blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
32f05b77100c28b9d1b8b4cb3de8164e01404a65
b9e065798f51eb60d8b29bc0756990103a7b5e70
/application/controller/Demo.py
b8435f5ae15a54926d7091f2e79b846cc944e392
[ "Apache-2.0" ]
permissive
jayqiyoung/LuckyPython
02f56c8cbb09d80a597ff430712c2b985567d7f4
8546214c62b3173f3bd4cf0a59476a9a7a48743e
refs/heads/master
2020-12-25T12:28:31.110804
2016-01-25T10:19:54
2016-01-25T10:19:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
import LuckyPython class Demo: @staticmethod def welcome(self): data = dict() data["name"] = "World" view = LuckyPython.View("application/view") return view.show_page("Demo/welcome.html", data) @staticmethod def hello(self, name): return "Hello {0} !".format(name)
[ "kandisheng@163.com" ]
kandisheng@163.com
ece7a1b4904871303354b9e1284c3e3f5a49bdde
ee37afaea6263875c86ab1215e0452501c47e408
/Models/DeepFM.py
8683dd3c92858c9f479c9deac0d39526da1b2bdc
[]
no_license
bytecamp2019-alg-10/mtl
abfe5f175a414334309e6cb63b5e1ab10f14ae16
4600846245c87efc2f52add3be75ba35fc20f333
refs/heads/master
2020-07-10T21:24:17.404162
2019-08-28T13:06:15
2019-08-28T13:06:15
204,374,888
0
0
null
null
null
null
UTF-8
Python
false
false
18,809
py
""" Tensorflow implementation of DeepFM [1] Reference: [1] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, Huifeng Guo, Ruiming Tang, Yunming Yey, Zhenguo Li, Xiuqiang He. """ import numpy as np import tensorflow as tf from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import roc_auc_score from time import time from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm from YellowFin.tuner_utils.yellowfin import YFOptimizer class DeepFM(BaseEstimator, TransformerMixin): def __init__(self, feature_size, field_size, embedding_size=8, dropout_fm=[1.0, 1.0], deep_layers=[32, 32], dropout_deep=[0.5, 0.5, 0.5], deep_layers_activation=tf.nn.relu, epoch=10, batch_size=256, learning_rate=0.001, optimizer_type="adam", batch_norm=0, batch_norm_decay=0.995, verbose=False, random_seed=2016, use_fm=True, use_deep=True, loss_type="logloss", eval_metric=roc_auc_score, l2_reg=0.0, greater_is_better=True): assert (use_fm or use_deep) assert loss_type in ["logloss", "mse"], \ "loss_type can be either 'logloss' for classification task or 'mse' for regression task" self.feature_size = feature_size # denote as M, size of the feature dictionary self.field_size = field_size # denote as F, size of the feature fields self.embedding_size = embedding_size # denote as K, size of the feature embedding self.dropout_fm = dropout_fm self.deep_layers = deep_layers self.dropout_deep = dropout_deep self.deep_layers_activation = deep_layers_activation self.use_fm = use_fm self.use_deep = use_deep self.l2_reg = l2_reg self.epoch = epoch self.batch_size = batch_size self.learning_rate = learning_rate self.optimizer_type = optimizer_type self.batch_norm = batch_norm self.batch_norm_decay = batch_norm_decay self.verbose = verbose self.random_seed = random_seed self.loss_type = loss_type self.eval_metric = eval_metric self.greater_is_better = greater_is_better self.train_result, self.valid_result = [], [] self._init_graph() def _init_graph(self): self.graph = tf.Graph() with self.graph.as_default(): tf.set_random_seed(self.random_seed) self.feat_index = tf.placeholder(tf.int32, shape=[None, None], name="feat_index") # None * F self.feat_value = tf.placeholder(tf.float32, shape=[None, None], name="feat_value") # None * F self.label = tf.placeholder(tf.float32, shape=[None, 1], name="label") # None * 1 self.dropout_keep_fm = tf.placeholder(tf.float32, shape=[None], name="dropout_keep_fm") self.dropout_keep_deep = tf.placeholder(tf.float32, shape=[None], name="dropout_keep_deep") self.train_phase = tf.placeholder(tf.bool, name="train_phase") self.weights = self._initialize_weights() # model self.embeddings = tf.nn.embedding_lookup(self.weights["feature_embeddings"], self.feat_index) # None * F * K feat_value = tf.reshape(self.feat_value, shape=[-1, self.field_size, 1]) self.embeddings = tf.multiply(self.embeddings, feat_value) # ---------- first order term ---------- self.y_first_order = tf.nn.embedding_lookup(self.weights["feature_bias"], self.feat_index) # None * F * 1 self.y_first_order = tf.reduce_sum(tf.multiply(self.y_first_order, feat_value), 2) # None * F self.y_first_order = tf.nn.dropout(self.y_first_order, self.dropout_keep_fm[0]) # None * F # ---------- second order term --------------- # sum_square part self.summed_features_emb = tf.reduce_sum(self.embeddings, 1) # None * K self.summed_features_emb_square = tf.square(self.summed_features_emb) # None * K # square_sum part self.squared_features_emb = tf.square(self.embeddings) self.squared_sum_features_emb = tf.reduce_sum(self.squared_features_emb, 1) # None * K # second order self.y_second_order = 0.5 * tf.subtract(self.summed_features_emb_square, self.squared_sum_features_emb) # None * K self.y_second_order = tf.nn.dropout(self.y_second_order, self.dropout_keep_fm[1]) # None * K # ---------- Deep component ---------- self.y_deep = tf.reshape(self.embeddings, shape=[-1, self.field_size * self.embedding_size]) # None * (F*K) self.y_deep = tf.nn.dropout(self.y_deep, self.dropout_keep_deep[0]) for i in range(0, len(self.deep_layers)): self.y_deep = tf.add(tf.matmul(self.y_deep, self.weights["layer_%d" %i]), self.weights["bias_%d"%i]) # None * layer[i] * 1 if self.batch_norm: self.y_deep = self.batch_norm_layer(self.y_deep, train_phase=self.train_phase, scope_bn="bn_%d" %i) # None * layer[i] * 1 self.y_deep = self.deep_layers_activation(self.y_deep) self.y_deep = tf.nn.dropout(self.y_deep, self.dropout_keep_deep[1+i]) # dropout at each Deep layer # ---------- DeepFM ---------- if self.use_fm and self.use_deep: concat_input = tf.concat([self.y_first_order, self.y_second_order, self.y_deep], axis=1) elif self.use_fm: concat_input = tf.concat([self.y_first_order, self.y_second_order], axis=1) elif self.use_deep: concat_input = self.y_deep self.out = tf.add(tf.matmul(concat_input, self.weights["concat_projection"]), self.weights["concat_bias"]) # loss if self.loss_type == "logloss": self.out = tf.nn.sigmoid(self.out) self.loss = tf.losses.log_loss(self.label, self.out) elif self.loss_type == "mse": self.loss = tf.nn.l2_loss(tf.subtract(self.label, self.out)) # l2 regularization on weights if self.l2_reg > 0: self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["concat_projection"]) if self.use_deep: for i in range(len(self.deep_layers)): self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["layer_%d"%i]) # optimizer if self.optimizer_type == "adam": self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(self.loss) elif self.optimizer_type == "adagrad": self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate, initial_accumulator_value=1e-8).minimize(self.loss) elif self.optimizer_type == "gd": self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate).minimize(self.loss) elif self.optimizer_type == "momentum": self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95).minimize( self.loss) elif self.optimizer_type == "yellowfin": self.optimizer = YFOptimizer(learning_rate=self.learning_rate, momentum=0.0).minimize( self.loss) # init self.saver = tf.train.Saver() init = tf.global_variables_initializer() self.sess = self._init_session() self.sess.run(init) # number of params total_parameters = 0 for variable in self.weights.values(): shape = variable.get_shape() variable_parameters = 1 for dim in shape: variable_parameters *= dim.value total_parameters += variable_parameters if self.verbose > 0: print("#params: %d" % total_parameters) def _init_session(self): config = tf.ConfigProto(device_count={"gpu": 0}) config.gpu_options.allow_growth = True return tf.Session(config=config) def _initialize_weights(self): weights = dict() # embeddings weights["feature_embeddings"] = tf.Variable( tf.random_normal([self.feature_size, self.embedding_size], 0.0, 0.01), name="feature_embeddings") # feature_size * K weights["feature_bias"] = tf.Variable( tf.random_uniform([self.feature_size, 1], 0.0, 1.0), name="feature_bias") # feature_size * 1 # deep layers num_layer = len(self.deep_layers) input_size = self.field_size * self.embedding_size glorot = np.sqrt(2.0 / (input_size + self.deep_layers[0])) weights["layer_0"] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(input_size, self.deep_layers[0])), dtype=np.float32) weights["bias_0"] = tf.Variable(np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[0])), dtype=np.float32) # 1 * layers[0] for i in range(1, num_layer): glorot = np.sqrt(2.0 / (self.deep_layers[i-1] + self.deep_layers[i])) weights["layer_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(self.deep_layers[i-1], self.deep_layers[i])), dtype=np.float32) # layers[i-1] * layers[i] weights["bias_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[i])), dtype=np.float32) # 1 * layer[i] # final concat projection layer if self.use_fm and self.use_deep: input_size = self.field_size + self.embedding_size + self.deep_layers[-1] elif self.use_fm: input_size = self.field_size + self.embedding_size elif self.use_deep: input_size = self.deep_layers[-1] glorot = np.sqrt(2.0 / (input_size + 1)) weights["concat_projection"] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(input_size, 1)), dtype=np.float32) # layers[i-1]*layers[i] weights["concat_bias"] = tf.Variable(tf.constant(0.01), dtype=np.float32) return weights def batch_norm_layer(self, x, train_phase, scope_bn): bn_train = batch_norm(x, decay=self.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, trainable=True, scope=scope_bn) bn_inference = batch_norm(x, decay=self.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, trainable=True, scope=scope_bn) z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference) return z def get_batch(self, Xi, Xv, y, batch_size, index): start = index * batch_size end = (index+1) * batch_size end = end if end < len(y) else len(y) return Xi[start:end], Xv[start:end], [[y_] for y_ in y[start:end]] # shuffle three lists simutaneously def shuffle_in_unison_scary(self, a, b, c): rng_state = np.random.get_state() np.random.shuffle(a) np.random.set_state(rng_state) np.random.shuffle(b) np.random.set_state(rng_state) np.random.shuffle(c) def fit_on_batch(self, Xi, Xv, y): feed_dict = {self.feat_index: Xi, self.feat_value: Xv, self.label: y, self.dropout_keep_fm: self.dropout_fm, self.dropout_keep_deep: self.dropout_deep, self.train_phase: True} loss, opt = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict) return loss def fit(self, Xi_train, Xv_train, y_train, Xi_valid=None, Xv_valid=None, y_valid=None, early_stopping=False, refit=False): """ :param Xi_train: [[ind1_1, ind1_2, ...], [ind2_1, ind2_2, ...], ..., [indi_1, indi_2, ..., indi_j, ...], ...] indi_j is the feature index of feature field j of sample i in the training set :param Xv_train: [[val1_1, val1_2, ...], [val2_1, val2_2, ...], ..., [vali_1, vali_2, ..., vali_j, ...], ...] vali_j is the feature value of feature field j of sample i in the training set vali_j can be either binary (1/0, for binary/categorical features) or float (e.g., 10.24, for numerical features) :param y_train: label of each sample in the training set :param Xi_valid: list of list of feature indices of each sample in the validation set :param Xv_valid: list of list of feature values of each sample in the validation set :param y_valid: label of each sample in the validation set :param early_stopping: perform early stopping or not :param refit: refit the model on the train+valid dataset or not :return: None """ has_valid = Xv_valid is not None for epoch in range(self.epoch): t1 = time() self.shuffle_in_unison_scary(Xi_train, Xv_train, y_train) total_batch = int(len(y_train) / self.batch_size) for i in range(total_batch): Xi_batch, Xv_batch, y_batch = self.get_batch(Xi_train, Xv_train, y_train, self.batch_size, i) self.fit_on_batch(Xi_batch, Xv_batch, y_batch) # evaluate training and validation datasets train_result = self.evaluate(Xi_train, Xv_train, y_train) self.train_result.append(train_result) if has_valid: valid_result = self.evaluate(Xi_valid, Xv_valid, y_valid) self.valid_result.append(valid_result) if self.verbose > 0 and epoch % self.verbose == 0: if has_valid: print("[%d] train-result=%.4f, valid-result=%.4f [%.1f s]" % (epoch + 1, train_result, valid_result, time() - t1)) else: print("[%d] train-result=%.4f [%.1f s]" % (epoch + 1, train_result, time() - t1)) if has_valid and early_stopping and self.training_termination(self.valid_result): break # fit a few more epoch on train+valid until result reaches the best_train_score if has_valid and refit: if self.greater_is_better: best_valid_score = max(self.valid_result) else: best_valid_score = min(self.valid_result) best_epoch = self.valid_result.index(best_valid_score) best_train_score = self.train_result[best_epoch] Xi_train = Xi_train + Xi_valid Xv_train = Xv_train + Xv_valid y_train = y_train + y_valid for epoch in range(100): self.shuffle_in_unison_scary(Xi_train, Xv_train, y_train) total_batch = int(len(y_train) / self.batch_size) for i in range(total_batch): Xi_batch, Xv_batch, y_batch = self.get_batch(Xi_train, Xv_train, y_train, self.batch_size, i) self.fit_on_batch(Xi_batch, Xv_batch, y_batch) # check train_result = self.evaluate(Xi_train, Xv_train, y_train) if abs(train_result - best_train_score) < 0.001 or \ (self.greater_is_better and train_result > best_train_score) or \ ((not self.greater_is_better) and train_result < best_train_score): break def training_termination(self, valid_result): if len(valid_result) > 5: if self.greater_is_better: if valid_result[-1] < valid_result[-2] and \ valid_result[-2] < valid_result[-3] and \ valid_result[-3] < valid_result[-4] and \ valid_result[-4] < valid_result[-5]: return True else: if valid_result[-1] > valid_result[-2] and \ valid_result[-2] > valid_result[-3] and \ valid_result[-3] > valid_result[-4] and \ valid_result[-4] > valid_result[-5]: return True return False def predict(self, Xi, Xv): """ :param Xi: list of list of feature indices of each sample in the dataset :param Xv: list of list of feature values of each sample in the dataset :return: predicted probability of each sample """ # dummy y dummy_y = [1] * len(Xi) batch_index = 0 Xi_batch, Xv_batch, y_batch = self.get_batch(Xi, Xv, dummy_y, self.batch_size, batch_index) y_pred = None while len(Xi_batch) > 0: num_batch = len(y_batch) feed_dict = {self.feat_index: Xi_batch, self.feat_value: Xv_batch, self.label: y_batch, self.dropout_keep_fm: [1.0] * len(self.dropout_fm), self.dropout_keep_deep: [1.0] * len(self.dropout_deep), self.train_phase: False} batch_out = self.sess.run(self.out, feed_dict=feed_dict) if batch_index == 0: y_pred = np.reshape(batch_out, (num_batch,)) else: y_pred = np.concatenate((y_pred, np.reshape(batch_out, (num_batch,)))) batch_index += 1 Xi_batch, Xv_batch, y_batch = self.get_batch(Xi, Xv, dummy_y, self.batch_size, batch_index) return y_pred def evaluate(self, Xi, Xv, y): """ :param Xi: list of list of feature indices of each sample in the dataset :param Xv: list of list of feature values of each sample in the dataset :param y: label of each sample in the dataset :return: metric of the evaluation """ y_pred = self.predict(Xi, Xv) return self.eval_metric(y, y_pred)
[ "lzy960601@gmail.com" ]
lzy960601@gmail.com
5e348a82403d2692756bbb92dea05d2c79650670
ae9d7d9d1aa6b6e91ac69b93e63f42aec514d37c
/checkerpy/tests/types/all/test_all.py
91f1a382e9cb9885851e05853c7c065c0b6e9a04
[ "MIT" ]
permissive
yedivanseven/CheckerPy
03b6be3d50da2e9e8f42c19e542cf0b93a5a241c
04612086d25fecdd0b20ca0a050db8620c437b0e
refs/heads/master
2021-09-13T16:43:42.324243
2018-05-02T08:46:37
2018-05-02T08:46:37
117,227,319
1
0
null
null
null
null
UTF-8
Python
false
false
34,094
py
import logging import unittest as ut from collections import defaultdict, deque, OrderedDict from ....functional import CompositionOf from ....types.all import All from ....types.one import _REDUCED_ITER from ....exceptions import WrongTypeError, IterError, CallableError class TestAllInstatiation(ut.TestCase): def test_error_on_wrong_identifier(self): err_msg = 'Type-checker name @foo is not a valid identifier!' with self.assertRaises(ValueError) as err: _ = All(int, identifier='@foo') self.assertEqual(str(err.exception), err_msg) def test_has_default_name(self): AllInt = All(int) self.assertEqual(AllInt.__name__, 'All') def test_identifier_sets_name_attribute(self): AllInt = All(int, identifier='AllInt') self.assertEqual(AllInt.__name__, 'AllInt') def test_has_attribute_types_with_one_valid_type(self): AllInt = All(int) self.assertTrue(hasattr(AllInt, 'types')) def test_cannot_set_attribute_types(self): AllInt = All(int) with self.assertRaises(AttributeError): AllInt.types = 'foo' def test_attribute_types_has_correct_value_with_one_valid_type(self): AllInt = All(int) self.assertTupleEqual(AllInt.types, (int, )) def test_works_with_two_valid_types(self): _ = All(int, float) def test_has_attribute_types_with_two_valid_types(self): AllNum = All(int, float) self.assertTrue(hasattr(AllNum, 'types')) def test_attribute_types_has_correct_value_with_two_valid_types(self): AllNum = All(int, float) self.assertTupleEqual(AllNum.types, (int, float)) class TestAllWorks(ut.TestCase): def test_works_with_str(self): AllStr = All(str) s = AllStr('foo') self.assertIsInstance(s, str) self.assertEqual(s, 'foo') def test_works_with_tuple(self): AllStr = All(str) t = AllStr(('f', 'o', 'o')) self.assertTupleEqual(t, ('f', 'o', 'o')) def test_works_with_list(self): AllStr =All(str) l = AllStr(['f', 'o', 'o']) self.assertListEqual(l, ['f', 'o', 'o']) def test_works_with_deque(self): AllStr =All(str) dq = AllStr(deque(['f', 'o', 'o'])) self.assertIsInstance(dq, deque) self.assertEqual(dq, deque(['f', 'o', 'o'])) def test_works_with_set(self): AllStr = All(str) s = AllStr({'f', 'o', 'o'}) self.assertSetEqual(s, {'f', 'o'}) def test_works_with_frozenset(self): AllStr = All(str) s = AllStr(frozenset({'f', 'o', 'o'})) self.assertSetEqual(s, {'f', 'o'}) def test_works_with_dict(self): AllStr = All(str) d = AllStr({'f': 1, 'o': 2}) self.assertDictEqual(d, {'f': 1, 'o': 2}) def test_works_ordered_dict(self): AllStr = All(str) od = AllStr(OrderedDict({'f': 1, 'o': 2})) self.assertIsInstance(od, OrderedDict) self.assertDictEqual(od, {'f': 1, 'o': 2}) def test_works_with_defaultdict(self): AllStr = All(str) dd = AllStr(defaultdict(int, {'f': 1, 'o': 2})) self.assertDictEqual(dd, {'f': 1, 'o': 2}) def test_works_with_dict_keys(self): AllStr = All(str) d = AllStr({'f': 1, 'o': 2}.keys()) self.assertIsInstance(d, type({}.keys())) self.assertSetEqual(set(d), set({'f': 1, 'o': 2}.keys())) def test_works_with_ordered_dict_keys(self): AllStr = All(str) od = OrderedDict({'f': 1, 'o': 2}) output = AllStr(od.keys()) self.assertIsInstance(output, type(od.keys())) self.assertSetEqual(set(od.keys()), set(output)) def test_works_with_defaultdict_keys(self): AllStr = All(str) dd = defaultdict(int, {'f': 1, 'o': 2}) output = AllStr(dd.keys()) self.assertIsInstance(output, type(dd.keys())) self.assertSetEqual(set(dd.keys()), set(output)) def test_works_with_dict_values(self): AllInt = All(int) d = AllInt({'f': 1, 'o': 2}.values()) self.assertIsInstance(d, type({}.values())) self.assertSetEqual(set(d), set({'f': 1, 'o': 2}.values())) def test_works_with_ordered_dict_values(self): AllInt = All(int) od = OrderedDict({'f': 1, 'o': 2}) output = AllInt(od.values()) self.assertIsInstance(output, type(od.values())) self.assertSetEqual(set(od.values()), set(output)) def test_works_with_defaultdict_values(self): AllInt = All(int) dd = defaultdict(int, {'f': 1, 'o': 2}) output = AllInt(dd.values()) self.assertIsInstance(output, type(dd.values())) self.assertSetEqual(set(dd.values()), set(output)) def test_returns_correct_type_with_two_types(self): AllNum = All(int, float) i = AllNum((1, )) self.assertIsInstance(i, tuple) f = AllNum([1.0]) self.assertIsInstance(f, list) def test_returns_correct_value_with_two_types(self): AllNum = All(int, float) self.assertTupleEqual(AllNum((2, )), (2, )) self.assertListEqual(AllNum([2.0]), [2.0]) class TestAllErrorUnnamedOneType(ut.TestCase): def test_error_on_unnamed_variable_not_iterable(self): AllInt = All(int) log_msg = ['ERROR:root:Variable 3 with type int does not seem' ' to be an iterable with elements to inspect!'] err_msg = ('Variable 3 with type int does not seem to' ' be an iterable with elements to inspect!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(IterError) as err: _ = AllInt(3) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_named_variable_not_iterable(self): AllInt = All(int) log_msg = ['ERROR:root:Variable test with type int does not ' 'seem to be an iterable with elements to inspect!'] err_msg = ('Variable test with type int does not seem ' 'to be an iterable with elements to inspect!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(IterError) as err: _ = AllInt(3, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_tuple_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in tuple (4,' ' 5.0) must be int, not float like 5.0!'] err_msg = ('Type of element 1 in tuple (4, 5.0)' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt((4, 5.0)) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_list_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in list [4,' ' 5.0] must be int, not float like 5.0!'] err_msg = ('Type of element 1 in list [4, 5.0]' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt([4, 5.0]) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_deque_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in deque([4,' ' 5.0]) must be int, not float like 5.0!'] err_msg = ('Type of element 1 in deque([4, 5.0])' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(deque([4, 5.0])) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_with_one_type(self): AllInt = All(int) inputs = {4: 'four', 5.0: 'five'} log_msg = ["ERROR:root:Type of key in dict {4: 'four', " "5.0: 'five'} must be int, not float like 5.0!"] err_msg = ("Type of key in dict {4: 'four', 5.0: " "'five'} must be int, not float like 5.0!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_ordered_dict_with_one_type(self): AllInt = All(int) inputs = OrderedDict({4: 'four', 5.0: 'five'}) log_msg = ["ERROR:root:Type of key in OrderedDict([(4, 'four')," " (5.0, 'five')]) must be int, not float like 5.0!"] err_msg = ("Type of key in OrderedDict([(4, 'four'), (5.0," " 'five')]) must be int, not float like 5.0!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_defaultdict_with_one_type(self): AllInt = All(int) inputs = defaultdict(str, {4: 'four', 5.0: 'five'}) log_msg = ["ERROR:root:Type of key in defaultdict(<class 'str'>, {4:" " 'four', 5.0: 'five'}) must be int, not float like 5.0!"] err_msg = ("Type of key in defaultdict(<class 'str'>, {4: 'four'," " 5.0: 'five'}) must be int, not float like 5.0!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_key_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of key in dict_keys([4,' ' 5.0]) must be int, not float like 5.0!'] err_msg = ('Type of key in dict_keys([4, 5.0])' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt({4: 'four', 5.0: 'five'}.keys()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_ordered_dict_key_with_one_type(self): AllInt = All(int) inputs = OrderedDict({4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in odict_keys([4,' ' 5.0]) must be int, not float like 5.0!'] err_msg = ('Type of key in odict_keys([4, 5.0])' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs.keys()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_defaultdict_key_with_one_type(self): AllInt = All(int) inputs = defaultdict(str, {4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in dict_keys([4,' ' 5.0]) must be int, not float like 5.0!'] err_msg = ('Type of key in dict_keys([4, 5.0])' ' must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs.keys()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_values_with_one_type(self): AllStr = All(str) log_msg = ["ERROR:root:Type of value in dict_values(['four', 5])" " must be str, not int like 5!"] err_msg = ("Type of value in dict_values(['four', 5])" " must be str, not int like 5!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr({4: 'four', 5.0: 5}.values()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_ordered_dict_values_with_one_type(self): AllStr = All(str) inputs = OrderedDict({4: 'four', 5.0: 5}) log_msg = ["ERROR:root:Type of value in odict_values(['four', 5])" " must be str, not int like 5!"] err_msg = ("Type of value in odict_values(['four', 5])" " must be str, not int like 5!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr(inputs.values()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_defaultdict_values_with_one_type(self): AllStr = All(str) inputs = defaultdict(str, {4: 'four', 5.0: 5}) log_msg = ["ERROR:root:Type of value in dict_values(['four', 5])" " must be str, not int like 5!"] err_msg = ("Type of value in dict_values(['four', 5])" " must be str, not int like 5!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr(inputs.values()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_set_with_one_type(self): AllInt = All(int) log_msg = ["ERROR:root:Type of element in set {4, " "5.0} must be int, not float like 5.0!"] err_msg = ("Type of element in set {4, 5.0} must" " be int, not float like 5.0!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt({4, 5.0}) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_frozenset_with_one_type(self): AllInt = All(int) log_msg = ["ERROR:root:Type of element in frozenset({4, " "5.0}) must be int, not float like 5.0!"] err_msg = ("Type of element in frozenset({4, 5.0}) must" " be int, not float like 5.0!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(frozenset({4, 5.0})) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) class TestAllErrorNamedOneType(ut.TestCase): def test_error_on_wrong_named_tuple_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in tuple ' 'test must be int, not float like 5.0!'] err_msg = ('Type of element 1 in tuple test ' 'must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt((4, 5.0), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_list_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in list ' 'test must be int, not float like 5.0!'] err_msg = ('Type of element 1 in list test ' 'must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt([4, 5.0], 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_deque_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in deque ' 'test must be int, not float like 5.0!'] err_msg = ('Type of element 1 in deque test ' 'must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(deque([4, 5.0]), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_with_one_type(self): AllInt = All(int) inputs = {4: 'four', 5.0: 'five'} log_msg = ['ERROR:root:Type of key in dict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in dict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_ordered_dict_with_one_type(self): AllInt = All(int) inputs = OrderedDict({4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in OrderedDict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in OrderedDict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_defaultdict_with_one_type(self): AllInt = All(int) inputs = defaultdict(str, {4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in defaultdict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in defaultdict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_keys_with_one_type(self): AllInt = All(int) inputs = {4: 'four', 5.0: 'five'} log_msg = ['ERROR:root:Type of key in dict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in dict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs.keys(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_ordered_dict_keys_with_one_type(self): AllInt = All(int) inputs = OrderedDict({4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in dict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in dict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs.keys(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_defaultdict_keys_with_one_type(self): AllInt = All(int) inputs = defaultdict(str, {4: 'four', 5.0: 'five'}) log_msg = ['ERROR:root:Type of key in dict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in dict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(inputs.keys(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_values_with_one_type(self): AllStr = All(str) inputs = {4: 'four', 5.0: 5} log_msg = ['ERROR:root:Type of value in dict ' 'test must be str, not int like 5!'] err_msg = ('Type of value in dict test ' 'must be str, not int like 5!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr(inputs.values(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_ordered_dict_values_with_one_type(self): AllStr = All(str) inputs = OrderedDict({4: 'four', 5.0: 5}) log_msg = ['ERROR:root:Type of value in dict ' 'test must be str, not int like 5!'] err_msg = ('Type of value in dict test ' 'must be str, not int like 5!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr(inputs.values(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_defaultdict_values_with_one_type(self): AllStr = All(str) inputs = defaultdict(str, {4: 'four', 5.0: 5}) log_msg = ['ERROR:root:Type of value in dict ' 'test must be str, not int like 5!'] err_msg = ('Type of value in dict test ' 'must be str, not int like 5!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllStr(inputs.values(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_set_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element in set test' ' must be int, not float like 5.0!'] err_msg = ('Type of element in set test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt({4, 5.0}, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_frozenset_with_one_type(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element in frozenset test' ' must be int, not float like 5.0!'] err_msg = ('Type of element in frozenset test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt(frozenset({4, 5.0}), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) class TestAllErrorTowTypes(ut.TestCase): def test_error_on_wrong_unnamed_variable_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of element 2 in tuple (4, 5.0, 'bar')" " must be one of ('int', 'float'), not str like bar!"] err_msg = ("Type of element 2 in tuple (4, 5.0, 'bar') must" " be one of ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum((4, 5.0, 'bar')) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of key in dict {4: 'four', 'bar': 3}" " must be one of ('int', 'float'), not str like bar!"] err_msg = ("Type of key in dict {4: 'four', 'bar': 3} must" " be one of ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 'bar': 3}) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_key_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of key in dict_keys([4, 'bar'])" " must be one of ('int', 'float'), not str like bar!"] err_msg = ("Type of key in dict_keys([4, 'bar']) must" " be one of ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 'bar': 3}.keys()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_dict_value_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of value in dict_values(['four', 3])" " must be one of ('int', 'float'), not str like four!"] err_msg = ("Type of value in dict_values(['four', 3]) must" " be one of ('int', 'float'), not str like four!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 'bar': 3}.values()) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_unnamed_set_with_two_types(self): AllNum = All(int, float) with self.assertLogs(level=logging.ERROR): with self.assertRaises(WrongTypeError): _ = AllNum({4, 'bar'}) def test_error_on_wrong_unnamed_frozenset_with_two_types(self): AllNum = All(int, float) with self.assertLogs(level=logging.ERROR): with self.assertRaises(WrongTypeError): _ = AllNum(frozenset({4, 'bar'})) def test_error_on_wrong_named_variable_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of element 2 in tuple test must" " be one of ('int', 'float'), not str like bar!"] err_msg = ("Type of element 2 in tuple test must be one" " of ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum((4, 5.0, 'bar'), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of key in dict test must be" " one of ('int', 'float'), not str like bar!"] err_msg = ("Type of key in dict test must be one of" " ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 5.0: 'five', 'bar': 3}, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_key_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of key in dict test must be" " one of ('int', 'float'), not str like bar!"] err_msg = ("Type of key in dict test must be one of" " ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 5.0: 'five', 'bar': 3}.keys(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_dict_value_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of value in dict test must be" " one of ('int', 'float'), not str like four!"] err_msg = ("Type of value in dict test must be one of" " ('int', 'float'), not str like four!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4: 'four', 5.0: 'five', 'bar': 3}.values(), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_set_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of element in set test must be" " one of ('int', 'float'), not str like bar!"] err_msg = ("Type of element in set test must be one of" " ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum({4, 5.0, 'bar'}, 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_error_on_wrong_named_frozenset_with_two_types(self): AllNum = All(int, float) log_msg = ["ERROR:root:Type of element in frozenset test must be" " one of ('int', 'float'), not str like bar!"] err_msg = ("Type of element in frozenset test must be one of" " ('int', 'float'), not str like bar!") with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllNum(frozenset({4, 5.0, 'bar'}), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) class TestAllMethods(ut.TestCase): def test_has_iterable_type_checker_attributes(self): AllNum = All(int, float) for iterable in _REDUCED_ITER: self.assertTrue(hasattr(AllNum, iterable.__name__)) self.assertTrue(hasattr(AllNum, 'NonEmpty')) def test_iterable_type_checkers_are_type_CompositionOf(self): AllNum = All(int, float) for iterable in _REDUCED_ITER: type_checker = getattr(AllNum, iterable.__name__) self.assertIsInstance(type_checker, CompositionOf) self.assertIsInstance(AllNum.NonEmpty, CompositionOf) def test_has_attribute_NonEmpty(self): AllInt = All(int) self.assertTrue(hasattr(AllInt, 'NonEmpty')) def test_attribute_NonEmpty_is_type_CompositionOf(self): AllInt = All(int) self.assertIsInstance(AllInt.NonEmpty, CompositionOf) def test_has_attribute_JustLen(self): AllInt = All(int) self.assertTrue(hasattr(AllInt, 'JustLen')) def test_attribute_JustLen_is_type_CompositionOf(self): AllInt = All(int) self.assertIsInstance(AllInt.JustLen, CompositionOf) def test_works_through_type_and_non_empty_checkers(self): AllInt = All(int) log_msg = ['ERROR:root:Type of element 1 in tuple ' 'test must be int, not float like 5.0!'] err_msg = ('Type of element 1 in tuple test ' 'must be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt.NonEmpty.JustTuple((4, 5.0), 'test') self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_works_through_dict_and_just_length_checkers(self): AllInt = All(int) inputs = {4: 'four', 5.0: 'five'} log_msg = ['ERROR:root:Type of key in dict test' ' must be int, not float like 5.0!'] err_msg = ('Type of key in dict test must' ' be int, not float like 5.0!') with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(WrongTypeError) as err: _ = AllInt.JustLen.JustDict(inputs, 'test', length=2) self.assertEqual(str(err.exception), err_msg) self.assertEqual(log.output, log_msg) def test_has_attribute_o(self): AllInt = All(int) self.assertTrue(hasattr(AllInt, 'o')) def test_attribute_o_is_callable(self): AllInt = All(int) self.assertTrue(callable(AllInt.o)) def test_o_returns_composition(self): AllInt = All(int) AllNum = All(int, float) composition = AllInt.o(AllNum) self.assertIsInstance(composition, CompositionOf) def test_o_raises_error_on_argument_not_callable(self): AllInt = All(int) err_msg = ('foo must be a callable that accepts (i) a value,' ' (ii) an optional name for that value, and (iii)' ' any number of keyword arguments!') with self.assertRaises(CallableError) as err: _ = AllInt.o('foo') self.assertEqual(str(err.exception), err_msg) if __name__ == '__main__': ut.main()
[ "georg.heimel@snapp.cab" ]
georg.heimel@snapp.cab
31ab53622731a767c1b356b06feb534ca482348d
d63e022dcd11d9249e5a7b9670c0f7ab7cc735ef
/genproduction_configs/WJetsToQQ_HT400to600.py
d8b79646128d2ba871db58039d4f6fe8ac571811
[ "MIT" ]
permissive
clelange/TruthNtuple
b55caaeb81bc06929b013e5c7af2cd667e184688
fd39c9ea2b1d02084a63d3409f79a4a902703a5f
refs/heads/master
2020-03-12T01:07:17.299211
2018-05-10T10:10:41
2018-05-10T10:12:17
130,367,808
0
0
null
null
null
null
UTF-8
Python
false
false
2,422
py
import FWCore.ParameterSet.Config as cms externalLHEProducer = cms.EDProducer("ExternalLHEProducer", args = cms.vstring('/cvmfs/cms.cern.ch/phys_generator/gridpacks/2017/13TeV/madgraph/V5_2.4.2/WJetsToQQ/WJetsToQQ_HT400to600_slc6_amd64_gcc481_CMSSW_7_1_30_tarball.tar.xz'), nEvents = cms.untracked.uint32(5000), numberOfParameters = cms.uint32(1), outputFile = cms.string('cmsgrid_final.lhe'), scriptName = cms.FileInPath('GeneratorInterface/LHEInterface/data/run_generic_tarball_cvmfs.sh') ) # Link to cards: # https://github.com/cms-sw/genproductions/commits/master/bin/MadGraph5_aMCatNLO/cards/production/2017/13TeV/WJets_LO_MLM/WJetsToQQ_HT400to600 import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.MCTunes2017.PythiaCP5Settings_cfi import * generator = cms.EDFilter("Pythia8HadronizerFilter", maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(13000.), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CP5SettingsBlock, processParameters = cms.vstring( 'JetMatching:setMad = off', 'JetMatching:scheme = 1', 'JetMatching:merge = on', 'JetMatching:jetAlgorithm = 2', 'JetMatching:etaJetMax = 5.', 'JetMatching:coneRadius = 1.', 'JetMatching:slowJetPower = 1', 'JetMatching:qCut = 19.', #this is the actual merging scale 'JetMatching:nQmatch = 5', #4 corresponds to 4-flavour scheme (no matching of b-quarks), 5 for 5-flavour scheme 'JetMatching:nJetMax = 4', #number of partons in born matrix element for highest multiplicity 'JetMatching:doShowerKt = off', #off for MLM matching, turn on for shower-kT matching ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CP5Settings', 'processParameters', ) ) ) # Link to generator fragment: # https://raw.githubusercontent.com/cms-sw/genproductions/f5432464cef51990b40ac8ae01844b7a3091b4cb/python/ThirteenTeV/Hadronizer/Hadronizer_TuneCP5_13TeV_generic_LHE_pythia8_cff.py
[ "clemens.lange@cern.ch" ]
clemens.lange@cern.ch
7652f8e517b6c0253bb59ed0e0a90c6899495f5f
165cc420b7e8c1b7cbcfd17fea89611db90e866c
/hello_world.py
1496b95f0f572c35020b6dae68b45c3dd706f1fb
[]
no_license
Shoolapani/Demo-repo
378d21ac11ab0643a1441432bf55ad497ec0c324
57079c0c119c99878ad2ce8bf7b70b3681b1ed8c
refs/heads/main
2023-04-12T05:58:43.816622
2021-05-06T13:16:41
2021-05-06T13:16:41
363,992,991
1
0
null
2021-05-06T13:16:42
2021-05-03T16:30:31
Python
UTF-8
Python
false
false
135
py
# First project print("Hello world") num=int(input("Enter the number:- ")) num3=int(num *num); print("Square of two number:- ",num3)
[ "satyamkrjha040@gmail.com" ]
satyamkrjha040@gmail.com
a653b493012302d01c67b1a5803b34b9ad1dd3a0
e69c09e75e2f1369e98b28e6380868f30c2e0baf
/experiments/lsi_clip/make_archive_collage.py
994afaf3005b420406046caca41cdb42223613bd
[ "MIT" ]
permissive
kangalice/dqd
60d8cfd5a1f6c7e2b82173465ded7c4032bd96d9
262c31f56cd4704b76ddaf9b9eb024afdbb209d6
refs/heads/main
2023-09-01T06:55:47.944799
2021-10-29T23:01:22
2021-10-29T23:01:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,613
py
# A small script for generating a collage of faces from the QD-Archive import matplotlib import matplotlib.font_manager matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 matplotlib.rcParams["font.family"] = 'serif' matplotlib.rcParams["font.serif"] = 'Palatino' matplotlib.rc('font', size=20) import os from pathlib import Path import torch import numpy as np import pandas as pd from stylegan_models import g_all, g_synthesis, g_mapping from PIL import Image # Note that only final archives encode latent codes. archive_filename = 'logs/cma_mega_adam/trial_0/archive_00010000.pkl' # min and max index for rows then columns (row major). # The archive is shape (200, 200) indexed from [0, 200). archive_dims = (200, 200) archive_index_range = ((90, 200), (90, 200)) # Measure ranges measure_ranges = ((0,6), (0,6)) # Controls that x rows and y columns are generated # Images are "evenly" (as possible) sampled based on this criteria picture_frequency = (8, 5) # Use the CPU while we are running exps. device = "cpu" # Uncomment to save all grid images separately. #gen_output_dir = os.path.join('grid_imgs') #logdir = Path(gen_output_dir) #if not logdir.is_dir(): # logdir.mkdir() g_synthesis.eval() g_synthesis.to(device) for p in g_synthesis.parameters(): p.requires_grad_(False) # Read the archive from the log (pickle file) df = pd.read_pickle(archive_filename) imgs = [] for j in reversed(range(picture_frequency[1])): for i in range(picture_frequency[0]): delta_i = archive_index_range[0][1] - archive_index_range[0][0] delta_j = archive_index_range[1][1] - archive_index_range[1][0] index_i_lower = int(delta_i * i / picture_frequency[0] + archive_index_range[0][0]) index_i_upper = int(delta_i * (i+1) / picture_frequency[0] + archive_index_range[0][0]) index_j_lower = int(delta_j * j / picture_frequency[1] + archive_index_range[1][0]) index_j_upper = int(delta_j * (j+1) / picture_frequency[1] + archive_index_range[1][0]) print(i, j, index_i_lower, index_i_upper, index_j_lower, index_j_upper) query_string = f"{index_i_lower} <= index_0 & index_0 <= {index_i_upper} &" query_string += f"{index_j_lower} <= index_1 & index_1 <= {index_j_upper}" print(query_string) df_cell = df.query(query_string) if not df_cell.empty: sol = df_cell.iloc[df_cell['objective'].argmax()] print(sol) latent_code = torch.tensor(sol[5:].values, dtype=torch.float32, device=device) latents = torch.nn.Parameter(latent_code, requires_grad=False) dlatents = latents.repeat(1,18,1) img = g_synthesis(dlatents) img = (img.clamp(-1, 1) + 1) / 2.0 # Normalize from [0,1] # Uncomment to save all grid images separately. #pil_img = img[0].permute(1, 2, 0).detach().cpu().numpy() * 255 #pil_img = Image.fromarray(pil_img.astype('uint8')) #pil_img.save(os.path.join(gen_output_dir, f'{j}_{i}.png')) img = img[0].detach().cpu() imgs.append(img) else: imgs.append(torch.zeros((3,1024,1024))) import matplotlib.pyplot as plt from torchvision.utils import make_grid plt.figure(figsize=(16,10)) img_grid = make_grid(imgs, nrow=picture_frequency[0], padding=0) img_grid = np.transpose(img_grid.cpu().numpy(), (1,2,0)) plt.imshow(img_grid) plt.xlabel("A man with blue eyes.") plt.ylabel("A person with red hair.") def create_archive_tick_labels(axis_range, measure_range, dim, num_ticks): low_pos = axis_range[0] / dim high_pos = axis_range[1] / dim tick_offset = [ (high_pos - low_pos) * (p / num_ticks) + low_pos for p in range(num_ticks+1) ] ticklabels = [ round((measure_range[1]-measure_range[0]) * p + measure_range[0], 2) for p in tick_offset ] return ticklabels num_x_ticks = 6 num_y_ticks = 6 x_ticklabels = create_archive_tick_labels(archive_index_range[0], measure_ranges[0], archive_dims[0], num_x_ticks) y_ticklabels = create_archive_tick_labels(archive_index_range[1], measure_ranges[1], archive_dims[1], num_y_ticks) y_ticklabels.reverse() x_tick_range = img_grid.shape[1] x_ticks = np.arange(0, x_tick_range+1e-9, step=x_tick_range/num_x_ticks) y_tick_range = img_grid.shape[0] y_ticks = np.arange(0, y_tick_range+1e-9, step=y_tick_range/num_y_ticks) plt.xticks(x_ticks, x_ticklabels) plt.yticks(y_ticks, y_ticklabels) plt.tight_layout() plt.savefig('collage.pdf')
[ "tehqin@gmail.com" ]
tehqin@gmail.com
8994919e217e0faa9714145047e5dc631cc7c871
8dbb48232b8647d1aa6f1032e5eeb8a525f1fd22
/backend/migrations/0004_auto_20200520_0049.py
a004edc82f884642e86722a623618b198be9b2c9
[ "MIT" ]
permissive
manulangat1/Jaza-ndai
97538e7f8a164b213163e6416a88537c39ec37f2
e0b02051665a18d64d7d1e1e3f8384b0f3757695
refs/heads/master
2023-01-30T23:07:26.554672
2020-06-12T19:15:47
2020-06-12T19:15:47
242,711,544
2
0
MIT
2023-01-24T02:32:51
2020-02-24T10:51:29
JavaScript
UTF-8
Python
false
false
741
py
# Generated by Django 3.0.3 on 2020-05-19 21:49 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('backend', '0003_auto_20200519_1639'), ] operations = [ migrations.RemoveField( model_name='review', name='ride', ), migrations.AddField( model_name='review', name='driver', field=models.ForeignKey(default=django.utils.timezone.now, on_delete=django.db.models.deletion.CASCADE, related_name='driver_review', to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
[ "emmanuelthedeveloper@gmail.com" ]
emmanuelthedeveloper@gmail.com
6e9fd4673eafa40dfb29ca75b028166591b30fd6
7aaec8760f020ed934b0bf08e3c569bf73c5b9cd
/django/django_orm/book_authors_proj/server/env/bin/django-admin
5f63b697eb35054ccb24f26ea28414b75e5a4b69
[]
no_license
DallasJM/Python
8715b5e09de028ed0dae44f59d0dd0a10e7f8981
924ac32089737165c9e90497792740e2b138d987
refs/heads/master
2021-03-13T09:32:56.120769
2020-03-11T19:53:53
2020-03-11T19:53:53
246,664,738
0
0
null
null
null
null
UTF-8
Python
false
false
349
#!/Users/sallad/Code/bootcamp/python_stack/django/django_orm/book_authors_proj/server/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
[ "sallad@Dallass-MacBook-Air.local" ]
sallad@Dallass-MacBook-Air.local
14ecf3ab4975eb5791a89430d0ba8be5cd8e6585
297efd4afeb46c0b56d9a975d76665caef213acc
/src/core/migrations/0071_auto_20190802_1405.py
c7aac7e2794c88618122bd34b6f554eee1e4c436
[ "MIT" ]
permissive
metabolism-of-cities/metabolism-of-cities-platform-v3
67716c3daae86a0fe527c18aef26ce29e069cbcc
c754d3b1b401906a21640b8eacb6b724a448b31c
refs/heads/master
2022-12-06T22:56:22.207853
2020-08-25T09:53:51
2020-08-25T09:53:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
# Generated by Django 2.2.2 on 2019-08-02 14:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0070_auto_20190802_1331'), ] operations = [ migrations.AddField( model_name='people', name='organizations', field=models.ManyToManyField(blank=True, to='core.Organization'), ), migrations.DeleteModel( name='PeopleAffiliation', ), ]
[ "paul@penguinprotocols.com" ]
paul@penguinprotocols.com
ad8acdf6ff1d85ddfa41331f6fa6de3a87cb1b49
e2c53cf441f071dac3b563c902e2d53409f87ffc
/teacher/urls.py
3651f23da64f579a4e28789bea4bcf14e016e44b
[]
no_license
spriyaalpha/DirectorySchoolApplication
9446c93c3fba76f0ebb086b80d9c34d3db6eabce
c9d8c60d9c4c4aaa2644dddb029bf42a274575c7
refs/heads/main
2023-06-02T19:55:47.247543
2021-06-20T07:47:47
2021-06-20T07:47:47
378,121,562
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
from django.urls import path from . import views urlpatterns = [ path('registration', views.teacher_registration, name='teacher-registration'), path('list', views.teacher_list, name='teacher-list'), path('profile/<FinalUploadedDetails_id>/', views.teacher_profile, name='teacher-profile'), path('list/sort/', views.teacher_list_sort, name='teacher-list-sort'), path('load-upazilla', views.load_upazilla, name='load-upazilla'), ]
[ "noreply@github.com" ]
spriyaalpha.noreply@github.com
ba1f261b3860292d509efc9541c58fb97e8cdae4
19cb1af3b1e384e8dbb55c5ecfea1cb23598b0be
/df/asgi.py
ec63d9a4ee5921d2e76db34e7796f94d2867df59
[]
no_license
beautxiang/df
6d220c3936f562cf13d7dec766eded9129a785eb
2a3d0d06dfd3ff26b018e6a4f6ed7f4b4a2251a2
refs/heads/master
2023-05-30T07:38:33.291681
2021-06-15T08:14:23
2021-06-15T08:14:23
377,076,170
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
""" ASGI config for df project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'df.settings') application = get_asgi_application()
[ "2494916623@qq.com" ]
2494916623@qq.com
502d4c8f8451e1c9b1c0ba98ece8a47bedf9a824
d483dd0e8f18569329456e7fc14b3839664a7e72
/manage.py
c13f12f3531f9b8b12734ede4a74d670e1beb055
[]
no_license
lucyHD/pathfinder
b62bd2f8838992f9a8c827dd50620b205a1b79f1
605eec4c5b6eec7dc04d73a082c0ad7a7be7cc45
refs/heads/master
2023-08-11T02:42:08.699934
2020-07-02T16:27:35
2020-07-02T16:27:35
274,635,751
1
0
null
2021-09-22T19:22:49
2020-06-24T10:01:43
JavaScript
UTF-8
Python
false
false
637
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pathfinderproject.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "lucyhelendonnelly@gmail.com" ]
lucyhelendonnelly@gmail.com
6f2e3b891d08a35366f8720d70ec8fc1efe31d7c
f5171500752e258406718a0d2f33e027e97e9225
/Simulators/BEsim-py/be-sim-version-one/input/machines/titan.py
122d7300189aea326e7a6371c5d2f8932ce88acd
[]
no_license
UFCCMT/behavioural_emulation
03e0c84db0600201ccb29a843a4998dcfc17b92a
e5fa2f1262d7a72ab770d919cc3b9a849a577267
refs/heads/master
2021-09-25T17:55:33.428634
2018-10-24T15:55:37
2018-10-24T15:55:37
153,633,006
0
0
null
null
null
null
UTF-8
Python
false
false
2,022
py
# @Author: Nalini Kumar # @Date: 09-12-16 # @Brief: Hardware description file for Titan @ LLNL # Simulation Root is the "type" (not the "name") of the component that defines # simulation granularity. default:system, rack, node, processor Root( "node" ) #This capability will need to be built into the simulator Leaf( "processor" ) # deafult:core, processor, node #------------- Define machine hierarchies -------------- # Component( "name", "hierarchy", "type", "quantity" ) # Containers: Component( "titan", "system" ) Component( "titan.rack" ) #200 racks Component( "titan.board" ) #24 boards # Real things: Component( "titan.node", "node", "cray-xk7", "4" ) Component( "titan.cpu", "processor", "amd.opteron", "1" ) Component( "titan.gpu", "processor", "nvidia.k20x", "1" ) #Override lookup file defined for "titan.cpu' for "computeA" Operation( "titan.cpu", "computeA", "amd.opteron.computeA.csv") Operation( "titan.gpu", "transfer", "pci-x16-transfer.csv") #------------- Define machine networks ----------------- Component( "titan.network", "cray-gemini" ) #predefined type cray-gemini Component( "titan.node.network", "pci-x16" ) #predefined type pci-x16 Component( "titan.processor.network", "links") # Override lookup file for "titan.network" and "titan.node.network" for "transfer" Operation( "titan.network", "transfer", "gemini-transfer.csv") Operation( "titan.node.network", "transfer", "pci-x16-transfer.csv") #------------- Describe the connectivity ----------- Connect( "titan.cpu" "titan.cpu.mem", "ddr-channel") Connect( "titan.gpu" "titan.gpu.mem", "gddr5-channel") #Offspring( container.name, connect[offspring1, offspring2, interconnect], ... ) Offspring( "temp", connect["titan.cpu", "titan.gpu", "titan.node.network"], ... ) Offspring( "titan.node", connect["temp", "titan.network.router", "ht3link"] ) Offspring( "titan.system", connect["titan.network.router", "3d-torus[200,30,16]"] ) Offspring( "titan.rack", connect["titan.network.router", "3d-torus[]"] )
[ "aravindneelakantan@gmail.com" ]
aravindneelakantan@gmail.com
fec2b91bc15aa91b4365c4c1ddc5428b06f48d34
251c70bd53ce6c499b011590c2f73632696d950f
/virtual/lib/python3.6/site-packages/mypy/modulefinder.py
dd801d213064a56f5f66242dd227a8fbae975453
[ "MIT" ]
permissive
EduardoPessanha/Git-Python
ef09e404641fb988817c995bdf607c1860bf0622
87aa10af09510469032732ed2c55d0d65eb4c1d6
refs/heads/master
2023-01-25T01:10:51.089507
2020-12-03T12:27:44
2020-12-03T12:27:44
296,760,423
0
0
MIT
2020-09-28T03:37:14
2020-09-19T01:04:33
Python
UTF-8
Python
false
false
28,020
py
"""Low-level infrastructure to find modules. This build on fscache.py; find_sources.py builds on top of this. """ import ast import collections import functools import os import subprocess import sys from enum import Enum from typing import Dict, List, NamedTuple, Optional, Set, Tuple, Union from typing_extensions import Final from mypy.defaults import PYTHON3_VERSION_MIN from mypy.fscache import FileSystemCache from mypy.options import Options from mypy import sitepkgs # Paths to be searched in find_module(). SearchPaths = NamedTuple( 'SearchPaths', [('python_path', Tuple[str, ...]), # where user code is found ('mypy_path', Tuple[str, ...]), # from $MYPYPATH or config variable ('package_path', Tuple[str, ...]), # from get_site_packages_dirs() ('typeshed_path', Tuple[str, ...]), # paths in typeshed ]) # Package dirs are a two-tuple of path to search and whether to verify the module OnePackageDir = Tuple[str, bool] PackageDirs = List[OnePackageDir] PYTHON_EXTENSIONS = ['.pyi', '.py'] # type: Final # TODO: Consider adding more reasons here? # E.g. if we deduce a module would likely be found if the user were # to set the --namespace-packages flag. class ModuleNotFoundReason(Enum): # The module was not found: we found neither stubs nor a plausible code # implementation (with or without a py.typed file). NOT_FOUND = 0 # The implementation for this module plausibly exists (e.g. we # found a matching folder or *.py file), but either the parent package # did not contain a py.typed file or we were unable to find a # corresponding *-stubs package. FOUND_WITHOUT_TYPE_HINTS = 1 # The module was not found in the current working directory, but # was able to be found in the parent directory. WRONG_WORKING_DIRECTORY = 2 def error_message_templates(self) -> Tuple[str, str]: if self is ModuleNotFoundReason.NOT_FOUND: msg = "Cannot find implementation or library stub for module named '{}'" note = "See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing-imports" elif self is ModuleNotFoundReason.WRONG_WORKING_DIRECTORY: msg = "Cannot find implementation or library stub for module named '{}'" note = ("You may be running mypy in a subpackage, " "mypy should be run on the package root") elif self is ModuleNotFoundReason.FOUND_WITHOUT_TYPE_HINTS: msg = "Skipping analyzing '{}': found module but no type hints or library stubs" note = "See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing-imports" else: assert False return msg, note # If we found the module, returns the path to the module as a str. # Otherwise, returns the reason why the module wasn't found. ModuleSearchResult = Union[str, ModuleNotFoundReason] class BuildSource: """A single source file.""" def __init__(self, path: Optional[str], module: Optional[str], text: Optional[str] = None, base_dir: Optional[str] = None) -> None: self.path = path # File where it's found (e.g. 'xxx/yyy/foo/bar.py') self.module = module or '__main__' # Module name (e.g. 'foo.bar') self.text = text # Source code, if initially supplied, else None self.base_dir = base_dir # Directory where the package is rooted (e.g. 'xxx/yyy') def __repr__(self) -> str: return '<BuildSource path=%r module=%r has_text=%s base_dir=%s>' % ( self.path, self.module, self.text is not None, self.base_dir) class FindModuleCache: """Module finder with integrated cache. Module locations and some intermediate results are cached internally and can be cleared with the clear() method. All file system accesses are performed through a FileSystemCache, which is not ever cleared by this class. If necessary it must be cleared by client code. """ def __init__(self, search_paths: SearchPaths, fscache: Optional[FileSystemCache] = None, options: Optional[Options] = None, ns_packages: Optional[List[str]] = None) -> None: self.search_paths = search_paths self.fscache = fscache or FileSystemCache() # Cache for get_toplevel_possibilities: # search_paths -> (toplevel_id -> list(package_dirs)) self.initial_components = {} # type: Dict[Tuple[str, ...], Dict[str, List[str]]] # Cache find_module: id -> result self.results = {} # type: Dict[str, ModuleSearchResult] self.ns_ancestors = {} # type: Dict[str, str] self.options = options self.ns_packages = ns_packages or [] # type: List[str] def clear(self) -> None: self.results.clear() self.initial_components.clear() self.ns_ancestors.clear() def find_lib_path_dirs(self, id: str, lib_path: Tuple[str, ...]) -> PackageDirs: """Find which elements of a lib_path have the directory a module needs to exist. This is run for the python_path, mypy_path, and typeshed_path search paths.""" components = id.split('.') dir_chain = os.sep.join(components[:-1]) # e.g., 'foo/bar' dirs = [] for pathitem in self.get_toplevel_possibilities(lib_path, components[0]): # e.g., '/usr/lib/python3.4/foo/bar' dir = os.path.normpath(os.path.join(pathitem, dir_chain)) if self.fscache.isdir(dir): dirs.append((dir, True)) return dirs def get_toplevel_possibilities(self, lib_path: Tuple[str, ...], id: str) -> List[str]: """Find which elements of lib_path could contain a particular top-level module. In practice, almost all modules can be routed to the correct entry in lib_path by looking at just the first component of the module name. We take advantage of this by enumerating the contents of all of the directories on the lib_path and building a map of which entries in the lib_path could contain each potential top-level module that appears. """ if lib_path in self.initial_components: return self.initial_components[lib_path].get(id, []) # Enumerate all the files in the directories on lib_path and produce the map components = {} # type: Dict[str, List[str]] for dir in lib_path: try: contents = self.fscache.listdir(dir) except OSError: contents = [] # False positives are fine for correctness here, since we will check # precisely later, so we only look at the root of every filename without # any concern for the exact details. for name in contents: name = os.path.splitext(name)[0] components.setdefault(name, []).append(dir) self.initial_components[lib_path] = components return components.get(id, []) def find_module(self, id: str) -> ModuleSearchResult: """Return the path of the module source file or why it wasn't found.""" if id not in self.results: self.results[id] = self._find_module(id) if (self.results[id] is ModuleNotFoundReason.NOT_FOUND and self._can_find_module_in_parent_dir(id)): self.results[id] = ModuleNotFoundReason.WRONG_WORKING_DIRECTORY return self.results[id] def _find_module_non_stub_helper(self, components: List[str], pkg_dir: str) -> Union[OnePackageDir, ModuleNotFoundReason]: plausible_match = False dir_path = pkg_dir for index, component in enumerate(components): dir_path = os.path.join(dir_path, component) if self.fscache.isfile(os.path.join(dir_path, 'py.typed')): return os.path.join(pkg_dir, *components[:-1]), index == 0 elif not plausible_match and (self.fscache.isdir(dir_path) or self.fscache.isfile(dir_path + ".py")): plausible_match = True if plausible_match: return ModuleNotFoundReason.FOUND_WITHOUT_TYPE_HINTS else: return ModuleNotFoundReason.NOT_FOUND def _update_ns_ancestors(self, components: List[str], match: Tuple[str, bool]) -> None: path, verify = match for i in range(1, len(components)): pkg_id = '.'.join(components[:-i]) if pkg_id not in self.ns_ancestors and self.fscache.isdir(path): self.ns_ancestors[pkg_id] = path path = os.path.dirname(path) def _can_find_module_in_parent_dir(self, id: str) -> bool: """Test if a module can be found by checking the parent directories of the current working directory. """ working_dir = os.getcwd() parent_search = FindModuleCache(SearchPaths((), (), (), ())) while any(file.endswith(("__init__.py", "__init__.pyi")) for file in os.listdir(working_dir)): working_dir = os.path.dirname(working_dir) parent_search.search_paths = SearchPaths((working_dir,), (), (), ()) if not isinstance(parent_search._find_module(id), ModuleNotFoundReason): return True return False def _find_module(self, id: str) -> ModuleSearchResult: fscache = self.fscache # If we're looking for a module like 'foo.bar.baz', it's likely that most of the # many elements of lib_path don't even have a subdirectory 'foo/bar'. Discover # that only once and cache it for when we look for modules like 'foo.bar.blah' # that will require the same subdirectory. components = id.split('.') dir_chain = os.sep.join(components[:-1]) # e.g., 'foo/bar' # TODO (ethanhs): refactor each path search to its own method with lru_cache # We have two sets of folders so that we collect *all* stubs folders and # put them in the front of the search path third_party_inline_dirs = [] # type: PackageDirs third_party_stubs_dirs = [] # type: PackageDirs found_possible_third_party_missing_type_hints = False # Third-party stub/typed packages for pkg_dir in self.search_paths.package_path: stub_name = components[0] + '-stubs' stub_dir = os.path.join(pkg_dir, stub_name) if fscache.isdir(stub_dir): stub_typed_file = os.path.join(stub_dir, 'py.typed') stub_components = [stub_name] + components[1:] path = os.path.join(pkg_dir, *stub_components[:-1]) if fscache.isdir(path): if fscache.isfile(stub_typed_file): # Stub packages can have a py.typed file, which must include # 'partial\n' to make the package partial # Partial here means that mypy should look at the runtime # package if installed. if fscache.read(stub_typed_file).decode().strip() == 'partial': runtime_path = os.path.join(pkg_dir, dir_chain) third_party_inline_dirs.append((runtime_path, True)) # if the package is partial, we don't verify the module, as # the partial stub package may not have a __init__.pyi third_party_stubs_dirs.append((path, False)) else: # handle the edge case where people put a py.typed file # in a stub package, but it isn't partial third_party_stubs_dirs.append((path, True)) else: third_party_stubs_dirs.append((path, True)) non_stub_match = self._find_module_non_stub_helper(components, pkg_dir) if isinstance(non_stub_match, ModuleNotFoundReason): if non_stub_match is ModuleNotFoundReason.FOUND_WITHOUT_TYPE_HINTS: found_possible_third_party_missing_type_hints = True else: third_party_inline_dirs.append(non_stub_match) self._update_ns_ancestors(components, non_stub_match) if self.options and self.options.use_builtins_fixtures: # Everything should be in fixtures. third_party_inline_dirs.clear() third_party_stubs_dirs.clear() found_possible_third_party_missing_type_hints = False python_mypy_path = self.search_paths.mypy_path + self.search_paths.python_path candidate_base_dirs = self.find_lib_path_dirs(id, python_mypy_path) + \ third_party_stubs_dirs + third_party_inline_dirs + \ self.find_lib_path_dirs(id, self.search_paths.typeshed_path) # If we're looking for a module like 'foo.bar.baz', then candidate_base_dirs now # contains just the subdirectories 'foo/bar' that actually exist under the # elements of lib_path. This is probably much shorter than lib_path itself. # Now just look for 'baz.pyi', 'baz/__init__.py', etc., inside those directories. seplast = os.sep + components[-1] # so e.g. '/baz' sepinit = os.sep + '__init__' near_misses = [] # Collect near misses for namespace mode (see below). for base_dir, verify in candidate_base_dirs: base_path = base_dir + seplast # so e.g. '/usr/lib/python3.4/foo/bar/baz' has_init = False dir_prefix = base_dir for _ in range(len(components) - 1): dir_prefix = os.path.dirname(dir_prefix) # Prefer package over module, i.e. baz/__init__.py* over baz.py*. for extension in PYTHON_EXTENSIONS: path = base_path + sepinit + extension path_stubs = base_path + '-stubs' + sepinit + extension if fscache.isfile_case(path, dir_prefix): has_init = True if verify and not verify_module(fscache, id, path, dir_prefix): near_misses.append((path, dir_prefix)) continue return path elif fscache.isfile_case(path_stubs, dir_prefix): if verify and not verify_module(fscache, id, path_stubs, dir_prefix): near_misses.append((path_stubs, dir_prefix)) continue return path_stubs # In namespace mode, register a potential namespace package if self.options and self.options.namespace_packages: if fscache.isdir(base_path) and not has_init: near_misses.append((base_path, dir_prefix)) # No package, look for module. for extension in PYTHON_EXTENSIONS: path = base_path + extension if fscache.isfile_case(path, dir_prefix): if verify and not verify_module(fscache, id, path, dir_prefix): near_misses.append((path, dir_prefix)) continue return path # In namespace mode, re-check those entries that had 'verify'. # Assume search path entries xxx, yyy and zzz, and we're # looking for foo.bar.baz. Suppose near_misses has: # # - xxx/foo/bar/baz.py # - yyy/foo/bar/baz/__init__.py # - zzz/foo/bar/baz.pyi # # If any of the foo directories has __init__.py[i], it wins. # Else, we look for foo/bar/__init__.py[i], etc. If there are # none, the first hit wins. Note that this does not take into # account whether the lowest-level module is a file (baz.py), # a package (baz/__init__.py), or a stub file (baz.pyi) -- for # these the first one encountered along the search path wins. # # The helper function highest_init_level() returns an int that # indicates the highest level at which a __init__.py[i] file # is found; if no __init__ was found it returns 0, if we find # only foo/bar/__init__.py it returns 1, and if we have # foo/__init__.py it returns 2 (regardless of what's in # foo/bar). It doesn't look higher than that. if self.options and self.options.namespace_packages and near_misses: levels = [highest_init_level(fscache, id, path, dir_prefix) for path, dir_prefix in near_misses] index = levels.index(max(levels)) return near_misses[index][0] # Finally, we may be asked to produce an ancestor for an # installed package with a py.typed marker that is a # subpackage of a namespace package. We only fess up to these # if we would otherwise return "not found". ancestor = self.ns_ancestors.get(id) if ancestor is not None: return ancestor if found_possible_third_party_missing_type_hints: return ModuleNotFoundReason.FOUND_WITHOUT_TYPE_HINTS else: return ModuleNotFoundReason.NOT_FOUND def find_modules_recursive(self, module: str) -> List[BuildSource]: module_path = self.find_module(module) if isinstance(module_path, ModuleNotFoundReason): return [] result = [BuildSource(module_path, module, None)] if module_path.endswith(('__init__.py', '__init__.pyi')): # Subtle: this code prefers the .pyi over the .py if both # exists, and also prefers packages over modules if both x/ # and x.py* exist. How? We sort the directory items, so x # comes before x.py and x.pyi. But the preference for .pyi # over .py is encoded in find_module(); even though we see # x.py before x.pyi, find_module() will find x.pyi first. We # use hits to avoid adding it a second time when we see x.pyi. # This also avoids both x.py and x.pyi when x/ was seen first. hits = set() # type: Set[str] for item in sorted(self.fscache.listdir(os.path.dirname(module_path))): abs_path = os.path.join(os.path.dirname(module_path), item) if os.path.isdir(abs_path) and \ (os.path.isfile(os.path.join(abs_path, '__init__.py')) or os.path.isfile(os.path.join(abs_path, '__init__.pyi'))): hits.add(item) result += self.find_modules_recursive(module + '.' + item) elif item != '__init__.py' and item != '__init__.pyi' and \ item.endswith(('.py', '.pyi')): mod = item.split('.')[0] if mod not in hits: hits.add(mod) result += self.find_modules_recursive(module + '.' + mod) elif os.path.isdir(module_path) and module in self.ns_packages: # Even more subtler: handle recursive decent into PEP 420 # namespace packages that are explicitly listed on the command # line with -p/--packages. for item in sorted(self.fscache.listdir(module_path)): if os.path.isdir(os.path.join(module_path, item)): result += self.find_modules_recursive(module + '.' + item) return result def verify_module(fscache: FileSystemCache, id: str, path: str, prefix: str) -> bool: """Check that all packages containing id have a __init__ file.""" if path.endswith(('__init__.py', '__init__.pyi')): path = os.path.dirname(path) for i in range(id.count('.')): path = os.path.dirname(path) if not any(fscache.isfile_case(os.path.join(path, '__init__{}'.format(extension)), prefix) for extension in PYTHON_EXTENSIONS): return False return True def highest_init_level(fscache: FileSystemCache, id: str, path: str, prefix: str) -> int: """Compute the highest level where an __init__ file is found.""" if path.endswith(('__init__.py', '__init__.pyi')): path = os.path.dirname(path) level = 0 for i in range(id.count('.')): path = os.path.dirname(path) if any(fscache.isfile_case(os.path.join(path, '__init__{}'.format(extension)), prefix) for extension in PYTHON_EXTENSIONS): level = i + 1 return level def mypy_path() -> List[str]: path_env = os.getenv('MYPYPATH') if not path_env: return [] return path_env.split(os.pathsep) def default_lib_path(data_dir: str, pyversion: Tuple[int, int], custom_typeshed_dir: Optional[str]) -> List[str]: """Return default standard library search paths.""" # IDEA: Make this more portable. path = [] # type: List[str] if custom_typeshed_dir: typeshed_dir = custom_typeshed_dir else: auto = os.path.join(data_dir, 'stubs-auto') if os.path.isdir(auto): data_dir = auto typeshed_dir = os.path.join(data_dir, "typeshed") if pyversion[0] == 3: # We allow a module for e.g. version 3.5 to be in 3.4/. The assumption # is that a module added with 3.4 will still be present in Python 3.5. versions = ["%d.%d" % (pyversion[0], minor) for minor in reversed(range(PYTHON3_VERSION_MIN[1], pyversion[1] + 1))] else: # For Python 2, we only have stubs for 2.7 versions = ["2.7"] # E.g. for Python 3.6, try 3.6/, 3.5/, 3.4/, 3/, 2and3/. for v in versions + [str(pyversion[0]), '2and3']: for lib_type in ['stdlib', 'third_party']: stubdir = os.path.join(typeshed_dir, lib_type, v) if os.path.isdir(stubdir): path.append(stubdir) # Add fallback path that can be used if we have a broken installation. if sys.platform != 'win32': path.append('/usr/local/lib/mypy') if not path: print("Could not resolve typeshed subdirectories. If you are using mypy\n" "from source, you need to run \"git submodule update --init\".\n" "Otherwise your mypy install is broken.\nPython executable is located at " "{0}.\nMypy located at {1}".format(sys.executable, data_dir), file=sys.stderr) sys.exit(1) return path @functools.lru_cache(maxsize=None) def get_site_packages_dirs(python_executable: str) -> Tuple[List[str], List[str]]: """Find package directories for given python. This runs a subprocess call, which generates a list of the egg directories, and the site package directories. To avoid repeatedly calling a subprocess (which can be slow!) we lru_cache the results.""" def make_abspath(path: str, root: str) -> str: """Take a path and make it absolute relative to root if not already absolute.""" if os.path.isabs(path): return os.path.normpath(path) else: return os.path.join(root, os.path.normpath(path)) if python_executable == sys.executable: # Use running Python's package dirs site_packages = sitepkgs.getsitepackages() else: # Use subprocess to get the package directory of given Python # executable site_packages = ast.literal_eval( subprocess.check_output([python_executable, sitepkgs.__file__], stderr=subprocess.PIPE).decode()) egg_dirs = [] for dir in site_packages: pth = os.path.join(dir, 'easy-install.pth') if os.path.isfile(pth): with open(pth) as f: egg_dirs.extend([make_abspath(d.rstrip(), dir) for d in f.readlines()]) return egg_dirs, site_packages def compute_search_paths(sources: List[BuildSource], options: Options, data_dir: str, alt_lib_path: Optional[str] = None) -> SearchPaths: """Compute the search paths as specified in PEP 561. There are the following 4 members created: - User code (from `sources`) - MYPYPATH (set either via config or environment variable) - installed package directories (which will later be split into stub-only and inline) - typeshed """ # Determine the default module search path. lib_path = collections.deque( default_lib_path(data_dir, options.python_version, custom_typeshed_dir=options.custom_typeshed_dir)) if options.use_builtins_fixtures: # Use stub builtins (to speed up test cases and to make them easier to # debug). This is a test-only feature, so assume our files are laid out # as in the source tree. # We also need to allow overriding where to look for it. Argh. root_dir = os.getenv('MYPY_TEST_PREFIX', None) if not root_dir: root_dir = os.path.dirname(os.path.dirname(__file__)) lib_path.appendleft(os.path.join(root_dir, 'test-data', 'unit', 'lib-stub')) # alt_lib_path is used by some tests to bypass the normal lib_path mechanics. # If we don't have one, grab directories of source files. python_path = [] # type: List[str] if not alt_lib_path: for source in sources: # Include directory of the program file in the module search path. if source.base_dir: dir = source.base_dir if dir not in python_path: python_path.append(dir) # Do this even if running as a file, for sanity (mainly because with # multiple builds, there could be a mix of files/modules, so its easier # to just define the semantics that we always add the current director # to the lib_path # TODO: Don't do this in some cases; for motivation see see # https://github.com/python/mypy/issues/4195#issuecomment-341915031 if options.bazel: dir = '.' else: dir = os.getcwd() if dir not in lib_path: python_path.insert(0, dir) # Start with a MYPYPATH environment variable at the front of the mypy_path, if defined. mypypath = mypy_path() # Add a config-defined mypy path. mypypath.extend(options.mypy_path) # If provided, insert the caller-supplied extra module path to the # beginning (highest priority) of the search path. if alt_lib_path: mypypath.insert(0, alt_lib_path) if options.python_executable is None: egg_dirs = [] # type: List[str] site_packages = [] # type: List[str] else: egg_dirs, site_packages = get_site_packages_dirs(options.python_executable) for site_dir in site_packages: assert site_dir not in lib_path if (site_dir in mypypath or any(p.startswith(site_dir + os.path.sep) for p in mypypath) or os.path.altsep and any(p.startswith(site_dir + os.path.altsep) for p in mypypath)): print("{} is in the MYPYPATH. Please remove it.".format(site_dir), file=sys.stderr) print("See https://mypy.readthedocs.io/en/latest/running_mypy.html" "#how-mypy-handles-imports for more info", file=sys.stderr) sys.exit(1) elif site_dir in python_path: print("{} is in the PYTHONPATH. Please change directory" " so it is not.".format(site_dir), file=sys.stderr) sys.exit(1) return SearchPaths(tuple(reversed(python_path)), tuple(mypypath), tuple(egg_dirs + site_packages), tuple(lib_path))
[ "poppessanha@gmail.com" ]
poppessanha@gmail.com
dfcad5c303e88efcac418f48355af1de45e4e2f1
44d379302787c5b65a3f5a8143431a3c19c3604a
/c03django_advanced/fc_mall/product/models.py
cf2952d7e4af3eac297ba0600d632c597a9dc53d
[]
no_license
Miniminis/python-study-note
71bde562be1111ea4cfae38613f604f4bfe3cba5
4b70c2f0ad0a449fcd6f213aeec69d1e40bd3fb2
refs/heads/master
2023-03-04T08:53:17.113739
2020-09-09T21:11:13
2020-09-09T21:11:13
237,565,137
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
from django.db import models # Create your models here. class FcMallProduct(models.Model): name = models.CharField(max_length=256, verbose_name='상품명') price = models.IntegerField(verbose_name='상품가격') description = models.TextField(verbose_name='상품설명') stuck = models.IntegerField(verbose_name='재고') regdate = models.DateTimeField(auto_now_add=True, verbose_name='등록날짜') def __str__(self): return self.name class Meta: db_table = 'fcmall_product' verbose_name='상품' verbose_name_plural='상품'
[ "minhee4735@gmail.com" ]
minhee4735@gmail.com
1d2ebb44e2ddc4c16590914e4341cf5e6514f071
bbedc4eaff6c69b620487caf14c2f54a05f79308
/contact/admin.py
1e3065979b6b121b035c771b319613b4f5d85591
[]
no_license
venkatR065/perfectlearn
404db6d3da40972ab61865243015121b382e98f2
3332553ab9349316a58e84ca1ccdae9f0cf7382f
refs/heads/main
2023-07-15T06:33:12.903131
2021-08-19T10:30:20
2021-08-19T10:30:20
392,893,550
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
from django.contrib import admin from .models import Email from .models import Banner from .models import Contact admin.site.register(Contact) admin.site.register(Email) admin.site.register(Banner)
[ "mallarapuvenkataraju065@gmail.com" ]
mallarapuvenkataraju065@gmail.com
090dd571209ba80b5cf1b896a2b0e700534bd1c5
9403d5c55b15a4185ad5394ef637a1f0373916a4
/logger/__init__.py
05870a6fab1788b3c9f07b06139fe2ea6111862b
[]
no_license
KosoFF/EduCerts
fb267dbbfb88b7bdb7443f4a291b6af9c5a9e83d
bee9b76aac8d0c52df5ca35df34442c91ff34653
refs/heads/master
2022-12-11T23:52:11.225877
2018-05-16T01:13:56
2018-05-16T01:13:56
132,535,373
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
import logging import os log_handler = logging.StreamHandler() try: log_level_name = os.environ['LOG_LEVEL'] except: log_level_name = 'INFO' log_level = logging.getLevelName(log_level_name) log_handler.setLevel(log_level) log_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')) c_logger = logging.getLogger('EduCerts') c_logger.addHandler(log_handler) c_logger.setLevel(log_level) c_logger.info('logger is initialized for %s' % (os.environ.get('HEROKU')))
[ "a_bka@bk.ru" ]
a_bka@bk.ru
df3811216e191550ef71e1dd876af6d38b448c33
4059df77acb4a4472935c41e265da6635d500857
/findCountr.py
e3fa4be254ed94b55d3106535abc17887b9f578a
[ "MIT" ]
permissive
swapnilmarathe007/Handwriting-Recognition
857e664c850d09bc2366b5eb1949f34610b57e21
1c0430ec528573a2022d5059ef20243c39980776
refs/heads/master
2020-04-07T15:44:17.788455
2018-11-21T06:16:51
2018-11-21T06:16:51
158,498,803
0
1
null
null
null
null
UTF-8
Python
false
false
1,987
py
# Import all necessary Packages import cv2 import numpy as np import matplotlib.pyplot as plt image_loc = "testing_!.png" img = cv2.imread(image_loc) gray = cv2.cvtColor(img , cv2.COLOR_BGR2GRAY) #threshold Image ret , thresh = cv2.threshold(gray , 127 , 255 , cv2.THRESH_BINARY) #find contour image , contour , hier = cv2.findContours(thresh , cv2.RETR_TREE , cv2.CHAIN_APPROX_SIMPLE) val = 0 for c in contour: x,y,w,h = cv2.boundingRect(c) #draw a green rectangle cv2.rectangle(img , (x,y) , (x+w , y+h) , (0,255,0) , 2) rect = cv2.minAreaRect(c) box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(img , [box] , 0 ,(0,0,255)) # if (w > 50 and h > 60): #saving as images # if() roi = thresh[y:y+h, x:x+w] roi = cv2.resize(roi,None,fx=0.5,fy=0.5,interpolation=cv2.INTER_AREA) print ("height",h,"width",w) h = h //2 w = w // 2 print ("height",h,"width",w) if((100 - h) % 2 == 0): bordersize_top = ( 100 - (h) ) // 2 bordersize_bottom = bordersize_top print ("HI ") else: bodersize_top = (( 100 - (h) ) // 2) + 1 bordersize_bottom = bordersize_top - 1 print("else") if((100 - w) % 2 == 0): bordersize_right = ( 100 - (w) ) // 2 bordersize_left = bordersize_right else: bordersize_right = (( 100 - (w) ) // 2) + 1 bordersize_left = bordersize_right - 1 print(bordersize_top , bordersize_bottom , bordersize_left , bordersize_right) mean = 255 try: ro = cv2.copyMakeBorder(roi, top=bordersize_top, bottom=bordersize_bottom, left=bordersize_left, right=bordersize_right, borderType= cv2.BORDER_CONSTANT, value=[mean,mean,mean] ) filename = "roi_"+str(val)+".png" cv2.imwrite(filename , ro) except: pass plt.imshow(roi) val += 1 print(len(contour)) cv2.drawContours(img, contour, -1, (255, 255, 0), 1) plt.imshow( img) ESC = 27
[ "swapnilm@winjit.com" ]
swapnilm@winjit.com
2f7fe65dbbd8485f1fe5e9a6204e7b6eb9ad821c
62114103a9254006b49ab209be50d9b785ea0ed3
/store/models.py
c7f1184790240abb0501b45943b6f5fabaab2301
[]
no_license
sudeepkhandekar99/tbw-dev
8655d29c147e3e2efadd563c32acad6f44d3fbd7
1da4688d6f42d2e5dea4bb904cdd4d522ba48815
refs/heads/main
2023-05-09T23:47:08.096067
2021-06-03T18:12:00
2021-06-03T18:12:00
373,600,742
0
0
null
null
null
null
UTF-8
Python
false
false
4,358
py
from django.db import models from django.contrib.auth.admin import User from datetime import datetime import random # Create your models here. class Product(models.Model): name = models.CharField(max_length = 50) uniqueCode = models.CharField(max_length=10, unique=True, null=False, default = "") price = models.FloatField() priceNoDiscount = models.FloatField(default=0.0) desc = models.TextField() size = models.CharField(max_length=2) img = models.ImageField(null=True, blank=True) def __str__(self): return self.name @property def imageURL(self): try: url = self.image.url except: url = '' return url class Order(models.Model): payment_status_choices = ( (1, 'SUCCESS'), (2, 'FAILURE' ), (3, 'PENDING'), ) customer = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, blank=True) date_ordered = models.DateTimeField(null=False, default = datetime.now()) complete = models.BooleanField(default=False) transaction_id = models.CharField(max_length=100, null=True) order_id = models.CharField(unique=True, max_length=100, null=True, blank=True, default=None) razorpay_order_id = models.CharField(max_length=500, null=True, blank=True) razorpay_payment_id = models.CharField(max_length=500, null=True, blank=True) razorpay_signature = models.CharField(max_length=500, null=True, blank=True) total_amount = models.FloatField(default=0.0) payment_status = models.IntegerField(choices = payment_status_choices, default=3) def __str__(self): return str(self.id) @property def shipping(self): shipping = False orderitems = self.orderitem_set.all() for i in orderitems: if i.product.digital == False: shipping = True return shipping @property def get_cart_total(self): orderitems = self.orderitem_set.all() total = sum([item.get_total for item in orderitems]) return round(total, 3) @property def get_cart_items(self): orderitems = self.orderitem_set.all() total = sum([item.quantity for item in orderitems]) return total def save(self, *args, **kwargs): if self.order_id is None and self.date_ordered and self.id: self.order_id = 'ODR' + self.transaction_id + str(self.id) return super().save(*args, **kwargs) class OrderItem(models.Model): product = models.ForeignKey(Product, on_delete=models.SET_NULL, null=True) order = models.ForeignKey(Order, on_delete=models.SET_NULL, null=True) quantity = models.IntegerField(default=0, null=True, blank=True) date_added = models.DateTimeField(auto_now_add=True) size = models.CharField(max_length=4, default="M") color = models.CharField(max_length=50, default="Yellow") @property def get_total(self): total = self.product.price * self.quantity return total class ShippingAddress(models.Model): customer = models.ForeignKey(User, on_delete=models.SET_NULL, null=True) order = models.ForeignKey(Order, on_delete=models.SET_NULL, null=True) address = models.CharField(max_length=200, null=False) city = models.CharField(max_length=200, null=False) state = models.CharField(max_length=200, null=False) zipcode = models.CharField(max_length=200, null=False) date_added = models.DateTimeField(null=False) def __str__(self): return self.address class AllOrders(models.Model): customer = models.ForeignKey(User, on_delete=models.SET_NULL, null=True) order = models.ForeignKey(Order, on_delete=models.SET_NULL, null=True) order_details = models.TextField(null=True, default="") shipment = models.ForeignKey(ShippingAddress, on_delete=models.SET_NULL, null=True) date_ordered = models.DateTimeField(auto_now_add=True , null=True) order_id_unique = models.CharField(max_length = 100 , null=True) address = models.CharField(max_length = 100 , null=True) city = models.CharField(max_length = 50 , null=True) state = models.CharField(max_length = 50 , null=True) zipcode = models.CharField(max_length = 50 , null=True) total_items = models.IntegerField(null=True) total_amount = models.FloatField(null=True) razorpay_order_id = models.CharField(max_length = 500 , null=True) razorpay_payment_id = models.CharField(max_length = 500 , null=True) def __str__(self): tempId = str(random.randint(0, 1000)) return self.customer.username + tempId + self.order.date_ordered.strftime('%Y%m%d')
[ "sudeepkhandekar99@gmail.com" ]
sudeepkhandekar99@gmail.com
5770346abe4a48d958e623f79a9c61097958d00d
f26dd860c8d764fc7a47bde656f393795cd8d763
/a4.py
782ca2447ff6d44c33f8b927c65ae5bdb2e6972a
[]
no_license
chokkuu1998/david
8e9fa162f657c8b9bb55502f1cdd730a08ff0235
4dc999cdb73383b5a5d7ed3d98b2c1a4d6b5f7ee
refs/heads/master
2020-03-28T17:05:04.046963
2019-07-16T08:07:37
2019-07-16T08:07:37
148,756,731
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
Xx=input() Yy=Xx.title() if(Xx!=Y): print("no") else: print("yes")
[ "noreply@github.com" ]
chokkuu1998.noreply@github.com
81f0ea6e0baef78f3bdcc0825839d08dc09898fc
79768b5999f9208484a0cf443eaaf82c3b2bdc56
/GUI Visualization/color.py
270e16323cf48556c4896637ba90b0d3017a74a6
[ "MIT" ]
permissive
RezaFirouzii/a-star_algorithm_visualization
a7ab82d987ca188e6905afbe7dccae96c76e490f
08be4dca454c1125c7f6bd96df6f61959c5ef777
refs/heads/main
2023-04-14T00:27:19.318531
2021-04-10T16:34:43
2021-04-10T16:34:43
356,626,041
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
# bunch of color constants class Color: WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) BLUE = (0, 128, 255) GREEN = (0, 153, 0) YELLOW = (255, 255, 0) BROWN = (204, 102, 0) PINK = (255, 102, 178) PURPLE = (153, 51, 255) GREY = (128, 128, 128) colors = { 1: WHITE, 2: YELLOW, 3: RED, 4: BLUE, 5: GREEN, 6: BLACK, 7: BROWN, 8: PINK, 9: PURPLE, 10: GREY }
[ "sr2000f@gmail.com" ]
sr2000f@gmail.com
4eb2b24396476c48355759b19e71e09945090a55
e2cede75302ba926fe0cb6fffd608b4352f336ab
/patch.py
1afad284f5c1027ac7aeb75c1c4e4840da217b9a
[]
no_license
stevenbraham/pi-aware-extra-info
6c6c81bdb4e90819641011110b6dfc1be3f74645
045b4723e7f3571a83fc9f3ec91b99c6117047ea
refs/heads/master
2020-12-24T06:06:27.635840
2016-11-08T23:29:50
2016-11-08T23:29:50
73,228,562
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
data = [line.strip() for line in open("index.html", 'r')] data.insert((len(data) - 2),'<script src="./pi-aware-extra-info.js"></script>') f=open('index.html','w') for line in data: f.write(line+'\n') f.close()
[ "steven@braham.biz" ]
steven@braham.biz
0d9d38e56f67375ccfe16fab62b67589fb05824b
157d0810d40bbb165889f946566346663cf5b22f
/Python-For-Everyone-Horstmann/Chapter8-Sets-and-Dictionaries/P8_9.py
5ad8eec093f3621b0a6870fef90d50450e432ed1
[]
no_license
dg5921096/Books-solutions
e6ccdcaba0294bdc95e2267723a02d2ba090cb10
31bb4bba240bf95aafeb6d189eade62c66a1765a
refs/heads/master
2021-12-09T16:07:47.756390
2021-11-14T07:09:25
2021-11-14T07:09:25
255,447,147
0
0
null
2020-04-13T21:39:02
2020-04-13T21:39:01
null
UTF-8
Python
false
false
1,360
py
# Write a program that asks a user to type in two strings and that prints # • the characters that occur in both strings. # • the characters that occur in one string but not the other. # • the letters that don’t occur in either string. # Use the set function to turn a string into a set of characters. # FUNCTIONS def shared_characters(string_a, string_b): string_a = set(string_a) string_b = set(string_b) return ", ".join(sorted(string_a.intersection(string_b))) def unique_characters(string_a, string_b): string_a = set(string_a) string_b = set(string_b) return ", ".join(sorted(string_a.difference(string_b).union(string_b.difference(string_a)))) def non_occurring_letters(string_a, string_b): alphabet = set("abcdefghijklomnopqrstuvwxyz") string_a = set(string_a) string_b = set(string_b) return ", ".join(sorted(alphabet - string_a.union(string_b))) # main def main(): string_a = str(input("Enter the first string: ")) string_b = str(input("Enter the second string: ")) print("Shared characters:") print(shared_characters(string_a, string_b)) print("Unique characters") print(unique_characters(string_a, string_b)) print("Non-occuring alphabet letters:") print(non_occurring_letters(string_a, string_b)) # PROGRAM RUN if __name__ == "__main__": main()
[ "syndbe@gmail.com" ]
syndbe@gmail.com
4abfddd2014cf989c845810569a277f34bc42ff3
f62598a462689aafc489a24c7b1526ad7e356536
/mysite/views.py
071a0c4aa6c8f16d3fc8ee92caa4cd1b7221f81f
[]
no_license
JJ-project/django_web_programing
5fcf45bb6293849211d77b4d2ddae8911c53cccd
b1ee23f5fd686ddf43720d03780bf961e31d55f1
refs/heads/master
2020-09-12T15:07:05.672027
2019-11-23T08:12:00
2019-11-23T08:12:00
222,461,650
0
0
null
null
null
null
UTF-8
Python
false
false
1,139
py
from django.views.generic.base import TemplateView from django.apps import apps class HomeView(TemplateView): template_name = "home.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) #context['app_list'] = ['polls', 'books'] dictVerBose = {} #장고에서 제공하는 apps객체의 get_app_configs() 메소드를 호출하면 settings.py 파일의 INSTALLED_APP에 등록된 각 앱의 #설정 클래스들을 담은 리스트를 반환함 for app in apps.get_app_configs(): print(app) print(app.path) if 'site-packages' not in app.path: #물리적 경로에 'site-packages'라는 디렉토리가 포함되어 있다면 제외시킴 dictVerBose[app.label] = app.verbose_name #app.label:books #app.verbose_name:Book-Author-Publisher App print("app.verbose_name:"+app.verbose_name) context['verbose_dict'] = dictVerBose return context
[ "jinjin2836@gmail.com" ]
jinjin2836@gmail.com
1baac10753e7043c8e72620f0ae434a8d30e89af
78d35bb7876a3460d4398e1cb3554b06e36c720a
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/aio/operations/_route_tables_operations.py
2d995d5f877e517415f08d401d405cc413ac20b3
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
catchsrinivas/azure-sdk-for-python
e35f59b60318a31b3c940a7a3a07b61b28118aa5
596227a7738a5342274486e30489239d539b11d1
refs/heads/main
2023-08-27T09:08:07.986249
2021-11-11T11:13:35
2021-11-11T11:13:35
427,045,896
0
0
MIT
2021-11-11T15:14:31
2021-11-11T15:14:31
null
UTF-8
Python
false
false
29,628
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteTablesOperations: """RouteTablesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_table_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_table_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def get( self, resource_group_name: str, route_table_name: str, expand: Optional[str] = None, **kwargs: Any ) -> "_models.RouteTable": """Gets the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteTable, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_08_01.models.RouteTable :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_table_name: str, parameters: "_models.RouteTable", **kwargs: Any ) -> "_models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RouteTable') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteTable', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_table_name: str, parameters: "_models.RouteTable", **kwargs: Any ) -> AsyncLROPoller["_models.RouteTable"]: """Create or updates a route table in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to the create or update route table operation. :type parameters: ~azure.mgmt.network.v2018_08_01.models.RouteTable :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_08_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, route_table_name: str, parameters: "_models.TagsObject", **kwargs: Any ) -> "_models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, route_table_name: str, parameters: "_models.TagsObject", **kwargs: Any ) -> AsyncLROPoller["_models.RouteTable"]: """Updates a route table tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to update route table tags. :type parameters: ~azure.mgmt.network.v2018_08_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_08_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore def list( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.RouteTableListResult"]: """Gets all route tables in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_08_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables'} # type: ignore def list_all( self, **kwargs: Any ) -> AsyncIterable["_models.RouteTableListResult"]: """Gets all route tables in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_08_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/routeTables'} # type: ignore
[ "noreply@github.com" ]
catchsrinivas.noreply@github.com
3d196d8263c79fa57d8b2a733812641161b65a5b
c41f84ac71ce24b741ec1ffd714646078d6c0b8c
/spider_practice/scapyProject/stockEastmoney/stockEastmoney/settings.py
caaf6f2a3062b893209036e4fe2c70d2024ca193
[]
no_license
0xliang/python3
b044327cbdcf6af07ad7f11cad7c1e9424dcd9a0
a70d9f37cd71070bb5149abaf998a18fc754fc75
refs/heads/master
2023-03-22T18:29:00.383317
2021-03-15T17:44:55
2021-03-15T17:44:55
298,767,733
0
0
null
null
null
null
UTF-8
Python
false
false
3,146
py
# Scrapy settings for stockEastmoney project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'stockEastmoney' SPIDER_MODULES = ['stockEastmoney.spiders'] NEWSPIDER_MODULE = 'stockEastmoney.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'stockEastmoney (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'stockEastmoney.middlewares.StockeastmoneySpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'stockEastmoney.middlewares.StockeastmoneyDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'stockEastmoney.pipelines.StockeastmoneyPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "lyqmichaelowen@gmail.com" ]
lyqmichaelowen@gmail.com
94a4c8120d37eabcfee7b87fa13c1a359cc05290
77f4ffa8572ef6f57b6b26cb1ce985a06109d8af
/main.py
0233038af5576d2312e81ddf6690ab96fc2466af
[]
no_license
szzzh/zh-NER
ced616a658298a52cbe92adaa55eda1db0457673
310019aa4f6827ec4ee3f8a4859943a55ec1d097
refs/heads/master
2020-03-22T13:08:22.511578
2018-07-07T23:40:31
2018-07-07T23:40:31
140,086,179
2
2
null
null
null
null
UTF-8
Python
false
false
5,605
py
import tensorflow as tf import numpy as np import os, argparse, time, random from model import BiLSTM_CRF from utils import str2bool, get_logger, get_entity from data import read_corpus, read_dictionary, random_embedding, read_dict, sentence2id ## Session configuration os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # default: 0 config = tf.ConfigProto() config.gpu_options.allow_growth = False #True config.gpu_options.per_process_gpu_memory_fraction = 0.2 # need ~700MB GPU memory ## hyperparameters parser = argparse.ArgumentParser(description='BiLSTM-CRF for Chinese NER task') parser.add_argument('--train_data', type=str, default='data_path', help='train data source') parser.add_argument('--test_data', type=str, default='data_path', help='test data source') parser.add_argument('--batch_size', type=int, default=64, help='#sample of each minibatch') parser.add_argument('--epoch', type=int, default=40, help='#epoch of training') parser.add_argument('--hidden_dim', type=int, default=300, help='#dim of hidden state') parser.add_argument('--optimizer', type=str, default='Adam', help='Adam/Adadelta/Adagrad/RMSProp/Momentum/SGD') parser.add_argument('--CRF', type=str2bool, default=True, help='use CRF at the top layer. if False, use Softmax') parser.add_argument('--lr', type=float, default=0.001, help='learning rate') parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') parser.add_argument('--dropout', type=float, default=0.5, help='dropout keep_prob') parser.add_argument('--update_embedding', type=str2bool, default=True, help='update embedding during training') parser.add_argument('--pretrain_embedding', type=str, default='random', help='use pretrained char embedding or init it randomly') parser.add_argument('--embedding_dim', type=int, default=50, help='random init char embedding_dim') parser.add_argument('--shuffle', type=str2bool, default=True, help='shuffle training data before each epoch') parser.add_argument('--mode', type=str, default='demo', help='train/test/demo') parser.add_argument('--demo_model', type=str, default='1521112368', help='model for test and demo') args = parser.parse_args() ## get char embeddings word2id = read_dictionary(os.path.join('.', args.train_data, 'word2id.pkl')) word2dictname, dictname2id = read_dict(os.path.join('.', args.train_data, 'dict/')) #print(word2dictname, dictname2id) if args.pretrain_embedding == 'random': embeddings = random_embedding(word2id, args.embedding_dim) else: embedding_path = 'pretrain_embedding.npy' embeddings = np.array(np.load(embedding_path), dtype='float32') ## paths setting paths = {} timestamp = str(int(time.time())) if args.mode == 'train' else args.demo_model output_path = os.path.join('.', args.train_data+"_save", timestamp) if not os.path.exists(output_path): os.makedirs(output_path) summary_path = os.path.join(output_path, "summaries") paths['summary_path'] = summary_path if not os.path.exists(summary_path): os.makedirs(summary_path) model_path = os.path.join(output_path, "checkpoints/") if not os.path.exists(model_path): os.makedirs(model_path) ckpt_prefix = os.path.join(model_path, "model") paths['model_path'] = ckpt_prefix result_path = os.path.join(output_path, "results") paths['result_path'] = result_path if not os.path.exists(result_path): os.makedirs(result_path) log_path = os.path.join(result_path, "log.txt") paths['log_path'] = log_path get_logger(log_path).info(str(args)) ## training model if args.mode == 'train': model = BiLSTM_CRF(args, embeddings, dictname2id, word2id, paths, config=config) model.build_graph() train_path = os.path.join('.', args.train_data, 'train.txt') train_data = read_corpus(train_path, word2id, word2dictname, dictname2id) test_path = os.path.join('.', args.test_data, 'test.txt') test_data = read_corpus(test_path, word2id, word2dictname, dictname2id); test_size = len(test_data) ## train model on the whole training data print("train data: {}".format(len(train_data))) model.train(train=train_data, dev=test_data) # use test_data as the dev_data to see overfitting phenomena ## testing model elif args.mode == 'test': ckpt_file = tf.train.latest_checkpoint(model_path) print(ckpt_file) paths['model_path'] = ckpt_file model = BiLSTM_CRF(args, embeddings, dictname2id, word2id, paths, config=config) model.build_graph() test_path = os.path.join('.', args.test_data, 'test.txt') test_data = read_corpus(test_path, word2id, word2dictname, dictname2id); test_size = len(test_data) print("test data: {}".format(test_size)) model.test(test_data) ## demo elif args.mode == 'demo': ckpt_file = tf.train.latest_checkpoint(model_path) print(ckpt_file) paths['model_path'] = ckpt_file model = BiLSTM_CRF(args, embeddings, dictname2id, word2id, paths, config=config) model.build_graph() saver = tf.train.Saver() with tf.Session(config=config) as sess: print('============= demo =============') saver.restore(sess, ckpt_file) while(1): print('Please input your sentence:') demo_sent = input() if demo_sent == '' or demo_sent.isspace(): print('See you next time!') break else: demo_sent = list(demo_sent.strip()) demo_data = [(sentence2id(demo_sent, word2id), [0] * len(demo_sent))] tag = model.demo_one(sess, demo_data) res = get_entity(tag[0], demo_sent, dictname2id) print(res)
[ "szzzh8@gmail.com" ]
szzzh8@gmail.com
6bbac76293004570878b2004f4f9bf9722929607
79c290a743557ef0fdf41e816bdfc247287a7ca3
/booking-hackathon-2015/travel-profiles.py
fa8419f092cb235aa2557916dbf94f905d56b742
[]
no_license
paulorodriguesxv/hackerrank
b836c385b4bd6e33cd222dfeb34592046a815f15
00a03e18cea3cd0769047d1c0eefdeb6ba02369c
refs/heads/master
2021-05-01T05:09:10.865405
2017-08-26T23:59:25
2017-08-26T23:59:25
79,718,137
3
0
null
null
null
null
UTF-8
Python
false
false
2,007
py
f = open('travel-profiles.txt', 'r') from collections import Counter class Budgets(object): def __init__(self, stream): liststream = stream.split() self.price = float(liststream[0]) self.facilities = liststream[1:] class Hotel(object): def __init__(self, stream): liststream = stream.split() self.aid = liststream[0] self.price = float(liststream[1]) self.facilities = liststream[2:] def populateHotels(): hotels = [] qtde = int(f.readline()) for index in xrange(qtde): hotels.append( Hotel(f.readline())) return hotels def populateTestCases(): tests = [] qtde = int(f.readline()) for index in xrange(qtde): tests.append( Budgets(f.readline())) return tests hotellist = populateHotels() testlist = populateTestCases() def getHotelWithFacilities(facilities): result = {} s1 = set(facilities) for hotel in hotellist: s2 = set(hotel.facilities) if s1 == s1.intersection(s2): result[hotel.aid] = hotel return result def getHotelWithPrices(price, hotels): return [hotels[x] for x in hotels if hotels[x].price <= price] def sorthotel(comp1, comp2): if len(comp1.facilities) > len(comp2.facilities): return -1 elif len(comp1.facilities) == len(comp2.facilities): if comp1.price < comp2.price: return -1 elif comp1.price == comp2.price: if comp1.aid < comp2.aid: return -1 else: return 1 else: return 1 else: return 1 def executeTestCases(): for test in testlist: hotelfinal = getHotelWithFacilities(test.facilities) hotelfinal = getHotelWithPrices(test.price, hotelfinal) hotelfinal = sorted(hotelfinal, sorthotel) output = '' for hotel in hotelfinal: output += hotel.aid + ' ' print output executeTestCases()
[ "paulorodriguesxv@gmail.com" ]
paulorodriguesxv@gmail.com
2bada593738d64fac83332d82048bd0c5b4afb46
4d16f6eeb98ab37519bb08fecd17640e77191630
/test/camera.py
6b44c5357e922c87c27d0aee35ed53f81a44e359
[ "MIT" ]
permissive
alvarlagerlof/ball-pid
94319b7b8458ad104cd25a288889205b33350b8f
6122e729782750818449645f97db41b31503a9aa
refs/heads/master
2021-06-25T20:43:46.424780
2020-10-19T10:38:01
2020-10-19T10:38:01
160,885,225
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
from threading import Thread import numpy as np import cv2 import imutils import time class Camera: def __init__(self, src=0): self.stream = cv2.VideoCapture(src) (self.grabbed, self.frame) = self.stream.read() self.stopped = False time.sleep(1) Thread(target=self.update, args=()).start() print("[init] Camera") def update(self): while True: if self.stopped: return (self.grabbed, self.frame) = self.stream.read() def read(self): return self.frame def stop(self): self.stopped = True
[ "alvar.lagerlof@gmail.com" ]
alvar.lagerlof@gmail.com
ef35a44d9964f90aa902985117d12968ef6d6134
892f8ff633ec90e4fc77066dfb3d2df3ed8684b4
/ryo_iwata_python_self_assessment/python_code_wars/consecutive_strings.py
d7a60e577b70b7811db8fbfe0145c4a7b0fdcb57
[]
no_license
ryoiwata/galvanize_python_self_assessment
8e321bf7ab55603bd7efe6192a8321c93fa5badb
d4ac564a3a4f2ba81264b36b24fc6fff33a4f0b0
refs/heads/master
2020-04-12T07:07:02.599358
2018-12-18T23:38:46
2018-12-18T23:38:46
162,357,446
1
0
null
null
null
null
UTF-8
Python
false
false
837
py
""" codewars.com/kata/56a5d994ac971f1ac500003e given a array of strings and integer k, return the longest combination of k strings(in the order of the array) """ def longest_consec(strarr, k): if k <= 0 or len(strarr) == 0 or k > len(strarr): return("") turn_num = 0 list_of_combined_words = [] for turn in range(len(strarr) - k + 1): # the range must be such that it's possible to have k combinations of words combined_word = "" for word in strarr[turn_num:turn_num + k]: #this allows strarr to be iterated through by k words at a time combined_word += word list_of_combined_words.append(combined_word) turn_num += 1 return(max(list_of_combined_words, key = len)) print(longest_consec(["zone", "abigail", "theta", "form", "libe", "zas"], 2))
[ "noreply@github.com" ]
ryoiwata.noreply@github.com
df8b60d39f7964d979deab8c142b7f5d70d5f1f8
33ff050337ba4575042032d9602bf84dcf81435e
/test/functional/p2p_invalid_tx.py
8dc06d4c89637c54047786113286b12e17194b2c
[ "MIT" ]
permissive
robinadaptor/chronon
5256b33fbe797bbdeb9c9a3c2091f0592afe6614
630b3945824c1b1cd2ea67ca80835a9f669b9124
refs/heads/master
2020-07-11T06:27:01.758237
2019-12-17T20:53:48
2019-12-17T20:53:48
145,383,639
0
0
null
null
null
null
UTF-8
Python
false
false
2,575
py
#!/usr/bin/env python3 # Copyright (c) 2015-2016 Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import ComparisonTestFramework from test_framework.comptool import TestManager, TestInstance, RejectResult from test_framework.blocktools import * import time ''' In this test we connect to one node over p2p, and test tx requests. ''' # Use the ComparisonTestFramework with 1 node: only use --testbinary. class InvalidTxRequestTest(ComparisonTestFramework): ''' Can either run this test as 1 node with expected answers, or two and compare them. Change the "outcome" variable from each TestInstance object to only do the comparison. ''' def __init__(self): super().__init__() self.num_nodes = 1 def run_test(self): test = TestManager(self, self.options.tmpdir) test.add_all_connections(self.nodes) self.tip = None self.block_time = None NetworkThread().start() # Start up network handling in another thread test.run() def get_tests(self): if self.tip is None: self.tip = int("0x" + self.nodes[0].getbestblockhash(), 0) self.block_time = int(time.time())+1 ''' Create a new block with an anyone-can-spend coinbase ''' height = 1 block = create_block(self.tip, create_coinbase(height), self.block_time) self.block_time += 1 block.solve() # Save the coinbase for later self.block1 = block self.tip = block.sha256 height += 1 yield TestInstance([[block, True]]) ''' Now we need that block to mature so we can spend the coinbase. ''' test = TestInstance(sync_every_block=False) for i in range(100): block = create_block(self.tip, create_coinbase(height), self.block_time) block.solve() self.tip = block.sha256 self.block_time += 1 test.blocks_and_transactions.append([block, True]) height += 1 yield test # b'\x64' is OP_NOTIF # Transaction will be rejected with code 16 (REJECT_INVALID) tx1 = create_transaction(self.block1.vtx[0], 0, b'\x64', 50 * COIN - 12000) yield TestInstance([[tx1, RejectResult(16, b'mandatory-script-verify-flag-failed')]]) # TODO: test further transactions... if __name__ == '__main__': InvalidTxRequestTest().main()
[ "robin.adaptor@gmail.com" ]
robin.adaptor@gmail.com
ecc0ca086c3e3f050cb57d80121670b8e2ae4f81
f4f0235c9f4cc33f3cc83b2d93ccbb6f5fedabe7
/flask_boilerplate/models.py
3040337e970e1f174d5b33fb63a16d53e0ac166a
[]
no_license
isaacchansky/flask_boilerplate
b5b894a7705290cef8dd8d3dfb89ee10282112a9
1f715a8412e5d13b71199c41ce1f14824f2aef5d
refs/heads/master
2020-04-12T18:47:30.862224
2013-11-07T16:12:58
2013-11-07T16:12:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
712
py
""" My Flask App models. """ from flask.ext.sqlalchemy import SQLAlchemy db = SQLAlchemy() class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String, unique=True, nullable=False) email = db.Column(db.String, unique=True, nullable=False) passhash = db.Column(db.String, nullable=False) salt = db.Column(db.String, nullable=False) def __init__(self, username=None, email=None, passhash=None, salt=None): self.username = username self.email = email self.passhash = passhash self.salt = salt def __repr__(self): return '<User "{username}">'.format(username=self.username)
[ "ichansky@gmail.com" ]
ichansky@gmail.com
9de5f420c7903864615b26079f346ea3cebeab6b
e15073438738794f6aab56ddf8f7efc8fea6733f
/models/wide_resnet.py
f3ced74959cd5c11be75e5829f94daa58a82973b
[]
no_license
myunghakLee/DataAugmentationWithNoise
e1568957ff8ecaf25d742b546887a9c279e5412f
327c2a6592e509e5ce7b230b68cc185641227666
refs/heads/master
2022-11-15T00:27:54.424266
2020-07-09T10:32:03
2020-07-09T10:32:03
276,308,982
0
0
null
null
null
null
UTF-8
Python
false
false
7,701
py
### dropout has been removed in this code. original code had dropout##### import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.autograd import Variable import sys, os import numpy as np import random sys.path.append(os.path.dirname(os.path.abspath(__file__))) from utils import to_one_hot, mixup_process, get_lambda from load_data import per_image_standardization act = torch.nn.ReLU() def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True) def conv_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.xavier_uniform(m.weight, gain=np.sqrt(2)) init.constant(m.bias, 0) elif classname.find('BatchNorm') != -1: init.constant(m.weight, 1) init.constant(m.bias, 0) class wide_basic(nn.Module): def __init__(self, in_planes, planes, stride=1): super(wide_basic, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True), ) def forward(self, x): out = self.conv1(act(self.bn1(x))) out = self.conv2(act(self.bn2(out))) out += self.shortcut(x) return out class Wide_ResNet(nn.Module): def __init__(self, depth, widen_factor, num_classes, per_img_std= False, stride = 1): super(Wide_ResNet, self).__init__() self.num_classes = num_classes self.per_img_std = per_img_std self.in_planes = 16 assert ((depth-4)%6 ==0), 'Wide-resnet_v2 depth should be 6n+4' n = int((depth-4)/6) k = widen_factor print('| Wide-Resnet %dx%d' %(depth, k)) nStages = [16, 16*k, 32*k, 64*k] self.conv1 = conv3x3(3,nStages[0], stride = stride) self.layer1 = self._wide_layer(wide_basic, nStages[1], n, stride=1) self.layer2 = self._wide_layer(wide_basic, nStages[2], n, stride=2) self.layer3 = self._wide_layer(wide_basic, nStages[3], n, stride=2) self.bn1 = nn.BatchNorm2d(nStages[3], momentum=0.9) self.linear = nn.Linear(nStages[3], num_classes) def _wide_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes return nn.Sequential(*layers) """ ## Modified WRN architecture### def __init__(self, depth, widen_factor, dropout_rate, num_classes): super(Wide_ResNet, self).__init__() self.in_planes = 16 assert ((depth-4)%6 ==0), 'Wide-resnet_v2 depth should be 6n+4' n = (depth-4)/6 k = widen_factor #self.mixup_hidden = mixup_hidden print('| Wide-Resnet %dx%d' %(depth, k)) nStages = [16, 16*k, 32*k, 64*k] self.conv1 = conv3x3(3,nStages[0]) self.bn1 = nn.BatchNorm2d(nStages[0]) self.layer1 = self._wide_layer(wide_basic, nStages[1], n, dropout_rate, stride=1) self.layer2 = self._wide_layer(wide_basic, nStages[2], n, dropout_rate, stride=2) self.layer3 = self._wide_layer(wide_basic, nStages[3], n, dropout_rate, stride=2) #self.bn1 = nn.BatchNorm2d(nStages[3], momentum=0.9) self.linear = nn.Linear(nStages[3], num_classes) def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, dropout_rate, stride)) self.in_planes = planes return nn.Sequential(*layers) """ def forward(self, x, target= None, mixup=False, mixup_hidden=False, mixup_alpha=None, layer_num_out=None): #print x.shape if self.per_img_std: x = per_image_standardization(x) if mixup_hidden: layer_mix = random.randint(0,2) elif mixup: layer_mix = 0 else: layer_mix = None out = x if mixup_alpha is not None: lam = get_lambda(mixup_alpha) lam = torch.from_numpy(np.array([lam]).astype('float32')).cuda() lam = Variable(lam) if target is not None : target_reweighted = to_one_hot(target,self.num_classes) if layer_mix == 0: out, target_reweighted = mixup_process(out, target_reweighted, lam=lam) out = self.conv1(out) out = self.layer1(out) if layer_mix == 1: out, target_reweighted = mixup_process(out, target_reweighted, lam=lam) if layer_num_out == 1: out_tmp = Variable(out.detach().data, requires_grad=False) out = self.layer2(out) if layer_mix == 2: out, target_reweighted = mixup_process(out, target_reweighted, lam=lam) if layer_num_out == 2: out_tmp = Variable(out.detach().data, requires_grad=False) out = self.layer3(out) if layer_mix == 3: out, target_reweighted = mixup_process(out, target_reweighted, lam=lam) if layer_num_out == 3: out_tmp = Variable(out.detach().data, requires_grad=False) out = act(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) if layer_num_out == 4: out_tmp = Variable(out.detach().data, requires_grad=False) if layer_num_out is not None: return out, target_reweighted, out_tmp if target is not None: return out, target_reweighted else: return out def forward_n_layers(self, x, target= None, mixup=False, mixup_hidden=False, mixup_alpha=None, layer_num=None): #print x.shape if self.per_img_std: x = per_image_standardization(x) out = x if target is not None : target_reweighted = to_one_hot(target,self.num_classes) out = self.conv1(out) out = self.layer1(out) if layer_num==1: return out, target_reweighted out = self.layer2(out) if layer_num==2: return out, target_reweighted out = self.layer3(out) if layer_num==3: return out, target_reweighted out = act(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) return out, target_reweighted def wrn28_10(num_classes=10, dropout = False, per_img_std = False, stride = 1): #print ('this') model = Wide_ResNet(depth=28, widen_factor=10, num_classes=num_classes, per_img_std = per_img_std, stride = stride) return model def wrn28_2(num_classes=10, dropout = False, per_img_std = False, stride = 1): #print ('this') model = Wide_ResNet(depth =28, widen_factor =2, num_classes = num_classes, per_img_std = per_img_std, stride = stride) return model if __name__ == '__main__': net=Wide_ResNet(28, 10, 0.3, 10) y = net(Variable(torch.randn(1,3,32,32))) print(y.size())
[ "mh9716@naver.com" ]
mh9716@naver.com
fc4c5ad27e7a405838aecbb8fccca26d2fbbd4b7
59a1151a9236ecc037c54711eb8ff0ad8e88558e
/C1 sequence/C1example/oefening 10.py
97b502efa524d270c1664002b98073f72c216159
[]
no_license
brandonmorren/python
c76c2d7ecc471ec7738041caaad85bb0760061bc
6db74202ccdf777c9a2caba892bbcf6871941c14
refs/heads/master
2023-02-11T17:36:44.929892
2021-01-04T14:58:44
2021-01-04T14:58:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
752
py
consumption_day = int(input("power consumption during the day(kilowatt per hour): ")) consumption_night = int(input("power consumption during the night(kilowatt per hour): ")) print("invoice") print("*" * 7) fixed_cost = 83.6 consumption_day_price = 0.068 * consumption_day consumption_night_price = 0.035 * consumption_night total_exluding_vat = fixed_cost + consumption_night_price + consumption_day_price total_including_vat = total_exluding_vat * 1.21 print("fixed costs: € " + str(fixed_cost)) print("daily consumption: € " + str(consumption_day_price)) print("night consumption: € " + str(consumption_night_price)) print("total exluding VAT: € " + str(total_exluding_vat)) print("total including VAT: € " + str(total_including_vat))
[ "r0842912@student.thomasmore.be" ]
r0842912@student.thomasmore.be
fbb0cb79304c6dda5f420047c1d0b5c865008647
459cf34442e5edfada54a0e74499ded88dd9f520
/recipe/templatetags/recipe_filters.py
3912d0c9a304c269cfaf47387ad16929d535164f
[]
no_license
olifirovai/FoodGram_project
f5ac8131e699a5477a0b17479d6ec107e84c9b55
d27e681d8b03a6ab53a0d4c8339ccae7dcd495be
refs/heads/master
2023-08-15T19:28:23.208149
2021-10-13T22:17:52
2021-10-13T22:17:52
360,272,094
0
0
null
2021-04-22T00:54:28
2021-04-21T18:43:07
CSS
UTF-8
Python
false
false
1,734
py
from django import template from recipe.models import FavoriteRecipe, ShoppingList, RecipeTypeMapping register = template.Library() @register.filter def subtract(value, arg): return value - arg @register.filter() def is_in_type(type, recipe): type_exists = RecipeTypeMapping.objects.filter(type=type, recipe=recipe).exists() return type_exists @register.filter() def duration_format(value): value = int(value) h = 'hour' m = 'minute' hours = int(value / 60) minutes = value % 60 if hours > 1: h += 's' if minutes > 1: m += 's' if hours == 0: return f'{minutes} {m}' elif minutes == 0: return f'{hours} {h}' return f'{hours} {h}, {minutes} {m}' @register.filter() def is_favorite(user, recipe): favorite = FavoriteRecipe.objects.filter(user=user, recipe=recipe).exists() return favorite @register.filter() def is_in_shopping(user, recipe): in_shopping = ShoppingList.objects.filter(user=user, recipe=recipe).exists() return in_shopping @register.filter() def recipe_shopping_count(user): recipe_amount = ShoppingList.objects.get_shopping_list(user).count() return recipe_amount @register.filter() def ingredients(ingredients, i): return ingredients[i] @register.filter() def add_id(url, type_id): url_line = str(type_id) if url is None: return url_line return url + url_line @register.filter() def string_view(type_id): return str(type_id) @register.filter def url_with_get(request, number): query = request.GET.copy() query['page'] = number return query.urlencode()
[ "golubtsovairinas@gmail.com" ]
golubtsovairinas@gmail.com
a23f87abb60c34a3fdb28208f4f5c7807fbeca7b
604de367c5455fbe052e430751a0797a017fce69
/allennlp/models/encoder_decoders/simple_seq2multiseq.py
f5d026f1e5407e500c9482bb01eae411d0aa31d0
[ "Apache-2.0" ]
permissive
schangpi/allennlp
3a152dcf0be4170777782d5b39318161e4af43e0
04eee4ce94ac096c65598ebff394c93b0ac97f5c
refs/heads/master
2021-05-03T23:16:57.449878
2018-03-15T21:23:50
2018-03-15T21:23:50
120,397,512
0
0
null
2018-02-06T03:36:33
2018-02-06T03:36:33
null
UTF-8
Python
false
false
14,543
py
from typing import Dict, Optional from IPython import embed import numpy from overrides import overrides import torch from torch.autograd import Variable # from torch.nn.modules.rnn import GRUCell from torch.nn.modules.rnn import LSTMCell from torch.nn.modules.linear import Linear import torch.nn.functional as F from allennlp.common import Params from allennlp.data.vocabulary import Vocabulary from allennlp.data.dataset_readers.seq2multiseq import START_SYMBOL, END_SYMBOL from allennlp.modules import Attention, TextFieldEmbedder, Seq2SeqEncoder from allennlp.modules.similarity_functions import SimilarityFunction from allennlp.modules.token_embedders import Embedding from allennlp.models.model import Model from allennlp.models.encoder_decoders.simple_seq2seq import SimpleSeq2Seq from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits, weighted_sum from allennlp.training.metrics import CategoricalAccuracy, SpanBasedF1Measure @Model.register("simple_seq2multiseq") class SimpleSeq2MultiSeq(Model): """ This ``SimpleSeq2MultiSeq`` class is a :class:`Model` which takes a sequence, encodes it, and then uses the encoded representations to decode another sequence. You can use this as the basis for a neural machine translation system, an abstractive summarization system, or any other common seq2seq problem. The model here is simple, but should be a decent starting place for implementing recent models for these tasks. This ``SimpleSeq2MultiSeq`` model takes an encoder (:class:`Seq2SeqEncoder`) as an input, and implements the functionality of the decoder. In this implementation, the decoder uses the encoder's outputs in two ways. The hidden state of the decoder is initialized with the output from the final time-step of the encoder, and when using attention, a weighted average of the outputs from the encoder is concatenated to the inputs of the decoder at every timestep. Parameters ---------- vocab : ``Vocabulary``, required Vocabulary containing source and target vocabularies. They may be under the same namespace (``tokens``) or the target tokens can have a different namespace, in which case it needs to be specified as ``target_namespace``. source_embedder : ``TextFieldEmbedder``, required Embedder for source side sequences encoder : ``Seq2SeqEncoder``, required The encoder of the "encoder/decoder" model max_decoding_steps : int, required Length of decoded sequences target_namespace : str, optional (default = 'tokens') If the target side vocabulary is different from the source side's, you need to specify the target's namespace here. If not, we'll assume it is "tokens", which is also the default choice for the source side, and this might cause them to share vocabularies. target_embedding_dim : int, optional (default = source_embedding_dim) You can specify an embedding dimensionality for the target side. If not, we'll use the same value as the source embedder's. attention_function: ``SimilarityFunction``, optional (default = None) If you want to use attention to get a dynamic summary of the encoder outputs at each step of decoding, this is the function used to compute similarity between the decoder hidden state and encoder outputs. scheduled_sampling_ratio: float, optional (default = 0.0) At each timestep during training, we sample a random number between 0 and 1, and if it is not less than this value, we use the ground truth labels for the whole batch. Else, we use the predictions from the previous time step for the whole batch. If this value is 0.0 (default), this corresponds to teacher forcing, and if it is 1.0, it corresponds to not using target side ground truth labels. See the following paper for more information: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., 2015. """ def __init__(self, vocab: Vocabulary, tasks: str, domains: str, source_embedder: TextFieldEmbedder, encoder: Seq2SeqEncoder, max_decoding_steps: int, upos_namespace: str = "upos_tags", ner_namespace: str = "ner_tags", chunk_namespace: str = "chunk_tags", target_embedding_dim: int = None, attention_function: SimilarityFunction = None, scheduled_sampling_ratio: float = 0.0, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None) -> None: super(SimpleSeq2MultiSeq, self).__init__(vocab, regularizer) # print(len(tasks), len(domains)) self._num_tasks = len(tasks) self._tasks = tasks self._domains = domains self._source_embedder = source_embedder self._encoder = encoder self._max_decoding_steps = max_decoding_steps self._upos_namespace = upos_namespace self._ner_namespace = ner_namespace self._chunk_namespace = chunk_namespace self._attention_function = attention_function self._scheduled_sampling_ratio = scheduled_sampling_ratio self._upos_seq2seq = SimpleSeq2Seq(vocab=vocab, source_embedder=source_embedder, encoder=encoder, max_decoding_steps=max_decoding_steps, target_namespace=upos_namespace, target_embedding_dim=target_embedding_dim, attention_function=attention_function, scheduled_sampling_ratio=scheduled_sampling_ratio, initializer=initializer, regularizer=regularizer) self._ner_seq2seq = SimpleSeq2Seq(vocab=vocab, source_embedder=source_embedder, encoder=encoder, max_decoding_steps=max_decoding_steps, target_namespace=ner_namespace, target_embedding_dim=target_embedding_dim, attention_function=attention_function, scheduled_sampling_ratio=scheduled_sampling_ratio, initializer=initializer, regularizer=regularizer) self._chunk_seq2seq = SimpleSeq2Seq(vocab=vocab, source_embedder=source_embedder, encoder=encoder, max_decoding_steps=max_decoding_steps, target_namespace=chunk_namespace, target_embedding_dim=target_embedding_dim, attention_function=attention_function, scheduled_sampling_ratio=scheduled_sampling_ratio, initializer=initializer, regularizer=regularizer) initializer(self) @overrides def forward(self, # type: ignore task_token: torch.LongTensor, domain_token: torch.LongTensor, source_tokens: Dict[str, torch.LongTensor], upos_tokens: Dict[str, torch.LongTensor] = None, ner_tokens: Dict[str, torch.LongTensor] = None, chunk_tokens: Dict[str, torch.LongTensor] = None) -> Dict[str, torch.Tensor]: # pylint: disable=arguments-differ """ Decoder logic for producing the entire target sequence. Parameters ---------- source_tokens : Dict[str, torch.LongTensor] The output of ``TextField.as_array()`` applied on the source ``TextField``. This will be passed through a ``TextFieldEmbedder`` and then through an encoder. target_tokens : Dict[str, torch.LongTensor], optional (default = None) Output of ``Textfield.as_array()`` applied on target ``TextField``. We assume that the target tokens are also represented as a ``TextField``. """ # (batch_size, input_sequence_length, encoder_output_dim) batch_size = len(source_tokens) upos_output_dict = self._upos_seq2seq.forward(source_tokens, upos_tokens) ner_output_dict = self._ner_seq2seq.forward(source_tokens, ner_tokens) chunk_output_dict = self._chunk_seq2seq.forward(source_tokens, chunk_tokens) loss = 0.0 predictions = [] label_namespaces = [] task_token_ids = task_token.data.cpu().numpy() for b in range(batch_size): task = self.vocab.get_token_from_index(task_token_ids[b][0], namespace="task_labels") if task == 'upos': loss += upos_output_dict['loss'] predictions.append(upos_output_dict['predictions']) elif task == 'ner': loss += ner_output_dict['loss'] predictions.append(ner_output_dict['predictions']) elif task == 'chunk': loss += chunk_output_dict['loss'] predictions.append(chunk_output_dict['predictions']) label_namespaces.append(task) output_dict = {'loss': loss, 'predictions': predictions, 'label_namespaces': label_namespaces} # embed() return output_dict @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ This method overrides ``Model.decode``, which gets called after ``Model.forward``, at test time, to finalize predictions. The logic for the decoder part of the encoder-decoder lives within the ``forward`` method. This method trims the output predictions to the first end symbol, replaces indices with corresponding tokens, and adds a field called ``predicted_tokens`` to the ``output_dict``. """ upos_output_dict = self._upos_seq2seq.decode(output_dict) ner_output_dict = self._ner_seq2seq.forward(output_dict) chunk_output_dict = self._chunk_seq2seq.forward(output_dict) all_predicted_tokens = [] for b, task in enumerate(output_dict['label_namespaces']): if task == 'upos': all_predicted_tokens.append(upos_output_dict['predictions'][b]) elif task == 'ner': all_predicted_tokens.append(ner_output_dict['predictions'][b]) elif task == 'chunk': all_predicted_tokens.append(chunk_output_dict['predictions'][b]) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: upos_accs = {'upos-' + metric_name: metric.get_metric(reset) for metric_name, metric in self._upos_seq2seq.metrics.items()} ner_accs = {'ner-' + metric_name: metric.get_metric(reset) for metric_name, metric in self._ner_seq2seq.metrics.items()} chunk_accs = {'chunk-' + metric_name: metric.get_metric(reset) for metric_name, metric in self._chunk_seq2seq.metrics.items()} upos_metric_dict = self._upos_seq2seq.span_metric.get_metric(reset=reset) upos_f1 = {'upos-' + x: y for x, y in upos_metric_dict.items() if "overall" in x} ner_metric_dict = self._ner_seq2seq.span_metric.get_metric(reset=reset) ner_f1 = {'ner-' + x: y for x, y in ner_metric_dict.items() if "overall" in x} chunk_metric_dict = self._chunk_seq2seq.span_metric.get_metric(reset=reset) chunk_f1 = {'chunk-' + x: y for x, y in chunk_metric_dict.items() if "overall" in x} accs = {metric_name: (upos_accs['upos-' + metric_name] + ner_accs['ner-' + metric_name] + chunk_accs['chunk-' + metric_name])/3 for metric_name, _ in self._upos_seq2seq.metrics.items()} f1 = {x: (upos_f1['upos-' + x] + ner_f1['ner-' + x] + chunk_f1['chunk-' + x])/3 for x, _ in upos_metric_dict.items() if "overall" in x} return {**f1, **accs, **upos_f1, **ner_f1, **chunk_f1, **upos_accs, **ner_accs, **chunk_accs} @classmethod def from_params(cls, vocab, params: Params) -> 'SimpleSeq2MultiSeq': tasks = params.pop("tasks") domains = params.pop("domains") source_embedder_params = params.pop("source_embedder") source_embedder = TextFieldEmbedder.from_params(vocab, source_embedder_params) encoder = Seq2SeqEncoder.from_params(params.pop("encoder")) max_decoding_steps = params.pop("max_decoding_steps") upos_namespace = params.pop("upos_namespace", "upos_tags") ner_namespace = params.pop("ner_namespace", "ner_tags") chunk_namespace = params.pop("chunk_namespace", "chunk_tags") # upos_namespace = params.pop("upos_namespace") # ner_namespace = params.pop("ner_namespace") # chunk_namespace = params.pop("chunk_namespace") # If no attention function is specified, we should not use attention, not attention with # default similarity function. attention_function_type = params.pop("attention_function", None) if attention_function_type is not None: attention_function = SimilarityFunction.from_params(attention_function_type) else: attention_function = None scheduled_sampling_ratio = params.pop_float("scheduled_sampling_ratio", 0.0) initializer = InitializerApplicator.from_params(params.pop('initializer', [])) regularizer = RegularizerApplicator.from_params(params.pop('regularizer', [])) return cls(vocab, tasks=tasks, domains=domains, source_embedder=source_embedder, encoder=encoder, max_decoding_steps=max_decoding_steps, upos_namespace=upos_namespace, ner_namespace=ner_namespace, chunk_namespace=chunk_namespace, attention_function=attention_function, scheduled_sampling_ratio=scheduled_sampling_ratio, initializer=initializer, regularizer=regularizer )
[ "martbeerina@gmail.com" ]
martbeerina@gmail.com
f5faa5b427e0b5ac987bbe63f6a85745fe598fef
ae17dbce5e09a3d6cf6d48be1c31e64cdd110600
/boba/urls.py
51e8c5ecf134da559e5fa773407051c332fb87a2
[ "MIT" ]
permissive
gracerosemary/boba-project
6dcf8cfe568b12f2e82552ac94ae5442d0319ed1
627504a3caf9f2833d3a5b12c9172543a64a7f70
refs/heads/master
2023-03-20T10:11:56.888178
2021-03-17T18:42:05
2021-03-17T18:42:05
346,222,209
0
0
NOASSERTION
2021-03-17T18:42:06
2021-03-10T03:42:17
Python
UTF-8
Python
false
false
480
py
from django.urls import path from .views import BobaListView, BobaCreateView, BobaDeleteView, BobaDetailView, BobaUpdateView urlpatterns = [ path("", BobaListView.as_view(), name="boba_list"), path("<int:pk>/", BobaDetailView.as_view(), name="boba_detail"), path("new/", BobaCreateView.as_view(), name="boba_create"), path("<int:pk>/edit", BobaUpdateView.as_view(), name="boba_update"), path("<int:pk>/delete", BobaDeleteView.as_view(), name="boba_delete"), ]
[ "choi.g.330@gmail.com" ]
choi.g.330@gmail.com
903582b3fbfcafbe95101cc7a00acf75d474b845
82fdb2f3baeb4f08799d93c4be8d8c829f092415
/rasa_core/version.py
91afe203b5cccccd5a7f8b12cd4e9baa0ab9359b
[ "Apache-2.0" ]
permissive
velamurip/rasa_core
915f815772e2b596f837f0e1af511e829cc28e3e
f3dbb70d0bb748628ab238eded17a8f5e09279e2
refs/heads/master
2021-05-16T04:22:04.310610
2017-10-05T09:53:22
2017-10-05T09:53:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import __version__ = '0.7.0'
[ "tom.bocklisch@scalableminds.com" ]
tom.bocklisch@scalableminds.com
0d7a944e35c031e0b4fc6f129e53b720f2764efd
56ec2fe75c27ee0f9eda4246805ea903d195c108
/check/myTraining.py
9656280a2e7d6e6f2f16399db3936589cb0d1d96
[]
no_license
whoisashish/Covid-19-WebApp
3ef71e8c3fca96af94265d002fc32d61124adeb1
d7eaba0f8612dab268634d874d39c822ba71986d
refs/heads/master
2022-04-16T08:10:30.141340
2020-04-09T17:22:45
2020-04-09T17:22:45
250,134,732
2
0
null
null
null
null
UTF-8
Python
false
false
56
py
import pandas as pd df = pd.read_csv('data.csv')
[ "noreply@github.com" ]
whoisashish.noreply@github.com
86fbc2d6300338aa31b746d7698c5c018e6d6119
69c85c659909aaef863fd92281c11df1ad7d4be3
/Python Problems/62.py
5c015cc6f2843244d927a382b232ff24d12f3c22
[]
no_license
OneCalledSyn/project-euler
fd7b8a8541bab173846826dbdfd5503ef2816a54
c5b9ec35cedf10fcdf45678e39470e9a8484db73
refs/heads/master
2023-08-05T01:08:39.095996
2023-07-23T19:42:24
2023-07-23T19:42:24
241,126,797
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
cubes = dict() solutions = [] for i in range(100, 10000): curr = ''.join(sorted(str(i ** 3))) print(curr) if curr not in cubes.keys(): cubes[curr] = list() cubes[curr].append(i) if len(cubes[curr]) == 5: solutions.append(cubes[curr]) if len(cubes[curr]) == 6: solutions.remove(cubes[curr]) #print(i, curr, cubes[curr]) print(solutions, solutions[0][0] ** 3)
[ "noreply@github.com" ]
OneCalledSyn.noreply@github.com
aed8fa7e7361c148a1e9f6978319b73fe94d4af9
80c24f75f86a29b28aab42d7752cf41165e2ac7d
/src/mininglogic/knn_kdtree_fasten_eager.py
e560dab0f015ec0902e96c04df8d24f8eecc6c5b
[]
no_license
txsing/KDDCup15
52ebd7846085b5c0c70d310823de80c67442014e
1c89f94c47310e2dc64eb33a695e2ea0c760a9db
refs/heads/master
2021-01-10T02:26:38.688243
2016-03-04T20:59:56
2016-03-04T20:59:56
52,838,847
0
0
null
null
null
null
UTF-8
Python
false
false
5,957
py
import numpy as np import time from sklearn import neighbors import sys from sklearn.svm import SVC from sklearn import svm sys.setrecursionlimit(100000000) TestsampleNum = 48217 trainVector = np.zeros([72325,7]) # 72325 samples in total, each in a 7-component vector format trainLabel = np.random.rand(72325) testVector = np.zeros([TestsampleNum,7]) # 10000 samples in total, each in a 7-component vector format testLabel = np.random.rand(TestsampleNum) predictedLabel = np.random.rand(TestsampleNum) trainFile = "WOT_Train_Vector.csv" def readTrainFile(filename): # input the file to be processed file = open(filename) PreprocessData = np.genfromtxt(file, delimiter=",") file.close() print PreprocessData #print PreprocessData.shape[0] #print PreprocessData.shape[1] return PreprocessData def constructKDTree(): tree = neighbors.KDTree(trainVector, leaf_size=2) return tree def KNN(array, k, searchTree): #input the x array (an array of points to query), input k value # tree = spatial.KDTree(trainVector) #print tree.data # print tree.data resultset = np.zeros([k, 7]) resultlabelset = np.zeros(k) #tree = spatial.KDTree(trainVector) distance, knn_index = searchTree.query(array, k) knn_index = knn_index.reshape(k) for i in range(len(knn_index)): resultset[i,:] = trainVector[knn_index[i],:] resultlabelset[i] = trainLabel[knn_index[i]] return resultset, resultlabelset# is this correct? def weight_vector(filename): file = open(filename) data = np.genfromtxt(file, delimiter=",") file.close() print "data shape = \n", data.shape print "data =\n", data type_sum = np.zeros(7) for i in range(7): type_sum[i] = type_sum[i] + data[i * 2][2] type_sum[i] = type_sum[i] + data[i * 2 + 1][2] type_tol = np.sum(type_sum) print "type_sum = \n", type_sum print "type_tol = \n", type_tol ratio = np.zeros(7) for i in range(7): if data[i * 2][2] > data[i * 2 + 1][2]: ratio[i] = data[i * 2][2] / float(data[i * 2 + 1][2]) ratio[i] = ratio[i] * (type_sum[i] / float (type_tol)) else: ratio[i] = data[i * 2 + 1][2] / float(data[i * 2][2]) # inner ratio ratio[i] = ratio[i] * (type_sum[i] / float (type_tol)) # weight among all counts ratio[i] = (-1) * ratio[i] # direction return ratio def cal_accuracy(testlabel, predictedlabel): correct = 0; for i in range(len(testlabel)): if testlabel[i] == predictedlabel[i]: correct = correct + 1 accuracy = correct / float(TestsampleNum) print "in cal_accuracy TestsampleNum = \n", TestsampleNum return accuracy if __name__ == '__main__': startTime = time.time() useWeight = int(sys.argv[1]) # Use weight info or not: 1-use; 0-not use trainfile = sys.argv[2] testfile = sys.argv[3] weightfile = sys.argv[4] k_neighbor = int(sys.argv[5]) AllData = readTrainFile(trainfile) PreviousId = AllData[0][0] index = 0 for i in range(AllData.shape[0]): # ith row in original input data CurrentId = AllData[i][0] if CurrentId == PreviousId: # add a new term in the vector trainVector[index][AllData[i][1]] = AllData[i][2] trainLabel[index] = AllData[i][3] else: index = index + 1 # 1st record for a new sample/enrollment trainVector[index][AllData[i][1]] = AllData[i][2] trainLabel[index] = AllData[i][3] PreviousId = CurrentId # print trainVector print trainVector.shape[0] print trainVector.shape[1] TestData = readTrainFile(testfile) PreviousId = TestData[0][0] index = 0 # for i in range(TestData.shape[0]): # ith row in original input data for i in range(TestData.shape[0]): # ith row in original input data CurrentId = TestData[i][0] if CurrentId == PreviousId: # add a new term in the vector testVector[index][TestData[i][1]] = TestData[i][2] testLabel[index] = TestData[i][3] else: index = index + 1 # 1st record for a new sample/enrollment testVector[index][TestData[i][1]] = TestData[i][2] testLabel[index] = TestData[i][3] PreviousId = CurrentId # print testVector print testVector.shape[0] print testVector.shape[1] print "TestsampleNum = \n", TestsampleNum if(useWeight != 0): ratio = weight_vector(weightfile) print "ratio = \n", ratio trainVector[:,0] = trainVector[:,0] * ratio[0] # -0.12748538 trainVector[:,1] = trainVector[:,1] * ratio[1] # 0.57295446 trainVector[:,2] = trainVector[:,2] * ratio[2] # 0.27336366 trainVector[:,3] = trainVector[:,3] * ratio[3] # 0.22940873 trainVector[:,4] = trainVector[:,4] * ratio[4] # 0.01308849 trainVector[:,5] = trainVector[:,5] * ratio[5] # 0.13693268 trainVector[:,6] = trainVector[:,6] * ratio[6] # 0.18386892 testVector[:,0] = testVector[:,0] * ratio[0] # -0.12748538 testVector[:,1] = testVector[:,1] * ratio[1] # 0.57295446 testVector[:,2] = testVector[:,2] * ratio[2] # 0.27336366 testVector[:,3] = testVector[:,3] * ratio[3] # 0.22940873 testVector[:,4] = testVector[:,4] * ratio[4] # 0.01308849 testVector[:,5] = testVector[:,5] * ratio[5] # 0.13693268 testVector[:,6] = testVector[:,6] * ratio[6] # 0.18386892 # print testVector clf = svm.LinearSVC() clf.fit(trainVector, trainLabel) predictedLabel = clf.predict(testVector) print "\naccuracy = \n", cal_accuracy(testLabel, predictedLabel) endTime = time.time() period = endTime - startTime print "period = \n", period
[ "txsing@gmail.com" ]
txsing@gmail.com
8ce56d89a9b682e82b60e2ae11f21050cd689353
13390c6d65b2b222a5525e485f5dd1d1b48b46d9
/django/clo/paginatortest.py
85ec6e7335f0b638a3171b72ca52db913ff880a5
[]
no_license
Roarain/py2
35c6f730a8dae46e2cb79349250448d5e3ea85b2
ee60ac13f3bbad0347bc790c8f64db26210948f0
refs/heads/master
2021-06-02T16:08:10.625121
2019-11-01T11:54:35
2019-11-01T11:54:35
98,857,911
0
0
null
2020-04-29T23:04:21
2017-07-31T06:55:33
JavaScript
UTF-8
Python
false
false
592
py
#coding:utf-8 from django.core.paginator import Paginator itemlist = ['a','b','c','d','e','f','g'] p = Paginator(itemlist,2) # print p.num_pages for i in range(1,p.num_pages+1): if p.page(i).has_previous(): print 'Page %d 有上一页,上一页是 %d' % (i,p.page(i).previous_page_number()) else: print 'Page %d 是第一页' % (i) if p.page(i).has_next(): print 'Page %d 有下一页,下一页是 %d' % (i, p.page(i).next_page_number()) else: print 'Page %d 是最后一页' % (i) print p.page(i).object_list print '----------------'
[ "welovewxy@126.com" ]
welovewxy@126.com
688481d306ef5a1d5633e44a88b0133a5281ff0d
9486974db3f1eca2359cc65a108301e6d158c641
/SS_app/models.py
828bcba6c54f167273beb57ccb9f5c3e1c4afec0
[]
no_license
KirandeepKaur03/ss
c0c41cd879df8c1847715447f41d0aa71fe92c22
3241591213cf6ed77175399ee943f8b2558a9afe
refs/heads/master
2023-04-13T21:39:22.561240
2021-04-24T07:42:34
2021-04-24T07:42:34
347,861,276
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
from django.db import models class Queries(models.Model): id = models.AutoField(primary_key=True) name = models.CharField(max_length=255,default="",null=True,blank=True) email = models.EmailField(default="",null=True,blank=True) mobile=models.BigIntegerField(default=0,null=True,blank=True) message=models.CharField(max_length=255,default="",null=True,blank=True) def __str__(self): return self.id class adminlist(models.Model): id = models.AutoField(primary_key=True) adminid = models.CharField(max_length=255, default="", null=True, blank=True) password = models.CharField(max_length=255, default="", null=True, blank=True) def __str__(self): return self.adminid
[ "kkirandeep2@gmail.com" ]
kkirandeep2@gmail.com
b6e0e8889401a2c8cee10f7a52d483fcdd0facce
a8c1a7cf331a746d2711e48094eb4be5b3c566ae
/set_dilation/viz/poly_viz_3d.py
20455316cf7b1b93da6e6ba4e04ab1ac5e516f6c
[]
no_license
aalbert-dev/minkowski_solver
87bbbac95d1e9550f0959b51befc83ca3f33f1ee
b5e0d4a8f8b52d0a1f3ea7ed432574ce4bafd8b9
refs/heads/main
2023-04-18T05:31:38.594006
2021-03-24T06:15:58
2021-03-24T06:15:58
344,354,305
2
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import random def plot(plt, coords, color, style): if not coords: return x_pts = [] y_pts = [] z_pts = [] for i in range(0, len(coords) + 1): cur_x, cur_y, cur_z = coords[i % len(coords)] cur_x = float(cur_x) cur_y = float(cur_y) cur_z = float(cur_z) x_pts.append(cur_x) y_pts.append(cur_y) z_pts.append(cur_z) plt.plot(x_pts, y_pts, color=color, linestyle=style) def read(f_name): coords = [] f = open(f_name, 'r') for line in f: coords.append(line.split(',')) return coords def get_cmap(n, name='hsv'): return plt.cm.get_cmap(name, n) def get_colors_from_angles(z_coords): num_points = len(z_coords) unique_z = [] for z in z_coords: if z not in unique_z: unique_z.append(z) # print(num_points, len(unique_z)) z_length = num_points // len(unique_z) color_seq = [] for i in range(0, num_points): col_index = int(i / z_length) color_seq.append(col_index) return color_seq def viz(dir_name): fig = plt.figure() ax = Axes3D(fig) coords = read(dir_name + 'poly_results_3d.txt') if not coords: return x_pts = [] y_pts = [] z_pts = [] for i in range(0, len(coords) + 1): cur_x, cur_y, cur_z = coords[i % len(coords)] x_pts.append(float(cur_x)) y_pts.append(float(cur_y)) z_pts.append(float(cur_z)) color_seq = get_colors_from_angles(z_pts) ax.scatter(x_pts, y_pts, z_pts, s=50, c=color_seq) ax.set_xlabel('X Meters') ax.set_ylabel('Y Meters') ax.set_zlabel('Z Radians') plt.title('Configuration space') plt.show() viz('/home/arjun/minkowski_addition/set_dilation/data/')
[ "arjunalbert1@gmail.com" ]
arjunalbert1@gmail.com
c13c389f3d476fad44b7df7071d4d66218e09f44
8da9a2e818ed7a304c716cc2eb5bd2762a6b8b9d
/env/bin/flask
ec1c8d934cd89084f05989e845570327b1a3b45b
[]
no_license
rachelgoff/FSND
9b1b3d63e2707a829fec0f21c0a97b76d30f4140
b72230debcd6b18816ce574db4dd7b7e0273e472
refs/heads/master
2020-12-13T13:55:36.171470
2020-06-10T06:04:35
2020-06-10T06:04:35
234,435,253
0
0
null
2020-01-17T00:00:39
2020-01-17T00:00:38
null
UTF-8
Python
false
false
307
#!/Users/rachel/full_stack_class/projects/fyyur/FSND/projects/capstone/05_what_to_eat/backend/src/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "rzhangmoz1@gmail.com" ]
rzhangmoz1@gmail.com
23d517302e7e039c5fa654c1734866871498ede2
db2d5b2b1a48e0b834993f3fe606deb9a4a57e56
/Desktop/master/DPROT/labWork1/codisGit/lab1dprot.py
fe09e43e54edfd8d3569112d9de3d36ab18286aa
[]
no_license
mbasart/prova2
9ce78722a0fd1ab8b3a4b2ef8b46ccc33021dff4
b8b429ceee42ee129d18ed566b375e84ecee19cd
refs/heads/main
2021-06-22T07:18:18.605483
2020-12-06T22:35:14
2020-12-06T22:35:14
149,730,169
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
f = open("resultatsXifratsMcopy1.txt","r") valorsXifrats = [] count = 0 valorsXifratsDic = {} maxfreq = 0 valuefreq = 0 for x in f: value = x.split(' ', 1)[0].strip() valorsXifrats.append(value) valueInt = int(value, 16) finalxor = valueInt ^ (count+2) count = count+1 if finalxor in valorsXifratsDic: valorsXifratsDic[finalxor]+=1 else: valorsXifratsDic[finalxor] = 1 for x, y in valorsXifratsDic.items(): if y > maxfreq: maxfreq = y valuefreq = x #print(x,y) print(chr(valuefreq),maxfreq) #print(valuefreq,maxfreq) f.close() #busquem el primer valor de la clau k[0] f2 = open("resultatsXifrats2Mcopy1.txt","r") count2 = 0 valorsXifratsDic2 = {} maxfreq2 = 0 valuefreq2 = 0 for x in f2: value = x.split(' ', 1)[0].strip() valueInt = int(value, 16) valuek = 0 for x in range(256): finalxor = valuefreq ^ (count2+6+x) if finalxor == valueInt: valuek = x if x in valorsXifratsDic2: valorsXifratsDic2[x]+=1 else: valorsXifratsDic2[x] = 1 count2 = count2+1 for x, y in valorsXifratsDic2.items(): if y > maxfreq2: maxfreq2 = y valuefreq2 = x #print(x,y) print(hex(valuefreq2),maxfreq2) f2.close() #busquem el segon valor de la clau k[1] f3 = open("resultatsXifrats3Mcopy1.txt","r") count3 = 0 valorsXifratsDic3 = {} maxfreq3 = 0 valuefreq3 = 0 for x in f3: value = x.split(' ', 1)[0].strip() valueInt = int(value, 16) valuek = 0 for x in range(256): finalxor = valuefreq ^ (count3+10+valuefreq2+x) if finalxor == valueInt: valuek = x if x in valorsXifratsDic3: valorsXifratsDic3[x]+=1 else: valorsXifratsDic3[x] = 1 count3 = count3+1 for x, y in valorsXifratsDic3.items(): if y > maxfreq3: maxfreq3 = y valuefreq3 = x #print(x,y) print(hex(valuefreq3),maxfreq3) f3.close()
[ "mbd2797@gmail.com" ]
mbd2797@gmail.com
2fb7ffee21e0dc2f4eca5bdebe372d417dfe97d9
a59d1faced9fe7348ca7143d2a8643e0ebad2132
/pyvisdk/do/operation_disabled_by_guest.py
0767e0fe3a5714693497cfec0b893a5dfefa5187
[ "MIT" ]
permissive
Infinidat/pyvisdk
c55d0e363131a8f35d2b0e6faa3294c191dba964
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
refs/heads/master
2023-05-27T08:19:12.439645
2014-07-20T11:49:16
2014-07-20T11:49:16
4,072,898
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def OperationDisabledByGuest(vim, *args, **kwargs): '''An OperationDisabledByGuest exception is thrown when an operation fails because the guest operations agent has been configured to disable the operation.''' obj = vim.client.factory.create('{urn:vim25}OperationDisabledByGuest') # do some validation checking... if (len(args) + len(kwargs)) < 4: raise IndexError('Expected at least 5 arguments got: %d' % len(args)) required = [ 'dynamicProperty', 'dynamicType', 'faultCause', 'faultMessage' ] optional = [ ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
[ "guy@rzn.co.il" ]
guy@rzn.co.il
09aa4e450f4fc1fe24c41d5ab95eea8247db0226
856c958451ff1770115232d6f7289afb354db4e1
/Tests/test_filtering_products_by_name.py
23641670420d997ca8cabe5746e1a2d1537fc16c
[]
no_license
Alex-Chizhov/Test_automation_for_web_store
0d82a105e75521fd3ec9c19497184c7e967239ec
8f0e50a2db0c2d6a1bfffdfc615f20efca77d1bc
refs/heads/master
2022-11-01T22:01:59.152063
2022-10-02T06:33:45
2022-10-02T06:33:45
164,032,730
2
0
null
null
null
null
UTF-8
Python
false
false
283
py
import allure @allure.feature('Filtering products by name') @allure.severity('critical') def test_filtering_products_by_name(appf_customer): list_products_names = appf_customer.shop.get_filtering_products_by_price() assert list_products_names == sorted(list_products_names)
[ "alexchizhov90@gmail.com" ]
alexchizhov90@gmail.com
c9a99d0b6f30fc9256d329cb0d67be6887f815d5
c874e55ec73043f6b837601cc58d855d37649e59
/mlcenzer/python scripts/find_time_duration.py
90d350b7501cc45fb8a4f1dddb8d2526b7a9d14a
[]
no_license
mlcenzer/SBB-dispersal
85c54c924b399834a798d700cabf0b2702ae0755
1a777370986f83186180552a09149dfba72b96d0
refs/heads/master
2022-12-11T10:13:32.416530
2022-12-03T16:23:52
2022-12-03T16:23:52
229,098,494
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
#*************************************************************************************************************************** # Calculates flight duration of a trial. The function reads all the data, splits the data out as a list of strings (each # string is a row), retrieves the last line of the data, and gets the first element in the list of strings, which is the # flight duration. #*************************************************************************************************************************** def find_time_duration(file_name): with open(file_name, "r") as txtfile: data = txtfile.readlines() tot_duration = data[-1].split(",")[0] return float(tot_duration)
[ "mlcenzer@ucdavis.edu" ]
mlcenzer@ucdavis.edu
dcfa5ed4aef2d586ed2d0c1c723f6ce1e8e10460
8b69e4e5119813ffeccc25acad7b6922a7fcf8ff
/tronn/learn/baselines_v2.py
3417bb499bc5f81029e8bec6a7981c91ca6bd13e
[ "MIT" ]
permissive
mbrannon88/tronn
752089520b83637636f848d11fdf917cadaca6f4
59654a958f6debb5be150e383e96997f1982359d
refs/heads/master
2023-07-08T15:22:08.170872
2021-08-04T21:36:21
2021-08-04T21:36:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,976
py
"""Contains code to run baseline models as comparisons """ import glob import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.tensor_forest.client import eval_metrics #from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.platform import app from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.ops import array_ops from tronn.datalayer import tflearn_input_fn from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tronn.learn import tensor_forest from tronn.learn import random_forest #from tensorflow.contrib.tensor_forest.python import tensor_forest #from tensorflow.contrib.tensor_forest.client import random_forest from tronn.nets.kmer_nets import featurize_kmers from tronn.nets.motif_nets import featurize_motifs from tronn.learn.cross_validation import setup_cv from tronn.interpretation.motifs import get_encode_pwms def build_estimator(model_dir, num_classes=3): """Build an estimator.""" params = tensor_forest.ForestHParams( num_classes=num_classes, num_features=15625, # num classes = 2 num_trees=100, max_nodes=10000, regression=True if num_classes > 2 else False) # make this bigger later 500, max nodes 3000 graph_builder_class = tensor_forest.RandomForestGraphs if num_classes > 2: print "using multi label head" head = head_lib.multi_label_head(num_classes) # reactivate this for multi label learning else: head = None return random_forest.TensorForestEstimator( params, graph_builder_class=graph_builder_class, early_stopping_rounds=100000000, head=head, model_dir=model_dir) def auprc_old(probs, targets, weights=None): return metric_ops.streaming_auc(array_ops.slice(probs, [0, 1], [-1, 1]), targets, weights, curve='PR') #return metric_ops.streaming_auc(probs, targets, weights, curve='PR') def auprc(probs, targets, weights=None): return tf.metrics.auc(targets, probs, curve='PR') def auroc_old(probs, targets, weights=None): return metric_ops.streaming_auc(array_ops.slice(probs, [0, 1], [-1, 1]), targets, weights, curve='ROC') #return tf.metrics.auc(targets, probs, curve='ROC') def auroc(probs, targets, weights=None): return tf.metrics.auc(targets, probs, curve='ROC') def accuracy(probs, targets): print probs.get_shape() print targets.get_shape() predictions = tf.cast(tf.greater(tf.cast(probs, 'float32'), tf.cast(0.5, 'float32')), 'float32') targets_expanded = tf.expand_dims(targets, 2) predictions_expanded = tf.expand_dims(predictions, 2) return tf.metrics.accuracy(targets_expanded, predictions_expanded) def train_and_eval_tensorforest( data_loader_train, data_loader_test, batch_size, #tasks, out_dir, num_classes=3): """Runs random forest baseline model Note that this is TFLearn's model """ est = build_estimator(out_dir, num_classes=num_classes) # TODO change metrics here, here for debugging, move back down later metric = {} metric['accuracy'] = metric_spec.MetricSpec( accuracy, prediction_key='logits') metric['auroc_tf'] = metric_spec.MetricSpec( auroc, prediction_key='logits') metric['auprc_tf'] = metric_spec.MetricSpec( auprc, prediction_key='logits') est.fit(input_fn=data_loader_train, max_steps=5000) # steps=5000 if True: results = est.evaluate(input_fn=data_loader_test, metrics=metric, steps=10) for key in sorted(results): print('%s: %s' % (key, results[key])) import ipdb ipdb.set_trace() predict_total = 50 prediction_generator = est.predict(input_fn=data_loader_test, outputs=["probabilities", "logits", "classes", "labels"]) #np.zeros((predict_total, num_classes)) for i in xrange(predict_total): blah = prediction_generator.next() print blah return None def run(args): """Run command """ data_files = sorted(glob.glob('{}/*.h5'.format(args.data_dir))) train_files, valid_files, test_files = setup_cv(data_files, cvfold=args.cvfold) tf.logging.set_verbosity(tf.logging.INFO) # TODO run through at least 1 epoch and at least until loss drops more if args.kmers: train_and_eval_tensorforest( tflearn_input_fn( train_files, args.batch_size, tasks=args.tasks, featurize_fn=featurize_kmers, featurize_params={"kmer_len": args.kmer_len}), tflearn_input_fn( test_files, args.batch_size, tasks=args.tasks, featurize_fn=featurize_kmers, featurize_params={"kmer_len": args.kmer_len}), args.batch_size, args.out_dir, num_classes=args.num_classes) elif args.motifs: train_and_eval_tensorforest( tflearn_input_fn( train_files, args.batch_size, tasks=args.tasks, featurize_fn=featurize_motifs, featurize_params={"pwm_list": get_encode_pwms(args.pwm_file)}), tflearn_input_fn( test_files, args.batch_size, tasks=args.tasks, featurize_fn=featurize_motifs, featurize_params={"pwm_list": get_encode_pwms(args.pwm_file)}), args.batch_size, args.out_dir, num_classes=args.num_classes) return None
[ "dskim89@gmail.com" ]
dskim89@gmail.com
358f264887f571c41af0642c4ba2e6a3b8d4574a
52b959e977ac6fa150fa1d0414ee69cba3f1869b
/dijkstra算法.py
6b024fde750262c2a6c7d130075c0cf6ab3c199e
[]
no_license
1536696608/Traversal-of-graphs
66a00e5118f5a9d547c87d7d9b298b79bac4be12
a0bcbf7a17ab39301514241ac115b60f7ded16d2
refs/heads/master
2020-06-26T05:45:57.157388
2019-07-31T02:51:04
2019-07-31T02:51:04
199,551,226
0
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
import heapq import math graph = {"A":{"B":5,"C":1}, "B":{"A":5,"C":2,"D":1}, "C":{"A":1,"B":2,"D":4,"E":8}, "D":{"B":1,"C":4,"E":3,"F":6}, "E":{"C":8,"D":3}, "F":{"D":6} } def init_dis(graph,s): dis = {s:0} vertex = graph for v in vertex: if v != s: dis[v] = math.inf return dis def dijkstra(graph,s): queueh = [] parent = {} seen = set() heapq.heappush(queueh,(0,s)) distance = init_dis(graph,s) while len(queueh) > 0 : item = heapq.heappop(queueh) pair = item[1] dist = item[0] seen.add(pair) vertex = graph[pair].keys() for w in vertex: if w not in seen: if dist + graph[pair][w] < distance[w]: distance[w] = dist + graph[pair][w] parent[w] = pair heapq.heappush(queueh,(distance[w],w)) return parent,distance def main(): parents,distance = dijkstra(graph,"A") v = "E" print(parents) print(distance) main()
[ "noreply@github.com" ]
1536696608.noreply@github.com
46500e06310a7c56f312a32b1272edbd5ce08c71
25fed1e45c4b6bdbf50d2beb91db97d8dbbe6926
/image_processing/basic_processing.py
b1a5c9d7915bf0048e4f2a3003fd0ddb44d9c883
[]
no_license
qingnianmeng/Image-processing-app
d2ba5629683d41101a55949ab61d7a26df972415
86b645973bc2222009170d359255bdfb9b3b186d
refs/heads/master
2023-01-23T19:00:49.317135
2020-12-03T23:50:00
2020-12-03T23:50:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,949
py
""" Module contains functions that perform some basic image operations """ import cv2 import numpy as np import matplotlib.pyplot as plt def scale(img, factor): """ scale the image based on factor. :param img: target image to scale :param factor: scale factor :return: rescaled image """ if factor <= 0: raise ValueError if factor >= 1: return cv2.resize(img, None, fx=factor, fy=factor, interpolation=cv2.INTER_CUBIC) else: return cv2.resize(img, None, fx=factor, fy=factor, interpolation=cv2.INTER_AREA) def blur(img, sigma): """ performs gaussian filter on the target image. User specify kernel sigma :param img: image :param sigma: standard deviation of gaussian kernel """ sigma = int(sigma) fil = cv2.getGaussianKernel(sigma * 3, sigma) fil = fil * fil.T return cv2.filter2D(img, -1, fil) def cartoonize(img): """ cartoonize an image, to speed up, the images are scaled down before applying filters. https://towardsdatascience.com/building-an-image-cartoonization-web-app-with-python-382c7c143b0d :param img: target image :return: cartoon image """ gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # scale down the image and the apply median blur, then scale up. gray_img = scale(cv2.medianBlur(scale(gray_img, 0.5), 5), 2) edges = cv2.adaptiveThreshold(gray_img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2) img = scale(cv2.bilateralFilter(scale(img, 0.5), 4, 20, 4), 2) return cv2.bitwise_and(img, img, mask=edges) def grad(im): """ find the absolute value of the sum of vertical gradient and horizontal gradient :param im: rbg image :return: gradient map of the input image in gray scale """ im = im.copy() im = cv2.cvtColor(im * 255, cv2.COLOR_RGB2GRAY) im = cv2.GaussianBlur(im, (3, 3), 0) / 255 fil1 = np.array([1, 0, -1]) x_grad = np.abs(cv2.filter2D(im, -1, fil1)) y_grad = np.abs(cv2.filter2D(im.T, -1, fil1)) return x_grad + y_grad.T def seam_finding(img): """ find the best seam given cost map :param img: cost map :return: accumulating cost map and corresponding backtrack """ h, w = img.shape backtrack = np.zeros_like(img) dp = img.copy() for i in range(1, h): for j in range(w): idx = np.argmin(dp[i - 1, max(0, j - 1): min(j + 1, w - 1)]) if j > 0: idx -= 1 backtrack[i, j] = j + idx dp[i, j] = dp[i, j] + min(dp[i - 1, max(0, j - 1): min(j + 1, w - 1)]) return dp, backtrack def seam_mask(img): """ find the mask of the image that masks out the lowest cost seam :param img: cost map :return: seam mask """ e_map, backtrack = seam_finding(img) smallest_seam_idx = np.argmin(e_map[-1]) seam = np.ones_like(img, dtype=bool) cur_j = smallest_seam_idx for i in range(img.shape[0] - 1, -1, -1): cur_j = int(cur_j) seam[i, cur_j] = False cur_j = backtrack[i, cur_j] return seam def remove_seam(img, mask): """ given rgb image and mask, remove the pixels according to the mask :param img: rgb image :param mask: seam mask :return: resized image """ h, w, c = img.shape return img.copy()[mask].reshape(h, w - 1, c) def seam_carving(img, num_seam): """ resizing the image in 1 dimension. Default resize along the width :param img: img to resize :param num_seam: size to reduce :param mode: if given as 'vertical', resize in the vertical direction :return: resized image """ img = img.copy() for _ in range(num_seam): e = grad(img) mask = seam_mask(e) img = remove_seam(img, mask) return img def contrast_enhancement(img, clip=40): """ Contrast enhancement using CLAHE (Contrast Limited Adaptive Histogram Equalization) :param img: input rgb image :param clip: clip threshold :return: enhanced rgb image """ img = np.array(img.copy()) img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clip) L = img[:, :, 0] img[:, :, 0] = clahe.apply(L) return cv2.cvtColor(img, cv2.COLOR_LAB2RGB) def histogram_equalization(img): """ Histogram color equalization :param img: input rgb image :return: enhanced rgb image """ img = np.array((img.copy())) img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) L = img[:, :, 0] img[:, :, 0] = cv2.equalizeHist(L) return cv2.cvtColor(img, cv2.COLOR_LAB2RGB) def histogram_visualization(img): """ plot histogram of pixel values in L channel of LAB color space """ img = np.array((img.copy())) img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) L = img[:, :, 0] fig = plt.figure() plt.hist(L.ravel(), bins='auto') fig.savefig('plot.png')
[ "qm4@illinois.edu" ]
qm4@illinois.edu
fc678eca34ca0b34e88a85b8926db4d11200920f
16e8963be3b720b8c3ad5a792ed68a467e772ba4
/Prac6/guitar.py
9d653d28ef7748d7551b8269ebc3fc1ac477d125
[]
no_license
Kampangchau/practicals-of-programming2
0b33475fb7941b1628ba8d22505e042807deb2fe
692e47e3b208a3425b8db759d0c7192839400345
refs/heads/master
2022-07-02T17:56:06.373542
2020-05-18T04:19:23
2020-05-18T04:19:23
259,234,938
0
0
null
null
null
null
UTF-8
Python
false
false
1,500
py
CURRENT_YEAR = 2017 VINTAGE_AGE = 50 class Guitar: """Guitar class for storing details of a guitar.""" def __init__(self, name, year, cost): """constructor that takes three parameters and registers the result""" self.name = name self.year = year self.cost = cost def __str__(self): """A string representing a guitar object""" return "{} ({}) : ${:.2f}".format(self.name, self.year, self.cost) def get_age(self): """way to get age of guitar""" return (2018 - self.year) def is_vintage(self): """way to determine if a guitar is vintage""" age = self.get_age() if age >= 50: return True return False def unit_test(): """test of guitar""" # create test instances gibson_guitar = Guitar("Gibson L-5 CES", 1922, 16035.40) # test get_age() print("{} get_age() - Expected 96. Got {}".format( gibson_guitar, gibson_guitar.get_age())) print("{} get_age() - Expected 6. Got {}".format( another_guitar, another_guitar.get_age())) # test is_vintage() print("{} is_vintage() - Expected True. Got {}".format( gibson_guitar, gibson_guitar.is_vintage())) print("{} is_vintage() - Expected False. Got {}".format( another_guitar, another_guitar.is_vintage())) print("{} is_vintage() - Expected True. Got {}".format( fifty_guitar, fifty_guitar.is_vintage())) if __name__ == "__main__": unit_test()
[ "changlin.wen\"my.jcu.edu.au" ]
changlin.wen"my.jcu.edu.au
1252fccbc56b12ce2a33f22a90f63c8d9c9e6ceb
a8eb6b808ee6fcaf2a5aed07b8d565f80fe36627
/rfPractice/DecisionTree.py
bf905f2b81499b923d79eb9e415f79a54571f660
[]
no_license
CEfanmin/EnsembleTree
1ece7c95164c72aec142daf1dba632931a44cad5
8b02757303904f85940cac997ee76f9375727d5c
refs/heads/main
2023-01-30T23:24:32.739744
2020-12-12T03:41:40
2020-12-12T03:41:40
320,728,223
0
0
null
null
null
null
UTF-8
Python
false
false
4,799
py
# CART on the Bank Note dataset from random import seed from random import randrange from csv import reader # Load a CSV file def load_csv(filename): file = open(filename, "rb") lines = reader(file) dataset = list(lines) return dataset # Convert string column to float def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) # Split a dataset into k folds def cross_validation_split(dataset, n_folds): dataset_split = list() dataset_copy = list(dataset) fold_size = int(len(dataset) / n_folds) for i in range(n_folds): fold = list() while len(fold) < fold_size: index = randrange(len(dataset_copy)) fold.append(dataset_copy.pop(index)) dataset_split.append(fold) return dataset_split # Calculate accuracy percentage def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 # Evaluate an algorithm using a cross validation split def evaluate_algorithm(dataset, algorithm, n_folds, *args): folds = cross_validation_split(dataset, n_folds) scores = list() for fold in folds: train_set = list(folds) train_set.remove(fold) train_set = sum(train_set, []) test_set = list() for row in fold: row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores # Split a data set based on an attribute and an attribute value def test_split(index, value, dataset): left, right = list(), list() for row in dataset: if row[index] < value: left.append(row) else: right.append(row) return left, right # Calculate the Gini index for a split dataset def gini_index(groups, class_values): gini = 0.0 for class_value in class_values: for group in groups: size = len(group) if size == 0: continue proportion = [row[-1] for row in group].count(class_value) / float(size) gini += (proportion * (1.0 - proportion)) return gini # Select the best split point for a dataset def get_split(dataset): class_values = list(set(row[-1] for row in dataset)) b_index, b_value, b_score, b_groups = 999, 999, 999, None for index in range(len(dataset[0])-1): for row in dataset: groups = test_split(index, row[index], dataset) gini = gini_index(groups, class_values) if gini < b_score: b_index, b_value, b_score, b_groups = index, row[index], gini, groups print ({'index':b_index, 'value':b_value}) return {'index':b_index, 'value':b_value, 'groups':b_groups} # Create a terminal node value def to_terminal(group): outcomes = [row[-1] for row in group] return max(set(outcomes), key=outcomes.count) # Create child splits for a node or make terminal def split(node, max_depth, min_size, depth): left, right = node['groups'] del(node['groups']) # check for a no split if not left or not right: node['left'] = node['right'] = to_terminal(left + right) return # check for max depth if depth >= max_depth: node['left'], node['right'] = to_terminal(left), to_terminal(right) return # process left child if len(left) <= min_size: node['left'] = to_terminal(left) else: node['left'] = get_split(left) split(node['left'], max_depth, min_size, depth+1) # process right child if len(right) <= min_size: node['right'] = to_terminal(right) else: node['right'] = get_split(right) split(node['right'], max_depth, min_size, depth+1) # Build a decision tree def build_tree(train, max_depth, min_size): root = get_split(train) split(root, max_depth, min_size, 1) return root # Make a prediction with a decision tree def predict(node, row): if row[node['index']] < node['value']: if isinstance(node['left'], dict): return predict(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return predict(node['right'], row) else: return node['right'] # Classification and Regression Tree Algorithm def decision_tree(train, test, max_depth, min_size): tree = build_tree(train, max_depth, min_size) predictions = list() for row in test: prediction = predict(tree, row) predictions.append(prediction) return(predictions) # Test CART on Bank Note dataset seed(1) # load and prepare data filename = 'data_banknote_authentication.csv' dataset = load_csv(filename) # convert string attributes to integers for i in range(len(dataset[0])): str_column_to_float(dataset, i) # evaluate algorithm n_folds = 5 max_depth = 5 min_size = 10 scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size) print('Scores: %s' % scores) print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
[ "840831204@qq.com" ]
840831204@qq.com
09df5c5e3da9cb387b466b48c192d2f7c5637d02
946c75548a83958b1f365b29c86ebd27d681c409
/ca_main/src/obs_avoid.py
344e817976e10150b2b69b2955d51161b30d6560
[]
no_license
umerjamil16/castaway-on-island
b48d4a6525f41ae862e71a267bdb2f3d657f5b71
c608184385f97b6374467c5dd9d9fa78a1428afc
refs/heads/master
2020-07-02T22:01:57.093153
2019-08-15T20:25:30
2019-08-15T20:25:30
201,680,802
0
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
#! /usr/bin/env python import rospy from sensor_msgs.msg import LaserScan from geometry_msgs.msg import Twist pub = None thres = 1 def clbk_laser(msg): regions = { 'right': min(min(msg.ranges[0:143]), 10), 'fright': min(min(msg.ranges[144:287]), 10), 'front': min(min(msg.ranges[288:431]), 10), 'fleft': min(min(msg.ranges[432:575]), 10), 'left': min(min(msg.ranges[576:719]), 10), } take_action(regions) def take_action(regions): msg = Twist() linear_x = 0 angular_z = 0 global thres state_description = '' if regions['front'] > thres and regions['fleft'] > thres and regions['fright'] > thres: state_description = 'case 1 - nothing' linear_x = 0.6 angular_z = 0 elif regions['front'] < thres and regions['fleft'] > thres and regions['fright'] > thres: state_description = 'case 2 - front' linear_x = 0 angular_z = 0.3 elif regions['front'] > thres and regions['fleft'] > thres and regions['fright'] < thres: state_description = 'case 3 - fright' linear_x = 0 angular_z = 0.3 elif regions['front'] > thres and regions['fleft'] < thres and regions['fright'] > thres: state_description = 'case 4 - fleft' linear_x = 0 angular_z = -0.3 elif regions['front'] < thres and regions['fleft'] > thres and regions['fright'] < thres: state_description = 'case 5 - front and fright' linear_x = 0 angular_z = 0.3 elif regions['front'] < thres and regions['fleft'] < thres and regions['fright'] > thres: state_description = 'case 6 - front and fleft' linear_x = 0 angular_z = -0.3 elif regions['front'] < thres and regions['fleft'] < thres and regions['fright'] < thres: state_description = 'case 7 - front and fleft and fright' linear_x = 0 angular_z = 0.3 elif regions['front'] > thres and regions['fleft'] < thres and regions['fright'] < thres: state_description = 'case 8 - fleft and fright' linear_x = 0.3 angular_z = 0 else: state_description = 'unknown case' rospy.loginfo(regions) rospy.loginfo(state_description) msg.linear.x = linear_x msg.angular.z = angular_z pub.publish(msg) def main(): global pub rospy.init_node('obstacle_avoidence_py') pub = rospy.Publisher('/robot_1/cmd_vel', Twist, queue_size=1) sub = rospy.Subscriber('/robot_1/base_scan', LaserScan, clbk_laser) rospy.spin() if __name__ == '__main__': main()
[ "umerjamil@protonmail.com" ]
umerjamil@protonmail.com
079ac10eae3ffca14bd74b719a85f1c0ba7a4d4c
596ae66458321f86d7000ac24803e9d90deb764b
/python/sparktk/frame/ops/quantiles.py
2d25c19fe471568ba78f7f67788d69b6d06f143c
[ "Apache-2.0" ]
permissive
tlisonbee/spark-tk
162be1aed9adf7eff45af9f239c2df1d50cb53f2
cbebbe0efc96f8631c428fad5ad83ca76e3629bf
refs/heads/master
2021-01-24T23:50:23.730034
2016-05-19T23:48:26
2016-05-19T23:48:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
def quantiles(self, column_name, quantiles): """ Returns a new frame with Quantiles and their values. :param column_name: The column to calculate quantiles :param quantiles: What is being requested. :return: A new frame with two columns (float64): requested Quantiles and their respective values. Calculates quantiles on the given column. Examples -------- <hide> >>> data = [[100],[250],[95],[179],[315],[660],[540],[420],[250],[335]] >>> schema = [('final_sale_price', int)] >>> my_frame = tc.to_frame(data, schema) <progress> </hide> Consider Frame *my_frame*, which accesses a frame that contains a single column *final_sale_price*: .. code:: >>> my_frame.inspect() [#] final_sale_price ===================== [0] 100 [1] 250 [2] 95 [3] 179 [4] 315 [5] 660 [6] 540 [7] 420 [8] 250 [9] 335 To calculate 10th, 50th, and 100th quantile: .. code:: >>> quantiles_frame = my_frame.quantiles('final_sale_price', [10, 50, 100]) <progress> A new Frame containing the requested Quantiles and their respective values will be returned : .. code:: >>> quantiles_frame.inspect() [#] Quantiles final_sale_price_QuantileValue ============================================== [0] 10.0 95.0 [1] 50.0 250.0 [2] 100.0 660.0 """ return self._tc.to_frame(self._scala.quantiles(column_name, self._tc.jutils.convert.to_scala_list_double(quantiles)))
[ "briton.barker@intel.com" ]
briton.barker@intel.com
6aa53c6bce92c102ff21ae9076922f2929effc42
948a8fe4a46bbdda00f3af5d7a999092fd546808
/src/crf.py
f43327729459334cd0646378348ce4d419fbf2f5
[]
no_license
wencanluo/QuantitativeSummarization
fcaf072566f0a4907f383042af0054ed1c47d82e
8c34923e3447e517ee99fc00fda2bd81b34e25a0
refs/heads/master
2020-12-21T01:07:37.842895
2017-05-11T01:06:02
2017-05-11T01:06:02
56,019,382
1
0
null
null
null
null
UTF-8
Python
false
false
10,333
py
#!/bin/env python # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 # -*- coding: utf-8 -*- ''' CRF wrapper for wapiti ''' from classifier import * import os, codecs class CRF(Classifier): ''' The Wrapper of the Wapiti CRF ''' def __init__(self, root=None): ''' @param root: string, the root folder of the Wapiti toolkit, it should contain the execute file ''' self.root = root def train(self, training_set_file, pattern_file, model_file): ''' @param training_set_file, the crf feature file for the training set @param pattern_file, the feature pattern file @param model_file, the output model ''' print "training..." script = os.path.join(self.root, 'wapiti.exe') cmd = ' '.join([script, 'train', '-e 0.00002 -t 1 -T crf -a l-bfgs -1 0 -2 1 --histsz 5', '-p', pattern_file, training_set_file, model_file]) print cmd os.system(cmd) def predict(self, test_file, model_file, output_file): ''' do the decoding, use the post-probability decoding ''' print "testing..." script = os.path.join(self.root, 'wapiti.exe') cmd = ' '.join([script, 'label', '-p -m', model_file, test_file, output_file]) print cmd os.system(cmd) def read_file_raw(self, input, has_score=False): ''' read the crf file: all the row will be extracted ''' sentence = [] score = None for line in codecs.open(input, "r", "utf-8"): line = line.strip() if len(line) == 0: if score: try: score = float(score) except Exception as e: score = 0 if has_score: yield sentence, score else: yield sentence sentence = [] continue elif line[0] == '#': #score score = line.split()[-1] continue tmp = line.split() sentence.append( tmp ) def read_file_generator_index(self, input, index=None, has_score=False): ''' read the crf file: the first row is the token and the last row is the label ''' data = [] for x in index: data.append([]) score = None for line in codecs.open(input, "r", "utf-8"): line = line.strip() if len(line) == 0: if score: try: score = float(score) except Exception as e: score = 0 yield data, score else: yield data data = [] for x in index: data.append([]) continue elif line[0] == '#': #score score = line.split()[2] continue tmp = line.split() for i, x in enumerate(index): if x == -1: data[i].append(tmp[-1].split('/')[0]) elif x == 0: data[i].append(tmp[0].split(':')[-1]) else: data[i].append(tmp[x]) def read_file_generator(self, input, has_score=False): ''' read the crf file: the first row is the token and the last row is the label ''' one_tokens = [] one_labels = [] score = None for line in codecs.open(input, "r", "utf-8"): line = line.strip() if len(line) == 0: if score: try: score = float(score) except Exception as e: score = 0 yield one_tokens, one_labels, score else: yield one_tokens, one_labels one_tokens = [] one_labels = [] continue elif line[0] == '#': #score score = line.split()[2] continue tmp = line.split() one_tokens.append( tmp[0].split(':')[-1] ) one_labels.append( tmp[-1].split('/')[0] ) def read_file(self, input, has_score=False): ''' read the crf file: only the first row (token) and the last row (label) ''' tokens = [] labels = [] one_tokens = [] one_labels = [] scores = [] score = None for line in codecs.open(input, "r", "utf-8"): line = line.strip() if len(line) == 0: tokens.append(one_tokens) labels.append(one_labels) one_tokens = [] one_labels = [] if score: try: score = float(score) except Exception as e: score = 0 scores.append(score) continue elif line[0] == '#': #score score = line.split()[2] continue tmp = line.split() one_tokens.append( tmp[0].split(':')[-1] ) one_labels.append( tmp[-1].split('/')[0] ) if has_score: return tokens, labels, scores else: return tokens, labels def read_npost_output(self, input, tags): ''' read the crf file (with the nbest post probability for each tags): only the first row (token) and the last row (label) ''' sentence_count = 0 one_sentence = [] for line in codecs.open(input, "r", "utf-8"): line = line.strip() if len(line) == 0: yield one_sentence one_sentence = [] sentence_count += 1 continue tmp = line.split() one_word = [] one_word.append(tmp[0].split(':')[-1]) #token one_word.append(tmp[len(tmp)-len(tags)-1])#tag dict = {} for i in range(len(tags)): t_p = tmp[len(tmp) - i - 1].split('/') dict[t_p[0]] = float(t_p[1]) one_word.append(dict) one_sentence.append(one_word) def write_file(self, tokens, true_tags, predict_tags, output): fout = codecs.open(output, "w", "utf-8") for token, true_tag, predict_tag in zip(tokens, true_tags, predict_tags): for t, t_tag, p_tag in zip(token, true_tag, predict_tag): fout.write(' '.join([t, t_tag, p_tag])) fout.write('\n') fout.write('\n') class CRF_Vertibi(CRF): def predict(self, test_file, model_file, output_file): ''' use the vertibi decoding ''' print "testing..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'label', '-m', model_file, test_file, output_file]) print cmd os.system(cmd) class CRF_Score(CRF): def predict(self, test_file, model_file, output_file): ''' output the score as probability ''' print "testing..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'label', '-s -p -m', model_file, test_file, output_file]) print cmd os.system(cmd) class CRF_Interpolation(CRF): ''' interplation of two models ''' def predict(self, test_file, model_file, model_file2, flambda, output_file): print "testing..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'label', '-p -m', model_file, '--model2', model_file2, '--lamda', flambda, test_file, output_file]) print cmd os.system(cmd) class CRF_Score_Nbest(CRF): ''' output the n-best with scores ''' def predict(self, test_file, model_file, output_file): print "testing..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'label', '-s -n 10 -p -m', model_file, test_file, output_file]) print cmd os.system(cmd) class CRF_NoPattern(CRF): ''' train a crf model without using the pattern file ''' def train(self, training_set_file, model_file): ''' @param training_set_file, the crf feature file for the training set @param model_file, the output model ''' print "training..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'train', '-e 0.00002 -t 1 -T crf -a l-bfgs -1 0 -2 1 --histsz 5', training_set_file, model_file]) print cmd os.system(cmd) def predict(self, test_file, model_file, output_file): print "testing..." script = os.path.join(self.root, 'wapiti') cmd = ' '.join([script, 'label', '-c -p -m', model_file, test_file, output_file]) print cmd os.system(cmd) if __name__ == '__main__': import ConfigParser config = ConfigParser.RawConfigParser() config.read('/lm/scratch/wencan_luo/wencan_luo/cws_slu/config/default.cfg') cwc_train_output = config.get('cwc', 'cwc_train_output_npost') cwc_test_output = config.get('cwc', 'cwc_test_output_npost') cwc_train_json_output = config.get('cwc', 'cwc_train_output_npost_json') cwc_test_json_output = config.get('cwc', 'cwc_test_output_npost_json') import time time_start = time.clock() tags=['b', 'i', 'e', 's'] crf = CRF() time_end = time.clock() print "running time: %s" % (time_end - time_start)
[ "wencanluo.cn@gmail.com" ]
wencanluo.cn@gmail.com
8879183ca7d037d2f672f977fc300d2c39569277
cea61ad705399327f24a6ac4aa31b3084eac42f0
/pysharp/libs/common/middlewares.py
8c1cb55316975d773c81c2b1b494a86b48ed60a6
[]
no_license
BiaoLiu/pysharp
e5e0d789c5af1731c201fdbd7df9a3d46d7fdd9b
b45db5e63802a19be2368ae865c9f4b47dfb7f95
refs/heads/master
2021-01-12T09:11:35.148826
2017-05-17T01:58:41
2017-05-17T01:58:41
80,979,236
3
0
null
null
null
null
UTF-8
Python
false
false
4,577
py
# coding=utf-8 import re import json from django.conf import settings # from settings import SITE_URL from django.views.debug import technical_500_response import sys from .log import logger from .utils import html_escape, url_escape, html_escape_name, check_script class CheckXssMiddleware(object): def process_view(self, request, view, args, kwargs): try: # 判断豁免权 if getattr(view, 'escape_exempt', False): return None escapeType = None if getattr(view, 'escape_script', False): escapeType = "script" elif getattr(view, 'escape_url', False): escapeType = "url" # get参数转换 request.GET = self.__escape_data(request.path, request.GET, escapeType) # post参数转换 request.POST = self.__escape_data(request.path, request.POST, escapeType) except Exception as e: logger.error(u"CheckXssMiddleware 转换失败!%s" % e) return None def __escape_data(self, path, query_dict, escape_type=None): """ GET/POST参数转义 """ data_copy = query_dict.copy() new_data = {} for _get_key, _get_value in data_copy.items(): # json串不进行转义 try: to_json = json.loads(_get_value) is_json = True except Exception as e: is_json = False # 转义新数据 if not is_json: try: if escape_type == None: use_type = self.__filter_param(path, _get_key) else: use_type = escape_type if use_type == 'url': new_data[_get_key] = url_escape(_get_value) elif use_type == 'script': new_data[_get_key] = check_script(_get_value, 1) elif use_type == 'name': new_data[_get_key] = html_escape_name(_get_value) else: new_data[_get_key] = html_escape(_get_value, 1) except Exception as e: logger.error(u"CheckXssMiddleware GET/POST参数 转换失败!%s" % e) new_data[_get_key] = _get_value else: try: new_data[_get_key] = html_escape(_get_value, 1, True) except Exception as e: logger.error(u"CheckXssMiddleware GET/POST参数 转换失败!%s" % e) new_data[_get_key] = _get_value # update 数据 data_copy.update(new_data) return data_copy def __filter_param(self, path, param): """ 特殊path处理 @param path: 路径 @param param: 参数 @return: 'html/name/url/script' """ use_name, use_url, use_script = self.__filter_path_list() try: result = 'html' # name过滤 for name_path, name_v in use_name.items(): is_path = re.match(r'^%s' % name_path, path) if is_path and param in name_v: result = 'name' break # url过滤 if result == 'html': for url_path, url_v in use_url.items(): is_path = re.match(r'^%s' % url_path, path) if is_path and param in url_v: result = 'url' break # script过滤 if result == 'html': for script_path, script_v in use_script.items(): is_path = re.match(r'^%s' % script_path, path) if is_path and param in script_v: result = 'script' break except Exception as e: logger.error(u"CheckXssMiddleware 特殊path处理失败!%s" % e) result = 'html' return result def __filter_path_list(self): """ 特殊path注册 """ use_name = {} use_url = {} use_script = {} return (use_name, use_url, use_script) ''' 管理员可查看错误详情 ''' class UserBasedExceptionMiddleware: def process_exception(self, request, exception): if request.is_superuser or request.META.get('REMOTE_ADDR') in settings.INTERNAL_IPS: return technical_500_response(request, *sys.exc_info())
[ "452381072@qq.com" ]
452381072@qq.com
10b3f098f5437b76e5a0ca4059cd190fc7d29bb1
2740a350055c34a398ecfbf3c8b41a812e0bae9e
/calculator.py
bc6fecbf2a2dfbf93ac8251af6fceeaa992a8190
[]
no_license
vipod/wxpython_calculator
8c426b663cca782af1bb5d344b5b934364684101
e48d225e2ca55ecd33e15f93c3c2b88e3ec41750
refs/heads/master
2018-12-28T09:31:35.217151
2013-10-24T10:19:19
2013-10-24T10:19:19
13,828,727
1
1
null
null
null
null
UTF-8
Python
false
false
4,801
py
""" wxPython learning program: Integer Calculator Author: Vitaliy Podoba vitaliypodoba@gmail.com """ import wx # list of math operations and digits to check against OPERATIONS = ('/', '*', '-', '+') DIGITS = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9') class Calculator(wx.Dialog): """Python Integer Calculator""" def __init__(self): # initialize our dialog window with: title and size wx.Dialog.__init__(self, None, id=-1, title='Calculator', size=wx.Size(182, 190)) # sizers will allows us to put buttons into nice GRID layout sizer = wx.GridBagSizer(hgap=7, vgap=10) # add calculator display - text area in read-only mode # text inside will be right aligned self.display = wx.TextCtrl(self, id=-1, value='0', size=wx.Size(182, 40), style=wx.TE_READONLY|wx.TE_RIGHT) sizer.Add(self.display, (0, 0), (1, 4), wx.EXPAND) # put buttons into 4x4 grid x = 0 y = 1 for row in (('7', '8', '9', '/'), ('4', '5', '6', '*'), ('1', '2', '3', '-'), ('0', 'C', '=', '+')): for blabel in row: # create button button = wx.Button(self, id=-1, label=blabel, size=wx.Size(40, 20)) # bind mouse click on button self.Bind(wx.EVT_BUTTON, self.HandleButton, button) # add button to grid sizer sizer.Add(button, (y, x), (1, 1)) x += 1 x = 0 y += 1 # set a few variables for calculator to work self.operation = None # remember last operation self.last = None # remember last number entered self.resolved = None # flag to clear screen after solve() # add our grid bag sizer to our dialog self.SetSizer(sizer) # set dialog centrally on the screen self.CenterOnScreen() def HandleButton(self, event): """This Calculator method is called on every button click""" # define event variables: button, it's label, text field value button = event.GetEventObject() label = button.GetLabel() value = self.getValue() # below we handle our event differently based on button clicked # Clear button if label == 'C': # simply reset display and forgot any custom calculator variables self.Clear() # digit button pressed elif label in DIGITS: # it's important to clear display before: # * new operation # * after zero digit # * and after solve() funtion, '=' button if value == '0' or value in OPERATIONS or self.resolved: self.update('') self.resolved = False self.display.AppendText(label) # equal sign: try to calculate results elif label == '=': # try to solve our equation self.solve() # clicked operation button elif label in OPERATIONS: # before any new operation try to solve previous operation self.solve() # remember previously entered number # if user is just changing operation - no need to remember any value if value not in OPERATIONS: self.last = self.getValue() # update last operation used and set display to operation label self.operation = label self.update(label) def Clear(self): """Calculator Clear button""" self.display.SetValue('0') self.operation = None self.last = None def update(self, value): """Shortcut for display update value""" self.display.SetValue(value) def getValue(self): """Shortcut for display get value""" return self.display.GetValue() def solve(self): """Equal operation: let's calculate result""" # only calculate anything if we got both: operation and last value if (self.last != None) and (self.operation != None): # here we use strings and eval to calculate result result = str(eval( # e.g. "67 - 24" self.last + self.operation + self.getValue() )) # finally reset calculator values and update display with result self.operation = None self.last = None self.update(result) self.resolved = True def main(): # run the application app = wx.App() # start calcualator dialog dlg = Calculator() dlg.ShowModal() dlg.Destroy() # initialize our calculator if __name__ == '__main__': main()
[ "vitaliypodoba@gmail.com" ]
vitaliypodoba@gmail.com
1954647244f670c5dc25f03b9b3410053e37fac8
07520f0b5c41dee98fe9ecfefd890b2a01d4672a
/ROS_ws/src/hardware_coms/setup.py
f518b3d23de69bd01fca19c2fafa1f09b3d3f026
[]
no_license
asmorgan24/project_cuboid
a33c4c44b0e64690925664483f1fb5d09253694f
81f28bb319817de4bae5917e1d7c09a8fe3a4fb2
refs/heads/master
2021-07-15T13:12:03.464189
2019-02-13T23:07:41
2019-02-13T23:07:41
153,474,422
0
1
null
2018-11-30T16:58:29
2018-10-17T14:49:25
C++
UTF-8
Python
false
false
214
py
#!/usr/env python from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup d1 = generate_distutils_setup( packages=['hardware_coms'], package_dir={'': 'src'} ) setup(**d1)
[ "andrew.morgan@yale.edu" ]
andrew.morgan@yale.edu
df281edec9a4154b5ca80600c51d4c254fbc3f42
4aba8e6477aaff482294e93da518afc0351139fc
/dataset.py
61dd67f10dabe8bd1339e37d769696acd90bb74e
[]
no_license
akshit61/CRNN_OCR
e0930ef4d11ec3f351fda14f6eb265b8ac701790
2216415f836757a61b55c88f6f0a50a5fe98497b
refs/heads/master
2023-02-18T09:58:30.122690
2021-01-16T17:13:22
2021-01-16T17:13:22
330,213,415
0
0
null
null
null
null
UTF-8
Python
false
false
1,135
py
import albumentations import torch import numpy as np from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True class OCR_data: def __init__(self, image_path, target, resize=None): self.image_paths = image_path self.target = target self.resize = resize self.aug = albumentations.Compose([albumentations.Normalize(always_apply=True)]) def __len__(self): return len(self.image_paths) def __getitem__(self, item): image = Image.open(self.image_paths[item]).convert("RGB") target = self.target[item] if self.resize: image = image.resize((self.resize[1], self.resize[0]), resample=Image.BILINEAR) image = np.array(image) aug = self.aug(image=image) image = aug['image'] # to make channel first image = np.transpose(image, (2, 0, 1)).astype(np.float32) '''return {'images': torch.tensor(image, dtype=torch.float), 'targets': torch.tensor(target, dtype=torch.long)}''' return {'images': torch.tensor(image, dtype=torch.float), 'targets': target}
[ "akshitkotian61@gmail.com" ]
akshitkotian61@gmail.com
e964e343ab995aa3f38a6d6424a313f5e926a380
885e084d1c8dff17146c2c4ef69365dacf0167a6
/myus.py
8163344d7e27db13c110fea382cd8d2e2956b4aa
[ "MIT" ]
permissive
amitattry/MyUs_api
06881568563c714231a25ce12a37b6ca23e487a5
e240cb0f4fdbfb9ed08af860c04503d425fb42c5
refs/heads/master
2021-05-07T15:21:53.290351
2017-11-08T07:01:05
2017-11-08T07:01:05
109,939,644
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
import requests import os import Tkinter import json from Tkinter import * from tkFileDialog import * def zoosk(username,password): """" Headers - > Paras - > URL -> CAP """ headers = { "X-Cbt":"T3y8j3vOZNJbQN1N-z0XFqCvxGV3vVfKnJqeygBenAWZXwEAANX_XJAQuG3fexoNQyufatJ5GlPxSPEscd9z_JneiftH-C10IA==", "User-Agent":"ZooskAndroid/443 (Linux; U; Android 4.4.2; en-US; HUAWEI C199; Build/HuaweiC199)" } content = 'password=%s&login=%s&udid=12be4dfe06ac4223b60934304c656d5e % (password,username)' url = 'https://api-android.zoosk.com/v4.0/api.php?locale=en_US&product=4&format=json&z_device_id=151010080201&rpc=login%2Fgeneral_v43' requestsx = requests.post(url , headers, content) print (requestsx.text) def myus(username,password): u = 'https://gateway.myus.com/Account/GetTokenForUser?api_key=px8zkanujj49vfzpm88mfvfz&isMobile=true' h = { "Origin": "file://", "User-Agent": "Mozilla/5.0 (Linux; Android 4.4.2; HUAWEI C199 Build/HuaweiC199) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Crosswalk/23.53.589.4 Mobile Safari/537.36", "Content-Type": "application/json;charset=UTF-8" } c = '{"UserName":"%s","Password":"%s"}' % (username,password) requestsx = requests.post(url = u,headers=h,data = c) out = json.loads(requestsx.text) import datetime date_time = datetime.datetime.now() time = date_time.time() print ('%s:%s:%s %s:%s - %s' % (time.hour, time.minute, time.second,username ,password ,out['access_token'])) filename = askopenfilename() with open(filename) as f: credentials = [x.strip().split(':') for x in f.readlines()] for username,password in credentials: myus(username,password)
[ "noreply@github.com" ]
amitattry.noreply@github.com
6c0f0ce98c3564f0181e0dcecfc4c60c50a5b9e7
c577f5380b4799b4db54722749cc33f9346eacc1
/BugSwarm/scikit-learn-scikit-learn-87009782/buggy_files/sklearn/tests/test_multiclass.py
16588fe4010c56c223f976be164c3302f1bd128b
[]
no_license
tdurieux/BugSwarm-dissection
55db683fd95f071ff818f9ca5c7e79013744b27b
ee6b57cfef2119523a083e82d902a6024e0d995a
refs/heads/master
2020-04-30T17:11:52.050337
2019-05-09T13:42:03
2019-05-09T13:42:03
176,972,414
1
0
null
null
null
null
UTF-8
Python
false
false
21,405
py
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): clf = OneVsRestClassifier(base_clf).fit(X, y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs)
[ "durieuxthomas@hotmail.com" ]
durieuxthomas@hotmail.com
54c5388edad985329b1af131d036432a1bb73a88
a3ab60bdd004bfa22b400a554dff8f3d215b0fac
/foul_copy/Radix.py
cbde5f11b8affa2705abb0231ea1bb83841dece1
[]
no_license
Aidaralievh/Aidaralievh
a9e5facc31825f21abba93e6ce6d1884a13b7963
3fe9254a77c123ae0164c730dfb3419b592d7012
refs/heads/master
2023-03-06T06:34:59.130439
2021-02-18T12:30:47
2021-02-18T12:31:12
322,245,472
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
inputt = open('input.txt') output = open('output.txt', 'w') read = inputt.read().split() a = [int(h) for h in read] del a[0] l = [0 for i in range(-100, 101)] for x in range(len(a)): num = a[x] l[num] += 1 new = [] for m in range(-100, 101): if l[m]: for n_ in range(l[m]): new.append(m) print(new)
[ "a.aidaraliev26@gmail.com" ]
a.aidaraliev26@gmail.com
1c109a50966b0734437d36a25fa972e74522ae23
47ed490ff277c63374b26efb742b830237988b59
/finndata/finndata/settings.py
91e804075fc34a2d3cd9349d447b3c3566de978a
[]
no_license
an3z/Scrapfinn
bc3b8e35c0a37e3bd36333ee99f607dacf6dc297
87bb59fe2c519e9b938ca6cc26107f67671b1409
refs/heads/main
2023-01-24T09:35:54.391746
2020-11-12T11:28:32
2020-11-12T11:28:32
312,234,071
1
0
null
null
null
null
UTF-8
Python
false
false
544
py
BOT_NAME = 'finndata' SPIDER_MODULES = ['finndata.spiders'] NEWSPIDER_MODULE = 'finndata.spiders' # Database settings CONNECTION_STRING = "{drivername}://{user}:{passwd}@{host}:{port}/{db_name}?charset=utf8".format( drivername="mysql+pymysql", user="root", passwd="toor", host="localhost", port="3306", db_name="finndata", ) ROBOTSTXT_OBEY = False ITEM_PIPELINES = { 'finndata.pipelines.FinndataPipeline': 100, 'finndata.pipelines.NewFinndataPipeline': 200, 'finndata.pipelines.parkingPipeline': 300, }
[ "salam.alanezy@heimstaden.no" ]
salam.alanezy@heimstaden.no
00939890adec7df36ab5f1d64050e075d92a7be4
52d53fa337e3db4349b43f08961dc42cc2cc7624
/Visualisations/DatabaseConnection/DatabaseConnection.py
83ed507f499bc69783e89d50d909fe4305916375
[]
no_license
tomneutens/log_data_analysis
7f0a0e14230fe692091bad9508f1433322de8f19
6c7d4f8aba05975fdbd0597da60037eccc0fda22
refs/heads/master
2021-06-29T19:17:02.602250
2020-11-16T08:25:38
2020-11-16T08:25:38
178,832,512
0
1
null
null
null
null
UTF-8
Python
false
false
26,456
py
from pymongo import MongoClient class DatabaseConnection: debugSessionIds = [ "100098162156200550876384166413318805194", "100791076829784311538777553313397622066", "100845778315810870381297666893312058560", "102313417323140926547887400500875042809", "10284872922298938270212915201316900598", "105578849649353579205604325916623082442", "106076319898654938516210404764181390687", "106563039490284856059072574589117842503", "107861383593120223856232148733774499634", "111315636062256536330279336482267063787", "111748846454960255697777895981811088022", "114124928985858559246652753906933567932", "116151029947935438853028769435334017364", "117717194807878827801552408942754553635", "117926317373266466157107284374827946144", "11869334356669164130640973680857056664", "118714242678899997472771907674739702852", "121896282140801974805816549141031973735", "122529207243324832685446571495103483613", "12541850902869437222688741249106215326", "127309816504281663885865719519876965431", "127615613026458713032686301709902576539", "128644601766156074555885835193838242927", "13003588624884147437037530600809982269", "131379918622922915065731494868356194228", "132743822903765424429622800087572183856", "13379136001073531258444292360856115375", "134250637263263090171422849459350960947", "134719013395651191042635559465054707718", "135312927729158973980791384588306065826", "135452660040185061244536656018077667400", "13587584217313558605765799277193588780", "136119576952264678145720395095599613851", "137058012824955348077410505829019148784", "137563301952548650695585607615372908288", "138857895488150079793929648137706237421", "140008720797955013730004013744649716637", "140274351570945304276050913011172036603", "141556469293547231305128345699628928489", "143344144143492124640124804979184874300", "143586471182772365308677473748369096340", "146909901174410040042392326145318171897", "147311853940011993539422902087300982970", "148406727501651431955780513712733441992", "149814676273419013149721504568464755434", "151377828364293379103161405386768675922", "152413750765510245624464548371368601913", "152819562921099789508252000718754255140", "154789518642175825687480686385860733768", "155452494037881028389327863101140194890", "156240082493014494544546328923032838532", "159808849928649646645922402368562144097", "160484469635228737222633868936562802821", "161624364075521334752360850871327785408", "161982062243649074634320969126954532886", "162028289422143974900977260683673723094", "162327128151118817418998330197307990054", "162592501768525619579742836081770841257", "162894508781621555841742443443713117812", "164532276608253456035167093251185474125", "165404678509366330054414143711196373617", "165699279399608280837590250765733732863", "165820327216082135721631402626404651156", "166430684697976841886630368793045127214", "166696090152014751019478684633221592439", "166706466899644882497914509309693677664", "172118350935123326372818814017003776221", "178875275208661804159060332376496868949", "178888818105058280466082838263910846733", "179145806051307330547860255972995663872", "182709107770683658338303605013884453918", "184210044878790029866407528325312692265", "185846076633135925266228729616756555539", "186684099918575949675506023710919614229", "187872983203687923727748894371152859899", "189007044969014776391015386544962574956", "190819340939776378693992563625809537925", "195430530531155352362104581217016724517", "198017339091772862093730085531440945472", "198338813509876407773313843541280364692", "200508039162385247059428211655675823439", "202381563582672196944461680727804065681", "205197584779029305464975423927945653315", "207093868655217744023716555332030394852", "207941665077051859494770897110907882022", "208114704810996079193311826536396140501", "209406031288077315468637223490420942059", "21271158596658162401179303593962031424", "213134055085801779053221505650113401493", "213278169701437006663412919451176954498", "21456439698528928698392279034911290278", "217555662701162262684771094453377739738", "217815235664639149164872667657155058614", "223651189725899866680043875504117231296", "224124899527406994384974989991345257956", "224528658820206646489999544834279555974", "226424596326276368304364332877701919886", "227774457182877875804404515696586409195", "230435531284864093632284161011372986880", "230706560390293761603314723634687456734", "233686884061739774629772954495192333164", "23433133639225217421646562428977486501", "235808832306776134137010086715171292838", "238755208351411449188605106735791301616", "238926563604501287367028024717024056620", "239030631468857181290510440832625672697", "239641455000841961419726286756439982390", "241717118459946511307277107629610938595", "242036105268082170669882450739403779805", "242513794525954699621547978991434074435", "242651728756765385950623910606333269884", "244116968846655985836198641569241722020", "245528804027734006715723816488961483613", "245563914619845640812179064098575176709", "245830903413418006848253725097655417482", "247540201062180724005430583876080115529", "248288118699879616154261988468860066441", "249920167079479997249198760820075384241", "249974491478252273609759513802922920822", "250306037528980588126556488380672456975", "250457313591535749510369453624673920374", "251387216072666120777764260647352145410", "255674495464960444997095670259626885413", "2559765746588462257903577985840697842", "256356723230531810460864781666270544610", "257313054760700816986291355173985291770", "260140719076288365501969595596165612393", "262402112337221531020877595437311643392", "26515638075565057894778458974858666374", "265667592281929272621280453087770179213", "266331577661207984412621982649023192176", "267470025023343921081139553052252135852", "267695063397927547937703729911302316426", "267751964590242399780982791217938838965", "268428003593238403305104483773086616950", "269092951056944560716437491575858277041", "27095215584968149506847010463975852827", "271145625140663070727163832098838789298", "271877581943654699975127574170909307294", "273918666711421551761260237092221448696", "27562289989847517030043963189913563175", "277131447634615156023543184210130622654", "277569555683541153984501809680301564718", "277925902568701102978042367607705317386", "278571444815490375669446139631302201772", "280699630038480156656278947247206462367", "281048648356420360819845558445921199474", "282438284583877639172288967291456154258", "283381907268860484957840748607688227891", "28865348897476278596254654074794037629", "289817011331915049788681749931380219269", "294233134219952226895524662784623818300", "298946973826558144626785033771537175249", "30575065889227405785384591345564150482", "31128392975166162848660274125113931212", "317168017570769142892434822598815093932", "317407657123402250232532369230581774942", "317810246765588381437691470656289959451", "318272758402471635118164486523949061512", "31996424765033535790830825417504319973", "319964997238640268141387599034106464566", "320372526446818370059990853651324864013", "321668714487694685937332549398939932950", "321758273587194590001139335682111461616", "324492423077297623441154728743411175054", "324991699820471444226518328382043806942", "325096310605120898939426942446448993091", "326393454686265890242579021355623568289", "326464857664489346448853378898737825791", "327746499830134339439538501858919723029", "328473379504667884069775334328335511830", "328682159766482723213243908976153457833", "33085078038657310865846512852402959491", "331794761032939412807267242052075156264", "332824460635691446214194648388939178409", "333393636261863167043220303048786987169", "334501103650690896431231396134637723178", "335409237152580489967886483185033025031", "335899919204216457480244276161425314830", "335919029540085196695712656358170197988", "335923968626649870829589186068970612693", "339238018698929913737428530862668047048", "34769837755236928352103578951381960254", "38273733567281486705033175654158376775", "40151403741696310291658634760587190865", "40756101720790868620023488623459135462", "41594516313067724339783441001364302440", "42136316273384504961750955187372527253", "42223839470522223384500961489852193134", "42852366113543178658788964953870543870", "47039539361269630107346621689912117723", "47273124640767011752348129589839659279", "50884787801807895152363786581925772541", "51127806518180553864088218054675367018", "51273380326331570584250388673771602212", "51725222373111934239641168861241156549", "52156141035247708431390232193243831878", "52691090132049262433734729815044986335", "52783788459314588286448579128518983480", "5317251866122907486713888819096553954", "54207834985272652828370125378223179707", "54500170284082014866468139221081040053", "56808603563978995377341662570667207130", "58157574345924746844269053154523314543", "59146520701249942020890391913627840064", "62021777235323476383770535091011196449", "62605816416331224750004039564907553645", "64831142422358753237491728318323368438", "65033631044991037149955625658720412100", "67118623552935537425310580260858109070", "68382240149084863252376729208949803643", "69573028114937800546852302081819111778", "71683108053760278088486179527355481078", "7414006559854129416113429278392933819", "75077197568383657933854333882497827627", "7637343558638212513585421888142581003", "78939224574137767695421262506942152077", "79432162011045936469217614760459720573", "8132455953832050105516726809592848956", "83521833134002890108416962256785968088", "84723308415416462302857232239099977867", "8498702668874009490272089176612538903", "87742456399758148001097793938016377487", "88130304745696567842832294317631369466", "88418151738019193375290410638868230485", "89967761835024251088062923134480485360", "90570604259713016509209925080607788727", "9074629638473392994209299704526514183", "90959537979126532584389476448893397369", "90981316506956637269670558265653470601", "91071306397263992738970652529452264258", "91279567330421387255820545461408166356", "91932501544047351811171491024215451529", "92068905529135683492567084209819583079", "93869881989254897091302111822109713286", "94488752762492682982947687611098168192", "94595606120245128711366429794467453192", "95039447919799438789968721780194389913", "96543936375017262228597878906026691547", "97359970685990310293431360503793410277", "97493640573516722971895222991847983632", "97493649192466294045996911997632333593", "98337268058732091586401751530579627811", "98723050124954722797928179077156364655", "99930641699826077487769976588799375801" ] createSessionIds = [ "101353373570732381824116799233209664511", "101537932138396140015312752829262261735", "102597034802814374531877357330957916734", "105924397490726199156475864644906690129", "109206681864232309086541864428672217442", "109955979215631782203694481089834581984", "111063451419960437998902313142127244656", "11122534898580574992715957855324355261", "111611581556934531910946138614230368321", "1119212814414146320234354743175873907", "112961797669122926097291490558252751363", "113503599633604144573015042637418427403", "11515592966226135069949244428958948510", "115731467189902591911275658276690957950", "116154788186993302661978578662633364828", "11703948123289249840514264943654807570", "117259175969457724580376054263108220658", "119517158644056793395782504086760362279", "119572793856723272316585365337608575506", "12038739706746836128105087413272013322", "122314496211502099146414327362929532551", "123145216600054395929938318367782175185", "12359562815874014818551973490979433620", "125516675609022969344552997588320761510", "12593550028022991169443784208189442123", "128120795044846778768676848254900521811", "129503964841220209529060332730215224496", "130553056405723450548389719830694006740", "130925866024188956309996988924921179204", "131764766030447889675522041219879835828", "134966043293170591836352610389356610804", "135192316520025205812631178231857647238", "138656702642316400298423497771665478225", "139108264580231166602096942542212796881", "13995646743538880257615452954222749289", "140089985229682412465845498750201716285", "140910896512988682536499122592017414408", "141075724818251049583841973997917728169", "14152006528448271336366254300692703038", "142298770116630965603172175802203096651", "143334348661315600676166990571095130291", "144312382355533922189712768015601124021", "147059268241045796410301615511864868870", "150711009299885423384504440865247678933", "151558377847587020917367456079632419098", "152620133133659722788776658438155198389", "159063309706221536903404885645944400075", "159323961957799969098816322743077955771", "159957470226592255385163380205018475621", "16031867009696323382512669811186790717", "160331440674577328253607091105305560820", "161342666088214991449473441453156883637", "161985178377901800131229862988249128142", "164388789246866079872216445105201432683", "16615362594234198197744078713510140927", "166286948616903749113066860450076346326", "16772771589624079075296703823412510014", "168278856468612942408610737755257577242", "168404447331335634941865417414901376192", "168749456603521270179263109259786935970", "16958430018930103458793733067540113804", "17156111417213050326609656478445737422", "172041372478536333516708296717841683545", "172954515326810685265883646770875399874", "177005172541788870276691110651460367331", "177868060832540772744634905132256700008", "178339554966249103934447816453732837453", "180286461680726466847959664941682323713", "181827527241849325398168465067212330719", "182690473392511554909204058688738419099", "183889827865366016326131231971486875689", "185472318874560311298616512382147932035", "186587508180430160621715922775282626667", "188101709151297005383731575227236514905", "188331992217771547836243812329251077441", "189654868379424600216663745933156431066", "190341375358483662513229568067480865133", "19223581377874621391729908106256641886", "192435490502668058731988140981252019797", "193153885988792783160974506588369440411", "196011824426565865331963809234446803446", "196980319104124177453587031685302421497", "198070362896115494812894436403900034974", "198633073418107023925171366219874758782", "199767412500394026875788750259408205917", "200746358799241317924392310277033701478", "201232314971569053256294730795279676746", "206778013373611707857475859875194480528", "208175127041033329163811832597563428848", "208422281082181617045975959939634452042", "208651404832000897620039077598689353927", "209686612877819476445450923548754568609", "209924163828723088933761627666736286886", "210232754016706502504288503232138361126", "210503327250633317287400410199413371876", "21051573501993737596371322190163582713", "211253027673627968769465889815333062803", "212086137603425537739083619917812158800", "213796744660274711241810122483327065106", "215391175470835368307802657870966619782", "215445086319065199915002280089823993500", "216148056196150791854483428042810254770", "216469093625631170908144416755243154774", "216702356610803774461637255386182812084", "216737522812139435606423143158338043611", "218586681976293426717597314625731933862", "218953840326847199019081579487459915741", "220707028622859202404920952573934883235", "222066581107614631085752945971388582936", "22240567707603171224628457435037572571", "22454796781106295377727501471161083782", "226211835441933521511464784302840562008", "227177244233909777474402287374113039394", "227429622934811251305208838182741956970", "227883528818877107058499732402443536202", "229117539462191757955018787912073304652", "229690372454134804108728963190065351792", "229988490266635149462771722640485691529", "230260552721935423359542538114261171441", "230710218327369516822270862354253531520", "235679998312566505987591992990635012146", "238212159289557128301595984157059492320", "240011902280920585373735338144135360154", "241953805667571827920185465686025932349", "242015338481143075779044373120686219276", "242309206919026041106201886868078877246", "242731904842083988349731746102598888528", "244868035260434103951853955073742544754", "245222114922701618256493747535134248419", "245330190880824080937584674805917281611", "247191460673514373098028626066575733505", "247235684991167437344275965053782210486", "248079812782756912127401403654943049034", "248917092231375064830460586227621714313", "251480100010422932148504734149802521854", "251752938417185676933470665941108621307", "254907992375489957966266894791385177269", "256277312548666053782910631331490207102", "256548281663054716264627924925874830698", "256648081482366480811479397849950684244", "256982239570587276134967493028751184242", "258879499426722220147824406465214495673", "258932732778893177311527451546877632792", "259213377690698469446337009993119447012", "259970560135950534358365861160189991639", "26024184848161327679039361740626576684", "261353721647621799699917935659595296998", "261925639259572194357319065513836966861", "26213286834997291965258827995032200627", "266563998501787905248177767833889167092", "266687961690335723670860498378759018432", "266771307136338369494851777380281993463", "266949669044210811926344691919498178649", "269009369505612485758665647930780443742", "269855088721117114512264021508127462239", "270566867573240867449913705573629105149", "271736705596603583911977854667805114592", "271887090557175907259552412574724740446", "273116109288230648972926427862431002650", "275274351479049094709466879755073167588", "276107818895010610268792621423300271136", "283605399577348495748606162578052304764", "284840113159303394928479609596057263895", "285963940818219173386394634365863560059", "286860357720610521612829579399315083537", "289906114612856980426796703468716546154", "290408230653407146022438967874238092062", "291246361599380643694063075947451535779", "292558405726004115759841458301017149854", "29265863045997565682593430030873570259", "293507903541923572781138380510121669563", "29404690360849096033554949029773179407", "296903945583422565857364576305237912476", "29880855111417105778260964765225906812", "299248491144386992957855496500153619391", "299427244171875891430739996570688261629", "302147644378809799748454941489244707070", "303491729551153882403892489575034755097", "305594731067227859647307030813311593894", "30604864641908379523375279943541986347", "306330100323194266370007755007254645940", "311159816246010256675878553713123629806", "31174392073998455128478782465824903436", "314002750722983654386615972336926931266", "314521334372428822127928334901424440415", "315015001451231135617054854873082417900", "31655772019922239499162179956616268371", "317058519586546020602959468544699617741", "317364624328483239622855886884509613573", "319063364546704860609546254869420779662", "320405005061278478582598343672512024405", "322080165797412359021962540173734620474", "323427232207408245792511002956675410627", "329390334323576117295608836733331394991", "329538049724470132306912072685495037907", "330366790681164198338241005349529397596", "331186894979308015583285537078102406839", "33203091279800299565401513149765289670", "332160096045369577052124375602939097928", "332666115523774785097082523764839773766", "33356889121652924837636088876097109432", "337698162154795320214996988936373282517", "338181529685759280318634900993962434060", "338420310280881529660196743881409632915", "36058277662311892735614064306802652123", "36667558753863941986303201426690362398", "37990431202408973622850361907799744779", "38351500931781779181620715949540115668", "42267444183239888515421865339068841335", "43801288012215862679327049664693062758", "44278500876648978477847495404284172536", "46409048707050474093008625330229634663", "46424233979660049868925691579411882910", "46625839279864398448901186765454248951", "47339040704731237422465161694736094383", "47644993361355828935292039794145071006", "49184601044893475142728586916219505969", "52192337071007751407456819009041214547", "5283135856739024137036068627461582062", "54665170837612560883820980779388409476", "59600607460021647531664134555096153881", "60348685298330939456664973722517816733", "64243920243650003346562360741146976842", "64868164890579445853179064176513101112", "65736236594174822728766535336236530604", "65847368889008530160802400675326389897", "67137581441946713509134959294411740712", "68720941991397544799781489831748801596", "71307967888501512616617747682638100291", "72213045370297506496475233695523290661", "73453639887065412496700462878129521901", "75293042182075613076032358145895365873", "75914537691045933226293040967117398436", "76497462353248542700739869406521708606", "76722878635417517595372112374618929182", "8208720225607323948382371868527359221", "82419508017494499820736290288250051819", "87578589583176626917252461559057973509", "89297662470815003437541200420460008160", "89570608000905703102927994501875754984", "89619136239573068678392319197810169013", "90266768092005575376551986308851814403", "91185263755523433375410824484490688660", "93006151528761084048686973675006736588", "93806340741557184711497598983848492435", "94409040331688155131460822672629401204", "95034774209971961971585986211078802765", "95707618372767550406402477354128578656", "96642614785414295316321354109741964704", "97425823300638584217240115905656644214", "98815802023890322626078109214223096816", "99245909820474056157420475004560006718", "99394925682927067161021085618751898013" ] currentSessionIds = [] def __init__(self): self.client = MongoClient('localhost:27017') self.databaseName = "" self.collectionName = "" self.sessionIds = {"BlocklyLogCreate": self.createSessionIds, "BlocklyLogDebug": self.debugSessionIds} def setDataSource(self, database, collection): self.databaseName = database self.collectionName = collection self.currentSessionIds = self.sessionIds[database] def getCurrentSessionIds(self): return self.currentSessionIds def queryCurrentCollection(self, query): return self.client[self.databaseName][self.collectionName].find(query) def aggregateOnCurrentCollection(self, filterPipeline): #return self.client[self.databaseName].command('aggregate', self.collectionName, pipeline=filterPipeline, explain=True) return self.client[self.databaseName][self.collectionName].aggregate(filterPipeline, allowDiskUse=True) def countQueryResults(self, filterPipeline): return self.client[self.databaseName][self.collectionName].count(filterPipeline)
[ "tomneutens@gmail.com" ]
tomneutens@gmail.com
df4ac51fccc876c20ce0077aa7d9de548e96e905
97dae48fa3c613a84655c1c0b12cdc0db2c555bb
/algorithm/random/random_node.py
762a106aab90fb123741b27e865a4ab52323d43e
[]
no_license
klknet/geeks4geeks
6aa5841b15be41057dc987524721ea1ea37e02ea
d7d9099af7617a4000f38c75d2c7214bed570eda
refs/heads/master
2021-07-12T06:34:30.048691
2020-06-22T07:51:14
2020-06-22T07:51:14
170,288,225
1
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
""" Select a random node from a singly linked list. """ import random class Node(object): def __init__(self, data): self.data = data self.next = None class LinkedList(object): def __init__(self): self.head = None def insert_node(self, data): node = Node(data) node.next = self.head self.head = node def random_node(self): current = self.head n = 2 result = current.data while current.next: current = current.next r = random.randrange(n) if r == 0: result = current.data n += 1 return result def size(self): n = 0 tmp = self.head while tmp: n += 1 tmp = tmp.next return n list = LinkedList() list.insert_node(1) list.insert_node(2) list.insert_node(3) list.insert_node(4) list.insert_node(5) list.insert_node(6) list.insert_node(7) list.insert_node(8) print(list.random_node())
[ "konglk@aliyun.com" ]
konglk@aliyun.com
78d1db3c6dc1d8c61587fd41ec302b44b9c0485e
b39670923ee518f2da16207a0d7e6093775f7b55
/prac_05/word_occurences.py
72bf33df1a8e510cee5448f94c119206bd505145
[]
no_license
SebastianFrizzo/CP1404_Practicals
02116acbd7730f18c9f4b0f93d9c6e3afe619746
f635cd701e99e81087587e1ae34972b51e1d1357
refs/heads/master
2020-07-12T21:07:48.623511
2019-11-11T06:11:22
2019-11-11T06:11:22
204,906,505
0
0
null
2019-09-18T02:27:24
2019-08-28T10:30:56
Python
UTF-8
Python
false
false
401
py
user_strings = input("Say something: ").replace(",", "").split(" ") user_dictionary = {} max_word_length = 0 for word in user_strings: if word not in user_dictionary: user_dictionary[word] = 1 if len(word) > max_word_length: max_word_length = len(word) else: user_dictionary[word] += 1 for word in user_dictionary: print("{:{}}: {}".format(word, max_word_length, user_dictionary[word]))
[ "sebastianfrizzolaloli@gmail.com" ]
sebastianfrizzolaloli@gmail.com
c5783433362fd28cfaa4c90e29326762ed7361eb
3698669255e1b1780a467f050b746fc5c803f76a
/titles/admin.py
3be782bc024f8330a07c90cb0ddb01af260ee97a
[]
no_license
RustamIR/yamdb_final
2213bc15e0246caea264d59250c960ae64b3c3c0
6364f8b8d83f0a9c229ef43919f7738763801dc2
refs/heads/master
2023-02-27T01:01:04.434217
2021-01-18T06:35:13
2021-01-23T09:58:53
329,542,251
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
from django.contrib import admin from .models import Categories, Genres, Titles class CategoryAdmin(admin.ModelAdmin): list_display = ("pk", "name", "slug") search_fields = ("name",) empty_value_display = '-пусто-' class GenreAdmin(admin.ModelAdmin): list_display = ("pk", "name", "slug") search_fields = ("name",) empty_value_display = '-пусто-' class TitleAdmin(admin.ModelAdmin): list_display = ("pk", "name", "year", "description", 'category') search_fields = ("name",) empty_value_display = '-пусто-' admin.site.register(Categories, CategoryAdmin) admin.site.register(Genres, GenreAdmin) admin.site.register(Titles, TitleAdmin)
[ "roostamishteev@yandex.ru" ]
roostamishteev@yandex.ru
f8ae2d1fca5e85c23a12fde1dc9d340d64458945
80052e0cbfe0214e4878d28eb52009ff3054fe58
/e2yun_addons/odoo12/e2yun_base_geolocalize_bing/models/res_partner.py
cd91d36bc9c2e0d6e122fe3eabed2e72bf7cbc34
[]
no_license
xAlphaOmega/filelib
b022c86f9035106c24ba806e6ece5ea6e14f0e3a
af4d4b079041f279a74e786c1540ea8df2d6b2ac
refs/heads/master
2021-01-26T06:40:06.218774
2020-02-26T14:25:11
2020-02-26T14:25:11
243,349,887
0
2
null
2020-02-26T19:39:32
2020-02-26T19:39:31
null
UTF-8
Python
false
false
4,245
py
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import json import logging import requests from odoo import api, fields, models, tools, _ from odoo.exceptions import UserError _logger = logging.getLogger(__name__) def geo_find_bing(addr, apikey=False): if not addr: return None if not apikey: raise UserError(_('''API key for GeoCoding (Places) required.\n Save this key in System Parameters with key: bing.api_key_geocode, value: <your api key> Visit https://docs.microsoft.com/en-us/bingmaps/getting-started/bing-maps-dev-center-help/getting-a-bing-maps-key for more information. ''')) url = "https://dev.virtualearth.net/REST/v1/Locations/?" try: result = requests.get(url, params={'q':addr, 'o':'json', 'key':apikey}).json() except Exception as e: raise UserError(_('Cannot contact geolocation servers. Please make sure that your Internet connection is up and running (%s).') % e) if result['statusCode'] != 200: if result.get('statusDescription'): _logger.error(result['statusDescription']) error_msg = _('Unable to geolocate, received the error:\n%s' '\n\nBing made this a paid feature.\n' 'You should first enable billing on your Bing account.\n' 'Then, go to Developer Console, and enable the APIs:\n' 'Geocoding, Maps Static, Maps Javascript.\n' % result['statusDescription']) raise UserError(error_msg) try: if len(result['resourceSets']) > 0 and len(result['resourceSets'][0]) > 0: geo = result['resourceSets'][0]['resources'][0]['point']['coordinates'] return float(geo[0]), float(geo[1]) else: return None except (KeyError, ValueError): return None def geo_query_address(street=None, zip=None, city=None, state=None, country=None): if country and ',' in country and (country.endswith(' of') or country.endswith(' of the')): # put country qualifier in front, otherwise GMap gives wrong results, # e.g. 'Congo, Democratic Republic of the' => 'Democratic Republic of the Congo' country = '{1} {0}'.format(*country.split(',', 1)) return tools.ustr(', '.join( field for field in [street, ("%s %s" % (zip or '', city or '')).strip(), state, country] if field )) class ResPartner(models.Model): _inherit = "res.partner" # partner_latitude = fields.Float(string='Geo Latitude', digits=(16, 5)) # partner_longitude = fields.Float(string='Geo Longitude', digits=(16, 5)) # date_localization = fields.Date(string='Geolocation Date') @classmethod def _geo_localize(cls, apikey, street='', zip='', city='', state='', country=''): search = geo_query_address(street=street, zip=zip, city=city, state=state, country=country) result = geo_find_bing(search, apikey) if result is None: search = geo_query_address(city=city, state=state, country=country) result = geo_find_bing(search, apikey) return result @api.multi def geo_localize(self): # We need country names in English below apikey = self.env['ir.config_parameter'].sudo().get_param('bing.api_key_geocode',default='AqY4IFeQhJPHi5FjGBNc7hfgUNcaVf7S_qyyP_dlVCesSJUqI7dBA-gsyoAIUvGu') for partner in self.with_context(lang='en_US'): result = partner._geo_localize(apikey, partner.street, partner.zip, partner.city, partner.state_id.name, partner.country_id.name) if result: partner.write({ 'partner_latitude': result[0], 'partner_longitude': result[1], 'date_localization': fields.Date.context_today(partner) }) return True
[ "joytao.zhu@icloud.com" ]
joytao.zhu@icloud.com
6440e43eeb24e41f882ccb95d12ebfb8d7b5b3b5
c6c450d750bcc559882c6f211f952b411505d6d8
/apps/work/views.py
b732081bebd1c4c612bcf8b2aefa24ad1c5c8736
[]
no_license
ESCL/pjtracker
e26ea09136f35f5c85ea8d68a63fd94fab2629da
4dcf0e6a37e8753ae9d69d663c0c280fcca0a26c
refs/heads/develop
2021-09-26T09:18:54.158051
2021-09-10T23:16:07
2021-09-10T23:16:07
52,280,177
1
0
null
2021-09-10T23:16:08
2016-02-22T14:45:55
Python
UTF-8
Python
false
false
4,052
py
from django.shortcuts import render, redirect from django.forms import inlineformset_factory from ..common.views.base import StandardResourceView from .forms import (ProjectForm, ProjectSearchForm, ActivityForm, ActivitySearchForm, ActivityGroupForm, ActivityGroupSearchForm, ActivityGroupTypeForm, ActivityGroupTypeSearchForm, LabourTypeForm, LabourTypeSearchForm, ActivityInlineForm, ActivityInlineFormSet) from .models import Project, Activity, ActivityGroup, ActivityGroupType, LabourType class ProjectView(StandardResourceView): model = Project list_template = 'projects.html' detail_template = 'project.html' edit_template = 'project-edit.html' search_form = ProjectSearchForm main_form = ProjectForm permissions = { 'add': ('work.add_project',), 'edit': ('work.change_project',) } class ActivityView(StandardResourceView): model = Activity list_template = 'activities.html' detail_template = 'activity.html' edit_template = 'activity-edit.html' search_form = ActivitySearchForm main_form = ActivityForm permissions = { 'add': ('work.add_activity',), 'edit': ('work.change_activity',) } class LabourTypeView(StandardResourceView): model = LabourType list_template = 'labour-types.html' detail_template = 'labour-type.html' edit_template = 'labour-type-edit.html' search_form = LabourTypeSearchForm main_form = LabourTypeForm permissions = { 'add': ('work.add_labourtype',), 'edit': ('work.change_labourtype',) } class ActivityGroupView(StandardResourceView): model = ActivityGroup list_template = 'activity-groups.html' detail_template = 'activity-group.html' edit_template = 'activity-group-edit.html' search_form = ActivityGroupSearchForm main_form = ActivityGroupForm permissions = { 'add': ('work.add_activitygroup',), 'edit': ('work.change_activitygroup',) } class ActivityGroupTypeView(StandardResourceView): model = ActivityGroupType list_template = 'activity-group-types.html' detail_template = 'activity-group-type.html' edit_template = 'activity-group-type-edit.html' search_form = ActivityGroupTypeSearchForm main_form = ActivityGroupTypeForm permissions = { 'add': ('work.add_activitygrouptype',), 'edit': ('work.change_activitygrouptype',) } class ProjectWBSView(StandardResourceView): """ Experimental WBS edit view. """ model = Project edit_template = 'wbs-edit.html' formset = inlineformset_factory(Project, Activity, formset=ActivityInlineFormSet, form=ActivityInlineForm, extra=1) def show_forms(self, request, pk): """ Render the formset for the given project. """ proj = pk and self.get_object(request.user, pk) or None context = {'project': proj, 'forms': self.formset(instance=proj)} return render(request, self.edit_template, context) def upsert_instance(self, request, pk, **kwargs): """ Save the main form (and subform is the instance is not new) and redirect to the collection view. """ proj = pk and self.get_object(request.user, pk) or None context = {'project': proj} fs = self.formset(request.POST, instance=proj) context['sub_forms'] = fs if fs.is_valid(): # If all defined forms are valid, save them instances = fs.save() # Also update their project and owner (just in case) Activity.objects.filter(id__in=[a.id for a in instances]).update(project=proj, owner=proj.owner) # Now redirect to collection view return redirect('project', pk=pk, **kwargs) else: # Invalid, render forms again with errors return render(request, self.edit_template, context, status=400)
[ "claudio.melendrez@gmail.com" ]
claudio.melendrez@gmail.com
28bf442921e0912bc5ab3b61c32415d4283444d4
eefede4cd6fbd61fb63a0b367c9a03e2cf8217da
/fanjian.py
54a6c755e82f548a4dcf49075813f70602aee809
[]
no_license
josephok/fun
94d1dd4df6868797fc32b329bf1f8cf0f29fb1e8
c1176f914219f9ddb3024b8c827fa8a00bc063a5
refs/heads/master
2020-12-26T03:55:28.864934
2016-11-05T04:14:19
2016-11-05T04:14:19
68,285,161
1
0
null
null
null
null
UTF-8
Python
false
false
752
py
import logging from spider import Spider logger = logging.getLogger(__name__) class FanjianSpider(Spider): name = "犯贱志" page_pattern = "latest-" def _parse_index(self, page): return page.xpath("//h2[@class='cont-list-title']/a/@href") def _parse_content(self, page, document): # 标题 title = page.xpath("//h1/@title")[0] # 发布日期 post_time = page.xpath("//div[contains(@class, 'view-info')]/text()", namespaces={"re": r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}'})[1].strip() # noqa # 内容 content = document(".view-main").html() logger.info("解析{}的内容,标题为:{}".format(self.name, title)) return (title, post_time, content)
[ "josephok@qq.com" ]
josephok@qq.com
2ed97f8452b49adbd0bdcfc03b06558d59735e10
f9fb4f8073d963c349679e7f40b73dc711160991
/eric-fokou/Lesson2/lesson2_crawling.py
38284aae64b54eb4d14d916148d80eaad3a276e4
[]
no_license
ouedraogoboukary/starter-kit-datascience
83606196fc19cc3385ba8e846ef3014ff9e0b2e9
f621d4a1d7826c79c7ebd3a5a07a0138199e6c82
refs/heads/master
2020-10-01T01:04:23.460810
2017-12-04T22:33:52
2017-12-04T22:33:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,410
py
import requests import pandas as pd from bs4 import BeautifulSoup MAX_PAGE = 2 def extractIntFromDOM(soup, classname): res_str = soup.find(class_=classname).text.replace( u'\xa0', '').replace('vues', '') res = int(res_str) return res def extractLikeDislikeFromDOM(soup, classname, position): # print len(soup.find_all(class_=classname)) res_str = soup.find_all(class_=classname)[position].find( class_="yt-uix-button-content").text.replace(u'\xa0', '') res = int(res_str) return res def computeIndicatorForPage(url): result = requests.get(url) soup = BeautifulSoup(result.text, 'html.parser') number_of_views = extractIntFromDOM(soup, 'watch-view-count') number_of_likes = extractLikeDislikeFromDOM( soup, 'like-button-renderer-like-button', 0) number_of_dislikes = extractLikeDislikeFromDOM( soup, 'like-button-renderer-dislike-button', 1) indicator = 1000. * \ (number_of_likes - number_of_dislikes) / number_of_views title = soup.title.text print '=====' print title print "Likes", number_of_likes print "Dislikes", number_of_dislikes print "VIews", number_of_views print "Popularity", indicator print '=====' metrics = {} metrics['song'] = title metrics['number_of_views'] = number_of_views metrics['number_of_likes'] = number_of_likes metrics['number_of_dislikes'] = number_of_dislikes metrics['indicator'] = indicator return metrics # computeIndicatorForPage('https://www.youtube.com/watch?v=wfN4PVaOU5Q') def getAllMetricsForArtist(artist): all_metrics = [] for page in range(1, MAX_PAGE + 1): all_videos_artist = requests.get( 'https://www.youtube.com/results?search_query=' + artist + '&page=' + str(page)) soup_artist = BeautifulSoup(all_videos_artist.text, 'html.parser') # print(soup_artist.prettify()) list_video_artist = map( # lambda x: x['href'], # soup_artist.find_all(class_="yt-uix-tile-link")) lambda x: x['href'], soup_artist.find_all(attrs={"class": "yt-uix-sessionlink spf-link ", "dir": "ltr"})) for link in list_video_artist: metrics = computeIndicatorForPage('https://www.youtube.com' + link) all_metrics.append(metrics) return all_metrics metrics_rihanna = getAllMetricsForArtist('rihanna') df_rihanna = pd.DataFrame(metrics_rihanna, columns=[ 'song', 'number_of_views', 'number_of_likes', 'number_of_dislikes', 'indicator']) df_rihanna.to_csv('Rihanna.csv', index=False, encoding='utf-8') avg_rihanna_indicator = 0 for song in metrics_rihanna: avg_rihanna_indicator += song['indicator'] metrics_beyonce = getAllMetricsForArtist('beyonce') df_beyonce = pd.DataFrame(metrics_beyonce, columns=[ 'song', 'number_of_views', 'number_of_likes', 'number_of_dislikes', 'indicator']) df_beyonce.to_csv('Beyonce.csv', index=False, encoding='utf-8') avg_beyonce_indicator = 0 for song in metrics_beyonce: avg_beyonce_indicator += song['indicator'] print( "=================================================================================") print("Rihanna AVG indicator = " + str(float(avg_rihanna_indicator) / len(metrics_rihanna))) print("Beyonce AVG indicator = " + str(float(avg_beyonce_indicator) / len(metrics_beyonce)))
[ "fokoub@gmail.com" ]
fokoub@gmail.com
fa24656c30eff68cac260d33467c06f2f0f78e40
3a3055474bccf3def468c4d03a969efb35809c08
/comment/forms.py
312dce5e9e0ab645687d8fb96e102cc68cbb442a
[]
no_license
kinghanjiangxue/BulidMyWebSite
18cc838597e8e0b92d17065b2e9b0fb212d96618
8bb59e740814a164b759711953068096cf6d8658
refs/heads/master
2022-12-26T05:09:37.138055
2019-08-23T10:50:24
2019-08-23T10:50:24
191,863,534
3
1
null
2022-12-09T22:53:41
2019-06-14T02:31:00
Python
UTF-8
Python
false
false
157
py
from django import forms from .models import Comment class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ['body']
[ "yuankisstherain@163.com" ]
yuankisstherain@163.com
8f6b8907e13c2ab27fed2def8a040695b861dd34
1d75146a66245dc046dc216bb602129208e00733
/open/Edgecortix/code/mobilenetv2/Offline/python/backend_pytorch_yolov3_jit_traced.py
64772093cea7eabe60308826e27dbfb1b13720d5
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
georgelyuan/inference_results_v1.1
febf287bd5967bf7f087355a81f06a2bd298cbfe
3196a5587887c39203ee3ac246fa5dbe789d9085
refs/heads/main
2023-08-16T08:49:45.274284
2021-09-23T20:57:17
2021-09-23T20:57:17
409,773,141
0
0
NOASSERTION
2021-09-23T23:36:37
2021-09-23T23:36:37
null
UTF-8
Python
false
false
2,310
py
""" pytoch jit-traced backend """ # pylint: disable=unused-argument,missing-docstring import json import os import time import torch import torch.nn as nn import torchvision import backend import sys sys.path.append('yolov3') from models.yolo import Detect from utils.general import non_max_suppression config = { 'yolov3-jit': ( [ [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326] ], [256,512, 1024], ), 'yolov3-tiny-jit': ( [ [10, 14, 23, 27, 37, 58], [81, 82, 135, 169, 344, 319] ], [256, 512], ), } class BackendPytorchYOLOv3JITTraced(backend.Backend): def __init__(self): super(BackendPytorchYOLOv3JITTraced, self).__init__() self.sess = None self.model = None # https://github.com/ultralytics/yolov3 self.conf = 0.001 self.iou = 0.65 def version(self): return torch.__version__ def name(self): return "pytorch-yolov3-jit-traced" def image_format(self): return "NCHW" def load(self, model_path, inputs=None, outputs=None): self.model = torch.jit.load(model_path) model_name = os.path.split(model_path)[-1].replace('.pt', '') anchors, ch = config[model_name] pp = Detect(80, anchors, ch) s = 128 pp.stride = torch.tensor([s / x.shape[-2] for x in self.model(torch.zeros(1, 3, s, s))]) pp.anchors /= pp.stride.view(-1, 1, 1) pp.load_state_dict(torch.load(model_path.replace('.pt', '-pp.pt'))) pp.eval() self.post_processor = pp # dummy self.inputs = ["input"] self.outputs = ["output"] return self def predict(self, feed): key=[key for key in feed.keys()][0] feed[key] = torch.tensor(feed[key]).float() size = feed[key].shape[2] with torch.no_grad(): output = self.model(feed[key]) pred = self.post_processor(list(output))[0] pred = non_max_suppression(pred, conf_thres=self.conf, iou_thres=self.iou)[0] bboxes = pred[..., :4]/size scores = pred[..., 4] labels = pred[..., 5].int()+1 return [bboxes], [labels], [scores]
[ "tjablin@google.com" ]
tjablin@google.com
826053e4c8827b6ddae96995a415820e2ebb74a3
d37862139b44f4eaa9892b47b9b7ed52b2bbfef4
/week2/d5-permutations.py
39db73e253cabb8619fe9c3ac57edd48dd128c6d
[]
no_license
nhnminh/leetcode-challenge
e59faec4eb8434ff0ebebcac2c31fd279286dee9
f618f53eca8e23d9d8b5b4e1bd09d768090c0bf4
refs/heads/master
2023-01-07T05:11:25.528985
2020-11-18T10:09:33
2020-11-18T10:09:33
312,016,464
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: if len(nums) <= 1: return [nums] seen = {} first = nums[0] remainder = nums[1:] remainder_perms = self.permuteUnique(remainder) for remainder_perm in remainder_perms: for pos in range(len(nums)): curr_perm = remainder_perm.copy() curr_perm.insert(pos, first) seen[str(curr_perm)] = curr_perm return seen.values()
[ "nhnminh@apcs.vn" ]
nhnminh@apcs.vn
6a7abbb138da35522f6af973df8ff02116342540
3de5bedc4b1ebe5389896658a0bf0c0302afaa0b
/images360/images360/items.py
49d8879cdb2000b7e69b362809863adfa5c0bc46
[]
no_license
ShaoLay/KeyWords_Images
c4908081119a2d137d1210c1793bf739cb883a83
d83c76e07d834a4226bf708d000efbf9c01f8735
refs/heads/master
2020-04-12T02:49:35.894724
2018-12-18T09:01:53
2018-12-18T09:01:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy import Item, Field class ImageItem(Item): collection = table = 'images' id = Field() url = Field() title = Field() thumb = Field()
[ "javs_shao@163.com" ]
javs_shao@163.com
227624e1a2b47af4149919d50b795f308501b5d2
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_verdure.py
8a49a8042f50de2bb3ea919aa34e26684f025e8f
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
#calss header class _VERDURE(): def __init__(self,): self.name = "VERDURE" self.definitions = [u'(the green colour of) fresh, healthy plants'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
23ebc1cc6d44d65f993c8b7fdda6e4fedc6aada2
7c4c9b6b61b233839526b0ac717ea1e3873b105f
/video/make_frame.py
63d02e346b99426b81ea788d685c50b9a108ed25
[]
no_license
Peddi30/speech-img-vid-generator
51ec96a9412b22cb97efefc2999fbdd93a7da9c9
9bf1c023382b580876575319041d4f1df4912f04
refs/heads/master
2023-03-20T05:18:26.915497
2021-03-09T23:24:49
2021-03-09T23:24:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,672
py
from selenium.webdriver import Chrome, ChromeOptions import requests from PIL import Image import base64 import uuid import os import time import math import utils.log as log CHROME_DRIVER_PATH = '/Users/aarenstade/Documents/chromedriver' def downloadB64Img(img, filename): data = str(img)[22:] decoded = base64.b64decode(data) with open(filename, 'wb') as img: img.write(decoded) img.close() def get_images(query): options = ChromeOptions() options.add_argument('--headless') driver = Chrome( executable_path=CHROME_DRIVER_PATH, options=options) url = "https://www.bing.com/images/search?q="+query driver.get(url) ActualImages = [] images = driver.find_elements_by_class_name('mimg') for i in images: src = i.get_attribute('src') if(src != None): ActualImages.append(src) driver.quit() return ActualImages def create_imgs_dir(path): if not (os.path.exists(path)): os.makedirs(path) return True else: return False def download_images(images, path): for image in images: if(image != None): filename = path + "/" + str(uuid.uuid4()) + ".jpg" if(image.startswith('data')): downloadB64Img(image, filename) else: request = requests.get(image, stream=True) if not request.ok: print(request) with open(filename, 'wb') as imgFile: for block in request.iter_content(1024): if not block: break imgFile.write(block) imgFile.close() # TODO: create image (natural sizes) and then put it into 720p frame def create_collage(path): final_w = 1280 final_h = 720 image_paths = [f for f in os.listdir( path) if os.path.isfile(os.path.join(path, f))] imgs_w = 0 imgs_h = 0 if(len(image_paths) > 0): # get average size of images for i in image_paths: img = Image.open(path + '/' + i) imgs_w = imgs_w + img.width imgs_h = imgs_h + img.height img.close() # define block size block_w = round((imgs_w / len(image_paths))) block_h = round((imgs_h / len(image_paths))) # determine number of rows of blocks nper_row = int(math.floor(final_w / block_w)) nrows = int(math.ceil(len(image_paths) / nper_row)) row_w = block_w * nper_row row_h = block_h # for first img # determine padding from top and left y_pad_start = round((final_h - (row_h * nrows)) / 2) x_pad_start = round((final_w - row_w) / 2) x_cur = x_pad_start y_cur = y_pad_start col_num = 1 img_num = 0 # paste images, scaled into blocks final_img = Image.new('RGB', (final_w, final_h)) for i in image_paths: img_num = img_num + 1 img = Image.open(path + '/' + i) image = img.resize((block_w, block_h)) final_img.paste(image, box=(x_cur, y_cur)) # move to next column col_num = col_num + 1 x_cur = x_cur + block_w # if we've exited the image if(col_num > nper_row): col_num = 1 y_cur = y_cur + row_h # move down a row # modify x_cur for when next row < than nper_row imgs_left = len(image_paths) - img_num if(imgs_left < nper_row): x_cur = round((final_w - (block_w * imgs_left)) / 2) else: x_cur = x_pad_start # go to x start return final_img else: final_img = Image.new('RGB', (final_w, final_h)) return final_img def CreateFrame(query, path): start = time.time() query = query.split(' ') query = '+'.join(query) query = query.replace('.', '') query = query.replace('/', '') query = query.replace("'", '') query = query.replace('"', '') print(query) path = path + '/src/' + query newDir = create_imgs_dir(path) if(newDir): images = get_images(query) if(len(images) > 0): download_images(images, path) img = create_collage(path) end = time.time() log.Log_Frame(query, (end - start)) return img else: print('no images found') return None else: img = create_collage(path) end = time.time() log.Log_Frame(query, (end - start)) return img
[ "aarenstade@gmail.com" ]
aarenstade@gmail.com
d5314cdaa575a225f31f0288cd7ecb535f6da709
4aa7a4d0525095725eb99843c83827ba4806ceb1
/keras/keras108_ensemble2.py
6a175be3a7a210e13cfe51a8b6cbb64286ea57a3
[]
no_license
seonukim/Study
65a70f5bdfad68f643abc3086d5c7484bb2439d4
a5f2538f9ae8b5fc93b5149dd51704e8881f0a80
refs/heads/master
2022-12-04T17:04:31.489771
2020-08-21T00:35:15
2020-08-21T00:35:15
260,144,755
2
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
# 1. 데이터 import numpy as np x1_train = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) x2_train = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y1_train = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y2_train = np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0]) # 2. 모델 구성 from keras.models import Sequential, Model from keras.layers import Dense, Input from keras.layers import concatenate input1 = Input(shape = (1,)) x1 = Dense(100)(input1) x1 = Dense(100)(x1) x1 = Dense(100)(x1) input2 = Input(shape = (1,)) x2 = Dense(100)(input2) x2 = Dense(100)(x2) x2 = Dense(100)(x2) merge = concatenate([x1, x2]) x3 = Dense(100)(merge) output1 = Dense(1)(x3) x4 = Dense(70)(merge) x4 = Dense(70)(x4) output2 = Dense(1, activation = 'sigmoid')(x4) model = Model(inputs = [input1, input2], outputs = [output1, output2]) model.summary() # 3. 컴파일 훈련 model.compile(loss = ['mse', 'binary_crossentropy'], optimizer = 'adam', metrics = ['mse', 'acc']) model.fit([x1_train, x2_train], [y1_train, y2_train], epochs = 100, batch_size = 1) # 4. 평가 예측 loss = model.evaluate([x1_train, x2_train], [y1_train, y2_train]) print('loss : ', loss) x1_pred = np.array([11, 12, 13, 14]) x2_pred = np.array([11, 12, 13, 14]) y_pred = model.predict([x1_pred, x2_pred]) print(y_pred)
[ "92.seoonooo@gmail.com" ]
92.seoonooo@gmail.com
6a3fa960b84a9d356ed5e5860ecd007c65673ab6
f26111108d5b30a4cf52dab4d64a7b068a0cc7dd
/custom-addons/openmadrassa_base/__init__.py
771db3c08636c7015877ba19efca683e0f6f4456
[]
no_license
vidtsin/girls_erp
80489598d408e401f3f96c08854691d00790e5f8
381bfe7fb2ac2c4fd49bf5b5a7e75365ca300df4
refs/heads/master
2020-07-19T17:10:24.336653
2017-05-06T15:44:02
2017-05-06T15:44:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,165
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import school import school_fees import account_voucher import res_partner import parent import timetable import wizard # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "emeytahaz@gmail.com" ]
emeytahaz@gmail.com
7127487e6db86d1498fb041791074873451e4b75
44ecce58e54d475158afc703dc7e6c5455db9c9f
/Detectivesusi/mysite/mysite/settings.py
202281f9453b4d45cf12111a74351663702d0b31
[]
no_license
YangTaeSung/CAU-CapstoneDesign2-SusiDetective
0d3f5752e3082fcaf5efec1a611b763a2ded60ae
ce9e6c2ba44a26f67f54522bc67736b5758e181f
refs/heads/master
2020-08-07T04:11:20.905517
2020-04-01T08:37:41
2020-04-01T08:37:41
213,290,847
0
0
null
null
null
null
UTF-8
Python
false
false
4,137
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ from django.contrib.messages import constants as message_constants import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'u8ga=p_tcieacq#8odl@d+2ncm@!9f5$&2bqvd4=b*r=v6lx(y' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True#False#True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'main', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] #AUTH_USER_MODEL = 'main.User' # 19.03.23 added for register ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( # STATIC 파일 호출 시 STATIC 폴더에서 찾음. os.path.join(BASE_DIR, 'static'), ) ## media 파일 링크 # 각 media 파일에 대한 URL Prefix MEDIA_URL = '/media/' # 항상 / 로 끝나도록 설정 # 업로드된 파일을 저장할 디렉토리 경로 MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MESSAGE_TAGS = {message_constants.DEBUG: 'debug', message_constants.INFO: 'info', message_constants.SUCCESS: 'success', message_constants.WARNING: 'warning', message_constants.ERROR: 'danger',} # https 적용 # SESSION_COOKIE_SECURE = True # CSRF_COOKIE_SECURE = True # SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') BROKER_URL = 'amqp://guest:guest@localhost//' CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json'
[ "tsy0668@naver.com" ]
tsy0668@naver.com
14870f84a64db46f9127e12a287297baeccee592
a19179d51e494b1fed9eed94e72a2d01b67fcb44
/xylophone/pgw/ConfigurationService.py
6a15b62f0d863535d6708b167aa04b047a174da5
[ "MIT" ]
permissive
Turysaz/xylophone
d4752b926f80fab5350e1e6eb36376f640df6b10
da44b8127aa6b89d6cdb3bdb564c386520b37e22
refs/heads/master
2021-09-11T16:41:31.632019
2018-04-09T20:46:00
2018-04-09T20:46:00
124,000,417
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
# Copyright (c) 2018 Turysaz <turysaz@posteo.org> from configparser import ConfigParser def create_configuration_parser(): configuration = ConfigParser() configuration.read("configuration.txt") return configuration
[ "turysaz@posteo.org" ]
turysaz@posteo.org
06ab084d23697033b94ecb4e90ee9c1e04b11f01
75519d2a9bf55e2d9376ea08a36676948a8b232c
/cores/Registry.py
4271cb1b3e6868b1dde194e897c740ebeb6257e4
[ "MIT" ]
permissive
CGFanTuan/damgteam
9c32d59cbd0ecb9d3acffd9b902b918c40797e14
aec414f084f6ab6ec5897314390605aaa8380d62
refs/heads/master
2020-09-17T00:29:24.832648
2019-11-25T09:51:13
2019-11-25T09:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,119
py
# -*- coding: utf-8 -*- """ Script Name: Registry.py Author: Do Trinh/Jimmy - 3D artist. Description: """ # ------------------------------------------------------------------------------------------------------------- from __future__ import absolute_import, unicode_literals import datetime, time from bin.data.damg import DAMGDICT, DAMGLIST, DAMG from appData import layoutTypes class InspectLayout(DAMG): key = 'InspectLayout' layoutTypes = DAMGLIST() layoutKeys = DAMGLIST() def __init__(self, parent=None): super(InspectLayout, self).__init__(parent) self.layoutTypes.appendList(layoutTypes) def doInspection(self, layout): self.layoutTypes.append(layout.Type) self.layoutKeys.append(layout.key) return layout def checkType(self, layout): if not self.haveType(layout): try: layout.show() except AttributeError: layoutType = 'Object' else: layoutType = 'UI' layout.__setattr__('Type', layoutType) return self.checkKey(layout) def checkKey(self, layout): if not self.haveKey(layout): key = layout.__class__.__name__ layout.__setattr__('key', key) return layout def haveType(self, layout): try: layout.Type except AttributeError: return False else: return True def haveKey(self, layout): try: layout.key except KeyError: return False else: return True class RegistryLayout(DAMGDICT): awaitingSlots = DAMGLIST() layout_names = DAMGLIST() layout_ids = DAMGLIST() layout_datetimes = DAMGLIST() layout_keys = DAMGLIST() def __init__(self): super(RegistryLayout, self).__init__(self) self.inspect = InspectLayout(self) def regisLayout(self, layout): ui = self.inspect.doInspection(layout) key = ui.key if self.isLayout(ui): if self.isAwaitingSlot(ui): self.awaitingSlots.remove(key) self.doRegister(ui) else: if not self.isRegistered(ui): self.doRegister(ui) else: print("Already registered: {0}".format(key)) return False def isAwaitingSlot(self, layout): key = layout.key if key in self.awaitingSlots: return True else: return False def doRegister(self, layout): key = layout.key self.layout_names.append(layout.name) self.layout_ids.append(id(layout)) self.layout_datetimes.append(str(datetime.datetime.fromtimestamp(time.time()).strftime('%H:%M:%S|%d.%m.%Y'))) self.layout_keys.append(layout.key) # print("Registing layout: {0} : {1}".format(layout.key, layout)) self[key] = layout return True def deRegister(self, layout): key = layout.key index = self.layout_names.index(layout.name) if self.isRegistered(layout): self.awaitingSlots.append(key) try: del self[key] except KeyError: self.pop(key, None) self.layout_names.remove(self.layout_names[index]) self.layout_ids.remove(self.layout_ids[index]) self.layout_datetimes.remove(self.layout_datetimes[index]) return True else: return False def isRegistered(self, layout): key = layout.key if key in self.keys(): return True else: return False def isLayout(self, layout): if layout.Type in self.inspect.layoutTypes: return True else: return False # ------------------------------------------------------------------------------------------------------------- # Created by panda on 8/11/2019 - 4:18 PM # © 2017 - 2018 DAMGteam. All rights reserved
[ "dot@damgteam.com" ]
dot@damgteam.com
0bd4b125f0c29da6a25d10ab87d80259130e89d5
bf3bd49d3113db36550808182d2f14a3e6baebf7
/05/lambda01.py
b5aaf16fd92e09178f37cc9f7374f3b65da2382f
[]
no_license
bbangwon/hongong_python
7dac29fea90d79143af1bcfa3f79dd6336906954
05daa3594b858082b97a2c0e8ba73d84fd86b234
refs/heads/master
2020-08-24T16:21:19.934245
2020-02-02T15:01:09
2020-02-02T15:01:09
216,862,896
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
#함수를 선언합니다. power = lambda x: x * x under_3 = lambda x: x < 3 #변수를 선언합니다. list_input_a = [1, 2, 3, 4, 5] #map() 함수를 사용합니다. output_a = map(power, list_input_a) print("# map() 함수의 실행결과") print("map(power, list_input_a):", output_a) print("map(power, list_input_a):", list(output_a)) #filter() 함수를 사용합니다. output_b = filter(under_3, list_input_a) print("# filter() 함수의 실행결과") print("filter(under_3, list_input_a):", output_b) print("filter(under_3, list_input_a):", list(output_b))
[ "bbangwon.chung@gmail.com" ]
bbangwon.chung@gmail.com
b091664ff5c3a2d99189aa4cbc7b05ab80edba36
83843adddd37a668873f6161f7b2f2907d50911e
/unet_test.py
37bc1b633b1bea55ca99069393651c53c8969c29
[]
no_license
Vishakha6/UNet-Python
efd375e9b1043d82791844c7948c78ffe9f63355
ea0ed4cc5860f683a277f510a0fb5c8a29f42a2f
refs/heads/main
2023-03-14T17:21:33.554395
2021-03-28T19:02:15
2021-03-28T19:02:15
336,354,213
0
0
null
2021-03-28T19:02:16
2021-02-05T18:20:59
Python
UTF-8
Python
false
false
6,809
py
import h5py import numpy as np import PIL import subprocess import os from PIL import Image import sys from tifffile import imread, TiffFile from bfio import BioReader, BioWriter, LOG4J, JARS import javabridge, math from pathlib import Path from multiprocessing import cpu_count def rescale(size,img,mode='uint8'): if mode == 'float32': #for floating point images: img = np.float32(img) img_PIL = PIL.Image.fromarray(img,mode='F') elif mode == 'uint8': #otherwise: img_PIL = PIL.Image.fromarray(img) else: raise(Exception('Invalid rescaling mode. Use uint8 or float32')) return np.array(img_PIL.resize(size,PIL.Image.BILINEAR)) def normalize(img): ###normalize image img_min = np.min(img) img_max = np.max(img) img_centered = img - img_min img_range = img_max - img_min return np.true_divide(img_centered, img_range) def unet_segmentation(input_img,img_pixelsize_x,img_pixelsize_y, modelfile_path,weightfile_path,iofile_path, tiling_x=4,tiling_y=4,gpu_flag='0', cleanup=True): #fix parameters n_inputchannels=1 n_iterations=0 ## prepare image rescaling np.set_printoptions(threshold=sys.maxsize) #get model resolution (element size) from modelfile modelfile_h5 = h5py.File(modelfile_path,'r') modelresolution_y = modelfile_h5['unet_param/element_size_um'][0] modelresolution_x = modelfile_h5['unet_param/element_size_um'][1] modelfile_h5.close() #get input image absolute size abs_size_x = input_img.shape[1] * img_pixelsize_x abs_size_y = input_img.shape[0] * img_pixelsize_y #get rescaled image size in pixel rescaled_size_px_x = int(np.round(abs_size_x / modelresolution_x)) rescaled_size_px_y = int(np.round(abs_size_y / modelresolution_y)) rescale_size = (rescaled_size_px_x,rescaled_size_px_y) ### preprocess image and store in IO file #normalize image, then rescale normalized_img = normalize(input_img) rescaled_img = np.float32(rescale(rescale_size,normalized_img,mode='float32')) #prepending singleton dimensions to get the desired blob structure h5ready_img = np.expand_dims(rescaled_img, axis=(0,1)) iofile_h5 = h5py.File(iofile_path,mode='x') iofile_h5.create_dataset('data',data=h5ready_img) iofile_h5.close() # ### run caffe_unet commands # #assemble sanity check command command_sanitycheck = [] command_sanitycheck.append("caffe_unet") command_sanitycheck.append("check_model_and_weights_h5") command_sanitycheck.append("-model") command_sanitycheck.append(modelfile_path) command_sanitycheck.append("-weights") command_sanitycheck.append(weightfile_path) command_sanitycheck.append("-n_channels") command_sanitycheck.append(str(n_inputchannels)) if gpu_flag: command_sanitycheck.append("-gpu") command_sanitycheck.append(gpu_flag) #runs command and puts console output to stdout sanitycheck_proc = subprocess.run(command_sanitycheck,stdout=subprocess.PIPE) # #aborts if process failed sanitycheck_proc.check_returncode() #assemble prediction command command_predict = [] command_predict.append("caffe_unet") command_predict.append("tiled_predict") command_predict.append("-infileH5") command_predict.append(iofile_path) command_predict.append("-outfileH5") command_predict.append(iofile_path) command_predict.append("-model") command_predict.append(modelfile_path) command_predict.append("-weights") command_predict.append(weightfile_path) command_predict.append("-iterations") command_predict.append(str(n_iterations)) command_predict.append("-n_tiles") command_predict.append(str(tiling_x)+'x'+str(tiling_y)) command_predict.append("-gpu") command_predict.append(gpu_flag) if gpu_flag: command_predict.append("-gpu") command_predict.append(gpu_flag) #run command output = subprocess.check_output(command_predict, stderr=subprocess.STDOUT).decode() print(output) # load results from io file and return output_h5 = h5py.File(iofile_path) score = output_h5['score'][:] output_h5.close() # #get segmentation mask by taking channel argmax segmentation_mask = np.squeeze(np.argmax(score, axis=1)) return segmentation_mask def read_file(input_directory, pixelsize, output_directory): img_pixelsize_x = pixelsize img_pixelsize_y = pixelsize modelfile_path = "2d_cell_net_v0-cytoplasm.modeldef.h5" weightfile_path = "snapshot_cytoplasm_iter_1000.caffemodel.h5" iofile_path = "output.h5" out_path = Path(output_directory) rootdir1 = Path(input_directory) """ Convert the tif to tiled tiff """ javabridge.start_vm(args=["-Dlog4j.configuration=file:{}".format(LOG4J)], class_path=JARS, run_headless=True) i = 0 try: for PATH in rootdir1.glob('**/*'): tile_grid_size = 1 tile_size = tile_grid_size * 1024 # Set up the BioReader with BioReader(PATH,backend='java',max_workers=cpu_count()) as br: # Loop through timepoints for t in range(br.T): # Loop through channels for c in range(br.C): with BioWriter(out_path.joinpath(f"final{i}.ome.tif"),metadata = br.metadata, backend='java') as bw: # Loop through z-slices for z in range(br.Z): # Loop across the length of the image for y in range(0,br.Y,tile_size): y_max = min([br.Y,y+tile_size]) # Loop across the depth of the image for x in range(0,br.X,tile_size): x_max = min([br.X,x+tile_size]) input_img = np.squeeze(br[y:y_max,x:x_max,z:z+1,c,t]) img = unet_segmentation(input_img,img_pixelsize_x, img_pixelsize_y,modelfile_path,weightfile_path,iofile_path) bw[y:y_max, x:x_max,...] = img os.remove("output.h5") i+=1 finally: # Close the javabridge. Since this is in the finally block, it is always run javabridge.kill_vm()
[ "noreply@github.com" ]
Vishakha6.noreply@github.com
07ad80db0ea602e2772902174ad5d49288838307
a0613d6d00be6e23de8757c347e9c7fff1db6733
/Source_Code/SC9.py
4fea522f2d06d9faccf7f1ccecde50eaaf452b3f
[]
no_license
roseyemelyanova/User_Guide
125da2a13809afc129dbe60c2bbd57ab84a0a4fb
405dfb6f82a9ba55f04153f6ec4218cea65b69a6
refs/heads/master
2020-04-19T17:14:59.195743
2019-01-30T11:10:01
2019-01-30T11:10:01
168,329,496
0
0
null
null
null
null
UTF-8
Python
false
false
4,388
py
from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt ''' The code below creates the images for Figures 15 and 2 in the User Guide. Figure 15 is a L0 image created from the S8 band information. Figure 2 is a L0 image using only one detector from the S8 band, and including a closer view to illustrate how scans and detector numbers are related. ''' ############################################################################## #STEP1: Define the path to the relevant .SEN3/ file and store relevant #information from it in variables ############################################################################## fname = 'Data/S3A_SL_1_RBT____20180817T185806_20180817T190106_20180817T205734_0179_034_341_2700_MAR_O_NR_002.SEN3/' S8 = Dataset(fname+'S8_BT_in.nc').variables['S8_BT_in'][:] S8o = Dataset(fname+'S8_BT_in.nc').variables['S8_BT_orphan_in'][:] scan = Dataset(fname+'indices_in.nc').variables['scan_in'][:] pix = Dataset(fname+'indices_in.nc').variables['pixel_in'][:] det = Dataset(fname+'indices_in.nc').variables['detector_in'][:] scano = Dataset(fname+'indices_in.nc').variables['scan_orphan_in'][:] pixo = Dataset(fname+'indices_in.nc').variables['pixel_orphan_in'][:] deto = Dataset(fname+'indices_in.nc').variables['detector_orphan_in'][:] ############################################################################## #STEP2: As this script is imported into SC11 to make use of variables above, #set a condition which will only be met if this script is run ############################################################################## if __name__ == "__main__": ########################################################################## #STEP3: Define a function to ungrid data from L1 information ########################################################################## l0_dms = [846,1199] def plotL0(det_no): ###################################################################### #STEP3a: Create and populate a L0 template by splitting the detectors #and finding the seperate detector pixels and their values in S8. #l0_dms is defined in line 30 for simplicity. l0_S8 must exist outside #of the for loop to produce a full L0 image for both detectors, however #l0_dms definition in lines 47-49 doesn't allow this. Uncomment the #lines to see how it changes the image ###################################################################### l0_S8 = np.zeros([l0_dms[0]*2,l0_dms[1]]) for idet in range(det_no): ipix_valid = np.where(np.ma.getmaskarray(pix)==False) iscan_valid = np.where(np.logical_and(np.ma.getmaskarray(scan)==False,det==idet)) iscan_valid_orphan = np.where(np.logical_and(np.ma.getmaskarray(deto)==False,deto==idet)) s0 = scan[iscan_valid].min() #if idet == 0: #l0_dms = [scan[iscan_valid].max() - scan[iscan_valid].min() + 1,pix[ipix_valid].max() - pix[ipix_valid].min() + 1] #l0_S8 = np.zeros([l0_dms[0]*2,l0_dms[1]]) l0_S8[((scan[iscan_valid]-s0)*2)+idet,pix[iscan_valid]] = S8[iscan_valid] l0_S8[((scano[iscan_valid_orphan]-s0)*2)+idet,pixo[iscan_valid_orphan]] = S8o[iscan_valid_orphan] return l0_S8 ########################################################################## #STEP4: Call the function to produce the required plots ########################################################################## l0_S8 = plotL0(2) l0_S8 = np.ma.masked_values(l0_S8,0) im = plt.imshow(l0_S8, aspect=0.5, origin='lower', cmap='RdBu') plt.xlabel('pixel number') plt.ylabel('scan number') cax = plt.axes([0.9,0.12,0.02,0.76]) plt.colorbar(im, cax) plt.savefig('Figures/Fig15.png',dpi=1000) plt.show() l0_det = plotL0(1) l0_det = np.ma.masked_values(l0_det,0) fig, axes = plt.subplots(ncols=2, nrows=1, gridspec_kw = {'width_ratios':[1, 1]}) axes[0].imshow(l0_det, cmap='RdBu') axes[1].set_xlim(700,750) axes[1].set_ylim(625,700) axes[1].imshow(l0_det, cmap='RdBu', aspect=1) fig.text(0.02, 0.5, 'scan number', ha='center', va='center', rotation=90) fig.text(0.5, 0.02, 'pixel number', ha='center', va='center') plt.savefig('Figures/Fig2.png', dpi=1000) plt.show()
[ "rose.yemelyanova@stfc.ac.uk" ]
rose.yemelyanova@stfc.ac.uk
71731d810836000957d4a14c67af9f44ad0a8730
739aa685120a039a02fd0083188b6258800d5018
/app.py
310075a22ef5a981b7a1f3cf6277b9dd0f10d0a2
[]
no_license
uzmabb182/web-scraping-challenge
839018deb1af717d8ab0cb6532bbe72777f1fcb3
74c61c79febfb5331ae81d580aedf0928cf6f5f9
refs/heads/main
2023-06-04T18:16:22.201735
2021-06-25T23:42:52
2021-06-25T23:42:52
379,407,535
0
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
from flask import Flask, render_template, redirect from flask_pymongo import PyMongo import scrape_mars # Create an instance of Flask app = Flask(__name__, template_folder="templates") # Use PyMongo to establish Mongo connection mongo = PyMongo(app, uri="mongodb://localhost:27017/mars_app") mars_collection = mongo.db.mars # reference to the mars collection # Route to render index.html template using data from Mongo @app.route("/") def home(): # Find one record of data from the mongo database # @TODO: YOUR CODE HERE! db_data = mars_collection.find_one() # Return template and data return render_template("index.html", exploration=db_data) # Route that will trigger the scrape function @app.route("/scrape") def scrape(): # Run the scrape function and save the results to a variable # @TODO: YOUR CODE HERE! mars_data = scrape_mars.scrape_info() # Update the Mongo database using update and upsert=True # update the mongo database with costa_data # @TODO: YOUR CODE HERE! mars_collection.update({}, mars_data, upsert=True) # Redirect back to home page return redirect("/") if __name__ == "__main__": app.run(debug=True)
[ "81127634+uzmabb182@users.noreply.github.com" ]
81127634+uzmabb182@users.noreply.github.com
fb3fbed1966c9bc54315d047365e9a8a546cbd50
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2449486_1/Python/Sedols/b.py
64b55176a8396c1963fbdc7ee779fa270ef59426
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
742
py
import sys fin = open('in.txt', 'r') fout = open('out1.txt', 'w') n = int(fin.readline()) for T in range(0, n): ret = True array = [int(x) for x in fin.readline().split()] m = int(array[0]) s = int(array[1]) board = [] for k in range(0, m): array = [int(x) for x in fin.readline().split()] board.append(array) for k in range(0,m): for j in range(0,s): t = int(board[k][j]) f1 = True; f2 = True; for z in range(0,m): if t < int(board[z][j]): f1 = False for z in range(0,s): if t < int(board[k][z]): f2 = False ret = ret and (f1 or f2) fout.write("Case #" + str(T + 1) + ": ") if ret: fout.write("YES\n") else: fout.write("NO\n");
[ "eewestman@gmail.com" ]
eewestman@gmail.com
8df28996c392f920439cc92dd00251d705607e13
d40cbeeeea6593fe2a85b0fd899de86b5fe8fd4d
/model_to_tensorboard.py
3c492ab46480adec4df8f1360a212348ab5e8b38
[]
no_license
cisco08/tf-graph-freeze
859e835bd179e79de08a50e8ca7e9338803c9255
cf3e9f29ee2704791ea93e761c2fa43e06339180
refs/heads/master
2021-05-21T22:44:10.017827
2018-08-16T19:26:49
2018-08-16T19:26:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
import os import argparse import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants import pickle def main(args): model_dir = args.dir checkpoint = tf.train.get_checkpoint_state(model_dir) input_checkpoint = checkpoint.model_checkpoint_path clear_devices = True with tf.Session(graph=tf.Graph()) as sess: saver = tf.train.import_meta_graph( input_checkpoint + '.meta', clear_devices=clear_devices) saver.restore(sess, input_checkpoint) writer = tf.summary.FileWriter(args.savedir, sess.graph) sess.run(tf.local_variables_initializer()) writer.close() if __name__ == "__main__": cwd = os.getcwd() parser = argparse.ArgumentParser(description='This module exports the graph to be visualized on Tensorboard') parser.add_argument("-d", "--dir", help="Tensorflow models's directory", default=os.path.join(cwd, "model_example")) parser.add_argument("-s", "--savedir", help="Logdir of tensorboard", default=os.path.join(cwd, "model_example")) args = parser.parse_args() main(args)
[ "guilherme.uzeda@santodigital.com.br" ]
guilherme.uzeda@santodigital.com.br
d1fa352f5e8c36914f1ec3d82fde294d99c835e7
90c7b75c018ea55c5f4acb7b600070d35a8ebccf
/newspaper_project/views.py
6d49094181761f282c185e0207884cd48fb2c2bd
[]
no_license
Pulatov-Javlon/news-app
05ee6e697d22ef1402e2e2983d88efc723b42fa6
f9fe961876a8896438f1599a70ce527bf2500035
refs/heads/master
2023-03-23T01:54:10.841967
2021-03-17T05:12:35
2021-03-17T05:12:35
348,587,514
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
from django.urls import reverse_lazy from django.views.generic import CreateView from accounts.forms import CustomUserCreationForm class SignUpView(CreateView): form_class = CustomUserCreationForm success_url = reverse_lazy('login') template_name = 'registration/signup.html'
[ "javlon_pulatov@mail.ru" ]
javlon_pulatov@mail.ru
0cc0b4065bd79e77eed87e7d39054cd52e5b5ac1
331bf102de58b30da373c5b7c2d8f4b4b149c9fc
/facebook/postapp/migrations/0013_postcomment_commentreply.py
b5c7040e8daa0a00a3ff6444f9d2f32df0d8efee
[]
no_license
Chandu8817/Thoughtwin
6dfcb077c51bab320895ce0e25554408472491a4
d7b86e8baa57a9eb06606b97d3c99a1d751a16b9
refs/heads/master
2023-04-21T16:17:17.967617
2021-05-05T14:29:40
2021-05-05T14:29:40
344,074,201
0
0
null
null
null
null
UTF-8
Python
false
false
508
py
# Generated by Django 3.1.7 on 2021-03-15 07:44 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('postapp', '0012_auto_20210315_0718'), ] operations = [ migrations.AddField( model_name='postcomment', name='commentreply', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='postapp.postcomment'), ), ]
[ "virendrakapoor45@gmail.com" ]
virendrakapoor45@gmail.com
795a01da9137fe4b28460de6da338a8256919b72
e11ff0e58ec044193d977ea2b11cae46ef30b42c
/Plot1.py
8a21ec8451995d8da1597a34c224ed89369539d6
[]
no_license
AndreiChugunov/telecom
e3d8f570b6b6ff0697bf22eedd3e9199d657366b
e38318d1b372bc00e03e4ac9451c97b15297200b
refs/heads/master
2020-05-26T11:12:46.765427
2017-05-14T19:57:19
2017-05-14T19:57:19
82,476,732
0
0
null
null
null
null
UTF-8
Python
false
false
748
py
from scipy.fftpack import fft import numpy as np import matplotlib.pyplot as plt from scipy import signal Fdiscrete = 8e3 t = np.linspace(0, 1, int(Fdiscrete)) A = 2 f0 = 1e3 phi = np.pi / 4 s1 = A * np.cos(2 * np.pi * f0 * t + phi) alpha = 1000 s2 = np.exp(-alpha * t) * s1 Nfft = int(2 ** np.ceil(np.log2(len(s2)))) sp = fft(s2, Nfft) sp_dB = 20 * np.log10(np.abs(sp)) f = np.arange(0, Nfft - 1) / Nfft * Fdiscrete plt.figure() plt.grid() plt.plot(f[:int(Nfft / 2)], np.abs(sp[:int(Nfft / 2)])) plt.figure(0) plt.subplot(2, 2, 1) plt.plot(s2[0:100]) plt.grid() plt.subplot(2, 2, 2) plt.stem(s2[0:100]) plt.grid() plt.subplot(2, 2, 3) plt.plot(s2[0:100], '.') plt.grid() plt.subplot(2, 2, 4) plt.step(t[0:100], s2[0:100]) plt.grid() plt.show()
[ "bloodyavangard@mail.ru" ]
bloodyavangard@mail.ru
ac6372714d0d7a42172ddc02955add3d036d91bc
5026e3a914e6d143357e570ff299897ac7e36138
/1. Jimmy's pie.py
5edb04566b46da45423f671bdde58948c0b1c8af
[]
no_license
Minjun-KANG/Python-learning
e351907e1a79b49ca4aaaee1feddb28ce530d504
ecba2d8a47fe6bedc0a7d52db3bc5b3ba641fb1d
refs/heads/master
2022-12-09T21:52:49.091993
2020-09-12T07:13:29
2020-09-12T07:13:29
294,889,106
1
0
null
null
null
null
UTF-8
Python
false
false
1,434
py
""" 문제에서 제시한 코드 pi = '3.14' #string으로 되어 연산불가 pie.diameter = 55.4 #변수이름에 특수문자 사용불가 pie_radius = pie.diameter // 2 #변수이름에 특수문자 사용불가 circumference = 2 * pi ** pie_radius #pi가 string이여서 연산불가 circumference-msg = 'Jimmy's pie has a circumference: ' #Jimmy's 에서 '를 사용하려면 "" 쌍따옴표 필요, 변수이름에 특수문자 사용불가 print(circumference-msg, circumference) #변수이름에 특수문자 사용불가 """ pi = 3.14 #string으로 되어 연산불가 -> 쌍따옴표 없애줌 pie_diameter = 55.4 #변수이름에 특수문자 사용불가 -> .을 _언더바로 교체 pie_radius = pie_diameter / 2 #변수이름에 특수문자 사용불가 -> 언더바로 교체해서 가능 #//2 로 되어있는 몫만 넘기는 연산식을 /2 로바꿔 소숫점까지 넘김 circumference = 2 * pi * pie_radius #pi가 string이여서 연산불가 -> pi를 float로 바꿔서 가능 # ** pie_radius 로 된 제곱을 * 곱하기로 바꿔 수식을 완성 circumference_msg = "Jimmy's pie has a circumference: " #Jimmy's 에서 '를 사용하려면 "" 쌍따옴표 필요, 변수이름에 특수문자 사용불가 #-> 쌍따옴표로 string을 넣어줌, 변수 특수문자 언더바로 교체 print(circumference_msg, circumference) #변수이름에 특수문자 사용불가 -> 언더바로 교체해서 가능
[ "rkdalswns1@kw.ac.kr" ]
rkdalswns1@kw.ac.kr
e913c8716d91ada19978e483c0baa41a1893614c
f1f7e8360f86b11fbb4f1559a414fc561a0e42d5
/Creacionales/Singleton/Python/Singleton_Ingenuo/main.py
edd9c9d3bee94e7ab2d68f0b18d350eea1f2d4f7
[]
no_license
carlos-paezf/Design_Patterns
58c5b18bb5264d265c57f48eea1bc13ab1e93c1a
7ea1d30acd3c2f7375fb7c9f4a9c3b3c8a228c9a
refs/heads/main
2023-08-02T11:42:28.273573
2021-10-04T16:36:10
2021-10-04T16:36:10
384,248,493
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
class SingletonMeta(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: instance = super().__call__(*args, **kwargs) cls._instances[cls] = instance return cls._instances[cls] class Singleton(metaclass=SingletonMeta): def some_bussines_logic(self): pass if __name__ == "__main__": s1 = Singleton() s2 = Singleton() if id(s1) == id(s2): print('Singleton works, both variables contain the same instance.') else: print('Singleton failed, variables contain diferent instances.')
[ "carlos.paezf@usantoto.edu.co" ]
carlos.paezf@usantoto.edu.co
af4d4b5c1213abea4e4ba8ffaddad83002f809df
c1aac38b1ee7bf7b8621050bd4837a60744bfd9f
/ay_hw_5/__init__.py
7aa3c0b45b08b3a16f6053b80868ab013a269dff
[]
no_license
callmeorangecat/INF_552
3b0a007a37963fcd57396dab96d3f17ee20b0eb6
cdcaf20e549bfa2d5942f91f2ce3b4a93d1beba9
refs/heads/master
2021-02-17T15:04:32.222974
2020-02-21T20:31:54
2020-02-21T20:31:54
245,105,595
0
1
null
2020-03-05T08:16:29
2020-03-05T08:16:28
null
UTF-8
Python
false
false
90
py
# __author__ = 'Aaron Yang' __email__ = 'byang971@usc.edu' __date__ = '10/3/2019 1:32 PM'
[ "aaron19940628@gmail.com" ]
aaron19940628@gmail.com
1c9be258220f972fc0cb44e196a956d1cccd70df
115e22d743882c6b4f9d834c01a52f8c00b14f3d
/optimizers/optimizers.py
94711f42f6478c90491f8165eaaee8c9e3357c23
[]
no_license
bblss123/DIP2021-SSNet
f562c5d5dc8d5ee68d8a5eb01279d863f41bbc50
455c607c693fd2055dddf981f67983045862ffa0
refs/heads/main
2023-07-17T06:31:58.608330
2021-08-22T06:22:17
2021-08-22T06:22:17
374,912,187
0
0
null
null
null
null
UTF-8
Python
false
false
347
py
import torch def init_optim(optim, params, lr, weight_decay): if optim == 'sgd': return torch.optim.SGD(params, lr=lr, weight_decay=weight_decay, momentum=0.95) if optim == 'adam': return torch.optim.Adam(params, lr=lr, weight_decay=weight_decay) else: raise KeyError("Unsupported Optimizer: {}".format(optim))
[ "bblss123@outlook.com" ]
bblss123@outlook.com
902dfb7519146575070e321be7cb1d14ec655ab8
92409dbea06183af132c6ee191303939f2340060
/Products/Person/__init__.py
7fd3523eaccae3c15612ccff0d424abbd0870453
[]
no_license
v2lab/Products.Person
2275da8f22fd9716413b68a5d9c3ff76427dd58b
caf7d66fbabb1f957fb01a2a13b2c415a83e91a2
refs/heads/master
2021-01-10T19:54:19.762014
2012-11-08T15:11:06
2012-11-08T15:11:06
16,309,347
0
0
null
null
null
null
UTF-8
Python
false
false
2,239
py
"""Main product initializer """ from zope.i18nmessageid import MessageFactory from Products.Person import config from Products.Archetypes import atapi from Products.CMFCore import utils from Products.CMFCore.permissions import setDefaultRoles # Define a message factory for when this product is internationalised. # This will be imported with the special name "_" in most modules. Strings # like _(u"message") will then be extracted by i18n tools for translation. PersonMessageFactory = MessageFactory('Products.Person') # Product imports import config # Import the content types modules from content import person def initialize(context): """Initializer called when used as a Zope 2 product. This is referenced from configure.zcml. Regstrations as a "Zope 2 product" is necessary for GenericSetup profiles to work, for example. Here, we call the Archetypes machinery to register our content types with Zope and the CMF. """ # Retrieve the content types that have been registered with Archetypes # This happens when the content type is imported and the registerType() # call in the content type's module is invoked. Actually, this happens # during ZCML processing, but we do it here again to be explicit. Of # course, even if we import the module several times, it is only run # once. content_types, constructors, ftis = atapi.process_types( atapi.listTypes(config.PROJECTNAME), config.PROJECTNAME) # Now initialize all these content types. The initialization process takes # care of registering low-level Zope 2 factories, including the relevant # add-permission. These are listed in config.py. We use different # permissions for each content type to allow maximum flexibility of who # can add which content types, where. The roles are set up in rolemap.xml # in the GenericSetup profile. for atype, constructor in zip(content_types, constructors): utils.ContentInit('%s: %s' % (config.PROJECTNAME, atype.portal_type), content_types = (atype,), permission = config.ADD_PERMISSIONS[atype.portal_type], extra_constructors = (constructor,), ).initialize(context)
[ "thefunny@gmail.com" ]
thefunny@gmail.com
91caf03713ddaccf135a689fad6bb63e1f369df3
180911c631321f6768f7ad1ec5c15e00c7b5cf0d
/extrapypi/migrations/versions/21a32f52b0c3_remove_digest_from_release_model.py
f0fbc25f1a878a8293cb4b7e45c6308603f2de0d
[ "MIT" ]
permissive
karec/extrapypi
34a943532409ee321b4924b52de21823c9eb7970
0abc8d3a632628cc7d3a4020fb7c9436787695f9
refs/heads/master
2023-02-26T05:12:36.876363
2018-02-02T15:54:28
2018-02-02T15:54:28
105,063,006
8
4
MIT
2023-09-02T12:27:06
2017-09-27T19:56:00
Python
UTF-8
Python
false
false
595
py
"""remove digest from release model Revision ID: 21a32f52b0c3 Revises: e9ba59cdb7b9 Create Date: 2018-01-02 18:30:24.105748 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '21a32f52b0c3' down_revision = 'e9ba59cdb7b9' branch_labels = None depends_on = None def upgrade(): with op.batch_alter_table("release") as batch_op: batch_op.drop_column('md5_digest') def downgrade(): with op.batch_alter_table("release") as batch_op: batch_op.add_column(sa.Column('md5_digest', sa.VARCHAR(length=32), nullable=False))
[ "manu.valette@gmail.com" ]
manu.valette@gmail.com
c9c783e1fa71a263175960a59e4ed8c7881b466d
71d3632c19ada5585223d4800f681718af0e1f87
/python/sw/pro/6326.py
e4508e97b2307f8f8a65a886b6c32e563111064c
[]
no_license
hyunwoo-song/TOT
640433b909913098699ff517698e71a1b8661cff
76a8c18af942d9ed3d636fcec35001ae70b6b8d2
refs/heads/master
2023-01-05T08:11:38.858134
2019-08-14T08:53:23
2019-08-14T08:53:23
162,208,482
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
N = int(input()) a= 1 for i in range(1, N+1): a *= i print(a)
[ "gerrar486@gmail.com" ]
gerrar486@gmail.com