blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
41e9b4afbab2d779f665fd3575b54ad8011ea7a8
60715c9ea4c66d861708531def532814eab781fd
/python-programming-workshop/interesting_programs/find_top_n_items_occuring_in_a_list.py
a80d1580bc755548d78d93a5e1a576fcfbf06feb
[]
no_license
bala4rtraining/python_programming
6ce64d035ef04486f5dc9572cb0975dd322fcb3e
99a5e6cf38448f5a01b310d5f7fa95493139b631
refs/heads/master
2023-09-03T00:10:26.272124
2021-11-01T08:20:52
2021-11-01T08:20:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
# example.py # # Determine the most common words in a list words = [ 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes', 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into', 'my', 'eyes', "you're", 'under' ] from collections import Counter word_counts = Counter(words) print(word_counts) top_three = word_counts.most_common(3) print(top_three) # outputs [('eyes', 8), ('the', 5), ('look', 4)] # Example of merging in more words morewords = ['why','are','you','not','looking','in','my','eyes','my','actually','actually', 'actually','actually','actually','actually'] word_counts.update(morewords) print(word_counts) print(word_counts.most_common(3))
[ "karthikkannan@gmail.com" ]
karthikkannan@gmail.com
2a745553b9c631a13ce660834e8b05dfce2df968
c839961aeab22795200d9edef9ba043fe42eeb9c
/data/script763.py
1b0213959badc4deafd6a607917ba8d0b1a00f22
[]
no_license
StevenLOL/kaggleScape
ad2bb1e2ed31794f1ae3c4310713ead1482ffd52
18bede8420ab8d2e4e7c1eaf6f63280e20cccb97
refs/heads/master
2020-03-17T05:12:13.459603
2018-05-02T19:35:55
2018-05-02T19:35:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,785
py
# coding: utf-8 # # Aim # This is a small yet useful kernel for providing an introduction to **Artificial Neural Networks** for people who want to begin their journey into the field of **deep learning**. For this, I have used Keras which is a high-level Neural Networks API built on top of low level neural networks APIs like Tensorflow and Theano. As it is high-level, many things are already taken care of therefore it is easy to work with and a great tool to start with. [Here's the documentation for keras](https://keras.io/) # # # What is Deep learning? # Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain called artificial neural networks. Deep learning is a machine learning technique that teaches computers to do what comes naturally to humans: learn by example. Deep learning is a key technology behind driverless cars, enabling them to recognize a stop sign, or to distinguish a pedestrian from a lamppost. It is the key to voice control in consumer devices like phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of attention lately and for good reason. It’s achieving results that were not possible before. # # # # What are artificial neural networks? # An artificial neuron network (ANN) is a computational model based on the structure and functions of biological neural networks. Information that flows through the network affects the structure of the ANN because a neural network changes - or learns, in a sense - based on that input and output. ANNs are considered nonlinear statistical data modeling tools where the complex relationships between inputs and outputs are modeled or patterns are found. ANN is also known as a neural network. # # <img src="https://cdn-images-1.medium.com/max/1000/1*ZX05x1xYgaVoa4Vn2kKS9g.png"> # A single neuron is known as a perceptron. It consists of a layer of inputs(corresponds to columns of a dataframe). Each input has a weight which controls the magnitude of an input. # The summation of the products of these input values and weights is fed to the activation function. Activation functions are really important for a Artificial Neural Network to learn and make sense of something really complicated and Non-linear complex functional mappings between the inputs and response variable. # # They introduce non-linear properties to our Network.Their main purpose is to convert a input signal of a node in a A-NN to an output signal. That output signal now is used as a input in the next layer in the stack. Specifically in A-NN we do the sum of products of inputs(X) and their corresponding Weights(W) and apply a Activation function f(x) to it to get the output of that layer and feed it as an input to the next layer. [Refer to this article for more info.](https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f) # <img src="https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png"> # **Concept of backpropagation** - Backpropagation, short for "backward propagation of errors," is an algorithm for supervised learning of artificial neural networks using gradient descent. Given an artificial neural network and an error function, the method calculates the gradient of the error function with respect to the neural network's weights. It is a generalization of the delta rule for perceptrons to multilayer feedforward neural networks. # <img src="https://www.researchgate.net/profile/Hassan_Al-Haj_Ibrahim/publication/235338024/figure/fig6/AS:299794191929349@1448487913220/Flow-chart-for-the-back-propagation-BP-learning-algorithm.png"> # **Gradient Descent** - To explain Gradient Descent I’ll use the classic mountaineering example. Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest point of the mountain (a.k.a valley). A twist is that you are blindfolded and you have zero visibility to see where you are headed. So, what approach will you take to reach the lake? The best way is to check the ground near you and observe where the land tends to descend. This will give an idea in what direction you should take your first step. If you follow the descending path, it is very likely you would reach the lake. [Refer to this article for more information.](https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/) # About Breast Cancer Wisconsin (Diagnostic) Data Set # Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. # # This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ # # Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 # # Attribute Information: # # 1) ID number 2) Diagnosis (M = malignant, B = benign) 3-32) # # Ten real-valued features are computed for each cell nucleus: # # a) radius (mean of distances from center to points on the perimeter) b) texture (standard deviation of gray-scale values) c) perimeter d) area e) smoothness (local variation in radius lengths) f) compactness (perimeter^2 / area - 1.0) g) concavity (severity of concave portions of the contour) h) concave points (number of concave portions of the contour) i) symmetry j) fractal dimension ("coastline approximation" - 1) # # The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. # # All feature values are recoded with four significant digits. # # Missing attribute values: none # # Class distribution: 357 benign, 212 malignant # In[ ]: # Importing libraries import pandas as pd import numpy as np # Importing data data = pd.read_csv('../input/data.csv') del data['Unnamed: 32'] # In[ ]: X = data.iloc[:, 2:].values y = data.iloc[:, 1].values # Encoding categorical data from sklearn.preprocessing import LabelEncoder labelencoder_X_1 = LabelEncoder() y = labelencoder_X_1.fit_transform(y) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 0) # **Now that we have prepared data, we will import Keras and its packages.** # In[ ]: import keras from keras.models import Sequential from keras.layers import Dense # In[ ]: # Initialising the ANN classifier = Sequential() # In[ ]: # Adding the input layer and the first hidden layer classifier.add(Dense(output_dim=16, init='uniform', activation='relu', input_dim=30)) # input_dim - number of columns of the dataset # # output_dim - number of outputs to be fed to the next layer, if any # # activation - activation function which is ReLU in this case # # init - the way in which weights should be provided to an ANN # # The **ReLU** function is f(x)=max(0,x). Usually this is applied element-wise to the output of some other function, such as a matrix-vector product. In MLP usages, rectifier units replace all other activation functions except perhaps the readout layer. But I suppose you could mix-and-match them if you'd like. One way ReLUs improve neural networks is by speeding up training. The gradient computation is very simple (either 0 or 1 depending on the sign of x). Also, the computational step of a ReLU is easy: any negative elements are set to 0.0 -- no exponentials, no multiplication or division operations. Gradients of logistic and hyperbolic tangent networks are smaller than the positive portion of the ReLU. This means that the positive portion is updated more rapidly as training progresses. However, this comes at a cost. The 0 gradient on the left-hand side is has its own problem, called "dead neurons," in which a gradient update sets the incoming values to a ReLU such that the output is always zero; modified ReLU units such as ELU (or Leaky ReLU etc.) can minimize this. Source : [StackExchange](https://stats.stackexchange.com/questions/226923/why-do-we-use-relu-in-neural-networks-and-how-do-we-use-it) # In[ ]: # Adding the second hidden layer classifier.add(Dense(output_dim=16, init='uniform', activation='relu')) # In[ ]: # Adding the output layer classifier.add(Dense(output_dim=1, init='uniform', activation='sigmoid')) # output_dim is 1 as we want only 1 output from the final layer. # # Sigmoid function is used when dealing with classfication problems with 2 types of results.(Submax function is used for 3 or more classification results) # <img src="https://cdn-images-1.medium.com/max/1000/1*Xu7B5y9gp0iL5ooBj7LtWw.png"> # In[ ]: # Compiling the ANN classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Optimizer is chosen as adam for gradient descent. # # Binary_crossentropy is the loss function used. # # Cross-entropy loss, or log loss, measures the performance of a classification model whose output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted probability diverges from the actual label. So predicting a probability of .012 when the actual observation label is 1 would be bad and result in a high loss value. A perfect model would have a log loss of 0. [More about this](http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html) # In[ ]: # Fitting the ANN to the Training set classifier.fit(X_train, y_train, batch_size=400, nb_epoch=400) # Long scroll ahead but worth # The batch size and number of epochs have been set using trial and error. Still looking for more efficient ways. Open to suggestions. # Batch size defines number of samples that going to be propagated through the network. # # An Epoch is a complete pass through all the training data. # # # So, we get more than 94% accuracy # # You can manipulate the above algorithm to get even better results. # In[ ]: # Predicting the Test set results y_pred = classifier.predict(X_test) y_pred = (y_pred > 0.5) # In[ ]: # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # In[ ]: print("Our accuracy is {}".format((cm[0][0] + cm[1][1])/57)) # Thanks for reading this. May this help you on your "deep" journey into machine learning.
[ "adithyagirish@berkeley.edu" ]
adithyagirish@berkeley.edu
033d868494a1885d332dd755e35485ada7a883c0
39f800b66f5c3c6d98fb41e5551cfb8c1959f4f3
/pyspark/test/bigdl/keras/test_load_model.py
0be15f22b02c895bcdbadf7b47c35b2496357bd4
[ "Apache-2.0" ]
permissive
GaryHalo/BigDL
ec523d13305880e9dde39d46cd9601eab5f277f5
987053d05fa55a685a25ac2e0ad17470433688fb
refs/heads/master
2022-10-30T20:11:51.622634
2021-04-21T02:14:37
2021-04-21T02:14:37
143,459,472
1
0
Apache-2.0
2022-10-05T00:10:17
2018-08-03T18:14:56
Scala
UTF-8
Python
false
false
4,683
py
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import numpy as np import pytest from numpy.testing import assert_allclose import bigdl.nn.layer as BLayer from bigdl.keras.converter import WeightLoader from bigdl.keras.converter import DefinitionLoader np.random.seed(1337) # for reproducibility from test.bigdl.test_utils import BigDLTestCase, TestModels from bigdl.examples.keras.keras_utils import * import keras.backend as K class TestLoadModel(BigDLTestCase): def __kmodel_load_def_weight_test(self, kmodel, input_data): keras_model_path_json, keras_model_path_hdf5 = dump_keras(kmodel, dump_weights=True) bmodel = DefinitionLoader.from_json_path(keras_model_path_json) WeightLoader.load_weights_from_hdf5(bmodel, kmodel, keras_model_path_hdf5) bmodel.training(False) boutput = bmodel.forward(input_data) koutput = kmodel.predict(input_data) assert_allclose(boutput, koutput, rtol=1e-5) def test_load_api_with_hdf5(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_graph_1_layer() keras_model_json_path, keras_model_hdf5_path = dump_keras(kmodel, dump_weights=True) bmodel = BLayer.Model.load_keras(json_path=keras_model_json_path, hdf5_path=keras_model_hdf5_path) self.assert_allclose(kmodel.predict(input_data), bmodel.forward(input_data)) def test_load_model_with_hdf5_with_definition(self): kmodel, input_data, output_data = TestModels.kmodel_graph_1_layer() keras_model_json_path, keras_model_hdf5_path = dump_keras(kmodel, dump_weights=True) bmodel = BLayer.Model.load_keras(hdf5_path=keras_model_hdf5_path) self.assert_allclose(kmodel.predict(input_data), bmodel.forward(input_data)) def test_load_api_no_hdf5(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_graph_1_layer() keras_model_json_path, keras_model_hdf5_path = dump_keras(kmodel, dump_weights=True) bmodel = BLayer.Model.load_keras(json_path=keras_model_json_path) def test_load_def_weights_graph_1_layer(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_graph_1_layer() self.__kmodel_load_def_weight_test(kmodel, input_data) def test_load_def_weights_graph_activation(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_graph_activation_is_layer() self.__kmodel_load_def_weight_test(kmodel, input_data) def test_load_def_weights_kmodel_seq_lenet_mnist(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_seq_lenet_mnist() self.__kmodel_load_def_weight_test(kmodel, input_data) def test_load_definition(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_seq_lenet_mnist() keras_model_json_path, keras_model_hdf5_path = dump_keras(kmodel, dump_weights=True) bmodel = DefinitionLoader.from_json_path(keras_model_json_path) WeightLoader.load_weights_from_kmodel(bmodel, kmodel) self.assert_allclose(bmodel.forward(input_data), kmodel.predict(input_data)) def test_load_weights(self): K.set_image_dim_ordering("th") kmodel, input_data, output_data = TestModels.kmodel_graph_1_layer() keras_model_json_path, keras_model_hdf5_path = dump_keras(kmodel, dump_weights=True) bmodel = DefinitionLoader.from_json_path(keras_model_json_path) kmodel.set_weights([kmodel.get_weights()[0] + 100, kmodel.get_weights()[1]]) WeightLoader.load_weights_from_hdf5(bmodel, kmodel, filepath=keras_model_hdf5_path) self.assert_allclose(bmodel.forward(input_data), kmodel.predict(input_data)) if __name__ == "__main__": pytest.main([__file__])
[ "noreply@github.com" ]
GaryHalo.noreply@github.com
492b3eeb310bb197c2e37049e101fdfd915fa423
090e58e3bc859fdaf57035f5823c2427211945df
/src/Linear_Distributed_Delay_System/Linear_Distributed_Delay_Stability_Analysis_Example.py
d0a026c7b711b0625b05f4f4ed9315fe4c56c97c
[]
no_license
WDash1/MMSC-Distributed_Delay
4a2708b90fe65412b7a9bc4f0a1020f6ad2ef641
71502409c1eba40385ff4f7f27e758d32ea44b0b
refs/heads/master
2022-12-12T05:39:44.300135
2020-08-23T09:02:41
2020-08-23T09:02:41
267,675,451
1
0
null
null
null
null
UTF-8
Python
false
false
2,380
py
git diff --name-only --diff-filter=U import numpy as NP from pylab import figure, plot, xlabel, ylabel, legend, title, savefig import matplotlib.pyplot as plt from DistributedDelaySimulator import DistributedDelaySimulator; # The number of points we wish to use the Trapezium rule to discretise the # integral. n=20; # The model parameters we wish to use for simulations. alpha_amt = 50 alpha_values = NP.linspace(-10, 2, num=alpha_amt); beta_amt = 50; beta_values = NP.linspace(-20, 10, num=beta_amt); # The time values at which we wish to compute the values of the trajectories. t_values = NP.linspace(10, 20, num=300); # Initial data for the simulations. y0_values = lambda t: NP.sin(NP.sqrt(2)*t)+NP.cos(t); # Produce trajectory simulations for each value of beta. distributed_delay_simulator = DistributedDelaySimulator(n, t_values); stability_matrix = NP.zeros((beta_amt, alpha_amt)); for i in range(0, alpha_amt): for j in range(0, beta_amt): alpha_value = alpha_values[i]; beta_value = beta_values[j]; y_sol = distributed_delay_simulator.generateTrajectory(y0_values, alpha_value, beta_value); if(max(abs(y_sol))>1.0): stability_matrix[j][i] = 6; else: stability_matrix[j][i] = 0; # Plot types of fixed point in a bifurcatiion diagram. XX, YY = NP.meshgrid(alpha_values, beta_values); fig,ax = plt.subplots(1,1) plt.title('Bifurcation Plot for Linear Distributed Delay System'); p = plt.imshow(stability_matrix, extent=[min(alpha_values), max(alpha_values), max(beta_values), min(beta_values)], aspect = (max(alpha_values)-min(alpha_values))/(max(beta_values)-min(beta_values)), cmap=plt.cm.get_cmap('jet')); plt.clim(0,10) fig, ax = plt.subplots(1,1) plt.title('Bifurcation Plot for Linear Distributed Delay System'); p = ax.imshow(stability_matrix, extent=[min(alpha_values), max(alpha_values), max(beta_values), min(beta_values)], aspect = (max(alpha_values)-min(alpha_values))/(max(beta_values)-min(beta_values))); #plt.colorbar(p); plt.xlabel(r'$\alpha$'); plt.ylabel(r'$\beta$'); plt.gca().invert_yaxis() fig.savefig('fig2.png', dpi=300); plt.show();
[ "William@ITSs-iMac.local" ]
William@ITSs-iMac.local
f48e3965f482d60c5e43a0c45060ceee144d79f2
1adbd4b6b9b56f3ca45d8f7d244280415183a2b3
/src/particle_filter.py
3dbcbe41e43764025d63250ec746173b3c792865
[]
no_license
shortstheory/RGBD-Tracking
d50258f3553d98302489c1a512c468648248493c
475a987b69ea7db6dacd88e97f0d121217533f37
refs/heads/master
2022-06-18T03:42:23.165484
2020-05-01T19:45:54
2020-05-01T19:45:54
255,496,271
3
2
null
null
null
null
UTF-8
Python
false
false
2,424
py
import numpy as np class PF: def __init__(self, init_pose, num_p = 10, cov = 0.1, model = "velocity"): ''' initialize the particle filter with num_p_ particles and velocity or acc model Inputs: 1. init_pose: initial pose obtained from first frame 2. num_p: number of particles 3. cov: covariance for noise to be added in the predict step 4. model: which motion model to use for the predict step. Currently, only supports constant velocity model ''' self.num_p = num_p self.model = model if model == "velocity": self.state_dims = 6 self.cov = cov * np.identity(self.state_dims) self.best_p = init_pose self.init_pose = init_pose self.particles = np.random.multivariate_normal(self.init_pose, self.cov, self.num_p) self.weights = np.ones((self.particles.shape[0]))/self.particles.shape[0] def predict(self, dt = 0.1): """ Move the particles as per the motion model and then add noise """ self.propagate(dt) noise = np.random.multivariate_normal(np.zeros((self.state_dims)), self.cov, self.num_p) # print(noise) self.particles += noise def propagate(self,dt): """ apply the motion model """ F = np.identity((self.state_dims)) if self.model == "velocity": F[0, -3] = dt F[1, -2] = dt F[2, -1] = dt # print(F) self.particles = np.matmul(F, self.particles[:,:,None])[:,:,0] def update(self, correlation): ''' Reweight the particles as per the correlation score ''' self.weights = correlation/np.sum(correlation) self.best_p = self.particles[np.argmax(self.weights),:] def restratified_sampling(self): ''' Resample the particles as per the distribution governed by current weights ''' print("resampling particles!") means = self.particles weights = self.weights N = self.weights.shape[0] c = weights[0] j = 0 u = np.random.uniform(0,1.0/N) new_mean = np.zeros(means.shape) new_weights = np.zeros(weights.shape) for k in range(N): beta = u + float(k)/N while beta > c: j += 1 c += weights[j] # add point new_mean[k] = means[j] new_weights[k] = 1.0/N self.particles = new_mean self.weights = new_weights if __name__ == "__main__": init_pose = np.array([0, 0, 0, 0, 0, 0]) pf = PF(init_pose) pf.predict()
[ "arnav.dhamija@gmail.com" ]
arnav.dhamija@gmail.com
624dc6a10958ace519ad830e661c28a837ba12ed
ae63c9d81a11c4ab10d7a6bc723d1f3d94761abc
/upload/migrations/0004_auto__del_field_photo_file__add_field_photo_src__add_field_photo_pub_d.py
f6fe80cfdebe12ff97996dc048e5aa8b77d49a9a
[]
no_license
rif/blackbar
2fdc3cc57853cd0d49d1db65763090b0455b4e81
eae31830ab25c554a6160e19092188a24bb8c614
refs/heads/master
2022-11-29T12:44:18.815860
2017-07-07T07:07:22
2017-07-07T07:07:22
204,672,053
0
0
null
2022-11-22T00:20:09
2019-08-27T09:48:23
JavaScript
UTF-8
Python
false
false
5,549
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Photo.file' db.delete_column('upload_photo', 'file') # Adding field 'Photo.src' db.add_column('upload_photo', 'src', self.gf('django.db.models.fields.files.FileField')(default='', max_length=100), keep_default=False) # Adding field 'Photo.pub_date' db.add_column('upload_photo', 'pub_date', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, default=datetime.datetime(2013, 1, 1, 0, 0), blank=True), keep_default=False) def backwards(self, orm): # Adding field 'Photo.file' db.add_column('upload_photo', 'file', self.gf('django.db.models.fields.files.FileField')(default=datetime.datetime(2013, 1, 1, 0, 0), max_length=100), keep_default=False) # Deleting field 'Photo.src' db.delete_column('upload_photo', 'src') # Deleting field 'Photo.pub_date' db.delete_column('upload_photo', 'pub_date') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'upload.blackbarprofile': { 'Meta': {'object_name': 'BlackbarProfile'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mugshot': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'privacy': ('django.db.models.fields.CharField', [], {'default': "'registered'", 'max_length': '15'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'my_profile'", 'unique': 'True', 'to': "orm['auth.User']"}) }, 'upload.photo': { 'Meta': {'object_name': 'Photo'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'pub_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'src': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['upload']
[ "radu@fericean.ro" ]
radu@fericean.ro
de1498ab923433223a4a2d4502ba859c27e07d78
a81a1efe1a93d5af0ef3f6403862a1544befd6cf
/Array/54_SpiralMatrix.py
4186aa8310f613fd10f02a0a2bdcd644ad169971
[]
no_license
fishleongxhh/LeetCode
89da4ae3ca1715b1909c350437c0ba79eb2a8349
d0352fecc61396fc460e1350572189b175a13f61
refs/heads/master
2020-04-05T17:14:27.976946
2018-12-16T14:10:54
2018-12-16T14:10:54
157,050,997
1
0
null
null
null
null
UTF-8
Python
false
false
1,428
py
# -*- coding: utf-8 -*- # Author: Xu Hanhui # 此程序用来求解LeetCode54: Spiral Matrix问题 def spiralOrder(matrix): if not matrix: return [] res = [] i, j = 0, 0 min_left, max_right, max_down, min_up = 0, len(matrix[0])-1, len(matrix)-1, 0 direction = 'right' while True: if direction == 'right': if j > max_right: break res.extend(matrix[i][j:max_right+1]) i, j = i+1, max_right min_up += 1 direction = 'down' if direction == 'down': if i > max_down: break res.extend([matrix[k][j] for k in range(i, max_down+1)]) i, j = max_down, j-1 max_right -= 1 direction = 'left' if direction == 'left': if j < min_left: break res.extend(reversed(matrix[i][min_left:j+1])) i, j = i-1, min_left max_down -= 1 direction = 'up' if direction == 'up': if i < min_up: break res.extend([matrix[k][j] for k in range(i, min_up-1, -1)]) i, j = min_up, j+1 min_left += 1 direction = 'right' return res if __name__ == "__main__": matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]] matrix = [[],[]] for l in matrix: print(l) print(spiralOrder(matrix))
[ "xhh1120132805@163.com" ]
xhh1120132805@163.com
35ab3a19e850bbe01e7c10a7b8760ea6d19c925e
e378277e270487668ec34e3aeb1e843d193f87ee
/scrap_site/urls.py
b12ee179860ea1ef94863d968d38cd3eef30159a
[]
no_license
simofirdoussi/Django-webscraping
f9516940d47d8a7e8a9f35dc6184ad1411e71fc4
f7f75cde707f2b44827fe5c6d9c230f9779404ec
refs/heads/master
2022-10-22T20:24:26.294367
2020-06-09T10:36:17
2020-06-09T10:36:17
252,498,354
3
0
null
null
null
null
UTF-8
Python
false
false
798
py
"""scrap_site URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('', include('myapp.urls')), path('admin/', admin.site.urls), ]
[ "simow@MacBook-Pro-de-Simow.local" ]
simow@MacBook-Pro-de-Simow.local
bba29c0aeb561e9cc5092213128b7a624854b703
ddac7feb045569ba059ec7a96874e94d86ed1feb
/python/course/douban/spider.py
b6b0dc6de66c736267ebd04dfc182b3bffe2945a
[ "Apache-2.0" ]
permissive
TimVan1596/ACM-ICPC
8d38e1843b40afe9294fd668e3e18ebc69e89bbf
b8d4e681b4b999cc025ac6d1d0357f0ccbaf092f
refs/heads/master
2023-08-14T07:58:20.340426
2022-08-20T16:33:59
2022-08-20T16:33:59
182,549,941
1
0
Apache-2.0
2023-07-22T03:45:01
2019-04-21T15:22:22
JavaScript
UTF-8
Python
false
false
1,578
py
# -*- coding:utf-8 -*- # @Time:2020/8/4 11:55 # @Author:TimVan # @File:spider.py # @Software:PyCharm import urllib.request, urllib.error # urllib:制定URL,获取网页数据 from bs4 import BeautifulSoup # bs4:网页解析,获取数据 import re # re:正则表达式,进行文字匹配 import xlwt # xlwt:进行excel操作 import sqlite3 # sqlite3:进行SQLite数据库操作 def main(): # 1.爬取网页 # 2.逐一解析数据 # 3.保存数据(SQL或Excel) baseUrl = "https://movie.douban.com/top250?start=" savePath = ".\\豆瓣电影TOP250.xls" getData(baseUrl) saveData(savePath) # 读取一个URL,并返回其源码 def askUrl(url): header = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36" } request = urllib.request.Request(url, headers=header) # html=待返回源码 html = None try: response = urllib.request.urlopen(request) html = response.read().decode("utf-8") except urllib.error.URLError as e: print("请求错误") if hasattr(e, "code"): print(",错误状态码为{}".format(e.code)) if hasattr(e, "reason"): print(",原因为{}".format(e.reason)) return html # 1.爬取网页 def getData(baseUrl): dataList = [] html = askUrl(baseUrl) print(html) # 2.逐一解析数据 return dataList # 3.保存数据(SQL或Excel) def saveData(savePath): print() if __name__ == "__main__": main()
[ "877020296@qq.com" ]
877020296@qq.com
c8e339c1b6310663e6035ac79c1f923100bb627e
d63ae7d6076d52477778e456388e5231147ef96a
/app/applications/repository.py
c2474352265c6fe2f56c762d7aa8be401d4bbf59
[]
no_license
oscarTematio/projet-back
6687f8b6a70a93e23372715a3a484ad943c3cb67
b3dd5d7b767aaa93b3ff62d4dca1502641e747e4
refs/heads/master
2020-06-07T06:21:08.490554
2019-06-21T15:47:41
2019-06-21T15:47:41
192,947,681
0
0
null
null
null
null
UTF-8
Python
false
false
1,247
py
from .models import ApplicationModel from flask_sqlalchemy import SQLAlchemy from injector import inject class ApplicationRepository: """Persistence of applications""" @inject def __init__(self, db: SQLAlchemy): self._db = db def get_all(self): return self._db.session.query(ApplicationModel).all() def json(self): return {'name': self.name, 'source': self.source} def find_application_by_id(self, _id): return self._db.session.query(ApplicationModel).filter(ApplicationModel.app_id == _id).first() def find_application_by_name(self, name): return self._db.session.query(ApplicationModel).filter(ApplicationModel.name == name).first() def create_app(self,name,source): return ApplicationModel(name,source) def _update_application(self,_id,object): return self._db.session.query(ApplicationModel).filter(ApplicationModel.app_id ==_id).update(object) def save_to_db(self, object): self._db.session.add(object) self._db.session.commit() def delete(self, object): self._db.session.delete(object) self._db.session.commit() def flush(self): self._db.session.flush()
[ "oscar-miguel.tematio@PCP105.intech.lan" ]
oscar-miguel.tematio@PCP105.intech.lan
41523cb4cc1d648782d753058c682c1af1aa9015
1d1ff3dbce4035cc437d5b6a57800156b007e4e8
/.ycm_extra_conf.py
7e282807438b8dd6b39bf017f731aa9325bbd0f2
[]
no_license
osolong/vim-scripts
45fc5b211a3bb477e8bfc52546a490dd91b40778
a2a24a94842bfbfedfa6a9a79ff93c4f7233feb1
refs/heads/master
2021-01-18T17:25:44.245878
2014-07-16T20:59:37
2014-07-16T20:59:37
2,991,096
0
0
null
null
null
null
UTF-8
Python
false
false
6,415
py
# This file is NOT licensed under the GPLv3, which is the license for the rest # of YouCompleteMe. # # Here's the license text for this file: # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> import os import ycm_core # These are the compilation flags that will be used in case there's no # compilation database set (by default, one is not set). # CHANGE THIS LIST OF FLAGS. YES, THIS IS THE DROID YOU HAVE BEEN LOOKING FOR. flags = [ '-Wall', # You 100% do NOT need -DUSE_CLANG_COMPLETER in your flags; only the YCM # source code needs it. #'-DUSE_CLANG_COMPLETER', # THIS IS IMPORTANT! Without a "-std=<something>" flag, clang won't know which # language to use when compiling headers. So it will guess. Badly. So C++ # headers will be compiled as C headers. You don't want that so ALWAYS specify # a "-std=<something>". # For a C project, you would set this to something like 'c99' instead of # 'c++11'. '-std=c++0x', # ...and the same thing goes for the magic -x option which specifies the # language that the files to be compiled are written in. This is mostly # relevant for c++ headers. # For a C project, you would set this to 'c' instead of 'c++'. '-x', 'c++', '-I', 'include', '-I', '/home/rafael/Perforce/rodriraf_MEQ-RODRIRAF01-Linux01_7903/users/rodriraf/10087/test/test_DEV_EU_TELEMETRY/libtomcrypt/src/headers', '-I', '/home/rafael/Perforce/rodriraf_MEQ-RODRIRAF01-Linux01_7903/users/rodriraf/10087/test/test_DEV_EU_TELEMETRY/libtommath', '-isystem', '/home/rafael/Perforce/rodriraf_MEQ-RODRIRAF01-Linux01_7903/users/rodriraf/10087/test/test_DEV_EU_TELEMETRY' '-isystem', '/home/rafael/CodeSourcery/Sourcery_G++_Lite/arm-none-linux-gnueabi/include/c++/4.4.1', '-isystem', '/home/rafael/CodeSourcery/Sourcery_G++_Lite/arm-none-linux-gnueabi/libc/usr/include', '-isystem', '/home/rafael/CodeSourcery/Sourcery_G++_Lite/arm-none-linux-gnueabi/include/c++/4.4.1/arm-none-linux-gnueabi', ] # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = '' if os.path.exists( compilation_database_folder ): database = ycm_core.CompilationDatabase( compilation_database_folder ) else: database = None SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ] def DirectoryOfThisScript(): return os.path.dirname( os.path.abspath( __file__ ) ) def MakeRelativePathsInFlagsAbsolute( flags, working_directory ): if not working_directory: return list( flags ) new_flags = [] make_next_absolute = False path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith( '/' ): new_flag = os.path.join( working_directory, flag ) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith( path_flag ): path = flag[ len( path_flag ): ] new_flag = path_flag + os.path.join( working_directory, path ) break if new_flag: new_flags.append( new_flag ) return new_flags def IsHeaderFile( filename ): extension = os.path.splitext( filename )[ 1 ] return extension in [ '.h', '.hxx', '.hpp', '.hh' ] def GetCompilationInfoForFile( filename ): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile( filename ): basename = os.path.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if os.path.exists( replacement_file ): compilation_info = database.GetCompilationInfoForFile( replacement_file ) if compilation_info.compiler_flags_: return compilation_info return None return database.GetCompilationInfoForFile( filename ) def FlagsForFile( filename, **kwargs ): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile( filename ) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) # NOTE: This is just for YouCompleteMe; it's highly likely that your project # does NOT need to remove the stdlib flag. DO NOT USE THIS IN YOUR # ycm_extra_conf IF YOU'RE NOT 100% SURE YOU NEED IT. #try: # final_flags.remove( '-stdlib=libc++' ) #except ValueError: # pass else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to ) return { 'flags': final_flags, 'do_cache': True }
[ "rafael.rodriguez@meigroup.com" ]
rafael.rodriguez@meigroup.com
dfcac23bda71dc7eb0f21a66c59fefefdf7f6041
c8d49e7ba66ccaaa31ea11dd097dbdd4c2f532ad
/jogo/urls.py
c7d2a321dc8af21f92d4769ee550c764a8e0ad68
[]
no_license
lucascastejon/lucas-jogodavelha
abd475dfba952f5167ee75bca5051cbaa37df120
9eb426c76b1d93fc2d92bafc02991a78b0d17c63
refs/heads/master
2021-01-22T22:57:43.645558
2015-05-31T04:01:08
2015-05-31T04:01:08
18,375,393
1
0
null
null
null
null
UTF-8
Python
false
false
235
py
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'', include('jogo.core.urls', namespace='core')), url(r'^admin/', include(admin.site.urls)), )
[ "lucascastejon@gmail.com" ]
lucascastejon@gmail.com
3f56c3f4cc60ed35eb0df059daae27c2af8b1e0f
52470638e2dd65049f9e7a31716b400acc21302a
/movie-system/testing.py
cefaf9fecc8bec19551a8e74829e9029d5e1e9d4
[]
no_license
asechnaya/-python-postgresql-
c9e1d5ba502077533a1aedbe35be58725e39df7c
8a6be2e3efd017f441ed3e7237943bbfa32532ef
refs/heads/master
2020-04-15T18:21:25.641526
2019-03-08T11:04:15
2019-03-08T11:04:15
164,910,686
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
import user from User import json with open('my_file.txt', 'w') as f: f.write('Hello, World!') with open('my_file.txt', 'r') as f: print(f.readline()) with open('my_file.txt', 'r') as f: json_data = json.load(f) user = User.from_json(json_data) ''' import sys my_vars = [] for i in range(3): my_vars.append(lambda: i) print([f() for f in my_vars]) print(sys.argv) '''
[ "anutya@mail.ru" ]
anutya@mail.ru
96cecd7dd8ddb4ed96f5708602ad98e74a9c41d1
ef4eab407f24e04278db71db0da9306b7890dd91
/src/Algorithms/LeetCode/Arrays/34-findFistandLastPositionofElement.py
663d686a09c4a05060431d4341950e033ad9f6a9
[]
no_license
someonehan/Algorithms
aabda722d7124d9953e5151a45b786ac946a7d7a
4b3f584591952c769d5bfe2146c7043ef6e045b9
refs/heads/master
2021-06-09T14:27:47.588858
2021-04-06T15:23:21
2021-04-06T15:23:21
141,306,297
2
0
null
null
null
null
UTF-8
Python
false
false
1,042
py
""" given an array of integers nums sorted in ascending order, first the starting and the ending position of a given target value. if target is not found in the array return [-1, -1] Example: input nums [1, 7, 7, 8, 8, 10] target = 8 return [3, 4] Example: input nums [5, 7, 7, 8, 8, 10] target = 6 return [-1, -1] """ class Solution: def flPosition1(self, nums : list[int], target : int) -> list[int]: for index, elem in enumerate(nums): left_found = False if not left_found and elem == target: lo = index left_found = True if left_found: if elem > target: hi = index - 1 return [lo, hi] return [-1, -1] def find_insert_pos(self, nums : list[int], target : int, left : bool) -> int: lo, hi = 0, len(nums) - 1 while lo < hi: mid = (lo + hi) // 2 if target > nums[mid] or (left ): lo = mid else: hi = mid
[ "hxzh@localhost.localdomain" ]
hxzh@localhost.localdomain
2e1fa2579cafb12827fa7579a57c7dfe4d844b71
8e18f7fe444040105b34703030029355641ddf2a
/standalone/udfs.py
c506e57ff17eca883c96f4b2738975123768d676
[]
no_license
smplisri/AdventOfCode2020
f24a2486a66b04857a6f6573626c23daf270de25
12b06508c840f3e44be54e4f5c785fb1d75d35ff
refs/heads/main
2023-01-31T02:47:44.519208
2020-12-16T04:50:14
2020-12-16T04:50:14
321,431,778
0
0
null
2020-12-14T18:57:36
2020-12-14T18:04:17
null
UTF-8
Python
false
false
969
py
import os def inputFileHandler(script_file_name, input_file_name): dir_path = os.path.dirname(os.path.realpath(script_file_name)) file_name = dir_path + "/" + input_file_name ifh = open(file_name, "r") return ifh def lineSepGroupFormatter(lines_list, delimiter, join_char): formatted_list = map(lambda x: x.strip() if x != delimiter else x, lines_list) return join_char.join(formatted_list).split(join_char + delimiter + join_char) def lineSepGroupFormatterDict(lines_list, delimiter, join_char): iterator, answerset, interim_data = 1, {}, [] formatted_list = list(map(lambda x: x.strip() if x != delimiter else x, lines_list)) formatted_list.append(delimiter) for item in formatted_list: if item.strip() == "": answerset["group" + str(iterator)] = interim_data interim_data = [] iterator = iterator + 1 else: interim_data.append(item) return answerset
[ "s.srinivasakalyan@gmail.com" ]
s.srinivasakalyan@gmail.com
32d7fc142d327a807d2b8c1585963888cc16f038
7b8fbf5b79b56428d3015e2b9130e82d4424f682
/menu/forms.py
5ea260b163c23113232c0760c5f2c98a793291fc
[]
no_license
chohanjoo/WebOrderSystem
6fb1e31f289ec4f88bfa93b144643317d562376d
1b90620b4b8d3a53b6c36a3636a75e8fb7e8442e
refs/heads/master
2022-12-11T08:53:59.316516
2019-06-17T08:04:15
2019-06-17T08:04:15
188,407,879
0
0
null
2022-12-03T11:44:18
2019-05-24T11:08:54
CSS
UTF-8
Python
false
false
572
py
from django import forms from .models import Menu, Category class MenuForm(forms.ModelForm): class Meta: model = Menu fields = ('name', 'price','image','category') # class MenuBoardForm(forms.ModelForm): # class Meta: # model = Menu # fields = ('name', 'price','image','category') class CategoryForm(forms.ModelForm): class Meta: model = Category fields = ('name',) # class ShopForm(forms.ModelForm): # class Meta: # model = Menu # fields = ('name', 'price','image','category')
[ "johanjoo@naver.com" ]
johanjoo@naver.com
837d7f156b75755d43c1273240b8db9dcbecab16
6649777d8f0b0e3e54c43669e46cd93baf0b4956
/underworld/units/cerberus.py
820b9226d4014fba09db1bd979abf2a468c842e7
[]
no_license
Lnk2past/underworld
5266e20468ff1ec67ad8a8134a7890f54e170403
04b5f43234a53ed8072a0ecc62d701d873193daf
refs/heads/master
2021-01-06T05:57:12.335451
2020-03-04T03:04:47
2020-03-04T03:04:47
241,229,241
0
0
null
null
null
null
UTF-8
Python
false
false
4,336
py
from underworld.event_manager.event_manager import global_event_manager from underworld.event_manager.triggers import * from underworld.units.base_unit import base_unit from underworld.units.other import bomber_rocket_rocket from underworld.modules import * from underworld.traits import * class sentinel(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 750.0 self.weapon_slot = battery(6) class guardian(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 7000.0 self.weapon_slot = guardian_battery() class interceptor(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 8000.0 self.weapon_slot = mass_battery(1) class colossus(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 40000.0 self.weapon_slot = colossus_laser() self.shield_slot = passive_shield(10) self.support_slots = [salvage(12)] self.support_slots[0].register(self) class destroyer(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 10000.0 class bomber(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 48000.0 self.weapon_slot = bomber_rocket() self.weapon_slot.register(self) self.set_trigger(enemy_in_neighboring_sector, self.weapon_slot.activate) def spawn_bomber_rocket(self): brr = bomber_rocket_rocket() brr.time = self.time brr.corporation = self.corporation self.corporation.add(brr) class phoenix(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 45000.0 self.weapon_slot = dual_laser(5) self.shield_slot = phoenix_area_shield() self.set_trigger(death, phoenix.spawn_sentinels) @staticmethod def spawn_sentinels(s): for i in range(3): se = sentinel() se.time = s.time s.corporation.add(se) se.corporation = s.corporation class storm(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 40000.0 self.weapon_slot = dart_barrage() class ghost(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 200.0 self.weapon_slot = ghost_battery() class weak_cerberus_base(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 20000.0 self.weapon_slot = weak_cerberus_base_battery() self.shield_slot = weak_cerberus_base_passive_shield() class cerberus_base(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 50000.0 self.weapon_slot = cerberus_base_battery() self.shield_slot = cerberus_base_passive_shield() class strong_cerberus_base(base_unit, salvageable): def __init__(self, name=None): super().__init__() self.name = self.get_class_name() if name is None else name self.hull = self.max_hull = 90000.0 self.weapon_slot = strong_cerberus_base_battery() self.shield_slot = strong_cerberus_base_passive_shield()
[ "Lnk2past@gmail.com" ]
Lnk2past@gmail.com
d380d216484991a1eecc5857a84f6ae5d10474af
005340836278129a8f3d947c953792527fd34bee
/calculator1/mycalc10.py
40e913c2116f3ac6874b1cc6db990906ae627a3c
[]
no_license
Myoung-heeSeo/SoftwareProject2-KMU-2017
b8508652b787e41bb80f828d8c0cc22e956c5807
1c5f202306208f869c0d2e1f46a0468bb0341264
refs/heads/master
2020-09-05T00:13:40.945923
2019-11-06T06:58:28
2019-11-06T06:58:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,855
py
from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.QtWidgets import QLineEdit, QToolButton from PyQt5.QtWidgets import QSizePolicy from PyQt5.QtWidgets import QLayout, QGridLayout from keypad2 import numPadList, operatorList, constantList, functionList import calcFunctions class Button(QToolButton): def __init__(self, text, callback): super().__init__() self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Preferred) self.setText(text) self.clicked.connect(callback) def sizeHint(self): size = super(Button, self).sizeHint() size.setHeight(size.height() + 20) size.setWidth(max(size.width(), size.height())) return size class Calculator(QWidget): def __init__(self, parent=None): super().__init__(parent) # Display Window self.display = QLineEdit() self.display.setReadOnly(True) self.display.setAlignment(Qt.AlignRight) self.display.setMaxLength(15) # Button Creation and Placement numLayout = QGridLayout() opLayout = QGridLayout() constLayout = QGridLayout() funcLayout = QGridLayout() buttonGroups = { 'num': {'buttons': numPadList, 'layout': numLayout, 'columns': 3}, 'op': {'buttons': operatorList, 'layout': opLayout, 'columns': 2}, 'constants': {'buttons': constantList, 'layout': constLayout, 'columns': 1}, 'functions': {'buttons': functionList, 'layout': funcLayout, 'columns': 1}, } for label in buttonGroups.keys(): r = 0; c = 0 buttonPad = buttonGroups[label] for btnText in buttonPad['buttons']: button = Button(btnText, self.buttonClicked) buttonPad['layout'].addWidget(button, r, c) c += 1 if c >= buttonPad['columns']: c = 0; r += 1 # Layout mainLayout = QGridLayout() mainLayout.setSizeConstraint(QLayout.SetFixedSize) mainLayout.addWidget(self.display, 0, 0, 1, 2) mainLayout.addLayout(numLayout, 1, 0) mainLayout.addLayout(opLayout, 1, 1) mainLayout.addLayout(constLayout, 2, 0) mainLayout.addLayout(funcLayout, 2, 1) self.setLayout(mainLayout) self.setWindowTitle("My Calculator") def buttonClicked(self): if self.display.text() == 'Error!': self.display.setText('') button = self.sender() key = button.text() if key == '=': try: result = str(eval(self.display.text())) except: result = 'Error!' self.display.setText(result) elif key == 'C': self.display.clear() elif key in constantList: #for문과 list를 사용하여 단축 conLi = ['3.141592','3E+8', '340', '1.5E+8'] for i in range(4): if key == constantList[i]: self.display.setText(self.display.text() + conLi[i]) elif key in functionList: #for문과 리스트를 사용하여 단축 n = self.display.text() fun = [calcFunctions.factorial(n), calcFunctions.decToBin(n), calcFunctions.binToDec(n), calcFunctions.decToRoman(n)] #getattr 사용해서 단축 가능 for i in range(4): if key==functionList[i]: value = fun[i] self.display.setText(str(value)) else: self.display.setText(self.display.text() + key) if __name__ == '__main__': import sys app = QApplication(sys.argv) calc = Calculator() calc.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
Myoung-heeSeo.noreply@github.com
3244b9e5e936800c4b69ed2a2614cb5fdf388dfb
77d13fa4a3beea42d460eb745dd854061578e095
/ship/fmp/datunits/initialconditionsunit.py
38f2cba61d8da27474a88c20e474c73c570b168a
[ "MIT" ]
permissive
duncan-r/SHIP
b2a899b393a6e5a10c0cbc580c12cf0dc7e60455
e8e7249a511d52b29d34be0951d6a05f346b836c
refs/heads/develop
2022-11-09T09:34:38.872270
2022-10-26T08:09:36
2022-10-26T08:09:36
55,844,064
6
6
null
2017-06-28T10:22:26
2016-04-09T12:51:32
Python
UTF-8
Python
false
false
11,400
py
""" Summary: Contains the InitialConditionsUnit class. This is a holder for all of the data in the initial conditions section of the dat file. Author: Duncan Runnacles Created: 01 Apr 2016 Copyright: Duncan Runnacles 2016 TODO: Not fully implemented at the moment - see class TODO comment for details. Updates: """ from __future__ import unicode_literals from ship.fmp.datunits.isisunit import AUnit from ship.datastructures.rowdatacollection import RowDataCollection from ship.datastructures import dataobject as do from ship.fmp.datunits import ROW_DATA_TYPES as rdt import logging logger = logging.getLogger(__name__) class InitialConditionsUnit (AUnit): """isisunit for storing the initial conditions. Stores the initial conditions data; near the end of the .dat file. """ # Class constants UNIT_TYPE = 'initial_conditions' UNIT_CATEGORY = 'initial_conditions' FILE_KEY = 'INITIAL' FILE_KEY2 = None def __init__(self, **kwargs): """Constructor Args: node_count (int): The number of nodes in the model. We need this to know how many lines there are to read from the contents list. fileOrder (int): The location of the initial conditions in the .DAT file. This will always be at the end but before the GISINFO if there is any. """ super(InitialConditionsUnit, self).__init__(**kwargs) self._unit_type = InitialConditionsUnit.UNIT_TYPE self._unit_category = InitialConditionsUnit.UNIT_CATEGORY self._name = "initial_conditions" self._name_types = {} self._node_count = 0 self._label_length = 12 # self.has_datarows = True # self.has_ics = False dobjs = [ do.StringData(rdt.LABEL, format_str='{:<12}'), do.StringData(rdt.QMARK, format_str='{:>2}', default='y'), do.FloatData(rdt.FLOW, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.STAGE, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.FROUDE_NO, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.VELOCITY, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.UMODE, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.USTATE, format_str='{:>10}', default=0.000, no_of_dps=3), do.FloatData(rdt.ELEVATION, format_str='{:>10}', default=0.000, no_of_dps=3), ] self.row_data['main'] = RowDataCollection.bulkInitCollection(dobjs) @property def node_count(self): return self._node_count # return self.row_data['main'].getNumberOfRows() def readUnitData(self, unit_data, file_line, **kwargs): """ """ self._node_count = kwargs['node_count'] self._name_types = kwargs['name_types'] self._label_length = kwargs['label_length'] i = file_line out_line = file_line + self._node_count + 2 for i in range(file_line, out_line): if i < file_line + 2: continue # Skip the first couple of header lines label = unit_data[i][0:self._label_length].strip() qmark = unit_data[i][self._label_length:self._label_length+2].strip() flow = unit_data[i][self._label_length+2:self._label_length+12].strip() stage = unit_data[i][self._label_length+12:self._label_length+22].strip() froude_no = unit_data[i][self._label_length+22:self._label_length+32].strip() velocity = unit_data[i][self._label_length+32:self._label_length+42].strip() umode = unit_data[i][self._label_length+42:self._label_length+52].strip() ustate = unit_data[i][self._label_length+52:self._label_length+62].strip() elevation = unit_data[i][self._label_length+62:self._label_length+72].strip() try: self.row_data['main'].addRow({ rdt.LABEL: label, rdt.QMARK: qmark, rdt.FLOW: flow, rdt.STAGE: stage, rdt.FROUDE_NO: froude_no, rdt.VELOCITY: velocity, rdt.UMODE: umode, rdt.USTATE: ustate, rdt.ELEVATION: elevation }, no_copy=True) except: pass return out_line - 1 def getData(self): """ """ out_data = [] out_data.append('INITIAL CONDITIONS') out_data.append(' label ? flow stage froude no velocity umode ustate z') # for i in range(0, self._node_count): for i in range(0, self.row_data['main'].numberOfRows()): out_data.append(self.row_data['main'].getPrintableRow(i)) return out_data # def updateDataRow(self, row_vals, index): def updateRow(self, row_vals, index, **kwargs): """Updates the row at the given index in the row_collection. Changes the state of the values in the initial conditions list of the .dat file at the given index. Args: row_vals(Dict): keys must be datunits.ROW_DATA_TYPES with a legal value assigned for the DataType. Chainage and Elevation MUST be included. index: the row to update. Raises: IndexError: If the index does not exist. ValueError: If the given value is not accepted by the DataObject's. See Also: ADataObject and subclasses for information on the parameters. """ # Call superclass method to add the new row AUnit.updateRow(self, row_vals=row_vals, index=index, **kwargs) # def updateDataRowByName(self, row_vals, name): def updateRowByName(self, row_vals, name, **kwargs): """Updates the row for the entry with the give name. Changes the state of the values in the initial conditions list for the the .dat file for the unit with the given name. Args: row_vals(Dict): keys must be datunits.ROW_DATA_TYPES with a legal value assigned for the DataType. Chainage and Elevation MUST be included. name: the name of the unit who's ic's should be updated. Raises: IndexError: If the index does not exist. ValueError: If the given value is not accepted by the DataObject's. AttributeError: If the given name doesn't exists in the collection. See Also: ADataObject and subclasses for information on the parameters. """ labels = self.row_data['main'].dataObjectAsList(rdt.LABEL) try: index = labels.index(name) except ValueError: raise KeyError('Name does not exist in initial conditions: ' + str(name)) # Call superclass method to add the new row AUnit.updateRow(self, row_vals=row_vals, index=index, **kwargs) # def addDataRow(self, row_vals): def addRow(self, row_vals, unit_type, **kwargs): """Adds a new row to the InitialCondition units row_collection. The new row will be added at the given index. If no index is given it will be appended to the end of the collection. If no LABEL value is given a AttributeError will be raised as it cannot have a default value. All other values can be ommitted. If they are they will be given defaults. Examples: >>> import ship.fmp.datunits.ROW_DATA_TYPES as rdt >>> ics.addRow({rdt.LABEL:UNITNAME, rdt.STAGE:10.2}, index=4) Args: row_vals(Dict): keys must be datunits.ROW_DATA_TYPES with a legal value assigned for the DataType. Chainage and Elevation MUST be included. Raises: AttributeError: If LABEL is not given. IndexError: If the index does not exist. ValueError: If the given value is not accepted by the DataObject's. See Also: ADataObject and subclasses for information on the parameters. """ if not rdt.LABEL in row_vals.keys(): logger.error('Required values of LABEL not given') raise AttributeError("Required value 'LABEL' not given") # Keep a record of multiple unit types under the same name if row_vals[rdt.LABEL] in self._name_types.keys(): if not unit_type in self._name_types[row_vals[rdt.LABEL]]: self._name_types[row_vals[rdt.LABEL]].append(unit_type) else: self._name_types[row_vals[rdt.LABEL]] = [unit_type] # Don't add the same ic's in twice labels = self.row_data['main'].dataObjectAsList(rdt.LABEL) if row_vals[rdt.LABEL] in labels: return self._node_count # Call superclass method to add the new row AUnit.addRow(self, row_vals=row_vals, index=None, **kwargs) self._node_count += 1 return self._node_count def deleteRowByName(self, unit_name, unit_type, **kwargs): """Delete one of the RowDataCollection objects in the row_collection. This calls the AUnit deleteRow method, but obtains the index of the row to be deleted from the name first. Args: section_name(str): the name of the AUnit to be removed from the initial conditions. Raises: KeyError - if section_name does not exist. """ labels = self.row_data['main'].dataObjectAsList(rdt.LABEL) try: index = labels.index(unit_name) except ValueError: raise KeyError('Name does not exist in initial conditions: ' + str(unit_name)) # Delete the ic if the unit_name is the only one using it # Otherwise remove the type and keep the ic's as they are if not unit_name in self._name_types.keys(): return elif len(self._name_types[unit_name]) > 1: self._name_types[unit_name].remove(unit_type) else: self.deleteRow(index, **kwargs) self._node_count -= 1 del self._name_types[unit_name] def rowByName(self, section_name): """Get the data vals in a particular row by name. This is the same functionality as the AUnit's getRow(int) method which returns a row in the RowDataCollection by the index value given. In this case it will find the index based on the section label and return the same dictionary of row values. Args: section_name(str): the name of the AUnit to be removed from the initial conditions. Return: dict - containing the values for the requested row. """ labels = self.row_data['main'].dataObjectAsList(rdt.LABEL) index = labels.index(section_name) if index == -1: raise AttributeError('Name does not exist in initial conditions: ' + str(section_name)) return self.row(index)
[ "duncan.runnacles@ermeviewenvironmental.co.uk" ]
duncan.runnacles@ermeviewenvironmental.co.uk
091cc45d13b1fc09b094fe4c2213b177e322453f
01f4d411909aacc878b654f033a4bffe9136bb5f
/orangecontrib/wonder/widgets/wonder/ow_decrease_points.py
0ab19f65ce4f404d7e4d9e18ece9e33163afac52
[]
no_license
WONDER-project/OASYS1-WONDER
75cdf07c19b91f525835b9ea1280da63507cb142
cf6e3620f95c0b14c5c33d13161f615f2ac23b14
refs/heads/master
2020-12-19T04:17:43.660676
2020-03-04T23:59:48
2020-03-04T23:59:48
235,618,279
0
0
null
null
null
null
UTF-8
Python
false
false
7,135
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ######################################################################### # Copyright (c) 2020, UChicago Argonne, LLC. All rights reserved. # # # # Copyright 2020. UChicago Argonne, LLC. This software was produced # # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # # U.S. Department of Energy. The U.S. Government has rights to use, # # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # # modified to produce derivative works, such modified software should # # be clearly marked, so as not to confuse it with the version available # # from ANL. # # # # Additionally, redistribution and use in source and binary forms, with # # or without modification, are permitted provided that the following # # conditions are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of UChicago Argonne, LLC, Argonne National # # Laboratory, ANL, the U.S. Government, nor the names of its # # contributors may be used to endorse or promote products derived # # from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # ######################################################################### import sys from PyQt5.QtWidgets import QMessageBox from orangewidget.settings import Setting from orangecontrib.wonder.util.gui_utility import gui from orangecontrib.wonder.widgets.gui.ow_generic_parameter_widget import OWGenericDiffractionPatternParametersWidget, ParameterBox class OWDecreasePoints(OWGenericDiffractionPatternParametersWidget): name = "Decrease Number of Points" description = "Decrease Number of Points" icon = "icons/decrease.png" priority = 1000 reduction_factor = Setting([1]) def get_max_height(self): return 310 def get_parameter_name(self): return "Reduction Factor" def get_current_dimension(self): return len(self.reduction_factor) def get_parameter_box_instance(self, parameter_tab, index): return DecreasePointsBox(widget=self, parent=parameter_tab, index=index, reduction_factor=self.reduction_factor[index]) def get_empty_parameter_box_instance(self, parameter_tab, index): return DecreasePointsBox(widget=self, parent=parameter_tab, index=index) def set_data(self, data): try: if not data is None: self.input_diffraction_patterns = data.measured_dataset.duplicate_diffraction_patterns() super().set_data(data) except Exception as e: QMessageBox.critical(self, "Error", str(e), QMessageBox.Ok) if self.IS_DEVELOP: raise e def set_parameter_data(self): for diffraction_pattern_index in range(self.fit_global_parameters.measured_dataset.get_diffraction_patterns_number()): reduction_factor = self.get_parameter_box(diffraction_pattern_index).get_reduction_factor() if reduction_factor > 1: self.fit_global_parameters.measured_dataset.diffraction_patterns[diffraction_pattern_index].diffraction_pattern = \ self.input_diffraction_patterns[diffraction_pattern_index].diffraction_pattern[::reduction_factor] def get_parameter_array(self): return self.fit_global_parameters.measured_dataset.diffraction_patterns def get_parameter_item(self, diffraction_pattern_index): return self.fit_global_parameters.measured_dataset.diffraction_patterns[diffraction_pattern_index] def dumpSettings(self): self.dump_reduction_factor() def dump_reduction_factor(self): self.dump_variable("reduction_factor") class DecreasePointsBox(ParameterBox): def __init__(self, widget=None, parent=None, index=0, reduction_factor=1): super(DecreasePointsBox, self).__init__(widget=widget, parent=parent, index=index, reduction_factor = reduction_factor) def get_height(self): return 100 def init_fields(self, **kwargs): self.reduction_factor = kwargs["reduction_factor"] def init_gui(self, container): gui.lineEdit(container, self, "reduction_factor", "Reduction Factor", labelWidth=300, valueType=int, callback=self.widget.dump_reduction_factor) def get_basic_parameter_prefix(self): pass def set_data(self, data): pass def get_reduction_factor(self): return self.reduction_factor from PyQt5.QtWidgets import QApplication if __name__ == "__main__": a = QApplication(sys.argv) ow = OWDecreasePoints() ow.show() a.exec_() ow.saveSettings()
[ "lrebuffi@anl.gov" ]
lrebuffi@anl.gov
32c2c61016bb44f1e91f4977fa16d3d59d8750e3
c0df2f79f372c9599dddf83846b25e23600e4e55
/examples/ga/3d.py
1b6d741324bafb3716f2f4962bbd28940d4f3302
[]
no_license
mikbuch/pymri
548612acf42a41898a2370d48bdd9d02486b2b98
9be4d40dcb085ad3c92b2979d83f5918f1ad1624
refs/heads/master
2021-01-15T15:31:30.187858
2016-09-28T11:23:25
2016-09-28T11:23:25
41,487,163
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import math def randrange(n, vmin, vmax): return (vmax - vmin)*np.random.rand(n) + vmin def fitness(x, y, category): if category == 1: z = x - y z = z + (1-z)/2 # z = x / math.sqrt(math.pow(x, 2) + math.pow(y, 2)) else: z = y - x z = z + (1-z)/2 # z = y / math.sqrt(math.pow(y, 2) + math.pow(x, 2)) return z n = 1000 xs = randrange(n, 0, 1) ys = randrange(n, 0, 1) category_0 = [] category_1 = [] for x, y in zip(xs, ys): category_0.append(fitness(x, y, 0)) category_1.append(fitness(x, y, 1)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.scatter(xs, ys, category_0, c='g', marker='o', s=40) # ax.scatter(xs, ys, category_1, c='r', marker=',', s=40) ax.scatter(xs, ys, category_0, c='g', marker='.', s=40) ax.scatter(xs, ys, category_1, c='r', marker='.', s=40) ax.scatter(1, 0, 1, c='k', marker='^', s=100) ax.scatter(0, 1, 1, c='y', marker='s', s=100) # import pdb # pdb.set_trace() ax.set_xlabel('x_1') ax.set_ylabel('x_2') ax.set_zlabel('fitness value') font = {'family': 'sans-serif', 'weight': 'bold', 'size': 20} plt.rc('font', **font) plt.show()
[ "mikolaj.buchwald@gmail.com" ]
mikolaj.buchwald@gmail.com
c5f4ff0c5f04c5d1f06299bd126ff0522753cdec
58ca7d5c042572604023783040e4e5b11897242f
/profile_pbs_base/ipengine_config.py
e2164c20c8418932f0a856ee394756f1b8ec57ef
[]
no_license
rmcgibbo/ipython_parallel_profiles
25f54523687f66fe5bee320da8a62d39dfc9d6df
ca251b039bae1eadc7aa838d9a160adc3178a4f8
refs/heads/master
2021-01-15T10:19:26.176894
2012-08-17T05:39:02
2012-08-17T05:39:02
5,447,952
0
1
null
null
null
null
UTF-8
Python
false
false
227
py
from IPython.utils.path import expand_path c = get_config() # set working directory work_dir = expand_path('~/ipclusterworkdir') if not os.path.exists(work_dir): os.makedirs(work_dir) c.IPClusterStart.work_dir = work_dir
[ "rmcgibbo@gmail.com" ]
rmcgibbo@gmail.com
d2dc9e047ddd95ab1ded819bbe41f031122270da
62ccdb11daefaecc8e63f235c7519cc7594f705a
/images/google-cloud-sdk/lib/surface/compute/backend_services/create.py
bf00d9d770eec74c877aea318addb654f0159d98
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
hiday1979/kalabasa-mas
eccc869bfe259bb474f9d2a4dc4b8561a481f308
53a9818eb2a6f35ee57c4df655e7abaaa3e7ef5b
refs/heads/master
2021-07-05T16:34:44.962142
2018-07-10T10:22:24
2018-07-10T10:22:24
129,709,974
0
1
null
2020-07-24T22:15:29
2018-04-16T08:27:13
Python
UTF-8
Python
false
false
20,541
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for creating backend services. There are separate alpha, beta, and GA command classes in this file. """ from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.compute import flags as compute_flags from googlecloudsdk.command_lib.compute import signed_url_flags from googlecloudsdk.command_lib.compute.backend_services import backend_services_utils from googlecloudsdk.command_lib.compute.backend_services import flags from googlecloudsdk.core import log # TODO(b/73642225): Determine whether 'https' should be default def _ResolvePortName(args): """Determine port name if one was not specified.""" if args.port_name: return args.port_name if args.protocol == 'HTTPS': return 'https' if args.protocol == 'HTTP2': return 'http2' if args.protocol == 'SSL': return 'ssl' if args.protocol == 'TCP': return 'tcp' return 'http' # TODO(b/73642225): Determine whether 'HTTPS' should be default def _ResolveProtocol(messages, args, default='HTTP'): return messages.BackendService.ProtocolValueValuesEnum( args.protocol or default) def AddIapFlag(parser): # TODO(b/34479878): It would be nice if the auto-generated help text were # a bit better so we didn't need to be quite so verbose here. flags.AddIap( parser, help="""\ Configure Identity Aware Proxy (IAP) service. You can configure IAP to be 'enabled' or 'disabled' (default). If it is enabled you can provide values for 'oauth2-client-id' and 'oauth2-client-secret'. For example, '--iap=enabled,oauth2-client-id=foo,oauth2-client-secret=bar' will turn IAP on, and '--iap=disabled' will turn it off. See https://cloud.google.com/iap/ for more information about this feature. """) @base.ReleaseTracks(base.ReleaseTrack.GA) class CreateGA(base.CreateCommand): """Create a backend service. *{command}* is used to create backend services. Backend services define groups of backends that can receive traffic. Each backend group has parameters that define the group's capacity (e.g. max CPU utilization, max queries per second, ...). URL maps define which requests are sent to which backend services. Backend services created through this command will start out without any backend groups. To add backend groups, use 'gcloud compute backend-services add-backend' or 'gcloud compute backend-services edit'. """ HEALTH_CHECK_ARG = None HTTP_HEALTH_CHECK_ARG = None HTTPS_HEALTH_CHECK_ARG = None @classmethod def Args(cls, parser): parser.display_info.AddFormat(flags.DEFAULT_LIST_FORMAT) flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument( parser, operation_type='create') flags.AddDescription(parser) cls.HEALTH_CHECK_ARG = flags.HealthCheckArgument() cls.HEALTH_CHECK_ARG.AddArgument(parser, cust_metavar='HEALTH_CHECK') cls.HTTP_HEALTH_CHECK_ARG = flags.HttpHealthCheckArgument() cls.HTTP_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTP_HEALTH_CHECK') cls.HTTPS_HEALTH_CHECK_ARG = flags.HttpsHealthCheckArgument() cls.HTTPS_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTPS_HEALTH_CHECK') flags.AddTimeout(parser) flags.AddPortName(parser) flags.AddProtocol(parser, default=None) flags.AddEnableCdn(parser, default=False) flags.AddSessionAffinity(parser, internal_lb=False) flags.AddAffinityCookieTtl(parser) flags.AddConnectionDrainingTimeout(parser) flags.AddLoadBalancingScheme(parser) flags.AddCacheKeyIncludeProtocol(parser, default=True) flags.AddCacheKeyIncludeHost(parser, default=True) flags.AddCacheKeyIncludeQueryString(parser, default=True) flags.AddCacheKeyQueryStringList(parser) AddIapFlag(parser) parser.display_info.AddCacheUpdater(flags.BackendServicesCompleter) def _CreateBackendService(self, holder, args, backend_services_ref): health_checks = flags.GetHealthCheckUris(args, self, holder.resources) if not health_checks: raise exceptions.ToolException('At least one health check required.') enable_cdn = True if args.enable_cdn else None return holder.client.messages.BackendService( description=args.description, name=backend_services_ref.Name(), healthChecks=health_checks, portName=_ResolvePortName(args), protocol=_ResolveProtocol(holder.client.messages, args), timeoutSec=args.timeout, enableCDN=enable_cdn) def CreateGlobalRequests(self, holder, args, backend_services_ref): if args.load_balancing_scheme == 'INTERNAL': raise exceptions.ToolException( 'Must specify --region for internal load balancer.') backend_service = self._CreateBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout) if args.session_affinity is not None: backend_service.sessionAffinity = ( client.messages.BackendService.SessionAffinityValueValuesEnum( args.session_affinity)) if args.session_affinity is not None: backend_service.affinityCookieTtlSec = args.affinity_cookie_ttl backend_services_utils.ApplyCdnPolicyArgs( client, args, backend_service, is_update=False) self._ApplyIapArgs(client.messages, args.iap, backend_service) request = client.messages.ComputeBackendServicesInsertRequest( backendService=backend_service, project=backend_services_ref.project) return [(client.apitools_client.backendServices, 'Insert', request)] def CreateRegionalRequests(self, holder, args, backend_services_ref): backend_service = self._CreateRegionBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout) request = client.messages.ComputeRegionBackendServicesInsertRequest( backendService=backend_service, region=backend_services_ref.region, project=backend_services_ref.project) return [(client.apitools_client.regionBackendServices, 'Insert', request)] def _CreateRegionBackendService(self, holder, args, backend_services_ref): health_checks = flags.GetHealthCheckUris(args, self, holder.resources) if not health_checks: raise exceptions.ToolException('At least one health check required.') messages = holder.client.messages return messages.BackendService( description=args.description, name=backend_services_ref.Name(), healthChecks=health_checks, loadBalancingScheme=( messages.BackendService.LoadBalancingSchemeValueValuesEnum( args.load_balancing_scheme)), protocol=_ResolveProtocol(messages, args, default='TCP'), timeoutSec=args.timeout) def _ApplyIapArgs(self, messages, iap_arg, backend_service): if iap_arg is not None: backend_service.iap = backend_services_utils.GetIAP(iap_arg, messages) if backend_service.iap.enabled: log.warning(backend_services_utils.IapBestPracticesNotice()) if (backend_service.iap.enabled and backend_service.protocol is not messages.BackendService.ProtocolValueValuesEnum.HTTPS): log.warning(backend_services_utils.IapHttpWarning()) def Run(self, args): """Issues request necessary to create Backend Service.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client ref = flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.ResolveAsResource( args, holder.resources, scope_lister=compute_flags.GetDefaultScopeLister(client)) if ref.Collection() == 'compute.backendServices': requests = self.CreateGlobalRequests(holder, args, ref) elif ref.Collection() == 'compute.regionBackendServices': requests = self.CreateRegionalRequests(holder, args, ref) return client.MakeRequests(requests) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class CreateAlpha(CreateGA): """Create a backend service. *{command}* is used to create backend services. Backend services define groups of backends that can receive traffic. Each backend group has parameters that define the group's capacity (e.g. max CPU utilization, max queries per second, ...). URL maps define which requests are sent to which backend services. Backend services created through this command will start out without any backend groups. To add backend groups, use 'gcloud compute backend-services add-backend' or 'gcloud compute backend-services edit'. """ HEALTH_CHECK_ARG = None HTTP_HEALTH_CHECK_ARG = None HTTPS_HEALTH_CHECK_ARG = None @classmethod def Args(cls, parser): parser.display_info.AddFormat(flags.DEFAULT_LIST_FORMAT) flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument( parser, operation_type='create') flags.AddDescription(parser) cls.HEALTH_CHECK_ARG = flags.HealthCheckArgument() cls.HEALTH_CHECK_ARG.AddArgument(parser, cust_metavar='HEALTH_CHECK') cls.HTTP_HEALTH_CHECK_ARG = flags.HttpHealthCheckArgument() cls.HTTP_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTP_HEALTH_CHECK') cls.HTTPS_HEALTH_CHECK_ARG = flags.HttpsHealthCheckArgument() cls.HTTPS_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTPS_HEALTH_CHECK') flags.AddTimeout(parser) flags.AddPortName(parser) flags.AddProtocol( parser, default=None, choices=['HTTP', 'HTTPS', 'HTTP2', 'SSL', 'TCP', 'UDP']) flags.AddEnableCdn(parser, default=False) flags.AddCacheKeyIncludeProtocol(parser, default=True) flags.AddCacheKeyIncludeHost(parser, default=True) flags.AddCacheKeyIncludeQueryString(parser, default=True) flags.AddCacheKeyQueryStringList(parser) flags.AddSessionAffinity(parser, internal_lb=True) flags.AddAffinityCookieTtl(parser) flags.AddConnectionDrainingTimeout(parser) flags.AddLoadBalancingScheme(parser) flags.AddCustomRequestHeaders(parser, remove_all_flag=False, default=False) signed_url_flags.AddSignedUrlCacheMaxAge(parser, required=False) flags.AddConnectionDrainOnFailover(parser, default=None) flags.AddDropTrafficIfUnhealthy(parser, default=None) flags.AddFailoverRatio(parser) AddIapFlag(parser) parser.display_info.AddCacheUpdater(flags.BackendServicesCompleter) def CreateGlobalRequests(self, holder, args, backend_services_ref): if args.load_balancing_scheme == 'INTERNAL': raise exceptions.ToolException( 'Must specify --region for internal load balancer.') if (args.connection_drain_on_failover is not None or args.drop_traffic_if_unhealthy is not None or args.failover_ratio): raise exceptions.InvalidArgumentException( '--global', 'cannot specify failover policies for global backend services.') backend_service = self._CreateBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = (client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout)) if args.enable_cdn: backend_service.enableCDN = args.enable_cdn backend_services_utils.ApplyCdnPolicyArgs( client, args, backend_service, is_update=False, apply_signed_url_cache_max_age=True) if args.session_affinity is not None: backend_service.sessionAffinity = ( client.messages.BackendService.SessionAffinityValueValuesEnum( args.session_affinity)) if args.affinity_cookie_ttl is not None: backend_service.affinityCookieTtlSec = args.affinity_cookie_ttl if args.custom_request_header is not None: backend_service.customRequestHeaders = args.custom_request_header self._ApplyIapArgs(client.messages, args.iap, backend_service) request = client.messages.ComputeBackendServicesInsertRequest( backendService=backend_service, project=backend_services_ref.project) return [(client.apitools_client.backendServices, 'Insert', request)] def CreateRegionalRequests(self, holder, args, backend_services_ref): if (not args.cache_key_include_host or not args.cache_key_include_protocol or not args.cache_key_include_query_string or args.cache_key_query_string_blacklist is not None or args.cache_key_query_string_whitelist is not None): raise exceptions.ToolException( 'Custom cache key flags cannot be used for regional requests.') backend_service = self._CreateRegionBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout) if args.custom_request_header is not None: backend_service.customRequestHeaders = args.custom_request_header backend_services_utils.ApplyFailoverPolicyArgs(client.messages, args, backend_service) request = client.messages.ComputeRegionBackendServicesInsertRequest( backendService=backend_service, region=backend_services_ref.region, project=backend_services_ref.project) return [(client.apitools_client.regionBackendServices, 'Insert', request)] def _CreateRegionBackendService(self, holder, args, backend_services_ref): health_checks = flags.GetHealthCheckUris(args, self, holder.resources) if not health_checks: raise exceptions.ToolException('At least one health check required.') messages = holder.client.messages return messages.BackendService( description=args.description, name=backend_services_ref.Name(), healthChecks=health_checks, loadBalancingScheme=( messages.BackendService.LoadBalancingSchemeValueValuesEnum( args.load_balancing_scheme)), protocol=_ResolveProtocol(messages, args, default='TCP'), timeoutSec=args.timeout) @base.ReleaseTracks(base.ReleaseTrack.BETA) class CreateBeta(CreateGA): """Create a backend service. *{command}* is used to create backend services. Backend services define groups of backends that can receive traffic. Each backend group has parameters that define the group's capacity (e.g. max CPU utilization, max queries per second, ...). URL maps define which requests are sent to which backend services. Backend services created through this command will start out without any backend groups. To add backend groups, use 'gcloud compute backend-services add-backend' or 'gcloud compute backend-services edit'. """ HEALTH_CHECK_ARG = None HTTP_HEALTH_CHECK_ARG = None HTTPS_HEALTH_CHECK_ARG = None @classmethod def Args(cls, parser): parser.display_info.AddFormat(flags.DEFAULT_LIST_FORMAT) flags.GLOBAL_REGIONAL_BACKEND_SERVICE_ARG.AddArgument( parser, operation_type='create') flags.AddDescription(parser) cls.HEALTH_CHECK_ARG = flags.HealthCheckArgument() cls.HEALTH_CHECK_ARG.AddArgument(parser, cust_metavar='HEALTH_CHECK') cls.HTTP_HEALTH_CHECK_ARG = flags.HttpHealthCheckArgument() cls.HTTP_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTP_HEALTH_CHECK') cls.HTTPS_HEALTH_CHECK_ARG = flags.HttpsHealthCheckArgument() cls.HTTPS_HEALTH_CHECK_ARG.AddArgument( parser, cust_metavar='HTTPS_HEALTH_CHECK') flags.AddTimeout(parser) flags.AddPortName(parser) flags.AddProtocol(parser, default=None) flags.AddEnableCdn(parser, default=False) flags.AddSessionAffinity(parser, internal_lb=True) flags.AddAffinityCookieTtl(parser) flags.AddConnectionDrainingTimeout(parser) flags.AddLoadBalancingScheme(parser) flags.AddCustomRequestHeaders(parser, remove_all_flag=False) flags.AddCacheKeyIncludeProtocol(parser, default=True) flags.AddCacheKeyIncludeHost(parser, default=True) flags.AddCacheKeyIncludeQueryString(parser, default=True) flags.AddCacheKeyQueryStringList(parser) signed_url_flags.AddSignedUrlCacheMaxAge(parser, required=False) AddIapFlag(parser) def CreateGlobalRequests(self, holder, args, backend_services_ref): if args.load_balancing_scheme == 'INTERNAL': raise exceptions.ToolException( 'Must specify --region for internal load balancer.') backend_service = self._CreateBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout) if args.session_affinity is not None: backend_service.sessionAffinity = ( client.messages.BackendService.SessionAffinityValueValuesEnum( args.session_affinity)) if args.session_affinity is not None: backend_service.affinityCookieTtlSec = args.affinity_cookie_ttl if args.IsSpecified('custom_request_header'): backend_service.customRequestHeaders = args.custom_request_header backend_services_utils.ApplyCdnPolicyArgs( client, args, backend_service, is_update=False, apply_signed_url_cache_max_age=True) self._ApplyIapArgs(client.messages, args.iap, backend_service) request = client.messages.ComputeBackendServicesInsertRequest( backendService=backend_service, project=backend_services_ref.project) return [(client.apitools_client.backendServices, 'Insert', request)] def CreateRegionalRequests(self, holder, args, backend_services_ref): backend_service = self._CreateRegionBackendService(holder, args, backend_services_ref) client = holder.client if args.connection_draining_timeout is not None: backend_service.connectionDraining = client.messages.ConnectionDraining( drainingTimeoutSec=args.connection_draining_timeout) if args.IsSpecified('custom_request_header'): backend_service.customRequestHeaders = args.custom_request_header request = client.messages.ComputeRegionBackendServicesInsertRequest( backendService=backend_service, region=backend_services_ref.region, project=backend_services_ref.project) return [(client.apitools_client.regionBackendServices, 'Insert', request)] def _CreateRegionBackendService(self, holder, args, backend_services_ref): health_checks = flags.GetHealthCheckUris(args, self, holder.resources) if not health_checks: raise exceptions.ToolException('At least one health check required.') messages = holder.client.messages return messages.BackendService( description=args.description, name=backend_services_ref.Name(), healthChecks=health_checks, loadBalancingScheme=( messages.BackendService.LoadBalancingSchemeValueValuesEnum( args.load_balancing_scheme)), protocol=_ResolveProtocol(messages, args, default='TCP'), timeoutSec=args.timeout)
[ "accounts@wigitech.com" ]
accounts@wigitech.com
928a332440c5e2aadd586ef2ceef6ed62ae0663b
c2aa88848a65eb657707dc4edcf5eefd7b059f08
/twitter_stream.py
4275e34ce5d00cefd3798c4ca5b9c680f098024b
[]
no_license
jorgecontreras/kafka
111619de698c9a86d4e70e3ce825044d9483cae4
32e46a6016eab7f23704c176eb27a1ca9c17fdc5
refs/heads/main
2023-03-21T22:31:43.287940
2021-03-14T22:38:48
2021-03-14T22:38:48
345,859,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,606
py
# TWITTER TO KAFKA PRODUCER # # This program will read a tweeter stream and create a Kafka producer from it. # import tweepy, json from kafka import KafkaProducer from time import sleep # twitter credentials consumer_key = "CONSUMER_KEY" consumer_secret = "CONSUMER_SECRET" access_token = "ACCESS_TOKEN" access_token_secret = "ACCESS_SECRET" # topic to track TOPIC_NAME = 'covid' # server config KAFKA_SERVER = 'localhost:9092' class StreamListener(tweepy.StreamListener): def on_status(self, status): print(status.text) def on_error(self, status_code): if status_code == 420: return False def on_data(self, data): try: tweet = json.loads(data) producer.send(TOPIC_NAME, tweet['text'].encode('utf-8')) print(tweet['text']) sleep(3) except Exception as e: print(e) return False return True def on_timeout(self): return True # Twitter authentication auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # create producer producer = KafkaProducer(bootstrap_servers=KAFKA_SERVER) # stream listener stream_listener = StreamListener(api=tweepy.API(wait_on_rate_limit=True, wait_on_rate_limit_notify=True, timeout=20, retry_delay=5, retry_count=10, retry_errors=set([401, 404, 500, 503]))) stream = tweepy.Stream(auth = api.auth, listener=stream_listener) # start the stream print("Tracking: " + str(TOPIC_NAME)) stream.filter(track=[TOPIC_NAME], languages = ['en'])
[ "jrcr23@gmail.com" ]
jrcr23@gmail.com
e02a06586aa43081b713ad3d21709e807b830292
97bc1d18cfe06705c4208eff4eb0cc86238a12a5
/app/dashboard_app/views.py
e378b5bd122fbe76928116b0c4b9c917d8482449
[ "Apache-2.0" ]
permissive
ganggas95/E-Wisata
422ac1acd451c6f6d40d1ec5ff18de29cb890094
fb66fc7d3d4cc5a45ad9acea42fb306140a6449f
refs/heads/master
2020-03-24T20:01:33.828622
2018-07-31T03:14:36
2018-07-31T03:14:36
142,955,756
0
1
null
null
null
null
UTF-8
Python
false
false
314
py
from flask import ( render_template, views ) from flask_login import login_required class DashboardView(views.View): def __init__(self, template_name): self.template_name = template_name @login_required def dispatch_request(self): return render_template(self.template_name)
[ "subhannizar25@gmail.com" ]
subhannizar25@gmail.com
a450853a742044f8885b76f1cdf35648cafc0e4c
281d110466c050eaeeecb76cc8ceb63e81b22252
/codes/backend/mongo_accessor.py
59e889c628e85ce201d8755300e4f8d24ff50d89
[]
no_license
Greilfang/Amzaon-movie-analysis
be9e5d532a60b9f7d239df80c5d989d52463e33e
2e0f50f9d956f3518b64b8b944750ed5772ec2a4
refs/heads/master
2023-03-18T09:28:38.440523
2019-12-24T12:21:58
2019-12-24T12:21:58
223,198,531
1
1
null
2023-03-02T09:56:16
2019-11-21T14:55:35
Python
UTF-8
Python
false
false
4,973
py
import pymongo import json import os class IntroHandler: def __init__(self, addr='localhost', port=27017, base_name='Amazon-Movies'): # def __init__(self,addr='localhost',port=27017,base_name='Amazon-Movie'): self.client = pymongo.MongoClient(addr, port) self.database = self.client[base_name] def insert_all_reviews(self, path, collection_name='Reviews'): collection = self.database[collection_name] names = os.listdir(path) count = 0 for name in names: with open(path + '\\{}'.format(name)) as f: data = json.load(f) for review in data['Reviews']: count = count + 1 review['Title'] = data['Title'] review['MovieID'] = data['ID'] collection.insert_one(review) if count % 10000 == 0: print("{} reviews inserted".format(count)) def insert_all_intros(self, path, collection_name='Intros'): collection = self.database[collection_name] names = os.listdir(path) count = 0 for name in names: with open(path + '\\{}'.format(name)) as f: data = json.load(f) if not data['Intro']: continue intro = dict() intro['MovieID'] = data['ID'] intro['Title'] = data['Title'] intro['Intro'] = data['Intro'] collection.insert_one(intro) count = count + 1 if count % 1000 == 0: print("{} intros inserted".format(count)) def insert_all_people(self, path, collection_name='Details'): collection = self.database[collection_name] names = os.listdir(path) count = 0 for name in names: with open(path + '\\{}'.format(name)) as f: data = json.load(f) peoples = dict() peoples['MovieID'] = data['ID'] peoples['Director'] = data['Director'] if data['Supporting']: peoples['Actor'] = data['Starring'] + data['Supporting'] else: peoples['Actor'] = data['Starring'] peoples['Genre'] = data['Genre'] peoples["Intro"] = data["Intro"] peoples["Emotion"] = data["Emotion"] if "Emotion" in data else 0.5 collection.insert_one(peoples) count = count + 1 if count % 1000 == 0: print("{} details inserted".format(count)) def query_id_with_bundent(self, directors, actors, intro): collection = self.database['Details'] condition = dict() if not directors == '': condition['Director'] = {'$regex': directors[0]} if not actors == '': asr = "" for actor in actors: asr = asr + "+" + actor asr = asr[1:] #print('asr:', asr) condition['Actor'] = {'$regex': asr} if not intro == '': condition['Intro'] = {'$regex': intro} results = collection.find(condition, {"_id": 0, "MovieID": 1, }) ids = [result["MovieID"] for result in results] return ids def query_more_info_with_bundent(self, directors, actors, intro, genre): collection = self.database['Details'] condition = dict() if not directors == '': dsr = "" for director in directors: dsr = dsr + "+" + director dsr = dsr[1:] condition['Director'] = {'$regex': dsr} if not actors == '': asr = "" for actor in actors: asr = asr + "+" + actor asr = asr[1:] #print('asr:', asr) condition['Actor'] = {'$regex': asr} if not intro == '': condition['Intro'] = {'$regex': intro} if not genre == '': condition['Genre'] = genre results = collection.find(condition, {"_id": 0, "MovieID": 1, "Intro": 1, "Genre": 1, "Director": 1, "Actor": 1}) new_results = dict() for result in results: new_results[result["MovieID"]] = result #print("new_results:", new_results) return new_results def query_more_info_with_ids(self, ids): collection = self.database['Details'] condition = {'MovieID': {'$in': ids}} results = collection.find(condition, {"_id": 0, "MovieID": 1, "Intro": 1, "Genre": 1, "Director": 1, "Actor": 1}) new_results = dict() for result in results: new_results[result["MovieID"]] = result return new_results
[ "565222945@qq.com" ]
565222945@qq.com
f3ab31a5bb6beae5f2ca34e84ae948eaf94ae166
e2e130172767e061bad272429dfd9096540f85f7
/python-testing/checkout_kata.py
81622efa0786d9135d63733d7da2863cc0b06174
[]
no_license
seanmortimer/udemy-python
ee8033e4155d5ed8937d56d0ea793f2b7f56a6df
0acb93b079014adf1020926560595e3a137fd085
refs/heads/master
2023-04-12T23:20:30.423492
2020-07-20T08:26:24
2020-07-20T08:26:24
275,500,095
0
0
null
2021-04-20T20:28:08
2020-06-28T03:35:36
Python
UTF-8
Python
false
false
1,604
py
class Checkout: class Discount: def __init__(self, quantity, price): self.quantity = quantity self.price = price def __init__(self): self.prices = {} self.discounts = {} self.items = {} self.total = 0 def addItemPrice(self, item, price): self.prices[item] = price def addItem(self, item): if item not in self.prices: raise Exception("Item is missing price") if item in self.items: self.items[item] += 1 else: self.items[item] = 1 def addDiscount(self, item, quantity, price): discount = self.Discount(quantity, price) self.discounts[item] = discount def totalItems(self): total = 0 for (item, cnt) in self.items.items(): total += self.calculateItemTotal(item, cnt) return total def calculateItemTotal(self, item, count): total = 0 if item in self.discounts: discount = self.discounts[item] if count >= discount.quantity: total += self.calcItemDiscount(item, count, discount) else: total+= self.prices[item] * count else: total += self.prices[item] * count return total def calcItemDiscount(self, item, count, discount): total = 0 quantity = count / discount.quantity total += quantity * discount.price remain = count % discount.quantity total += remain * self.prices[item] return total
[ "sean.mortimer@gmail.com" ]
sean.mortimer@gmail.com
d7e879f4af1622534ee8798a8f6c375c73f73e0d
b25b72df03b68f262b34ea3a8daa5ef4a26104de
/facereader1.py
ce3956c95971645bce473adeb0333fd2ecf53274
[]
no_license
16LeeSeul/FaceReader
961a83c7b840f76d2184421c642518b093264581
c3d0f05a423b78080433efc35c08e6af533162db
refs/heads/master
2020-06-02T00:46:34.460891
2019-06-09T09:01:54
2019-06-09T09:01:54
190,983,982
0
0
null
null
null
null
UTF-8
Python
false
false
17,165
py
# -*- coding: utf-8 -*- """ Created on Mon Dec 10 22:45:32 2018 @author: BME """ import sys import torch import torch.nn.init from torch.autograd import Variable import torchvision.utils as utils import torchvision.datasets as datasets import torchvision.transforms as transforms import torchvision import matplotlib.pyplot as plt import numpy as np import time import zipfile import random import cv2 # 얼굴 인식을 위한 opencv 설치 import numpy from matplotlib import pyplot as plt output_dir = sys.argv[3] usr_name = sys.argv[2] start =time.time() #filename = raw_input() filename = sys.argv[1] cascadefile = "./haarcascade_lefteye_2splits.xml" # 왼쪽 눈을 인식 cascadefile1 = "./haarcascade_righteye_2splits.xml" # 오른쪽 눈을 따로 인식 img = cv2.imread(filename) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 컬러 이미지를 인식할 수 있는 흑백으로 바꿔 줌 # 왼쪽 눈에 대해 왼쪽 눈 부분만 추출 cascade = cv2.CascadeClassifier(cascadefile) facelist = cascade.detectMultiScale(imgray, scaleFactor=2.08, minNeighbors=1) cropped = [] if len(facelist) >= 1: for face in facelist: x, y, w, h = face cv2.rectangle(imgray, (x, y), (x+w, y+h), (255, 0, 0), 2) # 눈에 해당하는 부위를 네모로 표시 cropped = imgray[y:y+h, x:x+w] # 눈에 해당하는 부분을 추출함 result_filename = ["./real/left/1.jpg"] result_filename = ''.join(result_filename) cv2.imwrite(result_filename,cropped) # 추출한 눈 부위를 저장 if not np.any(cropped): # 눈을 인식하지 못했을 때 print('왼쪽 눈을 인식하지 못했습니다..ㅜㅠ') # 오른쪽 눈에 대해 오른쪽 눈 부분만 추출 cascade = cv2.CascadeClassifier(cascadefile1) facelist = cascade.detectMultiScale(imgray, scaleFactor=2.08, minNeighbors=1) cropped=[] if len(facelist) >= 1: for face in facelist: x, y, w, h = face cv2.rectangle(imgray, (x, y), (x+w, y+h), (255, 0, 0), 2) # 눈에 해당하는 부위를 네모로 표시 cropped = imgray[y:y+h, x:x+w] # 눈에 해당하는 부분을 추출함 result_filename = ["./real1/right/1.jpg"] result_filename = ''.join(result_filename) cv2.imwrite(result_filename,cropped) # 추출한 눈 부위를 저장 if not np.any(cropped): # 눈을 인식하지 못했을 때 print('오른쪽 눈을 인식하지 못했습니다..ㅠㅜ') transform = transforms.Compose( [transforms.Resize(24), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) batch_size=16 testset = torchvision.datasets.ImageFolder(root='./real',transform=transform) test_loader = torch.utils.data.DataLoader(dataset=testset, batch_size = batch_size, shuffle=True) # 추출했던 왼쪽눈을 testset으로 설정 testset1 = torchvision.datasets.ImageFolder(root='./real1',transform=transform) test_loader1 = torch.utils.data.DataLoader(dataset=testset1, batch_size = batch_size, shuffle=True) # 추출했던 오른쪽 눈을 testset으로 설정 test_images_l, test_labels_l = next(iter(test_loader)) test_images_r, test_labels_r = next(iter(test_loader1)) class LeNet(torch.nn.Module): def __init__(self): super(LeNet,self).__init__() self.layer1=torch.nn.Sequential( torch.nn.Conv2d(3,48,3), torch.nn.ReLU(), torch.nn.BatchNorm2d(48), torch.nn.MaxPool2d(2), torch.nn.Conv2d(48,96,3), torch.nn.ReLU(), torch.nn.BatchNorm2d(96), torch.nn.MaxPool2d(2) ) self.fc = torch.nn.Sequential( torch.nn.Linear(96*4*4,120), torch.nn.ReLU(), torch.nn.Linear(120,84), torch.nn.ReLU(), torch.nn.Linear(84,3) ) def forward(self,x): x=self.layer1(x) x=x.view(x.size()[0],-1) x=self.fc(x) return x left_eye = LeNet() # 모델 클래스 입력 left_eye.load_state_dict(torch.load('./Left_eye.path')) left_eye.eval() right_eye = LeNet() right_eye.load_state_dict(torch.load('./right_eye.path')) right_eye.eval() size_eye = LeNet() size_eye.load_state_dict(torch.load('./size_eye.path')) size_eye.eval() X = Variable(test_images_l.view(-1,3,24,24).float()) E1 = left_eye(X) # 왼쪽 눈에 대해 up, middle, down 판정 E3 = size_eye(X) # 눈의 크기를 판정 Y = Variable(test_images_r.view(-1,3,24,24).float()) E2 = right_eye(Y) # 오른 쪽 눈에 대해 up, middle, down 판정 E4 = size_eye(Y) # 눈의 크기를 판정 classes1 = ('down','middle','up') classes2 = ('down','middle','up') classes3 = ('big', 'small') # 눈 크기와 눈꼬리에 대한 클래스 출력 print('왼쪽 눈꼬리는 '+classes1[torch.max(E1,1)[1][0]]+' 되어 있습니다!') print('오른쪽 눈꼬리는 '+classes2[torch.max(E2,1)[1][0]]+' 되어 있습니다!') print('왼쪽 눈의 크기는 '+classes3[torch.max(E3,1)[1][0]]+' 하군요!') print('오른쪽 눈의 크기는 '+classes3[torch.max(E4,1)[1][0]]+' 하군요!') # 눈이 클 때 L1 = "감정표현이 뛰어나다." L2 = "감정 중시하며, 천진하고, 착하다." L3 = "동정심 많음, 금전이나 애정 문제로 남에게 쉽게 이용당할 수 있다." L4 = "애정에서는 우유부단하고 주저하여 결정을 내리지 못하는 경우가 있고, 심지어 양다리를 걸치는 상황도 생길 수 있다." L5 = "시야가 넓고 명랑하고 외향적이며 사교와 단체 생활을 좋아한다." L6 = "관찰력이 예리하고 반응이 민첩하다." L7 = "색채 분별력이 뛰어나고 음악이나 회화 쪽으로 재능을 발휘할 수 있다." L8 = "목표를 이루기 위한 의지와 집중력이 부족하기 때문에 전문 분야로 성과를 거두기 어려울 수 있다." L9 = "언변이 좋아 이성의 환심을 살 수 있다." L10 = "마음이 열려 있어 정이 많고, 열정적이다." L11 = "호기심이 넘치고 개방적인 성격을 갖추고 있다." L12 = "정이 많아 이성에 대한 관심과 인기도도 많고 개방적인 성격을 갖고 있다." L13 = "적극적인 애정공세를 펴는 경우가 많다." L14 = "심리 변화가 심하기 때문에 즉흥적인 행동을 보여 오해를 받는 경우가 많다." L15 = "현실보다는 이상을 추구하여 금전적으로 기복이 심하다." L16 = "일반적으로 얼굴을 보았을 때 크다고 느껴지는 눈을 가진 사람은 감각이 뛰어나고 이성을 끌어들이는 매력이 있으며 개방적이다." L17 = "정열적인 성격을 갖추고 있으며 상대방을 잘 배려해주는 한편, 상대방의 마음을 읽어내는 재능이 있다." L18 = "개방적인 성격이기는 하지만, 사람을 가려서 사귀는 편이고 정열이 지나치게 강해서 애정문제에 빠지면 헤어나지 못한다." L19 = "사랑을 할 때에는 최선을 다 하지만, 사랑이 식으면 미련 없이 등을 돌리는 냉정함이 있다." L20 = "남성의 경우에는 리더가 될 수 있는 자질을 충분히 갖추고 있기 때문에 다른 사람 밑에서 일하는 것에 거부감을 느낀다. 단, 직장생활을 하면 승진이 빠른 편이다." L21 = "여성의 경우에는 남성에게 인기가 좋으며 음악적 감각이 뛰어나서 노래를 잘하며 춤에도 소질이 있다." L = [L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21] # 눈이 작을 때 S1 = "차분하고 겸손한 성격을 갖추고 있다." S2 = "강인하고 냉정한 자기만의 세계를 가진 사람이 많다." S3 = "말보다는 행동으로 생각을 표현하는 신중함을 가진다." S4 = "자신의 속내를 쉽게 드러내지 않는다." S5 = "사회적으로 믿음직하다는 평가를 받는다." S6 = "한번 마음먹은 일은 가능하면 끝까지 성사시키려는 끈기도 있다." S7 = "힘든 시기가 닥치더라도 꿋꿋이 이겨낼 수 있는 사람이다." S8 = "젊은 시절에 고생이 많고 매력이 뒤떨어져 윗사람들의 사랑을 받지 못한다." S9 = "겸손한 성격으로 대인관계에서 자신을 굽힐 줄 알고 지적인 능력이 뛰어나기 때문에 학문적인 분야에서 성공할 가능성이 높다." S10 = "특히 한 우물을 파서 성공을 거두는 예가 많지만, 성격이 매우 강해 냉정하다는 인상을 주기 쉽고 자신만의 공간에 틀어박혀 좀처럼 마음을 열지 않는다." S11 = "남성의 경우 여자를 다루는 능력과 금전을 융통하는 능력은 부족하지만, 믿음직하고 성실하기 때문에 늦게 인정을 받는 타입이다." S12 = "의지가 강하기 때문에 난관을 잘 극복한다." S13 = "여성의 경우에는 남성을 선택하는 데 많은 시간이 걸리지만, 한번 마음을 주면 어지간해서는 다른 이성에게 눈길을 돌리지 않는 일편단심형이며 가족을 매우 중요하게 생각한다." S14 = "가정 경제를 꾸려나가는 능력이 있고 사회활동을 해도 성공할 수 있다." S = [S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14] # 눈꼬리가 올라간 눈 U1 = "성급하며 양의 특성 상 기질이 강하고 빠르고 폭발적이고 급한 것이다." U2 = "감각이 뛰어나고 어떤 일에도 굽히지 않는 강한 용기를 갖추고 있으며 두뇌회전이 빠르고 기회를 잡는 능력이 뛰어나다." U3 = "예술적인 방면에 소질이 있고 추친력을 갖추고 있으며 아무리 어려운 난관에 부딪혀도 강한 인내력으로 돌파할 수 있는 용기가 있다." U4 = "기회가 오면 어떻게 해서든 움켜쥐려하기 때문에 이기적이라는 인상을 주기 쉽고 독단적인 성향이 강하다." U5 = "남성의 경우에는 두뇌회전이 빨라 중간관리직으로 잘 어울리며 실행력이 있어 운세가 좋은 편이다." U6 = "자신의 주장을 약간 억제하고 다른 사람의 의견을 받아들이는 포용력을 갖추는 것이 바람직하다." U7 = "성공을 추구하는 눈이다." U8 = "성격이 예민하고 반응이 빠르고 결단력이 있고 시기를 놓치지 않는다." U9 = "그러나 자존심과 승부욕 소유욕이 강하고 의심이 많은 것이 단점이다." U10 = "품격이 있다." U11 = "두뇌 회전이 빠르고 총명하다." U12 = "예상 밖의 아이디어를 가져 영리해 보일 수 있다." U13 = "남의 어려움을 앞장 서 해결하므로 인복이 많다." U14 = "애정 문제에서 주도권을 잡고 적극적으로 어필한다." U15 = "점유욕과 지배욕이 있다." U16 = "끈기가 있고 체력이 강하다." U17 = "주관이 분명하고 대범한 성격을 갖췄다." U18 = "어떤 일을 하든 반드시 성사시키는 강인함을 갖추고 있다." U19 = "리더십도 매우 뛰어나 ‘대인의 상’, ‘장수의 상’이라고 표현한다." U20 = "자존심도 강해 다른 사람에게 지는 것을 싫어한다." U21 = "자신의 영역을 침범당하면 즉각 자기방어에 나설 정도로 철저한 자기관리 능력을 자랑한다." U = [U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, U13, U14, U15, U16, U17, U18, U19, U20, U21] # 눈꼬리가 내려간 눈 O1 = "만약 반대로 눈끝이 아래로 숙인 자는 음에 속하니 문질이며 부드럽고 약하며 침착하며 느린 것이다." O2 = "눈꼬리가 처진 눈을 가진 사람은 심리적으로 느긋하고 여유 있는 성격이며 투쟁이나 다툼보다는 평화를 사랑한다." O3 = "모든 일을 긍정적이고 원만하게 처리하려 하기 때문에 대인관계가 매우 좋아 다른 사람의 도움으로 출세를 할 가능성이 매우 높다. " O4 = "성실하다는 점도 장점이다." O5 = "수동적이며 소극적이기 때문에 주위 사람들로부터 자신의 주장을 할 줄 모르는 사람이라는 비난을 받는다." O6 = "남성의 경우에는 친구나 동료, 선후배와의 관계가 원만해서 일찍 출세할 수 있다." O7 = "여성의 유혹에 넘어가기 쉽고 그 때문에 실패를 맛볼 가능성이 높다." O8 = "여성의 경우에는 역시 남성의 유혹에 넘어가기 쉽고 그 때문에 손해를 볼 가능성이 높다." O9 = "사교적이며 인정이 많다." O10 = "인정이 많고 보스 기질이 있다." O11 = "대인관계가 좋고 주변에 사람이 많이 모이는 편이다." O12 = "유머도 풍부하여 재미있고 즐거운 인생을 보낼 것 같으나 사실 외로움도 많이 탄다." O13 = "이성에 대한 호기심이 매우 강해서 정 때문에 마음을 졸일 가능성이 매우 높다." O14 = "모든 사람에게 친절하고 다정하게 행동하지만, 그에 못지 않을 정도로 자존심이 강하고 보스 기질이 강하기 때문에 실질적으로는 성격이 매우 강한 사람이다." O = [O1, O2, O3, O4, O5, O6, O7, O8, O9, O10, O11, O12, O13, O14] # 눈꼬리가 일직선으로 수평인 눈 M1 = "불상불하의 눈으로 불투(사물을 훔쳐보지 말아야)해야 모름지기 쓸 만한 그릇이 된다." M2 = "위인(爲人)이 강개롭고 심평정직하다." M3 = "위, 아래로 향하지 않고 수평을 유지하는 것이 가장 이상적이다." M = [M1, M2, M3] # 짝짝이 눈 D1 = "성격이 변덕스럽고 우유부단하다." D2 = "부모님의 사이가 좋지않을 확률이 높다." D3 = "성격상 소극적이면서 어두운 면이 있다." D4 = "남다른 관찰력과 예민한 직감력을 지녔다." D5 = "인생 굴곡이 많다." D6 = " 활동적이고 야심이 있고 부를 축적한다." D7 = "세상을 두가지 관점으로 보는 경향이 있어 객관성이 매우 뛰어나고 논리적이다." D8 = "어떤 분야에서든 상위에까지 오르기는 하지만, 최상위에 오르기는 어려움이 있다." D9 = "주변에 시기와 질투를 하는 사람들이 많다." D10 = "한쪽은 크고 한쪽은 작은 눈을 가진 사람은 인생에서 큰 전환기를 겪을 가능성이 높고 두뇌회전이 빠른 편이다." D11 = "자기 주장이 뚜렷하고 활동적이며 승부에 대한 열정이 강하고 이상도 높다." D12 = "고집이 세고 자기 주장이 강해 견제의 대상이 될 가능성이 높고 이성에게 약한 편이며 인생에 기복이 아주 심하다." D13 = "남성의 경우에는 왼쪽이 클 경우에는 매우 활동적이고 승부욕이 강하며 이상이 높고, 오른쪽이 클 경우에는 정에 이끌리기는 해도 리더심과 자신감이 있어서 노력에 따라 행복을 만끽할 수 있다." D = [D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13] # 눈꼬리 n=4 if classes1[torch.max(E1,1)[1][0]] == classes2[torch.max(E2,1)[1][0]]: # 양쪽 눈꼬리가 같을 때 n=4 if classes1[torch.max(E1,1)[1][0]] == 'down': # 둘다 눈꼬리가 내려갔으면 ind = random.sample(range(14),n) answer=[] for i in ind: answer.append(O[i]) elif classes1[torch.max(E1,1)[1][0]] == 'up': # 둘다 눈꼬리가 올라갔으면 ind = random.sample(range(21),4) answer=[] for i in ind: answer.append(U[i]) else: # 둘다 눈꼬리가 수평에 이르면 answer=[] for i in range(3): answer.append(M[i]) elif classes1[torch.max(E1,1)[1][0]] or classes1[torch.max(E2,1)[1][0]] == 'middle': n=3 if classes1[torch.max(E1,1)[1][0]] or classes1[torch.max(E2,1)[1][0]] == 'up': # 눈꼬리가 수평과 올라갔다면 ind = random.sample(range(21),n) answer=[] for i in ind: answer.append(U[i]) else: # 눈꼬리가 수평과 내려갔다면 ind = random.sample(range(14),n) answer=[] for i in ind: answer.append(O[i]) else: n=2 ind = random.sample(range(14),n) answer=[] for i in ind: answer.append(O[i]) answer.append(U[i]) # 눈 크기 n=4 if classes3[torch.max(E3,1)[1][0]] == classes3[torch.max(E4,1)[1][0]]: # 양쪽 눈의 크기가 같으면 if classes3[torch.max(E3,1)[1][0]] == 'big' : # 눈의 크기가 클 때 ind = random.sample(range(21),n) for i in ind: answer.append(L[i]) else: ind = random.sample(range(14),n) for i in ind: answer.append(S[i]) else: # 두 눈의 결과가 다를 때 ind = random.sample(range(14),n) answer.append(L[ind[0]]) answer.append(S[ind[1]]) answer.append(D[ind[2]]) answer.append(D[ind[3]]) print('수행 시간은 '+str(time.time()-start)+ '초 걸렸습니다.') with open(output_dir+"+.txt", "w") as f: f.write('< ') f.write(usr_name) f.write(' 님의 관상 결과!!!! > \n\n') f.write('\n'.join(answer))
[ "tmf789@likelion.org" ]
tmf789@likelion.org
ba20ea31980447ed3f66403fce6e3d557a34b971
6583a0af3f0e1b2c7a4e0efdf6b946fc4e3b6009
/blog/D4DJ/read_movie.py
717e4666959d8a9eaf4c2682e47eb08db08c116c
[]
no_license
nasuika1/my-first-blog
87b3cdd9092512c0c91e029dce9173629b8e8c31
46c94d134712ad20483dc1c8d6c785cab45800c4
refs/heads/master
2021-06-21T15:26:08.154139
2021-05-17T21:06:54
2021-05-17T21:06:54
220,879,589
0
0
null
null
null
null
UTF-8
Python
false
false
21,704
py
import cv2 import os import numpy as np import csv class Note_Type: def __init__(self,color,region,n_name): self.color = color self.region = region self.n_name = n_name class Note: def __init__(self,min_value,max_value,color,name): self.min_value = min_value self.max_value = max_value self.color = color self.name = name class ChartInfo: def __init__(self): self.chartinfo = [] def Add_Note(self,frame,note_type,note_place): self.chartinfo += [[frame,note_type,note_place]] def reset(self): self.chartinfo = [] def Substi(self,s): self.chartinfo = s class Chart: def __init__(self): self.chart = [] def add_note(self,frame,note_type,note_place): self.chart += [[frame,note_place,note_type]] def serch_region(hsv,min_value,max_value): color_min = np.array(min_value,np.uint8) color_max = np.array(max_value,np.uint8) color_region = cv2.inRange(hsv,color_min,color_max) return color_region def padding_position(x,y,w,h,p): return x-p,y-p,w+p*2,h+p*2 class Analysis: def __init__(self,movie_name): self.movie_name = cv2.VideoCapture(movie_name) self.width = self.movie_name.get(cv2.CAP_PROP_FRAME_WIDTH) self.height = self.movie_name.get(cv2.CAP_PROP_FRAME_HEIGHT) self.fps = self.movie_name.get(cv2.CAP_PROP_FPS) self.fc = self.movie_name.get(cv2.CAP_PROP_FRAME_COUNT) self.ci = ChartInfo() self.note_count = [0,0,0,0,0,0,0] self.slider_count = 0 self.hold_count = 0 self.long_count = 0 self.chart = Chart() self.count_1 = 0 self.count_2 = 0 def save_movie(self,file_name,frame_num = None): fourcc = cv2.VideoWriter_fourcc('m','p','4','v') video = cv2.VideoWriter(file_name,fourcc,self.fps,(int(self.width),int(self.height))) if(frame_num == None): frame_num = int(self.fc) i = 0 while i < frame_num: print(i) self.ci.reset() self.count_1 = 0 self.count_2 = 0 img = self.save_frame(i) if(img.dtype!='uint8'): break video.write(img) i += 4-2*self.count_1 - self.count_2 video.release() def analys(self,frame_num = None): if(frame_num == None): frame_num = int(self.fc) self.c_before = [] self.c_after = [] for i in range(7): self.c_before += [ChartInfo()] self.c_after += [ChartInfo()] i = 0 while i < frame_num: print(i) self.count_1 = 0 self.count_2 = 0 b = self.analys_frame(i) if not(b): break i += 3-self.count_1 - self.count_2 m = int(700-500/0.85) for i in range(len(self.chart.chart)): n = self.chart.chart[i][1] if(self.chart.chart[i][2] == 6): print(i,self.chart.chart[i]) else: w = 960+(1115-m)/(n[1]+n[3]/2-m)*(n[0]+n[2]/2-960) print(i,self.chart.chart[i],int(w*7/1920)) def analys_frame(self,frame_num): if not self.movie_name.isOpened(): return False #該当フレームの読み込み #retは読み込めたがどうが(True,False),frameは画像データ self.movie_name.set(cv2.CAP_PROP_POS_FRAMES, frame_num) ret, frame = self.movie_name.read() if not(ret): return False #色抽出 hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) #slider,[150~180,140~200,180~255] #note1,[90~100,170~220,200~255] #note2,[100~110,60~230,200~255] #long,[25~35,60~230,180~255] #scrach,[5~20,60~230,200~255] #hold,[170~180,60~230,200~255] pink_region = serch_region(hsv,[150,140,180],[170,200,255]) sky_region = serch_region(hsv,[90,170,200],[100,220,255]) blue_region = serch_region(hsv,[100,60,200],[110,230,255]) yellow_region = serch_region(hsv,[25,60,180],[35,230,255]) orange_region = serch_region(hsv,[5,180,200],[15,230,255]) red_region = serch_region(hsv,[170,60,200],[180,230,255]) red_line = serch_region(hsv,[170,200,100],[180,255,255]) #それぞれのノーツの色の補色で領域を四角で囲む Slider = Note_Type([128,255,20],pink_region,'slider') Note1 = Note_Type([0,0,255],sky_region,'note1') Note2 = Note_Type([0,255,255],blue_region,'note2') Long = Note_Type([255,0,0],yellow_region,'longnote') Scrach = Note_Type([255,90,0],orange_region,'scrach') Red = Note_Type([255,0,0],red_region,'hold') Skill_Line = Note_Type([255,255,255],red_line,'skill_line') note_array = [Slider,Note1,Note2,Long,Scrach,Red,Skill_Line] #ノーツを検出し四角でマーク for i in range(len(note_array)): self.c_before[i].Substi(self.c_after[i].chartinfo) self.ci.reset() self.mark_region(frame,note_array[i],frame_num) for j in range(len(self.ci.chartinfo)): n = self.ci.chartinfo[j] print(n[2],n[1].n_name) m = int(700-500/0.85) self.c_after[i].Substi(self.ci.chartinfo) self.counting(self.c_before[i].chartinfo,self.c_after[i].chartinfo,i,frame_num) if(len(self.c_before[i].chartinfo) > 0 and len(self.c_after[i].chartinfo)): by = (1440-self.c_before[i].chartinfo[0][2][1])/(self.c_before[i].chartinfo[0][2][1]-m)*10 ay = (1440-self.c_after[i].chartinfo[0][2][1])/(self.c_after[i].chartinfo[0][2][1]-m)*10 #ay-by = -4.2 print(self.note_count) print(len(self.chart.chart)) return True def counting(self,sb,sa,c,f): if(c == 0): if(len(sb)>0): if(len(sa) == 0): self.note_count[c] += 1 if(len(sb[self.slider_count]) == 4): c = 7 self.chart.add_note(f,c,sb[self.slider_count][2]) self.slider_count = 0 else: if(self.slider_count == 0): if(sb[0][2][1] > sa[0][2][1]+4): self.note_count[c] += 1 if(len(sb[0]) == 4): c = 7 self.chart.add_note(f,c,sb[0][2]) elif(sa[0][2][1] > 990): self.slider_count = 1 self.note_count[c] += 1 if(len(sb[0]) == 4): c = 7 self.chart.add_note(f,c,sb[0][2]) elif(self.slider_count == 1): if(sa[0][2][1] < 990): if(sa[0][2][1] < 800): self.note_count[c] += 1 if(len(sb[1]) == 4): c = 7 self.chart.add_note(f,c,sb[1][2]) self.slider_count = 0 elif(len(sb) > 1 and len(sa) == 1): self.note_count[c] += 1 if(len(sb[1]) == 4): c = 7 self.chart.add_note(f,c,sb[1][2]) else: for j in range(len(sb)-1): if(sb[j+1][2][1] > sa[1][2][1]): self.note_count[c] += 1 if(len(sb[j+1]) == 4): c = 7 self.chart.add_note(f,c,sb[j+1][2]) break elif(c == 3): if(len(sb)>0): if(len(sa) == 0): self.note_count[c] += len(sb)-self.long_count for i in range(len(sb)-self.long_count): self.chart.add_note(f,c,sb[i+self.long_count][2]) self.long_count = 0 else: if(self.long_count == 0): for j in range(len(sb)): if(sb[j][2][1] > sa[0][2][1]+4): self.note_count[c] += 1 self.chart.add_note(f,c,sb[j][2]) elif(sa[j][2][1] > 1050): self.long_count += 1 self.note_count[c] += 1 self.chart.add_note(f,c,sb[j][2]) else: break elif(self.long_count == 1): if(sa[0][2][1] < 1050): if(sa[0][2][1] < 900): self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) self.long_count -= 1 elif(len(sb) > 1): if(len(sa) > 1): if(sa[1][2][1] > 1050): self.long_count += 1 self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) if not(sb[0][2][0] > sa[0][2][0] - 200 and sb[0][2][0] < sa[0][2][0] + 200): self.note_count[c] += 2 self.chart.add_note(f,c,sb[1][2]) self.chart.add_note(f,c,sb[2][2]) elif(self.long_count == 2): if(len(sa) > 1): if(sa[0][2][1] < 1050): if(sa[0][2][1] < 900): self.note_count[c] += 1 self.chart.add_note(f,c,sb[3][2]) self.long_count -= 1 if(sa[1][2][1] < 1050): if(sa[1][2][1] < 900): self.note_count[c] += 1 self.chart.add_note(f,c,sb[2][2]) self.long_count -= 1 else: if(sa[0][2][1] < 1050): if(sa[0][2][1] < 900): self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) self.long_count -= 1 elif(c == 5): if(len(sb)>0): if(len(sa) == 0): self.note_count[c] += len(sb)-self.hold_count for i in range(len(sb)-self.hold_count): self.chart.add_note(f,c,sb[i+self.hold_count][2]) self.hold_count = 0 else: if(self.hold_count == 0): for j in range(len(sb)): if(sb[j][2][1] > sa[0][2][1]+4): self.note_count[c] += 1 self.chart.add_note(f,c,sb[j][2]) elif(sa[j][2][1] > 1000): self.hold_count += 1 self.note_count[c] += 1 self.chart.add_note(f,c,sb[j][2]) else: break elif(self.hold_count == 1): if(sa[0][2][1] < 1000): if(sa[0][2][1] < 800): self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) self.hold_count -= 1 elif(len(sb) > 1): if(len(sa) > 1): if(sa[1][2][1] > 1000): self.hold_count += 1 self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) if not(sb[0][2][0] > sa[0][2][0] - 50 and sb[0][2][0] < sa[0][2][0] + 50): self.note_count[c] += 2 self.chart.add_note(f,c,sb[1][2]) self.chart.add_note(f,c,sb[2][2]) elif(self.hold_count == 2): if(len(sa) > 1): if(sa[0][2][1] < 1000): if(sa[0][2][1] < 800): self.note_count[c] += 1 self.chart.add_note(f,c,sb[3][2]) self.hold_count -= 1 if(sa[1][2][1] < 1000): if(sa[1][2][1] < 800): self.note_count[c] += 1 self.chart.add_note(f,c,sb[2][2]) self.hold_count -= 1 else: if(sa[0][2][1] < 1000): if(sa[0][2][1] < 800): self.note_count[c] += 1 self.chart.add_note(f,c,sb[1][2]) self.hold_count -= 1 else: if(len(sb) > 0 ): if(len(sa) == 0): if(c == 6): self.note_count[c] += 1 self.chart.add_note(f,c,sb[0][2]) else: self.note_count[c] += len(sb) for i in range(len(sb)): self.chart.add_note(f,c,sb[i][2]) else: for j in range(len(sb)): if(sb[j][2][1] > sa[0][2][1]+4): self.note_count[c] += 1 self.chart.add_note(f,c,sb[j][2]) else: break def save_frame(self,frame_num,result_path = None): if not self.movie_name.isOpened(): return #該当フレームの読み込み #retは読み込めたがどうが(True,False),frameは画像データ self.movie_name.set(cv2.CAP_PROP_POS_FRAMES, frame_num) ret, frame = self.movie_name.read() if not(ret): return np.array(0,dtype=np.int64) #色抽出 hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) a,b = 700,600 m = -0.61 print(hsv[a:a+10,b:b+10]) for i in range(1440): frame[i,int(m*(i-a))+b]=[0,0,255] for i in range(1440): frame[i,int(-m*(i-a))+1920-b]=[0,0,255] a,b = 700,460 m = -0.85 for i in range(1440): if(int(m*(i-a))+b>0): frame[i,int(m*(i-a))+b]=[0,0,255] for i in range(1440): if(int(-m*(i-a))+1920-b < 1920): frame[i,int(-m*(i-a))+1920-b]=[0,0,255] a = 1115 b = 692 c = 820 for i in range(1920): frame[a,i]=[0,0,255] frame[b,i]=[0,0,255] frame[c,i]=[0,0,255] #slider,[150~180,140~200,180~255] #note1,[90~100,170~220,200~255] #note2,[100~110,60~230,200~255] #long,[25~35,60~230,180~255] #scrach,[5~20,60~230,200~255] #hold,[170~180,60~230,200~255] pink_region = serch_region(hsv,[150,140,180],[170,200,255]) sky_region = serch_region(hsv,[90,170,200],[100,220,255]) blue_region = serch_region(hsv,[100,60,200],[110,230,255]) yellow_region = serch_region(hsv,[25,60,180],[35,230,255]) orange_region = serch_region(hsv,[5,180,200],[15,230,255]) red_region = serch_region(hsv,[170,60,200],[180,230,255]) red_line = serch_region(hsv,[170,200,100],[180,255,255]) #それぞれのノーツの色の補色で領域を四角で囲む Slider = Note_Type([128,255,20],pink_region,'slider') Note1 = Note_Type([0,0,255],sky_region,'note1') Note2 = Note_Type([0,255,255],blue_region,'note2') Long = Note_Type([255,0,0],yellow_region,'longnote') Scrach = Note_Type([255,90,0],orange_region,'scrach') Red = Note_Type([255,0,0],red_region,'hold') Skill_Line = Note_Type([255,255,255],red_line,'skill_line') note_array = [Slider,Note1,Note2,Long,Scrach,Red,Skill_Line] #ノーツを検出し四角でマーク for i in range(len(note_array)): self.ci.reset() frame = self.mark_region(frame,note_array[i],frame_num) for j in range(len(self.ci.chartinfo)): n = self.ci.chartinfo[j] print(n[2],n[1].n_name) cv2.rectangle(frame,(n[2][0],n[2][1]),(n[2][0]+n[2][2],n[2][1]+n[2][3]),n[1].color,3) if result_path !=None: os.makedirs(os.path.dirname(result_path),exist_ok=True) cv2.imwrite(result_path,frame) return frame def print_property(self): print(self.movie_name.isOpened()) print(self.width) print(self.height) print(self.fps) print(self.fc) def mark_region(self,img,note,frame_num): contours, hieralky = cv2.findContours(note.region,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #輪郭表示 if(note.color != [255,255,255]): #検出最小サイズ min_size = 2000 for c in contours: if cv2.contourArea(c) < min_size: continue x,y,w,h = cv2.boundingRect(c) x,y,w,h = padding_position(x,y,w,h,5) if(y > 200): if(len(self.ci.chartinfo) > 0): n = self.ci.chartinfo[-1] if(n[1].n_name == 'slider' and y + h/2 > n[2][1] and y < n[2][1]+5): self.ci.chartinfo[-1] = [frame_num,note,[x,y,w,h]] if(x < n[2][0] or x > n[2][0] + n[2][2]): self.ci.chartinfo[-1] += [1] continue if(n[1].n_name == 'longnote' and (y < n[2][1] + 10 and y > n[2][1] -10)): if(n[2][0] - x < 400 and y > 950): self.ci.chartinfo[-1] = [frame_num,note,[x,y,n[2][0]+n[2][3],h]] continue if(y < 995): self.count_1 = 1 if(y > 550): self.count_2 = 1 if note.n_name == 'slider' and ((y > 800 and w*h < 10000) or y > 1000): continue self.ci.Add_Note(frame_num,note,[x,y,w,h]) else: min_size = 500 for c in contours: if cv2.contourArea(c) < min_size: continue x,y,w,h = cv2.boundingRect(c) x,y,w,h = padding_position(x,y,w,h,5) if h < 30 and y > 400: self.ci.Add_Note(frame_num,note,[x,y,w,h]) if(y < 995): self.count_1 = 1 if(y > 550): self.count_2 = 1 return img def F2S(self,file_name): m = int(700-500/0.85) before_time = 0 s_c = [] for i in range(len(self.chart.chart)): t = self.chart.chart[i][0] p = self.chart.chart[i][1] n = self.chart.chart[i][2] if(n == 1 or n == 2 or n == 3): b = (1440-p[1])/(p[1]-m)*10 a = (1440-1057)/(1057-m)*10 time = (t+(a-b)/4.2)/self.fps elif(n == 0 or n == 7): b = (1440-p[1])/(p[1]-m)*10 a = (1440-995)/(995-m)*10 time = (t+(a-b)/4.2)/self.fps elif(n == 4 or n == 5): b = (1440-p[1])/(p[1]-m)*10 a = (1440-1005)/(1005-m)*10 time = (t+(a-b)/4.2)/self.fps elif(n == 6): b = (1440-p[1])/(p[1]-m)*10 a = (1440-1057)/(1057-m)*10 time = (t+(a-b)/4.2)/self.fps if(n == 6): w = 7 else: w = int((960+(1115-m)/(p[1]+p[3]/2-m)*(p[0]+p[2]/2-960))*7/1920) if(i > 0): if(time-s_c[-1][0] < 0.002 and s_c[-1][1] != 7 and w != 7): time = (time+s_c[-1][0])/2 s_c[-1][0] = time s_c += [[time,w,n]] before_time = time for i in range(len(s_c)): print(s_c[i][0],s_c[i][1],s_c[i][2]) with open(file_name,'w') as f: writer = csv.writer(f) writer.writerows(s_c) def release(self): self.movie_name.release() a = Analysis('動画/ぐるぐるDJTURN.mov') #a.save_frame(824,'動画/テスト.jpg') a.print_property() #a.save_movie('動画/テスト.mp4',frame_num = None) a.analys(frame_num = None) a.F2S('動画/ぐるぐるDJTURN.csv') a.release()
[ "nasuika1@icloud.com" ]
nasuika1@icloud.com
0617378a687756f8866a77c1abb3d78b316dff95
43cbff554a9b7d06a761cb8e62276b6aaa5e7754
/src/old/text_vae_6.py
822a16d5dffbea8a2c27d2fe795c9d2bac4afa50
[]
no_license
an-seunghwan/vrae
7d0022ec31d2acd267ec38b99072574d60fe7690
6a8b7f7e65b439f89dd9317da3b3ee485bcc4b33
refs/heads/master
2023-01-09T11:52:01.201800
2020-11-09T11:50:18
2020-11-09T11:50:18
281,103,819
0
0
null
null
null
null
UTF-8
Python
false
false
15,796
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 16 14:29:42 2020 @author: anseunghwan """ #%% ''' - latent 공간의 분리 - mixture distribution - imputing missing words = 주어진 문장 형식에 빠진 부분 메꾸기 단, z의 정보를 반영하여 긍정, 부정 등의 특성을 나타내는 단어로 메꾸기 - beta(= sigma of continuous data) learning - categorical reparametrization with gumbell softmax - negative sampling? - sentence interpolation ''' #%% import tensorflow as tf # import tensorflow_probability as tfp import tensorflow.keras as K from tensorflow.keras import layers from tensorflow.keras import preprocessing print('TensorFlow version:', tf.__version__) print('즉시 실행 모드:', tf.executing_eagerly()) print('available GPU:', tf.config.list_physical_devices('GPU')) from tensorflow.python.client import device_lib print('==========================================') print(device_lib.list_local_devices()) tf.debugging.set_log_device_placement(False) #%% from tqdm import tqdm import pandas as pd import numpy as np # import random import math # import json import time import re import matplotlib.pyplot as plt from pprint import pprint from konlpy.tag import Okt okt = Okt() import os # os.chdir('/home/jeon/Desktop/an/kakao_arena') os.chdir('/Users/anseunghwan/Documents/uos/generating_text') print('current directory:', os.getcwd()) from subprocess import check_output print('=====Data list=====') print(check_output(["ls", "./data"]).decode("utf8")) #%% data 1 '''한국은행 데이터''' data = pd.read_csv('./data/total_sample_labeling_fin44.csv', encoding='euc-kr') data.head() data.columns sentence_idx = data['news/sentence'] == 0 data = data.loc[sentence_idx].reset_index() #%% data 2 '''감성라벨 데이터''' # 소비자와 기업을 모두 사용 sentiment_idx1_pos = np.array(data['소비자'] == 1) | np.array(data['소비자'] == 4) sentiment_idx1_neg = np.array(data['소비자'] == 2) | np.array(data['소비자'] == 5) sentiment_idx2_pos = np.array(data['기업'] == 1) | np.array(data['기업'] == 4) sentiment_idx2_neg = np.array(data['기업'] == 2) | np.array(data['기업'] == 5) sentence1_pos = data.loc[sentiment_idx1_pos]['content_new'].to_list() sentence1_neg = data.loc[sentiment_idx1_neg]['content_new'].to_list() sentence2_pos = data.loc[sentiment_idx2_pos]['content_new'].to_list() sentence2_neg = data.loc[sentiment_idx2_neg]['content_new'].to_list() sentence = sentence1_pos + sentence2_pos + sentence1_neg + sentence2_neg print(len(sentence)) # label label_ = np.zeros((len(sentence), 2)) label_[:len(sentence1_pos + sentence2_pos), 0] = 1 label_[len(sentence1_pos + sentence2_pos):, 1] = 1 #%% '''.(마침표)를 단위로 다시 문장을 분리한다(기사가 껴있는 경우가 있어 이를 방지)''' corpus_ = [] label_data = [] for i in tqdm(range(len(sentence))): # corpus.extend([x + '.' for x in sentence[i].split('. ')]) temp = [x.strip() for x in sentence[i].split('. ')] corpus_.extend(temp) label_data.extend([label_[i] for _ in range(len(temp))]) #%% def clean_korean(sent): if type(sent) == str: h = re.compile('[^가-힣ㄱ-ㅎㅏ-ㅣ\\s]+') result = h.sub('', sent) else: result = '' return result #%% tokenize p = re.compile('[가-힣]+') corpus = [] label = [] # useful_tag = ['Noun', 'Verb', 'Adjective', 'Adverb'] for i in tqdm(range(len(corpus_))): if type(corpus_[i] == str): # corpus.append(['<sos>'] + [x[0] for x in okt.pos(sentence[i], stem=True) if p.match(x[0]) and len(x[0]) > 1 and x[1] in useful_tag] + ['<eos>']) # corpus[i] = ['<sos>'] + [x[0] for x in okt.pos(temp, stem=False) if p.match(x[0]) and len(x[0]) > 1 and x[1] != 'Josa'] + ['<eos>'] temp = clean_korean(corpus_[i]) corpus.append(['<sos>'] + [x[0] for x in okt.pos(temp, stem=False) if len(x[0]) > 1 and x[1] != 'Josa'] + ['<eos>']) label.append(label_data[i]) label = np.array(label) #%% vocab = set() for i in tqdm(range(len(corpus))): vocab.update(corpus[i]) vocab = {x:i+2 for i,x in enumerate(sorted(list(vocab)))} vocab['<PAD>'] = 0 vocab['<UNK>'] = 1 vocab_size = len(vocab) print(len(vocab)) num_vocab = {i:x for x,i in vocab.items()} #%% input_text = [0]*len(corpus) for i in tqdm(range(len(corpus))): input_text[i] = [vocab.get(x) for x in corpus[i]] #%% # maxlen 결정 plt.hist([len(x) for x in corpus]) # maxlen = max(len(x) for x in input_text) maxlen = 50 input_text = preprocessing.sequence.pad_sequences(input_text, maxlen=maxlen, padding='post', value=0) output_text = np.concatenate((input_text[:, 1:], np.zeros((len(input_text), 1))), axis=1) #%% parameters batch_size = 200 embedding_size = 150 latent_dim = 40 units = 100 #%% prior M = 2 # the number of components prior_mu = np.ones((M, latent_dim)) prior_mu[0, :] *= 2 prior_mu[1, :] *= -2 '''we set sigma for 1 globally''' #%% encoder x = layers.Input((maxlen)) # embedding_layer = layers.Embedding(input_dim=vocab_size, # output_dim=embedding_size) embedding_layer = layers.Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True) ex = embedding_layer(x) encoder_lstm = layers.LSTM(units) encoder_h = encoder_lstm(ex) # for 문으로 list로 생성(나중에 M이 커지면?) mix_prob_dense = layers.Dense(M, activation='softmax') mean_dense1 = layers.Dense(latent_dim) log_var_dense1 = layers.Dense(latent_dim) mean_dense2 = layers.Dense(latent_dim) log_var_dense2 = layers.Dense(latent_dim) mix_prob = mix_prob_dense(encoder_h) z_mean1 = mean_dense1(encoder_h) z_log_var1 = log_var_dense1(encoder_h) z_mean2 = mean_dense2(encoder_h) z_log_var2 = log_var_dense2(encoder_h) prob_sampling = tf.random.categorical(mix_prob, 1) chosen_idx = tf.concat((prob_sampling, tf.cast(tf.cast(tf.logical_not(tf.cast(prob_sampling, tf.bool)), tf.bool), tf.int64)), axis=1) epsilon1 = tf.random.normal((latent_dim, )) z1 = z_mean1 + tf.math.exp(z_log_var1 / 2) * epsilon1 epsilon2 = tf.random.normal((latent_dim, )) z2 = z_mean2 + tf.math.exp(z_log_var2 / 2) * epsilon2 z12 = tf.concat((z1[:, tf.newaxis, :], z2[:, tf.newaxis, :]), axis=1) z = tf.reduce_sum(tf.multiply(tf.cast(tf.tile(chosen_idx[..., tf.newaxis], (1, 1, latent_dim)), tf.float32), z12), axis=1) #%% decoder y = layers.Input((maxlen)) ey = embedding_layer(y) decoder_lstm = layers.LSTM(units, return_sequences=True) '''for initial state, z could be reweighted using dense layer''' reweight_h_dense = layers.Dense(units) reweight_c_dense = layers.Dense(units) init_h = reweight_h_dense(z) init_c = reweight_c_dense(z) decoder_h = decoder_lstm(ey, initial_state=[init_h, init_c]) logit_layer = layers.TimeDistributed(layers.Dense(vocab_size)) # no softmax normalizaing -> logit tensor (from_logits=True) logit = logit_layer(decoder_h) #%% model mixprob_vae = K.models.Model([x, y], mix_prob) mixprob_vae.summary() text_vae = K.models.Model([x, y], [z_mean1, z_log_var1, z_mean2, z_log_var2, logit]) text_vae.summary() #%% decoder by case # case1 = True # # case1 = False # if case1: # '''decoder case 1: latent variable z in only given as hidden vector of LSTM''' # y = layers.Input((maxlen)) # ey = embedding_layer(y) # decoder_lstm = layers.LSTM(units, # return_sequences=True) # '''for initial state, z could be reweighted using dense layer''' # decoder_h = decoder_lstm(ey, initial_state=[z, z]) # logit_layer = layers.TimeDistributed(layers.Dense(vocab_size)) # logit = logit_layer(decoder_h) # text_vae = K.models.Model([x, y], [z_mean, z_log_var, z, logit]) # text_vae.summary() # else: # '''decoder case 2: latent variable z in given as input of decoder # in this case, word dropout is not needed''' # hiddens = layers.RepeatVector(maxlen)(z) # decoder_lstm = layers.LSTM(units, # return_sequences=True) # '''for initial state, z could be reweighted using dense layer''' # decoder_h = decoder_lstm(hiddens, initial_state=[z, z]) # logit_layer = layers.TimeDistributed(layers.Dense(vocab_size)) # logit = logit_layer(decoder_h) # text_vae = K.models.Model(x, [z_mean, z_log_var, z, logit]) # text_vae.summary() #%% loss scce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE) def loss_fun(y, y_pred, mean_pred, log_var_pred, beta): '''do not consider padding''' # reconstruction loss non_pad_count = tf.reduce_sum(tf.cast(tf.cast(y != 0, tf.bool), tf.float32), axis=1, keepdims=True) recon_loss = tf.reduce_mean(tf.reduce_sum(tf.divide(tf.multiply(scce(y, y_pred), tf.cast(tf.cast(y != 0, tf.bool), tf.float32)), non_pad_count), axis=1)) # non_pad_ = np.sum(y != vocab.get('<PAD>'), axis=1) # recon_loss = tf.zeros(()) # for i in range(len(non_pad_)): # n = non_pad_[i] # recon_loss += scce(y[[i], :n], y_pred[i, :n, :]) / n # recon_loss /= len(non_pad_) # kl-divergence loss kl_loss = tf.reduce_mean(tf.reduce_sum(-0.5 * (1 + log_var_pred - tf.math.pow(mean_pred, 2) - tf.math.exp(log_var_pred)), axis=1)) return recon_loss, kl_loss, recon_loss + beta * kl_loss #%% loss scce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE) def loss_mixture_fun(y, y_pred, mean_pred1, log_var_pred1, mean_pred2, log_var_pred2, pi, beta): '''do not consider padding''' # reconstruction loss non_pad_count = tf.reduce_sum(tf.cast(tf.cast(y != 0, tf.bool), tf.float32), axis=1, keepdims=True) recon_loss = tf.reduce_mean(tf.reduce_sum(tf.divide(tf.multiply(scce(y, y_pred), tf.cast(tf.cast(y != 0, tf.bool), tf.float32)), non_pad_count), axis=1)) # kl-divergence loss term1 = tf.reduce_mean(tf.reduce_sum(pi * tf.math.log(pi * M), axis=1)) kl1 = tf.reduce_sum(-0.5 * (1 + log_var_pred1 - tf.math.pow(mean_pred1 - prior_mu[0, :], 2) - tf.math.exp(log_var_pred1)), axis=1, keepdims=True) kl2 = tf.reduce_sum(-0.5 * (1 + log_var_pred2 - tf.math.pow(mean_pred2 - prior_mu[1, :], 2) - tf.math.exp(log_var_pred2)), axis=1, keepdims=True) kl_loss = term1 + tf.reduce_mean(tf.reduce_sum(tf.multiply(pi, tf.concat((kl1, kl2), axis=1)), axis=1)) return recon_loss, kl_loss, recon_loss + beta * kl_loss #%% ''' - kl annealing using logistic vs linear ''' def kl_anneal(step, s, k=0.001): # logistic return 1 / (1 + math.exp(-k*(step - s))) #%% optimizer = tf.keras.optimizers.Adam(0.005) optimizer1 = tf.keras.optimizers.Adam(0.005) #%% training epochs = 3000 # beta = 0.1 dropout_rate = 0.5 for epoch in range(700, epochs): beta = kl_anneal(epoch, int(epochs/2)) if epoch % 10 == 1: t1 = time.time() idx = np.random.randint(0, len(input_text), batch_size) # sampling random batch -> stochasticity input_sequence = input_text[idx][:, ::-1] input_sequence_dropout = input_text[idx] output_sequence = output_text[idx] '''word dropout with UNK -> hold PAD and UNK word embedding vector zero vector(non-trainable)''' non_pad = np.sum(input_sequence != vocab.get('<PAD>'), axis=1) dropout_ = [np.random.binomial(1, dropout_rate, x-2) for x in non_pad] dropout_index = [d * np.arange(1, x-1) for d, x in zip(dropout_, non_pad)] for i in range(batch_size): input_sequence_dropout[i][[d for d in dropout_index[i] if d != 0]] = vocab.get('<UNK>') with tf.GradientTape(persistent=True) as tape: # get output z_mean_pred1, z_log_var_pred1, z_mean_pred2, z_log_var_pred2, sequence_pred = text_vae([input_sequence, input_sequence_dropout]) pi_hat = mixprob_vae([input_sequence, input_sequence_dropout]) # ELBO recon_loss, kl_loss, loss = loss_mixture_fun(output_sequence, sequence_pred, z_mean_pred1, z_log_var_pred1, z_mean_pred2, z_log_var_pred2, pi_hat, beta) # mixture probability loss mix_loss = -tf.reduce_mean(tf.math.log(tf.reduce_sum(tf.multiply(label[idx, :], pi_hat), axis=1))) grad = tape.gradient(loss, text_vae.weights) optimizer.apply_gradients(zip(grad, text_vae.weights)) grad1 = tape.gradient(mix_loss, mixprob_vae.weights) optimizer1.apply_gradients(zip(grad1, mixprob_vae.weights)) if epoch % 10 == 0: t2 = time.time() print('({} epoch, time: {:.3})'.format(epoch, t2-t1)) print('Text VAE loss: {:.6}, Reconstruction: {:.6}, KL: {:.6}, MIX: {:.6}'.format(loss.numpy(), recon_loss.numpy(), kl_loss.numpy(), mix_loss.numpy())) #%% # K.backend.clear_session() #%% latent generation latent_input = layers.Input((maxlen)) latent_emb = embedding_layer(latent_input) latent_h = encoder_lstm(latent_emb) latent_mix_prob = mix_prob_dense(latent_h) latent_mean1 = mean_dense1(latent_h) latent_log_var1 = log_var_dense1(latent_h) latent_mean2 = mean_dense2(latent_h) latent_log_var2 = log_var_dense2(latent_h) latent_prob_sampling = tf.random.categorical(latent_mix_prob, 1) latent_chosen_idx = tf.concat((latent_prob_sampling, tf.cast(tf.cast(tf.logical_not(tf.cast(latent_prob_sampling, tf.bool)), tf.bool), tf.int64)), axis=1) epsilon1 = tf.random.normal((latent_dim, )) latent_z1 = latent_mean1 + tf.math.exp(latent_log_var1 / 2) * epsilon1 epsilon2 = tf.random.normal((latent_dim, )) latent_z2 = latent_mean2 + tf.math.exp(latent_log_var2 / 2) * epsilon2 latent_z12 = tf.concat((latent_z1[:, tf.newaxis, :], latent_z2[:, tf.newaxis, :]), axis=1) latent_z = tf.reduce_sum(tf.multiply(tf.cast(tf.tile(latent_chosen_idx[..., tf.newaxis], (1, 1, latent_dim)), tf.float32), latent_z12), axis=1) latent_model = K.models.Model(latent_input, latent_z) latent_model.summary() #%% inference model inf_input = layers.Input((maxlen)) inf_hidden = layers.Input((latent_dim)) inf_emb = embedding_layer(inf_input) latent_init_h = reweight_h_dense(inf_hidden) latent_init_c = reweight_c_dense(inf_hidden) inf_output = logit_layer(decoder_lstm(inf_emb, initial_state=[latent_init_h, latent_init_c])) inference_model = K.models.Model([inf_input, inf_hidden], inf_output) inference_model.summary() #%% interpolation & inference j1 = 2 j2 = 3 print('===input===') print(' '.join([num_vocab.get(x) for x in input_text[j1, :] if x != 0])) print(' '.join([num_vocab.get(x) for x in input_text[j2, :] if x != 0])) z1 = latent_model(input_text[[j1], :]) z2 = latent_model(input_text[[j2], :]) # interpolation z_inter = z1 for v in np.linspace(0, 1, 7): z_inter = np.vstack((z_inter, v * z1 + (1 - v) * z2)) z_inter = np.vstack((z_inter, z2)) val_seq = np.zeros((len(z_inter), maxlen)) val_seq[:, 0] = vocab.get('<sos>') result = ['']*len(z_inter) for k in range(len(result)): for t in range(1, maxlen): pred = inference_model([val_seq[[k], :], z_inter[[k], :]]) pred_id = tf.argmax(pred[0][t-1]).numpy() result[k] += num_vocab.get(pred_id) + ' ' if num_vocab.get(pred_id) == '<eos>': break val_seq[:, t] = pred_id print('===output===') pprint(result) #%%
[ "dpeltms79@gmail.com" ]
dpeltms79@gmail.com
aab291f1cacaafadba65a903047532155d75d8f5
71ab28f41329457cbba8bd749c7e44768880d964
/experiments/suite/data/sachs/load_data.py
2c5abed5e92ba52b7c7a89eb59b7ed86879e96d2
[ "Apache-2.0" ]
permissive
diadochos/incorporating-causal-graphical-prior-knowledge-into-predictive-modeling-via-simple-data-augmentation
210a3382445d9e11a1594e6b26c788f21b8089bd
11eb7b4bb9c39672ece6177e321f63ce205e0307
refs/heads/main
2023-05-30T23:10:49.323396
2021-06-14T06:39:54
2021-06-14T06:39:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,735
py
import bnlearn import pandas as pd # Type hinting from causal_data_augmentation.api_support.typing import GraphType VARIABLES_REMOVED = [] def get_predicted_variable_name(): return 'PKA' def load_data(path: str) -> pd.DataFrame: DATA_RENAME = { 'raf': 'Raf', 'mek': 'Mek', 'plc': 'Plcg', 'pip2': 'PIP2', 'pip3': 'PIP3', 'erk': 'Erk', 'akt': 'Akt', 'pka': 'PKA', 'pkc': 'PKC', 'p38': 'P38', 'jnk': 'Jnk' } data = pd.read_csv(path, delimiter='\t') data = data.rename(columns=DATA_RENAME).drop(VARIABLES_REMOVED, axis=1) return data def _bnlearn_adjmat_to_edge_tuples(adjmat: pd.DataFrame): edge_tuples = [] for rowname in adjmat.index.values: for colname in adjmat.columns: if adjmat[colname][rowname]: edge_tuples.append((rowname, colname)) return edge_tuples def load_bif(path: str) -> GraphType: """ Params: path : path to BIF file. """ is_DAG = True verbose = 0 bnlearn_model = bnlearn.import_DAG(path, CPD=is_DAG, verbose=verbose) bayesian_model, adjmat = bnlearn_model['model'], bnlearn_model['adjmat'] adjmat = adjmat.drop(VARIABLES_REMOVED, axis=1).drop(VARIABLES_REMOVED, axis=0) vertices = adjmat.columns directed_edges = _bnlearn_adjmat_to_edge_tuples(adjmat) bi_edges = [] graph = vertices, directed_edges, bi_edges return graph def load_consensus_graph(_=None) -> GraphType: """Load graph.""" vertices = [ 'Raf', 'Mek', 'Plcg', 'PIP2', 'PIP3', 'Erk', 'Akt', 'PKA', 'PKC', 'P38', 'Jnk' ] directed_edges = [('Plcg', 'PIP2'), ('Plcg', 'PKC'), ('PIP2', 'PKC'), ('PIP3', 'PIP2'), ('PIP3', 'Plcg'), ('PIP3', 'Akt'), ('PKA', 'Akt'), ('PKA', 'Erk'), ('PKA', 'Mek'), ('PKA', 'Raf'), ('PKA', 'Jnk'), ('PKA', 'P38'), ('PKC', 'Mek'), ('PKC', 'Raf'), ('PKC', 'Jnk'), ('PKC', 'P38'), ('Mek', 'Erk')] bi_edges = [] vertices = [v for v in vertices if v not in VARIABLES_REMOVED] directed_edges = [ e for e in directed_edges if (e[0] not in VARIABLES_REMOVED) and (e[1] not in VARIABLES_REMOVED) ] bi_edges = [ e for e in bi_edges if (e[0] not in VARIABLES_REMOVED) and (e[1] not in VARIABLES_REMOVED) ] graph = vertices, directed_edges, bi_edges return graph def load_mooij_heskes_2013_graph(_=None) -> GraphType: """Load graph.""" vertices = [ 'Raf', 'Mek', 'Plcg', 'PIP2', 'PIP3', 'Erk', 'Akt', 'PKA', 'PKC', 'P38', 'Jnk' ] directed_edges = [ ('PIP2', 'Plcg'), ('PIP3', 'PIP2'), ('Akt', 'Erk'), ('PKA', 'Akt'), ('PKA', 'Mek'), ('PKA', 'Jnk'), ('PKA', 'P38'), ('PKC', 'PKA'), ('PKC', 'Akt'), ('PKC', 'PIP2'), ('PKC', 'Plcg'), ('PKC', 'Mek'), ('PKC', 'Raf'), ('PKC', 'Jnk'), ('PKC', 'P38'), ('Mek', 'Raf'), ('Mek', 'Erk'), ] bi_edges = [] vertices = [v for v in vertices if v not in VARIABLES_REMOVED] directed_edges = [ e for e in directed_edges if (e[0] not in VARIABLES_REMOVED) and (e[1] not in VARIABLES_REMOVED) ] bi_edges = [ e for e in bi_edges if (e[0] not in VARIABLES_REMOVED) and (e[1] not in VARIABLES_REMOVED) ] graph = vertices, directed_edges, bi_edges return graph if __name__ == '__main__': data = load_data("main.result.ourvarrs/1. cd3cd28.txt") graph = load_bif("sachs.bif")
[ "takeshi.diadochos@gmail.com" ]
takeshi.diadochos@gmail.com
fac8b4f5546ab26d53970a5f7f3ca0643c0446b0
c3297a96e0dacadba5fdd5c9b30a06794f6fd5d7
/base/urls.py
825610661687b46622a959dcfd1af8e7409bef5f
[]
no_license
craig-r-w/website
bac54f3598f270ea6812d2ddac9ae04496ce1f96
a73692da78bed5a67616df9785fc8eec5358128c
refs/heads/master
2023-08-31T05:33:19.951678
2021-07-07T15:30:54
2021-07-07T15:30:54
268,131,854
0
0
null
null
null
null
UTF-8
Python
false
false
1,826
py
"""base URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from blog import views from django.contrib.auth import views as auth_views urlpatterns = [ path('admin/', admin.site.urls), path('', views.view_published, name='view_published'), # Direct to the published posts view when no url directory is given. path('post/<int:primary_key>/', views.view_post, name='view_post'), # Direct to the selected post. path('post/new/', views.create_post, name='create_post'), # Create a new Post. path('post/edit/<int:primary_key>/', views.edit_post, name='edit_post'), # Direct to the selected post. path('post/delete/<int:primary_key>/', views.delete_post, name='delete_post'), # Delete the selected post. path('posts/all', views.view_all, name='view_all'), # Display all posts. path('posts/unpublished', views.view_unpublished, name='view_unpublished'), # Display unpublished posts. path('posts/published', views.view_published, name='view_published'), # Display published posts. path('login/', auth_views.LoginView.as_view(template_name='blog/login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view(next_page='/'), name='logout'), ]
[ "craigwilbourne@zoho.com" ]
craigwilbourne@zoho.com
16565fdd13096dd6115c8dc833e71a7cfc96815b
6d9af7eade7ddc239ee6839a3766cb40c27f619d
/src/main.py
c3ffaf19271d395c270b629dc07aaefc59bdb1a0
[]
no_license
lmj1029123/SingleNN
24dfe40c8d920e2a777742c885907c27484976f4
701752c3378e537387fa0dc2b410aec44577b7a3
refs/heads/master
2021-11-27T04:42:46.229290
2021-11-09T00:40:10
2021-11-09T00:40:10
246,651,678
7
2
null
null
null
null
UTF-8
Python
false
false
10,699
py
import sys sys.path.append("./SimpleNN") import os import shutil from ase.db import connect import torch from ContextManager import cd from preprocess import train_test_split, train_val_split, get_scaling, CV from preprocess import snn2sav from NN import MultiLayerNet from train import train, evaluate from fp_calculator import set_sym, calculate_fp import pickle is_train = True is_transfer = False is_force = True if is_train and is_transfer: raise ValueError('train and transfer could not be true at the same time.') ################################################################################## #Hyperparameters ################################################################################## E_coeff = 100 if is_force: F_coeff = 1 else: F_coeff = 0 val_interval = 10 n_val_stop = 10 epoch = 3000 opt_method = 'lbfgs' if opt_method == 'lbfgs': history_size = 100 lr = 1 max_iter = 10 line_search_fn = 'strong_wolfe' SSE = torch.nn.MSELoss(reduction='sum') SAE = torch.nn.L1Loss(reduction='sum') convergence = {'E_cov':0.0005,'F_cov':0.005} # min_max will scale fingerprints to (0,1) fp_scale_method = 'min_max' e_scale_method = 'min_max' test_percent = 0.2 # Pecentage from train+val val_percent = 0.2 # Training model configuration SEED = [1,2,3,4,5] #n_nodes = [20,20] #activations = [torch.nn.Tanh(), torch.nn.Tanh()] n_nodes = [] activations = [] lr = 1 hp = {'n_nodes': n_nodes, 'activations': activations, 'lr': lr} #################################################################################################### # Configuration for train #################################################################################################### if is_train: # The Name of the training Name = f'linear_Ge_e' for seed in SEED: if not os.path.exists(Name+f'-{seed}'): os.makedirs(Name+f'-{seed}') dbfile = f'./db/Ge.db' db = connect(dbfile) elements = ['Li', 'Si', 'Ni', 'Cu', 'Ge', 'Mo'] nelem = len(elements) # This is the energy of the metal in its ground state structure #if you don't know the energy of the ground state structure, # you can set it to None element_energy = torch.tensor([-1.90060294,-10.84460345/2,-5.51410074,-3.71807396,-8.94730881/2,-10.96382467]) # Atomic number #weights = [3, 14, 28, 29, 32, 42] # Allen electronegativity weights = [0.912,1.916,1.88,1.85,1.994,1.47] # Covalent radii #weights = [1.28,1.11,1.24,1.32,1.2,1.54] Gs = [22,24] cutoff = 6.0 g2_etas = [0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5] #g2_etas = [0, 0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.07, 0.1] g2_Rses = [0.0] g4_etas=[0.01] g4_zetas=[1.0, 4.0] g4_lambdas=[-1.0, 1.0] sym_params = [Gs, cutoff, g2_etas, g2_Rses, g4_etas, g4_zetas, g4_lambdas, elements, weights, element_energy] params_set = set_sym(elements, Gs, cutoff, g2_etas=g2_etas, g2_Rses=g2_Rses, g4_etas=g4_etas, g4_zetas = g4_zetas, g4_lambdas= g4_lambdas, weights=weights) N_sym = params_set[elements[0]]['num'] #################################################################################################### # Configuration for transfer #################################################################################################### if is_transfer: source_Name = 'combined_noNi_e' # The Name of the training Name = f'combined_Ni_e' for seed in SEED: if not os.path.exists(Name+f'-{seed}'): os.makedirs(Name+f'-{seed}') dbfile = f'./db/Ni.db' db = connect(dbfile) elements = ['Li', 'Si', 'Ni', 'Cu', 'Ge', 'Mo'] nelem = len(elements) # This is the energy of the metal in its ground state structure #if you don't know the energy of the ground state structure, # you can set it to None element_energy = torch.tensor([-1.90060294,-10.84460345/2,-5.51410074,-3.71807396,-8.94730881/2,-10.96382467]) # Atomic number #weights = [3, 14, 28, 29, 32, 42] # Allen electronegativity weights = [0.912,1.916,1.88,1.85,1.994,1.47] # Covalent radii #weights = [1.28,1.11,1.24,1.32,1.2,1.54] #################################################################################################### # Train #################################################################################################### if is_train: for seed in SEED: # This use the context manager to operate in the data directory with cd(Name+f'-{seed}'): pickle.dump(sym_params, open("sym_params.sav", "wb")) logfile = open('log.txt','w+') resultfile = open('result.txt','w+') if os.path.exists('test.sav'): logfile.write('Did not calculate symfunctions.\n') else: data_dict = snn2sav(db, Name, elements, params_set, element_energy=element_energy) train_dict = train_test_split(data_dict,1-test_percent,seed=seed) train_val_split(train_dict,1-val_percent,seed=seed) logfile.flush() train_dict = torch.load('final_train.sav') val_dict = torch.load('final_val.sav') test_dict = torch.load('test.sav') scaling = get_scaling(train_dict, fp_scale_method, e_scale_method) n_nodes = hp['n_nodes'] activations = hp['activations'] lr = hp['lr'] model = MultiLayerNet(N_sym, n_nodes, activations, nelem, scaling=scaling) if opt_method == 'lbfgs': optimizer = torch.optim.LBFGS(model.parameters(), lr=lr, max_iter=max_iter, history_size=history_size, line_search_fn=line_search_fn) results = train(train_dict, val_dict, model, opt_method, optimizer, E_coeff, F_coeff, epoch, val_interval, n_val_stop, convergence, is_force, logfile) [loss, E_MAE, F_MAE, v_loss, v_E_MAE, v_F_MAE] = results test_results = evaluate(test_dict, E_coeff, F_coeff, is_force) [test_loss, test_E_MAE, test_F_MAE] =test_results resultfile.write(f'Hyperparameter: n_nodes = {n_nodes}, activations = {activations}, lr = {lr}\n') resultfile.write(f'loss = {loss}, E_MAE = {E_MAE}, F_MAE = {F_MAE}.\n') resultfile.write(f'v_loss = {v_loss}, v_E_MAE = {v_E_MAE}, v_F_MAE = {v_F_MAE}.\n') resultfile.write(f'test_loss = {test_loss}, test_E_MAE = {test_E_MAE}, test_F_MAE = {test_F_MAE}.\n') logfile.close() resultfile.close() #################################################################################################### # Transfer #################################################################################################### if is_transfer: for seed in SEED: # This use the context manager to operate in the data directory with cd(source_Name+f'-{seed}'): model = torch.load('best_model') sym_params = pickle.load(open( "sym_params.sav", "rb" )) [Gs, cutoff, g2_etas, g2_Rses, g4_etas, g4_zetas, g4_lambdas, _, _, _]=sym_params sym_params = [Gs, cutoff, g2_etas, g2_Rses, g4_etas, g4_zetas, g4_lambdas, elements, weights, element_energy] params_set = set_sym(elements, Gs, cutoff, g2_etas=g2_etas, g2_Rses=g2_Rses, g4_etas=g4_etas, g4_zetas = g4_zetas, g4_lambdas= g4_lambdas, weights=weights) N_sym = params_set[elements[0]]['num'] with cd(Name+f'-{seed}'): pickle.dump(sym_params, open("sym_params.sav", "wb")) logfile = open('log.txt','w+') resultfile = open('result.txt','w+') if os.path.exists('test.sav'): logfile.write('Did not calculate symfunctions.\n') else: data_dict = snn2sav(db, Name, elements, params_set, element_energy=element_energy) train_dict = train_test_split(data_dict,1-test_percent,seed=seed) train_val_split(train_dict,1-val_percent,seed=seed) logfile.flush() train_dict = torch.load('final_train.sav') val_dict = torch.load('final_val.sav') test_dict = torch.load('test.sav') #n_nodes = hp['n_nodes'] #activations = hp['activations'] lr = hp['lr'] for param in model.parameters(): param.requires_grad = False H = model.net[-1].in_features model.net[-1] = torch.nn.Linear(H, nelem) trainable_params = filter(lambda p: p.requires_grad, model.parameters()) if opt_method == 'lbfgs': optimizer = torch.optim.LBFGS(model.parameters(), lr=lr, max_iter=max_iter, history_size=history_size, line_search_fn=line_search_fn) results = train(train_dict, val_dict, model, opt_method, optimizer, E_coeff, F_coeff, epoch, val_interval, n_val_stop, convergence, is_force, logfile) [loss, E_MAE, F_MAE, v_loss, v_E_MAE, v_F_MAE] = results test_results = evaluate(test_dict, E_coeff, F_coeff, is_force) [test_loss, test_E_MAE, test_F_MAE] =test_results resultfile.write(f'Hyperparameter: n_nodes = {n_nodes}, activations = {activations}, lr = {lr}\n') resultfile.write(f'loss = {loss}, E_MAE = {E_MAE}, F_MAE = {F_MAE}.\n') resultfile.write(f'v_loss = {v_loss}, v_E_MAE = {v_E_MAE}, v_F_MAE = {v_F_MAE}.\n') resultfile.write(f'test_loss = {test_loss}, test_E_MAE = {test_E_MAE}, test_F_MAE = {test_F_MAE}.\n') logfile.close() resultfile.close()
[ "mingjie1@andrew.cmu.edu" ]
mingjie1@andrew.cmu.edu
df64e6c89083f39d1c9f7b60839bf17d8a58b3e6
1a258306d04da48964c9b10b31d543d10856e2e8
/DealWithTables/test.py
7233bd1a3b7c55b0475df3fc5daeb58e16f8f36d
[]
no_license
DIAOZHAFENG/simplework
1485727772908642d2cc4712e3afda2a3a499f3a
1b9cf12f0497f118bca9e633b4dab279039fa74e
refs/heads/master
2021-08-24T00:46:24.708984
2017-12-07T09:33:12
2017-12-07T09:33:12
113,014,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,411
py
# -*- coding: utf-8 -*- import time # from db_inconnect import MSSQL from servers import get_info get_ping_tables = ''' SELECT Name FROM SysObjects Where XType='U' AND Name LIKE 'UserPingListTable_%' ORDER BY Name ''' mark_test_ip = ''' update ip set Name = '{name}' where IpAddress = '{ip}' ''' get_name = ''' select Name from ip where IpAddress = '{ip}' ''' ips = '''115.159.158.220;101.226.247.79;183.129.141.83;116.211.92.26;118.123.240.10;113.106.98.174;125.76.242.76;119.188.39.132;125.46.49.74;111.206.162.204;123.56.177.90;139.129.193.189;120.27.142.56;60.191.12.142;222.73.235.79;115.238.100.105;123.206.26.215''' if __name__ == '__main__': # i = 0 # now = time.time() # db = MSSQL() # while i < 1000: # for row in db.query('select * from ip where name = \'阿里北京\''): # print(row[1].encode('latin1').decode('gbk')) # i += 1 # print time.time() - now req = '''/SubmitUserPingListInterface/?command=submit&userid=389506263&username=%3F%3F%3F&ipaddress=101.226.247.79&pings=1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000;1000''' info = get_info(req) print info
[ "513414712@qq.com" ]
513414712@qq.com
1f969d32266a2a1461f90074b270393360e66605
8a2e7242846a6d6d95f8d150738d5a7a9c8f96d7
/main/migrations/0023_order_status.py
e9f055d53fd6db443abf301c6599e278a21e8fae
[]
no_license
sidharth1017/Dreammarket
88ccb979014cc16469ec0f534734d415d96cb75e
52c03aeabd454d948b802613865197864f8d1aaf
refs/heads/master
2023-07-31T09:27:42.119763
2021-09-14T18:56:10
2021-09-14T18:56:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
# Generated by Django 3.1.7 on 2021-03-21 11:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0022_order'), ] operations = [ migrations.AddField( model_name='order', name='status', field=models.BooleanField(default=False), ), ]
[ "sidharthv605@gmail.com" ]
sidharthv605@gmail.com
f7529a6c09b46c2d7f94c5330f76f204993ebe4b
3ae3489e63de992d504b6bf80e49469c195aa0d0
/mailmachine/mail.py
9166f0775f9c2e27264c2c6f16d6c48af121dceb
[]
no_license
paluh/mailmachine
81e218cf4b3352de266cb9685de02fd1e00d7f14
e3ad8a70b67c140d146cfc44c475a68278dc16ea
refs/heads/master
2021-01-17T13:12:42.779596
2020-03-19T20:16:12
2020-03-19T20:16:55
12,365,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,697
py
from __future__ import absolute_import from email.utils import formatdate import email_message import time def enqueue(mail_queue, subject, body, from_email, recipients, alternatives=None, attachments=None): mail_queue.put(subject=subject, body=body, from_email=from_email, recipients=recipients, alternatives=alternatives, attachments=attachments) def send(connection, subject, body, from_email, recipients, alternatives=None, attachments=None): messages = _build_messages(subject, body, from_email, recipients, alternatives, attachments) for from_email, recipients, msg in messages: connection.sendmail(from_email, recipients, msg.encode('utf-8') if isinstance(msg, unicode) else msg) def _build_messages(subject, body, from_email, recipients, alternatives=None, attachments=None): headers = { 'Date': formatdate(int(time.time())) } messages = [] attachments = attachments or [] for recipient in recipients: message = email_message.EmailMultiAlternatives(to=[recipient], alternatives=alternatives, headers=headers, subject=subject, body=body, from_email=from_email, encoding='utf-8') for attachment in attachments: message.attach(*attachment) fe = email_message.sanitize_address(message.from_email, message.encoding) recipients = [email_message.sanitize_address(addr, message.encoding) for addr in message.recipients()] messages.append((fe, recipients, message.message().as_string())) return messages
[ "paluho@gmail.com" ]
paluho@gmail.com
dc9f10739fa6306a29577835e9d7d18e3a409cc7
10b3f8b1bb2d43a053558e2974b1190ec5af9ab3
/test/functional/feature_loadblock.py
1078f70c1c56018d1ce056e74ae5a3588156a46e
[ "MIT" ]
permissive
Satoex/Sato
ff4683226c2cedb14203a86af68ae168e3c45400
fda51ccc241ca426e838e1ba833c7eea26f1aedd
refs/heads/master
2022-07-27T23:30:32.734477
2022-01-29T17:44:00
2022-01-29T17:44:00
346,001,467
6
8
null
null
null
null
UTF-8
Python
false
false
3,866
py
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Copyright (c) 2017-2020 The Sato Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test loadblock option Test the option to start a node with the option loadblock which loads a serialized blockchain from a file (usually called bootstrap.dat). To generate that file this test uses the helper scripts available in contrib/linearize. """ import configparser import os import subprocess import sys import tempfile import urllib from test_framework.test_framework import SatoTestFramework from test_framework.util import assert_equal, wait_until class LoadblockTest(SatoTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def run_test(self): self.nodes[1].setnetworkactive(state=False) self.nodes[0].generate(100) # Parsing the url of our node to get settings for config file data_dir = self.nodes[0].datadir node_url = urllib.parse.urlparse(self.nodes[0].url) cfg_file = os.path.join(data_dir, "linearize.cfg") bootstrap_file = os.path.join(self.options.tmpdir, "bootstrap.dat") genesis_block = self.nodes[0].getblockhash(0) blocks_dir = os.path.join(data_dir, "regtest", "blocks") hash_list = tempfile.NamedTemporaryFile(dir=data_dir, mode='w', delete=False, encoding="utf-8") self.log.info("Create linearization config file") with open(cfg_file, "a", encoding="utf-8") as cfg: cfg.write("datadir={}\n".format(data_dir)) cfg.write("rpcuser={}\n".format(node_url.username)) cfg.write("rpcpassword={}\n".format(node_url.password)) cfg.write("port={}\n".format(node_url.port)) cfg.write("host={}\n".format(node_url.hostname)) cfg.write("output_file={}\n".format(bootstrap_file)) cfg.write("max_height=100\n") cfg.write("netmagic=43524f57\n") cfg.write("input={}\n".format(blocks_dir)) cfg.write("genesis={}\n".format(genesis_block)) cfg.write("hashlist={}\n".format(hash_list.name)) # Get the configuration file to find src and linearize config = configparser.ConfigParser() if not self.options.configfile: self.options.configfile = os.path.abspath(os.path.join(os.path.dirname(__file__), "../config.ini")) config.read_file(open(self.options.configfile)) base_dir = config["environment"]["SRCDIR"] linearize_dir = os.path.join(base_dir, "contrib", "linearize") self.log.info("Run linearization of block hashes") linearize_hashes_file = os.path.join(linearize_dir, "linearize-hashes.py") subprocess.run([sys.executable, linearize_hashes_file, cfg_file], stdout=hash_list, check=True) self.log.info("Run linearization of block data") linearize_data_file = os.path.join(linearize_dir, "linearize-data.py") subprocess.run([sys.executable, linearize_data_file, cfg_file], check=True) self.log.info("Restart second, unsynced node with bootstrap file") self.stop_node(1) self.start_node(1, ["-loadblock=" + bootstrap_file]) wait_until(lambda: self.nodes[1].getblockcount() == 100, err_msg="Wait for block count == 100") assert_equal(self.nodes[1].getblockchaininfo()['blocks'], 100) assert_equal(self.nodes[0].getbestblockhash(), self.nodes[1].getbestblockhash()) if __name__ == '__main__': LoadblockTest().main()
[ "78755872+Satoex@users.noreply.github.com" ]
78755872+Satoex@users.noreply.github.com
ac16325e32d04380008cb982641765605f50d959
9ac405635f3ac9332e02d0c7803df757417b7fee
/bandas_eurobelt/migrations/0013_auto_20190801_2046.py
42051039e8faed86b51d878b396193648a4a306b
[]
no_license
odecsarrollo/07_intranet_proyectos
80af5de8da5faeb40807dd7df3a4f55f432ff4c0
524aeebb140bda9b1bf7a09b60e54a02f56fec9f
refs/heads/master
2023-01-08T04:59:57.617626
2020-09-25T18:01:09
2020-09-25T18:01:09
187,250,667
0
0
null
2022-12-30T09:36:37
2019-05-17T16:41:35
JavaScript
UTF-8
Python
false
false
409
py
# Generated by Django 2.2 on 2019-08-02 01:46 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('bandas_eurobelt', '0012_auto_20190801_1806'), ] operations = [ migrations.AlterModelOptions( name='bandaeurobelt', options={'permissions': [('list_bandaeurobelt', 'Can see list bandas eurobelt')]}, ), ]
[ "fabio.garcia.sanchez@gmail.com" ]
fabio.garcia.sanchez@gmail.com
3db904de747b7d0704639a3328746010003fc72d
58f8ac8ffec2d8c0dd561452d6335bb344707a5e
/venv/bin/django-admin.py
e3b39416210acd2d09d4766f302aca92fd9750d8
[]
no_license
Sheikh2Imran/corona19-graphQL
e255ed6fabf5f5044298edf0e3deb0ee1383656f
927d6771001dfac038cb61501cc81af5919709a7
refs/heads/master
2022-11-25T03:16:26.605685
2020-07-24T17:41:08
2020-07-24T17:41:08
253,882,941
0
1
null
null
null
null
UTF-8
Python
false
false
164
py
#!/Users/ergoventuresltd/Desktop/corona19/venv/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "imranjustcse@gmail.com" ]
imranjustcse@gmail.com
3a88f0f40fb307b48c95ea8a48095acc6f6353b8
99bdfce39152daa7f1d6088be4e57f7962cb14b1
/notifications/sms.py
d4933f7fa447575a798fa6da097454a66aef43cf
[]
no_license
gusevartemasd/mypplanner-master
94f67142a57b7fc93e408eb256efb2f5b6bf2144
44a88e22b1eb4a1d789bee8811d06000078ea9b3
refs/heads/master
2020-04-23T15:20:42.876205
2019-02-18T10:19:30
2019-02-18T10:19:30
171,261,989
2
0
null
null
null
null
UTF-8
Python
false
false
581
py
from urllib.parse import urlencode import requests from django.conf import settings from django.template.loader import get_template def send_sms(phone, template, context): tpl_ns = '/'.join(['sms', template]) text = get_template('/'.join([tpl_ns, 'template.txt'])) sms_content = text.render(context) params = { 'login': settings.SMSC_LOGIN, 'psw': settings.SMSC_PASSWORD, 'charset': 'utf-8', 'phones': phone, 'mes': sms_content, } url = 'https://smsc.ru/sys/send.php?' + urlencode(params) requests.get(url)
[ "gusevartemasd@gmail.com" ]
gusevartemasd@gmail.com
dc8f95ac89ae5ed51bc0323cc90278c11846444a
d77fb68b1d5e3af068124c8c5e5af25207ef12f2
/Python14期课上代码(day1-day30)/day29/PerfectCRM/kingadmin/urls.py
2fd905cae29981c020857b0b9062c99896b9aabb
[]
no_license
sy106/s13
f4c2645e872fc4e60c4ac64776ba10ff97a6db8f
6371f3a782cf7292216dfb973741556c69513338
refs/heads/master
2020-07-20T18:56:40.615723
2018-02-02T09:32:20
2018-02-02T09:33:34
65,897,826
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
"""PerfectCRM URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from kingadmin import views urlpatterns = [ url(r'^$', views.app_index), url(r'^(\w+)/(\w+)/$', views.table_data_list), ]
[ "sy106@126.com" ]
sy106@126.com
408ab2c050d1804ec19a89d53647617839d81fdd
c792b076cdf8c943c344d90b21817dd501c165ab
/programmers/Level2/후보키.py
8d42a17989ea96cbf6a6abe95e73dfc8efb0ee44
[]
no_license
Jdoublee/CodingTestPractice
d68afa38e64de67aa53ab8c6569e07e7b310a83d
83eb2b84f63d55808a5e9b014e023b72bf4a4e9e
refs/heads/master
2023-06-02T16:48:52.913402
2021-06-16T13:34:40
2021-06-16T13:34:40
290,072,409
6
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
from itertools import combinations # 조합 def solution(relation): answer = 0 col = len(relation[0]) row = len(relation) rem = [i for i in range(col)] res = [] i = 1 while i <= col: combs = list(combinations(rem, i)) # 가능한 조합 모두 구하기. 1개 ~ col개. -> 시간초과 안 나는 범위여서 가능 for comb in combs: checklist = [] # 최소성 체크 flag = True for r in res: if set(r) == set(comb).intersection(set(r)): # 부분집합 여부 판단. set 자료형이어야 함. flag = False break if not flag: continue for r in range(row): tmp = '' for c in comb: tmp += relation[r][c] checklist.append(tmp) if len(set(checklist)) == row: # 유일성 체크 answer += 1 res.append(tuple(comb)) i += 1 return answer # 다시 보기 # 풀이중 비트 연산 사용한 풀이 참고
[ "hyewon3429@gmail.com" ]
hyewon3429@gmail.com
e57b5ff3fa92a86d4242fa3d5b53e2757533c7a0
253363653815dbe51ffb9cc8f7b470bb1b4e7f90
/thermal_models/k_spectral.py
9f3dc8742705400bbc30ba2504a03a3cb0a8d2f0
[]
no_license
RamyaGuru/Single-MultiBandModel
767ae3900f2591086239110c496f9fc382cbf5ea
bdd29f38c6668ac44419eac0cf7233d45f1f084b
refs/heads/master
2021-07-22T00:14:57.615495
2021-07-08T19:36:00
2021-07-08T19:36:00
254,430,054
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 4 09:14:04 2021 @author: ramyagurunathan Silicon spectral thermal conductivity """ ''' constants ''' from math import pi as pi kB = 1.38E-23 hbar = 1.054E-34 Na = 6.02E23 ''' Silicon values ''' vs = 6084 T = 300 a = 2.7e-10 grun = 0.56 atmM = (28.05 / Na) / 1e3 k_full = (6 * pi**2)**(2 / 3) * (1 / (4 * pi**2)) * (vs**3 / (T * a**2 * grun**2)) * atmM k_spec = k_full / (vs * (2 * pi) / a)
[ "ramya1006@gmail.com" ]
ramya1006@gmail.com
c74df65958d4ad2bfccfacfc541f05c9a3e3ad24
30e26d4376d2d233be7b6acb45516a8e873a65db
/pycurl_requests/models.py
048cc9e98b95e7debfb3a43f1477553e130fcb78
[ "MIT" ]
permissive
chibie/pycurl-requests
53a658aa39058dc538d36f42b7b087b96baa2a96
66ee39e2d357f0e91d1e9bfb7a2e3339aaa11aef
refs/heads/master
2022-08-24T00:45:39.322652
2020-05-29T05:43:36
2020-05-29T05:43:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,384
py
import codecs import datetime import io import json as json_ from collections import abc from urllib.parse import urlsplit, urlunsplit, urlencode, parse_qsl, quote from io import BytesIO from typing import * import chardet from pycurl_requests.cookies import RequestsCookieJar from pycurl_requests import exceptions from pycurl_requests import structures DEFAULT_REDIRECT_LIMIT = 30 class Request: def __init__(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): self.method = method self.url = url self.headers = headers self.files = files self.data = data self.json = json self.params = params self.auth = auth self.cookies = cookies self.hooks = hooks def deregister_hook(self, event, hook): raise NotImplementedError def prepare(self): prepared = PreparedRequest() prepared.prepare( method=self.method, url=self.url, headers=self.headers, files=self.files, data=self.data, params=self.params, auth=self.auth, cookies=self.cookies, hooks=self.hooks, json=self.json) return prepared def register_hook(self, event, hook): raise NotImplementedError class Response: def __init__(self): self.request = None # type: Optional[Request] self.elapsed = None # type: Optional[datetime.timedelta] self.status_code = None # type: Optional[int] self.reason = None # type: Optional[str] self.headers = None # type: Optional[structures.CaseInsensitiveDict] self.encoding = None # type: Optional[str] self.url = None # type: Optional[str] self.raw = None # type: Optional[BytesIO] @property def apparent_encoding(self): return chardet.detect(self.content)['encoding'] def close(self): # Not implemented pass @property def content(self): return self.raw.getvalue() @property def cookies(self): return NotImplemented @property def history(self): return NotImplemented @property def is_permanent_redirect(self): # Moved Permanently (HTTP 301) or Permanent Redirect (HTTP 308) return self.status_code in {301, 308} @property def is_redirect(self): return self.status_code in {301, 302, 303, 307, 308} def iter_content(self, chunk_size=1, decode_unicode=False): chunk_size = chunk_size or -1 decoder = codecs.getincrementaldecoder(self.encoding)('replace') if self.encoding and decode_unicode else None for chunk in iter(lambda: self.raw.read1(chunk_size), b''): if decoder: yield decoder.decode(chunk) else: yield chunk if decoder: # Make sure we finalize the decoder (may yield replacement character) tail = decoder.decode(b'', True) if tail: yield tail def iter_lines(self, chunk_size=512, decode_unicode=False, delimiter=None): leftover = None for chunk in self.iter_content(chunk_size, decode_unicode=decode_unicode): if leftover: chunk = leftover + chunk if delimiter is not None: parts = chunk.split(delimiter) else: parts = chunk.splitlines() # FIXME: This logic doesn't work for CR-only line endings if chr(ord(chunk[-1])) == '\n': yield from parts leftover = None else: # This may be a partial line, so add to the next chunk yield from parts[:-1] leftover = parts[-1] if leftover is not None: yield leftover def json(self, **kwargs): return json_.loads(self.content, **kwargs) @property def links(self): return NotImplemented @property def next(self): return NotImplemented @property def ok(self): return self.status_code < 400 def raise_for_status(self): if 400 <= self.status_code < 500: raise exceptions.HTTPError('{s.status_code} Client Error: {s.reason} for url: {s.url}'.format(s=self), response=self) if 500 <= self.status_code < 600: raise exceptions.HTTPError('{s.status_code} Client Error: {s.reason} for url: {s.url}'.format(s=self), response=self) @property def text(self): return self.content.decode(self.encoding or 'ISO-8859-1') class PreparedRequest: def __init__(self): self.method = None self.url = None self.headers = None self.body = None self.hooks = None @property def path_url(self): return urlsplit(self.url).path def prepare(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): self.prepare_method(method) self.prepare_url(url, params) self.prepare_headers(headers) self.prepare_cookies(cookies) self.prepare_body(data, files, json) self.prepare_auth(auth, url) self.prepare_hooks(hooks) def prepare_method(self, method): self.method = method.upper() if method else None def prepare_url(self, url, params): if isinstance(url, bytes): url = url.decode('iso-8859-1') url = url.strip() # Leave non-HTTP schemes as-is if ':' in url and not url.lower().startswith('http'): self.url = url return parts = urlsplit(url) path = quote(parts.path) if parts.path else '/' if not params: query = parts.query else: if isinstance(params, (str, bytes)): params = parse_qsl(params) if isinstance(params, abc.Mapping): params = list(params.items()) else: params = list(params) query = urlencode(parse_qsl(parts.query) + params, doseq=True) self.url = urlunsplit(parts[:2] + (path, query) + parts[4:]) def prepare_headers(self, headers): # NOTE: Only user-defined headers, not those set by libcurl headers = headers or structures.CaseInsensitiveDict() # Filter out headers with None value header_names = headers.keys() for name in header_names: if headers[name] is None: del headers[name] self.headers = headers def prepare_cookies(self, cookies): # Cookies can only be set if there is no existing `Cookie` header if 'Cookie' in self.headers or cookies is None: return cookiejar = RequestsCookieJar() cookiejar.update(cookies) value = '; '.join(('{}={}'.format(n, v) for n, v in cookiejar.iteritems())) self.headers['Cookie'] = value def prepare_content_length(self, body): content_length = None if body is None: if self.method not in ('GET', 'HEAD'): content_length = 0 elif isinstance(body, bytes): content_length = len(body) elif isinstance(body, str): content_length = len(body.encode('iso-8859-1')) elif getattr(body, 'seekable', False): content_length = body.seek(0, io.SEEK_END) body.seek(0) if content_length is not None: self.headers['Content-Length'] = str(content_length) def prepare_body(self, data, files, json=None): body = None if files is not None: raise NotImplementedError elif data is not None: if isinstance(data, (io.RawIOBase, io.BufferedReader)): # It's a file-like object, so can be sent directly body = data elif isinstance(data, (abc.Mapping, list, tuple)): self._set_header_default('Content-Type', 'application/x-www-form-urlencoded') body = urlencode(data) else: # Assume it's something bytes-compatible body = data elif json is not None: self._set_header_default('Content-Type', 'application/json') body = json_.dumps(json, ensure_ascii=True).encode('ascii') if 'Content-Length' not in self.headers: self.prepare_content_length(body) self.body = body def _set_header_default(self, key, default): """Set header `key` to `default` if not already set""" if key not in self.headers: self.headers[key] = default def prepare_auth(self, auth, url=''): # FIXME: Not implemented pass def prepare_hooks(self, hooks): # FIXME: Not implemented pass
[ "coles.david@gmail.com" ]
coles.david@gmail.com
5fc4c383cc710de67fea02c946439b51e1d2d0a9
2d9365671b746e17097ed15efd67c25053f4f2d9
/setup.py
304fb7d7fd8c1ee07f8cb0a4a66353041d461f6a
[]
no_license
stargliderdev/registos_paroquiais
3012e154befd4bbf1ddc4244f915865a8717f4e3
73444ed7668dc7a1fa357aa10c47c93015eae5aa
refs/heads/master
2020-12-20T20:59:00.210240
2020-01-25T18:12:41
2020-01-25T18:12:41
236,209,037
0
0
null
null
null
null
UTF-8
Python
false
false
3,742
py
# ======================================================== # # File automagically generated by GUI2Exe version 0.5.1 # Copyright: (c) 2007-2011 Andrea Gavana # ======================================================== # # Let's start with some default (for me) imports... from distutils.core import setup from py2exe.build_exe import py2exe import glob import os import zlib import shutil # Remove the build folder shutil.rmtree("build", ignore_errors=True) class Target(object): """ A simple class that holds information on our executable file. """ def __init__(self, **kw): """ Default class constructor. Update as you need. """ self.__dict__.update(kw) # Ok, let's explain why I am doing that. # Often, data_files, excludes and dll_excludes (but also resources) # can be very long list of things, and this will clutter too much # the setup call at the end of this file. So, I put all the big lists # here and I wrap them using the textwrap module. data_files = [] includes = ['PyQt4.QtNetwork', 'sip','psycopg2'] excludes = ['_gtkagg', '_tkagg', 'bsddb', 'curses', 'email', 'pywin.debugger', 'pywin.debugger.dbgcon', 'pywin.dialogs', 'tcl', 'Tkconstants', 'Tkinter'] packages = ['sip','psycopg2'] dll_excludes = ['libgdk-win32-2.0-0.dll', 'libgobject-2.0-0.dll', 'tcl84.dll', 'tk84.dll'] icon_resources = [(1, 'z:\\source\\paroquia\\icone.ico')] bitmap_resources = [] other_resources = [] # This is a place where the user custom code may go. You can do almost # whatever you want, even modify the data_files, includes and friends # here as long as they have the same variable name that the setup call # below is expecting. # No custom code added # Ok, now we are going to build our target class. # I chose this building strategy as it works perfectly for me :-D GUI2Exe_Target_1 = Target( # what to build script = "main.py", icon_resources = icon_resources, bitmap_resources = bitmap_resources, other_resources = other_resources, dest_base = "main", version = "1.2.4", company_name = "Jorge Espiridiao.", copyright = "Jorge Espiridiao (c) 2014", name = "Registos Paroquiais", ) # No custom class for UPX compression or Inno Setup script # That's serious now: we have all (or almost all) the options py2exe # supports. I put them all even if some of them are usually defaulted # and not used. Some of them I didn't even know about. setup( # No UPX or Inno Setup data_files = data_files, options = {"py2exe": {"compressed": 2, "optimize": 2, "includes": includes, "excludes": excludes, "packages": packages, "dll_excludes": dll_excludes, "bundle_files": 3, "dist_dir": "C:\\bin\\paroquia", "xref": False, "skip_archive": False, "ascii": False, "custom_boot_script": '', } }, zipfile = r'QtCore5.dll', console = [], windows = [GUI2Exe_Target_1], service = [], com_server = [], ctypes_com_server = [] ) # This is a place where any post-compile code may go. # You can add as much code as you want, which can be used, for example, # to clean up your folders or to do some particular post-compilation # actions. # No post-compilation code added # And we are done. That's a setup script :-D
[ "stargliderdev@gmail.com" ]
stargliderdev@gmail.com
0edcf86b0f495c20df193852fb974f68195218f7
1a22bee5a01e5aa4ddf5a5d2b24f0139ba261d75
/interactive-build-guide/raw/build_guide.py
5f9af12392fdd8d91ec0bf1c301befcd1ab8c656
[]
no_license
ffont/ddrm-tools
961af7a0614ac3e3c76c7ca962397fd8af597e46
472e06bb7033e6df2bcb86bf1a8307ed9110855e
refs/heads/master
2022-03-26T10:01:30.552437
2020-09-08T11:30:34
2020-09-08T11:30:34
141,696,341
3
0
null
2022-03-01T23:42:54
2018-07-20T10:03:59
JavaScript
UTF-8
Python
false
false
551
py
import os import shutil from collections import defaultdict outdir = 'out' index = defaultdict(list) import re exp = re.compile(r'[0-9]x[0-9]') for filename in os.listdir('.'): if filename.endswith('.jpg') and not exp.search(filename): board, number, name = [elm for elm in filename.split('_') if elm][0:3] number = int(number) index[board].append((number, name, filename)) for board, pics in index.items(): pics = sorted(pics, key=lambda x: x[0]) for number, name, filename in pics: shutil.copy(filename, 'out/%s' % filename)
[ "frederic.font@upf.edu" ]
frederic.font@upf.edu
a9b548e829889ce8f1507dcc2f013e7e1a205c68
202be9ce15e7e41bad55e6bbe4d0c941ecbb6781
/1015 德才论.py
a6c87a2b4866593f98692848aacc2428f1c12c4f
[]
no_license
junyechen/Basic-level
ae55ab4e13fd38595772786af25fcc91c055f28c
a6e15bc3829dfe05cefc248454f0433f8070cdfb
refs/heads/master
2020-04-29T08:01:21.936408
2019-07-06T04:16:14
2019-07-06T04:16:14
175,972,034
1
0
null
null
null
null
UTF-8
Python
false
false
3,481
py
#宋代史学家司马光在《资治通鉴》中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人。凡取人之术,苟不得圣人,君子而与之,与其得小人,不若得愚人。” #现给出一批考生的德才分数,请根据司马光的理论给出录取排名。 #输入格式: #输入第一行给出 3 个正整数,分别为:N(≤10​5​​),即考生总数;L(≥60),为录取最低分数线,即德分和才分均不低于 L 的考生才有资格被考虑录取;H(<100),为优先录取线——德分和才分均不低于此线的被定义为“才德全尽”,此类考生按德才总分从高到低排序;才分不到但德分到线的一类考生属于“德胜才”,也按总分排序,但排在第一类考生之后;德才分均低于 H,但是德分不低于才分的考生属于“才德兼亡”但尚有“德胜才”者,按总分排序,但排在第二类考生之后;其他达到最低线 L 的考生也按总分排序,但排在第三类考生之后。 #随后 N 行,每行给出一位考生的信息,包括:准考证号 德分 才分,其中准考证号为 8 位整数,德才分为区间 [0, 100] 内的整数。数字间以空格分隔。 #输出格式: #输出第一行首先给出达到最低分数线的考生人数 M,随后 M 行,每行按照输入格式输出一位考生的信息,考生按输入中说明的规则从高到低排序。当某类考生中有多人总分相同时,按其德分降序排列;若德分也并列,则按准考证号的升序输出。 #输入样例: #14 60 80 #10000001 64 90 #10000002 90 60 #10000011 85 80 #10000003 85 80 #10000004 80 85 #10000005 82 77 #10000006 83 76 #10000007 90 78 #10000008 75 79 #10000009 59 90 #10000010 88 45 #10000012 80 100 #10000013 90 99 #10000014 66 60 #输出样例: #12 #10000013 90 99 #10000012 80 100 #10000003 85 80 #10000011 85 80 #10000004 80 85 #10000007 90 78 #10000006 83 76 #10000005 82 77 #10000002 90 60 #10000014 66 60 #10000008 75 79 #10000001 64 90 ######### #python性能问题,用python将有3个测试点超时 line = input().split() N = int(line[0]) L = int(line[1]) H = int(line[2]) line1 = [] line2 = [] line3 = [] line4 = [] for i in range(N): line = str(input()) line = line.split() line = list(map(int,line)) score = line[1] + line[2] line.append(score) if line[1] < L or line[2] < L: continue elif line[1] >= H and line[2] >= H: line1.append(line) elif line[1] >= H and line[2] < H: line2.append(line) elif line[1] < H and line[2] < H and line[1] >= line[2]: line3.append(line) else: line4.append(line) line1.sort(key=(lambda x:[x[3],x[1],-x[0]]),reverse=True) line2.sort(key=(lambda x:[x[3],x[1],-x[0]]),reverse=True) line3.sort(key=(lambda x:[x[3],x[1],-x[0]]),reverse=True) line4.sort(key=(lambda x:[x[3],x[1],-x[0]]),reverse=True) print(len(line1) + len(line2) + len(line3) + len(line4)) for i in range(len(line1)): line1[i] = list(map(str,line1[i])) print(' '.join(line1[i][:3])) for i in range(len(line2)): line2[i] = list(map(str,line2[i])) print(' '.join(line2[i][:3])) for i in range(len(line3)): line3[i] = list(map(str,line3[i])) print(' '.join(line3[i][:3])) for i in range(len(line4)): line4[i] = list(map(str,line4[i])) print(' '.join(line4[i][:3]))
[ "chenjunyeword@outlook.com" ]
chenjunyeword@outlook.com
7fe6d72d895363d88d2dfb0cd48dbe3f3769d8e9
fe842b9f42c1b1112c2a0f9f934d3b3360b97957
/backend/app/alembic/versions/13d5b7bf4214_add_chinook_models.py
78b9b146a0565a4562930fe826f9c60ede0c3e5c
[]
no_license
JayGitH/SQLacodegen-FastAPI
138d494aca29f426cbeadda81dda773003a4e094
80af2a402366806d257f6f9cd163abc20b34d1c6
refs/heads/master
2023-03-16T04:54:07.649103
2020-06-19T04:12:52
2020-06-19T04:12:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,072
py
"""Add chinook models Revision ID: 13d5b7bf4214 Revises: b7f884f5fc23 Create Date: 2020-06-17 22:23:58.202580 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '13d5b7bf4214' down_revision = 'b7f884f5fc23' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('Artist', sa.Column('ArtistId', sa.Integer(), nullable=False), sa.Column('Name', sa.String(length=120), nullable=True), sa.PrimaryKeyConstraint('ArtistId') ) op.create_table('Employee', sa.Column('EmployeeId', sa.Integer(), nullable=False), sa.Column('LastName', sa.String(length=20), nullable=False), sa.Column('FirstName', sa.String(length=20), nullable=False), sa.Column('Title', sa.String(length=30), nullable=True), sa.Column('ReportsTo', sa.Integer(), nullable=True), sa.Column('BirthDate', sa.DateTime(), nullable=True), sa.Column('HireDate', sa.DateTime(), nullable=True), sa.Column('Address', sa.String(length=70), nullable=True), sa.Column('City', sa.String(length=40), nullable=True), sa.Column('State', sa.String(length=40), nullable=True), sa.Column('Country', sa.String(length=40), nullable=True), sa.Column('PostalCode', sa.String(length=10), nullable=True), sa.Column('Phone', sa.String(length=24), nullable=True), sa.Column('Fax', sa.String(length=24), nullable=True), sa.Column('Email', sa.String(length=60), nullable=True), sa.ForeignKeyConstraint(['ReportsTo'], ['Employee.EmployeeId'], ), sa.PrimaryKeyConstraint('EmployeeId') ) op.create_index(op.f('ix_Employee_ReportsTo'), 'Employee', ['ReportsTo'], unique=False) op.create_table('Genre', sa.Column('GenreId', sa.Integer(), nullable=False), sa.Column('Name', sa.String(length=120), nullable=True), sa.PrimaryKeyConstraint('GenreId') ) op.create_table('MediaType', sa.Column('MediaTypeId', sa.Integer(), nullable=False), sa.Column('Name', sa.String(length=120), nullable=True), sa.PrimaryKeyConstraint('MediaTypeId') ) op.create_table('Playlist', sa.Column('PlaylistId', sa.Integer(), nullable=False), sa.Column('Name', sa.String(length=120), nullable=True), sa.PrimaryKeyConstraint('PlaylistId') ) op.create_table('Album', sa.Column('AlbumId', sa.Integer(), nullable=False), sa.Column('Title', sa.String(length=160), nullable=False), sa.Column('ArtistId', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['ArtistId'], ['Artist.ArtistId'], ), sa.PrimaryKeyConstraint('AlbumId') ) op.create_index(op.f('ix_Album_ArtistId'), 'Album', ['ArtistId'], unique=False) op.create_table('Customer', sa.Column('CustomerId', sa.Integer(), nullable=False), sa.Column('FirstName', sa.String(length=40), nullable=False), sa.Column('LastName', sa.String(length=20), nullable=False), sa.Column('Company', sa.String(length=80), nullable=True), sa.Column('Address', sa.String(length=70), nullable=True), sa.Column('City', sa.String(length=40), nullable=True), sa.Column('State', sa.String(length=40), nullable=True), sa.Column('Country', sa.String(length=40), nullable=True), sa.Column('PostalCode', sa.String(length=10), nullable=True), sa.Column('Phone', sa.String(length=24), nullable=True), sa.Column('Fax', sa.String(length=24), nullable=True), sa.Column('Email', sa.String(length=60), nullable=False), sa.Column('SupportRepId', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['SupportRepId'], ['Employee.EmployeeId'], ), sa.PrimaryKeyConstraint('CustomerId') ) op.create_index(op.f('ix_Customer_SupportRepId'), 'Customer', ['SupportRepId'], unique=False) op.create_table('Invoice', sa.Column('InvoiceId', sa.Integer(), nullable=False), sa.Column('CustomerId', sa.Integer(), nullable=False), sa.Column('InvoiceDate', sa.DateTime(), nullable=False), sa.Column('BillingAddress', sa.String(length=70), nullable=True), sa.Column('BillingCity', sa.String(length=40), nullable=True), sa.Column('BillingState', sa.String(length=40), nullable=True), sa.Column('BillingCountry', sa.String(length=40), nullable=True), sa.Column('BillingPostalCode', sa.String(length=10), nullable=True), sa.Column('Total', sa.Numeric(precision=10, scale=2), nullable=False), sa.ForeignKeyConstraint(['CustomerId'], ['Customer.CustomerId'], ), sa.PrimaryKeyConstraint('InvoiceId') ) op.create_index(op.f('ix_Invoice_CustomerId'), 'Invoice', ['CustomerId'], unique=False) op.create_table('Track', sa.Column('TrackId', sa.Integer(), nullable=False), sa.Column('Name', sa.String(length=200), nullable=False), sa.Column('AlbumId', sa.Integer(), nullable=True), sa.Column('MediaTypeId', sa.Integer(), nullable=False), sa.Column('GenreId', sa.Integer(), nullable=True), sa.Column('Composer', sa.String(length=220), nullable=True), sa.Column('Milliseconds', sa.Integer(), nullable=False), sa.Column('Bytes', sa.Integer(), nullable=True), sa.Column('UnitPrice', sa.Numeric(precision=10, scale=2), nullable=False), sa.ForeignKeyConstraint(['AlbumId'], ['Album.AlbumId'], ), sa.ForeignKeyConstraint(['GenreId'], ['Genre.GenreId'], ), sa.ForeignKeyConstraint(['MediaTypeId'], ['MediaType.MediaTypeId'], ), sa.PrimaryKeyConstraint('TrackId') ) op.create_index(op.f('ix_Track_AlbumId'), 'Track', ['AlbumId'], unique=False) op.create_index(op.f('ix_Track_GenreId'), 'Track', ['GenreId'], unique=False) op.create_index(op.f('ix_Track_MediaTypeId'), 'Track', ['MediaTypeId'], unique=False) op.create_table('InvoiceLine', sa.Column('InvoiceLineId', sa.Integer(), nullable=False), sa.Column('InvoiceId', sa.Integer(), nullable=False), sa.Column('TrackId', sa.Integer(), nullable=False), sa.Column('UnitPrice', sa.Numeric(precision=10, scale=2), nullable=False), sa.Column('Quantity', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['InvoiceId'], ['Invoice.InvoiceId'], ), sa.ForeignKeyConstraint(['TrackId'], ['Track.TrackId'], ), sa.PrimaryKeyConstraint('InvoiceLineId') ) op.create_index(op.f('ix_InvoiceLine_InvoiceId'), 'InvoiceLine', ['InvoiceId'], unique=False) op.create_index(op.f('ix_InvoiceLine_TrackId'), 'InvoiceLine', ['TrackId'], unique=False) op.create_table('PlaylistTrack', sa.Column('PlaylistId', sa.Integer(), nullable=False), sa.Column('TrackId', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['PlaylistId'], ['Playlist.PlaylistId'], ), sa.ForeignKeyConstraint(['TrackId'], ['Track.TrackId'], ), sa.PrimaryKeyConstraint('PlaylistId', 'TrackId') ) op.create_index(op.f('ix_PlaylistTrack_TrackId'), 'PlaylistTrack', ['TrackId'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_PlaylistTrack_TrackId'), table_name='PlaylistTrack') op.drop_table('PlaylistTrack') op.drop_index(op.f('ix_InvoiceLine_TrackId'), table_name='InvoiceLine') op.drop_index(op.f('ix_InvoiceLine_InvoiceId'), table_name='InvoiceLine') op.drop_table('InvoiceLine') op.drop_index(op.f('ix_Track_MediaTypeId'), table_name='Track') op.drop_index(op.f('ix_Track_GenreId'), table_name='Track') op.drop_index(op.f('ix_Track_AlbumId'), table_name='Track') op.drop_table('Track') op.drop_index(op.f('ix_Invoice_CustomerId'), table_name='Invoice') op.drop_table('Invoice') op.drop_index(op.f('ix_Customer_SupportRepId'), table_name='Customer') op.drop_table('Customer') op.drop_index(op.f('ix_Album_ArtistId'), table_name='Album') op.drop_table('Album') op.drop_table('Playlist') op.drop_table('MediaType') op.drop_table('Genre') op.drop_index(op.f('ix_Employee_ReportsTo'), table_name='Employee') op.drop_table('Employee') op.drop_table('Artist') # ### end Alembic commands ###
[ "evv@alum.mit.edu" ]
evv@alum.mit.edu
0f59f0691cf22570a0967631f2f5876793a49327
345c5fcbc995c47b12e5afe2a5d62e437dab937e
/Camera.py
404803eeef858137157399f14a7721f156e057c1
[]
no_license
apuly/Nobodys_Watching
18a257c720d2f3677c8c3e7d2f12a3cf86473264
55dcb34569bb415e9e6d821746ea44bfe8b768e8
refs/heads/master
2020-03-17T05:45:07.715582
2018-08-07T09:52:22
2018-08-07T09:52:22
133,327,499
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
from abc import ABC, abstractmethod import cv2 as cv import urllib.request as request import base64 import numpy as np class Camera(ABC): @abstractmethod def read_image(self): pass class URLCam(Camera): def __init__(self, url): self._url = url def read_image(self): req = request.urlopen(self._url) img_arr = np.array(bytearray(req.read()), dtype=np.uint8) img = cv.imdecode(img_arr, -1) return img class NULLCam(Camera): """ always returns an empty image of 400 by 300 pixels """ def read_image(self): return np.zeros((400,300,3)) class WebCam(Camera): """ returns images from webcam """ def __init__(self, cam_index): self._vc = cv.VideoCapture(0) self._vc.set(3,1280) self._vc.set(4,720) def read_image(self): rval, frame = self._vc.read() if rval: return frame else: return None
[ "paul@bersee.nl" ]
paul@bersee.nl
0c4dc595e48ce2a6399cc0fb39d7cdcb43412ef9
da893fbeedfc197a74c96b380a0cb2f22a81917c
/Cpg_island.py
ae36d5d566b8368501af2af60cceeb2ccbe7688d
[]
no_license
MeenakshiAnbukkarasu/CpG-Island
dc9dc3c376f64cb1243bb2f846669be3c047421a
3ed09aab94608827ec88a83128da2aabe37f1c4c
refs/heads/master
2020-04-04T18:12:40.914385
2018-11-05T03:41:51
2018-11-05T03:41:51
156,154,386
0
0
null
null
null
null
UTF-8
Python
false
false
9,351
py
# NAME: hmm_example.py import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt #matplotlib inline """ A Markov chain (model) describes a stochastic process where the assumed probability of future state(s) depends only on the current process state and not on any the states that preceded it (shocker). Let's get into a simple example. Assume you want to model the future probability that you land in a CpG island given its current state. To do this we need to specify the state space, the initial probabilities, and the transition probabilities. Imagine you have a DNA sequence. We define the state space as the four diffent bases A,T,C and G. We will set the initial probabilities to 0.25%, 0.25%, 0.25% and 0.25% respectively. """ # create state space and initial state probabilities states = ['a', 't', 'c' ,'g'] pi = [0.25, 0.25, 0.25, 0.25] state_space = pd.Series(pi, index=states, name='states') # create transition matrix # equals transition probability matrix of changing states given a state # matrix is size (M x M) where M is number of states q_df = pd.DataFrame(columns=states, index=states) q_df.loc[states[0]] = [0.180, 0.274, 0.426, 0.120] q_df.loc[states[1]] = [0.171, 0.368, 0.274, 0.188] q_df.loc[states[2]] = [0.161, 0.339, 0.375, 0.125] q_df.loc[states[3]] = [0.079, 0.355, 0.384, 0.182] q = q_df.values """ Now that we have the initial and transition probabilities setup we can create a Markov diagram using the Networkx package. To do this requires a little bit of flexible thinking. Networkx creates Graphs that consist of nodes and edges. In our example the possible states are the nodes and the edges are the lines that connect the nodes. The transition probabilities are the weights. They represent the probability of transitioning to a state given the current state. Something to note is networkx deals primarily with dictionary objects. With that said, we need to create a dictionary object that holds our edges and their weights. """ from pprint import pprint # create a function that maps transition probability dataframe # to markov edges and weights def _get_markov_edges(Q): edges = {} for col in Q.columns: for idx in Q.index: edges[(idx,col)] = Q.loc[idx,col] return edges edges_wts = _get_markov_edges(q_df) """ Now we can create the graph. To visualize a Markov model we need to use nx.MultiDiGraph(). A multidigraph is simply a directed graph which can have multiple arcs such that a single node can be both the origin and destination. In the following code, we create the graph object, add our nodes, edges, and labels, then draw a bad networkx plot while outputting our graph to a dot file. """ # create graph object G = nx.MultiDiGraph() # nodes correspond to states states = ['a', 't', 'c', 'g'] G.add_nodes_from(states) # edges represent transition probabilities for k, v in edges_wts.items(): tmp_origin, tmp_destination = k[0], k[1] G.add_edge(tmp_origin, tmp_destination, weight=v, label=v) pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='dot') nx.draw_networkx(G, pos) # In Windows: dot -Tps filename.dot -o outfile.ps # create edge labels for jupyter plot but is not necessary edge_labels = {(n1,n2):d['label'] for n1,n2,d in G.edges(data=True)} nx.draw_networkx_edge_labels(G , pos, edge_labels=edge_labels) nx.drawing.nx_pydot.write_dot(G, 'cpg_markov.dot') """ Lets us assume that you are traversing through the DNA sequence. Consider a situation you encounter more CpG pairs along the DNA and you wanted to model the probability of you landing in a CpG island In this situation the true state of the sequence is unknown, thus hidden from you. One way to model this is to assume hidden state. Let's walk through an example. First we create our state space - CpG or Not-Cpg. We assume they are equiprobable. """ # create state space and initial state probabilities hidden_states = ['CpG', 'Not-Cpg'] pi = [0.5, 0.5] state_space = pd.Series(pi, index=hidden_states, name='states') # Next we create our transition matrix for the hidden states. # create hidden transition matrix # a or alpha = transition probability matrix of changing states given a state # matrix is size (M x M) where M is number of states a_df = pd.DataFrame(columns=hidden_states, index=hidden_states) a_df.loc[hidden_states[0]] = [0.7, 0.3] a_df.loc[hidden_states[1]] = [0.4, 0.6] a = a_df.values """ Now we create the emission or observation probability matrix. This matrix is size M x O where M is the number of hidden states and O is the number of possible observable states. The emission matrix tells us the probability that we are in one of the hidden states, given the current, observable state. Let's keep the same observable states from the previous example. We can be in either A, T,C or G. For now we make our best guess to fill in the probabilities. """ # create matrix of observation (emission) probabilities # b or beta = observation probabilities given state # matrix is size (M x O) where M is number of states # and O is number of different possible observations observable_states = ['a', 't', 'c', 'g'] b_df = pd.DataFrame(columns=observable_states, index=hidden_states) b_df.loc[hidden_states[0]] = [0.155, 0.341, 0.350, 0.154] b_df.loc[hidden_states[1]] = [0.262, 0.246, 0.239, 0.253] b = b_df.values # Now we create the graph edges and the graph object. # create graph edges and weights hide_edges_wts = _get_markov_edges(a_df) #pprint(hide_edges_wts) emit_edges_wts = _get_markov_edges(b_df) # pprint(emit_edges_wts) print() # create graph object G = nx.MultiDiGraph() # nodes correspond to states G.add_nodes_from(hidden_states) # edges represent hidden probabilities for k, v in hide_edges_wts.items(): tmp_origin, tmp_destination = k[0], k[1] G.add_edge(tmp_origin, tmp_destination, weight=v, label=v) # edges represent emission probabilities for k, v in emit_edges_wts.items(): tmp_origin, tmp_destination = k[0], k[1] G.add_edge(tmp_origin, tmp_destination, weight=v, label=v) pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='neato') nx.draw_networkx(G, pos) # create edge labels for jupyter plot but is not necessary emit_edge_labels = {(n1,n2):d['label'] for n1,n2,d in G.edges(data=True)} nx.draw_networkx_edge_labels(G , pos, edge_labels=emit_edge_labels) nx.drawing.nx_pydot.write_dot(G, 'pet_dog_hidden_markov.dot') # In Windows: dot -Tps filename.dot -o outfile.ps print("========================================================================") print(" CpG Island using HMMs") print("========================================================================") def viterbi(pi, a, b, obs_seq): nStates = np.shape(b)[0] T = np.shape(obs_seq)[0] # init blank path path = np.zeros(T) # delta --> highest probability of any path that reaches state i delta = np.zeros((nStates, T)) # phi --> argmax by time step for each state phi = np.zeros((nStates, T)) # init delta and phi delta[:, 0] = pi * b[:, obs_seq[0]] phi[:, 0] = 0 # the forward algorithm extension for t in range(1, T): for s in range(nStates): delta[s, t] = np.max(delta[:, t-1] * a[:, s]) * b[s, obs_seq[t]] phi[s, t] = np.argmax(delta[:, t-1] * a[:, s]) # find optimal path print('-'*50) path[T-1] = np.argmax(delta[:, T-1]) #p('init path\n t={} path[{}-1]={}\n'.format(T-1, T, path[T-1])) #LPW for t in range(T-2, -1, -1): path[t] = phi[int(path[t+1]), [t+1]] return path, delta, phi """ """ # observation sequence of DNA # observations are encoded numerically obs_map = { 0:'a', 1:'t',2:'c',3:'g' } filepath = "dna_seq.txt" fp=open(filepath,'r+') i=1 for line in fp.readlines(): line = line.splitlines() char_array = [] for entry in line: for c in entry: char_array.append(c) obs = np.array(char_array) inv_obs_map = dict((v,k) for k, v in obs_map.items()) obs_seq = [inv_obs_map[v] for v in list(obs)] path, delta, phi = viterbi(pi, a, b, obs_seq) # Let's take a look at the result. state_map = {0:'I', 1:'N'} state_path = [state_map[v] for v in path] print(' '.join(str(o) for o in obs)) print(' '.join(str(p) for p in state_path)) print() """ References https://en.wikipedia.org/wiki/Andrey_Markov https://www.britannica.com/biography/Andrey-Andreyevich-Markov https://www.reddit.com/r/explainlikeimfive/comments/vbxfk/eli5_brownian_motion_and_what_it_has_to_do_with/ http://www.math.uah.edu/stat/markov/Introduction.html http://setosa.io/ev/markov-chains/ http://www.cs.jhu.edu/~langmea/resources/lecture_notes/hidden_markov_models.pdf https://github.com/alexsosn/MarslandMLAlgo/blob/master/Ch16/HMM.py http://hmmlearn.readthedocs.io http://www.blackarbs.com/blog/introduction-hidden-markov-models-python-networkx-sklearn/2/9/2017 """
[ "noreply@github.com" ]
MeenakshiAnbukkarasu.noreply@github.com
72689bcea781c0e5d7a7fc60ce1159c980987af9
2b9bcdd45c70f9029d3469899a4d716c245a0146
/rename_files.py
be12ecd8379a66e49cc2450c54781a1a6e51857d
[]
no_license
tatbikat/Pytutos
599de36db52f15307a248e14ae715784b1eec2d5
da9d9d787265b8ef244cfac881529431398d44c0
refs/heads/master
2021-04-06T18:32:03.564015
2018-04-13T06:52:10
2018-04-13T06:52:10
125,377,384
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
import os os.chdir('Z:\Marketing\Videos') for f in os.listdir() : f_name,f_ext = os.path.splitext(f) #print(f_name.split(' ')) f_num, f_title = f_name.split('- ') f_title = f_title.strip() f_num = f_num.strip()[0:100].zfill(2) new_name = ('{} {}{}'.format(f_num, f_title, f_ext)) os.rename(f,new_name)
[ "bas2nagy@hotmail.com" ]
bas2nagy@hotmail.com
2c70c2d2c2b147d59749853a4dfcffa6eccb4c91
7bb75e8560afc65ff77f198ac02d1f65253762f4
/Gazebo_ROS/catkin_ws/build/catkin_generated/generate_cached_setup.py
42ce7e26a04be48aba44b398d40858af164bab5b
[]
no_license
maxwellalexgordon/Autonomous-Intersection-Research-
98f8509230e6fa25653e2920e7a5a1b78f449729
7ef55399ddace95f1089018bda7ebf750616613e
refs/heads/master
2020-12-10T16:50:04.526986
2020-04-09T18:38:52
2020-04-09T18:38:52
233,649,244
0
0
null
null
null
null
UTF-8
Python
false
false
1,276
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in "/opt/ros/melodic".split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/maxwell/catkin_ws/devel/env.sh') output_filename = '/home/maxwell/catkin_ws/build/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: #print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
[ "maxwellalexgordon@gmail.com" ]
maxwellalexgordon@gmail.com
201f4d8f69f22e1cb40d58bc0d586fecce461e43
3935529ff3b09431f48e092f9bc31f473d4be1e7
/PYTHON/ceng 434 -DATA COMMUNICATIONS AND NETWORKING/term project part1/ExperimentScripts/ExperimentScripts/exper_d.py
9dfb867ceb5c6eb28c38f00d6489dcc412c98503
[]
no_license
emrahkosen/Programming-Languages
23e0c1590e791e4d04ab9932a4675ed2f0e6852d
8e38c82344643b819e5d52ee8bbf934bb57af93e
refs/heads/master
2022-12-20T21:03:09.089656
2020-12-30T09:59:10
2020-12-30T09:59:10
166,031,713
0
0
null
2022-12-12T20:04:51
2019-01-16T11:50:12
C++
UTF-8
Python
false
false
3,541
py
#!/usr/bin/python import threading import thread import socket import time f=open("routelist.txt", "r") thisIndex = 4 #which host UDP_IP = [ [0 ,"10.10.1.2","10.10.2.1" ,"10.10.3.2" ,0], ["10.10.1.1",0 ,"10.10.8.2" ,0 ,"10.10.4.2"], ["10.10.2.2","10.10.8.1",0 ,"10.10.6.2" ,"10.10.5.2"], ["10.10.3.1",0 ,"10.10.6.1" ,0 ,"10.10.7.1"], [0 ,"10.10.4.1","10.10.5.1" ,"10.10.7.2" ,0] ] #matrix for referencing connections if f.mode == 'r': #reading routelist content =f.read() f.close() route = list(content.split(" ")) for i in range(len(route)): route[i] = int(route[i]) print route if route[thisIndex] != -2: if route[thisIndex] == -1: #for s host , calculations made here N=50 sendHost = route.index(thisIndex) #send messages to UDP_ID[thisIndex][sendHost] sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) sock.settimeout(10) sock.bind((UDP_IP[sendHost][thisIndex],5000+sendHost)) for i in range(N): try: time.sleep(10 / 1000) data = str(float(round(time.time() * 1000))) sock.sendto( data , (UDP_IP[thisIndex][sendHost],5000+thisIndex)) data, addr = sock.recvfrom(1024) data = float(round(time.time() * 1000)) - float(data) #rtt calculated if data > 0: print data except socket.timeout: break sock.sendto( "end", (UDP_IP[thisIndex][sendHost],5000+thisIndex)) elif thisIndex == 4:# for d host recieveHost = route[thisIndex] sockd = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) sockd.settimeout(10) sockd.bind((UDP_IP[recieveHost][thisIndex],5000+recieveHost)) while True: #get message from UDP_ID[recieveHost][thisIndex] try: data, addr = sockd.recvfrom(1024) print "rec: " + data if data== "end": break sockd.sendto( data , (UDP_IP[thisIndex][recieveHost],5000 + thisIndex)) #forward data except socket.timeout: break else: sendHost = route.index(thisIndex) recieveHost = route[thisIndex] sockr = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) socks = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) sockr.settimeout(10) socks.settimeout(10) sockr.bind((UDP_IP[recieveHost][thisIndex],5000+recieveHost)) socks.bind((UDP_IP[sendHost][thisIndex],5000+sendHost)) while True: #first get message from UDP_ID[recieveHost][thisIndex] try: data, addr = sockr.recvfrom(1024) print "rec: " + data #then send messages to UDP_ID[thisIndex][sendHost] socks.sendto(data,(UDP_IP[thisIndex][sendHost],5000 + thisIndex)) if data=="end": break data, addr = socks.recvfrom(1024) sockr.sendto(data,(UDP_IP[thisIndex][recieveHost],5000+thisIndex)) #forward data except socket.timeout: break
[ "noreply@github.com" ]
emrahkosen.noreply@github.com
e8d055c5841edf710ebc345263b13e6c6b097124
256f322c70bab8b77266bcb2b9e4b0e2eeb169f9
/shs/wsgi.py
be6437fad393bd8dbad3b74d7d22359b017a0461
[]
no_license
stajama/Secret-Hitler-Server
c4337e7da73d95324be6ef71e88af5edef8b2bdf
988e0ee0a2c81a60711bc1cc04307635e4b59eac
refs/heads/master
2022-08-15T22:29:28.018148
2018-04-27T04:42:00
2018-04-27T04:42:00
124,625,887
0
0
null
2022-07-06T19:46:56
2018-03-10T05:38:11
Python
UTF-8
Python
false
false
383
py
""" WSGI config for shs project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "shs.settings") application = get_wsgi_application()
[ "stajama@gmail.com" ]
stajama@gmail.com
08d63a83fd62fb584f9dac8b5ce43b058372e3b2
807d842325d62319ff98d539e559df9bbae68ee1
/config.py
54f8a401deeecb344dd01fe27c1348f764383bb5
[]
no_license
AndrewVasilevskii/exc-power-supply
41d3f0e19dfc80f165c264abb33537349202476d
67e137426a95e7cf674cccb7c503b6bf69c258da
refs/heads/master
2020-09-14T21:31:04.113475
2019-11-21T20:48:11
2019-11-21T20:48:11
223,262,468
0
0
null
null
null
null
UTF-8
Python
false
false
7,454
py
APP_NAME = 'ExDPowerSupply' CONFIG_FILE_NAME = 'userConfig.ini' position = 300,150 childFrameDisplacement = 40,60 positionInPercent = 0,0 expandSize = 660, 500 decreaseSize = 660, 160 portSettingsSize = 410, 300 grapgSettingsSize = 710, 300 chSize = (40, 20) timeToAppear = 125 autoConnect = True savePosition = True alwaysOnTop = True import wx onTopTrue = wx.DEFAULT_FRAME_STYLE & ~(wx.RESIZE_BORDER | wx.MAXIMIZE_BOX) | wx.STAY_ON_TOP onTopFalse = wx.DEFAULT_FRAME_STYLE & ~(wx.RESIZE_BORDER | wx.MAXIMIZE_BOX) onAxuliaryPageWithOnTopTrue = wx.DEFAULT_FRAME_STYLE & ~(wx.RESIZE_BORDER | wx.MAXIMIZE_BOX | wx.CLOSE_BOX) | wx.STAY_ON_TOP onAxuliaryPageWithOnTopFalse = wx.DEFAULT_FRAME_STYLE & ~(wx.RESIZE_BORDER | wx.MAXIMIZE_BOX | wx.CLOSE_BOX) childFrameStyle = wx.DEFAULT_FRAME_STYLE &~(wx.RESIZE_BORDER | wx.MAXIMIZE_BOX) | wx.FRAME_FLOAT_ON_PARENT channelBorderColour = '#a9a9a9' autoTuneColour = '#89CFF0' import configparser import os, sys import win32api monitors = win32api.EnumDisplayMonitors() def creatingDefaultConfigFile(): configParser = configparser.ConfigParser() configParser['SAVING_CONFIG'] = {'autoConnect': str(autoConnect), 'savePosition': str(savePosition), 'alwaysOnTop': str(alwaysOnTop)} configParser['POSITION'] = {'positionX': str(position[0]), 'positionY': str(position[1])} configParser['POSITION_IN_PERCENT'] = {'positionX': str(positionInPercent[0]), 'positionY': str(positionInPercent[1])} pos = float(position[0]), float(position[1]) style = onTopTrue with open(CONFIG_FILE_NAME, 'w') as configfile: configParser.write(configfile) return pos, style def GetConfigurations(): if not os.path.exists(os.path.join(os.getcwd(), CONFIG_FILE_NAME)): pos, style = creatingDefaultConfigFile() else: configParser = configparser.ConfigParser() configParser.read(CONFIG_FILE_NAME) pos = getPosition(configParser) style = getStyle(configParser) return wx.Point(pos), wx.Size(expandSize), style def getPosition(configParser): try: pos = float(configParser['POSITION']['positionX']), float(configParser['POSITION']['positionY']) if pos[0] > monitors[-1][2][2] or pos[1] > monitors[-1][2][3]: raise except: if type(KeyError()) == sys.exc_info()[0]: configParser['POSITION'] = {'positionX': str(position[0]), 'positionY': str(position[1])} with open(CONFIG_FILE_NAME, 'w') as configfile: configParser.write(configfile) try: x_PercetPos = float(configParser['POSITION_IN_PERCENT']['positionX']) y_PercetPos = float(configParser['POSITION_IN_PERCENT']['positionY']) pos = monitors[0][2][2] / 100 * x_PercetPos, monitors[0][2][3] / 100 * y_PercetPos except KeyError: configParser['POSITION_IN_PERCENT'] = {'positionX': str(positionInPercent[0]), 'positionY': str(positionInPercent[1])} with open(CONFIG_FILE_NAME, 'w') as configfile: configParser.write(configfile) finally: x_PercetPos = float(configParser['POSITION_IN_PERCENT']['positionX']) y_PercetPos = float(configParser['POSITION_IN_PERCENT']['positionY']) pos = monitors[0][2][2] / 100 * x_PercetPos, monitors[0][2][3] / 100 * y_PercetPos configParser['POSITION'] = {'positionX': str(pos[0]), 'positionY': str(pos[1])} with open(CONFIG_FILE_NAME, 'w') as configfile: configParser.write(configfile) return pos def getStyle(configParser): try: onTop = configParser['SAVING_CONFIG']['alwaysOnTop'] except KeyError as key: if 'alwaysOnTop' in str(key): configParser.set('SAVING_CONFIG', 'alwaysOnTop', str(alwaysOnTop)) else: configParser['SAVING_CONFIG'] = {'autoConnect': str(autoConnect), 'savePosition': str(savePosition), 'alwaysOnTop': str(alwaysOnTop)} with open(CONFIG_FILE_NAME, 'w') as configFile: configParser.write(configFile) finally: onTop = configParser['SAVING_CONFIG']['alwaysOnTop'] if 'True' in onTop: style = onTopTrue else: style = onTopFalse return style def GetSavingConfig(): configParser = configparser.ConfigParser() configParser.read(CONFIG_FILE_NAME) success = False while not success: try: configAlwaysOnTop = getAlwaysOnTop(configParser) configAutoConnect = getAutoConnect(configParser) configSavePosition = getSavePosition(configParser) success = True except KeyError as key: if 'autoConnect' in str(key): configParser.set('SAVING_CONFIG', 'autoConnect', str(autoConnect)) with open(CONFIG_FILE_NAME, 'w') as configFile: configParser.write(configFile) elif 'savePosition' in str(key): configParser.set('SAVING_CONFIG', 'savePosition', str(savePosition)) with open(CONFIG_FILE_NAME, 'w') as configFile: configParser.write(configFile) return configAlwaysOnTop, configAutoConnect, configSavePosition def getAlwaysOnTop(configParser): if 'True' in configParser['SAVING_CONFIG']['alwaysOnTop']: configAlwaysOnTop = True else: configAlwaysOnTop = False return configAlwaysOnTop def getAutoConnect(configParser): if 'True' in configParser['SAVING_CONFIG']['autoConnect']: configAutoConnect = True else: configAutoConnect = False return configAutoConnect def getSavePosition(configParser): if 'True' in configParser['SAVING_CONFIG']['savePosition']: configSavePosition = True else: configSavePosition = False return configSavePosition def SavingUsersConfig(window): configParser = configparser.ConfigParser() configParser.read(CONFIG_FILE_NAME) configParser.set('SAVING_CONFIG', 'autoConnect', str(window.autoConnect)) configParser.set('SAVING_CONFIG', 'savePosition', str(window.savePosition)) configParser.set('SAVING_CONFIG', 'alwaysOnTop', str(window.alwaysOnTop)) if window.savePosition: pos = window.GetPosition() for monitor in monitors: if (pos[0] >= monitor[2][0] and pos[0] < monitor[2][2]) and (pos[1] >= monitor[2][1] and pos[1] < monitor[2][3]): x_PercetPos = (pos[0] - monitor[2][0]) * 100 / (monitor[2][2] - monitor[2][0]) y_PercetPos = (pos[1] - monitor[2][1]) * 100 / (monitor[2][3] - monitor[2][1]) configParser.set('POSITION_IN_PERCENT', 'positionX', str(x_PercetPos)) configParser.set('POSITION_IN_PERCENT', 'positionY', str(y_PercetPos)) configParser.set('POSITION', 'positionX', str(pos[0])) configParser.set('POSITION', 'positionY', str(pos[1])) with open(CONFIG_FILE_NAME, 'w') as configFile: configParser.write(configFile) def GetScreenCenter(): x = monitors[0][2][2] y = monitors[0][2][3] return int(x/2), int(y/2)
[ "andrew.vasilevskii@gmail.com" ]
andrew.vasilevskii@gmail.com
69e678bd25b69f2768e4642e525cdd18b0358859
1cc868f3beebd9b875f2d5a1c533a06875800db7
/Python/Cisco_pyATS/pyats_env/lib/python3.6/site-packages/ansible/cli/arguments/option_helpers.py
dc3a88b53cbf791ccb0178b97891bcd00ef7d035
[]
no_license
Saby2002/arinsnetwork_Automation
4dc2b933deefe9317f73143e5998aa3749f518d7
f77ab7f2e849a6ca5247f7b3eb171a4362a7423b
refs/heads/master
2023-06-25T21:44:18.783505
2021-07-26T19:09:56
2021-07-26T19:09:56
389,741,652
0
0
null
null
null
null
UTF-8
Python
false
false
17,375
py
# Copyright: (c) 2018, Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import copy import operator import argparse import os import os.path import sys import time import yaml try: import _yaml HAS_LIBYAML = True except ImportError: HAS_LIBYAML = False from jinja2 import __version__ as j2_version import ansible from ansible import constants as C from ansible.module_utils._text import to_native from ansible.release import __version__ from ansible.utils.path import unfrackpath # # Special purpose OptionParsers # class SortingHelpFormatter(argparse.HelpFormatter): def add_arguments(self, actions): actions = sorted(actions, key=operator.attrgetter('option_strings')) super(SortingHelpFormatter, self).add_arguments(actions) class AnsibleVersion(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): ansible_version = to_native(version(getattr(parser, 'prog'))) print(ansible_version) parser.exit() class UnrecognizedArgument(argparse.Action): def __init__(self, option_strings, dest, const=True, default=None, required=False, help=None, metavar=None, nargs=0): super(UnrecognizedArgument, self).__init__(option_strings=option_strings, dest=dest, nargs=nargs, const=const, default=default, required=required, help=help) def __call__(self, parser, namespace, values, option_string=None): parser.error('unrecognized arguments: %s' % option_string) class PrependListAction(argparse.Action): """A near clone of ``argparse._AppendAction``, but designed to prepend list values instead of appending. """ def __init__(self, option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None): if nargs == 0: raise ValueError('nargs for append actions must be > 0; if arg ' 'strings are not supplying the value to append, ' 'the append const action may be more appropriate') if const is not None and nargs != argparse.OPTIONAL: raise ValueError('nargs must be %r to supply const' % argparse.OPTIONAL) super(PrependListAction, self).__init__( option_strings=option_strings, dest=dest, nargs=nargs, const=const, default=default, type=type, choices=choices, required=required, help=help, metavar=metavar ) def __call__(self, parser, namespace, values, option_string=None): items = copy.copy(ensure_value(namespace, self.dest, [])) items[0:0] = values setattr(namespace, self.dest, items) def ensure_value(namespace, name, value): if getattr(namespace, name, None) is None: setattr(namespace, name, value) return getattr(namespace, name) # # Callbacks to validate and normalize Options # def unfrack_path(pathsep=False): """Turn an Option's data into a single path in Ansible locations""" def inner(value): if pathsep: return [unfrackpath(x) for x in value.split(os.pathsep) if x] if value == '-': return value return unfrackpath(value) return inner def maybe_unfrack_path(beacon): def inner(value): if value.startswith(beacon): return beacon + unfrackpath(value[1:]) return value return inner def _git_repo_info(repo_path): """ returns a string containing git branch, commit id and commit date """ result = None if os.path.exists(repo_path): # Check if the .git is a file. If it is a file, it means that we are in a submodule structure. if os.path.isfile(repo_path): try: gitdir = yaml.safe_load(open(repo_path)).get('gitdir') # There is a possibility the .git file to have an absolute path. if os.path.isabs(gitdir): repo_path = gitdir else: repo_path = os.path.join(repo_path[:-4], gitdir) except (IOError, AttributeError): return '' with open(os.path.join(repo_path, "HEAD")) as f: line = f.readline().rstrip("\n") if line.startswith("ref:"): branch_path = os.path.join(repo_path, line[5:]) else: branch_path = None if branch_path and os.path.exists(branch_path): branch = '/'.join(line.split('/')[2:]) with open(branch_path) as f: commit = f.readline()[:10] else: # detached HEAD commit = line[:10] branch = 'detached HEAD' branch_path = os.path.join(repo_path, "HEAD") date = time.localtime(os.stat(branch_path).st_mtime) if time.daylight == 0: offset = time.timezone else: offset = time.altzone result = "({0} {1}) last updated {2} (GMT {3:+04d})".format(branch, commit, time.strftime("%Y/%m/%d %H:%M:%S", date), int(offset / -36)) else: result = '' return result def _gitinfo(): basedir = os.path.normpath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..')) repo_path = os.path.join(basedir, '.git') return _git_repo_info(repo_path) def version(prog=None): """ return ansible version """ if prog: result = ["{0} [core {1}] ".format(prog, __version__)] else: result = [__version__] gitinfo = _gitinfo() if gitinfo: result[0] = "{0} {1}".format(result[0], gitinfo) result.append(" config file = %s" % C.CONFIG_FILE) if C.DEFAULT_MODULE_PATH is None: cpath = "Default w/o overrides" else: cpath = C.DEFAULT_MODULE_PATH result.append(" configured module search path = %s" % cpath) result.append(" ansible python module location = %s" % ':'.join(ansible.__path__)) result.append(" ansible collection location = %s" % ':'.join(C.COLLECTIONS_PATHS)) result.append(" executable location = %s" % sys.argv[0]) result.append(" python version = %s" % ''.join(sys.version.splitlines())) result.append(" jinja version = %s" % j2_version) result.append(" libyaml = %s" % HAS_LIBYAML) return "\n".join(result) # # Functions to add pre-canned options to an OptionParser # def create_base_parser(prog, usage="", desc=None, epilog=None): """ Create an options parser for all ansible scripts """ # base opts parser = argparse.ArgumentParser( prog=prog, formatter_class=SortingHelpFormatter, epilog=epilog, description=desc, conflict_handler='resolve', ) version_help = "show program's version number, config file location, configured module search path," \ " module location, executable location and exit" parser.add_argument('--version', action=AnsibleVersion, nargs=0, help=version_help) add_verbosity_options(parser) return parser def add_verbosity_options(parser): """Add options for verbosity""" parser.add_argument('-v', '--verbose', dest='verbosity', default=C.DEFAULT_VERBOSITY, action="count", help="verbose mode (-vvv for more, -vvvv to enable connection debugging)") def add_async_options(parser): """Add options for commands which can launch async tasks""" parser.add_argument('-P', '--poll', default=C.DEFAULT_POLL_INTERVAL, type=int, dest='poll_interval', help="set the poll interval if using -B (default=%s)" % C.DEFAULT_POLL_INTERVAL) parser.add_argument('-B', '--background', dest='seconds', type=int, default=0, help='run asynchronously, failing after X seconds (default=N/A)') def add_basedir_options(parser): """Add options for commands which can set a playbook basedir""" parser.add_argument('--playbook-dir', default=C.config.get_config_value('PLAYBOOK_DIR'), dest='basedir', action='store', help="Since this tool does not use playbooks, use this as a substitute playbook directory." "This sets the relative path for many features including roles/ group_vars/ etc.", type=unfrack_path()) def add_check_options(parser): """Add options for commands which can run with diagnostic information of tasks""" parser.add_argument("-C", "--check", default=False, dest='check', action='store_true', help="don't make any changes; instead, try to predict some of the changes that may occur") parser.add_argument('--syntax-check', dest='syntax', action='store_true', help="perform a syntax check on the playbook, but do not execute it") parser.add_argument("-D", "--diff", default=C.DIFF_ALWAYS, dest='diff', action='store_true', help="when changing (small) files and templates, show the differences in those" " files; works great with --check") def add_connect_options(parser): """Add options for commands which need to connection to other hosts""" connect_group = parser.add_argument_group("Connection Options", "control as whom and how to connect to hosts") connect_group.add_argument('-k', '--ask-pass', default=C.DEFAULT_ASK_PASS, dest='ask_pass', action='store_true', help='ask for connection password') connect_group.add_argument('--private-key', '--key-file', default=C.DEFAULT_PRIVATE_KEY_FILE, dest='private_key_file', help='use this file to authenticate the connection', type=unfrack_path()) connect_group.add_argument('-u', '--user', default=C.DEFAULT_REMOTE_USER, dest='remote_user', help='connect as this user (default=%s)' % C.DEFAULT_REMOTE_USER) connect_group.add_argument('-c', '--connection', dest='connection', default=C.DEFAULT_TRANSPORT, help="connection type to use (default=%s)" % C.DEFAULT_TRANSPORT) connect_group.add_argument('-T', '--timeout', default=C.DEFAULT_TIMEOUT, type=int, dest='timeout', help="override the connection timeout in seconds (default=%s)" % C.DEFAULT_TIMEOUT) # ssh only connect_group.add_argument('--ssh-common-args', default='', dest='ssh_common_args', help="specify common arguments to pass to sftp/scp/ssh (e.g. ProxyCommand)") connect_group.add_argument('--sftp-extra-args', default='', dest='sftp_extra_args', help="specify extra arguments to pass to sftp only (e.g. -f, -l)") connect_group.add_argument('--scp-extra-args', default='', dest='scp_extra_args', help="specify extra arguments to pass to scp only (e.g. -l)") connect_group.add_argument('--ssh-extra-args', default='', dest='ssh_extra_args', help="specify extra arguments to pass to ssh only (e.g. -R)") parser.add_argument_group(connect_group) def add_fork_options(parser): """Add options for commands that can fork worker processes""" parser.add_argument('-f', '--forks', dest='forks', default=C.DEFAULT_FORKS, type=int, help="specify number of parallel processes to use (default=%s)" % C.DEFAULT_FORKS) def add_inventory_options(parser): """Add options for commands that utilize inventory""" parser.add_argument('-i', '--inventory', '--inventory-file', dest='inventory', action="append", help="specify inventory host path or comma separated host list. --inventory-file is deprecated") parser.add_argument('--list-hosts', dest='listhosts', action='store_true', help='outputs a list of matching hosts; does not execute anything else') parser.add_argument('-l', '--limit', default=C.DEFAULT_SUBSET, dest='subset', help='further limit selected hosts to an additional pattern') def add_meta_options(parser): """Add options for commands which can launch meta tasks from the command line""" parser.add_argument('--force-handlers', default=C.DEFAULT_FORCE_HANDLERS, dest='force_handlers', action='store_true', help="run handlers even if a task fails") parser.add_argument('--flush-cache', dest='flush_cache', action='store_true', help="clear the fact cache for every host in inventory") def add_module_options(parser): """Add options for commands that load modules""" module_path = C.config.get_configuration_definition('DEFAULT_MODULE_PATH').get('default', '') parser.add_argument('-M', '--module-path', dest='module_path', default=None, help="prepend colon-separated path(s) to module library (default=%s)" % module_path, type=unfrack_path(pathsep=True), action=PrependListAction) def add_output_options(parser): """Add options for commands which can change their output""" parser.add_argument('-o', '--one-line', dest='one_line', action='store_true', help='condense output') parser.add_argument('-t', '--tree', dest='tree', default=None, help='log output to this directory') def add_runas_options(parser): """ Add options for commands which can run tasks as another user Note that this includes the options from add_runas_prompt_options(). Only one of these functions should be used. """ runas_group = parser.add_argument_group("Privilege Escalation Options", "control how and which user you become as on target hosts") # consolidated privilege escalation (become) runas_group.add_argument("-b", "--become", default=C.DEFAULT_BECOME, action="store_true", dest='become', help="run operations with become (does not imply password prompting)") runas_group.add_argument('--become-method', dest='become_method', default=C.DEFAULT_BECOME_METHOD, help='privilege escalation method to use (default=%s)' % C.DEFAULT_BECOME_METHOD + ', use `ansible-doc -t become -l` to list valid choices.') runas_group.add_argument('--become-user', default=None, dest='become_user', type=str, help='run operations as this user (default=%s)' % C.DEFAULT_BECOME_USER) add_runas_prompt_options(parser, runas_group=runas_group) def add_runas_prompt_options(parser, runas_group=None): """ Add options for commands which need to prompt for privilege escalation credentials Note that add_runas_options() includes these options already. Only one of the two functions should be used. """ if runas_group is None: runas_group = parser.add_argument_group("Privilege Escalation Options", "control how and which user you become as on target hosts") runas_group.add_argument('-K', '--ask-become-pass', dest='become_ask_pass', action='store_true', default=C.DEFAULT_BECOME_ASK_PASS, help='ask for privilege escalation password') parser.add_argument_group(runas_group) def add_runtask_options(parser): """Add options for commands that run a task""" parser.add_argument('-e', '--extra-vars', dest="extra_vars", action="append", type=maybe_unfrack_path('@'), help="set additional variables as key=value or YAML/JSON, if filename prepend with @", default=[]) def add_tasknoplay_options(parser): """Add options for commands that run a task w/o a defined play""" parser.add_argument('--task-timeout', type=int, dest="task_timeout", action="store", default=C.TASK_TIMEOUT, help="set task timeout limit in seconds, must be positive integer.") def add_subset_options(parser): """Add options for commands which can run a subset of tasks""" parser.add_argument('-t', '--tags', dest='tags', default=C.TAGS_RUN, action='append', help="only run plays and tasks tagged with these values") parser.add_argument('--skip-tags', dest='skip_tags', default=C.TAGS_SKIP, action='append', help="only run plays and tasks whose tags do not match these values") def add_vault_options(parser): """Add options for loading vault files""" parser.add_argument('--vault-id', default=[], dest='vault_ids', action='append', type=str, help='the vault identity to use') base_group = parser.add_mutually_exclusive_group() base_group.add_argument('--ask-vault-password', '--ask-vault-pass', default=C.DEFAULT_ASK_VAULT_PASS, dest='ask_vault_pass', action='store_true', help='ask for vault password') base_group.add_argument('--vault-password-file', '--vault-pass-file', default=[], dest='vault_password_files', help="vault password file", type=unfrack_path(), action='append')
[ "arin@arinsnetwork.com" ]
arin@arinsnetwork.com
7d2b33a086a30db63febd6257723fcb552dec508
6cc700408356f8574d7c036828ef47e14bbfe210
/model/FaceAlignment3D/bfm.py
d9fc06335cc776b7f8151c87fdf0e3ee4140c18e
[ "MIT" ]
permissive
bubingy/HeadPoseEstimate
81307da9a29f68fe92e82eea57c8b1a8ffea94ec
bfc6bfecc7269d63a83fc4db37de76fba44f9577
refs/heads/main
2023-09-05T09:04:24.603001
2021-11-16T02:03:30
2021-11-16T02:03:30
309,602,708
45
4
null
null
null
null
UTF-8
Python
false
false
1,145
py
# coding: utf-8 __author__ = 'cleardusk' import sys sys.path.append('..') import os import pickle import numpy as np SCRIPT_HOME = os.path.dirname(os.path.abspath(__file__)) def _to_ctype(arr): if not arr.flags.c_contiguous: return arr.copy(order='C') return arr class BFMModel(object): def __init__(self, bfm_fp, shape_dim=40, exp_dim=10): bfm = pickle.load(open(bfm_fp, 'rb')) self.u = bfm.get('u').astype(np.float32) # fix bug self.w_shp = bfm.get('w_shp').astype(np.float32)[..., :shape_dim] self.w_exp = bfm.get('w_exp').astype(np.float32)[..., :exp_dim] self.tri = pickle.load( open(os.path.join(SCRIPT_HOME, 'weights', 'tri.pkl'), 'rb') ) self.tri = _to_ctype(self.tri.T).astype(np.int32) self.keypoints = bfm.get('keypoints').astype(np.long) # fix bug w = np.concatenate((self.w_shp, self.w_exp), axis=1) self.w_norm = np.linalg.norm(w, axis=0) self.u_base = self.u[self.keypoints].reshape(-1, 1) self.w_shp_base = self.w_shp[self.keypoints] self.w_exp_base = self.w_exp[self.keypoints]
[ "769004837@qq.com" ]
769004837@qq.com
4809bbca43bdc1f670954e2cf37ca605b33ce402
3b46b6d9d3f4f67ae6876add492cb13bd3d79b4b
/wordcount/settings.py
a19e61c0f2dda2534f055651081e91801be20390
[]
no_license
girinabin/wordcount
d76ad4aeee1c012a2d6bb77739056740dcb0fd7d
5570d2c8ff33206ca44608838575cf30b4ae9965
refs/heads/master
2020-05-03T13:37:39.449840
2019-03-31T07:38:52
2019-03-31T07:38:52
178,657,720
0
0
null
null
null
null
UTF-8
Python
false
false
3,107
py
""" Django settings for wordcount project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'nothrc#+^e80#fv13ciy75^d)iu%p-9d_fff6dul81x520d!1g' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'wordcount.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['template'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'wordcount.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "giri.nabin1994@gmail.com" ]
giri.nabin1994@gmail.com
cf184f3ea14e19e885441844ff0389b8a44a86b6
ef7eabdd5f9573050ef11d8c68055ab6cdb5da44
/topCoder/srms/400s/srm444/div2/four_blocks_easy.py
adf0b528de9ac3ebd503d194d293994285d1b77e
[ "WTFPL" ]
permissive
gauravsingh58/algo
cdbf68e28019ba7c3e4832e373d32c71902c9c0d
397859a53429e7a585e5f6964ad24146c6261326
refs/heads/master
2022-12-28T01:08:32.333111
2020-09-30T19:37:53
2020-09-30T19:37:53
300,037,652
1
1
WTFPL
2020-10-15T09:26:32
2020-09-30T19:29:29
Java
UTF-8
Python
false
false
303
py
from itertools import groupby class FourBlocksEasy: def maxScore(self, grid): s = 0 for k, g in groupby(zip(*grid)): t = len(list(g)) if k == ('.', '.'): s += (t/2) * 16 + t%2 * 2 else: s += 2 * t return s
[ "elmas.ferhat@gmail.com" ]
elmas.ferhat@gmail.com
de6f5e995f30cab05aeec0095428f649013ae77b
4d01b0674072bf6ab817cd28d8a137d70ade68d3
/tzlink/preprocessing/overlap.py
088bd87748165ed15939710950e629f038552188
[ "BSD-3-Clause" ]
permissive
lfurrer/tzlink
84f60ae90ddebff37282e7f0506dcacaf0d5c13c
0fd09a4c48d73cbd51e8f1628628812a74f209a7
refs/heads/master
2022-11-27T22:52:51.160758
2020-07-30T10:37:12
2020-07-30T10:37:12
132,708,312
0
0
null
null
null
null
UTF-8
Python
false
false
1,383
py
#!/usr/bin/env python3 # coding: utf8 # Author: Lenz Furrer, 2018 ''' Overlap between token sequences. ''' from .tokenization import create_tokenizer from .stem import PorterStemmer class TokenOverlap: ''' Compute token overlap between two texts. ''' def __init__(self): self._tokenize = create_tokenizer('charclass') self._stem = PorterStemmer().stem self._cached_text = None self._cached_tokens = None def overlap(self, query, answer): ''' Compute the Jaccard index of the stemmed tokens. ''' if not isinstance(answer, str): # allow a sequence of str for answer return max(self.overlap(query, a) for a in answer) q_toks = self.tokens(query, cache=True) a_toks = self.tokens(answer) intersection = q_toks.intersection(a_toks) union = q_toks.union(a_toks) return len(intersection)/len(union) def tokens(self, text, cache=False): ''' Get a set of stemmed tokens. ''' if cache and text == self._cached_text: toks = self._cached_tokens else: toks = self._tokens(text) if cache: self._cached_text, self._cached_tokens = text, toks return toks def _tokens(self, text): return set(self._stem(t) for t in self._tokenize(text))
[ "Lenz.Furrer@gmail.com" ]
Lenz.Furrer@gmail.com
f8069a85e534c0df65b75245b29e7cbb228285bf
dfbde5609fc18e7641a1004d7ecf55648fcfebd5
/server/snippets/urls.py
4d73b69e8f991c7c4fb0d51996cc0f0a942220b5
[ "MIT" ]
permissive
ildoc/ildoc.it_django
93b19a9ef67b6521be90c8e4baadeaad0a5a7802
3f9582a9e9e74877f37aa739be147cfada01d99e
refs/heads/master
2021-06-01T18:13:04.707625
2016-08-23T14:00:03
2016-08-23T14:00:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns from . import views urlpatterns = [ url(r'^$', views.SnippetList.as_view()), url(r'^(?P<pk>[0-9]+)/$', views.SnippetDetail.as_view()), url(r'^users/$', views.UserList.as_view()), url(r'^users/(?P<pk>[0-9]+)/$', views.UserDetail.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
[ "filippo.giomi@gmail.com" ]
filippo.giomi@gmail.com
ba46cd97d7765c543c37f8ae7976c0dbe1b8a5bf
c0668407f94cad329a31169e57e970df0e8c3c57
/test/functional/feature_nulldummy.py
49fd54bc4c7f30c53ed6853fdb3112743a9b0b5b
[ "MIT" ]
permissive
crypTuron/mocha
5d7ad9befdcba88e717d4e91d094400f1f158f12
e3d6c6d13ef7c5aa918ccc44770f22138835b336
refs/heads/master
2022-09-23T15:10:05.410444
2020-05-31T21:04:52
2020-05-31T21:04:52
269,326,681
0
0
NOASSERTION
2020-06-04T10:15:09
2020-06-04T10:15:08
null
UTF-8
Python
false
false
5,889
py
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test NULLDUMMY softfork. Connect to a single node. Generate 2 blocks (save the coinbases for later). Generate 427 more blocks. [Policy/Consensus] Check that NULLDUMMY compliant transactions are accepted in the 430th block. [Policy] Check that non-NULLDUMMY transactions are rejected before activation. [Consensus] Check that the new NULLDUMMY rules are not enforced on the 431st block. [Policy/Consensus] Check that the new NULLDUMMY rules are enforced on the 432nd block. """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import CTransaction, network_thread_start from test_framework.blocktools import create_coinbase, create_block, add_witness_commitment from test_framework.script import CScript from io import BytesIO import time NULLDUMMY_ERROR = "64: non-mandatory-script-verify-flag (Dummy CHECKMULTISIG argument must be zero)" def trueDummy(tx): scriptSig = CScript(tx.vin[0].scriptSig) newscript = [] for i in scriptSig: if (len(newscript) == 0): assert(len(i) == 0) newscript.append(b'\x51') else: newscript.append(i) tx.vin[0].scriptSig = CScript(newscript) tx.rehash() class NULLDUMMYTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True # This script tests NULLDUMMY activation, which is part of the 'segwit' deployment, so we go through # Must set the blockversion for this test self.extra_args = [['-whitelist=127.0.0.1']] def run_test(self): self.address = self.nodes[0].getnewaddress() self.ms_address = self.nodes[0].addmultisigaddress(1,[self.address]) network_thread_start() self.coinbase_blocks = self.nodes[0].generate(2) # Block 2 coinbase_txid = [] for i in self.coinbase_blocks: coinbase_txid.append(self.nodes[0].getblock(i)['tx'][0]) self.nodes[0].generate(427) # Block 429 self.lastblockhash = self.nodes[0].getbestblockhash() self.tip = int("0x" + self.lastblockhash, 0) self.lastblockheight = 429 self.lastblocktime = int(time.time()) + 429 self.log.info("Test 1: NULLDUMMY compliant base transactions should be accepted to mempool and mined before activation [430]") test1txs = [self.create_transaction(self.nodes[0], coinbase_txid[0], self.ms_address, 49)] txid1 = self.nodes[0].sendrawtransaction(bytes_to_hex_str(test1txs[0].serialize_without_witness()), True) test1txs.append(self.create_transaction(self.nodes[0], txid1, self.ms_address, 48)) txid2 = self.nodes[0].sendrawtransaction(bytes_to_hex_str(test1txs[1].serialize_without_witness()), True) self.block_submit(self.nodes[0], test1txs, True) self.log.info("Test 2: Non-NULLDUMMY base multisig transaction should not be accepted to mempool before activation") test2tx = self.create_transaction(self.nodes[0], txid2, self.ms_address, 48) trueDummy(test2tx) txid4 = self.tx_submit(self.nodes[0], test2tx, NULLDUMMY_ERROR) self.log.info("Test 3: Non-NULLDUMMY base transactions should be accepted in a block before activation [431]") self.block_submit(self.nodes[0], [test2tx], True) self.log.info("Test 4: Non-NULLDUMMY base multisig transaction is invalid after activation") test4tx = self.create_transaction(self.nodes[0], txid4, self.address, 47) test6txs=[CTransaction(test4tx)] trueDummy(test4tx) self.tx_submit(self.nodes[0], test4tx, NULLDUMMY_ERROR) self.block_submit(self.nodes[0], [test4tx]) self.log.info("Test 6: NULLDUMMY compliant transactions should be accepted to mempool and in block after activation [432]") for i in test6txs: self.nodes[0].sendrawtransaction(bytes_to_hex_str(i.serialize_without_witness()), True) self.block_submit(self.nodes[0], test6txs, True) def create_transaction(self, node, txid, to_address, amount): inputs = [{ "txid" : txid, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) tx = CTransaction() f = BytesIO(hex_str_to_bytes(signresult['hex'])) tx.deserialize(f) return tx def tx_submit(self, node, tx, msg = ""): tx.rehash() try: node.sendrawtransaction(bytes_to_hex_str(tx.serialize()), True) except JSONRPCException as exp: assert_equal(exp.error["message"], msg) else: assert_equal('', msg) return tx.hash def block_submit(self, node, txs, accept = False): block = create_block(self.tip, create_coinbase(self.lastblockheight + 1), self.lastblocktime + 1) block.nVersion = 4 for tx in txs: tx.rehash() block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() node.submitblock(bytes_to_hex_str(block.serialize())) if (accept): assert_equal(node.getbestblockhash(), block.hash) self.tip = block.sha256 self.lastblockhash = block.hash self.lastblocktime += 1 self.lastblockheight += 1 else: assert_equal(node.getbestblockhash(), self.lastblockhash) if __name__ == '__main__': NULLDUMMYTest().main()
[ "root@0912356.localdomain" ]
root@0912356.localdomain
9471c05cb11258d5263d62d08f2d9cde21643fa2
327540dcd6a4596a8bd47b4b92fd98b8d8b2f67d
/FinMate-master/Finmate/urls.py
0241df14c2a7191e827f1ed28e6d189e4e8e5272
[]
no_license
el-Catedratic/finmate
9af52af5d338dd50997d575f456e4c99ad431889
61491f063588389e8fe8d43124f10043bc53e01c
refs/heads/master
2023-06-16T18:18:31.785150
2021-07-17T14:44:40
2021-07-17T14:44:40
377,436,540
0
0
null
null
null
null
UTF-8
Python
false
false
1,146
py
"""Finmate URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path from django.conf.urls.static import static from django.conf import settings import management urlpatterns = [ path('admin/', admin.site.urls), path('', include('management.urls')), path('save/', management.views.save_data, name='save'), path('delete/', management.views.delete_data, name='delete'), path('edit/', management.views.edit_data, name='edit'), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "akhil9167782208@gmail.com" ]
akhil9167782208@gmail.com
8213c42ce759c7be9b20326180bc58947dc6ed45
5635674f48e13d0de604ec4d141f24a5aff39472
/FindCharacterFace/google.py
1ac1235c3e54f07157bf86ed26f8848ee747076a
[]
no_license
wisteria204/FullstackPrac
957e3c2a4d7d6751735ef84e38a6f6a5ad2d430c
83b97a1f552c1bca3d1bc5062c02a0a63fa35108
refs/heads/main
2023-03-22T11:18:09.512672
2021-03-24T21:55:34
2021-03-24T21:55:34
344,835,718
0
0
null
null
null
null
UTF-8
Python
false
false
1,508
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time import urllib.request import os name = "아야세 에리" if not os.path.isdir('./{}'.format(name)): os.mkdir('./{}'.format(name)) driver = webdriver.Chrome() driver.get("https://www.google.co.kr/imghp?hl=ko&ogbl") elem = driver.find_element_by_name("q") elem.send_keys(name) elem.send_keys(Keys.RETURN) SCROLL_PAUSE_TIME = 1 # Get scroll height last_height = driver.execute_script("return document.body.scrollHeight") while True: # Scroll down to bottom driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") # Wait to load page time.sleep(SCROLL_PAUSE_TIME) # Calculate new scroll height and compare with last scroll height new_height = driver.execute_script("return document.body.scrollHeight") if new_height == last_height: try: driver.find_element_by_css_selector(".mye4qd").click() except: break last_height = new_height images = driver.find_elements_by_css_selector(".rg_i.Q4LuWd") count = 1 for image in images: try: image.click() time.sleep(2) imgUrl = driver.find_element_by_xpath('/html/body/div[2]/c-wiz/div[3]/div[2]/div[3]/div/div/div[3]/div[2]/c-wiz/div/div[1]/div[1]/div/div[2]/a/img').get_attribute("src") urllib.request.urlretrieve(imgUrl, './{}/{}{}{}{}'.format(name, name, " ", count, ".jpg")) count = count + 1 except: pass driver.close
[ "wisteria204@naver.com" ]
wisteria204@naver.com
f012aba5c3e5bcf074da3520052561b9b51960f6
7d3d0d89712228179366e9b7cf1d0dcc9b15f57c
/app_juego/migrations/0004_auto_20210828_0221.py
db5d53740fa07663a125218f1dd8eb7cb90d2c37
[]
no_license
informatorio2021com06/proyectoInfo
1cf95552b15035f9cd289826187fd611b35dbb07
f8716ecc9096e05b0153b11545da86c06a2408cd
refs/heads/master
2023-07-14T06:36:16.667857
2021-09-03T01:01:02
2021-09-03T01:01:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
# Generated by Django 2.2.5 on 2021-08-28 05:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app_juego', '0003_auto_20210828_0139'), ] operations = [ migrations.AlterField( model_name='preguntasrespondidas', name='respuesta', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='app_juego.ElegirRespuesta'), ), migrations.AlterField( model_name='preguntasrespondidas', name='triviaUser', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='intentos', to='app_juego.TriviaUsuario'), ), ]
[ "danulucas44@gmail.com" ]
danulucas44@gmail.com
ee1c33af20b9cbad0b3a102d83eb2198eccecbc9
c8a306fa252aa54e8399e41fa420d776ea3eb8cc
/webStands/settings.py
a1e9e3dad3626aeee59bae168a46a3c0598a1f7a
[]
no_license
bytsur01/webStands
755990de7e76baa0a041360293d656206337afdc
3fb2f3dc61d2e6836e6e1cd6772032f084c3974f
refs/heads/master
2021-02-28T00:21:48.464768
2020-02-28T10:11:46
2020-02-28T10:11:46
245,647,468
0
0
null
2020-03-07T14:29:20
2020-03-07T14:29:19
null
UTF-8
Python
false
false
3,201
py
""" Django settings for webStands project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=4#50-!#v3_*kf=qcw=u=zub0&khx-_v#$q&p^8%h!blu^^fe8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'stands', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'webStands.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'webStands.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'stands/static')
[ "54931596+ACphil@users.noreply.github.com" ]
54931596+ACphil@users.noreply.github.com
b2f62ea0473aa5b1ff000592d8e716dd96c54c27
1c0158145cbc7afa9b969b739f7e3507b73276a4
/packages/OpenCV/nodes/OpenCV___ImageBlend0/OpenCV___ImageBlend0___METACODE.py
40b58fc20bd8689187a4f191daf90c799716de40
[ "MIT" ]
permissive
farukdemirbas/pyScript
cc3726d0de730234d4f36ba535532b9306e3c971
89139615f95c86178cfdb072945942de3be405b7
refs/heads/master
2023-08-03T12:26:58.328450
2020-06-04T09:26:04
2020-06-04T09:26:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,353
py
from custom_src.NodeInstance import NodeInstance from custom_src.Node import Node import cv2 # USEFUL # self.input(index) <- access to input data # self.outputs[index].set_val(val) <- set output data port value # self.main_widget <- access to main widget class %NODE_TITLE%_NodeInstance(NodeInstance): def __init__(self, parent_node: Node, flow, configuration=None): super(%NODE_TITLE%_NodeInstance, self).__init__(parent_node, flow, configuration) # self.special_actions['action name'] = self.actionmethod ... self.img_unblend1 = None self.img_unblend2 = None self.img_blend= None self.initialized() def update_event(self, input_called=-1): self.img_unblend1 = self.input(0) alpha= self.input(1) alpha=int(alpha) self.img_unblend2=self.input(2) beta=int(1.0-alpha) self.img_blend = cv2.addWeighted(self.img_unblend1,alpha,self.img_unblend2,beta,0.0) self.main_widget.show_image(self.img_blend) self.outputs[0].set_val(self.img_blend) def get_data(self): data = {} # ... return data def set_data(self, data): pass # ... # optional - important for threading - stop everything here def removing(self): pass
[ "miskimit@gmail.com" ]
miskimit@gmail.com
c1a5ecf3bfefbe8d4be1281c68120ce3451f3ff2
1626e16760c9c5b5dc9bd7c345871c716d5ffd99
/Problems/1000_1099/1054_Distante_Barcodes/Project_Python3/Distant_Barcodes.py
b1f63038f324314e1669142ea896010e68adf714
[]
no_license
NobuyukiInoue/LeetCode
94ddb19e63cb8d0775cdc13f311fe90c87a1d718
3f0ffd519404165fd1a735441b212c801fd1ad1e
refs/heads/master
2023-09-01T07:38:50.939942
2023-08-23T09:51:17
2023-08-23T09:51:17
158,100,912
0
0
null
null
null
null
UTF-8
Python
false
false
1,522
py
# coding: utf-8 import collections import os import sys import time class Solution: # def rebarcodesangeBarcodes(self, barcodes: List[int]) -> List[int]: def rebarcodesangeBarcodes(self, barcodes): # 440ms i, n = 0, len(barcodes) res = [0] * n for k, v in collections.Counter(barcodes).most_common(): for _ in range(v): res[i] = k i += 2 if i >= n: i = 1 return res def main(): argv = sys.argv argc = len(argv) if argc < 2: print("Usage: python {0} <testdata.txt>".format(argv[0])) exit(0) if not os.path.exists(argv[1]): print("{0} not found...".format(argv[1])) exit(0) testDataFile = open(argv[1], "r") lines = testDataFile.readlines() for temp in lines: temp = temp.strip() if temp == "": continue print("args = {0}".format(temp)) loop_main(temp) # print("Hit Return to continue...") # input() def loop_main(temp): flds = temp.replace("[","").replace("]","").replace("\"","").replace(" ","").rstrip().split(",") barcodes = [int(num) for num in flds] print("barcodes = {0}".format(barcodes)) sl = Solution() time0 = time.time() result = sl.rebarcodesangeBarcodes(barcodes) time1 = time.time() print("result = {0}".format(result)) print("Execute time ... : {0:f}[s]\n".format(time1 - time0)) if __name__ == "__main__": main()
[ "spring555@gmail.com" ]
spring555@gmail.com
b0a676978bcc1843449b5466560c8edb938cd098
b08e84c92ce41147432ba65c403f63faf82f582e
/0-Fontes/DataMiningSamples-master/3-Classification/KNN.py
c9c8181711704b22ad9f6ff6868e15efb3b03a9f
[]
no_license
iuri-ramon98/DataMining
3fb605ab91b6c84aa4fe2399389203630e229786
d7fa55efcf43f2969378d610ef15aeba9c80375b
refs/heads/main
2023-06-08T13:10:01.147012
2021-06-23T07:01:00
2021-06-23T07:01:00
351,201,554
0
0
null
null
null
null
UTF-8
Python
false
false
5,239
py
# Initial imports import itertools import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from collections import Counter # Calculate distance between two points def minkowski_distance(a, b, p=1): # Store the number of dimensions dim = len(a) # Set initial distance to 0 distance = 0 # Calculate minkowski distance using parameter p for d in range(dim): distance += abs(a[d] - b[d])**p distance = distance**(1/p) return distance def knn_predict(X_train, X_test, y_train, y_test, k, p): # Make predictions on the test data # Need output of 1 prediction per test data point y_hat_test = [] for test_point in X_test: distances = [] for train_point in X_train: distance = minkowski_distance(test_point, train_point, p=p) distances.append(distance) # Store distances in a dataframe df_dists = pd.DataFrame(data=distances, columns=['dist'], index=y_train.index) # Sort distances, and only consider the k closest points df_nn = df_dists.sort_values(by=['dist'], axis=0)[:k] # Create counter object to track the labels of k closest neighbors counter = Counter(y_train[df_nn.index]) # Get most common label of all the nearest neighbors prediction = counter.most_common()[0][0] # Append prediction to output list y_hat_test.append(prediction) return y_hat_test def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.figure() plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def main(): # Load iris data and store in dataframe iris = datasets.load_iris() df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df['target'] = iris.target df.head() # Separate X and y data X = df.drop('target', axis=1) y = df.target print("Total samples: {}".format(X.shape[0])) # Split the data - 75% train, 25% test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1) print("Total train samples: {}".format(X_train.shape[0])) print("Total test samples: {}".format(X_test.shape[0])) # Scale the X data using Z-score scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # STEP 1 - TESTS USING knn classifier write from scratch # Make predictions on test dataset using knn classifier y_hat_test = knn_predict(X_train, X_test, y_train, y_test, k=5, p=2) # Get test accuracy score accuracy = accuracy_score(y_test, y_hat_test)*100 f1 = f1_score(y_test, y_hat_test, average='macro') print("Acurracy K-NN from scratch: {:.2f}%".format(accuracy)) print("F1 Score K-NN from scratch: {:.2f}%".format(f1)) # Get test confusion matrix cm = confusion_matrix(y_test, y_hat_test) plot_confusion_matrix(cm, iris.target_names, False, "Confusion Matrix - K-NN") plot_confusion_matrix(cm, iris.target_names, True, "Confusion Matrix - K-NN normalized") # STEP 2 - TESTS USING knn classifier from sk-learn knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) y_hat_test = knn.predict(X_test) # Get test accuracy score accuracy = accuracy_score(y_test, y_hat_test)*100 f1 = f1_score(y_test, y_hat_test,average='macro') print("Acurracy K-NN from sk-learn: {:.2f}%".format(accuracy)) print("F1 Score K-NN from sk-learn: {:.2f}%".format(f1)) # Get test confusion matrix cm = confusion_matrix(y_test, y_hat_test) plot_confusion_matrix(cm, iris.target_names, False, "Confusion Matrix - K-NN sklearn") plot_confusion_matrix(cm, iris.target_names, True, "Confusion Matrix - K-NN sklearn normalized" ) plt.show() if __name__ == "__main__": main()
[ "noreply@github.com" ]
iuri-ramon98.noreply@github.com
75f04de7f68c82753200c5d88844b72f84790ef1
77fdfa980f6d923d8fccb7eefdcadadad6f7cdcc
/main/views.py
5afb7b921a77976a693494ab466616ad3a201a63
[]
no_license
joegotflow83/tdd_blog
fe72657a361a6203bcebc1ff64a831c3c307e871
254d44de3037bfaeee4495c6a1620afbfe87c7fb
refs/heads/master
2021-01-18T18:42:11.594528
2016-07-31T00:20:44
2016-07-31T00:20:44
63,269,446
0
0
null
null
null
null
UTF-8
Python
false
false
910
py
from django.views.generic import TemplateView, ListView, DetailView from django.views.generic.edit import CreateView from django.core.urlresolvers import reverse from .models import Post class Home(TemplateView): """Home page when users login""" template_name = 'main/home.html' class CreatePost(CreateView): """Users can create posts""" model = Post fields = ('title', 'body') def form_valid(self, form): new_post = form.save(commit=False) new_post.user = self.request.user new_post.save() return super().form_valid(form) def get_success_url(self): return reverse('home') class ListPosts(ListView): """List posts created by all users""" model = Post class SinglePost(DetailView): """Users can view a single post""" model = Post def get_queryset(self): return Post.objects.filter(pk=self.kwargs['pk'])
[ "joe@absolutod.com" ]
joe@absolutod.com
cabe79e959383cbe05e5fad5155996245729f80f
fd62676eec4e84fd450ffac3024a68a07bc45645
/Ejercicios-01/Datos-_compuestos-05.py
237e4af07269dbe91896ad20dc92136006b9d5c4
[]
no_license
FidelNava2002/Actividades-de-python
086040aa2b1c4a136f4cdb9721d2198421c1da4c
d4cec969fc3eb7398490470ad6547f17a69dfa5f
refs/heads/main
2023-03-09T15:24:28.681531
2021-02-28T21:37:47
2021-02-28T21:37:47
340,786,879
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
"""5.- Proponer una representación con tuplas para las cartas de la baraja francesa. Escribir una función poker que recibe cinco cartas de la baraja francesa e informe (devuelva el valor lógico correspondiente) si esas cartas forman o no un poker (es decir que hay 4 cartas con el mismo número).""" import sys cartas=('A', 'A', 'A', 'A', 'K') cont=0; for i in range(5): if cont==4: print("Se formo el ¡POKER!") sys.exit() else: cont=0 for a in range(5): if cartas[i]==cartas[a]: cont+=1 print("No se formo el poker")
[ "fidelnava2002@gmail.com" ]
fidelnava2002@gmail.com
4c51e20ce07d04dc6653490b0e053574ca63e9f0
e3a86afd44cd9034fc1cca716850b1a90c86a860
/FeatureCode.py
bed1209a1014b25a9a87ad11c59541af033d13bb
[]
no_license
DumasDED/push-pin
9aa940f1e72a09e226f976837d8f8c63e520e1bb
e39851ae4f1ec5b6b0cc2aa11a7c15f343566ed4
refs/heads/master
2021-06-23T10:54:46.791036
2017-09-01T11:59:30
2017-09-01T11:59:30
100,262,204
0
0
null
null
null
null
UTF-8
Python
false
false
237
py
from enum import Enum class FeatureCode(Enum): ADM1 = 1 ADM2 = 2 ADM3 = 3 ADMD = 4 PPLC = 5 PPLG = 6 PPLA = 7 PPLA2 = 8 PPLA3 = 9 PPLA4 = 10 PPL = 11 PPLX = 12 PPLS = 13 PPLL = 14
[ "DDumas@enstoa.com" ]
DDumas@enstoa.com
b185bb8e94f7fe10a35b1fa4729d3fc7a3d7cd50
46a624e335783f9035f14e8d5a1f7c1d76fdf69a
/python/tempest/shaders/__init__.py
df75956e46449e7d09d8629cf903ddb43445b890
[]
no_license
tymonpitts/game_test
cc04fccef2e54112de578e37db92870e3fd4c2d3
b40ef729353205a9751b1f975f8a487e24286bf9
refs/heads/master
2021-01-18T18:30:36.789779
2020-05-31T04:19:57
2020-05-31T04:19:57
22,335,441
0
0
null
null
null
null
UTF-8
Python
false
false
4,910
py
import os import glob import re import game_core from OpenGL import GL from OpenGL.GL.shaders import compileShader def init(): shaders_dir = os.path.abspath( os.path.dirname(__file__) ) frag_shaders = {} for frag_shader_path in glob.iglob('%s/*.frag.glsl' % shaders_dir): name = re.sub( r'\.frag\.glsl$', '', os.path.basename(frag_shader_path) ) with open(frag_shader_path, 'r') as handle: contents = handle.read() frag_shaders[name] = compileShader(contents, GL.GL_FRAGMENT_SHADER) vert_shaders = {} for vert_shader_path in glob.iglob('%s/*.vert.glsl' % shaders_dir): name = re.sub( r'\.vert\.glsl$', '', os.path.basename(vert_shader_path) ) with open(vert_shader_path, 'r') as handle: contents = handle.read() vert_shaders[name] = compileShader(contents, GL.GL_VERTEX_SHADER) shaders = {} shaders['skin'] = game_core.ShaderProgram(vert_shaders['skin'], frag_shaders['frag']) shaders['skin'].store_uniform_location('modelToWorldMatrix') shaders['skin'].store_uniform_location('worldToCameraMatrix') shaders['skin'].store_uniform_location('cameraToClipMatrix') shaders['skin'].store_uniform_location('lightIntensity') shaders['skin'].store_uniform_location('ambientIntensity') shaders['skin'].store_uniform_location('diffuseColor') shaders['skin'].store_uniform_location('dirToLight') with shaders['skin'] as shader: GL.glUniform4f(shader.uniforms['lightIntensity'], 0.8, 0.8, 0.8, 1.0) GL.glUniform4f(shader.uniforms['ambientIntensity'], 0.2, 0.2, 0.2, 1.0) # TODO: figure out a better range than just 8 # colors = [ # (1.0, 0.0, 0.0), # red # (1.0, 0.5, 0.0), # orange # (1.0, 1.0, 0.0), # yellow # (0.0, 1.0, 0.0), # green # (0.0, 1.0, 1.0), # cyan # (0.0, 0.0, 1.0), # blue # (0.5, 0.0, 1.0), # purple # (1.0, 0.0, 1.0), # pink # ] colors = [ (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), (0.5, 0.75, 0.5), ] for i in range(8): name = 'lod_test_{}'.format(i) shaders[name] = game_core.ShaderProgram(vert_shaders['lod_test'], frag_shaders['frag']) shaders[name].store_uniform_location('fineDistance') shaders[name].store_uniform_location('coarseDistance') shaders[name].store_uniform_location('cameraWorldPosition') shaders[name].store_uniform_location('modelToWorldMatrix') shaders[name].store_uniform_location('worldToCameraMatrix') shaders[name].store_uniform_location('cameraToClipMatrix') shaders[name].store_uniform_location('lightIntensity') shaders[name].store_uniform_location('ambientIntensity') shaders[name].store_uniform_location('diffuseColor') shaders[name].store_uniform_location('dirToLight') with shaders[name] as shader: GL.glUniform4f(shader.uniforms['lightIntensity'], 0.8, 0.8, 0.8, 1.0) GL.glUniform4f(shader.uniforms['ambientIntensity'], 0.2, 0.2, 0.2, 1.0) color = colors[i] GL.glUniform4f(shader.uniforms['diffuseColor'], color[0], color[1], color[2], 1.0) # # FOR DEBUGGING # shaders[name].store_uniform_location('coarsness') # with shaders[name] as shader: # GL.glUniform1f(shader.uniforms['coarsness'], 1.0) shaders['ndc'] = game_core.ShaderProgram(vert_shaders['ndc'], frag_shaders['ndc']) shaders['simple'] = game_core.ShaderProgram(vert_shaders['simple'], frag_shaders['simple']) shaders['simple'].store_uniform_location('modelToWorldMatrix') shaders['simple'].store_uniform_location('worldToCameraMatrix') shaders['simple'].store_uniform_location('cameraToClipMatrix') shaders['point'] = game_core.ShaderProgram(vert_shaders['point'], frag_shaders['frag']) shaders['point'].store_uniform_location('modelToWorldMatrix') shaders['point'].store_uniform_location('worldToCameraMatrix') shaders['point'].store_uniform_location('cameraToClipMatrix') shaders['point'].store_uniform_location('color') shaders['constant'] = game_core.ShaderProgram(vert_shaders['constant'], frag_shaders['frag']) shaders['constant'].store_uniform_location('modelToWorldMatrix') shaders['constant'].store_uniform_location('worldToCameraMatrix') shaders['constant'].store_uniform_location('cameraToClipMatrix') shaders['constant'].store_uniform_location('color') shaders['heightmap'] = game_core.ShaderProgram(vert_shaders['heightmap'], frag_shaders['heightmap']) shaders['heightmap'].store_uniform_location('textureSampler') for shader in frag_shaders.values() + vert_shaders.values(): GL.glDeleteShader(shader) return shaders
[ "tpitts@wetafx.co.nz" ]
tpitts@wetafx.co.nz
6e5fdd9b62863d4f27ad3514f5747fbd039a0174
bb5f99ca25c3ba11c01227367dd4eb0995a237bb
/csc 121/Chapter 9/Nicolas_DeJohn_9-5_Lab.py
fdeb3ff49d66df45b9e6d0c53e7dc94d66217a0f
[]
no_license
nicolasdejohn/nicolasdejohn.github.io
3572097b02093c2466e1b282390cdac436aa24f8
83141986ec27173bf9686a9368751783fffbd848
refs/heads/master
2023-04-22T07:46:11.642323
2021-05-10T04:20:04
2021-05-10T04:20:04
330,054,501
0
0
null
null
null
null
UTF-8
Python
false
false
991
py
# Nicolas DeJohn | Chapter 9-5 Lab | March 26 2021 ''' The purpose of this program to read a file and store the number of occurances for each word in a dictionary. ''' import collections import os os.chdir(r"C:\Users\Nick\Desktop\CPCC\.github.io\csc 121\Chapter 9") # Defines main function def main(): # Opens and reads the file file = open("text95.txt", "r") readFile = file.read() file.close() dictionary = {} # Initializes an empty dictionary unwantedChars = ".,_-()!?'" # Establishes characters that will be removed words = readFile.split() # Creates an array of every word without spaces # Loop through the words array for i in words: words = i.strip(unwantedChars) # Remove unwanted characters if words not in dictionary: # If the key doesn't exist.. dictionary[words] = 0 dictionary[words] += 1 # Add 1 to the key's value print(dictionary) # Display information # Call the main function main()
[ "49886199+nickdejohn@users.noreply.github.com" ]
49886199+nickdejohn@users.noreply.github.com
d2e002d463f27ec19af829888c1a6b1d36e0ac77
9bffb40d694079257741d703b2a311082efcc0c2
/goha/migrations/0001_initial.py
463dda73b74a366d3b82e0a94c0665fb5060dda4
[]
no_license
ubracklow/GoldenHands
20d858dbf2233dc39581bf155b7c2bdac2ad45b0
aa717a01d7f8a156c2c9e8ecca16d853be01a8e3
refs/heads/master
2021-07-03T17:55:11.330059
2020-04-22T19:34:49
2020-04-22T19:34:49
44,267,003
1
0
null
2021-06-10T17:53:04
2015-10-14T18:10:58
Python
UTF-8
Python
false
false
1,673
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('date_time', models.DateTimeField()), ('location', models.CharField(max_length=250)), ('number_of_guests', models.IntegerField()), ], ), migrations.CreateModel( name='Guest', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('guest_name', models.CharField(max_length=50)), ('guest_email', models.EmailField(max_length=254)), ('guest_task', models.CharField(blank=True, max_length=50)), ('related_event', models.ForeignKey(to='goha.Event')), ], ), migrations.CreateModel( name='Host', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('host_name', models.CharField(max_length=50)), ('host_email', models.EmailField(max_length=254)), ('host_choice', models.CharField(choices=[('SA', 'Salty'), ('SW', 'Sweet'), ('DR', 'Drink'), ('IDC', 'I dont care')], max_length=3)), ('related_event', models.ForeignKey(to='goha.Event')), ], ), ]
[ "ubracklow@hotmail.com" ]
ubracklow@hotmail.com
eab6cd61c54c2dce994ad5e89fb750b5b3d5ee81
a5d004f5c484ecbf5fd6d41d1a9186f2af78f20e
/run.py
5321d64b456f5ecfd4b99ac87a0bde345442b951
[]
no_license
Easthy/garden
91778831d0611dc9dbd23dceb9eaaea391b16936
f257585232920a32f6b73d32e810d23654ff3fbb
refs/heads/master
2020-08-01T00:06:35.877177
2019-09-25T09:00:31
2019-09-25T09:00:31
210,795,476
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Ovchinnikov Anatoly Vladimirovich # Email: east@thyloved.ru # Version: 1.0-2017 import os import sys # Подключить папку с модулями sys.path.append(os.path.dirname(__file__) + 'modules') from Garden import * from PyQt5.QtWidgets import QApplication from UiForm import * # подключает модуль описания формы import signal signal.signal(signal.SIGINT, signal.SIG_DFL) def main(): g = Garden() app = QApplication(sys.argv) f = UiForm(g) f.web.show() f.draw('index') f.center() g.start() return app.exec_() if __name__ == '__main__': sys.exit(main())
[ "east@thyloved.ru" ]
east@thyloved.ru
01fc34ca4c86e39a1056f5e2da4c65e63a439c47
e48f694259b153457c14456a18a14431e93d3b41
/PY_TEST/Basic/writeHTML.py
8b48ec1dda29c220aa74cc7981491a4c6b9374b0
[]
no_license
desaidipen/Python
5e216e2b3ff017d7e09e1810918de667ec8ec394
c6bcce3f9b70e50d9512a4110810491f5a230c02
refs/heads/master
2023-08-21T17:20:57.709556
2023-08-07T15:55:57
2023-08-07T15:55:57
135,466,190
0
1
null
2020-04-28T21:07:31
2018-05-30T15:55:48
Java
UTF-8
Python
false
false
337
py
import re x = "Dipen Desai" y = f''' <html> <head> <title>Look at this</title> </head> <body> <h1>{x}</h1> <a href='http://www.google.com'>CLICK</a> </body> </html> ''' with open("C:/Users/RRDD/Desktop/myhtml.html", "w+") as my_html_file: my_html_file.write(y) print ('HTML File Created')
[ "RRDD@RRDD-PC" ]
RRDD@RRDD-PC
9f01a38f40869bcff88b1d1b134ed2654537deb6
61ba9ec78e004cbf7ad38dbc047b7d9b99a013cb
/src/GymNow_site/pages/migrations/0034_remove_bookingitem_complete.py
834f9dfef3858e9f642a5ec10c6a005d65799ae3
[]
no_license
lackeya2/GymNow-Final-Year-Project
eb286d5b75238057cc1443e05f0c569fc6b10846
89cabd3cb44b78dd5e103c7c34f940a222a4d9aa
refs/heads/master
2023-06-05T09:31:09.094600
2021-05-24T15:16:37
2021-05-24T15:16:37
378,228,110
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
# Generated by Django 2.2.7 on 2021-04-27 21:43 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('pages', '0033_bookingitem_complete'), ] operations = [ migrations.RemoveField( model_name='bookingitem', name='complete', ), ]
[ "adrian.lackey2@mail.dcu.ie" ]
adrian.lackey2@mail.dcu.ie
272ffbc73e9c7ae7398326658c0e363535799673
34ec7982e2e5f676f86caa8bfedccb8617b9b7cf
/Eric/Day5/day5-2.py
243aa4719cab58ebb1f7c708e6158ce80b0435be
[]
no_license
ntceleste/AdventOfCode2020
e1420523303b3cafb53cb14014bd2e8261091c19
139a9ba53b77700ab9385fb92a75ac43d1327f30
refs/heads/main
2023-01-31T19:54:14.107288
2020-12-20T06:15:56
2020-12-20T06:15:56
317,680,504
1
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
input = open('input.txt').read().split("\n") # BFFFBBFRRR: row 70, column 7, seat ID 567. # FFFBBBFRRR: row 14, column 7, seat ID 119. # BBFFBBFRLL: row 102, column 4, seat ID 820. # input = ['BFFFBBFRRR', 'FFFBBBFRRR', 'BBFFBBFRLL'] # print(input) ids = [] maxid = 0 for bsp in input: bspa = list(bsp) # print(bspa) row = 0 seat = 0 if len(bspa) == 10: if bspa[0] == 'B': row += 64 if bspa[1] == 'B': row += 32 if bspa[2] == 'B': row += 16 if bspa[3] == 'B': row += 8 if bspa[4] == 'B': row += 4 if bspa[5] == 'B': row += 2 if bspa[6] == 'B': row += 1 if bspa[7] == 'R': seat += 4 if bspa[8] == 'R': seat += 2 if bspa[9] == 'R': seat += 1 seatid = row * 8 + seat ids.append(seatid) if seatid > maxid: maxid = seatid # print(row, seat, seatid) myseatid = 0 for seatid in range(maxid): if seatid in ids: continue if seatid + 1 in ids: if seatid - 1 in ids: myseatid = seatid break print(myseatid)
[ "efc@clst.org" ]
efc@clst.org
0ec07afd40abdc8267ae389ccbb542bcd1c4364e
5027bed7f149f977943ce0f8f6bffa4e5683eb98
/testing1.py
8f83a3c79a4a1d01cf8fb51ad7a024926928fae9
[]
no_license
fbarneda/testing
3efe1ef6ba5010e840b0420d5916c1b360a7d9ce
273b94dae3cb2348a167f6f49e68a20a158c13fc
refs/heads/master
2020-07-09T03:24:39.633290
2019-11-04T23:27:56
2019-11-04T23:27:56
203,862,070
0
0
null
null
null
null
UTF-8
Python
false
false
3,453
py
#!/usr/bin/env python # coding: utf-8 # In[1]: dic_key = {'key1':'value1','key2':'value2'} # In[2]: dic_key # In[3]: dic_key['key2'] # In[4]: prices_lookup = {'apples':2.99,'oranges':1.99,'milk':5.80} # In[5]: prices_lookup['apples'] # In[7]: d = {'k1':123,'k2':[0,1,2],'k3':{'insideKey':100}} # In[8]: d['k3']['insideKey'] # In[10]: d['k2'][-1] # In[11]: d = {'key1':['a','b','c']} # In[13]: d['key1'][-1] = d['key1'][-1].upper() # In[14]: d # In[15]: d = {'k1':100,'k2':200} # In[16]: d # In[17]: d['k3'] = 300 # In[18]: d # In[19]: d['k1'] = 'NEW VALUE' # In[20]: d # In[21]: d = {'k1': 100, 'k2': 200, 'k3': 300} # In[22]: d.keys() # In[23]: for key in d.keys(): print(key) # In[24]: d.values() # In[25]: d.items() # In[ ]: # In[26]: # TUPLES # In[27]: t = (1,2,3) # In[28]: mylist = [1,2,3] # In[29]: type(t) # In[30]: type(mylist) # In[31]: t = ('one',2) # In[32]: t[0] # In[33]: t[-1] # In[34]: t = ('a','a','b') # In[46]: t.count('a') # COUNT number of elements in tuple # In[38]: t.index('a') # In[39]: t.index('b') # In[40]: t # In[42]: mylist[0] = "NEW" # In[43]: mylist # In[44]: t[0] = "NEW" # In[ ]: # In[45]: # SETS # In[47]: s = set() # In[48]: type(s) # In[49]: s # In[50]: s.add(1) # In[51]: s # In[52]: s.add(2) # In[53]: s # In[54]: s.add(2) # In[55]: s # In[56]: mylist = [1,1,1,1,2,2,2,2,2,3,3] # In[59]: set(mylist) # WE CAST it to a SET and we have only the UNIQUE values, UNORDERED # In[ ]: # In[60]: # BOOLS # In[61]: True # In[62]: False # In[63]: type(False) # In[64]: 1 > 2 # In[65]: 1==1 # In[71]: b = None # In[ ]: # In[72]: # FILES # In[73]: get_ipython().run_cell_magic('writefile', 'myfile.txt', 'Hello this is a text file\nthis is the second line\nthis is the third line') # In[74]: myfile = open('myfile.txt') # In[75]: myfile = open('whoops.txt') # In[76]: pwd # In[77]: myfile = open('myfile.txt') # In[78]: myfile.read() # In[79]: myfile.read() # In[82]: myfile.seek(0) # In[83]: contents = myfile.read() # In[84]: contents # In[90]: myfile.seek(0) # In[91]: myfile.readlines() # grab all lines in a list, each element is a line # In[94]: myfile.close() # best practise to close the process # In[96]: myfile = open('myfile.txt') # old way of doing things # In[97]: # new way of doing things: # In[98]: with open('myfile.txt') as my_new_file: contents = my_new_file.read() # with that, because of the indentation, no need to close the file # In[99]: contents # In[100]: with open('myfile.txt',mode='r') as myfile: contents = myfile.read() # In[101]: contents # In[102]: with open('myfile.txt',mode='w') as myfile: contents = myfile.read() # In[6]: get_ipython().run_cell_magic('writefile', 'my_new_file.txt', 'ONE ON FIRST\nTWO ON SECOND\nTHREE ON THIRD') # In[7]: with open('my_new_file.txt') as f: print(f.read()) # In[8]: with open('my_new_file.txt',mode='a') as f: f.write('FOUR ON FOURTH') # In[4]: # In[9]: with open('my_new_file.txt') as f: print(f.read()) # In[10]: with open('qwertyuiop.txt',mode='w') as f: f.write('I CREATED THIS FILE!') # In[12]: with open('qwertyuiop.txt',mode='r') as f: print(f.read())
[ "fbarneda@gmail.com" ]
fbarneda@gmail.com
28149a1fcfc7385618ac85811adcb0098abed088
7a28c3540cbaa2f583f60bae4721ec73a7dc7be9
/Project_useful/send_Email_Photo.py
00353d2f96380b93e3424bfcc73a3bd412318417
[]
no_license
mafiadarm/Python-Practice
0d1b085f883d95bf39e0c396ccaac548b951c957
ba9a8dd9a62f60df7130d2240628b7969800c647
refs/heads/master
2021-01-24T03:37:26.458176
2019-04-18T13:31:38
2019-04-18T13:31:38
122,897,253
0
1
null
null
null
null
UTF-8
Python
false
false
2,085
py
# -*- coding: utf-8 -*- """ ============================== Date: 02_07_2018 14:08 File Name: /GitHub/send_mail_html Creat From: PyCharm Python version: 3.6.2 - - - - - - - - - - - - - - - Description: 邮件带图片发送,图片作为html的一部分直接展示 ============================== """ import logging import smtplib from email.mime.text import MIMEText from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.header import Header from email.utils import parseaddr, formataddr __author__ = 'Loffew' logging.basicConfig(level=logging.DEBUG, format=" %(asctime)s - %(levelname)s - %(message)s") # [filename] # logging.disable(logging.CRITICAL) def pp_dbg(*args): return logging.debug(*args) def formatAddr(mail): name, addr = parseaddr(mail) return formataddr((Header(name, 'utf-8').encode(), addr)) smtp_server = "smtp.rosun.com.cn" # smtp服务器地址 from_mail = "hq-it@rosun.com.cn" # 邮件账号 mail_pwd = "r0sun*953@143@" # 登陆密码 to_mail = ["32336434@qq.com", "zhongshuai@rosun.com.cn"] # 接收邮件的地址 cc_mail = [] # 抄送"gaowh@rosun.com.cn" from_name = "集团流程IT部" # 发送者名称[可任意修改] subject = "标题" # 标题[可任意修改] body = ''' <h1>测试邮件</h1> <h2 style='color:red'>This is a test</h1> <img src="cid:image"/> ''' # 内容[用网页方式发送] 因为要插入图片,所以在body要插入,不然会作为附件处理 msg = MIMEMultipart() # 构造一个msg msg["From"] = formatAddr("{} <{}>".format(from_name, from_mail)) msg["To"] = ','.join(to_mail) msg["Subject"] = "标题" msg.attach(MIMEText(body, 'html', 'utf-8')) image_path = "C:/Users/lo/Desktop/sss.png" # 插入一张图片 with open(image_path, "rb") as rr: msgImage = MIMEImage(rr.read()) msgImage.add_header("Content-ID", "<image>") # 定义ID,对应body里面的 msg.attach(msgImage) s = smtplib.SMTP(smtp_server) s.login(from_mail, mail_pwd) s.sendmail(from_mail, to_mail + cc_mail, msg.as_string()) s.quit()
[ "Loffew@users.noreply.github.com" ]
Loffew@users.noreply.github.com
78bb2b9efb6fd01cdd50b4672b46b3cd3faf5f41
0f23b4b96cbe644991e6e191c56f0c7838c05bb4
/spider/baiduimage.py
5b7dfebcdfa1ec3f11d90455cb091cc7698166cf
[]
no_license
hongbozheng/PythonScrape
8e60f057ad1ccca719e2a1db94a5b4d0c0eb498f
0a9a0f988c225420d5b02023df88b9fa32ef2ad0
refs/heads/master
2021-07-07T01:35:09.741681
2017-10-03T08:15:13
2017-10-03T08:15:13
105,628,450
0
0
null
null
null
null
UTF-8
Python
false
false
3,876
py
# !/usr/bin/env python # -*- coding: utf-8 -*- import re import sys sys.path.append("/usr/local/lib/python2.7/site-packages") import requests import os from datetime import datetime as dt from bs4 import BeautifulSoup start_page = 124 end_page = 199 #2786 s_age = 0 e_age = 0 s_state = 0 folder = 'AsiandateGirlsVietam' index = 13395 uniqueIndex = 1700 def count(start=0, step=1): n = start i = 0 pages = end_page - start_page while i <= pages: yield n n += step i += 1 def getUrls(): url = "https://www.asiandate.com/Pages/Search/SearchResults.aspx?age_min=18&age_max=99&countryID=1000272&sortBy=4&pageNum={pn}" urls = (url.format(pn=x) for x in count(start=start_page, step=1)) return urls dirpath = '/Users/danny/Desktop/MultifacesForOnePerson/' + folder if not os.path.isdir(dirpath): os.mkdir(dirpath) def postSearchform(session, state): print "state: ", state searchURL = "https://www.ourtime.com/v3/search/processlegacyasync" searchpayload = { } headers = { 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36', 'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8', } # searchP = c.post(searchURL, data=searchpayload, headers=headers) # print "searchP: ",searchP def downloadImageByUrl(pic_url): print 'Downloading imageNum: {0}, address:{1} to {2}, uniqueFaceNum: {3}'.format( str(index), str( pic_url), folder, str( uniqueIndex)) try: res = requests.get(pic_url, timeout=10) if str(res.status_code)[0] == "4": print("Fail download: ", pic_url) except Exception as inst: print("Fail download2: ", pic_url) print(type(inst)) # the exception instance print(inst.args) # arguments stored in .args print(inst) else: filename = os.path.join(dirpath, str(index) + '-' + name + '-' + str(uniqueIndex) + ".jpg") with open(filename, 'wb') as f: f.write(res.content) with requests.Session() as c: LOGIN_URL = "https://www.asiandate.com/Pages/Security/Login.aspx?logout=1" # html = c.get(LOGIN_URL) # soup = BeautifulSoup(html.content, 'html.parser') payload = { "ctl00$ucContent$cntrlLogin$txtBoxLogin": "dannyzhengtest@gmail.com", "ctl00$ucContent$cntrlLogin$txtBoxPassword": "zheng123456", "ctl00$ucContent$cntrlLogin$btnLogin": "Login" } p = c.post(LOGIN_URL, data=payload) print "loginpost: ",p start_time = dt.now() urls = getUrls() for url in urls: print '************************newpage***************************' print 'url: ' + str(url) page = c.get(url) soupPage = BeautifulSoup(page.content, 'html.parser') ladys = soupPage.findAll('a',{'class':'b'}) print len(ladys) # print photolist for lady in ladys: href = lady['href'] print 'ladynameid: ' + href strs = href.split('/') nameid = strs[3][:-4] name = nameid[:-8] idstr = nameid[-7:] profile_url = 'https://www.asiandate.com/pages/lady/profile/profilepreview.aspx?LadyID=' + idstr print 'profile_url: ' + profile_url profilep = c.get(profile_url) profilesoup = BeautifulSoup(profilep.content,'html.parser') photolist = profilesoup.select('.thumbnail') for img in photolist: pic_url = img['href'] if 'http' not in pic_url: continue downloadImageByUrl(pic_url) index += 1 uniqueIndex +=1 print "Finish date :", dt.now(), "Images: ", index print "time used :", dt.now() - start_time
[ "danny@rainbe.com" ]
danny@rainbe.com
a7a49f8c72b412a0f3c972b895936a8a25e7021a
0bda1d033e321c00803325cf32010c069f393230
/Main.py
be0d961901d9d539ab4f43dcf9dc8fbaa1c95014
[]
no_license
RayLyu-Mac/COVID-19-SImulation
5d18ea92b009ac26f948fbcabe1ee7c76d175857
e7a87ed281e2822cb87b31fc5b8c1debf198b92d
refs/heads/main
2023-08-02T17:09:50.979893
2021-09-06T18:53:13
2021-09-06T18:53:13
312,124,618
0
0
null
null
null
null
UTF-8
Python
false
false
2,387
py
import pygame import random from os import path #initialize pygame.init() screen=pygame.display.set_mode((800,600)) running=True #Background background=pygame.image.load('bg.jpg') #title and icon pygame.display.set_caption("Space Invader") icon=pygame.image.load('spaceship.png') pygame.display.set_icon(icon) #player playerImage=pygame.image.load('pla.png') playerx=0 playery=500 playerxChange=5 def player(playerx,playery): screen.blit(playerImage,(playerx,playery)) #enemy enemyImage=pygame.image.load('ufo.png') enemyx=random.randint(0,800) enemyy=random.randint(50,150) enemyxchange=3 enemyychange=-5 #bullet bulletImage=pygame.image.load('bullet.png') bulletY=500 bulletX=0 bulletYchange=20 bullet_state='ready' def enemy(x,y): screen.blit(enemyImage,(x,y)) def fire_bullet(x,y): global bullet_state bullet_state="fire" screen.blit(bulletImage,(x+16,y+10)) #Game Loop while running: screen.fill((255,0,0)) screen.blit(background,(0,0)) player(playerx,playery) enemy(enemyx,enemyy) enemyx+=enemyxchange playerx+=playerxChange #checking the boundaries if playerx<=0: playerx=0 elif playerx>=740: playerx=740 if enemyx<=0: enemyx=0 enemyxchange*=-1 enemyy+=enemyychange elif enemyx>=740: enemyx=740 enemyxchange*=-1 enemyy-=enemyychange #bullet movement if bullet_state=="fire": fire_bullet(bulletX,bulletY) bulletY-=bulletYchange if bulletY<=0: bulletY=480 bullet_state='ready' for event in pygame.event.get(): if event.type==pygame.QUIT: running=False #if keystroke is pressed check whether its right or left if event.type==pygame.KEYDOWN: if event.key==pygame.K_LEFT: playerxChange=-5 if event.key==pygame.K_RIGHT: playerxChange=5 if event.key==pygame.K_SPACE: #after push the space, it will check if there is a bullet already if bullet_state is "ready": bulletX=playerx fire_bullet(bulletX,bulletY) if event.type==pygame.KEYUP: if event.key==pygame.K_LEFT or event.key==pygame.K_RIGHT: playerxChange=0 pygame.display.update() #RGB
[ "59774755+RayLyu-Mac@users.noreply.github.com" ]
59774755+RayLyu-Mac@users.noreply.github.com
e123e7fab6c6603d07d4503c50303cd33eda8a35
b4c4dc777fdfda297f52ae539e9123bcd4a31a39
/downloader.py
67edc1e7ef2111a02136613029764e1aae21a14c
[]
no_license
syedfaisalrizvi0-zz/youtubedownloader
9e218166a1cac9f3ea0ac91f648a6f8ae8d645a3
042fc3f0c65a485d126d0535f8d87130c56a8c93
refs/heads/master
2022-08-14T13:30:30.456438
2019-03-14T18:51:50
2019-03-14T18:51:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
import requests as re from bs4 import BeautifulSoup import youtube_dl print('Engine start....') qry = str(input('Enter the Video name : ')) qry = qry.replace(' ','+') data ='https://www.youtube.com/results?search_query='+qry html = re.get(data) soup = BeautifulSoup(html.text,'html.parser') yt_links = soup.find_all("a", class_ = "yt-uix-tile-link") yt_href = yt_links[0].get("href") href ='https://www.youtube.com'+yt_href ydl_opts = {'format': 'bestaudio/best','noplaylist' : True,} with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([href])
[ "noreply@github.com" ]
syedfaisalrizvi0-zz.noreply@github.com
b935da832f38d9d5b97eeb29131fc2a068757d69
509194b6a9e2ae124e819c3f358a93f49358c70c
/consistent/GetconsistantRegions.py
c43d2451b88e8377cbb0a1137f8ef5ff763b229e
[ "MIT" ]
permissive
tk2/assembly-eval
b540a6af3f09a2edb85fdb64cac42b3c34387919
3200867bf2490871fe54f3b8e03de0b16fa9b41e
refs/heads/master
2021-01-10T02:35:58.885068
2015-07-22T11:19:57
2015-07-22T11:19:57
36,653,335
0
0
null
null
null
null
UTF-8
Python
false
false
8,960
py
#!/homes/dthybert/software/Python-2.7.5/python import pysam import scipy.stats import sys import argparse class GenomeSegment: def __init__(self,size, chr,start): self.chr=chr self.start=start self.windowsSmoothing=5 self.lstPos=[0]*size self.lstNbRead=[0]*size self.lstFraction=[0.0]*size self.lstNormFraction=[0.0]*size self.lstOtherInformation=[[]]*size self.smoothedNbReads=[0.0]*size self.smoothedFraction=[0.0]*size def addPosition(self, position, index): tabLine=position.split("\t") self.lstPos[index]=int(tabLine[1]) self.lstNbRead[index]=int(tabLine[2]) self.lstFraction[index]=float(tabLine[3]) self.lstNormFraction[index]=float(tabLine[4]) self.lstOtherInformation[index]=tabLine[5:] def _average(self,lst): sum=0 for v in lst: sum=v+sum return float(sum)/float(len(lst)) def smooth(self,size): i=0 size=len(self.lstPos) while i < size: smoothNBRead=0.0 smmothFraction=0.0 if i < 5: smoothNBRead=self._average(self.lstNbRead[:i+self.windowsSmoothing]) smmothFraction=self._average(self.lstFraction[:i+self.windowsSmoothing]) elif i > size-5: smoothNBRead=self._average(self.lstNbRead[i-self.windowsSmoothing:]) smmothFraction=self._average(self.lstFraction[i-self.windowsSmoothing:]) else: smoothNBRead=self._average(self.lstNbRead[i-self.windowsSmoothing:i+self.windowsSmoothing]) smmothFraction=self._average(self.lstFraction[i-self.windowsSmoothing:i+self.windowsSmoothing]) self.smoothedNbReads[i]=smoothNBRead self.smoothedFraction[i]=smmothFraction i=i+1 def IdentifyGoodRegion(self, nbReadMini, FreqThreshold): lstRegions=[] start=self.start end=self.start i=0 while i < len(self.smoothedNbReads): if self.smoothedNbReads[i] < nbReadMini and self.smoothedFraction[i] <FreqThreshold: if start!=end: lstRegions.append([self.chr, start,end]) start=self.start+i end=self.start+i else: end=end+1 i=i+1 return lstRegions def Z_score(val, mean,std): return (float(val)-float(mean))/float(std) def loadStatistics(strconfigFile): statByFile={} objFile=open(strconfigFile) for line in objFile: if line[0]=="#": continue tabLine=line.split() file=tabLine[0] mean=float(tabLine[1]) std=float(tabLine[2]) statByFile[file]=[mean,std] return statByFile def getString(dico, file,pos): #print pos lsttag=dico[file][pos] stringTag="-" for tag in lsttag: if stringTag=="-": stringTag=str(tag) else: stringTag=stringTag+","+str(tag) return stringTag def getLineToPrint(dico,index,pos,chr): nbTotalOK=0 nbTotal=0 fractionOk=0.0 correctoedFractionOk=0.0 lstTotal=[] lstFraction=[] i=0 for sample in dico.keys(): lstTag=dico[sample][index] nbTagOK=0 nbTagMQbad=0 for tag in lstTag: if tag==1: nbTagOK=nbTagOK+1 if tag==4: nbTagMQbad=nbTagMQbad+1 lstTotal.append(nbTagOK) sizeSample=len(lstTag)-nbTagMQbad print sizeSample,len(lstTag) if sizeSample==0: fraction=0 else: fraction=float(nbTagOK)/float(sizeSample) lstFraction.append(fraction) nbTotal=nbTotal+sizeSample nbTotalOK=nbTotalOK+nbTagOK for fr in lstFraction: correctoedFractionOk=correctoedFractionOk+fr correctoedFractionOk=correctoedFractionOk/float(len(lstFraction)) fractionOk=0.0 if nbTotal!=0: fractionOk=float(nbTotalOK)/float(nbTotal) string=chr+"\t"+str(pos)+"\t"+str(nbTotalOK)+"\t"+str(fractionOk)+"\t"+str(correctoedFractionOk) i=0 for sample in dico.keys(): string=string+"\t"+str(lstTotal[i])+"\t"+str(lstFraction[i]) i=i+1 i=0 for sample in dico.keys(): string=string+"\t"+getString(dico,sample,index) i=i+1 return string def calculateFrequency(objreadcount, chr,start,end,outFile): objFile=open(outFile,"a") length=end-start+1 obgGenomeSegment=GenomeSegment(length,chr,start) i=0 while i < length: #print i, length pos=start+i string=getLineToPrint(objreadcount,i, pos, chr) obgGenomeSegment.addPosition(string, i) objFile.write(string+"\n") #print string i=i+1 objFile.close() return obgGenomeSegment ################################################################## # # # # # ################################################################# def countReadsMate(lstFile,dicoStats,chr,start,end,threshold_pval,MQ): dicoPos={} for file in lstFile: samfile = pysam.AlignmentFile(file, "rb") lstPos=[[]]*(end-start+1) for pileupcolumn in samfile.pileup(chr,start,end): position=pileupcolumn.reference_pos lst=[] if position < start: continue if position > end: break posTab=position-start for pReads in pileupcolumn.pileups: if pReads.alignment.mapping_quality < MQ: lst.append(4) if pReads.alignment.mate_is_unmapped: lst.append(0) #lstPos[posTab].append(0) elif samfile.getrname(pReads.alignment.next_reference_id) != chr: lst.append(3) else: rend=pReads.alignment.reference_end startMate=pReads.alignment.next_reference_start delta=abs(startMate-rend) mean=dicoStats[file][0] std=dicoStats[file][1] z=Z_score(delta,mean,std) p_value = scipy.stats.norm.sf([abs(z)])[0] #print pReads.alignment.next_reference_id #print mean, std, delta, p_value if p_value < threshold_pval: lst.append(2) else: lst.append(1) lstPos[posTab]=lst dicoPos[file]=lstPos return dicoPos def saveLstRegion(lstRegion, fileOut): objFile=open(fileOut,"a") for region in lstRegion: string=region[0]+"\t"+str(region[1])+"\t"+str(region[2])+"\n" objFile.write(string) objFile.close() def main(param): dicoStats=loadStatistics(param.strConfigFile) ##InitFileTo analyse outfile=param.outFile outReadCount=outfile+".rdc" outGoodRegion=outfile+".bed" objFile=open(outReadCount,"w") objFile.close() objFile=open(outGoodRegion,"w") objFile.close() lstBams=param.lstBamFiles.split(",") CurrStart=param.start CurrEnd=param.start+param.bin-1 #print end-start if param.end-param.start < param.bin: CurrEnd=param.end while CurrEnd <=param.end: ##count reads pair print "counting paired reads" hashReadCount=countReadsMate(lstBams,dicoStats,param.chr,CurrStart,CurrEnd,param.pvalMate,param.MQthreshold) ## calculate some stat and create an object that represnt genome segment (save the data in file print " calculate frequencies" objGenomSegment=calculateFrequency(hashReadCount,param.chr,CurrStart,CurrEnd,outReadCount) ## get the regioni print "smoothing count" objGenomSegment.smooth(param.smoothingWindows) print "identify regions" lstRegion=objGenomSegment.IdentifyGoodRegion(param.minReads, param.minFreq) ## save the regions saveLstRegion(lstRegion,outGoodRegion) CurrStart=CurrEnd+1 CurrEnd=CurrStart+param.bin-1 if CurrEnd > param.end: CurrEnd=param.end if CurrEnd<=CurrStart: break #################################################################################### parser = argparse.ArgumentParser() parser.add_argument('--bam_files', action='store', dest='lstBamFiles', default ="", help='liste of bam file to analyse format : bam1,bam2,...,bamN',required=True) parser.add_argument('--config', action='store', dest='strConfigFile', help='configuration file describing the mean and std of the insert per library', required=True) parser.add_argument('--out', action='store', dest='outFile', help='output file prefix where the data will be stored ', required=True) parser.add_argument('--chr', action='store', dest='chr', help='chromosome to analyse',required=True) parser.add_argument('--start', action='store', dest='start', help='start of the region to analyse',required=True, type=int) parser.add_argument('--end', action='store', dest='end', help='end of the region to analyse\n',required=True,type=int) parser.add_argument('--pval_mate', action='store', dest='pvalMate', help='pval threshold that two mates are in a good distance [0.0001]', default=0.0001, type=float) parser.add_argument('--min_reads', action='store', dest='minReads', help='minimum number of reads that satisfy the pair-ends constraints required to have a "good" region [8]', default=8, type=int) parser.add_argument('--min_freq', action='store', dest='minFreq', help='frequency threshold of reads satisfying the pair-end constraints to have a good regions [0.2]', default=0.2, type=float) parser.add_argument('--MQ', action='store', dest='MQthreshold', help='reads with a mapping quality < MQ won\'t be considered [25]', default=25, type =int) parser.add_argument('--smoothing_size', action='store', dest='smoothingWindows', help='size of the windows used to smooth the dataseti [5]', default=5, type=int) parser.add_argument('--bin', action='store', dest='bin', help='number of position evaluated before storing in file (this is for performances issues) [30000]', default=30000, type=int) param = parser.parse_args() main(param)
[ "tk2@sanger.ac.uk" ]
tk2@sanger.ac.uk
fcbba8373ebd9c2af4f3b86506b5331bbeb7ecda
7de58acd871c2306002f7694957e8f573e577b99
/src/training/train_xgboost.py
3fa5006a779526cc603be0c58b341b6fda88c31b
[]
no_license
dekukkk/StravaKudos
aa893b42c2b216e312e94065856aaf9a222743c9
5ac21e035010ce900a03f67d3b8046ff41768078
refs/heads/main
2023-08-22T04:51:59.410924
2021-10-22T22:44:01
2021-10-22T22:44:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,766
py
import pandas as pd import numpy as np import xgboost as xgb import pickle from sklearn import metrics from sklearn import preprocessing from sklearn import impute from sklearn.pipeline import Pipeline from scipy.sparse import hstack, vstack from imblearn.over_sampling import SMOTENC def run(fold): # read training data with folds df = pd.read_csv("input/data_train_kfold.csv") # list all numeric features num_cols = [ "distance", "moving_time", "total_elevation_gain", "max_speed", "average_heartrate", "max_heartrate", "suffer_score", "run_area", "average_speed_mpk", ] cat_cols = [ "workout_type", "timezone", "manual", "dayofweek", "weekend", "is_uk_awake", "latlng_cluster", "city", "has_photo", "run_per_day", "max_run", "is_named", ] ordinal_cols = ["hour", "pr_count"] # all cols are features except for target and kfold features = num_cols + cat_cols + ordinal_cols # fill cat column NaN values with NONE for col in cat_cols + ordinal_cols: df.loc[:, col] = df[col].astype(str).fillna("NONE") # training data is where kfold is not equal to fold df_train = df[df.kfold != fold].reset_index(drop=True) y_train = df_train.kudos_count.values # validation data is where kfold = fold df_valid = df[df.kfold == fold].reset_index(drop=True) y_valid = df_valid.kudos_count.values # pipelines for model transformation num_pipeline = Pipeline([("imputer", impute.SimpleImputer(strategy="median"))]) cat_pipeline = Pipeline( [("cat", preprocessing.OneHotEncoder(handle_unknown="ignore"))] ) # transforms columns and drops columns not specified x_train_num = num_pipeline.fit_transform(df_train[num_cols]) x_train_cat = cat_pipeline.fit_transform(df_train[cat_cols + ordinal_cols]) x_valid_num = num_pipeline.transform(df_valid[num_cols]) x_valid_cat = cat_pipeline.transform(df_valid[cat_cols + ordinal_cols]) # check shapes are the same assert ( x_train_num.shape[0] == y_train.shape[0] ), "training data (numeric) and label dimension are not equal" assert ( x_train_cat.shape[0] == y_train.shape[0] ), "training data (categorical) and label dimension are not equal" assert ( x_valid_num.shape[0] == y_valid.shape[0] ), "validation data (numeric) and label dimension are not equal" assert ( x_valid_cat.shape[0] == y_valid.shape[0] ), "validation data (categorical) and label dimension are not equal" # join numeric data and categorical data x_train = hstack((x_train_num, x_train_cat), format="csr") x_valid = hstack((x_valid_num, x_valid_cat), format="csr") # initialize xgboost model model = xgb.XGBRegressor(n_jobs=-1) # fit model on training data eval_set = [(x_valid, y_valid)] model.fit( x_train, y_train, early_stopping_rounds=10, eval_metric="rmse", eval_set=eval_set, verbose=False, ) # model.fit(x_train, y_train) # predict on validation data valid_preds = model.predict(x_valid) # get rmse, and mape rmse = metrics.mean_squared_error(y_valid, valid_preds, squared=False) max_error = metrics.max_error(y_valid, valid_preds) print(f"\nFold = {fold}, rmse = {rmse}, max error = {max_error}") data = [x_train, y_train, x_valid, y_valid] return rmse, model, data if __name__ == "__main__": scores = [] for fold_ in range(3): rmse, _, _ = run(fold_) scores.append(rmse) print(f"\nAverage rmse = {sum(scores) / len(scores)}")
[ "jackmleitch@gmail.com" ]
jackmleitch@gmail.com
f462a3d3110bd55c42950d29ebc9001cb1de915d
c45b7f89afa87d07cf8a65fd33d03f95f54898a2
/Sample_random_Sampling.py
23307de58640186f4d48db10576e24b34feb0beb
[]
no_license
kpp46/statistic_calculator
cf6a8ea77c92a5724f7e8d54a9f8d091e4abf7d8
2b32eceded7c51af89e9a47ef53376be3fc33290
refs/heads/master
2023-07-09T15:51:34.477301
2021-08-03T02:19:45
2021-08-03T02:19:45
392,249,457
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
import random from NListWithSeed import generator_int_and_float def population(data, sample_size): pp = random.choices(generator_int_and_float(data, sample_size), k=sample_size) return pp
[ "P.kirtan@yahoo.com" ]
P.kirtan@yahoo.com
b101e8a1d2e1295edb59878707e8b8b795eb6a7b
32f5787972ca0408ffbc57692cf38292eb80c6b3
/users/models.py
195961734988749e595de94a2a7598007339e25c
[]
no_license
bakiev05/avito_djangorestframework
c863fa0722cefaf47506e3f30b3d87e30ed4ca26
c07febcff913d631c7e14c5625112106aff16e66
refs/heads/main
2023-06-20T09:39:48.066575
2021-07-16T03:12:09
2021-07-16T03:12:09
386,479,921
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
from django.db import models from django.contrib.auth.models import AbstractUser from django.contrib.auth.models import User class User(AbstractUser): image = models.ImageField(upload_to='profile') class Meta: ordering = ('-id',)
[ "aziz.hadj1212@gmail.com" ]
aziz.hadj1212@gmail.com
38e33bb7a8de3cc2f1a1e00f7e908ff017e0c400
89033fbde9f166aabba4769d8104c18e1c2baa81
/amznscrp/autocompletesearch.py
0085886f90d951b665f3e3296ba433bd4d6543ca
[]
no_license
jenslaufer/amznscrp
67ff3087dc4d4e5591839d37eed25c4cb7b4a1f0
3d74701e7551106f3b2411f16a4f1ed0656303d5
refs/heads/master
2021-07-12T23:14:28.546741
2019-02-19T13:46:45
2019-02-19T13:46:45
167,195,848
3
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
from urllib.parse import quote_plus import re import requests import argparse import json from string import ascii_lowercase def scrape(keyword, proxy_srv, user_agents): s = requests.session() headers = { 'User-Agent': user_agents.get(), 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', } base_url = 'https://completion.amazon.co.uk' mid = 'A1PA6795UKMFR9' lop = 'de_DE' uri = '{0}/api/2017/suggestions?lop={1}&mid={2}&alias=aps&prefix={3}' f_kwrd = quote_plus(keyword) result = s.get(uri.format(base_url, lop, mid, f_kwrd), headers=headers, proxies=proxy_srv.get()) if "Invalid Marketplace ID" in result.text: resp = s.get(base_url).text mid = re.findall(re.compile( r'obfuscatedMarketId:\s"(.*)"'), resp)[0] result = s.get(uri.format(mid, f_kwrd), headers=headers, proxies=proxy_srv.get()) return json.loads(result.content)
[ "jenslaufer@gmail.com" ]
jenslaufer@gmail.com
4336c5431f1f6de898f7d06c3d024e572c248da5
89a0034c6a0904552d23a0f8c7a645869af275ca
/myportfolio/urls.py
4351e2f846a993ed522be692e951c10cd568b408
[]
no_license
Pheonix12/my_portfolio
9974be4f6b183f40811c13f393b8483afab329c6
fe6ef08d32d54ff15ce2f41e7d0760c14b52d2ae
refs/heads/main
2023-02-26T21:11:35.072276
2021-02-05T13:18:42
2021-02-05T13:18:42
334,504,263
0
1
null
null
null
null
UTF-8
Python
false
false
797
py
"""myportfolio URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('base.urls')) ]
[ "s.shaown@outlook.com" ]
s.shaown@outlook.com
c5383644b1d22a2d111b06f36d3970196a9d1d6a
94bfec39dd8bbf2906c010f96112fb71511ca1fb
/RTE/testfolder/part2/workin/part2.py
a932f0d7f1f719ec048049bfe30ccf6affe07019
[]
no_license
magnuskiro/IT3105-AIprog
636622c28f3dc04d9a2e066d0e1c8b79c9303ab0
5ac8abebdb230b89f6dd2da82c7c1c152a406af0
refs/heads/master
2020-04-21T11:57:20.100239
2011-11-23T22:52:34
2011-11-23T22:52:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
import rewrite import part2a import predict def init(file_name): print "Starting part II" step_size = 0.001 processed_file = rewrite.run(file_name) result = part2a.run(processed_file) predict.predict(step_size, result) print "Part II done" init("RTE2_dev.preprocessed.xml")
[ "janbremnes@gmail.com" ]
janbremnes@gmail.com
c556b39470401d6dc6b15137a371bc2d01395417
7829d22ea38576231cd286d6be4d66ec03783091
/Python/lab/lab-8/compute.py
e7a607c558d91a57d951b821a01c4b5e19ac85aa
[]
no_license
cuppar/course
10fd118e9b4b053cd11065864324877adefcb180
5fe112d34987de972dfb91c68ff5ab147d5f42c9
refs/heads/master
2020-03-07T02:43:32.760145
2018-06-26T15:41:33
2018-06-26T15:41:33
127,215,460
2
0
null
null
null
null
UTF-8
Python
false
false
730
py
""" 这是一个计算模块,可进行+,-,*,/,**运算 """ def add(a, b): """ 对输入的两个参数求和 a: 被加数 b: 加数 return: 和 """ return a+b def sub(a, b): """ 对输入的两个参数求差 a: 被减数 b: 减数 return: 差 """ return a-b def mul(a, b): """ 对输入的两个参数求积 a: 被乘数 b: 乘数 return: 积 """ return a*b def div(a, b): """ 对输入的两个参数求商 a: 被除数 b: 除数 return: 商 """ return a/b def pow(a, b): """ 对输入的第一个参数求第二个参数的幂 a: 基数 b: 指数 return: 幂 """ return a**b
[ "cuppar.hzy@gmail.com" ]
cuppar.hzy@gmail.com
37bcac96bbcd76d4f2527023b5e58f2e276b9c58
b1e325259687b58572ea962e5528fa5afa17e6f6
/python/src/algorithm_and_data_structure/alds1_9_a_complete_binary_tree.py
60e2c4f5b2a0ec6c77f4479383f5845eb1214f7c
[]
no_license
gen0083/atcoder_python
84e1b0a63a736f1fca21bf7fcda776f4016a30bd
93d5b1023242e562e4687119c94812d8c0df429c
refs/heads/master
2023-07-23T21:47:38.964277
2023-07-13T12:23:51
2023-07-13T12:23:51
231,208,047
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
# 完全二分木 # http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_9_A&lang=jp import sys def main(): n = int(input()) heap = [""] * (n + 1) i = 1 for s in input().split(): heap[i] = s i += 1 for i in range(1, n + 1): sys.stdout.write("node %d: key = %s," % (i, heap[i])) if i // 2 > 0: sys.stdout.write(" parent key = %s," % heap[i // 2]) if i * 2 <= n: sys.stdout.write(" left key = %s," % heap[i * 2]) if i * 2 + 1 <= n: sys.stdout.write(" right key = %s," % heap[i * 2 + 1]) print(" ") if __name__ == '__main__': main()
[ "archiherewego@gmail.com" ]
archiherewego@gmail.com
6dfd74694db9b8ab526ada69999029b70c75dd49
d4341f9f4f3c389e0c2aa0143330d2aef19ac25c
/Algorithms/little_labyrinth.py
4bc356de45cb38decb0150668fcf1e9afe35af4c
[]
no_license
aeirado/hello-world
0d24f027dcb9342363e0c01c8202c22facec48c4
bf0679e74f9088730d641d5c7e7cc6615283de0a
refs/heads/master
2021-05-23T05:09:51.750783
2018-06-04T20:02:45
2018-06-04T20:02:45
95,236,575
1
0
null
2017-06-23T17:50:44
2017-06-23T16:19:26
null
UTF-8
Python
false
false
10,132
py
'''Maze Sotution Algorithm''' LABYRINTH = [ ['x', 'x', 'x', 'x', 'x', '-', 'x', 'x'], ['x', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', '-', 'x'], ['x', '-', '-', '-', '-', '-', '-', 'x'], ['x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'] ] LABYRINTH_2 = [ ['x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'], ['x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', 'x', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', '-', '-', '-', '-', 'x', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', '-', '-', '-', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', 'x', '-', 'x', '-', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', 'x', '-', '-', 'x', '-', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', '-', '-', '-', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', '-', '-', 'x', 'x', 'x', 'x', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', '-', '-', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', 'x', 'x', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'] ] LAB_CLEAN = [ ['x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'], ['x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', 'x', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', '-', '-', '-', '-', 'x', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', '-', '-', '-', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', '-', 'x', '-', '-', '-', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', '-', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', 'x', '-', 'x', '-', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', 'x', '-', '-', 'x', '-', '-', 'x', 'x', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', '-', '-', '-', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', '-', '-', 'x', 'x', 'x', 'x', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', '-', 'x', 'x', 'x', '-', 'x', '-', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', '-', '-', '-', '-', '-', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', '-', 'x', 'x', 'x', 'x', 'x', '-', 'x'], ['x', 'x', 'x', 'x', 'x', '-', 'x', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', '-', 'x'], ['x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x', 'x'] ] GOAL = 'G' PERSON = '☺' WALL = 'x' MSG1 = '' def print_maze_coordinates(maze): print('\n{:^68}'.format('L A B Y R I N T H')) print('--------------------------------------------------------------------') print(' 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22') for i in range(22): print('{:0>2}'.format(i + 1), end=' ') for j in maze[i]: print('{:' '<2}'.format(j), end=' ') print() def input_print(*msg): pass def true_coord(x, y): coord = (x, y) coord = tuple(i - 1 for i in coord) return coord def insert_G_P(maze, goal, person, gxy=(21, 6), pxy=(21, 21)): gxy = true_coord(gxy[0], gxy[1]) pxy = true_coord(pxy[0], pxy[1]) maze[gxy[0]][gxy[1]] = goal maze[pxy[0]][pxy[1]] = person return maze, gxy, pxy def map_maze(maze, wall): maze_keys = [(x, y) for x in range(len(maze)) for y in range(len(maze))] maze_maped = dict(zip(maze_keys, [j for i in range(len(maze)) for j in maze[i]])) # for k in maze_maped.copy(): # if maze_maped[k] == 'x': # maze_maped.pop(k) # the for above works too maze_maped = {k : v for k, v in iter(maze_maped.items()) if v is not wall} return maze_maped def count_distances(maze_maped, gxy, pxy): ''' Marca todos os passos do labirinto com um número que vai crescendo desde de GOAL até preencher todo o laririnto. O menor caminho a ser percorrido é aquele que chega até PERSON com o mínimo de passos. Usa-se uma estrutura dict para marcar a "distância" (número inteiro) e o antecessor ("pai"). Percorrendo o labirinto de PERSON até GOAL de pai em pai vai-se chegar a GOAL pelo menor caminho. ''' def prepare_maze_map(maze_maped): for k in maze_maped.keys(): maze_maped[k] = {"distance": 0, "father": (0, 0)} return maze_maped def update_dist_father(actual, queue, exploreds): maze[adj] = {"distance": maze[actual]['distance'] + 1, "father": actual} queue.append(adj) exploreds.append(adj) maze = prepare_maze_map(maze_maped) maze[gxy] = {"distance": 0, "father": gxy} adjacents = list(maze.keys()) adjacents.remove(gxy) goal = gxy queue = [goal] exploreds = [goal] while queue: actual = queue.pop(0) actual_row, actual_col = actual[0], actual[1] for adj in adjacents: if adj in exploreds: continue adj_row, adj_col = adj[0], adj[1] if actual_row == 0 and actual_row + 1 == adj_row: if actual_col == adj_col: update_dist_father(actual, queue, exploreds) elif actual_row == 7 and actual_row - 1 == adj_row: if actual_col == adj_col: update_dist_father(actual, queue, exploreds) elif actual_col == 0 and actual_col + 1 == adj_col: if actual_row == adj_row: update_dist_father(actual, queue, exploreds) elif actual_col == 7 and actual_col - 1 == adj_col: if actual_row == adj_row: update_dist_father(actual, queue, exploreds) elif actual_row + 1 == adj_row or actual_row - 1 == adj_row: if actual_col == adj_col: update_dist_father(actual, queue, exploreds) elif actual_col + 1 == adj_col or actual_col - 1 == adj_col: if actual_row == adj_row: update_dist_father(actual, queue, exploreds) maze[pxy]['distance'] = PERSON maze[gxy]['distance'] = GOAL return maze def label_distances(maze, maze_distances): for key in maze_distances.keys(): maze[key[0]][key[1]] = maze_distances[key]['distance'] return maze def walking_to_goal(maze, maze_distances, gxy, pxy): father = (0, 0) actual = pxy distance = maze_distances[maze_distances[actual]['father']]['distance'] for _ in range(distance + 1): father = maze_distances[actual]['father'] # maze[actual[0]][actual[1]] = '-' # print('actual:', actual,'====> father:', father) maze[father[0]][father[1]] = PERSON actual = father return maze if __name__ == "__main__": lab, g_coord, p_coord = insert_G_P(LABYRINTH_2, GOAL, PERSON) lab_clean, x, y = insert_G_P(LAB_CLEAN, GOAL, PERSON) print_maze_coordinates(lab) maze_distances = count_distances(map_maze(lab, WALL), g_coord, p_coord) print_maze_coordinates(label_distances(lab, maze_distances)) print_maze_coordinates(walking_to_goal(lab_clean, maze_distances, g_coord, p_coord))
[ "aeirado@gmail.com" ]
aeirado@gmail.com
d8c7e6d7db9bca7d7f44fc210e2ec9ec36afa5ea
aa87ba72785c0a32f98adcb8a978963baf5d122f
/Mobley_logP/tautomerExploration/makeMAEfiles.py
31b1598a63ee4d2fd623d9c493ecf1d97b3d7400
[ "MIT" ]
permissive
zyh0608/SAMPL5_logD_PredictionAnalysis
b475ad5156827c100e126ef0e39dadcc64621cca
c7675a8f183a465bee89599a6df9e360476ef868
refs/heads/master
2021-12-24T03:40:06.460732
2017-12-07T20:34:27
2017-12-07T20:34:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
953
py
# Written by Caitlin C Bannan # Mobley Group, University of California Irvine # February 2016 # This script uses the schrodinger tool ligprep to analyze all the SAMPL5 molecule files and perform a tautomer enumeration to get a state penalty for the tautomer used in our analysis import commands as c import os import glob import sys #convertCommand = "/opt/schrodinger/suites2014-4/utilities/structconvert -imol2 %s -omae %s.mae" #allpKaCommand = "/opt/schrodinger/suites2014-4/epik -imae %s.mae -omae %s_allpKa.mae" LigPrepCommand = "/opt/schrodinger/suites2014-4/ligprep -imae %s.mae -omae ligprep_%s.maegz -bff 14 -ph 7.4 -retain_i -ac -s 32 -r 1 -epik" maeFiles = glob.glob('../MoleculeFiles/SAMPL5_*.mae') for f in maeFiles: samplID = f.split('.')[0] if os.path.isfile('ligprep_%s.maegz' % samplID): continue print samplID # Create mae and log file with pKas print c.getoutput(LigPrepCommand % (samplID, samplID))
[ "bannanc@uci.edu" ]
bannanc@uci.edu
4aa21d3a7adf0f9f45a4c35ec08d660026730f4a
8c06317ee3bb99e8035ef2182256030a965acf29
/spint/universal.py
60fefbbfbc97c1469513dfa8569cc17b6cd268f5
[ "BSD-3-Clause" ]
permissive
TaylorOshan/spint
4120bea89d56d7be35e74328f953eef4cb5428a8
8496c55ae5097904965f1fb1f70a918aea77353a
refs/heads/master
2021-08-17T22:47:24.466224
2021-01-15T18:20:13
2021-01-15T18:20:13
79,855,998
1
1
null
2017-01-23T22:42:19
2017-01-23T22:42:19
null
UTF-8
Python
false
false
10,196
py
""" Implementations of universal spatial interaction models: Lenormand's model, radiation model, and population-weighted opportunities. References ---------- Lenormand, M., Huet, S., Gargiulo, F., and Deffuant, G. (2012). "A Universal Model of Commuting Networks." PLOS One, 7, 10. Simini, F., Gonzalez, M. C., Maritan, A., Barabasi, A.-L. (2012). "A universal model for mobility and migration patterns." Nature, 484, 96-100. Yan, X.-Y., Zhao, C., Fan, Y., Di, Z., and Wang, W.-X. (2014). "Universal predictability of mobility patterns in cities." Journal of the Royal Society Interface, 11, 100. """ __author__ = 'Tyler Hoffman tylerhoff1@gmail.com' from abc import ABC, abstractmethod import numpy as np import pandas as pd from scipy.stats import pearsonr class Universal(ABC): """ Base class for all the universal models as they all have similar underlying structures. For backend design purposes, not practical use. Parameters ---------- inflows : array of reals N x 1, observed flows into each location outflows : array of reals M x 1, observed flows out of each location dists : matrix of reals N x M, pairwise distances between each location Attributes ---------- N : integer number of origins M : integer number of destinations flowmat : abstract method estimates flows, implemented by children """ def __init__(self, inflows, outflows, dists): self.N = len(outflows) # number of origins self.M = len(inflows) # number of destinations self.outflows = outflows.copy() # list of origin outflows self.inflows = inflows.copy() # list of destination inflows self.dists = dists.copy() # list of distances @abstractmethod def flowmat(self): pass class Lenormand(Universal): """ Universal model based off of Lenormand et al. 2012, "A Universal Model of Commuting Networks". Parameters ---------- inflows : array of reals N x 1, observed flows into each location outflows : array of reals M x 1, observed flows out of each location dists : matrix of reals N x M, pairwise distances between each location beta : scalar real, universal parameter for the model avg_sa : scalar real, average surface area of units Attributes ---------- N : integer number of origins M : integer number of destinations calibrate : method calibrates beta using constants from the paper flowmat : method estimates flows via the Lenormand model """ def __init__(self, inflows, outflows, dists, beta=1, avg_sa=None): super().__init__(inflows, outflows, dists) self.beta = self.calibrate(avg_sa) if avg_sa is not None else beta def calibrate(self, avg_sa): # Constants from the paper nu = 0.177 alpha = 3.15 * 10**(-4) self.beta = alpha*avg_sa**(-nu) def flowmat(self): # Builds the matrix T from the parameter beta and a matrix of distances T = np.zeros((self.N, self.M)) # Copy class variables so as not to modify sIN = self.inflows.copy() sOUT = self.outflows.copy() # Assembly loop while sum(sOUT) > 0: # Pick random nonzero sOUT idxs, = np.where(sOUT > 0) i = np.random.choice(idxs) # Compute Pij's (not memoized b/c it changes on iteration) Pi = np.multiply(sIN, np.exp(-self.beta*self.dists[i, :])) / \ np.dot(sIN, np.exp(-self.beta*self.dists[i, :])) # Pick random j according to Pij j = np.random.choice(range(self.N), p=Pi) # Adjust values T[i, j] += 1 sIN[j] -= 1 sOUT[i] -= 1 return T class Radiation(Universal): """ Universal model based off of Simini et al. 2012, "A universal model for mobility and migration patterns". Requires slightly more data than Lenormand. Parameters ---------- inflows : array of reals N x 1, observed flows into each location outflows : array of reals M x 1, observed flows out of each location dists : matrix of reals N x M, pairwise distances between each location ilocs : array of reals N x 2, inflow node locations olocs : array of reals M x 2, outflow node locations Attributes ---------- N : integer number of origins M : integer number of destinations flowmat : method estimates flows via the Radiation model """ def __init__(self, inflows, outflows, dists, ilocs, olocs): super().__init__(inflows, outflows, dists) self.ilocs = ilocs.copy() self.olocs = olocs.copy() def _from_origin(self, idx, total_origins): # Sort destinations by distance from origin didxs = np.argsort(self.dists[idx, :]) inflows = self.inflows[didxs] # Normalization F = 1.0/(1.0 - self.outflows[idx]/total_origins) pop_in_radius = 0 flows = np.zeros((self.M,)) for j in range(self.M): # Use formula from the paper flows[j] = F*(self.outflows[idx]*inflows[j]) / \ ((self.outflows[idx] + pop_in_radius) * (self.outflows[idx] + inflows[j] + pop_in_radius)) pop_in_radius += inflows[j] # Unsort list return flows[didxs.argsort()] def flowmat(self): # Builds the OD matrix T from the inputted data T = np.zeros((self.N, self.M)) total_origins = sum(self.outflows) for i in range(self.N): T[i, :] = self._from_origin(i, total_origins) return T class PWO(Universal): """ Population-weighted opportunies (PWO) implements a universal model based off of Yan et al. 2014, "Universal predictability of mobility patterns in cities". Requires slightly more data than Lenormand. Parameters ---------- inflows : array of reals N x 1, observed flows into each location outflows : array of reals M x 1, observed flows out of each location dists : matrix of reals N x M, pairwise distances between each location ilocs : array of reals N x 2, inflow node locations olocs : array of reals M x 2, outflow node locations Attributes ---------- N : integer number of origins M : integer number of destinations flowmat : method estimates flows via the Radiation model """ def __init__(self, inflows, outflows, dists, ilocs, olocs): super().__init__(inflows, outflows, dists) self.ilocs = ilocs.copy() self.olocs = olocs.copy() self.total = sum(inflows) # total population of the system def _from_destination(self, jdx): # Sort origins by distance from destination didxs = np.argsort(self.dists[jdx, :]) outflows = self.outflows[didxs] pop_in_radius = self.inflows[jdx] # here pop_in_radius includes endpts flows = np.zeros((self.N,)) # Loop over origins for i in range(self.N): pop_in_radius += outflows[i] # add other endpt # Compute denominator denom = 0 denom_pop_in_radius = outflows[i] for k in range(self.M): # loop over destinations denom_pop_in_radius += self.inflows[k] if k != i: denom += self.inflows[k] * (1/denom_pop_in_radius - 1/self.total) # Use formula from the paper flows[i] = self.inflows[jdx]*(1/pop_in_radius - 1/self.total)/denom # Unsort list return flows[didxs.argsort()] def flowmat(self): # Builds the OD matrix T from the inputted data T = np.zeros((self.N, self.M)) for j in range(self.M): T[:, j] = self._from_destination(j) return T def test(): # Read data from Austria file N = 9 austria = pd.read_csv('austria.csv') modN = austria[austria.index % N == 0] outflows = modN['Oi'].values inflows = austria['Dj'].head(n=N).values locs = np.zeros((N, 2)) locs[:, 0] = modN['X'].values locs[:, 1] = modN['Y'].values dists = np.reshape(austria['Dij'].values, (N, N), order='C') T_obs = np.reshape(austria['Data'].values, (N, N), order='C') # Lenormand paper's model model = Lenormand(inflows, outflows, dists) T_L = model.flowmat() print(pearsonr(T_L.flatten(), T_obs.flatten())) # Radiation model -- requires locations of each node model = Radiation(inflows, outflows, dists, locs, locs) T_R = model.flowmat() print(pearsonr(T_R.flatten(), T_obs.flatten())) # PWO model model = PWO(inflows, outflows, dists, locs, locs) T_P = model.flowmat() print(pearsonr(T_P.flatten(), T_obs.flatten())) if __name__ == '__main__': test()
[ "tayoshan@gmail.com" ]
tayoshan@gmail.com
08aa07947973611446df1c9c162384db088191e3
6a6c2b922c3ff3d35622c8b9638426fb162b79ed
/pnc_cli/swagger_client/models/project.py
82765a36a314e3882363e137823cac3e52b4b789
[ "Apache-2.0" ]
permissive
thauser/pnc-cli
1383f45a309a34b12a8792d4e648259c8cd8b33b
cf9a1ce236c3de9ec6c393816e3c75db2f75bc33
refs/heads/master
2021-04-19T00:48:26.375270
2017-11-09T13:01:24
2017-11-09T16:14:23
36,449,869
0
4
null
null
null
null
UTF-8
Python
false
false
6,973
py
# coding: utf-8 """ Copyright 2015 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from datetime import datetime from pprint import pformat from six import iteritems class Project(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ Project - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'id': 'int', 'name': 'str', 'description': 'str', 'issue_tracker_url': 'str', 'project_url': 'str', 'license': 'License', 'build_configurations': 'list[BuildConfiguration]', 'field_handler': 'FieldHandler' } self.attribute_map = { 'id': 'id', 'name': 'name', 'description': 'description', 'issue_tracker_url': 'issueTrackerUrl', 'project_url': 'projectUrl', 'license': 'license', 'build_configurations': 'buildConfigurations', 'field_handler': 'fieldHandler' } self._id = None self._name = None self._description = None self._issue_tracker_url = None self._project_url = None self._license = None self._build_configurations = None self._field_handler = None @property def id(self): """ Gets the id of this Project. :return: The id of this Project. :rtype: int """ return self._id @id.setter def id(self, id): """ Sets the id of this Project. :param id: The id of this Project. :type: int """ self._id = id @property def name(self): """ Gets the name of this Project. :return: The name of this Project. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this Project. :param name: The name of this Project. :type: str """ self._name = name @property def description(self): """ Gets the description of this Project. :return: The description of this Project. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this Project. :param description: The description of this Project. :type: str """ self._description = description @property def issue_tracker_url(self): """ Gets the issue_tracker_url of this Project. :return: The issue_tracker_url of this Project. :rtype: str """ return self._issue_tracker_url @issue_tracker_url.setter def issue_tracker_url(self, issue_tracker_url): """ Sets the issue_tracker_url of this Project. :param issue_tracker_url: The issue_tracker_url of this Project. :type: str """ self._issue_tracker_url = issue_tracker_url @property def project_url(self): """ Gets the project_url of this Project. :return: The project_url of this Project. :rtype: str """ return self._project_url @project_url.setter def project_url(self, project_url): """ Sets the project_url of this Project. :param project_url: The project_url of this Project. :type: str """ self._project_url = project_url @property def license(self): """ Gets the license of this Project. :return: The license of this Project. :rtype: License """ return self._license @license.setter def license(self, license): """ Sets the license of this Project. :param license: The license of this Project. :type: License """ self._license = license @property def build_configurations(self): """ Gets the build_configurations of this Project. :return: The build_configurations of this Project. :rtype: list[BuildConfiguration] """ return self._build_configurations @build_configurations.setter def build_configurations(self, build_configurations): """ Sets the build_configurations of this Project. :param build_configurations: The build_configurations of this Project. :type: list[BuildConfiguration] """ self._build_configurations = build_configurations @property def field_handler(self): """ Gets the field_handler of this Project. :return: The field_handler of this Project. :rtype: FieldHandler """ return self._field_handler @field_handler.setter def field_handler(self, field_handler): """ Sets the field_handler of this Project. :param field_handler: The field_handler of this Project. :type: FieldHandler """ self._field_handler = field_handler def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, datetime): result[attr] = str(value.date()) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str()
[ "thauser@redhat.com" ]
thauser@redhat.com
a61152fb7d88aa633634dfe02f3bc6b0900c09a5
4a4d8b806f42a1943d3c3d378174529265380324
/useMap.py
e79b1ecb6a11cc2fe8a70a1558cb753c28a0a72b
[]
no_license
syves/sandbox
c4ec6f1c03ebeb94dcf02fb3de07f2611e59f0e7
0394fc74d119ec1cc4bb1403bf1488825923152a
refs/heads/master
2016-08-02T21:27:16.514892
2014-04-07T05:52:12
2014-04-07T05:52:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
lst = [37, 996, 28, 10] def times_3(num): return num * 3 def times_2(num): return num * 2 def make_multiplier(n): lambda m: m * n times_3 = make_multiplier(3) times_2 = make_multiplier(2) def product(a, b): return a * b import functools times_3 = functools.partial(product, 3) times_2 = functools.partial(product, 2) print "map", map(times_2, lst) print "list comp", [nums * 2 for nums in lst]
[ "7shakrahs@gmail.com" ]
7shakrahs@gmail.com
3b624809c01f392d200d800727230749108bafad
c41a5d8923e3954232c7bb401cf528b60bf5d615
/docs/conf.py
31434ccdde21d167da3efe7e475c4fa6e9dddb9f
[ "MIT" ]
permissive
TG-Techie/Adafruit_CircuitPython_ST7735R
fed1718fe305b7b5937da97fffab6455636ed481
7bc2f385464db75a0bd580f3297439d2ad330fa1
refs/heads/master
2020-05-30T01:53:55.026168
2019-06-01T17:47:11
2019-06-01T17:47:11
189,487,410
0
0
MIT
2019-06-01T13:05:45
2019-05-30T21:53:53
Python
UTF-8
Python
false
false
5,255
py
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.todo', ] # TODO: Please Read! # Uncomment the below if you use native CircuitPython modules such as # digitalio, micropython and busio. List the modules you use. Without it, the # autodoc module docs will fail to generate with a warning. # autodoc_mock_imports = ["digitalio", "busio"] autodoc_mock_imports = ["displayio"] intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None),'CircuitPython': ('https://circuitpython.readthedocs.io/en/latest/', None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Adafruit ST7735R Library' copyright = u'2019 Scott Shawcroft' author = u'Scott Shawcroft' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0' # The full version, including alpha/beta/rc tags. release = u'1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '.env', 'CODE_OF_CONDUCT.md'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = "any" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # If this is True, todo emits a warning for each TODO entries. The default is False. todo_emit_warnings = True napoleon_numpy_docstring = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.'] except: html_theme = 'default' html_theme_path = ['.'] else: html_theme_path = ['.'] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = '_static/favicon.ico' # Output file base name for HTML help builder. htmlhelp_basename = 'AdafruitSt7735RLibrarydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'AdafruitST7735RLibrary.tex', u'AdafruitST7735R Library Documentation', author, 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'AdafruitST7735Rlibrary', u'Adafruit ST7735R Library Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'AdafruitST7735RLibrary', u'Adafruit ST7735R Library Documentation', author, 'AdafruitST7735RLibrary', 'One line description of project.', 'Miscellaneous'), ]
[ "melissa@melissagirl.com" ]
melissa@melissagirl.com
67249075941b16fc6956ad6e62942e8090c2c8cc
ec61946a176935044d08cf1244d2185f2460df32
/pyleecan/Methods/Machine/MachineSRM/get_machine_type.py
3469489164e082846042f4764cbb5bc2b647bfaf
[ "Apache-2.0" ]
permissive
Lunreth/pyleecan
d3974a144cb8a6c332339ab0426f1630b7516fc9
1faedde4b24acc6361fa1fdd4e980eaec4ca3a62
refs/heads/master
2023-06-07T01:46:32.453763
2021-07-01T21:29:51
2021-07-01T21:29:51
383,880,732
1
0
Apache-2.0
2021-07-07T17:47:01
2021-07-07T17:47:01
null
UTF-8
Python
false
false
979
py
# -*- coding: utf-8 -*- def get_machine_type(self): """Return a string with the main information about the machine architecture Parameters ---------- self : MachineSRM A MachineSRM object Returns ------- type_str: str SRM Zs/Zr/p (int/ext rotor) """ type_str = "SRM " if self.stator.slot is None: type_str += "0s / " elif self.stator.slot.Zs is not None: type_str += str(self.stator.slot.Zs) + "s / " else: type_str += "?s / " if self.rotor.slot is None: type_str += "0r / " elif self.rotor.slot.Zs is not None: type_str += str(self.rotor.slot.Zs) + "r / " else: type_str += "?r / " if self.stator.winding.p is not None: type_str += str(self.stator.winding.p) + "p" else: type_str += "?p" if self.stator.is_internal: type_str += " (ext rotor)" else: type_str += " (int rotor)" return type_str
[ "pierre.bonneel@gmail.com" ]
pierre.bonneel@gmail.com