blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
be1f066283f5fc6153faa4a33622e7bcf627724c
0bb474290e13814c2498c086780da5096453da05
/code-festival-2018-final/E/main.py
dbd827d56fd4197001f45e30c3085466ba045326
[]
no_license
ddtkra/atcoder
49b6205bf1bf6a50106b4ae94d2206a324f278e0
eb57c144b5c2dbdd4abc432ecd8b1b3386244e30
refs/heads/master
2022-01-25T15:38:10.415959
2020-03-18T09:22:08
2020-03-18T09:22:08
208,825,724
1
0
null
2022-01-21T20:10:20
2019-09-16T14:51:01
Python
UTF-8
Python
false
false
516
py
#!/usr/bin/env python3 import sys sys.setrecursionlimit(10000000) INF = 1<<32 def solve(N: int, K: int, A: "List[int]"): return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() N = int(next(tokens)) # type: int K = int(next(tokens)) # type: int A = [int(next(tokens)) for _ in range(N - 1 - 0 + 1)] # type: "List[int]" solve(N, K, A) if __name__ == '__main__': main()
[ "deritefully@gmail.com" ]
deritefully@gmail.com
b865161161cec01eff6c0fb80ba8e1ae7bf8b6a4
5d35e0adfb6316535900fd9aeb21fc349913dd6a
/venv/bin/easy_install
411bd80da8591e098ed08e8c4d1e930da531e1d7
[]
no_license
coma2441/appnp_tf2
3e2ae0f3d073b5edbbd589a760f408732ff22da8
4ded26555e2e66869383b8d460016083941ea0f0
refs/heads/master
2020-12-19T14:06:52.943448
2020-01-23T12:34:13
2020-01-23T12:34:13
235,756,525
0
0
null
null
null
null
UTF-8
Python
false
false
446
#!/Users/changkyu/Documents/GitHub/appnp_tf2/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "changkyu.choi@uit.no" ]
changkyu.choi@uit.no
00836a0c635a9d150cd9e3ede019f8918f922dd2
b56fbf5308a5494c4064315767ee003771444f42
/Algorithm/0418_greedyicecream.py
9b222672c48c4565cb6ba6cf88193137d60503ea
[]
no_license
Universe-Liu/Python
9a25888581a3d395e5d83d3e7eb164d7d5c3e0e8
26f54f63be03896de9004b4451b6af211210154d
refs/heads/master
2023-04-27T17:57:36.640407
2021-05-14T02:40:31
2021-05-14T02:40:31
284,634,098
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
costs=[1,6,3,1,2,5] coins=20 def maxIceCream(costs, coins) -> int: ans=0 s=0 costs.sort() if costs[0]>coins: return ans for i in range(len(costs)): if costs[i]+s<=coins: ans+=1 s+=costs[i] else: break return ans print(maxIceCream(costs,coins))
[ "842124824@qq.com" ]
842124824@qq.com
108d08d36e676c7be42ed12baef6c44c616f1a23
cd2cb47552a5ee914898bb27e5a7eb02362c4e0d
/Restaurantapp/views.py
36a6ebe0d499d842bc71ab679841c705f83788fc
[]
no_license
Jap9/Django_Restaurant
02bcfb46d24bd83ea10bbc4c9db6c9b17a851396
9f9e0d36a1368f8fb7d9faf7a3be0c1586e69544
refs/heads/master
2021-01-10T16:33:50.811446
2016-04-30T12:44:07
2016-04-30T12:44:07
54,205,064
0
0
null
null
null
null
UTF-8
Python
false
false
1,331
py
from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render, render_to_response from django.core.urlresolvers import reverse from django.utils import timezone from django.shortcuts import redirect from .models import Restaurant from forms import * def mainpage(request): rests = Restaurant.objects.order_by('price') return render(request, 'Restaurantapp/base.html', {'rests': rests}) def new_restaurant(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.published_date = timezone.now() post.save() return redirect('http://127.0.0.1:8000/') else: form = PostForm() return render(request, 'Restaurantapp/new_restaurant.html', {'form': form}) def delete_restaurant(request,rest_pk): delRest= Restaurant.objects.get(pk=rest_pk) delRest.delete() return redirect('http://127.0.0.1:8000/') def reservar_restaurant(request): if request.method == "POST": form = PostForm_reserva(request.POST) if form.is_valid(): return redirect('http://127.0.0.1:8000/') else: form = PostForm_reserva() return render(request, 'Restaurantapp/reservar_restaurant.html', {'form': form})
[ "josepalbertpifarre@gmail.com" ]
josepalbertpifarre@gmail.com
cf2843748fee2cf8c6e7fc097c62279e7a0f3867
6d348a21b8345ed7ce9a85a1a3859dbf5b1cf429
/conanfile.py
b122302a1a90c5bad32d7f6fb237551d77144f4d
[ "MIT" ]
permissive
lckroom/voxel-fluid
de535081177c86458223ce8254fff44621b10a13
3fd833629199cc0b31f0209b46b786aa9028a137
refs/heads/master
2023-03-17T09:22:58.117790
2018-11-17T23:22:35
2018-11-17T23:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
from conans import ConanFile, CMake class FluidConan(ConanFile): name = "Fluid" version = "0.1" settings = "os", "compiler", "build_type", "arch" options = {} requires = ( "gtest/1.8.0@lasote/stable", ) default_options = ( "gtest:shared=False", ) generators = "cmake" def build(self): cmake = CMake(self) cmake.definitions.update( { "BUILD_TESTS": True , "USE_CONAN": True }) cmake.configure(source_dir=self.source_folder) cmake.build()
[ "zoltan.gilian@gmail.com" ]
zoltan.gilian@gmail.com
dd2a5d08559fdd5c85eaf3cf498ca2a3e338c55d
f0e7e46e8eb1ade59e006f3fa4e0c7967f1750f1
/RPIServers/restartServers.py
8bde480b1990b61601c16ea594eed3e540a666dc
[]
no_license
flavioipp/RPIxmlrpc
3eec378e194804245c125b9c33f82d9545930056
1ad76cd08a4c0c2f0861e02c1cd740479d6bd05b
refs/heads/master
2021-09-10T06:28:58.039843
2018-03-21T15:15:27
2018-03-21T15:15:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,048
py
#!/usr/bin/env python3 import os import sys import time import ctypes import logging import logging.config from ansicolors import * from pexpect import pxssh BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR + '/..') from RPIServers import rpiConst userID=rpiConst.USER['id'] userPWD=rpiConst.USER['pwd'] # init logging logging.config.fileConfig(BASE_DIR + '/logging.conf') logger = logging.getLogger('rpiServer') def Mbox(title, text, style): return ctypes.windll.user32.MessageBoxW(0, text, title, style) if __name__ == '__main__': logger.info(ANSI_info('Updating GIT Repositories...')) for rpi in rpiConst.SERVER_LIST: logger.info('RPI-%s : %s'%(str(rpi['id']),str(rpi['ip']))) try: s=pxssh.pxssh() if not s.login(str(rpi['ip']),userID,userPWD): logger.error('SSH Session failed on login') logger.error(str(s)) else: logger.info('SSH Session established') logger.info('Restarting servergpio service...') s.sendline('sudo service servergpio restart') while not s.prompt():time.sleep(1) time.sleep(1) s.sendline('sudo service servergpio status') while not s.prompt():time.sleep(1) logger.info(s.before.decode("utf-8")) logger.info('Done!!') s.logout() except Exception as xxx: logger.error(str(xxx)) logger.error(ANSI_fail('RPI-%s : %s'%(str(rpi['id']),str(rpi['ip'])))) logger.info(ANSI_info('...Done!!'))
[ "pi@raspberry.com" ]
pi@raspberry.com
af1869fbca418280a9fc8f31dec79b970cfeddaf
0141361f7c4d276f471ac278580479fa15bc4296
/arrayAndString/removeComments.py
710e9312eb976f20595fec8727a33ee4ad64cd2c
[]
no_license
tr1503/LeetCode
a7f2f1801c9424aa96d3cde497290ac1f7992f58
6d361cad2821248350f1d8432fdfef86895ca281
refs/heads/master
2021-06-24T19:03:08.681432
2020-10-09T23:53:22
2020-10-09T23:53:22
146,689,171
0
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
class Solution: def removeComments(self, source): """ :type source: List[str] :rtype: List[str] """ res = [] comment = False out = "" for line in source: i = 0 while i < len(line): if not comment: if i == len(line) - 1: out += line[i] else: temp = line[i:i+2] if temp == "/*": comment = True i += 1 elif temp == "//": break else: out += line[i] else: if i < len(line) - 1: temp = line[i:i+2] if temp == "*/": comment = False i += 1 i += 1 if out != "" and not comment: res.append(out) out = "" return res
[ "noreply@github.com" ]
tr1503.noreply@github.com
78c05de618fa12839d79cf4cfc563337b93b099a
844b8a9d8ec1a2c93cc338deedc53eaf6426b2e0
/belote/client.py
668249ddd3f8bd387030e62a090333f90c0d34eb
[]
no_license
FlorianDenis/Belote
57e42625999d7e286f4d3cfa5a6ad71c9c11116b
b72e40c304249cbd2fbb659dbfe7a8796d823dd4
refs/heads/master
2023-03-20T03:03:10.997610
2021-03-01T21:52:27
2021-03-01T21:52:27
250,744,944
1
0
null
2020-04-12T15:32:55
2020-03-28T08:14:52
Python
UTF-8
Python
false
false
2,900
py
# # Copyright (C) Florian Denis - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited. # Proprietary and confidential. # import logging import random import socket import os from . import constants from . import packet from . import player from . import transport from . import gui from . import game log = logging.getLogger(__name__) class Client: def __init__(self, host, port, name, windowed, backend): # Server info self._host = host self._port = port # GUI info self._windowed = windowed self._backend = backend # Local player instance identifier = "{:x}".format(random.getrandbits(32)) self._player = player.Player(identifier, name) def run(self): # Connect to server sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.connect((self._host, self._port)) log.info("Connection established with server {}:{}" .format(self._host, self._port)) except: log.error("Unable to establish connection to server {}:{}" .format(self._host, self._port)) sock.close() os._exit(0) # Create transport self._transport = transport.Transport(sock) self._transport.on_recv = self.__recv self._transport.on_drop = self.__drop self._transport.run() # Create GUI self._gui = gui.GUI(self._windowed, self._backend) self._gui.on_trump_picked = self._pick_trump self._gui.on_card_picked = self._play_card # Register as a new player self._register() self._gui.run() def _perform(self, opcode, *args): tx_packet = packet.Packet(constants.MessageType.COMMAND, opcode, *args) self._transport.send(tx_packet) def __drop(self, transport): log.error("Connection dropped with server") os._exit(0) def _register(self): self._perform( constants.CommandOpcode.CREATE_PLAYER, self._player.identifier, self._player.name) def _pick_trump(self, trump): self._perform(constants.CommandOpcode.PICK_TRUMP, trump) def _play_card(self, card): self._perform(constants.CommandOpcode.PLAY_CARD, card.code) def _handle_new_proxy(self, proxy): self._gui.set_game(proxy) def __recv(self, transport, rx_packet): """ Receive packet from server """ if rx_packet.msg_type != constants.MessageType.NOTIF: log.warn("Cannot handle incoming message {}", rx_packet) return if rx_packet.opcode == constants.NotifOpcode.GAME_STATUS: proxy = game.from_args(rx_packet.args) self._handle_new_proxy(proxy) def stop(self): self._transport.stop()
[ "me@floriandenis.net" ]
me@floriandenis.net
f41a4712e424658046a063682bfa65d6740679ef
c19165ac2929a937265f456c339bfdecb899ca15
/Solucion/Obstaculo.py
d0601c5eb137e01bbc841778eb6d48051b391644
[]
no_license
kazp058/AlgoritmosGeneticos
41fd163d9e721ddb9259e97fcd9020567e6a85ae
c27773d0d33317a8f5b2296d7164207ac438e42f
refs/heads/master
2022-09-04T19:23:51.253673
2020-06-01T01:12:16
2020-06-01T01:12:16
268,134,725
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
import pygame class Obstaculo(pygame.sprite.Sprite): def __init__(self, color, x, y, ancho, alto, izq): pygame.sprite.Sprite.__init__(self) self.ancho = ancho self.alto = alto self.izq = izq self.velocidad = 5 self.superficie = pygame.Surface((self.ancho, self.alto), pygame.SRCALPHA) pygame.draw.circle(self.superficie, color, (ancho//2,alto//2), ancho//2) self.rect = pygame.Rect(x, y, self.ancho, self.alto) def update(self, bordes, poblacion): if self.izq: self.rect.x -= self.velocidad else: self.rect.x += self.velocidad self.colisionar(bordes, poblacion) def colisionar(self, bordes, poblacion): blocks_hit_list = pygame.sprite.spritecollide(self, bordes, False) if len(blocks_hit_list) > 0: if self.izq: self.rect.x = blocks_hit_list[0].rect.right else: self.rect.x = blocks_hit_list[0].rect.left - self.ancho self.izq = not self.izq blocks_hit_list = pygame.sprite.spritecollide(self, poblacion, False) for elem in blocks_hit_list: elem.muerto = True
[ "noreply@github.com" ]
kazp058.noreply@github.com
c7487eb0e9a609d76bda84a0c104a6502dc38533
a8e66df1408a9c44b0771c6a6085d6d6540e138d
/bookclubapp/migrations/0003_auto_20180530_1757.py
ffd99fca39972a0fb6f9651e620e99b59ee92afd
[]
no_license
Kiptim54/BookClub
6a1cabee174ce7286135ebd54b405f79851a02df
c0a28bc5a0d5a382da00cdd5b4cbbb431dc6991a
refs/heads/master
2020-03-19T01:18:51.419857
2018-06-04T14:50:16
2018-06-04T14:50:16
135,536,759
1
0
null
null
null
null
UTF-8
Python
false
false
759
py
# Generated by Django 2.0 on 2018-05-30 14:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bookclubapp', '0002_auto_20180530_1730'), ] operations = [ migrations.AlterModelOptions( name='comment', options={'ordering': ['-time_posted']}, ), migrations.AlterModelOptions( name='review', options={'ordering': ['-time_posted']}, ), migrations.RemoveField( model_name='groups', name='books', ), migrations.AddField( model_name='groups', name='books', field=models.ManyToManyField(to='bookclubapp.Books'), ), ]
[ "kiptim54@gmail.com" ]
kiptim54@gmail.com
8f709f9485507eee939356065d8ac417c13155df
8f42a498f02abbfe05c8a99be45c4574f1eab8b4
/airline0/flights/migrations/0001_initial.py
e75f5c664b0914a1e886eec6e9f21af76d89f83e
[]
no_license
Noshi96/AirlineDjango
b20528d720f919035fcfad719a34657155b1bb24
bd6a2fd954187d1a8bf463a6f5f873fdbdd2f0e8
refs/heads/master
2023-08-30T20:23:51.592659
2021-10-26T19:40:16
2021-10-26T19:40:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
# Generated by Django 3.2.7 on 2021-09-16 14:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Airport', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=4)), ('city', models.CharField(max_length=64)), ], ), migrations.CreateModel( name='Flight', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('duration', models.IntegerField()), ('destination', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='arrivals', to='flights.airport')), ('origin', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='departues', to='flights.airport')), ], ), ]
[ "2spawel2@gmail.com" ]
2spawel2@gmail.com
27b40f018874059501cc285337c05b7abc54e896
3aec6f08678f13bf3878bce77007f74cfe637773
/versions/1.1.0/lib/node_modules/slc/node_modules/sls-sample-app/node_modules/loopback-connector-oracle/node_modules/oracle/build/config.gypi
9deb7aba9050bc108a69eb3a04eb5960439c7489
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
lulinqing/sls-cartridge
93a32a1f1035901cf2a6699988c8b28b46ddad27
a0d704f69ad313a05825aa2be360c1d0dc4e6c79
refs/heads/master
2021-01-13T02:08:09.340281
2013-11-03T14:32:26
2013-11-03T14:32:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,968
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 44, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_systemtap": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "nodedir": "/root/.node-gyp/0.10.16", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/bash", "parseable": "", "shrinkwrap": "true", "userignorefile": "/root/.npmignore", "cache_max": "null", "init_author_email": "", "sign_git_tag": "", "ignore": "", "long": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "npat": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "cache_lock_retries": "10", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "coverage": "", "json": "", "pre": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/root/.npm-init.js", "userconfig": "/root/.npmrc", "npaturl": "http://npat.npmjs.org/", "node_version": "v0.10.16", "user": "", "editor": "vi", "save": "", "tag": "latest", "global": "", "optional": "true", "username": "", "bin_links": "true", "force": "", "searchopts": "", "depth": "null", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "yes": "", "fetch_retry_maxtimeout": "60000", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/root/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "node/v0.10.16 linux x64", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "0.0.0", "umask": "18", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/root/tmp", "unsafe_perm": "", "link": "", "prefix": "/usr/local" } }
[ "lulinqing@gmail.com" ]
lulinqing@gmail.com
ef11ce0b204e77697cad987aa597887b7411b96f
bfaf76a40c9ec192aa53332f66460375e89eccfe
/profil3r/modules/email/email.py
0ae1cc031a3bc60325eef8e623956a017d5145b1
[ "MIT" ]
permissive
utopikkad/Profil3r
2e8b50063ed9051feff93be0865c8c5057d22d85
c76e04f9da9122926ac2ac077ec54245c3283a67
refs/heads/main
2023-04-13T20:02:09.913294
2021-04-15T12:38:53
2021-04-15T12:38:53
358,276,341
0
0
MIT
2021-04-15T13:51:54
2021-04-15T13:51:45
null
UTF-8
Python
false
false
1,808
py
import time import pwnedpasswords from profil3r.colors import Colors class Email: def __init__(self, config, permutations_list): # Have I been pwned API rate limit ( 1500 ms) self.delay = DELAY = config['plateform']['email']['rate_limit'] / 1000 # The 20 most common email domains, you can add more if you wish (in the config.jon file) # The more domains you add, the longer it gets of course self.domains = config['plateform']['email']['domains'] # {username}@{domain} self.format = config['plateform']['email']['format'] # email adresses are not case sensitive self.permutations_list = [perm.lower() for perm in permutations_list] # Generate all potential adresses def possible_emails(self): possible_emails = [] for domain in self.domains: for permutation in self.permutations_list: possible_emails.append(self.format.format( permutation = permutation, domain = domain )) return possible_emails # We use the Have I Been Pwned API to search for breached emails def search(self): emails_usernames = { "accounts": [] } possible_emails_list = self.possible_emails() for possible_email in possible_emails_list: pwned = pwnedpasswords.check(possible_email) # Not breached email if not pwned: emails_usernames["accounts"].append({"value": possible_email, "breached": False}) # Breached emails else: emails_usernames["accounts"].append({"value": possible_email, "breached": True}) time.sleep(self.delay) return emails_usernames
[ "r0g3r5@protonmail.com" ]
r0g3r5@protonmail.com
d9e1cc2298c99c803b828a8b40aa0eb55c015a49
fc7828cdb69f4c0fbd137d989607e6c4972406de
/teaching/jordan/assignments/a4/a4.py
e4348e4b1599ded900c8ac86e1d5e4f2214cb56a
[]
no_license
KWMalik/organization
398167eb7b641df1bbc7f8c07d873baf77728440
977dcf68f9f07a36dd1cfbdeb907594b75a58ce4
refs/heads/master
2021-01-13T01:55:26.651655
2010-02-26T20:19:05
2010-02-26T20:19:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,053
py
class Empty: pass class List: def __init__(self, head, tail): self.hd = head self.tl = tail def List(L): if L==Empty return Empty else: return List(L.hd + L.tl) #Returns a List containing all natural numbers by which "n" is divisible. #List begins from "m" and counts down until 2. def divisors(m,n): if n % m-1==0: return List(divisors(n/m-1) else: pass if m<=2: return "finished" #Returns True if a given number is Prime. def is_prime(n): def divisors(m,n): #Will return items in a list up to "n". def take(L,n): return List(L.hd*n)take(L.tl) if n>=L: return List #Will return all numbers within a list, excluding those up to "n." def drop(L,n): return [L:n] #Will return a List excluding the "Nth" element. n>=0 def exclude(L,n): return List and not (L.hd+n-1)
[ "=" ]
=
028c708347c597b72970133746f8e13bd7df4c9f
eaba0e6a50db2ec435904e72b019b0fd1c2f4562
/rospy_markerutils/__init__.py
56ac5fe28b17cd5df92995ae480ccfebedc5d925
[ "BSD-3-Clause" ]
permissive
dimatura/rospy_markerutils
bb1474b3d09993b828494eba7e5eb9bcfb6b1b77
0f8d8f1f397612fd1bb6ef8d176286a33c425ab5
refs/heads/master
2020-03-23T23:12:03.654289
2018-08-28T07:46:05
2018-08-28T07:46:05
142,221,457
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
# # @author Daniel Maturana # @year 2015 # # @attention Copyright (c) 2015 # @attention Carnegie Mellon University # @attention All rights reserved. # # @= from make_markers import make_marker from make_markers import make_cube_marker from make_markers import MarkerWrapper from make_markers import CubeMarker from make_markers import RectangleMarker from make_markers import ArrowMarker from make_markers import WireframeBoxMarker from make_markers import PathMarker from make_markers import TextMarker from interactive import make_6dof_marker from interactive import InteractiveMarkerManager from helper import MarkerHelper
[ "dimatura@cmu.edu" ]
dimatura@cmu.edu
f7d5cf15a51e28c62772043a155ecd084d090450
ae2f576bdc72e0a7d7578ced35987b9be56aeaaa
/cowin_notifier.py
6bfba0ca2a0fade5f2fdec059623fb7020377c83
[]
no_license
raghurao4/Cowin_Notifier
cbbc6da24f773c55b13bab35e4a099f98863b1a3
b7936e89c2c3726f0080e742d71bac1bed12b745
refs/heads/main
2023-04-28T11:12:54.488426
2021-05-24T11:06:51
2021-05-24T11:06:51
369,985,604
0
0
null
null
null
null
UTF-8
Python
false
false
2,192
py
#!/usr/bin/python import sys import cowin_switcher import cowin_utility def main(): text = '\n######################################################################' text = text + '\n# Hello, Welcome to CoWin query notification autobot by distId! #' text = text + '\n######################################################################\n\n' colored_text = cowin_utility.colored(0, 255, 255, text) print(colored_text) s=cowin_switcher.Switcher() choice = '' while choice != 'q': print(cowin_utility.colored(0, 0, 255, "\n[0] Enter 0 to set preference to Mail or Desktop notification.")) print(cowin_utility.colored(0, 0, 255, "[1] Enter 1 to get state id list.")) print(cowin_utility.colored(0, 0, 255, "[2] Enter 2 to get district id list.")) print(cowin_utility.colored(0, 0, 255, "[3] Enter 3 to create cowin query by dist id.")) print(cowin_utility.colored(0, 0, 255, "[4] Enter 4 to create cowin query by pincode.")) print(cowin_utility.colored(0, 0, 255, "[5] Enter 5 to print current query.")) print(cowin_utility.colored(0, 0, 255, "[6] Enter 6 to delete current query.")) print(cowin_utility.colored(0, 0, 255, "[7] Enter 7 to run created queries until interrupted.")) print(cowin_utility.colored(0, 0, 255, "[8] Enter 8 to update buffer sleep time between query, default is 60sec, min 30sec.")) print(cowin_utility.colored(0, 0, 255, "[9] Enter 9 help with less secure apps access on google account.")) print(cowin_utility.colored(255, 0, 0, "[q] Enter q to quit gracefully ^.^")) print(cowin_utility.colored(255, 0, 0, "[Ctrl+c] Press Ctrl+c to Exit the application.")) try: choice = input("\nWhat would you like to do? ") print(cowin_utility.colored(0, 255, 0, s.indirect(choice))) except KeyboardInterrupt: print(cowin_utility.colored(0, 255, 0, "\n\nKeyboard interrupt exception caught, Exiting ..\n\n")) sys.exit(0) print(cowin_utility.colored(0, 255, 255, '\nLoop ended. Thanks!\n')) if __name__ == "__main__": main()
[ "noreply@github.com" ]
raghurao4.noreply@github.com
340720e639b9ccf4197d1bb3b318ec99db33c1e1
c7d2c6fdf4911b92c36b6d33debeb5b7cbb2c9d8
/Pacote download/Desafios/90. Dicionário em Python.py
3e5a6fcb3fb2ef9d44a60ad5df473cf43855752a
[]
no_license
luhpazos/Exercicios-Python
8a744f749796d1ac14a9c208c88bb21af0e3d0e2
c42d095f50b7fd7085dc11c15decb82df7db38be
refs/heads/main
2023-07-27T09:54:32.293220
2021-09-08T17:22:45
2021-09-08T17:22:45
404,376,989
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
dados = dict() dados['nome'] = str(input('Nome:')).strip().capitalize() dados['media'] = float(input(f'Média de {dados["nome"]}:')) if dados['media'] >= 7: dados['situaçao'] = 'Aprovado' elif dados['media'] <= 5: dados['situaçao'] = 'Reprovado' else: dados['situaçao'] = 'Recuperação' for k, v in dados.items(): print(f"{k.capitalize()} é igual a {v}")
[ "pazosluh@gmail.com" ]
pazosluh@gmail.com
72f1f4c207a2f65c6bf9049fa6b03b36df605ef9
2fd7686218d3a8aa86dbeabe17d63d35b05d2472
/tf_models/tpu/models/official/efficientnet/count_spikes.py
1c42c6ed31decfe8d3f9a0b4a2c9d8f005d3899e
[ "Apache-2.0" ]
permissive
christophstoeckl/FS-neurons
42d14bf1e42ba4cf0e08db703de683687d2f04bb
899af4e2bdf915001ef8610373482679887a80c9
refs/heads/master
2023-04-13T21:07:30.727368
2021-04-12T07:21:12
2021-04-12T07:21:12
257,293,154
38
15
null
2022-12-08T11:22:53
2020-04-20T13:40:59
Jupyter Notebook
UTF-8
Python
false
false
335
py
import numpy as np import sys if len(sys.argv) != 2: print("Usage: python3 count_spikes.py log_file_name.txt") quit() with open(sys.argv[1], "r") as file: log = file.read() log = log.split("\n") a = [] for i, line in enumerate(log): if line.startswith("["): a.append(eval(line)[0]) print(np.sum(a) / 10000)
[ "christoph.stoeckl@hotmail.com" ]
christoph.stoeckl@hotmail.com
1fc1c8485ec1ef2c4f1c0cbc330304f0c2838563
59628a6ddef19c6e7493eb2a9f669339dcb014ae
/demo/views.py
5fa41dbbb35cc5a59b1b96cd7e5fdfb3e47ea82c
[]
no_license
tzangms/django-bootstrap-form-demo
e5efbf995bd59d18a9d57681dd29155bec661486
8e16b7f002a17b4caf426366ec3547f90531aea7
refs/heads/master
2021-01-22T22:53:45.779273
2013-12-08T16:05:13
2013-12-08T16:05:13
15,019,093
4
0
null
null
null
null
UTF-8
Python
false
false
585
py
from django.shortcuts import render from demo.forms import ExampleForm def index(request): form = ExampleForm() return render(request, 'index.html', {'form': form}) def basic(request): form = ExampleForm(request.POST or None) if form.is_valid(): return render(request, 'basic_done.html') return render(request, 'basic.html', {'form': form}) def horizontal(request): form = ExampleForm(request.POST or None) if form.is_valid(): return render(request, 'basic_done.html') return render(request, 'horizontal.html', {'form': form})
[ "tzangms@gmail.com" ]
tzangms@gmail.com
7d2f19c42b8c5c0ec4c1fc8ad6c8dc5d08d16533
854f9c1101772b30baa3999fa5461b62e75f1754
/cobiv.py
04057ace17d8f6580f88f5ade735ef2ec14dd6fd
[ "MIT" ]
permissive
gokudomatic/cobiv
fd27aa46be8389909827eee5fcb838142c3511d6
c095eda704fab319fccc04d43d8099f1e8327734
refs/heads/master
2020-04-05T10:14:35.361695
2018-04-11T16:46:04
2018-04-11T16:46:04
81,542,555
4
1
null
2017-10-01T20:18:38
2017-02-10T08:10:10
Python
UTF-8
Python
false
false
78
py
from cobiv.MainApp import Cobiv if __name__ == '__main__': Cobiv().run()
[ "gourry.gabrief@gmail.com" ]
gourry.gabrief@gmail.com
7752a9dec6ae1571706fd1b98c1f9d017c4ad33e
e8a9719b1af70cd1269d85b5c05faebf50b9997e
/codes/balanced_bracket
b6776801f1f75fc850757ff786e650ddeb5c287b
[]
no_license
nirushanayak/datastructure_and_algorithms_code
2d8df881e88d4fd734292e7d8927eb2d2f7b233c
561d19006f063cf8f4cb0b89863150c2e30c6e75
refs/heads/master
2023-02-13T04:36:50.503000
2021-01-04T07:32:08
2021-01-04T07:32:08
326,603,051
0
0
null
null
null
null
UTF-8
Python
false
false
613
#!/bin/python3 import math import os import random import re import sys from queue import LifoQueue # Complete the isBalanced function below. def isBalanced(s): open_bra=['{','(','['] closed_bra=['}',')',']'] stack = LifoQueue() for i in range(len(s)): if s[i] in open_bra: stack.put(s[i]) elif s[i] in closed_bra: top=stack.get() if(open_bra.index(top) != closed_bra.index(s[i])): return "NO" if stack.empty(): return "YES" else: return "NO" if __name__ == '__main__': result=isBalanced('[{}]')
[ "nirunaya@cisco.com" ]
nirunaya@cisco.com
225174a0152774e11e4a07f205ae153687681cfa
055d5a4dccb2296a73039ae1301dd3f442a590c3
/Course/admin.py
060722a8d45c6e599d83c885a55518415ed8dbce
[]
no_license
IMRAN104/LeadManager
aa677cd6ae7ea6881b6dec504ca90c88c627e841
1d01a2c55542a162210626b382435a9a71cd11c7
refs/heads/master
2021-09-28T01:39:32.717616
2020-03-25T15:57:25
2020-03-25T15:57:25
250,023,646
0
0
null
2021-09-22T18:56:48
2020-03-25T15:56:34
Python
UTF-8
Python
false
false
291
py
from django.contrib import admin from .models import Course, Step # Register your models here. class StepInline(admin.StackedInline): model = Step class CourseAdmin(admin.ModelAdmin): inlines = [StepInline, ] admin.site.register(Course, CourseAdmin) admin.site.register(Step)
[ "omeca13@gmail.com" ]
omeca13@gmail.com
a77ac77ef1eec43199e15ab11683f52bd42110f3
6860411d0dc3acea9994e288f7a524bac2be4894
/1/1c.py
fcd8baa3ebc7c28b2736c601d4efd38d19a82e11
[]
no_license
mario-laserna/Apps.co-Python
3a2abdeb05c38bb961105b79e3594cb36a94e31b
d1adaf0559844f443312f210344139440bc77b88
refs/heads/master
2016-09-06T03:26:56.853441
2013-03-28T22:07:23
2013-03-28T22:07:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
# operadores matematicos print(3+4+2) print(3-4-2) print(3*4) print(25/4) print(25%4) #operadores logicos print (5 < 4) print (5 < 6) print (5 <= 5) # expresiones de comparacion print(3 == 4) print(2 == 2) print('a' == 'a') print('a' == 'aa') print(6 != 7) print(1 == 1 and 2 == 3) print(1 == 1 or 2 == 3)
[ "laserna.mario@gmail.com" ]
laserna.mario@gmail.com
b533c2d9b13257193f37d8f1f24ff20f8efe3e97
1cbc5e586beaf110edbab505d0d87d7cfac5628b
/Allen-Cahn equation.py
6752c4267fc00eaf53f8bb4f5b434ce67dee1a7a
[]
no_license
lightunifly/repeat-the-result
1f14233eb6d337a95a57a2868d7bf89c1ba5e8fa
98dcc45b4211ee774dde3be3e30bd70fd6494e6a
refs/heads/master
2020-07-05T13:47:03.656561
2019-08-16T06:20:16
2019-08-16T06:20:16
202,664,789
0
0
null
null
null
null
UTF-8
Python
false
false
10,373
py
import tensorflow as tf import numpy as np dims=100 T=0.3 N=20 deltaT=T/N std=0.0 #biaozhuicha x=tf.zeros([dims],dtype=tf.float64) u0=tf.Variable(1.0,dtype=tf.float64) deltau0=tf.Variable(tf.random_normal([dims],stddev=std,dtype=tf.float64)) W1=tf.Variable(tf.random_normal([N-1,dims,dims+10],stddev=std,dtype=tf.float64)) W2=tf.Variable(tf.random_normal([N-1,dims+10,dims+10],stddev=std,dtype=tf.float64)) W3=tf.Variable(tf.random_normal([N-1,dims+10,dims],stddev=std,dtype=tf.float64)) B=tf.Variable(tf.random_normal([N-1,dims],stddev=std,dtype=tf.float64)) batch_size=64 deltaW=tf.random_normal([batch_size,N,dims],stddev=np.sqrt(0.3/20),dtype=tf.float64) u1=u0-(u0-u0**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau0,deltaW[:,0,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,0,:] xx1=tf.reshape(x,[batch_size,dims]) digits11=tf.matmul(xx1,W1[0]) bat11=tf.layers.batch_normalization(digits11,axis=-1,training=True) y11=tf.nn.relu(bat11) digits21=tf.matmul(y11,W2[0]) bat21=tf.layers.batch_normalization(digits21,axis=-1,training=True) y21=tf.nn.relu(bat21) y31=tf.matmul(y21,W3[0])+B[0] deltau1=y31 u2=u1-(u1-u1**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau1,deltaW[:,1,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,1,:] xx2=tf.reshape(x,[batch_size,dims]) digits12=tf.matmul(xx2,W1[1]) bat12=tf.layers.batch_normalization(digits12,axis=-1,training=True) y12=tf.nn.relu(digits12) digits22=tf.matmul(y12,W2[1]) bat22=tf.layers.batch_normalization(digits22,axis=-1,training=True) y22=tf.nn.relu(digits22) y32=tf.matmul(y22,W3[1])+B[1] deltau2=y32 u3=u2-(u2-u2**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau2,deltaW[:,2,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,2,:] xx3=tf.reshape(x,[batch_size,dims]) digits13=tf.matmul(xx3,W1[2]) bat13=tf.layers.batch_normalization(digits13,axis=-1,training=True) y13=tf.nn.relu(digits13) digits23=tf.matmul(y13,W2[2]) bat23=tf.layers.batch_normalization(digits23,axis=-1,training=True) y23=tf.nn.relu(digits23) y33=tf.matmul(y23,W3[2])+B[2] deltau3=y33 u4=u3-(u3-u3**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau3,deltaW[:,3,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,3,:] xx4=tf.reshape(x,[batch_size,dims]) digits14=tf.matmul(xx4,W1[3]) bat14=tf.layers.batch_normalization(digits14,axis=-1,training=True) y14=tf.nn.relu(digits14) digits24=tf.matmul(y14,W2[3]) bat24=tf.layers.batch_normalization(digits24,axis=-1,training=True) y24=tf.nn.relu(digits24) y34=tf.matmul(y24,W3[3])+B[3] deltau4=y34 u5=u4-(u4-u4**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau4,deltaW[:,4,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,4,:] xx5=tf.reshape(x,[batch_size,dims]) digits15=tf.matmul(xx5,W1[4]) bat15=tf.layers.batch_normalization(digits15,axis=-1,training=True) y15=tf.nn.relu(digits15) digits25=tf.matmul(y15,W2[4]) bat25=tf.layers.batch_normalization(digits25,axis=-1,training=True) y25=tf.nn.relu(digits25) y35=tf.matmul(y25,W3[4])+B[4] deltau5=y35 u6=u5-(u5-u5**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau5,deltaW[:,5,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,5,:] xx6=tf.reshape(x,[batch_size,dims]) digits16=tf.matmul(xx6,W1[5]) bat16=tf.layers.batch_normalization(digits16,axis=-1,training=True) y16=tf.nn.relu(digits16) digits26=tf.matmul(y16,W2[5]) bat26=tf.layers.batch_normalization(digits26,axis=-1,training=True) y26=tf.nn.relu(digits26) y36=tf.matmul(y26,W3[5])+B[5] deltau6=y36 u7=u6-(u6-u6**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau6,deltaW[:,6,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,6,:] xx7=tf.reshape(x,[batch_size,dims]) digits17=tf.matmul(xx7,W1[6]) bat17=tf.layers.batch_normalization(digits17,axis=-1,training=True) y17=tf.nn.relu(digits17) digits27=tf.matmul(y17,W2[6]) bat27=tf.layers.batch_normalization(digits27,axis=-1,training=True) y27=tf.nn.relu(digits27) y37=tf.matmul(y27,W3[6])+B[6] deltau7=y37 u8=u7-(u7-u7**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau7,deltaW[:,7,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,7,:] xx8=tf.reshape(x,[batch_size,dims]) digits18=tf.matmul(xx8,W1[7]) bat18=tf.layers.batch_normalization(digits18,axis=-1,training=True) y18=tf.nn.relu(digits18) digits28=tf.matmul(y18,W2[7]) bat28=tf.layers.batch_normalization(digits28,axis=-1,training=True) y28=tf.nn.relu(digits28) y38=tf.matmul(y28,W3[7])+B[7] deltau8=y38 u9=u8-(u8-u8**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau8,deltaW[:,8,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,8,:] xx9=tf.reshape(x,[batch_size,dims]) digits19=tf.matmul(xx9,W1[8]) bat19=tf.layers.batch_normalization(digits19,axis=-1,training=True) y19=tf.nn.relu(digits19) digits29=tf.matmul(y19,W2[8]) bat29=tf.layers.batch_normalization(digits29,axis=-1,training=True) y29=tf.nn.relu(digits29) y39=tf.matmul(y29,W3[8])+B[8] deltau9=y39 u10=u9-(u9-u9**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau9,deltaW[:,9,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,9,:] xx10=tf.reshape(x,[batch_size,dims]) digits110=tf.matmul(xx10,W1[9]) bat110=tf.layers.batch_normalization(digits110,axis=-1,training=True) y110=tf.nn.relu(digits110) digits210=tf.matmul(y110,W2[9]) bat210=tf.layers.batch_normalization(digits210,axis=-1,training=True) y210=tf.nn.relu(digits210) y310=tf.matmul(y210,W3[9])+B[9] deltau10=y310 u11=u10-(u10-u10**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau10,deltaW[:,10,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,10,:] xx11=tf.reshape(x,[batch_size,dims]) digits111=tf.matmul(xx11,W1[10]) bat111=tf.layers.batch_normalization(digits111,axis=-1,training=True) y111=tf.nn.relu(digits111) digits211=tf.matmul(y111,W2[10]) bat211=tf.layers.batch_normalization(digits211,axis=-1,training=True) y211=tf.nn.relu(digits211) y311=tf.matmul(y211,W3[10])+B[10] deltau11=y311 u12=u11-(u11-u11**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau11,deltaW[:,11,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,11,:] xx12=tf.reshape(x,[batch_size,dims]) digits112=tf.matmul(xx12,W1[11]) bat112=tf.layers.batch_normalization(digits112,axis=-1,training=True) y112=tf.nn.relu(digits112) digits212=tf.matmul(y112,W2[11]) bat212=tf.layers.batch_normalization(digits212,axis=-1,training=True) y212=tf.nn.relu(digits212) y312=tf.matmul(y212,W3[11])+B[11] deltau12=y312 u13=u12-(u12-u12**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau12,deltaW[:,12,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,12,:] xx13=tf.reshape(x,[batch_size,dims]) digits113=tf.matmul(xx13,W1[12]) bat113=tf.layers.batch_normalization(digits113,axis=-1,training=True) y113=tf.nn.relu(digits113) digits213=tf.matmul(y113,W2[12]) bat213=tf.layers.batch_normalization(digits213,axis=-1,training=True) y213=tf.nn.relu(digits213) y313=tf.matmul(y213,W3[12])+B[12] deltau13=y313 u14=u13-(u13-u13**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau13,deltaW[:,13,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,13,:] xx14=tf.reshape(x,[batch_size,dims]) digits114=tf.matmul(xx14,W1[13]) bat114=tf.layers.batch_normalization(digits114,axis=-1,training=True) y114=tf.nn.relu(digits114) digits214=tf.matmul(y114,W2[13]) bat214=tf.layers.batch_normalization(digits214,axis=-1,training=True) y214=tf.nn.relu(digits214) y314=tf.matmul(y214,W3[13])+B[13] deltau14=y314 u15=u14-(u14-u14**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau14,deltaW[:,14,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,14,:] xx15=tf.reshape(x,[batch_size,dims]) digits115=tf.matmul(xx15,W1[14]) bat115=tf.layers.batch_normalization(digits115,axis=-1,training=True) y115=tf.nn.relu(digits115) digits215=tf.matmul(y115,W2[14]) bat215=tf.layers.batch_normalization(digits215,axis=-1,training=True) y215=tf.nn.relu(digits215) y315=tf.matmul(y215,W3[14])+B[14] deltau15=y315 u16=u15-(u15-u15**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau15,deltaW[:,15,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,15,:] xx16=tf.reshape(x,[batch_size,dims]) digits116=tf.matmul(xx16,W1[15]) bat116=tf.layers.batch_normalization(digits116,axis=-1,training=True) y116=tf.nn.relu(digits116) digits216=tf.matmul(y116,W2[15]) bat216=tf.layers.batch_normalization(digits216,axis=-1,training=True) y216=tf.nn.relu(digits216) y316=tf.matmul(y216,W3[15])+B[15] deltau16=y316 u17=u16-(u16-u16**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau16,deltaW[:,16,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,16,:] xx17=tf.reshape(x,[batch_size,dims]) digits117=tf.matmul(xx17,W1[16]) bat117=tf.layers.batch_normalization(digits117,axis=-1,training=True) y117=tf.nn.relu(digits117) digits217=tf.matmul(y117,W2[16]) bat217=tf.layers.batch_normalization(digits217,axis=-1,training=True) y217=tf.nn.relu(digits217) y317=tf.matmul(y217,W3[16])+B[16] deltau17=y317 u18=u17-(u17-u17**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau17,deltaW[:,17,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,17,:] xx18=tf.reshape(x,[batch_size,dims]) digits118=tf.matmul(xx18,W1[17]) bat118=tf.layers.batch_normalization(digits118,axis=-1,training=True) y118=tf.nn.relu(digits118) digits218=tf.matmul(y118,W2[17]) bat218=tf.layers.batch_normalization(digits218,axis=-1,training=True) y218=tf.nn.relu(digits218) y318=tf.matmul(y218,W3[17])+B[17] deltau18=y318 u19=u18-(u18-u18**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau18,deltaW[:,18,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,18,:] xx19=tf.reshape(x,[batch_size,dims]) digits119=tf.matmul(xx19,W1[18]) bat119=tf.layers.batch_normalization(digits119,axis=-1,training=True) y119=tf.nn.relu(digits119) digits219=tf.matmul(y119,W2[18]) bat219=tf.layers.batch_normalization(digits219,axis=-1,training=True) y219=tf.nn.relu(digits219) y319=tf.matmul(y219,W3[18])+B[18] deltau19=y319 u20=u19-(u19-u19**3.0)*deltaT+np.sqrt(2.0)*tf.reduce_sum(tf.multiply(deltau19,deltaW[:,19,:]),axis=1) x=x+np.sqrt(2.0)*deltaW[:,19,:] y_=1.0/(2.0+0.4*tf.reduce_sum(tf.square(x),axis=1)) cost=tf.losses.mean_squared_error(u20,y_) optimizer=tf.train.AdamOptimizer(0.005).minimize(cost) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) loss=np.array([]) ans=np.array([]) for i in range(2000): sess.run(optimizer) ans=np.append(ans,sess.run(u0)) loss=np.append(loss,sess.run(cost)) print(i,sess.run(u0))
[ "noreply@github.com" ]
lightunifly.noreply@github.com
0ab7a1eaccd4af1af23d2d07510fced51c3cbd2a
41fd80f9ccc72a17c2db16b7019312a87d3181e8
/zhang_local/pdep/network4029_1.py
73ffd608834052497471ddced44db683940ef5a5
[]
no_license
aberdeendinius/n-heptane
1510e6704d87283043357aec36317fdb4a2a0c34
1806622607f74495477ef3fd772908d94cff04d9
refs/heads/master
2020-05-26T02:06:49.084015
2019-07-01T15:12:44
2019-07-01T15:12:44
188,069,618
0
0
null
null
null
null
UTF-8
Python
false
false
35,122
py
species( label = '[CH]C(=C)O[C]=O(17928)', structure = SMILES('[CH]C(=C)O[C]=O'), E0 = (231.142,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,350,440,435,1725,1855,455,950,253.416,253.814,253.894,253.897,254.577],'cm^-1')), HinderedRotor(inertia=(1.09053,'amu*angstrom^2'), symmetry=1, barrier=(49.7265,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.08901,'amu*angstrom^2'), symmetry=1, barrier=(49.7281,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.09646,'amu*angstrom^2'), symmetry=1, barrier=(49.7263,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 4, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.70558,0.0505719,-4.64063e-05,2.24562e-08,-4.48387e-12,27882.5,19.1046], Tmin=(100,'K'), Tmax=(1181.08,'K')), NASAPolynomial(coeffs=[10.1716,0.0218995,-9.99155e-06,1.90157e-09,-1.33026e-13,25882.7,-23.148], Tmin=(1181.08,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(231.142,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(195.39,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsOs) + group(Cds-CdsHH) + group(Cds-OdOsH) + radical((O)CJOC) + radical(AllylJ2_triplet)"""), ) species( label = 'O=C=O(1731)', structure = SMILES('O=C=O'), E0 = (-403.087,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([459.923,1087.69,1087.69,2296.71],'cm^-1')), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (44.0095,'amu'), collisionModel = TransportData(shapeIndex=1, epsilon=(2028.74,'J/mol'), sigma=(3.763,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(2.65,'angstroms^3'), rotrelaxcollnum=2.1, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.27862,0.0027414,7.16119e-06,-1.08033e-08,4.14308e-12,-48470.3,5.97933], Tmin=(100,'K'), Tmax=(988.876,'K')), NASAPolynomial(coeffs=[4.54605,0.0029192,-1.15488e-06,2.27663e-10,-1.70918e-14,-48980.3,-1.43251], Tmin=(988.876,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-403.087,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(62.3585,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cdd-OdOd)"""), ) species( label = 'C#C[CH2](17441)', structure = SMILES('C#C[CH2]'), E0 = (328.481,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3000,3100,440,815,1455,1000,2175,525,1131.03,1132.16,1135.9],'cm^-1')), HinderedRotor(inertia=(0.154206,'amu*angstrom^2'), symmetry=1, barrier=(3.5455,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (39.0559,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2095.25,'J/mol'), sigma=(4.76,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=1.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.32026,0.0108736,8.62061e-06,-1.82973e-08,7.68649e-12,39535.3,8.27851], Tmin=(100,'K'), Tmax=(960.555,'K')), NASAPolynomial(coeffs=[6.38511,0.00814486,-2.78734e-06,4.95348e-10,-3.50148e-14,38483.6,-8.79383], Tmin=(960.555,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(328.481,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(128.874,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CtHHH) + group(Ct-CtCs) + group(Ct-CtH) + radical(Propargyl)"""), ) species( label = '[CH]C1([CH2])OC1=O(19601)', structure = SMILES('[CH]C1([CH2])OC1=O'), E0 = (411.268,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.55069,0.0431752,-1.70979e-05,-2.14333e-08,1.51444e-11,49562.2,18.2809], Tmin=(100,'K'), Tmax=(913.918,'K')), NASAPolynomial(coeffs=[17.0031,0.00400308,4.85122e-07,-1.86498e-10,1.18364e-14,45549.3,-61.3793], Tmin=(913.918,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(411.268,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(199.547,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-Cs(Cds-O2d)) + group(Cs-(Cds-O2d)CsCsOs) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-OdCsOs) + ring(cyclopropanone) + radical(CCJ2_triplet) + radical(CJC(C)OC)"""), ) species( label = '[CH][C]=C(18825)', structure = SMILES('[CH][C]=C'), E0 = (614.65,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,1685,370,228.264,228.889,229.07],'cm^-1')), HinderedRotor(inertia=(1.35219,'amu*angstrom^2'), symmetry=1, barrier=(50.6528,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 4, opticalIsomers = 1, molecularWeight = (39.0559,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.27541,0.0127954,9.49515e-06,-1.56026e-08,5.42938e-12,73954,11.3502], Tmin=(100,'K'), Tmax=(1063.31,'K')), NASAPolynomial(coeffs=[4.18965,0.0168435,-6.77763e-06,1.22218e-09,-8.33556e-14,73336.3,4.89309], Tmin=(1063.31,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(614.65,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(128.874,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Cds_S) + radical(AllylJ2_triplet)"""), ) species( label = '[CH]C(=[CH])OC=O(19602)', structure = SMILES('[CH]C(=[CH])OC=O'), E0 = (281.79,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2782.5,750,1395,475,1775,1000,350,440,435,1725,3120,650,792.5,1650,322.533,322.534,322.534,322.54],'cm^-1')), HinderedRotor(inertia=(0.674457,'amu*angstrom^2'), symmetry=1, barrier=(49.7881,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.674454,'amu*angstrom^2'), symmetry=1, barrier=(49.7881,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.674455,'amu*angstrom^2'), symmetry=1, barrier=(49.7881,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 4, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.76281,0.0472576,-3.81268e-05,1.54296e-08,-2.55087e-12,33973.4,19.9803], Tmin=(100,'K'), Tmax=(1407.06,'K')), NASAPolynomial(coeffs=[11.2805,0.0202001,-9.28174e-06,1.76259e-09,-1.22541e-13,31295,-29.1875], Tmin=(1407.06,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(281.79,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(195.39,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsOs) + group(Cds-CdsHH) + group(Cds-OdOsH) + radical(AllylJ2_triplet) + radical(Cds_P)"""), ) species( label = '[O][C]=O(2059)', structure = SMILES('[O][C]=O'), E0 = (33.3014,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1855,455,950],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (44.0095,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.81048,-0.00025715,1.76446e-05,-2.38747e-08,9.15883e-12,4016.03,8.55818], Tmin=(100,'K'), Tmax=(975.962,'K')), NASAPolynomial(coeffs=[6.50409,-1.44217e-05,-6.90664e-08,7.0435e-11,-9.1126e-15,2952.93,-7.12421], Tmin=(975.962,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(33.3014,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)H) + group(Cds-OdOsH) + radical(OJC=O) + radical((O)CJOH)"""), ) species( label = 'H(8)', structure = SMILES('[H]'), E0 = (211.805,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (1.00794,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1205.6,'J/mol'), sigma=(2.05,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,9.24385e-15,-1.3678e-17,6.66185e-21,-1.00107e-24,25474.2,-0.444973], Tmin=(100,'K'), Tmax=(3459.6,'K')), NASAPolynomial(coeffs=[2.5,9.20456e-12,-3.58608e-15,6.15199e-19,-3.92042e-23,25474.2,-0.444973], Tmin=(3459.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(211.805,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""H""", comment="""Thermo library: primaryThermoLibrary"""), ) species( label = '[CH]C(=[CH])O[C]=O(19603)', structure = SMILES('[CH]C(=[CH])O[C]=O'), E0 = (478.238,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3120,650,792.5,1650,350,440,435,1725,1855,455,950,180,180,180,180],'cm^-1')), HinderedRotor(inertia=(2.1616,'amu*angstrom^2'), symmetry=1, barrier=(49.6993,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(2.16097,'amu*angstrom^2'), symmetry=1, barrier=(49.685,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(2.15569,'amu*angstrom^2'), symmetry=1, barrier=(49.5636,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 5, opticalIsomers = 1, molecularWeight = (82.0575,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.65503,0.0537334,-6.14597e-05,3.7411e-08,-9.26639e-12,57601.4,19.0027], Tmin=(100,'K'), Tmax=(973.301,'K')), NASAPolynomial(coeffs=[9.85542,0.0200329,-9.5238e-06,1.83822e-09,-1.29497e-13,56005.1,-20.3377], Tmin=(973.301,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(478.238,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(170.447,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsOs) + group(Cds-CdsHH) + group(Cds-OdOsH) + radical(AllylJ2_triplet) + radical((O)CJOC) + radical(Cds_P)"""), ) species( label = '[CH][C]1CC(=O)O1(19591)', structure = SMILES('[CH][C]1CC(=O)O1'), E0 = (315.543,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.56875,0.0233919,1.50877e-05,-3.89869e-08,1.80102e-11,38010.1,20.3515], Tmin=(100,'K'), Tmax=(906.688,'K')), NASAPolynomial(coeffs=[9.74141,0.0131061,-3.22915e-06,4.60835e-10,-3.00357e-14,35831.6,-18.391], Tmin=(906.688,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(315.543,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(203.705,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-Cs(Cds-O2d)) + group(Cs-CsCsOsH) + group(Cs-(Cds-O2d)CsHH) + group(Cs-CsHHH) + group(Cds-OdCsOs) + ring(Beta-Propiolactone) + radical(CCJ2_triplet) + radical(C2CsJOC(O))"""), ) species( label = '[C-]#[O+](374)', structure = SMILES('[C-]#[O+]'), E0 = (299.89,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([180],'cm^-1')), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (28.0101,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.33667,0.00896487,-2.66756e-05,3.61071e-08,-1.57199e-11,36069.2,-1.20266], Tmin=(100,'K'), Tmax=(865.594,'K')), NASAPolynomial(coeffs=[-0.394107,0.0117562,-6.47408e-06,1.26375e-09,-8.67562e-14,37256.3,19.3844], Tmin=(865.594,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(299.89,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-CsCs) + group(CsJ2_singlet-CsH)"""), ) species( label = '[CH]C(=C)[O](9170)', structure = SMILES('[CH]C(=C)[O]'), E0 = (300.054,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,350,440,435,1725,331.346,331.402,331.725,331.956],'cm^-1')), HinderedRotor(inertia=(0.651703,'amu*angstrom^2'), symmetry=1, barrier=(50.8394,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 4, opticalIsomers = 1, molecularWeight = (55.0553,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.68812,0.0228014,4.60461e-06,-2.33052e-08,1.11762e-11,36141,14.5418], Tmin=(100,'K'), Tmax=(929.513,'K')), NASAPolynomial(coeffs=[8.56019,0.0128616,-4.09323e-06,6.75825e-10,-4.57393e-14,34387.1,-16.9206], Tmin=(929.513,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(300.054,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(153.818,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-Cd)H) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsOs) + group(Cds-CdsHH) + radical(AllylJ2_triplet) + radical(C=C(C)OJ)"""), ) species( label = '[C]=O(1149)', structure = SMILES('[C]=O'), E0 = (440.031,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([4000],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (28.0101,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[4.66064,-0.00539267,9.3647e-06,-6.04676e-09,1.10218e-12,52863.3,2.60381], Tmin=(100,'K'), Tmax=(2084.48,'K')), NASAPolynomial(coeffs=[9.43361,-0.00191483,-2.23152e-06,5.70335e-10,-4.024e-14,48128.1,-30.5142], Tmin=(2084.48,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(440.031,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cds-OdHH) + radical(CdCdJ2_triplet)"""), ) species( label = 'CH2(T)(28)', structure = SMILES('[CH2]'), E0 = (381.37,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1066.91,2790.99,3622.37],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[4.01192,-0.000154979,3.26298e-06,-2.40422e-09,5.69497e-13,45867.7,0.5332], Tmin=(100,'K'), Tmax=(1104.58,'K')), NASAPolynomial(coeffs=[3.14983,0.00296674,-9.76056e-07,1.54115e-10,-9.50338e-15,46058.1,4.77808], Tmin=(1104.58,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(381.37,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2(T)""", comment="""Thermo library: primaryThermoLibrary"""), ) species( label = 'C#CO[C]=O(5349)', structure = SMILES('C#CO[C]=O'), E0 = (131.211,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([750,770,3400,2100,2175,525,1855,455,950,180],'cm^-1')), HinderedRotor(inertia=(1.83092,'amu*angstrom^2'), symmetry=1, barrier=(42.0964,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.8282,'amu*angstrom^2'), symmetry=1, barrier=(42.0339,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (69.0388,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.31179,0.0326921,-3.23757e-05,1.50433e-08,-2.70077e-12,15845.5,12.7313], Tmin=(100,'K'), Tmax=(1361.98,'K')), NASAPolynomial(coeffs=[11.4718,0.00579012,-2.74751e-06,5.40776e-10,-3.87437e-14,13350.3,-34.2901], Tmin=(1361.98,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(131.211,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(124.717,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-Cd)(Cds-Cd)) + group(Cds-OdOsH) + group(Ct-CtOs) + group(Ct-CtH) + radical((O)CJOC)"""), ) species( label = 'O=[C]OC1=CC1(19604)', structure = SMILES('O=[C]OC1=CC1'), E0 = (128.985,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.73551,0.0427185,-3.18624e-05,6.25935e-09,1.59846e-12,15601,17.4763], Tmin=(100,'K'), Tmax=(1036.41,'K')), NASAPolynomial(coeffs=[13.5178,0.0104609,-4.30358e-06,8.3603e-10,-6.12252e-14,12449,-43.2123], Tmin=(1036.41,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(128.985,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(199.547,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cds-CdsCsOs) + group(Cds-CdsCsH) + group(Cds-OdOsH) + ring(Cyclopropene) + radical((O)CJOC)"""), ) species( label = '[CH]=C1CC(=O)O1(19605)', structure = SMILES('[CH]=C1CC(=O)O1'), E0 = (2.30512,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.26118,0.0226626,3.60229e-05,-7.13234e-08,3.12331e-11,354.191,18.6105], Tmin=(100,'K'), Tmax=(934.734,'K')), NASAPolynomial(coeffs=[15.536,0.00557223,-2.86267e-07,2.94975e-11,-8.27935e-15,-3862.57,-53.8181], Tmin=(934.734,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(2.30512,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(207.862,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-O2d)(Cds-Cds)HH) + group(Cds-CdsCsOs) + group(Cds-OdCsOs) + group(Cds-CdsHH) + ring(4-Methylene-2-oxetanone) + radical(Cds_P)"""), ) species( label = 'C=C1[CH]C(=O)O1(19606)', structure = SMILES('C=C1[CH]C(=O)O1'), E0 = (-127.874,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (83.0654,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.11743,0.0230835,4.49843e-05,-8.49572e-08,3.68107e-11,-15295.1,15.9225], Tmin=(100,'K'), Tmax=(937.096,'K')), NASAPolynomial(coeffs=[17.4167,0.0044006,2.6209e-07,-4.94605e-11,-4.94814e-15,-20209.6,-67.8162], Tmin=(937.096,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-127.874,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(207.862,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-O2d)(Cds-Cds)HH) + group(Cds-CdsCsOs) + group(Cds-OdCsOs) + group(Cds-CdsHH) + ring(4-Methylene-2-oxetanone) + radical(C=CCJCO)"""), ) species( label = '[CH]=[C]O[C]=O(5351)', structure = SMILES('[CH]=[C]O[C]=O'), E0 = (389.089,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,1855,455,950,3120,650,792.5,1650,180],'cm^-1')), HinderedRotor(inertia=(1.29047,'amu*angstrom^2'), symmetry=1, barrier=(29.6704,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.28863,'amu*angstrom^2'), symmetry=1, barrier=(29.628,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 4, opticalIsomers = 1, molecularWeight = (69.0388,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.3273,0.038823,-5.66659e-05,4.13181e-08,-1.18076e-11,46855.1,17.2948], Tmin=(100,'K'), Tmax=(860.907,'K')), NASAPolynomial(coeffs=[8.78148,0.00883684,-4.42245e-06,8.64197e-10,-6.08282e-14,45743.7,-12.8766], Tmin=(860.907,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(389.089,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(124.717,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cds-CdsOsH) + group(Cds-CdsHH) + group(Cds-OdOsH) + radical((O)CJOC) + radical(C=CJO) + radical(Cds_P)"""), ) species( label = '[C]C(=C)O[C]=O(19607)', structure = SMILES('[C]C(=C)O[C]=O'), E0 = (529.935,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,350,440,435,1725,1855,455,950,180,180,180],'cm^-1')), HinderedRotor(inertia=(1.23851,'amu*angstrom^2'), symmetry=1, barrier=(28.4757,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(1.23683,'amu*angstrom^2'), symmetry=1, barrier=(28.4371,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 5, opticalIsomers = 1, molecularWeight = (82.0575,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.63705,0.0528991,-6.7204e-05,4.15722e-08,-1.00424e-11,63820.9,16.6989], Tmin=(100,'K'), Tmax=(1015.13,'K')), NASAPolynomial(coeffs=[12.2149,0.0112183,-5.61452e-06,1.12455e-09,-8.12294e-14,61673.3,-34.492], Tmin=(1015.13,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(529.935,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(174.604,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(O2s-(Cds-O2d)(Cds-Cd)) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsOs) + group(Cds-CdsHH) + group(Cds-OdOsH) + radical(CJ3) + radical((O)CJOC)"""), ) species( label = 'N2', structure = SMILES('N#N'), E0 = (-8.64289,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (28.0135,'amu'), collisionModel = TransportData(shapeIndex=1, epsilon=(810.913,'J/mol'), sigma=(3.621,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(1.76,'angstroms^3'), rotrelaxcollnum=4.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.53101,-0.000123661,-5.02999e-07,2.43531e-09,-1.40881e-12,-1046.98,2.96747], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.95258,0.0013969,-4.92632e-07,7.8601e-11,-4.60755e-15,-923.949,5.87189], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-8.64289,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), label="""N2""", comment="""Thermo library: primaryThermoLibrary"""), ) species( label = 'Ne', structure = SMILES('[Ne]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (20.1797,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1235.53,'J/mol'), sigma=(3.758e-10,'m'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with fixed Lennard Jones Parameters. This is the fallback method! Try improving transport databases!"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""Ne""", comment="""Thermo library: primaryThermoLibrary"""), ) species( label = 'He', structure = SMILES('[He]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (4.0026,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(84.8076,'J/mol'), sigma=(2.576,'angstroms'), dipoleMoment=(0,'De'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""NOx2018"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,0.928724], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,0.928724], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""He""", comment="""Thermo library: primaryThermoLibrary"""), ) species( label = 'Ar', structure = SMILES('[Ar]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (39.348,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1134.93,'J/mol'), sigma=(3.33,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,4.37967], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,4.37967], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""Ar""", comment="""Thermo library: primaryThermoLibrary"""), ) transitionState( label = 'TS1', E0 = (231.142,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS2', E0 = (411.268,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS3', E0 = (241.446,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS4', E0 = (326.098,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS5', E0 = (647.951,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS6', E0 = (690.501,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS7', E0 = (357.378,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS8', E0 = (612.497,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS9', E0 = (745.252,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS10', E0 = (529.351,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS11', E0 = (239.231,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS12', E0 = (239.426,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS13', E0 = (239.426,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS14', E0 = (804.775,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS15', E0 = (741.74,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) reaction( label = 'reaction1', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['O=C=O(1731)', 'C#C[CH2](17441)'], transitionState = 'TS1', kinetics = Arrhenius(A=(5e+12,'s^-1'), n=0, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Exact match found for rate rule [RJJ] Euclidian distance = 0 family: 1,4_Linear_birad_scission"""), ) reaction( label = 'reaction2', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['[CH]C1([CH2])OC1=O(19601)'], transitionState = 'TS2', kinetics = Arrhenius(A=(3.33596e+11,'s^-1'), n=-0.0500183, Ea=(180.126,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4_S_D;doublebond_intra_2H;radadd_intra] for rate rule [R4_S_D;doublebond_intra_2H;radadd_intra_CO] Euclidian distance = 1.0 family: Intra_R_Add_Exocyclic Ea raised from 178.6 to 180.1 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction3', reactants = ['O=C=O(1731)', '[CH][C]=C(18825)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS3', kinetics = Arrhenius(A=(23.3993,'m^3/(mol*s)'), n=2.021, Ea=(29.883,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Od_R;YJ] for rate rule [Od_Cdd-O2d;CJ] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 2.0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction4', reactants = ['[CH]C(=[CH])OC=O(19602)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS4', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_singleH;XH_out] for rate rule [R4H_DSS;Cd_rad_out_singleH;CO_H_out] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction5', reactants = ['[O][C]=O(2059)', '[CH][C]=C(18825)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS5', kinetics = Arrhenius(A=(3.9578e+07,'m^3/(mol*s)'), n=-0.126319, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Y_rad;Y_rad] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: R_Recombination Ea raised from -15.6 to -15.6 kJ/mol. Ea raised from -15.6 to 0 kJ/mol."""), ) reaction( label = 'reaction6', reactants = ['H(8)', '[CH]C(=[CH])O[C]=O(19603)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS6', kinetics = Arrhenius(A=(1.15742e+08,'m^3/(mol*s)'), n=0.0433333, Ea=(0.458029,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Cd_rad;H_rad] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: R_Recombination"""), ) reaction( label = 'reaction7', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['[CH][C]1CC(=O)O1(19591)'], transitionState = 'TS7', kinetics = Arrhenius(A=(1.03419e+08,'s^-1'), n=1.06803, Ea=(126.236,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4_S_D;doublebond_intra;radadd_intra] for rate rule [R4_S_D;doublebond_intra;radadd_intra_CO] Euclidian distance = 1.0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction8', reactants = ['[C-]#[O+](374)', '[CH]C(=C)[O](9170)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS8', kinetics = Arrhenius(A=(3.41e+07,'cm^3/(mol*s)'), n=0, Ea=(12.552,'kJ/mol'), T0=(1,'K'), Tmin=(250,'K'), Tmax=(2500,'K'), comment="""Estimated using template [COm;O_sec_rad] for rate rule [COm;O_rad/OneDe] Euclidian distance = 1.0 family: R_Addition_COm"""), ) reaction( label = 'reaction9', reactants = ['[C]=O(1149)', '[CH]C(=C)[O](9170)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS9', kinetics = Arrhenius(A=(43.5839,'m^3/(mol*s)'), n=1.88017, Ea=(5.1666,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [O_sec_rad;Birad] for rate rule [O_rad/OneDe;Birad] Euclidian distance = 1.0 family: Birad_R_Recombination"""), ) reaction( label = 'reaction10', reactants = ['CH2(T)(28)', 'C#CO[C]=O(5349)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS10', kinetics = Arrhenius(A=(72.9469,'m^3/(mol*s)'), n=1.66457, Ea=(16.77,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Ct_Ct;YJ] for rate rule [Ct-O_Ct;CH2_triplet] Euclidian distance = 2.2360679775 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction11', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['O=[C]OC1=CC1(19604)'], transitionState = 'TS11', kinetics = Arrhenius(A=(7.38971e+10,'s^-1'), n=0.0476667, Ea=(8.08907,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Rn;C_rad_out_2H;Ypri_rad_out] for rate rule [R3_SD;C_rad_out_2H;CdsinglepriH_rad_out] Euclidian distance = 2.82842712475 family: Birad_recombination"""), ) reaction( label = 'reaction12', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['[CH]=C1CC(=O)O1(19605)'], transitionState = 'TS12', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), Tmin=(600,'K'), Tmax=(2000,'K'), comment="""Estimated using an average for rate rule [R4_SSS;Y_rad_out;Cpri_rad_out_2H] Euclidian distance = 0 family: Birad_recombination"""), ) reaction( label = 'reaction13', reactants = ['[CH]C(=C)O[C]=O(17928)'], products = ['C=C1[CH]C(=O)O1(19606)'], transitionState = 'TS13', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4;Y_rad_out;Ypri_rad_out] for rate rule [R4_SSD;Y_rad_out;CdsinglepriH_rad_out] Euclidian distance = 2.2360679775 family: Birad_recombination"""), ) reaction( label = 'reaction14', reactants = ['CH2(T)(28)', '[CH]=[C]O[C]=O(5351)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS14', kinetics = Arrhenius(A=(1.14854e+06,'m^3/(mol*s)'), n=0.575199, Ea=(34.3157,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Y_rad;Birad] Euclidian distance = 0 family: Birad_R_Recombination"""), ) reaction( label = 'reaction15', reactants = ['H(8)', '[C]C(=C)O[C]=O(19607)'], products = ['[CH]C(=C)O[C]=O(17928)'], transitionState = 'TS15', kinetics = Arrhenius(A=(1e+07,'m^3/(mol*s)'), n=0, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [H_rad;Birad] Euclidian distance = 0 family: Birad_R_Recombination"""), ) network( label = '4029', isomers = [ '[CH]C(=C)O[C]=O(17928)', ], reactants = [ ('O=C=O(1731)', 'C#C[CH2](17441)'), ], bathGas = { 'N2': 0.25, 'Ne': 0.25, 'He': 0.25, 'Ar': 0.25, }, ) pressureDependence( label = '4029', Tmin = (1200,'K'), Tmax = (1500,'K'), Tcount = 10, Tlist = ([1201.48,1213.22,1236.21,1269.31,1310.55,1356.92,1404.16,1447.02,1479.84,1497.7],'K'), Pmin = (1,'atm'), Pmax = (10,'atm'), Pcount = 10, Plist = ([1.02771,1.14872,1.41959,1.89986,2.67608,3.83649,5.40396,7.23219,8.93758,9.98989],'bar'), maximumGrainSize = (0.5,'kcal/mol'), minimumGrainCount = 250, method = 'modified strong collision', interpolationModel = ('Chebyshev', 6, 4), activeKRotor = True, activeJRotor = True, rmgmode = True, )
[ "dinius.ab@husky.neu.edu" ]
dinius.ab@husky.neu.edu
f0a4e25f5f04b19c48edef0b28dd0e78b0ea160e
c254fa15d9ac2a7e94bd1bba406a55f84db3a363
/ChaosClient/Tools/GM/depend/setuptools-20.1.1/setuptools/tests/test_test.py
a1d49ecff23651297772b20f46cd6a681ec5d5e9
[]
no_license
atom-chen/ChaosGame
a1e7589ac084bba40f0d8cd937681a50c16a2f29
ec12208475435696e52c045ffd2f6bdfda45f275
refs/heads/master
2021-03-04T02:10:55.613286
2016-12-08T03:31:24
2016-12-08T03:31:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,465
py
# -*- coding: UTF-8 -*- from __future__ import unicode_literals import os import site from distutils.errors import DistutilsError import pytest from setuptools.command.test import test from setuptools.dist import Distribution from .textwrap import DALS from . import contexts SETUP_PY = DALS(""" from setuptools import setup setup(name='foo', packages=['name', 'name.space', 'name.space.tests'], namespace_packages=['name'], test_suite='name.space.tests.test_suite', ) """) NS_INIT = DALS(""" # -*- coding: Latin-1 -*- # Söme Arbiträry Ünicode to test Distribute Issüé 310 try: __import__('pkg_resources').declare_namespace(__name__) except ImportError: from pkgutil import extend_path __path__ = extend_path(__path__, __name__) """) TEST_PY = DALS(""" import unittest class TestTest(unittest.TestCase): def test_test(self): print "Foo" # Should fail under Python 3 unless 2to3 is used test_suite = unittest.makeSuite(TestTest) """) @pytest.fixture def sample_test(tmpdir_cwd): os.makedirs('name/space/tests') # setup.py with open('setup.py', 'wt') as f: f.write(SETUP_PY) # name/__init__.py with open('name/__init__.py', 'wb') as f: f.write(NS_INIT.encode('Latin-1')) # name/space/__init__.py with open('name/space/__init__.py', 'wt') as f: f.write('#empty\n') # name/space/tests/__init__.py with open('name/space/tests/__init__.py', 'wt') as f: f.write(TEST_PY) @pytest.mark.skipif('hasattr(sys, "real_prefix")') @pytest.mark.usefixtures('user_override') @pytest.mark.usefixtures('sample_test') class TestTestTest: def test_test(self): params = dict( name='foo', packages=['name', 'name.space', 'name.space.tests'], namespace_packages=['name'], test_suite='name.space.tests.test_suite', use_2to3=True, ) dist = Distribution(params) dist.script_name = 'setup.py' cmd = test(dist) cmd.user = 1 cmd.ensure_finalized() cmd.install_dir = site.USER_SITE cmd.user = 1 with contexts.quiet(): # The test runner calls sys.exit with contexts.suppress_exceptions(SystemExit): cmd.run()
[ "evence_chen@live.com" ]
evence_chen@live.com
906c192f7f18cafdb3c34e483501bbca940f8490
fb2cc597f319380d228fc15c4008760a82203687
/var/spack/repos/builtin/packages/r-scdblfinder/package.py
2dcd41c2578611979e0248ab7443c65d58f20a1a
[ "Apache-2.0", "MIT", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "LGPL-2.1-only" ]
permissive
JayjeetAtGithub/spack
c41b5debcbe139abb2eab626210505b7f930d637
6c2df00443a2cd092446c7d84431ae37e64e4296
refs/heads/develop
2023-03-21T02:35:58.391230
2022-10-08T22:57:45
2022-10-08T22:57:45
205,764,532
0
0
MIT
2019-09-02T02:44:48
2019-09-02T02:44:47
null
UTF-8
Python
false
false
1,967
py
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RScdblfinder(RPackage): """The scDblFinder package gathers various methods for the detection and handling of doublets/multiplets in single-cell sequencing data (i.e. multiple cells captured within the same droplet or reaction volume). It includes methods formerly found in the scran package, the new fast and comprehensive scDblFinder method, and a reimplementation of the Amulet detection method for single-cell ATAC-seq.""" bioc = "scDblFinder" version("1.10.0", commit="03512cad0cdfe3cddbef66ec5e330b53661eccfc") depends_on("r@4.0:", type=("build", "run")) depends_on("r-igraph", type=("build", "run")) depends_on("r-matrix", type=("build", "run")) depends_on("r-biocgenerics", type=("build", "run")) depends_on("r-biocparallel", type=("build", "run")) depends_on("r-biocneighbors", type=("build", "run")) depends_on("r-biocsingular", type=("build", "run")) depends_on("r-s4vectors", type=("build", "run")) depends_on("r-summarizedexperiment", type=("build", "run")) depends_on("r-singlecellexperiment", type=("build", "run")) depends_on("r-scran", type=("build", "run")) depends_on("r-scater", type=("build", "run")) depends_on("r-scuttle", type=("build", "run")) depends_on("r-bluster", type=("build", "run")) depends_on("r-delayedarray", type=("build", "run")) depends_on("r-xgboost", type=("build", "run")) depends_on("r-mass", type=("build", "run")) depends_on("r-iranges", type=("build", "run")) depends_on("r-genomicranges", type=("build", "run")) depends_on("r-genomeinfodb", type=("build", "run")) depends_on("r-rsamtools", type=("build", "run")) depends_on("r-rtracklayer", type=("build", "run"))
[ "noreply@github.com" ]
JayjeetAtGithub.noreply@github.com
e0584cb81912975614de8c2f2686e676763337e5
4bd53a28fdd810d66b2742606728e2adc9e421e5
/opengl_render.py
7c313aafbe993cd4874c600dacbc511f0fef8d7b
[]
no_license
jake32321/OpenGL_Python_Render
12fd9235d1f04f0728ae830a50a391122cc8e988
547cee39976aca1907e4ebca1058c656512be768
refs/heads/master
2021-01-10T10:35:42.755722
2015-11-07T03:13:25
2015-11-07T03:13:25
45,586,905
0
0
null
null
null
null
UTF-8
Python
false
false
2,355
py
import pygame from pygame.locals import * from OpenGL.GL import * from OpenGL.GLU import * vertices = ( #Diffrent Nodes for vertices given in three dimensional coordinates (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, -1), (1, -1, 1), (1, 1, 1), (-1, -1, 1), (-1, 1, 1) ) edges = ( #Nodes for the twelve edges of the cube to be rendered (0, 1), (0, 3), (0, 4), (2, 1), (2, 3), (2, 7), (6, 3), (6, 4), (6, 7), (5, 1), (5, 4), (5, 7) ) surfaces = ( #Nodes for the various surfaces to be rendered (0, 1, 2, 3), (3, 2, 7, 6), (6, 7, 5, 4), (4, 5, 1, 0), (1, 5, 7, 2), (4, 0, 3, 6) ) colors = ( #Sets a list of colors (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), (1, 1, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), (1, 1, 1), (0, 1, 1), ) def Cube(): glBegin(GL_QUADS) #Draws the surfaces on the line for surface in surfaces: x = 0 for vertex in surface: x+=1 glColor3fv(colors[x]) glVertex3fv(vertices[vertex]) glEnd() glBegin(GL_LINES) #Draws lines between the nodes for edge in edges: for vertex in edge: glVertex3fv(vertices[vertex]) glEnd() def main(): pygame.init() display = (800, 600) pygame.display.set_mode(display, DOUBLEBUF|OPENGL) #Makes working with your monitor's refresh rate more friendly using DOUBLEBUF gluPerspective(45, (display[0]/display[1]), 0.1, 50.0) #Sets FOV, aspect ratio and clipping plane glTranslatef(0.0, 0.0, -10) #Moves about the object glRotatef(0, 0, 0, 0) # Rotates object while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygam.quit() quit() if event.type == pygame.KEYDOWN: #Moves object in 3D plane if event.key == pygame.K_LEFT: #Translate left glTranslatef(-0.1,0,0) if event.key == pygame.K_RIGHT: #Translate right glTranslatef(0.1,0,0) if event.key == pygame.K_UP: #Translate up glTranslatef(0,0.1,0) if event.key == pygame.K_DOWN: #Translate down glTranslatef(0,-0.1,0) if event.key == pygame.K_w: #Four is the event for panning in glTranslatef(0,0,-0.1) if event.key == pygame.K_s: #Five is the event for panning out glTranslatef(0,0,0.1) #glRotatef(1, 3, 1, 1) #Rotates the cube glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) #What needs to be cleared Cube() pygame.display.flip() pygame.time.wait(10) main()
[ "jake32321@yahoo.com" ]
jake32321@yahoo.com
e6e26aecc3f4fb7442bb069ffb237b2bfda27146
4bcc9806152542ab43fc2cf47c499424f200896c
/tensorflow/python/autograph/operators/variables_test.py
59ff90120f0d71246433a4830682d9d8ded100d5
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
tensorflow/tensorflow
906276dbafcc70a941026aa5dc50425ef71ee282
a7f3934a67900720af3d3b15389551483bee50b8
refs/heads/master
2023-08-25T04:24:41.611870
2023-08-25T04:06:24
2023-08-25T04:14:08
45,717,250
208,740
109,943
Apache-2.0
2023-09-14T20:55:50
2015-11-07T01:19:20
C++
UTF-8
Python
false
false
1,864
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for python_lang_utils module.""" from tensorflow.python.autograph.operators import variables from tensorflow.python.platform import test class SpecialValuesTest(test.TestCase): def test_undefined(self): undefined_symbol = variables.Undefined('name') undefined_symbol2 = variables.Undefined('name') self.assertEqual(undefined_symbol.symbol_name, 'name') self.assertEqual(undefined_symbol2.symbol_name, 'name') self.assertNotEqual(undefined_symbol, undefined_symbol2) def test_undefined_operations(self): undefined_symbol = variables.Undefined('name') self.assertIsInstance(undefined_symbol.foo, variables.Undefined) self.assertIsInstance(undefined_symbol[0], variables.Undefined) self.assertNotIsInstance(undefined_symbol.__class__, variables.Undefined) def test_read(self): self.assertEqual(variables.ld(1), 1) o = object() self.assertEqual(variables.ld(o), o) self.assertIsNone(variables.ld(None)) def test_read_undefined(self): with self.assertRaisesRegex(UnboundLocalError, 'used before assignment'): variables.ld(variables.Undefined('a')) if __name__ == '__main__': test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
ed818f77be185c01325b67e695e6679b9e3c3c1e
1f3f0dc8799dac1e7974b1b05211c2bb863db787
/junki/Chapter1/train-unigram.py
21c1f543c1bbf93d6530d0689905eed5bb87da60
[]
no_license
m-note/100knock2015
665bb27bc84a0eacaa795523b5e65a5b64c426ac
84cd1d0617b0b5c15f64e593dd2e0ae21a4dcef7
refs/heads/master
2021-01-18T19:41:54.111994
2015-07-28T16:15:53
2015-07-28T16:15:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
#!/usr/bin/python #-*-coding:utf-8-*- import sys my_dict = {} total_count = 0 for line in open(sys.argv[1], "r"): words = line.split(" ") words.append("</s>") for word in words: my_dict[word] += 1 total_count += 1 for word, count in total_count: probability = my_dict["words"] / total_count print "%s %f" % (word, probability)
[ "junkimatsuo@Junki-no-MacBook-Air.local" ]
junkimatsuo@Junki-no-MacBook-Air.local
92a24ce38c35186254b552e74be00a5c60872181
c7036e204574380adea3d8ea8c0e7a92a1dbc8e6
/utils/Utils/MyRangeList.py
c806d151804aa26bae34be76d01d101b0fc562d7
[]
no_license
thegisexpert/someutilities
32a8b0dbd93f41584260652270fc88f52d205f28
18b4d1424fc5aa73ea4f6694f48c786b081bddf0
refs/heads/master
2020-12-11T13:28:17.873038
2020-01-14T14:56:16
2020-01-14T14:56:16
233,861,084
0
0
null
null
null
null
UTF-8
Python
false
false
1,204
py
#https://docs.qgis.org/testing/pdf/en/QGIS-testing-PyQGISDeveloperCookbook-en.pdf p 35 from qgis.core import * myVectorLayer = QgsVectorLayer(myVectorPath, myName, 'ogr') myTargetField = 'target_field' myRangeList = [] myOpacity = 1 # Make our first symbol and range... myMin = 0.0 myMax = 50.0 myLabel = 'Group 1' myColour = QtGui.QColor('#ffee00') mySymbol1 = QgsSymbolV2.defaultSymbol(myVectorLayer.geometryType()) mySymbol1.setColor(myColour) mySymbol1.setAlpha(myOpacity) myRange1 = QgsRendererRangeV2(myMin, myMax, mySymbol1, myLabel) myRangeList.append(myRange1) #now make another symbol and range... myMin = 50.1 myMax = 100 myLabel = 'Group 2' myColour = QtGui.QColor('#00eeff') mySymbol2 = QgsSymbolV2.defaultSymbol( myVectorLayer.geometryType()) mySymbol2.setColor(myColour) mySymbol2.setAlpha(myOpacity) myRange2 = QgsRendererRangeV2(myMin, myMax, mySymbol2 myLabel) myRangeList.append(myRange2) myRenderer = QgsGraduatedSymbolRendererV2('', myRangeList) myRenderer.setMode(QgsGraduatedSymbolRendererV2.EqualInterval) myRenderer.setClassAttribute(myTargetField) myVectorLayer.setRendererV2(myRenderer) QgsMapLayerRegistry.instance().addMapLayer(myVectorLayer)
[ "noreply@github.com" ]
thegisexpert.noreply@github.com
1c1c6ec77538e78dcf7f601fc87c8e36bbed9efb
4bccab04a435e4fe42e5a5fa8f053d18d7f9567c
/and/xgb_online.py
816c43cbf102405367de5079659f131bc411b433
[]
no_license
thousandface/jdd_c
224ac90cbb8a819633a009196b35c4ae37c86d3d
cf28941075b6d303767384d7093c9005e2f86f3d
refs/heads/master
2021-05-11T01:51:30.644317
2018-01-21T14:21:30
2018-01-21T14:21:30
118,341,510
1
0
null
null
null
null
UTF-8
Python
false
false
1,389
py
import xgboost import numpy as np import pandas as pd train = pd.read_csv('../newdata/online_train_1126.csv') test = pd.read_csv('../newdata/online_test_1126.csv') orig = ['history_sum_mean', 'history_sum_median', 'history_sum_max', 'history_sum_min'] train = train.drop('dt',axis = 1) test = test.drop('dt', axis = 1) feature = [x for x in train.columns if x not in ['label','shop_id']] #手动zscore for col in train[feature].columns: train[col] = (train[col] - train[col].mean()) / train[col].std(ddof=0) for col in test[feature].columns: test[col] = (test[col] - test[col].mean()) / test[col].std(ddof=0) xgbTrain = xgboost.DMatrix(train[feature], label=train['label']) xgbVal = xgboost.DMatrix(test[feature]) def fair_obj(preds, dtrain): """y = c * abs(x) - c * np.log(abs(abs(x) + c))""" x = preds - dtrain.get_label() c = 100000 den = abs(x) + c grad = (c * x) / den hess = (c * c) / (den * den) return grad, hess param = {} param['eta'] = 0.01 param['max_depth'] = 2 param['mmin_child_weight'] = 4 param['subsample'] = 0.8 param['colsample_bytree'] = 0.3 param['silent'] = 1 num_round = 123 modle = xgboost.train(param, xgbTrain, num_round,obj=fair_obj) preds = modle.predict(xgbVal) preds = pd.DataFrame(preds) result = pd.concat([test['shop_id'], preds], axis=1) result.to_csv('../newdata/result1126_6.csv', index=False,header=None)
[ "thousandface@yahoo.com" ]
thousandface@yahoo.com
8005abbe7fa52a78761f3f422c67487cd25bbc66
80216241654e9ecc368aee1c7465622753b053b5
/demo_运动传感器.py
a993e6819ce482ff0dd8e36aa6a838fc2e7f379c
[]
no_license
tanglang1990/blog
e5b76b918e61ee62d16093703410fd58f668033f
4cab27ecefcf0d72988c3f20e0c209fbf101be2f
refs/heads/master
2020-06-23T09:33:51.478728
2019-10-31T06:11:07
2019-10-31T06:11:07
170,971,128
0
0
null
null
null
null
UTF-8
Python
false
false
4,477
py
import datetime import cv2 # pip install opencv-python import numpy as np import easygui from wx_notice import send_msg camera = cv2.VideoCapture(0) # cv2获取摄像头,0代表默认的摄像头,传给camera这个变量 if not camera.isOpened(): easygui.msgbox('please turn on you camera or switch to functional one') ''' 取得一个结构化的元素,用来做形态学膨胀, MORPH_ELLIPSE椭圆 ''' es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 4)) # kernel = np.ones((5, 5), np.uint8) # 数组,用来处理 background = None # 背景指定为无,在循环中获取第一帧 has_sended_msg = False # 短信发送,只发送一次 while True: # 开启一个while循环,一直运行 has_some_one_in = False # 标注检测状态 grabbed, frame_lwpCV = camera.read() # 从camera中拿取当前帧 ''' 转换成灰度图像(单通道) 熟悉图像的同学都知道,一般的图像通常都是3个通道,rgb,三个颜色之间没有必然的联系, 然后3个通道的图像,进行处理的时候,计算量会比较大,而且代码也会更复杂,这这两方面是不如单通道的。 ''' # print(frame_lwpCV) gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转换成灰度图像(单通道) # print(gray_lwpCV) ''' 差分法,比较不同,噪声也是不同,所以我们用高斯模糊去掉噪声, 其实我们都是到高斯模糊就是一种低通滤波器,可以额消除图像里面高频部分,就是噪点的部分 高斯滤波,其实就是消除噪点,即图像里面高频的部分 传入灰度图像, 高斯分布的 高斯和(25, 25) 高斯分布的 sigma码是3 高斯图像是有一个分布的,正态分布大家应该有听过说吧,sigma越大,中间部分就约尖 ''' gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (25, 25), 3) # 高斯滤波,消除噪点 ''' 使用第一帧作为背景图像,查分法,摄像头开启那一瞬间,博物馆。。 ''' # 使用摄像头获取的第一帧作为背景图像 if background is None: background = gray_lwpCV continue ''' absolutediff 一个数字图像是有很多像素 每个像素都是有数值的 那么我们这个方法其实就是把每个像素的数值,求一个差值,然后求一个绝对值 背景帧和当前帧进行比较 ''' # 应用差分法 diff = cv2.absdiff(background, gray_lwpCV) ''' 取得threshold 设定预值 就是我们说差多少算一样,差多少算不一样是吧,超过50算不一样 255 白色 显示白色的阈值 ''' diff = cv2.threshold(diff, 50, 255, cv2.THRESH_BINARY)[1] ''' 差分已经完成 形态学膨胀 给大家解释一下什么是形态学膨胀 我这里移动,大家看到我们手指,下面白色的部分,实际上比我的手指要大是吧 有时候我们的差异很小,可以通过形态学膨胀优化这种小的差值,使之整体的连贯起来 ''' diff = cv2.dilate(diff, es, iterations=3) ''' Contours(不连续的物体) 接下来是学opencv都要掌握的一个方法 findContours 发现图像当中有多少个连续的物体 RETR_EXTERNAL # 外部轮廓 CHAIN_APPROX_SIMPLE # 连续的 ''' # 使用findContours查找图像中所有连续的物体 image, contours, hierarchy = cv2.findContours(diff.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: if cv2.contourArea(c) < 8000: # 连续的物体太小了就不显示,比如我扔一支笔就不显示了,但我的头太大就显示 continue (x, y, w, h) = cv2.boundingRect(c) # contours的坐标(左上角)与宽和高 # 在图像上画框 左上角 右下角, 颜色, 框的字体大小 cv2.rectangle(frame_lwpCV, (x, y), (x + w, y + h), (0, 255, 0), 1) has_some_one_in = True # 至此程序主体已经完成 # 接下来就是通知 if has_some_one_in and not has_sended_msg: send_msg() has_sended_msg = True cv2.imshow('contours', frame_lwpCV) cv2.imshow('dis', diff) key = cv2.waitKey(1) & 0xFFf if key == ord('q'): break camera.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
tanglang1990.noreply@github.com
10348f2b2d3cb371fbf0cc7dfddd63b0dbc6ae3d
697e75455b17370abfe1c1af577dba5e6cea174d
/backend/test_sketch_15062/urls.py
1f80daaca68da0867f5ed4d6062700ac36b9b594
[]
no_license
crowdbotics-apps/test-sketch-15062
5eda58eb4ab04a3e75d5428c8d58bede86e69043
1c6331195bbe17d76218a52e184a9c6c5088e245
refs/heads/master
2023-01-30T21:38:38.475884
2020-03-25T16:41:50
2020-03-25T16:41:50
250,034,521
0
0
null
2023-01-26T16:17:52
2020-03-25T16:41:01
JavaScript
UTF-8
Python
false
false
1,932
py
"""test_sketch_15062 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Test Sketch" admin.site.site_title = "Test Sketch Admin Portal" admin.site.index_title = "Test Sketch Admin" # swagger schema_view = get_schema_view( openapi.Info( title="Test Sketch API", default_version="v1", description="API documentation for Test Sketch App", ), public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
2c13944446f7380430dd943b1632885da99a8784
e9b923f661c770c56136f59dbed786cd46924664
/crafted-pkt/tls-handshake-fragments.py
ad35dfeabc6e647ef920167cd5123efdb5bfc12b
[]
no_license
Lekensteyn/wireshark-notes
47852566358e27778be83980a6d4219fe063e036
278ca860093c3a1c5c9d9171e8c2532f94b20902
refs/heads/master
2023-03-15T22:50:24.131652
2023-03-11T15:20:24
2023-03-11T15:26:29
227,219,034
5
2
null
null
null
null
UTF-8
Python
false
false
2,553
py
#!/usr/bin/env python3 import argparse import random from scapy.all import * # msg_type: 1 (Client Hello) # length: 47 # client_version: 1.2 # random: 32 bytes # session_id: empty # cipher_suite[1]: 0x002F (TLS_RSA_WITH_AES_128_CBC_SHA) # compression_method[1]: null # extensions[1]: 0xAAAA (GREASE) with two values (will be used as identifier) clientHelloMsg = bytes([ 0x01, 0x00, 0x00, 0x31, 0x03, 0x03, ]) + 32 * b'3' + bytes([ 0x00, 0x00, 0x02, 0x00, 0x2f, 0x01, 0x00, 0x00, 0x06, 0xaa, 0xaa, 0x00, 0x02, 0x00, 0x00 ]) assert len(clientHelloMsg) == 53 clientHelloMsgBase = clientHelloMsg[:-2] def CH(num : int): '''Returns a Client Hello message with some identifier.''' return clientHelloMsgBase + num.to_bytes(2, 'big') def TLSRecord(data): # Handshake (22), TLSv1.0 return b'\x16\x03\x01' + len(data).to_bytes(2, 'big') + data parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int) parser.add_argument('--count', type=int, default=256, help='Streams count') parser.add_argument('output_file') args = parser.parse_args() if args.seed is not None: random.seed(args.seed) # Pick a number of messages per stream such that at least the case is triggered # where a record contains the end of a message, a full message and the start of # another message. A lot more than three per record will likely not be useful # since it does not trigger reassembly. hsPerStream = 10 maxRecordSize = len(clientHelloMsg) * 4 packets = [] for i in range(args.count): hs = b''.join(CH(hsPerStream * i + j + 1) for j in range(hsPerStream)) seq = 0x1000 records = b'' # Fragment handshake message over TLS records. while hs: # Does not matter that n > maxRecordSize, it is capped anyway. n = random.randint(1, maxRecordSize) recordData, hs = hs[:n], hs[n:] records += TLSRecord(recordData) # Fragment TLS records over TCP segments. while records: n = random.randint(1, maxRecordSize) seg, records = records[:n], records[n:] pkt = IP()/TCP(flags='A', seq=seq, sport=0xc000 + i, dport=443)/seg packets.append(pkt) seq += len(seg) wrpcap(args.output_file, packets) r""" Test: tshark -r hs-frag.pcapng -Tfields -Y tls.handshake.extension.data -e tls.handshake.extension.data | tr , '\n' Expected result: for a given 'count' streams, expect hexadecimal numbers 0001 up to and including 10*count. E.g. for --count=10 the output should match: printf '%004x\n' {1..100} """
[ "peter@lekensteyn.nl" ]
peter@lekensteyn.nl
32b75511f5f67bc0830183000def055d8e2a9796
4a71d8deae938c4b0b551419d3604e3e3f71b347
/Heroes.py
613b857820237861a9d2d2b74881b725a3f42776
[]
no_license
zankrus/rpg2.0
041ff57822adbc005815a1f14a31b3c05bbaf51f
3449a5d3af68edcb374c9fa080b3e415bec9dda6
refs/heads/master
2022-11-15T16:27:53.544870
2020-07-01T12:35:22
2020-07-01T12:35:22
274,862,746
0
0
null
null
null
null
UTF-8
Python
false
false
5,039
py
from abc import ABC, abstractmethod import random import Items class Hero(ABC): """Abstract hero class""" name = '' hp = 30 weapons_list = {'sword': 10} summary_arrows = 2 monster_dead = 0 save_hp = None save_weapons_list = None save_summary_arrows = 0 save_monster_dead = 0 game_saved = False def take_weapon(self, weapon): """take a new weapom""" while True: choice = input('Введите 1 ,чтобы поднять меч ' 'или 2, чтобы пройти мимо : ') if choice == '1': new_weapons_list = self.weapons_list new_weapons_list[weapon[0]] = weapon[1] self.weapons_list = new_weapons_list break elif choice == '2': print('Вы прошли мимо') break else: print('Вы ввели неверное значение. Введите 1 или 2') def heal(self, healing_points: int): """restore some hp""" self.hp = self.hp + healing_points def hero_attack(self, weapon_list=weapons_list): temp = {} for i in range(len(weapon_list)): print('Нажмите {0}, чтобы выбрать {1}'.format(i + 1, list(weapon_list)[i])) temp[i + 1] = list(weapon_list)[i] choice = input('Введите номер оружия: ') while True: if 0 < int(choice) < len(temp) + 1: if temp[int(choice)] == 'bow': if self.summary_arrows > 0: self.summary_arrows -= 1 print('Вы выбрали {}'.format(temp[int(choice)])) print('У вас осталось стрел {}'.format(self.summary_arrows)) print(weapon_list[temp[int(choice)]]) return weapon_list[temp[int(choice)]] else: print('У вас нет стрел') choice = input('Введите номер оружия: ') continue print('Вы выбрали {}'.format(temp[int(choice)])) print(weapon_list[temp[int(choice)]]) return weapon_list[temp[int(choice)]] else: choice = input('Введите номер оружия: ') def save_game(self): self.game_saved = True self.save_hp = self.hp self.save_monster_dead = self.monster_dead self.save_weapons_list = self.weapons_list self.save_summary_arrows = self.summary_arrows def load_game(self): self.hp = self.save_hp self.monster_dead = self.save_monster_dead self.weapons_list = self.save_weapons_list self.summary_arrows = self.save_summary_arrows @abstractmethod def special_class_skill(self, enemy_attack): luck = random.choice([True, False]) pass class Warrior(Hero): """Warrior class""" def special_class_skill(self, enemy_attack: tuple): if enemy_attack[1] == 'melee': luck = random.choice([True, False]) if luck == True: print('Вы заблокировали атаку ближнего боя') return 0 else: print('Вы не смогли заблокировать атаку') return enemy_attack[0] else: print('Особая способность неактивная против данного противника') return enemy_attack[0] class Archer(Hero): """Archer class""" def special_class_skill(self, enemy_attack: tuple): if enemy_attack[1] == 'range': luck = random.choice([True, False]) if luck == True: print('Вы заблокировали атаку дальнего боя') return 0 else: print('Вы не смогли заблокировать атаку') return enemy_attack[0] else: print('Особая способность неактивная против данного противника') return enemy_attack[0] pass class Mage(Hero): """mage class""" def special_class_skill(self, enemy_attack: tuple): if enemy_attack[1] == 'spell': luck = random.choice([True, False]) if luck == True: print('Вы заблокировали магическую атаку') return 0 else: print('Вы не смогли заблокировать атаку') return enemy_attack[0] else: print('Особая способность неактивная против данного противника') return enemy_attack[0]
[ "sealthepirate@gmail.com" ]
sealthepirate@gmail.com
90784936f134554fe7973fa9a4916265586e31d6
a2dd34c194d53af9aeba7ffc43054a4443fa3485
/style_stripper/model/content_panel.py
3c3c70fca07dbeb70ab3c76a3665ade81aacad83
[]
no_license
gre7g/style-stripper
c8ba544e9d43df1bdabd0fafe97312533860300c
07c76a22e96d1b34f1c5aa135f94121ce5613814
refs/heads/master
2022-11-16T19:16:23.652160
2022-11-15T01:07:59
2022-11-15T01:07:59
206,849,502
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
import wx from style_stripper.data.enums import PanelType try: from style_stripper.model.main_app import StyleStripperApp except ImportError: StyleStripperApp = None class ContentPanel(wx.Panel): app: StyleStripperApp PANEL_TYPE: PanelType def __init__(self, *args, **kwargs): super(ContentPanel, self).__init__(*args, **kwargs) self.app = wx.GetApp() def is_current_panel(self) -> bool: return self.PANEL_TYPE == self.app.book.current_panel def refresh_contents(self): """Move contents from Book to UI""" self.Show(self.is_current_panel()) def apply(self): pass def grab_contents(self): """Move contents from UI to Book""" pass def new_dimensions(self): """Adapt to the current window size""" pass def book_loaded(self, is_loaded: bool = True): pass
[ "greg.luterman@synapsewireless.com" ]
greg.luterman@synapsewireless.com
558e2450afbfe1fed19b1389fbb7a74f64d381df
5cc70f94f73be01bcbe7275ed21b4c087e60c684
/example/views/application_user_messages.py
344436e22c8d2b744d77b519a6d14e1415c8af06
[]
no_license
lloubiere/pyramid_rest
dfced8b37893f0072e6dfb8550291c5973656ad3
fcabb94d9a79580de11163715af8ba35ca937c38
refs/heads/master
2021-01-17T22:04:22.759942
2014-04-16T18:18:09
2014-04-16T18:18:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
# -*- coding: utf-8 -*- from pyramid_rest.mongo import CollectionView from example.model import Message class ApplicationUserMessagesView(CollectionView): model_class = Message
[ "hadrien@ectobal.com" ]
hadrien@ectobal.com
94bad560eac184705536a6ca53035cc708e72f98
ab835f1ca110389079c81fff71bd073dcf303c1d
/abstract_factory.py
99a7e74dda94ea8e5ead571e51354c4f48712c32
[]
no_license
mndimitrov92/Python_Scripts
333d375c6316af60277b4be81a2a94b1eb20144a
3ea7397c81f26d694c564148ee9660203efaf156
refs/heads/master
2023-05-10T17:32:09.827488
2023-04-29T15:26:39
2023-04-29T15:26:39
137,658,192
0
0
null
null
null
null
UTF-8
Python
false
false
3,479
py
import abc import urllib2 from BeautifulSoup import BeautifulStoneSoup class AbstractFactory(object): """ Abstract factory interface which will provide methods to implement in its subclasses """ __metaclass__ = abc.ABCMeta def __init__(self, is_secure): """ if is_secure is True, factory tries to make connection secure, otherwise not. """ self.is_secure = is_secure @abc.abstractmethod def create_protocol(self): pass @abc.abstractmethod def create_port(self): pass @abc.abstractmethod def create_parser(self): pass #HTTP Factory class class HTTPFactory(AbstractFactory): """ Concrete factory for building http connections """ def create_protocol(self): if self.is_secure: return "https" return "http" def create_port(self): if self.is_secure: return HTTPSecurePort() return HTTPPort() def create_parser(self): return HTTPParser() # FTP Factory class class FTPFactory(AbstractFactory): """ Concrete factory for building FTP connections """ def create_protocol(self): return "ftp" def create_port(self): return FTPPort() def create_parser(self): return FTPParser() class Port(object): __metaclass__ = abc.ABCMeta """ An abstract product which reporesents the port to connect. """ @abc.abstractmethod def __str__(self): pass class HTTPPort(Port): """ A concrete class which reporesents the http port """ def __str__(self): return '80' class HTTPSecurePort(Port): """ A concrete class which represents the https port """ def __str__(self): return '443' class FTPPort(Port): """ A concrete class which represents the ftp port """ def __str__(self): return '21' class Parser(object): """ An abstract product ,reporesents parser to parse web content """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def __call__(self, content): pass class HTTPParser(Parser): def __call__(self, content): filenames = [] soup = BeautifulStoneSoup(content) links = soup.table.findAll('a') for link in links: filenames.append(link) return '\n'.join(filenames) class FTPParser(Parser): def __call__(self, content): lines = content.split('\n') filenames = [] for line in lines: split_line = line.split(None, 8) if len(split_line) == 9: filenames.append(split_line[-1]) return "\n".join(filenames) class Connector(object): def __init__(self, factory): self.protocol = factory.create_protocol() self.port = factory.create_port() self.parse = factory.create_parser() def read(self, host, path): url = self.protocol + "://" + host + ":" + str(self.port) + path print "Connecting to: ", url return urllib2.urlopen(url, timeout=2).read() @abc.abstractmethod def parse(self): pass if __name__ == "__main__": domain = "ftp.freebsd.org" path = "/pub/FreeBSD" protocol = input("Connecting to {}. Which protocol to use? (0 - http; 1 - ftp):".format(domain)) if protocol == 0: is_secure = bool(input("Use secure connection? (1- Yes; 0 - No)")) factory = HTTPFactory(is_secure) elif protocol == 1: is_secure = False factory = FTPFactory(is_secure) else: print "Sorry, could not connect" connector = Connector(factory) try: content = connector.read(domain, path) except urllib2.URLError,e: print "Cannot access resource" else: print connector.parse(content)
[ "=marin.dimitrov92@gmail.com" ]
=marin.dimitrov92@gmail.com
0ddeecabdafba350249119eb97782aa41fba8852
94743a85befdf16892cd28f771cd96373ddc995f
/GRPH.py
fa5d40c3dc735e24e129d3324b265d03f0966ec0
[]
no_license
doelling/Rosalind
caa0201d792bd2aa06d76d53916e75858a3ca67a
ddefdab630fa9712cb7a69b540c2c4921d34f5d9
refs/heads/master
2020-06-03T13:46:12.055127
2019-07-03T16:33:25
2019-07-03T16:33:25
191,591,438
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from Bio import SeqIO import itertools def overlapThree(strA, strB): return strA[-3:] == strB[:3] def main(): dnaStrands = {str(i.id): str(i.seq) for i in SeqIO.parse('grph.fna', 'fasta')} for j, k in itertools.combinations(dnaStrands.keys(), 2): jStrand, kStrand = dnaStrands[j], dnaStrands[k] if jStrand[-3:] == kStrand[:3]: print(j + ' ' + k) if kStrand[-3:] == jStrand[:3]: print(k + ' ' + j) main()
[ "45838137+doelling@users.noreply.github.com" ]
45838137+doelling@users.noreply.github.com
766bf2bbcc44602bb399c557f76f7d7532a2f02b
4d558925161df4a4ccf2b148a66d709baf32c46c
/Crypto/triple_prime/secret.py
bdb65aa8d65bf6b7d0adffd5b2f9c25494215f84
[]
no_license
scist-tw/109-mini-CTF
41dc95ae4b403feb111425f1eb352125ae5f8c98
ffb6d071d1e3a2d39d2bf63b5819e24415a5672a
refs/heads/main
2023-02-22T13:16:33.827354
2021-01-27T15:34:34
2021-01-27T15:34:34
325,246,706
0
0
null
null
null
null
UTF-8
Python
false
false
40
py
flag = b'SCIST{twin_prime==vykp_rtkog}'
[ "tsguan11@gmail.com" ]
tsguan11@gmail.com
61328a76583eb2214a98f089697310c1ec6b10b2
b2acf2dab56a42c22304b0e236b154d453175d6d
/tests/BackTests.py
683ad5ee4a1bfa7b8deda39e87690f728d898f5c
[ "MIT" ]
permissive
bitsalt/bitbot
8cd14da5015598e18e65d41843ab7ecb7d3347da
24dcc037fcc2778929cb1091f2c87f38359e50c1
refs/heads/main
2023-03-29T22:07:01.746273
2021-04-13T20:42:25
2021-04-13T20:42:25
357,523,571
0
0
null
null
null
null
UTF-8
Python
false
false
1,748
py
import unittest import configparser from oanda_backtest import Backtest class UnitTests(unittest.TestCase): def test_canBacktestOanda(self): config = configparser.ConfigParser() config.read('../oanda.cfg') # api = opy.API( # environment='practice', # access_token=config['oanda']['access_token'] bt = Backtest( access_token=config['oanda']['access_token'], environment='practice' ) params = { "granularity": "H1", # 1 hour candlesticks (default=S5) "count": 5000 # 5000 candlesticks (default=500, maximum=5000) } bt.candles('USD_CAD', params) fast_ma = bt.ema(period=12) slow_ma = bt.ema(period=30) exit_ma = bt.ema(period=5) # bt.candles('EUR_USD', params) # fast_ma = bt.ema(period=9) # slow_ma = bt.ema(period=30) # exit_ma = bt.ema(period=5) bt.buy_entry = (fast_ma > slow_ma) & (fast_ma.shift() <= slow_ma.shift()) bt.sell_entry = (fast_ma < slow_ma) & (fast_ma.shift() >= slow_ma.shift()) bt.buy_exit = (bt.C < exit_ma) & (bt.C.shift() >= exit_ma.shift()) bt.sell_exit = (bt.C > exit_ma) & (bt.C.shift() <= exit_ma.shift()) bt.initial_deposit = 1000 # default=0 bt.units = 18000 # currency unit (default=10000) bt.stop_loss = 30 # stop loss pips (default=0) bt.take_profit = 80 print(bt.run()) bt.plot() self.assertTrue(True) if __name__ == '__main__': unittest.main() ''' Best runs... bt.candles('USD_CAD', params) fast_ma = bt.ema(period=12) slow_ma = bt.ema(period=30) exit_ma = bt.ema(period=5) '''
[ "jeff@bitsalt.com" ]
jeff@bitsalt.com
53f61304c2c224d35c58274d8e1443ff13f481ef
8588cff59e11fd3d39b59f1666d2aa72d92c1784
/demo/previews.py
279e7b0bbf32245b2501d88fb65035488af484be
[]
no_license
amygwong/csc59866
54f566d46a0f6bbd12d36602aaf6a1856d612d12
17bde501b9da11764712ffdcf2c30bd3dcf361ff
refs/heads/master
2021-01-17T18:35:30.341289
2017-05-21T03:59:47
2017-05-21T03:59:47
69,483,710
2
1
null
null
null
null
UTF-8
Python
false
false
1,740
py
from os import system, path from speech_to_text import getUserInput import subprocess # opens a file in Prview with name def findOpenImage(name): # get all paths of files with value in its name fpath = subprocess.check_output("mdfind -name " + name, shell=True) fpath = fpath.decode("utf-8") flist = fpath.split() # no files found if len(flist) == 0: return -1 dist = len(path.splitext(path.basename(flist[0]))[0]) curfp = flist[0] for fp in flist: fpName = len(path.splitext(path.basename(fp))[0]) # open file with the exact name if fpName == len(name): findcmd = "open -a Preview " + fp system(findcmd) return 1 # get the path of file that has the closest match with name # file with smallest name length else: if fpName < dist: dis = fpName curfp = fp findcmd = "open -a Preview " + curfp system(findcmd) return 1 # calls this when user asks to open an image def openImage(): found = -1 # get name of image inp = getUserInput("What is the name of the image") while inp == "" or inp == -1 or found == -1: inp = getUserInput("Try Again") if inp != "" and inp != -1: found = findOpenImage(inp) if inp == "quit" or found == 1: break def openFile(): found = -1 # get name of image inp = getUserInput("What is the name of the file") while inp == "" or inp == -1 or found == -1: inp = getUserInput("Try Again") if inp != "" and inp != -1: found = findOpenImage(inp) if inp == "quit" or found == 1: break #openImage()
[ "amygwlife123@gmail.com" ]
amygwlife123@gmail.com
a376fdc691415fb9aa423aecba5b5ec02d31694e
72de9fe0f0252f965a7d791a7dbda245b1a48bbc
/webserver.py
a481d46757321ee7cc76273ce69f97f3e258028e
[]
no_license
tianhao0211/web-server
3b6dca57255744099176bf8fee7dd743935240d7
bec92c0b5c288cbffa5788db5a9c7799bff3196d
refs/heads/main
2023-03-18T09:48:11.346539
2021-03-05T21:27:15
2021-03-05T21:27:15
338,962,547
0
0
null
null
null
null
UTF-8
Python
false
false
2,904
py
import os from os import curdir from os.path import join as pjoin import json from datetime import datetime #from http.server import BaseHTTPRequestHandler, HTTPServer from BaseHTTPServer import BaseHTTPRequestHandler from BaseHTTPServer import HTTPServer PORT = 8080 FILE = 'store.json' # initialize the storage file if file does not exist yet (this will create the storage file when 1st run) if os.path.exists(FILE) == 0: with open(FILE, 'w') as f: f.write('{}') class StoreHandler(BaseHTTPRequestHandler): store_path = pjoin(curdir, FILE) # define the GET action def do_GET(self): if self.path.find("/conversations/") != -1: # get last variable, which is the key - conversation_id key = self.path.split("/conversations/")[-1] # open the store.json file and read content under the key (conversation_id) with open(self.store_path, 'r') as fh: data = json.loads(fh.read()) result = data.get(key, []) self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() # pretty printing the output self.wfile.write(json.dumps({'id':key,'messages':result},sort_keys=True, indent=4).encode()) else: # return 404 error if the curl url is invalid self.send_response(404) # define the POST action def do_POST(self): # with or without the forward slash, both situations are considered to be valid if self.path == '/messages' or self.path == '/messages/': length = self.headers['content-length'] data = json.loads(self.rfile.read(int(length))) # add the created time in the POST data, use specific format as instructed time = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%f')[:-3]+'Z' data['created'] = time # write the new data into sotrage file, with checking if the conversation_id exists in chat history key = data["conversation_id"] del data["conversation_id"] with open(self.store_path, 'r') as fh: db = json.loads(fh.read()) with open(self.store_path, 'w') as fh: # if conversation_id exist, inject the data under the same JSON object if key not in db: db[key] = [data] # if not, append the data as a new JSON object else: db[key].append(data) fh.write(json.dumps(db)+'\n') self.send_response(200) else: # return 404 error if the curl url is invalid self.send_response(404) server = HTTPServer(('', PORT), StoreHandler) print 'Starting httpd on port: ', PORT print 'Use curl command to test GET and POST actions' server.serve_forever()
[ "noreply@github.com" ]
tianhao0211.noreply@github.com
c1b177946e9f4e9be47868c4aa13bc7bb8632722
d032e376d1632cad38c767a866f8d75817f40231
/exercises/exc_02_04.py
001a09ca5663189e021e82ee5965d6edbdae1b12
[ "MIT" ]
permissive
ali4413/MCL-DSCI-511-programming-in-python
2918d10195ede2432bd452657ff4a1c457da23a6
723422f3b57ad4290e82b1b07d33c4f2e2ec3ea2
refs/heads/master
2022-06-08T02:09:41.134527
2020-05-08T19:08:18
2020-05-08T19:08:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
import pandas as pd # Read in the data from the text file using the full pathway # Use the pokemon name as the index ____ = ____(____, ____, ____) # Display the first 10 rows ____
[ "hayleyfboyce@hotmail.com" ]
hayleyfboyce@hotmail.com
61deaaae3c82727d6ab5332fabcdd07c9532859b
b953a0f99042c43c07332b705bef86bf4769a32b
/polls/migrations/0005_auto_20151122_1023.py
147232772fb8dddc3dc197b5d41852b6e4084193
[]
no_license
eshantewari/MBHS_SGA
a108d5d9d9f98b3feb14b03683b3eb69b61d37c1
38bc7eb38d61d8c13bd97f64f988d118519c923a
refs/heads/master
2020-05-30T20:17:55.724918
2016-08-14T01:20:48
2016-08-14T01:20:48
42,009,100
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('polls', '0004_auto_20151108_1939'), ] operations = [ migrations.AlterField( model_name='candidate', name='image', field=models.ImageField(upload_to='candidate_pics', blank=True, null=True), ), ]
[ "eshan.tewari@gmail.com" ]
eshan.tewari@gmail.com
e6d325ff856ba2b28e77783b99918a918a6ab823
7cfe8583ae7819799b18b88566eeff3e8cb4ba9e
/5_1_BuildingARecurrentNeuralNetwork-tf/data_utils.py
e4a28219d4df1a887d4923bd016fac7893b55fe4
[]
no_license
IHNF262/DeepLearningPractice
5cb33e73625c947661314be86d9ae810605c2540
80ea499d24cffcf0ed3e16d73995d274594b4609
refs/heads/main
2023-06-25T01:22:07.042995
2021-07-23T09:30:45
2021-07-23T09:30:45
376,475,455
0
0
null
2021-06-13T08:24:56
2021-06-13T07:59:12
null
UTF-8
Python
false
false
6,107
py
from music_utils import * from preprocess import * from keras.utils import to_categorical chords, abstract_grammars = get_musical_data('../data/original_metheny.mid') corpus, tones, tones_indices, indices_tones = get_corpus_data(abstract_grammars) N_tones = len(set(corpus)) n_a = 64 x_initializer = np.zeros((1, 1, 78)) a_initializer = np.zeros((1, n_a)) c_initializer = np.zeros((1, n_a)) def load_music_utils(): chords, abstract_grammars = get_musical_data('../data/original_metheny.mid') corpus, tones, tones_indices, indices_tones = get_corpus_data(abstract_grammars) N_tones = len(set(corpus)) X, Y, N_tones = data_processing(corpus, tones_indices, 60, 30) return (X, Y, N_tones, indices_tones) def generate_music(inference_model, corpus = corpus, abstract_grammars = abstract_grammars, tones = tones, tones_indices = tones_indices, indices_tones = indices_tones, T_y = 10, max_tries = 1000, diversity = 0.5): """ Generates music using a model trained to learn musical patterns of a jazz soloist. Creates an audio stream to save the music and play it. Arguments: model -- Keras model Instance, output of djmodel() corpus -- musical corpus, list of 193 tones as strings (ex: 'C,0.333,<P1,d-5>') abstract_grammars -- list of grammars, on element can be: 'S,0.250,<m2,P-4> C,0.250,<P4,m-2> A,0.250,<P4,m-2>' tones -- set of unique tones, ex: 'A,0.250,<M2,d-4>' is one element of the set. tones_indices -- a python dictionary mapping unique tone (ex: A,0.250,< m2,P-4 >) into their corresponding indices (0-77) indices_tones -- a python dictionary mapping indices (0-77) into their corresponding unique tone (ex: A,0.250,< m2,P-4 >) Tx -- integer, number of time-steps used at training time temperature -- scalar value, defines how conservative/creative the model is when generating music Returns: predicted_tones -- python list containing predicted tones """ # set up audio stream out_stream = stream.Stream() # Initialize chord variables curr_offset = 0.0 # variable used to write sounds to the Stream. num_chords = int(len(chords) / 3) # number of different set of chords print("Predicting new values for different set of chords.") # Loop over all 18 set of chords. At each iteration generate a sequence of tones # and use the current chords to convert it into actual sounds for i in range(1, num_chords): # Retrieve current chord from stream curr_chords = stream.Voice() # Loop over the chords of the current set of chords for j in chords[i]: # Add chord to the current chords with the adequate offset, no need to understand this curr_chords.insert((j.offset % 4), j) # Generate a sequence of tones using the model _, indices = predict_and_sample(inference_model) indices = list(indices.squeeze()) pred = [indices_tones[p] for p in indices] predicted_tones = 'C,0.25 ' for k in range(len(pred) - 1): predicted_tones += pred[k] + ' ' predicted_tones += pred[-1] #### POST PROCESSING OF THE PREDICTED TONES #### # We will consider "A" and "X" as "C" tones. It is a common choice. predicted_tones = predicted_tones.replace(' A',' C').replace(' X',' C') # Pruning #1: smoothing measure predicted_tones = prune_grammar(predicted_tones) # Use predicted tones and current chords to generate sounds sounds = unparse_grammar(predicted_tones, curr_chords) # Pruning #2: removing repeated and too close together sounds sounds = prune_notes(sounds) # Quality assurance: clean up sounds sounds = clean_up_notes(sounds) # Print number of tones/notes in sounds print('Generated %s sounds using the predicted values for the set of chords ("%s") and after pruning' % (len([k for k in sounds if isinstance(k, note.Note)]), i)) # Insert sounds into the output stream for m in sounds: out_stream.insert(curr_offset + m.offset, m) for mc in curr_chords: out_stream.insert(curr_offset + mc.offset, mc) curr_offset += 4.0 # Initialize tempo of the output stream with 130 bit per minute out_stream.insert(0.0, tempo.MetronomeMark(number=130)) # Save audio stream to fine mf = midi.translate.streamToMidiFile(out_stream) mf.open("output/my_music.midi", 'wb') mf.write() print("Your generated music is saved in output/my_music.midi") mf.close() # Play the final stream through output (see 'play' lambda function above) # play = lambda x: midi.realtime.StreamPlayer(x).play() # play(out_stream) return out_stream def predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer, c_initializer = c_initializer): """ Predicts the next value of values using the inference model. Arguments: inference_model -- Keras model instance for inference time x_initializer -- numpy array of shape (1, 1, 78), one-hot vector initializing the values generation a_initializer -- numpy array of shape (1, n_a), initializing the hidden state of the LSTM_cell c_initializer -- numpy array of shape (1, n_a), initializing the cell state of the LSTM_cel Ty -- length of the sequence you'd like to generate. Returns: results -- numpy-array of shape (Ty, 78), matrix of one-hot vectors representing the values generated indices -- numpy-array of shape (Ty, 1), matrix of indices representing the values generated """ ### START CODE HERE ### pred = inference_model.predict([x_initializer, a_initializer, c_initializer]) indices = np.argmax(pred, axis = -1) results = to_categorical(indices, num_classes=78) ### END CODE HERE ### return results, indices
[ "noreply@github.com" ]
IHNF262.noreply@github.com
8886c1dd47cd18565ecd6229a7357158d3105b71
407097d7c2058160e313e15a3bbd3a695b07ad4a
/composante_detection_CG_flux.py
aaf807a8dc26d68a13529086e7902a80a41df7ee
[]
no_license
JouvinLea/multi_analysis
0427aa84d6184ef531733959914e30a0f871e9dd
1b086b19e3481e28976329cc108e1ee660a227e7
refs/heads/master
2020-07-23T00:32:48.899142
2017-06-14T15:35:41
2017-06-14T15:35:41
94,346,658
0
0
null
null
null
null
UTF-8
Python
false
false
6,526
py
import numpy as np from astropy.table import Table from matplotlib import pyplot as plt from gammapy.utils.energy import EnergyBounds, Energy from gammapy.image import SkyImageList from astropy.wcs.utils import pixel_to_skycoord, skycoord_to_pixel import yaml import sys from method_fit import * input_param=yaml.load(open(sys.argv[1])) #Input param fit and source configuration freeze_bkg=input_param["param_fit_morpho"]["freeze_bkg"] param_fit = input_param["param_fit_morpho"] source_name=input_param["general"]["source_name"] name_method_fond = input_param["general"]["name_method_fond"] image_size= input_param["general"]["image_size"] for_integral_flux=input_param["exposure"]["for_integral_flux"] if freeze_bkg: name="_bkg_fix" else: name="_bkg_free" if param_fit["Em_gal"]: name += "_Em_gal" if param_fit["gauss_SgrA"]["fit"]: name += "_SgrA" if param_fit["gauss_G0p9"]["fit"]: name += "_G0p9" # Si on inverse LS et CS alors c est qu il y a les deux! if param_fit["invert_CS_LS"]: if param_fit["invert_CC_LS"]: name += "_CS__central_gauss_LS" else: name += "_CS__LS_central_gauss" else: if param_fit["Large scale"]["fit"]: name += "_LS" if param_fit["Gauss_to_CS"]["fit"]: name += "_CS" if param_fit["central_gauss"]["fit"]: name += "_central_gauss" if param_fit["arc source"]["fit"]: name += "_arcsource" if not param_fit["arc source"]["xpos_frozen"]: name += "_pos_free" if param_fit["SgrB2"]["fit"]: name += "_SgrB2" #if param_fit["Large scale"]["fwhm_min"]: name += "_LS_fwhm_min_"+str(param_fit["Large scale"]["fwhm_min"])+"_init_"+str(param_fit["Large scale"]["fwhm_init"]) #if param_fit["Gauss_to_CS"]["fwhm_min"]: name += "_CS_fwhm_min_"+str(param_fit["Gauss_to_CS"]["fwhm_min"])+"_init_"+str(param_fit["Gauss_to_CS"]["fwhm_init"]) name += "_GC_source_fwhm_"+str(param_fit["gauss_SgrA"]["fwhm_init"]) if param_fit["Large scale"]["ellip_frozen"]: name += "_eLS_"+str(param_fit["Large scale"]["ellip_init"]) if param_fit["Large scale"]["fwhm_frozen"]: name += "_fwhmLS_"+str(param_fit["Large scale"]["fwhm_init"]) if param_fit["Gauss_to_CS"]["fwhm_frozen"]: name += "_fwhmCS_"+str(param_fit["Gauss_to_CS"]["fwhm_init"]) if param_fit["central_gauss"]["fwhm_frozen"]: name += "_fwhmCC_"+str(param_fit["central_gauss"]["fwhm_init"]) config_name = input_param["general"]["config_name"] energy_reco=[Energy(input_param["energy binning"]["Emin"],"TeV"),Energy(input_param["energy binning"]["Emax"],"TeV"), input_param["energy binning"]["nbin"]] outdir_data = make_outdir_data(source_name, name_method_fond,config_name,image_size,for_integral_flux=False,ereco=energy_reco) directory = make_outdir_filesresult(source_name, name_method_fond,config_name,image_size,for_integral_flux=False,ereco=energy_reco) energy_bins=EnergyBounds.equal_log_spacing(0.5,100,1,"TeV") pix_to_deg=0.02 for i, E in enumerate(energy_bins[:-1]): E1=energy_bins[i].value E2=energy_bins[i+1].value print("Energy band:"+str("%.2f" % E1)+"-"+str("%.2f" % E2)+" TeV") filename=directory+"/morphology_et_flux_fit_result_"+name+"_"+str("%.2f" % E1)+"_"+str("%.2f" % E2)+"_TeV.txt" filename_err=directory+"/morphology_et_flux_fit_covar_"+name+"_"+str("%.2f" % E1)+"_"+str("%.2f" % E2)+"_TeV.txt" t=Table.read(filename, format="ascii") t_err=Table.read(filename_err, format="ascii") for istep,step in enumerate(t["step"][:-1]): sigma=np.sqrt(np.fabs((t["statval"][istep+1]-t["statval"][istep]))) print("step: "+str(step)+", detection a "+str(sigma)+" sigma") ifinal_step=len(t)-1 CS_fwwhm=t[ifinal_step]["Gauss*Templ_CS.fwhm"]*pix_to_deg/2.35 CS_fwwhm_err=t_err[ifinal_step]["Gauss*Templ_CS.fwhm_min"]*pix_to_deg/2.35 LS_fwwhm=t[ifinal_step]["Asym Large Scale.fwhm"]*pix_to_deg/2.35 LS_fwwhm_err=t_err[ifinal_step]["Asym Large Scale.fwhm_min"]*pix_to_deg/2.35 #LS_ellip=0.8 #LS_ellip_err=0 LS_ellip=t[ifinal_step]["Asym Large Scale.ellip"] LS_ellip_err=t_err[ifinal_step]["Asym Large Scale.ellip_min"] sigma_x=LS_ellip*LS_fwwhm sigma_y=(1-LS_ellip)*LS_fwwhm #Err variable correle: Var(f(x,y))=(df/dx*dx)**2+(df/dy*dy)**2+2*df/dx*df/dy*dx*dy sigma_x_err=np.sqrt(((LS_ellip)*LS_fwwhm_err)**2+(LS_fwwhm*LS_ellip_err)**2+2*(LS_fwwhm*(1-LS_ellip)*LS_fwwhm_err*LS_ellip_err)) sigma_y_err=np.sqrt(((1-LS_ellip)*LS_fwwhm_err)**2+(LS_fwwhm*LS_ellip_err)**2+2*(LS_fwwhm*(1-LS_ellip)*LS_fwwhm_err*LS_ellip_err)) CC_fwwhm=t[ifinal_step]["Central Component.fwhm"]*pix_to_deg/2.35 CC_fwwhm_err=t_err[ifinal_step]["Central Component.fwhm_min"]*pix_to_deg/2.35 print("Gauss*Templ_CS.fwhm=",CS_fwwhm," +/- ",CS_fwwhm_err) print("LS sigma=",LS_fwwhm," +/- ",LS_fwwhm_err) print("LS ellipticity=",LS_ellip," +/- ",LS_ellip_err) print("LS sigmax=",sigma_x," +/- ",sigma_x_err) print("LS sigmay=",sigma_y," +/- ",sigma_y_err) print("Central Component =",CC_fwwhm," +/- ",CC_fwwhm_err) flux_factor=1e-12 GC_ampl=t[ifinal_step]["GC source.ampl"]*flux_factor G0p9_ampl=t[ifinal_step]["G0.9.ampl"]*flux_factor CS_ampl=t[ifinal_step]["CS.ampl"]*flux_factor LS_ampl=t[ifinal_step]["Asym Large Scale.ampl"]*flux_factor CC_ampl=t[ifinal_step]["Central Component.ampl"]*flux_factor arc_source_ampl=t[ifinal_step]["Arc source.ampl"]*flux_factor GC_ampl_err=t_err[ifinal_step]["GC source.ampl_min"]*flux_factor G0p9_ampl_err=t_err[ifinal_step]["G0.9.ampl_min"]*flux_factor CS_ampl_err=t_err[ifinal_step]["CS.ampl_min"]*flux_factor LS_ampl_err=t_err[ifinal_step]["Asym Large Scale.ampl_min"]*flux_factor CC_ampl_err=t_err[ifinal_step]["Central Component.ampl_min"]*flux_factor arc_source_ampl_err=t_err[ifinal_step]["Arc source.ampl_min"]*flux_factor print ("Flux 1 Tev (en 1e-12, cm-2 TeV-1 s-1)") print("GC source :",GC_ampl," +/- ",GC_ampl_err) print("G0.9 :",G0p9_ampl," +/- ",G0p9_ampl_err) print("Gauss*Templ_CS: ",CS_ampl," +/- ",CS_ampl_err) print("LS :",LS_ampl," +/- ",LS_ampl_err) print("Central Component:",CC_ampl," +/- ",CC_ampl_err) print("Arc source :",arc_source_ampl," +/- ",arc_source_ampl_err) if 'Arc source.xpos' in t.colnames: on = SkyImageList.read(outdir_data + "/fov_bg_maps" + str(E1) + "_" + str(E2) + "_TeV.fits")["counts"] coord_arc_source=pixel_to_skycoord(t["Arc source.xpos"][ifinal_step],t["Arc source.ypos"][ifinal_step],on.wcs) print coord_arc_source
[ "lea.jouvin@gmail.com" ]
lea.jouvin@gmail.com
5bab08f19961fec6da631384fc26abe23e29a028
6b10d023db347810c35298f8166af42de5dd13d3
/Udemi/Section 7/Script1.py
cbd66a13306fda0bef8f1e0a2eacd14795f9df53
[]
no_license
alex89n/Py_Exercise
6bdf02ebedf4998a1135ca44ac3c60d99e1d3fce
bb5c9b0c967b2957230d398477193980ed12ea15
refs/heads/master
2020-07-23T06:25:26.759261
2017-09-06T10:53:01
2017-09-06T10:53:01
94,354,462
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
import random, string def generator(): letter1 = random.choice(string.ascii_lowercase) letter2 = random.choice(string.ascii_lowercase) letter3 = random.choice(string.ascii_lowercase) return letter1 + letter2 + letter3 print(generator())
[ "aleksandar.nikolic@rt-rk.com" ]
aleksandar.nikolic@rt-rk.com
442030f5246fb8e61aaec6289d70093b01c5a6d5
f9576955010b4bd5512bd5af1f42dbef16009922
/exerise-2-9-number-of-negitive-numbers.py
3bcb91e2bd724273ffb9761efc9a9c24c7c248d7
[]
no_license
den01-python-programming-exercises/exercise-2-9-number-of-negative-numbers-rangorstormbron
4ee5cfad4c0c6ec9c4f02525c13d22fc68d0c543
ae68f71d2b17b852a70a4b84a38122d7341f31f0
refs/heads/master
2023-02-25T14:00:44.161452
2021-02-08T15:57:41
2021-02-08T15:57:41
337,127,402
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
count=0 number=int(input("please enter a number to add to the count count stops when 0 is entered")) while True: number=int(input("please enter a number to add to the count count stops when 0 is entered")) if(number ==0): print("total number =" , str(count)) break if(number <=0): count= count+1 continue
[ "noreply@github.com" ]
den01-python-programming-exercises.noreply@github.com
e85a77066d6a4f8022f19aecd6eed15b41dd31b5
82fbd036b8f8f636ed38d859d52343cbe2dc6ecf
/test/loader_tests.py
4936d741e1de9dbefb18e5ea3d5f835d5e1c235c
[]
no_license
dhpollack/bytenet.pytorch
9db425b080c7ba41cd0e7cbde9056621526856b2
9aba0efe5139d886079c789e6420ce46f3f20683
refs/heads/master
2021-09-15T22:58:56.481145
2018-06-12T08:47:11
2018-06-12T08:47:11
115,529,747
9
6
null
null
null
null
UTF-8
Python
false
false
723
py
import unittest import json import time from data.enwik8_loader import * from data.wmt_loader import * class Loaders_Test(unittest.TestCase): config = json.load(open("config.json")) print(config) def test_1_enwik8(self): ds = WIKIPEDIA(self.config["HUTTER_DIR"]) for i, (src, tgt) in enumerate(ds): print(len(src), len(tgt)) print(src[:20], tgt[:20]) if i > 0: break def test_2_wmtnews(self): ds = WMT(self.config["WMT_DIR"]) for i, (src, tgt) in enumerate(ds): print(len(src), len(tgt)) print(src, tgt) if i > 0: break if __name__ == '__main__': unittest.main()
[ "david@da3.net" ]
david@da3.net
34e35985b36457bd4c5d814e0b138d08647c99c3
bb3c62c4d1726ab0b3a71753a17e6b7d25ad5b50
/automateScript/post.py
1b55840b8da204ad0657e0f02f1feac9bfe18d39
[]
no_license
JasonCodeIT/g12code
b984ab7a2273c3ba2c26e737595af447b72d74ea
da343c24b610e289f46313d790f4161ed6b7226c
refs/heads/master
2021-06-01T13:10:09.487643
2018-12-03T01:58:57
2018-12-03T01:58:57
32,397,549
0
0
null
2015-04-01T14:09:04
2015-03-17T14:15:37
Python
UTF-8
Python
false
false
161
py
import requests def post(url, data=None, cookies=None): r = requests.post(url, data=data, cookies=cookies, verify=False) return r.text.encode('utf-8')
[ "dzy0451@gmail.com" ]
dzy0451@gmail.com
beb573f485521049d08a6feec29654c350245495
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_258/ch34_2019_03_19_16_59_24_061231.py
d6a923627829377948c28cf477c1fda1f09a90dd
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
a=float(input('Qual o valor do depósito inicial? ')) b=float(input('Qual o valor da taxa de juros? ')) n=1 while n<=24: c=a*b**n d=c-a n+=1 print("{0:.2f}".format(c)) print("{0:.2f}".format(d))
[ "you@example.com" ]
you@example.com
781f986fa5d85dd9546502e8ae29c6135ff9e1fc
bd3e8e7bbb85a1c99b392bac5298f38f87b6a739
/resources/user.py
162da241272955b1ef94a1273bf6df6ac99dda24
[]
no_license
DimitriMichel/Flask-RESTful-for-Heroku
0a08c5508c71dbc65e4b44a725b66cb5a4d6010d
a5947ed622b7551d08f9fb760d8586f8f5c5ed7b
refs/heads/master
2020-08-16T17:05:37.902220
2019-10-16T17:13:03
2019-10-16T17:13:03
215,528,881
1
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
from flask_restful import Resource, reqparse from models.user import UserModel class UserRegister(Resource): # important to require arguments so users cant be empty in either field parser = reqparse.RequestParser() parser.add_argument('username', type=str, required=True, help="This field cannot be blank." ) parser.add_argument('password', type=str, required=True, help="This field cannot be blank." ) def post(self): data = UserRegister.parser.parse_args() if UserModel.find_by_username(data['username']): return {"message": "A user with that username already exists"}, 400 # 400 Bad Request user = UserModel(data['username'], data['password']) user.save_to_db() return {"message": "User created successfully."}, 201 # 201 created
[ "dimitripl@Dimitris-MBP.fios-router.home" ]
dimitripl@Dimitris-MBP.fios-router.home
f00f0ec16d5c23510d81f61420f4c02d8948e730
9bb8f046743021611d110b69521b04ebf5a2a254
/income/migrations/0003_auto_20201226_2137.py
d4df2290418f2292d58c64ea88a20b1453a21dc9
[]
no_license
Sukhvsin2/Expense-Income-Api
89b8ca8f517fcabe9c0b1c5406dde68858af928e
6f11fe8a64783bbd332a6c93a5bd10997f16a6c6
refs/heads/master
2023-04-01T13:12:21.362974
2021-03-09T21:54:02
2021-03-09T21:54:02
324,355,505
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
# Generated by Django 3.1.4 on 2020-12-26 16:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('income', '0002_auto_20201226_2136'), ] operations = [ migrations.AlterField( model_name='income', name='source', field=models.CharField(choices=[('ONLINE_SERVICE', 'ONLINE_SERVICE'), ('RENT', 'RENT'), ('SALARY', 'SALARY'), ('TRAVEL', 'TRAVEL'), ('FOOD', 'FOOD'), ('OTHERS', 'OTHERS')], max_length=255), ), ]
[ "sukhvsingh2026@gmail.com" ]
sukhvsingh2026@gmail.com
a067cc38f5853f9457b486b101c755817cddf438
b111524b4bbec6e8d5ad42e6969a42b060fc9e24
/qa/rpc-tests/test_framework/util.py
3928e67feb218eae56aa5e5811b2c0a7b398e4fc
[ "MIT" ]
permissive
lamhuuvan/octoin
9c2c39865503bb00ad17d3cd08e26bfc792d9fb4
f406ea4b9c4ea76d12866682e47c1f782f742787
refs/heads/master
2020-03-18T18:25:44.133335
2018-02-20T12:55:54
2018-02-20T12:55:54
135,092,121
1
0
MIT
2018-05-28T00:35:58
2018-05-28T00:35:57
null
UTF-8
Python
false
false
22,954
py
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # import os import sys from binascii import hexlify, unhexlify from base64 import b64encode from decimal import Decimal, ROUND_DOWN import json import http.client import random import shutil import subprocess import time import re import errno from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException COVERAGE_DIR = None # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 BITCOIND_PROC_WAIT_TIMEOUT = 60 class PortSeed: # Must be initialized with a unique integer for each process n = None #Set Mocktime default to OFF. #MOCKTIME is only needed for scripts that use the #cached version of the blockchain. If the cached #version of the blockchain is used without MOCKTIME #then the mempools will not sync due to IBD. MOCKTIME = 0 def enable_mocktime(): #For backwared compatibility of the python scripts #with previous versions of the cache, set MOCKTIME #to Jan 1, 2014 + (201 * 10 * 60) global MOCKTIME MOCKTIME = 1388534400 + (201 * 10 * 60) def disable_mocktime(): global MOCKTIME MOCKTIME = 0 def get_mocktime(): return MOCKTIME def enable_coverage(dirname): """Maintain a log of which RPC calls are made during testing.""" global COVERAGE_DIR COVERAGE_DIR = dirname def get_rpc_proxy(url, node_number, timeout=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( COVERAGE_DIR, node_number) if COVERAGE_DIR else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def sync_blocks(rpc_connections, wait=1, timeout=60): """ Wait until everybody has the same tip """ while timeout > 0: tips = [ x.getbestblockhash() for x in rpc_connections ] if tips == [ tips[0] ]*len(tips): return True time.sleep(wait) timeout -= wait raise AssertionError("Block sync failed") def sync_mempools(rpc_connections, wait=1, timeout=60): """ Wait until everybody has the same transactions in their memory pools """ while timeout > 0: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): return True time.sleep(wait) timeout -= wait raise AssertionError("Mempool sync failed") bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) rpc_u, rpc_p = rpc_auth_pair(n) with open(os.path.join(datadir, "octoin.conf"), 'w') as f: f.write("regtest=1\n") f.write("rpcuser=" + rpc_u + "\n") f.write("rpcpassword=" + rpc_p + "\n") f.write("port="+str(p2p_port(n))+"\n") f.write("rpcport="+str(rpc_port(n))+"\n") f.write("listenonion=0\n") return datadir def rpc_auth_pair(n): return 'rpcuser💻' + str(n), 'rpcpass🔑' + str(n) def rpc_url(i, rpchost=None): rpc_u, rpc_p = rpc_auth_pair(i) return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, rpchost or '127.0.0.1', rpc_port(i)) def wait_for_bitcoind_start(process, url, i): ''' Wait for bitcoind to start. This means that RPC is accessible and fully initialized. Raise an exception if bitcoind exits during initialization. ''' while True: if process.poll() is not None: raise Exception('bitcoind exited with status %i during initialization' % process.returncode) try: rpc = get_rpc_proxy(url, i) blocks = rpc.getblockcount() break # break out of loop on success except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unkown JSON RPC exception time.sleep(0.25) def initialize_chain(test_dir, num_nodes): """ Create a cache of a 200-block-long chain (with wallet) for MAX_NODES Afterward, create num_nodes copies from the cache """ assert num_nodes <= MAX_NODES create_cache = False for i in range(MAX_NODES): if not os.path.isdir(os.path.join('cache', 'node'+str(i))): create_cache = True break if create_cache: #find and delete old cache directories if any exist for i in range(MAX_NODES): if os.path.isdir(os.path.join("cache","node"+str(i))): shutil.rmtree(os.path.join("cache","node"+str(i))) # Create cache directories, run bitcoinds: for i in range(MAX_NODES): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "octoind"), "-server", "-keypool=1", "-datadir="+datadir, "-discover=0", "-reindex", "-crowdsale=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: bitcoind started, waiting for RPC to come up") wait_for_bitcoind_start(bitcoind_processes[i], rpc_url(i), i) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: RPC succesfully started") rpcs = [] for i in range(MAX_NODES): try: rpcs.append(get_rpc_proxy(rpc_url(i), i)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 first nodes # gets 25 mature blocks and 25 immature. # Note: To preserve compatibility with older versions of # initialize_chain, only 4 nodes will generate coins. # # blocks are created with timestamps 10 minutes apart # starting from 2010 minutes in the past enable_mocktime() block_time = get_mocktime() - (201 * 10 * 60) for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].generate(1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() disable_mocktime() for i in range(MAX_NODES): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(num_nodes): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in bitcoin.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None, timewait=None, binary=None): """ Start a bitcoind and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) if binary is None: binary = os.getenv("BITCOIND", "octoind") args = [ binary, "-datadir="+datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-mocktime="+str(get_mocktime()), "-crowdsale=0" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print("start_node: bitcoind started, waiting for RPC to come up") url = rpc_url(i, rpchost) wait_for_bitcoind_start(bitcoind_processes[i], url, i) if os.getenv("PYTHON_DEBUG", ""): print("start_node: RPC succesfully started") proxy = get_rpc_proxy(url, i, timeout=timewait) if COVERAGE_DIR: coverage.write_all_rpc_commands(COVERAGE_DIR, proxy) return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None, binary=None): """ Start multiple bitcoinds, return RPC connections to them """ if extra_args is None: extra_args = [ None for _ in range(num_nodes) ] if binary is None: binary = [ None for _ in range(num_nodes) ] rpcs = [] try: for i in range(num_nodes): rpcs.append(start_node(i, dirname, extra_args[i], rpchost, binary=binary[i])) except: # If one node failed to start, stop the others stop_nodes(rpcs) raise return rpcs def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) bitcoind_processes[i].wait(timeout=BITCOIND_PROC_WAIT_TIMEOUT) del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait(timeout=BITCOIND_PROC_WAIT_TIMEOUT) bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using its output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_fee_amount(fee, tx_size, fee_per_kB): """Assert the fee was in range""" target_fee = tx_size * fee_per_kB / 1000 if fee < target_fee: raise AssertionError("Fee of %s BTC too low! (Should be %s BTC)"%(str(fee), str(target_fee))) # allow the wallet's estimation to be at most 2 bytes off if fee > (tx_size + 2) * fee_per_kB / 1000: raise AssertionError("Fee of %s BTC too high! (Should be %s BTC)"%(str(fee), str(target_fee))) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised") def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret %r as hexadecimal; raised: %s" % (string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError("Expected a string, got type %r" % type(string)) elif length and len(string) != length: raise AssertionError( "String of length %d expected; got %d" % (length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String %r contains invalid characters for a hash." % string) def assert_array_result(object_array, to_match, expected, should_not_find = False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find == True: assert_equal(expected, { }) num_matched = 0 for item in object_array: all_match = True for key,value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find == True: num_matched = num_matched+1 for key,value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value))) num_matched = num_matched+1 if num_matched == 0 and should_not_find != True: raise AssertionError("No objects matched %s"%(str(to_match))) if num_matched > 0 and should_not_find == True: raise AssertionError("Objects were found %s"%(str(to_match))) def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) # Helper to create at least "count" utxos # Pass in a fee that is sufficient for relay and mining new transactions. def create_confirmed_utxos(fee, node, count): node.generate(int(0.5*count)+101) utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in range(iterations): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr1] = satoshi_round(send_value/2) outputs[addr2] = satoshi_round(send_value/2) raw_tx = node.createrawtransaction(inputs, outputs) signed_tx = node.signrawtransaction(raw_tx)["hex"] txid = node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" #OP_RETURN OP_PUSH2 512 bytes for i in range (512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change txouts = "81" for k in range(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts def create_tx(node, coinbase, to_address, amount): inputs = [{ "txid" : coinbase, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, fee): addr = node.getnewaddress() txids = [] for i in range(len(utxos)): t = utxos.pop() inputs = [] inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr] = satoshi_round(send_value) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransaction(newtx, None, None, "NONE") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def get_bip9_status(node, key): info = node.getblockchaininfo() return info['bip9_softforks'][key]
[ "root@build3.occ" ]
root@build3.occ
32406dd2aa2de9ae977c1df924adc8b5b501ba3f
fe317eff7427e24db4b905d3e2ac395b25bb4c9f
/CoviHelp/forms.py
36bfcc1c2c41e50911d51fc6db0564cfb709a634
[]
no_license
ishivanshgoel/Combatting-Covid
71e99fa91ee32c3cf6876ffd845cf8d8094c268b
2abb2665eed3f6a978b463a2475610ebe6136e91
refs/heads/master
2023-04-25T19:39:01.926190
2021-05-21T08:02:49
2021-05-21T08:02:49
360,958,587
2
1
null
null
null
null
UTF-8
Python
false
false
628
py
from django import forms ## login forms class UserSignIn(forms.Form): email = forms.CharField(label='Email', max_length=20) password = forms.CharField(label='Password', max_length=20) class OxygenUser(UserSignIn): pass class PharmaUser(UserSignIn): pass class HospitalUser(UserSignIn): pass ## registration forms class User(forms.Form): company = forms.CharField(label='Company Name', max_length=100) name = forms.CharField(label='Contact Person Name', max_length=100) phone = forms.CharField(label='Phone Number', max_length=100) email = forms.CharField(label='Email', max_length=100)
[ "ishivanshgoel@gmail.com" ]
ishivanshgoel@gmail.com
657ab173695eee56f3c94d50c887b2dde25fec3b
7fd6c2e12894060b7e3c74cba8302f1acece9db3
/functions/functionsdemo.py
2da9177b201e57431d58b007ef6c73f72f2cda68
[]
no_license
karthikapresannan/karthikapresannan
c664ae5cd8d33df0e8b4c2e57c29e1e2787dad81
5d0d55d3d64186659d6eebee391aeca4fc609c22
refs/heads/master
2023-03-29T15:38:03.559918
2021-04-08T15:45:55
2021-04-08T15:45:55
335,202,361
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
def add(num1,num2): result=num1*num2 print(result) add(100,200) def mul(num1,num2): res=num1*num2 print(res) mul(100,200) def sub(num1,num2): res=num1-num2 print(res) sub(100,200) #combine cheyathekuna program calc
[ "karthikapresannan97@gmail.com" ]
karthikapresannan97@gmail.com
389eabd5e691f8a8709ba52c6936a0ad41ce47fb
103ee7cb409ec7495b1a1d28d1fbb849c69180a9
/utils/transducer/train_transducer.py
b5a491f85266151c29cee5ce7562df49d0ba7df3
[]
no_license
m-wiesner/GKT
2777081d28c02f496c61556518e53a17de9fdb79
fa977494322863f6607849e2e094853c02f4e581
refs/heads/master
2020-09-25T19:35:45.457465
2016-09-01T19:41:20
2016-09-01T19:41:20
66,901,793
0
0
null
null
null
null
UTF-8
Python
false
false
3,551
py
#!/usr/local/bin/pypy from __future__ import print_function import pickle import sys import os from Transducer import Grapheme, Utterance import argparse import json import mlf DEF_MIN_LL = -999.0 def usage(): print(" Usage: ./make_transducer.py [opts] <REF_ALI> <AUD_ALI> <OUTPUT> <EMISSIONS>") print(" --iter : specify the number of training iterations. Default = 8") print(" --train_size : specify what fraction of input data to train on. Default = 1.0") print(" --add_1_smooth: specify the add val parameter for smoothing HMM arc counts. Default = 0.01") def main(): if len(sys.argv[1:]) == 0: usage() sys.exit(1) # Parser Arguments parser = argparse.ArgumentParser() parser.add_argument("input1", help="rspecifier alignment format such as " "the output of ali-to-phones in kaldi.") parser.add_argument("input2", help="rspecifier alignment format such as " "the output of ali-phones in kaldi.") parser.add_argument("output", help="wspecifier pickled list of trained " "Grapheme HMM objects.") parser.add_argument("emissions", help="rspecifier distributions p(aud | graph) " "stored in json format.") parser.add_argument("-I","--iters", action="store", help="Number of iterations of training.", type=int, default=8) parser.add_argument("-T","--train_size", action="store", help="Fraction of the matched " "input files over which to train.", type=float, default=1.0) parser.add_argument("-L","--add_1_smooth", action="store", help="Smoothing " "value for HMM arcs", type=float, default = 0.01) args = parser.parse_args() EMISSIONS = args.emissions REF_ALI = args.input1 RES_ALI = args.input2 OUTFILE = args.output ITERS = args.iters TRAINING_SIZE = args.train_size LAM = args.add_1_smooth # Get training and tesing test ref_utterances = mlf.ali2dict(REF_ALI) train_utterances = mlf.ali2dict(RES_ALI) train_utterances = {u:train_utterances[u] for u in ref_utterances.iterkeys()} emissions_dict = json.load(open(EMISSIONS,"rb")) graphemes = {name: Grapheme(name,emissions,lam=LAM) for name,emissions in emissions_dict.iteritems()} num_utts = len(ref_utterances.keys()) train_keys = sorted(train_utterances.keys())[0:int(num_utts*TRAINING_SIZE)] num_train = len(train_keys) LL_old = DEF_MIN_LL for i in range(ITERS): print("Iteration ", i ) LL = 0.0 num_frames = 0.0 for i_u,u in enumerate(train_keys,start=1): sys.stdout.write("Created utterance %d of %d\r" % (i_u,num_train) ) sys.stdout.flush() utt = Utterance(u,ref_utterances[u],graphemes) seq = train_utterances[u].split(" ") num_frames += len(seq) LL += utt.train_sequence(seq) LL /= num_frames if LL >= LL_old: LL_old = LL else: print("ERROR") print("LL: %f, LL_old: %f" % (LL, LL_old)) print(" ") print("LL: %f" % LL ) for g in graphemes.itervalues(): g.update() pickle.dump(graphemes, open( OUTFILE, "wb" ) ) # Initialize inputs from unigram distribution of grapheme level alignments if __name__ == "__main__": main()
[ "wiesner@jhu.edu" ]
wiesner@jhu.edu
f6d690fcbc0cef5954203798eebf583e0922e61f
6c7ec742e9b92a54de54e32b242057ab105f5399
/scienv/bin/rst2odt.py
33a437123869e84aca776a9abba58fc13cd0c14b
[]
no_license
sdnnet3/scienceprobs
0a72a59755ede896f97a973657ff83c820ae0af6
07c0adc68a171427bf7eb9c83b0fddfd0fbb9341
refs/heads/master
2020-06-04T23:51:06.227553
2019-06-16T20:58:56
2019-06-16T20:58:56
161,008,514
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
#!/home/clayton/scienceprobs/scienv/bin/python3 # $Id: rst2odt.py 5839 2009-01-07 19:09:28Z dkuhlman $ # Author: Dave Kuhlman <dkuhlman@rexx.com> # Copyright: This module has been placed in the public domain. """ A front end to the Docutils Publisher, producing OpenOffice documents. """ import sys try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline_to_binary, default_description from docutils.writers.odf_odt import Writer, Reader description = ('Generates OpenDocument/OpenOffice/ODF documents from ' 'standalone reStructuredText sources. ' + default_description) writer = Writer() reader = Reader() output = publish_cmdline_to_binary(reader=reader, writer=writer, description=description)
[ "clayton.hutton@gmail.com" ]
clayton.hutton@gmail.com
a17b2ddfb0202a5bbf9947270096fe596200604d
71a93e99a9e2c15c8a1727e823c20c6007d6a787
/desc.py
fa045d10b28c77d2bdfc97938a64257962f8dfb0
[]
no_license
7erduk/tor
d5334b40211b3f2509d7a0d562146f694c2e862e
631bc6b29d92e00b5bb0b56f1217fe77b601613b
refs/heads/master
2021-01-19T00:40:51.109871
2018-10-21T07:43:44
2018-10-21T07:43:44
87,199,784
0
0
null
null
null
null
UTF-8
Python
false
false
2,023
py
import re import stem.descriptor from stem.exit_policy import ExitPolicy import StringIO import marshal import random class Descriptors: def __init__(self,routers={}): self.routers=routers def loadTextDesc(self,fname): f=open(fname,'rb') desc=stem.descriptor.parse_file(f,'server-descriptor 1.0') self.routers={} for d in desc: router={} router['nickname']=d.nickname router['address']=d.address router['or_port']=d.or_port router['exit_policy']=str(d.exit_policy) router['onion_key']=d.onion_key router['signing_key']=d.signing_key router['dir_port']=d.dir_port self.routers[d.fingerprint]=router return self.routers def getExitPoliceRouters(self,ip,port): routers={} for r in self.routers: e=ExitPolicy(self.routers[r]['exit_policy']) if e.can_exit_to(ip,port): routers[r]=self.routers[r] return routers def saveDesc(self,fname): open(fname,'wb+').write(marshal.dumps(self.routers)) def loadDesc(self,fname): self.routers=marshal.loads(open(fname,'rb').read()) return self.routers def randRouter(self,ip=None,port=None): keys=self.routers.keys() random.shuffle(keys) routers={} for r in keys: if ip and port: e=ExitPolicy(self.routers[r]['exit_policy']) if e.can_exit_to(ip,port): return self.routers[r] else: return self.routers[r] return None if __name__=="__main__": d=Descriptors() #d.loadTextDesc('all.z') #d.saveDesc('all.m') d.loadDesc('all.m') r=d.randRouter('8.8.8.8',4444) print r['nickname'] r=d.randRouter('8.8.8.8',4444) print r['nickname']
[ "7erduk@gmail.com" ]
7erduk@gmail.com
d1444d69323c69bb381deecdeeaef7eedd2c783a
72c3c34f9eb47c9490f5461adaf28693eca27ebd
/test_coronavirus_reader.py
19ea00d6536f85a085ac5849e053d4baacb4f8be
[]
no_license
JasonMTarka/Coronavirus-Tracker
ba88ca327b76eed2945a4f65788aca48d70ffff9
90ff2e12713dad777cbcdd99499490b74e179994
refs/heads/main
2023-08-18T00:17:23.581131
2021-10-08T13:07:46
2021-10-08T13:07:46
341,175,289
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
import unittest from coronavirus_reader import COVID19_Reader class TestReader(unittest.TestCase): @classmethod def setUpClass(cls): cvd_reader = COVID19_Reader() cls.data = cvd_reader.data_reader() def test_dataislist(self): self.assertEqual(type(self.data), type([])) def test_regex(self): date = self.data[-1][0] regex = r"(?P<day>\d{2})-(?P<month>\d{2})-(?P<year>\d\d?)" self.assertRegex(date, regex) if __name__ == "__main__": unittest.main()
[ "jasonmtarka@gmail.com" ]
jasonmtarka@gmail.com
420f7ad5777496c03d255f050c43577174561aa9
5c96fae506378a1ff0618e82e56fb89038df260c
/stockExchangePrediction/newsInput.py
7462750b287b9a2c5c602e78ed4152e2fb284a61
[]
no_license
Skyraider150/stock_market_pred
6c89f34ac9802b0f1ca85533e161872051d9ad45
1f68eec6612f8eefdf178bbac9d0742ca5af3a58
refs/heads/master
2020-04-01T08:04:36.084798
2018-12-09T20:37:15
2018-12-09T20:37:15
153,016,664
0
0
null
2018-12-09T12:08:54
2018-10-14T20:36:47
Python
UTF-8
Python
false
false
4,451
py
from stockPreprocessing import * # Lets Check how our news data files look #For this purpose we load a list with the name of the files FilesOfNews=['data/news/abcnews-date-text.csv','data/news/articles1.csv','data/news/articles2.csv','data/news/articles3.csv','data/news/RedditNews.csv','data/news/Combined_News_DJIA.csv','data/news/data.csv'] #During iteration we write out the firs two and the last line of the files with thair length and name for filePath in []: #FilesOfNews: os.sys("wc -l {filePath}") os.sys("head -n 2 {filePath}") os.sys("tail -n 1 {filePath}") print() print() # Loading in data import csv import sys #For such a big file we have to set a new limit for csv csv.field_size_limit(sys.maxsize) #We read in the data and print it out with it length as checking NewsContent=[] file='data/news/abcnews-date-text.csv' counter=0 DatabaseContent=[] with open(file,'r') as NewsFile: NewsReader=csv.DictReader(NewsFile) for line in NewsReader: if line != "": NewsContent.append(line) print(NewsContent[0]) print(len(NewsContent)) # using nltk it is much easier to create the word vectors import nltk nltk.download('punkt') #WordCountVectors is going to be the dictionary we are going to store all existing word and the count of their accurance WordCountVectors={} for name in ['apple', 'amazon', 'facebook', 'google']: WordCountVectors[name]={} for line in NewsContent: if(name in line['headline_text']): words=nltk.word_tokenize(line['headline_text']) for word in words: if(word in WordCountVectors[name].keys()): WordCountVectors[name][word]=WordCountVectors[name][word]+1 else: WordCountVectors[name][word]=1 # as a check we are printing the word vector and the count of the words relevant for amazon print(WordCountVectors['amazon']) sum=0 for wordC in WordCountVectors['amazon'].values(): sum+=wordC print(sum) #We have to reformat the date so we have the same format as the stock data # datetime.strptime(x[0], '%Y-%m-%d').timestamp() for line in NewsContent: line['date']=datetime.strptime(line.pop('publish_date'), '%Y%m%d').timestamp() print(NewsContent[0]) #After this we destroy the unrelevant words top_words = 300 from collections import Counter word_counter = Counter((' '.join([i['headline_text'] for i in NewsContent])).split(' ')) keymap = {item[0]: i+1 for i, item in enumerate(word_counter.most_common(top_words))} #We collect the words to have them in a per day format news_content_parsed2 = [[i['date'], [keymap[j] for j in i['headline_text'].split(' ') if j in keymap.keys()]] for i in NewsContent] #lets check the format news_content_parsed2[-1] #Then we create a dictionary so we can combine the dates belonging to the same date into one big list wordsByDate={} for wordOfNewWithDate in news_content_parsed2: if wordOfNewWithDate[0] not in wordsByDate: wordsByDate[wordOfNewWithDate[0]]=[] wordsByDate[wordOfNewWithDate[0]].extend(wordOfNewWithDate[1]) #for date in wordsByDate.keys(): # wordsByDate[date]=sorted(wordsByDate[date]) # +++ #We eliminate all data wh2ich's date is out of the time range of the stock data stock_dates=stock_dict['AAPL'].values[:, 0] daily_news = {} for k, v in wordsByDate.items(): if min(stock_dates) < k < max(stock_dates): daily_news[int(k/86400)*86400] = daily_news.get(int(k/86400)*86400, []) + v #Lets see how many words we have on each day so we can decide what size of input we should have for the network a = [] for words in wordsByDate.values(): a.append(len(words)) #print sizes print(min(a), np.mean(a), max(a)) # word vectors max. (kind of...) length review_length = 600 from pandas import DataFrame from pandas import concat def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg
[ "holloszaboakos.1996@gmail.com" ]
holloszaboakos.1996@gmail.com
10db0ee4df7314f6e57d235041f86412e0e3397f
3869cbd5ee40e2bab5ca08b80b48115a7b4c1d5a
/Python-3/basic_examples/strings/string_contains.py
91c957a2f8af0439feffe2bf2eb5c39d78bec717
[ "MIT" ]
permissive
Tecmax/journaldev
0774c441078816f22edfd68286621493dd271803
322caa8e88d98cfe7c71393bcd2a67cf77368884
refs/heads/master
2020-07-08T04:05:03.028015
2019-08-12T09:17:48
2019-08-12T09:17:48
203,559,030
0
1
MIT
2019-08-21T10:13:47
2019-08-21T10:13:47
null
UTF-8
Python
false
false
426
py
s = 'abc' print('s contains a =', s.__contains__('a')) print('s contains A =', s.__contains__('A')) print('s contains X =', s.__contains__('X')) print(str.__contains__('ABC', 'A')) print(str.__contains__('ABC', 'D')) input_str1 = input('Please enter first input string\n') input_str2 = input('Please enter second input string\n') print('First Input String Contains Second String? ', input_str1.__contains__(input_str2))
[ "pankaj.0323@gmail.com" ]
pankaj.0323@gmail.com
f8d7d22ef6d96ecd64064d87736a65402390b602
ee63710a782fc75491a92b7e7860f433d803701d
/Problems/How many nuts will be left after division/task.py
b515069005cdb92cd82fe6c48282cdb49eefa108
[]
no_license
kudrinsky/jba_simple_chatty_bot
b252cc32c8701d8e18229ea1137ee9b82c915b1e
064e73ba58e929464f6f243f9a4602fddb602b27
refs/heads/master
2022-11-07T12:30:01.947207
2020-06-16T09:41:14
2020-06-16T09:41:14
272,668,740
0
0
null
null
null
null
UTF-8
Python
false
false
78
py
squirrels = abs(int(input())) nuts = abs(int(input())) print(nuts % squirrels)
[ "66451886+kudrinsky@users.noreply.github.com" ]
66451886+kudrinsky@users.noreply.github.com
0affee18b4eb2f0d6b168699a616474a7dd1bd50
368465d522ccfcb7292405943c153c8488bd3292
/blog/migrations/0002_comment.py
ec43cc40385aaf5c354e8551ebaa02af62a8f40d
[]
no_license
Yejin6911/piro12-Django
d83d4fae68c6396e65aa3d1a9ce3ab34a39bbc41
70368a9a9c38b1921ecf7449c200153462774d21
refs/heads/master
2020-12-12T20:13:33.168241
2020-01-21T08:20:07
2020-01-21T08:20:07
234,218,096
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
# Generated by Django 2.2.9 on 2020-01-17 14:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('message', models.TextField()), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post')), ], ), ]
[ "cdjin6911@gmail.com" ]
cdjin6911@gmail.com
c3c54dc37a631e08fb78b5443f7372563c1875f3
9237a661640afa4b755ae2fc69a86dbdc75f019f
/analysis/splicing/splicing_differential_genesis_helpers.py
aa503a63c04976a31f6672e73dd1fbcb9bd5aaef
[ "MIT" ]
permissive
TrentBrick/genesis
06ca7e665b0713d8dee9b9a966e3ff97fdb0eae3
d80725b51b4b97fb5cddde7b7f0dc1362c11b26b
refs/heads/master
2021-03-10T04:49:49.960116
2019-12-03T22:51:56
2019-12-03T22:51:56
246,420,721
0
1
MIT
2020-03-10T22:24:05
2020-03-10T22:24:04
null
UTF-8
Python
false
false
9,310
py
import isolearn.keras as iso import numpy as np import pandas as pd import scipy.sparse as sp import scipy.io as spio import matplotlib.pyplot as plt import seaborn as sns def plot_logo_w_hexamer_scores(pwm, iso_pred, cut_pred, hexamer_scores, cse_start_pos=70, annotate_peaks=None, sequence_template=None, figsize=(12, 3), width_ratios=[1, 7], logo_height=1.0, usage_unit='log', plot_start=0, plot_end=164, save_figs=False, fig_name=None, fig_dpi=300) : n_samples = pwm.shape[0] #Slice according to seq trim index pwm = pwm[:, plot_start: plot_end, :] cut_pred = cut_pred[:, plot_start: plot_end] sequence_template = sequence_template[plot_start: plot_end] iso_pred = np.mean(iso_pred, axis=0) cut_pred = np.mean(cut_pred, axis=0) pwm = np.sum(pwm, axis=0) pwm += 0.0001 for j in range(0, pwm.shape[0]) : pwm[j, :] /= np.sum(pwm[j, :]) entropy = np.zeros(pwm.shape) entropy[pwm > 0] = pwm[pwm > 0] * -np.log2(pwm[pwm > 0]) entropy = np.sum(entropy, axis=1) conservation = 2 - entropy fig = plt.figure(figsize=figsize) gs = gridspec.GridSpec(2, 2, width_ratios=[width_ratios[0], width_ratios[-1]], height_ratios=[1, 1]) ax0 = plt.subplot(gs[0, 0]) ax1 = plt.subplot(gs[0, 1]) ax2 = plt.subplot(gs[1, 0]) ax3 = plt.subplot(gs[1, 1]) plt.sca(ax0) plt.axis('off') plt.sca(ax2) plt.axis('off') annot_text = 'Samples = ' + str(int(n_samples)) if usage_unit == 'log' : annot_text += '\nUsage = ' + str(round(np.log(iso_pred[0] / (1. - iso_pred[0])), 4)) else : annot_text += '\nUsage = ' + str(round(iso_pred[0], 4)) ax2.text(0.99, 0.5, annot_text, horizontalalignment='right', verticalalignment='center', transform=ax2.transAxes, color='black', fontsize=12, weight="bold") l2, = ax1.plot(np.arange(plot_end - plot_start), cut_pred, linewidth=3, linestyle='-', label='Predicted', color='red', alpha=0.7) if annotate_peaks is not None : objective_pos = 0 if annotate_peaks == 'max' : objective_pos = np.argmax(cut_pred) else : objective_pos = annotate_peaks - plot_start text_x, text_y, ha = -30, -5, 'right' if objective_pos < 30 : text_x, text_y, ha = 30, -5, 'left' annot_text = '(CSE+' + str(objective_pos + plot_start - (cse_start_pos + 6) + 0) + ') ' + str(int(round(cut_pred[objective_pos] * 100, 0))) + '% Cleavage' ax1.annotate(annot_text, xy=(objective_pos, cut_pred[objective_pos]), xycoords='data', xytext=(text_x, text_y), ha=ha, fontsize=10, weight="bold", color='black', textcoords='offset points', arrowprops=dict(connectionstyle="arc3,rad=-.1", headlength=8, headwidth=8, shrink=0.15, width=1.5, color='black')) plt.sca(ax1) plt.xlim((0, plot_end - plot_start)) #plt.ylim((0, 2)) plt.xticks([], []) plt.yticks([], []) plt.legend(handles=[l2], fontsize=12, prop=dict(weight='bold'), frameon=False) plt.axis('off') height_base = (1.0 - logo_height) / 2. for j in range(0, pwm.shape[0]) : sort_index = np.argsort(pwm[j, :]) for ii in range(0, 4) : i = sort_index[ii] nt_prob = pwm[j, i] * conservation[j] nt = '' if i == 0 : nt = 'A' elif i == 1 : nt = 'C' elif i == 2 : nt = 'G' elif i == 3 : nt = 'T' color = None if sequence_template[j] != 'N' : color = 'black' if ii == 0 : letterAt(nt, j + 0.5, height_base, nt_prob * logo_height, ax3, color=color) else : prev_prob = np.sum(pwm[j, sort_index[:ii]] * conservation[j]) * logo_height letterAt(nt, j + 0.5, height_base + prev_prob, nt_prob * logo_height, ax3, color=color) text_x, text_y, ha = -30, -5, 'right' if objective_pos < 30 : text_x, text_y, ha = 30, -5, 'left' if j < len(hexamer_scores) : #annot_text = str(hexamer_scores[j][0]) + " = " + str(round(hexamer_scores[j][1], 2)) annot_text = str(hexamer_scores[j][1]) ax3.text(j + 0.25, 2.0, annot_text, size=50, rotation=90., ha="left", va="bottom", fontsize=8, weight="bold", color='black') plt.sca(ax3) plt.xlim((0, plot_end - plot_start)) plt.ylim((0, 2.5)) plt.xticks([], []) plt.yticks([], []) plt.axis('off') ax3.axhline(y=0.01 + height_base, color='black', linestyle='-', linewidth=2) for axis in fig.axes : axis.get_xaxis().set_visible(False) axis.get_yaxis().set_visible(False) plt.tight_layout() if save_figs : plt.savefig(fig_name + '.png', transparent=True, dpi=fig_dpi) plt.savefig(fig_name + '.svg') plt.savefig(fig_name + '.eps') plt.show() #plt.close() mer6_dict = {} i = 0 for b1 in ['A', 'C', 'G', 'T'] : for b2 in ['A', 'C', 'G', 'T'] : for b3 in ['A', 'C', 'G', 'T'] : for b4 in ['A', 'C', 'G', 'T'] : for b5 in ['A', 'C', 'G', 'T'] : for b6 in ['A', 'C', 'G', 'T'] : mer6_dict[b1 + b2 + b3 + b4 + b5 + b6] = i i += 1 def get_hexamer_pred_both_regions(seq) : preds = [] for cell_line, w, w_0 in zip(['hek', 'hela', 'mcf7', 'cho'], [hek_both_regions_w, hela_both_regions_w, mcf7_both_regions_w, cho_both_regions_w], [hek_both_regions_w_0, hela_both_regions_w_0, mcf7_both_regions_w_0, cho_both_regions_w_0]) : pred = w_0 region_1 = seq[5: 40] for j in range(0, len(region_1) - 5) : pred += w[mer6_dict[region_1[j: j+6]]] region_2 = seq[48: 83] for j in range(0, len(region_2) - 5) : pred += w[4096 + mer6_dict[region_2[j: j+6]]] preds.append(1. / (1. + np.exp(-pred))) return np.array(preds) def get_hexamer_diff_scores_both_regions(seq, cell_1, cell_2) : scores = [] w_dict = { 'hek' : hek_both_regions_w, 'hela' : hela_both_regions_w, 'mcf7' : mcf7_both_regions_w, 'cho' : cho_both_regions_w } w_cell_1 = w_dict[cell_1] w_cell_2 = w_dict[cell_2] scores.extend([('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', '')]) region_1 = seq[5: 40] for j in range(0, len(region_1) - 5) : hexamer_score_cell_1 = w_cell_1[mer6_dict[region_1[j: j+6]]] hexamer_score_cell_2 = w_cell_2[mer6_dict[region_1[j: j+6]]] scores.append((region_1[j: j+6], str(round(hexamer_score_cell_1 - hexamer_score_cell_2, 2)))) scores.extend([('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', '')]) region_2 = seq[48: 83] for j in range(0, len(region_2) - 5) : hexamer_score_cell_1 = w_cell_1[4096 + mer6_dict[region_2[j: j+6]]] hexamer_score_cell_2 = w_cell_2[4096 + mer6_dict[region_2[j: j+6]]] scores.append((region_2[j: j+6], str(round(hexamer_score_cell_1 - hexamer_score_cell_2, 2)))) return scores def get_hexamer_preds_both_regions(seqs) : preds = np.zeros((len(seqs), 4)) for i, seq in enumerate(seqs) : preds[i, :] = get_hexamer_pred_both_regions(seq) return preds def get_hexamer_pred(seq) : preds = [] for cell_line, w, w_0 in zip(['hek', 'hela', 'mcf7', 'cho'], [hek_w, hela_w, mcf7_w, cho_w], [hek_w_0, hela_w_0, mcf7_w_0, cho_w_0]) : pred = w_0 region_1 = seq[5: 40] for j in range(0, len(region_1) - 5) : pred += w[mer6_dict[region_1[j: j+6]]] preds.append(1. / (1. + np.exp(-pred))) return np.array(preds) def get_hexamer_diff_scores(seq, cell_1, cell_2) : scores = [] w_dict = { 'hek' : hek_w, 'hela' : hela_w, 'mcf7' : mcf7_w, 'cho' : cho_w } w_cell_1 = w_dict[cell_1] w_cell_2 = w_dict[cell_2] scores.extend([('_', ''), ('_', ''), ('_', ''), ('_', ''), ('_', '')]) region_1 = seq[5: 40] for j in range(0, len(region_1) - 5) : hexamer_score_cell_1 = w_cell_1[mer6_dict[region_1[j: j+6]]] hexamer_score_cell_2 = w_cell_2[mer6_dict[region_1[j: j+6]]] scores.append((region_1[j: j+6], str(round(hexamer_score_cell_1 - hexamer_score_cell_2, 2)))) return scores def get_hexamer_preds(seqs) : preds = np.zeros((len(seqs), 4)) for i, seq in enumerate(seqs) : preds[i, :] = get_hexamer_pred(seq) return preds def decode_onehot_consensus(onehot) : seq = '' for i in range(onehot.shape[0]) : max_j = np.argmax(onehot[i, :]) if max_j == 0 : seq += 'A' elif max_j == 1 : seq += 'C' elif max_j == 2 : seq += 'G' elif max_j == 3 : seq += 'T' return seq def decode_onehots_consensus(onehots) : seqs = [ decode_onehot_consensus(onehots[i, :, :, 0]) for i in range(onehots.shape[0]) ] return seqs
[ "jlinder2@cs.washington.edu" ]
jlinder2@cs.washington.edu
28f39f597186477ec91bf7e05985629bf67e5cc3
d45af79b136fe6f43ec039061dcba323e69fa3d1
/larb/models.py
c8468212b5e95e26c9b8a96d489608776a7d7d66
[]
no_license
claireellul/allauth_tests
9111c552cb44e93725a087ffaf721fb4febbbcee
8f0fdbd390f6ebcae04ac4efb2063efa47a64b66
refs/heads/master
2021-01-09T20:33:42.123935
2016-08-07T09:32:24
2016-08-07T09:32:24
65,121,976
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
from django.contrib.auth.models import User from django.db import models from allauth.account.models import EmailAddress from allauth.socialaccount.models import SocialAccount import hashlib class UserProfile(models.Model): user = models.OneToOneField(User, related_name='profile') about_me = models.TextField(null=True, blank=True) def __unicode__(self): return "{}'s profile".format(self.user.username) class Meta: db_table = 'user_profile' def profile_image_url(self): """ Return the URL for the user's Facebook icon if the user is logged in via Facebook, otherwise return the user's Gravatar URL """ fb_uid = SocialAccount.objects.filter(user_id=self.user.id, provider='facebook') if len(fb_uid): return "http://graph.facebook.com/{}/picture?width=40&height=40".format(fb_uid[0].uid) return "http://www.gravatar.com/avatar/{}?s=40".format( hashlib.md5(self.user.email).hexdigest()) def account_verified(self): """ If the user is logged in and has verified hisser email address, return True, otherwise return False """ result = EmailAddress.objects.filter(email=self.user.email) if len(result): return result[0].verified return False User.profile = property(lambda u: UserProfile.objects.get_or_create(user=u)[0])
[ "c.ellul@ucl.ac.uk" ]
c.ellul@ucl.ac.uk
99d0f95105b52e4fc4cfacbe6ec49fbd64f80a9d
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/INTERVIEW-PREP-COMPLETE/Leetcode/170.py
b238a6610bd16f36ca650f8091f32d871ece572a
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
865
py
class TwoSum: def __init__(self): """ Initialize your data structure here. """ self.d = {} def add(self, number: int) -> None: """ Add the number to an internal data structure.. """ if number in self.d: self.d[number] += 1 else: self.d[number] = 1 def find(self, value: int) -> bool: """ Find if there exists any pair of numbers which sum is equal to the value. """ result = False for n in self.d: if value - n in self.d: if value - n == n: result = self.d[n] > 1 else: return True return result # Your TwoSum object will be instantiated and called as such: # obj = TwoSum() # obj.add(number) # param_2 = obj.find(value)
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
f94aab8232101484b98aba33e99cbdde14146796
cddfc1e27c32e0913c144694727d78d1e9961490
/locallibreria/noticias/migrations/0040_auto_20201128_1826.py
27231fd7ef3078c1115d7fa4a3e9a06384dc472c
[]
no_license
jimfox27/Fase3BarrigaCabrera001
faf47502365603974721881d4e6d810286325369
149504becd4552a80f1c9b4fe8f48cb837ea4dfa
refs/heads/main
2023-01-23T11:03:08.589478
2020-11-30T02:57:42
2020-11-30T02:57:42
317,052,644
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# Generated by Django 3.1.2 on 2020-11-28 21:26 from django.conf import settings from django.db import migrations class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('noticias', '0039_profile'), ] operations = [ migrations.RenameModel( old_name='Profile', new_name='Perfil', ), migrations.RemoveField( model_name='analisis', name='autor', ), migrations.RemoveField( model_name='post', name='autor', ), migrations.DeleteModel( name='User', ), ]
[ "jim.cabrera@alumnos.duoc.cl" ]
jim.cabrera@alumnos.duoc.cl
b0fd358140c1977de4c6b967445752375d5b320d
0841643267b9fc1478f6e3d21bfccb17aba67af6
/gs_quant/test/timeseries/multi_measure/test_commod.py
62cf3e27ac706122e335c093c15aad79882e93ec
[ "Apache-2.0" ]
permissive
goldmansachs/gs-quant
55618e0e4e961d4ee50b7393f27c258e2647a957
4cf8ec75c4d85b16ec08371c46cc1a9ede9d72a2
refs/heads/master
2023-08-20T00:55:43.324547
2023-08-16T16:55:22
2023-08-16T16:55:22
161,840,815
2,088
596
Apache-2.0
2023-08-16T16:55:23
2018-12-14T21:10:40
Jupyter Notebook
UTF-8
Python
false
false
2,325
py
""" Copyright 2021 Goldman Sachs. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import pandas as pd import pytest from gs_quant.timeseries import USE_DISPLAY_NAME from pandas.testing import assert_series_equal from testfixtures import Replacer from gs_quant.api.gs.data import MarketDataResponseFrame from gs_quant.data import DataContext from gs_quant.errors import MqError from gs_quant.markets.securities import CommodityNaturalGasHub, Cross from gs_quant import timeseries as tm _test_datasets = ('TEST_DATASET',) @pytest.mark.skipif(not USE_DISPLAY_NAME, reason="requires certain evnvar to run") def test_forward_price(): # Tests for US NG assets def mock_natgas_forward_price(_cls, _q, ignore_errors=False): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_natgas_forward_price) mock = CommodityNaturalGasHub('MA001', 'AGT') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = pd.Series(tm.forward_price(mock, price_method='GDD', contract_range='F21')) expected = pd.Series([2.880], index=[datetime.date(2019, 1, 2)], name='price') assert_series_equal(expected, actual) with pytest.raises(MqError): tm.forward_price(Cross('MA002', 'USD/EUR'), price_method='GDD', contract_range='F21') replace.restore() if __name__ == "__main__": pytest.main(args=["test_commod.py"])
[ "noreply@github.com" ]
goldmansachs.noreply@github.com
670d6399b2a39e759e420646da725fcdb2bf9977
93ad9efb1576207fe53d2d46051088d507aaae82
/Day05/regex3.py
c5ba0a293b4d7611743cd30d28a303db3be3d274
[]
no_license
akkiaakriti/FSDP_2019
0e18653122ef283b4fa917edea9b644db3132ff7
6768d57642e441377dfc01f18f73240caeb97b34
refs/heads/master
2020-06-04T04:51:24.274917
2019-06-14T07:08:35
2019-06-14T07:08:35
191,879,133
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
# -*- coding: utf-8 -*- """ Created on Fri Jun 7 13:21:14 2019 @author: Aakriti """ card=[] n=int(input("enter the no.of credit cards>>")) for i in range(n): st=input("enter the credit card no. \n") card.append(st) print(card) import re #check whether valid or not card for num in card: if re.search(r'^[456]+[0-9]{15}$',num): print(True) else: print(False)
[ "aakritiya2001@gmail.com" ]
aakritiya2001@gmail.com
97a4c72c7fcccc9e7f1ef779b3c122d0659d0abc
d37c6cb24324325ce54306bfe538c7582fae1dcd
/testapp/eventhandler/migrations/0004_remove_event_author.py
6b065e4d33e7b46290c814ba15688074b8462a0d
[]
no_license
lazysuperturtle/webPortfolio
fa996e7e7179197b3fc203d081131442869d0a32
7e50fac890e7c3b03cf965b86e6aa46b90612c9d
refs/heads/master
2022-11-18T09:34:08.217802
2020-07-09T18:39:40
2020-07-09T18:39:40
278,443,352
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# Generated by Django 2.2.7 on 2020-05-02 12:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('eventhandler', '0003_auto_20200502_1144'), ] operations = [ migrations.RemoveField( model_name='event', name='author', ), ]
[ "denisbereziuc@gmail.com" ]
denisbereziuc@gmail.com
74f7f62634d459c2674276c9979443d8848b6d3c
54e5ef4f91e271ad8ae4582bac30257e52095aff
/leetcode/Compress_the_string.py
2bfcfd7e697601b2ca77385d055a82d1a50449a2
[]
no_license
Rahuly-adav/leetcode
71e1fa638f689f45283e0022b34bbd58be4e6d5f
c2f345e3bd8353e01fc09ee1308f946dbc027c90
refs/heads/main
2023-02-25T10:42:36.189639
2021-02-02T13:28:56
2021-02-02T13:28:56
335,296,597
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
a="1213412346453876587654653425345343334343" b=[] i=0 while i<len(a): co=1 d=1 for j in range(i+1,len(a)): if a[i]==a[j]: co+=1 d+=1 else: break b.append([a[i],co]) i+=d print(b)
[ "noreply@github.com" ]
Rahuly-adav.noreply@github.com
e59776c112e433c63c93c9b9c5ec31a490ebdcd0
6241a486ce4969187d9d1939bda063168b41927b
/SDL/occurance.py
d30cb93fe1ec49584f13b9a660e3cefc315f1fe5
[]
no_license
AadityaDeshpande/TE-Assignments
0b9de8d691f26b6056360b8ce727ea0893bc628e
730480624d7a6952f2c23213c4f2711477e5eeaa
refs/heads/master
2022-03-07T15:12:06.603440
2019-09-25T13:34:51
2019-09-25T13:34:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
#input a word to search in a given string para="this is a string to test the program hello hello is " print(para) para=para.split(" ") count=0 z=input("Enter a word to search : ") for i in para: if(i==z): count=count+1 print("***************************OUTPUT*****************************") print("occurance of "+z+" is :") print(count)
[ "noreply@github.com" ]
AadityaDeshpande.noreply@github.com
cc3955239bdf5d9f39a4dce8866b9062fe174133
cbd5be8ec36d68dce7ebbfd78277ffe80bf0e50d
/fibo.py
e8eaed97ab1f5c13e3dd9caf1b2150da92af656f
[]
no_license
Gaya3balu0509/program
56afa3451da71d7e434b3a1c10d22cef71e63acb
9b1c5c42b9f57368ecc2ee274e56d2ee094a58c8
refs/heads/master
2020-05-28T03:19:43.368488
2019-08-12T11:35:30
2019-08-12T11:35:30
188,865,443
0
1
null
null
null
null
UTF-8
Python
false
false
116
py
numb1=int(input()) a,b=0,1 print(b,end=" ") for i in range(1,numb1): c=a+b print(c,end=" ") a=b b=c
[ "noreply@github.com" ]
Gaya3balu0509.noreply@github.com
3d770c7e452d235ccfc7f3f73b99e99c26666f20
a5ce0be27c22f3db1a9829c5c30142a7db21daeb
/Sifter2-master/Fargate/Orchestrator/register_task.py
1dddd3e6fcd3815006c0771eb5fc6d512781356f
[]
no_license
naveen-10d/backend-shift
eaa6fa49d48c55ddb194bd99ba9d45014a2d4f3a
fc7b9fd57525b5752ceddefd9933e2feeff3655c
refs/heads/master
2020-03-29T16:29:49.833605
2018-09-24T14:34:04
2018-09-24T14:34:04
150,116,190
0
0
null
null
null
null
UTF-8
Python
false
false
916
py
import boto3 client = boto3.client('ecs') response = client.register_task_definition( family='test', networkMode= 'awsvpc', cpu='256', memory='512', taskRoleArn='arn:aws:iam::967636366309:role/ecsExecutionRole', executionRoleArn='arn:aws:iam::967636366309:role/ecsExecutionRole', requiresCompatibilities=[ 'FARGATE' ], containerDefinitions=[ { 'name': 'testhttp', 'command': [ 'sleep', '360', ], #'cpu': 256, 'essential': True, "image": "967636366309.dkr.ecr.us-east-1.amazonaws.com/geppetto/httpd:latest", #'memory': 512, 'portMappings': [ { "hostPort": 80, "protocol": "tcp", "containerPort": 80 } ], }, ], ) print(response) #taskRoleArn='',
[ "navyn10d@gmail.com" ]
navyn10d@gmail.com
c07ae0324a8d1e763a658f7ca5d998829eaab954
2ea690a9cd4560aeaaa78dd54a88cc1f1a28b6fc
/fooddelivery/dbinsert.py
5eff11bd717f0af16dbf31de1eb4eb02a4601793
[ "MIT" ]
permissive
rasika-chavan/Food-Delivery-System
56efb6c7864ff364984773a7cf268cf2d9f4fd22
9306c49ab26973a8e209f976ce027ac7e675f7b3
refs/heads/master
2021-04-23T18:13:13.029676
2020-04-24T05:29:11
2020-04-24T05:29:11
249,962,433
1
1
null
null
null
null
UTF-8
Python
false
false
2,426
py
import sqlite3 conn = sqlite3.connect('C:/Users/Admin/Desktop/foodizz/fooddelivery/site1.db') print("DB connected sucessfully") cursor = conn.cursor() print("Connected to SQLite") sqlite_insert_query = """insert into course(coid,catgry_id,coname)values(30,0,"Desserts") """ count=cursor.execute(sqlite_insert_query) conn.commit() print("Inserted sucessfully") cursor.close() if(conn): conn.close() print("Connection closed") ''' def convertToBinaryData(filename): #Convert digital data to binary format with open(filename, 'rb') as file: blobData = file.read() return blobData def insertBLOB(pid, name, cost, details, category_id,category_name, course_id, course_name, restro_id, image_file1,quantity,food_type,iaa,ibb,icc,idd,iee,iff): try: conn = sqlite3.connect('C:/Users/Admin/Desktop/Foodizz/fooddelivery/site1.db') cursor = conn.cursor() print("Connected to SQLite") sqlite_insert_blob_query = """INSERT INTO product(pid, name, cost, details, category_id, category_name,course_id,course_name,restro_id, image_file1,quantity,food_type,iaa,ibb,icc,idd,iee,iff) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?,?,?,?,?,?,?,?)""" if image_file1: img1 = convertToBinaryData(image_file1) else: img1=None # Convert data into tuple format data_tuple = (pid, name, cost, details, category_id,category_name, course_id, course_name, restro_id, img1,quantity,food_type,iaa,ibb,icc,idd,iee,iff) cursor.execute(sqlite_insert_blob_query, data_tuple) conn.commit() print("Image and file inserted successfully as a BLOB into a table") cursor.close() except sqlite3.Error as error: print("Failed to insert blob data into sqlite table", error) finally: if (conn): conn.close() print("the sqlite connection is closed") insertBLOB(630012,"WINE CAKE",365, "Wine cake, known in Spanish as torta envinada, is a cake made with wine in Colombian cuisine.Torta negra Colombiana (Colombian black cake) and Bizcocho Negro are similar cakes with varying ingredients (raisins, candied fruit, and rum)", 6, "CAKE AND PASTRIES",30,"Desserts",00, "C:/Users/Admin/Desktop/Foodizz/fooddelivery/static/c12.jpg" ,"500 GM","Non Veg","Energy : 470 Cal", "Proteins : 7g", "Carbohydrates : 59g", "Fat : 13g", "Fiber : 0.5g", "Cholestrol : 10mg" ) '''
[ "shreyadj5@gmail.com" ]
shreyadj5@gmail.com
2b09786d97063f6e780eec0529832c7d10ea7f7c
aa771dcaaa255c49c36a7d29d6321932c584134f
/transformer_lm.py
7c802066440e2c8b4b9da85cf831f5bb94c1862c
[]
no_license
svwriting/Anytime-Auto-Regressive-Model
88a81860913fefe93e7cc90117ee563addee77b9
9ee5a833e3614a20d98b64243e902f7995b90e26
refs/heads/master
2023-06-13T04:52:29.056698
2021-06-23T01:37:24
2021-06-23T01:37:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,131
py
from fairseq import options, utils from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( Embedding, TransformerDecoder, ) from fairseq.modules import ( AdaptiveInput, CharacterTokenEmbedder, ) DEFAULT_MAX_TARGET_POSITIONS = 1024 #@register_model('transformer_lm') class TransformerLanguageModel(FairseqLanguageModel): @classmethod def hub_models(cls): def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } return { 'transformer_lm.gbw.adaptive_huge': 'https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2', 'transformer_lm.wiki103.adaptive': 'https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.tar.bz2', 'transformer_lm.wmt19.en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2'), 'transformer_lm.wmt19.de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2'), 'transformer_lm.wmt19.ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2'), } def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension') parser.add_argument('--decoder-input-dim', type=int, metavar='N', help='decoder input dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--no-decoder-final-norm', action='store_true', help='don\'t add an extra layernorm after the last decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') # fmt: on @classmethod def build_model(cls, args, vocab_size): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) embed_tokens = Embedding(vocab_size, args.decoder_input_dim) decoder = TransformerDecoder( args, None, embed_tokens, no_encoder_attn=True, ) return TransformerLanguageModel(decoder) #@register_model_architecture('transformer_lm', 'transformer_lm') def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, 'decoder_final_norm'): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = 0.1 args.attention_dropout = 0.0 args.activation_dropout = 0.0 args.decoder_embed_dim = 512 args.decoder_ffn_embed_dim = 2048 args.decoder_layers = 6 args.decoder_attention_heads = 8 args.decoder_learned_pos = False args.activation_fn = 'relu' args.add_bos_token = False args.no_token_positional_embeddings = False args.share_decoder_input_output_embed = True args.decoder_output_dim = 512 args.decoder_input_dim = 512 # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = False args.no_scale_embedding = False args.layernorm_embedding = False args.max_target_positions = 100
[ "aaronxu@DNab421a90.stanford.edu" ]
aaronxu@DNab421a90.stanford.edu
96cfb7c483f708319a7c00e984a8af71fdb83c5e
121e16003427287b14a93fe7c3e915715cb16ff8
/config.py
4c2e1f1158a15987fd0d28e9da87046685a4deb2
[]
no_license
sandsmark/desman
6eac2ffb83259acbc45b78cefc1cf15c366d5790
cb138159772a238a1bae3ba02a357c504d23f1b5
refs/heads/master
2021-03-13T00:12:01.574273
2014-06-13T21:37:48
2014-06-13T21:37:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Configuration - the python way ------------------------------ Fuck. """ #### #### # Generic Configuration # # Path to where Lollercoaster is installed: PATH = "/home/cassarossa/itk/sandsmark/prosjekter/lollercoaster" # Key used to authenticate communication: KEY = "L%Fdfffd¤T¤%&//¤#RQWERFWE%T har har har, I'm an incredib" #### #### # Tester configuration # # Local tests to run: LOCAL_TESTS = ('apache_local', 'ssh_local') # Port for the tester to listen on: TESTER_PORT = 65000 # Max. number of threads: MAX_CHILDREN = 10 # Path to tests: TESTS_PATH = PATH + "/tests/"
[ "martin.sandsmark@kde.org" ]
martin.sandsmark@kde.org
8134fcc62254ea05f408dee156c66462980f38c1
0b0f29a6c02c800a3efe6c832438356df1faf39a
/tensorflow/lite/experimental/examples/lstm/unidirectional_sequence_rnn_test.py
6f9e2dd9498f03665b52e423db43ce38d5401eb1
[ "Apache-2.0" ]
permissive
minminsun/tensorflow
aa6ad47307e72489836015b116630efea89303ce
0f2192d6439bf6826d71f2ca46dbe44d585883af
refs/heads/master
2021-05-10T11:54:07.972749
2019-01-31T08:15:57
2019-01-31T08:15:57
168,342,618
1
0
Apache-2.0
2019-01-30T14:49:22
2019-01-30T12:53:21
C++
UTF-8
Python
false
false
7,155
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np import tensorflow as tf from tensorflow import flags from tensorflow.examples.tutorials.mnist import input_data from tensorflow.lite.experimental.examples.lstm.tflite_rnn import TfLiteRNNCell from tensorflow.lite.python.op_hint import convert_op_hints_to_stubs from tensorflow.python.framework import test_util from tensorflow.python.platform import test from tensorflow.python.tools import optimize_for_inference_lib FLAGS = flags.FLAGS # Number of steps to train model. TRAIN_STEPS = 1 CONFIG = tf.ConfigProto(device_count={"GPU": 0}) class UnidirectionalSequenceRnnTest(test_util.TensorFlowTestCase): def __init__(self, *args, **kwargs): super(UnidirectionalSequenceRnnTest, self).__init__(*args, **kwargs) # Define constants # Unrolled through 28 time steps self.time_steps = 28 # Rows of 28 pixels self.n_input = 28 # Learning rate for Adam optimizer self.learning_rate = 0.001 # MNIST is meant to be classified in 10 classes(0-9). self.n_classes = 10 # Batch size self.batch_size = 16 # Rnn Units. self.num_units = 16 def setUp(self): super(UnidirectionalSequenceRnnTest, self).setUp() # Import MNIST dataset data_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) self.mnist = input_data.read_data_sets(data_dir, one_hot=True) def buildRnnLayer(self): return tf.nn.rnn_cell.MultiRNNCell([ TfLiteRNNCell(self.num_units, name="rnn1"), TfLiteRNNCell(self.num_units, name="rnn2") ]) def buildModel(self, rnn_layer): # Weights and biases for output softmax layer. out_weights = tf.Variable( tf.random_normal([self.num_units, self.n_classes])) out_bias = tf.Variable(tf.random_normal([self.n_classes])) # input image placeholder x = tf.placeholder( "float", [None, self.time_steps, self.n_input], name="INPUT_IMAGE") # x is shaped [batch_size,time_steps,num_inputs] rnn_input = tf.unstack(x, self.time_steps, 1) outputs, _ = tf.nn.static_rnn(rnn_layer, rnn_input, dtype="float32") # Compute logits by multiplying outputs[-1] of shape [batch_size,num_units] # by the softmax layer's out_weight of shape [num_units,n_classes] # plus out_bias prediction = tf.matmul(outputs[-1], out_weights) + out_bias output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") return x, prediction, output_class def trainModel(self, x, prediction, output_class, sess): # input label placeholder y = tf.placeholder("float", [None, self.n_classes]) # Loss function loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss) # Initialize variables sess.run(tf.global_variables_initializer()) for _ in range(TRAIN_STEPS): batch_x, batch_y = self.mnist.train.next_batch( batch_size=self.batch_size, shuffle=False) batch_x = batch_x.reshape((self.batch_size, self.time_steps, self.n_input)) sess.run(opt, feed_dict={x: batch_x, y: batch_y}) def saveAndRestoreModel(self, rnn_layer, sess, saver): """Saves and restores the model to mimic the most common use case. Args: rnn_layer: The rnn layer either a single rnn cell or a multi rnn cell. sess: Old session. saver: saver created by tf.train.Saver() Returns: A tuple containing: - Input tensor of the restored model. - Prediction tensor of the restored model. - Output tensor, which is the softwmax result of the prediction tensor. - new session of the restored model. """ model_dir = tempfile.mkdtemp(dir=FLAGS.test_tmpdir) saver.save(sess, model_dir) # Reset the graph. tf.reset_default_graph() x, prediction, output_class = self.buildModel(rnn_layer) new_sess = tf.Session(config=CONFIG) saver = tf.train.Saver() saver.restore(new_sess, model_dir) return x, prediction, output_class, new_sess def getInferenceResult(self, x, output_class, sess): b1, _ = self.mnist.train.next_batch(batch_size=1) sample_input = np.reshape(b1, (1, self.time_steps, self.n_input)) expected_output = sess.run(output_class, feed_dict={x: sample_input}) frozen_graph = tf.graph_util.convert_variables_to_constants( sess, sess.graph_def, [output_class.op.name]) return sample_input, expected_output, frozen_graph def tfliteInvoke(self, graph, test_inputs, outputs): tf.reset_default_graph() # Turn the input into placeholder of shape 1 tflite_input = tf.placeholder( "float", [1, self.time_steps, self.n_input], name="INPUT_IMAGE_LITE") tf.import_graph_def(graph, name="", input_map={"INPUT_IMAGE": tflite_input}) with tf.Session() as sess: curr = sess.graph_def curr = convert_op_hints_to_stubs(graph_def=curr) curr = optimize_for_inference_lib.optimize_for_inference( curr, ["INPUT_IMAGE_LITE"], ["OUTPUT_CLASS"], [tf.float32.as_datatype_enum]) tflite = tf.lite.toco_convert( curr, [tflite_input], [outputs], allow_custom_ops=False) interpreter = tf.lite.Interpreter(model_content=tflite) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]["index"] interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = interpreter.get_output_details()[0]["index"] result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences. interpreter.reset_all_variables() return result def testStaticRnnMultiRnnCell(self): sess = tf.Session(config=CONFIG) x, prediction, output_class = self.buildModel(self.buildRnnLayer()) self.trainModel(x, prediction, output_class, sess) saver = tf.train.Saver() x, prediction, output_class, new_sess = self.saveAndRestoreModel( self.buildRnnLayer(), sess, saver) test_inputs, expected_output, frozen_graph = self.getInferenceResult( x, output_class, new_sess) result = self.tfliteInvoke(frozen_graph, test_inputs, output_class) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) if __name__ == "__main__": test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
8d6fdd93b74d1e23f7bc5d19b6e87989d4225dd9
60a107093402d7a50b4a16d495d043b9b71757f9
/model_builder.py
b888cf3702cf12bcf1b809a839732b526572130e
[ "MIT" ]
permissive
AtriSaxena/ssd-detection-app
9428b8b6fe9e7f500f224922cc08e63b660fe600
2662d93c8daf0ed2226c4d956037ce14e092d94f
refs/heads/master
2020-12-26T23:52:40.653368
2020-02-02T00:43:37
2020-02-02T00:43:37
237,694,205
4
0
null
null
null
null
UTF-8
Python
false
false
2,080
py
# ssds part #from lib.modeling.ssds import ssd #from lib.modeling.ssds import ssd_lite import rfb #from lib.modeling.ssds import rfb_lite #from lib.modeling.ssds import fssd #from lib.modeling.ssds import fssd_lite #from lib.modeling.ssds import yolo ssds_map = { 'rfb': rfb.build_rfb, } # nets part #from lib.modeling.nets import vgg import resnet #from lib.modeling.nets import mobilenet #from lib.modeling.nets import darknet networks_map = { 'resnet_18': resnet.resnet_18, 'resnet_34': resnet.resnet_34, 'resnet_50': resnet.resnet_50, 'resnet_101': resnet.resnet_101 } from prior_box import PriorBox import torch def _forward_features_size(model, img_size): model.eval() x = torch.rand(1, 3, img_size[0], img_size[1]) x = torch.autograd.Variable(x, volatile=True) #.cuda() feature_maps = model(x, phase='feature') return [(o.size()[2], o.size()[3]) for o in feature_maps] def create_model(): ''' ''' ASPECT_RATIOS = [[2,3], [2, 3], [2, 3], [2, 3], [2], [2]] IMAGE_SIZE = [300, 300] FEATURE_LAYER = [[22, 34, 'S', 'S', '', ''], [512, 1024, 512, 256, 256, 256]] NUM_CLASSES = 21 SIZES = [0.2, 0.95] STEPS = [] CLIP = True # base = networks_map['resnet_50'] number_box= [2*len(aspect_ratios) if isinstance(aspect_ratios[0], int) else len(aspect_ratios) for aspect_ratios in ASPECT_RATIOS] model = ssds_map['rfb'](base=base, feature_layer=FEATURE_LAYER, mbox=number_box, num_classes= NUM_CLASSES) # print(model) feature_maps = _forward_features_size(model, IMAGE_SIZE) print('==>Feature map size:') print(feature_maps) # priorbox = PriorBox(image_size=IMAGE_SIZE, feature_maps=feature_maps, aspect_ratios=ASPECT_RATIOS, scale=SIZES, archor_stride=STEPS, clip=CLIP) # priors = Variable(priorbox.forward(), volatile=True) return model, priorbox
[ "noreply@github.com" ]
AtriSaxena.noreply@github.com
14fc007e35c67323a39194333b4fc33d88ef3611
bcfb257c25fda93175613ec17d0261fa9d8cebfc
/DownWeb/OpenStack/apps.py
0d604a888fdd64fcf74a27c83af66aebd15f0b38
[]
no_license
downtiser/DownWeb
cca02e532c6d584a6e4e33f694d9e034d526e660
3c5c86a971a0c79af6e61b9b4d45edb8ce350b82
refs/heads/master
2020-03-28T14:29:55.013783
2018-09-14T08:20:54
2018-09-14T08:20:54
148,492,871
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
from django.apps import AppConfig class OpenstackConfig(AppConfig): name = 'OpenStack'
[ "noreply@github.com" ]
downtiser.noreply@github.com
cc6bf435aa7d12ea3ebbb2f45ae5a21a4c5deb36
512ac468047cf3b8bf2580ac99c80fb8f0f938d3
/daemon/lib/raw_parsers/document_raw_parser.py
0a8a03ea4acfec3f846f1249c2f931b4d3644f66
[]
no_license
secaglobal/Document-Generator
033b6d7a4eac7a761ba4209a16bf735592f2cc1e
bd80258cfd72703f126eedc06be53176e6168d27
refs/heads/master
2016-09-05T09:13:04.486702
2012-03-18T18:59:01
2012-03-18T18:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
import logging import FileBroken from Exceptions import JSONRawParser from json_raw_parser DocumentRawParser(object): """Interface for parsing document raw files (pattern Bridge)""" def __init__(self, filepath): self.filepath = filepath self.parser_impl = None def __getParser(self): """Returns parser""" if not self.parser_impl: fp = file(self.filepth, 'r') line = fp.readline() if line == 'json0': self.parser_impl = JSONRawParser(fp) else: raise FileBroken() return self.parser_impl
[ "levandovskiy.s@gmail.com" ]
levandovskiy.s@gmail.com
e937b8b73e73ecfc56fbada1397ff4fb0189da70
a925f08a313f3e74e02a1793db7679a37edf26ec
/homework, 2-1.py
8733dc0c8beb4c0abc18583de09ccd8bcaec5069
[]
no_license
oynovichkova/python-learning
b1a5d476bdcc566bdf7b7d789eaa4ec78c96ea5a
a6727824fefa4c2f5cc6667da426549689263d26
refs/heads/master
2021-01-20T06:11:44.819623
2017-05-29T15:44:45
2017-05-29T15:44:45
89,849,716
1
1
null
null
null
null
UTF-8
Python
false
false
396
py
#1. Написать функцию принимающую на вход число и # возвращающую последовательность чисел Фибоначи до этого числа. n=int(input()) from __future__ import division import math def fib(n): SQRT5 = math.sqrt(5) PHI = (SQRT5 + 1) / 2 return int(PHI ** n / SQRT5 + 0.5) print(fib(n))
[ "noreply@github.com" ]
oynovichkova.noreply@github.com
d9684aba570e5e88fb207cccb8de9c32dddb5451
3345eb032afa159a5b4b32fe0b62e4435dac523f
/dingtalk/api/rest/OapiEduFamilyChildGetRequest.py
42eedcee8bcf1a1220f5d83407a7417d041548e1
[]
no_license
xududu/dingDingApi
ada6c17e5c6e25fd00bdc4b444171b99bc9ebad7
b1e7c384eb8fb7f79f6f5a6879faadfa95d3eda3
refs/heads/master
2023-08-31T03:04:48.438185
2021-10-13T08:52:13
2021-10-13T08:52:13
416,558,271
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
''' Created by auto_sdk on 2021.01.20 ''' from dingtalk.api.base import RestApi class OapiEduFamilyChildGetRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.child_userid = None self.op_userid = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.edu.family.child.get'
[ "739893589@qq.com" ]
739893589@qq.com
def48508b78949edd5005daa6c518427f898c0c1
0f2c8dcd9b54e1c2723c18f1207a9b3b668e20be
/hints.py
035607b5c5ac301348e7358568c9e634ca345cb9
[]
no_license
DiWorm/py-selenium-learning
68b68e11caf4f167c71d22715664688d11a69894
ba3fccfbbaf8e4318a13b327ef5aff02be5c5f9a
refs/heads/master
2020-04-26T23:56:54.201935
2019-04-02T10:32:51
2019-04-02T10:32:51
173,919,200
0
0
null
null
null
null
UTF-8
Python
false
false
6,535
py
#element exist? from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By def is_element_present(driver, *args): try: driver.find_element(*args) return True except NoSuchElementException: return False is_element_present(driver, By.name, "q") ### def are_elements_present(driver, *args): return len(driver.find_elements(*args)) > 0 are_elements_present(driver, By.name, "q") #################################################################### #wait element #настройка неявных ожиданий driver.implicitly_wait(10) element = driver.find_element_by_name("q") #явное ожидание появления элемента from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By wait = WebDriverWait(driver, 10) # seconds element = wait.until(EC.presence_of_element_located((By.NAME, "q"))) # обратите внимание, что локатор передается как tuple! #################################################################### #find element by JS (Execute script) (nice wuth jquerry) links = driver.execute_script("return $$('a:contains((WebDriver)')") #################################################################### #send keys from selenium.webdriver.common.keys import Keys search_field.send_keys("selenium" + Keys.ENTER) # если в поле есть маска -- надо перед вводом текста перейти в начало date_field.send_keys(Keys.HOME + "01.01.2001") #################################################################### #drag n drop from selenium.webdriver.common.action_chains import ActionChains ActionChains(driver).move_to_element(drag).click_and_hold().move_to_element(drop).release().perform() #################################################################### #wait element from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By wait = WebDriverWait(driver, 10) # seconds # обратите внимание, что локатор передается как tuple! element = wait.until(EC.presence_of_element_located((By.NAME, "q"))) element2 = wait.until(lambda d: d.find_element_by_name("q")) #################################################################### #refresh element from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By wait = WebDriverWait(driver, 10) # seconds driver.refresh() wait.until(EC.staleness_of(element)) #################################################################### #wait visible from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC wait = WebDriverWait(driver, 10) # seconds wait.until(EC.visibility_of(element)) #################################################################### #dismiss alerts alert = driver.switch_to_alert() alert_text = alert.text alert.accept() # либо alert.dismiss() #################################################################### #new tabs main_window = driver.current_window_handle old_windows = driver.window_handles link.click() # открывает новое окно # ожидание появления нового окна, # идентификатор которого отсутствует в списке oldWindows, # остаётся в качестве самостоятельного упражнения new_window = wait.until(there_is_window_other_than(old_windows)) driver.switch_to_window(new_window) # ... driver.close() driver.switch_to_window(main_window) #################################################################### #switch to frame driver.switch_to_frame(driver.find_element_by_tag_name("iframe")) driver.switch_to_default_content() #################################################################### #some shit with windows driver.set_window_size(800, 600) driver.maximize_window() #################################################################### #work with server driver = webdriver.Remote("http://localhost:4444/wd/hub", desired_capabilities={"browserName": "chrome"}) #################################################################### ##event finding c# from selenium.webdriver.support.events import EventFiringWebDriver, AbstractEventListener class MyListener(AbstractEventListener): def before_find(self, by, value, driver): print(by, value) def after_find(self, by, value, driver): print(by, value, "found") def on_exception(self, exception, driver): print(exception) wd = EventFiringWebDriver(webdriver.Chrome(), MyListener()) #################################################################### #get screenshoot driver.get_screenshot_as_file('screen.png') #################################################################### #get browser logs for l in driver.get_log("browser"): print(l) #################################################################### #proxy traffic driver = webdriver.Chrome(desired_capabilities={"proxy": {"proxyType": "MANUAL", "httpProxy": "localhost:8888"}}) #################################################################### ''' BrowserMobProxy (Java): https://github.com/lightbody/browsermob-proxy BrowserMobProxy, обёртка для C#: https://github.com/AutomatedTester/AutomatedTester.BrowserMob Пример использования: http://automatedtester.science/load-testing-with-selenium-and-browsermob-proxy/ Ещё одна обёртка для C#: https://github.com/tmulkern/RemoteBrowserMobProxy BrowserMobProxy, обёртка для Python: https://github.com/AutomatedTester/browsermob-proxy-py BrowserMobProxy, обёртка для Ruby: https://github.com/jarib/browsermob-proxy-rb BrowserMobProxy, обёртка для JavaScript: https://github.com/zzo/browsermob-node Что можно делать при помощи прокси: http://selenium2.ru/articles/106-selenium-i-browsermobproxy-vmeste-veselee.html Titanium: встраиваемый прокси на .Net: https://github.com/justcoding121/Titanium-Web-Proxy FiddlerCore: встраиваемый прокси на .Net: http://www.telerik.com/fiddler/fiddlercore mitmproxy: встраиваемый прокси на Python: https://mitmproxy.org/ '''
[ "dyworm@gmail.com" ]
dyworm@gmail.com
99324ee02481ac62b51faf12124967285ab469b3
f516b7561b93f640bcb376766a7ecc3440dcbb99
/contests/codeforces/ed-59-div-2-rated/a.py
72f069f62c4b5f6ac44f9b6d8c8c6372abc9c36c
[ "Apache-2.0" ]
permissive
vtemian/interviews-prep
c41e1399cdaac9653c76d09598612f7450e6d302
ddef96b5ecc699a590376a892a804c143fe18034
refs/heads/master
2020-04-30T15:44:42.116286
2019-09-10T19:41:41
2019-09-10T19:41:41
176,928,167
8
1
null
null
null
null
UTF-8
Python
false
false
321
py
n = int(input()) def solve(): no_digits = int(input()) seq = input() if len(seq) < 2: print('NO') return first = seq[0] if not int(first) < int(seq[1:]): print('NO') return print('YES') print('2') print(first, seq[1:]) while n: solve() n -= 1
[ "vladtemian@gmail.com" ]
vladtemian@gmail.com
38740b98576b55d5cd8c85e332533a2421918824
c24ad19b65992dd2be3d3210b889d970e43b9cdc
/class/phase1/day14/exercise01.py
8005be1464a334e50856aaca74d8b3cb1914041a
[]
no_license
ivoryli/myproject
23f39449a0bd23abcc3058c08149cebbfd787d12
cebfa2594198060d3f8f439c971864e0639bbf7e
refs/heads/master
2020-05-30T06:25:41.345645
2019-05-31T11:15:55
2019-05-31T11:15:55
189,578,491
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
def get_score(): while True: try: n = int(input("请输入成绩:")) except ValueError: print("输入有误") continue if 0 < n < 101: return n print("成绩不在范围内") get_score()
[ "2712455490@qq.com" ]
2712455490@qq.com
117b993bbae896721a3b122edc3855657b696d81
85cb87ea9f1faa780b14ca5acbc8ebd96feb498d
/leetcode_python/pic45.py
b26ce3b880a2fa3622c1d080df6b04161de06a74
[]
no_license
Bxyz/learnPython
0225f0a70297eff68b1d77a447e95a35c24ba7f0
dfd698ed8237b47b0162d4840184c5d7c22f7c6c
refs/heads/master
2021-05-22T16:55:13.362339
2018-10-22T04:33:08
2018-10-22T04:33:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
a = 77 b = a & 3 print(b) b = a & 0 print(b) #按位与:0&0=0; 0&1=0; 1&0=0; 1&1=1。
[ "645112728@qq.com" ]
645112728@qq.com
e65a43c45593bea9823add36d55d59cbf9ee83a9
ae7849ced646132c235f1244856ef8f08108a294
/4sqdungeoncrawl.com/passenger_wsgi.py
0c744ef715fffe524428fe5f7b65e3fff81f80c9
[]
no_license
sarvenna/dungeoncrawl
81726547c6e78846a9cf4fd2fa7dec7ba76137d5
f5849a849fce90297efe57a1b6d9adcb7b98170e
refs/heads/master
2021-01-10T00:54:42.031590
2011-02-20T01:12:47
2011-02-20T01:12:47
1,386,708
2
0
null
null
null
null
UTF-8
Python
false
false
194
py
import sys, os sys.path.append(os.getcwd()) os.environ['DJANGO_SETTINGS_MODULE'] = "dungeoncrawl.settings" import django.core.handlers.wsgi application = django.core.handlers.wsgi.WSGIHandler()
[ "dungeoncrawl@alcor.dreamhost.com" ]
dungeoncrawl@alcor.dreamhost.com
ff8eaaceca06ce5bda3a8176aefdf72bb1f77635
f42a10b970c4e0c91f5430ce206297fa0f54f451
/application.py
3a0c0efb22f1b9df35f296b4b9fd08dd212a3831
[]
no_license
williamssanders/generateMappings
1914cbbcb09e206d63690ac4315dc34f98351dff
22f11bb401a80f545d26174ab75112732970d924
refs/heads/master
2021-01-06T00:47:44.379656
2020-02-17T18:53:07
2020-02-17T18:53:07
241,181,690
0
0
null
null
null
null
UTF-8
Python
false
false
1,768
py
class Application: def __init__(self,key,name,rate,perturbedRate,computeName,mapping): self.key = key self.name = name self.rate = rate self.perturbedRate = perturbedRate self.computeName = computeName self.mapping = mapping def get_key(self): return self.key def set_key(self,key): self.key = key def get_name(self): return self.name def set_name(self,name): self.name = name def get_rate(self): return self.rate def set_rate(self,rate): self.rate = rate def get_perturbedRate(self): return self.perturbedRate def set_perturbedRate(self,perturbedRate): self.perturbedRate = perturbedRate def get_computeName(self): return self.computeName def set_computeName(self,computeName): self.computeName = computeName def get_mapping(self): return self.mapping def set_mapping(self,mapping): self.mapping = mapping def print_values(self): #print(str(self.key) + "," + self.name + "," + str(self.rate) + "," + str(self.perturbedRate) + "," + self.computeName + "," + self.mapping) return(str(self.key) + "," + self.name + "," + str(self.rate) + "," + str(self.perturbedRate) + "," + self.computeName + "," + self.mapping) def definition(self): #print(self.name + " = (" + self.computeName + ", infty)." + self.name + ";") return(self.name + " = (" + self.computeName + ", infty)." + self.name + ";") def string_rate(self): return("r" + str(self.key) + " = " + str(self.rate) + ";") def string_perturbedRate(self): return("p" + str(self.key) + " = " + str(self.perturbedRate) + ";")
[ "william.s.sanders@gmail.com" ]
william.s.sanders@gmail.com
bb9f0c7c0157706622f6063db74fe839cbfb853b
7c80dad63f56f7c83fd9d1d970804da2c8c79a9c
/apps/blog/templatetags/my_func.py
397f876f9dd3dec69a3c01ee3948461962b09503
[]
no_license
zzy0371/Django-demo1
d7115ff9b236f9b21e12e2f259e850b28b905fd0
25f32035d38a69681a3eafb02fda1b46436b16f5
refs/heads/master
2022-12-07T18:33:53.805005
2019-08-23T02:30:18
2019-08-23T02:30:18
203,908,229
0
0
null
2022-11-22T04:12:26
2019-08-23T02:23:24
JavaScript
UTF-8
Python
false
false
818
py
""" 自定义模板表达式 扩展Django原有功能 """ from django.template import library register = library.Library() from blog.models import Article,Category,Tag,Ads @register.simple_tag def getads(): return Ads.objects.all() @register.simple_tag def getlatestarticles(num=3): return Article.objects.order_by("-create_time")[:num] @register.simple_tag def gettimes(): times = Article.objects.dates("create_time","month","DESC") return times @register.simple_tag def getcategorys(): return Category.objects.all() @register.simple_tag def gettags(): return Tag.objects.all() @register.filter def mylower(value): return value.lower() @register.filter def myjoin(value,spl): return spl.join(value) @register.filter def myjoin2(value,spl,s): return spl.join(value) + s
[ "496575233@qq.com" ]
496575233@qq.com
26dcbfa26bb2658c145592501ec56fe06211e560
340fd9a6345a1fd6ea5c494fd1e25ef1a15cd83d
/my_blog/article/migrations/0002_articlepost_author.py
4e223e50fc8e55a2de6e430d3361f5dab52f13d0
[]
no_license
ltfred/blog
48024992922d570db7042d56855f6c28b7c581f8
9e7c9253a4576cbc443edea8fdebed92733d6f9f
refs/heads/master
2020-07-26T15:24:24.215702
2019-09-23T02:18:55
2019-09-23T02:18:55
208,689,787
1
0
null
null
null
null
UTF-8
Python
false
false
686
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-09-16 06:07 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('article', '0001_initial'), ] operations = [ migrations.AddField( model_name='articlepost', name='author', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='文章作者'), ), ]
[ "liutao@Freddembp.local" ]
liutao@Freddembp.local
d7e3a9a23c6de743ce2aa6d5ceebc803276c5541
50be0c9ffbb8e019c723add6447efcfc70e9b250
/faceNet/get_emb_serving/pre_whiten.py
b470dfae122d90cd70196c941c8ff349c9a2d721
[]
no_license
wkkyle/based_on_facenet
4df2fdcd20c83fe9a8e77e8f493794587fe962e0
1f9cb914d86934afd24697342e488b068bb813dc
refs/heads/master
2020-06-12T16:02:08.065407
2019-06-28T08:46:36
2019-06-28T08:46:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,475
py
import numpy as np from scipy import misc import os import cv2 def load_data(image_paths, image_size): images = np.zeros((image_size, image_size, 3)) img = misc.imread(image_paths) # print('pre-wihten', img) if img.ndim == 2: img = to_rgb(img) img = prewhiten(img) images[:,:,:] = img images = misc.imresize(images,(160, 160)) # print('after-wihter', images) return images def prewhiten(x): mean = np.mean(x) std = np.std(x) std_adj = np.maximum(std, 1.0/np.sqrt(x.size)) y = np.multiply(np.subtract(x, mean), 1/std_adj) return y def to_rgb(img): w, h = img.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img return ret def main(): train_data_dir = 'F:/baidu_crop' folders = os.listdir(train_data_dir) for i in folders: for j in os.listdir(os.path.join(train_data_dir, i)): img_path = train_data_dir + '/' + i + '/' + j images = load_data(img_path, 182) dst_img_dir = train_data_dir + '_wihten_160/' + i if not os.path.exists(dst_img_dir): os.makedirs(dst_img_dir) dst_img_path = dst_img_dir + '/' + j misc.imsave(dst_img_path, images) # cv2.imwrite(dst_img_path, images.convertTo(images, CV_8UC3, 255.0)) # cv2.imshow('prewihten', images) # cv2.waitKey() if __name__ == '__main__': main()
[ "zhushuaisjtu@qq.com" ]
zhushuaisjtu@qq.com
07ff42ba2fc6571a35e448bad26b012e1fccf8d7
9a70f9d53466db9bd6c772505a7084668ad16a2c
/fbone/config.py
c497c0f25e0c341482262071058190b1d1ea2da9
[ "MIT", "BSD-3-Clause" ]
permissive
butfriendly/flaskbone
14a27a52a83e094196cddb76190804e7c514836e
b3e0316eb53892423e2b5f24a2627184ba2bcb91
refs/heads/master
2021-01-18T12:06:32.536036
2012-12-06T09:33:06
2012-12-06T09:33:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,426
py
# -*- coding: utf-8 -*- PROJECT = "fbone" class BaseConfig(object): DEBUG = False TESTING = False # os.urandom(24) SECRET_KEY = 'secret key' class DefaultConfig(BaseConfig): DEBUG = True SQLALCHEMY_ECHO = True # Sqlite # Use a tmp database, change to anywhere to suit yourself. SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/%s.sqlite' % PROJECT # Mysql: #SQLALCHEMY_DATABASE_URI = 'mysql://dbusername:dbpassword@dbhost/dbname' # To create log folder. # $ sudo mkdir -p /var/log/<PROJECT> # $ sudo chown $USER /var/log/<PROJECT> DEBUG_LOG = '/var/log/%s/debug.log' % PROJECT ACCEPT_LANGUAGES = ['zh'] BABEL_DEFAULT_LOCALE = 'en' CACHE_TYPE = 'simple' CACHE_DEFAULT_TIMEOUT = 60 # Should be imported from env var. # https://bitbucket.org/danjac/flask-mail/issue/3/problem-with-gmails-smtp-server MAIL_DEBUG = DEBUG MAIL_SERVER = 'smtp.gmail.com' MAIL_USE_TLS = True MAIL_USE_SSL = False MAIL_USERNAME = 'gmail_username' MAIL_PASSWORD = 'gmail_password' DEFAULT_MAIL_SENDER = '%s@gmail.com' % MAIL_USERNAME # Should be imported from env var. # export FBONE_APP_CONFIG=/home/wilson/.fbone.cfg USER_IMG_UPLOAD_PATH = "/path/to/fbone/static/img/users" class TestConfig(BaseConfig): TESTING = True CSRF_ENABLED = False SQLALCHEMY_ECHO = False SQLALCHEMY_DATABASE_URI = 'sqlite://'
[ "im.wilson.xu@gmail.com" ]
im.wilson.xu@gmail.com
198c93de09e3177371ddbe742a4b5e083ea10b82
9b58789397b939438d6016a13334b32de58f458f
/psdaq/psdaq/control_gui/CGWMainTabExpert.py
1af1af7b97771df392a36211575f77930c5ed68b
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
AntoineDujardin/lcls2
8a07e73ebf2d583e6a3ff518147b1908cce9e17b
8b9d2815497fbbabb4d37800fd86a7be1728b552
refs/heads/master
2020-07-07T19:22:05.176926
2019-08-20T20:46:52
2019-08-20T20:48:46
203,452,948
0
0
NOASSERTION
2019-08-20T20:53:56
2019-08-20T20:53:55
null
UTF-8
Python
false
false
3,826
py
""" Class :py:class:`CGWMainTabExpert` is a QWidget for interactive image ======================================================================= Usage :: import sys from PyQt5.QtWidgets import QApplication from psdaq.control_gui.CGWMainTabExpert import CGWMainTabExpert app = QApplication(sys.argv) w = CGWMainTabExpert(None, app) w.show() app.exec_() See: - :class:`CGWMainTabExpert` - :class:`CGWMainPartition` - `lcls2 on github <https://github.com/slac-lcls/lcls2/psdaq/psdaq/control_gui>`_. Created on 2019-05-07 by Mikhail Dubrovin """ #------------------------------ import logging logger = logging.getLogger(__name__) #------------------------------ from time import time from PyQt5.QtWidgets import QWidget, QHBoxLayout, QVBoxLayout, QSplitter, QTextEdit, QSizePolicy from PyQt5.QtCore import Qt, QSize from psdaq.control_gui.CGWMainPartition import CGWMainPartition from psdaq.control_gui.CGWMainControl import CGWMainControl #------------------------------ class CGWMainTabExpert(QWidget) : _name = 'CGWMainTabExpert' def __init__(self, **kwargs) : parent = kwargs.get('parent', None) parent_ctrl = kwargs.get('parent_ctrl', None) QWidget.__init__(self, parent=None) logger.debug('In %s' % self._name) self.wpart = CGWMainPartition() parent_ctrl.wpart = self.wpart parent_ctrl.wcoll = self.wpart.wcoll self.wctrl = CGWMainControl(parent, parent_ctrl) parent_ctrl.wctrl = self.wctrl #self.wpart = QTextEdit('Txt 1') #self.wctrl = QTextEdit('Txt 2') self.vspl = QSplitter(Qt.Vertical) self.vspl.addWidget(self.wpart) self.vspl.addWidget(self.wctrl) self.mbox = QHBoxLayout() self.mbox.addWidget(self.vspl) self.setLayout(self.mbox) self.set_style() #------------------------------ def set_tool_tips(self) : pass #self.butStop.setToolTip('Not implemented yet...') #-------------------- def sizeHint(self): return QSize(300, 280) #-------------------- def set_style(self) : self.setMinimumSize(280, 260) self.layout().setContentsMargins(0,0,0,0) self.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Preferred) #-------------------- def closeEvent(self, e) : logger.debug('%s.closeEvent' % self._name) try : pass #self.wpart.close() #self.wctrl.close() except Exception as ex: print('Exception: %s' % ex) #-------------------- if __name__ == "__main__" : def resizeEvent(self, e): #logger.debug('resizeEvent', self._name) print('CGWMainTabExpert.resizeEvent: %s' % str(self.size())) #def moveEvent(self, e) : #logger.debug('moveEvent', self._name) #self.position = self.mapToGlobal(self.pos()) #self.position = self.pos() #logger.debug('moveEvent - pos:' + str(self.position), __name__) #logger.info('CGWMainTabExpert.moveEvent - move window to x,y: ', str(self.mapToGlobal(QPoint(0,0)))) #self.wimg.move(self.pos() + QPoint(self.width()+5, 0)) #pass #-------------------- if __name__ == "__main__" : from psdaq.control_gui.CGDaqControl import daq_control, DaqControlEmulator, Emulator daq_control.set_daq_control(DaqControlEmulator()) import sys logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s: %(message)s', datefmt='%H:%M:%S', level=logging.DEBUG) from PyQt5.QtWidgets import QApplication app = QApplication(sys.argv) kwargs = {'parent':None, 'parent_ctrl':Emulator()} w = CGWMainTabExpert(**kwargs) w.show() app.exec_() del w del app #------------------------------
[ "msdubrovin@gmail.com" ]
msdubrovin@gmail.com
2c994000c850714168262903315cb27d77c69372
144cfa74610b439d0fdb867b72f4bba82990e86f
/Ejercicios Realizados/librerias/datetime_ejercicio_tres.py
040ae641cae57658b17893714aecfbb3bb3e436b
[]
no_license
rbo93/mi_primer_programa
2d2ea089f5cabbb491fc9ea38f1c711d15caaf4f
1f65b9dea507696944975c829e17d5b4bfde79ba
refs/heads/master
2020-07-31T07:13:18.148156
2019-10-28T04:15:22
2019-10-28T04:15:22
210,527,004
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
""" Ejercicio 3 Crea un programa que te diga, introduciendo cualquier fecha, cuantas horas han pasado desde ese momento. """ import datetime hoy = datetime.datetime.now() print("Fecha actual {} {}:{}".format(hoy.strftime("%d-%m-%y"), hoy.hour, hoy.minute)) print("Dime una fecha y te dire cuantas horas han pasado de ese momento") day = int(input("Dime el dia: ")) month = int(input("Dime el mes: ")) year = int(input("Dime el año: ")) hour = hoy.hour user_date = datetime.datetime(year=year, month=month, day=day, hour=hour) if year <= hoy.year: if month < hoy.month or day < hoy.day: time_calculated = datetime.datetime.now() - user_date print("Han pasado {} horas hasta llegar a hoy: {}".format(int(time_calculated.total_seconds() / 3600), hoy.strftime("%d-%m-%y"))) else: time_calculated = user_date - datetime.datetime.now() print("Recien vuelvo del futuru y te informo que faltan {} horas para que se produzca la fecha indicada.".format( int(time_calculated.total_seconds() / 3600))) else: time_calculated = user_date - datetime.datetime.now() print("Recien vuelvo del futuru y te informo que faltan {} horas para que se produzca la fecha indicada.".format(int(time_calculated.total_seconds() / 3600)))
[ "rbo.93@hotmail.com" ]
rbo.93@hotmail.com
b1055682fe506ed63bbfba2ce4bc1c423a6661f1
35825218a8e032dc44abd216788be92f8c518d1c
/event_extraction/model.py
61944fa2a3387b07f35e09d7c3a8e94d0810b5d7
[]
no_license
qfzxhy/EventExtraction_system
31deca268e1d05eeee0ebaa3656762803bee9558
ad03d24a030ac6ea2467cf1d9d5a97621fa98399
refs/heads/master
2020-03-19T01:05:01.160144
2018-05-31T02:32:30
2018-05-31T02:32:30
135,521,338
2
0
null
null
null
null
UTF-8
Python
false
false
41,293
py
# -*- coding:utf-8 -*- _author_ = 'qianf' import helper import tensorflow as tf import codecs # from tensorflow.models.rnn import rnn import math import os import numpy as np import heapq import MDAtt as mdatt # from voc import Tri_Tag_Index # tri_num_class = 4 # print(tri_num_class) def bidirectional_LSTM(input, hidden_state_dimension, initializer, sequence_length=None, output_sequence=True): with tf.variable_scope("bidirectional_LSTM"): if sequence_length == None: batch_size = 1 sequence_length = tf.shape(input)[1] sequence_length = tf.expand_dims(sequence_length, axis=0, name='sequence_length') else: batch_size = tf.shape(sequence_length)[0] lstm_cell = {} initial_state = {} for direction in ["forward", "backward"]: with tf.variable_scope(direction): # LSTM cell lstm_cell[direction] = tf.contrib.rnn.CoupledInputForgetGateLSTMCell(hidden_state_dimension, forget_bias=1.0, initializer=initializer, state_is_tuple=True) # initial state: http://stackoverflow.com/questions/38441589/tensorflow-rnn-initial-state initial_cell_state = tf.get_variable("initial_cell_state", shape=[1, hidden_state_dimension], dtype=tf.float32, initializer=initializer) initial_output_state = tf.get_variable("initial_output_state", shape=[1, hidden_state_dimension], dtype=tf.float32, initializer=initializer) c_states = tf.tile(initial_cell_state, tf.stack([batch_size, 1])) h_states = tf.tile(initial_output_state, tf.stack([batch_size, 1])) initial_state[direction] = tf.contrib.rnn.LSTMStateTuple(c_states, h_states) # sequence_length must be provided for tf.nn.bidirectional_dynamic_rnn due to internal bug outputs, final_states = tf.nn.bidirectional_dynamic_rnn(lstm_cell["forward"], lstm_cell["backward"], input, dtype=tf.float32, sequence_length=sequence_length, initial_state_fw=initial_state["forward"], initial_state_bw=initial_state["backward"]) if output_sequence == True: outputs_forward, outputs_backward = outputs output = tf.concat([outputs_forward, outputs_backward], axis=2, name='output_sequence') else: final_states_forward, final_states_backward = final_states output = tf.concat([final_states_forward[1], final_states_backward[1]], axis=1, name='output') return output class BILSTM(object): def __init__(self, FLAGs): self.FLAGS = FLAGs # self.patients = FLAGs.patients self.task1_num_classess = FLAGs.task1_num_class self.task2_num_classess = FLAGs.task2_num_class self.num_corpus = FLAGs.num_corpus self.num_words = FLAGs.num_word self.token_emb_dim = FLAGs.token_edim self.num_postags = FLAGs.num_postag self.postag_emb_dim = FLAGs.postag_emb_dim self.num_hiddens = FLAGs.num_hidden self.token_max_len = FLAGs.token_max_len self.num_layers = 1 self.pretrain_emb = FLAGs.pretrain_emb # self.is_crf = FLAGs.use_crf self.num_units = 100 self.if_l2 = False self.learning_rate = FLAGs.init_lr self.max_f1 = -1.0 # self.sess = sess self.sou_global_step = tf.Variable(0, name='sou_global_step', trainable=False) self.tri_global_step = tf.Variable(0, name='tri_global_step', trainable=False) self.batch_size = tf.placeholder(tf.int32, name='batch_size') self.input_token_indices = tf.placeholder(tf.int32, [None, None], name="input_token_indices") self.input_token_character_indices = tf.placeholder(tf.int32, [None, None, self.token_max_len],name="input_token_character_indices") self.input_postag_indices = tf.placeholder(tf.int32, [None, None], name="input_postag_indices") self.input_suffix_indices = tf.placeholder(tf.int32, [None, None], name="input_suffix_indices") self.y_entitys = tf.placeholder(tf.int32, [None, None], name='y_entitys') # two class self.y_entitys_tc = tf.placeholder(tf.int32, [None, None], name='y_entitys_tc') # self.y_targets = tf.placeholder(tf.int32, [None, None], name='y_targets') # #two class # self.y_targets_tc = tf.placeholder(tf.int32, [None, None], name='y_targets_tc') self.y_triggers = tf.placeholder(tf.int32, [None, None], name='y_triggers') self.y_triggers_tc = tf.placeholder(tf.int32, [None, None], name='y_triggers_tc') self.keep_dropout = tf.placeholder(dtype=tf.float32, name='keep_dropout') self.initializer = tf.contrib.layers.xavier_initializer(seed=0) self.length = tf.reduce_sum(tf.sign(self.input_token_indices), 1) self.length = tf.to_int32(self.length) max_seq_len = tf.shape(self.input_token_indices)[1] # def _entity_model(input_data, seq_len): # batchsize, step, dim # print(input_data.get_shape()[-1].value) with tf.variable_scope("bilstm_layer_1"): lstm_outputs_flat = bidirectional_LSTM(input_data, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) # batchsize*step , 2*dim lstm_outputs = tf.reshape(lstm_outputs_flat, shape=[-1, lstm_outputs_flat.get_shape()[-1].value]) with tf.variable_scope("feedforward_tc"): scores_tc = _common_layer(lstm_outputs, 2) with tf.variable_scope("bilstm_layer_2"): lstm_outputs = bidirectional_LSTM(lstm_outputs_flat, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) return lstm_outputs,scores_tc def _trigger_model(input_data, seq_len): # batchsize, step, dim # print(input_data.get_shape()[-1].value) with tf.variable_scope("bilstm_layer_1"): lstm_outputs_flat = bidirectional_LSTM(input_data, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) # batchsize*step , 2*dim lstm_outputs = tf.reshape(lstm_outputs_flat, shape=[-1, lstm_outputs_flat.get_shape()[-1].value]) with tf.variable_scope("feedforward_tc"): scores_tc = _common_layer(lstm_outputs, 2) with tf.variable_scope("bilstm_layer_2"): lstm_outputs = bidirectional_LSTM(lstm_outputs_flat, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) return lstm_outputs,scores_tc def _target_model(input_data, seq_len): # if step: # input_data = tf.concat([input_data, share_outputs], axis=-1) with tf.variable_scope("bilstm_layer_1"): lstm_outputs_flat = bidirectional_LSTM(input_data, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) lstm_outputs = tf.reshape(lstm_outputs_flat, shape=[-1, lstm_outputs_flat.get_shape()[-1].value]) with tf.variable_scope("feedforward_tc"): scores_tc = _common_layer(lstm_outputs, 2) with tf.variable_scope("bilstm_layer_2"): lstm_outputs = bidirectional_LSTM(lstm_outputs_flat, self.num_hiddens, self.initializer, sequence_length=seq_len, output_sequence=True) return lstm_outputs,scores_tc def _common_layer(input_data, output_size, activity=None): # print(input_data.get_shape().as_list()[-1]) W = tf.get_variable( "W", shape=[input_data.get_shape().as_list()[-1], output_size], initializer=self.initializer) b = tf.Variable(tf.constant(0.0, shape=[output_size]), name="bias") # batchsize*step, 1 * hiddens outputs = tf.nn.xw_plus_b(input_data, W, b) if activity is not None: outputs = activity(outputs, name="activity") return outputs def _no_interact_layer(lstm_outputs_ent,lstm_outputs_tri): lstm_outputs_ent = tf.reshape(lstm_outputs_ent,shape=[-1, lstm_outputs_ent.get_shape()[-1].value]) lstm_outputs_tri = tf.reshape(lstm_outputs_tri, shape=[-1, lstm_outputs_tri.get_shape()[-1].value]) # lstm_outputs_tar = tf.reshape(lstm_outputs_tar,shape=[-1, lstm_outputs_tar.get_shape()[-1].value]) with tf.variable_scope("source_feedforward_after_lstm"): outputs_sou = _common_layer(lstm_outputs_ent, 2 * self.num_hiddens, activity=tf.nn.tanh) with tf.variable_scope("trigger_feedforward_after_lstm"): outputs_tri = _common_layer(lstm_outputs_tri, 2 * self.num_hiddens, activity=tf.nn.tanh) # with tf.variable_scope("target_feedforward_after_lstm"): # outputs_tar = _common_layer(lstm_outputs_tar, 2 * self.num_hiddens, activity=tf.nn.tanh) return outputs_sou,outputs_tri def _interact_layer(lstm_outputs_ent,lstm_outputs_tri,sou_prob,tri_prob): with tf.variable_scope('interact'): left_values_ent, right_values_ent, _ = _compute_interact_(lstm_outputs_ent, sou_prob) left_values_tri, right_values_tri, _ = _compute_interact_(lstm_outputs_tri, tri_prob) # left_values_tar, right_values_tar, _ = _compute_interact_(lstm_outputs_tar, tar_prob) lstm_outputs_ent_new = tf.concat([lstm_outputs_ent, left_values_tri, right_values_tri], axis=-1) # lstm_outputs_tar_new = tf.concat([lstm_outputs_tar, left_values_tri, right_values_tri], axis=-1) lstm_outputs_tri_new = tf.concat([lstm_outputs_tri, left_values_ent, right_values_ent], axis=-1) lstm_outputs_ent_new = tf.reshape(lstm_outputs_ent_new, shape=[-1, lstm_outputs_ent_new.get_shape()[-1].value]) # lstm_outputs_tar_new = tf.reshape(lstm_outputs_tar_new,shape=[-1, lstm_outputs_tar_new.get_shape()[-1].value]) lstm_outputs_tri_new = tf.reshape(lstm_outputs_tri_new,shape=[-1, lstm_outputs_tri_new.get_shape()[-1].value]) with tf.variable_scope("source_feedforward_after_lstm"): outputs_ent = _common_layer(lstm_outputs_ent_new, 2 * self.num_hiddens, activity=tf.nn.tanh) with tf.variable_scope("trigger_feedforward_after_lstm"): outputs_tri = _common_layer(lstm_outputs_tri_new, 2 * self.num_hiddens, activity=tf.nn.tanh) # with tf.variable_scope("target_feedforward_after_lstm"): # outputs_tar = _common_layer(lstm_outputs_tar_new, 2 * self.num_hiddens, activity=tf.nn.tanh) return outputs_ent,outputs_tri def _inter_att_layer(lstm_outputs_OP,prob_OP,lstm_outputs_TA,prob_TA,use_prob=True): #query #keys #values with tf.variable_scope('interact'): left_TA_values, right_TA_values, cur_values = _compute_interact_(lstm_outputs_TA,prob_TA) # lstm_outputs_s_p_flat = tf.concat([lstm_outputs_s,left_values,right_values],axis=-1) left_OP_values, right_OP_values, cur_values = _compute_interact_(lstm_outputs_OP,prob_OP) # lstm_outputs_p_s_flat = tf.concat([lstm_outputs_p,left_values,right_values],axis=-1) window = 3 # if use_prob: # lstm_outputs_prob_OP = lstm_outputs_OP * prob_OP # lstm_outputs_prob_TA = lstm_outputs_TA * prob_TA with tf.variable_scope('attention_project'): op_proj_w = tf.get_variable('op_proj_w',shape=[lstm_outputs_OP.get_shape()[-1],self.num_units]) lstm_outputs_proj_OP = tf.tensordot(lstm_outputs_OP,op_proj_w,axes=1) ta_proj_w = tf.get_variable('ta_proj_w', shape=[lstm_outputs_TA.get_shape()[-1], self.num_units]) lstm_outputs_proj_TA = tf.tensordot(lstm_outputs_TA, ta_proj_w, axes=1) b = tf.shape(lstm_outputs_OP)[0] num_step = tf.shape(lstm_outputs_OP)[1] with tf.variable_scope('att_OP'): input_ta = tf.TensorArray(size=num_step,dtype=tf.float32) output_ta = tf.TensorArray(size=num_step,dtype=tf.float32) lstm_op_trans = tf.transpose(lstm_outputs_proj_OP,[1,0,2]) input_ta = input_ta.unstack(lstm_op_trans) def _body(time,output_ta_t): uid1 = tf.cond(time < window,lambda : tf.constant(0),lambda : time - window) uid2 = tf.cond(time+window>=num_step-1,lambda :num_step-1,lambda : time+ window) tmp = [0] * 3 # tmp[0] = tf.zeros([b, uid1], tf.float32) tmp[0] = tf.ones([b, time], tf.float32) tmp[1] = tf.zeros([b, 1], tf.float32) tmp[2] = tf.ones([b, num_step - 1 - time], tf.float32) # tmp[4] = tf.zeros([b, num_step - 1 - uid2], tf.float32) score_mask = tf.concat(tmp, axis=1) s,context = _att_layer(input_ta.read(time), lstm_outputs_proj_TA, lstm_outputs_TA, score_mask) att_re = tf.reduce_sum(context, axis=1) output_ta_t = output_ta_t.write(time,att_re) return time + 1,output_ta_t with tf.variable_scope('attention'): v_att = tf.get_variable('v_att',shape=[self.num_units],dtype=tf.float32) def _condition(time,output_ta_t): return time < num_step time = tf.constant(0) final_step,output_ta_final = tf.while_loop( cond=_condition, body=_body, loop_vars=(time,output_ta) ) output_final = output_ta_final.stack() output_final = tf.transpose(output_final,[1,0,2]) lstm_outputs_s_p_flat = tf.concat([lstm_outputs_OP, output_final,left_TA_values,right_TA_values], axis=-1) with tf.variable_scope('att_TA'): input_ta = tf.TensorArray(size=num_step,dtype=tf.float32) output_ta = tf.TensorArray(size=num_step,dtype=tf.float32) lstm_ta_trans = tf.transpose(lstm_outputs_proj_TA,[1,0,2]) input_ta = input_ta.unstack(lstm_ta_trans) def _body(time,output_ta_t): uid1 = tf.cond(time < window,lambda : tf.constant(0),lambda : time - window) uid2 = tf.cond(time+window>=num_step-1,lambda :num_step-1,lambda : time+ window) tmp = [0] * 3 # tmp[0] = tf.zeros([b, uid1], tf.float32) tmp[0] = tf.ones([b, time], tf.float32) tmp[1] = tf.zeros([b, 1], tf.float32) tmp[2] = tf.ones([b, num_step - 1 - time], tf.float32) # tmp[4] = tf.zeros([b, num_step - 1 - uid2], tf.float32) score_mask = tf.concat(tmp, axis=1) s,context = _att_layer(input_ta.read(time), lstm_outputs_proj_OP, lstm_outputs_OP, score_mask) att_re = tf.reduce_sum(context, axis=1) output_ta_t = output_ta_t.write(time,att_re) return time + 1,output_ta_t with tf.variable_scope('attention'): v_att = tf.get_variable('v_att',shape=[self.num_units],dtype=tf.float32) def _condition(time,output_ta_t): return time < num_step time = tf.constant(0) final_step,output_ta_final = tf.while_loop( cond=_condition, body=_body, loop_vars=(time,output_ta) ) output_final = output_ta_final.stack() output_final = tf.transpose(output_final, [1, 0, 2]) lstm_outputs_p_s_flat = tf.concat([lstm_outputs_TA, output_final,left_OP_values,right_OP_values], axis=-1) lstm_outputs_s_p = tf.reshape(lstm_outputs_s_p_flat, shape=[-1, 4 * lstm_outputs_OP.get_shape()[-1].value]) lstm_outputs_p_s = tf.reshape(lstm_outputs_p_s_flat, shape=[-1, 4 * lstm_outputs_TA.get_shape()[-1].value]) with tf.variable_scope("sp_feedforward_after_lstm"): outputs_s_p = _common_layer(lstm_outputs_s_p, 2 * self.num_hiddens, activity=tf.nn.tanh) with tf.variable_scope("ps_feedforward_after_lstm"): outputs_p_s = _common_layer(lstm_outputs_p_s, 2 * self.num_hiddens, activity=tf.nn.tanh) return outputs_s_p, outputs_p_s def _crf_interact(Op_score,Ta_score): ta_soft = tf.nn.softmax(Ta_score) op_soft = tf.nn.softmax(Op_score) ta_o_score = tf.split(ta_soft,self.num_classess,axis=2)[0] op_o_score = tf.split(op_soft,self.num_classess,axis=2)[0] op_score = ta_o_score * Op_score ta_score = op_o_score * Ta_score return op_score,ta_score def _relation_layer(lstm_outputs_s,opword_prob,lstm_outputs_p,target_prob): with tf.variable_scope('relation'): target_left_values, _, target_cur_values = _compute_interact_(lstm_outputs_p, target_prob, windows=1) opinion_left_values, _, opinion_cur_values = _compute_interact_(lstm_outputs_s, opword_prob, windows=1) lstm_outputs_OP_flat = tf.concat([target_left_values, opinion_cur_values], axis=-1) lstm_outputs_AS_flat = tf.concat([opinion_left_values, target_cur_values], axis=-1) lstm_outputs_OP = tf.reshape(lstm_outputs_OP_flat,shape=[-1, lstm_outputs_OP_flat.get_shape()[-1].value]) lstm_outputs_AS = tf.reshape(lstm_outputs_AS_flat,shape=[-1, lstm_outputs_AS_flat.get_shape()[-1].value]) with tf.variable_scope("feedforward_layer_OP"): scores_OP = _common_layer(lstm_outputs_OP, 2) with tf.variable_scope("feedforward_layer_AS"): scores_AS = _common_layer(lstm_outputs_AS, 2) return scores_OP,scores_AS pass def _att_layer(query,keys,memory,scores_mask): #compute attention energies using a feed forward #query: [batchsize,dim] #keys: [batchsize,step.dim] FLOAT_MIN = -1.e9 with tf.variable_scope('attention',reuse=True): v_att = tf.get_variable('v_att',shape=[self.num_units],dtype=tf.float32) energies = tf.reduce_sum(v_att * tf.tanh(keys + tf.expand_dims(query,1)),[2]) num_scores = tf.shape(energies)[1] energies = energies * scores_mask + (1.0 - scores_mask) * FLOAT_MIN energies = energies - tf.reduce_max(energies,axis=1,keep_dims=True) unnormalized_scores = tf.exp(energies) * scores_mask + 0.0001 normalization = tf.reduce_sum(unnormalized_scores,axis=1,keep_dims=True) normalized_scores = unnormalized_scores / normalization context = tf.expand_dims(normalized_scores,2) * memory return normalized_scores,context def _compute_interact_(keys,probs,flag=True,windows = 3): num_step = keys.get_shape().as_list()[1] values = keys * probs values = tf.transpose(values,[1,0,2]) append1 = tf.tile(tf.zeros_like(values[:1],dtype=tf.float32),[windows,1,1]) append2 = tf.zeros_like(values[:1],dtype=tf.float32) left_values = 0 l = [] l.append(tf.concat([values,append1],axis=0)) for i in range(1,windows + 1): l.append(tf.concat([append2,l[i-1][:-1]],axis=0)) left_values += l[i] left_values = tf.transpose(left_values[:-windows],[1,0,2]) right_values = 0 r = [] r.append(tf.concat([append1,values],axis=0)) for i in range(1, windows + 1): r.append(tf.concat([r[i-1][1:],append2],axis=0)) right_values += r[i] right_values = tf.transpose(right_values[windows:],[1,0,2]) cur_values = tf.transpose(values,[1,0,2]) return left_values,right_values,cur_values with tf.variable_scope('embedding_layer') as vs: if self.pretrain_emb is not None: self.token_embedding_weights = tf.Variable(self.pretrain_emb, trainable=True, name='token_embedding_weights', dtype=tf.float32) else: self.token_embedding_weights = tf.get_variable('token_embedding_weights', [self.num_words, self.token_emb_dim]) self.postag_embdding_weights = tf.get_variable('postag_embdding_weights', [self.num_postags, self.postag_emb_dim]) self.suffix_embdding_weights = tf.get_variable('suffix_embdding_weights', [FLAGs.num_suffix, FLAGs.suffix_emb_dim]) embedded_tokens = tf.nn.embedding_lookup(self.token_embedding_weights, self.input_token_indices) embedded_postags = tf.nn.embedding_lookup(self.postag_embdding_weights, self.input_postag_indices) embedded_suffixs = tf.nn.embedding_lookup(self.suffix_embdding_weights, self.input_suffix_indices) if FLAGs.use_character_lstm: # Character-level LSTM # Idea: reshape so that we have a tensor [number_of_token, max_token_length, token_embeddings_size], which we pass to the LSTM # Character embedding layer with tf.variable_scope("character_embedding"): self.character_embedding_weights = tf.get_variable( "character_embedding_weights", shape=[FLAGs.alphabet_size, FLAGs.character_embedding_dimension], initializer=self.initializer) input_character_indices = tf.reshape(self.input_token_character_indices,shape=[-1, self.token_max_len]) embedded_characters = tf.nn.embedding_lookup(self.character_embedding_weights, input_character_indices, name='embedded_characters') self.input_token_lengths = tf.reduce_sum(tf.sign(input_character_indices), 1) self.input_token_lengths = tf.cast(self.input_token_lengths, tf.int32) # Character LSTM layer with tf.variable_scope('character_lstm') as vs: character_lstm_output = bidirectional_LSTM(embedded_characters, FLAGs.character_lstm_hidden_state_dimension, self.initializer, sequence_length=self.input_token_lengths, output_sequence=False) character_lstm_output = tf.reshape(character_lstm_output,shape=[self.batch_size,-1,2 * FLAGs.character_lstm_hidden_state_dimension]) # suffix_embs = tf.one_hot(self.input_suffix_indices,depth=7,dtype=tf.float32) # Concatenate character LSTM outputs and token embeddings # print(FLAGs.use_character_lstm) tmp = [embedded_tokens] if FLAGs.use_character_lstm: tmp.append(character_lstm_output) if FLAGs.use_postag: tmp.append(embedded_postags) if FLAGs.use_suffix: tmp.append(embedded_suffixs) token_lstm_input = tf.concat(tmp, axis=2,name='token_lstm_input') with tf.variable_scope('add_dropout') as vs: # batchsize, step, dim_n token_lstm_input_drop = tf.nn.dropout(token_lstm_input, self.keep_dropout, name='token_lstm_input_drop') with tf.variable_scope("entity_moudle"): # 经过共享层句子的表示 lstm_outputs_source, scores_tc_source = _entity_model(token_lstm_input_drop, self.length) soft_scores = tf.nn.softmax(scores_tc_source) _, source_prob = tf.split(soft_scores, 2, axis=1) source_prob = tf.reshape(source_prob, shape=[self.batch_size, -1, 1]) with tf.variable_scope('trigger_moudle'): # batch,step,dim # batch*step,2 lstm_outputs_trigger, scores_tc_trigger = _trigger_model(token_lstm_input_drop, self.length) soft_scores = tf.nn.softmax(scores_tc_trigger) _, trigger_prob = tf.split(soft_scores, 2, axis=1) trigger_prob = tf.reshape(trigger_prob, shape=[self.batch_size, -1, 1]) outputs_sou = None outputs_tri = None # outputs_tar = None if not self.FLAGS.is_interact: outputs_sou, outputs_tri = _no_interact_layer(lstm_outputs_source, lstm_outputs_trigger) if self.FLAGS.is_interact: outputs_sou, outputs_tri = _interact_layer(lstm_outputs_source, lstm_outputs_trigger,source_prob,trigger_prob) with tf.variable_scope('source_feedforward_before_crf'): source_scores = _common_layer(outputs_sou, self.task1_num_classess) with tf.variable_scope('trigger_feedforward_before_crf'): trigger_scores = _common_layer(outputs_tri, self.task2_num_classess) # batchsize*step, num_classess source_unary_scores = tf.reshape(source_scores,shape=[tf.shape(self.input_token_indices)[0], -1, self.task1_num_classess]) trigger_unary_scores = tf.reshape(trigger_scores, shape=[tf.shape(self.input_token_indices)[0], -1, self.task2_num_classess]) # target_unary_scores = tf.reshape(target_scores,shape=[tf.shape(self.input_token_indices)[0], -1, self.num_classess]) # if self.FLAGS.crf_interact: # sp_scores_interact,ps_scores_interact = _crf_interact(sp_unary_scores,ps_unary_scores) with tf.variable_scope('source_crf'): log_likelihood1, self.transition_params1, self.unary_scores1 = self._crf_layer(source_unary_scores, self.length, self.y_entitys,self.task1_num_classess) self.source_loss = tf.reduce_mean(-log_likelihood1) with tf.variable_scope('trigger_crf'): log_likelihood2, self.transition_params2, self.unary_scores2 = self._crf_layer(trigger_unary_scores, self.length, self.y_triggers,self.task2_num_classess) self.trigger_loss = tf.reduce_mean(-log_likelihood2) with tf.variable_scope('loss'): #2分loss self.union_loss = self.source_loss + self.trigger_loss if self.FLAGS.is_interact: y_sources_tc = tf.reshape(self.y_entitys_tc, shape=[-1]) y_triggers_tc = tf.reshape(self.y_triggers_tc, shape=[-1]) # y_targets_tc = tf.reshape(self.y_targets_tc, shape=[-1]) source_tc_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_sources_tc, logits=scores_tc_source, name='source_tc_loss') trigger_tc_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_triggers_tc, logits=scores_tc_trigger, name='trigger_tc_loss') # target_tc_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_targets_tc, # logits=scores_tc_target, # name='target_tc_loss') source_tc_loss = tf.reduce_mean(source_tc_loss) trigger_tc_loss = tf.reduce_mean(trigger_tc_loss) # target_tc_loss = tf.reduce_mean(target_tc_loss) self.source_loss += source_tc_loss self.trigger_loss += trigger_tc_loss self.union_loss = self.union_loss + source_tc_loss + trigger_tc_loss self.train_op_sou = self.define_training_procedure(self.source_loss, self.sou_global_step) self.train_op_tri = self.define_training_procedure(self.trigger_loss, self.tri_global_step) self.train_op_uon = self.define_training_procedure(self.union_loss,self.sou_global_step) def _crf_layer(self, unary_scores, seq_len, y, num_class): small_score = -1000.0 large_score = 0.0 # batchsize , step , dim # self.unary_scores = tf.reshape(self.unary_scores, shape=[tf.shape(self.input_token_indices)[0], -1, self.num_classess]) # # # num_steps # sequence_length = tf.reduce_sum(tf.sign(self.input_token_indices), 1) # sequence_length = tf.cast(sequence_length, tf.int32) # # batchsize, num_steps ,num_classes + 2 _batchsize = tf.shape(self.input_token_indices)[0] batch_max_step = tf.shape(self.input_token_indices)[1] unary_scores_with_start_and_end = tf.concat( [unary_scores, tf.tile(tf.constant(small_score, shape=[1, 1, 2]), [_batchsize, batch_max_step, 1])], -1) # num_classes + 2 start_unary_scores = tf.constant([[small_score] * num_class + [large_score, small_score]], shape=[1, 1, num_class + 2]) start_unary_scores = tf.tile(start_unary_scores, [_batchsize, 1, 1]) # num_classes + 2 end_unary_scores = tf.constant([[small_score] * num_class + [small_score, large_score]], shape=[1, 1, num_class + 2]) end_unary_scores = tf.tile(end_unary_scores, [_batchsize, 1, 1]) # batchsize, seq + 2, num_classes + 2 unary_scores = tf.concat([start_unary_scores, unary_scores_with_start_and_end, end_unary_scores], 1) start_index = num_class end_index = num_class + 1 input_label_indices_flat_with_start_and_end = tf.concat( [tf.tile(tf.constant(start_index, shape=[1, 1]), [_batchsize, 1]), y, tf.tile(tf.constant(end_index, shape=[1, 1]), [_batchsize, 1])], 1) # Apply CRF layer # sequence_length = tf.shape(self.unary_scores)[0] # sequence_lengths = tf.expand_dims(sequence_length, axis=0, name='sequence_lengths') transition_parameters = tf.get_variable( "transitions", shape=[num_class + 2, num_class + 2], initializer=self.initializer) # self.unary_scores_expanded = tf.expand_dims(self.unary_scores,axis=0,name='unary_scores_expanded') # input_label_indices_flat_batch = tf.expand_dims(input_label_indices_flat_with_start_and_end,axis=0,name='targets_expanded') log_likelihood, _ = tf.contrib.crf.crf_log_likelihood( unary_scores, input_label_indices_flat_with_start_and_end, seq_len, transition_params=transition_parameters) return log_likelihood, transition_parameters, unary_scores def define_training_procedure(self, loss, global_step): # Define training procedure # self.global_step = tf.Variable(0, name='global_step', trainable=False) if self.FLAGS.optimizer == 'adam': self.optimizer = tf.train.AdamOptimizer(self.FLAGS.init_lr) elif self.FLAGS.optimizer == 'sgd': self.optimizer = tf.train.GradientDescentOptimizer(self.FLAGS.init_lr) elif self.FLAGS.optimizer == 'adadelta': self.optimizer = tf.train.AdadeltaOptimizer(self.FLAGS.init_lr) else: raise ValueError('The lr_method parameter must be either adadelta, adam or sgd.') grads_and_vars = self.optimizer.compute_gradients(loss) if self.FLAGS.gradient_clipping_value: for i, (grad, var) in enumerate(grads_and_vars): if grad is not None: grads_and_vars[i] = ( tf.clip_by_value(grad, -self.FLAGS.gradient_clipping_value, self.FLAGS.gradient_clipping_value), var) # By defining a global_step variable and passing it to the optimizer we allow TensorFlow handle the counting of training steps for us. # The global step will be automatically incremented by one every time you execute train_op. train_op = self.optimizer.apply_gradients(grads_and_vars, global_step=global_step) return train_op def train_model_source(self,sess,x_batch,y_batch): feed_dict = { self.input_token_indices: x_batch[0], self.input_postag_indices: x_batch[1], self.input_suffix_indices:x_batch[2], self.input_token_character_indices: x_batch[3], self.y_entitys: y_batch[0], # self.y_triggers: y_batch[1], # self.y_targets:y_batch[2], self.y_entitys_tc: y_batch[2], # self.y_triggers_tc: y_batch[3], # self.y_targets_tc: y_batch[5], self.keep_dropout: 0.5} feed_dict[self.batch_size] = len(x_batch[0]) _, loss_train, global_step \ = sess.run([ self.train_op_sou, self.source_loss, self.sou_global_step ], feed_dict=feed_dict) return global_step, loss_train pass def train_model_trigger(self,sess,x_batch,y_batch): token_indices_train_batch = x_batch # tys_sou, tys_tri, tys_tar = y_batch feed_dict = { self.input_token_indices: x_batch[0], self.input_postag_indices: x_batch[1], self.input_suffix_indices: x_batch[2], self.input_token_character_indices: x_batch[3], # self.y_entitys: y_batch[0], self.y_triggers: y_batch[1], # self.y_targets:y_batch[2], # self.y_entitys_tc: y_batch[2], self.y_triggers_tc: y_batch[3], # self.y_targets_tc: y_batch[5], self.keep_dropout: 0.5} feed_dict[self.batch_size] = len(x_batch[0]) _, loss_train, global_step \ = sess.run([ self.train_op_tri, self.trigger_loss, self.tri_global_step ], feed_dict=feed_dict) return global_step, loss_train pass def train_model_union(self, sess, x_batch, y_batch, task_op, loss): # token_indices_train_batch = x_batch # tys_sou, tys_tri, tys_tar = y_batch feed_dict = { self.input_token_indices: x_batch[0], self.input_postag_indices: x_batch[1], self.input_suffix_indices: x_batch[2], self.input_token_character_indices: x_batch[3], self.y_entitys:y_batch[0], self.y_triggers:y_batch[1], # self.y_targets:y_batch[2], self.y_entitys_tc: y_batch[2], self.y_triggers_tc: y_batch[3], # self.y_targets_tc: y_batch[5], self.keep_dropout: 0.5} feed_dict[self.batch_size] = len(x_batch[0]) _, loss_train, global_step \ = sess.run([ task_op, loss, self.sou_global_step ], feed_dict=feed_dict) return global_step, loss_train def inference(self, sess, x_eval,y_eval): source_res = [] target_res = [] trigger_res = [] all_loss = [] for sample_index in range(len(x_eval[0])): x_eval_batch = [wxs[sample_index] for wxs in x_eval] y_eval_batch = [tys[sample_index] for tys in y_eval] feed_dict = { self.input_token_indices: [x_eval_batch[0]], self.input_postag_indices: [x_eval_batch[1]], self.input_suffix_indices: [x_eval_batch[2]], self.y_entitys: [y_eval_batch[0]], self.y_triggers: [y_eval_batch[1]], # self.y_targets: [y_eval_batch[2]], self.y_entitys_tc: [y_eval_batch[2]], self.y_triggers_tc: [y_eval_batch[3]], # self.y_targets_tc: [y_eval_batch[5]], self.keep_dropout: 1} feed_dict[self.batch_size] = 1 unary_score1, unary_score2,test_seq_len, transMatrix1, transMatrix2,loss = sess.run( [self.unary_scores1, self.unary_scores2, # self.unary_scores3, self.length, self.transition_params1, self.transition_params2, # self.transition_params3, self.union_loss], feed_dict=feed_dict ) source_res.extend(self.viterbi_decode_batch(unary_score1, test_seq_len, transMatrix1)) trigger_res.extend(self.viterbi_decode_batch(unary_score2, test_seq_len, transMatrix2)) # target_res.extend(self.viterbi_decode_batch(unary_score3, test_seq_len, transMatrix3)) all_loss.append(loss) return source_res,trigger_res, np.mean(np.array(all_loss)) def inference_single(self, sess, x,y ): source_res = [] target_res = [] trigger_res = [] x_list = [wxs for wxs in x] y_list = [tys for tys in y] feed_dict = { self.input_token_indices: [x_list[0]], self.input_postag_indices: [x_list[1]], self.input_suffix_indices: [x_list[2]], self.y_entitys: [y_list[0]], self.y_triggers: [y_list[1]], # self.y_targets: [y_eval_batch[2]], self.y_entitys_tc: [y_eval_batch[2]], self.y_triggers_tc: [y_eval_batch[3]], # self.y_targets_tc: [y_eval_batch[5]], self.keep_dropout: 1} feed_dict[self.batch_size] = 1 unary_score1, unary_score2,test_seq_len, transMatrix1, transMatrix2,loss = sess.run( [self.unary_scores1, self.unary_scores2, # self.unary_scores3, self.length, self.transition_params1, self.transition_params2, # self.transition_params3, self.union_loss], feed_dict=feed_dict ) source_res.extend(self.viterbi_decode_batch(unary_score1, test_seq_len, transMatrix1)) trigger_res.extend(self.viterbi_decode_batch(unary_score2, test_seq_len, transMatrix2)) # target_res.extend(self.viterbi_decode_batch(unary_score3, test_seq_len, transMatrix3)) all_loss.append(loss) return source_res,trigger_res, np.mean(np.array(all_loss)) def nn_decode_batch(self, unary_scores, test_seq_len): # unary_scores = [batch_size,num_steps,num_classes] # return list: [batch_size,seq_len] y_preds = [] for tf_unary_scores_, seq_len_ in zip(unary_scores, test_seq_len): tf_unary_scores_ = tf_unary_scores_[:seq_len_] y_pred = [] for j in range(len(tf_unary_scores_)): id = np.where(tf_unary_scores_[j] == np.max(tf_unary_scores_[j])) y_pred.append(id[0][0]) y_preds.append(y_pred) return y_preds def viterbi_decode_batch(self, unary_scores, test_seq_len, transMatrix): # unary_scores = [batch_size,num_steps,num_classes] # return list: [batch_size,seq_len] y_pred = [] for tf_unary_scores_, seq_len_ in zip(unary_scores, test_seq_len): # tf_unary_scores_ = tf_unary_scores_[:seq_len_] # viterbi_sequence = [num_steps] viterbi_sequence, _ = tf.contrib.crf.viterbi_decode( tf_unary_scores_, transMatrix) y_pred.append(viterbi_sequence[1:-1]) # y_gold.append(y_) return y_pred
[ "qfzxhy@qianfangdeMacBook-Pro.local" ]
qfzxhy@qianfangdeMacBook-Pro.local
91df19419892d18e2f7d515207f89d1433bf1a48
0bf2955e12abc2ccd4c074e1d75cc421a0c25270
/my_neighbors/settings.py
ed93256f2e4321b04c43363279b497aa1743de46
[]
no_license
Kamiran79/my_neighbors_server
dbde22dc52cf95402f07a9f9bb209ce79fc29b83
70c5943b250ae7f81faf8a45a8941abf385f327c
refs/heads/main
2023-03-26T10:47:46.150514
2021-03-28T22:16:06
2021-03-28T22:16:06
345,204,364
0
0
null
2021-03-28T22:16:06
2021-03-06T22:01:28
Python
UTF-8
Python
false
false
3,818
py
""" Django settings for my_neighbors project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'pn@m0z8ee7c#y7%rx7no&!)&e7$@147@p_p51o=&1*f$m@)2qn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'corsheaders', 'my_neighbors_api', ] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.IsAuthenticated', ], 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 10 } CORS_ORIGIN_WHITELIST = ( 'http://localhost:3001', 'http://127.0.0.1:3001' ) MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'my_neighbors.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'my_neighbors.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
[ "kamiran.ibrahim@gmail.com" ]
kamiran.ibrahim@gmail.com