github://`,...) # On windows, `PosixGPath` is created for `gs://` paths return _URI_PREFIXES_TO_CLS[uri_splits[0] + '://'](path) # pytype: disable=bad-return-type elif is_windows: return gpath.WindowsGPath(path) else: return gpath.PosixGPath(path) elif isinstance(path, _PATHLIKE_CLS): return path # Forward resource path, gpath,... as-is # pytype: disable=bad-return-type elif isinstance(path, os.PathLike): # Other `os.fspath` compatible objects path_cls = gpath.WindowsGPath if is_windows else gpath.PosixGPath return path_cls(path) else: raise TypeError(f'Invalid path type: {path!r}')
[ "copybara-worker@google.com" ]
copybara-worker@google.com
e213eed102c19e72cfea1fd9024c877c0704034c
649fb5b641c54db3f6cd89ee5d288519e5b6a3f9
/Tutorial_4_PyTest_TDD/ejercicio2/fibo.py
e9e0a069c3132f919f6ad044c4207df00fdcc6b9
[]
no_license
Hindegarth/Arqui-Software
8b722dec78da4531d985f3a6566ff67282c87a29
4250543b4238598aa98a7222339489856307735b
refs/heads/main
2023-02-14T16:42:20.396550
2021-01-11T01:59:59
2021-01-11T01:59:59
302,714,901
0
1
null
null
null
null
UTF-8
Python
false
false
116
py
def fibonacci(num): if num < 2: return num else: return fibonacci(num-1) + fibonacci(num-2)
[ "noreply@github.com" ]
Hindegarth.noreply@github.com
e6d3086c573f068856b707acf22ffd8a23dd140a
d026fc378de67067eaa06dbf3b401ff49b0c94fe
/TestScripts/BeatTracking/TestBpmDetect.py
ce17baa7d6889b7c255f0218efbb9f0c65d6ac4e
[]
no_license
lenvdv/auto-dj
7544ff674b6b0430954dbf5efe4a284cfb30544c
a34ac0e0fd0869d2e3f2c020c12e1c4545ba7eba
refs/heads/master
2021-01-23T10:21:30.263480
2017-09-08T09:19:01
2017-09-08T09:19:01
93,055,455
8
6
null
null
null
null
UTF-8
Python
false
false
5,166
py
import numpy as np import sys # Also see the default python example! # Load a file using the command line try: filename = sys.argv[1] if len(sys.argv) > 2: MIN_VALID_BPM = int(sys.argv[2]) MAX_VALID_BPM = int(sys.argv[3]) else: MIN_VALID_BPM = 100.0 MAX_VALID_BPM = 190.0 except: print "usage:", sys.argv[0], "<audiofile>" sys.exit() # Load the libraries print 'Loading Essentia...' from essentia import * from essentia.standard import * import matplotlib.pyplot as plt # Load the audio print 'Loading audio file "', filename, '" ...' loader = essentia.standard.MonoLoader(filename = filename) audio = loader() # ------------ Calculate the onset detection function print 'Initialising algorithms...' FRAME_SIZE = 1024 HOP_SIZE = 512 spec = Spectrum(size = FRAME_SIZE) w = Windowing(type = 'hann') # For calculating the phase and magnitude fft = np.fft.fft#FFT() c2p = CartesianToPolar() od_csd = OnsetDetection(method = 'melflux') od_flux = OnsetDetection(method = 'complex') pool = Pool() print 'Calculating frame-wise onset detection curve...' for frame in FrameGenerator(audio, frameSize = FRAME_SIZE, hopSize = HOP_SIZE): pool.add('windowed_frames', w(frame)) # TODO Test if this is faster? print 'windowed frames: ', (pool['windowed_frames']).shape fft_result = fft(pool['windowed_frames']).astype('complex64') print 'fftresult: ', fft_result.shape fft_result_mag = np.absolute(fft_result) fft_result_ang = np.angle(fft_result) # Process every frame vector in the result for mag,phase in zip(fft_result_mag, fft_result_ang): pool.add('onsets.complex', od_csd(mag, phase)) #pool.add('onsets.flux', od_flux(mag, phase)) # Done! now show the result # ------------ Calculate the tempo function thingy (using method from paper) # Step 1: normalise the data using an adaptive mean threshold print 'Normalising result and half-wave rectifying it...' def adaptive_mean(x, N): #TODO efficient implementation instead of convolve return np.convolve(x, [1.0]*int(N), mode='same')/N novelty_mean = adaptive_mean(pool['onsets.complex'], 16.0) # Step 2: half-wave rectify the result novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0) # Step 3: then calculate the autocorrelation of this signal print 'Autocorrelating resulting curve...' def autocorr(x): result = np.correlate(x, x, mode='full') return result[result.size/2:] novelty_autocorr = autocorr(novelty_hwr) # Step 4: Apply a "shift-invariant comb filterbank" # own implementation: sum over constant intervals print 'Iterating over valid BPM values...' #valid_bpms = np.arange(170.0, 176.0, 0.01) valid_bpms = np.arange(MIN_VALID_BPM, MAX_VALID_BPM, 0.01) for bpm in valid_bpms: num_frames_per_beat = (60.0 * 44100.0)/(512.0 * bpm) # TODO put this in a function frames = (np.round(np.arange(0,np.size(novelty_autocorr),num_frames_per_beat)).astype('int'))[:-1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.bpm', np.sum(novelty_autocorr[frames])/np.size(frames)) bpm = valid_bpms[np.argmax(pool['output.bpm'])] print 'Detected BPM: ', bpm # Step 5: Calculate phase information # Valid phases in SECONDS valid_phases = np.arange(0.0, 60.0/bpm, 0.001) num_frames_per_beat_final = (60.0 * 44100.0)/(512.0 * bpm) #TODO put this in a function for phase in valid_phases: # Convert phase from seconds to frames phase_frames = (phase * 44100.0) / (512.0) frames = (np.round(np.arange(phase_frames,np.size(novelty_hwr),num_frames_per_beat_final)).astype('int'))[:-1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.phase', np.sum(novelty_hwr[frames])/np.size(frames)) phase = valid_phases[np.argmax(pool['output.phase'])] print 'Detected phase: ', phase spb = 60./bpm #seconds per beat beats = (np.arange(phase, (np.size(audio)/44100) - spb + phase, spb).astype('single')) plt.subplot(511) plt.plot(audio[0*len(audio):0.01*len(audio)]) plt.xlim((0,len(audio)*0.01)) plt.title('Audio waveform') plt.subplot(512) plt.plot(novelty_hwr[0*len(novelty_hwr):0.01*len(novelty_hwr)]) plt.title('Half-wave rectified novelty detection curve') plt.xlim((0,len(novelty_hwr)*0.01)) plt.subplot(513) plt.plot(novelty_autocorr[0*len(novelty_autocorr):0.01*len(novelty_autocorr)]) plt.xlim((0,0.01*len(novelty_autocorr))) plt.title('Correlation of half-wave rectified novelty detection curve') plt.subplot(514) plt.title('BPM detection curve') plt.plot(valid_bpms, pool['output.bpm'], linewidth=2.0) plt.subplot(515) plt.title('Phase detection curve') plt.plot(valid_phases, pool['output.phase'], linewidth=2.0) plt.show() # Overlay the audio file with onsets onsetMarker = AudioOnsetsMarker(onsets = beats) audioMarked = onsetMarker(audio/2.) # Stretch the result #from librosa.effects import time_stretch #audioMarked = time_stretch(audioMarked, 175./172.) # Output the marked file writer = MonoWriter(filename = 'test.wav') beginIndex = 0.2*np.size(audioMarked) endIndex = 0.5*np.size(audioMarked) writer(audioMarked[beginIndex:endIndex]) #Only write fragment # Play the result from subprocess import call call(["mplayer", 'test.wav'])
[ "len.vandeveire@gmail.com" ]
len.vandeveire@gmail.com
f0f429078d396f0952b7c19b9802bc35cb48f9ef
0341cf21094e3d5bdf11cbfffe5928e3d43392d2
/JudgingSystem/apps.py
d6e040837246b05bd06cc812236c690b50473f24
[]
no_license
ciuti/Judging-System
70890c1882e07f0223b26146096a7a7245b18519
c70321d11d4888f489f32d5a80975fd68a292b00
refs/heads/master
2020-12-28T15:45:27.515587
2020-02-05T07:29:08
2020-02-05T07:29:08
238,392,563
0
1
null
2020-10-01T00:40:55
2020-02-05T07:28:38
Python
UTF-8
Python
false
false
101
py
from django.apps import AppConfig class JudgingsystemConfig(AppConfig): name = 'JudgingSystem'
[ "hosecuter@gmail.com" ]
hosecuter@gmail.com
e1647fc3691542a65b2764f02867a1fb4c023cd8
6bb1634996f9fa2521cbc6814b6f0976890aee39
/M3Sewver/web/validators/scanning.py
cfb8e36ee114af0efbda9719c0b37c2abcb23e94
[]
no_license
SmallPotY/m3Allocation
bca66475df95edf8b875feed5c51a85ca10a7606
ba9147d00603bc540e58511095b6355b5a8ca892
refs/heads/master
2023-02-12T13:17:53.765358
2019-09-24T16:05:31
2019-09-24T16:05:31
210,164,793
0
0
null
2023-02-02T06:39:44
2019-09-22T14:55:02
Python
UTF-8
Python
false
false
663
py
# -*- coding:utf-8 -*- from wtforms.validators import DataRequired from web.validators import BaseForm from wtforms import StringField, IntegerField, DateField class InScanning(BaseForm): location_id = StringField(validators=[DataRequired(message='请输入货位号')]) order_number = StringField(validators=[DataRequired(message='请输入订单号')]) class CheckLocationId(BaseForm): """检查货位ID""" location_id = StringField(validators=[DataRequired(message='请输入货位号')]) class CheckOrderNumber(BaseForm): """检查订单号""" order_number = StringField(validators=[DataRequired(message='请输入订单号')])
[ "1041132457@qq.com" ]
1041132457@qq.com
25b8ef20f1d3fd2994351333dea03eefff95513e
21a5d36b32ddf277be891fd1f0e93d458c4f0c2f
/official/nlp/modeling/models/bert_span_labeler.py
2dd9ab13f518373b6bf82800256d75df9d553750
[ "Apache-2.0" ]
permissive
pkulzc/models
7cf3b718bc4edba53accd14b692712f6c1883578
2ec6572e1b79127a7cf905c1e67ec6568e364f10
refs/heads/master
2021-06-28T08:04:36.609825
2020-06-18T17:54:53
2020-06-18T22:00:50
126,526,822
8
9
Apache-2.0
2018-03-23T18:50:30
2018-03-23T18:50:29
null
UTF-8
Python
false
false
3,874
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trainer network for BERT-style models.""" # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.nlp.modeling import networks @tf.keras.utils.register_keras_serializable(package='Text') class BertSpanLabeler(tf.keras.Model): """Span labeler model based on a BERT-style transformer-based encoder. This is an implementation of the network structure surrounding a transformer encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (https://arxiv.org/abs/1810.04805). The BertSpanLabeler allows a user to pass in a transformer stack, and instantiates a span labeling network based on a single dense layer. Arguments: network: A transformer network. This network should output a sequence output and a classification output. Furthermore, it should expose its embedding table via a "get_embedding_table" method. initializer: The initializer (if any) to use in the span labeling network. Defaults to a Glorot uniform initializer. output: The output style for this network. Can be either 'logits' or 'predictions'. """ def __init__(self, network, initializer='glorot_uniform', output='logits', **kwargs): self._self_setattr_tracking = False self._network = network self._config = { 'network': network, 'initializer': initializer, 'output': output, } # We want to use the inputs of the passed network as the inputs to this # Model. To do this, we need to keep a handle to the network inputs for use # when we construct the Model object at the end of init. inputs = network.inputs # Because we have a copy of inputs to create this Model object, we can # invoke the Network object with its own input tensors to start the Model. sequence_output, _ = network(inputs) # This is an instance variable for ease of access to the underlying task # network. self.span_labeling = networks.SpanLabeling( input_width=sequence_output.shape[-1], initializer=initializer, output=output, name='span_labeling') start_logits, end_logits = self.span_labeling(sequence_output) # Use identity layers wrapped in lambdas to explicitly name the output # tensors. This allows us to use string-keyed dicts in Keras fit/predict/ # evaluate calls. start_logits = tf.keras.layers.Lambda( tf.identity, name='start_positions')( start_logits) end_logits = tf.keras.layers.Lambda( tf.identity, name='end_positions')( end_logits) logits = [start_logits, end_logits] super(BertSpanLabeler, self).__init__( inputs=inputs, outputs=logits, **kwargs) @property def checkpoint_items(self): return dict(encoder=self._network) def get_config(self): return self._config @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
28931249c5359ad6622ac5438cca8906a12cbfd6
bd5d1a05789e8c1dd181ca8108a1a2a52e41c3df
/assignment-1-liuyingjiacfa-master/assignment-1-liuyingjiacfa-master/assignment_1.py
3276258c744f2bc1b9257f3181b5a87df40aa81c
[]
no_license
liuyingjiacfa1/homework
22566207bc0078ae3b6d2c422bf11bb867e48a3b
5a1e48364479a75742515f8dc42d918f624a03af
refs/heads/master
2020-05-16T02:09:44.373542
2019-10-14T02:01:21
2019-10-14T02:01:21
182,621,863
0
0
null
null
null
null
UTF-8
Python
false
false
3,354
py
import os import pandas as pd import requests from bs4 import BeautifulSoup from pylab import mpl,plt plt.style.use('ggplot') mpl.rcParams['font.family']='serif' data={ 'url1':"https://www.ncdc.noaa.gov/cag/statewide/time-series/", 'url2':"-tavg-1-", 'url3':"-1895-2019.csv?base_prd=true&begbaseyear=1901&endbaseyear=2000", 'path':r'C:\LYJ\Python\homework\assignment-1-liuyingjiacfa-master\weather', 'save_path':r'C:\Users\Yingj\Desktop\Data Homework\homework\assignment-1-liuyingjiacfa-master', 'plot_state':['Illinois','California','New York','Texas'] } class Homework1(): def __init__(self, data): self.url1 = data['url1'] self.url2 = data['url2'] self.url3 = data['url3'] self.path = data['path'] self.save_path = data['save_path'] self.plot_state = data['plot_state'] urls=[] for i in range(1,49): for j in [1,8]: url=self.url1+str(i)+self.url2+str(j)+self.url3 urls.append(url) for url in urls: response = requests.get(url) state, measure, month = response.text.split('\n')[0].split(', ') with open(os.path.join(self.path, state + '_' + month + '.csv'), 'w') as ofile: ofile.write(response.text) weather_data = os.listdir(self.path) dfs = [] for f in weather_data: st, month = f.split('_') df = pd.read_csv(os.path.join(self.path, f), skiprows = 4) df['State'] = st df['Date'] = pd.to_datetime(df['Date'], format = '%Y%m') dfs.append(df) df = pd.concat(dfs) df = df.sort_values(['State', 'Date']) self.df = df def plot_1(self): self.df['Year'] = self.df['Date'].map(lambda d: d.year) self.df['Jan-Aug Delta'] = self.df.groupby(['State', 'Year'])['Value'].diff() df_delta = self.df.dropna(subset=['Jan-Aug Delta'])[['State', 'Year', 'Jan-Aug Delta']] State = [] for name, group in df_delta.groupby('State'): State.append(name) df_delta2 = pd.DataFrame() for state in State : df_delta2['Year']=df_delta['Year'][:125] df_delta2[state]=df_delta[df_delta['State']==state].iloc[:,2] df_delta2.index=df_delta2['Year'] title_name = 'Average Jan-Aug Temperature Variation' df_delta2.loc[:, self.plot_state].plot(subplots = True, figsize = (16,9),title = title_name) plt.savefig(self.save_path + '\Jan_Aug_Temp_Delta.png') def plot_2(self): self.df['Month'] = self.df['Date'].map(lambda d: d.month) df2 = self.df.dropna() State2 = [] for name, group in df2.groupby('State'): State2.append(name) df_average_temp = pd.DataFrame() for state in State2: df_average_temp['Year'] = df2['Year'][:125] df_average_temp[state] = df2[df2['State'] == state].iloc[:,1] df_average_temp.index = df_average_temp['Year'] title_name = 'Average August Temperature' df_average_temp.loc[:,self.plot_state].plot(figsize = (16,9), title = title_name) plt.savefig(self.save_path + '\Aug_Temp.png') Homework = Homework1(data) Homework.plot_1() Homework.plot_2()
[ "yingjia.liu.eric@gmail.com" ]
yingjia.liu.eric@gmail.com
5e11043ba615aac76aab5db918ba366a7498ee5f
367d2571f2ad5a141ca2ec7bb9d1a9999e3c300b
/player.py
c1e8bdf51d8a1f8981b6e03ce1f4c28661415d8b
[]
no_license
advaitparulekar/The-Skateboard-Game
0c606d592fd8e383e30da0150cb410d96261d2f9
c4ab8d7c97de75b140cceeb90e055b99c43f142e
refs/heads/master
2020-06-25T06:01:37.231588
2019-07-27T23:59:01
2019-07-27T23:59:01
199,223,993
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
import arcade import numpy as np from brain import * PLAYER_SCALING = 60/3016 MOVEMENT = 100 INPUTS = 9 OUTPUTS = 3 NEURON_COUNT = 5 class Player(arcade.Sprite): def __init__(self, neuron_count, num_inputs, file_name): super().__init__("character.png", PLAYER_SCALING) weights = np.loadtxt(file_name) self.brain = Brain(weights, num_inputs, neuron_count) self.center_x = 64 self.center_y = 250 self.pos = 0 self.score = 0 def draw(self): self.draw() def update(self, raw): player_move = self.brain.get_move(raw) self.pos += player_move if self.pos >= 4: self.pos = 3 elif self.pos < 0: self.pos = 0 self.center_y = 550-100*self.pos
[ "adutheparulekar@tamu.edu" ]
adutheparulekar@tamu.edu
d9286fa7b073260972f731dea2fe668184dee7c1
85f52de727f72db30a4fc4161fc2414cd72035d8
/18day/8-从列表中选择符合条件的元素组成新列表.py
9e71f8fbabd6ba6d841b0afff5914b8a76b644ea
[]
no_license
ittoyou/-2-
ff7ca3bfd9428ac6f3ba5332a4c62825c5d30dcd
2c988c2f996221e86e1bbbeb9b3e96da25fe8f92
refs/heads/master
2020-03-24T16:57:05.220482
2018-07-30T08:08:59
2018-07-30T08:08:59
142,844,024
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
price = [1100,5270,2965,6400,1996,8874] sale = [x for x in price if x > 5000] print('原列表: ',price) print('价格高于5000的: ',sale)
[ "429013601@qq.com" ]
429013601@qq.com
b0d3521a3d9a58cbc400d108fed0a5d0a2a5c801
59c9cb7f5aaa19124de3cc66f8bef1553084f043
/venv/bin/easy_install
a05162334a8283afbafb2ab8a47317616fd9202b
[]
no_license
izaldal/Muslimbook
92726dd91f74598b5be3c11781e05d3bbba7ff0f
54964b4a231b8c31b8fc297dfa5281de02d69b80
refs/heads/master
2021-03-18T09:51:53.085423
2020-03-22T07:34:36
2020-03-22T07:34:36
247,064,547
1
0
null
null
null
null
UTF-8
Python
false
false
444
#!/Users/izadeenalkoran/Desktop/Muslimbook/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "58135379+izaldal@users.noreply.github.com" ]
58135379+izaldal@users.noreply.github.com
784aaa14232009b5b096f93fbc7d7847d67c9d86
ad37c4fac9daf27d24ee518aace00ed234982f67
/PIDvsRL/compare.py
2f5fef8bc690689bbd8bd98772441e6d5701d8ca
[]
no_license
BaiLiping/Coaching
81025abf1dadf54069939e51e1ad49d6280efa9a
5388cb42a59f834c8258fae8f2d4ae01ee2bfe56
refs/heads/master
2023-04-10T13:33:18.202175
2021-04-18T02:11:34
2021-04-18T02:11:34
325,438,279
1
0
null
null
null
null
UTF-8
Python
false
false
6,811
py
from tensorforce import Agent, Environment import matplotlib.pyplot as plt import numpy as np import math import pickle from tqdm import tqdm import gym import statistics rl=[] pid=[] rl_average=[] pid_average=[] ip_without=pickle.load(open( "ip_without_record.p", "rb")) ip_record=pickle.load(open( "ip_record.p", "rb")) ip_evaluation_record_without=pickle.load(open( "ip_evaluation_without_record.p", "rb")) ip_evaluation_record=pickle.load(open( "ip_evaluation_record.p", "rb")) double_without=pickle.load(open( "double_without_record.p", "rb")) double_record=pickle.load(open( "double_record.p", "rb")) double_evaluation_record_without=pickle.load(open( "double_evaluation_without_record.p", "rb")) double_evaluation_record=pickle.load(open( "double_evaluation_record.p", "rb")) hopper_without=pickle.load(open( "hopper_without_record.p", "rb")) hopper_record=pickle.load(open( "hopper_record.p", "rb")) hopper_evaluation_record_without=pickle.load(open( "hopper_evaluation_without_record.p", "rb")) hopper_evaluation_record=pickle.load(open( "hopper_evaluation_record.p", "rb")) walker_without=pickle.load(open( "walker_without_record.p", "rb")) walker_record=pickle.load(open( "walker_record.p", "rb"))[2][0] walker_evaluation_record_without=pickle.load(open( "walker_evaluation_without_record.p", "rb")) walker_evaluation_record=pickle.load(open( "walker_evaluation_record.p", "rb"))[2][0] n_groups = 4 standard=[800,7000,800,800] without=[ip_without,double_without,hopper_without,walker_without] coached=[ip_record,double_record,hopper_record,walker_record] average_over=[20,150,100,100] evaluation_without=[ip_evaluation_record_without,double_evaluation_record_without,hopper_evaluation_record_without,walker_evaluation_record_without] evaluation=[ip_evaluation_record,double_evaluation_record,hopper_evaluation_record,walker_evaluation_record] name=['ip','double','hopper','walker'] #get bounds without_ave=[] coached_ave=[] without_sd=[] coached_sd=[] for i in range(len(name)): actual_without_record=without[i] actual_record=coached[i] braket_size=average_over[i] start_point=0 without_average=[] coached_average=[] without_standard_deviation=[] coached_standard_deviation=[] for j in range(len(actual_record)-braket_size+1): braket_without=actual_without_record[start_point:start_point+braket_size] without_mean=statistics.mean(braket_without) without_average.append(without_mean) without_standard_deviation.append(statistics.stdev(braket_without, xbar = without_mean)) braket_coached=actual_record[start_point:start_point+braket_size] coached_mean=statistics.mean(braket_coached) coached_average.append(coached_mean) coached_standard_deviation.append(statistics.stdev(braket_coached, xbar = coached_mean)) start_point+=1 without_sd.append(without_standard_deviation) coached_sd.append(coached_standard_deviation) without_ave.append(without_average) coached_ave.append(coached_average) #plot training results for i in range(len(name)): fig=plt.figure(figsize=(13,7)) without_record=np.array(without_ave[i]) coached_record=np.array(coached_ave[i]) without_standard_deviation=np.array(without_sd[i]) coached_standard_deviation=np.array(coached_sd[i]) evalu_without=evaluation_without[i] evalu=evaluation[i] evalu_without_ave=int(sum(evalu_without)/len(evalu_without)) evalu_ave=int(sum(evalu)/len(evalu)) env_standard=standard[i] x=range(len(without_record)) plt.plot(x,without_record,label='Normal Training\nEvaluation %s'%evalu_without_ave,color='black',linestyle='-.') plt.fill_between(x, without_record - without_standard_deviation, without_record+without_standard_deviation,color='gray',alpha=0.3) plt.plot(x,coached_record,label='Coached by PID Controller\nEvaluation %s'%evalu_ave,color='royalblue') plt.fill_between(x, coached_record - coached_standard_deviation, coached_record+coached_standard_deviation,color='royalblue',alpha=0.3) plt.xlabel('Episode Number', fontsize=25) plt.xticks(fontsize=18) plt.ylabel('Episode Reward', fontsize=25) plt.yticks(fontsize=18) plt.legend(loc='upper left',ncol=1, borderaxespad=0,prop={'size': 20}) plt.axhline(y=env_standard, color='black', linestyle='dotted') plt.savefig('%s.png' %name[i]) for k in range(n_groups): for i in range(len(without_ave[k])): if without_ave[k][i]>=standard[k]: rl_average.append(i+average_over[k]-1) break for k in range(n_groups): for i in range(len(coached_ave[k])): if coached_ave[k][i]>=standard[k]: pid_average.append(i+average_over[k]-1) break for k in range(n_groups): count=0 first_time=0 index=0 total=5 for i in range(len(without[k])): if without[k][i]>=standard[k]: if first_time==0: count=1 index=i first_time=1 total-=1 elif i-index==1: count+=1 index=i total-=1 if total==0: rl.append(index) break else: count=1 total=4 index=i for k in range(n_groups): count=0 first_time=0 index=0 total=5 for i in range(len(coached[k])): if coached[k][i]>=standard[k]: if first_time==0: count=1 index=i first_time=1 total-=1 elif i-index==1: count+=1 index=i total-=1 if total==0: pid.append(index) break else: count=1 total=4 index=i # create plot print('rl:',rl) print('rl_average',rl_average) print('pid:',pid) print('pid_average',pid_average) labels = ['Inverted\nPendulum', 'Double\nInverted\nPendulum', 'Hopper','Walker'] x = np.arange(len(labels)) # the label locations width = 0.35/2 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width*3/2, pid, width, label='With PID Coaching\n 5 Consecutive Wins') rects3 = ax.bar(x - width/2, pid_average, width, label='With PID Coaching\n Average over 20') rects2 = ax.bar(x + width/2, rl, width, label='Without Coaching\n 5 Consecutive Wins') rects4 = ax.bar(x + width*3/2, rl_average, width, label='Without Coaching\n Average over 20') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Episode Number') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) autolabel(rects3) autolabel(rects4) fig.tight_layout() plt.savefig('compare.png')
[ "blp_engineer@outlook.com" ]
blp_engineer@outlook.com
7b8b23fe9207efbed061a777795142ee72cfdbd0
3cf552ace92dbdb911bbf4a9a02f7fc350546d6f
/rock_paper_scissors.py
7cfde922e7fc393720fc4894d23b950aa3ad2069
[]
no_license
oshlern/ObjectOriented
99d16593a22682fe14b5c4494072df2eab9d7d9b
bb7374628f70cd89739c3b94a8c9992994d48e07
refs/heads/master
2021-01-21T12:11:06.867484
2018-06-07T01:36:57
2018-06-07T01:36:57
102,046,323
0
0
null
null
null
null
UTF-8
Python
false
false
2,033
py
import random CHOICES = ['rock', 'paper', 'scissors'] class Action: def __init__(self, prompt): '''Create an action instance, either by randomly choosing the action or prompting the user.''' # if an action hasn't been named, choose it randomly if prompt is False: self.name = random.choice(CHOICES) else: while True: self.name = raw_input('Choose {}\n'.format(', '.join(CHOICES))) if self.name in CHOICES: # the user made a valid choice, so we can stop the loop break else: # the user picked something else, so make them choose again print 'Invalid action {}.'.format(self.name) # get the position of the choice in the list self.id = CHOICES.index(self.name) def compete(self, other_action): '''Compete against another action. Print out who won.''' if other_action.id == self.id: print 'Tie! Both chose {}!'.format(self.name) # each action is beaten by the action after it in the list # modulo makes it wrap around to the beginning of the list elif ((other_action.id + 1) % len(CHOICES)) == self.id: print '{} beats {}! I win!'.format(self.name.capitalize(), other_action.name) else: print '{} beats {}! You win!'.format(other_action.name.capitalize(), self.name) # this is a standard Python thing: definitions go above, and any code that will actually # run should go into the __main__ section. This way, if someone imports the file because # they want to use the functions or classes you've defined, it won't start running your game # automatically if __name__ == '__main__': # Create actions for the two players, computer and user computer_action = Action(prompt=False) user_action = Action(prompt=True) # Have the actions play against one another computer_action.compete(user_action)
[ "osherler@gmail.com" ]
osherler@gmail.com
de284ecc38f6d4920a0aa4ffd069fbb1cff69f8d
b8b3847c527fc1655244056e0869ced82ce6a937
/Big Data/Assignment 1/Code/Data_Mining.py
b317ac45f976762dc011e1e86f9dc80146cc6bcb
[]
no_license
anirudh-11/code
b87256b15f154f772b10b278be8a717f93eb519e
e0b3acdc14b9b83f61e7450198e289053d60d19d
refs/heads/master
2022-12-13T21:43:47.364323
2020-08-11T14:26:28
2020-08-11T14:26:28
245,441,331
0
0
null
null
null
null
UTF-8
Python
false
false
2,360
py
import pandas as pd import numpy as np import fim # from mlxtend.preprocessing import TransactionEncoder # from mlxtend.frequent_patterns import apriori, association_rules data = pd.read_csv(r'cleaned_data.csv') print(data.head()) print(data.shape) data_list = data.values print(data.values) def mfi(data): print("Using relim for mfi : ") freq_list = fim.relim(tracts = data, target = 'm', supp = 5) print("The frequent item list is : ") print(freq_list) print("Using ista for mfi : ") freq_list = fim.ista(tracts = data, target = 'm', mode = 'z', algo = 'p',supp = 5) print("The frequent item list is : ") print(freq_list) def cfi(data): print("Using relim for cfi : ") freq_list = fim.relim(tracts = data, target = 'c', supp = 5) print("The frequent item list is : ") print(freq_list) print("Using ista for cfi : ") freq_list = fim.ista(tracts = data, target = 'c', algo = 'p',supp = 5) print("The frequent item list is : ") print(freq_list) def fi(data): print("Using apriori for fim : ") freq_list = fim.apriori(tracts = data, supp = 5) print("The frequent item list is : ") print(freq_list) rules = fim.apriori(tracts = data, target = 'r', eval = 'c', report = 'c') print("The rules are : ") print(rules) rules = fim.apriori(tracts = data, target = 'r', eval = 'l', report = 'l') print("The rules are (evaluated with lift): ") print(rules) print("lfi using apriori : ") lfi(freq_list) print("Using fp-growth for fim : ") freq_list = fim.fpgrowth(tracts = data, supp = 5) print("The frequent item list is : ") print(freq_list) rules = fim.fpgrowth(tracts = data, target = 'r', eval = 'c', report = 'c', conf = 60) print("The rules are (evaluated with confidence): ") print(rules) rules = fim.fpgrowth(tracts = data, target = 'r', eval = 'l', report = 'l', conf = 60) print("The rules are (evaluated with lift): ") print(rules) print("lfi using fpgrowth is : ") lfi(freq_list) def lfi(freq_list): len_of_freq_list = [len(ele) for ele in freq_list] lfi = freq_list[len_of_freq_list.index(max(len_of_freq_list))] print("lfi is : ") print(lfi) mfi(data_list) cfi(data_list) fi(data_list)
[ "noreply@github.com" ]
anirudh-11.noreply@github.com
b42a9b1f9a54ad056c572604eccca2d115889414
99436974b0750bc0cef6999804160bd4a746f9a2
/activity/blindDrive.py
dc867e876d62352713c5f79c3c61b36a0d8647f3
[]
no_license
disperate/haley
3d1bd87c26737e1346ef8d0f50b648ac22f0bdd1
513eee702f43742eaac54c2557914c0baacf9be2
refs/heads/master
2021-03-19T15:23:30.911772
2017-07-05T07:26:21
2017-07-05T07:26:21
85,970,195
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
import time from threading import Thread import config class blindDriveActivity(Thread): def __init__(self, fsm, motor): super().__init__() self._running = True self._motorController = motor def terminate(self): self._running = False def run(self): while (self._running): self._motorController.setVelocityLeft(config.blindDriveVelocity) self._motorController.setVelocityRight(config.blindDriveVelocity) time.sleep(0.1)
[ "julian.bigler@hotmail.com" ]
julian.bigler@hotmail.com
b4145cea71900436372b71f6647a8f2fa6e6c415
26ec3f123ba0ff8339ac23f63e22bbca11d59d21
/client_1.py
2abf970c463edef19380f3151eb4512c122d0c51
[]
no_license
wangbiao0327/nihao
e1319e9e8bc6c4a102a9e07820fa01faf666bacb
b66dcf7d502cdeb6383589ec758ae8256ab6dcd5
refs/heads/master
2020-03-30T00:51:22.975186
2018-09-27T02:34:51
2018-09-27T02:34:51
150,547,351
0
0
null
null
null
null
UTF-8
Python
false
false
1,487
py
from socket import * import sys,os #发送消息 def send_msg(s,name,addr): while True: text = input('发言:') #如果输入quit表示退出 if text.strip() == 'quit': msg = 'Q ' + name s.sendto(msg.encode(),addr) sys.exit('退出聊天室') break msg = 'C %s %s'%(name,text) s.sendto(msg.encode(),addr) #接收消息 def recv_msg(s): while True: data,addr = s.recvfrom(2048) if data.decode() == 'EXIT': sys.exit(0) print(data.decode() + '\n发言:',end='') #创建套接字 登录 创建子进程 def main(): if len(sys.argv) < 3: print('argv is error') return HOST = sys.argv[1] PORT = int(sys.argv[2]) ADDR = (HOST,PORT) #创建套接字 s = socket(AF_INET,SOCK_DGRAM) while True: name = input('请输入姓名:') msg = 'L ' + name #发送登录请求 s.sendto(msg.encode(),ADDR) #等待服务器回复 data,addr = s.recvfrom(1024) if data.decode() == 'OK': print('您已进入聊天室') break else: #不成功服务端回复不允许登录原因 print(data.decode()) #创建父子进程 pid = os.fork() if pid < 0: sys.exit('创建进程失败') elif pid == 0: send_msg(s,name,ADDR) else: recv_msg(s) if __name__=='__main__': main()
[ "Wangbiao@qq.com" ]
Wangbiao@qq.com
768867aafb99ad6a6fd6c264bad58cd081cf5097
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/nlp/MT5_ID4146_for_PyTorch/transformers/src/transformers/tokenization_utils.py
dcf1b110430d308ef7ad31536fc79240fa171a6d
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
39,892
py
# coding=utf-8 # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for python tokenizers. For fast tokenizers (provided by HuggingFace's tokenizers library) see tokenization_utils_fast.py """ import bisect import itertools import re import unicodedata from collections import OrderedDict from typing import Any, Dict, List, Optional, Tuple, Union, overload from .file_utils import PaddingStrategy, TensorType, add_end_docstrings from .tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, INIT_TOKENIZER_DOCSTRING, AddedToken, BatchEncoding, EncodedInput, EncodedInputPair, PreTokenizedInput, PreTokenizedInputPair, PreTrainedTokenizerBase, TextInput, TextInputPair, TruncationStrategy, ) from .utils import logging logger = logging.get_logger(__name__) # Slow tokenizers are saved in a vocabulary plus three separated files SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" ADDED_TOKENS_FILE = "added_tokens.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" class Trie: """ Trie in Python. Creates a Trie out of a list of words. The trie is used to split on `added_tokens` in one pass Loose reference https://en.wikipedia.org/wiki/Trie """ def __init__(self): self.data = {} def add(self, word: str): """ Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation. The special key `""` is used to represent termination. This function is idempotent, adding twice the same word will leave the trie unchanged Example: ```python >>> trie = Trie() >>> trie.add("Hello 友達") >>> trie.data {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} >>> trie.add("Hello") >>> trie.data {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ``` """ if not word: # Prevent empty string return ref = self.data for char in word: ref[char] = char in ref and ref[char] or {} ref = ref[char] ref[""] = 1 def split(self, text: str) -> List[str]: """ Will look for the words added to the trie within `text`. Output is the original string splitted along the boundaries of the words found. This trie will match the longest possible word first ! Example: ```python >>> trie = Trie() >>> trie.split("[CLS] This is a extra_id_100") ["[CLS] This is a extra_id_100"] >>> trie.add("[CLS]") >>> trie.add("extra_id_1") >>> trie.add("extra_id_100") >>> trie.split("[CLS] This is a extra_id_100") ["[CLS]", " This is a ", "extra_id_100"] ``` """ # indexes are counted left of the chars index. # "hello", index 0, is left of h, index 1 is between h and e. # index 5 is right of the "o". # States are going to capture every possible start (indexes as above) # as keys, and have as values, a pointer to the position in the trie # where we're at. This is a partial match for now. # This enables to keep track of multiple matches while we're iterating # the string # If the trie contains, "blowing", and "lower" and we encounter the # string "blower", we need to split into ["b", "lower"]. # This is where we need to keep track of multiple possible starts. states = OrderedDict() # This will contain every indices where we need # to cut. # We force to cut at offset 0 and len(text) (added later) offsets = [0] # This is used by the lookahead which needs to skip over # some text where the full match exceeded the place in the initial # for loop skip = 0 # Main loop, Giving this algorithm O(n) complexity for current, current_char in enumerate(text): if skip and current < skip: # Prevents the lookahead for matching twice # like extra_id_100 and id_100 continue # This will track every state # that stop matching, we need to stop tracking them. # If we look at "lowball", we're going to match "l" (add it to states), "o", "w", then # fail on "b", we need to remove 0 from the valid states. to_remove = set() # Whenever we found a match, we need to drop everything # this is a greedy algorithm, it will match on the first found token reset = False # In this case, we already have partial matches (But unfinished) for start, trie_pointer in states.items(): if "" in trie_pointer: # This is a final match, we need to reset and # store the results in `offsets`. # Lookahead to match longest first # Important in case of extra_id_1 vs extra_id_100 # Here we are also actively looking for other earlier partial # matches # "[CLS]", "L", we need to match CLS even if L is special for lookstart, looktrie_pointer in states.items(): if lookstart > start: # This partial match is later, we can stop looking break elif lookstart < start: # This partial match is earlier, the trie pointer # was already updated, so index is + 1 lookahead_index = current + 1 end = current + 1 else: # Here lookstart == start and # looktrie_pointer == trie_pointer # It wasn't updated yet so indices are current ones lookahead_index = current end = current next_char = text[lookahead_index] if lookahead_index < len(text) else None if "" in looktrie_pointer: start = lookstart end = lookahead_index skip = lookahead_index while next_char in looktrie_pointer: looktrie_pointer = looktrie_pointer[next_char] lookahead_index += 1 if "" in looktrie_pointer: start = lookstart end = lookahead_index skip = lookahead_index if lookahead_index == len(text): # End of string break next_char = text[lookahead_index] # End lookahead # Storing and resetting offsets.append(start) offsets.append(end) reset = True break elif current_char in trie_pointer: # The current character being looked at has a match within the trie # update the pointer (it will be stored back into states later). trie_pointer = trie_pointer[current_char] # Storing back the new pointer into the states. # Partial matches got longer by one. states[start] = trie_pointer else: # The new character has not match in the trie, we need # to stop keeping track of this partial match. # We can't do it directly within the loop because of how # python iteration works to_remove.add(start) # Either clearing the full start (we found a real match) # Or clearing only the partial matches that didn't work. if reset: states = {} else: for start in to_remove: del states[start] # If this character is a starting character within the trie # start keeping track of this partial match. if current >= skip and current_char in self.data: states[current] = self.data[current_char] # We have a cut at the end with states. for start, trie_pointer in states.items(): if "" in trie_pointer: # This is a final match, we need to reset and # store the results in `offsets`. end = len(text) offsets.append(start) offsets.append(end) # Longest cut is always the one with lower start so the first # item so we need to break. break return self.cut_text(text, offsets) def cut_text(self, text, offsets): # We have all the offsets now, we just need to do the actual splitting. # We need to eventually add the first part of the string and the eventual # last part. offsets.append(len(text)) tokens = [] start = 0 for end in offsets: if start > end: logger.error( "There was a bug in Trie algorithm in tokenization. Attempting to recover. Please report it anyway." ) continue elif start == end: # This might happen if there's a match at index 0 # we're also preventing zero-width cuts in case of two # consecutive matches continue tokens.append(text[start:end]) start = end return tokens def _is_whitespace(char): """Checks whether `char` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `char` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `char` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def _is_end_of_word(text): """Checks whether the last character in text is one of a punctuation, control or whitespace character.""" last_char = text[-1] return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char)) def _is_start_of_word(text): """Checks whether the first character in text is one of a punctuation, control or whitespace character.""" first_char = text[0] return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char)) def _insert_one_token_to_ordered_list(token_list: List[str], new_token: str): """ Inserts one token to an ordered list if it does not already exist. Note: token_list must be sorted. """ insertion_idx = bisect.bisect_left(token_list, new_token) # Checks if new_token is already in the ordered token_list if insertion_idx < len(token_list) and token_list[insertion_idx] == new_token: # new_token is in token_list, don't add return else: token_list.insert(insertion_idx, new_token) @add_end_docstrings(INIT_TOKENIZER_DOCSTRING) class PreTrainedTokenizer(PreTrainedTokenizerBase): """ Base class for all slow tokenizers. Inherits from [`~tokenization_utils_base.PreTrainedTokenizerBase`]. Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary. This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...). """ def __init__(self, **kwargs): super().__init__(**kwargs) # Added tokens - We store this for both slow and fast tokenizers # until the serialization of Fast tokenizers is updated self.added_tokens_encoder: Dict[str, int] = {} self.added_tokens_decoder: Dict[int, str] = {} self.unique_no_split_tokens: List[str] = [] self.tokens_trie = Trie() self._decode_use_source_tokenizer = False @property def is_fast(self) -> bool: return False @property def vocab_size(self) -> int: """ `int`: Size of the base vocabulary (without the added tokens). """ raise NotImplementedError def get_added_vocab(self) -> Dict[str, int]: """ Returns the added tokens in the vocabulary as a dictionary of token to index. Returns: `Dict[str, int]`: The added tokens. """ return self.added_tokens_encoder def __len__(self): """ Size of the full vocabulary with the added tokens. """ return self.vocab_size + len(self.added_tokens_encoder) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary. Args: new_tokens (`List[str]`or `List[tokenizers.AddedToken]`): Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by checking if the tokenizer assign the index of the `unk_token` to them). special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the tokens should be added as special tokens. Returns: `int`: The number of tokens actually added to the vocabulary. Examples: ```python # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = BertModel.from_pretrained("bert-base-uncased") num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) print("We have added", num_added_toks, "tokens") # Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```""" new_tokens = [str(tok) for tok in new_tokens] tokens_to_add = [] for token in new_tokens: if not isinstance(token, str): raise TypeError(f"Token {token} is not a string but a {type(token)}.") if not special_tokens and hasattr(self, "do_lower_case") and self.do_lower_case: token = token.lower() if ( token != self.unk_token and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token) and token not in tokens_to_add ): tokens_to_add.append(token) if self.verbose: logger.info(f"Adding {token} to the vocabulary") added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add)) added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} self.added_tokens_encoder.update(added_tok_encoder) self.added_tokens_decoder.update(added_tok_decoder) # Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert) if special_tokens: if len(new_tokens) == 1: _insert_one_token_to_ordered_list(self.unique_no_split_tokens, new_tokens[0]) else: self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(new_tokens))) else: # Or on the newly added tokens if len(tokens_to_add) == 1: _insert_one_token_to_ordered_list(self.unique_no_split_tokens, tokens_to_add[0]) else: self.unique_no_split_tokens = sorted(set(self.unique_no_split_tokens).union(set(tokens_to_add))) self._create_trie(self.unique_no_split_tokens) return len(tokens_to_add) def _create_trie(self, unique_no_split_tokens): trie = Trie() for token in unique_no_split_tokens: if hasattr(self, "do_lower_case") and self.do_lower_case and token not in self.all_special_tokens: trie.add(token.lower()) else: trie.add(token) self.tokens_trie = trie def num_special_tokens_to_add(self, pair: bool = False) -> int: """ Returns the number of added tokens when encoding a sequence with special tokens. <Tip> This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop. </Tip> Args: pair (`bool`, *optional*, defaults to `False`): Whether the number of added tokens should be computed in the case of a sequence pair or a single sequence. Returns: `int`: Number of special tokens added to sequences. """ token_ids_0 = [] token_ids_1 = [] return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None)) def tokenize(self, text: TextInput, **kwargs) -> List[str]: """ Converts a string in a sequence of tokens, using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Takes care of added tokens. Args: text (`str`): The sequence to be encoded. **kwargs (additional keyword arguments): Passed along to the model-specific `prepare_for_tokenization` preprocessing method. Returns: `List[str]`: The list of tokens. """ # Simple mapping string => AddedToken for special tokens with specific tokenization behaviors all_special_tokens_extended = dict( (str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken) ) text, kwargs = self.prepare_for_tokenization(text, **kwargs) if kwargs: logger.warning(f"Keyword arguments {kwargs} not recognized.") # TODO: should this be in the base class? if hasattr(self, "do_lower_case") and self.do_lower_case: # convert non-special tokens to lowercase escaped_special_toks = [ re.escape(s_tok) for s_tok in (self.unique_no_split_tokens + self.all_special_tokens) ] pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)" text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text) no_split_token = set(self.unique_no_split_tokens) tokens = self.tokens_trie.split(text) # ["This is something", "<special_token_1>", " else"] for i, token in enumerate(tokens): if token in no_split_token: tok_extended = all_special_tokens_extended.get(token, None) left = tokens[i - 1] if i > 0 else None right = tokens[i + 1] if i < len(tokens) - 1 else None if isinstance(tok_extended, AddedToken): if tok_extended.rstrip and right: # A bit counter-intuitive but we strip the left of the string # since tok_extended.rstrip means the special token is eating all white spaces on its right tokens[i + 1] = right.lstrip() # Strip white spaces on the left if tok_extended.lstrip and left: tokens[i - 1] = left.rstrip() # Opposite here else: # We strip left and right by default if right: tokens[i + 1] = right.lstrip() if left: tokens[i - 1] = left.rstrip() # ["This is something", "<special_token_1>", "else"] tokenized_text = [] for token in tokens: # Need to skip eventual empty (fully stripped) tokens if not token: continue if token in no_split_token: tokenized_text.append(token) else: tokenized_text.extend(self._tokenize(token)) # ["This", " is", " something", "<special_token_1>", "else"] return tokenized_text def _tokenize(self, text, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. """ raise NotImplementedError def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: """ Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the vocabulary. Args: tokens (`str` or `List[str]`): One or several token(s) to convert to token id(s). Returns: `int` or `List[int]`: The token id or list of token ids. """ if tokens is None: return None if isinstance(tokens, str): return self._convert_token_to_id_with_added_voc(tokens) ids = [] for token in tokens: ids.append(self._convert_token_to_id_with_added_voc(token)) return ids def _convert_token_to_id_with_added_voc(self, token): if token is None: return None if token in self.added_tokens_encoder: return self.added_tokens_encoder[token] return self._convert_token_to_id(token) def _convert_token_to_id(self, token): raise NotImplementedError def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) return self.convert_tokens_to_ids(tokens) else: return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: if is_split_into_words: raise ValueError( f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_split_into_words=True`." ) else: raise ValueError( f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) first_ids = get_input_ids(text) second_ids = get_input_ids(text_pair) if text_pair is not None else None return self.prepare_for_model( first_ids, pair_ids=second_ids, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): if is_split_into_words: tokens = list( itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) ) return self.convert_tokens_to_ids(tokens) else: return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) input_ids = [] for ids_or_pair_ids in batch_text_or_text_pairs: if not isinstance(ids_or_pair_ids, (list, tuple)): ids, pair_ids = ids_or_pair_ids, None elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)): ids, pair_ids = ids_or_pair_ids, None else: ids, pair_ids = ids_or_pair_ids first_ids = get_input_ids(ids) second_ids = get_input_ids(pair_ids) if pair_ids is not None else None input_ids.append((first_ids, second_ids)) batch_outputs = self._batch_prepare_for_model( input_ids, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for first_ids, second_ids in batch_ids_pairs: outputs = self.prepare_for_model( first_ids, second_ids, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs def prepare_for_tokenization( self, text: str, is_split_into_words: bool = False, **kwargs ) -> Tuple[str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the `kwargs` at the end of the encoding process to be sure all the arguments have been used. Args: text (`str`): The text to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. kwargs: Keyword arguments to use for the tokenization. Returns: `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs. """ return (text, kwargs) def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0)) @overload def convert_ids_to_tokens(self, ids: int, skip_special_tokens: bool = False) -> str: ... @overload def convert_ids_to_tokens(self, ids: List[int], skip_special_tokens: bool = False) -> List[str]: ... def convert_ids_to_tokens( self, ids: Union[int, List[int]], skip_special_tokens: bool = False ) -> Union[str, List[str]]: """ Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and added tokens. Args: ids (`int` or `List[int]`): The token id (or token ids) to convert to tokens. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. Returns: `str` or `List[str]`: The decoded token(s). """ if isinstance(ids, int): if ids in self.added_tokens_decoder: return self.added_tokens_decoder[ids] else: return self._convert_id_to_token(ids) tokens = [] for index in ids: index = int(index) if skip_special_tokens and index in self.all_special_ids: continue if index in self.added_tokens_decoder: tokens.append(self.added_tokens_decoder[index]) else: tokens.append(self._convert_id_to_token(index)) return tokens def _convert_id_to_token(self, index: int) -> str: raise NotImplementedError def convert_tokens_to_string(self, tokens: List[str]) -> str: return " ".join(tokens) def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True, spaces_between_special_tokens: bool = True, **kwargs ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) if spaces_between_special_tokens: text = " ".join(sub_texts) else: text = "".join(sub_texts) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
38e4a8deed62e3575fce47fec504b754d64bf0a4
f659aab67a15b96f383cfcd37255349a416f40b7
/TataDjango/wsgi.py
95f1e1d28394cc8b27d4110a8614811c7e5cd44f
[]
no_license
talitalopes/django-learning
10006de27d4e3c804a5975b1451a13f10b723203
02e844db21b6d167b7abac8c8b41d69dd2f87ba5
refs/heads/master
2020-07-11T17:16:02.367795
2017-06-17T02:03:08
2017-06-17T02:03:11
94,273,848
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
""" WSGI config for TataDjango project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "TataDjango.settings") application = get_wsgi_application()
[ "talitalopes@gmail.com" ]
talitalopes@gmail.com
7630eba99b49fec3058efa02c252e3607ba0c0dc
e53373d072d15da1316a61043747ba5544da9a09
/website/auth/forms.py
88c08b3ec44879793977ba9161e1e635a19f54fb
[]
no_license
OWF/owf2014
3de4b2c825dd74a68c20036d0108eb0af1e3208d
3d64302bb43c43fa1bd332490da62739e70aa126
refs/heads/master
2020-04-05T22:48:34.143204
2014-12-05T15:19:59
2014-12-05T15:19:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
# coding=utf-8 from flask.ext.wtf import Form, TextField, TextAreaField, required from flask.ext.babel import lazy_gettext as _l from wtforms import SelectField __all__ = ['RegistrationForm', 'BaseRegistrationForm'] org_types = [ u"", u"Auto-entrepreneur", u"PME", u"ETI", u"Grand Groupe", u"Investisseur", u"Académique", u"Institutionnel", u"Autre", ] org_types = [(x, x) for x in org_types] class RegistrationForm(Form): first_name = TextField(label=_l("First name"), validators=[required()]) last_name = TextField(label=_l("Last name"), validators=[required()]) title = TextField(label=_l("Title"), validators=[required()]) organization = TextField(label=_l("Organization"), validators=[required()]) organization_type = SelectField(label=_l("Organization type"), choices=org_types, validators=[required()]) url = TextField(label=_l("URL")) twitter_handle = TextField(label=_l("Twitter handle")) biography = TextAreaField(label=_l("Biography")) # github_handle = Column(UnicodeText(200), default="", nullable=False) # sourceforge_handle = Column(UnicodeText(200), default="", nullable=False) # linkedin_url = Column(UnicodeText(200), default="", nullable=False) class UnsecureRegistrationForm(RegistrationForm): def validate_csrf_token(self, field): return
[ "sf@fermigier.com" ]
sf@fermigier.com
d9668b913095a52b51c777087c7b0cdbcf0f0923
a1c08f74e2faf093d395eacf1d8145bbf22b0774
/adventofcode/adv_6.py
f69977068e1fafd4f45820d50cdf6800a502e9e8
[]
no_license
prusinskiPiotr/algorithms
fe4e8ec46166370b16a92321f1b1f43df38a4b27
7a6c9bf167d162b765b6cce31317e864fba14ccd
refs/heads/master
2021-06-07T21:31:05.549872
2019-12-16T16:05:38
2019-12-16T16:05:38
137,759,149
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
from collections import defaultdict with open('data_6.txt') as file: data = file.readlines() a = [data[i].rstrip().split(')') for i, num in enumerate(data)] def DFS(G,v,seen=None,path=None): if seen is None: seen = [] if path is None: path = [v] seen.append(v) paths = [] for t in G[v]: if t not in seen: t_path = path + [t] paths.append(list(t_path)) paths.extend(DFS(G, t, seen[:], t_path)) return paths G = defaultdict(list) for (s,t) in a: G[s].append(t) G[t].append(s) longest_depth_paths = DFS(G, 'COM') orbits_sum = sum(len(i)-1 for i in longest_depth_paths) # print(orbits_sum) all_paths = [p for ps in [DFS(G, n) for n in set(G)] for p in ps] san = [i for i in all_paths if ('YOU' in i) and ('SAN' in i)] print(len(san[0])-3) # this code is terribly inefficient and takes forever to execute # but it gets the result.
[ "prusinski.pio@gmail.com" ]
prusinski.pio@gmail.com
c12bcb3649544f920ec15252f9c474f129c7e660
0cf29d08fb67b9472867998884737d8d4487ddee
/wdqms/context_processors.py
ae46e0f1bc3de94a85537eee346199c88e8fb2eb
[]
no_license
kurt-hectic/wdqms
8971f2b2cecd97680a308f663a6f7bfe01b2587b
fbc40c958492bff4c9a489e6aee819993ef57b00
refs/heads/master
2020-04-08T19:15:12.107424
2018-09-14T10:02:36
2018-09-14T10:02:36
159,646,669
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
from django.conf import settings def global_settings(request): # return any necessary values return { 'OSCAR_STATION_REPORT': 'https://oscar.wmo.int/surface/index.html#/search/station/stationReportDetails/', 'GEOSERVER_URL' : 'http://128.65.196.37:80/geoserver/wdqms/wms' }
[ "timo@proescholdt.de" ]
timo@proescholdt.de
b16c733060a86bcf7bce7aaf30a362827d156232
cf8ff9bb2b09dd9be080954120aa1977ec1945e8
/week3/test_fixture1.py
1ca08a3c357aab9d2f81176096f1fd4d0394c2c8
[]
no_license
SaleevaMariia/stepik---auto-tests-course-python
aa34e2eedce8ec178391355c7dd17b52b3a48c4a
a751cc88320752d6a0ae426f4c3b9d6871423d35
refs/heads/master
2022-06-10T10:01:59.487936
2020-05-06T17:44:03
2020-05-06T17:44:03
260,880,673
0
0
null
null
null
null
UTF-8
Python
false
false
1,255
py
from selenium import webdriver link = "http://selenium1py.pythonanywhere.com/" class TestMainPage1(): @classmethod def setup_class(self): print("\nstart browser for test suite1..") self.browser = webdriver.Chrome() @classmethod def teardown_class(self): print("quit browser for test suite1..") self.browser.quit() def test_guest_should_see_login_link(self): self.browser.get(link) self.browser.find_element_by_css_selector("#login_link") def test_guest_should_see_basket_link_on_the_main_page(self): self.browser.get(link) self.browser.find_element_by_css_selector(".basket-mini .btn-group > a") class TestMainPage2(): def setup_method(self): print("start browser for test2..") self.browser = webdriver.Chrome() def teardown_method(self): print("quit browser for test2..") self.browser.quit() def test_guest_should_see_login_link(self): self.browser.get(link) self.browser.find_element_by_css_selector("#login_link") def test_guest_should_see_basket_link_on_the_main_page(self): self.browser.get(link) self.browser.find_element_by_css_selector(".basket-mini .btn-group > a")
[ "sunlimen13@gmail.com" ]
sunlimen13@gmail.com
732f0768302d0ef7fc24343b319572ce36afe58b
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/digress.py
88c39e0e78e7f37ca3dfbb2e1dbdb99c4c79e106
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
624
py
ii = [('GodwWSL2.py', 3), ('SadlMLP.py', 3), ('ProuWCM.py', 1), ('WilbRLW5.py', 1), ('FitzRNS3.py', 1), ('GrimSLE.py', 1), ('KiddJAE.py', 2), ('AdamHMM.py', 1), ('RoscTTI2.py', 1), ('CoolWHM.py', 1), ('CrokTPS.py', 1), ('ClarGE.py', 1), ('DibdTRL2.py', 1), ('MedwTAI.py', 5), ('WadeJEB.py', 2), ('CoopJBT.py', 3), ('KirbWPW2.py', 3), ('MedwTAI2.py', 1), ('SoutRD.py', 2), ('HogaGMM.py', 1), ('FitzRNS4.py', 1), ('HaliTBC.py', 1), ('AinsWRR2.py', 1), ('MereHHB2.py', 1), ('JacoWHI.py', 2), ('ClarGE3.py', 1), ('DibdTRL.py', 8), ('FitzRNS2.py', 5), ('MartHSI.py', 1), ('SadlMLP2.py', 4), ('LyelCPG3.py', 2), ('ChalTPW.py', 1)]
[ "prabhjyotsingh95@gmail.com" ]
prabhjyotsingh95@gmail.com
e1d1982c72f41e76af6ee2e389c30e70c274561b
a7dba1fb8adf8ccbb4a58fd15fff55686e22fd17
/programLicenceReader.py
41e9e84da0c4ae7df0139faadb79d771c0dc0bc6
[]
no_license
aniket1418/NumberPlateDetection
25e3e8db46f19f6f98f26b3e3e5ea92a82dc0184
f8f8c04eb79093d11c2e45acca0c0e6843a326d5
refs/heads/master
2023-04-10T23:07:55.716495
2021-04-23T08:37:14
2021-04-23T08:37:14
360,817,637
0
0
null
null
null
null
UTF-8
Python
false
false
1,780
py
import cv2 import pytesseract # Read the image file image = cv2.imread('26.jpg') # your path may be different pytesseract.pytesseract.tesseract_cmd = 'C:/OCR/Tesseract-OCR/tesseract.exe' # Convert to Grayscale Image gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Canny Edge Detection canny_edge = cv2.Canny(gray_image, 170, 200) # Find contours based on Edges contours, new = cv2.findContours( canny_edge.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) contours = sorted(contours, key=cv2.contourArea, reverse=True)[:30] # Initialize license Plate contour and x,y coordinates contour_with_license_plate = None license_plate = None x = None y = None w = None h = None # Find the contour with 4 potential corners and creat ROI around it for contour in contours: # Find Perimeter of contour and it should be a closed contour perimeter = cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, 0.01 * perimeter, True) if len(approx) == 4: # see whether it is a Rect contour_with_license_plate = approx x, y, w, h = cv2.boundingRect(contour) license_plate = gray_image[y:y + h, x:x + w] break # Removing Noise from the detected image, before sending to Tesseract license_plate = cv2.bilateralFilter(license_plate, 11, 17, 17) (thresh, license_plate) = cv2.threshold( license_plate, 150, 180, cv2.THRESH_BINARY) # Text Recognition text = pytesseract.image_to_string(license_plate) # Draw License Plate and write the Text image = cv2.rectangle(image, (x, y), (x+w, y+h), (34, 148, 3), 3) image = cv2.putText(image, text, (x-100, y-50), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 0), 6, cv2.LINE_AA) print("License Plate :", text) cv2.imshow("License Plate Detection", image) cv2.waitKey(0)
[ "17btrcs029@jainuniversity.ac.in" ]
17btrcs029@jainuniversity.ac.in
fb40df8b8bb3763c19d5f1e061fe5d6df51e162a
73c5a80b8ef2de609737a57c48b4190196bd4d20
/shell/database/LinuxMIPS/chmod.py
ba78fc467c6b66508d4b1f7f89c19243244c81dd
[ "MIT" ]
permissive
raildex1/shellsploit-framework
1674a2a0215ce0c87b0ad7f284e9b7c42834546b
a16d22fdffa5d9369cd55c8768d327e5abf8e648
refs/heads/master
2021-01-20T01:27:25.919068
2016-12-08T08:57:51
2016-12-08T08:57:51
89,279,926
2
1
null
2017-04-24T19:37:04
2017-04-24T19:37:04
null
UTF-8
Python
false
false
767
py
from lib.payloads.shellcode import Shellcode class Payload(Shellcode): Shellcode.info["author"] = "Sang-Min LEE" Shellcode.info["name"] = "LinuxMIPS - chmod shellcode" Shellcode.info["references"] = [ "https://www.exploit-db.com/exploits/36276/" ] def __init__(self, **kwargs): Shellcode.info["size"] = 44 + Shellcode().getsize(kwargs["file"]) Shellcode.info["payload"] = [ r"\xff\xff\x06\x28\xff\xff" r"\xd0\x04\xff\xff\x05\x28" r"\xb6\x01\x05\x24\x01\x10" r"\xe4\x27\x1f\xf0\x84\x24" r"\xaf\x0f\x02\x24\x0c\x01" r"\x01\x01\xff\xff\x04\x28" r"\xa1\x0f\x02\x24\x0c\x01" r"\x01\x01" + kwargs["file"] ]
[ "b3mb4m@tuta.io" ]
b3mb4m@tuta.io
ec2aabe61cdf4a348deb2d0d6b01450aff7dffa8
4fb67bbf06a2ebe1213aea66b4ab97031dbf04b2
/PyGames/Sanke.py
d8d9c067c397c086981c85de6c8db506161e83fc
[]
no_license
ArunCSK/MachineLearningAlgorithms
72110dec8c61e358da0c6d51753fb81142673812
81278433a51d1f9fe60faf877a00b5aa5a8c6c7d
refs/heads/master
2021-06-11T17:35:43.098620
2021-05-22T09:11:22
2021-05-22T09:11:22
191,166,762
0
0
null
null
null
null
UTF-8
Python
false
false
3,806
py
#py -m pip install -U pygame --user #py -m pygame.examples.aliens #pip install pygame import pygame import time import random pygame.init() dis_width = 600 dis_height = 500 dis = pygame.display.set_mode((dis_width,dis_height)) #play_area = pygame.display.set_mode((dis_width-20,dis_height-50)) pygame.display.set_caption("Snake Game") blue=(0,0,255) white = (255, 255, 255) black = (0, 0, 0) red = (255, 0, 0) clock = pygame.time.Clock() snake_speed=15 font_style = pygame.font.SysFont("bahnschrift", 30) score_font = pygame.font.SysFont("comicsansms", 35) def Your_score(score): value = score_font.render("Your Score: " + str(score), True, blue) dis.blit(value, [20, 0]) def our_snake(snake_block, snake_list): for x in snake_list: pygame.draw.rect(dis, black, [x[0], x[1], snake_block, snake_block]) def message(msg,color): mesg = font_style.render(msg, True, color) if(msg == "Game Over!!!"): dis.blit(mesg, [dis_width/3, dis_height/2]) else: dis.blit(mesg, [dis_width/12, dis_height/3]) def game_loop(): game_over = False game_close = False x1 = dis_width / 2 y1 = dis_height / 2 snake_block = 10 x1_change = 0 y1_change = 0 snake_List = [] Length_of_snake = 1 foodx = round(random.randrange(20, 580) / 10.0) * 10.0 foody = round(random.randrange(50, 480) / 10.0) * 10.0 while not game_over: while game_close == True: dis.fill(black) message("You Lost! Press C-Play Again or Q-Quit", red) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: game_over = True game_close = False if event.key == pygame.K_c: game_loop() for event in pygame.event.get(): #print(event) if event.type == pygame.QUIT: game_over = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: x1_change = -10 y1_change = 0 elif event.key == pygame.K_RIGHT: x1_change = 10 y1_change = 0 elif event.key == pygame.K_UP: x1_change = 0 y1_change = -10 elif event.key == pygame.K_DOWN: x1_change = 0 y1_change = 10 if x1 >= 580 or x1 < 20 or y1 >= 480 or y1 < 50: game_over = True x1 += x1_change y1 += y1_change dis.fill(black) #Define Game Area pygame.draw.rect(dis, white, [dis_width-580, dis_height-450, dis_width-40, dis_height- 70]) pygame.draw.rect(dis, black, [foodx, foody, snake_block, snake_block]) snake_Head = [] snake_Head.append(x1) snake_Head.append(y1) snake_List.append(snake_Head) if len(snake_List) > Length_of_snake: del snake_List[0] for x in snake_List[:-1]: if x == snake_Head: game_close = True #pygame.draw.rect(dis, blue, [x1,y1, snake_block,snake_block]) our_snake(snake_block, snake_List) Your_score(Length_of_snake - 1) pygame.display.update() clock.tick(snake_speed) if x1 == foodx and y1 == foody: foodx = round(random.randrange(20, 580) / 10.0) * 10.0 foody = round(random.randrange(50, 470) / 10.0) * 10.0 Length_of_snake += 1 clock.tick(snake_speed) message("Game Over!!!",red) pygame.display.update() time.sleep(1) pygame.quit() #quit() game_loop()
[ "arunsubburaj@gmail.com" ]
arunsubburaj@gmail.com
4bfe8c3ab1a24ab6ee9a54399f9e9409deeff0bd
75b3b691f9520434212e7caec4e4a0eacfa268e0
/stacks.py
7c6eed6d0fa0089d0d25a673f6f72a200d622dec
[]
no_license
rohunvora/stacks_and_queues
64c510f4de13bc7283dff6bc06eeda0a6a441f8e
62fcd8e531fff61b7e52f54ec7535e2a24ee188b
refs/heads/master
2022-12-15T21:33:09.614322
2020-09-15T23:42:53
2020-09-15T23:42:53
295,867,212
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
class Node: def __init__(self, data): self.data = data self.next = None # A class to represent a queue # The queue, front stores the front node # of LL and rear stores the last node of LL class Queue: def __init__(self): self.front = self.rear = None def isEmpty(self): return self.front == None # Method to add an item to the queue def EnQueue(self, item): temp = Node(item) if self.rear == None: self.front = self.rear = temp return self.rear.next = temp self.rear = temp # Method to remove an item from queue def DeQueue(self): if self.isEmpty(): return temp = self.front self.front = temp.next if(self.front == None): self.rear = None
[ "emailrohun@gmail.com" ]
emailrohun@gmail.com
9c5b71d7d9cb2e80ea971a626edf0ebc3538a0b6
63da7169cc5896a13bb0adb9cae8214f429ab377
/模块/datetime模块.py
ad8675597c6424cdf68507060c84d874436dc906
[]
no_license
StarvWd/Python
37ec676cfd9ba1338463e91125c62c6640d8e049
8c8c82ed956a8b6375a98453d361f9f0dfb32b9d
refs/heads/master
2020-12-01T16:19:19.614658
2020-02-25T04:25:17
2020-02-25T04:25:17
230,695,274
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
import datetime import time import calendar a = datetime.datetime.now() print(a) # 日期转星期函数 trans_weekday = lambda datastring:calendar.day_name[datetime.datetime.strptime(datastring, '%Y/%m/%d').weekday()] str = '2019/12/22' b = trans_weekday(str) print(b)
[ "l785655536@163.com" ]
l785655536@163.com
b9df64ecf6c998a4751b231993484ce5b837f39d
78f3fe4a148c86ce9b80411a3433a49ccfdc02dd
/2018/09/gender-turnout-20180921/graphic_config.py
cac7c7afe0eff34c3c389d01a7317c13de7e1ad1
[]
no_license
nprapps/graphics-archive
54cfc4d4d670aca4d71839d70f23a8bf645c692f
fe92cd061730496cb95c9df8fa624505c3b291f8
refs/heads/master
2023-03-04T11:35:36.413216
2023-02-26T23:26:48
2023-02-26T23:26:48
22,472,848
16
7
null
null
null
null
UTF-8
Python
false
false
305
py
#!/usr/bin/env python import base_filters COPY_GOOGLE_DOC_KEY = '1TSfm6BAGeGcN6-clhig9CKt0hW0jVvyxehX9Ard05dg' USE_ASSETS = False # Use these variables to override the default cache timeouts for this graphic # DEFAULT_MAX_AGE = 20 # ASSETS_MAX_AGE = 300 JINJA_FILTER_FUNCTIONS = base_filters.FILTERS
[ "ahurt@npr.org" ]
ahurt@npr.org
fa3332729e6800356f03317bd11286ce0dc48d0d
4b69e2310e2147a302d99f8485b01f11702759ad
/ScrapingTwitter2.py
91a6582682d4b6d8e8109de030393807f2d759de
[]
no_license
guilhermealfred/EstudosPython
9d3c8697a43f08ae4f9ddc9a89d6a284d6f89aaf
55832d0fe157a337aa65661a7822d1a51a5d5223
refs/heads/master
2020-03-17T15:15:47.308914
2018-07-06T21:39:01
2018-07-06T21:39:01
133,703,877
0
0
null
null
null
null
UTF-8
Python
false
false
4,200
py
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup as bs from tkinter import * from PIL import Image import urllib.request import os class scraping(object): def __init__(self): self.tela = Tk() self.tela.title('Scraping Twitter') self.tela.geometry('400x400+400+200') self.tela.resizable(False,False) self.tela['bg'] = '#61f2cf' self.framelink = Frame(self.tela) self.framelink.pack() self.alert = Label(self.tela,fg='red',bg='#61f2cf',font=('Ubuntu Condensed',12)) self.alert.pack() self.lblink = Label(self.framelink,text='Link',font=('Ubuntu Condensed',12),padx = 25) self.lblink.pack(side=LEFT) self.frameimg = Frame(self.tela,pady = 10,bg='#61f2cf') self.frameimg.pack() self.link = Entry(self.framelink,width=40) self.link.focus_force() self.link.insert(END,'https://twitter.com/') self.link.bind('<Return>',self.handle) self.link.pack(side=LEFT) self.tela.mainloop() @property def get_tweets(self): try: self.tweets = self.soup.find('a',class_="ProfileNav-stat ProfileNav-stat--link u-borderUserColor u-textCenter js-tooltip js-nav") return self.tweets.get('title') except: return 'Não tem nenhum tweet' @property def get_following(self): try: self.fl = self.soup.find('li',class_='ProfileNav-item ProfileNav-item--following') self.following = self.fl.find('a',class_="ProfileNav-stat ProfileNav-stat--link u-borderUserColor u-textCenter js-tooltip js-openSignupDialog js-nonNavigable u-textUserColor").get('title').split() return str(self.following[1].replace('s','S')) + ' ' + str(self.following[0]) + ' pessoas' except: return 'Não segue nenhum perfil' @property def get_followers(self): try: self.flo = self.soup.find('li',class_='ProfileNav-item ProfileNav-item--followers') self.followers = self.flo.find('a',class_="ProfileNav-stat ProfileNav-stat--link u-borderUserColor u-textCenter js-tooltip js-openSignupDialog js-nonNavigable u-textUserColor").get('title') return self.followers except: return 'Não possui seguidores' @property def get_photos(self): try: self.ph = self.soup.find('a',class_='PhotoRail-headingWithCount js-nav') if self.ph.text.strip() == '0 Foto ou vídeo': return 'Não possui fotos/vídeos' return ' '* 15 + self.ph.text.lstrip() except: pass def handle(self,event): try: self.site = urllib.request.urlopen(self.link.get()).read() self.soup = bs(self.site,'lxml') try: if self.soup.find('input',value="app/pages/profile/highline_landing") != None: self.download() else: raise except: raise except Exception as e: self.alert['text'] = 'Perfil Inválido!.Formato de entrada : https://twitter.com/perfil' print(e) def download(self): try: img = self.soup.find('img',class_='ProfileAvatar-image ').get('src') urllib.request.urlretrieve(img,'img.png') except: urllib.request.urlretrieve('https://abs.twimg.com/a/1527200258/img/t1/highline/empty_state/owner_empty_avatar.png','img.png') finally: self.handle_image() def handle_image(self): image = Image.open('img.png') new_img = image.resize((150,150)) new_img.save('perfil.gif') self.photo = PhotoImage(file='perfil.gif') self.save = self.photo self.organize() def organize(self): self.alert.pack_forget() self.lblink.pack_forget() self.link.pack_forget() self.framelink.pack_forget() self.tela.title(f'Perfil-@{self.soup.find("b",class_="u-linkComplex-target").text}') self.lb = Label(self.frameimg,image=self.photo,bg='#61f2cf') self.lb.pack() os.system('rm img.png') os.system('rm perfil.gif') self.frameinfo = Frame(self.tela,bg='#61f2cf') self.frameinfo.pack() lista = [self.get_following,self.get_followers,self.get_photos,self.get_tweets] for i in lista: self.lbi = Label(self.frameinfo,text=i,font=('Ubuntu Condensed',12),fg='#4c4c4c',bg='#61f2cf') self.lbi.pack() self.framebt = Frame(self.tela,pady=30,bg='#61f2cf') self.framebt.pack(side=BOTTOM) self.again = Button(self.framebt,text='Scrapar denovo',width=13,bg='#61f2cf',borderwidth=0,command=self.dnv,font=('Ubuntu Condensed',12),fg='black') self.again.pack() def dnv(self): self.tela.destroy() scraping()
[ "noreply@github.com" ]
guilhermealfred.noreply@github.com
e6f786e878bd5df9b166ba7e66963ce750bd25de
738fa77629258bb81a1048fd595cc6937e1e1231
/screenshot_sampling.py
d44202a2627f44f58d852636adf7e37b311a4a3f
[ "MIT" ]
permissive
ahmedshingaly/sketch2shape
a24ac126202cd8ce9d5527ee3cdc84d1bfaf8bf3
128f83d760d215ec7fae35aeb1430512552f2b92
refs/heads/master
2022-12-17T11:25:30.983537
2020-09-18T02:03:18
2020-09-18T02:03:18
296,487,395
0
0
MIT
2020-09-18T01:58:47
2020-09-18T01:58:46
null
UTF-8
Python
false
false
2,871
py
from pyDOE import lhs import torch import numpy as np from utils.util_vtk import * from utils.util import * from utils.sketchify import sketchify from time import time #from sklearn.cluster import DBSCAN # def filter(voxels, threshold=0.5, distance=10, min_voxels=10): # filter_size = voxels > threshold # voxels[~filter_size] = 0 # non_zeros = np.nonzero(voxels) # non_zeros = np.vstack(non_zeros).T # # print(non_zeros.shape) # db = DBSCAN(eps=distance, min_samples=min_voxels) # db.fit(non_zeros) # (values, counts) = np.unique(db.labels_, return_counts=True) # ind = values[np.argmax(counts)] # print(ind) # # print(ind) # # print(np.max(counts)) # not_retained = non_zeros[db.labels_ != ind] # print(not_retained.shape[0]) # # voxels = np.zeros((64, 64, 64)) # voxels[not_retained] = 0 # return voxels # Device configuration # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = 'cpu' # we're dealing with cpu iv3_model # Load Model model_basepath = r"models_cpu/" model_filepath = "chair_G_cpu" model = torch.load(model_basepath + model_filepath) # Data Folder data_folder = r"data/" sketch_folder = r"screenshotsBT/" sketch_filename = "screenshot" img_ext = ".png" samples_filename = "samples_screenshot_BT.npy" sketch_fp = data_folder + sketch_folder + sketch_filename samples_fp = data_folder + samples_filename # Parameters nsamples = 10000 ndim = 200 downsampling = 2 image_size = 128 overwrite = True # Latin Hypercube Sampling samples = lhs(ndim, samples=nsamples, criterion=None) np.save(samples_fp, samples) print(10 * '#' + ' Sampling Started ' + 10 * '#') tic = time() sample_num = 0 for latent_vec in samples: z = torch.Tensor(latent_vec) # z = torch.randn(1, ndim, device=device)*20 z = z.view(1, -1, 1, 1, 1) fake = model(z) np_fake = fake.detach().numpy() voxels = np.reshape(fake.detach().numpy(), (64, 64, 64)) if downsampling > 1: voxels = downsample(voxels, downsampling, method='mean') # voxels = filter(voxels) # print(max_connected(voxels, distance=3).shape) path = sketch_fp + str(sample_num) + img_ext visualization(voxels, 0.3, title=None, uniform_size=1, use_colormap=False, angle=0.3, filename=path) # out_path = path # if ~overwrite: # out_path = path.split(".")[0] + "bis." + path.split(".")[1] # sketchify(path, path, output_dim=(128, 128)) sample_num += 1 toc = time() print("Sketch " + str(sample_num) + "/" + str(nsamples) + " Sampled | Elapsed Time: " + "{0:.2f}".format( toc - tic) + "s | Estimated Remaining Time: " + "{0:.2f}".format( (toc - tic) / sample_num * (nsamples - sample_num)) + "s") # Write Samples Data # f = h5py.File(samples_fp, "w") # f.create_dataset('samples', data=samples) # f.close()
[ "38009983+danhaive@users.noreply.github.com" ]
38009983+danhaive@users.noreply.github.com
05ad2df497ac7fab5459b1b1b3f38d06c6a3c071
d488007fd29194535f8f57359c9c398eab99e9c8
/src/python/fem/data/plot/__init__.py
f5439f2e7090a33926c1e615e19c1be410b636f1
[]
no_license
kvendingoldo/diploma
0df711455968ce0ffa4ceb948c4442acc5b34f65
f98455b53a003cbe878855ed80eff88fb8952c61
refs/heads/master
2018-09-17T04:26:27.860389
2018-06-13T20:53:08
2018-06-13T20:53:08
109,409,623
1
0
null
2018-02-13T19:10:27
2017-11-03T15:07:42
Python
UTF-8
Python
false
false
109
py
# -*- coding: utf-8 -*- # @Author: Alexander Sharov __all__ = ['poly_contour', 'contour_lines', 'tri_plot']
[ "kvendingoldo@yandex.ru" ]
kvendingoldo@yandex.ru
dda517535d004caebe20b1ae918bcb69b4d9bdee
b348a7931799a5ad689f5e49c76bd36f7243fddf
/mconfig/views.py
fa4fa0a4fe9306324388d8e1a6cefd6a5b529013
[]
no_license
pavel-lihanov/danfoss-mconfig
360968630e569c277d71cc288134ebcbe14ce5ca
be4a20ac50f2ad09e065f1afc504af314001925f
refs/heads/master
2021-01-11T12:36:28.110038
2017-08-21T07:58:22
2017-08-21T07:58:22
79,431,816
0
0
null
2017-02-10T06:29:59
2017-01-19T08:22:22
Python
UTF-8
Python
false
false
25,087
py
from django.shortcuts import render # Create your views here. from django.http import HttpResponse, HttpResponseNotFound, HttpResponseForbidden, HttpResponseRedirect, HttpResponseServerError from django.template import loader from django.utils.translation import activate, check_for_language, get_language from django.utils.translation import ugettext as _ from django.views.static import serve from django.views import generic from django.contrib.auth import views as auth_views import django.contrib.auth from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth.mixins import PermissionRequiredMixin, AccessMixin from django.contrib.auth.models import User, Permission from django.contrib.contenttypes.models import ContentType from django.urls import reverse #from django.core.urlresolvers import reverse from mconfig.models import Order, Profile from field_views import HTMLChoiceMixin, HTMLEditMixin, HTMLCompoundMixin, HTMLOneOfManyMixin, HTMLSearchChoiceMixin, HTMLStreetAddressMixin, HTMLHeaderMixin import price price.price_lists['VEDADrive'] = price.VEDAXLPriceList('prices.xlsm') import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import threading import datetime import devices import questions import wizard import time import traceback import locale import os import os.path import shutil import json #import rpdb2 #rpdb2.start_embedded_debugger('123qwe') #locale.setlocale(locale.LC_ALL, 'ru') #wizard instances are stored here sessions = {} last_id = 0 lock = threading.Lock() def send_mail(server, from_, to, subject, html, text): msg = MIMEMultipart('alternative') html = html msg['Subject'] = subject msg['From'] = from_ msg['To'] = to part1 = MIMEText(text, 'plain') part2 = MIMEText(html, 'html') msg.attach(part1) msg.attach(part2) s = smtplib.SMTP(server) s.sendmail(from_, to, msg.as_string()) s.quit() class Reaper(threading.Thread): #deletes inactive sessions after 1 day def __init__(self): threading.Thread.__init__(self) self.daemon = True def run(self): try: while True: time.sleep(600) #print('Reaper: checking sessions') to_reap = [] with lock: for k,v in sessions.items(): if (datetime.datetime.now() - v.last_activity).days >= 1: print('Reaper: session {0} will be reaped'.format(k)) to_reap.append(k) #del sessions[k] else: pass #print('Let it leave, last active at {0}'.format(v.last_activity)) for k in to_reap: del sessions[k] except: traceback.print_exc() #reaper = Reaper() #reaper.start() if check_for_language('ru'): print('Has Russian') activate('ru') else: print('No Russian, sorry') #print(get_language()) print(_('Hello')) #todo: move to separate module class Settings: pass class Decider: def __init__(self, settings): self.select_option = self.select_option_first #self.select_option = self.select_option_most_expensive def select_option_first(self, device, option): #select first available option return device.options[option][0] def select_option_most_expensive(self, device, option): #select most expensive option avail = device.options[option] ops = option_prices[option] prices = sorted([(o, p) for o,p in ops.items() if o in avail], key=operator.itemgetter(1), reverse=True) return prices[0][0] def select_devices(self, devices): def get_nom_current(device): return device.attributes['nom_current'] return [list(sorted(devices, key=get_nom_current))[0]] def select_choice(self, devices, choice): return choice.get_valid_choices(devices) settings = Settings() decider = Decider(settings) #test_dev = devices.VEDADrive.from_order_code('VD-P2000U1F531SSX192ACA21B2CXDX21E1S') #print(test_dev) class HTMLQuestion: template = "mconfig/question.html" def as_json(self, **args): return json.dumps({ 'name': self.question.header, 'error': self.question.last_error, 'next_enabled': self.question.can_proceed(), 'prev_enabled': self.question.previous is not None, 'fields': [f.view.as_json() for f in self.question.get_fields()] }) class VEDADriveView: _template = "VEDADrive.html" @property def template(self): return self._template def as_json(self): return { 'name': self.package.name, 'order_code': self.package.order_code(), 'short_descr': self.package.short_descr(), 'options': self.package.display_options(), 'main_cabinet': self.package.main_cabinet.name, 'addons': '+'.join([o.name for o in self.package.addons]), 'width': self.package.width, 'height': self.package.height, 'length': self.package.length, 'weight': self.package.weight, 'therm_loss': self.package.therm_loss } class PriceView: _template = "price.html" def __init__(self, show_details): self.show_details = show_details @property def template(self): return self._template def as_json(self): if self.show_details: dv = PriceDetailsView() dv.price = self.price return {'total': self.price.total, 'details': dv.as_json()} else: return {'total': self.price.total, 'details': None} class PriceDetailsView: _template = "price.html" def template(self): return self._template def as_json(self): return {'supplier_price': self.price.supplier_price, 'delivery_cost': self.price.delivery_cost, 'sale_price': self.price.sale_price} class HTMLResult: _template = "mconfig/result.html" _unpriced_template = "mconfig/result_unpriced.html" @property def template(self): return self._template #TODO: view should tell if current user has appropriate access level def as_json(self, show_details): package = self.question.packages[0] package.view = VEDADriveView() package.view.package = package try: package.calculate_price() package.price.view = PriceView(show_details) package.price.view.price = package.price return json.dumps({'package': package.view.as_json(), 'price': package.price.view.as_json(), }) except price.NotInPricelist: return json.dumps({'package': package.view.as_json(), 'price': None, }) class HTMLWizard(wizard.Wizard): def __init__(self, devices, questions): views = {} wizard.Wizard.__init__(self, devices) for question in questions: #self.append_screen(HTMLQuestion(question), views=views) self.append_screen(question, views=views) def add_wizard_instance(request): session = request.session global sessions, last_id #html mixins just provide template names views = { wizard.SearchChoiceField: HTMLSearchChoiceMixin, questions.LoadQuestion.ApplicationField: HTMLSearchChoiceMixin, questions.LoadQuestion.OverloadField: HTMLEditMixin, wizard.ChoiceField: HTMLChoiceMixin, wizard.ValueField: HTMLEditMixin, questions.MotorCableLenField: HTMLEditMixin, wizard.CompoundField: HTMLCompoundMixin, wizard.OneOfManyField: HTMLOneOfManyMixin, wizard.StreetAddressField:HTMLStreetAddressMixin, wizard.TextHeader: HTMLHeaderMixin, } qs = [ questions.LoadQuestion(devices.devices, views, view=HTMLQuestion()), questions.PlacementQuestion(devices.devices, views, view=HTMLQuestion()), #questions.OptionsQuestion(devices.devices, views, view=HTMLQuestion()), #questions.DeliveryQuestion(devices.devices, views, view=HTMLQuestion(), user_getter = lambda: request.user), wizard.Result(decider, view=HTMLResult()) ] wiz = HTMLWizard(devices.devices, qs) wiz.last_activity = datetime.datetime.now() key = hash(wiz) session['key'] = key wiz.key = key with lock: cur_id = last_id sessions[last_id] = (wiz, threading.Lock()) session['wizard'] = last_id last_id += 1 wiz.start() return cur_id def is_superuser(user): return user.is_superuser class OrderView(PermissionRequiredMixin, AccessMixin, generic.ListView): template_name = 'mconfig/order.html' context_object_name = 'orders' permission_required = 'mconfig.view_all_orders' login_url = '/mconfig/login/' def get_queryset(self): """Return the last five published questions.""" return Order.objects.all() def request_access(request, action): if request.method == 'GET': template = loader.get_template('mconfig/request_access.html') context={} return HttpResponse(template.render(context, request)) elif request.method == 'POST': access_level = 2 user = User.objects.filter(username=request.POST['email']) user = user[0] if user else None profile = Profile.objects.filter(email=request.POST['email']) profile = profile[0] if profile else None if user is None and profile is None: user = User.objects.create_user(request.POST['email'], request.POST['email'], 'danfoss') profile = Profile(first_name=request.POST['first_name'], last_name = request.POST['last_name'], organization=request.POST['organization'], email=request.POST['email'], role=access_level, registered=False) user.is_active = False user.profile = profile profile.user = user profile.save() user.save() msg = '''\ <html> <head></head> <body> Hello {0} {1} from {2} has asked for VEDADrive configurator access. To grant it please follow the <a href="http://pc0149941:8000/mconfig/create_user?email={3}">link</a> and click "Submit" </body> </html> '''.format(request.POST['first_name'], request.POST['last_name'], request.POST['organization'], request.POST['email']) text = '{0} {1} from {2} has asked for VEDADrive configurator access.\n To grant it go to http://pc0149941:8000/mconfig/create_user?email={3} and click "Submit"'.format(request.POST['first_name'], request.POST['last_name'], request.POST['organization'], request.POST['email']) send_mail('localhost', 'pl@mydomain.org', 'manager@myconfirm.org', 'Mconfig registration request', msg, text) return HttpResponse('Registration request created, await confirmation email') else: return HttpResponse('Email already registered') @user_passes_test(is_superuser, login_url='/mconfig/login/') def create_user(request, action): if request.method == 'GET': template = loader.get_template('mconfig/create_user.html') if 'email' in request.GET: profile = Profile.objects.get(email=request.GET['email']) context = {'profile': profile} else: context = {} return HttpResponse(template.render(context, request)) elif request.method == 'POST': #print(request.POST['email'], request.POST['password']) access_level = int(request.POST['role']) try: user = User.objects.get(username=request.POST['email']) except User.DoesNotExist: user = None try: profile = Profile.objects.get(email=request.POST['email']) except Profile.DoesNotExist: profile = None if user is None: if access_level > 0: user = User.objects.create_user(request.POST['email'], request.POST['email'], 'danfoss') else: user = User.objects.create_superuser(request.POST['email'], request.POST['email'], 'danfoss') else: user.first_name = request.POST['first_name'] user.last_name = request.POST['last_name'] user.is_active = True if profile is None: profile = Profile(first_name=request.POST['first_name'], last_name = request.POST['last_name'], organization=request.POST['organization'], email=request.POST['email'], role=access_level, registered=True) else: profile.first_name = request.POST['first_name'] profile.last_name = request.POST['last_name'] profile.role = access_level user.profile = profile profile.user = user if access_level > 0: user.user_permissions.clear() if access_level == 1: content_type = ContentType.objects.get_for_model(Order) permission = Permission.objects.get(content_type=content_type, codename='view_price') user.user_permissions.add(permission) permission = Permission.objects.get(content_type=content_type, codename='view_delivery') user.user_permissions.add(permission) elif access_level == 2: content_type = ContentType.objects.get_for_model(Order) permission = Permission.objects.get(content_type=content_type, codename='view_price') user.user_permissions.add(permission) permission = Permission.objects.get(content_type=content_type, codename='view_delivery') user.user_permissions.add(permission) profile.save() user.save() return HttpResponse('User created OK') msg = '''\ <html> <head></head> <body> Hello You have been given access to VEDADrive configurator. To access extended functions please follow the <a href="http://pc0149941:8000/mconfig/login">link</a>, use your email as login and "danfoss" as password. </body> </html> ''' text = '''Hello You have been given access to VEDADrive configurator. To access extended functions please go to http://pc0149941:8000/mconfig/login, use your email as login and "danfoss" as password.''' send_mail('localhost', 'manager@myconfirm.org', request.POST['email'], 'Mconfig registration confirmation', msg, text) return HttpResponse('User created OK') def login(request): print('login') template_response = views.login(request) # Do something with `template_response` return template_response def logout(request): django.contrib.auth.logout(request) return HttpResponseRedirect('/mconfig/login/') def index(request): print('mconfig start page') template = loader.get_template('mconfig/index.html') context = {} return HttpResponse(template.render(context, request)) #@login_required(login_url='/mconfig/login/') def config_start(request): print('config_start') id = add_wizard_instance(request) template = loader.get_template('mconfig/start.html') return HttpResponseRedirect('/mconfig/start/{0}/questions'.format(id)) @login_required(login_url='/mconfig/login/') def download(request, session): wiz, lock = sessions[int(session)] print (session, wiz) package = wiz.screens[-1].packages[0] filepath = 'C:\\Users\\u327397\\Desktop\\Projects\\HV\\configurator\\mysite\\test.docx' path = os.path.join(os.path.dirname(filepath), '{0}.{1}'.format(session, 'docx')) package.make_offer_template(path) ''' date = models.DateField(auto_now_add=True) price_version = models.CharField(max_length=60) typecode = models.CharField(max_length=60) price = models.DecimalField(max_digits=12, decimal_places=3) user = models.ForeignKey(User) ''' user = request.user try: profile = Profile.objects.get(email=user.email) order = Order(date = datetime.date.today(), price_version = '0.0', typecode = package.order_code(), price=package.price.sale_price, user=user) order.save() except Profile.DoesNotExist: #should never happen pass return serve(request, os.path.basename(path), os.path.dirname(path)) def field(request, session): try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponseNotFound('Session not found or expired (field): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) context = {} wiz.last_activity = datetime.datetime.now() question = wiz.current_screen field = request.GET['field'] #print(request.GET) #print('requested field', field) try: f = question.get_field(field) template = loader.get_template(f.view.template) context['field'] = f context['as_xml'] = True res = HttpResponse(template.render(context, request), content_type="text/xml") return res except KeyError: return HttpResponseNotFound('Field not found') def question_refresh(request, session, _context={}, error=''): #TODO: check user permissions - can be Result!!! try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponse('Session not found or expired (refresh): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) if not validate_request(request, wiz): return HttpResponseForbidden() context = dict(_context) wiz.last_activity = datetime.datetime.now() question = wiz.current_screen question.last_error = error data = question.view.as_json(show_details=request.user.is_superuser) return HttpResponse(data, content_type="application/json") def show_question(session, request, wiz, context): question = wiz.current_screen template = loader.get_template(question.view.template) context['question'] = wiz.current_screen #context['devices'] = [decider.select_devices(wiz.apply_filters_nosave(question.next, options=opts))] #context['options'] = wiz.get_options(question) res = HttpResponseRedirect(reverse('mconfig:question', args=(session, ))) return res def next_question(request, session): try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponse('Session not found or expired (next): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) if not validate_request(request, wiz): return HttpResponseForbidden() context = {} wiz.last_activity = datetime.datetime.now() try: wiz.go_forward() except wizard.ValidationError as ex: print('ValidationError', ex.message) context['error_message'] = ex.message #context['devices'] = [decider.select_devices(wiz.apply_filters_nosave(question.next))] #context['options'] = wiz.get_options(question) return show_question(session, request, wiz, context) def prev_question(request, session): user = request.user try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponse('Session not found or expired (prev): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) if not validate_request(request, wiz): return HttpResponseForbidden() context = {} wiz.last_activity = datetime.datetime.now() wiz.go_back() return show_question(session, request, wiz, context) def update_question(request, session): #updates all fields, should be triggered on any field change user = request.user try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponse('Session not found or expired(update): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) if not validate_request(request, wiz): return HttpResponseForbidden() context = {} wiz.last_activity = datetime.datetime.now() question = wiz.current_screen try: field = question.find_field(request.POST['Current_field']) try: wiz.update(question, field, request.POST[field.name]) except wizard.NoMatches: #no devices for this value, this may happen if user sets value in edit that filters out all devices error = _('No device matches value {0} for field {1}').format(request.POST[field.name], field.name) return question_refresh(request, session, context, error) except ValueError: #invalid value error = _('Invalid value {0} for field {1}').format(request.POST[field.name], field.name) return question_refresh(request, session, context, error) except KeyError: print('KeyError', request.POST['Current_field']) #opts = wiz.get_options(question) #prev_devs = wiz.apply_filters_nosave(question, options=opts) #for field in question.fields: # field.update(prev_devs, opts) #return show_question(session, request, wiz, context) return question_refresh(request, session, context, '') def validate_request(request, wiz): return 'key' in request.session and request.session['key'] == wiz.key def question(request, session): start_time = datetime.datetime.now() try: wiz, lock = sessions[int(session)] except KeyError: return HttpResponse('Session not found or expired (question): {0}, have sessions {1}'.format(int(session), list(sessions.keys()))) if not validate_request(request, wiz): return HttpResponseForbidden() context = {} wiz.last_activity = datetime.datetime.now() if request.method == 'GET': question = wiz.current_screen question.select() #print(type(question), question.view.template) opts = wiz.get_options(question) all_devs = wiz.apply_filters_nosave(question.next, options=opts) devs = decider.select_devices(all_devs) template = loader.get_template(question.view.template) for field in question.fields: wiz.refresh_field(question, field) #prev_devs = wiz.apply_filters_nosave(question, options=opts) #for field in question.fields: # field.update(prev_devs, opts) question.last_error = '' context['user'] = request.user context['question'] = question #context['devices'] = wiz.devs context['devices'] = devs context['options'] = opts context['full'] = True res = HttpResponse(template.render(context, request)) end_time = datetime.datetime.now() print('Request took {0}'.format(end_time-start_time)) return res @user_passes_test(is_superuser, login_url='/mconfig/login/') def upload_price(request, session): if request.method == 'GET': template = loader.get_template('mconfig/upload_price.html') context = {} return HttpResponse(template.render(context, request)) else: f = request.FILES['price_file'] #backup old price now = datetime.datetime.now() shutil.copyfile('prices.xlsm', now.isoformat().replace(':','_') + '_prices.xlsm') #replace price with open('prices.xlsm', 'wb') as destination: for chunk in f.chunks(): destination.write(chunk) #recreate pricelist price.price_lists['VEDADrive'] = price.VEDAXLPriceList('prices.xlsm') return HttpResponse('Pricelist uploaded OK')
[ "lihanov.pavel@danfoss.com" ]
lihanov.pavel@danfoss.com
816679062ae9e3989915f6117764fc65c743f6d4
6923f79f1eaaba0ab28b25337ba6cb56be97d32d
/Introduction_to_finite_element_methods_Langtangen/src/Bernstein_vs_Lagrange.py
6b47a69e3aaed18a2ae693248c856d34f124e6fd
[]
no_license
burakbayramli/books
9fe7ba0cabf06e113eb125d62fe16d4946f4a4f0
5e9a0e03aa7ddf5e5ddf89943ccc68d94b539e95
refs/heads/master
2023-08-17T05:31:08.885134
2023-08-14T10:05:37
2023-08-14T10:05:37
72,460,321
223
174
null
2022-10-24T12:15:06
2016-10-31T17:24:00
Jupyter Notebook
UTF-8
Python
false
false
3,793
py
import sympy as sym import mpmath import numpy import pylab import time def lagrange_series(N): psi = [] # h = Rational(1, N) h = 1.0/N points = [i*h for i in range(N+1)] for i in range(len(points)): p = 1 for k in range(len(points)): if k != i: p *= (x - points[k])/(points[i] - points[k]) psi.append(p) psi = psi[1:-1] return psi def bernstein_series(N): # FIXME: check if a normalization constant is common in the definition # advantage is that the basis is always positive psi = [] # for k in range(0,N+1): for k in range(1,N): # bc elsewhere psi_k = x**k*(1-x)**(N-k) psi.append(psi_k) return psi def sin_series(N): # FIXME: do not satisfy bc psi = [] for k in range(1,N): psi_k = sin(pi*k*x) psi.append(psi_k) return psi def taylor_series(N): # FIXME: do not satisfy bc print("Cannot with current BC implementation") return psi = [] for k in range(1,N): psi_k = x**k psi.append(psi_k) return psi def series(series_type, N): if series_type=="Taylor" : return taylor_series(N) # cannot do with current implementation of bc elif series_type=="sin" : return sin_series(N) elif series_type=="Bernstein" : return bernstein_series(N) elif series_type=="Lagrange" : return lagrange_series(N) else: print("series type unknown ") # sys.exit(0) x = sym.Symbol("x") integrand_type = "stiffness" bstime = [] lstime = [] bqtime = [] lqtime = [] Ns = [2, 4, 8, 16, 32] for N in Ns: t0 = time.time() bpsi = series("Bernstein", N) A = sym.zeros((N-1), (N-1)) for i in range(0, N-1): for j in range(0, N-1): integrand = 0 if integrand_type == "mass": integrand = bpsi[i]*bpsi[j] if integrand_type == "stiffness": integrand = sym.diff(bpsi[i],x)*sym.diff(bpsi[j],x) integrand = sym.lambdify([x], integrand) A[i,j] = mpmath.quad(integrand, [0, 1]) t1 = time.time() bqtime.append(t1-t0) for N in Ns: t0 = time.time() lpsi = series("Lagrange", N) A = sym.zeros((N-1), (N-1)) for i in range(0, N-1): for j in range(0, N-1): integrand = 0 if integrand_type == "mass": integrand = lpsi[i]*lpsi[j] if integrand_type == "stiffness" : integrand = sym.diff(lpsi[i],x)*sym.diff(lpsi[j],x) integrand = sym.lambdify([x], integrand) A[i,j] = mpmath.quad(integrand, [0,1]) t1 = time.time() lqtime.append(t1-t0) for N in Ns: t0 = time.time() bpsi = series("Bernstein", N) A = sym.zeros((N-1), (N-1)) for i in range(0, N-1): for j in range(0, N-1): integrand = 0 if integrand_type == "mass": integrand = bpsi[i]*bpsi[j] if integrand_type == "stiffness": integrand = sym.diff(bpsi[i],x)*sym.diff(bpsi[j],x) A[i,j] = sym.integrate(integrand, (x, [0, 1])) t1 = time.time() bstime.append(t1-t0) for N in Ns: t0 = time.time() lpsi = series("Lagrange", N) A = sym.zeros((N-1), (N-1)) for i in range(0, N-1): for j in range(0, N-1): integrand = 0 if integrand_type == "mass": integrand = lpsi[i]*lpsi[j] if integrand_type == "stiffness" : integrand = sym.diff(lpsi[i],x)*sym.diff(lpsi[j],x) A[i,j] = sym.integrate(integrand, (x, [0, 1])) t1 = time.time() lstime.append(t1-t0) print("Berstein quadrature ", bqtime) print("Lagrange quadrature ", lqtime) print("Bernstein symbolic ", bstime) print("Lagrange symbolic ", lstime) import pylab pylab.loglog(Ns, bqtime) pylab.loglog(Ns, lqtime) pylab.loglog(Ns, bstime) pylab.loglog(Ns, lstime) pylab.loglog(Ns, [4*10**-4*N**2 for N in Ns]) pylab.loglog(Ns, [10**-4*N**4 for N in Ns]) pylab.legend(["Bernstein quad", "Lagrange quad", "Berstein symb", "Lagrange symb", "N**2", "N**4"], loc="upper left") pylab.show()
[ "me@yomama.com" ]
me@yomama.com
272c6c339b4b5a793f6deff7f5757934c92d3bcf
d0758e0ca004226cec8ad8b26c9565c98534a8b8
/11-videogames/Julio/6 - Platformer/sprites.py
719d783fe930fcd1946f478b7914a188fa19f79e
[]
no_license
pythoncanarias/eoi
334d64a96afc76ac1fa10282378f291b6d8c94b3
349367254f85e3e4273cede067ca950913a1332c
refs/heads/master
2023-07-06T08:00:11.366345
2023-06-30T15:19:33
2023-06-30T15:19:33
222,742,870
26
19
null
2023-06-25T16:03:46
2019-11-19T16:41:25
Jupyter Notebook
UTF-8
Python
false
false
3,393
py
import pygame from settings import * from pygame import Vector2 import math class Wall(pygame.sprite.Sprite): def __init__(self, game, x, y): self.groups = game.all_sprites, game.walls pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = pygame.Surface((TILESIZE, TILESIZE)) self.image.fill(GREEN) self.rect = self.image.get_rect() self.x, self.y = x, y self.rect.x, self.rect.y = x * TILESIZE, y * TILESIZE class Player(pygame.sprite.Sprite): def __init__(self, game, position): self.groups = game.all_sprites pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = pygame.Surface((TILESIZE, TILESIZE)) self.image.fill(YELLOW) self.rect = self.image.get_rect() self.position = position * TILESIZE self.desired_velocity = Vector2(0, 0) self.velocity = Vector2(0, 0) self.grounded = False self.trigger_jump = False self.jump_time = 0 def update(self): self.handle_input() self.velocity.x -= self.velocity.x * DRAG * self.game.dt self.velocity += (Vector2(0, GRAVITY) + self.desired_velocity * PLAYER_ACCELERATION) * self.game.dt if self.trigger_jump: self.trigger_jump = False self.velocity.y = PLAYER_JUMP_SPEED * 0.5 self.jump_time += self.game.dt if abs(self.velocity.y) > PLAYER_MAX_Y_SPEED: self.velocity.y = math.copysign( PLAYER_MAX_Y_SPEED, self.velocity.y) self.position += self.velocity * self.game.dt self.rect.x = self.position.x self.collide_with_walls('x') self.rect.y = self.position.y self.collide_with_walls('y') def handle_input(self): vx, vy = 0, 0 key = pygame.key.get_pressed() if key[pygame.K_LEFT] or key[pygame.K_a]: vx = -1 if key[pygame.K_RIGHT] or key[pygame.K_d]: vx = 1 if key[pygame.K_UP] or key[pygame.K_w]: if self.grounded or self.jump_time < PLAYER_JUMP_TIME: self.trigger_jump = True else: self.jump_time = PLAYER_JUMP_TIME self.desired_velocity = Vector2(vx, vy) if self.desired_velocity.magnitude() > 0: self.desired_velocity = self.desired_velocity.normalize() def collide_with_walls(self, dir): hits = pygame.sprite.spritecollide(self, self.game.walls, False) if len(hits) == 0: self.grounded = False return if dir == 'x': if self.velocity.x > 0: self.position.x = hits[0].rect.left - self.rect.width if self.velocity.x < 0: self.position.x = hits[0].rect.right self.velocity.x = 0 self.rect.x = self.position.x if dir == 'y': if self.velocity.y > 0: self.position.y = hits[0].rect.top - self.rect.height self.grounded = True self.jump_time = 0 if self.velocity.y < 0: self.position.y = hits[0].rect.bottom self.velocity.y = 0 self.rect.y = self.position.y
[ "euribates@gmail.com" ]
euribates@gmail.com
da66a758dcca094777bc5f050eb1ed976073b47f
8bffdb34468cb49eeaf0445f990cc0b255569c54
/eco/reward/migrations/0002_delete_user.py
1078ce6d00040f34493b1642709046608e94a315
[]
no_license
newcountwhy/LP2T2X
e3ee2c997f0accec53aa64b9ad6a22368c2a400d
240bdafd3363c3d6e043f31af314c63b1d68dacc
refs/heads/main
2023-08-21T07:30:52.039978
2021-10-17T10:13:36
2021-10-17T10:13:36
417,551,820
2
0
null
2021-10-16T13:56:44
2021-10-15T15:38:32
null
UTF-8
Python
false
false
281
py
# Generated by Django 3.2.5 on 2021-09-29 08:55 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('reward', '0001_initial'), ] operations = [ migrations.DeleteModel( name='User', ), ]
[ "43769362+languede@users.noreply.github.com" ]
43769362+languede@users.noreply.github.com
7d63c73ee096cb4e3f0f87738cd039809681dc5c
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/E_SlidingWindow/DynamicWindow/L0_340_Longest_Substring_With_At_Most_K_Distinct_Characters.py
510d6f33695a970c599943078378927e4fd0932a
[]
no_license
824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
2022-05-25T06:48:38
2016-10-01T10:56:07
Python
UTF-8
Python
false
false
625
py
""" https://leetcode.com/problems/longest-substring-with-at-most-two-distinct-characters/ sliding window with hash table, the same as 159_Longest_Substring_with_At_Most_Two_Distinct_Characters_L0.py """ from header import * class Solution: def lengthOfLongestSubstringKDistinct(self, A: str, k: int) -> int: seen = Counter() i = 0 ans = 0 for j in range(len(A)): seen[A[j]] += 1 while len(seen)>k: seen[A[i]] -= 1 if not seen[A[i]]: seen.pop(A[i]) i += 1 ans = max(ans, j-i+1) return ans
[ "zhengyuan.zhu@mavs.uta.edu" ]
zhengyuan.zhu@mavs.uta.edu
f8a4dddf72723381900a15ec875ec3a622a4f17c
7b0942229eae38a52d2f5859743b56b99b056e87
/robotiq_2f_gripper/robotiq_2f_driver/bin/robotiq_2f_test
21bedfbd5245762a7a7c2315ab1ae4b0fc512a08
[ "BSD-3-Clause" ]
permissive
LasseNojgaard/rovi2
4b4a497ec37c741a235f1b330b410fcf488743aa
8e465d332c4226d0d764bab180508f57e26f36ba
refs/heads/master
2020-05-18T23:36:32.206489
2019-05-17T19:55:50
2019-05-17T19:55:50
184,712,439
0
0
null
null
null
null
UTF-8
Python
false
false
2,642
#!/usr/bin/env python """-------------------------------------------------------------------- COPYRIGHT 2014 Stanley Innovation Inc. Software License Agreement: The software supplied herewith by Stanley Innovation Inc. (the "Company") for its licensed Segway RMP Robotic Platforms is intended and supplied to you, the Company's customer, for use solely and exclusively with Stanley Innovation products. The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil liability for the breach of the terms and conditions of this license. The Company may immediately terminate this Agreement upon your use of the software with any products that are not Stanley Innovation products. The software was written using Python programming language. Your use of the software is therefore subject to the terms and conditions of the OSI- approved open source license viewable at http://www.python.org/. You are solely responsible for ensuring your compliance with the Python open source license. You shall indemnify, defend and hold the Company harmless from any claims, demands, liabilities or expenses, including reasonable attorneys fees, incurred by the Company as a result of any claim or proceeding against the Company arising out of or based upon: (i) The combination, operation or use of the software by you with any hardware, products, programs or data not supplied or approved in writing by the Company, if such claim or proceeding would have been avoided but for such combination, operation or use. (ii) The modification of the software by or on behalf of you (iii) Your use of the software. THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. \file robotiq_2f_driver \brief Node for Robotiq 2-Finger Gripper communication \Platform: Linux/ROS Kinetic --------------------------------------------------------------------""" from robotiq_2f_driver.robotiq_2f_gripper_test import Robotiq2FGripperTest import rospy if __name__ == "__main__": """ Initialize the node """ rospy.init_node('robotiq_2f_test') gripper_test = Robotiq2FGripperTest()
[ "emsee14@student.sdu.dk" ]
emsee14@student.sdu.dk
29a74d3341e4f6786e159bd446f6158eb9c58e09
1c91439673c898c2219ee63750ea05ff847faee1
/configs/hornet/hornet-base_8xb64_in1k.py
969d8b95b6ee1a06ecf257d162050982d4d5d698
[ "Apache-2.0" ]
permissive
ChenhongyiYang/GPViT
d7ba7f00d5139a989a999664ab0874c5c9d53d4d
2b8882b2da41d4e175fe49a33fcefad1423216f4
refs/heads/main
2023-06-08T00:10:07.319078
2023-05-26T15:52:54
2023-05-26T15:52:54
577,075,781
78
2
null
null
null
null
UTF-8
Python
false
false
412
py
_base_ = [ '../_base_/models/hornet/hornet-base.py', '../_base_/datasets/imagenet_bs64_swin_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py', ] data = dict(samples_per_gpu=64) optimizer = dict(lr=4e-3) optimizer_config = dict(grad_clip=dict(max_norm=5.0), _delete_=True) custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
[ "chenhongyiyang@Chenhongyis-MacBook-Pro.local" ]
chenhongyiyang@Chenhongyis-MacBook-Pro.local
fb016885c98e31f743de384920194f7cba194416
fe3fd4e56a30c1a3e0a6016d9597fbb1a47a5b37
/tests/test_silo.py
8bdba94a4c8fe43f60ba4d3b845e4bf04e62a105
[ "MIT" ]
permissive
digitalmensch/silo
dd9aaa53c2e03780ee258a560e5c0a390ce78947
69340d437c4663e09bd670f3d2e68f25d79ee538
refs/heads/master
2021-05-13T21:11:59.895074
2018-01-28T22:05:26
2018-01-28T22:05:26
116,457,041
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
import silo def test_functions_return_none(): assert silo.emergency('silo test message') == None assert silo.alert('silo test message') == None assert silo.critical('silo test message') == None assert silo.error('silo test message') == None assert silo.warning('silo test message') == None assert silo.notice('silo test message') == None assert silo.info('silo test message') == None assert silo.debug('silo test message') == None
[ "tag@adnm.ch" ]
tag@adnm.ch
9fe712fa7614c5cc60c9c70ebeab89b54141cd00
b81668a2cc43654cf6a3ed952d781310876838f9
/venv/Lib/site-packages/spacy/tests/pipeline/test_senter.py
197fdca6e33cb73a580e8d4f491a3f5fc4fc1e4f
[]
no_license
gowthamr1999/docbot-1
6a8b873407f15035fb8b30b69ed66ded343bd1e4
3119958d68e95673b4c9187d58d8cad5c18a6b2c
refs/heads/master
2023-04-07T02:16:55.574750
2021-04-16T02:52:38
2021-04-16T02:52:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,598
py
import pytest from spacy import util from spacy.lang.en import English from spacy.language import Language from spacy.tests.util import make_tempdir def test_label_types(): nlp = Language() nlp.add_pipe(nlp.create_pipe("senter")) with pytest.raises(NotImplementedError): nlp.get_pipe("senter").add_label("A") SENT_STARTS = [0] * 14 SENT_STARTS[0] = 1 SENT_STARTS[5] = 1 SENT_STARTS[9] = 1 TRAIN_DATA = [ ("I like green eggs. Eat blue ham. I like purple eggs.", {"sent_starts": SENT_STARTS}), ("She likes purple eggs. They hate ham. You like yellow eggs.", {"sent_starts": SENT_STARTS}), ] def test_overfitting_IO(): # Simple test to try and quickly overfit the senter - ensuring the ML models work correctly nlp = English() senter = nlp.create_pipe("senter") nlp.add_pipe(senter) optimizer = nlp.begin_training() for i in range(200): losses = {} nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses) assert losses["senter"] < 0.001 # test the trained model test_text = "I like purple eggs. They eat ham. You like yellow eggs." doc = nlp(test_text) gold_sent_starts = [0] * 14 gold_sent_starts[0] = 1 gold_sent_starts[5] = 1 gold_sent_starts[9] = 1 assert [int(t.is_sent_start) for t in doc] == gold_sent_starts # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
[ "42891786+kiranm211@users.noreply.github.com" ]
42891786+kiranm211@users.noreply.github.com
45cd2e6d141ba535bcd44646200fce9ddbbb7c68
c42738bac7b50bd17b6340ac7205cbb1a89a3466
/ft/ft/test_command.py
a765b480469bafabe11e1e2e36c9d52e150e2744
[ "MIT" ]
permissive
CristianCantoro/shell-functools
1f3a3ce41d367f3857773c06650510e62ccd5c72
e66dfc3c4c6c0fd236645dc79607279cb3a8bdca
refs/heads/master
2020-04-05T16:06:25.285179
2018-11-10T16:03:40
2018-11-12T17:42:57
156,997,043
0
0
MIT
2018-11-10T16:03:51
2018-11-10T16:03:51
null
UTF-8
Python
false
false
867
py
from ft.types import T_BOOL, T_INT, T_ARRAY, T_STRING from ft.internal import add_dynamic_type def test_add_dynamic_type_bool(): assert add_dynamic_type("True").fttype == T_BOOL assert add_dynamic_type("False").fttype == T_BOOL def test_add_dynamic_type_int(): assert add_dynamic_type("0").fttype == T_INT assert add_dynamic_type("1223").fttype == T_INT assert add_dynamic_type("-1223").fttype == T_INT assert add_dynamic_type("+1223").fttype == T_INT def test_add_dynamic_type_array(): assert add_dynamic_type("foo\tbar").fttype == T_ARRAY assert add_dynamic_type("foo\tbar\tbaz").fttype == T_ARRAY def test_add_dynamic_type_string(): assert add_dynamic_type("foo").fttype == T_STRING assert add_dynamic_type("foo bar").fttype == T_STRING def test_add_dynamic_type(): assert add_dynamic_type("a ").value == "a "
[ "davidpeter@web.de" ]
davidpeter@web.de
27c72d0ddebbeb2d39c09a34cf14adc3636ba2e7
286b6dc56323f982092ffafbfac8a32dbbaeb7ef
/training_assignments/Day_01/Nitesh_Mahajan/data_types_1.py
5b5bf6b902e1d78d86b94edd8e9c1c203423d387
[]
no_license
learndevops19/pythonTraining-CalsoftInc
ccee0d90aadc00bfdb17f9578620f6bf92f80a4c
c5f61516b835339b394876edd1c6f62e7cc6f0c3
refs/heads/master
2021-02-05T04:27:17.590913
2019-11-20T17:27:06
2019-11-20T17:27:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
#!usr/bin/env python def remove_odd_index(in_str): """ This function removes odd index values from a given string Args: in_str Returns: out_str """ out_str = in_str[::2] return out_str sample_input = "abcdef" output = remove_odd_index(sample_input) print(output)
[ "rajpratik71@gmail.com" ]
rajpratik71@gmail.com
9ec3cbeec5cb79876c7d51f3d726443586b0572e
ffb76b4ad5e73944a66c92f5409579463d254731
/kaplanmeier.py
44c268e54e332034caab299bcc6315ae7766f610
[]
no_license
RigautAntoine/pysurv
7323111fd1c84e0d951437580618969da65c9978
ab52372dcd35fc7b4238481d5bca95d4d5c20781
refs/heads/master
2020-04-05T16:44:27.108392
2018-12-01T22:29:06
2018-12-01T22:29:06
157,026,548
0
0
null
null
null
null
UTF-8
Python
false
false
5,156
py
import numpy as np import pandas as pd from matplotlib import pyplot as plt from .stats import inv_normal_cdf class KaplanMeier(): def __init__(self, events, durations, alpha=0.95, strata=None): self.kms = [] if strata is None: self.kms.append(KaplanMeierFitter(events, durations, label='', alpha=alpha)) else: stratas = np.unique(strata) for s in stratas: m = (strata == s) self.kms.append(KaplanMeierFitter(events[m], durations[m], label=s, alpha=alpha)) def summary(self): return [km.summary() for km in self.kms] def plot(self): ax = plt.figure().add_subplot(111) for km in self.kms: km.plot(ax=ax) ax.set_ylim(0, 1) ax.set_xlim(0) ax.set_xlabel('Timeline') plt.legend(loc='best') class KaplanMeierFitter(): """ Non-parametric estimator of the survival function for non- or right-censored data. TO-DO: Strata, confidence interval """ def __init__(self, events, durations, label, alpha=0.95): """ Params: events (numpy.array): 0 or 1 durations (numpy.array): time at which event happened or observation was censored """ self.label=label self._fitted = False self.events = events self.durations = durations self.alpha = alpha self._fit(events, durations) def _fit(self, events, durations): unique_event_times = np.unique(durations[events==1]) unique_event_times.sort() # Number of unique observed failure times n = len(unique_event_times) # Risk pool where value i correspond to at-risk objects at unique_event_times[i] risk = np.zeros((n,)) # Failures at unique_event_times[i] failures = np.zeros((n,)) for i, t in enumerate(list(unique_event_times)): risk[i] = np.sum(durations >= t) failures[i] = np.sum((events == 1) & (durations == t)) lifetable = pd.DataFrame({'at-risk': risk, 'failures':failures}, index=unique_event_times) lifetable['survival'] = np.cumprod((risk - failures)/risk) lifetable['cumhaz'] = -np.log(lifetable['survival']) self._lifetable = lifetable self._unique_event_times = unique_event_times self._survival = lifetable['survival'].values self.fitted = True def _compute_z_score(self, alpha = None): if alpha is None: alpha = self.alpha return inv_normal_cdf((1. + alpha) / 2.) def _compute_confidence_bounds(self, alpha = None): ''' Kalbfleisch and Prentice (1980) method “exponential” Greenwood formula https://www.math.wustl.edu/%7Esawyer/handouts/greenwood.pdf ''' if alpha is not None: self.alpha = alpha _EPSILON = 1e-5 # Computation of these should be moved to fitting part. Not gonna change stable_survival = np.maximum(self._survival, _EPSILON) # Numerical stability with the log #stable_survival = self._survival deaths = self._lifetable['failures'].values ns = self._lifetable['at-risk'].values var_t = stable_survival**2 * np.cumsum(deaths / (ns * (ns - deaths))) var_t_p = np.cumsum(deaths / (ns * (ns - deaths))) / np.log(stable_survival)**2 z = self._compute_z_score() c1 = np.log(-np.log(stable_survival)) + z * np.sqrt(var_t_p) c2 = np.log(-np.log(stable_survival)) - z * np.sqrt(var_t_p) confidence = pd.DataFrame() confidence['time'] = self._unique_event_times confidence['at-risk'] = ns confidence['failures'] = deaths confidence['survival'] = stable_survival confidence['var'] = var_t_p confidence['lower'] = np.exp(-np.exp(c1)) confidence['upper'] = np.exp(-np.exp(c2)) #confidence = confidence.fillna(0) return confidence def summary(self): ''' Returns the life table Time => Nb at risk => Nb of events => Survival => VarSur => CIs => Hazard Rate => Cumlative ''' return self._lifetable def plot(self, ax): # Set ax c = ax._get_lines.get_next_color() self._lifetable['survival'].plot(drawstyle="steps-post", c=c, label='km_estimate_' + str(self.label)) confdf = self._compute_confidence_bounds().set_index('time')[['lower', 'upper']] ax.fill_between(confdf.index, y1=confdf['lower'].values, y2=confdf['upper'].values, step='post', alpha=0.3, color=c) return ax
[ "rigautantoine@hotmail.com" ]
rigautantoine@hotmail.com
d9c50d73fc5faceeff86d5196fd7fd518d312ee2
4b744cd2db31bb5f20149fcae11db0cb32e3205e
/BaconProd/Ntupler/python/myJetExtras_cff.py
8f9ed9cc802faecc05270a32b5d2be1e61480953
[]
no_license
violatingcp/Bacon
8efec5cda60fa47e224bcbd863ce834db4500d21
5438faf241823324c5bbb82fde48476d00b0bf48
refs/heads/master
2021-01-19T19:39:53.067166
2014-04-16T12:39:31
2014-04-16T12:39:31
17,031,122
0
1
null
2014-03-16T17:50:21
2014-02-20T18:39:24
C++
UTF-8
Python
false
false
5,467
py
import FWCore.ParameterSet.Config as cms #from RecoJets.Configuration.GenJetParticles_cff import * from RecoJets.Configuration.RecoGenJets_cff import ak5GenJets from RecoJets.JetProducers.ak5PFJetsPruned_cfi import ak5PFJetsPruned genParticlesForJets = cms.EDProducer("InputGenJetsParticleSelector", src = cms.InputTag("genParticles"), ignoreParticleIDs = cms.vuint32( 1000022, 1000012, 1000014, 1000016, 2000012, 2000014, 2000016, 1000039, 5100039, 4000012, 4000014, 4000016, 9900012, 9900014, 9900016, 39), partonicFinalState = cms.bool(False), excludeResonances = cms.bool(True), excludeFromResonancePids = cms.vuint32(12, 13, 14, 16), tausAsJets = cms.bool(False) ) genParticlesForJetsNoNu = genParticlesForJets.clone() genParticlesForJetsNoNu.ignoreParticleIDs += cms.vuint32( 12,14,16) antiktGenJets = ak5GenJets.clone( rParam = cms.double(0.5) ) # Flavour byValue PhysDef AK5byValPhys = cms.EDProducer("JetFlavourIdentifier", srcByReference = cms.InputTag("AK5byRef"), physicsDefinition = cms.bool(True), leptonInfo = cms.bool(True) ) # Flavour byReference partons = cms.EDProducer("PartonSelector", withLeptons = cms.bool(False), src = cms.InputTag("genParticles") ) AK5byRef = cms.EDProducer("JetPartonMatcher", jets = cms.InputTag("ak5PFJets"), coneSizeToAssociate = cms.double(0.3), partons = cms.InputTag("partons") ) AK5byValAlgo = cms.EDProducer("JetFlavourIdentifier", srcByReference = cms.InputTag("AK5byRef"), physicsDefinition = cms.bool(False), leptonInfo = cms.bool(True)) jetFlavor = cms.Sequence(partons*AK5byRef*AK5byValPhys*AK5byValAlgo) #for each jet collection run Pruning, subjet b-tagging, quark gluon discrimination,n-subjettiness and subjet quark gluon discrimination ca5PFJetsPruned = ak5PFJetsPruned.clone( jetAlgorithm = cms.string("CambridgeAachen"), rParam = cms.double(0.5), doAreaFastjet = cms.bool(False), writeCompound = cms.bool(True), jetCollInstanceName=cms.string("SubJets"), jetPtMin = cms.double(20) ) from RecoJets.JetAssociationProducers.ic5JetTracksAssociatorAtVertex_cfi import ic5JetTracksAssociatorAtVertex jetTracksAssociatorAtVertex = ic5JetTracksAssociatorAtVertex.clone() jetTracksAssociatorAtVertex .jets = cms.InputTag('ak5PFJets') jetTracksAssociatorAtVertex .tracks = "generalTracks" jetTracksAssociatorAtVertexSJ = ic5JetTracksAssociatorAtVertex.clone() jetTracksAssociatorAtVertexSJ.jets = cms.InputTag('ca5PFJetsPruned','SubJets') jetTracksAssociatorAtVertexSJ.tracks = "generalTracks" from RecoBTag.Configuration.RecoBTag_cff import * jetImpactParameterTagInfos = impactParameterTagInfos.clone() jetImpactParameterTagInfos.jetTracks = "jetTracksAssociatorAtVertex" jetSecondaryVertexTagInfos = secondaryVertexTagInfos.clone() jetSecondaryVertexTagInfos.trackIPTagInfos = "jetImpactParameterTagInfos" jetCombinedSecondaryVertexMVABJetTags = combinedSecondaryVertexMVABJetTags.clone() jetCombinedSecondaryVertexMVABJetTags.tagInfos = cms.VInputTag( cms.InputTag("jetImpactParameterTagInfos"), cms.InputTag("jetSecondaryVertexTagInfos") ) jetImpactParameterTagInfosSJ = impactParameterTagInfos.clone() jetImpactParameterTagInfosSJ.jetTracks = "jetTracksAssociatorAtVertexSJ" jetSecondaryVertexTagInfosSJ = secondaryVertexTagInfos.clone() jetSecondaryVertexTagInfosSJ.trackIPTagInfos = "jetImpactParameterTagInfosSJ" jetCombinedSecondaryVertexMVABJetTagsSJ = combinedSecondaryVertexMVABJetTags.clone() jetCombinedSecondaryVertexMVABJetTagsSJ.tagInfos = cms.VInputTag( cms.InputTag("jetImpactParameterTagInfosSJ"), cms.InputTag("jetSecondaryVertexTagInfosSJ") ) from JetTools.AnalyzerToolbox.QGTagger_RecoJets_cff import * QGTagger.srcJets = cms.InputTag('ak5PFJets') QGTaggerSubJets = QGTagger.clone() QGTaggerSubJets.srcJets = cms.InputTag('ca5PFJetsPruned','SubJets') from JetTools.AnalyzerToolbox.njettinessadder_cfi import * Njettiness.src = cms.InputTag('ak5PFJets') genjetsequence = cms.Sequence( genParticlesForJets * genParticlesForJetsNoNu * ak5GenJets * jetFlavor ) jetsequence = cms.Sequence( ca5PFJetsPruned * jetTracksAssociatorAtVertex * jetImpactParameterTagInfos * jetSecondaryVertexTagInfos * jetTracksAssociatorAtVertexSJ * jetImpactParameterTagInfosSJ * jetSecondaryVertexTagInfosSJ * jetCombinedSecondaryVertexMVABJetTags * jetCombinedSecondaryVertexMVABJetTagsSJ * goodOfflinePrimaryVerticesQG * kt6PFJetsQG * kt6PFJetsIsoQG * QGTagger * QGTaggerSubJets * Njettiness )
[ "violatingcp@gmail.com" ]
violatingcp@gmail.com
5e3e80a52bb9f2c8c05cdc9bbf0b88641f9f12d4
5d3fd5c0fa4ef35f008980ffb9741fddf1d5f9e4
/eqmgmt/equipment_management/doctype/equipment_type/equipment_type.py
b3628d88e47798e77d134ac67d528390d2bcb6b8
[ "MIT" ]
permissive
dgsol/eqmgmt
f911d027a60f1629d0898519f353a678869e8820
20074cfbfe1141a9fd0c016b4dcd60f090118abf
refs/heads/master
2020-03-17T21:07:02.607741
2018-05-18T11:16:35
2018-05-18T11:16:35
133,943,811
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
# -*- coding: utf-8 -*- # Copyright (c) 2018, DGSOL InfoTech and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class EquipmentType(Document): pass
[ "solankeejk@gmail.com" ]
solankeejk@gmail.com
37af63203540dfe11d36fe05d74694f05c6505f2
4ecf14e0bbe105958d83e5fad014a1cd014e669d
/testing/web-platform/tests/webdriver/tests/element_click/stale.py
d39e3a3ecb730d77e422d14c0b48fd931b9225cd
[ "W3C", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-w3c-03-bsd-license", "BSD-3-Clause" ]
permissive
fx-dev-playground/gecko
2c1a13a51f00645f8bfc35c9ec71a4d40b8c8dc2
889acebc871804214ab2579e434d7633e271e5cb
refs/heads/central_default
2023-01-27T11:13:44.498662
2018-01-16T21:43:19
2018-01-16T21:43:19
64,968,340
8
13
NOASSERTION
2023-01-11T07:47:54
2016-08-04T21:24:19
null
UTF-8
Python
false
false
647
py
import pytest import webdriver from tests.support.asserts import assert_error from tests.support.inline import inline def click_element(session, element): return session.transport.send( "POST", "/session/{session_id}/element/{element_id}/click".format(**{ "session_id": session.session_id, "element_id": element.id, })) def test_is_stale(session): session.url = inline("<button>foo</button>") button = session.find.css("button", all=False) session.url = inline("<button>bar</button>") response = click_element(session, button) assert_error(response, "stale element reference")
[ "ato@sny.no" ]
ato@sny.no
f64cdc1ca92ae41695d57226a52b6a8cf4b72928
81016a0c04ccf7e0b112736b397d858cf5c3c6a9
/CA2/model_training.py
61eafd552b982faddb9d19ea281e488eea5287af
[]
no_license
nazaninsbr/NLP-UT
b22591bccc8f95c6d25e858874f9ea062f4404db
f73beb06906e82ce0602a73ed2723e91342041f5
refs/heads/master
2021-02-16T08:51:33.675516
2020-06-26T20:51:28
2020-06-26T20:51:28
244,982,744
0
0
null
null
null
null
UTF-8
Python
false
false
1,449
py
from sklearn.model_selection import KFold import numpy as np from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score def train_the_model(X, y): X, y = np.array(X), np.array(y) kf = KFold(n_splits=5, shuffle=True, random_state=10) f1_values, recall_values, precision_values, accuracy_values = [], [], [], [] for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf = MultinomialNB() y_pred = clf.fit(X_train, y_train).predict(X_test) this_acc = accuracy_score(y_test, y_pred) this_f1 = f1_score(y_test, y_pred, average='weighted') this_pre = precision_score(y_test, y_pred, average='weighted') this_recall = recall_score(y_test, y_pred, average='weighted') f1_values.append(this_f1) recall_values.append(this_recall) precision_values.append(this_pre) accuracy_values.append(this_acc) avg_acc = np.mean(accuracy_values) avg_recall = np.mean(recall_values) avg_pre = np.mean(precision_values) avg_f1 = np.mean(f1_values) print('Accuracy = {}, Recall = {}, Precision = {}, F1 = {}'.format(avg_acc, avg_recall, avg_pre, avg_f1))
[ "nazanin.sabrii@gmail.com" ]
nazanin.sabrii@gmail.com
0c3cc9b7205ee130759da6020073ddcd46370b81
63eda25d7584f788a7ab1baaa37cd44b65cb2898
/7g.py
dfa6290737fea6125d5b24cc42274cffcf8ef602
[]
no_license
fox016/bioinformatics
c8e89af8466b4453f0fa8bff1adfd20e8db2dce3
2842ad8e59ab7e2d1d0aee96b4e75e113cf32e67
refs/heads/master
2021-06-01T13:28:19.695752
2019-10-28T15:59:15
2019-10-28T15:59:15
23,671,723
0
1
null
null
null
null
UTF-8
Python
false
false
2,406
py
#!/usr/bin/python """ This is a linear-time implementation developed by Karkkainen, Sanders, and Burkhardt. See http://www.cs.helsinki.fi/u/tpkarkka/publications/jacm05-revised.pdf The paper provides C++ code. The following Python source code is entirely my own. Author - Nathan Fox """ text = [line[:-2] for line in open("input.txt", "r")][0] alpha = "$ACGT" alpha_index_map = { "$": 0, "A": 1, "C": 2, "G": 3, "T": 4 } def get_prime(list_of_tuples, sorted_list): list_map = {} duplicates = False for index in xrange(len(sorted_list)): element = sorted_list[index] if element in list_map: duplicates = True list_map[element] = index ranks = [] for element in list_of_tuples: ranks.append(list_map[element]+1) return ranks, duplicates def compare_tuple(t1, t2): for index in xrange(len(t1)): if t1[index] < t2[index]: return -1 if t1[index] > t2[index]: return 1 return 0 def suffix_array(T): n = len(T) B = [range(start, n+1, 3) for start in xrange(3)] C = B[1] + B[2] T += [0,0] R = [] for k in [1,2]: offset = 0 while k+offset <= B[k][-1]: R.append(tuple(T[k+offset:k+offset+3])) offset += 3 R_sorted = sorted(R) R_prime, is_dup = get_prime(R, R_sorted) while is_dup: SA_R = suffix_array(R_prime) SA_R_sorted = sorted(SA_R) R_prime, is_dup = get_prime(SA_R_sorted, SA_R) R_prime = map(lambda x: x-1, R_prime[0:-1]) rank = [None for _ in xrange(len(T)+1)] SC = [0] * len(C) for index in xrange(len(C)): i = C[index] value = R_prime[index] rank[i] = value SC[value-1] = i rank[n+1] = 0 rank[n+2] = 0 pairs = [(T[i], rank[i+1]) for i in B[0]] pairs_sorted = sorted(pairs) SB = map(lambda i: B[0][i-1], get_prime(pairs_sorted, pairs)[0]) solution = [0] * (n+1) SC_index = 0 SB_index = 0 for solution_index in xrange(len(solution)): i = SC[SC_index] j = SB[SB_index] if (i-1) % 3 == 0: Si = (T[i], rank[i+1]) Sj = (T[j], rank[j+1]) else: Si = (T[i], T[i+1], rank[i+2]) Sj = (T[j], T[j+1], rank[j+2]) if compare_tuple(Si, Sj) < 0: solution[solution_index] = i SC_index+=1 if SC_index >= len(SC): return solution[0:solution_index+1] + SB[SB_index:] else: solution[solution_index] = j SB_index+=1 if SB_index >= len(SB): return solution[0:solution_index+1] + SC[SC_index:] return solution print ', '.join(map(str, suffix_array(map(lambda a: alpha_index_map[a], text))))
[ "nfox@byu.edu" ]
nfox@byu.edu
3d31399de0ecd29befc8598347e3e856fceae0ec
34fafe0ce4a28a0b2ace024858868ed030d5e432
/CalibNtuplizer/test/prod/crabConfig_stop2000.py
fdd4440ab11bd5d36a6aa01fd136944e72dbd8f3
[ "CC-BY-4.0" ]
permissive
CMS-HSCP/SUSYBSMAnalysis-HSCP
d40fe64ece600fc0909a2c32eb07b4204784948c
809271e1dacc98d34992561b5fcb502c01cc1172
refs/heads/master
2023-07-25T00:46:38.870643
2023-07-11T20:25:12
2023-07-11T20:25:12
164,119,298
3
16
null
2023-07-11T20:25:14
2019-01-04T14:47:05
Python
UTF-8
Python
false
false
1,897
py
from WMCore.Configuration import Configuration # More details here: https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCRAB3Tutorial config = Configuration() config.section_('General') config.General.requestName = 'stop2000' #config.General.workArea = '.' #config.General.instance = 'private' config.General.transferOutputs = True config.General.transferLogs = False #config.General.serverUrl = 'You need to set the CRAB3 server URL' config.section_('JobType') config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'run_aod_mc17.py' config.JobType.allowUndistributedCMSSW = True config.JobType.inputFiles = ['minbias_template_uncorr_iter1.root','minbias_template_corr_iter1.root'] config.section_('Data') config.Data.inputDataset = '/HSCPstop_M-2000_TuneCP5_13TeV-pythia8/RunIIFall17DRPremix-PU2017_HSCP1_94X_mc2017_realistic_v11-v2/AODSIM' config.Data.allowNonValidInputDataset = True # FIXME #config.Data.inputDBS = 'https://cmsweb.cern.ch/dbs/prod/global/DBSReader/' config.Data.inputDBS = 'global' #config.Data.splitting = 'LumiBased' #config.Data.unitsPerJob = 25 config.Data.splitting = 'Automatic' #config.Data.splitting = 'FileBased' # special case for memory issues #config.Data.unitsPerJob = 100 #config.Data.lumiMask = 'Cert_294927-306462_13TeV_EOY2017ReReco_Collisions17_JSON_v1.txt' #config.Data.runRange = '315257,315259,315264,315265,315267,315270,315339,315357,315361,315363,315365,315366,315420,315489,315490' config.Data.publication = False config.Data.outputDatasetTag = 'MC_Stop2000' config.Data.outLFNDirBase = '/store/user/ccollard/HSCP/prodJan2020_CMSSW_10_6_2/' #config.Data.ignoreLocality = True # to be used only if use the whitelist config.section_('Site') config.Site.storageSite = 'T2_FR_IPHC' #config.Site.storageSite = 'T2_CH_CERN' #config.Site.blacklist = ['T2_IT_Legnaro'] #config.Site.whitelist = ['T2_FR_IPHC'] config.section_('User')
[ "Tamas.Almos.Vami@cern.ch" ]
Tamas.Almos.Vami@cern.ch
d1ed5ee506bd7388368e8adade60db60845253f4
ca97bfb2a22c6197cab8f304ef82f6e5a326afdb
/dask/bytes/hdfs.py
d46a86fe63f2c08e7362289eca23eefac548f5e5
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
josephlin55555/dask
0aca36287ed1d190c25b3ee486ded797be266064
8c6f4792105d7f31cdf62553828e57df94c102f3
refs/heads/master
2021-09-06T05:02:12.972728
2018-02-01T22:04:41
2018-02-01T22:04:41
119,901,242
0
0
null
null
null
null
UTF-8
Python
false
false
625
py
from __future__ import print_function, division, absolute_import from ..base import tokenize from .core import _filesystems from hdfs3.core import HDFileSystem class DaskHDFS3FileSystem(HDFileSystem): sep = '/' def mkdirs(self, path): return super(DaskHDFS3FileSystem, self).makedirs(path) def ukey(self, path): return tokenize(path, self.info(path)['last_mod']) def size(self, path): return self.info(path)['size'] def _get_pyarrow_filesystem(self): from ._pyarrow import HDFS3Wrapper return HDFS3Wrapper(self) _filesystems['hdfs'] = DaskHDFS3FileSystem
[ "noreply@github.com" ]
josephlin55555.noreply@github.com
4b542cd32cc70bf3f5ff5416537b6f3b31024d43
b2f8e6b48ed4f6b83a4ac46a2d2697ef1c780ae3
/apps/scenicspots/urls.py
5c56773f35bdfe35f8154f6f9d97032bada4923c
[]
no_license
duanlei123/WorldTravel
2355694bd49b0e53d0f521a75de7a9467172343c
abf10ee41fb6c116c17fc1d0c8380282676f566e
refs/heads/master
2020-08-30T21:49:54.033596
2019-10-30T10:05:20
2019-10-30T10:05:20
218,496,168
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from django.urls import path, re_path,include from .views import * urlpatterns = [ path('all', ScenicListView.as_view(), name='all'), # 景点详情 path('scenic_detail/<int:scenic_id>/', ScenicDetails.as_view(), name='scenic_detail'), # 旅游订单详情 # path('order_detail/<slug:order_num>/', OrderDetailsView.as_view(), name='order_detail'), # 活动详情 path('active_detail/<int:active_id>/', ActiveDetails.as_view(), name='active_detail'), ]
[ "wb-dl321273@autonavi.com" ]
wb-dl321273@autonavi.com
4e8e226de3b8718e680e59f54b9b3d2413ba4aa9
bc1abe026115cf84bdf5bdd5f60bb6cf3fb409ee
/BettingSheets/admin.py
04552b6e819b039a59ebb8242ce357c1a2044552
[]
no_license
um-eece-4081/2019-sports-pool
c434c6c0baf972f5d4c94f86caa4dceaf6a98944
2a9d2a8ea02066c79e96d086dff2ebf2aa4ff99f
refs/heads/master
2020-08-03T11:13:09.688434
2019-11-24T10:50:07
2019-11-24T10:50:07
211,731,030
1
5
null
2019-11-09T21:29:29
2019-09-29T21:52:56
Python
UTF-8
Python
false
false
2,558
py
from django.contrib import admin from django.http import HttpResponse, HttpResponseRedirect from .models import MasterBettingSheet, Game # Register your models here. admin.site.site_header = 'Manage Betting Sheets' class GameAdmin(admin.TabularInline): ... change_form_template = 'admin/game_change_form.html' model = Game exclude = ('favorite_score', 'underdog_score') def get_readonly_fields(self, request, obj=None): readonly_fields = super(GameAdmin, self).get_readonly_fields(request, obj) if obj and obj.is_published: readonly_fields = readonly_fields + ('betting_sheet', 'favorite_team', 'underdog_team', 'betting_line', 'network_name', 'date_time', 'game_of_the_week') if obj.is_scored: readonly_fields = readonly_fields + ('favorite_score', 'underdog_score') return readonly_fields def has_add_permission(self, request, obj=None): if obj and obj.is_published: return False return True def has_delete_permission(self, request, obj=None): if obj and obj.is_published: return False return True def get_exclude(self, request, obj=None): exclude = super(GameAdmin, self).get_exclude(request, obj) if obj and obj.is_published: exclude_list = list(exclude) exclude_list.remove('favorite_score') exclude_list.remove('underdog_score') exclude = tuple(exclude_list) return exclude class MasterBettingSheetAdmin(admin.ModelAdmin): ... change_form_template = 'admin/mbs_change_form.html' inlines = [GameAdmin, ] def get_form(self, request, obj=None, **kwargs): """Override the get_form and extend the 'exclude' keyword arg""" if obj and obj.is_published: kwargs.update({ 'exclude': getattr(kwargs, 'exclude', tuple()) + ('title',), }) return super(MasterBettingSheetAdmin, self).get_form(request, obj, **kwargs) def response_change(self, request, mbs): if '_publish' in request.POST: MasterBettingSheet.objects.filter(pk=mbs.pk).update(is_published=True) self.message_user(request, "Betting Sheet Published") if '_score' in request.POST: MasterBettingSheet.objects.filter(pk=mbs.pk).update(is_scored=True) self.message_user(request, "Betting Sheet Scored") return super().response_change(request, mbs) admin.site.register(MasterBettingSheet, MasterBettingSheetAdmin)
[ "tbwllace@memphis.edu" ]
tbwllace@memphis.edu
3a95eb348b32c464d004d4156754aa7ab5e6a689
6aa8de83a51532b978c87e46b800acdab652d633
/src/python/review/inspectors/parsers/checkstyle_parser.py
9cf75acbd5b74cd2586497a50b18c4d9a9fca531
[ "Apache-2.0", "LGPL-2.0-only", "LGPL-2.1-only" ]
permissive
nihalshetty-boop/hyperstyle
ea2e791ee00ab904a19b9cc6a233f06afaaa9bc0
9a6d53cd1ca220d97d296c0087056b5885b26281
refs/heads/main
2023-07-01T06:00:26.355034
2021-07-26T13:02:17
2021-07-26T13:02:17
391,957,024
0
0
Apache-2.0
2021-08-02T13:20:21
2021-08-02T13:20:21
null
UTF-8
Python
false
false
4,680
py
import logging import re from pathlib import Path from typing import Callable, Dict, List, Any, Optional from xml.etree import ElementTree from src.python.review.common.file_system import get_content_from_file from src.python.review.inspectors.inspector_type import InspectorType from src.python.review.inspectors.issue import BaseIssue, BoolExprLenIssue, CodeIssue, CyclomaticComplexityIssue, \ FuncLenIssue, IssueType, LineLenIssue, IssueData from src.python.review.inspectors.tips import get_bool_expr_len_tip, get_cyclomatic_complexity_tip, get_func_len_tip, \ get_line_len_tip logger = logging.getLogger(__name__) # Check if the result of the inspectors is correct: it exists and it is not empty def __is_result_file_correct(file_path: Path, inspector_type: InspectorType) -> bool: if not file_path.is_file(): logger.error('%s: error - no output file' % inspector_type.value) return False file_content = get_content_from_file(file_path) if not file_content: logger.error('%s: error - empty file' % inspector_type.value) return False return True def __parse_error_message(element: ElementTree) -> str: message = element.attrib['message'] return re.sub(r'\(max allowed is \d+\). ', '', message) # Measurable means that the issue has integer measure, # e.g. BoolExprLenIssue, CyclomaticComplexityIssue and so on def __parse_measurable_issue(issue_data: Dict[str, Any], issue_type: IssueType, measure_value: int) -> Optional[BaseIssue]: if issue_type == IssueType.CYCLOMATIC_COMPLEXITY: issue_data[IssueData.CYCLOMATIC_COMPLEXITY.value] = measure_value issue_data[IssueData.DESCRIPTION.value] = get_cyclomatic_complexity_tip() return CyclomaticComplexityIssue(**issue_data) elif issue_type == IssueType.FUNC_LEN: issue_data[IssueData.FUNCTION_LEN.value] = measure_value issue_data[IssueData.DESCRIPTION.value] = get_func_len_tip() return FuncLenIssue(**issue_data) elif issue_type == IssueType.BOOL_EXPR_LEN: issue_data[IssueData.BOOL_EXPR_LEN.value] = measure_value issue_data[IssueData.DESCRIPTION.value] = get_bool_expr_len_tip() return BoolExprLenIssue(**issue_data) elif issue_type == IssueType.LINE_LEN: issue_data[IssueData.LINE_LEN.value] = measure_value issue_data[IssueData.DESCRIPTION.value] = get_line_len_tip() return LineLenIssue(**issue_data) return None def __should_handle_element(element: ElementTree) -> bool: return element.tag == 'file' def __is_error(element: ElementTree) -> bool: return element.tag == 'error' # TODO Needs testing def parse_checkstyle_file_result( file_path: Path, inspector_type: InspectorType, issue_type_selector: Callable[[str], IssueType], origin_class_to_description: Dict[str, str]) -> List[BaseIssue]: if not __is_result_file_correct(file_path, inspector_type): return [] # Parse result XML tree = ElementTree.parse(file_path) issues: List[BaseIssue] = [] for element in tree.getroot(): if not __should_handle_element(element): continue code_file_path = Path(element.attrib['name']) for inner_element in element: if not __is_error(inner_element): continue message = __parse_error_message(inner_element) origin_class = inner_element.attrib['source'].split('.')[-1] issue_data = IssueData.get_base_issue_data_dict(code_file_path, inspector_type, line_number=int(inner_element.attrib['line']), column_number=int( inner_element.attrib.get('column', 1)), origin_class=origin_class) issue_type = issue_type_selector(origin_class) issue_data[IssueData.ISSUE_TYPE.value] = issue_type if origin_class in origin_class_to_description: pattern = origin_class_to_description.get(origin_class) measure_value = int(re.search(pattern, message, flags=re.IGNORECASE).groups()[0]) issue = __parse_measurable_issue(issue_data, issue_type, measure_value) else: issue_data[IssueData.DESCRIPTION.value] = message issue = CodeIssue(**issue_data) if issue is not None: issues.append(issue) return issues
[ "noreply@github.com" ]
nihalshetty-boop.noreply@github.com
b53242e5e42a9427edde8d26c9ad3d4f95f7cafa
e550562e543637a774d484d450471a16361cab28
/3_scripts/python/p8_zonacensal.py
5e94d46e07fbe2d0ef957940fd17efb1c88c5039
[]
no_license
jdaniel14/GRPIAA-LOAD-OSM
cc1d18345f7745e4312e88de7ba9759803ccfe0f
64b01c0224620cbb626b5d9094d73a248234480c
refs/heads/master
2021-01-10T08:59:49.618147
2015-12-22T18:08:42
2015-12-22T18:08:42
48,446,651
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
import csv import sys from bs4 import BeautifulSoup import urllib2 from itertools import izip path_file_job1 = "3_scripts/input/i9_zonascensales.csv" path_file_out = "3_scripts/output/o9_zonascensales.csv" file_out = open(path_file_out, "wb") file_out.write("id|dpto|prov|dist|nombre|length|area|geom\n") with open(path_file_job1, "r") as file1: flag = True for row in file1: if flag == True : flag = False continue data_insert = str(row).strip().split(";") cad = data_insert[1] + "|" + data_insert[3] + "|" + data_insert[4] + "|" + data_insert[5] + "|" + data_insert[8] + "|" + data_insert[10] + "|" + data_insert[11] + "|SRID=4326;" + data_insert[0] file_out.write(cad+'\n') file_out.close()
[ "jkliose14@gmail.com" ]
jkliose14@gmail.com
9a577a33d19a23deb0ff0126e7dcbc7223c2a860
a882591ff55815e9e18ea9cdc2de99d3b232e520
/html.py
12ef46ab94483458a0ef81bfd05f5e4dc665a078
[ "MIT" ]
permissive
Real-Currents/d3MapRenderer
8cfa35da1be8fc11b9f9f7548399c37dfeb1e747
aa3733f2cc0e52ca70b93bc55d5f8f7059b73e31
refs/heads/master
2020-04-08T17:04:17.983769
2017-11-26T20:32:39
2017-11-26T20:32:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,102
py
import codecs import os from models import model from logger import log class index(object): """Class for formatting the index html file for the map""" def __init__(self): """Format the index file with scripts for the viz""" self.__logger = log(self.__class__.__name__) self.model = None self.layersForOutput = [] self.mainLayer = None def tipInUse(self): """Is there a tip or chart in one of the layers""" tip = False for o in self.layersForOutput: if o.hasTip == True or o.hasViz == True: tip = True return tip def vizInUse(self): """Is there a chart in one of the layers""" viz = False for o in self.layersForOutput: if o.hasViz == True: viz = True return viz def createHeader(self, title): """Creating the optional heading element""" template = u"<h1>{0}</h1>" if self.model.showHeader == True: return template.format(title) else: return "" def createSvgPaths(self, labels, selectedProjection): """Create the Svg group and path elements required by the layers""" paths = [] template = " var vectors{index} = vectors.append(\"g\");\n var vector{index} = void 0;\n" i = 0 for i, o in enumerate(self.layersForOutput): path = template.format( index = i ) paths.append(path) paths.append(o.renderers[0].symbols[0].safeSvgNode(i, selectedProjection.safeCentroid)) if self.model.showLabels == True: labelTemplate = """ var label{index} = void 0;""" for l in labels: if l.hasLabels() == True: path = labelTemplate.format( index = l.index ) paths.append(path) return "".join(paths) def createZoom(self, selectedProjection): """Create the JavaScript function to zoom""" if self.model.panZoom: return selectedProjection.zoomBehaviourScript() else: return "" def createTipFunction(self): """Create the Javascript function for tips""" template = """ //Define 'div' for tooltips var tip = d3.tip() .attr("class", "d3-tip") .direction("c"){0}; vectors.call(tip);""" ext = """ .ext("#extTip")""" if self.tipInUse() == True: if self.model.isExternalTip() == True: return template.format(ext) else: return template.format("") else: return "" def hideTip(self): """Conditionally add the hide tip call to the map container""" if self.tipInUse() == True: return """.on("click", hideTip)\n """ else: return "" def createChartFunction(self, vizWidth, vizHeight): """Create the chart javascript""" value = "" if self.vizInUse() == True: value = self.model.selectedVizChart.getJavaScript(self.model.getMainLayer(), self.model.ranges, self.model.vizLabels, self.model.vizWidth, self.model.vizHeight, self.model.isExternalTip()) return value def createTipHelpers(self): """Create the tip helper functions""" template = """ // Show a tool tip for the selected element function showTip(id) { var obj = _.findWhere(_data, {<%idfield%>: id.toString()}); tip.html(info(obj)) .show(); <%chart%> d3.event.stopPropagation(); } // Get the tool tip data from the template function info(obj) { var template = document.getElementById("template").innerHTML; Object.keys(obj).forEach(function(key){ template = template.replace("{" + key + "}", obj[key]); }); return template; } // Hide the tooltip function hideTip() { tip.hide(); }""" val = "" if self.tipInUse() == True: val = template.replace("<%idfield%>", self.model.idField) cobj = "" if self.vizInUse() == True: cobj = "chart(obj);" val = val.replace("<%chart%>", cobj) return val def createSymbologyFunctions(self): """Create the necessary helper functions for symbology to display correctly""" scripts = [] for o in self.layersForOutput: script = o.renderers[0].symbols[0].getAdditionalScripts() # Ensure items in the list are unique if script != "" and script not in scripts: scripts.append(script) return "".join(scripts) def createSafeCentroidFunction(self, selectedProjection): """Create the JavaScript centroid helper function""" if self.model.panZoom == True and selectedProjection.safeCentroid == True: return """ function getSafeCentroid(d) { var centroid = path.centroid(d); var clip_test_path = d3.geo.path().projection(projection); var clipped = typeof(clip_test_path({ type: "MultiPoint", coordinates: [centroid] })) == "undefined"; return clipped ? [0, 0] : centroid; } """ else: return "" def createZoomFunction(self, selectedProjection, labels): """Create the Javascript zoom helper functions""" labelSize = """ function labelSize(orig, scale){ var size = orig / (Math.ceil(scale/2)); return (size > 0) ? size : 1; }\n\n""" template = """<%labelsize%> // Zoom/pan function onZoom() { <%hidetip%> <%vectorscaling%> <%labelscaling%> }""" if self.model.panZoom == True: if self.tipInUse() == True: template = template.replace("<%hidetip%>", "hideTip();") else: template = template.replace("<%hidetip%>", "") ''' Zoom scaling script ''' v = [] ''' Projection wide scaling script ''' v.append(selectedProjection.zoomScalingScript()) ''' Symbol specific scaling script ''' for i, o in enumerate(self.layersForOutput): v.append(o.renderers[0].symbols[0].zoomScalingScript(i, selectedProjection.safeCentroid)) template = template.replace("<%vectorscaling%>", "".join(v)) ''' Label scaling ''' if self.model.showLabels == True: template = template.replace("<%labelsize%>", labelSize) l = [] for label in labels: if label.hasLabels() == True: l.append(label.zoomLabelScript(selectedProjection.safeCentroid)) if len(l) > 0: template = template.replace("<%labelscaling%>", "".join(l)) else: template = template.replace("<%labelscaling%>", "") else: template = template.replace("<%labelsize%>", "") template = template.replace("<%labelscaling%>", "") return template else: return "" def createQueueScript(self): """Create the javascript queue of json files""" queue = [] template = " .defer(d3.json, \"json/{name}.json\")\n" for o in self.layersForOutput: path = template.format( name = o.getSafeName() ) queue.append(path) if self.tipInUse(): queue.append(" .defer(d3.csv, \"data/info.csv\")") return "".join(queue) def createReadyParams(self): """Create the JavaScript ready function parameters""" params = [] template = ", json{index}" for i, o in enumerate(self.layersForOutput): param = template.format( index = i ) params.append(param) if self.tipInUse(): params.append(", data") return "".join(params) def createMainObject(self): """Get the name of the main object""" output = "" template = "object{index}" i = 0 for o in self.layersForOutput: if o.main: output = template.format(index = i) break i += 1 return output def createLabelFeatures(self, selectedProjection, labels): """Create the label features""" scripts = [] if self.model.showLabels == True: for l in labels: if l.hasLabels() == True: scripts.append(l.getLabelObjectScript(selectedProjection.safeCentroid)) return "".join(scripts) def createDataStore(self): """Optionally store a copy of the info.csv in JavaScript""" if self.tipInUse() == True: return " _data = data;" else: return "" def createLegend(self): """Add a call to the JavaScript function to add a legend""" if self.model.legend: template = """ {e} var legend = d3.legend({s}) .csv("data/legend.csv") .position({p}) .{f}("{a}"); {s}.call(legend);""" func = "shape" arg = "square" # Find the main layer and check the first symbol to determine the correct JS function call m = self.model.getMainLayer() if m.renderers[0].symbols[0].hasImage() == True: func = "svgImg" head, tail = os.path.split(m.renderers[0].symbols[0].path) arg = "img/{0}".format(tail) else: arg = m.renderers[0].symbols[0].getShape() ext = "" svg = "svg" pos = self.model.selectedLegendPosition if self.model.selectedLegendPosition == 4: # external legend has to have a different hosting svg element ext = """var extLgnd = d3.select("#extLgnd") .append("svg");\n""" svg = "extLgnd" # format and return return template.format( e = ext, f = func, a = arg, s = svg, p = pos ) else: return "" def createExtLegend(self): """Add a placeholder for the external legend""" if self.model.legend == True and self.model.selectedLegendPosition == 4: return """ <div id="extLgnd"></div>""" else: return "" def createExtTip(self): """Add a placeholder for the external tip""" if self.tipInUse() == True and self.model.isExternalTip() == True: return """ <div id="extTip"></div>""" else: return "" def createVectorFeatures(self): """Create the polygon vector features""" scripts = [] template = """ vector{index} = vectors{index}.selectAll("path").data(object{index}.features); vector{index}.enter() .append("path")\n""" main = """ .attr("id", function (d) {{ return d.properties.""" + self.model.idField + """; }})\n""" static = """ .attr("class", function (d) {{ return d.properties.d3Css; }})""" tip = """\n .on("click", function (d) {{ return showTip(d.properties.""" + self.model.idField + """); }});\n\n""" for i, o in enumerate(self.layersForOutput): layerScript = [] script = template.format( index = i ) layerScript.append(script) if o.main == True: layerScript.append(main) layerScript.append("{0}") layerScript.append(static) if o.hasTip == True or o.hasViz == True: layerScript.append(tip) else: layerScript.append(";\n\n") scripts.append(o.renderers[0].symbols[0].toLayerScript( i, "".join(layerScript), self.model.selectedProjection.safeCentroid ) ) return "".join(scripts) def writeIndexFile(self, path, model, bound, labels): """Read and write the index html file""" self.model = model self.mainLayer = self.model.getMainLayer() self.layersForOutput = self.model.getLayersForOutput() f = codecs.open(path, "r", encoding="utf-8") # Get the contents of the file html = f.read() f.close() # Can't use string format as it has a fit over css and javascript braces {} outHtml = u"" outHtml = html.replace("<%title%>", self.model.title) outHtml = outHtml.replace("<%header%>", self.createHeader(self.model.title)) outHtml = outHtml.replace("<%tooltiptemplate%>", self.model.selectedFormat.getPopupTemplate(self.model.selectedFields, self.vizInUse(), self.model.vizWidth, self.model.vizHeight)) outHtml = outHtml.replace("<%externallegend%>", self.createExtLegend()) outHtml = outHtml.replace("<%externaltip%>", self.createExtTip()) outHtml = outHtml.replace("<%width%>", str(self.model.width)) outHtml = outHtml.replace("<%height%>", str(self.model.height)) outHtml = outHtml.replace("<%projection%>", self.model.selectedProjection.toScript(bound, self.model.width, self.model.height)) outHtml = outHtml.replace("<%vectorpaths%>", self.createSvgPaths(labels, self.model.selectedProjection)) outHtml = outHtml.replace("<%attachzoom%>", self.createZoom(self.model.selectedProjection)) outHtml = outHtml.replace("<%hidetip%>", self.hideTip()) outHtml = outHtml.replace("<%attachtip%>", self.createTipFunction()) outHtml = outHtml.replace("<%queuefiles%>", self.createQueueScript()) outHtml = outHtml.replace("<%readyparams%>", self.createReadyParams()) outHtml = outHtml.replace("<%polygonobjects%>", self.model.selectedFormat.createPolygonObjects(self.layersForOutput)) outHtml = outHtml.replace("<%refineprojection%>", self.model.selectedProjection.refineProjectionScript(self.createMainObject())) outHtml = outHtml.replace("<%vectorfeatures%>", self.createVectorFeatures()) outHtml = outHtml.replace("<%labelfeatures%>", self.createLabelFeatures(self.model.selectedProjection, labels)) outHtml = outHtml.replace("<%datastore%>", self.createDataStore()) outHtml = outHtml.replace("<%addlegend%>", self.createLegend()) outHtml = outHtml.replace("<%tipfunctions%>", self.createTipHelpers()) outHtml = outHtml.replace("<%symbologyfunctions%>", self.createSymbologyFunctions()) outHtml = outHtml.replace("<%chartfunction%>", self.createChartFunction(self.model.vizWidth, self.model.vizHeight)) outHtml = outHtml.replace("<%safecentroidfunction%>", self.createSafeCentroidFunction(self.model.selectedProjection)) outHtml = outHtml.replace("<%zoomfunction%>", self.createZoomFunction(self.model.selectedProjection, labels)) # overwrite the file with new contents f = codecs.open(path, "w", encoding="utf-8") f.write(outHtml) f.close()
[ "swbenten@gmail.com" ]
swbenten@gmail.com
d055365495c81ad395fddc53315ffaa1d0e69a04
6e2932f49fd0be248c6c57f17921389d123722d9
/image_processing_package/setup.py
c05e3b35867fd9e8b9e50c3a24ba81cbb6a1432f
[]
no_license
jonlegarda/robotics
594b1c992f5aa2bc263b6db38d6a2093b0b2ae3f
0784d22cd03ec752d05de0f348eafde4419d3724
refs/heads/master
2020-03-28T09:14:48.845716
2018-12-01T10:37:12
2018-12-01T10:37:12
148,021,613
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup setup_args = generate_distutils_setup( packages=['image_processing_package'], package_dir={'': 'src'}) setup(**setup_args)
[ "jonlegarda002@gmail.com" ]
jonlegarda002@gmail.com
2bf4d548eaef38895b555f1cf41959aece16c16a
ed187b7f3773ebdab2d9a1ce2db7691741a179e4
/Part 1 - Data Preprocessing/Section 2 -------------------- Part 1 - Data Preprocessing --------------------/data_preprocessing_template.py
6926ff6f8ac8aaff8ae878192f2435b78368e558
[]
no_license
harveen54/Machine-Learning-A-Z
31595e76daf27501d11e615f1c1bad37e84014a2
39efe55a643479d23e049d1437e2496721650961
refs/heads/master
2020-03-07T18:41:08.367590
2018-04-09T20:54:42
2018-04-09T20:54:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
# Data Preprocessing Template # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Data.csv') #import all the features in X matrix X = dataset.iloc[:, :-1].values #import the final to be predicted in Y vector y = dataset.iloc[:, 3].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)"""
[ "harveensinghchadha@infosys.com" ]
harveensinghchadha@infosys.com
9c20a4fbafe875127b240f8b78fc0fd722d7556c
c6f93a9f7537cb25485973bb7c1ee0994b27f58a
/application.py
91f19a6476bc946635d717995d2469fd344b44dc
[]
no_license
dataviztools/Tableau-Parameter-Comments
8e2324ef9975261b2eeb72f2a205de498f0f34f3
90c8a6b21cb435ae804f86a72f16f15d395d9a05
refs/heads/master
2020-03-09T08:34:13.863813
2018-04-09T00:21:06
2018-04-09T00:21:06
128,692,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
import psycopg2 from flask import Flask, request application = Flask(__name__) application.secret_key = 'badpassword123' class Database(object): @staticmethod def update(state, comment): client = psycopg2.connect(database='databasename', user='userid', password='password', host='databse.address.com', port='5432') cur = client.cursor() upsertsql = 'INSERT INTO COMMENTS (state, comment) VALUES (%s, %s) ON CONFLICT (state) DO UPDATE SET comment = %s' cur.execute(upsertsql, (state, comment, comment)) client.commit() cur.close() client.close() @application.route('/post') def post_to_mongo(): state = request.args.get('state') comment = request.args.get('comment') if state is None: return '<html><body><h3>State Field Missing!</h3></body></html>' if comment is None: return '<html><body><h3>Comment Must Not Be Blank!</h3></body></html>' Database.update(state=state, comment=comment) return '<html><body><h6>Comment Posted!<br />State: {}<br />Comment: {}</h6></body></html>'.format(state, comment) if __name__ == '__main__': application.run(debug=True, port=80)
[ "samuel.n.plant@gmail.com" ]
samuel.n.plant@gmail.com
1570e1e45340851da56b2053bd79fd78927ca257
31a766fcae3779b05796534c354286083502f74a
/python/onshape_client/models/bt_export_model_body.py
c6e2da616f27a337f903764c80b53d790952c065
[]
no_license
nychang/onshape-clients
5ea21e73a05948f5e232d4851eb8ae8a6b8c75c8
9c97baae57f80e3922726443584e4cc50b99623f
refs/heads/master
2020-05-06T20:35:28.212953
2019-04-05T20:38:19
2019-04-05T20:38:19
180,243,972
0
0
null
2019-04-08T22:43:59
2019-04-08T22:43:59
null
UTF-8
Python
false
false
9,014
py
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 OpenAPI spec version: 1.96 Contact: api-support@onshape.zendesk.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class BTExportModelBody(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'str', 'type': 'str', 'edges': 'list[BTExportModelEdge]', 'faces': 'list[BTExportModelFace]', 'vertices': 'list[BTExportModelVertex]', 'type_id': 'int', 'connection_source': 'BTConnection', 'export_type_name': 'str', 'unknown_class': 'bool' } attribute_map = { 'id': 'id', 'type': 'type', 'edges': 'edges', 'faces': 'faces', 'vertices': 'vertices', 'type_id': 'typeId', 'connection_source': 'connectionSource', 'export_type_name': 'exportTypeName', 'unknown_class': 'unknownClass' } def __init__(self, id=None, type=None, edges=None, faces=None, vertices=None, type_id=None, connection_source=None, export_type_name=None, unknown_class=None): # noqa: E501 """BTExportModelBody - a model defined in OpenAPI""" # noqa: E501 self._id = None self._type = None self._edges = None self._faces = None self._vertices = None self._type_id = None self._connection_source = None self._export_type_name = None self._unknown_class = None self.discriminator = None if id is not None: self.id = id if type is not None: self.type = type if edges is not None: self.edges = edges if faces is not None: self.faces = faces if vertices is not None: self.vertices = vertices if type_id is not None: self.type_id = type_id if connection_source is not None: self.connection_source = connection_source if export_type_name is not None: self.export_type_name = export_type_name if unknown_class is not None: self.unknown_class = unknown_class @property def id(self): """Gets the id of this BTExportModelBody. # noqa: E501 :return: The id of this BTExportModelBody. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this BTExportModelBody. :param id: The id of this BTExportModelBody. # noqa: E501 :type: str """ self._id = id @property def type(self): """Gets the type of this BTExportModelBody. # noqa: E501 :return: The type of this BTExportModelBody. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this BTExportModelBody. :param type: The type of this BTExportModelBody. # noqa: E501 :type: str """ allowed_values = ["SOLID", "SURFACE", "UNKNOWN"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def edges(self): """Gets the edges of this BTExportModelBody. # noqa: E501 :return: The edges of this BTExportModelBody. # noqa: E501 :rtype: list[BTExportModelEdge] """ return self._edges @edges.setter def edges(self, edges): """Sets the edges of this BTExportModelBody. :param edges: The edges of this BTExportModelBody. # noqa: E501 :type: list[BTExportModelEdge] """ self._edges = edges @property def faces(self): """Gets the faces of this BTExportModelBody. # noqa: E501 :return: The faces of this BTExportModelBody. # noqa: E501 :rtype: list[BTExportModelFace] """ return self._faces @faces.setter def faces(self, faces): """Sets the faces of this BTExportModelBody. :param faces: The faces of this BTExportModelBody. # noqa: E501 :type: list[BTExportModelFace] """ self._faces = faces @property def vertices(self): """Gets the vertices of this BTExportModelBody. # noqa: E501 :return: The vertices of this BTExportModelBody. # noqa: E501 :rtype: list[BTExportModelVertex] """ return self._vertices @vertices.setter def vertices(self, vertices): """Sets the vertices of this BTExportModelBody. :param vertices: The vertices of this BTExportModelBody. # noqa: E501 :type: list[BTExportModelVertex] """ self._vertices = vertices @property def type_id(self): """Gets the type_id of this BTExportModelBody. # noqa: E501 :return: The type_id of this BTExportModelBody. # noqa: E501 :rtype: int """ return self._type_id @type_id.setter def type_id(self, type_id): """Sets the type_id of this BTExportModelBody. :param type_id: The type_id of this BTExportModelBody. # noqa: E501 :type: int """ self._type_id = type_id @property def connection_source(self): """Gets the connection_source of this BTExportModelBody. # noqa: E501 :return: The connection_source of this BTExportModelBody. # noqa: E501 :rtype: BTConnection """ return self._connection_source @connection_source.setter def connection_source(self, connection_source): """Sets the connection_source of this BTExportModelBody. :param connection_source: The connection_source of this BTExportModelBody. # noqa: E501 :type: BTConnection """ self._connection_source = connection_source @property def export_type_name(self): """Gets the export_type_name of this BTExportModelBody. # noqa: E501 :return: The export_type_name of this BTExportModelBody. # noqa: E501 :rtype: str """ return self._export_type_name @export_type_name.setter def export_type_name(self, export_type_name): """Sets the export_type_name of this BTExportModelBody. :param export_type_name: The export_type_name of this BTExportModelBody. # noqa: E501 :type: str """ self._export_type_name = export_type_name @property def unknown_class(self): """Gets the unknown_class of this BTExportModelBody. # noqa: E501 :return: The unknown_class of this BTExportModelBody. # noqa: E501 :rtype: bool """ return self._unknown_class @unknown_class.setter def unknown_class(self, unknown_class): """Sets the unknown_class of this BTExportModelBody. :param unknown_class: The unknown_class of this BTExportModelBody. # noqa: E501 :type: bool """ self._unknown_class = unknown_class def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BTExportModelBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "ethan.keller@gmail.com" ]
ethan.keller@gmail.com
7cca72ca665a108a610764e33fd1235916e847bf
68e9222d83acbccb9badbf7d962b11630106a835
/cfg/synthesize.py
5eaf8e66ad7ab85658fda027120310c329852b65
[]
no_license
luwi1993/dctts_docker
288511800f0e9cfe9e81bb57836e8164d2f38819
042f1ca6c17b156f48d43d31796c8a2763b4e177
refs/heads/master
2023-02-13T05:24:48.818567
2021-01-07T07:56:57
2021-01-07T07:56:57
296,009,615
0
0
null
2020-10-03T10:13:27
2020-09-16T11:15:30
Python
UTF-8
Python
false
false
3,887
py
# -*- coding: utf-8 -*- # /usr/bin/python2 ''' By kyubyong park. kbpark.linguist@gmail.com. https://www.github.com/kyubyong/dc_tts ''' from __future__ import print_function import os from hyperparams import Hyperparams as hp import numpy as np import tensorflow as tf from train import Graph from utils import * from data_load import load_data from scipy.io.wavfile import write from tqdm import tqdm import time def synthesize(domain="outside"): info = {} absolute_beginning = time.time() info["start_time"] = absolute_beginning # Load data if domain == "outside": L = load_data("synthesize", domain=domain) elif domain == "inside": # Load graph synth_graph = Graph(mode="synthesize"); print("Graph loaded") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Restore parameters var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel') saver1 = tf.train.Saver(var_list=var_list) saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1")) print("Text2Mel Restored!") var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \ tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs') saver2 = tf.train.Saver(var_list=var_list) saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2")) print("SSRN Restored!") # Feed Forward ## mel begin_of_frame_synthesis = time.time() init_time = begin_of_frame_synthesis - absolute_beginning Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32) prev_max_attentions = np.zeros((len(L),), np.int32) for j in tqdm(range(hp.max_T)): _gs, _Y, _max_attentions, _alignments = \ sess.run([synth_graph.global_step, synth_graph.Y, synth_graph.max_attentions, synth_graph.alignments], {synth_graph.L: L, synth_graph.mels: Y, synth_graph.prev_max_attentions: prev_max_attentions}) Y[:, j, :] = _Y[:, j, :] prev_max_attentions = _max_attentions[:, j] # from the start time of the synthesis until the first time we reach this point is called the Latency Latency_beginning = time.time() - absolute_beginning Latency_synthesis = time.time() - begin_of_frame_synthesis duration_mels = time.time() - begin_of_frame_synthesis mels = {} for i, mel in enumerate(Y): mels["/{}.wav".format(i + 1)] = mel # Get magnitude Z = sess.run(synth_graph.Z, {synth_graph.Y: Y}) duration_mags = time.time() - begin_of_frame_synthesis # Generate wav files if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir) samples = {} mags = {} for i, mag in enumerate(Z): print("Working on file", i + 1) mags["/{}.wav".format(i + 1)] = mag wav = spectrogram2wav(mag) write(hp.sampledir + "/{}.wav".format(i + 1), hp.sr, wav) samples["/{}.wav".format(i + 1)] = wav duration_total = begin_of_frame_synthesis time_measurents = { "init_time":init_time, "Latency_beginning":Latency_beginning, "Latency_synthesis":Latency_synthesis, "duration_mels":duration_mels, "duration_mags":duration_mags, "duration_total":duration_total, } info["mels"] = mels info["mags"] = mags info["samples"] = samples info["time_measurents"] = time_measurents return info if __name__ == '__main__': time_measurements = synthesize() print("Done")
[ "luwid102@uni-duesseldorf.de" ]
luwid102@uni-duesseldorf.de
f78b783c30c351d99042c713cc51e3bb302a4d3c
6fac29fba9c10f4ac3fad19a95c2bacae72892d6
/request/sync_request.py
b8c841e3f14c4d403342f6d0094e3ae8ba5b373c
[]
no_license
TauWu/common-py
2496472e82f3517c1eb96dce56b5a8fff64445fa
b595c3abf33585810af76b33ce718cdc636532d6
refs/heads/master
2020-05-07T08:55:57.236297
2019-09-01T09:19:58
2019-09-01T09:19:58
180,353,371
2
0
null
null
null
null
UTF-8
Python
false
false
500
py
# -*- coding: utf-8 -*- from requests import get class SyncRequestBase(object): def __init__(self, url_list, headers=None): self._url_dict = {url:None for url in url_list} self._url_list = url_list self._headers = headers @property def result(self): [self.get_content(url) for url in self._url_list] return self._url_dict def get_content(self, url): data = get(url, headers=self._headers).content self._url_dict[url] = data
[ "tauwoo@seuxw.cc" ]
tauwoo@seuxw.cc
0ad541f519c3c3caec0c532915c566ffb73ac107
71ed4eabc319e5fd6102a26c13e6a3970dd32ed0
/frontpage/models.py
bd3354a2ca5834786708b2e49b082ce75b122058
[ "MIT" ]
permissive
SkyVault/WorkingOn
ad972371a480f439be3c26f4c8ca858ad638c2f7
1ea37bd482dc2ef571bcc67ef563d13799dd8ccb
refs/heads/master
2020-06-06T15:06:53.271912
2019-09-23T19:13:12
2019-09-23T19:13:12
165,898,680
0
0
null
null
null
null
UTF-8
Python
false
false
1,202
py
from django.db import models from django.utils import timezone # User authors posts and projects from django.contrib.auth.models import User """ NOTE: to access all projects for a certain user user = User.objects.get(username='<username>') user.project_set NOTE: to get the User model from django.contrib.auth.models import User NOTE: to create a project/post fast user.project_set.create(title='...',...) """ # A project is a child of the User class Project(models.Model): # NOTE(Dustin): models.CASCADE deletes project if user is deleted author = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=256) description = models.TextField() created_date = models.DateTimeField(default=timezone.now) # A post is a child of a project, when the project gets deleted # all the posts for that project will too class Post(models.Model): author = models.ForeignKey(Project, on_delete=models.CASCADE) title = models.CharField(max_length=256) url = models.URLField(max_length=256) description = models.TextField() published_date = models.DateTimeField(default=timezone.now) def __str__(self): return f"{self.title}"
[ "dustinneumann42@gmail.com" ]
dustinneumann42@gmail.com
53358d6f4012535641bd36471e0cd2762cd983e7
76dfe9dc71ef2f807ee8b360e73a1455d91346cc
/hw2/Code/hw2_ex21.py
694a1c4e2922c3ff86b359f2d6e7b27bab7566c2
[]
no_license
akswart/phys416code
8231b0722eb98c0716aa3af69b7eb513234abed3
49383c578c4b18a7e0832e1056be47b1c28ca978
refs/heads/master
2020-12-22T12:35:07.115403
2020-05-06T19:37:43
2020-05-06T19:37:43
236,782,252
0
0
null
null
null
null
UTF-8
Python
false
false
3,943
py
# -*- coding: utf-8 -*- """ Created on Wed Feb 5 11:55:57 2020 @author: akswa """ # Program to compute the motion of a Kapitza’s pendulum # using the Verlet method import numpy as np import matplotlib.pyplot as plt from scipy.special import ellipk def period_pend(theta0,g_over_L): # function to return the exact period for a pendulum of length L # usage: period = exact_period(theta0,g_over_L) # where: theta0 = inital angle in degrees # g_over_L = ratio g to the length of the pendulum # note -earlier version has a bug as it x sqrt(g/l) not divided 9/11 # note the squaring of the argument in the elliptic function # matlab uses a different normalization than the book period = 4/np.sqrt(g_over_L)*ellipk((np.sin(theta0*np.pi/180./2.))**2) return period def pend(theta0,tau,A0,nstep,NumericalMethod,plotting = False,verbose = False): # Set initial position and velocity of pendulum theta = theta0*np.pi/180 # Convert angle to radians omega = 0 # Set the initial velocity # Set the physical constants and other variables g_over_L = 1 # The constant g/L time = 0 # Initial time irev = 0 # Used to count number of reversals g = 9.81 L = 9.81 Td = .2 # Driving period (s) def accel(time,A0,Td,theta,L): # The acceleration give by the equation in problem 21 a_d = A0*np.sin(2*np.pi*time/Td) return -((g+a_d)/L)*np.sin(theta) # Take one backward step to start Verlet theta_old = theta - omega*tau + 0.5*tau**2*accel(time,A0,Td,theta,L) # Loop over desired number of steps with given time step # and numerical method # initialize arrays t_plot=np.array([]) th_plot=np.array([]) period=np.array([]) for istep in range(0,nstep): # Record angle and time for plotting t_plot = np.append(t_plot,time) th_plot = np.append(th_plot,theta*180/np.pi) # Convert angle to degrees time = time + tau # Compute new position and velocity using Verlet method theta_new = 2*theta - theta_old + tau**2*accel(time,A0,Td,theta,L) theta_old = theta # Verlet method theta = theta_new # Test if the pendulum has passed through theta = 0; # if yes, use time to estimate period if theta*theta_old < 0: # Test position for sign change if verbose: print("Turning point at time t= %f" %time) ; if irev == 0: # If this is the first change, time_old = time # just record the time else: period = np.append(period,2*(time - time_old)) time_old = time irev = irev + 1 # Increment the number of reversals if verbose: if irev > 1: # Estimate period of oscillation, including error bar AvePeriod = np.mean(period) ErrorBar = np.std(period)/np.sqrt(irev) print("Average period = %g +/- %g" %(AvePeriod,ErrorBar)) else: print('Pendulum program could not complete a period, time =%g'%time) print("Exact period = %g" %period_pend(theta0,g_over_L)) # Graph the oscillations as theta versus time if plotting: plt.figure(0) plt.plot(t_plot,th_plot,'.-') plt.title(r"Method: %s, $\theta_0$: %s, Driving Amplitude: %sg" % (NumericalMethod,theta0,A0/9.81) ) plt.xlabel('Time') plt.ylabel(r'$\theta$ (degrees)') # the 'r' means raw strings for latex plt.grid() plt.show() return t_plot,th_plot,period if __name__ == "__main__": # Part a # Figure 2.7 g = 9.81 for i in [40,60,80,100]: a,b,c = pend(170,.005,i*g,2000,"eulercromer",plotting = True, verbose = True)
[ "akswart@gmail.com" ]
akswart@gmail.com
3e0b2d2e7e8bc8656ec8dff9559ff4dd1bdb5ebb
c08b5edb5075e7840e716b0a09006dae0a4d05ac
/.history/Missions_to_Mars/scrape_mars_20200809232616.py
948f62b0d1894d482d3efeeb8cf7fb3180ac81b3
[]
no_license
OlgaDlzk/web-scraping-challenge-1
06f915eb76c55c9bc37889017dd9af81122dc1a5
f99c3436dfb0169595c46dae7733d90e21385cc6
refs/heads/master
2023-03-18T00:58:37.928024
2020-09-22T20:32:47
2020-09-22T20:32:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,704
py
from splinter import Browser from bs4 import BeautifulSoup as bs import pandas as pd import time import re # This is for debugging def savetofile(contents): file = open('_temporary.txt',"w",encoding="utf-8") file.write(contents) file.close() def scrape(): executable_path = {"executable_path": "chromedriver"} browser = Browser("chrome", **executable_path, headless=False) # NASA Mars News url = 'https://mars.nasa.gov/news/' browser.visit(url) time.sleep(3) html = browser.html soup = bs(html, 'html.parser') slides = soup.find_all('li', class_='slide') html = browser.html soup = bs(html, "html.parser") content_title = slides[0].find('div', class_='content_title') news_title = content_title.text.strip() article_teaser_body = slides[0].find('div', class_='article_teaser_body') news_p = article_teaser_body.text.strip() # JPL Mars Space Images base_url = 'https://www.jpl.nasa.gov' url = base_url + '/spaceimages/?search=&category=Mars' browser.visit(url) time.sleep(1) html = browser.html soup = bs(html, 'html.parser') featured_image_url = base_url + soup.find('a',class_='button fancybox')['data-fancybox-href'] # Mars Weather mars_weather = [] url = 'https://twitter.com/marswxreport?lang=en' browser.visit(url) time.sleep(3) weather_html = browser.html soup = bs(weather_html, "html.parser") # print(weathersoup.prettify()) mars_tweets = [soup.find_all('p', class_="TweetTextSize"), soup.find_all( 'span', class_="css-901oao css-16my406 r-1qd0xha r-ad9z0x r-bcqeeo r-qvutc0")] for tweets in mars_tweets: mars_tweet = tweets for tweet in mars_tweet: if 'InSight' in tweet.text: mars_weather = tweet.text if tweet.a in tweet: mars_weather = mars_weather.strip(tweet.a.text) break # Mars facts url = 'https://space-facts.com/mars/' browser.visit(url) # not necessary, but added for checking the operation time.sleep(1) dfs = pd.read_html(url) for df in dfs: try: df = df.rename(columns={0: "Description", 1: "Value"}) df = df.set_index("Description") marsfacts_html = df.to_html().replace('\n', '') # df.to_html('marsfacts.html') # to save to a file to test break except: continue # Mars Hemispheres base_url = 'https://astrogeology.usgs.gov' url = base_url + '/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) time.sleep(1) html = browser.html soup = bs(html, 'html.parser') items = soup.find_all('div', class_='item') urls = [] titles = [] for item in items: urls.append(base_url + item.find('a')['href']) titles.append(item.find('h3').text.strip()) img_urls = [] for oneurl in urls: browser.visit(oneurl) time.sleep(1) html = browser.html soup = bs(html, 'html.parser') oneurl = base_url+soup.find('img',class_='wide-image')['src'] img_urls.append(oneurl) hemisphere_image_urls = [] for i in range(len(titles)): hemisphere_image_urls.append({'title':titles[i],'img_url':img_urls[i]}) # Assigning scraped data to a page marspage = {} marspage["news_title"] = news_title marspage["news_p"] = news_p marspage["featured_image_url"] = featured_image_url marspage["mars_weather"] = mars_weather marspage["marsfacts_html"] = marsfacts_html marspage["hemisphere_image_urls"] = hemisphere_image_urls return marspage
[ "ermiasgelaye@gmail.com" ]
ermiasgelaye@gmail.com
d819ff360d32372dfa26529212cc11c5b24fa935
5ea32a391b79a326ba6f0165f86d8b274856f4df
/scripts/TouchinBuild/CommandBuilders/PatchCsprojCommandBuilder.py
5c04b90629f392fa302c2c4c964d34ce21e3bee3
[]
no_license
TouchInstinct/BuildScript
b9a78afdebce45e508204b8ad1c7a57bd356c23d
5da1a6efa0f10c242dfee61335cdf38466e24dd4
refs/heads/master
2021-01-23T11:19:58.591859
2014-06-02T16:11:19
2014-06-02T16:11:19
12,847,134
1
0
null
null
null
null
UTF-8
Python
false
false
699
py
from commands.PatchCsprojCommand import PatchCsprojCommand from parsers.InsideParser.InsideCsprojSetParser import InsideCsprojSetParser class PatchCsprojCommandBuilder: def __init__(self): pass def getCommandFor(self, line): assert line is not None parser = self.getParser() result = parser.parseLine(line) csprojPath = result[0] key = result[1] value = result[2] slnConfig = result[3] command = PatchCsprojCommand(csprojPath, key, value, slnConfig) return command def isPatchCsproj(self, line): assert line is not None parser = self.getParser() isValid = parser.isValidLine(line) return isValid def getParser(self): return InsideCsprojSetParser('csproj')
[ "r-zaitov@yandex.ru" ]
r-zaitov@yandex.ru
3b9bdcdb0022cef882418f1278022da511ee8e02
c6735c5825991f6421b09e8997dac0397ea581c9
/unittests/Reflection/RemoteMirrorInterop/test.py
6bda70ddc35bfdffe9fe4a69a1c8ab070a1311a3
[ "Apache-2.0", "Swift-exception" ]
permissive
TAIPANBOX/swift
6b5ff6a9e8032bef746579914c4999c8ff31540c
48e48f22fe59b0aa7a782b01d8df4e4414e12a52
refs/heads/master
2020-04-20T22:08:36.980111
2019-02-04T18:32:55
2019-02-04T18:32:55
169,129,762
3
0
Apache-2.0
2019-02-04T18:49:44
2019-02-04T18:49:43
null
UTF-8
Python
false
false
2,283
py
#!/usr/bin/env python # Exercise the SwiftRemoteMirrorLegacyInterop API. This works with # multiple versions of Swift. It builds Swift code using all versions, # and exercises the Interop API using various combinations of those # versions' Remote Mirror libraries. # # Invoke by passing the various Swift build directories as parameters. import itertools import os import subprocess import sys args = sys.argv[1:] if len(args) == 0: print >> sys.stderr, "Usage:", sys.argv[0], "swift-build-dirs..." print >> sys.stderr, ("Note: pass paths to the swift-macosx-x86_64" " directories.") sys.exit(1) absoluteArgs = [os.path.abspath(arg) for arg in args] swiftcs = [os.path.join(arg, 'bin', 'swiftc') for arg in absoluteArgs] mirrorlibs = [os.path.join(arg, 'lib', 'swift', 'macosx', 'libswiftRemoteMirror.dylib') for arg in absoluteArgs] os.chdir(os.path.dirname(sys.argv[0])) # Build the remote mirror test harness program. subprocess.check_call(['clang', '-framework', 'Foundation', '-I', '../../../include/swift/SwiftRemoteMirror', '-I', '../../../include/', '-o', '/tmp/test', '-Wall', '-Wextra', '-g', 'test.m']) # Build a test library with each Swift compiler passed in. for i, swiftc in enumerate(swiftcs): subprocess.check_call( ['xcrun', swiftc, '-emit-library', 'test.swift', '-o', os.path.join('/tmp', 'libtest' + str(i) + '.dylib')]) # Run the test harness with all combinations of the remote mirror libraries. for i in range(len(swiftcs) + 1): for localMirrorlibs in itertools.combinations(mirrorlibs, i): for i, arg in enumerate(absoluteArgs): print 'Testing', arg, 'with mirror libs:' for l in localMirrorlibs: print '\t', l callArgs = ['/tmp/test'] dylibPath = os.path.join('/tmp', 'libtest' + str(i) + '.dylib') callArgs.append(dylibPath) callArgs += list(localMirrorlibs) print ' '.join(callArgs) subprocess.call(callArgs) print 'DONE' print '' print localMirrorlibs
[ "mikeash@apple.com" ]
mikeash@apple.com