hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
ad8d447b964ebc89e8a57c459e754b4bbbeeb7e0
7,118
py
Python
obfsproxy/transports/scramblesuit/message.py
Samdney/obfsproxy
2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc
[ "BSD-3-Clause" ]
101
2015-01-24T07:37:03.000Z
2022-01-22T15:38:44.000Z
obfsproxy/transports/scramblesuit/message.py
david415/obfsproxy
ea0e1b2b62be9113155f25f53baf5fce4392c430
[ "BSD-3-Clause" ]
1
2015-03-29T15:16:04.000Z
2015-04-09T03:56:24.000Z
obfsproxy/transports/scramblesuit/message.py
david415/obfsproxy
ea0e1b2b62be9113155f25f53baf5fce4392c430
[ "BSD-3-Clause" ]
29
2015-05-11T09:45:43.000Z
2020-02-22T17:50:27.000Z
""" This module provides code to handle ScrambleSuit protocol messages. The exported classes and functions provide interfaces to handle protocol messages, check message headers for validity and create protocol messages out of application data. """ import obfsproxy.common.log as logging import obfsproxy.common.serialize as pack import obfsproxy.transports.base as base import mycrypto import const log = logging.get_obfslogger() def createProtocolMessages( data, flags=const.FLAG_PAYLOAD ): """ Create protocol messages out of the given payload. The given `data' is turned into a list of protocol messages with the given `flags' set. The list is then returned. If possible, all messages fill the MTU. """ messages = [] while len(data) > const.MPU: messages.append(ProtocolMessage(data[:const.MPU], flags=flags)) data = data[const.MPU:] messages.append(ProtocolMessage(data, flags=flags)) log.debug("Created %d protocol messages." % len(messages)) return messages def getFlagNames( flags ): """ Return the flag name encoded in the integer `flags' as string. This function is only useful for printing easy-to-read flag names in debug log messages. """ if flags == 1: return "PAYLOAD" elif flags == 2: return "NEW_TICKET" elif flags == 4: return "PRNG_SEED" else: return "Undefined" def isSane( totalLen, payloadLen, flags ): """ Verifies whether the given header fields are sane. The values of the fields `totalLen', `payloadLen' and `flags' are checked for their sanity. If they are in the expected range, `True' is returned. If any of these fields has an invalid value, `False' is returned. """ def isFine( length ): """ Check if the given length is fine. """ return True if (0 <= length <= const.MPU) else False log.debug("Message header: totalLen=%d, payloadLen=%d, flags" "=%s" % (totalLen, payloadLen, getFlagNames(flags))) validFlags = [ const.FLAG_PAYLOAD, const.FLAG_NEW_TICKET, const.FLAG_PRNG_SEED, ] return isFine(totalLen) and \ isFine(payloadLen) and \ totalLen >= payloadLen and \ (flags in validFlags) class ProtocolMessage( object ): """ Represents a ScrambleSuit protocol message. This class provides methods to deal with protocol messages. The methods make it possible to add padding as well as to encrypt and authenticate protocol messages. """ def __init__( self, payload="", paddingLen=0, flags=const.FLAG_PAYLOAD ): """ Initialises a ProtocolMessage object. """ payloadLen = len(payload) if (payloadLen + paddingLen) > const.MPU: raise base.PluggableTransportError("No overly long messages.") self.totalLen = payloadLen + paddingLen self.payloadLen = payloadLen self.payload = payload self.flags = flags def encryptAndHMAC( self, crypter, hmacKey ): """ Encrypt and authenticate this protocol message. This protocol message is encrypted using `crypter' and authenticated using `hmacKey'. Finally, the encrypted message prepended by a HMAC-SHA256-128 is returned and ready to be sent over the wire. """ encrypted = crypter.encrypt(pack.htons(self.totalLen) + pack.htons(self.payloadLen) + chr(self.flags) + self.payload + (self.totalLen - self.payloadLen) * '\0') hmac = mycrypto.HMAC_SHA256_128(hmacKey, encrypted) return hmac + encrypted def addPadding( self, paddingLen ): """ Add padding to this protocol message. Padding is added to this protocol message. The exact amount is specified by `paddingLen'. """ # The padding must not exceed the message size. if (self.totalLen + paddingLen) > const.MPU: raise base.PluggableTransportError("Can't pad more than the MTU.") if paddingLen == 0: return log.debug("Adding %d bytes of padding to %d-byte message." % (paddingLen, const.HDR_LENGTH + self.totalLen)) self.totalLen += paddingLen def __len__( self ): """ Return the length of this protocol message. """ return const.HDR_LENGTH + self.totalLen # Alias class name in order to provide a more intuitive API. new = ProtocolMessage class MessageExtractor( object ): """ Extracts ScrambleSuit protocol messages out of an encrypted stream. """ def __init__( self ): """ Initialise a new MessageExtractor object. """ self.recvBuf = "" self.totalLen = None self.payloadLen = None self.flags = None def extract( self, data, aes, hmacKey ): """ Extracts (i.e., decrypts and authenticates) protocol messages. The raw `data' coming directly from the wire is decrypted using `aes' and authenticated using `hmacKey'. The payload is then returned as unencrypted protocol messages. In case of invalid headers or HMACs, an exception is raised. """ self.recvBuf += data msgs = [] # Keep trying to unpack as long as there is at least a header. while len(self.recvBuf) >= const.HDR_LENGTH: # If necessary, extract the header fields. if self.totalLen == self.payloadLen == self.flags == None: self.totalLen = pack.ntohs(aes.decrypt(self.recvBuf[16:18])) self.payloadLen = pack.ntohs(aes.decrypt(self.recvBuf[18:20])) self.flags = ord(aes.decrypt(self.recvBuf[20])) if not isSane(self.totalLen, self.payloadLen, self.flags): raise base.PluggableTransportError("Invalid header.") # Parts of the message are still on the wire; waiting. if (len(self.recvBuf) - const.HDR_LENGTH) < self.totalLen: break rcvdHMAC = self.recvBuf[0:const.HMAC_SHA256_128_LENGTH] vrfyHMAC = mycrypto.HMAC_SHA256_128(hmacKey, self.recvBuf[const.HMAC_SHA256_128_LENGTH: (self.totalLen + const.HDR_LENGTH)]) if rcvdHMAC != vrfyHMAC: raise base.PluggableTransportError("Invalid message HMAC.") # Decrypt the message and remove it from the input buffer. extracted = aes.decrypt(self.recvBuf[const.HDR_LENGTH: (self.totalLen + const.HDR_LENGTH)])[:self.payloadLen] msgs.append(ProtocolMessage(payload=extracted, flags=self.flags)) self.recvBuf = self.recvBuf[const.HDR_LENGTH + self.totalLen:] # Protocol message processed; now reset length fields. self.totalLen = self.payloadLen = self.flags = None return msgs
31.356828
79
0.622647
7fd138b63e60cf1167f2e9ac1477ffbb3b9ad844
1,837
py
Python
leetcode/278.first_bad_version/278.FirstBadVersion_JohnJim0816.py
henrytien/AlgorithmSolutions
62339269f4fa698ddd2e73458caef875af05af8f
[ "MIT" ]
15
2020-06-27T03:28:39.000Z
2021-08-13T10:42:24.000Z
leetcode/278.first_bad_version/278.FirstBadVersion_JohnJim0816.py
henrytien/AlgorithmSolutions
62339269f4fa698ddd2e73458caef875af05af8f
[ "MIT" ]
40
2020-06-27T03:29:53.000Z
2020-11-05T12:29:49.000Z
leetcode/278.first_bad_version/278.FirstBadVersion_JohnJim0816.py
henrytien/AlgorithmSolutions
62339269f4fa698ddd2e73458caef875af05af8f
[ "MIT" ]
22
2020-07-16T03:23:43.000Z
2022-02-19T16:00:55.000Z
#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-07-21 09:46:44 @LastEditor: John @LastEditTime: 2020-07-21 09:47:20 @Discription: @Environment: python 3.7.7 ''' # Source : https://leetcode.com/problems/first-bad-version/ # Author : JohnJim0816 # Date : 2020-07-21 ##################################################################################################### # # You are a product manager and currently leading a team to develop a new product. Unfortunately, the # latest version of your product fails the quality check. Since each version is developed based on # the previous version, all the versions after a bad version are also bad. # # Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes # all the following ones to be bad. # # You are given an API bool isBadVersion(version) which will return whether version is bad. Implement # a function to find the first bad version. You should minimize the number of calls to the API. # # Example: # # Given n = 5, and version = 4 is the first bad version. # # call isBadVersion(3) -> false # call isBadVersion(5) -> true # call isBadVersion(4) -> true # # Then 4 is the first bad version. # ##################################################################################################### # The isBadVersion API is already defined for you. # @param version, an integer # @return a bool # def isBadVersion(version): class Solution: def firstBadVersion(self, n): """ :type n: int n>1 :rtype: int """ left = 1 right = n while left < right: mid = (left + right) // 2 if isBadVersion(mid): right = mid else: left = mid + 1 return left
31.135593
102
0.577028
94401deab3733d20ff47eb24fa7cc99808291697
2,109
py
Python
demo_double_cross_validation_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
25
2019-08-23T12:39:14.000Z
2022-03-30T08:58:15.000Z
demo_double_cross_validation_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
2
2022-01-06T11:21:21.000Z
2022-01-18T22:11:12.000Z
demo_double_cross_validation_for_pls.py
hkaneko1985/dcek
13d9228b2dc2fd87c2e08a01721e1b1b220f2e19
[ "MIT" ]
16
2019-12-12T08:20:48.000Z
2022-01-26T00:34:31.000Z
# -*- coding: utf-8 -*- %reset -f """ @author: Hiromasa Kaneko """ # Demonstration of Double Cross-Validation (DCV) for PLS import matplotlib.figure as figure import matplotlib.pyplot as plt import numpy as np from dcekit.validation import double_cross_validation from sklearn import datasets # import pandas as pd from sklearn.cross_decomposition import PLSRegression from sklearn.model_selection import GridSearchCV # Settings max_pls_component_number = 30 inner_fold_number = 5 # "fold_number"-fold cross-validation (CV) for inter CV outer_fold_number = 10 # "fold_number"-fold CV for outer CV number_of_training_samples = 1000 number_of_test_samples = 1000 # Generate samples for demonstration x, y = datasets.make_regression(n_samples=number_of_training_samples + number_of_test_samples, n_features=100, n_informative=100, noise=100, random_state=0) # DCV pls_components = np.arange(1, max_pls_component_number + 1) inner_cv = GridSearchCV(PLSRegression(), {'n_components': pls_components}, cv=inner_fold_number) estimated_y = double_cross_validation(gs_cv=inner_cv, x=x, y=y, outer_fold_number=outer_fold_number, do_autoscaling=True, random_state=0) # yy-plot plt.figure(figsize=figure.figaspect(1)) plt.scatter(y, estimated_y) y_max = np.max(np.array([np.array(y), estimated_y])) y_min = np.min(np.array([np.array(y), estimated_y])) plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-') plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)) plt.xlabel('Actual Y') plt.ylabel('Estimated Y in CV') plt.show() # r2dcv, RMSEdcv, MAEdcv print('r2dcv: {0}'.format(float(1 - sum((y - estimated_y) ** 2) / sum((y - y.mean()) ** 2)))) print('RMSEdcv: {0}'.format(float((sum((y - estimated_y) ** 2) / len(y)) ** 0.5))) print('MAEdcv: {0}'.format(float(sum(abs(y - estimated_y)) / len(y))))
42.18
111
0.683736
69490fd692a8298e0680ea33c78730521b0e84c3
19,173
py
Python
bokeh/tests/test_io.py
SiggyF/bokeh
52a2ce993b0f1102fd9e136f66036f52e91cdcc3
[ "BSD-3-Clause" ]
null
null
null
bokeh/tests/test_io.py
SiggyF/bokeh
52a2ce993b0f1102fd9e136f66036f52e91cdcc3
[ "BSD-3-Clause" ]
null
null
null
bokeh/tests/test_io.py
SiggyF/bokeh
52a2ce993b0f1102fd9e136f66036f52e91cdcc3
[ "BSD-3-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2015, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- from __future__ import absolute_import from mock import patch, Mock, PropertyMock import unittest import bokeh.io as io from bokeh.resources import Resources, _SessionCoordinates from bokeh.document import Document from bokeh.models.plots import Plot class TestDefaultState(unittest.TestCase): def test_type(self): self.assertTrue(isinstance(io._state, io.State)) class testCurdoc(unittest.TestCase): def test(self): self.assertEqual(io.curdoc(), io._state.document) class testCurstate(unittest.TestCase): def test(self): self.assertEqual(io.curstate(), io._state) class DefaultStateTester(unittest.TestCase): def _check_func_called(self, func, args, kwargs): self.assertTrue(func.called) self.assertEqual(func.call_args[0], args) self.assertEqual(func.call_args[1], kwargs) def setUp(self): self._orig_state = io._state io._state = Mock() doc = Mock() roots = PropertyMock(return_value=[]) type(doc).roots = roots io._state.document = doc def tearDown(self): io._state = self._orig_state io._state.document.clear() class testOutputFile(DefaultStateTester): def test_noarg(self): default_kwargs = dict(title="Bokeh Plot", autosave=False, mode="cdn", root_dir=None) io.output_file("foo.html") self._check_func_called(io._state.output_file, ("foo.html",), default_kwargs) def test_args(self): kwargs = dict(title="title", autosave=True, mode="cdn", root_dir="foo") io.output_file("foo.html", **kwargs) self._check_func_called(io._state.output_file, ("foo.html",), kwargs) class TestOutputNotebook(DefaultStateTester): @patch('bokeh.io.load_notebook') def test_noarg(self, mock_load_notebook): default_load_notebook_args = (None, False, False) io.output_notebook() self._check_func_called(io._state.output_notebook, (), {}) self._check_func_called(mock_load_notebook, default_load_notebook_args, {}) @patch('bokeh.io.load_notebook') def test_args(self, mock_load_notebook): load_notebook_args = (Resources(), True, True) io.output_notebook(*load_notebook_args) self._check_func_called(io._state.output_notebook, (), {}) self._check_func_called(mock_load_notebook, load_notebook_args, {}) class TestOutputServer(DefaultStateTester): def test_noarg(self): default_kwargs = dict(session_id="default", url="default", app_path='/', autopush=False) io.output_server() self._check_func_called(io._state.output_server, (), default_kwargs) def test_args(self): kwargs = dict(session_id="foo", url="http://example.com", app_path='/foo', autopush=True) io.output_server(**kwargs) self._check_func_called(io._state.output_server, (), kwargs) class TestSave(DefaultStateTester): pass class Test_GetSaveArgs(DefaultStateTester): def test_explicit_filename(self): filename, resources, title = io._get_save_args(io._state, "filename", "resources", "title") self.assertEqual(filename, "filename") def test_default_filename(self): io._state.file = {} io._state.file['filename'] = "filename" filename, resources, title = io._get_save_args(io._state, None, "resources", "title") self.assertEqual(filename, "filename") def test_missing_filename(self): io._state.file = None with self.assertRaises(RuntimeError): io.save("obj", None, "resources", "title") def test_explicit_resources(self): filename, resources, title = io._get_save_args(io._state, "filename", "resources", "title") self.assertEqual(resources, "resources") def test_default_resources(self): io._state.file = {} io._state.file['resources'] = "resources" filename, resources, title = io._get_save_args(io._state, "filename", None, "title") self.assertEqual(resources, "resources") @patch('warnings.warn') def test_missing_resources(self, mock_warn): from bokeh.resources import CDN io._state.file = None filename, resources, title = io._get_save_args(io._state, "filename", None, "title") self.assertEqual(resources, CDN) self.assertTrue(mock_warn.called) self.assertEqual(mock_warn.call_args[0], ("save() called but no resources were supplied and output_file(...) " "was never called, defaulting to resources.CDN",)) self.assertEqual(mock_warn.call_args[1], {}) def test_explicit_title(self): filename, resources, title = io._get_save_args(io._state, "filename", "resources", "title") self.assertEqual(title, "title") def test_default_title(self): io._state.file = {} io._state.file['title'] = "title" filename, resources, title = io._get_save_args(io._state, "filename", "resources", None) self.assertEqual(title, "title") @patch('warnings.warn') def test_missing_title(self, mock_warn): io._state.file = None filename, resources, title = io._get_save_args(io._state, "filename", "resources", None) self.assertEqual(title, "Bokeh Plot") self.assertTrue(mock_warn.called) self.assertEqual(mock_warn.call_args[0], ("save() called but no title was supplied and output_file(...) " "was never called, using default title 'Bokeh Plot'",)) self.assertEqual(mock_warn.call_args[1], {}) class Test_SaveHelper(DefaultStateTester): pass class TestPush(DefaultStateTester): @patch('bokeh.io._push_to_server') def test_missing_output_server(self, mock_push_to_server): # never calling output_server should pull session coords # off the io._state object io._state.server_enabled = False io._state.document = Document() io.push() self._check_func_called(mock_push_to_server, (), dict(url=io._state.url, app_path=io._state.app_path, session_id=io._state.session_id_allowing_none, document=io._state.document, io_loop=None)) @patch('bokeh.io._push_to_server') def test_noargs(self, mock_push_to_server): # if we had called output_server, the state object would be set # up like this io._state.session_id_allowing_none = "fakesessionid" io._state.url = "http://example.com/" io._state.app_path = "/bar" io._state.server_enabled = True io.push() self._check_func_called(mock_push_to_server, (), dict(url="http://example.com/", document=io._state.document, session_id="fakesessionid", app_path="/bar", io_loop=None)) @patch('bokeh.io._push_to_server') def test_session_arg(self, mock_push_to_server): # this simulates never calling output_server io._state.server_enabled = False io.push(session_id="somesession") self._check_func_called(mock_push_to_server, (), dict(url=io._state.url, app_path=io._state.app_path, document=io._state.document, session_id="somesession", io_loop=None)) @patch('bokeh.io._push_to_server') def test_url_arg(self, mock_push_to_server): # this simulates never calling output_server io._state.server_enabled = False io.push(url="http://example.com/") self._check_func_called(mock_push_to_server, (), dict(url="http://example.com/", app_path=io._state.app_path, session_id=io._state.session_id_allowing_none, document=io._state.document, io_loop=None)) @patch('bokeh.io._push_to_server') def test_document_arg(self, mock_push_to_server): # this simulates never calling output_server io._state.server_enabled = False d = Document() io.push(document=d) self._check_func_called(mock_push_to_server, (), dict(url=io._state.url, app_path=io._state.app_path, session_id=io._state.session_id_allowing_none, document=d, io_loop=None)) @patch('bokeh.io._push_to_server') def test_all_args(self, mock_push_to_server): d = Document() url = "https://example.com/" session_id = "all_args_session" app_path = "/foo" # state should get ignored since we specified everything otherwise state = Mock() io_loop = Mock() io.push(document=d, url=url, app_path=app_path, state=state, session_id=session_id, io_loop=io_loop) self._check_func_called(mock_push_to_server, (), dict(url="https://example.com/", app_path="/foo", document=d, session_id="all_args_session", io_loop=io_loop)) @patch('bokeh.io._push_to_server') def test_state_arg(self, mock_push_to_server): d = Document() url = "https://example.com/state/" session_id = "state_arg_session" # state should get ignored since we specified everything otherwise state = Mock() state.document = d state.url = url state.session_id_allowing_none = session_id io.push(state=state) self._check_func_called(mock_push_to_server, (), dict(url="https://example.com/state/", document=d, session_id="state_arg_session", app_path = state.app_path, io_loop=None)) class TestShow(DefaultStateTester): @patch('bokeh.io._show_with_state') def test_default_args(self, mock__show_with_state): default_kwargs = dict(browser=None, new="tab") io.show("obj", **default_kwargs) self._check_func_called(mock__show_with_state, ("obj", io._state, None, "tab"), {}) @patch('bokeh.io._show_with_state') def test_explicit_args(self, mock__show_with_state): default_kwargs = dict(browser="browser", new="new") io.show("obj", **default_kwargs) self._check_func_called(mock__show_with_state, ("obj", io._state, "browser", "new"), {}) @patch('bokeh.io._show_with_state') def test_show_adds_obj_to_document_if_not_already_there(m): assert io._state.document.roots == [] p = Plot() io.show(p) assert p in io._state.document.roots @patch('bokeh.io._show_with_state') def test_show_doesnt_duplicate_if_already_there(m): io._state.document.clear() p = Plot() io.show(p) assert io._state.document.roots == [p] io.show(p) assert io._state.document.roots == [p] class Test_ShowWithState(DefaultStateTester): @patch('bokeh.io._show_notebook_with_state') @patch('bokeh.io._show_server_with_state') @patch('bokeh.io._show_file_with_state') @patch('bokeh.util.browser.get_browser_controller') def test_notebook(self, mock_get_browser_controller, mock__show_file_with_state, mock__show_server_with_state, mock__show_notebook_with_state): mock_get_browser_controller.return_value = "controller" s = io.State() s.output_notebook() io._show_with_state("obj", s, "browser", "new") self._check_func_called(mock__show_notebook_with_state, ("obj", s), {}) self.assertFalse(mock__show_server_with_state.called) self.assertFalse(mock__show_file_with_state.called) s.output_file("foo.html") io._show_with_state("obj", s, "browser", "new") self._check_func_called(mock__show_notebook_with_state, ("obj", s), {}) self.assertFalse(mock__show_server_with_state.called) self._check_func_called(mock__show_file_with_state, ("obj", s, "new", "controller"), {}) s._session = Mock io._show_with_state("obj", s, "browser", "new") self._check_func_called(mock__show_notebook_with_state, ("obj", s), {}) self.assertFalse(mock__show_server_with_state.called) self._check_func_called(mock__show_file_with_state, ("obj", s, "new", "controller"), {}) @patch('bokeh.io.get_comms') @patch('bokeh.io._show_notebook_with_state') @patch('bokeh.io._show_server_with_state') @patch('bokeh.io._show_file_with_state') @patch('bokeh.util.browser.get_browser_controller') def test_no_notebook(self, mock_get_browser_controller, mock__show_file_with_state, mock__show_server_with_state, mock__show_notebook_with_state, mock_get_comms): mock_get_browser_controller.return_value = "controller" mock_get_comms.return_value = "comms" s = io.State() s.output_file("foo.html") io._show_with_state("obj", s, "browser", "new") self.assertFalse(mock__show_notebook_with_state.called) self.assertFalse(mock__show_server_with_state.called) self._check_func_called(mock__show_file_with_state, ("obj", s, "new", "controller"), {}) s._session_coords = _SessionCoordinates(dict(session_id="fakesession", url="http://example.com", app_path='/')) s._server_enabled = True io._show_with_state("obj", s, "browser", "new") self.assertFalse(mock__show_notebook_with_state.called) self._check_func_called(mock__show_server_with_state, ("obj", s, "new", "controller"), {}) self._check_func_called(mock__show_file_with_state, ("obj", s, "new", "controller"), {}) @patch('warnings.warn') @patch('bokeh.util.browser.get_browser_controller') def test_ShowNotebookWithState_bokehjs_load_failed(self, mock_get_browser_controller, mock_warn): mock_get_browser_controller.return_value = "controller" s = io.State() s.output_notebook() io._show_with_state("obj", s, "browser", "new") self.assertTrue(mock_warn.called) self.assertEqual(mock_warn.call_args[0], (""" BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this may be due to a slow or bad network connection. Possible fixes: * ALWAYS run `output_notebook()` in a cell BY ITSELF, AT THE TOP, with no other code * re-rerun `output_notebook()` to attempt to load from CDN again, or * use INLINE resources instead, as so: from bokeh.resources import INLINE output_notebook(resources=INLINE) """,)) self.assertEqual(mock_warn.call_args[1], {}) class Test_ShowFileWithState(DefaultStateTester): @patch('os.path.abspath') @patch('bokeh.io.save') def test(self, mock_save, mock_abspath): s = io.State() s.output_file("foo.html") controller = Mock() mock_save.return_value = "savepath" io._show_file_with_state("obj", s, "window", controller) self._check_func_called(mock_save, ("obj",), {"state": s}) self._check_func_called(controller.open, ("file://savepath",), {"new": 1}) io._show_file_with_state("obj", s, "tab", controller) self._check_func_called(mock_save, ("obj",), {"state": s}) self._check_func_called(controller.open, ("file://savepath",), {"new": 2}) class Test_ShowNotebookWithState(DefaultStateTester): @patch('bokeh.io.publish_display_data') @patch('bokeh.io.autoload_server') @patch('bokeh.io.push') def test_with_server(self, mock_push, mock_autoload_server, mock_publish_display_data): s = io.State() s._server_enabled = True mock_autoload_server.return_value = "snippet" io._show_notebook_with_state("obj", s) self._check_func_called(mock_push, (), {"state": s}) self._check_func_called(mock_publish_display_data, ({"text/html":"snippet"},), {}) @patch('bokeh.io.get_comms') @patch('bokeh.io.publish_display_data') @patch('bokeh.io.notebook_div') def test_no_server(self, mock_notebook_div, mock_publish_display_data, mock_get_comms): mock_get_comms.return_value = "comms" s = io.State() mock_notebook_div.return_value = "notebook_div" io._nb_loaded = True io._show_notebook_with_state("obj", s) io._nb_loaded = False self._check_func_called(mock_publish_display_data, ({"text/html": "notebook_div"},), {}) class Test_ShowServerWithState(DefaultStateTester): @patch('bokeh.io.push') def test(self, mock_push): s = io.State() s._session_coords = _SessionCoordinates(dict(session_id="thesession", url="http://example.com", app_path='/foo')) s._server_enabled = True controller = Mock() io._show_server_with_state("obj", s, "window", controller) self._check_func_called(mock_push, (), {"state": s}) self._check_func_called(controller.open, ("http://example.com/foo?bokeh-session-id=thesession",), {"new": 1}) io._show_server_with_state("obj", s, "tab", controller) self._check_func_called(mock_push, (), {"state": s}) self._check_func_called(controller.open, ("http://example.com/foo?bokeh-session-id=thesession",), {"new": 2}) class TestResetOutput(DefaultStateTester): def test(self): io.reset_output() self.assertTrue(io._state.reset.called) def _test_layout_added_to_root(layout_generator, children=None): layout = layout_generator(Plot() if children is None else children) assert layout in io.curdoc().roots io.curdoc().clear() def _test_children_removed_from_root(layout_generator, children=None): component = Plot() io.curdoc().add_root(component if children is None else children[0][0]) layout_generator(component if children is None else children) assert component not in io.curdoc().roots io.curdoc().clear()
41.954048
118
0.628592
4a46ce0cca70ed71db7a37baa6688e585475545d
16,117
py
Python
tensorflow/python/keras/layers/preprocessing/table_utils_test.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
190,993
2015-11-09T13:17:30.000Z
2022-03-31T23:05:27.000Z
tensorflow/python/keras/layers/preprocessing/table_utils_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
48,461
2015-11-09T14:21:11.000Z
2022-03-31T23:17:33.000Z
tensorflow/python/keras/layers/preprocessing/table_utils_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
104,981
2015-11-09T13:40:17.000Z
2022-03-31T19:51:54.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras lookup table utils.""" import os import tempfile import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras.layers.preprocessing import preprocessing_test_utils from tensorflow.python.keras.layers.preprocessing import table_utils from tensorflow.python.ops import lookup_ops from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test def get_table(dtype=dtypes.string, oov_tokens=None): table = lookup_ops.MutableHashTable( key_dtype=dtype, value_dtype=dtypes.int64, default_value=-7, name="index_table") return table_utils.TableHandler(table, oov_tokens) def get_static_table(tmpdir, vocab_list, mask_token=None, dtype=dtypes.string, oov_tokens=None): vocabulary_file = os.path.join(tmpdir, "tmp_vocab.txt") if dtype == dtypes.string: with open(vocabulary_file, "w") as f: f.write("\n".join(vocab_list) + "\n") else: with open(vocabulary_file, "w") as f: f.write("\n".join([str(v) for v in vocab_list]) + "\n") offset = ((0 if mask_token is None else 1) + (len(oov_tokens) if oov_tokens is not None else 0)) init = lookup_ops.TextFileInitializer( vocabulary_file, dtype, lookup_ops.TextFileIndex.WHOLE_LINE, dtypes.int64, lookup_ops.TextFileIndex.LINE_NUMBER, value_index_offset=offset) table = lookup_ops.StaticHashTable(init, default_value=-7) return table_utils.TableHandler( table, oov_tokens, mask_token=mask_token) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class CategoricalEncodingInputTest( keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_sparse_string_input(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=["fire", "michigan"], dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [5, 1] expected_dense_shape = [3, 4] table = get_table(oov_tokens=[1]) table.insert(vocab_data, range(2, len(vocab_data) + 2)) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_sparse_int_input(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=np.array([13, 32], dtype=np.int64), dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [5, 1] expected_dense_shape = [3, 4] table = get_table(dtype=dtypes.int64, oov_tokens=[1]) table.insert(vocab_data, range(2, len(vocab_data) + 2)) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_ragged_string_input(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = ragged_factory_ops.constant( [["earth", "wind", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[2, 3, 5], [5, 4, 2, 1]] table = get_table(oov_tokens=[1]) table.insert(vocab_data, range(2, len(vocab_data) + 2)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_ragged_int_input(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64) expected_output = [[2, 3, 5], [5, 4, 2, 1]] table = get_table(dtype=dtypes.int64, oov_tokens=[1]) table.insert(vocab_data, range(2, len(vocab_data) + 2)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_tensor_multi_dim_values_fails(self): key_data = np.array([0, 1], dtype=np.int64) value_data = np.array([[11, 12], [21, 22]]) table = get_table(dtype=dtypes.int64, oov_tokens=[1, 2]) with self.assertRaisesRegex(ValueError, "must be 1-dimensional"): table.insert(key_data, value_data) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class CategoricalEncodingMultiOOVTest( keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_sparse_string_input_multi_bucket(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=["fire", "ohio"], dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [6, 2] expected_dense_shape = [3, 4] table = get_table(oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_sparse_int_input_multi_bucket(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=np.array([13, 132], dtype=np.int64), dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [6, 1] expected_dense_shape = [3, 4] table = get_table(dtype=dtypes.int64, oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_ragged_string_input_multi_bucket(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = ragged_factory_ops.constant([["earth", "wind", "fire"], ["fire", "and", "earth", "ohio"]]) expected_output = [[3, 4, 6], [6, 5, 3, 2]] table = get_table(oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_ragged_int_input_multi_bucket(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 132]], dtype=np.int64) expected_output = [[3, 4, 6], [6, 5, 3, 1]] table = get_table(dtype=dtypes.int64, oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_tensor_int_input_multi_bucket(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = np.array([[13, 132], [13, 133]], dtype=np.int64) expected_values = [[6, 1], [6, 2]] table = get_table(dtype=dtypes.int64, oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_values, output_data) def test_tensor_string_input_multi_bucket(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = [["earth", "wind", "fire", "michigan"], ["fire", "and", "earth", "ohio"]] expected_output = [[3, 4, 6, 1], [6, 5, 3, 2]] table = get_table(oov_tokens=[1, 2]) table.insert(vocab_data, range(3, len(vocab_data) + 3)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class IndexLookupOutputTest(keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_int_output_default_lookup_value(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[1, 2, 3, 4], [4, 3, 1, -7]] table = get_table(oov_tokens=None) table.insert(vocab_data, range(1, len(vocab_data) + 1)) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_output_shape(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) table = get_table() table.insert(vocab_data, range(1, len(vocab_data) + 1)) output_data = table.lookup(input_array) self.assertAllEqual(input_array.shape[1:], output_data.shape[1:]) def test_int_output_no_reserved_zero_default_lookup_value(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[0, 1, 2, 3], [3, 2, 0, -7]] table = get_table(oov_tokens=None) table.insert(vocab_data, range(len(vocab_data))) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class StaticIndexLookupOutputTest( keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_int_output_default_lookup_value(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[1, 2, 3, 4], [4, 3, 1, -7]] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, mask_token="", oov_tokens=None) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_output_shape(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, oov_tokens=None) output_data = table.lookup(input_array) self.assertAllEqual(input_array.shape[1:], output_data.shape[1:]) def test_int_output_no_reserved_zero_default_lookup_value(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[0, 1, 2, 3], [3, 2, 0, -7]] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, oov_tokens=None) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class CategoricalEncodingStaticInputTest( keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_sparse_string_input(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=["fire", "michigan"], dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [5, 1] expected_dense_shape = [3, 4] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, mask_token="", oov_tokens=[1]) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_sparse_int_input(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=np.array([13, 32], dtype=np.int64), dense_shape=[3, 4]) expected_indices = [[0, 0], [1, 2]] expected_values = [5, 1] expected_dense_shape = [3, 4] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, dtype=dtypes.int64, mask_token=0, oov_tokens=[1]) output_data = table.lookup(input_array) self.assertAllEqual(expected_indices, output_data.indices) self.assertAllEqual(expected_values, output_data.values) self.assertAllEqual(expected_dense_shape, output_data.dense_shape) def test_ragged_string_input(self): vocab_data = ["earth", "wind", "and", "fire"] input_array = ragged_factory_ops.constant( [["earth", "wind", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[2, 3, 5], [5, 4, 2, 1]] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, mask_token="", oov_tokens=[1]) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) def test_ragged_int_input(self): vocab_data = np.array([10, 11, 12, 13], dtype=np.int64) input_array = ragged_factory_ops.constant([[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64) expected_output = [[2, 3, 5], [5, 4, 2, 1]] table = get_static_table( tmpdir=self.get_temp_dir(), vocab_list=vocab_data, dtype=dtypes.int64, mask_token=0, oov_tokens=[1]) output_data = table.lookup(input_array) self.assertAllEqual(expected_output, output_data) class GetVocabularyFromFileTest(test.TestCase): def setUp(self): super(GetVocabularyFromFileTest, self).setUp() dir_path = tempfile.mkdtemp(prefix=test.get_temp_dir()) self._vocab_path = os.path.join(dir_path, "vocab") def test_only_line_separator_is_stripped(self): expected = ["foo", " foo", "foo ", " foo "] with gfile.GFile(self._vocab_path, "w") as writer: for word in expected: writer.write(word) writer.write(os.linesep) actual = actual = table_utils.get_vocabulary_from_file(self._vocab_path) self.assertAllEqual(expected, actual) def test_linux_file(self): content = b"line1\nline2\nline3" with gfile.GFile(self._vocab_path, "wb") as writer: writer.write(content) actual = table_utils.get_vocabulary_from_file(self._vocab_path) self.assertAllEqual(["line1", "line2", "line3"], actual) def test_windows_file(self): content = b"line1\r\nline2\r\nline3" with gfile.GFile(self._vocab_path, "wb") as writer: writer.write(content) actual = table_utils.get_vocabulary_from_file(self._vocab_path) self.assertAllEqual(["line1", "line2", "line3"], actual) if __name__ == "__main__": test.main()
36.629545
81
0.664454
c255f64433901e09b9530d53ae4a8499c4a5a55f
3,690
py
Python
data/p3BR/R2/benchmark/startCirq271.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startCirq271.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p3BR/R2/benchmark/startCirq271.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=3 # total number=54 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[2])) # number=38 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=39 c.append(cirq.H.on(input_qubit[2])) # number=40 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=31 c.append(cirq.H.on(input_qubit[2])) # number=42 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=43 c.append(cirq.H.on(input_qubit[2])) # number=44 c.append(cirq.H.on(input_qubit[2])) # number=48 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=49 c.append(cirq.H.on(input_qubit[2])) # number=50 c.append(cirq.X.on(input_qubit[2])) # number=46 c.append(cirq.H.on(input_qubit[2])) # number=51 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=52 c.append(cirq.H.on(input_qubit[2])) # number=53 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=37 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=33 c.append(cirq.H.on(input_qubit[2])) # number=25 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=26 c.append(cirq.H.on(input_qubit[2])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=8 c.append(cirq.rx(0.17592918860102857).on(input_qubit[2])) # number=34 c.append(cirq.rx(-0.3989822670059037).on(input_qubit[1])) # number=30 c.append(cirq.H.on(input_qubit[1])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=19 c.append(cirq.H.on(input_qubit[1])) # number=20 c.append(cirq.Y.on(input_qubit[1])) # number=14 c.append(cirq.H.on(input_qubit[1])) # number=22 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=23 c.append(cirq.H.on(input_qubit[1])) # number=24 c.append(cirq.Z.on(input_qubit[2])) # number=3 c.append(cirq.Z.on(input_qubit[1])) # number=41 c.append(cirq.X.on(input_qubit[1])) # number=17 c.append(cirq.Y.on(input_qubit[2])) # number=5 c.append(cirq.X.on(input_qubit[2])) # number=21 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=15 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=16 c.append(cirq.X.on(input_qubit[2])) # number=28 c.append(cirq.X.on(input_qubit[2])) # number=29 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq271.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
38.4375
77
0.683198
8f2d13ad2be126171bf810ee327b5409508ffc27
393
py
Python
ProgrammingProject4/Projectsetup/volumes/task3code.py
samuelmmorse/MGSsecurity
425621afca366244cdcdc5b991538a618d45fd12
[ "Apache-2.0" ]
null
null
null
ProgrammingProject4/Projectsetup/volumes/task3code.py
samuelmmorse/MGSsecurity
425621afca366244cdcdc5b991538a618d45fd12
[ "Apache-2.0" ]
null
null
null
ProgrammingProject4/Projectsetup/volumes/task3code.py
samuelmmorse/MGSsecurity
425621afca366244cdcdc5b991538a618d45fd12
[ "Apache-2.0" ]
null
null
null
from scapy.all import * a = IP() dest = '8.8.8.8' a.dst = dest b = ICMP() a.ttl = 1 while (a.ttl < 100): reply = sr1(a/b, verbose=0, timeout=2) if (reply == None): print(str(a.ttl) + "\t* * * *") a.ttl += 1 continue print(str(a.ttl) + "\t" + reply.src) if (reply.src == dest): break a.ttl +=1 #packet = Ether()/IP(dst='10.9.0.6')/TCP(dport=23,flags='S') #send(packet)
13.551724
60
0.544529
ab10749ca20cb742fb91a11cac71af28bd52e2c1
3,823
py
Python
whatpulse/__init__.py
sl4vkek/python-whatpulse
bf8abad0a9d0cfdbb96c3cdfc58282f98959180f
[ "WTFPL" ]
null
null
null
whatpulse/__init__.py
sl4vkek/python-whatpulse
bf8abad0a9d0cfdbb96c3cdfc58282f98959180f
[ "WTFPL" ]
null
null
null
whatpulse/__init__.py
sl4vkek/python-whatpulse
bf8abad0a9d0cfdbb96c3cdfc58282f98959180f
[ "WTFPL" ]
1
2020-03-18T21:06:31.000Z
2020-03-18T21:06:31.000Z
import requests import json from urllib.parse import urljoin class InvalidIPError(Exception): pass class RealTime: def __init__(self, clicks_pressed, keys_typed, download_speed, upload_speed): self.clicks_typed = float(clicks_pressed) self.keys_typed = float(keys_typed) self.download_speed = download_speed self.upload_speed = upload_speed class Rank: def __init__(self, clicks_pressed, keys_typed, upload, download, uptime): self.clicks_pressed = int(clicks_pressed) self.keys_typed = int(keys_typed) self.upload = int(upload) self.download = int(download) self.uptime = int(uptime) class AccountTotals: def __init__(self, clicks_pressed, keys_typed, uptime, download, upload, rank): self.clicks_pressed = int(clicks_pressed) self.keys_typed = int(keys_typed) self.uptime = int(uptime) self.download = int(download) self.upload = int(upload) self.rank = rank class UnPulsed: def __init__(self, clicks_pressed, keys_typed, download, upload, uptime): self.clicks_pressed = int(clicks_pressed) self.keys_typed = int(keys_typed) self.download = int(download) self.upload = int(upload) self.uptime = int(uptime) class WhatPulse: def __init__(self, ip='localhost', port=3490): self.requests_session = requests.Session() self.ip = ip self.port = port self.uri = 'http://' + ip + ':' + str(port) @staticmethod def __check_status_code(r): if r.status_code == 200: return True elif r.status_code == 401: raise InvalidIPError('Connecting IP address not allowed in the client settings') def pulse(self): url = urljoin(self.uri, '/v1/pulse') r = self.requests_session.post(url) return WhatPulse.__check_status_code(r) def get_realtime_statistics(self): url = urljoin(self.uri, '/v1/realtime') r = self.requests_session.get(url) WhatPulse.__check_status_code(r) realtime_json =r.content.decode() realtime_json = json.loads(realtime_json) return RealTime( clicks_pressed=realtime_json['clicks'], keys_typed=realtime_json['keys'], download_speed=realtime_json['download'], upload_speed=realtime_json['upload'] ) def get_account_total_statistics(self): url = urljoin(self.uri, '/v1/account-totals') r = self.requests_session.get(url) WhatPulse.__check_status_code(r) d = r.content.decode() d = json.loads(d) dr = d['ranks'] return AccountTotals( clicks_pressed=d['clicks'], keys_typed=d['keys'], download=d['download'], upload=d['upload'], uptime=d['uptime'], rank=Rank( clicks_pressed=dr['rank_clicks'], keys_typed=dr['rank_keys'], upload=dr['rank_upload'], download=dr['rank_download'], uptime=dr['rank_uptime'] ) ) def get_unpulsed_stats(self): url = urljoin(self.uri, 'http://localhost:3490/v1/unpulsed') r = self.requests_session.get(url) WhatPulse.__check_status_code(r) unpulsed_json = r.content.decode() unpulsed_json = json.loads(unpulsed_json) return UnPulsed( clicks_pressed=unpulsed_json['clicks'], keys_typed=unpulsed_json['keys'], upload=unpulsed_json['upload'], download=unpulsed_json['download'], uptime=unpulsed_json['uptime'] )
32.398305
93
0.597698
f52b0506c75b802e0a080bdb9ae10715baad9e04
18,515
py
Python
CustomOp/MetaOptimizer.py
ozzzp/MLHF
119d8fbedb8661f0474389c6a048decb2505cf45
[ "Apache-2.0" ]
3
2018-08-11T02:51:51.000Z
2019-01-28T14:03:59.000Z
CustomOp/MetaOptimizer.py
ozzzp/MLHF
119d8fbedb8661f0474389c6a048decb2505cf45
[ "Apache-2.0" ]
null
null
null
CustomOp/MetaOptimizer.py
ozzzp/MLHF
119d8fbedb8661f0474389c6a048decb2505cf45
[ "Apache-2.0" ]
null
null
null
import itertools # import numpy as np import os import tensorflow as tf import tensorflow.contrib as tfcb from tensorflow.python.framework import function from tensorflow.python.training.optimizer import _var_key from tensorflow.python.training.slot_creator import create_slot_with_initializer from .gradients_impl import gradients from .hession_loss import loss_types from .op_r_forward import op_r_forward_funcs from .rnn import RNN_optimizers, slot_name, _EPSILON class MetaHessionFreeOptimizer(tf.train.GradientDescentOptimizer): def __init__(self, learning_rate, optimizers=RNN_optimizers, is_training=False, use_locking=False, name="MetaHessionFree", iter=5, damping=2e-5, damping_type='regular', decay=2 / 3, print_log=False, **kwargs): self._optimizers = optimizers(**kwargs) self._is_training = is_training self._n = iter self._print_log = print_log self._damping = damping self._decay = decay assert damping_type in ['regular', 'LM_heuristics'] self._damping_type = damping_type super(MetaHessionFreeOptimizer, self).__init__(learning_rate=learning_rate, use_locking=use_locking, name=name) @staticmethod def _r_forward(r_v_list, out, input_list): with tf.name_scope('difference_forward'): r_dict = {v.value(): r for r, v in r_v_list} r_dict.update({input: tf.zeros_like(input) for input in input_list}) used_ops = tfcb.graph_editor.get_backward_walk_ops(seed_ops=out.op, stop_at_ts=list(r_dict.keys())) used_ops = reversed(used_ops) while True: last_ops = [] for op in used_ops: has_floating = set(i.dtype.is_floating for i in op.outputs) if True not in has_floating: outs = [None for i in op.outputs] else: try: r_input = [r_dict[i] for i in op.inputs] except: last_ops.append(op) continue assert op.type in op_r_forward_funcs, op.type forward_func = op_r_forward_funcs[op.type] outs = forward_func(op, r_input) r_dict.update({v: r for r, v in zip(outs, op.outputs)}) if last_ops: used_ops = last_ops else: break assert out in r_dict return r_dict[out] def _generate_Hv_fun(self, var_list, out, input_list, Hl_func, ds=None, damping=0): def shape_func(op): return [var.get_shape() for var in var_list] if ds is not None: dampings = [self._generate_d(d, var=v) + damping for d, v in zip(ds, var_list)] else: dampings = None @function.Defun(*[v.dtype for v in var_list], shape_func=shape_func) def Hv(*vs): assert len(var_list) == len(vs) for var, v in zip(var_list, vs): v.set_shape(var.get_shape()) with tf.name_scope('Hession_product', values=vs): # difference forward r_out = self._r_forward(r_v_list=list(zip(vs, var_list)), out=out, input_list=input_list) print('difference forward done') rd_out = Hl_func(r_out, out) # TODO define RNN #To stable Hession # Oops, still no idea. # difference backword, same as common back propagation but with special init grad. rds = self._rd_backward(out=out, rd_out=rd_out, v_list=var_list) print('difference backward done') ''' test_case = set(tf.gradients(rds, var_list)) assert test_case == {None} test_case = set(tf.gradients(rds, vs)) assert None not in test_case ''' return tuple(rds) def grad_Hv(op, *vs): Hv_extra_inputs_backup = Hv._extra_inputs Hv._extra_inputs = list(op.inputs)[len(vs):] outs = list(Hv(*vs)) nones = [None] * (len(op.inputs) - len(outs)) Hv._extra_inputs = Hv_extra_inputs_backup return tuple(outs + nones) Hv._python_grad_func = grad_Hv def _Hv(*vs): rds = Hv(*vs) if dampings is not None: rds = [rd + damping * v for rd, damping, v in zip(rds, dampings, vs)] return tuple(rds) return _Hv def _get_or_make_slot_with_initializer(self, var, initializer, shape, dtype, slot_name, op_name): """Find or create a slot for a variable, using an Initializer. Args: var: A `Variable` object. initializer: An `Initializer`. The initial value of the slot. shape: Shape of the initial value of the slot. dtype: Type of the value of the slot. slot_name: Name for the slot. op_name: Name to use when scoping the Variable that needs to be created for the slot. Returns: A `Variable` object. """ named_slots = self._slot_dict(slot_name) if _var_key(var) not in named_slots: with tf.variable_scope('slots', reuse=tf.AUTO_REUSE): named_slots[_var_key(var)] = create_slot_with_initializer( var, initializer, shape, dtype, op_name) return named_slots[_var_key(var)] @staticmethod def _inner_product(A_list, B_list): sum_list = [tf.reduce_sum(A * B) for A, B in zip(A_list, B_list)] return tf.add_n(sum_list) def _generate_x(self, d, var=None): with tf.name_scope('rnn_x'): name = os.path.join(*[i.split('_')[0] for i in var.op.name.rsplit('/', 3)[-2:]]) assert name in self._optimizers, 'sorry, rnn optimizer of {} is not defined'.format(name) x_fn = self._optimizers[name]['x'] out = x_fn(d, var=var, optimizer=self) return out def _generate_d(self, d, var=None): with tf.name_scope('rnn_d'): name = os.path.join(*[i.split('_')[0] for i in var.op.name.rsplit('/', 3)[-2:]]) assert name in self._optimizers, 'sorry, rnn optimizer of {} is not defined'.format(name) d_fn = self._optimizers[name]['d'] out = d_fn(d, var=var, optimizer=self) return out def _generate_state_transform(self, r_1, x_1, var=None): with tf.name_scope('rnn_sf'): name = os.path.join(*[i.split('_')[0] for i in var.op.name.rsplit('/', 3)[-2:]]) assert name in self._optimizers, 'sorry, rnn state transform of {} is not defined'.format(name) sf_fn = self._optimizers[name]['sf'] sf_fn(r_1=r_1, x_1=x_1, var=var, optimizer=self) def _generate_y(self, d, r_0, x_0, var=None): with tf.name_scope('rnn_y'): name = os.path.join(*[i.split('_')[0] for i in var.op.name.rsplit('/', 3)[-2:]]) assert name in self._optimizers, 'sorry, rnn optimizer of {} is not defined'.format(name) y_fn = self._optimizers[name]['y'] out = y_fn(d, r_0, x_0, var=var, optimizer=self) return out def _rd_backward(self, out, rd_out, v_list): rd_list = gradients(out, v_list, grad_ys=rd_out) return rd_list def compute_gradients(self, *args, **kwargs): raise NotImplementedError("Sorry, call compute_gradients directly is not allowed") def _compute_gradients(self, *args, **kwargs): return super(MetaHessionFreeOptimizer, self).compute_gradients(*args, gate_gradients=MetaHessionFreeOptimizer.GATE_NONE, **kwargs) def apply_gradients(self, *args, **kwargs): raise NotImplementedError("Sorry, call compute_gradients directly is not allowed") def _apply_gradients(self, *args, **kwargs): return super(MetaHessionFreeOptimizer, self).apply_gradients(*args, **kwargs) def set_slot_shadow(self, var, val, slot_name, replace=False): named_slots = self._slot_dict(slot_name + '_shadow') key = var if isinstance(var, str) else _var_key(var) if replace: assert key in named_slots else: assert key not in named_slots named_slots[key] = val def _apply_state(self, var): ops = [] for rnn_type in ['x', 'y', 'd']: for l in itertools.count(): for i in itertools.count(): slot_var = self.get_slot(var, slot_name(l, i, rnn_type)) if slot_var is None: break slot_val = self.get_slot(var, slot_name(l, i, rnn_type) + '_shadow') if self._is_training: ops.append((slot_var, slot_val)) else: ops.append(tf.assign(slot_var, slot_val)) if i == 0: break for val_name in ['r_1', 'x_1']: slot_var = self.get_slot(var, val_name) slot_val = self.get_slot(var, val_name + '_shadow') assert isinstance(slot_var, tf.Variable) assert isinstance(slot_val, tf.Tensor) if self._is_training: ops.append((slot_var, slot_val)) else: ops.append(tf.assign(slot_var, slot_val)) return ops def _apply_dense(self, grad, var): ops = self._apply_state(var) with tf.control_dependencies(ops): return super(MetaHessionFreeOptimizer, self)._apply_dense(grad, var) def _apply_sparse(self, grad, var): raise NotImplementedError def _resource_apply_dense(self, grad, handle): raise NotImplementedError def _resource_apply_sparse(self, grad, handle, indices): raise NotImplementedError def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices): raise NotImplementedError def minimize(self, loss_type, out, label, input_list, global_step=None, var_list=None, network_fn=None): assert loss_type in loss_types loss_fn, Hl_fun = loss_types[loss_type] # 1st forward loss = loss_fn(out, label) print('1st forward done') # 2nd backward d_and_v = self._compute_gradients(loss, var_list=var_list) print('2nd backward done') if self._damping_type == 'LM_heuristics': assert callable(network_fn) self._last_loss = tf.get_variable('last_loss', initializer=tf.zeros_initializer, shape=[], dtype=tf.float32) self._q_difference = tf.get_variable('q_difference', initializer=tf.zeros_initializer, shape=[], dtype=tf.float32) self._last_inputs = [ tf.get_variable('last_input_{}'.format(i), initializer=tf.zeros_initializer, shape=input.shape, dtype=input.dtype, trainable=False) for i, input in enumerate(input_list)] self._last_label = tf.get_variable('last_label', initializer=tf.zeros_initializer, shape=label.shape, dtype=label.dtype, trainable=False) self._damping = tf.get_variable('damping', initializer=self._damping, dtype=tf.float32, trainable=False) loss_on_last_batch = loss_fn(network_fn(*self._last_inputs), self._last_label) rho = ( loss_on_last_batch - self._last_loss) / self._q_difference # tf.Print(self._q_difference, [self._q_difference, loss_on_last_batch, self._last_loss]) rho = tf.where(tf.equal(self._q_difference, 0), 0.5, rho) # rho = tf.Print(rho, [rho], message='rho:') decay = tf.train.piecewise_constant(rho, [0.25, 0.75], [1 / self._decay, 1., self._decay]) # decay = tf.Print(decay, [decay], message='decay:') damping = self._damping * decay damping = tf.clip_by_value(damping, 1e-3, 1) # damping = tf.Print(damping, [damping], message='damping:') else: damping = self._damping ds = [tf.stop_gradient(d) for d, _ in d_and_v if d is not None] if not ds: raise ValueError( "No gradients provided for any variable, check your graph for ops" " that do not support gradients, between variables %s and loss %s." % ([str(v) for _, v in d_and_v], loss)) var_list = [v for d, v in d_and_v if d is not None] Hv_fun = self._generate_Hv_fun(ds=ds, var_list=var_list, out=out, input_list=input_list, Hl_func=Hl_fun, damping=damping) # generate x_0 from (d, r_1, x_1) x_is = [self._generate_x(d, var=v) for d, v in zip(ds, var_list)] print('rnn_x generated') H_xis = list(Hv_fun(*x_is)) # r_0 = b - H_x0 = d - H_x0 ds_length = tf.global_norm(ds) ds_length_sq = ds_length ** 2 # gamma_0 = self._inner_product(ds, H_x0s) / ds_length_sq r_is = [d - H_xi for d, H_xi in zip(ds, H_xis)] # y_0 = r_0 * p # p = f(r_0, x_0, d) # so, y_0 =r_0 * f(r_0, x_0, d) Ps = [self._generate_y(d, r_i, x_i, var=v) for d, r_i, x_i, v in zip(ds, r_is, x_is, var_list)] print('rnn_y generated') y_is = [P * r_i for P, r_i in zip(Ps, r_is)] p_is = y_is beta_part = self._inner_product(r_is, y_is) def _cal(p_is, r_is, x_is, beta_part): # y_0 as p_0 # cal H_p0 = H_y0 H_pis = list(Hv_fun(*p_is)) # \alpha = <r_0, y_0>/<p0 , H_p0> = <r_0, y_0>/<y_0 , H_y0> p2 = self._inner_product(p_is, H_pis) alpha = beta_part / tf.maximum(p2, _EPSILON) # x_1 = x_0 + \alpha p_0 = x_0 + \alpha y_0 x_is = [x_i + alpha * p_i for x_i, p_i in zip(x_is, p_is)] # r_1 = r_0 - \alpha H_p0 = r_0 - \alpha H_y0 # gamma_1 = self._inner_product(ds, H_y0s) / ds_length_sq r_is = [r_i - alpha * H_pi for r_i, H_pi in zip(r_is, H_pis)] y_is = [P * r_i for P, r_i in zip(Ps, r_is)] new_beta_part = self._inner_product(r_is, y_is) beta = new_beta_part / tf.maximum(beta_part, _EPSILON) beta_part = new_beta_part p_is = [y_i + beta * p_i for y_i, p_i in zip(y_is, p_is)] return p_is, r_is, x_is, beta_part def _cond(p_is, r_is, x_is, beta_part): return tf.global_norm(r_is) >= _EPSILON loop_vars = (p_is, r_is, x_is, beta_part) p_is, r_is, x_is, beta_part = \ tf.while_loop(_cond, _cal, loop_vars, swap_memory=True, back_prop=self._is_training, parallel_iterations=1, maximum_iterations=self._n) # apply state transform. for r_i, x_i, var in zip(r_is, x_is, var_list): self._generate_state_transform(r_i, x_i, var=var) print('rnn_sf generated') inner_p_ds_x_is = self._inner_product(ds, x_is) H_xis = [d - r_i for d, r_i in zip(ds, r_is)] x_is_H_xis = self._inner_product(x_is, H_xis) if self._damping_type == 'LM_heuristics': q_difference = - self._learning_rate * inner_p_ds_x_is + self._learning_rate ** 2 / 2 * x_is_H_xis if self._is_training: hession_loss = - inner_p_ds_x_is / tf.sqrt(x_is_H_xis) # minize r_1 # assert there should be no grad which would backprop from x_1s to nn variable. r_loss = tf.global_norm(r_is) var_length = tf.stop_gradient(tf.global_norm(var_list)) if self._print_log: H_ds = list(Hv_fun(*ds)) standard_loss = ds_length_sq / tf.sqrt(self._inner_product(ds, H_ds)) hession_loss = tf.Print(hession_loss, [tf.global_norm(x_is) / ds_length, r_loss, -hession_loss, standard_loss, inner_p_ds_x_is, ds_length_sq, var_length, loss], message='x1l/gl, rl, hs, ss, hip, sip, vl, loss:') x_is, _ = tf.clip_by_global_norm(x_is, var_length * (0.25 / self._learning_rate)) next_state = [] for x_i, v in zip(x_is, var_list): noise = tf.random_uniform(x_i.get_shape(), 1 - 2e-2, 1 + 2e-2) next_state.append((v, tf.stop_gradient(v) - noise * self._learning_rate * x_i)) next_state.extend(self._apply_state(v)) assert len(next_state) == len(tf.global_variables(scope='slots')) + len(tf.trainable_variables(scope='nn')) if self._damping_type == 'LM_heuristics': for val, var in zip(input_list, self._last_inputs): next_state.append((var, val)) next_state.append((self._damping, damping)) next_state.append((self._last_loss, loss)) next_state.append((self._last_label, label)) next_state.append((self._q_difference, q_difference)) return next_state, loss, hession_loss, r_loss else: if self._damping_type == 'LM_heuristics': depends = [tf.assign(var, val) for val, var in zip(input_list, self._last_inputs)] depends.append(tf.assign(self._damping, damping)) depends.append(tf.assign(self._last_loss, loss)) depends.append(tf.assign(self._last_label, label)) depends.append(tf.assign(self._q_difference, q_difference)) else: depends = [] with tf.control_dependencies(depends): return self._apply_gradients(list(zip(x_is, var_list)), global_step=global_step)
44.614458
179
0.569052
f9aabc0db2d79dcd8f61805e5399ec1c253439e2
556
py
Python
cpsplines/utils/timer.py
ManuelNavarroGarcia/cpsplines
544e8ccf7e438a192dea6c4a4e685d9346f57f9a
[ "MIT" ]
null
null
null
cpsplines/utils/timer.py
ManuelNavarroGarcia/cpsplines
544e8ccf7e438a192dea6c4a4e685d9346f57f9a
[ "MIT" ]
1
2022-02-12T17:33:08.000Z
2022-02-12T17:33:08.000Z
cpsplines/utils/timer.py
ManuelNavarroGarcia/cpsplines
544e8ccf7e438a192dea6c4a4e685d9346f57f9a
[ "MIT" ]
null
null
null
from contextlib import contextmanager from timeit import default_timer from typing import Optional @contextmanager def timer(tag: Optional[str] = None) -> None: """ Computes the elapsed time that a task last. Parameters ---------- tag : str, optional The name of the task. By default, None. """ start = default_timer() try: yield finally: end = default_timer() header = "Elapsed time (s)" if tag is None else f"[{tag}] Elapsed time (s)" print(f"{header}: {end - start:.6f}")
22.24
83
0.609712
9c07aa3cfaf87ecf569cebf670dc523efee96fdd
3,527
py
Python
paddlex/cv/datasets/easydata_cls.py
mingren8888/PaddleX
d44249da26898b4b77491f8a5e8a86d680e52fa4
[ "Apache-2.0" ]
null
null
null
paddlex/cv/datasets/easydata_cls.py
mingren8888/PaddleX
d44249da26898b4b77491f8a5e8a86d680e52fa4
[ "Apache-2.0" ]
null
null
null
paddlex/cv/datasets/easydata_cls.py
mingren8888/PaddleX
d44249da26898b4b77491f8a5e8a86d680e52fa4
[ "Apache-2.0" ]
null
null
null
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os.path as osp import random import copy import json import paddlex.utils.logging as logging from paddlex.utils import path_normalization from .imagenet import ImageNet from .dataset import is_pic from .dataset import get_encoding class EasyDataCls(ImageNet): """读取EasyDataCls格式的分类数据集,并对样本进行相应的处理。 Args: data_dir (str): 数据集所在的目录路径。 file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 label_list (str): 描述数据集包含的类别信息文件路径。 transforms (paddlex.cls.transforms): 数据集中每个样本的预处理/增强算子。 num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核 数的一半。 buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。 parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread' 线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。 shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 """ def __init__(self, data_dir, file_list, label_list, transforms=None, num_workers='auto', buffer_size=8, parallel_method='process', shuffle=False): super(ImageNet, self).__init__( transforms=transforms, num_workers=num_workers, buffer_size=buffer_size, parallel_method=parallel_method, shuffle=shuffle) self.file_list = list() self.labels = list() self._epoch = 0 with open(label_list, encoding=get_encoding(label_list)) as f: for line in f: item = line.strip() self.labels.append(item) logging.info("Starting to read file list from dataset...") with open(file_list, encoding=get_encoding(file_list)) as f: for line in f: img_file, json_file = [osp.join(data_dir, x) \ for x in line.strip().split()[:2]] img_file = path_normalization(img_file) json_file = path_normalization(json_file) if not is_pic(img_file): continue if not osp.isfile(json_file): continue if not osp.exists(img_file): raise IOError('The image file {} is not exist!'.format( img_file)) with open(json_file, mode='r', \ encoding=get_encoding(json_file)) as j: json_info = json.load(j) label = json_info['labels'][0]['name'] self.file_list.append([img_file, self.labels.index(label)]) self.num_samples = len(self.file_list) logging.info("{} samples in file {}".format( len(self.file_list), file_list))
39.629213
77
0.617806
f4663d022e5c891a06c7f5ad97e3101ef049e76d
1,010
py
Python
common/ops/merge_ops.py
vahidk/TensorflowFramework
a9377d0dd8f5ac93e810876fbe8987990e3c728f
[ "BSD-3-Clause" ]
129
2017-08-19T07:18:55.000Z
2020-07-16T03:05:31.000Z
common/ops/merge_ops.py
vahidk/TensorflowFramework
a9377d0dd8f5ac93e810876fbe8987990e3c728f
[ "BSD-3-Clause" ]
5
2017-09-13T08:55:31.000Z
2019-07-12T06:52:07.000Z
common/ops/merge_ops.py
vahidk/TensorflowFramework
a9377d0dd8f5ac93e810876fbe8987990e3c728f
[ "BSD-3-Clause" ]
46
2017-08-21T21:18:50.000Z
2022-03-12T05:57:02.000Z
"""Merge ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from common.ops import regularizer_ops def merge(tensors, units, activation=tf.nn.relu, name=None, weight_decay=0.0, weight_regularizer="l2", **kwargs): """Merge tensors with broadcasting support.""" with tf.variable_scope(name, default_name="merge"): projs = [] for i, tensor in enumerate(tensors): proj = tf.keras.layers.Dense( units, use_bias=False, kernel_initializer=tf.glorot_uniform_initializer(), kernel_regularizer=regularizer_ops.weight_regularizer( weight_decay, weight_regularizer), name="proj_%d" % i, **kwargs).apply(tensor) projs.append(proj) result = projs.pop() for proj in projs: result = result + proj if activation: result = activation(result) return result
25.897436
64
0.647525
3dc86378efd15da478c27d56780e6e3b3e2b64c4
7,647
py
Python
sandbox/rocky/tf/policies/categorical_gru_policy.py
RussellM2020/maml_gps
631560dfd4e23dc2da9bfbbd2e3c5252aa9775c5
[ "MIT" ]
541
2017-07-19T00:49:13.000Z
2022-03-28T21:14:23.000Z
sandbox/rocky/tf/policies/categorical_gru_policy.py
RussellM2020/maml_gps
631560dfd4e23dc2da9bfbbd2e3c5252aa9775c5
[ "MIT" ]
13
2018-02-28T02:29:58.000Z
2021-03-21T13:49:49.000Z
sandbox/rocky/tf/policies/categorical_gru_policy.py
RussellM2020/maml_gps
631560dfd4e23dc2da9bfbbd2e3c5252aa9775c5
[ "MIT" ]
168
2017-07-19T12:21:01.000Z
2022-02-22T00:46:40.000Z
import numpy as np import sandbox.rocky.tf.core.layers as L import tensorflow as tf from sandbox.rocky.tf.core.layers_powered import LayersPowered from sandbox.rocky.tf.core.network import GRUNetwork, MLP from sandbox.rocky.tf.distributions.recurrent_categorical import RecurrentCategorical from sandbox.rocky.tf.misc import tensor_utils from sandbox.rocky.tf.spaces.discrete import Discrete from sandbox.rocky.tf.policies.base import StochasticPolicy from rllab.core.serializable import Serializable from rllab.misc import special from rllab.misc.overrides import overrides class CategoricalGRUPolicy(StochasticPolicy, LayersPowered, Serializable): def __init__( self, name, env_spec, hidden_dim=32, feature_network=None, state_include_action=True, hidden_nonlinearity=tf.tanh, gru_layer_cls=L.GRULayer, ): """ :param env_spec: A spec for the env. :param hidden_dim: dimension of hidden layer :param hidden_nonlinearity: nonlinearity used for each hidden layer :return: """ with tf.variable_scope(name): assert isinstance(env_spec.action_space, Discrete) Serializable.quick_init(self, locals()) super(CategoricalGRUPolicy, self).__init__(env_spec) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim if state_include_action: input_dim = obs_dim + action_dim else: input_dim = obs_dim l_input = L.InputLayer( shape=(None, None, input_dim), name="input" ) if feature_network is None: feature_dim = input_dim l_flat_feature = None l_feature = l_input else: feature_dim = feature_network.output_layer.output_shape[-1] l_flat_feature = feature_network.output_layer l_feature = L.OpLayer( l_flat_feature, extras=[l_input], name="reshape_feature", op=lambda flat_feature, input: tf.reshape( flat_feature, tf.pack([tf.shape(input)[0], tf.shape(input)[1], feature_dim]) ), shape_op=lambda _, input_shape: (input_shape[0], input_shape[1], feature_dim) ) prob_network = GRUNetwork( input_shape=(feature_dim,), input_layer=l_feature, output_dim=env_spec.action_space.n, hidden_dim=hidden_dim, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=tf.nn.softmax, gru_layer_cls=gru_layer_cls, name="prob_network" ) self.prob_network = prob_network self.feature_network = feature_network self.l_input = l_input self.state_include_action = state_include_action flat_input_var = tf.placeholder(dtype=tf.float32, shape=(None, input_dim), name="flat_input") if feature_network is None: feature_var = flat_input_var else: feature_var = L.get_output(l_flat_feature, {feature_network.input_layer: flat_input_var}) self.f_step_prob = tensor_utils.compile_function( [ flat_input_var, prob_network.step_prev_hidden_layer.input_var ], L.get_output([ prob_network.step_output_layer, prob_network.step_hidden_layer ], {prob_network.step_input_layer: feature_var}) ) self.input_dim = input_dim self.action_dim = action_dim self.hidden_dim = hidden_dim self.prev_actions = None self.prev_hiddens = None self.dist = RecurrentCategorical(env_spec.action_space.n) out_layers = [prob_network.output_layer] if feature_network is not None: out_layers.append(feature_network.output_layer) LayersPowered.__init__(self, out_layers) @overrides def dist_info_sym(self, obs_var, state_info_vars): n_batches = tf.shape(obs_var)[0] n_steps = tf.shape(obs_var)[1] obs_var = tf.reshape(obs_var, tf.pack([n_batches, n_steps, -1])) obs_var = tf.cast(obs_var, tf.float32) if self.state_include_action: prev_action_var = tf.cast(state_info_vars["prev_action"], tf.float32) all_input_var = tf.concat(axis=2, values=[obs_var, prev_action_var]) else: all_input_var = obs_var if self.feature_network is None: return dict( prob=L.get_output( self.prob_network.output_layer, {self.l_input: all_input_var} ) ) else: flat_input_var = tf.reshape(all_input_var, (-1, self.input_dim)) return dict( prob=L.get_output( self.prob_network.output_layer, {self.l_input: all_input_var, self.feature_network.input_layer: flat_input_var} ) ) @property def vectorized(self): return True def reset(self, dones=None): if dones is None: dones = [True] dones = np.asarray(dones) if self.prev_actions is None or len(dones) != len(self.prev_actions): self.prev_actions = np.zeros((len(dones), self.action_space.flat_dim)) self.prev_hiddens = np.zeros((len(dones), self.hidden_dim)) self.prev_actions[dones] = 0. self.prev_hiddens[dones] = self.prob_network.hid_init_param.eval() # get_value() # The return value is a pair. The first item is a matrix (N, A), where each # entry corresponds to the action value taken. The second item is a vector # of length N, where each entry is the density value for that action, under # the current policy @overrides def get_action(self, observation): actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()} @overrides def get_actions(self, observations): flat_obs = self.observation_space.flatten_n(observations) if self.state_include_action: assert self.prev_actions is not None all_input = np.concatenate([ flat_obs, self.prev_actions ], axis=-1) else: all_input = flat_obs probs, hidden_vec = self.f_step_prob(all_input, self.prev_hiddens) actions = special.weighted_sample_n(probs, np.arange(self.action_space.n)) prev_actions = self.prev_actions self.prev_actions = self.action_space.flatten_n(actions) self.prev_hiddens = hidden_vec agent_info = dict(prob=probs) if self.state_include_action: agent_info["prev_action"] = np.copy(prev_actions) return actions, agent_info @property @overrides def recurrent(self): return True @property def distribution(self): return self.dist @property def state_info_specs(self): if self.state_include_action: return [ ("prev_action", (self.action_dim,)), ] else: return []
37.302439
105
0.598928
7b8559c815140b9b7b55c4d4400eac932a3e981e
80
py
Python
thesis_analysis/thesis_analysis.py
egpbos/thesis_analysis
01d0dfed0d69941526edc0a20aeaa4cd85fb81c4
[ "MIT" ]
null
null
null
thesis_analysis/thesis_analysis.py
egpbos/thesis_analysis
01d0dfed0d69941526edc0a20aeaa4cd85fb81c4
[ "MIT" ]
null
null
null
thesis_analysis/thesis_analysis.py
egpbos/thesis_analysis
01d0dfed0d69941526edc0a20aeaa4cd85fb81c4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # FIXME: put actual code here def example(): pass
11.428571
29
0.575
ce4dee45ddd6436c261a9ebe23c8d317c995875d
1,590
py
Python
examples/event_generation/parton_shower_gen.py
samcaf/JetMonteCarlo
71f50f3bb53a4f68ed927eaeaed5ee258da0dd34
[ "MIT" ]
null
null
null
examples/event_generation/parton_shower_gen.py
samcaf/JetMonteCarlo
71f50f3bb53a4f68ed927eaeaed5ee258da0dd34
[ "MIT" ]
null
null
null
examples/event_generation/parton_shower_gen.py
samcaf/JetMonteCarlo
71f50f3bb53a4f68ed927eaeaed5ee258da0dd34
[ "MIT" ]
null
null
null
from __future__ import absolute_import # Loading parton shower class and parameters: from jetmontecarlo.montecarlo.partonshower import * from examples.params import * # Run with 1) false fixed coupling, LL observable, then 2) false fixed coupling, MU_NP, MLL # then 3) false fixed coupling, MU_NP, MLL for each beta #################################### # Example parton shower usage: #################################### # Trying to loop over betas for now: # ===================================== # Initializing the Shower: # ===================================== # Showers are ordered by an angularity e_beta # Arguments are: # * the accuracy of the coupling; # * the cutoff angularity, at which the shower stops; # * the value of beta for the angularity e_beta which orders the shower; # * the type of parton initiating the parton shower. shower = parton_shower(fixed_coupling=FIXED_COUPLING, shower_cutoff=SHOWER_CUTOFF, shower_beta=SHOWER_BETA, jet_type=JET_TYPE) # ===================================== # Generating or Loading Events: # ===================================== shower.gen_events(NUM_SHOWER_EVENTS) shower.save_events() #shower.load_events(NUM_SHOWER_EVENTS) for beta in BETAS: # ===================================== # Saving Jet Observables: # ===================================== shower.save_correlations(beta, OBS_ACC, f_soft=1) shower.save_correlations(beta, OBS_ACC, f_soft=.75) shower.save_correlations(beta, OBS_ACC, f_soft=.5) print()
36.976744
91
0.576101
94490c146ae16b22b405b9bf9cf79b4337614551
537,332
py
Python
DearPyGui/dearpygui/dearpygui.py
Treygec/DearPyGui
3421291b0ac93f6e4f2a936501d7140feb8f6b2f
[ "MIT" ]
null
null
null
DearPyGui/dearpygui/dearpygui.py
Treygec/DearPyGui
3421291b0ac93f6e4f2a936501d7140feb8f6b2f
[ "MIT" ]
null
null
null
DearPyGui/dearpygui/dearpygui.py
Treygec/DearPyGui
3421291b0ac93f6e4f2a936501d7140feb8f6b2f
[ "MIT" ]
null
null
null
########################################################## # Dear PyGui User Interface # ~ Version: master # # Notes: # * This file is automatically generated. # # Resources: # * FAQ: https://github.com/hoffstadt/DearPyGui/discussions/categories/frequently-asked-questions-faq # * Homepage: https://github.com/hoffstadt/DearPyGui # * Wiki: https://github.com/hoffstadt/DearPyGui/wiki # * Issues: https://github.com/hoffstadt/DearPyGui/issues # * Discussions: https://github.com/hoffstadt/DearPyGui/discussions ########################################################## from typing import List, Any, Callable, Union, Tuple from contextlib import contextmanager import warnings import functools import inspect import dearpygui._dearpygui as internal_dpg from dearpygui._dearpygui import mvBuffer from dearpygui._dearpygui import mvVec4 from dearpygui._dearpygui import mvMat4 ######################################################################################################################## # User API Index # # * Sections # - Helper Commands # - Tool Commands # - Information Commands # - Configuration Getter Commands # - Configuration Setter Commands # - State Commands # - Viewport Setter Commands # - Viewport Getter Commands # - Deprecated Commands # - Container Context Managers # - Public _dearpygui Wrappings # - Constants # ######################################################################################################################## ######################################################################################################################## # Helper Commands ######################################################################################################################## def run_callbacks(jobs): """ New in 1.2. Runs callbacks from the callback queue and checks arguments. """ if jobs is None: pass else: for job in jobs: if job[0] is None: pass else: sig = inspect.signature(job[0]) args = [] for arg in range(len(sig.parameters)): args.append(job[arg+1]) job[0](*args) def get_major_version(): """ return Dear PyGui Major Version """ return internal_dpg.get_app_configuration()["major_version"] def get_minor_version(): """ return Dear PyGui Minor Version """ return internal_dpg.get_app_configuration()["minor_version"] def get_dearpygui_version(): """ return Dear PyGui Version """ return internal_dpg.get_app_configuration()["version"] def configure_item(item : Union[int, str], **kwargs) -> None: """Configures an item after creation.""" internal_dpg.configure_item(item, **kwargs) def configure_app(**kwargs) -> None: """Configures an item after creation.""" internal_dpg.configure_app(**kwargs) def configure_viewport(item : Union[int, str], **kwargs) -> None: """Configures a viewport after creation.""" internal_dpg.configure_viewport(item, **kwargs) def start_dearpygui(): """Prepares viewport (if not done already). sets up, cleans up, and runs main event loop. Returns: None """ if not internal_dpg.is_viewport_ok(): raise RuntimeError("Viewport was not created and shown.") return while(internal_dpg.is_dearpygui_running()): internal_dpg.render_dearpygui_frame() @contextmanager def mutex(): """ Handles locking/unlocking render thread mutex. """ try: yield internal_dpg.lock_mutex() finally: internal_dpg.unlock_mutex() @contextmanager def popup(parent: Union[int, str], mousebutton: int = internal_dpg.mvMouseButton_Right, modal: bool=False, tag:Union[int, str]=0, min_size:Union[List[int], Tuple[int, ...]]=[100,100], max_size: Union[List[int], Tuple[int, ...]] =[30000, 30000], no_move: bool=False, no_background: bool=False) -> int: """A window that will be displayed when a parent item is hovered and the corresponding mouse button has been clicked. By default a popup will shrink fit the items it contains. This is useful for context windows, and simple modal window popups. When popups are used a modal they have more avaliable settings (i.e. title, resize, width, height) These can be set by using configure item. This is a light wrapper over window. For more control over a modal|popup window use a normal window with the modal|popup keyword and set the item handler and mouse events manually. Args: parent: The UI item that will need to be hovered. **mousebutton: The mouse button that will trigger the window to popup. **modal: Will force the user to interact with the popup. **min_size: New in 1.4. Minimum window size. **max_size: New in 1.4. Maximum window size. **no_move: New in 1.4. Prevents the window from moving based on user input. **no_background: New in 1.4. Sets Background and border alpha to transparent. Returns: item's uuid """ try: if tag == 0: _internal_popup_id = internal_dpg.generate_uuid() else: _internal_popup_id = tag _handler_reg_id = internal_dpg.add_item_handler_registry() internal_dpg.add_item_clicked_handler(mousebutton, parent=internal_dpg.last_item(), callback=lambda: internal_dpg.configure_item(_internal_popup_id, show=True)) internal_dpg.bind_item_handler_registry(parent, _handler_reg_id) if modal: internal_dpg.add_window(modal=True, show=False, tag=_internal_popup_id, autosize=True, min_size=min_size, max_size=max_size, no_move=no_move, no_background=no_background) else: internal_dpg.add_window(popup=True, show=False, tag=_internal_popup_id, autosize=True, min_size=min_size, max_size=max_size, no_move=no_move, no_background=no_background) internal_dpg.push_container_stack(internal_dpg.last_container()) yield _internal_popup_id finally: internal_dpg.pop_container_stack() ######################################################################################################################## # Tool Commands ######################################################################################################################## def show_style_editor() -> None: """Shows the standard style editor window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_Style) def show_metrics() -> None: """Shows the standard metrics window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_Metrics) def show_about() -> None: """Shows the standard about window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_About) def show_debug() -> None: """Shows the standard debug window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_Debug) def show_documentation() -> None: """Shows the standard documentation window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_Doc) def show_font_manager() -> None: """Shows the standard documentation window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_Font) def show_item_registry() -> None: """Shows the standard documentation window Returns: None """ internal_dpg.show_tool(internal_dpg.mvTool_ItemRegistry) ######################################################################################################################## # Information Commands ######################################################################################################################## def get_item_slot(item: Union[int, str]) -> Union[int, None]: """Returns an item's target slot. Returns: slot as a int """ return internal_dpg.get_item_info(item)["target"] def is_item_container(item: Union[int, str]) -> Union[bool, None]: """Checks if item is a container. Returns: status as a bool """ return internal_dpg.get_item_info(item)["container"] def get_item_parent(item: Union[int, str]) -> Union[int, None]: """Gets the item's parent. Returns: parent as a int or None """ return internal_dpg.get_item_info(item)["parent"] def get_item_children(item: Union[int, str] , slot: int = -1) -> Union[dict, List[int], None]: """Provides access to the item's children slots. Returns: A 2-D tuple of children slots ex. ((child_slot_1),(child_slot_2),(child_slot_3),...) or a single slot if slot is used. """ if slot < 0 or slot > 4: return internal_dpg.get_item_info(item)["children"] return internal_dpg.get_item_info(item)["children"][slot] def get_item_type(item: Union[int, str]) -> Union[str]: """Gets the item's type. Returns: type as a string or None """ return internal_dpg.get_item_info(item)["type"] def get_item_theme(item: Union[int, str]) -> int: """Gets the item's theme. Returns: theme's uuid """ return internal_dpg.get_item_info(item)["theme"] def get_item_font(item: Union[int, str]) -> int: """Gets the item's font. Returns: font's uuid """ return internal_dpg.get_item_info(item)["font"] def get_item_disabled_theme(item: Union[int, str]) -> int: """Gets the item's disabled theme. Returns: theme's uuid """ return internal_dpg.get_item_info(item)["disabled_theme"] ######################################################################################################################## # Configuration Setter Commands ######################################################################################################################## def enable_item(item: Union[int, str]): """Enables the item. Args: **item: Item to enable. Returns: None """ internal_dpg.configure_item(item, enabled=True) def disable_item(item: Union[int, str]): """Disables the item. Args: **item: Item to disable. Returns: None """ internal_dpg.configure_item(item, enabled=False) def set_item_label(item: Union[int, str], label: str): """Sets the item's displayed label, anything after the characters "##" in the name will not be shown. Args: item: Item label will be applied to. label: Displayed name to be applied. Returns: None """ internal_dpg.configure_item(item, label=label) def set_item_source(item: Union[int, str], source: Union[int, str]): """Sets the item's value, to the source's value. Widget's value will now be "linked" to source's value. Args: item: Item to me linked. source: Source to link to. Returns: None """ internal_dpg.configure_item(item, source=source) def set_item_pos(item: Union[int, str], pos: List[float]): """Sets the item's position. Args: item: Item the absolute position will be applied to. pos: X and Y positions relative to parent of the item. Returns: None """ internal_dpg.configure_item(item, pos=pos) def set_item_width(item: Union[int, str], width: int): """Sets the item's width. Args: item: Item the Width will be applied to. width: Width to be applied. Returns: None """ internal_dpg.configure_item(item, width=width) def set_item_height(item: Union[int, str], height: int): """Sets the item's height. Args: item: Item the Height will be applied to. height: Height to be applied. Returns: None """ internal_dpg.configure_item(item, height=height) def set_item_indent(item: Union[int, str], indent: int): """Sets the item's indent. Args: item: Item the Height will be applied to. height: Height to be applied. Returns: None """ internal_dpg.configure_item(item, indent=indent) def set_item_track_offset(item: Union[int, str], offset: float): """Sets the item's track offset. Args: item: Item the Height will be applied to. height: Height to be applied. Returns: None """ internal_dpg.configure_item(item, track_offset=offset) def set_item_payload_type(item: Union[int, str], payload_type: str): """Sets the item's payload type. Args: item: Item the Height will be applied to. height: Height to be applied. Returns: None """ internal_dpg.configure_item(item, payload_type=str) def set_item_callback(item: Union[int, str], callback: Callable): """Sets the item's callack. Args: item: Item the callback will be applied to. callback: Callback to be applied. Returns: None """ internal_dpg.configure_item(item, callback=callback) def set_item_drag_callback(item: Union[int, str], callback: Callable): """Sets the item's drag callack. Args: item: Item the callback will be applied to. callback: Callback to be applied. Returns: None """ internal_dpg.configure_item(item, drag_callback=callback) def set_item_drop_callback(item: Union[int, str], callback: Callable): """Sets the item's drop callack. Args: item: Item the callback will be applied to. callback: Callback to be applied. Returns: None """ internal_dpg.configure_item(item, drop_callback=callback) def track_item(item: Union[int, str]): """Track item in scroll region. Args: item: Item the callback will be applied to. callback: Callback to be applied. Returns: None """ internal_dpg.configure_item(item, tracked=True) def untrack_item(item: Union[int, str]): """Track item in scroll region. Args: item: Item the callback will be applied to. callback: Callback to be applied. Returns: None """ internal_dpg.configure_item(item, tracked=False) def set_item_user_data(item: Union[int, str], user_data: Any): """Sets the item's callack_data to any python object. Args: item: Item the callback will be applied to. user_data: Callback_data to be applied. Returns: None """ internal_dpg.configure_item(item, user_data=user_data) def show_item(item: Union[int, str]): """Shows the item. Args: item: Item to show. Returns: None """ internal_dpg.configure_item(item, show=True) def hide_item(item: Union[int, str], *, children_only: bool = False): """Hides the item. Args: **item: Item to hide. Returns: None """ if children_only: children = get_item_children(item) for child in children: internal_dpg.configure_item(child, show=False) else: internal_dpg.configure_item(item, show=False) ######################################################################################################################## # Configuration Getter Commands ######################################################################################################################## def get_item_label(item: Union[int, str]) -> Union[str, None]: """Gets the item's label. Returns: label as a string or None """ return internal_dpg.get_item_configuration(item)["label"] def get_item_filter_key(item: Union[int, str]) -> Union[str, None]: """Gets the item's filter key. Returns: filter key as a string or None """ return internal_dpg.get_item_configuration(item)["filter_key"] def is_item_tracked(item: Union[int, str]) -> Union[bool, None]: """Checks if item is tracked. Returns: tracked as a bool or None """ return internal_dpg.get_item_configuration(item)["tracked"] def is_item_search_delayed(item: Union[int, str]) -> Union[bool, None]: """Checks if item is search delayed. Returns: tracked as a bool or None """ return internal_dpg.get_item_configuration(item)["delay_search"] def get_item_indent(item: Union[int, str]) -> Union[int, None]: """Gets the item's indent. Returns: indent as a int or None """ return internal_dpg.get_item_configuration(item)["indent"] def get_item_track_offset(item: Union[int, str]) -> Union[float, None]: """Gets the item's track offset. Returns: track offset as a int or None """ return internal_dpg.get_item_configuration(item)["track_offset"] def get_item_width(item: Union[int, str]) -> Union[int, None]: """Gets the item's width. Returns: width as a int or None """ return internal_dpg.get_item_configuration(item)["width"] def get_item_height(item: Union[int, str]) -> Union[int, None]: """Gets the item's height. Returns: height as a int or None """ return internal_dpg.get_item_configuration(item)["height"] def get_item_callback(item: Union[int, str]) -> Union[Callable, None]: """Gets the item's callback. Returns: callback as a callable or None """ return internal_dpg.get_item_configuration(item)["callback"] def get_item_drag_callback(item: Union[int, str]) -> Union[Callable, None]: """Gets the item's drag callback. Returns: callback as a callable or None """ return internal_dpg.get_item_configuration(item)["drag_callback"] def get_item_drop_callback(item: Union[int, str]) -> Union[Callable, None]: """Gets the item's drop callback. Returns: callback as a callable or None """ return internal_dpg.get_item_configuration(item)["drop_callback"] def get_item_user_data(item: Union[int, str]) -> Union[Any, None]: """Gets the item's callback data. Returns: callback data as a python object or None """ return internal_dpg.get_item_configuration(item)["user_data"] def get_item_source(item: Union[int, str]) -> Union[str, None]: """Gets the item's source. Returns: source as a string or None """ return internal_dpg.get_item_configuration(item)["source"] ######################################################################################################################## # State Commands ######################################################################################################################## def is_item_hovered(item: Union[int, str]) -> Union[bool, None]: """Checks if item is hovered. Returns: status as a bool """ return internal_dpg.get_item_state(item)["hovered"] def is_item_active(item: Union[int, str]) -> Union[bool, None]: """Checks if item is active. Returns: status as a bool """ return internal_dpg.get_item_state(item)["active"] def is_item_focused(item: Union[int, str]) -> Union[bool, None]: """Checks if item is focused. Returns: status as a bool """ return internal_dpg.get_item_state(item)["focused"] def is_item_clicked(item: Union[int, str]) -> Union[bool, None]: """Checks if item is clicked. Returns: status as a bool """ return internal_dpg.get_item_state(item)["clicked"] def is_item_left_clicked(item: Union[int, str]) -> Union[bool, None]: """Checks if item is left clicked. Returns: status as a bool """ return internal_dpg.get_item_state(item)["left_clicked"] def is_item_right_clicked(item: Union[int, str]) -> Union[bool, None]: """Checks if item is right clicked. Returns: status as a bool """ return internal_dpg.get_item_state(item)["right_clicked"] def is_item_middle_clicked(item: Union[int, str]) -> Union[bool, None]: """Checks if item is middle clicked. Returns: status as a bool """ return internal_dpg.get_item_state(item)["middle_clicked"] def is_item_visible(item: Union[int, str]) -> Union[bool, None]: """Checks if item is visible. Returns: status as a bool """ return internal_dpg.get_item_state(item)["visible"] def is_item_edited(item: Union[int, str]) -> Union[bool, None]: """Checks if item is edited. Returns: status as a bool """ return internal_dpg.get_item_state(item)["edited"] def is_item_activated(item: Union[int, str]) -> Union[bool, None]: """Checks if item is activated. Returns: status as a bool """ return internal_dpg.get_item_state(item)["activated"] def is_item_deactivated(item: Union[int, str]) -> Union[bool, None]: """Checks if item is deactivated. Returns: status as a bool """ return internal_dpg.get_item_state(item)["deactivated"] def is_item_deactivated_after_edit(item: Union[int, str]) -> Union[bool, None]: """Checks if item is deactivated_after_edit. Returns: status as a bool """ return internal_dpg.get_item_state(item)["deactivated_after_edit"] def is_item_toggled_open(item: Union[int, str]) -> Union[bool, None]: """Checks if item is toggled_open. Returns: status as a bool """ return internal_dpg.get_item_state(item)["toggled_open"] def is_item_ok(item: Union[int, str]) -> Union[bool, None]: """Checks if item is ok and can be used. Returns: status as a bool """ return internal_dpg.get_item_state(item)["ok"] def is_item_shown(item: Union[int, str]) -> Union[bool, None]: """Checks if item is shown. Returns: status as a bool """ return internal_dpg.get_item_configuration(item)["show"] def is_item_enabled(item: Union[int, str]) -> Union[bool, None]: """Checks if item is enabled. Returns: status as a bool """ return internal_dpg.get_item_configuration(item)["enabled"] def get_item_pos(item: Union[int, str]) -> List[int]: """Returns item's position. Returns: position """ return internal_dpg.get_item_state(item)["pos"] def get_available_content_region(item: Union[int, str]) -> List[int]: """Returns item's available content region. Returns: position """ return internal_dpg.get_item_state(item)["content_region_avail"] def get_item_rect_size(item: Union[int, str]) -> List[int]: """Returns item's available content region. Returns: position """ return internal_dpg.get_item_state(item)["rect_size"] def get_item_rect_min(item: Union[int, str]) -> List[int]: """Returns item's minimum content region. Returns: position """ return internal_dpg.get_item_state(item)["rect_min"] def get_item_rect_max(item: Union[int, str]) -> List[int]: """Returns item's maximum content region. Returns: position """ return internal_dpg.get_item_state(item)["rect_max"] ######################################################################################################################## # Viewport Setter Commands ######################################################################################################################## def set_viewport_clear_color(color: List[int]): """Sets the viewport's clear color. Returns: None """ internal_dpg.configure_viewport(0, clear_color=color) def set_viewport_small_icon(icon: str): """Sets the viewport's small icon. Must be ico for windows. Returns: None """ internal_dpg.configure_viewport(0, small_icon=icon) def set_viewport_large_icon(icon: str): """Sets the viewport's small icon. Must be ico for windows. Returns: None """ internal_dpg.configure_viewport(0, large_icon=icon) def set_viewport_pos(pos: List[float]): """Sets the viewport's position. Returns: None """ internal_dpg.configure_viewport(0, x_pos=pos[0], y_pos=pos[1]) def set_viewport_width(width: int): """Sets the viewport's width. Returns: None """ internal_dpg.configure_viewport(0, width=width) def set_viewport_height(height: int): """Sets the viewport's height. Returns: None """ internal_dpg.configure_viewport(0, height=height) def set_viewport_min_width(width: int): """Sets the viewport's minimum width. Returns: None """ internal_dpg.configure_viewport(0, min_width=width) def set_viewport_max_width(width: int): """Sets the viewport's max width. Returns: None """ internal_dpg.configure_viewport(0, max_width=width) def set_viewport_min_height(height: int): """Sets the viewport's minimum height. Returns: None """ internal_dpg.configure_viewport(0, min_height=height) def set_viewport_max_height(height: int): """Sets the viewport's max width. Returns: None """ internal_dpg.configure_viewport(0, max_height=height) def set_viewport_title(title: str): """Sets the viewport's title. Returns: None """ internal_dpg.configure_viewport(0, title=title) def set_viewport_always_top(value: bool): """Sets the viewport always on top. Returns: None """ internal_dpg.configure_viewport(0, always_on_top=value) def set_viewport_resizable(value: bool): """Sets the viewport resizable. Returns: None """ internal_dpg.configure_viewport(0, resizable=value) def set_viewport_vsync(value: bool): """Sets the viewport vsync. Returns: None """ internal_dpg.configure_viewport(0, vsync=value) def set_viewport_decorated(value: bool): """Sets the viewport to be decorated. Returns: None """ internal_dpg.configure_viewport(0, decorated=value) ######################################################################################################################## # Viewport Getter Commands ######################################################################################################################## def get_viewport_clear_color() ->List[int]: """Gets the viewport's clear color. Returns: List[int] """ return internal_dpg.get_viewport_configuration()["clear_color"] def get_viewport_pos() ->List[float]: """Gets the viewport's position. Returns: viewport position. """ config = internal_dpg.get_viewport_configuration() x_pos = config["x_pos"] y_pos = config["y_pos"] return [x_pos, y_pos] def get_viewport_width() -> int: """Gets the viewport's width. Returns: viewport width """ return internal_dpg.get_viewport_configuration()["width"] def get_viewport_client_width() -> int: """Gets the viewport's client width. Returns: viewport width """ return internal_dpg.get_viewport_configuration()["client_width"] def get_viewport_client_height() -> int: """Gets the viewport's client height. Returns: viewport width """ return internal_dpg.get_viewport_configuration()["client_height"] def get_viewport_height() -> int: """Gets the viewport's height. Returns: int """ return internal_dpg.get_viewport_configuration()["height"] def get_viewport_min_width() -> int: """Gets the viewport's minimum width. Returns: int """ return internal_dpg.get_viewport_configuration()["min_width"] def get_viewport_max_width() -> int: """Gets the viewport's max width. Returns: int """ return internal_dpg.get_viewport_configuration()["max_width"] def get_viewport_min_height() -> int: """Gets the viewport's minimum height. Returns: int """ return internal_dpg.get_viewport_configuration()["min_height"] def get_viewport_max_height() -> int: """Gets the viewport's max width. Returns: int """ return internal_dpg.get_viewport_configuration()["max_height"] def get_viewport_title() -> str: """Gets the viewport's title. Returns: str """ return internal_dpg.get_viewport_configuration()["title"] def is_viewport_always_top() -> bool: """Checks the viewport always on top flag. Returns: bool """ return internal_dpg.get_viewport_configuration()["always_on_top"] def is_viewport_resizable() -> bool: """Checks the viewport resizable flag. Returns: bool """ return internal_dpg.get_viewport_configuration()["resizable"] def is_viewport_vsync_on() -> bool: """Checks the viewport vsync flag. Returns: bool """ return internal_dpg.get_viewport_configuration()["vsync"] def is_viewport_decorated() -> bool: """Checks if the viewport is docorated. Returns: bool """ return internal_dpg.get_viewport_configuration()["decorated"] ########################################################## # Deprecated Commands ########################################################## def deprecated(reason): string_types = (type(b''), type(u'')) if isinstance(reason, string_types): def decorator(func1): fmt1 = "Call to deprecated function {name} ({reason})." @functools.wraps(func1) def new_func1(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) warnings.warn( fmt1.format(name=func1.__name__, reason=reason), category=DeprecationWarning, stacklevel=2 ) warnings.simplefilter('default', DeprecationWarning) return func1(*args, **kwargs) return new_func1 return decorator elif inspect.isfunction(reason): func2 = reason fmt2 = "Call to deprecated function {name}." @functools.wraps(func2) def new_func2(*args, **kwargs): warnings.simplefilter('always', DeprecationWarning) warnings.warn( fmt2.format(name=func2.__name__), category=DeprecationWarning, stacklevel=2 ) warnings.simplefilter('default', DeprecationWarning) return func2(*args, **kwargs) return new_func2 @deprecated("Use 'configure_app(docking=True, docking_space=dock_space)'.") def enable_docking(dock_space=False): """ deprecated function """ internal_dpg.configure_app(docking=True, docking_space=dock_space) @deprecated("Use 'configure_app(init_file=file)'.") def set_init_file(file="dpg.ini"): """ deprecated function """ internal_dpg.configure_app(init_file=file) @deprecated("Use 'configure_app(init_file=file, load_init_file=True)'.") def load_init_file(file): """ deprecated function """ internal_dpg.configure_app(init_file=file, load_init_file=True) @deprecated("Use: `is_viewport_ok(...)`") def is_viewport_created(): """ deprecated function """ return internal_dpg.is_viewport_ok() @deprecated("Use: \ncreate_viewport()\nsetup_dearpygui()\nshow_viewport()") def setup_viewport(): """ deprecated function """ internal_dpg.create_viewport() internal_dpg.setup_dearpygui() internal_dpg.show_viewport() @deprecated("Use: `bind_item_theme(...)`") def set_item_theme(item, theme): """ deprecated function """ return internal_dpg.bind_item_theme(item, theme) @deprecated("Use: `bind_item_type_disabled_theme(...)`") def set_item_type_disabled_theme(item, theme): """ deprecated function """ return internal_dpg.bind_item_type_disabled_theme(item, theme) @deprecated("Use: `bind_item_type_theme(...)`") def set_item_type_theme(item, theme): """ deprecated function """ return internal_dpg.bind_item_type_theme(item, theme) @deprecated("Use: `bind_item_font(...)`") def set_item_font(item, font): """ deprecated function """ return internal_dpg.bind_item_font(item, font) @deprecated("Use: `add_item_activated_handler(...)`") def add_activated_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_activated_handler(parent, **kwargs) @deprecated("Use: `add_item_active_handler(...)`") def add_active_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_active_handler(parent, **kwargs) @deprecated("Use: `add_item_clicked_handler(...)`") def add_clicked_handler(parent, button=-1, **kwargs): """ deprecated function """ return internal_dpg.add_item_clicked_handler(parent, button, **kwargs) @deprecated("Use: `add_item_deactived_after_edit_handler(...)`") def add_deactivated_after_edit_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_deactivated_after_edit_handler(parent, **kwargs) @deprecated("Use: `add_item_deactivated_handler(...)`") def add_deactivated_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_deactivated_handler(parent, **kwargs) @deprecated("Use: `add_item_edited_handler(...)`") def add_edited_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_edited_handler(parent, **kwargs) @deprecated("Use: `add_item_focus_handler(...)`") def add_focus_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_focus_handler(parent, **kwargs) @deprecated("Use: `add_item_hover_handler(...)`") def add_hover_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_hover_handler(parent, **kwargs) @deprecated("Use: `add_item_resize_handler(...)`") def add_resize_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_resize_handler(parent, **kwargs) @deprecated("Use: `add_item_toggled_open_handler(...)`") def add_toggled_open_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_toggled_open_handler(parent, **kwargs) @deprecated("Use: `add_item_visible_handler(...)`") def add_visible_handler(parent, **kwargs): """ deprecated function """ return internal_dpg.add_item_visible_handler(parent, **kwargs) @deprecated("Use: `bind_colormap(...)`") def set_colormap(item, source): """ deprecated function """ return internal_dpg.bind_colormap(item, source) @deprecated("Use: `bind_theme(0)`") def reset_default_theme(item, source): """ deprecated function """ return internal_dpg.bind_theme(item, source) @deprecated def set_staging_mode(mode): """ deprecated function """ pass @deprecated def add_table_next_column(**kwargs): """ deprecated function """ pass @deprecated("Use: add_stage") def add_staging_container(**kwargs): """ deprecated function """ return internal_dpg.add_stage(**kwargs) @deprecated("Use: stage") @contextmanager def staging_container(**kwargs): """ deprecated function Args: **label (str): Overrides 'name' as label. **user_data (Any): User data for callbacks. **use_internal_label (bool): Use generated internal label instead of user specified (appends ### uuid). **id (Union[int, str]): Unique id used to programmatically refer to the item.If label is unused this will be the label. Yields: Union[int, str] """ try: warnings.warn("'staging_container' is deprecated and was changed to 'stage'", DeprecationWarning, 2) widget = internal_dpg.add_stage_container(**kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @deprecated("Use: add_spacer(...)") def add_spacing(**kwargs): """ (deprecated function) Adds vertical spacing. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks. use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int]], optional): Places the item relative to window coordinates, [0,0] is top left. count (int, optional): Number of spacings to add the size is dependant on the curret style. Returns: Union[int, str] """ if 'count' in kwargs.keys(): count = kwargs["count"] kwargs.pop("count", None) internal_dpg.add_group(**kwargs) internal_dpg.push_container_stack(internal_dpg.last_container()) for i in range(count): internal_dpg.add_spacer() result_id = internal_dpg.pop_container_stack() else: result_id = internal_dpg.add_spacer(**kwargs) return result_id @deprecated("Use: add_spacer(...)") def add_dummy(**kwargs): """ (deprecated function) Adds a spacer or 'dummy' object. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks. use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int]], optional): Places the item relative to window coordinates, [0,0] is top left. Returns: Union[int, str] """ return internal_dpg.add_spacer(**kwargs) @deprecated("Use: `destroy_context()`") def cleanup_dearpygui(): """ deprecated function """ return internal_dpg.destroy_context() @deprecated("Use: group(horizontal=True)") def add_same_line(**kwargs): """ deprecated function """ last_item = internal_dpg.last_item() group = internal_dpg.add_group(horizontal=True, **kwargs) internal_dpg.move_item(last_item, parent=group) internal_dpg.capture_next_item(lambda s: internal_dpg.move_item(s, parent=group)) return group @deprecated("Use: `add_child_window()`") def add_child(**kwargs): """ (deprecated function) Adds an embedded child window. Will show scrollbars when items do not fit. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom border (bool, optional): Shows/Hides the border around the sides. autosize_x (bool, optional): Autosize the window to its parents size in x. autosize_y (bool, optional): Autosize the window to its parents size in y. no_scrollbar (bool, optional): Disable scrollbars (window can still scroll with mouse or programmatically). horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear (off by default). menubar (bool, optional): Shows/Hides the menubar at the top. Returns: Union[int, str] """ return internal_dpg.add_child_window(**kwargs) @deprecated("Use: `child_window()`") @contextmanager def child(**kwargs): """ (deprecated function) Adds an embedded child window. Will show scrollbars when items do not fit. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom border (bool, optional): Shows/Hides the border around the sides. autosize_x (bool, optional): Autosize the window to its parents size in x. autosize_y (bool, optional): Autosize the window to its parents size in y. no_scrollbar (bool, optional): Disable scrollbars (window can still scroll with mouse or programmatically). horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear (off by default). menubar (bool, optional): Shows/Hides the menubar at the top. Yields: Union[int, str] """ try: widget = internal_dpg.add_child_window(**kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @deprecated("Use: Just not recommended") def setup_registries() -> None: """Adds default registries for fonts, handlers, textures, colormaps, and values.""" internal_dpg.add_font_registry(tag=internal_dpg.mvReservedUUID_0) internal_dpg.add_handler_registry(tag=internal_dpg.mvReservedUUID_1) internal_dpg.add_texture_registry(tag=internal_dpg.mvReservedUUID_2) internal_dpg.add_value_registry(tag=internal_dpg.mvReservedUUID_3) internal_dpg.add_colormap_registry(tag=internal_dpg.mvReservedUUID_4) @deprecated("Use: `set_frame_callback()`") def set_start_callback(callback): """ deprecated function """ return internal_dpg.set_frame_callback(3, callback) ########################################################## # Container Context Managers ########################################################## @contextmanager def child_window(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, border: bool =True, autosize_x: bool =False, autosize_y: bool =False, no_scrollbar: bool =False, horizontal_scrollbar: bool =False, menubar: bool =False, **kwargs) -> Union[int, str]: """ Adds an embedded child window. Will show scrollbars when items do not fit. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom border (bool, optional): Shows/Hides the border around the sides. autosize_x (bool, optional): Autosize the window to its parents size in x. autosize_y (bool, optional): Autosize the window to its parents size in y. no_scrollbar (bool, optional): Disable scrollbars (window can still scroll with mouse or programmatically). horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear (off by default). menubar (bool, optional): Shows/Hides the menubar at the top. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_child_window(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, border=border, autosize_x=autosize_x, autosize_y=autosize_y, no_scrollbar=no_scrollbar, horizontal_scrollbar=horizontal_scrollbar, menubar=menubar, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def clipper(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Helper to manually clip large list of items. Increases performance by not searching or drawing widgets outside of the clipped region. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_clipper(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, show=show, delay_search=delay_search, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def collapsing_header(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, closable: bool =False, default_open: bool =False, open_on_double_click: bool =False, open_on_arrow: bool =False, leaf: bool =False, bullet: bool =False, **kwargs) -> Union[int, str]: """ Adds a collapsing header to add items to. Must be closed with the end command. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom closable (bool, optional): Adds the ability to hide this widget by pressing the (x) in the top right of widget. default_open (bool, optional): Sets the collapseable header open by default. open_on_double_click (bool, optional): Need double-click to open node. open_on_arrow (bool, optional): Only open when clicking on the arrow part. leaf (bool, optional): No collapsing, no arrow (use as a convenience for leaf nodes). bullet (bool, optional): Display a bullet instead of arrow. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_collapsing_header(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, closable=closable, default_open=default_open, open_on_double_click=open_on_double_click, open_on_arrow=open_on_arrow, leaf=leaf, bullet=bullet, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def colormap_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =False, **kwargs) -> Union[int, str]: """ Adds a colormap registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_colormap_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def drag_payload(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, show: bool =True, drag_data: Any =None, drop_data: Any =None, payload_type: str ='$$DPG_PAYLOAD', **kwargs) -> Union[int, str]: """ User data payload for drag and drop operations. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. drag_data (Any, optional): Drag data drop_data (Any, optional): Drop data payload_type (str, optional): id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_drag_payload(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, show=show, drag_data=drag_data, drop_data=drop_data, payload_type=payload_type, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def draw_layer(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, perspective_divide: bool =False, depth_clipping: bool =False, cull_mode: int =0, **kwargs) -> Union[int, str]: """ New in 1.1. Creates a layer useful for grouping drawlist items. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. perspective_divide (bool, optional): New in 1.1. apply perspective divide depth_clipping (bool, optional): New in 1.1. apply depth clipping cull_mode (int, optional): New in 1.1. culling mode, mvCullMode_* constants. Only works with triangles currently. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_draw_layer(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, perspective_divide=perspective_divide, depth_clipping=depth_clipping, cull_mode=cull_mode, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def draw_node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ New in 1.1. Creates a drawing node to associate a transformation matrix. Child node matricies will concatenate. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_draw_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def drawlist(width : int, height : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, **kwargs) -> Union[int, str]: """ Adds a drawing canvas. Args: width (int): height (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_drawlist(width, height, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def file_dialog(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, callback: Callable =None, show: bool =True, default_path: str ='', default_filename: str ='.', file_count: int =0, modal: bool =False, directory_selector: bool =False, min_size: Union[List[int], Tuple[int, ...]] =[100, 100], max_size: Union[List[int], Tuple[int, ...]] =[30000, 30000], **kwargs) -> Union[int, str]: """ Displays a file or directory selector depending on keywords. Displays a file dialog by default. Callback will be ran when the file or directory picker is closed. The app_data arguemnt will be populated with information related to the file and directory as a dictionary. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. default_path (str, optional): Path that the file dialog will default to when opened. default_filename (str, optional): Default name that will show in the file name input. file_count (int, optional): Number of visible files in the dialog. modal (bool, optional): Forces user interaction with the file selector. directory_selector (bool, optional): Shows only directory/paths as options. Allows selection of directory/paths only. min_size (Union[List[int], Tuple[int, ...]], optional): Minimum window size. max_size (Union[List[int], Tuple[int, ...]], optional): Maximum window size. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_file_dialog(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, callback=callback, show=show, default_path=default_path, default_filename=default_filename, file_count=file_count, modal=modal, directory_selector=directory_selector, min_size=min_size, max_size=max_size, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def filter_set(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Helper to parse and apply text filters (e.g. aaaaa[, bbbbb][, ccccc]) Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_filter_set(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, show=show, delay_search=delay_search, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def font(file : str, size : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =internal_dpg.mvReservedUUID_0, **kwargs) -> Union[int, str]: """ Adds font to a font registry. Args: file (str): size (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) default_font (bool, optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'default_font' in kwargs.keys(): warnings.warn('default_font keyword removed', DeprecationWarning, 2) kwargs.pop('default_font', None) widget = internal_dpg.add_font(file, size, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def font_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a font registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_font_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def group(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, horizontal: bool =False, horizontal_spacing: float =-1, xoffset: float =0.0, **kwargs) -> Union[int, str]: """ Creates a group that other widgets can belong to. The group allows item commands to be issued for all of its members. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom horizontal (bool, optional): Forces child widgets to be added in a horizontal layout. horizontal_spacing (float, optional): Spacing for the horizontal layout. xoffset (float, optional): Offset from containing window x item location within group. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_group(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, horizontal=horizontal, horizontal_spacing=horizontal_spacing, xoffset=xoffset, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def handler_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a handler registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_handler_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def item_handler_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds an item handler registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_item_handler_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def menu(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, enabled: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, **kwargs) -> Union[int, str]: """ Adds a menu to an existing menu bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_menu(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, enabled=enabled, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def menu_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Adds a menu bar to a window. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_menu_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, show=show, delay_search=delay_search, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, draggable: bool =True, **kwargs) -> Union[int, str]: """ Adds a node to a node editor. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom draggable (bool, optional): Allow node to be draggable. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, draggable=draggable, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def node_attribute(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', tracked: bool =False, track_offset: float =0.5, attribute_type: int =0, shape: int =1, category: str ='general', **kwargs) -> Union[int, str]: """ Adds a node attribute to a node. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom attribute_type (int, optional): mvNode_Attr_Input, mvNode_Attr_Output, or mvNode_Attr_Static. shape (int, optional): Pin shape. category (str, optional): Category id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_node_attribute(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, show=show, filter_key=filter_key, tracked=tracked, track_offset=track_offset, attribute_type=attribute_type, shape=shape, category=category, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def node_editor(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, delink_callback: Callable =None, menubar: bool =False, **kwargs) -> Union[int, str]: """ Adds a node editor. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom delink_callback (Callable, optional): Callback ran when a link is detached. menubar (bool, optional): Shows or hides the menubar. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_node_editor(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, parent=parent, before=before, callback=callback, show=show, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, delink_callback=delink_callback, menubar=menubar, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def plot(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, no_title: bool =False, no_menus: bool =False, no_box_select: bool =False, no_mouse_pos: bool =False, no_highlight: bool =False, no_child: bool =False, query: bool =False, crosshairs: bool =False, anti_aliased: bool =False, equal_aspects: bool =False, pan_button: int =internal_dpg.mvMouseButton_Left, pan_mod: int =-1, fit_button: int =internal_dpg.mvMouseButton_Left, context_menu_button: int =internal_dpg.mvMouseButton_Right, box_select_button: int =internal_dpg.mvMouseButton_Right, box_select_mod: int =-1, box_select_cancel_button: int =internal_dpg.mvMouseButton_Left, query_button: int =internal_dpg.mvMouseButton_Middle, query_mod: int =-1, query_toggle_mod: int =internal_dpg.mvKey_Control, horizontal_mod: int =internal_dpg.mvKey_Alt, vertical_mod: int =internal_dpg.mvKey_Shift, **kwargs) -> Union[int, str]: """ Adds a plot which is used to hold series, and can be drawn to with draw commands. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_title (bool, optional): no_menus (bool, optional): no_box_select (bool, optional): no_mouse_pos (bool, optional): no_highlight (bool, optional): no_child (bool, optional): query (bool, optional): crosshairs (bool, optional): anti_aliased (bool, optional): equal_aspects (bool, optional): pan_button (int, optional): enables panning when held pan_mod (int, optional): optional modifier that must be held for panning fit_button (int, optional): fits visible data when double clicked context_menu_button (int, optional): opens plot context menu (if enabled) when clicked box_select_button (int, optional): begins box selection when pressed and confirms selection when released box_select_mod (int, optional): begins box selection when pressed and confirms selection when released box_select_cancel_button (int, optional): cancels active box selection when pressed query_button (int, optional): begins query selection when pressed and end query selection when released query_mod (int, optional): optional modifier that must be held for query selection query_toggle_mod (int, optional): when held, active box selections turn into queries horizontal_mod (int, optional): expands active box selection/query horizontally to plot edge when held vertical_mod (int, optional): expands active box selection/query vertically to plot edge when held id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_plot(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, no_title=no_title, no_menus=no_menus, no_box_select=no_box_select, no_mouse_pos=no_mouse_pos, no_highlight=no_highlight, no_child=no_child, query=query, crosshairs=crosshairs, anti_aliased=anti_aliased, equal_aspects=equal_aspects, pan_button=pan_button, pan_mod=pan_mod, fit_button=fit_button, context_menu_button=context_menu_button, box_select_button=box_select_button, box_select_mod=box_select_mod, box_select_cancel_button=box_select_cancel_button, query_button=query_button, query_mod=query_mod, query_toggle_mod=query_toggle_mod, horizontal_mod=horizontal_mod, vertical_mod=vertical_mod, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def plot_axis(axis : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, no_gridlines: bool =False, no_tick_marks: bool =False, no_tick_labels: bool =False, log_scale: bool =False, invert: bool =False, lock_min: bool =False, lock_max: bool =False, time: bool =False, **kwargs) -> Union[int, str]: """ Adds an axis to a plot. Args: axis (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. no_gridlines (bool, optional): no_tick_marks (bool, optional): no_tick_labels (bool, optional): log_scale (bool, optional): invert (bool, optional): lock_min (bool, optional): lock_max (bool, optional): time (bool, optional): id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_plot_axis(axis, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, payload_type=payload_type, drop_callback=drop_callback, show=show, no_gridlines=no_gridlines, no_tick_marks=no_tick_marks, no_tick_labels=no_tick_labels, log_scale=log_scale, invert=invert, lock_min=lock_min, lock_max=lock_max, time=time, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def stage(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a stage. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_stage(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def subplots(rows : int, columns : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, row_ratios: Union[List[float], Tuple[float, ...]] =[], column_ratios: Union[List[float], Tuple[float, ...]] =[], no_title: bool =False, no_menus: bool =False, no_resize: bool =False, no_align: bool =False, link_rows: bool =False, link_columns: bool =False, link_all_x: bool =False, link_all_y: bool =False, column_major: bool =False, **kwargs) -> Union[int, str]: """ Adds a collection of plots. Args: rows (int): columns (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom row_ratios (Union[List[float], Tuple[float, ...]], optional): column_ratios (Union[List[float], Tuple[float, ...]], optional): no_title (bool, optional): no_menus (bool, optional): the user will not be able to open context menus with right-click no_resize (bool, optional): resize splitters between subplot cells will be not be provided no_align (bool, optional): subplot edges will not be aligned vertically or horizontally link_rows (bool, optional): link the y-axis limits of all plots in each row (does not apply auxiliary y-axes) link_columns (bool, optional): link the x-axis limits of all plots in each column link_all_x (bool, optional): link the x-axis limits in every plot in the subplot link_all_y (bool, optional): link the y-axis limits in every plot in the subplot (does not apply to auxiliary y-axes) column_major (bool, optional): subplots are added in column major order instead of the default row major order id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_subplots(rows, columns, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, row_ratios=row_ratios, column_ratios=column_ratios, no_title=no_title, no_menus=no_menus, no_resize=no_resize, no_align=no_align, link_rows=link_rows, link_columns=link_columns, link_all_x=link_all_x, link_all_y=link_all_y, column_major=column_major, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def tab(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, closable: bool =False, no_tooltip: bool =False, order_mode: bool =0, **kwargs) -> Union[int, str]: """ Adds a tab to a tab bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom closable (bool, optional): Creates a button on the tab that can hide the tab. no_tooltip (bool, optional): Disable tooltip for the given tab. order_mode (bool, optional): set using a constant: mvTabOrder_Reorderable: allows reordering, mvTabOrder_Fixed: fixed ordering, mvTabOrder_Leading: adds tab to front, mvTabOrder_Trailing: adds tab to back id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_tab(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, closable=closable, no_tooltip=no_tooltip, order_mode=order_mode, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def tab_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, reorderable: bool =False, **kwargs) -> Union[int, str]: """ Adds a tab bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom reorderable (bool, optional): Allows for the user to change the order of the tabs. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_tab_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, reorderable=reorderable, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def table(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, header_row: bool =True, clipper: bool =False, inner_width: int =0, policy: int =0, freeze_rows: int =0, freeze_columns: int =0, sort_multi: bool =False, sort_tristate: bool =False, resizable: bool =False, reorderable: bool =False, hideable: bool =False, sortable: bool =False, context_menu_in_body: bool =False, row_background: bool =False, borders_innerH: bool =False, borders_outerH: bool =False, borders_innerV: bool =False, borders_outerV: bool =False, no_host_extendX: bool =False, no_host_extendY: bool =False, no_keep_columns_visible: bool =False, precise_widths: bool =False, no_clip: bool =False, pad_outerX: bool =False, no_pad_outerX: bool =False, no_pad_innerX: bool =False, scrollX: bool =False, scrollY: bool =False, no_saved_settings: bool =False, **kwargs) -> Union[int, str]: """ Adds a table. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. header_row (bool, optional): show headers at the top of the columns clipper (bool, optional): Use clipper (rows must be same height). inner_width (int, optional): policy (int, optional): freeze_rows (int, optional): freeze_columns (int, optional): sort_multi (bool, optional): Hold shift when clicking headers to sort on multiple column. sort_tristate (bool, optional): Allow no sorting, disable default sorting. resizable (bool, optional): Enable resizing columns reorderable (bool, optional): Enable reordering columns in header row (need calling TableSetupColumn() + TableHeadersRow() to display headers) hideable (bool, optional): Enable hiding/disabling columns in context menu. sortable (bool, optional): Enable sorting. Call TableGetSortSpecs() to obtain sort specs. Also see ImGuiTableFlags_SortMulti and ImGuiTableFlags_SortTristate. context_menu_in_body (bool, optional): Right-click on columns body/contents will display table context menu. By default it is available in TableHeadersRow(). row_background (bool, optional): Set each RowBg color with ImGuiCol_TableRowBg or ImGuiCol_TableRowBgAlt (equivalent of calling TableSetBgColor with ImGuiTableBgFlags_RowBg0 on each row manually) borders_innerH (bool, optional): Draw horizontal borders between rows. borders_outerH (bool, optional): Draw horizontal borders at the top and bottom. borders_innerV (bool, optional): Draw vertical borders between columns. borders_outerV (bool, optional): Draw vertical borders on the left and right sides. no_host_extendX (bool, optional): Make outer width auto-fit to columns, overriding outer_size.x value. Only available when ScrollX/ScrollY are disabled and Stretch columns are not used. no_host_extendY (bool, optional): Make outer height stop exactly at outer_size.y (prevent auto-extending table past the limit). Only available when ScrollX/ScrollY are disabled. Data below the limit will be clipped and not visible. no_keep_columns_visible (bool, optional): Disable keeping column always minimally visible when ScrollX is off and table gets too small. Not recommended if columns are resizable. precise_widths (bool, optional): Disable distributing remainder width to stretched columns (width allocation on a 100-wide table with 3 columns: Without this flag: 33,33,34. With this flag: 33,33,33). With larger number of columns, resizing will appear to be less smooth. no_clip (bool, optional): Disable clipping rectangle for every individual columns. pad_outerX (bool, optional): Default if BordersOuterV is on. Enable outer-most padding. Generally desirable if you have headers. no_pad_outerX (bool, optional): Default if BordersOuterV is off. Disable outer-most padding. no_pad_innerX (bool, optional): Disable inner padding between columns (double inner padding if BordersOuterV is on, single inner padding if BordersOuterV is off). scrollX (bool, optional): Enable horizontal scrolling. Require 'outer_size' parameter of BeginTable() to specify the container size. Changes default sizing policy. Because this create a child window, ScrollY is currently generally recommended when using ScrollX. scrollY (bool, optional): Enable vertical scrolling. no_saved_settings (bool, optional): Never load/save settings in .ini file. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_table(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, header_row=header_row, clipper=clipper, inner_width=inner_width, policy=policy, freeze_rows=freeze_rows, freeze_columns=freeze_columns, sort_multi=sort_multi, sort_tristate=sort_tristate, resizable=resizable, reorderable=reorderable, hideable=hideable, sortable=sortable, context_menu_in_body=context_menu_in_body, row_background=row_background, borders_innerH=borders_innerH, borders_outerH=borders_outerH, borders_innerV=borders_innerV, borders_outerV=borders_outerV, no_host_extendX=no_host_extendX, no_host_extendY=no_host_extendY, no_keep_columns_visible=no_keep_columns_visible, precise_widths=precise_widths, no_clip=no_clip, pad_outerX=pad_outerX, no_pad_outerX=no_pad_outerX, no_pad_innerX=no_pad_innerX, scrollX=scrollX, scrollY=scrollY, no_saved_settings=no_saved_settings, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def table_cell(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', **kwargs) -> Union[int, str]: """ Adds a table. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_table_cell(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, height=height, parent=parent, before=before, show=show, filter_key=filter_key, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def table_row(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', **kwargs) -> Union[int, str]: """ Adds a table row. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_table_row(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, height=height, parent=parent, before=before, show=show, filter_key=filter_key, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def template_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a template registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_template_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def texture_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =False, **kwargs) -> Union[int, str]: """ Adds a dynamic texture. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_texture_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def theme(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a theme. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) default_theme (bool, optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'default_theme' in kwargs.keys(): warnings.warn('default_theme keyword removed', DeprecationWarning, 2) kwargs.pop('default_theme', None) widget = internal_dpg.add_theme(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def theme_component(item_type : int =0, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, enabled_state: bool =True, **kwargs) -> Union[int, str]: """ Adds a theme component. Args: item_type (int, optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. enabled_state (bool, optional): id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_theme_component(item_type, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, enabled_state=enabled_state, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def tooltip(parent : Union[int, str], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a tooltip window. Args: parent (Union[int, str]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_tooltip(parent, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def tree_node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, default_open: bool =False, open_on_double_click: bool =False, open_on_arrow: bool =False, leaf: bool =False, bullet: bool =False, selectable: bool =False, **kwargs) -> Union[int, str]: """ Adds a tree node to add items to. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_open (bool, optional): Sets the tree node open by default. open_on_double_click (bool, optional): Need double-click to open node. open_on_arrow (bool, optional): Only open when clicking on the arrow part. leaf (bool, optional): No collapsing, no arrow (use as a convenience for leaf nodes). bullet (bool, optional): Display a bullet instead of arrow. selectable (bool, optional): Makes the tree selectable. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_tree_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, default_open=default_open, open_on_double_click=open_on_double_click, open_on_arrow=open_on_arrow, leaf=leaf, bullet=bullet, selectable=selectable, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def value_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a value registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_value_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def viewport_drawlist(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, filter_key: str ='', delay_search: bool =False, front: bool =True, **kwargs) -> Union[int, str]: """ A container that is used to present draw items or layers directly to the viewport. By default this will draw to the back of the viewport. Layers and draw items should be added to this widget as children. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. front (bool, optional): Draws to the front of the view port instead of the back. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_viewport_drawlist(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, filter_key=filter_key, delay_search=delay_search, front=front, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def viewport_menu_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Adds a menubar to the viewport. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_viewport_menu_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, show=show, delay_search=delay_search, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() @contextmanager def window(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], delay_search: bool =False, min_size: Union[List[int], Tuple[int, ...]] =[100, 100], max_size: Union[List[int], Tuple[int, ...]] =[30000, 30000], menubar: bool =False, collapsed: bool =False, autosize: bool =False, no_resize: bool =False, no_title_bar: bool =False, no_move: bool =False, no_scrollbar: bool =False, no_collapse: bool =False, horizontal_scrollbar: bool =False, no_focus_on_appearing: bool =False, no_bring_to_front_on_focus: bool =False, no_close: bool =False, no_background: bool =False, modal: bool =False, popup: bool =False, no_saved_settings: bool =False, no_open_over_existing_popup: bool =True, on_close: Callable =None, **kwargs) -> Union[int, str]: """ Creates a new window for following items to be added to. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. min_size (Union[List[int], Tuple[int, ...]], optional): Minimum window size. max_size (Union[List[int], Tuple[int, ...]], optional): Maximum window size. menubar (bool, optional): Shows or hides the menubar. collapsed (bool, optional): Collapse the window. autosize (bool, optional): Autosized the window to fit it's items. no_resize (bool, optional): Allows for the window size to be changed or fixed. no_title_bar (bool, optional): Title name for the title bar of the window. no_move (bool, optional): Allows for the window's position to be changed or fixed. no_scrollbar (bool, optional): Disable scrollbars. (window can still scroll with mouse or programmatically) no_collapse (bool, optional): Disable user collapsing window by double-clicking on it. horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear. (off by default) no_focus_on_appearing (bool, optional): Disable taking focus when transitioning from hidden to visible state. no_bring_to_front_on_focus (bool, optional): Disable bringing window to front when taking focus. (e.g. clicking on it or programmatically giving it focus) no_close (bool, optional): Disable user closing the window by removing the close button. no_background (bool, optional): Sets Background and border alpha to transparent. modal (bool, optional): Fills area behind window according to the theme and disables user ability to interact with anything except the window. popup (bool, optional): Fills area behind window according to the theme, removes title bar, collapse and close. Window can be closed by selecting area in the background behind the window. no_saved_settings (bool, optional): Never load/save settings in .ini file. no_open_over_existing_popup (bool, optional): Don't open if there's already a popup on_close (Callable, optional): Callback ran when window is closed. id (Union[int, str], optional): (deprecated) Yields: Union[int, str] """ try: if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] widget = internal_dpg.add_window(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, show=show, pos=pos, delay_search=delay_search, min_size=min_size, max_size=max_size, menubar=menubar, collapsed=collapsed, autosize=autosize, no_resize=no_resize, no_title_bar=no_title_bar, no_move=no_move, no_scrollbar=no_scrollbar, no_collapse=no_collapse, horizontal_scrollbar=horizontal_scrollbar, no_focus_on_appearing=no_focus_on_appearing, no_bring_to_front_on_focus=no_bring_to_front_on_focus, no_close=no_close, no_background=no_background, modal=modal, popup=popup, no_saved_settings=no_saved_settings, no_open_over_existing_popup=no_open_over_existing_popup, on_close=on_close, **kwargs) internal_dpg.push_container_stack(widget) yield widget finally: internal_dpg.pop_container_stack() ########################################################## # Core Wrappings ########################################################## def add_2d_histogram_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, xbins: int =-1, ybins: int =-1, xmin_range: float =0.0, xmax_range: float =1.0, ymin_range: float =0.0, ymax_range: float =1.0, density: bool =False, outliers: bool =True, **kwargs) -> Union[int, str]: """ Adds a 2d histogram series. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. xbins (int, optional): ybins (int, optional): xmin_range (float, optional): xmax_range (float, optional): ymin_range (float, optional): ymax_range (float, optional): density (bool, optional): outliers (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_2d_histogram_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, xbins=xbins, ybins=ybins, xmin_range=xmin_range, xmax_range=xmax_range, ymin_range=ymin_range, ymax_range=ymax_range, density=density, outliers=outliers, **kwargs) def add_3d_slider(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), max_x: float =100.0, max_y: float =100.0, max_z: float =100.0, min_x: float =0.0, min_y: float =0.0, min_z: float =0.0, scale: float =1.0, **kwargs) -> Union[int, str]: """ Adds a 3D box slider. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[float], Tuple[float, ...]], optional): max_x (float, optional): Applies upper limit to slider. max_y (float, optional): Applies upper limit to slider. max_z (float, optional): Applies upper limit to slider. min_x (float, optional): Applies lower limit to slider. min_y (float, optional): Applies lower limit to slider. min_z (float, optional): Applies lower limit to slider. scale (float, optional): Size of the widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_3d_slider(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, max_x=max_x, max_y=max_y, max_z=max_z, min_x=min_x, min_y=min_y, min_z=min_z, scale=scale, **kwargs) def add_alias(alias : str, item : Union[int, str], **kwargs) -> None: """ Adds an alias. Args: alias (str): item (Union[int, str]): Returns: None """ return internal_dpg.add_alias(alias, item, **kwargs) def add_area_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), contribute_to_bounds: bool =True, **kwargs) -> Union[int, str]: """ Adds an area series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. fill (Union[List[int], Tuple[int, ...]], optional): contribute_to_bounds (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_area_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, fill=fill, contribute_to_bounds=contribute_to_bounds, **kwargs) def add_bar_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, weight: float =1.0, horizontal: bool =False, **kwargs) -> Union[int, str]: """ Adds a bar series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. weight (float, optional): horizontal (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_bar_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, weight=weight, horizontal=horizontal, **kwargs) def add_bool_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: bool =False, parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a bool value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (bool, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_bool_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_button(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, small: bool =False, arrow: bool =False, direction: int =0, **kwargs) -> Union[int, str]: """ Adds a button. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom small (bool, optional): Shrinks the size of the button to the text of the label it contains. Useful for embedding in text. arrow (bool, optional): Displays an arrow in place of the text string. This requires the direction keyword. direction (int, optional): Sets the cardinal direction for the arrow buy using constants mvDir_Left, mvDir_Up, mvDir_Down, mvDir_Right, mvDir_None. Arrow keyword must be set to True. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_button(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, small=small, arrow=arrow, direction=direction, **kwargs) def add_candle_series(dates : Union[List[float], Tuple[float, ...]], opens : Union[List[float], Tuple[float, ...]], closes : Union[List[float], Tuple[float, ...]], lows : Union[List[float], Tuple[float, ...]], highs : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, bull_color: Union[List[int], Tuple[int, ...]] =(0, 255, 113, 255), bear_color: Union[List[int], Tuple[int, ...]] =(218, 13, 79, 255), weight: int =0.25, tooltip: bool =True, **kwargs) -> Union[int, str]: """ Adds a candle series to a plot. Args: dates (Any): opens (Any): closes (Any): lows (Any): highs (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. bull_color (Union[List[int], Tuple[int, ...]], optional): bear_color (Union[List[int], Tuple[int, ...]], optional): weight (int, optional): tooltip (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_candle_series(dates, opens, closes, lows, highs, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, bull_color=bull_color, bear_color=bear_color, weight=weight, tooltip=tooltip, **kwargs) def add_char_remap(source : int, target : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Remaps a character. Args: source (int): target (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_char_remap(source, target, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_checkbox(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: bool =False, **kwargs) -> Union[int, str]: """ Adds a checkbox. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (bool, optional): Sets the default value of the checkmark id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_checkbox(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, **kwargs) def add_child_window(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, border: bool =True, autosize_x: bool =False, autosize_y: bool =False, no_scrollbar: bool =False, horizontal_scrollbar: bool =False, menubar: bool =False, **kwargs) -> Union[int, str]: """ Adds an embedded child window. Will show scrollbars when items do not fit. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom border (bool, optional): Shows/Hides the border around the sides. autosize_x (bool, optional): Autosize the window to its parents size in x. autosize_y (bool, optional): Autosize the window to its parents size in y. no_scrollbar (bool, optional): Disable scrollbars (window can still scroll with mouse or programmatically). horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear (off by default). menubar (bool, optional): Shows/Hides the menubar at the top. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_child_window(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, border=border, autosize_x=autosize_x, autosize_y=autosize_y, no_scrollbar=no_scrollbar, horizontal_scrollbar=horizontal_scrollbar, menubar=menubar, **kwargs) def add_clipper(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Helper to manually clip large list of items. Increases performance by not searching or drawing widgets outside of the clipped region. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_clipper(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, show=show, delay_search=delay_search, **kwargs) def add_collapsing_header(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, closable: bool =False, default_open: bool =False, open_on_double_click: bool =False, open_on_arrow: bool =False, leaf: bool =False, bullet: bool =False, **kwargs) -> Union[int, str]: """ Adds a collapsing header to add items to. Must be closed with the end command. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom closable (bool, optional): Adds the ability to hide this widget by pressing the (x) in the top right of widget. default_open (bool, optional): Sets the collapseable header open by default. open_on_double_click (bool, optional): Need double-click to open node. open_on_arrow (bool, optional): Only open when clicking on the arrow part. leaf (bool, optional): No collapsing, no arrow (use as a convenience for leaf nodes). bullet (bool, optional): Display a bullet instead of arrow. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_collapsing_header(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, closable=closable, default_open=default_open, open_on_double_click=open_on_double_click, open_on_arrow=open_on_arrow, leaf=leaf, bullet=bullet, **kwargs) def add_color_button(default_value : Union[List[int], Tuple[int, ...]] =(0, 0, 0, 255), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, no_alpha: bool =False, no_border: bool =False, no_drag_drop: bool =False, **kwargs) -> Union[int, str]: """ Adds a color button. Args: default_value (Union[List[int], Tuple[int, ...]], optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_alpha (bool, optional): Removes the displayed slider that can change alpha channel. no_border (bool, optional): Disable border around the image. no_drag_drop (bool, optional): Disable ability to drag and drop small preview (color square) to apply colors to other items. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_color_button(default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, no_alpha=no_alpha, no_border=no_border, no_drag_drop=no_drag_drop, **kwargs) def add_color_edit(default_value : Union[List[int], Tuple[int, ...]] =(0, 0, 0, 255), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, no_alpha: bool =False, no_picker: bool =False, no_options: bool =False, no_small_preview: bool =False, no_inputs: bool =False, no_tooltip: bool =False, no_label: bool =False, no_drag_drop: bool =False, alpha_bar: bool =False, alpha_preview: int =0, display_mode: int =1048576, display_type: int =8388608, input_mode: int =134217728, **kwargs) -> Union[int, str]: """ Adds an RGBA color editor. Left clicking the small color preview will provide a color picker. Click and draging the small color preview will copy the color to be applied on any other color widget. Args: default_value (Union[List[int], Tuple[int, ...]], optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_alpha (bool, optional): Removes the displayed slider that can change alpha channel. no_picker (bool, optional): Disable picker popup when color square is clicked. no_options (bool, optional): Disable toggling options menu when right-clicking on inputs/small preview. no_small_preview (bool, optional): Disable colored square preview next to the inputs. (e.g. to show only the inputs). This only displays if the side preview is not shown. no_inputs (bool, optional): Disable inputs sliders/text widgets. (e.g. to show only the small preview colored square) no_tooltip (bool, optional): Disable tooltip when hovering the preview. no_label (bool, optional): Disable display of inline text label. no_drag_drop (bool, optional): Disable ability to drag and drop small preview (color square) to apply colors to other items. alpha_bar (bool, optional): Show vertical alpha bar/gradient in picker. alpha_preview (int, optional): mvColorEdit_AlphaPreviewNone, mvColorEdit_AlphaPreview, or mvColorEdit_AlphaPreviewHalf display_mode (int, optional): mvColorEdit_rgb, mvColorEdit_hsv, or mvColorEdit_hex display_type (int, optional): mvColorEdit_uint8 or mvColorEdit_float input_mode (int, optional): mvColorEdit_input_rgb or mvColorEdit_input_hsv id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_color_edit(default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, no_alpha=no_alpha, no_picker=no_picker, no_options=no_options, no_small_preview=no_small_preview, no_inputs=no_inputs, no_tooltip=no_tooltip, no_label=no_label, no_drag_drop=no_drag_drop, alpha_bar=alpha_bar, alpha_preview=alpha_preview, display_mode=display_mode, display_type=display_type, input_mode=input_mode, **kwargs) def add_color_picker(default_value : Union[List[int], Tuple[int, ...]] =(0, 0, 0, 255), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, no_alpha: bool =False, no_side_preview: bool =False, no_small_preview: bool =False, no_inputs: bool =False, no_tooltip: bool =False, no_label: bool =False, alpha_bar: bool =False, display_rgb: bool =False, display_hsv: bool =False, display_hex: bool =False, picker_mode: int =33554432, alpha_preview: int =0, display_type: int =8388608, input_mode: int =134217728, **kwargs) -> Union[int, str]: """ Adds an RGB color picker. Right click the color picker for options. Click and drag the color preview to copy the color and drop on any other color widget to apply. Right Click allows the style of the color picker to be changed. Args: default_value (Union[List[int], Tuple[int, ...]], optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_alpha (bool, optional): Removes the displayed slider that can change alpha channel. no_side_preview (bool, optional): Disable bigger color preview on right side of the picker, use small colored square preview instead , unless small preview is also hidden. no_small_preview (bool, optional): Disable colored square preview next to the inputs. (e.g. to show only the inputs). This only displays if the side preview is not shown. no_inputs (bool, optional): Disable inputs sliders/text widgets. (e.g. to show only the small preview colored square) no_tooltip (bool, optional): Disable tooltip when hovering the preview. no_label (bool, optional): Disable display of inline text label. alpha_bar (bool, optional): Show vertical alpha bar/gradient in picker. display_rgb (bool, optional): Override _display_ type among RGB/HSV/Hex. display_hsv (bool, optional): Override _display_ type among RGB/HSV/Hex. display_hex (bool, optional): Override _display_ type among RGB/HSV/Hex. picker_mode (int, optional): mvColorPicker_bar or mvColorPicker_wheel alpha_preview (int, optional): mvColorEdit_AlphaPreviewNone, mvColorEdit_AlphaPreview, or mvColorEdit_AlphaPreviewHalf display_type (int, optional): mvColorEdit_uint8 or mvColorEdit_float input_mode (int, optional): mvColorEdit_input_rgb or mvColorEdit_input_hsv id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_color_picker(default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, no_alpha=no_alpha, no_side_preview=no_side_preview, no_small_preview=no_small_preview, no_inputs=no_inputs, no_tooltip=no_tooltip, no_label=no_label, alpha_bar=alpha_bar, display_rgb=display_rgb, display_hsv=display_hsv, display_hex=display_hex, picker_mode=picker_mode, alpha_preview=alpha_preview, display_type=display_type, input_mode=input_mode, **kwargs) def add_color_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a color value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Union[List[float], Tuple[float, ...]], optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_color_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_colormap(colors : List[Union[List[int], Tuple[int, ...]]], qualitative : bool, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_4, **kwargs) -> Union[int, str]: """ Adds a legend that pairs colors with normalized value 0.0->1.0. Each color will be This is typically used with a heat series. (ex. [[0, 0, 0, 255], [255, 255, 255, 255]] will be mapped to a soft transition from 0.0-1.0) Args: colors (Any): colors that will be mapped to the normalized value 0.0->1.0 qualitative (bool): Qualitative will create hard transitions for color boundries across the value range when enabled. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_colormap(colors, qualitative, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, parent=parent, **kwargs) def add_colormap_button(default_value : Union[List[int], Tuple[int, ...]] =(0, 0, 0, 255), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, **kwargs) -> Union[int, str]: """ Adds a button that a color map can be bound to. Args: default_value (Union[List[int], Tuple[int, ...]], optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_colormap_button(default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, **kwargs) def add_colormap_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =False, **kwargs) -> Union[int, str]: """ Adds a colormap registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_colormap_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_colormap_scale(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], colormap: Union[int, str] =0, min_scale: float =0.0, max_scale: float =1.0, **kwargs) -> Union[int, str]: """ Adds a legend that pairs values with colors. This is typically used with a heat series. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. colormap (Union[int, str], optional): mvPlotColormap_* constants or mvColorMap uuid from a color map registry min_scale (float, optional): Sets the min number of the color scale. Typically is the same as the min scale from the heat series. max_scale (float, optional): Sets the max number of the color scale. Typically is the same as the max scale from the heat series. id (Union[int, str], optional): (deprecated) drag_callback (Callable, optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'drag_callback' in kwargs.keys(): warnings.warn('drag_callback keyword removed', DeprecationWarning, 2) kwargs.pop('drag_callback', None) return internal_dpg.add_colormap_scale(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, drop_callback=drop_callback, show=show, pos=pos, colormap=colormap, min_scale=min_scale, max_scale=max_scale, **kwargs) def add_colormap_slider(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: float =0.0, **kwargs) -> Union[int, str]: """ Adds a color slider that a color map can be bound to. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (float, optional): id (Union[int, str], optional): (deprecated) drag_callback (Callable, optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'drag_callback' in kwargs.keys(): warnings.warn('drag_callback keyword removed', DeprecationWarning, 2) kwargs.pop('drag_callback', None) return internal_dpg.add_colormap_slider(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, **kwargs) def add_combo(items : Union[List[str], Tuple[str, ...]] =(), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: str ='', popup_align_left: bool =False, no_arrow_button: bool =False, no_preview: bool =False, height_mode: int =1, **kwargs) -> Union[int, str]: """ Adds a combo dropdown that allows a user to select a single option from a drop down window. All items will be shown as selectables on the dropdown. Args: items (Union[List[str], Tuple[str, ...]], optional): A tuple of items to be shown in the drop down window. Can consist of any combination of types but will convert all items to strings to be shown. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (str, optional): Sets a selected item from the drop down by specifying the string value. popup_align_left (bool, optional): Align the contents on the popup toward the left. no_arrow_button (bool, optional): Display the preview box without the square arrow button indicating dropdown activity. no_preview (bool, optional): Display only the square arrow button and not the selected value. height_mode (int, optional): Controlls the number of items shown in the dropdown by the constants mvComboHeight_Small, mvComboHeight_Regular, mvComboHeight_Large, mvComboHeight_Largest id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_combo(items, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, popup_align_left=popup_align_left, no_arrow_button=no_arrow_button, no_preview=no_preview, height_mode=height_mode, **kwargs) def add_date_picker(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: dict ={'month_day': 14, 'year':20, 'month':5}, level: int =0, **kwargs) -> Union[int, str]: """ Adds a data picker. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (dict, optional): level (int, optional): Use avaliable constants. mvDatePickerLevel_Day, mvDatePickerLevel_Month, mvDatePickerLevel_Year id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_date_picker(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, level=level, **kwargs) def add_double4_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Any =(0.0, 0.0, 0.0, 0.0), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a double value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Any, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_double4_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_double_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: float =0.0, parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a double value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (float, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_double_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_drag_float(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: float =0.0, format: str ='%0.3f', speed: float =1.0, min_value: float =0.0, max_value: float =100.0, no_input: bool =False, clamped: bool =False, **kwargs) -> Union[int, str]: """ Adds drag for a single float value. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the drag. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (float, optional): format (str, optional): Determines the format the float will be displayed as use python string formatting. speed (float, optional): Sets the sensitivity the float will be modified while dragging. min_value (float, optional): Applies a limit only to draging entry only. max_value (float, optional): Applies a limit only to draging entry only. no_input (bool, optional): Disable direct entry methods or Enter key allowing to input text directly into the widget. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_float(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, format=format, speed=speed, min_value=min_value, max_value=max_value, no_input=no_input, clamped=clamped, **kwargs) def add_drag_floatx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), size: int =4, format: str ='%0.3f', speed: float =1.0, min_value: float =0.0, max_value: float =100.0, no_input: bool =False, clamped: bool =False, **kwargs) -> Union[int, str]: """ Adds drag input for a set of float values up to 4. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the drag. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[float], Tuple[float, ...]], optional): size (int, optional): Number of floats to be displayed. format (str, optional): Determines the format the float will be displayed as use python string formatting. speed (float, optional): Sets the sensitivity the float will be modified while dragging. min_value (float, optional): Applies a limit only to draging entry only. max_value (float, optional): Applies a limit only to draging entry only. no_input (bool, optional): Disable direct entry methods or Enter key allowing to input text directly into the widget. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_floatx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, size=size, format=format, speed=speed, min_value=min_value, max_value=max_value, no_input=no_input, clamped=clamped, **kwargs) def add_drag_int(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: int =0, format: str ='%d', speed: float =1.0, min_value: int =0, max_value: int =100, no_input: bool =False, clamped: bool =False, **kwargs) -> Union[int, str]: """ Adds drag for a single int value. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the drag. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (int, optional): format (str, optional): Determines the format the float will be displayed as use python string formatting. speed (float, optional): Sets the sensitivity the float will be modified while dragging. min_value (int, optional): Applies a limit only to draging entry only. max_value (int, optional): Applies a limit only to draging entry only. no_input (bool, optional): Disable direct entry methods or Enter key allowing to input text directly into the widget. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_int(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, format=format, speed=speed, min_value=min_value, max_value=max_value, no_input=no_input, clamped=clamped, **kwargs) def add_drag_intx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[int], Tuple[int, ...]] =(0, 0, 0, 0), size: int =4, format: str ='%d', speed: float =1.0, min_value: int =0, max_value: int =100, no_input: bool =False, clamped: bool =False, **kwargs) -> Union[int, str]: """ Adds drag input for a set of int values up to 4. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the drag. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[int], Tuple[int, ...]], optional): size (int, optional): Number of ints to be displayed. format (str, optional): Determines the format the int will be displayed as use python string formatting. speed (float, optional): Sets the sensitivity the float will be modified while dragging. min_value (int, optional): Applies a limit only to draging entry only. max_value (int, optional): Applies a limit only to draging entry only. no_input (bool, optional): Disable direct entry methods or Enter key allowing to input text directly into the widget. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_intx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, size=size, format=format, speed=speed, min_value=min_value, max_value=max_value, no_input=no_input, clamped=clamped, **kwargs) def add_drag_line(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, callback: Callable =None, show: bool =True, default_value: Any =0.0, color: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, show_label: bool =True, vertical: bool =True, **kwargs) -> Union[int, str]: """ Adds a drag line to a plot. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. default_value (Any, optional): color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): show_label (bool, optional): vertical (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_line(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, callback=callback, show=show, default_value=default_value, color=color, thickness=thickness, show_label=show_label, vertical=vertical, **kwargs) def add_drag_payload(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, show: bool =True, drag_data: Any =None, drop_data: Any =None, payload_type: str ='$$DPG_PAYLOAD', **kwargs) -> Union[int, str]: """ User data payload for drag and drop operations. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. drag_data (Any, optional): Drag data drop_data (Any, optional): Drop data payload_type (str, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_payload(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, show=show, drag_data=drag_data, drop_data=drop_data, payload_type=payload_type, **kwargs) def add_drag_point(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, callback: Callable =None, show: bool =True, default_value: Any =(0.0, 0.0), color: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, show_label: bool =True, **kwargs) -> Union[int, str]: """ Adds a drag point to a plot. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. default_value (Any, optional): color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): show_label (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drag_point(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, callback=callback, show=show, default_value=default_value, color=color, thickness=thickness, show_label=show_label, **kwargs) def add_draw_layer(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, perspective_divide: bool =False, depth_clipping: bool =False, cull_mode: int =0, **kwargs) -> Union[int, str]: """ New in 1.1. Creates a layer useful for grouping drawlist items. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. perspective_divide (bool, optional): New in 1.1. apply perspective divide depth_clipping (bool, optional): New in 1.1. apply depth clipping cull_mode (int, optional): New in 1.1. culling mode, mvCullMode_* constants. Only works with triangles currently. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_draw_layer(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, perspective_divide=perspective_divide, depth_clipping=depth_clipping, cull_mode=cull_mode, **kwargs) def add_draw_node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ New in 1.1. Creates a drawing node to associate a transformation matrix. Child node matricies will concatenate. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_draw_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, **kwargs) def add_drawlist(width : int, height : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, **kwargs) -> Union[int, str]: """ Adds a drawing canvas. Args: width (int): height (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_drawlist(width, height, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, **kwargs) def add_dynamic_texture(width : int, height : int, default_value : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =internal_dpg.mvReservedUUID_2, **kwargs) -> Union[int, str]: """ Adds a dynamic texture. Args: width (int): height (int): default_value (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_dynamic_texture(width, height, default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_error_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], negative : Union[List[float], Tuple[float, ...]], positive : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, contribute_to_bounds: bool =True, horizontal: bool =False, **kwargs) -> Union[int, str]: """ Adds an error series to a plot. Args: x (Any): y (Any): negative (Any): positive (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. contribute_to_bounds (bool, optional): horizontal (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_error_series(x, y, negative, positive, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, contribute_to_bounds=contribute_to_bounds, horizontal=horizontal, **kwargs) def add_file_dialog(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, callback: Callable =None, show: bool =True, default_path: str ='', default_filename: str ='.', file_count: int =0, modal: bool =False, directory_selector: bool =False, min_size: Union[List[int], Tuple[int, ...]] =[100, 100], max_size: Union[List[int], Tuple[int, ...]] =[30000, 30000], **kwargs) -> Union[int, str]: """ Displays a file or directory selector depending on keywords. Displays a file dialog by default. Callback will be ran when the file or directory picker is closed. The app_data arguemnt will be populated with information related to the file and directory as a dictionary. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. default_path (str, optional): Path that the file dialog will default to when opened. default_filename (str, optional): Default name that will show in the file name input. file_count (int, optional): Number of visible files in the dialog. modal (bool, optional): Forces user interaction with the file selector. directory_selector (bool, optional): Shows only directory/paths as options. Allows selection of directory/paths only. min_size (Union[List[int], Tuple[int, ...]], optional): Minimum window size. max_size (Union[List[int], Tuple[int, ...]], optional): Maximum window size. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_file_dialog(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, callback=callback, show=show, default_path=default_path, default_filename=default_filename, file_count=file_count, modal=modal, directory_selector=directory_selector, min_size=min_size, max_size=max_size, **kwargs) def add_file_extension(extension : str, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, custom_text: str ='', color: Union[List[int], Tuple[int, ...]] =(-255, 0, 0, 255), **kwargs) -> Union[int, str]: """ Creates a file extension filter option in the file dialog. Args: extension (str): Extension that will show as an when the parent is a file dialog. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. custom_text (str, optional): Replaces the displayed text in the drop down for this extension. color (Union[List[int], Tuple[int, ...]], optional): Color for the text that will be shown with specified extensions. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_file_extension(extension, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, parent=parent, before=before, custom_text=custom_text, color=color, **kwargs) def add_filter_set(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Helper to parse and apply text filters (e.g. aaaaa[, bbbbb][, ccccc]) Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_filter_set(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, show=show, delay_search=delay_search, **kwargs) def add_float4_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a float4 value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Union[List[float], Tuple[float, ...]], optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_float4_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_float_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: float =0.0, parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a float value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (float, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_float_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_float_vect_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Union[List[float], Tuple[float, ...]] =(), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a float vect value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Union[List[float], Tuple[float, ...]], optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_float_vect_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_font(file : str, size : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =internal_dpg.mvReservedUUID_0, **kwargs) -> Union[int, str]: """ Adds font to a font registry. Args: file (str): size (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) default_font (bool, optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'default_font' in kwargs.keys(): warnings.warn('default_font keyword removed', DeprecationWarning, 2) kwargs.pop('default_font', None) return internal_dpg.add_font(file, size, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_font_chars(chars : Union[List[int], Tuple[int, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds specific font characters to a font. Args: chars (Union[List[int], Tuple[int, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_font_chars(chars, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_font_range(first_char : int, last_char : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a range of font characters to a font. Args: first_char (int): last_char (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_font_range(first_char, last_char, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_font_range_hint(hint : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a range of font characters (mvFontRangeHint_ constants). Args: hint (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_font_range_hint(hint, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_font_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a font registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_font_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_group(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, horizontal: bool =False, horizontal_spacing: float =-1, xoffset: float =0.0, **kwargs) -> Union[int, str]: """ Creates a group that other widgets can belong to. The group allows item commands to be issued for all of its members. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom horizontal (bool, optional): Forces child widgets to be added in a horizontal layout. horizontal_spacing (float, optional): Spacing for the horizontal layout. xoffset (float, optional): Offset from containing window x item location within group. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_group(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, horizontal=horizontal, horizontal_spacing=horizontal_spacing, xoffset=xoffset, **kwargs) def add_handler_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a handler registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_handler_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_heat_series(x : Union[List[float], Tuple[float, ...]], rows : int, cols : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, scale_min: float =0.0, scale_max: float =1.0, bounds_min: Any =(0.0, 0.0), bounds_max: Any =(1.0, 1.0), format: str ='%0.1f', contribute_to_bounds: bool =True, **kwargs) -> Union[int, str]: """ Adds a heat series to a plot. Args: x (Any): rows (int): cols (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. scale_min (float, optional): Sets the color scale min. Typically paired with the color scale widget scale_min. scale_max (float, optional): Sets the color scale max. Typically paired with the color scale widget scale_max. bounds_min (Any, optional): bounds_max (Any, optional): format (str, optional): contribute_to_bounds (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_heat_series(x, rows, cols, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, scale_min=scale_min, scale_max=scale_max, bounds_min=bounds_min, bounds_max=bounds_max, format=format, contribute_to_bounds=contribute_to_bounds, **kwargs) def add_histogram_series(x : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, bins: int =-1, bar_scale: float =1.0, min_range: float =0.0, max_range: float =1.0, cumlative: bool =False, density: bool =False, outliers: bool =True, contribute_to_bounds: bool =True, **kwargs) -> Union[int, str]: """ Adds a histogram series to a plot. Args: x (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. bins (int, optional): bar_scale (float, optional): min_range (float, optional): max_range (float, optional): cumlative (bool, optional): density (bool, optional): outliers (bool, optional): contribute_to_bounds (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_histogram_series(x, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, bins=bins, bar_scale=bar_scale, min_range=min_range, max_range=max_range, cumlative=cumlative, density=density, outliers=outliers, contribute_to_bounds=contribute_to_bounds, **kwargs) def add_hline_series(x : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds an infinite horizontal line series to a plot. Args: x (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_hline_series(x, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, **kwargs) def add_image(texture_tag : Union[int, str], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, tint_color: Union[List[float], Tuple[float, ...]] =(255, 255, 255, 255), border_color: Union[List[float], Tuple[float, ...]] =(0, 0, 0, 0), uv_min: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), uv_max: Union[List[float], Tuple[float, ...]] =(1.0, 1.0), **kwargs) -> Union[int, str]: """ Adds an image from a specified texture. uv_min and uv_max represent the normalized texture coordinates of the original image that will be shown. Using range (0.0,0.0)->(1.0,1.0) for texture coordinates will generally display the entire texture. Args: texture_tag (Union[int, str]): The texture_tag should come from a texture that was added to a texture registry. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom tint_color (Union[List[float], Tuple[float, ...]], optional): Applies a color tint to the entire texture. border_color (Union[List[float], Tuple[float, ...]], optional): Displays a border of the specified color around the texture. If the theme style has turned off the border it will not be shown. uv_min (Union[List[float], Tuple[float, ...]], optional): Normalized texture coordinates min point. uv_max (Union[List[float], Tuple[float, ...]], optional): Normalized texture coordinates max point. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_image(texture_tag, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, tint_color=tint_color, border_color=border_color, uv_min=uv_min, uv_max=uv_max, **kwargs) def add_image_button(texture_tag : Union[int, str], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, frame_padding: int =-1, tint_color: Union[List[float], Tuple[float, ...]] =(255, 255, 255, 255), background_color: Union[List[float], Tuple[float, ...]] =(0, 0, 0, 0), uv_min: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), uv_max: Union[List[float], Tuple[float, ...]] =(1.0, 1.0), **kwargs) -> Union[int, str]: """ Adds an button with a texture. uv_min and uv_max represent the normalized texture coordinates of the original image that will be shown. Using range (0.0,0.0)->(1.0,1.0) texture coordinates will generally display the entire texture Args: texture_tag (Union[int, str]): The texture_tag should come from a texture that was added to a texture registry. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom frame_padding (int, optional): Empty space around the outside of the texture. Button will show around the texture. tint_color (Union[List[float], Tuple[float, ...]], optional): Applies a color tint to the entire texture. background_color (Union[List[float], Tuple[float, ...]], optional): Displays a border of the specified color around the texture. uv_min (Union[List[float], Tuple[float, ...]], optional): Normalized texture coordinates min point. uv_max (Union[List[float], Tuple[float, ...]], optional): Normalized texture coordinates max point. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_image_button(texture_tag, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, frame_padding=frame_padding, tint_color=tint_color, background_color=background_color, uv_min=uv_min, uv_max=uv_max, **kwargs) def add_image_series(texture_tag : Union[int, str], bounds_min : Union[List[float], Tuple[float, ...]], bounds_max : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, uv_min: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), uv_max: Union[List[float], Tuple[float, ...]] =(1.0, 1.0), tint_color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), **kwargs) -> Union[int, str]: """ Adds an image series to a plot. Args: texture_tag (Union[int, str]): bounds_min (Any): bounds_max (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. uv_min (Union[List[float], Tuple[float, ...]], optional): normalized texture coordinates uv_max (Union[List[float], Tuple[float, ...]], optional): normalized texture coordinates tint_color (Union[List[int], Tuple[int, ...]], optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_image_series(texture_tag, bounds_min, bounds_max, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, uv_min=uv_min, uv_max=uv_max, tint_color=tint_color, **kwargs) def add_input_float(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: float =0.0, format: str ='%.3f', min_value: float =0.0, max_value: float =100.0, step: float =0.1, step_fast: float =1.0, min_clamped: bool =False, max_clamped: bool =False, on_enter: bool =False, readonly: bool =False, **kwargs) -> Union[int, str]: """ Adds input for an float. +/- buttons can be activated by setting the value of step. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (float, optional): format (str, optional): Determines the format the float will be displayed as use python string formatting. min_value (float, optional): Value for lower limit of input. By default this limits the step buttons. Use min_clamped to limit manual input. max_value (float, optional): Value for upper limit of input. By default this limits the step buttons. Use max_clamped to limit manual input. step (float, optional): Increment to change value by when the step buttons are pressed. Setting this to a value of 0 or smaller will turn off step buttons. step_fast (float, optional): After holding the step buttons for extended time the increments will switch to this value. min_clamped (bool, optional): Activates and deactivates the enforcment of min_value. max_clamped (bool, optional): Activates and deactivates the enforcment of max_value. on_enter (bool, optional): Only runs callback on enter key press. readonly (bool, optional): Activates read only mode where no text can be input but text can still be highlighted. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_input_float(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, format=format, min_value=min_value, max_value=max_value, step=step, step_fast=step_fast, min_clamped=min_clamped, max_clamped=max_clamped, on_enter=on_enter, readonly=readonly, **kwargs) def add_input_floatx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), format: str ='%.3f', min_value: float =0.0, max_value: float =100.0, size: int =4, min_clamped: bool =False, max_clamped: bool =False, on_enter: bool =False, readonly: bool =False, **kwargs) -> Union[int, str]: """ Adds multi float input for up to 4 float values. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[float], Tuple[float, ...]], optional): format (str, optional): Determines the format the float will be displayed as use python string formatting. min_value (float, optional): Value for lower limit of input for each cell. Use min_clamped to turn on. max_value (float, optional): Value for upper limit of input for each cell. Use max_clamped to turn on. size (int, optional): Number of components displayed for input. min_clamped (bool, optional): Activates and deactivates the enforcment of min_value. max_clamped (bool, optional): Activates and deactivates the enforcment of max_value. on_enter (bool, optional): Only runs callback on enter key press. readonly (bool, optional): Activates read only mode where no text can be input but text can still be highlighted. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_input_floatx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, format=format, min_value=min_value, max_value=max_value, size=size, min_clamped=min_clamped, max_clamped=max_clamped, on_enter=on_enter, readonly=readonly, **kwargs) def add_input_int(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: int =0, min_value: int =0, max_value: int =100, step: int =1, step_fast: int =100, min_clamped: bool =False, max_clamped: bool =False, on_enter: bool =False, readonly: bool =False, **kwargs) -> Union[int, str]: """ Adds input for an int. +/- buttons can be activated by setting the value of step. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (int, optional): min_value (int, optional): Value for lower limit of input. By default this limits the step buttons. Use min_clamped to limit manual input. max_value (int, optional): Value for upper limit of input. By default this limits the step buttons. Use max_clamped to limit manual input. step (int, optional): Increment to change value by when the step buttons are pressed. Setting this to a value of 0 or smaller will turn off step buttons. step_fast (int, optional): After holding the step buttons for extended time the increments will switch to this value. min_clamped (bool, optional): Activates and deactivates the enforcment of min_value. max_clamped (bool, optional): Activates and deactivates the enforcment of max_value. on_enter (bool, optional): Only runs callback on enter key press. readonly (bool, optional): Activates read only mode where no text can be input but text can still be highlighted. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_input_int(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, min_value=min_value, max_value=max_value, step=step, step_fast=step_fast, min_clamped=min_clamped, max_clamped=max_clamped, on_enter=on_enter, readonly=readonly, **kwargs) def add_input_intx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[int], Tuple[int, ...]] =(0, 0, 0, 0), min_value: int =0, max_value: int =100, size: int =4, min_clamped: bool =False, max_clamped: bool =False, on_enter: bool =False, readonly: bool =False, **kwargs) -> Union[int, str]: """ Adds multi int input for up to 4 integer values. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[int], Tuple[int, ...]], optional): min_value (int, optional): Value for lower limit of input for each cell. Use min_clamped to turn on. max_value (int, optional): Value for upper limit of input for each cell. Use max_clamped to turn on. size (int, optional): Number of components displayed for input. min_clamped (bool, optional): Activates and deactivates the enforcment of min_value. max_clamped (bool, optional): Activates and deactivates the enforcment of max_value. on_enter (bool, optional): Only runs callback on enter. readonly (bool, optional): Activates read only mode where no text can be input but text can still be highlighted. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_input_intx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, min_value=min_value, max_value=max_value, size=size, min_clamped=min_clamped, max_clamped=max_clamped, on_enter=on_enter, readonly=readonly, **kwargs) def add_input_text(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: str ='', hint: str ='', multiline: bool =False, no_spaces: bool =False, uppercase: bool =False, tab_input: bool =False, decimal: bool =False, hexadecimal: bool =False, readonly: bool =False, password: bool =False, scientific: bool =False, on_enter: bool =False, **kwargs) -> Union[int, str]: """ Adds input for text. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (str, optional): hint (str, optional): Displayed only when value is an empty string. Will reappear if input value is set to empty string. Will not show if default value is anything other than default empty string. multiline (bool, optional): Allows for multiline text input. no_spaces (bool, optional): Filter out spaces and tabs. uppercase (bool, optional): Automatically make all inputs uppercase. tab_input (bool, optional): Allows tabs to be input into the string value instead of changing item focus. decimal (bool, optional): Only allow characters 0123456789.+-*/ hexadecimal (bool, optional): Only allow characters 0123456789ABCDEFabcdef readonly (bool, optional): Activates read only mode where no text can be input but text can still be highlighted. password (bool, optional): Display all input characters as '*'. scientific (bool, optional): Only allow characters 0123456789.+-*/eE (Scientific notation input) on_enter (bool, optional): Only runs callback on enter key press. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_input_text(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, hint=hint, multiline=multiline, no_spaces=no_spaces, uppercase=uppercase, tab_input=tab_input, decimal=decimal, hexadecimal=hexadecimal, readonly=readonly, password=password, scientific=scientific, on_enter=on_enter, **kwargs) def add_int4_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Union[List[int], Tuple[int, ...]] =(0, 0, 0, 0), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a int4 value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Union[List[int], Tuple[int, ...]], optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_int4_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_int_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: int =0, parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a int value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (int, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_int_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_item_activated_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a activated handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_activated_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_active_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a active handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_active_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_clicked_handler(button : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a clicked handler. Args: button (int, optional): Submits callback for all mouse buttons label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_clicked_handler(button, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_deactivated_after_edit_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a deactivated after edit handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_deactivated_after_edit_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_deactivated_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a deactivated handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_deactivated_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_edited_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds an edited handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_edited_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_focus_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a focus handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_focus_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_handler_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds an item handler registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_handler_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_item_hover_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a hover handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_hover_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_resize_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a resize handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_resize_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_toggled_open_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a togged open handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_toggled_open_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_item_visible_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, callback: Callable =None, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a visible handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_item_visible_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, callback=callback, show=show, **kwargs) def add_key_down_handler(key : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a key down handler. Args: key (int, optional): Submits callback for all keys label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_key_down_handler(key, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_key_press_handler(key : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a key press handler. Args: key (int, optional): Submits callback for all keys label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_key_press_handler(key, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_key_release_handler(key : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a key release handler. Args: key (int, optional): Submits callback for all keys label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_key_release_handler(key, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_knob_float(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: float =0.0, min_value: float =0.0, max_value: float =100.0, **kwargs) -> Union[int, str]: """ Adds a knob that rotates based on change in x mouse position. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (float, optional): min_value (float, optional): Applies lower limit to value. max_value (float, optional): Applies upper limit to value. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_knob_float(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, min_value=min_value, max_value=max_value, **kwargs) def add_line_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a line series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_line_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, **kwargs) def add_listbox(items : Union[List[str], Tuple[str, ...]] =(), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: str ='', num_items: int =3, **kwargs) -> Union[int, str]: """ Adds a listbox. If height is not large enough to show all items a scroll bar will appear. Args: items (Union[List[str], Tuple[str, ...]], optional): A tuple of items to be shown in the listbox. Can consist of any combination of types. All items will be displayed as strings. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (str, optional): String value fo the item that will be selected by default. num_items (int, optional): Expands the height of the listbox to show specified number of items. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_listbox(items, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, num_items=num_items, **kwargs) def add_loading_indicator(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], style: int =0, circle_count: int =8, speed: float =1.0, radius: float =3.0, thickness: float =1.0, color: Union[List[int], Tuple[int, ...]] =(51, 51, 55, 255), secondary_color: Union[List[int], Tuple[int, ...]] =(29, 151, 236, 103), **kwargs) -> Union[int, str]: """ Adds a rotating animated loading symbol. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. style (int, optional): 0 is rotating dots style, 1 is rotating bar style. circle_count (int, optional): Number of dots show if dots or size of circle if circle. speed (float, optional): Speed the anamation will rotate. radius (float, optional): Radius size of the loading indicator. thickness (float, optional): Thickness of the circles or line. color (Union[List[int], Tuple[int, ...]], optional): Color of the growing center circle. secondary_color (Union[List[int], Tuple[int, ...]], optional): Background of the dots in dot mode. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_loading_indicator(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, pos=pos, style=style, circle_count=circle_count, speed=speed, radius=radius, thickness=thickness, color=color, secondary_color=secondary_color, **kwargs) def add_menu(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, enabled: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, **kwargs) -> Union[int, str]: """ Adds a menu to an existing menu bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_menu(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, enabled=enabled, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, **kwargs) def add_menu_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Adds a menu bar to a window. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_menu_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, show=show, delay_search=delay_search, **kwargs) def add_menu_item(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: bool =False, shortcut: str ='', check: bool =False, **kwargs) -> Union[int, str]: """ Adds a menu item to an existing menu. Menu items act similar to selectables and has a bool value. When placed in a menu the checkmark will reflect its value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (bool, optional): This value also controls the checkmark when shown. shortcut (str, optional): Displays text on the menu item. Typically used to show a shortcut key command. check (bool, optional): Displays a checkmark on the menu item when it is selected and placed in a menu. id (Union[int, str], optional): (deprecated) drag_callback (Callable, optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'drag_callback' in kwargs.keys(): warnings.warn('drag_callback keyword removed', DeprecationWarning, 2) kwargs.pop('drag_callback', None) return internal_dpg.add_menu_item(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drop_callback=drop_callback, show=show, enabled=enabled, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, shortcut=shortcut, check=check, **kwargs) def add_mouse_click_handler(button : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse click handler. Args: button (int, optional): Submits callback for all mouse buttons label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_click_handler(button, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_double_click_handler(button : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse double click handler. Args: button (int, optional): Submits callback for all mouse buttons label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_double_click_handler(button, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_down_handler(button : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse down handler. Args: button (int, optional): Submits callback for all mouse buttons label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_down_handler(button, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_drag_handler(button : int =-1, threshold : float =10.0, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse drag handler. Args: button (int, optional): Submits callback for all mouse buttons threshold (float, optional): The threshold the mouse must be dragged before the callback is ran label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_drag_handler(button, threshold, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_move_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse move handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_move_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_release_handler(button : int =-1, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse release handler. Args: button (int, optional): Submits callback for all mouse buttons label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_release_handler(button, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_mouse_wheel_handler(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, callback: Callable =None, show: bool =True, parent: Union[int, str] =internal_dpg.mvReservedUUID_1, **kwargs) -> Union[int, str]: """ Adds a mouse wheel handler. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_mouse_wheel_handler(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, callback=callback, show=show, parent=parent, **kwargs) def add_node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, draggable: bool =True, **kwargs) -> Union[int, str]: """ Adds a node to a node editor. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom draggable (bool, optional): Allow node to be draggable. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, draggable=draggable, **kwargs) def add_node_attribute(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', tracked: bool =False, track_offset: float =0.5, attribute_type: int =0, shape: int =1, category: str ='general', **kwargs) -> Union[int, str]: """ Adds a node attribute to a node. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom attribute_type (int, optional): mvNode_Attr_Input, mvNode_Attr_Output, or mvNode_Attr_Static. shape (int, optional): Pin shape. category (str, optional): Category id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_node_attribute(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, show=show, filter_key=filter_key, tracked=tracked, track_offset=track_offset, attribute_type=attribute_type, shape=shape, category=category, **kwargs) def add_node_editor(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, delink_callback: Callable =None, menubar: bool =False, **kwargs) -> Union[int, str]: """ Adds a node editor. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom delink_callback (Callable, optional): Callback ran when a link is detached. menubar (bool, optional): Shows or hides the menubar. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_node_editor(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, parent=parent, before=before, callback=callback, show=show, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, delink_callback=delink_callback, menubar=menubar, **kwargs) def add_node_link(attr_1 : Union[int, str], attr_2 : Union[int, str], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a node link between 2 node attributes. Args: attr_1 (Union[int, str]): attr_2 (Union[int, str]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_node_link(attr_1, attr_2, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, show=show, **kwargs) def add_pie_series(x : float, y : float, radius : float, values : Union[List[float], Tuple[float, ...]], labels : Union[List[str], Tuple[str, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, format: str ='%0.2f', angle: float =90.0, normalize: bool =False, **kwargs) -> Union[int, str]: """ Adds an pie series to a plot. Args: x (float): y (float): radius (float): values (Any): labels (Union[List[str], Tuple[str, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. format (str, optional): angle (float, optional): normalize (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_pie_series(x, y, radius, values, labels, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, format=format, angle=angle, normalize=normalize, **kwargs) def add_plot(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, no_title: bool =False, no_menus: bool =False, no_box_select: bool =False, no_mouse_pos: bool =False, no_highlight: bool =False, no_child: bool =False, query: bool =False, crosshairs: bool =False, anti_aliased: bool =False, equal_aspects: bool =False, pan_button: int =internal_dpg.mvMouseButton_Left, pan_mod: int =-1, fit_button: int =internal_dpg.mvMouseButton_Left, context_menu_button: int =internal_dpg.mvMouseButton_Right, box_select_button: int =internal_dpg.mvMouseButton_Right, box_select_mod: int =-1, box_select_cancel_button: int =internal_dpg.mvMouseButton_Left, query_button: int =internal_dpg.mvMouseButton_Middle, query_mod: int =-1, query_toggle_mod: int =internal_dpg.mvKey_Control, horizontal_mod: int =internal_dpg.mvKey_Alt, vertical_mod: int =internal_dpg.mvKey_Shift, **kwargs) -> Union[int, str]: """ Adds a plot which is used to hold series, and can be drawn to with draw commands. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_title (bool, optional): no_menus (bool, optional): no_box_select (bool, optional): no_mouse_pos (bool, optional): no_highlight (bool, optional): no_child (bool, optional): query (bool, optional): crosshairs (bool, optional): anti_aliased (bool, optional): equal_aspects (bool, optional): pan_button (int, optional): enables panning when held pan_mod (int, optional): optional modifier that must be held for panning fit_button (int, optional): fits visible data when double clicked context_menu_button (int, optional): opens plot context menu (if enabled) when clicked box_select_button (int, optional): begins box selection when pressed and confirms selection when released box_select_mod (int, optional): begins box selection when pressed and confirms selection when released box_select_cancel_button (int, optional): cancels active box selection when pressed query_button (int, optional): begins query selection when pressed and end query selection when released query_mod (int, optional): optional modifier that must be held for query selection query_toggle_mod (int, optional): when held, active box selections turn into queries horizontal_mod (int, optional): expands active box selection/query horizontally to plot edge when held vertical_mod (int, optional): expands active box selection/query vertically to plot edge when held id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_plot(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, no_title=no_title, no_menus=no_menus, no_box_select=no_box_select, no_mouse_pos=no_mouse_pos, no_highlight=no_highlight, no_child=no_child, query=query, crosshairs=crosshairs, anti_aliased=anti_aliased, equal_aspects=equal_aspects, pan_button=pan_button, pan_mod=pan_mod, fit_button=fit_button, context_menu_button=context_menu_button, box_select_button=box_select_button, box_select_mod=box_select_mod, box_select_cancel_button=box_select_cancel_button, query_button=query_button, query_mod=query_mod, query_toggle_mod=query_toggle_mod, horizontal_mod=horizontal_mod, vertical_mod=vertical_mod, **kwargs) def add_plot_annotation(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, default_value: Any =(0.0, 0.0), offset: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), color: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), clamped: bool =True, **kwargs) -> Union[int, str]: """ Adds an annotation to a plot. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. default_value (Any, optional): offset (Union[List[float], Tuple[float, ...]], optional): color (Union[List[int], Tuple[int, ...]], optional): clamped (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_plot_annotation(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, default_value=default_value, offset=offset, color=color, clamped=clamped, **kwargs) def add_plot_axis(axis : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, no_gridlines: bool =False, no_tick_marks: bool =False, no_tick_labels: bool =False, log_scale: bool =False, invert: bool =False, lock_min: bool =False, lock_max: bool =False, time: bool =False, **kwargs) -> Union[int, str]: """ Adds an axis to a plot. Args: axis (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. no_gridlines (bool, optional): no_tick_marks (bool, optional): no_tick_labels (bool, optional): log_scale (bool, optional): invert (bool, optional): lock_min (bool, optional): lock_max (bool, optional): time (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_plot_axis(axis, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, payload_type=payload_type, drop_callback=drop_callback, show=show, no_gridlines=no_gridlines, no_tick_marks=no_tick_marks, no_tick_labels=no_tick_labels, log_scale=log_scale, invert=invert, lock_min=lock_min, lock_max=lock_max, time=time, **kwargs) def add_plot_legend(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, location: int =5, horizontal: bool =False, outside: bool =False, **kwargs) -> Union[int, str]: """ Adds a plot legend to a plot. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. location (int, optional): location, mvPlot_Location_* horizontal (bool, optional): outside (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_plot_legend(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, payload_type=payload_type, drop_callback=drop_callback, show=show, location=location, horizontal=horizontal, outside=outside, **kwargs) def add_progress_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, overlay: str ='', default_value: float =0.0, **kwargs) -> Union[int, str]: """ Adds a progress bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom overlay (str, optional): Overlayed text onto the bar that typically used to display the value of the progress. default_value (float, optional): Normalized value to fill the bar from 0.0 to 1.0. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_progress_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, overlay=overlay, default_value=default_value, **kwargs) def add_radio_button(items : Union[List[str], Tuple[str, ...]] =(), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: str ='', horizontal: bool =False, **kwargs) -> Union[int, str]: """ Adds a set of radio buttons. If items keyword is empty, nothing will be shown. Args: items (Union[List[str], Tuple[str, ...]], optional): A tuple of items to be shown as radio options. Can consist of any combination of types. All types will be shown as strings. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (str, optional): Default selected radio option. Set by using the string value of the item. horizontal (bool, optional): Displays the radio options horizontally. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_radio_button(items, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, horizontal=horizontal, **kwargs) def add_raw_texture(width : int, height : int, default_value : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, format: int =internal_dpg.mvFormat_Float_rgba, parent: Union[int, str] =internal_dpg.mvReservedUUID_2, **kwargs) -> Union[int, str]: """ Adds a raw texture. Args: width (int): height (int): default_value (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. format (int, optional): Data format. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_raw_texture(width, height, default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, format=format, parent=parent, **kwargs) def add_scatter_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a scatter series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_scatter_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, **kwargs) def add_selectable(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: bool =False, span_columns: bool =False, **kwargs) -> Union[int, str]: """ Adds a selectable. Similar to a button but can indicate its selected state. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (bool, optional): span_columns (bool, optional): Forces the selectable to span the width of all columns if placed in a table. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_selectable(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, span_columns=span_columns, **kwargs) def add_separator(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], **kwargs) -> Union[int, str]: """ Adds a horizontal line separator. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_separator(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, show=show, pos=pos, **kwargs) def add_series_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: Any =(), parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a plot series value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (Any, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_series_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_shade_series(x : Union[List[float], Tuple[float, ...]], y1 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, y2: Any =[], **kwargs) -> Union[int, str]: """ Adds a shade series to a plot. Args: x (Any): y1 (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. y2 (Any, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_shade_series(x, y1, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, y2=y2, **kwargs) def add_simple_plot(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[float], Tuple[float, ...]] =(), overlay: str ='', histogram: bool =False, autosize: bool =True, min_scale: float =0.0, max_scale: float =0.0, **kwargs) -> Union[int, str]: """ Adds a simple plot for visualization of a 1 dimensional set of values. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[float], Tuple[float, ...]], optional): overlay (str, optional): overlays text (similar to a plot title) histogram (bool, optional): autosize (bool, optional): min_scale (float, optional): max_scale (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_simple_plot(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, overlay=overlay, histogram=histogram, autosize=autosize, min_scale=min_scale, max_scale=max_scale, **kwargs) def add_slider_float(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: float =0.0, vertical: bool =False, no_input: bool =False, clamped: bool =False, min_value: float =0.0, max_value: float =100.0, format: str ='%.3f', **kwargs) -> Union[int, str]: """ Adds slider for a single float value. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the slider. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (float, optional): vertical (bool, optional): Sets orientation of the slidebar and slider to vertical. no_input (bool, optional): Disable direct entry methods double-click or ctrl+click or Enter key allowing to input text directly into the item. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. min_value (float, optional): Applies a limit only to sliding entry only. max_value (float, optional): Applies a limit only to sliding entry only. format (str, optional): Determines the format the float will be displayed as use python string formatting. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_slider_float(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, vertical=vertical, no_input=no_input, clamped=clamped, min_value=min_value, max_value=max_value, format=format, **kwargs) def add_slider_floatx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[float], Tuple[float, ...]] =(0.0, 0.0, 0.0, 0.0), size: int =4, no_input: bool =False, clamped: bool =False, min_value: float =0.0, max_value: float =100.0, format: str ='%.3f', **kwargs) -> Union[int, str]: """ Adds multi slider for up to 4 float values. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the slider. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[float], Tuple[float, ...]], optional): size (int, optional): Number of floats to be displayed. no_input (bool, optional): Disable direct entry methods double-click or ctrl+click or Enter key allowing to input text directly into the item. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. min_value (float, optional): Applies a limit only to sliding entry only. max_value (float, optional): Applies a limit only to sliding entry only. format (str, optional): Determines the format the int will be displayed as use python string formatting. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_slider_floatx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, size=size, no_input=no_input, clamped=clamped, min_value=min_value, max_value=max_value, format=format, **kwargs) def add_slider_int(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: int =0, vertical: bool =False, no_input: bool =False, clamped: bool =False, min_value: int =0, max_value: int =100, format: str ='%d', **kwargs) -> Union[int, str]: """ Adds slider for a single int value. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the slider. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (int, optional): vertical (bool, optional): Sets orientation of the slidebar and slider to vertical. no_input (bool, optional): Disable direct entry methods double-click or ctrl+click or Enter key allowing to input text directly into the item. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. min_value (int, optional): Applies a limit only to sliding entry only. max_value (int, optional): Applies a limit only to sliding entry only. format (str, optional): Determines the format the int will be displayed as use python string formatting. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_slider_int(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, vertical=vertical, no_input=no_input, clamped=clamped, min_value=min_value, max_value=max_value, format=format, **kwargs) def add_slider_intx(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, enabled: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: Union[List[int], Tuple[int, ...]] =(0, 0, 0, 0), size: int =4, no_input: bool =False, clamped: bool =False, min_value: int =0, max_value: int =100, format: str ='%d', **kwargs) -> Union[int, str]: """ Adds multi slider for up to 4 int values. Directly entry can be done with double click or CTRL+Click. Min and Max alone are a soft limit for the slider. Use clamped keyword to also apply limits to the direct entry modes. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (Union[List[int], Tuple[int, ...]], optional): size (int, optional): Number of ints to be displayed. no_input (bool, optional): Disable direct entry methods double-click or ctrl+click or Enter key allowing to input text directly into the item. clamped (bool, optional): Applies the min and max limits to direct entry methods also such as double click and CTRL+Click. min_value (int, optional): Applies a limit only to sliding entry only. max_value (int, optional): Applies a limit only to sliding entry only. format (str, optional): Determines the format the int will be displayed as use python string formatting. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_slider_intx(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, enabled=enabled, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, size=size, no_input=no_input, clamped=clamped, min_value=min_value, max_value=max_value, format=format, **kwargs) def add_spacer(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], **kwargs) -> Union[int, str]: """ Adds a spacer item that can be used to help with layouts or can be used as a placeholder item. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_spacer(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, show=show, pos=pos, **kwargs) def add_stage(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a stage. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_stage(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) def add_stair_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a stair series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_stair_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, **kwargs) def add_static_texture(width : int, height : int, default_value : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =internal_dpg.mvReservedUUID_2, **kwargs) -> Union[int, str]: """ Adds a static texture. Args: width (int): height (int): default_value (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_static_texture(width, height, default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, **kwargs) def add_stem_series(x : Union[List[float], Tuple[float, ...]], y : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a stem series to a plot. Args: x (Any): y (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_stem_series(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, source=source, show=show, **kwargs) def add_string_value(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, source: Union[int, str] =0, default_value: str ='', parent: Union[int, str] =internal_dpg.mvReservedUUID_3, **kwargs) -> Union[int, str]: """ Adds a string value. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. source (Union[int, str], optional): Overrides 'id' as value storage key. default_value (str, optional): parent (Union[int, str], optional): Parent to add this item to. (runtime adding) id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_string_value(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, source=source, default_value=default_value, parent=parent, **kwargs) def add_subplots(rows : int, columns : int, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, row_ratios: Union[List[float], Tuple[float, ...]] =[], column_ratios: Union[List[float], Tuple[float, ...]] =[], no_title: bool =False, no_menus: bool =False, no_resize: bool =False, no_align: bool =False, link_rows: bool =False, link_columns: bool =False, link_all_x: bool =False, link_all_y: bool =False, column_major: bool =False, **kwargs) -> Union[int, str]: """ Adds a collection of plots. Args: rows (int): columns (int): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom row_ratios (Union[List[float], Tuple[float, ...]], optional): column_ratios (Union[List[float], Tuple[float, ...]], optional): no_title (bool, optional): no_menus (bool, optional): the user will not be able to open context menus with right-click no_resize (bool, optional): resize splitters between subplot cells will be not be provided no_align (bool, optional): subplot edges will not be aligned vertically or horizontally link_rows (bool, optional): link the y-axis limits of all plots in each row (does not apply auxiliary y-axes) link_columns (bool, optional): link the x-axis limits of all plots in each column link_all_x (bool, optional): link the x-axis limits in every plot in the subplot link_all_y (bool, optional): link the y-axis limits in every plot in the subplot (does not apply to auxiliary y-axes) column_major (bool, optional): subplots are added in column major order instead of the default row major order id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_subplots(rows, columns, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, row_ratios=row_ratios, column_ratios=column_ratios, no_title=no_title, no_menus=no_menus, no_resize=no_resize, no_align=no_align, link_rows=link_rows, link_columns=link_columns, link_all_x=link_all_x, link_all_y=link_all_y, column_major=column_major, **kwargs) def add_tab(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drop_callback: Callable =None, show: bool =True, filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, closable: bool =False, no_tooltip: bool =False, order_mode: bool =0, **kwargs) -> Union[int, str]: """ Adds a tab to a tab bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom closable (bool, optional): Creates a button on the tab that can hide the tab. no_tooltip (bool, optional): Disable tooltip for the given tab. order_mode (bool, optional): set using a constant: mvTabOrder_Reorderable: allows reordering, mvTabOrder_Fixed: fixed ordering, mvTabOrder_Leading: adds tab to front, mvTabOrder_Trailing: adds tab to back id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_tab(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drop_callback=drop_callback, show=show, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, closable=closable, no_tooltip=no_tooltip, order_mode=order_mode, **kwargs) def add_tab_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, reorderable: bool =False, **kwargs) -> Union[int, str]: """ Adds a tab bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom reorderable (bool, optional): Allows for the user to change the order of the tabs. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_tab_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, reorderable=reorderable, **kwargs) def add_tab_button(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, filter_key: str ='', tracked: bool =False, track_offset: float =0.5, no_reorder: bool =False, leading: bool =False, trailing: bool =False, no_tooltip: bool =False, **kwargs) -> Union[int, str]: """ Adds a tab button to a tab bar. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom no_reorder (bool, optional): Disable reordering this tab or having another tab cross over this tab. Fixes the position of this tab in relation to the order of neighboring tabs at start. leading (bool, optional): Enforce the tab position to the left of the tab bar (after the tab list popup button). trailing (bool, optional): Enforce the tab position to the right of the tab bar (before the scrolling buttons). no_tooltip (bool, optional): Disable tooltip for the given tab. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_tab_button(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, filter_key=filter_key, tracked=tracked, track_offset=track_offset, no_reorder=no_reorder, leading=leading, trailing=trailing, no_tooltip=no_tooltip, **kwargs) def add_table(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, header_row: bool =True, clipper: bool =False, inner_width: int =0, policy: int =0, freeze_rows: int =0, freeze_columns: int =0, sort_multi: bool =False, sort_tristate: bool =False, resizable: bool =False, reorderable: bool =False, hideable: bool =False, sortable: bool =False, context_menu_in_body: bool =False, row_background: bool =False, borders_innerH: bool =False, borders_outerH: bool =False, borders_innerV: bool =False, borders_outerV: bool =False, no_host_extendX: bool =False, no_host_extendY: bool =False, no_keep_columns_visible: bool =False, precise_widths: bool =False, no_clip: bool =False, pad_outerX: bool =False, no_pad_outerX: bool =False, no_pad_innerX: bool =False, scrollX: bool =False, scrollY: bool =False, no_saved_settings: bool =False, **kwargs) -> Union[int, str]: """ Adds a table. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. callback (Callable, optional): Registers a callback. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. header_row (bool, optional): show headers at the top of the columns clipper (bool, optional): Use clipper (rows must be same height). inner_width (int, optional): policy (int, optional): freeze_rows (int, optional): freeze_columns (int, optional): sort_multi (bool, optional): Hold shift when clicking headers to sort on multiple column. sort_tristate (bool, optional): Allow no sorting, disable default sorting. resizable (bool, optional): Enable resizing columns reorderable (bool, optional): Enable reordering columns in header row (need calling TableSetupColumn() + TableHeadersRow() to display headers) hideable (bool, optional): Enable hiding/disabling columns in context menu. sortable (bool, optional): Enable sorting. Call TableGetSortSpecs() to obtain sort specs. Also see ImGuiTableFlags_SortMulti and ImGuiTableFlags_SortTristate. context_menu_in_body (bool, optional): Right-click on columns body/contents will display table context menu. By default it is available in TableHeadersRow(). row_background (bool, optional): Set each RowBg color with ImGuiCol_TableRowBg or ImGuiCol_TableRowBgAlt (equivalent of calling TableSetBgColor with ImGuiTableBgFlags_RowBg0 on each row manually) borders_innerH (bool, optional): Draw horizontal borders between rows. borders_outerH (bool, optional): Draw horizontal borders at the top and bottom. borders_innerV (bool, optional): Draw vertical borders between columns. borders_outerV (bool, optional): Draw vertical borders on the left and right sides. no_host_extendX (bool, optional): Make outer width auto-fit to columns, overriding outer_size.x value. Only available when ScrollX/ScrollY are disabled and Stretch columns are not used. no_host_extendY (bool, optional): Make outer height stop exactly at outer_size.y (prevent auto-extending table past the limit). Only available when ScrollX/ScrollY are disabled. Data below the limit will be clipped and not visible. no_keep_columns_visible (bool, optional): Disable keeping column always minimally visible when ScrollX is off and table gets too small. Not recommended if columns are resizable. precise_widths (bool, optional): Disable distributing remainder width to stretched columns (width allocation on a 100-wide table with 3 columns: Without this flag: 33,33,34. With this flag: 33,33,33). With larger number of columns, resizing will appear to be less smooth. no_clip (bool, optional): Disable clipping rectangle for every individual columns. pad_outerX (bool, optional): Default if BordersOuterV is on. Enable outer-most padding. Generally desirable if you have headers. no_pad_outerX (bool, optional): Default if BordersOuterV is off. Disable outer-most padding. no_pad_innerX (bool, optional): Disable inner padding between columns (double inner padding if BordersOuterV is on, single inner padding if BordersOuterV is off). scrollX (bool, optional): Enable horizontal scrolling. Require 'outer_size' parameter of BeginTable() to specify the container size. Changes default sizing policy. Because this create a child window, ScrollY is currently generally recommended when using ScrollX. scrollY (bool, optional): Enable vertical scrolling. no_saved_settings (bool, optional): Never load/save settings in .ini file. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_table(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, parent=parent, before=before, source=source, callback=callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, header_row=header_row, clipper=clipper, inner_width=inner_width, policy=policy, freeze_rows=freeze_rows, freeze_columns=freeze_columns, sort_multi=sort_multi, sort_tristate=sort_tristate, resizable=resizable, reorderable=reorderable, hideable=hideable, sortable=sortable, context_menu_in_body=context_menu_in_body, row_background=row_background, borders_innerH=borders_innerH, borders_outerH=borders_outerH, borders_innerV=borders_innerV, borders_outerV=borders_outerV, no_host_extendX=no_host_extendX, no_host_extendY=no_host_extendY, no_keep_columns_visible=no_keep_columns_visible, precise_widths=precise_widths, no_clip=no_clip, pad_outerX=pad_outerX, no_pad_outerX=no_pad_outerX, no_pad_innerX=no_pad_innerX, scrollX=scrollX, scrollY=scrollY, no_saved_settings=no_saved_settings, **kwargs) def add_table_cell(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', **kwargs) -> Union[int, str]: """ Adds a table. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_table_cell(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, height=height, parent=parent, before=before, show=show, filter_key=filter_key, **kwargs) def add_table_column(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, enabled: bool =True, init_width_or_weight: float =0.0, default_hide: bool =False, default_sort: bool =False, width_stretch: bool =False, width_fixed: bool =False, no_resize: bool =False, no_reorder: bool =False, no_hide: bool =False, no_clip: bool =False, no_sort: bool =False, no_sort_ascending: bool =False, no_sort_descending: bool =False, no_header_width: bool =False, prefer_sort_ascending: bool =True, prefer_sort_descending: bool =False, indent_enable: bool =False, indent_disable: bool =False, **kwargs) -> Union[int, str]: """ Adds a table column. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. enabled (bool, optional): Turns off functionality of widget and applies the disabled theme. init_width_or_weight (float, optional): default_hide (bool, optional): Default as a hidden/disabled column. default_sort (bool, optional): Default as a sorting column. width_stretch (bool, optional): Column will stretch. Preferable with horizontal scrolling disabled (default if table sizing policy is _SizingStretchSame or _SizingStretchProp). width_fixed (bool, optional): Column will not stretch. Preferable with horizontal scrolling enabled (default if table sizing policy is _SizingFixedFit and table is resizable). no_resize (bool, optional): Disable manual resizing. no_reorder (bool, optional): Disable manual reordering this column, this will also prevent other columns from crossing over this column. no_hide (bool, optional): Disable ability to hide/disable this column. no_clip (bool, optional): Disable clipping for this column (all NoClip columns will render in a same draw command). no_sort (bool, optional): Disable ability to sort on this field (even if ImGuiTableFlags_Sortable is set on the table). no_sort_ascending (bool, optional): Disable ability to sort in the ascending direction. no_sort_descending (bool, optional): Disable ability to sort in the descending direction. no_header_width (bool, optional): Disable header text width contribution to automatic column width. prefer_sort_ascending (bool, optional): Make the initial sort direction Ascending when first sorting on this column (default). prefer_sort_descending (bool, optional): Make the initial sort direction Descending when first sorting on this column. indent_enable (bool, optional): Use current Indent value when entering cell (default for column 0). indent_disable (bool, optional): Ignore current Indent value when entering cell (default for columns > 0). Indentation changes _within_ the cell will still be honored. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_table_column(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, parent=parent, before=before, show=show, enabled=enabled, init_width_or_weight=init_width_or_weight, default_hide=default_hide, default_sort=default_sort, width_stretch=width_stretch, width_fixed=width_fixed, no_resize=no_resize, no_reorder=no_reorder, no_hide=no_hide, no_clip=no_clip, no_sort=no_sort, no_sort_ascending=no_sort_ascending, no_sort_descending=no_sort_descending, no_header_width=no_header_width, prefer_sort_ascending=prefer_sort_ascending, prefer_sort_descending=prefer_sort_descending, indent_enable=indent_enable, indent_disable=indent_disable, **kwargs) def add_table_row(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, height: int =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, filter_key: str ='', **kwargs) -> Union[int, str]: """ Adds a table row. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. height (int, optional): Height of the item. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_table_row(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, height=height, parent=parent, before=before, show=show, filter_key=filter_key, **kwargs) def add_template_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a template registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_template_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) def add_text(default_value : str ='', *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, wrap: int =-1, bullet: bool =False, color: Union[List[int], Tuple[int, ...]] =(-255, 0, 0, 255), show_label: bool =False, **kwargs) -> Union[int, str]: """ Adds text. Text can have an optional label that will display to the right of the text. Args: default_value (str, optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom wrap (int, optional): Number of pixels from the start of the item until wrapping starts. bullet (bool, optional): Places a bullet to the left of the text. color (Union[List[int], Tuple[int, ...]], optional): Color of the text (rgba). show_label (bool, optional): Displays the label to the right of the text. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_text(default_value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, source=source, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, wrap=wrap, bullet=bullet, color=color, show_label=show_label, **kwargs) def add_text_point(x : float, y : float, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, x_offset: int =..., y_offset: int =..., vertical: bool =False, **kwargs) -> Union[int, str]: """ Adds a label series to a plot. Args: x (float): y (float): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. x_offset (int, optional): y_offset (int, optional): vertical (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_text_point(x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, x_offset=x_offset, y_offset=y_offset, vertical=vertical, **kwargs) def add_texture_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =False, **kwargs) -> Union[int, str]: """ Adds a dynamic texture. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_texture_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_theme(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a theme. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) default_theme (bool, optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] if 'default_theme' in kwargs.keys(): warnings.warn('default_theme keyword removed', DeprecationWarning, 2) kwargs.pop('default_theme', None) return internal_dpg.add_theme(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) def add_theme_color(target : int =0, value : Union[List[int], Tuple[int, ...]] =(0, 0, 0, 255), *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, category: int =0, **kwargs) -> Union[int, str]: """ Adds a theme color. Args: target (int, optional): value (Union[List[int], Tuple[int, ...]], optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) category (int, optional): Options include mvThemeCat_Core, mvThemeCat_Plots, mvThemeCat_Nodes. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_theme_color(target, value, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, category=category, **kwargs) def add_theme_component(item_type : int =0, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, enabled_state: bool =True, **kwargs) -> Union[int, str]: """ Adds a theme component. Args: item_type (int, optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. enabled_state (bool, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_theme_component(item_type, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, enabled_state=enabled_state, **kwargs) def add_theme_style(target : int =0, x : float =1.0, y : float =-1.0, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, category: int =0, **kwargs) -> Union[int, str]: """ Adds a theme style. Args: target (int, optional): x (float, optional): y (float, optional): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) category (int, optional): Options include mvThemeCat_Core, mvThemeCat_Plots, mvThemeCat_Nodes. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_theme_style(target, x, y, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, category=category, **kwargs) def add_time_picker(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', callback: Callable =None, drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', tracked: bool =False, track_offset: float =0.5, default_value: dict ={'hour': 14, 'min': 32, 'sec': 23}, hour24: bool =False, **kwargs) -> Union[int, str]: """ Adds a time picker. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. callback (Callable, optional): Registers a callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_value (dict, optional): hour24 (bool, optional): Show 24 hour clock instead of 12 hour. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_time_picker(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, callback=callback, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, tracked=tracked, track_offset=track_offset, default_value=default_value, hour24=hour24, **kwargs) def add_tooltip(parent : Union[int, str], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds a tooltip window. Args: parent (Union[int, str]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_tooltip(parent, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, **kwargs) def add_tree_node(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, before: Union[int, str] =0, payload_type: str ='$$DPG_PAYLOAD', drag_callback: Callable =None, drop_callback: Callable =None, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], filter_key: str ='', delay_search: bool =False, tracked: bool =False, track_offset: float =0.5, default_open: bool =False, open_on_double_click: bool =False, open_on_arrow: bool =False, leaf: bool =False, bullet: bool =False, selectable: bool =False, **kwargs) -> Union[int, str]: """ Adds a tree node to add items to. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. payload_type (str, optional): Sender string type must be the same as the target for the target to run the payload_callback. drag_callback (Callable, optional): Registers a drag callback for drag and drop. drop_callback (Callable, optional): Registers a drop callback for drag and drop. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. tracked (bool, optional): Scroll tracking track_offset (float, optional): 0.0f:top, 0.5f:center, 1.0f:bottom default_open (bool, optional): Sets the tree node open by default. open_on_double_click (bool, optional): Need double-click to open node. open_on_arrow (bool, optional): Only open when clicking on the arrow part. leaf (bool, optional): No collapsing, no arrow (use as a convenience for leaf nodes). bullet (bool, optional): Display a bullet instead of arrow. selectable (bool, optional): Makes the tree selectable. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_tree_node(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, before=before, payload_type=payload_type, drag_callback=drag_callback, drop_callback=drop_callback, show=show, pos=pos, filter_key=filter_key, delay_search=delay_search, tracked=tracked, track_offset=track_offset, default_open=default_open, open_on_double_click=open_on_double_click, open_on_arrow=open_on_arrow, leaf=leaf, bullet=bullet, selectable=selectable, **kwargs) def add_value_registry(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, **kwargs) -> Union[int, str]: """ Adds a value registry. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_value_registry(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, **kwargs) def add_viewport_drawlist(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, show: bool =True, filter_key: str ='', delay_search: bool =False, front: bool =True, **kwargs) -> Union[int, str]: """ A container that is used to present draw items or layers directly to the viewport. By default this will draw to the back of the viewport. Layers and draw items should be added to this widget as children. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. show (bool, optional): Attempt to render widget. filter_key (str, optional): Used by filter widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. front (bool, optional): Draws to the front of the view port instead of the back. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_viewport_drawlist(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, show=show, filter_key=filter_key, delay_search=delay_search, front=front, **kwargs) def add_viewport_menu_bar(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, indent: int =-1, parent: Union[int, str] =0, show: bool =True, delay_search: bool =False, **kwargs) -> Union[int, str]: """ Adds a menubar to the viewport. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) show (bool, optional): Attempt to render widget. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_viewport_menu_bar(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, indent=indent, parent=parent, show=show, delay_search=delay_search, **kwargs) def add_vline_series(x : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, source: Union[int, str] =0, show: bool =True, **kwargs) -> Union[int, str]: """ Adds an infinite vertical line series to a plot. Args: x (Any): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. source (Union[int, str], optional): Overrides 'id' as value storage key. show (bool, optional): Attempt to render widget. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_vline_series(x, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, source=source, show=show, **kwargs) def add_window(*, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, width: int =0, height: int =0, indent: int =-1, show: bool =True, pos: Union[List[int], Tuple[int, ...]] =[], delay_search: bool =False, min_size: Union[List[int], Tuple[int, ...]] =[100, 100], max_size: Union[List[int], Tuple[int, ...]] =[30000, 30000], menubar: bool =False, collapsed: bool =False, autosize: bool =False, no_resize: bool =False, no_title_bar: bool =False, no_move: bool =False, no_scrollbar: bool =False, no_collapse: bool =False, horizontal_scrollbar: bool =False, no_focus_on_appearing: bool =False, no_bring_to_front_on_focus: bool =False, no_close: bool =False, no_background: bool =False, modal: bool =False, popup: bool =False, no_saved_settings: bool =False, no_open_over_existing_popup: bool =True, on_close: Callable =None, **kwargs) -> Union[int, str]: """ Creates a new window for following items to be added to. Args: label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. width (int, optional): Width of the item. height (int, optional): Height of the item. indent (int, optional): Offsets the widget to the right the specified number multiplied by the indent style. show (bool, optional): Attempt to render widget. pos (Union[List[int], Tuple[int, ...]], optional): Places the item relative to window coordinates, [0,0] is top left. delay_search (bool, optional): Delays searching container for specified items until the end of the app. Possible optimization when a container has many children that are not accessed often. min_size (Union[List[int], Tuple[int, ...]], optional): Minimum window size. max_size (Union[List[int], Tuple[int, ...]], optional): Maximum window size. menubar (bool, optional): Shows or hides the menubar. collapsed (bool, optional): Collapse the window. autosize (bool, optional): Autosized the window to fit it's items. no_resize (bool, optional): Allows for the window size to be changed or fixed. no_title_bar (bool, optional): Title name for the title bar of the window. no_move (bool, optional): Allows for the window's position to be changed or fixed. no_scrollbar (bool, optional): Disable scrollbars. (window can still scroll with mouse or programmatically) no_collapse (bool, optional): Disable user collapsing window by double-clicking on it. horizontal_scrollbar (bool, optional): Allow horizontal scrollbar to appear. (off by default) no_focus_on_appearing (bool, optional): Disable taking focus when transitioning from hidden to visible state. no_bring_to_front_on_focus (bool, optional): Disable bringing window to front when taking focus. (e.g. clicking on it or programmatically giving it focus) no_close (bool, optional): Disable user closing the window by removing the close button. no_background (bool, optional): Sets Background and border alpha to transparent. modal (bool, optional): Fills area behind window according to the theme and disables user ability to interact with anything except the window. popup (bool, optional): Fills area behind window according to the theme, removes title bar, collapse and close. Window can be closed by selecting area in the background behind the window. no_saved_settings (bool, optional): Never load/save settings in .ini file. no_open_over_existing_popup (bool, optional): Don't open if there's already a popup on_close (Callable, optional): Callback ran when window is closed. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.add_window(label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, width=width, height=height, indent=indent, show=show, pos=pos, delay_search=delay_search, min_size=min_size, max_size=max_size, menubar=menubar, collapsed=collapsed, autosize=autosize, no_resize=no_resize, no_title_bar=no_title_bar, no_move=no_move, no_scrollbar=no_scrollbar, no_collapse=no_collapse, horizontal_scrollbar=horizontal_scrollbar, no_focus_on_appearing=no_focus_on_appearing, no_bring_to_front_on_focus=no_bring_to_front_on_focus, no_close=no_close, no_background=no_background, modal=modal, popup=popup, no_saved_settings=no_saved_settings, no_open_over_existing_popup=no_open_over_existing_popup, on_close=on_close, **kwargs) def apply_transform(item : Union[int, str], transform : Any, **kwargs) -> None: """ New in 1.1. Applies a transformation matrix to a layer. Args: item (Union[int, str]): Drawing node to apply transform to. transform (Any): Transformation matrix. Returns: None """ return internal_dpg.apply_transform(item, transform, **kwargs) def bind_colormap(item : Union[int, str], source : Union[int, str], **kwargs) -> None: """ Sets the color map for widgets that accept it. Args: item (Union[int, str]): item that the color map will be applied to source (Union[int, str]): The colormap tag. This should come from a colormap that was added to a colormap registry. Built in color maps are accessible through their corresponding constants mvPlotColormap_Twilight, mvPlotColormap_*** Returns: None """ return internal_dpg.bind_colormap(item, source, **kwargs) def bind_font(font : Union[int, str], **kwargs) -> Union[int, str]: """ Binds a global font. Args: font (Union[int, str]): Returns: Union[int, str] """ return internal_dpg.bind_font(font, **kwargs) def bind_item_font(item : Union[int, str], font : Union[int, str], **kwargs) -> None: """ Sets an item's font. Args: item (Union[int, str]): font (Union[int, str]): Returns: None """ return internal_dpg.bind_item_font(item, font, **kwargs) def bind_item_handler_registry(item : Union[int, str], handler_registry : Union[int, str], **kwargs) -> None: """ Binds an item handler registry to an item. Args: item (Union[int, str]): handler_registry (Union[int, str]): Returns: None """ return internal_dpg.bind_item_handler_registry(item, handler_registry, **kwargs) def bind_item_theme(item : Union[int, str], theme : Union[int, str], **kwargs) -> None: """ Binds a theme to an item. Args: item (Union[int, str]): theme (Union[int, str]): Returns: None """ return internal_dpg.bind_item_theme(item, theme, **kwargs) def bind_template_registry(template_registry : Union[int, str], **kwargs) -> None: """ Binds a global template registry. Args: template_registry (Union[int, str]): Returns: None """ return internal_dpg.bind_template_registry(template_registry, **kwargs) def bind_theme(theme : Union[int, str], **kwargs) -> None: """ Binds a global theme. Args: theme (Union[int, str]): Returns: None """ return internal_dpg.bind_theme(theme, **kwargs) def capture_next_item(callback : Callable, *, user_data: Any =None, **kwargs) -> None: """ Captures the next item. Args: callback (Callable): user_data (Any, optional): New in 1.3. Optional user data to send to the callback Returns: None """ return internal_dpg.capture_next_item(callback, user_data=user_data, **kwargs) def clear_selected_links(node_editor : Union[int, str], **kwargs) -> None: """ Clears a node editor's selected links. Args: node_editor (Union[int, str]): Returns: None """ return internal_dpg.clear_selected_links(node_editor, **kwargs) def clear_selected_nodes(node_editor : Union[int, str], **kwargs) -> None: """ Clears a node editor's selected nodes. Args: node_editor (Union[int, str]): Returns: None """ return internal_dpg.clear_selected_nodes(node_editor, **kwargs) def create_context(**kwargs) -> None: """ Creates the Dear PyGui context. Args: Returns: None """ return internal_dpg.create_context(**kwargs) def create_fps_matrix(eye : Union[List[float], Tuple[float, ...]], pitch : float, yaw : float, **kwargs) -> Any: """ New in 1.1. Create a 'first person shooter' matrix. Args: eye (Union[List[float], Tuple[float, ...]]): eye position pitch (float): pitch (in radians) yaw (float): yaw (in radians) Returns: Any """ return internal_dpg.create_fps_matrix(eye, pitch, yaw, **kwargs) def create_lookat_matrix(eye : Union[List[float], Tuple[float, ...]], target : Union[List[float], Tuple[float, ...]], up : Union[List[float], Tuple[float, ...]], **kwargs) -> Any: """ New in 1.1. Creates a 'Look at matrix'. Args: eye (Union[List[float], Tuple[float, ...]]): eye position target (Union[List[float], Tuple[float, ...]]): target position up (Union[List[float], Tuple[float, ...]]): up vector Returns: Any """ return internal_dpg.create_lookat_matrix(eye, target, up, **kwargs) def create_orthographic_matrix(left : float, right : float, bottom : float, top : float, zNear : float, zFar : float, **kwargs) -> Any: """ New in 1.1. Creates an orthographic matrix. Args: left (float): left plane right (float): right plane bottom (float): bottom plane top (float): top plane zNear (float): Near clipping plane. zFar (float): Far clipping plane. Returns: Any """ return internal_dpg.create_orthographic_matrix(left, right, bottom, top, zNear, zFar, **kwargs) def create_perspective_matrix(fov : float, aspect : float, zNear : float, zFar : float, **kwargs) -> Any: """ New in 1.1. Creates a perspective matrix. Args: fov (float): Field of view (in radians) aspect (float): Aspect ratio (width/height) zNear (float): Near clipping plane. zFar (float): Far clipping plane. Returns: Any """ return internal_dpg.create_perspective_matrix(fov, aspect, zNear, zFar, **kwargs) def create_rotation_matrix(angle : float, axis : Union[List[float], Tuple[float, ...]], **kwargs) -> Any: """ New in 1.1. Applies a transformation matrix to a layer. Args: angle (float): angle to rotate axis (Union[List[float], Tuple[float, ...]]): axis to rotate around Returns: Any """ return internal_dpg.create_rotation_matrix(angle, axis, **kwargs) def create_scale_matrix(scales : Union[List[float], Tuple[float, ...]], **kwargs) -> Any: """ New in 1.1. Applies a transformation matrix to a layer. Args: scales (Union[List[float], Tuple[float, ...]]): scale values per axis Returns: Any """ return internal_dpg.create_scale_matrix(scales, **kwargs) def create_translation_matrix(translation : Union[List[float], Tuple[float, ...]], **kwargs) -> Any: """ New in 1.1. Creates a translation matrix. Args: translation (Union[List[float], Tuple[float, ...]]): translation vector Returns: Any """ return internal_dpg.create_translation_matrix(translation, **kwargs) def create_viewport(*, title: str ='Dear PyGui', small_icon: str ='', large_icon: str ='', width: int =1280, height: int =800, x_pos: int =100, y_pos: int =100, min_width: int =250, max_width: int =10000, min_height: int =250, max_height: int =10000, resizable: bool =True, vsync: bool =True, always_on_top: bool =False, decorated: bool =True, clear_color: Union[List[float], Tuple[float, ...]] =(0, 0, 0, 255), **kwargs) -> None: """ Creates a viewport. Viewports are required. Args: title (str, optional): Sets the title of the viewport. small_icon (str, optional): Sets the small icon that is found in the viewport's decorator bar. Must be ***.ico on windows and either ***.ico or ***.png on mac. large_icon (str, optional): Sets the large icon that is found in the task bar while the app is running. Must be ***.ico on windows and either ***.ico or ***.png on mac. width (int, optional): Sets the width of the drawable space on the viewport. Does not inclue the border. height (int, optional): Sets the height of the drawable space on the viewport. Does not inclue the border or decorator bar. x_pos (int, optional): Sets x position the viewport will be drawn in screen coordinates. y_pos (int, optional): Sets y position the viewport will be drawn in screen coordinates. min_width (int, optional): Applies a minimuim limit to the width of the viewport. max_width (int, optional): Applies a maximum limit to the width of the viewport. min_height (int, optional): Applies a minimuim limit to the height of the viewport. max_height (int, optional): Applies a maximum limit to the height of the viewport. resizable (bool, optional): Enables and Disables user ability to resize the viewport. vsync (bool, optional): Enables and Disables the renderloop vsync limit. vsync frame value is set by refresh rate of display. always_on_top (bool, optional): Forces the viewport to always be drawn ontop of all other viewports. decorated (bool, optional): Enabled and disabled the decorator bar at the top of the viewport. clear_color (Union[List[float], Tuple[float, ...]], optional): Sets the color of the back of the viewport. Returns: None """ return internal_dpg.create_viewport(title=title, small_icon=small_icon, large_icon=large_icon, width=width, height=height, x_pos=x_pos, y_pos=y_pos, min_width=min_width, max_width=max_width, min_height=min_height, max_height=max_height, resizable=resizable, vsync=vsync, always_on_top=always_on_top, decorated=decorated, clear_color=clear_color, **kwargs) def delete_item(item : Union[int, str], *, children_only: bool =False, slot: int =-1, **kwargs) -> None: """ Deletes an item.. Args: item (Union[int, str]): children_only (bool, optional): slot (int, optional): Returns: None """ return internal_dpg.delete_item(item, children_only=children_only, slot=slot, **kwargs) def destroy_context(**kwargs) -> None: """ Destroys the Dear PyGui context. Args: Returns: None """ return internal_dpg.destroy_context(**kwargs) def does_alias_exist(alias : str, **kwargs) -> bool: """ Checks if an alias exist. Args: alias (str): Returns: bool """ return internal_dpg.does_alias_exist(alias, **kwargs) def does_item_exist(item : Union[int, str], **kwargs) -> bool: """ Checks if an item exist.. Args: item (Union[int, str]): Returns: bool """ return internal_dpg.does_item_exist(item, **kwargs) def draw_arrow(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), thickness: float =1.0, size: int =4, **kwargs) -> Union[int, str]: """ Adds an arrow. Args: p1 (Union[List[float], Tuple[float, ...]]): Arrow tip. p2 (Union[List[float], Tuple[float, ...]]): Arrow tail. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): size (int, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_arrow(p1, p2, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, thickness=thickness, size=size, **kwargs) def draw_bezier_cubic(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], p3 : Union[List[float], Tuple[float, ...]], p4 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), thickness: float =1.0, segments: int =0, **kwargs) -> Union[int, str]: """ Adds a cubic bezier curve. Args: p1 (Union[List[float], Tuple[float, ...]]): First point in curve. p2 (Union[List[float], Tuple[float, ...]]): Second point in curve. p3 (Union[List[float], Tuple[float, ...]]): Third point in curve. p4 (Union[List[float], Tuple[float, ...]]): Fourth point in curve. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): segments (int, optional): Number of segments to approximate bezier curve. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_bezier_cubic(p1, p2, p3, p4, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, thickness=thickness, segments=segments, **kwargs) def draw_bezier_quadratic(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], p3 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), thickness: float =1.0, segments: int =0, **kwargs) -> Union[int, str]: """ Adds a quadratic bezier curve. Args: p1 (Union[List[float], Tuple[float, ...]]): First point in curve. p2 (Union[List[float], Tuple[float, ...]]): Second point in curve. p3 (Union[List[float], Tuple[float, ...]]): Third point in curve. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): segments (int, optional): Number of segments to approximate bezier curve. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_bezier_quadratic(p1, p2, p3, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, thickness=thickness, segments=segments, **kwargs) def draw_circle(center : Union[List[float], Tuple[float, ...]], radius : float, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, segments: int =0, **kwargs) -> Union[int, str]: """ Adds a circle Args: center (Union[List[float], Tuple[float, ...]]): radius (float): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): fill (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): segments (int, optional): Number of segments to approximate circle. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_circle(center, radius, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, fill=fill, thickness=thickness, segments=segments, **kwargs) def draw_ellipse(pmin : Union[List[float], Tuple[float, ...]], pmax : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, segments: int =32, **kwargs) -> Union[int, str]: """ Adds an ellipse. Args: pmin (Union[List[float], Tuple[float, ...]]): Min point of bounding rectangle. pmax (Union[List[float], Tuple[float, ...]]): Max point of bounding rectangle. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): fill (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): segments (int, optional): Number of segments to approximate bezier curve. id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_ellipse(pmin, pmax, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, fill=fill, thickness=thickness, segments=segments, **kwargs) def draw_image(texture_tag : Union[int, str], pmin : Union[List[float], Tuple[float, ...]], pmax : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, uv_min: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), uv_max: Union[List[float], Tuple[float, ...]] =(1.0, 1.0), color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), **kwargs) -> Union[int, str]: """ Adds an image (for a drawing). Args: texture_tag (Union[int, str]): pmin (Union[List[float], Tuple[float, ...]]): Point of to start drawing texture. pmax (Union[List[float], Tuple[float, ...]]): Point to complete drawing texture. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. uv_min (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. uv_max (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. color (Union[List[int], Tuple[int, ...]], optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_image(texture_tag, pmin, pmax, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, uv_min=uv_min, uv_max=uv_max, color=color, **kwargs) def draw_image_quad(texture_tag : Union[int, str], p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], p3 : Union[List[float], Tuple[float, ...]], p4 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, uv1: Union[List[float], Tuple[float, ...]] =(0.0, 0.0), uv2: Union[List[float], Tuple[float, ...]] =(1.0, 0.0), uv3: Union[List[float], Tuple[float, ...]] =(1.0, 1.0), uv4: Union[List[float], Tuple[float, ...]] =(0.0, 1.0), color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), **kwargs) -> Union[int, str]: """ Adds an image (for a drawing). Args: texture_tag (Union[int, str]): p1 (Union[List[float], Tuple[float, ...]]): p2 (Union[List[float], Tuple[float, ...]]): p3 (Union[List[float], Tuple[float, ...]]): p4 (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. uv1 (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. uv2 (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. uv3 (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. uv4 (Union[List[float], Tuple[float, ...]], optional): Normalized coordinates on texture that will be drawn. color (Union[List[int], Tuple[int, ...]], optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_image_quad(texture_tag, p1, p2, p3, p4, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, uv1=uv1, uv2=uv2, uv3=uv3, uv4=uv4, color=color, **kwargs) def draw_line(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a line. Args: p1 (Union[List[float], Tuple[float, ...]]): Start of line. p2 (Union[List[float], Tuple[float, ...]]): End of line. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_line(p1, p2, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, thickness=thickness, **kwargs) def draw_polygon(points : List[List[float]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a polygon. Args: points (List[List[float]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): fill (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_polygon(points, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, fill=fill, thickness=thickness, **kwargs) def draw_polyline(points : List[List[float]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, closed: bool =False, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a polyline. Args: points (List[List[float]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. closed (bool, optional): Will close the polyline by returning to the first point. color (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_polyline(points, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, closed=closed, color=color, thickness=thickness, **kwargs) def draw_quad(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], p3 : Union[List[float], Tuple[float, ...]], p4 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a quad. Args: p1 (Union[List[float], Tuple[float, ...]]): p2 (Union[List[float], Tuple[float, ...]]): p3 (Union[List[float], Tuple[float, ...]]): p4 (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): fill (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_quad(p1, p2, p3, p4, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, fill=fill, thickness=thickness, **kwargs) def draw_rectangle(pmin : Union[List[float], Tuple[float, ...]], pmax : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), color_upper_left: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), color_upper_right: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), color_bottom_right: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), color_bottom_left: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), multicolor: bool =False, rounding: float =0.0, thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a rectangle. Args: pmin (Union[List[float], Tuple[float, ...]]): Min point of bounding rectangle. pmax (Union[List[float], Tuple[float, ...]]): Max point of bounding rectangle. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): color_upper_left (Union[List[int], Tuple[int, ...]], optional): 'multicolor' must be set to 'True' color_upper_right (Union[List[int], Tuple[int, ...]], optional): 'multicolor' must be set to 'True' color_bottom_right (Union[List[int], Tuple[int, ...]], optional): 'multicolor' must be set to 'True' color_bottom_left (Union[List[int], Tuple[int, ...]], optional): 'multicolor' must be set to 'True' fill (Union[List[int], Tuple[int, ...]], optional): multicolor (bool, optional): rounding (float, optional): Number of pixels of the radius that will round the corners of the rectangle. Note: doesn't work with multicolor thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_rectangle(pmin, pmax, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, color_upper_left=color_upper_left, color_upper_right=color_upper_right, color_bottom_right=color_bottom_right, color_bottom_left=color_bottom_left, fill=fill, multicolor=multicolor, rounding=rounding, thickness=thickness, **kwargs) def draw_text(pos : Union[List[float], Tuple[float, ...]], text : str, *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), size: float =10.0, **kwargs) -> Union[int, str]: """ Adds text (drawlist). Args: pos (Union[List[float], Tuple[float, ...]]): Top left point of bounding text rectangle. text (str): Text to draw. label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): size (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_text(pos, text, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, size=size, **kwargs) def draw_triangle(p1 : Union[List[float], Tuple[float, ...]], p2 : Union[List[float], Tuple[float, ...]], p3 : Union[List[float], Tuple[float, ...]], *, label: str =None, user_data: Any =None, use_internal_label: bool =True, tag: Union[int, str] =0, parent: Union[int, str] =0, before: Union[int, str] =0, show: bool =True, color: Union[List[int], Tuple[int, ...]] =(255, 255, 255, 255), fill: Union[List[int], Tuple[int, ...]] =(0, 0, 0, -255), thickness: float =1.0, **kwargs) -> Union[int, str]: """ Adds a triangle. Args: p1 (Union[List[float], Tuple[float, ...]]): p2 (Union[List[float], Tuple[float, ...]]): p3 (Union[List[float], Tuple[float, ...]]): label (str, optional): Overrides 'name' as label. user_data (Any, optional): User data for callbacks use_internal_label (bool, optional): Use generated internal label instead of user specified (appends ### uuid). tag (Union[int, str], optional): Unique id used to programmatically refer to the item.If label is unused this will be the label. parent (Union[int, str], optional): Parent to add this item to. (runtime adding) before (Union[int, str], optional): This item will be displayed before the specified item in the parent. show (bool, optional): Attempt to render widget. color (Union[List[int], Tuple[int, ...]], optional): fill (Union[List[int], Tuple[int, ...]], optional): thickness (float, optional): id (Union[int, str], optional): (deprecated) Returns: Union[int, str] """ if 'id' in kwargs.keys(): warnings.warn('id keyword renamed to tag', DeprecationWarning, 2) tag=kwargs['id'] return internal_dpg.draw_triangle(p1, p2, p3, label=label, user_data=user_data, use_internal_label=use_internal_label, tag=tag, parent=parent, before=before, show=show, color=color, fill=fill, thickness=thickness, **kwargs) def empty_container_stack(**kwargs) -> None: """ Emptyes the container stack. Args: Returns: None """ return internal_dpg.empty_container_stack(**kwargs) def fit_axis_data(axis : Union[int, str], **kwargs) -> None: """ Sets the axis boundaries max/min in the data series currently on the plot. Args: axis (Union[int, str]): Returns: None """ return internal_dpg.fit_axis_data(axis, **kwargs) def focus_item(item : Union[int, str], **kwargs) -> None: """ Focuses an item. Args: item (Union[int, str]): Returns: None """ return internal_dpg.focus_item(item, **kwargs) def generate_uuid(**kwargs) -> Union[int, str]: """ Generate a new UUID. Args: Returns: Union[int, str] """ return internal_dpg.generate_uuid(**kwargs) def get_active_window(**kwargs) -> Union[int, str]: """ Returns the active window. Args: Returns: Union[int, str] """ return internal_dpg.get_active_window(**kwargs) def get_alias_id(alias : str, **kwargs) -> Union[int, str]: """ Returns the ID associated with an alias. Args: alias (str): Returns: Union[int, str] """ return internal_dpg.get_alias_id(alias, **kwargs) def get_aliases(**kwargs) -> Union[List[str], Tuple[str, ...]]: """ Returns all aliases. Args: Returns: Union[List[str], Tuple[str, ...]] """ return internal_dpg.get_aliases(**kwargs) def get_all_items(**kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns all items. Args: Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_all_items(**kwargs) def get_app_configuration(**kwargs) -> dict: """ Returns app configuration. Args: Returns: dict """ return internal_dpg.get_app_configuration(**kwargs) def get_axis_limits(axis : Union[int, str], **kwargs) -> Union[List[float], Tuple[float, ...]]: """ Get the specified axis limits. Args: axis (Union[int, str]): Returns: Union[List[float], Tuple[float, ...]] """ return internal_dpg.get_axis_limits(axis, **kwargs) def get_callback_queue(**kwargs) -> Any: """ New in 1.2. Returns and clears callback queue. Args: Returns: Any """ return internal_dpg.get_callback_queue(**kwargs) def get_clipboard_text(**kwargs) -> str: """ New in 1.3. Gets the clipboard text. Args: Returns: str """ return internal_dpg.get_clipboard_text(**kwargs) def get_colormap_color(colormap : Union[int, str], index : int, **kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns a color from a colormap given an index >= 0. (ex. 0 will be the first color in the color list of the color map) Modulo will be performed against the number of items in the color list. Args: colormap (Union[int, str]): The colormap tag. This should come from a colormap that was added to a colormap registry. Built in color maps are accessible through their corresponding constants mvPlotColormap_Twilight, mvPlotColormap_*** index (int): Desired position of the color in the colors list value of the colormap being quiered Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_colormap_color(colormap, index, **kwargs) def get_delta_time(**kwargs) -> float: """ Returns time since last frame. Args: Returns: float """ return internal_dpg.get_delta_time(**kwargs) def get_drawing_mouse_pos(**kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns mouse position in drawing. Args: Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_drawing_mouse_pos(**kwargs) def get_file_dialog_info(file_dialog : Union[int, str], **kwargs) -> dict: """ Returns information related to the file dialog. Typically used while the file dialog is in use to query data about the state or info related to the file dialog. Args: file_dialog (Union[int, str]): Returns: dict """ return internal_dpg.get_file_dialog_info(file_dialog, **kwargs) def get_frame_count(**kwargs) -> int: """ Returns frame count. Args: Returns: int """ return internal_dpg.get_frame_count(**kwargs) def get_frame_rate(**kwargs) -> float: """ Returns the average frame rate across 120 frames. Args: Returns: float """ return internal_dpg.get_frame_rate(**kwargs) def get_global_font_scale(**kwargs) -> float: """ Returns global font scale. Args: Returns: float """ return internal_dpg.get_global_font_scale(**kwargs) def get_item_alias(item : Union[int, str], **kwargs) -> str: """ Returns an item's alias. Args: item (Union[int, str]): Returns: str """ return internal_dpg.get_item_alias(item, **kwargs) def get_item_configuration(item : Union[int, str], **kwargs) -> dict: """ Returns an item's configuration. Args: item (Union[int, str]): Returns: dict """ return internal_dpg.get_item_configuration(item, **kwargs) def get_item_info(item : Union[int, str], **kwargs) -> dict: """ Returns an item's information. Args: item (Union[int, str]): Returns: dict """ return internal_dpg.get_item_info(item, **kwargs) def get_item_state(item : Union[int, str], **kwargs) -> dict: """ Returns an item's state. Args: item (Union[int, str]): Returns: dict """ return internal_dpg.get_item_state(item, **kwargs) def get_item_types(**kwargs) -> dict: """ Returns an item types. Args: Returns: dict """ return internal_dpg.get_item_types(**kwargs) def get_mouse_drag_delta(**kwargs) -> float: """ Returns mouse drag delta. Args: Returns: float """ return internal_dpg.get_mouse_drag_delta(**kwargs) def get_mouse_pos(*, local: bool =True, **kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns mouse position. Args: local (bool, optional): Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_mouse_pos(local=local, **kwargs) def get_plot_mouse_pos(**kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns mouse position in plot. Args: Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_plot_mouse_pos(**kwargs) def get_plot_query_area(plot : Union[int, str], **kwargs) -> Union[List[float], Tuple[float, ...]]: """ Returns the last/current query area of the plot. (Requires plot 'query' kwarg to be enabled) Args: plot (Union[int, str]): Returns: Union[List[float], Tuple[float, ...]] """ return internal_dpg.get_plot_query_area(plot, **kwargs) def get_selected_links(node_editor : Union[int, str], **kwargs) -> List[List[str]]: """ Returns a node editor's selected links. Args: node_editor (Union[int, str]): Returns: List[List[str]] """ return internal_dpg.get_selected_links(node_editor, **kwargs) def get_selected_nodes(node_editor : Union[int, str], **kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns a node editor's selected nodes. Args: node_editor (Union[int, str]): Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_selected_nodes(node_editor, **kwargs) def get_text_size(text : str, *, wrap_width: float =-1.0, font: Union[int, str] =0, **kwargs) -> Union[List[float], Tuple[float, ...]]: """ Returns width/height of text with specified font (must occur after 1st frame). Args: text (str): wrap_width (float, optional): Wrap width to use (-1.0 turns wrap off). font (Union[int, str], optional): Font to use. Returns: Union[List[float], Tuple[float, ...]] """ return internal_dpg.get_text_size(text, wrap_width=wrap_width, font=font, **kwargs) def get_total_time(**kwargs) -> float: """ Returns total time since Dear PyGui has started. Args: Returns: float """ return internal_dpg.get_total_time(**kwargs) def get_value(item : Union[int, str], **kwargs) -> Any: """ Returns an item's value. Args: item (Union[int, str]): Returns: Any """ return internal_dpg.get_value(item, **kwargs) def get_values(items : Union[List[int], Tuple[int, ...]], **kwargs) -> Any: """ Returns values of a list of items. Args: items (Union[List[int], Tuple[int, ...]]): Returns: Any """ return internal_dpg.get_values(items, **kwargs) def get_viewport_configuration(item : Union[int, str], **kwargs) -> dict: """ Returns a viewport's configuration. Args: item (Union[int, str]): Returns: dict """ return internal_dpg.get_viewport_configuration(item, **kwargs) def get_windows(**kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns all windows. Args: Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.get_windows(**kwargs) def get_x_scroll(item : Union[int, str], **kwargs) -> float: """ Undocumented Args: item (Union[int, str]): Returns: float """ return internal_dpg.get_x_scroll(item, **kwargs) def get_x_scroll_max(item : Union[int, str], **kwargs) -> float: """ Undocumented Args: item (Union[int, str]): Returns: float """ return internal_dpg.get_x_scroll_max(item, **kwargs) def get_y_scroll(item : Union[int, str], **kwargs) -> float: """ Undocumented Args: item (Union[int, str]): Returns: float """ return internal_dpg.get_y_scroll(item, **kwargs) def get_y_scroll_max(item : Union[int, str], **kwargs) -> float: """ Undocumented Args: item (Union[int, str]): Returns: float """ return internal_dpg.get_y_scroll_max(item, **kwargs) def highlight_table_cell(table : Union[int, str], row : int, column : int, color : Union[List[int], Tuple[int, ...]], **kwargs) -> None: """ Highlight specified table cell. Args: table (Union[int, str]): row (int): column (int): color (Union[List[int], Tuple[int, ...]]): Returns: None """ return internal_dpg.highlight_table_cell(table, row, column, color, **kwargs) def highlight_table_column(table : Union[int, str], column : int, color : Union[List[int], Tuple[int, ...]], **kwargs) -> None: """ Highlight specified table column. Args: table (Union[int, str]): column (int): color (Union[List[int], Tuple[int, ...]]): Returns: None """ return internal_dpg.highlight_table_column(table, column, color, **kwargs) def highlight_table_row(table : Union[int, str], row : int, color : Union[List[int], Tuple[int, ...]], **kwargs) -> None: """ Highlight specified table row. Args: table (Union[int, str]): row (int): color (Union[List[int], Tuple[int, ...]]): Returns: None """ return internal_dpg.highlight_table_row(table, row, color, **kwargs) def is_dearpygui_running(**kwargs) -> bool: """ Checks if Dear PyGui is running Args: Returns: bool """ return internal_dpg.is_dearpygui_running(**kwargs) def is_key_down(key : int, **kwargs) -> bool: """ Checks if key is down. Args: key (int): Returns: bool """ return internal_dpg.is_key_down(key, **kwargs) def is_key_pressed(key : int, **kwargs) -> bool: """ Checks if key is pressed. Args: key (int): Returns: bool """ return internal_dpg.is_key_pressed(key, **kwargs) def is_key_released(key : int, **kwargs) -> bool: """ Checks if key is released. Args: key (int): Returns: bool """ return internal_dpg.is_key_released(key, **kwargs) def is_mouse_button_clicked(button : int, **kwargs) -> bool: """ Checks if mouse button is clicked. Args: button (int): Returns: bool """ return internal_dpg.is_mouse_button_clicked(button, **kwargs) def is_mouse_button_double_clicked(button : int, **kwargs) -> bool: """ Checks if mouse button is double clicked. Args: button (int): Returns: bool """ return internal_dpg.is_mouse_button_double_clicked(button, **kwargs) def is_mouse_button_down(button : int, **kwargs) -> bool: """ Checks if mouse button is down. Args: button (int): Returns: bool """ return internal_dpg.is_mouse_button_down(button, **kwargs) def is_mouse_button_dragging(button : int, threshold : float, **kwargs) -> bool: """ Checks if mouse button is down and dragging. Args: button (int): threshold (float): Returns: bool """ return internal_dpg.is_mouse_button_dragging(button, threshold, **kwargs) def is_mouse_button_released(button : int, **kwargs) -> bool: """ Checks if mouse button is released. Args: button (int): Returns: bool """ return internal_dpg.is_mouse_button_released(button, **kwargs) def is_plot_queried(plot : Union[int, str], **kwargs) -> bool: """ Returns true if the plot is currently being queried. (Requires plot 'query' kwarg to be enabled) Args: plot (Union[int, str]): Returns: bool """ return internal_dpg.is_plot_queried(plot, **kwargs) def is_table_cell_highlighted(table : Union[int, str], row : int, column : int, **kwargs) -> bool: """ Checks if a table cell is highlighted. Args: table (Union[int, str]): row (int): column (int): Returns: bool """ return internal_dpg.is_table_cell_highlighted(table, row, column, **kwargs) def is_table_column_highlighted(table : Union[int, str], column : int, **kwargs) -> bool: """ Checks if a table column is highlighted. Args: table (Union[int, str]): column (int): Returns: bool """ return internal_dpg.is_table_column_highlighted(table, column, **kwargs) def is_table_row_highlighted(table : Union[int, str], row : int, **kwargs) -> bool: """ Checks if a table row is highlighted. Args: table (Union[int, str]): row (int): Returns: bool """ return internal_dpg.is_table_row_highlighted(table, row, **kwargs) def is_viewport_ok(**kwargs) -> bool: """ Checks if a viewport has been created and shown. Args: Returns: bool """ return internal_dpg.is_viewport_ok(**kwargs) def last_container(**kwargs) -> Union[int, str]: """ Returns the last container item added. Args: Returns: Union[int, str] """ return internal_dpg.last_container(**kwargs) def last_item(**kwargs) -> Union[int, str]: """ Returns the last item added. Args: Returns: Union[int, str] """ return internal_dpg.last_item(**kwargs) def last_root(**kwargs) -> Union[int, str]: """ Returns the last root added (registry or window). Args: Returns: Union[int, str] """ return internal_dpg.last_root(**kwargs) def load_image(file : str, *, gamma: float =1.0, gamma_scale_factor: float =1.0, **kwargs) -> Any: """ Loads an image. Returns width, height, channels, mvBuffer Args: file (str): gamma (float, optional): Gamma correction factor. (default is 1.0 to avoid automatic gamma correction on loading. gamma_scale_factor (float, optional): Gamma scale factor. Returns: Any """ return internal_dpg.load_image(file, gamma=gamma, gamma_scale_factor=gamma_scale_factor, **kwargs) def lock_mutex(**kwargs) -> None: """ Locks render thread mutex. Args: Returns: None """ return internal_dpg.lock_mutex(**kwargs) def maximize_viewport(**kwargs) -> None: """ Maximizes the viewport. Args: Returns: None """ return internal_dpg.maximize_viewport(**kwargs) def minimize_viewport(**kwargs) -> None: """ Minimizes a viewport. Args: Returns: None """ return internal_dpg.minimize_viewport(**kwargs) def move_item(item : Union[int, str], *, parent: Union[int, str] =0, before: Union[int, str] =0, **kwargs) -> None: """ Moves an item to a new location. Args: item (Union[int, str]): parent (Union[int, str], optional): before (Union[int, str], optional): Returns: None """ return internal_dpg.move_item(item, parent=parent, before=before, **kwargs) def move_item_down(item : Union[int, str], **kwargs) -> None: """ Moves an item down. Args: item (Union[int, str]): Returns: None """ return internal_dpg.move_item_down(item, **kwargs) def move_item_up(item : Union[int, str], **kwargs) -> None: """ Moves an item up. Args: item (Union[int, str]): Returns: None """ return internal_dpg.move_item_up(item, **kwargs) def pop_container_stack(**kwargs) -> Union[int, str]: """ Pops the top item off the parent stack and return its ID. Args: Returns: Union[int, str] """ return internal_dpg.pop_container_stack(**kwargs) def push_container_stack(item : Union[int, str], **kwargs) -> bool: """ Pushes an item onto the container stack. Args: item (Union[int, str]): Returns: bool """ return internal_dpg.push_container_stack(item, **kwargs) def remove_alias(alias : str, **kwargs) -> None: """ Removes an alias. Args: alias (str): Returns: None """ return internal_dpg.remove_alias(alias, **kwargs) def render_dearpygui_frame(**kwargs) -> None: """ Render a single Dear PyGui frame. Args: Returns: None """ return internal_dpg.render_dearpygui_frame(**kwargs) def reorder_items(container : Union[int, str], slot : int, new_order : Union[List[int], Tuple[int, ...]], **kwargs) -> None: """ Reorders an item's children. Args: container (Union[int, str]): slot (int): new_order (Union[List[int], Tuple[int, ...]]): Returns: None """ return internal_dpg.reorder_items(container, slot, new_order, **kwargs) def reset_axis_ticks(axis : Union[int, str], **kwargs) -> None: """ Removes the manually set axis ticks and applies the default axis ticks Args: axis (Union[int, str]): Returns: None """ return internal_dpg.reset_axis_ticks(axis, **kwargs) def reset_pos(item : Union[int, str], **kwargs) -> None: """ Resets an item's position after using 'set_item_pos'. Args: item (Union[int, str]): Returns: None """ return internal_dpg.reset_pos(item, **kwargs) def sample_colormap(colormap : Union[int, str], t : float, **kwargs) -> Union[List[int], Tuple[int, ...]]: """ Returns a color from a colormap given t between 0.0-1.0. Args: colormap (Union[int, str]): The colormap tag. This should come from a colormap that was added to a colormap registry. Built in color maps are accessible through their corresponding constants mvPlotColormap_Twilight, mvPlotColormap_*** t (float): Value of the colormap to sample between 0.0-1.0 Returns: Union[List[int], Tuple[int, ...]] """ return internal_dpg.sample_colormap(colormap, t, **kwargs) def save_init_file(file : str, **kwargs) -> None: """ Save dpg.ini file. Args: file (str): Returns: None """ return internal_dpg.save_init_file(file, **kwargs) def set_axis_limits(axis : Union[int, str], ymin : float, ymax : float, **kwargs) -> None: """ Sets limits on the axis for pan and zoom. Args: axis (Union[int, str]): ymin (float): ymax (float): Returns: None """ return internal_dpg.set_axis_limits(axis, ymin, ymax, **kwargs) def set_axis_limits_auto(axis : Union[int, str], **kwargs) -> None: """ Removes all limits on specified axis. Args: axis (Union[int, str]): Returns: None """ return internal_dpg.set_axis_limits_auto(axis, **kwargs) def set_axis_ticks(axis : Union[int, str], label_pairs : Any, **kwargs) -> None: """ Replaces axis ticks with 'label_pairs' argument. Args: axis (Union[int, str]): label_pairs (Any): Tuples of label and value in the form '((label, axis_value), (label, axis_value), ...)' Returns: None """ return internal_dpg.set_axis_ticks(axis, label_pairs, **kwargs) def set_clip_space(item : Union[int, str], top_left_x : float, top_left_y : float, width : float, height : float, min_depth : float, max_depth : float, **kwargs) -> None: """ New in 1.1. Set the clip space for depth clipping and 'viewport' transformation. Args: item (Union[int, str]): draw layer to set clip space top_left_x (float): angle to rotate top_left_y (float): angle to rotate width (float): angle to rotate height (float): angle to rotate min_depth (float): angle to rotate max_depth (float): angle to rotate Returns: None """ return internal_dpg.set_clip_space(item, top_left_x, top_left_y, width, height, min_depth, max_depth, **kwargs) def set_clipboard_text(text : str, **kwargs) -> None: """ New in 1.3. Sets the clipboard text. Args: text (str): Returns: None """ return internal_dpg.set_clipboard_text(text, **kwargs) def set_exit_callback(callback : Callable, *, user_data: Any =None, **kwargs) -> str: """ Sets a callback to run on last frame. Args: callback (Callable): user_data (Any, optional): New in 1.3. Optional user data to send to the callback Returns: str """ return internal_dpg.set_exit_callback(callback, user_data=user_data, **kwargs) def set_frame_callback(frame : int, callback : Callable, *, user_data: Any =None, **kwargs) -> str: """ Sets a callback to run on first frame. Args: frame (int): callback (Callable): user_data (Any, optional): New in 1.3. Optional user data to send to the callback Returns: str """ return internal_dpg.set_frame_callback(frame, callback, user_data=user_data, **kwargs) def set_global_font_scale(scale : float, **kwargs) -> None: """ Sets global font scale. Args: scale (float): Returns: None """ return internal_dpg.set_global_font_scale(scale, **kwargs) def set_item_alias(item : Union[int, str], alias : str, **kwargs) -> None: """ Sets an item's alias. Args: item (Union[int, str]): alias (str): Returns: None """ return internal_dpg.set_item_alias(item, alias, **kwargs) def set_item_children(item : Union[int, str], source : Union[int, str], slot : int, **kwargs) -> None: """ Sets an item's children. Args: item (Union[int, str]): source (Union[int, str]): slot (int): Returns: None """ return internal_dpg.set_item_children(item, source, slot, **kwargs) def set_primary_window(window : Union[int, str], value : bool, **kwargs) -> None: """ Sets the primary window. Args: window (Union[int, str]): value (bool): Returns: None """ return internal_dpg.set_primary_window(window, value, **kwargs) def set_table_row_color(table : Union[int, str], row : int, color : Union[List[int], Tuple[int, ...]], **kwargs) -> None: """ Set table row color. Args: table (Union[int, str]): row (int): color (Union[List[int], Tuple[int, ...]]): Returns: None """ return internal_dpg.set_table_row_color(table, row, color, **kwargs) def set_value(item : Union[int, str], value : Any, **kwargs) -> None: """ Set's an item's value. Args: item (Union[int, str]): value (Any): Returns: None """ return internal_dpg.set_value(item, value, **kwargs) def set_viewport_resize_callback(callback : Callable, *, user_data: Any =None, **kwargs) -> str: """ Sets a callback to run on viewport resize. Args: callback (Callable): user_data (Any, optional): New in 1.3. Optional user data to send to the callback Returns: str """ return internal_dpg.set_viewport_resize_callback(callback, user_data=user_data, **kwargs) def set_x_scroll(item : Union[int, str], value : float, **kwargs) -> None: """ Undocumented Args: item (Union[int, str]): value (float): Returns: None """ return internal_dpg.set_x_scroll(item, value, **kwargs) def set_y_scroll(item : Union[int, str], value : float, **kwargs) -> None: """ Undocumented Args: item (Union[int, str]): value (float): Returns: None """ return internal_dpg.set_y_scroll(item, value, **kwargs) def setup_dearpygui(**kwargs) -> None: """ Sets up Dear PyGui Args: viewport (Union[int, str], optional): (deprecated) Returns: None """ if 'viewport' in kwargs.keys(): warnings.warn('viewport keyword removed', DeprecationWarning, 2) kwargs.pop('viewport', None) return internal_dpg.setup_dearpygui(**kwargs) def show_imgui_demo(**kwargs) -> None: """ Shows the imgui demo. Args: Returns: None """ return internal_dpg.show_imgui_demo(**kwargs) def show_implot_demo(**kwargs) -> None: """ Shows the implot demo. Args: Returns: None """ return internal_dpg.show_implot_demo(**kwargs) def show_item_debug(item : Union[int, str], **kwargs) -> None: """ Shows an item's debug window Args: item (Union[int, str]): Returns: None """ return internal_dpg.show_item_debug(item, **kwargs) def show_tool(tool : Union[int, str], **kwargs) -> str: """ Shows a built in tool. Args: tool (Union[int, str]): Returns: str """ return internal_dpg.show_tool(tool, **kwargs) def show_viewport(*, minimized: bool =False, maximized: bool =False, **kwargs) -> None: """ Shows the main viewport. Args: minimized (bool, optional): Sets the state of the viewport to minimized maximized (bool, optional): Sets the state of the viewport to maximized viewport (Union[int, str], optional): (deprecated) Returns: None """ if 'viewport' in kwargs.keys(): warnings.warn('viewport keyword removed', DeprecationWarning, 2) kwargs.pop('viewport', None) return internal_dpg.show_viewport(minimized=minimized, maximized=maximized, **kwargs) def split_frame(*, delay: int =32, **kwargs) -> None: """ Waits one frame. Args: delay (int, optional): Minimal delay in in milliseconds Returns: None """ return internal_dpg.split_frame(delay=delay, **kwargs) def stop_dearpygui(**kwargs) -> None: """ Stops Dear PyGui Args: Returns: None """ return internal_dpg.stop_dearpygui(**kwargs) def toggle_viewport_fullscreen(**kwargs) -> None: """ Toggle viewport fullscreen mode.. Args: Returns: None """ return internal_dpg.toggle_viewport_fullscreen(**kwargs) def top_container_stack(**kwargs) -> Union[int, str]: """ Returns the item on the top of the container stack. Args: Returns: Union[int, str] """ return internal_dpg.top_container_stack(**kwargs) def unhighlight_table_cell(table : Union[int, str], row : int, column : int, **kwargs) -> None: """ Unhighlight specified table cell. Args: table (Union[int, str]): row (int): column (int): Returns: None """ return internal_dpg.unhighlight_table_cell(table, row, column, **kwargs) def unhighlight_table_column(table : Union[int, str], column : int, **kwargs) -> None: """ Unhighlight specified table column. Args: table (Union[int, str]): column (int): Returns: None """ return internal_dpg.unhighlight_table_column(table, column, **kwargs) def unhighlight_table_row(table : Union[int, str], row : int, **kwargs) -> None: """ Unhighlight specified table row. Args: table (Union[int, str]): row (int): Returns: None """ return internal_dpg.unhighlight_table_row(table, row, **kwargs) def unlock_mutex(**kwargs) -> None: """ Unlocks render thread mutex Args: Returns: None """ return internal_dpg.unlock_mutex(**kwargs) def unset_table_row_color(table : Union[int, str], row : int, **kwargs) -> None: """ Remove user set table row color. Args: table (Union[int, str]): row (int): Returns: None """ return internal_dpg.unset_table_row_color(table, row, **kwargs) def unstage(item : Union[int, str], **kwargs) -> None: """ Unstages an item. Args: item (Union[int, str]): Returns: None """ return internal_dpg.unstage(item, **kwargs) ########################################################## # Constants # ########################################################## mvGraphicsBackend_D3D11=internal_dpg.mvGraphicsBackend_D3D11 mvGraphicsBackend_D3D12=internal_dpg.mvGraphicsBackend_D3D12 mvGraphicsBackend_VULKAN=internal_dpg.mvGraphicsBackend_VULKAN mvGraphicsBackend_METAL=internal_dpg.mvGraphicsBackend_METAL mvGraphicsBackend_OPENGL=internal_dpg.mvGraphicsBackend_OPENGL mvMouseButton_Left=internal_dpg.mvMouseButton_Left mvMouseButton_Right=internal_dpg.mvMouseButton_Right mvMouseButton_Middle=internal_dpg.mvMouseButton_Middle mvMouseButton_X1=internal_dpg.mvMouseButton_X1 mvMouseButton_X2=internal_dpg.mvMouseButton_X2 mvKey_0=internal_dpg.mvKey_0 mvKey_1=internal_dpg.mvKey_1 mvKey_2=internal_dpg.mvKey_2 mvKey_3=internal_dpg.mvKey_3 mvKey_4=internal_dpg.mvKey_4 mvKey_5=internal_dpg.mvKey_5 mvKey_6=internal_dpg.mvKey_6 mvKey_7=internal_dpg.mvKey_7 mvKey_8=internal_dpg.mvKey_8 mvKey_9=internal_dpg.mvKey_9 mvKey_A=internal_dpg.mvKey_A mvKey_B=internal_dpg.mvKey_B mvKey_C=internal_dpg.mvKey_C mvKey_D=internal_dpg.mvKey_D mvKey_E=internal_dpg.mvKey_E mvKey_F=internal_dpg.mvKey_F mvKey_G=internal_dpg.mvKey_G mvKey_H=internal_dpg.mvKey_H mvKey_I=internal_dpg.mvKey_I mvKey_J=internal_dpg.mvKey_J mvKey_K=internal_dpg.mvKey_K mvKey_L=internal_dpg.mvKey_L mvKey_M=internal_dpg.mvKey_M mvKey_N=internal_dpg.mvKey_N mvKey_O=internal_dpg.mvKey_O mvKey_P=internal_dpg.mvKey_P mvKey_Q=internal_dpg.mvKey_Q mvKey_R=internal_dpg.mvKey_R mvKey_S=internal_dpg.mvKey_S mvKey_T=internal_dpg.mvKey_T mvKey_U=internal_dpg.mvKey_U mvKey_V=internal_dpg.mvKey_V mvKey_W=internal_dpg.mvKey_W mvKey_X=internal_dpg.mvKey_X mvKey_Y=internal_dpg.mvKey_Y mvKey_Z=internal_dpg.mvKey_Z mvKey_Back=internal_dpg.mvKey_Back mvKey_Tab=internal_dpg.mvKey_Tab mvKey_Clear=internal_dpg.mvKey_Clear mvKey_Return=internal_dpg.mvKey_Return mvKey_Shift=internal_dpg.mvKey_Shift mvKey_Control=internal_dpg.mvKey_Control mvKey_Alt=internal_dpg.mvKey_Alt mvKey_Pause=internal_dpg.mvKey_Pause mvKey_Capital=internal_dpg.mvKey_Capital mvKey_Escape=internal_dpg.mvKey_Escape mvKey_Spacebar=internal_dpg.mvKey_Spacebar mvKey_Prior=internal_dpg.mvKey_Prior mvKey_Next=internal_dpg.mvKey_Next mvKey_End=internal_dpg.mvKey_End mvKey_Home=internal_dpg.mvKey_Home mvKey_Left=internal_dpg.mvKey_Left mvKey_Up=internal_dpg.mvKey_Up mvKey_Right=internal_dpg.mvKey_Right mvKey_Down=internal_dpg.mvKey_Down mvKey_Select=internal_dpg.mvKey_Select mvKey_Print=internal_dpg.mvKey_Print mvKey_Execute=internal_dpg.mvKey_Execute mvKey_PrintScreen=internal_dpg.mvKey_PrintScreen mvKey_Insert=internal_dpg.mvKey_Insert mvKey_Delete=internal_dpg.mvKey_Delete mvKey_Help=internal_dpg.mvKey_Help mvKey_LWin=internal_dpg.mvKey_LWin mvKey_RWin=internal_dpg.mvKey_RWin mvKey_Apps=internal_dpg.mvKey_Apps mvKey_Sleep=internal_dpg.mvKey_Sleep mvKey_NumPad0=internal_dpg.mvKey_NumPad0 mvKey_NumPad1=internal_dpg.mvKey_NumPad1 mvKey_NumPad2=internal_dpg.mvKey_NumPad2 mvKey_NumPad3=internal_dpg.mvKey_NumPad3 mvKey_NumPad4=internal_dpg.mvKey_NumPad4 mvKey_NumPad5=internal_dpg.mvKey_NumPad5 mvKey_NumPad6=internal_dpg.mvKey_NumPad6 mvKey_NumPad7=internal_dpg.mvKey_NumPad7 mvKey_NumPad8=internal_dpg.mvKey_NumPad8 mvKey_NumPad9=internal_dpg.mvKey_NumPad9 mvKey_Multiply=internal_dpg.mvKey_Multiply mvKey_Add=internal_dpg.mvKey_Add mvKey_Separator=internal_dpg.mvKey_Separator mvKey_Subtract=internal_dpg.mvKey_Subtract mvKey_Decimal=internal_dpg.mvKey_Decimal mvKey_Divide=internal_dpg.mvKey_Divide mvKey_F1=internal_dpg.mvKey_F1 mvKey_F2=internal_dpg.mvKey_F2 mvKey_F3=internal_dpg.mvKey_F3 mvKey_F4=internal_dpg.mvKey_F4 mvKey_F5=internal_dpg.mvKey_F5 mvKey_F6=internal_dpg.mvKey_F6 mvKey_F7=internal_dpg.mvKey_F7 mvKey_F8=internal_dpg.mvKey_F8 mvKey_F9=internal_dpg.mvKey_F9 mvKey_F10=internal_dpg.mvKey_F10 mvKey_F11=internal_dpg.mvKey_F11 mvKey_F12=internal_dpg.mvKey_F12 mvKey_F13=internal_dpg.mvKey_F13 mvKey_F14=internal_dpg.mvKey_F14 mvKey_F15=internal_dpg.mvKey_F15 mvKey_F16=internal_dpg.mvKey_F16 mvKey_F17=internal_dpg.mvKey_F17 mvKey_F18=internal_dpg.mvKey_F18 mvKey_F19=internal_dpg.mvKey_F19 mvKey_F20=internal_dpg.mvKey_F20 mvKey_F21=internal_dpg.mvKey_F21 mvKey_F22=internal_dpg.mvKey_F22 mvKey_F23=internal_dpg.mvKey_F23 mvKey_F24=internal_dpg.mvKey_F24 mvKey_F25=internal_dpg.mvKey_F25 mvKey_NumLock=internal_dpg.mvKey_NumLock mvKey_ScrollLock=internal_dpg.mvKey_ScrollLock mvKey_LShift=internal_dpg.mvKey_LShift mvKey_RShift=internal_dpg.mvKey_RShift mvKey_LControl=internal_dpg.mvKey_LControl mvKey_RControl=internal_dpg.mvKey_RControl mvKey_LMenu=internal_dpg.mvKey_LMenu mvKey_RMenu=internal_dpg.mvKey_RMenu mvKey_Browser_Back=internal_dpg.mvKey_Browser_Back mvKey_Browser_Forward=internal_dpg.mvKey_Browser_Forward mvKey_Browser_Refresh=internal_dpg.mvKey_Browser_Refresh mvKey_Browser_Stop=internal_dpg.mvKey_Browser_Stop mvKey_Browser_Search=internal_dpg.mvKey_Browser_Search mvKey_Browser_Favorites=internal_dpg.mvKey_Browser_Favorites mvKey_Browser_Home=internal_dpg.mvKey_Browser_Home mvKey_Volume_Mute=internal_dpg.mvKey_Volume_Mute mvKey_Volume_Down=internal_dpg.mvKey_Volume_Down mvKey_Volume_Up=internal_dpg.mvKey_Volume_Up mvKey_Media_Next_Track=internal_dpg.mvKey_Media_Next_Track mvKey_Media_Prev_Track=internal_dpg.mvKey_Media_Prev_Track mvKey_Media_Stop=internal_dpg.mvKey_Media_Stop mvKey_Media_Play_Pause=internal_dpg.mvKey_Media_Play_Pause mvKey_Launch_Mail=internal_dpg.mvKey_Launch_Mail mvKey_Launch_Media_Select=internal_dpg.mvKey_Launch_Media_Select mvKey_Launch_App1=internal_dpg.mvKey_Launch_App1 mvKey_Launch_App2=internal_dpg.mvKey_Launch_App2 mvKey_Colon=internal_dpg.mvKey_Colon mvKey_Plus=internal_dpg.mvKey_Plus mvKey_Comma=internal_dpg.mvKey_Comma mvKey_Minus=internal_dpg.mvKey_Minus mvKey_Period=internal_dpg.mvKey_Period mvKey_Slash=internal_dpg.mvKey_Slash mvKey_Tilde=internal_dpg.mvKey_Tilde mvKey_Open_Brace=internal_dpg.mvKey_Open_Brace mvKey_Backslash=internal_dpg.mvKey_Backslash mvKey_Close_Brace=internal_dpg.mvKey_Close_Brace mvKey_Quote=internal_dpg.mvKey_Quote mvAll=internal_dpg.mvAll mvTool_About=internal_dpg.mvTool_About mvTool_Debug=internal_dpg.mvTool_Debug mvTool_Doc=internal_dpg.mvTool_Doc mvTool_ItemRegistry=internal_dpg.mvTool_ItemRegistry mvTool_Metrics=internal_dpg.mvTool_Metrics mvTool_Style=internal_dpg.mvTool_Style mvTool_Font=internal_dpg.mvTool_Font mvFontAtlas=internal_dpg.mvFontAtlas mvAppUUID=internal_dpg.mvAppUUID mvInvalidUUID=internal_dpg.mvInvalidUUID mvDir_None=internal_dpg.mvDir_None mvDir_Left=internal_dpg.mvDir_Left mvDir_Right=internal_dpg.mvDir_Right mvDir_Up=internal_dpg.mvDir_Up mvDir_Down=internal_dpg.mvDir_Down mvComboHeight_Small=internal_dpg.mvComboHeight_Small mvComboHeight_Regular=internal_dpg.mvComboHeight_Regular mvComboHeight_Large=internal_dpg.mvComboHeight_Large mvComboHeight_Largest=internal_dpg.mvComboHeight_Largest mvColorEdit_AlphaPreviewNone=internal_dpg.mvColorEdit_AlphaPreviewNone mvColorEdit_AlphaPreview=internal_dpg.mvColorEdit_AlphaPreview mvColorEdit_AlphaPreviewHalf=internal_dpg.mvColorEdit_AlphaPreviewHalf mvColorEdit_uint8=internal_dpg.mvColorEdit_uint8 mvColorEdit_float=internal_dpg.mvColorEdit_float mvColorEdit_rgb=internal_dpg.mvColorEdit_rgb mvColorEdit_hsv=internal_dpg.mvColorEdit_hsv mvColorEdit_hex=internal_dpg.mvColorEdit_hex mvColorEdit_input_rgb=internal_dpg.mvColorEdit_input_rgb mvColorEdit_input_hsv=internal_dpg.mvColorEdit_input_hsv mvPlotColormap_Default=internal_dpg.mvPlotColormap_Default mvPlotColormap_Deep=internal_dpg.mvPlotColormap_Deep mvPlotColormap_Dark=internal_dpg.mvPlotColormap_Dark mvPlotColormap_Pastel=internal_dpg.mvPlotColormap_Pastel mvPlotColormap_Paired=internal_dpg.mvPlotColormap_Paired mvPlotColormap_Viridis=internal_dpg.mvPlotColormap_Viridis mvPlotColormap_Plasma=internal_dpg.mvPlotColormap_Plasma mvPlotColormap_Hot=internal_dpg.mvPlotColormap_Hot mvPlotColormap_Cool=internal_dpg.mvPlotColormap_Cool mvPlotColormap_Pink=internal_dpg.mvPlotColormap_Pink mvPlotColormap_Jet=internal_dpg.mvPlotColormap_Jet mvPlotColormap_Twilight=internal_dpg.mvPlotColormap_Twilight mvPlotColormap_RdBu=internal_dpg.mvPlotColormap_RdBu mvPlotColormap_BrBG=internal_dpg.mvPlotColormap_BrBG mvPlotColormap_PiYG=internal_dpg.mvPlotColormap_PiYG mvPlotColormap_Spectral=internal_dpg.mvPlotColormap_Spectral mvPlotColormap_Greys=internal_dpg.mvPlotColormap_Greys mvColorPicker_bar=internal_dpg.mvColorPicker_bar mvColorPicker_wheel=internal_dpg.mvColorPicker_wheel mvTabOrder_Reorderable=internal_dpg.mvTabOrder_Reorderable mvTabOrder_Fixed=internal_dpg.mvTabOrder_Fixed mvTabOrder_Leading=internal_dpg.mvTabOrder_Leading mvTabOrder_Trailing=internal_dpg.mvTabOrder_Trailing mvDatePickerLevel_Day=internal_dpg.mvDatePickerLevel_Day mvDatePickerLevel_Month=internal_dpg.mvDatePickerLevel_Month mvDatePickerLevel_Year=internal_dpg.mvDatePickerLevel_Year mvCullMode_None=internal_dpg.mvCullMode_None mvCullMode_Back=internal_dpg.mvCullMode_Back mvCullMode_Front=internal_dpg.mvCullMode_Front mvFontRangeHint_Default=internal_dpg.mvFontRangeHint_Default mvFontRangeHint_Japanese=internal_dpg.mvFontRangeHint_Japanese mvFontRangeHint_Korean=internal_dpg.mvFontRangeHint_Korean mvFontRangeHint_Chinese_Full=internal_dpg.mvFontRangeHint_Chinese_Full mvFontRangeHint_Chinese_Simplified_Common=internal_dpg.mvFontRangeHint_Chinese_Simplified_Common mvFontRangeHint_Cyrillic=internal_dpg.mvFontRangeHint_Cyrillic mvFontRangeHint_Thai=internal_dpg.mvFontRangeHint_Thai mvFontRangeHint_Vietnamese=internal_dpg.mvFontRangeHint_Vietnamese mvNode_PinShape_Circle=internal_dpg.mvNode_PinShape_Circle mvNode_PinShape_CircleFilled=internal_dpg.mvNode_PinShape_CircleFilled mvNode_PinShape_Triangle=internal_dpg.mvNode_PinShape_Triangle mvNode_PinShape_TriangleFilled=internal_dpg.mvNode_PinShape_TriangleFilled mvNode_PinShape_Quad=internal_dpg.mvNode_PinShape_Quad mvNode_PinShape_QuadFilled=internal_dpg.mvNode_PinShape_QuadFilled mvNode_Attr_Input=internal_dpg.mvNode_Attr_Input mvNode_Attr_Output=internal_dpg.mvNode_Attr_Output mvNode_Attr_Static=internal_dpg.mvNode_Attr_Static mvPlotBin_Sqrt=internal_dpg.mvPlotBin_Sqrt mvPlotBin_Sturges=internal_dpg.mvPlotBin_Sturges mvPlotBin_Rice=internal_dpg.mvPlotBin_Rice mvPlotBin_Scott=internal_dpg.mvPlotBin_Scott mvXAxis=internal_dpg.mvXAxis mvYAxis=internal_dpg.mvYAxis mvPlotMarker_None=internal_dpg.mvPlotMarker_None mvPlotMarker_Circle=internal_dpg.mvPlotMarker_Circle mvPlotMarker_Square=internal_dpg.mvPlotMarker_Square mvPlotMarker_Diamond=internal_dpg.mvPlotMarker_Diamond mvPlotMarker_Up=internal_dpg.mvPlotMarker_Up mvPlotMarker_Down=internal_dpg.mvPlotMarker_Down mvPlotMarker_Left=internal_dpg.mvPlotMarker_Left mvPlotMarker_Right=internal_dpg.mvPlotMarker_Right mvPlotMarker_Cross=internal_dpg.mvPlotMarker_Cross mvPlotMarker_Plus=internal_dpg.mvPlotMarker_Plus mvPlotMarker_Asterisk=internal_dpg.mvPlotMarker_Asterisk mvPlot_Location_Center=internal_dpg.mvPlot_Location_Center mvPlot_Location_North=internal_dpg.mvPlot_Location_North mvPlot_Location_South=internal_dpg.mvPlot_Location_South mvPlot_Location_West=internal_dpg.mvPlot_Location_West mvPlot_Location_East=internal_dpg.mvPlot_Location_East mvPlot_Location_NorthWest=internal_dpg.mvPlot_Location_NorthWest mvPlot_Location_NorthEast=internal_dpg.mvPlot_Location_NorthEast mvPlot_Location_SouthWest=internal_dpg.mvPlot_Location_SouthWest mvPlot_Location_SouthEast=internal_dpg.mvPlot_Location_SouthEast mvTable_SizingFixedFit=internal_dpg.mvTable_SizingFixedFit mvTable_SizingFixedSame=internal_dpg.mvTable_SizingFixedSame mvTable_SizingStretchProp=internal_dpg.mvTable_SizingStretchProp mvTable_SizingStretchSame=internal_dpg.mvTable_SizingStretchSame mvFormat_Float_rgba=internal_dpg.mvFormat_Float_rgba mvFormat_Float_rgb=internal_dpg.mvFormat_Float_rgb mvThemeCat_Core=internal_dpg.mvThemeCat_Core mvThemeCat_Plots=internal_dpg.mvThemeCat_Plots mvThemeCat_Nodes=internal_dpg.mvThemeCat_Nodes mvThemeCol_Text=internal_dpg.mvThemeCol_Text mvThemeCol_TextDisabled=internal_dpg.mvThemeCol_TextDisabled mvThemeCol_WindowBg=internal_dpg.mvThemeCol_WindowBg mvThemeCol_ChildBg=internal_dpg.mvThemeCol_ChildBg mvThemeCol_Border=internal_dpg.mvThemeCol_Border mvThemeCol_PopupBg=internal_dpg.mvThemeCol_PopupBg mvThemeCol_BorderShadow=internal_dpg.mvThemeCol_BorderShadow mvThemeCol_FrameBg=internal_dpg.mvThemeCol_FrameBg mvThemeCol_FrameBgHovered=internal_dpg.mvThemeCol_FrameBgHovered mvThemeCol_FrameBgActive=internal_dpg.mvThemeCol_FrameBgActive mvThemeCol_TitleBg=internal_dpg.mvThemeCol_TitleBg mvThemeCol_TitleBgActive=internal_dpg.mvThemeCol_TitleBgActive mvThemeCol_TitleBgCollapsed=internal_dpg.mvThemeCol_TitleBgCollapsed mvThemeCol_MenuBarBg=internal_dpg.mvThemeCol_MenuBarBg mvThemeCol_ScrollbarBg=internal_dpg.mvThemeCol_ScrollbarBg mvThemeCol_ScrollbarGrab=internal_dpg.mvThemeCol_ScrollbarGrab mvThemeCol_ScrollbarGrabHovered=internal_dpg.mvThemeCol_ScrollbarGrabHovered mvThemeCol_ScrollbarGrabActive=internal_dpg.mvThemeCol_ScrollbarGrabActive mvThemeCol_CheckMark=internal_dpg.mvThemeCol_CheckMark mvThemeCol_SliderGrab=internal_dpg.mvThemeCol_SliderGrab mvThemeCol_SliderGrabActive=internal_dpg.mvThemeCol_SliderGrabActive mvThemeCol_Button=internal_dpg.mvThemeCol_Button mvThemeCol_ButtonHovered=internal_dpg.mvThemeCol_ButtonHovered mvThemeCol_ButtonActive=internal_dpg.mvThemeCol_ButtonActive mvThemeCol_Header=internal_dpg.mvThemeCol_Header mvThemeCol_HeaderHovered=internal_dpg.mvThemeCol_HeaderHovered mvThemeCol_HeaderActive=internal_dpg.mvThemeCol_HeaderActive mvThemeCol_Separator=internal_dpg.mvThemeCol_Separator mvThemeCol_SeparatorHovered=internal_dpg.mvThemeCol_SeparatorHovered mvThemeCol_SeparatorActive=internal_dpg.mvThemeCol_SeparatorActive mvThemeCol_ResizeGrip=internal_dpg.mvThemeCol_ResizeGrip mvThemeCol_ResizeGripHovered=internal_dpg.mvThemeCol_ResizeGripHovered mvThemeCol_ResizeGripActive=internal_dpg.mvThemeCol_ResizeGripActive mvThemeCol_Tab=internal_dpg.mvThemeCol_Tab mvThemeCol_TabHovered=internal_dpg.mvThemeCol_TabHovered mvThemeCol_TabActive=internal_dpg.mvThemeCol_TabActive mvThemeCol_TabUnfocused=internal_dpg.mvThemeCol_TabUnfocused mvThemeCol_TabUnfocusedActive=internal_dpg.mvThemeCol_TabUnfocusedActive mvThemeCol_DockingPreview=internal_dpg.mvThemeCol_DockingPreview mvThemeCol_DockingEmptyBg=internal_dpg.mvThemeCol_DockingEmptyBg mvThemeCol_PlotLines=internal_dpg.mvThemeCol_PlotLines mvThemeCol_PlotLinesHovered=internal_dpg.mvThemeCol_PlotLinesHovered mvThemeCol_PlotHistogram=internal_dpg.mvThemeCol_PlotHistogram mvThemeCol_PlotHistogramHovered=internal_dpg.mvThemeCol_PlotHistogramHovered mvThemeCol_TableHeaderBg=internal_dpg.mvThemeCol_TableHeaderBg mvThemeCol_TableBorderStrong=internal_dpg.mvThemeCol_TableBorderStrong mvThemeCol_TableBorderLight=internal_dpg.mvThemeCol_TableBorderLight mvThemeCol_TableRowBg=internal_dpg.mvThemeCol_TableRowBg mvThemeCol_TableRowBgAlt=internal_dpg.mvThemeCol_TableRowBgAlt mvThemeCol_TextSelectedBg=internal_dpg.mvThemeCol_TextSelectedBg mvThemeCol_DragDropTarget=internal_dpg.mvThemeCol_DragDropTarget mvThemeCol_NavHighlight=internal_dpg.mvThemeCol_NavHighlight mvThemeCol_NavWindowingHighlight=internal_dpg.mvThemeCol_NavWindowingHighlight mvThemeCol_NavWindowingDimBg=internal_dpg.mvThemeCol_NavWindowingDimBg mvThemeCol_ModalWindowDimBg=internal_dpg.mvThemeCol_ModalWindowDimBg mvPlotCol_Line=internal_dpg.mvPlotCol_Line mvPlotCol_Fill=internal_dpg.mvPlotCol_Fill mvPlotCol_MarkerOutline=internal_dpg.mvPlotCol_MarkerOutline mvPlotCol_MarkerFill=internal_dpg.mvPlotCol_MarkerFill mvPlotCol_ErrorBar=internal_dpg.mvPlotCol_ErrorBar mvPlotCol_FrameBg=internal_dpg.mvPlotCol_FrameBg mvPlotCol_PlotBg=internal_dpg.mvPlotCol_PlotBg mvPlotCol_PlotBorder=internal_dpg.mvPlotCol_PlotBorder mvPlotCol_LegendBg=internal_dpg.mvPlotCol_LegendBg mvPlotCol_LegendBorder=internal_dpg.mvPlotCol_LegendBorder mvPlotCol_LegendText=internal_dpg.mvPlotCol_LegendText mvPlotCol_TitleText=internal_dpg.mvPlotCol_TitleText mvPlotCol_InlayText=internal_dpg.mvPlotCol_InlayText mvPlotCol_XAxis=internal_dpg.mvPlotCol_XAxis mvPlotCol_XAxisGrid=internal_dpg.mvPlotCol_XAxisGrid mvPlotCol_YAxis=internal_dpg.mvPlotCol_YAxis mvPlotCol_YAxisGrid=internal_dpg.mvPlotCol_YAxisGrid mvPlotCol_YAxis2=internal_dpg.mvPlotCol_YAxis2 mvPlotCol_YAxisGrid2=internal_dpg.mvPlotCol_YAxisGrid2 mvPlotCol_YAxis3=internal_dpg.mvPlotCol_YAxis3 mvPlotCol_YAxisGrid3=internal_dpg.mvPlotCol_YAxisGrid3 mvPlotCol_Selection=internal_dpg.mvPlotCol_Selection mvPlotCol_Query=internal_dpg.mvPlotCol_Query mvPlotCol_Crosshairs=internal_dpg.mvPlotCol_Crosshairs mvNodeCol_NodeBackground=internal_dpg.mvNodeCol_NodeBackground mvNodeCol_NodeBackgroundHovered=internal_dpg.mvNodeCol_NodeBackgroundHovered mvNodeCol_NodeBackgroundSelected=internal_dpg.mvNodeCol_NodeBackgroundSelected mvNodeCol_NodeOutline=internal_dpg.mvNodeCol_NodeOutline mvNodeCol_TitleBar=internal_dpg.mvNodeCol_TitleBar mvNodeCol_TitleBarHovered=internal_dpg.mvNodeCol_TitleBarHovered mvNodeCol_TitleBarSelected=internal_dpg.mvNodeCol_TitleBarSelected mvNodeCol_Link=internal_dpg.mvNodeCol_Link mvNodeCol_LinkHovered=internal_dpg.mvNodeCol_LinkHovered mvNodeCol_LinkSelected=internal_dpg.mvNodeCol_LinkSelected mvNodeCol_Pin=internal_dpg.mvNodeCol_Pin mvNodeCol_PinHovered=internal_dpg.mvNodeCol_PinHovered mvNodeCol_BoxSelector=internal_dpg.mvNodeCol_BoxSelector mvNodeCol_BoxSelectorOutline=internal_dpg.mvNodeCol_BoxSelectorOutline mvNodeCol_GridBackground=internal_dpg.mvNodeCol_GridBackground mvNodeCol_GridLine=internal_dpg.mvNodeCol_GridLine mvStyleVar_Alpha=internal_dpg.mvStyleVar_Alpha mvStyleVar_WindowPadding=internal_dpg.mvStyleVar_WindowPadding mvStyleVar_WindowRounding=internal_dpg.mvStyleVar_WindowRounding mvStyleVar_WindowBorderSize=internal_dpg.mvStyleVar_WindowBorderSize mvStyleVar_WindowMinSize=internal_dpg.mvStyleVar_WindowMinSize mvStyleVar_WindowTitleAlign=internal_dpg.mvStyleVar_WindowTitleAlign mvStyleVar_ChildRounding=internal_dpg.mvStyleVar_ChildRounding mvStyleVar_ChildBorderSize=internal_dpg.mvStyleVar_ChildBorderSize mvStyleVar_PopupRounding=internal_dpg.mvStyleVar_PopupRounding mvStyleVar_PopupBorderSize=internal_dpg.mvStyleVar_PopupBorderSize mvStyleVar_FramePadding=internal_dpg.mvStyleVar_FramePadding mvStyleVar_FrameRounding=internal_dpg.mvStyleVar_FrameRounding mvStyleVar_FrameBorderSize=internal_dpg.mvStyleVar_FrameBorderSize mvStyleVar_ItemSpacing=internal_dpg.mvStyleVar_ItemSpacing mvStyleVar_ItemInnerSpacing=internal_dpg.mvStyleVar_ItemInnerSpacing mvStyleVar_IndentSpacing=internal_dpg.mvStyleVar_IndentSpacing mvStyleVar_CellPadding=internal_dpg.mvStyleVar_CellPadding mvStyleVar_ScrollbarSize=internal_dpg.mvStyleVar_ScrollbarSize mvStyleVar_ScrollbarRounding=internal_dpg.mvStyleVar_ScrollbarRounding mvStyleVar_GrabMinSize=internal_dpg.mvStyleVar_GrabMinSize mvStyleVar_GrabRounding=internal_dpg.mvStyleVar_GrabRounding mvStyleVar_TabRounding=internal_dpg.mvStyleVar_TabRounding mvStyleVar_ButtonTextAlign=internal_dpg.mvStyleVar_ButtonTextAlign mvStyleVar_SelectableTextAlign=internal_dpg.mvStyleVar_SelectableTextAlign mvPlotStyleVar_LineWeight=internal_dpg.mvPlotStyleVar_LineWeight mvPlotStyleVar_Marker=internal_dpg.mvPlotStyleVar_Marker mvPlotStyleVar_MarkerSize=internal_dpg.mvPlotStyleVar_MarkerSize mvPlotStyleVar_MarkerWeight=internal_dpg.mvPlotStyleVar_MarkerWeight mvPlotStyleVar_FillAlpha=internal_dpg.mvPlotStyleVar_FillAlpha mvPlotStyleVar_ErrorBarSize=internal_dpg.mvPlotStyleVar_ErrorBarSize mvPlotStyleVar_ErrorBarWeight=internal_dpg.mvPlotStyleVar_ErrorBarWeight mvPlotStyleVar_DigitalBitHeight=internal_dpg.mvPlotStyleVar_DigitalBitHeight mvPlotStyleVar_DigitalBitGap=internal_dpg.mvPlotStyleVar_DigitalBitGap mvPlotStyleVar_PlotBorderSize=internal_dpg.mvPlotStyleVar_PlotBorderSize mvPlotStyleVar_MinorAlpha=internal_dpg.mvPlotStyleVar_MinorAlpha mvPlotStyleVar_MajorTickLen=internal_dpg.mvPlotStyleVar_MajorTickLen mvPlotStyleVar_MinorTickLen=internal_dpg.mvPlotStyleVar_MinorTickLen mvPlotStyleVar_MajorTickSize=internal_dpg.mvPlotStyleVar_MajorTickSize mvPlotStyleVar_MinorTickSize=internal_dpg.mvPlotStyleVar_MinorTickSize mvPlotStyleVar_MajorGridSize=internal_dpg.mvPlotStyleVar_MajorGridSize mvPlotStyleVar_MinorGridSize=internal_dpg.mvPlotStyleVar_MinorGridSize mvPlotStyleVar_PlotPadding=internal_dpg.mvPlotStyleVar_PlotPadding mvPlotStyleVar_LabelPadding=internal_dpg.mvPlotStyleVar_LabelPadding mvPlotStyleVar_LegendPadding=internal_dpg.mvPlotStyleVar_LegendPadding mvPlotStyleVar_LegendInnerPadding=internal_dpg.mvPlotStyleVar_LegendInnerPadding mvPlotStyleVar_LegendSpacing=internal_dpg.mvPlotStyleVar_LegendSpacing mvPlotStyleVar_MousePosPadding=internal_dpg.mvPlotStyleVar_MousePosPadding mvPlotStyleVar_AnnotationPadding=internal_dpg.mvPlotStyleVar_AnnotationPadding mvPlotStyleVar_FitPadding=internal_dpg.mvPlotStyleVar_FitPadding mvPlotStyleVar_PlotDefaultSize=internal_dpg.mvPlotStyleVar_PlotDefaultSize mvPlotStyleVar_PlotMinSize=internal_dpg.mvPlotStyleVar_PlotMinSize mvNodeStyleVar_GridSpacing=internal_dpg.mvNodeStyleVar_GridSpacing mvNodeStyleVar_NodeCornerRounding=internal_dpg.mvNodeStyleVar_NodeCornerRounding mvNodeStyleVar_NodePaddingHorizontal=internal_dpg.mvNodeStyleVar_NodePaddingHorizontal mvNodeStyleVar_NodePaddingVertical=internal_dpg.mvNodeStyleVar_NodePaddingVertical mvNodeStyleVar_NodeBorderThickness=internal_dpg.mvNodeStyleVar_NodeBorderThickness mvNodeStyleVar_LinkThickness=internal_dpg.mvNodeStyleVar_LinkThickness mvNodeStyleVar_LinkLineSegmentsPerLength=internal_dpg.mvNodeStyleVar_LinkLineSegmentsPerLength mvNodeStyleVar_LinkHoverDistance=internal_dpg.mvNodeStyleVar_LinkHoverDistance mvNodeStyleVar_PinCircleRadius=internal_dpg.mvNodeStyleVar_PinCircleRadius mvNodeStyleVar_PinQuadSideLength=internal_dpg.mvNodeStyleVar_PinQuadSideLength mvNodeStyleVar_PinTriangleSideLength=internal_dpg.mvNodeStyleVar_PinTriangleSideLength mvNodeStyleVar_PinLineThickness=internal_dpg.mvNodeStyleVar_PinLineThickness mvNodeStyleVar_PinHoverRadius=internal_dpg.mvNodeStyleVar_PinHoverRadius mvNodeStyleVar_PinOffset=internal_dpg.mvNodeStyleVar_PinOffset mvInputText=internal_dpg.mvInputText mvButton=internal_dpg.mvButton mvRadioButton=internal_dpg.mvRadioButton mvTabBar=internal_dpg.mvTabBar mvTab=internal_dpg.mvTab mvImage=internal_dpg.mvImage mvMenuBar=internal_dpg.mvMenuBar mvViewportMenuBar=internal_dpg.mvViewportMenuBar mvMenu=internal_dpg.mvMenu mvMenuItem=internal_dpg.mvMenuItem mvChildWindow=internal_dpg.mvChildWindow mvGroup=internal_dpg.mvGroup mvSliderFloat=internal_dpg.mvSliderFloat mvSliderInt=internal_dpg.mvSliderInt mvFilterSet=internal_dpg.mvFilterSet mvDragFloat=internal_dpg.mvDragFloat mvDragInt=internal_dpg.mvDragInt mvInputFloat=internal_dpg.mvInputFloat mvInputInt=internal_dpg.mvInputInt mvColorEdit=internal_dpg.mvColorEdit mvClipper=internal_dpg.mvClipper mvColorPicker=internal_dpg.mvColorPicker mvTooltip=internal_dpg.mvTooltip mvCollapsingHeader=internal_dpg.mvCollapsingHeader mvSeparator=internal_dpg.mvSeparator mvCheckbox=internal_dpg.mvCheckbox mvListbox=internal_dpg.mvListbox mvText=internal_dpg.mvText mvCombo=internal_dpg.mvCombo mvPlot=internal_dpg.mvPlot mvSimplePlot=internal_dpg.mvSimplePlot mvDrawlist=internal_dpg.mvDrawlist mvWindowAppItem=internal_dpg.mvWindowAppItem mvSelectable=internal_dpg.mvSelectable mvTreeNode=internal_dpg.mvTreeNode mvProgressBar=internal_dpg.mvProgressBar mvSpacer=internal_dpg.mvSpacer mvImageButton=internal_dpg.mvImageButton mvTimePicker=internal_dpg.mvTimePicker mvDatePicker=internal_dpg.mvDatePicker mvColorButton=internal_dpg.mvColorButton mvFileDialog=internal_dpg.mvFileDialog mvTabButton=internal_dpg.mvTabButton mvDrawNode=internal_dpg.mvDrawNode mvNodeEditor=internal_dpg.mvNodeEditor mvNode=internal_dpg.mvNode mvNodeAttribute=internal_dpg.mvNodeAttribute mvTable=internal_dpg.mvTable mvTableColumn=internal_dpg.mvTableColumn mvTableRow=internal_dpg.mvTableRow mvDrawLine=internal_dpg.mvDrawLine mvDrawArrow=internal_dpg.mvDrawArrow mvDrawTriangle=internal_dpg.mvDrawTriangle mvDrawImageQuad=internal_dpg.mvDrawImageQuad mvDrawCircle=internal_dpg.mvDrawCircle mvDrawEllipse=internal_dpg.mvDrawEllipse mvDrawBezierCubic=internal_dpg.mvDrawBezierCubic mvDrawBezierQuadratic=internal_dpg.mvDrawBezierQuadratic mvDrawQuad=internal_dpg.mvDrawQuad mvDrawRect=internal_dpg.mvDrawRect mvDrawText=internal_dpg.mvDrawText mvDrawPolygon=internal_dpg.mvDrawPolygon mvDrawPolyline=internal_dpg.mvDrawPolyline mvDrawImage=internal_dpg.mvDrawImage mvDragFloatMulti=internal_dpg.mvDragFloatMulti mvDragIntMulti=internal_dpg.mvDragIntMulti mvSliderFloatMulti=internal_dpg.mvSliderFloatMulti mvSliderIntMulti=internal_dpg.mvSliderIntMulti mvInputIntMulti=internal_dpg.mvInputIntMulti mvInputFloatMulti=internal_dpg.mvInputFloatMulti mvDragPoint=internal_dpg.mvDragPoint mvDragLine=internal_dpg.mvDragLine mvAnnotation=internal_dpg.mvAnnotation mvLineSeries=internal_dpg.mvLineSeries mvScatterSeries=internal_dpg.mvScatterSeries mvStemSeries=internal_dpg.mvStemSeries mvStairSeries=internal_dpg.mvStairSeries mvBarSeries=internal_dpg.mvBarSeries mvErrorSeries=internal_dpg.mvErrorSeries mvVLineSeries=internal_dpg.mvVLineSeries mvHLineSeries=internal_dpg.mvHLineSeries mvHeatSeries=internal_dpg.mvHeatSeries mvImageSeries=internal_dpg.mvImageSeries mvPieSeries=internal_dpg.mvPieSeries mvShadeSeries=internal_dpg.mvShadeSeries mvLabelSeries=internal_dpg.mvLabelSeries mvHistogramSeries=internal_dpg.mvHistogramSeries mv2dHistogramSeries=internal_dpg.mv2dHistogramSeries mvCandleSeries=internal_dpg.mvCandleSeries mvAreaSeries=internal_dpg.mvAreaSeries mvColorMapScale=internal_dpg.mvColorMapScale mvSlider3D=internal_dpg.mvSlider3D mvKnobFloat=internal_dpg.mvKnobFloat mvLoadingIndicator=internal_dpg.mvLoadingIndicator mvNodeLink=internal_dpg.mvNodeLink mvTextureRegistry=internal_dpg.mvTextureRegistry mvStaticTexture=internal_dpg.mvStaticTexture mvDynamicTexture=internal_dpg.mvDynamicTexture mvStage=internal_dpg.mvStage mvDrawLayer=internal_dpg.mvDrawLayer mvViewportDrawlist=internal_dpg.mvViewportDrawlist mvFileExtension=internal_dpg.mvFileExtension mvPlotLegend=internal_dpg.mvPlotLegend mvPlotAxis=internal_dpg.mvPlotAxis mvHandlerRegistry=internal_dpg.mvHandlerRegistry mvKeyDownHandler=internal_dpg.mvKeyDownHandler mvKeyPressHandler=internal_dpg.mvKeyPressHandler mvKeyReleaseHandler=internal_dpg.mvKeyReleaseHandler mvMouseMoveHandler=internal_dpg.mvMouseMoveHandler mvMouseWheelHandler=internal_dpg.mvMouseWheelHandler mvMouseClickHandler=internal_dpg.mvMouseClickHandler mvMouseDoubleClickHandler=internal_dpg.mvMouseDoubleClickHandler mvMouseDownHandler=internal_dpg.mvMouseDownHandler mvMouseReleaseHandler=internal_dpg.mvMouseReleaseHandler mvMouseDragHandler=internal_dpg.mvMouseDragHandler mvHoverHandler=internal_dpg.mvHoverHandler mvActiveHandler=internal_dpg.mvActiveHandler mvFocusHandler=internal_dpg.mvFocusHandler mvVisibleHandler=internal_dpg.mvVisibleHandler mvEditedHandler=internal_dpg.mvEditedHandler mvActivatedHandler=internal_dpg.mvActivatedHandler mvDeactivatedHandler=internal_dpg.mvDeactivatedHandler mvDeactivatedAfterEditHandler=internal_dpg.mvDeactivatedAfterEditHandler mvToggledOpenHandler=internal_dpg.mvToggledOpenHandler mvClickedHandler=internal_dpg.mvClickedHandler mvDragPayload=internal_dpg.mvDragPayload mvResizeHandler=internal_dpg.mvResizeHandler mvFont=internal_dpg.mvFont mvFontRegistry=internal_dpg.mvFontRegistry mvTheme=internal_dpg.mvTheme mvThemeColor=internal_dpg.mvThemeColor mvThemeStyle=internal_dpg.mvThemeStyle mvThemeComponent=internal_dpg.mvThemeComponent mvFontRangeHint=internal_dpg.mvFontRangeHint mvFontRange=internal_dpg.mvFontRange mvFontChars=internal_dpg.mvFontChars mvCharRemap=internal_dpg.mvCharRemap mvValueRegistry=internal_dpg.mvValueRegistry mvIntValue=internal_dpg.mvIntValue mvFloatValue=internal_dpg.mvFloatValue mvFloat4Value=internal_dpg.mvFloat4Value mvInt4Value=internal_dpg.mvInt4Value mvBoolValue=internal_dpg.mvBoolValue mvStringValue=internal_dpg.mvStringValue mvDoubleValue=internal_dpg.mvDoubleValue mvDouble4Value=internal_dpg.mvDouble4Value mvColorValue=internal_dpg.mvColorValue mvFloatVectValue=internal_dpg.mvFloatVectValue mvSeriesValue=internal_dpg.mvSeriesValue mvRawTexture=internal_dpg.mvRawTexture mvSubPlots=internal_dpg.mvSubPlots mvColorMap=internal_dpg.mvColorMap mvColorMapRegistry=internal_dpg.mvColorMapRegistry mvColorMapButton=internal_dpg.mvColorMapButton mvColorMapSlider=internal_dpg.mvColorMapSlider mvTemplateRegistry=internal_dpg.mvTemplateRegistry mvTableCell=internal_dpg.mvTableCell mvItemHandlerRegistry=internal_dpg.mvItemHandlerRegistry mvReservedUUID_0=internal_dpg.mvReservedUUID_0 mvReservedUUID_1=internal_dpg.mvReservedUUID_1 mvReservedUUID_2=internal_dpg.mvReservedUUID_2 mvReservedUUID_3=internal_dpg.mvReservedUUID_3 mvReservedUUID_4=internal_dpg.mvReservedUUID_4 mvReservedUUID_5=internal_dpg.mvReservedUUID_5 mvReservedUUID_6=internal_dpg.mvReservedUUID_6 mvReservedUUID_7=internal_dpg.mvReservedUUID_7 mvReservedUUID_8=internal_dpg.mvReservedUUID_8 mvReservedUUID_9=internal_dpg.mvReservedUUID_9
56.135813
1,319
0.737808
bca34c403a4539cc61e0e270d4d3befc8c32dddf
29,490
py
Python
Lib/site-packages/tensorflow_core/contrib/boosted_trees/proto/learner_pb2.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
2
2019-08-04T20:28:14.000Z
2019-10-27T23:26:42.000Z
Lib/site-packages/tensorflow_core/contrib/boosted_trees/proto/learner_pb2.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/tensorflow_core/contrib/boosted_trees/proto/learner_pb2.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
1
2020-11-04T03:16:29.000Z
2020-11-04T03:16:29.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow/contrib/boosted_trees/proto/learner.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow/contrib/boosted_trees/proto/learner.proto', package='tensorflow.boosted_trees.learner', syntax='proto3', serialized_options=_b('\370\001\001'), serialized_pb=_b('\n4tensorflow/contrib/boosted_trees/proto/learner.proto\x12 tensorflow.boosted_trees.learner\"K\n\x18TreeRegularizationConfig\x12\n\n\x02l1\x18\x01 \x01(\x02\x12\n\n\x02l2\x18\x02 \x01(\x02\x12\x17\n\x0ftree_complexity\x18\x03 \x01(\x02\"v\n\x15TreeConstraintsConfig\x12\x16\n\x0emax_tree_depth\x18\x01 \x01(\r\x12\x17\n\x0fmin_node_weight\x18\x02 \x01(\x02\x12,\n$max_number_of_unique_feature_columns\x18\x03 \x01(\x03\"\x96\x02\n\x12LearningRateConfig\x12J\n\x05\x66ixed\x18\x01 \x01(\x0b\x32\x39.tensorflow.boosted_trees.learner.LearningRateFixedConfigH\x00\x12T\n\x07\x64ropout\x18\x02 \x01(\x0b\x32\x41.tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfigH\x00\x12U\n\x0bline_search\x18\x03 \x01(\x0b\x32>.tensorflow.boosted_trees.learner.LearningRateLineSearchConfigH\x00\x42\x07\n\x05tuner\"0\n\x17LearningRateFixedConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\"L\n\x1cLearningRateLineSearchConfig\x12\x19\n\x11max_learning_rate\x18\x01 \x01(\x02\x12\x11\n\tnum_steps\x18\x02 \x01(\x05\"a\n\x0f\x41veragingConfig\x12\x1e\n\x14\x61verage_last_n_trees\x18\x01 \x01(\x02H\x00\x12$\n\x1a\x61verage_last_percent_trees\x18\x02 \x01(\x02H\x00\x42\x08\n\x06\x63onfig\"~\n\x1fLearningRateDropoutDrivenConfig\x12\x1b\n\x13\x64ropout_probability\x18\x01 \x01(\x02\x12\'\n\x1fprobability_of_skipping_dropout\x18\x02 \x01(\x02\x12\x15\n\rlearning_rate\x18\x03 \x01(\x02\"\x88\t\n\rLearnerConfig\x12\x13\n\x0bnum_classes\x18\x01 \x01(\r\x12#\n\x19\x66\x65\x61ture_fraction_per_tree\x18\x02 \x01(\x02H\x00\x12$\n\x1a\x66\x65\x61ture_fraction_per_level\x18\x03 \x01(\x02H\x00\x12R\n\x0eregularization\x18\x04 \x01(\x0b\x32:.tensorflow.boosted_trees.learner.TreeRegularizationConfig\x12L\n\x0b\x63onstraints\x18\x05 \x01(\x0b\x32\x37.tensorflow.boosted_trees.learner.TreeConstraintsConfig\x12Q\n\x0cpruning_mode\x18\x08 \x01(\x0e\x32;.tensorflow.boosted_trees.learner.LearnerConfig.PruningMode\x12Q\n\x0cgrowing_mode\x18\t \x01(\x0e\x32;.tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode\x12Q\n\x13learning_rate_tuner\x18\x06 \x01(\x0b\x32\x34.tensorflow.boosted_trees.learner.LearningRateConfig\x12`\n\x14multi_class_strategy\x18\n \x01(\x0e\x32\x42.tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy\x12K\n\x10\x61veraging_config\x18\x0b \x01(\x0b\x32\x31.tensorflow.boosted_trees.learner.AveragingConfig\x12Z\n\x11weak_learner_type\x18\x0c \x01(\x0e\x32?.tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType\"J\n\x0bPruningMode\x12\x1c\n\x18PRUNING_MODE_UNSPECIFIED\x10\x00\x12\r\n\tPRE_PRUNE\x10\x01\x12\x0e\n\nPOST_PRUNE\x10\x02\"O\n\x0bGrowingMode\x12\x1c\n\x18GROWING_MODE_UNSPECIFIED\x10\x00\x12\x0e\n\nWHOLE_TREE\x10\x01\x12\x12\n\x0eLAYER_BY_LAYER\x10\x02\"v\n\x12MultiClassStrategy\x12$\n MULTI_CLASS_STRATEGY_UNSPECIFIED\x10\x00\x12\x12\n\x0eTREE_PER_CLASS\x10\x01\x12\x10\n\x0c\x46ULL_HESSIAN\x10\x02\x12\x14\n\x10\x44IAGONAL_HESSIAN\x10\x03\"H\n\x0fWeakLearnerType\x12\x18\n\x14NORMAL_DECISION_TREE\x10\x00\x12\x1b\n\x17OBLIVIOUS_DECISION_TREE\x10\x01\x42\x12\n\x10\x66\x65\x61ture_fractionB\x03\xf8\x01\x01\x62\x06proto3') ) _LEARNERCONFIG_PRUNINGMODE = _descriptor.EnumDescriptor( name='PruningMode', full_name='tensorflow.boosted_trees.learner.LearnerConfig.PruningMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='PRUNING_MODE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PRE_PRUNE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='POST_PRUNE', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1715, serialized_end=1789, ) _sym_db.RegisterEnumDescriptor(_LEARNERCONFIG_PRUNINGMODE) _LEARNERCONFIG_GROWINGMODE = _descriptor.EnumDescriptor( name='GrowingMode', full_name='tensorflow.boosted_trees.learner.LearnerConfig.GrowingMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='GROWING_MODE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='WHOLE_TREE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LAYER_BY_LAYER', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1791, serialized_end=1870, ) _sym_db.RegisterEnumDescriptor(_LEARNERCONFIG_GROWINGMODE) _LEARNERCONFIG_MULTICLASSSTRATEGY = _descriptor.EnumDescriptor( name='MultiClassStrategy', full_name='tensorflow.boosted_trees.learner.LearnerConfig.MultiClassStrategy', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MULTI_CLASS_STRATEGY_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TREE_PER_CLASS', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FULL_HESSIAN', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DIAGONAL_HESSIAN', index=3, number=3, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1872, serialized_end=1990, ) _sym_db.RegisterEnumDescriptor(_LEARNERCONFIG_MULTICLASSSTRATEGY) _LEARNERCONFIG_WEAKLEARNERTYPE = _descriptor.EnumDescriptor( name='WeakLearnerType', full_name='tensorflow.boosted_trees.learner.LearnerConfig.WeakLearnerType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NORMAL_DECISION_TREE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='OBLIVIOUS_DECISION_TREE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=1992, serialized_end=2064, ) _sym_db.RegisterEnumDescriptor(_LEARNERCONFIG_WEAKLEARNERTYPE) _TREEREGULARIZATIONCONFIG = _descriptor.Descriptor( name='TreeRegularizationConfig', full_name='tensorflow.boosted_trees.learner.TreeRegularizationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='l1', full_name='tensorflow.boosted_trees.learner.TreeRegularizationConfig.l1', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='l2', full_name='tensorflow.boosted_trees.learner.TreeRegularizationConfig.l2', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tree_complexity', full_name='tensorflow.boosted_trees.learner.TreeRegularizationConfig.tree_complexity', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=90, serialized_end=165, ) _TREECONSTRAINTSCONFIG = _descriptor.Descriptor( name='TreeConstraintsConfig', full_name='tensorflow.boosted_trees.learner.TreeConstraintsConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='max_tree_depth', full_name='tensorflow.boosted_trees.learner.TreeConstraintsConfig.max_tree_depth', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_node_weight', full_name='tensorflow.boosted_trees.learner.TreeConstraintsConfig.min_node_weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_number_of_unique_feature_columns', full_name='tensorflow.boosted_trees.learner.TreeConstraintsConfig.max_number_of_unique_feature_columns', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=167, serialized_end=285, ) _LEARNINGRATECONFIG = _descriptor.Descriptor( name='LearningRateConfig', full_name='tensorflow.boosted_trees.learner.LearningRateConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fixed', full_name='tensorflow.boosted_trees.learner.LearningRateConfig.fixed', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout', full_name='tensorflow.boosted_trees.learner.LearningRateConfig.dropout', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='line_search', full_name='tensorflow.boosted_trees.learner.LearningRateConfig.line_search', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='tuner', full_name='tensorflow.boosted_trees.learner.LearningRateConfig.tuner', index=0, containing_type=None, fields=[]), ], serialized_start=288, serialized_end=566, ) _LEARNINGRATEFIXEDCONFIG = _descriptor.Descriptor( name='LearningRateFixedConfig', full_name='tensorflow.boosted_trees.learner.LearningRateFixedConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='tensorflow.boosted_trees.learner.LearningRateFixedConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=568, serialized_end=616, ) _LEARNINGRATELINESEARCHCONFIG = _descriptor.Descriptor( name='LearningRateLineSearchConfig', full_name='tensorflow.boosted_trees.learner.LearningRateLineSearchConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='max_learning_rate', full_name='tensorflow.boosted_trees.learner.LearningRateLineSearchConfig.max_learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_steps', full_name='tensorflow.boosted_trees.learner.LearningRateLineSearchConfig.num_steps', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=618, serialized_end=694, ) _AVERAGINGCONFIG = _descriptor.Descriptor( name='AveragingConfig', full_name='tensorflow.boosted_trees.learner.AveragingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='average_last_n_trees', full_name='tensorflow.boosted_trees.learner.AveragingConfig.average_last_n_trees', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_last_percent_trees', full_name='tensorflow.boosted_trees.learner.AveragingConfig.average_last_percent_trees', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='config', full_name='tensorflow.boosted_trees.learner.AveragingConfig.config', index=0, containing_type=None, fields=[]), ], serialized_start=696, serialized_end=793, ) _LEARNINGRATEDROPOUTDRIVENCONFIG = _descriptor.Descriptor( name='LearningRateDropoutDrivenConfig', full_name='tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dropout_probability', full_name='tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig.dropout_probability', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='probability_of_skipping_dropout', full_name='tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig.probability_of_skipping_dropout', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig.learning_rate', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=795, serialized_end=921, ) _LEARNERCONFIG = _descriptor.Descriptor( name='LearnerConfig', full_name='tensorflow.boosted_trees.learner.LearnerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='num_classes', full_name='tensorflow.boosted_trees.learner.LearnerConfig.num_classes', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature_fraction_per_tree', full_name='tensorflow.boosted_trees.learner.LearnerConfig.feature_fraction_per_tree', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature_fraction_per_level', full_name='tensorflow.boosted_trees.learner.LearnerConfig.feature_fraction_per_level', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularization', full_name='tensorflow.boosted_trees.learner.LearnerConfig.regularization', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='constraints', full_name='tensorflow.boosted_trees.learner.LearnerConfig.constraints', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruning_mode', full_name='tensorflow.boosted_trees.learner.LearnerConfig.pruning_mode', index=5, number=8, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='growing_mode', full_name='tensorflow.boosted_trees.learner.LearnerConfig.growing_mode', index=6, number=9, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate_tuner', full_name='tensorflow.boosted_trees.learner.LearnerConfig.learning_rate_tuner', index=7, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='multi_class_strategy', full_name='tensorflow.boosted_trees.learner.LearnerConfig.multi_class_strategy', index=8, number=10, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='averaging_config', full_name='tensorflow.boosted_trees.learner.LearnerConfig.averaging_config', index=9, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weak_learner_type', full_name='tensorflow.boosted_trees.learner.LearnerConfig.weak_learner_type', index=10, number=12, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _LEARNERCONFIG_PRUNINGMODE, _LEARNERCONFIG_GROWINGMODE, _LEARNERCONFIG_MULTICLASSSTRATEGY, _LEARNERCONFIG_WEAKLEARNERTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='feature_fraction', full_name='tensorflow.boosted_trees.learner.LearnerConfig.feature_fraction', index=0, containing_type=None, fields=[]), ], serialized_start=924, serialized_end=2084, ) _LEARNINGRATECONFIG.fields_by_name['fixed'].message_type = _LEARNINGRATEFIXEDCONFIG _LEARNINGRATECONFIG.fields_by_name['dropout'].message_type = _LEARNINGRATEDROPOUTDRIVENCONFIG _LEARNINGRATECONFIG.fields_by_name['line_search'].message_type = _LEARNINGRATELINESEARCHCONFIG _LEARNINGRATECONFIG.oneofs_by_name['tuner'].fields.append( _LEARNINGRATECONFIG.fields_by_name['fixed']) _LEARNINGRATECONFIG.fields_by_name['fixed'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['tuner'] _LEARNINGRATECONFIG.oneofs_by_name['tuner'].fields.append( _LEARNINGRATECONFIG.fields_by_name['dropout']) _LEARNINGRATECONFIG.fields_by_name['dropout'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['tuner'] _LEARNINGRATECONFIG.oneofs_by_name['tuner'].fields.append( _LEARNINGRATECONFIG.fields_by_name['line_search']) _LEARNINGRATECONFIG.fields_by_name['line_search'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['tuner'] _AVERAGINGCONFIG.oneofs_by_name['config'].fields.append( _AVERAGINGCONFIG.fields_by_name['average_last_n_trees']) _AVERAGINGCONFIG.fields_by_name['average_last_n_trees'].containing_oneof = _AVERAGINGCONFIG.oneofs_by_name['config'] _AVERAGINGCONFIG.oneofs_by_name['config'].fields.append( _AVERAGINGCONFIG.fields_by_name['average_last_percent_trees']) _AVERAGINGCONFIG.fields_by_name['average_last_percent_trees'].containing_oneof = _AVERAGINGCONFIG.oneofs_by_name['config'] _LEARNERCONFIG.fields_by_name['regularization'].message_type = _TREEREGULARIZATIONCONFIG _LEARNERCONFIG.fields_by_name['constraints'].message_type = _TREECONSTRAINTSCONFIG _LEARNERCONFIG.fields_by_name['pruning_mode'].enum_type = _LEARNERCONFIG_PRUNINGMODE _LEARNERCONFIG.fields_by_name['growing_mode'].enum_type = _LEARNERCONFIG_GROWINGMODE _LEARNERCONFIG.fields_by_name['learning_rate_tuner'].message_type = _LEARNINGRATECONFIG _LEARNERCONFIG.fields_by_name['multi_class_strategy'].enum_type = _LEARNERCONFIG_MULTICLASSSTRATEGY _LEARNERCONFIG.fields_by_name['averaging_config'].message_type = _AVERAGINGCONFIG _LEARNERCONFIG.fields_by_name['weak_learner_type'].enum_type = _LEARNERCONFIG_WEAKLEARNERTYPE _LEARNERCONFIG_PRUNINGMODE.containing_type = _LEARNERCONFIG _LEARNERCONFIG_GROWINGMODE.containing_type = _LEARNERCONFIG _LEARNERCONFIG_MULTICLASSSTRATEGY.containing_type = _LEARNERCONFIG _LEARNERCONFIG_WEAKLEARNERTYPE.containing_type = _LEARNERCONFIG _LEARNERCONFIG.oneofs_by_name['feature_fraction'].fields.append( _LEARNERCONFIG.fields_by_name['feature_fraction_per_tree']) _LEARNERCONFIG.fields_by_name['feature_fraction_per_tree'].containing_oneof = _LEARNERCONFIG.oneofs_by_name['feature_fraction'] _LEARNERCONFIG.oneofs_by_name['feature_fraction'].fields.append( _LEARNERCONFIG.fields_by_name['feature_fraction_per_level']) _LEARNERCONFIG.fields_by_name['feature_fraction_per_level'].containing_oneof = _LEARNERCONFIG.oneofs_by_name['feature_fraction'] DESCRIPTOR.message_types_by_name['TreeRegularizationConfig'] = _TREEREGULARIZATIONCONFIG DESCRIPTOR.message_types_by_name['TreeConstraintsConfig'] = _TREECONSTRAINTSCONFIG DESCRIPTOR.message_types_by_name['LearningRateConfig'] = _LEARNINGRATECONFIG DESCRIPTOR.message_types_by_name['LearningRateFixedConfig'] = _LEARNINGRATEFIXEDCONFIG DESCRIPTOR.message_types_by_name['LearningRateLineSearchConfig'] = _LEARNINGRATELINESEARCHCONFIG DESCRIPTOR.message_types_by_name['AveragingConfig'] = _AVERAGINGCONFIG DESCRIPTOR.message_types_by_name['LearningRateDropoutDrivenConfig'] = _LEARNINGRATEDROPOUTDRIVENCONFIG DESCRIPTOR.message_types_by_name['LearnerConfig'] = _LEARNERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TreeRegularizationConfig = _reflection.GeneratedProtocolMessageType('TreeRegularizationConfig', (_message.Message,), { 'DESCRIPTOR' : _TREEREGULARIZATIONCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.TreeRegularizationConfig) }) _sym_db.RegisterMessage(TreeRegularizationConfig) TreeConstraintsConfig = _reflection.GeneratedProtocolMessageType('TreeConstraintsConfig', (_message.Message,), { 'DESCRIPTOR' : _TREECONSTRAINTSCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.TreeConstraintsConfig) }) _sym_db.RegisterMessage(TreeConstraintsConfig) LearningRateConfig = _reflection.GeneratedProtocolMessageType('LearningRateConfig', (_message.Message,), { 'DESCRIPTOR' : _LEARNINGRATECONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateConfig) }) _sym_db.RegisterMessage(LearningRateConfig) LearningRateFixedConfig = _reflection.GeneratedProtocolMessageType('LearningRateFixedConfig', (_message.Message,), { 'DESCRIPTOR' : _LEARNINGRATEFIXEDCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateFixedConfig) }) _sym_db.RegisterMessage(LearningRateFixedConfig) LearningRateLineSearchConfig = _reflection.GeneratedProtocolMessageType('LearningRateLineSearchConfig', (_message.Message,), { 'DESCRIPTOR' : _LEARNINGRATELINESEARCHCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateLineSearchConfig) }) _sym_db.RegisterMessage(LearningRateLineSearchConfig) AveragingConfig = _reflection.GeneratedProtocolMessageType('AveragingConfig', (_message.Message,), { 'DESCRIPTOR' : _AVERAGINGCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.AveragingConfig) }) _sym_db.RegisterMessage(AveragingConfig) LearningRateDropoutDrivenConfig = _reflection.GeneratedProtocolMessageType('LearningRateDropoutDrivenConfig', (_message.Message,), { 'DESCRIPTOR' : _LEARNINGRATEDROPOUTDRIVENCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearningRateDropoutDrivenConfig) }) _sym_db.RegisterMessage(LearningRateDropoutDrivenConfig) LearnerConfig = _reflection.GeneratedProtocolMessageType('LearnerConfig', (_message.Message,), { 'DESCRIPTOR' : _LEARNERCONFIG, '__module__' : 'tensorflow.contrib.boosted_trees.proto.learner_pb2' # @@protoc_insertion_point(class_scope:tensorflow.boosted_trees.learner.LearnerConfig) }) _sym_db.RegisterMessage(LearnerConfig) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
46.222571
3,097
0.782469
7511af5c0a722274b460c3760a807a009cc8b447
439
py
Python
tests/dev_controller.py
bbockelm/htcondor_jobview
ee8e7d9127f0218f99ce61532bc8cdfbf9708f24
[ "Apache-2.0" ]
4
2016-11-03T15:57:13.000Z
2021-03-08T16:56:08.000Z
tests/dev_controller.py
bbockelm/htcondor_jobview
ee8e7d9127f0218f99ce61532bc8cdfbf9708f24
[ "Apache-2.0" ]
null
null
null
tests/dev_controller.py
bbockelm/htcondor_jobview
ee8e7d9127f0218f99ce61532bc8cdfbf9708f24
[ "Apache-2.0" ]
1
2018-07-17T14:39:49.000Z
2018-07-17T14:39:49.000Z
#!/usr/bin/python import os import sys if os.path.exists("src"): sys.path.append("src") from wsgiref.simple_server import make_server from htcondor_jobview.jobview_app import application httpd = make_server('', 8000, application) httpd.base_environ['jobview.config'] = 'tests/unl.conf' httpd.base_environ['jobview.templates'] = 'templates' print "Serving on port 8000..." # Serve until process is killed httpd.serve_forever()
19.086957
55
0.753986
64a5585a6c0343f78dadd1862483d6dfca8ca1be
451
py
Python
.history/src/Simulador_20200707131332.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200707131332.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200707131332.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo class Simulador(): def __init__(self, tamanho_matriz,): self.num_iteracoes = 0 self.matriz_individuos = np.asmatrix(tamanho_matriz) self.matriz_esferica = Matriz_esferica(tamanho_matriz) self.dataframe = pd.DataFrame(columns= ['']) pass sim = Simulador(2) print(sim.matriz_individuos[0,0])
22.55
62
0.727273
9d1cf0bb83e8a9396d0943dd92b39f295c1de946
106
py
Python
cryptodock_framework/portfolio_manager/__init__.py
the-launch-tech/cryptodock-framework
de5a8ea8d4bcc427ff122cba8684abfd6a483152
[ "MIT" ]
null
null
null
cryptodock_framework/portfolio_manager/__init__.py
the-launch-tech/cryptodock-framework
de5a8ea8d4bcc427ff122cba8684abfd6a483152
[ "MIT" ]
null
null
null
cryptodock_framework/portfolio_manager/__init__.py
the-launch-tech/cryptodock-framework
de5a8ea8d4bcc427ff122cba8684abfd6a483152
[ "MIT" ]
null
null
null
__all__ = [ 'CryptoDockPortfolioManager' ] from .portfolio_manager import CryptoDockPortfolioManager
17.666667
57
0.811321
1ef19966c005fb09e72b0d2b045c06221c23ba25
1,172
py
Python
catalog/export_xml.py
pedroalvesfilho/flask_vehicle
702854eb14ef0e4d4c1231687a08a3b123b5b7c8
[ "MIT" ]
null
null
null
catalog/export_xml.py
pedroalvesfilho/flask_vehicle
702854eb14ef0e4d4c1231687a08a3b123b5b7c8
[ "MIT" ]
1
2021-04-30T20:46:37.000Z
2021-04-30T20:46:37.000Z
catalog/export_xml.py
pedroalvesfilho/flask_vehicle
702854eb14ef0e4d4c1231687a08a3b123b5b7c8
[ "MIT" ]
null
null
null
"""Provides an XML API endpoint.""" from xml.etree.ElementTree import Element, SubElement, tostring from xml.dom.minidom import parseString from catalog import app from catalog.database_setup import Category, Item from catalog.connect_to_database import connect_to_database @app.route('/catalog.xml/') def items_xml(): session = connect_to_database() categories = session.query(Category).all() root = Element('catalog') for category in categories: cat_tag = SubElement(root, 'category', {'id':str(category.id), 'name':category.name}) items = session.query(Item).filter_by(category=category).all() for item in items: item_tag = SubElement(cat_tag, 'item', {'id':str(item.id)}) name_tag = SubElement(item_tag, 'name') name_tag.text = item.name desc_tag = SubElement(item_tag, 'description') desc_tag.text = item.description session.close() # Return the XML with a 2 space indent to make it more human readable. return parseString(tostring(root, 'utf-8')).toprettyxml(indent=' ')
34.470588
75
0.642491
3a0ba2b9aa4db59d3bbb2e1a7d979f1483fa2da9
640
py
Python
src/assemblyline/runtests.py
eventbrite/django-assemblyline
3f4e0524b54ea5d840f6989abc89613abcded575
[ "MIT" ]
1
2016-05-23T15:11:58.000Z
2016-05-23T15:11:58.000Z
src/assemblyline/runtests.py
mscheibe/django-assemblyline
170db91f43ac915d4c671e2fc342a60df5cc3b35
[ "MIT" ]
null
null
null
src/assemblyline/runtests.py
mscheibe/django-assemblyline
170db91f43ac915d4c671e2fc342a60df5cc3b35
[ "MIT" ]
2
2016-08-14T07:15:43.000Z
2021-09-08T11:57:38.000Z
#This file mainly exists to allow python setup.py test to work. import os import sys def runtests(): # set the environment up so Django can find some settings os.environ['DJANGO_SETTINGS_MODULE'] = 'assemblyline.testsettings' # ...and now that it can find settings, import them from django.conf import settings from django.test.utils import get_runner test_runner = get_runner(settings)(verbosity=1, interactive=True) failures = test_runner.run_tests(['assemblyline',]) # exit with the failure information to satisfy unittest/setuptools sys.exit(failures) if __name__ == '__main__': runtests()
29.090909
70
0.734375
44739aef486e738d006d0bc08016481c7ca6d68d
5,766
py
Python
city_scrapers/spiders/chi_police.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
city_scrapers/spiders/chi_police.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
city_scrapers/spiders/chi_police.py
zarifmahmud/city-scrapers
52d6056001c8ea5e100dd686c52947836d63aff9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ All spiders should yield data shaped according to the Open Civic Data specification (http://docs.opencivicdata.org/en/latest/data/event.html). """ import json import re from datetime import datetime from city_scrapers.constants import COMMITTEE, POLICE_BEAT from city_scrapers.spider import Spider class ChiPoliceSpider(Spider): name = 'chi_police' agency_name = 'Chicago Police Department' timezone = 'America/Chicago' allowed_domains = [ 'https://home.chicagopolice.org/wp-content/themes/cpd-bootstrap/proxy/miniProxy.php?https://home.chicagopolice.org/get-involved-with-caps/all-community-event-calendars/district-1/' # noqa ] start_urls = [ 'https://home.chicagopolice.org/wp-content/themes/cpd-bootstrap/proxy/miniProxy.php?https://home.chicagopolice.org/get-involved-with-caps/all-community-event-calendars/district-1/' # noqa ] custom_settings = { 'USER_AGENT': 'Mozilla/5.0 (Linux; <Android Version>; <Build Tag etc.>) AppleWebKit/<WebKit Rev> (KHTML, like Gecko) Chrome/<Chrome Rev> Mobile Safari/<WebKit Rev>' # noqa } def parse(self, response): """ `parse` should always `yield` a dict that follows the `Open Civic Data event standard <http://docs.opencivicdata.org/en/latest/data/event.html>`_. Change the `_parse_id`, `_parse_name`, etc methods to fit your scraping needs. """ try: data = json.loads(response.body_as_unicode()) except json.decoder.JSONDecodeError: return for item in data: # Drop events that aren't Beat meetings or DAC meetings classification = self._parse_classification(item) if not classification: continue data = { '_type': 'event', 'id': self._parse_id(item), 'name': self._parse_name(classification, item), 'event_description': '', 'classification': classification, 'all_day': False, 'start': self._parse_start(item), 'end': self._parse_end(item), 'location': self._parse_location(item), 'documents': [], 'sources': self._parse_sources(item) } data['id'] = self._generate_id(data) data['status'] = self._parse_status(data, item) yield data def _parse_status(self, data, item): text = item.get('eventDetails', '') if text is None: text = '' return self._generate_status(data, text) def _parse_id(self, item): """ Calulate ID. ID must be unique within the data source being scraped. """ return str(item['calendarId']) def _parse_classification(self, item): """ Returns one of the following: * District Advisory Committee (DAC) * Beat Meeting * '' """ if (('district advisory committee' in item['title'].lower()) or ('DAC' in item['title'])): return COMMITTEE elif 'beat' in item['title'].lower(): return POLICE_BEAT else: return '' def _parse_name(self, classification, item): """ Generate a name based on the classfication. """ if classification == COMMITTEE: return 'District Advisory Committee' elif classification == POLICE_BEAT: return 'CAPS District {}, Beat {}'.format(item['calendarId'], self._parse_beat(item)).strip() else: return None def _parse_beat(self, item): district = str(item['calendarId']) beat_split = re.sub(r'[\D]+', ' ', item['title']).split() beat_list = [] for beat_num in beat_split: if len(beat_num) > 2 and beat_num.startswith(district): beat_list.append(beat_num[len(district):]) else: beat_list.append(beat_num) if len(beat_list) == 1: return beat_list[0] elif len(beat_list) > 1: return '{} and {}'.format(', '.join(beat_list[:-1]), beat_list[-1]) return '' def _parse_location(self, item): """ Parses location, adding Chicago, IL to the end of the address since it isn't included but can be safely assumed. """ if item['location']: address = item['location'] + ' Chicago, IL' else: address = None return {'address': address, 'name': '', 'neighborhood': ''} def _parse_all_day(self, item): """ Parse or generate all-day status. Defaults to false. """ return False def _parse_start(self, item): """ Parse start date and time. """ datetime_obj = datetime.strptime(item['start'], "%Y-%m-%dT%H:%M:%S") return {'date': datetime_obj.date(), 'time': datetime_obj.time(), 'note': ''} def _parse_end(self, item): """ Parse end date and time. """ try: datetime_obj = datetime.strptime(item['end'], "%Y-%m-%dT%H:%M:%S") except TypeError: return {'date': None, 'time': None, 'note': 'no end time listed'} else: return {'date': datetime_obj.date(), 'time': datetime_obj.time(), 'note': ''} def _parse_sources(self, item): """ Parse sources. """ return [{ 'url': ( 'https://home.chicagopolice.org/get-involved-with-caps/' 'all-community-event-calendars' ), 'note': '' }]
35.158537
196
0.560527
a0a75b391f0a5e49f7274473a3406b830285ab86
1,291
py
Python
app/core/tests/test_models.py
graovic/recipe-app-api
e883c64c144b67689238d2506552cc16703bb6a4
[ "Apache-2.0" ]
null
null
null
app/core/tests/test_models.py
graovic/recipe-app-api
e883c64c144b67689238d2506552cc16703bb6a4
[ "Apache-2.0" ]
null
null
null
app/core/tests/test_models.py
graovic/recipe-app-api
e883c64c144b67689238d2506552cc16703bb6a4
[ "Apache-2.0" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model class ModelTest(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with an email is successful""" email = 'goran.raovic@gmail.com' password = 'testpass123' user = get_user_model().objects.create_user(email=email, password=password) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test the email for a new user is normalized""" email = "test@GOOGLE.com" user = get_user_model().objects.create_user(email, 'test123') self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): """Test creating user with no email raises error""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'test123') def test_create_new_superuser(self): """Test creating a new superuser""" user = get_user_model().objects.create_superuser( 'goran.raovic@gmail.com', 'test123') self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
37.970588
70
0.658404
b255bb49ee4d57e9ed835917f0ec5670c9478348
5,400
py
Python
apps/export/views.py
rapidsms/rapidsms-legacy
43c2ecd41fd1541a2538326edee3d9e816d84529
[ "BSD-3-Clause" ]
null
null
null
apps/export/views.py
rapidsms/rapidsms-legacy
43c2ecd41fd1541a2538326edee3d9e816d84529
[ "BSD-3-Clause" ]
null
null
null
apps/export/views.py
rapidsms/rapidsms-legacy
43c2ecd41fd1541a2538326edee3d9e816d84529
[ "BSD-3-Clause" ]
1
2019-11-02T19:35:54.000Z
2019-11-02T19:35:54.000Z
#!/usr/bin/env python # vim: ai ts=4 sts=4 et sw=4 import os, re import datetime from subprocess import * from django import http from django.db import models from django.utils.text import capfirst from django.core.exceptions import FieldError from rapidsms.webui import settings def database(req): """Returns a SQL dump of the current database, by reading the settings from the config file, and calling the relevant dump program. Currently, only mySQL and SQLite3 are supported.""" conf = vars(settings) if settings.DATABASE_ENGINE == "mysql": cmd = "mysqldump --host=%(DATABASE_HOST)s --user=%(DATABASE_USER)s --password=%(DATABASE_USER)s %(DATABASE_NAME)s" % (conf) elif settings.DATABASE_ENGINE == "sqlite3": cmd = "sqlite3 %(DATABASE_NAME)s .dump" % (conf) else: return HttpResponse( "Sorry, %(DATABASE_ENGINE)s databases are not supported yet." % (conf), status=500, content_type="text/plain") # execute the dump command, and wait for it to terminate proc = Popen([cmd], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) sql = proc.communicate() # download the file as plain text today = datetime.datetime.now().strftime("%d-%m-%Y") resp = http.HttpResponse(sql, mimetype="text/plain") resp["content-disposition"] = "attachment; filename=%s.sql" % (today) return resp def _get_model(app_label, model_name): model = models.get_model(app_label, model_name) # check that the model is valid if model is None: raise http.Http404( "App %r, model %r, not found."\ % (app_label, model_name)) return model def str_to_excel(req): def __table(str): return "<table>\n%s</table>" % "".join(map(__row, str.split("\n"))) def __row(str): return " <tr>\n%s </tr>\n" % "".join(map(__col, str.split("|"))) def __col(str): str, cs = re.match("^(.*?)(?::(\d+)\s*)?$", str).groups() return " <td colspan='%s'>%s</td>\n" % (cs, str) # dump it as a simple html table html = __table(req.POST["data"]) # download as an excel spreadsheet resp = http.HttpResponse(html, mimetype='application/vnd.ms-excel') resp["content-disposition"] = "attachment; filename=test.xls" return resp def model_to_excel(request, app_label, model_name, req_filters=None): model = _get_model(app_label, model_name) max_depth = 8 rows = [] # if no filters were explictly passed, # then we will look for them in the GET if req_filters is None: req_filters = request.GET # build a dict of filters, to control # which objects we get. todo: is this # dangerous? i can't see any way that # it is, but it seems kind of wrong filters = {} for k ,v in req_filters.items(): filters[str(k)] = v # fetch the data (might raise if any of the # params couldn't be matched to model fields try: export_data = model.objects.filter(**filters) except FieldError, e: return http.HttpResponse(e.message, status=500, mimetype="text/plain") # sort the records if requested if "sort" in req_filters: export_data = export_data.order_by(str(req_filters["sort"])) # this function builds a flat list of column titles (verbose names) # recursively, to include as much data as possible in the export def build_header(model, depth=0, prefix=""): columns = [] for field in model._meta.fields: caption = prefix + capfirst(field.verbose_name) # if this field is a foreign key, then # we will recurse to fetch it's fields if (hasattr(field, "rel")) and (field.rel is not None) and (depth < max_depth): columns.extend(build_header(field.rel.to, depth+1, caption + ": ")) # not a foreign key, so append # this column in it's raw form else: columns.append("<th>%s</th>" % (caption)) return columns # the first row contains no data, just field names rows.append("<tr>%s</tr>" % ("".join(build_header(model)))) # this function is *way* too similar to the function # above to warrant its independance. abstraction! def build_row(model, instance=None, depth=0): columns = [] for field in model._meta.fields: # fetch the value of this cell if instance is not None: cell = getattr(instance, field.name) # the cell is NONE, but we'll still need to # recurse if it's a foreign key, so the row # doesn't end up shorter the rest else: cell = None # if this field is a foreign key, then # we will recurse to fetch it's fields if (hasattr(field, "rel")) and (field.rel is not None) and (depth < max_depth): columns.extend(build_row(field.rel.to, cell, depth+1)) # if this cell is none, insert a blank column, # so we don't have "None" all over the place elif (cell is None): columns.append("<td></td>") # not a foreign key, so append # this column in it's raw form else: columns.append("<td>%s</td>" % (cell)) return columns # the matrix of dumped data for object in export_data: row = "".join(build_row(model, object)) rows.append("<tr>%s</tr>" % (row)) # dump it as a simple html table html = "<table>%s</table>" % ("\n".join(rows)) # download as an excel spreadsheet resp = http.HttpResponse(html, mimetype='application/vnd.ms-excel') resp["content-disposition"] = "attachment; filename=%s.xls" % model_name return resp
30.167598
131
0.660926
31101ab899de0b52bd3f69c710a04286dd78adea
9,331
py
Python
pythreejs/pythreejs.py
elPistolero/pythreejs
f3c5000a6fcf06af775664d55ad6ef16322e8eca
[ "BSD-3-Clause" ]
null
null
null
pythreejs/pythreejs.py
elPistolero/pythreejs
f3c5000a6fcf06af775664d55ad6ef16322e8eca
[ "BSD-3-Clause" ]
null
null
null
pythreejs/pythreejs.py
elPistolero/pythreejs
f3c5000a6fcf06af775664d55ad6ef16322e8eca
[ "BSD-3-Clause" ]
1
2019-11-04T09:00:17.000Z
2019-11-04T09:00:17.000Z
r""" Python widgets for three.js plotting In this wrapping of three.js, we try to stay close to the three.js API. Often, the three.js documentation at http://threejs.org/docs/ helps in understanding these classes and the various constants. This is meant to be a low-level wrapper around three.js. We hope that others will use this foundation to build higher-level interfaces to build 3d plots. """ from __future__ import absolute_import from ipywidgets import Widget, widget_serialization, Color from traitlets import Unicode, CInt, Instance, List, CFloat, Bool, observe, validate import numpy as np from ._package import npm_pkg_name from ._version import EXTENSION_SPEC_VERSION from .core.BufferAttribute import BufferAttribute from .core.Geometry import Geometry from .core.BufferGeometry import BufferGeometry from .geometries.BoxGeometry_autogen import BoxGeometry from .geometries.SphereGeometry_autogen import SphereGeometry from .lights.AmbientLight_autogen import AmbientLight from .lights.DirectionalLight_autogen import DirectionalLight from .materials.Material_autogen import Material from .materials.MeshLambertMaterial_autogen import MeshLambertMaterial from .materials.SpriteMaterial_autogen import SpriteMaterial from .objects.Group_autogen import Group from .objects.Line_autogen import Line from .objects.Mesh_autogen import Mesh from .objects.Sprite_autogen import Sprite from .textures.Texture_autogen import Texture from .textures.DataTexture import DataTexture from .textures.TextTexture_autogen import TextTexture def grid_indices_gen(nx, ny): """A generator for grid vertex indices. """ for x in range(nx - 1): for y in range(ny - 1): root = x + y * ny yield (root, root + 1, root + nx) yield (root + nx, root + 1, root + nx + 1) class SurfaceGeometry(BufferGeometry): """ A regular grid with heights """ z = List(CFloat, [0] * 100) width = CInt(10) height = CInt(10) width_segments = CInt(10, read_only=True) height_segments = CInt(10, read_only=True) def __init__(self, **kwargs): for key in ['width_segments', 'height_segments']: if key in kwargs: self.set_trait(key, kwargs.pop(key)) super(SurfaceGeometry, self).__init__(**kwargs) self._update_surface() @observe('z', 'width', 'height') def _on_change(self, change): # Only trigger automatically after initial creation if 'position' in self.attributes: self._update_surface() def _update_surface(self): nx = self.width_segments + 1 ny = self.height_segments + 1 x = np.linspace(-self.width/2, self.width/2, nx) y = np.linspace(-self.height/2, self.height/2, ny) xx, yy = np.meshgrid(x, y) z = np.array(self.z).reshape((nx, ny)) positions = np.dstack((xx, yy, z)).reshape(nx * ny, 3).astype(np.float32) dx, dy = np.gradient(z, self.width/nx, self.height/ny) normals = np.dstack((-dx, -dy, np.ones_like(dx))).reshape(nx * ny, 3).astype(np.float32) vmin = np.min(positions, 0)[:2] vrange = np.max(positions, 0)[:2] - vmin uvs = ((positions[:, :2] - vmin) / vrange) indices = np.array(tuple(grid_indices_gen(nx, ny)), dtype=np.uint16).ravel() if 'position' not in self.attributes: # Initial values: self.attributes = { 'position': BufferAttribute(positions), 'index': BufferAttribute(indices), 'normal': BufferAttribute(normals), 'uv': BufferAttribute(uvs), } else: # We're updating with self.hold_trait_notifications(): self.attributes['position'].array = positions self.attributes['index'].array = indices self.attributes['normal'].array = normals self.attributes['uv'].array = uvs def SurfaceGrid(geometry, material, **kwargs): """A grid covering a surface. This will draw a line mesh overlaying the SurfaceGeometry. """ nx = geometry.width_segments + 1 ny = geometry.height_segments + 1 vertices = geometry.attributes['position'].array lines = [] for x in range(nx): g = Geometry(vertices=[vertices[y * nx + x, :].tolist() for y in range(ny)]) lines.append(Line(g, material)) for y in range(ny): g = Geometry(vertices=[vertices[y * nx + x, :].tolist() for x in range(nx)]) lines.append(Line(g, material)) def _update_lines(change): vertices = geometry.attributes['position'].array for x in range(nx): g = lines[x].geometry g.vertices = [vertices[y * nx + x, :].tolist() for y in range(ny)] for y in range(ny): g = lines[nx + y].geometry g.vertices = [vertices[y * nx + x, :].tolist() for x in range(nx)] geometry.attributes['position'].observe(_update_lines, names=('array')) return Group(children=lines, **kwargs) class PlotMesh(Mesh): plot = Instance('sage.plot.plot3d.base.Graphics3d') def _plot_changed(self, name, old, new): self.type = new.scenetree_json()['type'] if self.type == 'object': self.type = new.scenetree_json()['geometry']['type'] self.material = self.material_from_object(new) else: self.type = new.scenetree_json()['children'][0]['geometry']['type'] self.material = self.material_from_other(new) if self.type == 'index_face_set': self.geometry = self.geometry_from_plot(new) elif self.type == 'sphere': self.geometry = self.geometry_from_sphere(new) elif self.type == 'box': self.geometry = self.geometry_from_box(new) def material_from_object(self, p): # TODO: do this without scenetree_json() t = p.texture.scenetree_json() m = MeshLambertMaterial(side='DoubleSide') m.color = t['color'] m.opacity = t['opacity'] # TODO: support other attributes return m def material_from_other(self, p): # TODO: do this without scenetree_json() t = p.scenetree_json()['children'][0]['texture'] m = MeshLambertMaterial(side='DoubleSide') m.color = t['color'] m.opacity = t['opacity'] # TODO: support other attributes return m def geometry_from_box(self, p): g = BoxGeometry() g.width = p.scenetree_json()['geometry']['size'][0] g.height = p.scenetree_json()['geometry']['size'][1] g.depth = p.scenetree_json()['geometry']['size'][2] return g def geometry_from_sphere(self, p): g = SphereGeometry() g.radius = p.scenetree_json()['children'][0]['geometry']['radius'] return g def geometry_from_plot(self, p): from itertools import groupby, chain def flatten(ll): return list(chain.from_iterable(ll)) p.triangulate() g = FaceGeometry() g.vertices = flatten(p.vertices()) f = p.index_faces() f.sort(key=len) faces = {k: flatten(v) for k, v in groupby(f, len)} g.face3 = faces.get(3, []) g.face4 = faces.get(4, []) return g # Some helper classes and functions def lights_color(): return [ AmbientLight(color=(0.312, 0.188, 0.4)), DirectionalLight(position=[1, 0, 1], color=[.8, 0, 0]), DirectionalLight(position=[1, 1, 1], color=[0, .8, 0]), DirectionalLight(position=[0, 1, 1], color=[0, 0, .8]), DirectionalLight(position=[-1, -1, -1], color=[.9, .7, .9]), ] def lights_gray(): return [ AmbientLight(color=[.6, .6, .6]), DirectionalLight(position=[0, 1, 1], color=[.5, .5, .5]), DirectionalLight(position=[0, 0, 1], color=[.5, .5, .5]), DirectionalLight(position=[1, 1, 1], color=[.5, .5, .5]), DirectionalLight(position=[-1, -1, -1], color=[.7, .7, .7]), ] def make_text(text, position=(0, 0, 0), height=1): """ Return a text object at the specified location with a given height """ sm = SpriteMaterial(map=TextTexture(string=text, color='white', size=100, squareTexture=False)) return Sprite(material=sm, position=position, scaleToTexture=True, scale=[1, height, 1]) def height_texture(z, colormap='viridis'): """Create a texture corresponding to the heights in z and the given colormap.""" from matplotlib import cm from skimage import img_as_ubyte colormap = cm.get_cmap(colormap) im = z.copy() # rescale to be in [0,1], scale nan to be the smallest value im -= np.nanmin(im) im /= np.nanmax(im) im = np.nan_to_num(im) import warnings with warnings.catch_warnings(): # ignore the precision warning that comes from converting floats to uint8 types warnings.filterwarnings('ignore', message='Possible precision loss when converting from', category=UserWarning, module='skimage.util.dtype') rgba_im = img_as_ubyte(colormap(im)) # convert the values to rgba image using the colormap return DataTexture(data=rgba_im, format='RGBAFormat')
36.449219
99
0.627907
c4ace9bf77fb4975bd3b2e93b2b9e5271d0c6f8b
13,949
py
Python
sdk/python/pulumi_azure_native/network/v20210201/ddos_protection_plan.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20210201/ddos_protection_plan.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20210201/ddos_protection_plan.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = ['DdosProtectionPlanArgs', 'DdosProtectionPlan'] @pulumi.input_type class DdosProtectionPlanArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a DdosProtectionPlan resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] ddos_protection_plan_name: The name of the DDoS protection plan. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if ddos_protection_plan_name is not None: pulumi.set(__self__, "ddos_protection_plan_name", ddos_protection_plan_name) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="ddosProtectionPlanName") def ddos_protection_plan_name(self) -> Optional[pulumi.Input[str]]: """ The name of the DDoS protection plan. """ return pulumi.get(self, "ddos_protection_plan_name") @ddos_protection_plan_name.setter def ddos_protection_plan_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ddos_protection_plan_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class DdosProtectionPlan(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ A DDoS protection plan in a resource group. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] ddos_protection_plan_name: The name of the DDoS protection plan. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: DdosProtectionPlanArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A DDoS protection plan in a resource group. :param str resource_name: The name of the resource. :param DdosProtectionPlanArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DdosProtectionPlanArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DdosProtectionPlanArgs.__new__(DdosProtectionPlanArgs) __props__.__dict__["ddos_protection_plan_name"] = ddos_protection_plan_name __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_networks"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20210201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180801:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181001:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181001:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181101:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190801:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190901:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190901:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20191101:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20191101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20191201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20191201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200301:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200301:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200501:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200501:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200801:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20201101:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20201101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20210301:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20210301:DdosProtectionPlan")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DdosProtectionPlan, __self__).__init__( 'azure-native:network/v20210201:DdosProtectionPlan', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'DdosProtectionPlan': """ Get an existing DdosProtectionPlan resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DdosProtectionPlanArgs.__new__(DdosProtectionPlanArgs) __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_networks"] = None return DdosProtectionPlan(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the DDoS protection plan resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[str]: """ The resource GUID property of the DDoS protection plan resource. It uniquely identifies the resource, even if the user changes its name or migrate the resource across subscriptions or resource groups. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualNetworks") def virtual_networks(self) -> pulumi.Output[Sequence['outputs.SubResourceResponse']]: """ The list of virtual networks associated with the DDoS protection plan resource. This list is read-only. """ return pulumi.get(self, "virtual_networks")
54.701961
3,782
0.693885
36c94e8d7bc09fa4103b898b60ea271734440068
6,106
py
Python
telemetry/telemetry/internal/platform/fuchsia_device.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
1
2021-07-04T03:26:43.000Z
2021-07-04T03:26:43.000Z
telemetry/telemetry/internal/platform/fuchsia_device.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
null
null
null
telemetry/telemetry/internal/platform/fuchsia_device.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A Fuchsia device instance""" from __future__ import absolute_import import logging import os import platform import subprocess import tarfile from telemetry.core import fuchsia_interface from telemetry.core import util from telemetry.internal.platform import device from telemetry.util import cmd_util _LIST_DEVICES_TIMEOUT_SECS = 5 _SDK_SHA1 = '8894838554076535504' _SDK_ROOT_IN_CATAPULT = os.path.join(util.GetCatapultDir(), 'third_party', 'fuchsia-sdk', 'sdk') _SDK_ROOT_IN_CHROMIUM = os.path.join(util.GetCatapultDir(), '..', 'fuchsia-sdk', 'sdk') _SDK_TOOLS = [ os.path.join('tools', 'device-finder'), os.path.join('tools', 'symbolize') ] class FuchsiaDevice(device.Device): def __init__(self, target_name, host, ssh_config, system_log_file, port, managed_repo): super(FuchsiaDevice, self).__init__( name='Fuchsia with host: %s' % host, guid='fuchsia:%s' % target_name) self._target_name = target_name self._ssh_config = ssh_config self._system_log_file = system_log_file self._host = host self._port = port self._managed_repo = managed_repo @classmethod def GetAllConnectedDevices(cls, denylist): return [] @property def managed_repo(self): return self._managed_repo @property def target_name(self): return self._target_name @property def host(self): return self._host @property def ssh_config(self): return self._ssh_config @property def system_log_file(self): return self._system_log_file @property def port(self): return self._port def _DownloadFuchsiaSDK(tar_file, dest=_SDK_ROOT_IN_CATAPULT): if not os.path.isdir(dest): os.makedirs(dest) gsutil_path = os.path.join(util.GetCatapultDir(), 'third_party', 'gsutil', 'gsutil') sdk_pkg = 'gs://fuchsia/sdk/core/linux-amd64/' + _SDK_SHA1 download_cmd = [gsutil_path, 'cp', sdk_pkg, tar_file] subprocess.check_output(download_cmd, stderr=subprocess.STDOUT) with tarfile.open(tar_file, 'r') as tar: for f in _SDK_TOOLS: # tarfile only accepts POSIX paths. tar.extract(f.replace(os.path.sep, '/'), dest) os.remove(tar_file) def _FindFuchsiaDevice(sdk_root, is_emulator): dev_finder_path = os.path.join(sdk_root, 'tools', 'device-finder') if is_emulator: logging.warning('Fuchsia emulators not supported at this time.') return None finder_cmd = [dev_finder_path, 'list', '-full', '-netboot', '-timeout', str(_LIST_DEVICES_TIMEOUT_SECS) + 's'] device_list, _ = cmd_util.GetAllCmdOutput(finder_cmd) if not device_list: logging.warning('No Fuchsia device found. Ensure your device is set up ' 'and can be connected to.') return device_list def _DownloadFuchsiaSDKIfNecessary(): """Downloads the Fuchsia SDK if not found in Chromium and Catapult repo. Returns: The path to the Fuchsia SDK directory """ if os.path.exists(_SDK_ROOT_IN_CHROMIUM): return _SDK_ROOT_IN_CHROMIUM if not os.path.exists(_SDK_ROOT_IN_CATAPULT): tar_file = os.path.join(_SDK_ROOT_IN_CATAPULT, 'fuchsia-sdk-%s.tar' % _SDK_SHA1) _DownloadFuchsiaSDK(tar_file) return _SDK_ROOT_IN_CATAPULT def FindAllAvailableDevices(options): """Returns a list of available device types.""" # Will not find Fuchsia devices if Fuchsia browser is not specified. # This means that unless specifying browser=web-engine-shell, the user # will not see web-engine-shell as an available browser. if options.browser_type not in fuchsia_interface.FUCHSIA_BROWSERS: return [] if (platform.system() != 'Linux' or ( platform.machine() != 'x86_64' and platform.machine() != 'aarch64')): logging.warning( 'Fuchsia in Telemetry only supports Linux x64 or arm64hosts.') return [] # If the ssh port of the device has been forwarded to a port on the host, # return that device directly. if options.fuchsia_ssh_port: return [FuchsiaDevice(target_name='local_device', host='localhost', system_log_file=options.fuchsia_system_log_file, ssh_config=options.fuchsia_ssh_config, port=options.fuchsia_ssh_port, managed_repo=options.fuchsia_repo)] # If the IP address of the device is specified, use that directly. elif options.fuchsia_device_address: return [FuchsiaDevice(target_name='device_target', host=options.fuchsia_device_address, system_log_file=options.fuchsia_system_log_file, ssh_config=options.fuchsia_ssh_config, port=options.fuchsia_ssh_port, managed_repo=options.fuchsia_repo)] # Download the Fuchsia SDK if it doesn't exist. # TODO(https://crbug.com/1031763): Figure out how to use the dependency # manager. sdk_root = _DownloadFuchsiaSDKIfNecessary() try: device_list = _FindFuchsiaDevice(sdk_root, False) except OSError: logging.error('Fuchsia SDK Download failed. Please remove ' '%s and try again.', sdk_root) raise if not device_list: return [] # Expected output will look something like # 'host0 target0\nhost1 target1\nhost2 target2'. first_device = device_list.splitlines()[0] host, target_name = first_device.split(' ') logging.info('Using Fuchsia device with address %s and name %s' % (host, target_name)) return [FuchsiaDevice(target_name=target_name, host=host, system_log_file=options.fuchsia_system_log_file, ssh_config=options.fuchsia_ssh_config, port=options.fuchsia_ssh_port, managed_repo=options.fuchsia_repo)]
34.303371
76
0.675729
00dee54650063b5522a3100f624d9a125ce7a01b
388
py
Python
app/wsgi.py
StevenMedina/MovieAPI
805e79d396e197383bce6095febf0252231a1018
[ "MIT" ]
null
null
null
app/wsgi.py
StevenMedina/MovieAPI
805e79d396e197383bce6095febf0252231a1018
[ "MIT" ]
null
null
null
app/wsgi.py
StevenMedina/MovieAPI
805e79d396e197383bce6095febf0252231a1018
[ "MIT" ]
null
null
null
""" WSGI config for omnibank project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'app.settings') application = get_wsgi_application()
22.823529
78
0.783505
309865549b0680df44e3d283fcaa28042caa02ec
1,926
py
Python
src/Pybind11Wraps/Boundary/AxisBoundaryRZ.py
jmikeowen/Spheral
3e1082a7aefd6b328bd3ae24ca1a477108cfc3c4
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
22
2018-07-31T21:38:22.000Z
2020-06-29T08:58:33.000Z
src/Pybind11Wraps/Boundary/AxisBoundaryRZ.py
jmikeowen/Spheral
3e1082a7aefd6b328bd3ae24ca1a477108cfc3c4
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
41
2020-09-28T23:14:27.000Z
2022-03-28T17:01:33.000Z
src/Pybind11Wraps/Boundary/AxisBoundaryRZ.py
jmikeowen/Spheral
3e1082a7aefd6b328bd3ae24ca1a477108cfc3c4
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
7
2019-12-01T07:00:06.000Z
2020-09-15T21:12:39.000Z
#------------------------------------------------------------------------------- # AxisBoundaryRZ #------------------------------------------------------------------------------- from PYB11Generator import * from Boundary import * from BoundaryAbstractMethods import * @PYB11template() @PYB11template_dict({"Dimension" : "Dim<2>"}) class AxisBoundaryRZ(Boundary): PYB11typedefs = """ typedef %(Dimension)s::Scalar Scalar; typedef %(Dimension)s::Vector Vector; typedef %(Dimension)s::Tensor Tensor; typedef %(Dimension)s::SymTensor SymTensor; typedef %(Dimension)s::ThirdRankTensor ThirdRankTensor; typedef %(Dimension)s::FourthRankTensor FourthRankTensor; typedef %(Dimension)s::FifthRankTensor FifthRankTensor; typedef %(Dimension)s::FacetedVolume FacetedVolume; """ #........................................................................... # Constructors def pyinit(self, etamin = "double"): "Construct with the DataBase" #........................................................................... # Methods @PYB11virtual def setViolationNodes(self, nodeList="NodeList<%(Dimension)s>&"): return "void" @PYB11virtual def updateViolationNodes(self, nodeList="NodeList<%(Dimension)s>&"): return "void" @PYB11virtual @PYB11const def label(self): "The label for writing in restart files" return "std::string" #........................................................................... # Properties etamin = PYB11property("double", "etamin", "etamin", doc="The fuzz value for approaching the axis") #------------------------------------------------------------------------------- # Inject methods #------------------------------------------------------------------------------- #PYB11inject(BoundaryAbstractMethods, AxisBoundaryRZ, virtual=True, pure_virtual=False)
36.339623
103
0.492731
d94e087e5a91ffc3b890eaf740fc60b69c448b43
560
py
Python
jacquard/storage/tests/test_file.py
peteowlett/jacquard
772fd633e521501688e0933482cba45f48c23ef9
[ "MIT" ]
null
null
null
jacquard/storage/tests/test_file.py
peteowlett/jacquard
772fd633e521501688e0933482cba45f48c23ef9
[ "MIT" ]
null
null
null
jacquard/storage/tests/test_file.py
peteowlett/jacquard
772fd633e521501688e0933482cba45f48c23ef9
[ "MIT" ]
null
null
null
import unittest from jacquard.storage.file import FileStore from jacquard.storage.testing_utils import StorageGauntlet class FileGauntletTest(StorageGauntlet, unittest.TestCase): def open_storage(self): return FileStore(':memory:') def test_exceptions_back_out_writes(): storage = FileStore(':memory:') try: with storage.transaction() as store: store['foo'] = "Blah" raise RuntimeError() except RuntimeError: pass with storage.transaction() as store: assert 'foo' not in store
23.333333
59
0.685714
ea73ab3a3be66386d3b4d9467185caada18f7b22
497
py
Python
market/test/test_zones.py
dpsommer/market
36df4527fcf4f0ef99207c8b8e63172429cfd226
[ "MIT" ]
null
null
null
market/test/test_zones.py
dpsommer/market
36df4527fcf4f0ef99207c8b8e63172429cfd226
[ "MIT" ]
null
null
null
market/test/test_zones.py
dpsommer/market
36df4527fcf4f0ef99207c8b8e63172429cfd226
[ "MIT" ]
null
null
null
import unittest from market.data.zones import Zone, world_map from market.test import MockDataTestCase class TestZones(MockDataTestCase): def test_seeded_map_generation(self): pass def test_add_zone_to_map(self): town = Zone('Town') world_map.add_zone(town) self.assertIn(town, world_map._zones) def test_dynamic_map_expansion(self): pass def test_zone_persistence(self): pass if __name__ == "__main__": unittest.main()
19.115385
45
0.694165
49bd760f4e20e2a12e5686b3193bdba2895612e4
4,617
py
Python
paddle/trainer/tests/testPyDataWrapper.py
TarzanQll/Paddle-master
1f192b22c641f91bd98a5babe7189ac5d7d3b408
[ "Apache-2.0" ]
1
2016-10-23T09:31:38.000Z
2016-10-23T09:31:38.000Z
paddle/trainer/tests/testPyDataWrapper.py
TarzanQll/Paddle-master
1f192b22c641f91bd98a5babe7189ac5d7d3b408
[ "Apache-2.0" ]
3
2016-10-22T16:06:11.000Z
2016-11-07T06:30:37.000Z
paddle/trainer/tests/testPyDataWrapper.py
TarzanQll/Paddle-master
1f192b22c641f91bd98a5babe7189ac5d7d3b408
[ "Apache-2.0" ]
1
2019-10-26T12:51:13.000Z
2019-10-26T12:51:13.000Z
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") from paddle.trainer.PyDataProviderWrapper import * import random import json import string @provider(slots=[SparseNonValueSlot(10), DenseSlot(2), SparseValueSlot(10), StringSlot(1), IndexSlot(3)]) def processNonSequenceData(obj, filename): with open(filename, "rb") as f: for line in f: slots_str = line.split(';') index = int(slots_str[0]) non_values = map(int, slots_str[1].split()[1:]) dense = map(float, slots_str[2].split()[1:]) strs = slots_str[4].strip().split(' ', 1)[1] def __values_mapper__(s): s = s.split(":") return int(s[0]), float(s[1]) values = map(__values_mapper__, slots_str[3].split()[1:]) yield [non_values, dense, values, strs, index] SPARSE_ID_LIMIT = 1000 SPARSE_ID_COUNT = 100 SEQUENCE_LIMIT = 50 STRING_LIMIT = 10 sparse_id_randomer = lambda: random.randrange(0, SPARSE_ID_LIMIT - 1) sparse_count_randomer = lambda: random.randrange(1, SPARSE_ID_COUNT) val_randomer = lambda: random.uniform(-1.0, 1.0) seq_count_randomer = lambda: random.randrange(1, SEQUENCE_LIMIT) str_count_randomer = lambda: random.randrange(1, STRING_LIMIT) class IDRandomer(): # A random generator, return unique id def __init__(self): self.id_set = set() def __call__(self): idx = sparse_id_randomer() if idx not in self.id_set: self.id_set.add(idx) return idx else: return self.__call__() # SparseValueSlot def sparse_value_creator(_): rand = IDRandomer() return [(rand(), val_randomer()) for _ in xrange(sparse_count_randomer())] sparse_value = map(sparse_value_creator, range(seq_count_randomer())) # DenseSlot def dense_creator(_): return [val_randomer() for _ in xrange(SPARSE_ID_LIMIT)] dense = map(dense_creator, range(seq_count_randomer())) # SparseNonValueSlot def sparse_creator(_): rand = IDRandomer() return [rand() for _ in xrange(sparse_count_randomer())] sparse_nonvalue = map(sparse_creator, range(seq_count_randomer())) # IndexSlot ids = [sparse_id_randomer() for _ in range(seq_count_randomer())] # StringSlot def random_str(size = 8, chars=string.ascii_letters + string.digits): return ''.join(random.choice(chars) for _ in range(size)) strs = [random_str(str_count_randomer()) for _ in range(seq_count_randomer())] def processSeqAndGenerateDataInit(obj, *args, **kwargs): obj.json_filename = kwargs.get("load_data_args", "test_data.json") @provider(slots=[SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT), SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT), StringSlot(SPARSE_ID_LIMIT)], use_seq=True, init_hook=processSeqAndGenerateDataInit) def processSeqAndGenerateData(obj, name): retv = [sparse_value, dense, sparse_nonvalue, ids, strs] # Write to protoseq. with open(obj.json_filename, "w") as f: json.dump(retv, f) yield retv def processSubSeqAndGenerateDataInit(obj, *args, **kwargs): obj.json_filename = kwargs.get("load_data_args", "test_data.json") @provider(slots=[SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT), SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT), StringSlot(SPARSE_ID_LIMIT)], use_seq=True, init_hook=processSubSeqAndGenerateDataInit) def processSubSeqAndGenerateData(obj, name): retv_json = [sparse_value, dense, sparse_nonvalue, ids, strs] retv_wrapper = [[sparse_value], [dense], [sparse_nonvalue], [ids], [strs]] # Write to protoseq. with open(obj.json_filename, "w") as f: json.dump(retv_json, f) yield retv_wrapper if __name__ == "__main__": pvd = processNonSequenceData("test.txt") print pvd.getNextBatch(100) pvd = processSeqAndGenerateData("_") print pvd.getNextBatch(100) pvd = processSubSeqAndGenerateData("_") print pvd.getNextBatch(1)
36.642857
105
0.700455
1107fe72dc239ce96485354cd4e90e18a992d66b
17,838
py
Python
thirdpart/wsgidav/wsgidav_app.py
saukrIppl/newsea
0fd5ab2ade9a8fb16b1e7b43ba13dac32eb39603
[ "Apache-2.0" ]
2
2017-06-21T09:46:55.000Z
2018-05-30T10:07:32.000Z
thirdpart/wsgidav/wsgidav_app.py
saukrIppl/newsea
0fd5ab2ade9a8fb16b1e7b43ba13dac32eb39603
[ "Apache-2.0" ]
null
null
null
thirdpart/wsgidav/wsgidav_app.py
saukrIppl/newsea
0fd5ab2ade9a8fb16b1e7b43ba13dac32eb39603
[ "Apache-2.0" ]
1
2020-10-01T04:11:41.000Z
2020-10-01T04:11:41.000Z
# (c) 2009-2014 Martin Wendt and contributors; see WsgiDAV https://github.com/mar10/wsgidav # Original PyFileServer (c) 2005 Ho Chun Wei. # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php """ WSGI container, that handles the HTTP requests. This object is passed to the WSGI server and represents our WsgiDAV application to the outside. On init: Use the configuration dictionary to initialize lock manager, property manager, domain controller. Create a dictionary of share-to-provider mappings. Initialize middleware objects and RequestResolver and setup the WSGI application stack. For every request: Find the registered DAV provider for the current request. Add or modify info in the WSGI ``environ``: environ["SCRIPT_NAME"] Mount-point of the current share. environ["PATH_INFO"] Resource path, relative to the mount path. environ["wsgidav.provider"] DAVProvider object that is registered for handling the current request. environ["wsgidav.config"] Configuration dictionary. environ["wsgidav.verbose"] Debug level [0-3]. Log the HTTP request, then pass the request to the first middleware. Note: The OPTIONS method for the '*' path is handled directly. See `Developers info`_ for more information about the WsgiDAV architecture. .. _`Developers info`: http://wsgidav.readthedocs.org/en/latest/develop.html """ from fs_dav_provider import FilesystemProvider from wsgidav.dir_browser import WsgiDavDirBrowser from wsgidav.dav_provider import DAVProvider from wsgidav.lock_storage import LockStorageDict import time import sys import threading import urllib import util from error_printer import ErrorPrinter from debug_filter import WsgiDavDebugFilter from http_authenticator import HTTPAuthenticator from request_resolver import RequestResolver from property_manager import PropertyManager from lock_manager import LockManager #from wsgidav.version import __version__ __docformat__ = "reStructuredText" # Use these settings, if config file does not define them (or is totally missing) DEFAULT_CONFIG = { "mount_path": None, # Application root, e.g. <mount_path>/<share_name>/<res_path> "provider_mapping": {}, "host": "localhost", "port": 8080, "ext_servers": [ # "paste", # "cherrypy", # "wsgiref", "cherrypy-bundled", "wsgidav", ], "add_header_MS_Author_Via": True, "unquote_path_info": False, # See #8 # "use_text_files": False, "propsmanager": None, # True: use property_manager.PropertyManager "locksmanager": True, # True: use lock_manager.LockManager # HTTP Authentication Options "user_mapping": {}, # dictionary of dictionaries "domaincontroller": None, # None: domain_controller.WsgiDAVDomainController(user_mapping) "acceptbasic": True, # Allow basic authentication, True or False "acceptdigest": True, # Allow digest authentication, True or False "defaultdigest": True, # True (default digest) or False (default basic) # Error printer options "catchall": False, "enable_loggers": [ ], # Verbose Output "verbose": 1, # 0 - no output (excepting application exceptions) # 1 - show single line request summaries (for HTTP logging) # 2 - show additional events # 3 - show full request/response header info (HTTP Logging) # request body and GET response bodies not shown "dir_browser": { "enable": True, # Render HTML listing for GET requests on collections "response_trailer": "", # Raw HTML code, appended as footer "davmount": False, # Send <dm:mount> response if request URL contains '?davmount' "ms_mount": False, # Add an 'open as webfolder' link (requires Windows) "ms_sharepoint_plugin": True, # Invoke MS Offce documents for editing using WebDAV "ms_sharepoint_urls": False, # Prepend 'ms-word:ofe|u|' to URL for MS Offce documents }, "middleware_stack": [ WsgiDavDirBrowser, HTTPAuthenticator, ErrorPrinter, WsgiDavDebugFilter, ] } def _checkConfig(config): mandatoryFields = ["provider_mapping", ] for field in mandatoryFields: if not field in config: raise ValueError("Invalid configuration: missing required field '%s'" % field) #=============================================================================== # WsgiDAVApp #=============================================================================== class WsgiDAVApp(object): def __init__(self, config): self.config = config util.initLogging(config["verbose"], config.get("log_path", ""), config.get("enable_loggers", [])) util.log("Default encoding: %s (file system: %s)" % (sys.getdefaultencoding(), sys.getfilesystemencoding())) # Evaluate configuration and set defaults _checkConfig(config) provider_mapping = self.config["provider_mapping"] # response_trailer = config.get("response_trailer", "") self._verbose = config.get("verbose", 2) lockStorage = config.get("locksmanager") if lockStorage is True: lockStorage = LockStorageDict() if not lockStorage: locksManager = None else: locksManager = LockManager(lockStorage) propsManager = config.get("propsmanager") if not propsManager: # Normalize False, 0 to None propsManager = None elif propsManager is True: propsManager = PropertyManager() mount_path = config.get("mount_path") # Instantiate DAV resource provider objects for every share self.providerMap = {} for (share, provider) in provider_mapping.items(): # Make sure share starts with, or is, '/' share = "/" + share.strip("/") # We allow a simple string as 'provider'. In this case we interpret # it as a file system root folder that is published. if isinstance(provider, basestring): provider = FilesystemProvider(provider) assert isinstance(provider, DAVProvider) provider.setSharePath(share) if mount_path: provider.setMountPath(mount_path) # TODO: someday we may want to configure different lock/prop managers per provider provider.setLockManager(locksManager) provider.setPropManager(propsManager) self.providerMap[share] = {"provider": provider, "allow_anonymous": False} # Define WSGI application stack application = RequestResolver() domain_controller = None dir_browser = config.get("dir_browser", {}) middleware_stack = config.get("middleware_stack", []) # Replace WsgiDavDirBrowser to custom class for backward compatibility only # In normal way you should insert it into middleware_stack if dir_browser.get("enable", True) and "app_class" in dir_browser.keys(): config["middleware_stack"] = [m if m != WsgiDavDirBrowser else dir_browser['app_class'] for m in middleware_stack] for mw in middleware_stack: if mw.isSuitable(config): if self._verbose >= 2: print "Middleware %s is suitable" % mw application = mw(application, config) if issubclass(mw, HTTPAuthenticator): domain_controller = application.getDomainController() # check anonymous access for share, data in self.providerMap.items(): if application.allowAnonymousAccess(share): data['allow_anonymous'] = True else: if self._verbose >= 2: print "Middleware %s is not suitable" % mw # Print info if self._verbose >= 2: print "Using lock manager: %r" % locksManager print "Using property manager: %r" % propsManager print "Using domain controller: %s" % domain_controller print "Registered DAV providers:" for share, data in self.providerMap.items(): hint = " (anonymous)" if data['allow_anonymous'] else "" print " Share '%s': %s%s" % (share, provider, hint) if self._verbose >= 1: for share, data in self.providerMap.items(): if data['allow_anonymous']: # TODO: we should only warn here, if --no-auth is not given print "WARNING: share '%s' will allow anonymous access." % share self._application = application def __call__(self, environ, start_response): # util.log("SCRIPT_NAME='%s', PATH_INFO='%s'" % (environ.get("SCRIPT_NAME"), environ.get("PATH_INFO"))) # We optionall unquote PATH_INFO here, although this should already be # done by the server (#8). path = environ["PATH_INFO"] if self.config.get("unquote_path_info", False): path = urllib.unquote(environ["PATH_INFO"]) # GC issue 22: Pylons sends root as u'/' if isinstance(path, unicode): util.log("Got unicode PATH_INFO: %r" % path) path = path.encode("utf8") # Always adding these values to environ: environ["wsgidav.config"] = self.config environ["wsgidav.provider"] = None environ["wsgidav.verbose"] = self._verbose ## Find DAV provider that matches the share # sorting share list by reverse length shareList = self.providerMap.keys() shareList.sort(key=len, reverse=True) share = None for r in shareList: # @@: Case sensitivity should be an option of some sort here; # os.path.normpath might give the preferred case for a filename. if r == "/": share = r break elif path.upper() == r.upper() or path.upper().startswith(r.upper()+"/"): share = r break share_data = self.providerMap.get(share) # Note: we call the next app, even if provider is None, because OPTIONS # must still be handled. # All other requests will result in '404 Not Found' environ["wsgidav.provider"] = share_data['provider'] # TODO: test with multi-level realms: 'aa/bb' # TODO: test security: url contains '..' # Transform SCRIPT_NAME and PATH_INFO # (Since path and share are unquoted, this also fixes quoted values.) if share == "/" or not share: environ["PATH_INFO"] = path else: environ["SCRIPT_NAME"] += share environ["PATH_INFO"] = path[len(share):] # util.log("--> SCRIPT_NAME='%s', PATH_INFO='%s'" % (environ.get("SCRIPT_NAME"), environ.get("PATH_INFO"))) assert isinstance(path, str) # See http://mail.python.org/pipermail/web-sig/2007-January/002475.html # for some clarification about SCRIPT_NAME/PATH_INFO format # SCRIPT_NAME starts with '/' or is empty assert environ["SCRIPT_NAME"] == "" or environ["SCRIPT_NAME"].startswith("/") # SCRIPT_NAME must not have a trailing '/' assert environ["SCRIPT_NAME"] in ("", "/") or not environ["SCRIPT_NAME"].endswith("/") # PATH_INFO starts with '/' assert environ["PATH_INFO"] == "" or environ["PATH_INFO"].startswith("/") start_time = time.time() def _start_response_wrapper(status, response_headers, exc_info=None): # Postprocess response headers headerDict = {} for header, value in response_headers: if header.lower() in headerDict: util.warn("Duplicate header in response: %s" % header) headerDict[header.lower()] = value # Check if we should close the connection after this request. # http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.4 forceCloseConnection = False currentContentLength = headerDict.get("content-length") statusCode = int(status.split(" ", 1)[0]) contentLengthRequired = (environ["REQUEST_METHOD"] != "HEAD" and statusCode >= 200 and not statusCode in (204, 304)) # print environ["REQUEST_METHOD"], statusCode, contentLengthRequired if contentLengthRequired and currentContentLength in (None, ""): # A typical case: a GET request on a virtual resource, for which # the provider doesn't know the length util.warn("Missing required Content-Length header in %s-response: closing connection" % statusCode) forceCloseConnection = True elif not type(currentContentLength) is str: util.warn("Invalid Content-Length header in response (%r): closing connection" % headerDict.get("content-length")) forceCloseConnection = True # HOTFIX for Vista and Windows 7 (GC issue 13, issue 23) # It seems that we must read *all* of the request body, otherwise # clients may miss the response. # For example Vista MiniRedir didn't understand a 401 response, # when trying an anonymous PUT of big files. As a consequence, it # doesn't retry with credentials and the file copy fails. # (XP is fine however). util.readAndDiscardInput(environ) # Make sure the socket is not reused, unless we are 100% sure all # current input was consumed if(util.getContentLength(environ) != 0 and not environ.get("wsgidav.all_input_read")): util.warn("Input stream not completely consumed: closing connection") forceCloseConnection = True if forceCloseConnection and headerDict.get("connection") != "close": util.warn("Adding 'Connection: close' header") response_headers.append(("Connection", "close")) # Log request if self._verbose >= 1: userInfo = environ.get("http_authenticator.username") if not userInfo: userInfo = "(anonymous)" threadInfo = "" if self._verbose >= 1: threadInfo = "<%s> " % threading._get_ident() extra = [] if "HTTP_DESTINATION" in environ: extra.append('dest="%s"' % environ.get("HTTP_DESTINATION")) if environ.get("CONTENT_LENGTH", "") != "": extra.append("length=%s" % environ.get("CONTENT_LENGTH")) if "HTTP_DEPTH" in environ: extra.append("depth=%s" % environ.get("HTTP_DEPTH")) if "HTTP_RANGE" in environ: extra.append("range=%s" % environ.get("HTTP_RANGE")) if "HTTP_OVERWRITE" in environ: extra.append("overwrite=%s" % environ.get("HTTP_OVERWRITE")) if self._verbose >= 1 and "HTTP_EXPECT" in environ: extra.append('expect="%s"' % environ.get("HTTP_EXPECT")) if self._verbose >= 2 and "HTTP_CONNECTION" in environ: extra.append('connection="%s"' % environ.get("HTTP_CONNECTION")) if self._verbose >= 2 and "HTTP_USER_AGENT" in environ: extra.append('agent="%s"' % environ.get("HTTP_USER_AGENT")) if self._verbose >= 2 and "HTTP_TRANSFER_ENCODING" in environ: extra.append('transfer-enc=%s' % environ.get("HTTP_TRANSFER_ENCODING")) if self._verbose >= 1: extra.append('elap=%.3fsec' % (time.time() - start_time)) extra = ", ".join(extra) util.log('%s - %s - "%s" %s -> %s' % ( environ.get("REMOTE_ADDR",""), userInfo, environ.get("REQUEST_METHOD") + " " + environ.get("PATH_INFO", ""), extra, status )) return start_response(status, response_headers, exc_info) # Call next middleware app_iter = self._application(environ, _start_response_wrapper) for v in app_iter: yield v if hasattr(app_iter, "close"): app_iter.close() return
44.263027
131
0.56531
416ec46bedc43ac213a4e09e41649cff261f23db
4,107
py
Python
Gena/basic_image.py
mllzl/earthengine-py-notebooks
cade6a81dd4dbbfb1b9b37aaf6955de42226cfc5
[ "MIT" ]
1
2020-03-26T04:21:15.000Z
2020-03-26T04:21:15.000Z
Gena/basic_image.py
mllzl/earthengine-py-notebooks
cade6a81dd4dbbfb1b9b37aaf6955de42226cfc5
[ "MIT" ]
null
null
null
Gena/basic_image.py
mllzl/earthengine-py-notebooks
cade6a81dd4dbbfb1b9b37aaf6955de42226cfc5
[ "MIT" ]
null
null
null
# %% """ <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Gena/basic_image.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Gena/basic_image.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://mybinder.org/v2/gh/giswqs/earthengine-py-notebooks/master?filepath=Gena/basic_image.ipynb"><img width=58px src="https://mybinder.org/static/images/logo_social.png" />Run in binder</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Gena/basic_image.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> """ # %% """ ## Install Earth Engine API and geemap Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`. The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet. **Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60#issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). """ # %% # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() # %% """ ## Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py#L13) can be added using the `Map.add_basemap()` function. """ # %% Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map # %% """ ## Add Earth Engine Python script """ # %% # Add Earth Engine dataset image = ee.Image.pixelLonLat() \ .add([180, 90]).divide([360, 180]) # image = image.multiply(50).sin() Map.setCenter(0, 28, 2.5) Map.addLayer(image, {}, 'coords', True) # %% """ ## Display Earth Engine data layers """ # %% Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map
51.3375
1,021
0.741904
4dec35474eeaa2bc1224bd401c81a2370cfd3952
1,848
py
Python
ambari-server/src/main/resources/stacks/BigInsights/4.2/services/SQOOP/package/scripts/sqoop_client.py
kuhella/ambari
9396c17b0305665d31d7a4f4525be857958b5d4c
[ "Apache-2.0" ]
null
null
null
ambari-server/src/main/resources/stacks/BigInsights/4.2/services/SQOOP/package/scripts/sqoop_client.py
kuhella/ambari
9396c17b0305665d31d7a4f4525be857958b5d4c
[ "Apache-2.0" ]
null
null
null
ambari-server/src/main/resources/stacks/BigInsights/4.2/services/SQOOP/package/scripts/sqoop_client.py
kuhella/ambari
9396c17b0305665d31d7a4f4525be857958b5d4c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from resource_management import * from resource_management.libraries.functions import conf_select from resource_management.libraries.functions import stack_select from resource_management.libraries.functions.version import compare_versions, format_stack_version from sqoop import sqoop class SqoopClient(Script): def get_component_name(self): return "sqoop-client" def pre_rolling_restart(self, env): import params env.set_params(params) if params.version and compare_versions(format_stack_version(params.version), '4.0.0.0') >= 0: conf_select.select(params.stack_name, "sqoop", params.version) stack_select.select("sqoop-client", params.version) #Execute(format("iop-select set sqoop-client {version}")) def install(self, env): self.install_packages(env) self.configure(env) def configure(self, env): import params env.set_params(params) sqoop(type='client') def status(self, env): raise ClientComponentHasNoStatus() if __name__ == "__main__": SqoopClient().execute()
31.862069
98
0.770022
57e5209234324ff0c35c29950b895839171621f9
4,959
py
Python
examples/flax_mnist.py
tachukao/jaxopt
dae2f66a2e5899ade8032a2dd13609acd371d4de
[ "Apache-2.0" ]
null
null
null
examples/flax_mnist.py
tachukao/jaxopt
dae2f66a2e5899ade8032a2dd13609acd371d4de
[ "Apache-2.0" ]
null
null
null
examples/flax_mnist.py
tachukao/jaxopt
dae2f66a2e5899ade8032a2dd13609acd371d4de
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MNIST example with Flax and JAXopt. =================================== """ from absl import app from absl import flags from flax import linen as nn import jax import jax.numpy as jnp from jaxopt import loss from jaxopt import OptaxSolver from jaxopt import PolyakSGD from jaxopt import tree_util import optax import tensorflow_datasets as tfds flags.DEFINE_float("l2reg", 1e-4, "L2 regularization.") flags.DEFINE_float("learning_rate", 0.001, "Learning rate (used in adam).") flags.DEFINE_bool("manual_loop", False, "Whether to use a manual training loop.") flags.DEFINE_integer("maxiter", 100, "Maximum number of iterations.") flags.DEFINE_float("max_step_size", 0.1, "Maximum step size (used in polyak-sgd).") flags.DEFINE_float("momentum", 0.9, "Momentum strength (used in adam, polyak-sgd).") flags.DEFINE_enum("solver", "adam", ["adam", "sgd", "polyak-sgd"], "Solver to use.") FLAGS = flags.FLAGS def load_dataset(split, *, is_training, batch_size): """Loads the dataset as a generator of batches.""" ds = tfds.load("mnist:3.*.*", split=split).cache().repeat() if is_training: ds = ds.shuffle(10 * batch_size, seed=0) ds = ds.batch(batch_size) return iter(tfds.as_numpy(ds)) class CNN(nn.Module): """A simple CNN model.""" @nn.compact def __call__(self, x): x = nn.Conv(features=32, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = nn.Conv(features=64, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = x.reshape((x.shape[0], -1)) # flatten x = nn.Dense(features=256)(x) x = nn.relu(x) x = nn.Dense(features=10)(x) return x net = CNN() @jax.jit def accuracy(params, data): x = data["image"].astype(jnp.float32) / 255. logits = net.apply({"params": params}, x) return jnp.mean(jnp.argmax(logits, axis=-1) == data["label"]) logistic_loss = jax.vmap(loss.multiclass_logistic_loss) def loss_fun(params, l2reg, data): """Compute the loss of the network.""" x = data["image"].astype(jnp.float32) / 255. logits = net.apply({"params": params}, x) labels = data["label"] sqnorm = tree_util.tree_l2_norm(params, squared=True) loss_value = jnp.mean(logistic_loss(labels, logits)) return loss_value + 0.5 * l2reg * sqnorm def main(argv): del argv train_ds = load_dataset("train", is_training=True, batch_size=1000) test_ds = load_dataset("test", is_training=False, batch_size=10000) def pre_update(params, state, *args, **kwargs): if state.iter_num % 10 == 0: # Periodically evaluate classification accuracy on test set. test_accuracy = accuracy(params, next(test_ds)) test_accuracy = jax.device_get(test_accuracy) print(f"[Step {state.iter_num}] Test accuracy: {test_accuracy:.3f}.") return params, state # Initialize solver and parameters. if FLAGS.solver == "adam": solver = OptaxSolver(opt=optax.adam(1e-3), fun=loss_fun, maxiter=FLAGS.maxiter, pre_update=pre_update) elif FLAGS.solver == "sgd": opt = optax.sgd(FLAGS.learning_rate, FLAGS.momentum) solver = OptaxSolver(opt=opt, fun=loss_fun, maxiter=FLAGS.maxiter, pre_update=pre_update) elif FLAGS.solver == "polyak-sgd": solver = PolyakSGD(fun=loss_fun, maxiter=FLAGS.maxiter, momentum=FLAGS.momentum, max_step_size=FLAGS.max_step_size, pre_update=pre_update) else: raise ValueError("Unknown solver: %s" % FLAGS.solver) rng = jax.random.PRNGKey(0) init_params = CNN().init(rng, jnp.ones([1, 28, 28, 1]))["params"] # Run training loop. # In JAXopt, stochastic solvers can be run either using a manual for loop or # using `run_iterator`. We include both here for demonstration purpose. if FLAGS.manual_loop: params, state = solver.init(init_params) for _ in range(FLAGS.maxiter): params, state = pre_update(params=params, state=state) params, state = solver.update(params=params, state=state, l2reg=FLAGS.l2reg, data=next(train_ds)) else: solver.run_iterator(init_params=init_params, iterator=train_ds, l2reg=FLAGS.l2reg) if __name__ == "__main__": app.run(main)
31.993548
84
0.666062
9f5fb1854328e658f9b083d3e0d313416295726b
3,179
py
Python
Vision/owlbot.py
nick-lai/google-cloud-php
52130ee60f03c61ef0ada04c31b1268af87bacb6
[ "Apache-2.0" ]
524
2018-09-26T02:29:52.000Z
2022-03-30T12:57:26.000Z
Vision/owlbot.py
nick-lai/google-cloud-php
52130ee60f03c61ef0ada04c31b1268af87bacb6
[ "Apache-2.0" ]
2,028
2018-09-20T22:35:42.000Z
2022-03-31T18:13:07.000Z
Vision/owlbot.py
nick-lai/google-cloud-php
52130ee60f03c61ef0ada04c31b1268af87bacb6
[ "Apache-2.0" ]
262
2018-10-02T15:43:46.000Z
2022-03-29T19:37:04.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import logging from pathlib import Path import synthtool as s import subprocess from synthtool.languages import php from synthtool import _tracked_paths logging.basicConfig(level=logging.DEBUG) src = Path(f"../{php.STAGING_DIR}/Vision").resolve() dest = Path().resolve() # Added so that we can pass copy_excludes in the owlbot_main() call _tracked_paths.add(src) # Exclude gapic_metadata.json and partial veneer files. php.owlbot_main( src=src, dest=dest, copy_excludes=[ src / "*/src/*/gapic_metadata.json", src / "*/src/*/*.php" ] ) # document and utilize apiEndpoint instead of serviceAddress s.replace( "**/Gapic/*GapicClient.php", r"'serviceAddress' =>", r"'apiEndpoint' =>") s.replace( "**/Gapic/*GapicClient.php", r"@type string \$serviceAddress\n\s+\*\s+The address", r"""@type string $serviceAddress * **Deprecated**. This option will be removed in a future major release. Please * utilize the `$apiEndpoint` option instead. * @type string $apiEndpoint * The address""") s.replace( "**/Gapic/*GapicClient.php", r"\$transportConfig, and any \$serviceAddress", r"$transportConfig, and any `$apiEndpoint`") # V1 is GA, so remove @experimental tags s.replace( 'src/V1/**/*Client.php', r'^(\s+\*\n)?\s+\*\s@experimental\n', '') # Change the wording for the deprecation warning. s.replace( 'src/*/*_*.php', r'will be removed in the next major release', 'will be removed in a future release') ### [START] protoc backwards compatibility fixes # roll back to private properties. s.replace( "src/**/V*/**/*.php", r"Generated from protobuf field ([^\n]{0,})\n\s{5}\*/\n\s{4}protected \$", r"""Generated from protobuf field \1 */ private $""") # prevent proto messages from being marked final s.replace( "src/**/V*/**/*.php", r"final class", r"class") # Replace "Unwrapped" with "Value" for method names. s.replace( "src/**/V*/**/*.php", r"public function ([s|g]\w{3,})Unwrapped", r"public function \1Value" ) ### [END] protoc backwards compatibility fixes # fix relative cloud.google.com links s.replace( "src/**/V*/**/*.php", r"(.{0,})\]\((/.{0,})\)", r"\1](https://cloud.google.com\2)" ) # format generated clients subprocess.run([ 'npx', '-y', '-p', '@prettier/plugin-php@^0.16', 'prettier', '**/Gapic/*', '--write', '--parser=php', '--single-quote', '--print-width=80'])
27.405172
94
0.647688
cba2b2a490b2c4ee3e26343c2c566b7482092d71
576
py
Python
login.py
Entropy03/linyi
1e5f924c217095d6757e29cac128e5ac5085ec11
[ "MIT" ]
null
null
null
login.py
Entropy03/linyi
1e5f924c217095d6757e29cac128e5ac5085ec11
[ "MIT" ]
null
null
null
login.py
Entropy03/linyi
1e5f924c217095d6757e29cac128e5ac5085ec11
[ "MIT" ]
null
null
null
import ssl import sys import urllib2 import random import httplib import json from cookielib import LWPCookieJar import urllib import re import getpass class lgoin : def __init__(self) : self.logindata = {} self.username ='china199123@163.com' self.password ='ZAQjay12306' self.randcode = '' #在http交互中即时更新cookie self.cookiejar = LWPCookieJar() cookiesupport = urllib2.HTTPCookieProcessor(self.cookiejar) opener = urllib2.build_opener(cookiesupport, urllib2.HTTPHandler) urllib2.install_opener(opener) def getrandcode(self):
23.04
73
0.743056
b21abd96d0480f750f5b0089725872ee5225a01f
4,430
py
Python
blastsight/view/drawables/gldrawable.py
gsanhueza/BlastSight
4b5c48e7ea5f67b737429f05d5213e9ff1fd399d
[ "MIT" ]
null
null
null
blastsight/view/drawables/gldrawable.py
gsanhueza/BlastSight
4b5c48e7ea5f67b737429f05d5213e9ff1fd399d
[ "MIT" ]
1
2022-03-13T17:35:35.000Z
2022-03-13T17:35:35.000Z
blastsight/view/drawables/gldrawable.py
gsanhueza/BlastSight
4b5c48e7ea5f67b737429f05d5213e9ff1fd399d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2019-2021 Gabriel Sanhueza. # # Distributed under the MIT License. # See LICENSE for more info. import numpy as np from OpenGL.GL import * class GLDrawable: def __init__(self, element, *args, **kwargs): # assert element super().__setattr__('element', element) # self.element = element self._vaos = [] self._vbos = [] self._observers = [] self._is_initialized = kwargs.pop('initialized', False) self._is_visible = kwargs.pop('visible', True) self._is_boostable = kwargs.pop('turbo', False) self._is_cross_sectioned = kwargs.pop('cross_section', False) # Note: The following "hacks" are shortened versions of Delegator Pattern. # They're convenient, but optional. # # Example: # d = GLDrawable(element, *args, **kwargs) # assert d.alpha is d.element.alpha => True def __dir__(self) -> list: # Hack to expose GLDrawable's attributes AND self.element's attributes # as if they were GLDrawable's attributes. # https://stackoverflow.com/q/15507848 return list(set(super().__dir__() + dir(self.element))) def __getattribute__(self, attr: str) -> any: # Hack to get our attributes. # If not found, search self.element's attributes. # https://stackoverflow.com/a/2405617 if hasattr(type(self), attr) or attr in super().__getattribute__('__dict__'): return super().__getattribute__(attr) return super().__getattribute__('element').__getattribute__(attr) def __setattr__(self, key, value) -> None: # Hack to set our attributes. # We'll try to set our element's attribute first, then ourselves. # https://stackoverflow.com/a/7042247 if key in dir(self.element): self.element.__setattr__(key, value) else: super().__setattr__(key, value) @property def vao(self) -> int: # We already know that we have only one VAO. # But cleanup is easier if we have the VAO in a list. return self._vaos[-1] def initialize(self) -> None: if self.is_initialized: return self.generate_buffers() self.setup_attributes() self.is_initialized = True def reload(self) -> None: self.is_initialized = False self.initialize() def setup_attributes(self) -> None: pass def generate_buffers(self) -> None: pass @staticmethod def fill_buffer(pointer, basesize, array, glsize, gltype, vbo): glBindBuffer(GL_ARRAY_BUFFER, vbo) glBufferData(GL_ARRAY_BUFFER, sizeof(glsize) * array.size, array, GL_STATIC_DRAW) glVertexAttribPointer(pointer, basesize, gltype, False, 0, None) glEnableVertexAttribArray(pointer) def draw(self) -> None: pass def cleanup(self) -> None: if self._is_initialized: glDeleteBuffers(len(self._vbos), self._vbos) glDeleteVertexArrays(len(self._vaos), self._vaos) """ Properties """ @property def is_initialized(self) -> bool: return self._is_initialized @property def is_visible(self) -> bool: return self._is_visible @property def is_boostable(self) -> bool: return self._is_boostable @property def is_cross_sectioned(self) -> bool: return self._is_cross_sectioned @is_initialized.setter def is_initialized(self, status: bool) -> None: self._is_initialized = status @is_visible.setter def is_visible(self, status: bool) -> None: self._is_visible = status self.notify() @is_boostable.setter def is_boostable(self, status: bool) -> None: self._is_boostable = status self.notify() @is_cross_sectioned.setter def is_cross_sectioned(self, status: bool) -> None: self._is_cross_sectioned = status self.notify() """ Quick GLDrawable API """ def add_observer(self, observer) -> None: self._observers.append(observer) def notify(self) -> None: for observer in self._observers: observer.recreate() def show(self) -> None: self.is_visible = True def hide(self) -> None: self.is_visible = False def toggle_visibility(self) -> None: self.is_visible = not self.is_visible
29.337748
89
0.631377
48d2cf4f5a8692ae6171d29853d355c5beed1073
2,508
py
Python
examples/Raspberry_Pi_Pico_4x4_Macropad_v2/code.py
Mindplague/pykey
e069ccdacd470d8d27ad1b701f333ea8e118fc49
[ "MIT" ]
7
2021-10-13T10:18:42.000Z
2022-03-03T03:51:58.000Z
examples/Raspberry_Pi_Pico_4x4_Macropad_v2/code.py
Mindplague/pykey
e069ccdacd470d8d27ad1b701f333ea8e118fc49
[ "MIT" ]
3
2021-10-13T00:35:04.000Z
2021-10-15T00:19:31.000Z
examples/Raspberry_Pi_Pico_4x4_Macropad_v2/code.py
Mindplague/pykey
e069ccdacd470d8d27ad1b701f333ea8e118fc49
[ "MIT" ]
3
2021-10-13T02:55:51.000Z
2022-02-10T05:01:08.000Z
# SPDX-FileCopyrightText: 2021 Pierre Constantineau # SPDX-License-Identifier: MIT # Raspberry Pi Pico 4x4 Macropad """ Code adapted from the following sources: MACROPAD Hotkey (https://learn.adafruit.com/macropad-hotkeys/project-code) Pico Four Keypad (https://learn.adafruit.com/pico-four-key-macropad/code-the-four-keypad) """ import board import keypad import usb_hid from adafruit_hid.keyboard import Keyboard from adafruit_hid.keycode import Keycode from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS kpd = Keyboard(usb_hid.devices) keyboard_layout = KeyboardLayoutUS(kpd) # define keys for 4x4 v2 keys = keypad.Keys( pins=( board.GP3, board.GP4, board.GP21, board.GP22, board.GP6, board.GP5, board.GP20, board.GP19, board.GP7, board.GP8, board.GP17, board.GP18, board.GP10,board.GP9, board.GP16, board.GP15, ), value_when_pressed=False ) keymap = [ ("Select all", [Keycode.LEFT_CONTROL, Keycode.A]), ("Cut", [Keycode.LEFT_CONTROL, Keycode.X]), ("Copy", [Keycode.LEFT_CONTROL, Keycode.C]), ("Paste", [Keycode.LEFT_CONTROL, Keycode.V]), ("Hello World", "Hello World"), ("Cut", [Keycode.LEFT_CONTROL, Keycode.X]), ("Copy", [Keycode.LEFT_CONTROL, Keycode.C]), ("Paste", [Keycode.LEFT_CONTROL, Keycode.V]), ("Select all", [Keycode.LEFT_CONTROL, Keycode.A]), ("Cut", [Keycode.LEFT_CONTROL, Keycode.X]), ("Copy", [Keycode.LEFT_CONTROL, Keycode.C]), ("Paste", [Keycode.LEFT_CONTROL, Keycode.V]), ("Select all", [Keycode.LEFT_CONTROL, Keycode.A]), ("Cut", [Keycode.LEFT_CONTROL, Keycode.X]), ("Copy", [Keycode.LEFT_CONTROL, Keycode.C]), ("Paste", [Keycode.LEFT_CONTROL, Keycode.V]), ] print("keymap:") for key in keymap: print("\t", key[0]) while True: key_event = keys.events.get() if key_event: print(key_event) if key_event.pressed: print(keymap[key_event.key_number][0]) sequence = keymap[key_event.key_number][1] for item in sequence: if isinstance(item, int): if item >= 0: kpd.press(item) else: kpd.release(-item) else: keyboard_layout.write(item) else: # Release any still-pressed modifier keys for item in sequence: if isinstance(item, int) and item >= 0: kpd.release(item)
34.356164
94
0.621212
5875e307d8f1064648010f07a0c213ad36c41c14
11,238
py
Python
src/datasets/utils/streaming_download_manager.py
jimregan/datasets
fc46bba66ba4f432cc10501c16a677112e13984c
[ "Apache-2.0" ]
null
null
null
src/datasets/utils/streaming_download_manager.py
jimregan/datasets
fc46bba66ba4f432cc10501c16a677112e13984c
[ "Apache-2.0" ]
null
null
null
src/datasets/utils/streaming_download_manager.py
jimregan/datasets
fc46bba66ba4f432cc10501c16a677112e13984c
[ "Apache-2.0" ]
null
null
null
import os import re import time from pathlib import Path, PurePosixPath from typing import Optional, Tuple import fsspec import posixpath from aiohttp.client_exceptions import ClientError from .. import config from ..filesystems import COMPRESSION_FILESYSTEMS from .download_manager import DownloadConfig, map_nested from .file_utils import get_authentication_headers_for_url, is_local_path, is_relative_path, url_or_path_join from .logging import get_logger logger = get_logger(__name__) BASE_KNOWN_EXTENSIONS = ["txt", "csv", "json", "jsonl", "tsv", "conll", "conllu", "parquet", "pkl", "pickle", "xml"] COMPRESSION_EXTENSION_TO_PROTOCOL = { # single file compression **{fs_class.extension.lstrip("."): fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS}, # archive compression "zip": "zip", "tar": "tar", "tgz": "tar", } SINGLE_FILE_COMPRESSION_PROTOCOLS = {fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS} SINGLE_SLASH_AFTER_PROTOCOL_PATTERN = re.compile(r"(?<!:):/") def xjoin(a, *p): """ This function extends os.path.join to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xjoin function allows you to apply the join on the first path of the chain. Example:: >>> xjoin("zip://folder1::https://host.com/archive.zip", "file.txt") zip://folder1/file.txt::https://host.com/archive.zip """ a, *b = a.split("::") if is_local_path(a): a = Path(a, *p).as_posix() else: a = posixpath.join(a, *p) return "::".join([a] + b) def xdirname(a, *p): """ This function extends os.path.dirname to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xdirname function allows you to apply the dirname on the first path of the chain. Example:: >>> xdirname("zip://folder1/file.txt::https://host.com/archive.zip") zip://folder1::https://host.com/archive.zip """ a, *b = a.split("::") if is_local_path(a): a = os.path.dirname(Path(a).as_posix()) else: a = posixpath.dirname(a) # if we end up at the root of the protocol, we get for example a = 'http:' # so we have to fix it by adding the '//' that was removed: if a.endswith(":"): a += "//" return "::".join([a] + b) def _as_posix(path: Path): """Extend :meth:`pathlib.PurePath.as_posix` to fix missing slashes after protocol. Args: path (:obj:`~pathlib.Path`): Calling Path instance. Returns: obj:`str` """ path_as_posix = path.as_posix() path_as_posix = SINGLE_SLASH_AFTER_PROTOCOL_PATTERN.sub("://", path_as_posix) path_as_posix += "//" if path_as_posix.endswith(":") else "" # Add slashes to root of the protocol return path_as_posix def xpathjoin(a: Path, *p: Tuple[str, ...]): """Extend :func:`xjoin` to support argument of type :obj:`~pathlib.Path`. Args: a (:obj:`~pathlib.Path`): Calling Path instance. *p (:obj:`tuple` of :obj:`str`): Other path components. Returns: obj:`str` """ return type(a)(xjoin(_as_posix(a), *p)) def _add_retries_to_file_obj_read_method(file_obj): read = file_obj.read max_retries = config.STREAMING_READ_MAX_RETRIES def read_with_retries(*args, **kwargs): for retry in range(1, max_retries + 1): try: out = read(*args, **kwargs) break except ClientError: logger.warning( f"Got disconnected from remote data host. Retrying in {config.STREAMING_READ_RETRY_INTERVAL}sec [{retry}/{max_retries}]" ) time.sleep(config.STREAMING_READ_RETRY_INTERVAL) else: raise ConnectionError("Server Disconnected") return out file_obj.read = read_with_retries def _get_extraction_protocol(urlpath: str) -> Optional[str]: # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz path = urlpath.split("::")[0] # remove "dl=1" query param: https://foo.bar/train.json.gz?dl=1 -> https://foo.bar/train.json.gz suf = "?dl=1" if path.endswith(suf): path = path[: -len(suf)] # Get extension: https://foo.bar/train.json.gz -> gz extension = path.split(".")[-1] if extension in BASE_KNOWN_EXTENSIONS: return None elif path.endswith(".tar.gz") or path.endswith(".tgz"): pass elif extension in COMPRESSION_EXTENSION_TO_PROTOCOL: return COMPRESSION_EXTENSION_TO_PROTOCOL[extension] raise NotImplementedError(f"Extraction protocol for file at {urlpath} is not implemented yet") def xopen(file, mode="r", *args, **kwargs): """ This function extends the builtin `open` function to support remote files using fsspec. It also has a retry mechanism in case connection fails. The args and kwargs are passed to fsspec.open, except `use_auth_token` which is used for queries to private repos on huggingface.co """ if fsspec.get_fs_token_paths(file)[0].protocol == "https": kwargs["headers"] = get_authentication_headers_for_url(file, use_auth_token=kwargs.pop("use_auth_token", None)) file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() _add_retries_to_file_obj_read_method(file_obj) return file_obj def xpathopen(path: Path, *args, **kwargs): """Extend :func:`xopen` to support argument of type :obj:`~pathlib.Path`. Args: path (:obj:`~pathlib.Path`): Calling Path instance. **kwargs: Keyword arguments passed to :func:`fsspec.open`. Returns: :obj:`io.FileIO`: File-like object. """ return xopen(_as_posix(path), *args, **kwargs) def xpathglob(path, pattern): """Glob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: path (:obj:`~pathlib.Path`): Calling Path instance. pattern (:obj:`str`): Pattern that resulting paths must match. Yields: :obj:`~pathlib.Path` """ posix_path = _as_posix(path) main_hop, *rest_hops = posix_path.split("::") if is_local_path(main_hop): yield from Path(main_hop).glob(pattern) else: fs, *_ = fsspec.get_fs_token_paths(xjoin(posix_path, pattern)) # - If there's no "*" in the pattern, get_fs_token_paths() doesn't do any pattern matching # so to be able to glob patterns like "[0-9]", we have to call `fs.glob`. # - Also "*" in get_fs_token_paths() only matches files: we have to call `fs.glob` to match directories. # - If there is "**" in the pattern, `fs.glob` must be called anyway. globbed_paths = fs.glob(xjoin(main_hop, pattern)) for globbed_path in globbed_paths: yield type(path)("::".join([f"{fs.protocol}://{globbed_path}"] + rest_hops)) def xpathrglob(path, pattern): """Rglob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: path (:obj:`~pathlib.Path`): Calling Path instance. pattern (:obj:`str`): Pattern that resulting paths must match. Yields: :obj:`~pathlib.Path` """ return xpathglob(path, "**/" + pattern) def xpathstem(path: Path): """Stem function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: path (:obj:`~pathlib.Path`): Calling Path instance. Returns: :obj:`str` """ return PurePosixPath(_as_posix(path).split("::")[0]).stem def xpathsuffix(path: Path): """Suffix function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: path (:obj:`~pathlib.Path`): Calling Path instance. Returns: :obj:`str` """ return PurePosixPath(_as_posix(path).split("::")[0]).suffix def xpandas_read_csv(path, **kwargs): import pandas as pd return pd.read_csv(xopen(path), **kwargs) class StreamingDownloadManager(object): """ Download manager that uses the "::" separator to navigate through (possibly remote) compressed archives. Contrary to the regular DownloadManager, the `download` and `extract` methods don't actually download nor extract data, but they rather return the path or url that could be opened using the `xopen` function which extends the builtin `open` function to stream data from remote files. """ def __init__( self, dataset_name: Optional[str] = None, data_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, base_path: Optional[str] = None, ): self._dataset_name = dataset_name self._data_dir = data_dir self._download_config = download_config or DownloadConfig() self._base_path = base_path or os.path.abspath(".") @property def manual_dir(self): return self._data_dir def download(self, url_or_urls): url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls def _download(self, urlpath: str) -> str: urlpath = str(urlpath) if is_relative_path(urlpath): # append the relative path to the base_path urlpath = url_or_path_join(self._base_path, urlpath) return urlpath def extract(self, path_or_paths): urlpaths = map_nested(self._extract, path_or_paths, map_tuple=True) return urlpaths def _extract(self, urlpath: str) -> str: urlpath = str(urlpath) protocol = _get_extraction_protocol(urlpath) if protocol is None: # no extraction return urlpath elif protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS: # there is one single file which is the uncompressed file inner_file = os.path.basename(urlpath.split("::")[0]) inner_file = inner_file[: inner_file.rindex(".")] # check for tar.gz, tar.bz2 etc. if inner_file.endswith(".tar"): return f"tar://::{urlpath}" else: return f"{protocol}://{inner_file}::{urlpath}" else: return f"{protocol}://::{urlpath}" def download_and_extract(self, url_or_urls): return self.extract(self.download(url_or_urls))
35.904153
140
0.654832
264d9aa9fb447555b6ea42e97edd0462c1503277
13,824
py
Python
sdk/python/pulumi_azure_native/changeanalysis/outputs.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/changeanalysis/outputs.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/changeanalysis/outputs.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = [ 'AzureMonitorWorkspacePropertiesResponse', 'ConfigurationProfileResourcePropertiesResponse', 'NotificationSettingsResponse', 'ResourceIdentityResponse', 'SystemDataResponse', ] @pulumi.output_type class AzureMonitorWorkspacePropertiesResponse(dict): """ Configuration properties of an Azure Monitor workspace that receives change notifications. """ @staticmethod def __key_warning(key: str): suggest = None if key == "includeChangeDetails": suggest = "include_change_details" elif key == "workspaceId": suggest = "workspace_id" elif key == "workspaceResourceId": suggest = "workspace_resource_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in AzureMonitorWorkspacePropertiesResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AzureMonitorWorkspacePropertiesResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AzureMonitorWorkspacePropertiesResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, include_change_details: Optional[str] = None, workspace_id: Optional[str] = None, workspace_resource_id: Optional[str] = None): """ Configuration properties of an Azure Monitor workspace that receives change notifications. :param str include_change_details: The mode of includeChangeDetails feature. The flag configures whether to include or exclude content of the change before and after values. :param str workspace_id: The Azure Monitor workspace ID - the unique identifier for the Log Analytics workspace. :param str workspace_resource_id: The Azure Monitor workspace ARM Resource ID. The resource ID should be in the following format: /subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName} """ if include_change_details is not None: pulumi.set(__self__, "include_change_details", include_change_details) if workspace_id is not None: pulumi.set(__self__, "workspace_id", workspace_id) if workspace_resource_id is not None: pulumi.set(__self__, "workspace_resource_id", workspace_resource_id) @property @pulumi.getter(name="includeChangeDetails") def include_change_details(self) -> Optional[str]: """ The mode of includeChangeDetails feature. The flag configures whether to include or exclude content of the change before and after values. """ return pulumi.get(self, "include_change_details") @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> Optional[str]: """ The Azure Monitor workspace ID - the unique identifier for the Log Analytics workspace. """ return pulumi.get(self, "workspace_id") @property @pulumi.getter(name="workspaceResourceId") def workspace_resource_id(self) -> Optional[str]: """ The Azure Monitor workspace ARM Resource ID. The resource ID should be in the following format: /subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName} """ return pulumi.get(self, "workspace_resource_id") @pulumi.output_type class ConfigurationProfileResourcePropertiesResponse(dict): """ The properties of a configuration profile. """ def __init__(__self__, *, notifications: Optional['outputs.NotificationSettingsResponse'] = None): """ The properties of a configuration profile. :param 'NotificationSettingsResponse' notifications: Settings of change notification configuration for a subscription. """ if notifications is not None: pulumi.set(__self__, "notifications", notifications) @property @pulumi.getter def notifications(self) -> Optional['outputs.NotificationSettingsResponse']: """ Settings of change notification configuration for a subscription. """ return pulumi.get(self, "notifications") @pulumi.output_type class NotificationSettingsResponse(dict): """ Settings of change notification configuration for a subscription. """ @staticmethod def __key_warning(key: str): suggest = None if key == "activationState": suggest = "activation_state" elif key == "azureMonitorWorkspaceProperties": suggest = "azure_monitor_workspace_properties" if suggest: pulumi.log.warn(f"Key '{key}' not found in NotificationSettingsResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: NotificationSettingsResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: NotificationSettingsResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, activation_state: Optional[str] = None, azure_monitor_workspace_properties: Optional['outputs.AzureMonitorWorkspacePropertiesResponse'] = None): """ Settings of change notification configuration for a subscription. :param str activation_state: The state of notifications feature. :param 'AzureMonitorWorkspacePropertiesResponse' azure_monitor_workspace_properties: Configuration properties of an Azure Monitor workspace that receives change notifications. """ if activation_state is not None: pulumi.set(__self__, "activation_state", activation_state) if azure_monitor_workspace_properties is not None: pulumi.set(__self__, "azure_monitor_workspace_properties", azure_monitor_workspace_properties) @property @pulumi.getter(name="activationState") def activation_state(self) -> Optional[str]: """ The state of notifications feature. """ return pulumi.get(self, "activation_state") @property @pulumi.getter(name="azureMonitorWorkspaceProperties") def azure_monitor_workspace_properties(self) -> Optional['outputs.AzureMonitorWorkspacePropertiesResponse']: """ Configuration properties of an Azure Monitor workspace that receives change notifications. """ return pulumi.get(self, "azure_monitor_workspace_properties") @pulumi.output_type class ResourceIdentityResponse(dict): """ The identity block returned by ARM resource that supports managed identity. """ @staticmethod def __key_warning(key: str): suggest = None if key == "principalId": suggest = "principal_id" elif key == "tenantId": suggest = "tenant_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in ResourceIdentityResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ResourceIdentityResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ResourceIdentityResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, principal_id: str, tenant_id: str, type: Optional[str] = None): """ The identity block returned by ARM resource that supports managed identity. :param str principal_id: The principal id of the identity. This property will only be provided for a system-assigned identity. :param str tenant_id: The tenant id associated with the resource's identity. This property will only be provided for a system-assigned identity. :param str type: The type of managed identity used. The type 'SystemAssigned, UserAssigned' includes both an implicitly created identity and a set of user-assigned identities. The type 'None' will remove any identities. """ pulumi.set(__self__, "principal_id", principal_id) pulumi.set(__self__, "tenant_id", tenant_id) if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter(name="principalId") def principal_id(self) -> str: """ The principal id of the identity. This property will only be provided for a system-assigned identity. """ return pulumi.get(self, "principal_id") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> str: """ The tenant id associated with the resource's identity. This property will only be provided for a system-assigned identity. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter def type(self) -> Optional[str]: """ The type of managed identity used. The type 'SystemAssigned, UserAssigned' includes both an implicitly created identity and a set of user-assigned identities. The type 'None' will remove any identities. """ return pulumi.get(self, "type") @pulumi.output_type class SystemDataResponse(dict): """ Top level metadata https://github.com/Azure/azure-resource-manager-rpc/blob/master/v1.0/common-api-contracts.md#system-metadata-for-all-azure-resources """ @staticmethod def __key_warning(key: str): suggest = None if key == "createdAt": suggest = "created_at" elif key == "createdBy": suggest = "created_by" elif key == "createdByType": suggest = "created_by_type" elif key == "lastModifiedAt": suggest = "last_modified_at" elif key == "lastModifiedBy": suggest = "last_modified_by" elif key == "lastModifiedByType": suggest = "last_modified_by_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in SystemDataResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: SystemDataResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: SystemDataResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, created_at: str, created_by: str, created_by_type: str, last_modified_at: str, last_modified_by: str, last_modified_by_type: str): """ Top level metadata https://github.com/Azure/azure-resource-manager-rpc/blob/master/v1.0/common-api-contracts.md#system-metadata-for-all-azure-resources :param str created_at: The timestamp of resource creation (UTC) :param str created_by: A string identifier for the identity that created the resource :param str created_by_type: The type of identity that created the resource: user, application, managedIdentity, key :param str last_modified_at: The timestamp of resource last modification (UTC) :param str last_modified_by: A string identifier for the identity that last modified the resource :param str last_modified_by_type: The type of identity that last modified the resource: user, application, managedIdentity, key """ pulumi.set(__self__, "created_at", created_at) pulumi.set(__self__, "created_by", created_by) pulumi.set(__self__, "created_by_type", created_by_type) pulumi.set(__self__, "last_modified_at", last_modified_at) pulumi.set(__self__, "last_modified_by", last_modified_by) pulumi.set(__self__, "last_modified_by_type", last_modified_by_type) @property @pulumi.getter(name="createdAt") def created_at(self) -> str: """ The timestamp of resource creation (UTC) """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="createdBy") def created_by(self) -> str: """ A string identifier for the identity that created the resource """ return pulumi.get(self, "created_by") @property @pulumi.getter(name="createdByType") def created_by_type(self) -> str: """ The type of identity that created the resource: user, application, managedIdentity, key """ return pulumi.get(self, "created_by_type") @property @pulumi.getter(name="lastModifiedAt") def last_modified_at(self) -> str: """ The timestamp of resource last modification (UTC) """ return pulumi.get(self, "last_modified_at") @property @pulumi.getter(name="lastModifiedBy") def last_modified_by(self) -> str: """ A string identifier for the identity that last modified the resource """ return pulumi.get(self, "last_modified_by") @property @pulumi.getter(name="lastModifiedByType") def last_modified_by_type(self) -> str: """ The type of identity that last modified the resource: user, application, managedIdentity, key """ return pulumi.get(self, "last_modified_by_type")
41.389222
271
0.67419
4d42914389da921d7a1c15c79345c932493f67ab
1,612
py
Python
wristband/constants.py
MONICA-Project/scral-framework
ad9ff066cd204ea7bf5099866c53ae320800995e
[ "Apache-2.0" ]
null
null
null
wristband/constants.py
MONICA-Project/scral-framework
ad9ff066cd204ea7bf5099866c53ae320800995e
[ "Apache-2.0" ]
null
null
null
wristband/constants.py
MONICA-Project/scral-framework
ad9ff066cd204ea7bf5099866c53ae320800995e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ############################################################################# # _____ __________ ___ __ # # / ___// ____/ __ \/ | / / # # \__ \/ / / /_/ / /| | / / # # ___/ / /___/ _, _/ ___ |/ /___ # # /____/\____/_/ |_/_/ |_/_____/ Smart City Resource Adaptation Layer # # # # LINKS Foundation, (c) 2017-2020 # # developed by Jacopo Foglietti & Luca Mannella # # SCRAL is distributed under a BSD-style license -- See file LICENSE.md # # # ############################################################################# """ SCRAL - constants This file contains useful constants for this module. """ # URI URI_DEFAULT = "/scral/v1.0/wristband-gw" URI_ACTIVE_DEVICES = URI_DEFAULT + "/active-devices" URI_WRISTBAND = URI_DEFAULT + "/wearable" # Observed Property PROPERTY_LOCALIZATION_NAME = "Localization-Wristband" PROPERTY_BUTTON_NAME = "Button-Wristband" # Fixed values SENSOR_ULTRAWIDEBAND_SCRAL = "UWB" SENSOR_ULTRAWIDEBAND_DEXELS = "uwb" SENSOR_ASSOCIATION_NAME = "WRISTBAND-GW/Friend-Connect/Friend-Connect-Request" # Keys TAG_ID_KEY = "tagId" ID1_ASSOCIATION_KEY = "tagId_1" ID2_ASSOCIATION_KEY = "tagId_2" TIME_KEY = "timestamp"
41.333333
78
0.450372
1ceaab12466feb4301fc7f45b63b129034c7bbdf
574
py
Python
tests/share/tasks/__init__.py
felliott/SHARE
8fd60ff4749349c9b867f6188650d71f4f0a1a56
[ "Apache-2.0" ]
87
2015-01-06T18:24:45.000Z
2021-08-08T07:59:40.000Z
tests/share/tasks/__init__.py
fortress-biotech/SHARE
9c5a05dd831447949fa6253afec5225ff8ab5d4f
[ "Apache-2.0" ]
442
2015-01-01T19:16:01.000Z
2022-03-30T21:10:26.000Z
tests/share/tasks/__init__.py
fortress-biotech/SHARE
9c5a05dd831447949fa6253afec5225ff8ab5d4f
[ "Apache-2.0" ]
67
2015-03-10T16:32:58.000Z
2021-11-12T16:33:41.000Z
import threading class SyncedThread(threading.Thread): def __init__(self, target, args=(), kwargs={}): self._end = threading.Event() self._start = threading.Event() def _target(*args, **kwargs): with target(*args, **kwargs): self._start.set() self._end.wait(10) super().__init__(target=_target, args=args, kwargs=kwargs) def start(self): super().start() self._start.wait(10) def join(self, timeout=1): self._end.set() return super().join(timeout)
23.916667
66
0.569686
27947a93d459905a3b21e377e5aff41c54450c94
3,623
py
Python
poseidon/baseClasses/Rabbit_Base.py
danielpops/poseidon
290405b02a0cd46dcbfafceded12ddc06b7a641a
[ "Apache-2.0" ]
null
null
null
poseidon/baseClasses/Rabbit_Base.py
danielpops/poseidon
290405b02a0cd46dcbfafceded12ddc06b7a641a
[ "Apache-2.0" ]
null
null
null
poseidon/baseClasses/Rabbit_Base.py
danielpops/poseidon
290405b02a0cd46dcbfafceded12ddc06b7a641a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017 In-Q-Tel, Inc, All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Created on 21 August 2017 @author: dgrossman ''' import pika import threading import time from functools import partial from .Logger_Base import Logger module_logger = Logger class Rabbit_Base(object): # pragma: no cover ''' Base Class for RabbitMQ ''' def __init__(self): self.logger = module_logger.logger def make_rabbit_connection(self, host, port, exchange, queue_name, keys, total_sleep=float('inf')): # pragma: no cover ''' Connects to rabbitmq using the given hostname, exchange, and queue. Retries on failure until success. Binds routing keys appropriate for module, and returns the channel and connection. ''' wait = True do_rabbit = True rabbit_channel = None rabbit_connection = None while wait and total_sleep > 0: try: rabbit_connection = pika.BlockingConnection( pika.ConnectionParameters(host=host, port=port)) rabbit_channel = rabbit_connection.channel() rabbit_channel.exchange_declare(exchange=exchange, exchange_type='topic') rabbit_channel.queue_declare(queue=queue_name, exclusive=True) self.logger.debug('connected to {0} rabbitmq...'.format(host)) wait = False except Exception as e: self.logger.debug( 'waiting for connection to {0} rabbitmq...'.format(host)) self.logger.debug(str(e)) time.sleep(2) total_sleep -= 2 wait = True if wait: do_rabbit = False if isinstance(keys, list) and not wait: for key in keys: self.logger.debug( 'array adding key:{0} to rabbitmq channel'.format(key)) rabbit_channel.queue_bind(exchange=exchange, queue=queue_name, routing_key=key) if isinstance(keys, str) and not wait: self.logger.debug( 'string adding key:{0} to rabbitmq channel'.format(keys)) rabbit_channel.queue_bind(exchange=exchange, queue=queue_name, routing_key=keys) return rabbit_channel, rabbit_connection, do_rabbit def start_channel(self, channel, mycallback, queue, m_queue): ''' handle threading for messagetype ''' self.logger.debug('about to start channel {0}'.format(channel)) channel.basic_consume(partial(mycallback, q=m_queue), queue=queue, no_ack=True) mq_recv_thread = threading.Thread(target=channel.start_consuming) mq_recv_thread.start() return mq_recv_thread
36.969388
78
0.591499
9f081b9fa9ccc679f07d5eea77807e66bf5308d6
156
py
Python
striplog/_version.py
rgmyr/striplog
9813f1c5b109de60f0717cdf0018042cd8ddeb69
[ "Apache-2.0" ]
1
2021-05-18T08:23:58.000Z
2021-05-18T08:23:58.000Z
striplog/_version.py
rgmyr/striplog
9813f1c5b109de60f0717cdf0018042cd8ddeb69
[ "Apache-2.0" ]
null
null
null
striplog/_version.py
rgmyr/striplog
9813f1c5b109de60f0717cdf0018042cd8ddeb69
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Version. Doing it this way provides for access in setup.py and via __version__ """ __version__ = "0.8.0"
17.333333
69
0.660256
69665378468280c82a4c776f01d8ed79b1d6df6d
623
py
Python
work/yml/manage.py
judebues/softmanage
3882534422c09cc3a6978890e51fff9ff465de24
[ "MIT" ]
1
2020-05-21T06:48:34.000Z
2020-05-21T06:48:34.000Z
work/yml/manage.py
judebues/softmanage
3882534422c09cc3a6978890e51fff9ff465de24
[ "MIT" ]
3
2021-03-19T03:07:36.000Z
2021-04-08T20:33:38.000Z
work/yml/manage.py
judebues/softmanage
3882534422c09cc3a6978890e51fff9ff465de24
[ "MIT" ]
1
2020-05-21T06:48:36.000Z
2020-05-21T06:48:36.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'yml.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.318182
73
0.680578
e060d94fd3c0a061f5cd541e0d5276b6ead987ba
56,803
py
Python
venv/Lib/site-packages/sqlalchemy/dialects/oracle/base.py
sunausti/mywebdemo
884bcf3b68e0063dcb08c602f0dc784753ec8a87
[ "Apache-2.0" ]
1
2021-11-11T08:52:09.000Z
2021-11-11T08:52:09.000Z
venv/Lib/site-packages/sqlalchemy/dialects/oracle/base.py
sunausti/mywebdemo
884bcf3b68e0063dcb08c602f0dc784753ec8a87
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/sqlalchemy/dialects/oracle/base.py
sunausti/mywebdemo
884bcf3b68e0063dcb08c602f0dc784753ec8a87
[ "Apache-2.0" ]
null
null
null
# oracle/base.py # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ .. dialect:: oracle :name: Oracle Oracle version 8 through current (11g at the time of this writing) are supported. Connect Arguments ----------------- The dialect supports several :func:`~sqlalchemy.create_engine()` arguments which affect the behavior of the dialect regardless of driver in use. * ``use_ansi`` - Use ANSI JOIN constructs (see the section on Oracle 8). Defaults to ``True``. If ``False``, Oracle-8 compatible constructs are used for joins. * ``optimize_limits`` - defaults to ``False``. see the section on LIMIT/OFFSET. * ``use_binds_for_limits`` - defaults to ``True``. see the section on LIMIT/OFFSET. Auto Increment Behavior ----------------------- SQLAlchemy Table objects which include integer primary keys are usually assumed to have "autoincrementing" behavior, meaning they can generate their own primary key values upon INSERT. Since Oracle has no "autoincrement" feature, SQLAlchemy relies upon sequences to produce these values. With the Oracle dialect, *a sequence must always be explicitly specified to enable autoincrement*. This is divergent with the majority of documentation examples which assume the usage of an autoincrement-capable database. To specify sequences, use the sqlalchemy.schema.Sequence object which is passed to a Column construct:: t = Table('mytable', metadata, Column('id', Integer, Sequence('id_seq'), primary_key=True), Column(...), ... ) This step is also required when using table reflection, i.e. autoload=True:: t = Table('mytable', metadata, Column('id', Integer, Sequence('id_seq'), primary_key=True), autoload=True ) Identifier Casing ----------------- In Oracle, the data dictionary represents all case insensitive identifier names using UPPERCASE text. SQLAlchemy on the other hand considers an all-lower case identifier name to be case insensitive. The Oracle dialect converts all case insensitive identifiers to and from those two formats during schema level communication, such as reflection of tables and indexes. Using an UPPERCASE name on the SQLAlchemy side indicates a case sensitive identifier, and SQLAlchemy will quote the name - this will cause mismatches against data dictionary data received from Oracle, so unless identifier names have been truly created as case sensitive (i.e. using quoted names), all lowercase names should be used on the SQLAlchemy side. LIMIT/OFFSET Support -------------------- Oracle has no support for the LIMIT or OFFSET keywords. SQLAlchemy uses a wrapped subquery approach in conjunction with ROWNUM. The exact methodology is taken from http://www.oracle.com/technetwork/issue-archive/2006/06-sep/o56asktom-086197.html . There are two options which affect its behavior: * the "FIRST ROWS()" optimization keyword is not used by default. To enable the usage of this optimization directive, specify ``optimize_limits=True`` to :func:`.create_engine`. * the values passed for the limit/offset are sent as bound parameters. Some users have observed that Oracle produces a poor query plan when the values are sent as binds and not rendered literally. To render the limit/offset values literally within the SQL statement, specify ``use_binds_for_limits=False`` to :func:`.create_engine`. Some users have reported better performance when the entirely different approach of a window query is used, i.e. ROW_NUMBER() OVER (ORDER BY), to provide LIMIT/OFFSET (note that the majority of users don't observe this). To suit this case the method used for LIMIT/OFFSET can be replaced entirely. See the recipe at http://www.sqlalchemy.org/trac/wiki/UsageRecipes/WindowFunctionsByDefault which installs a select compiler that overrides the generation of limit/offset with a window function. .. _oracle_returning: RETURNING Support ----------------- The Oracle database supports a limited form of RETURNING, in order to retrieve result sets of matched rows from INSERT, UPDATE and DELETE statements. Oracle's RETURNING..INTO syntax only supports one row being returned, as it relies upon OUT parameters in order to function. In addition, supported DBAPIs have further limitations (see :ref:`cx_oracle_returning`). SQLAlchemy's "implicit returning" feature, which employs RETURNING within an INSERT and sometimes an UPDATE statement in order to fetch newly generated primary key values and other SQL defaults and expressions, is normally enabled on the Oracle backend. By default, "implicit returning" typically only fetches the value of a single ``nextval(some_seq)`` expression embedded into an INSERT in order to increment a sequence within an INSERT statement and get the value back at the same time. To disable this feature across the board, specify ``implicit_returning=False`` to :func:`.create_engine`:: engine = create_engine("oracle://scott:tiger@dsn", implicit_returning=False) Implicit returning can also be disabled on a table-by-table basis as a table option:: # Core Table my_table = Table("my_table", metadata, ..., implicit_returning=False) # declarative class MyClass(Base): __tablename__ = 'my_table' __table_args__ = {"implicit_returning": False} .. seealso:: :ref:`cx_oracle_returning` - additional cx_oracle-specific restrictions on implicit returning. ON UPDATE CASCADE ----------------- Oracle doesn't have native ON UPDATE CASCADE functionality. A trigger based solution is available at http://asktom.oracle.com/tkyte/update_cascade/index.html . When using the SQLAlchemy ORM, the ORM has limited ability to manually issue cascading updates - specify ForeignKey objects using the "deferrable=True, initially='deferred'" keyword arguments, and specify "passive_updates=False" on each relationship(). Oracle 8 Compatibility ---------------------- When Oracle 8 is detected, the dialect internally configures itself to the following behaviors: * the use_ansi flag is set to False. This has the effect of converting all JOIN phrases into the WHERE clause, and in the case of LEFT OUTER JOIN makes use of Oracle's (+) operator. * the NVARCHAR2 and NCLOB datatypes are no longer generated as DDL when the :class:`~sqlalchemy.types.Unicode` is used - VARCHAR2 and CLOB are issued instead. This because these types don't seem to work correctly on Oracle 8 even though they are available. The :class:`~sqlalchemy.types.NVARCHAR` and :class:`~sqlalchemy.dialects.oracle.NCLOB` types will always generate NVARCHAR2 and NCLOB. * the "native unicode" mode is disabled when using cx_oracle, i.e. SQLAlchemy encodes all Python unicode objects to "string" before passing in as bind parameters. Synonym/DBLINK Reflection ------------------------- When using reflection with Table objects, the dialect can optionally search for tables indicated by synonyms, either in local or remote schemas or accessed over DBLINK, by passing the flag ``oracle_resolve_synonyms=True`` as a keyword argument to the :class:`.Table` construct:: some_table = Table('some_table', autoload=True, autoload_with=some_engine, oracle_resolve_synonyms=True) When this flag is set, the given name (such as ``some_table`` above) will be searched not just in the ``ALL_TABLES`` view, but also within the ``ALL_SYNONYMS`` view to see if this name is actually a synonym to another name. If the synonym is located and refers to a DBLINK, the oracle dialect knows how to locate the table's information using DBLINK syntax(e.g. ``@dblink``). ``oracle_resolve_synonyms`` is accepted wherever reflection arguments are accepted, including methods such as :meth:`.MetaData.reflect` and :meth:`.Inspector.get_columns`. If synonyms are not in use, this flag should be left disabled. DateTime Compatibility ---------------------- Oracle has no datatype known as ``DATETIME``, it instead has only ``DATE``, which can actually store a date and time value. For this reason, the Oracle dialect provides a type :class:`.oracle.DATE` which is a subclass of :class:`.DateTime`. This type has no special behavior, and is only present as a "marker" for this type; additionally, when a database column is reflected and the type is reported as ``DATE``, the time-supporting :class:`.oracle.DATE` type is used. .. versionchanged:: 0.9.4 Added :class:`.oracle.DATE` to subclass :class:`.DateTime`. This is a change as previous versions would reflect a ``DATE`` column as :class:`.types.DATE`, which subclasses :class:`.Date`. The only significance here is for schemes that are examining the type of column for use in special Python translations or for migrating schemas to other database backends. .. _oracle_table_options: Oracle Table Options ------------------------- The CREATE TABLE phrase supports the following options with Oracle in conjunction with the :class:`.Table` construct: * ``ON COMMIT``:: Table( "some_table", metadata, ..., prefixes=['GLOBAL TEMPORARY'], oracle_on_commit='PRESERVE ROWS') .. versionadded:: 1.0.0 * ``COMPRESS``:: Table('mytable', metadata, Column('data', String(32)), oracle_compress=True) Table('mytable', metadata, Column('data', String(32)), oracle_compress=6) The ``oracle_compress`` parameter accepts either an integer compression level, or ``True`` to use the default compression level. .. versionadded:: 1.0.0 .. _oracle_index_options: Oracle Specific Index Options ----------------------------- Bitmap Indexes ~~~~~~~~~~~~~~ You can specify the ``oracle_bitmap`` parameter to create a bitmap index instead of a B-tree index:: Index('my_index', my_table.c.data, oracle_bitmap=True) Bitmap indexes cannot be unique and cannot be compressed. SQLAlchemy will not check for such limitations, only the database will. .. versionadded:: 1.0.0 Index compression ~~~~~~~~~~~~~~~~~ Oracle has a more efficient storage mode for indexes containing lots of repeated values. Use the ``oracle_compress`` parameter to turn on key c ompression:: Index('my_index', my_table.c.data, oracle_compress=True) Index('my_index', my_table.c.data1, my_table.c.data2, unique=True, oracle_compress=1) The ``oracle_compress`` parameter accepts either an integer specifying the number of prefix columns to compress, or ``True`` to use the default (all columns for non-unique indexes, all but the last column for unique indexes). .. versionadded:: 1.0.0 """ import re from sqlalchemy import util, sql from sqlalchemy.engine import default, reflection from sqlalchemy.sql import compiler, visitors, expression, util as sql_util from sqlalchemy.sql import operators as sql_operators from sqlalchemy.sql.elements import quoted_name from sqlalchemy import types as sqltypes, schema as sa_schema from sqlalchemy.types import VARCHAR, NVARCHAR, CHAR, \ BLOB, CLOB, TIMESTAMP, FLOAT RESERVED_WORDS = \ set('SHARE RAW DROP BETWEEN FROM DESC OPTION PRIOR LONG THEN ' 'DEFAULT ALTER IS INTO MINUS INTEGER NUMBER GRANT IDENTIFIED ' 'ALL TO ORDER ON FLOAT DATE HAVING CLUSTER NOWAIT RESOURCE ' 'ANY TABLE INDEX FOR UPDATE WHERE CHECK SMALLINT WITH DELETE ' 'BY ASC REVOKE LIKE SIZE RENAME NOCOMPRESS NULL GROUP VALUES ' 'AS IN VIEW EXCLUSIVE COMPRESS SYNONYM SELECT INSERT EXISTS ' 'NOT TRIGGER ELSE CREATE INTERSECT PCTFREE DISTINCT USER ' 'CONNECT SET MODE OF UNIQUE VARCHAR2 VARCHAR LOCK OR CHAR ' 'DECIMAL UNION PUBLIC AND START UID COMMENT CURRENT LEVEL'.split()) NO_ARG_FNS = set('UID CURRENT_DATE SYSDATE USER ' 'CURRENT_TIME CURRENT_TIMESTAMP'.split()) class RAW(sqltypes._Binary): __visit_name__ = 'RAW' OracleRaw = RAW class NCLOB(sqltypes.Text): __visit_name__ = 'NCLOB' class VARCHAR2(VARCHAR): __visit_name__ = 'VARCHAR2' NVARCHAR2 = NVARCHAR class NUMBER(sqltypes.Numeric, sqltypes.Integer): __visit_name__ = 'NUMBER' def __init__(self, precision=None, scale=None, asdecimal=None): if asdecimal is None: asdecimal = bool(scale and scale > 0) super(NUMBER, self).__init__( precision=precision, scale=scale, asdecimal=asdecimal) def adapt(self, impltype): ret = super(NUMBER, self).adapt(impltype) # leave a hint for the DBAPI handler ret._is_oracle_number = True return ret @property def _type_affinity(self): if bool(self.scale and self.scale > 0): return sqltypes.Numeric else: return sqltypes.Integer class DOUBLE_PRECISION(sqltypes.Numeric): __visit_name__ = 'DOUBLE_PRECISION' def __init__(self, precision=None, scale=None, asdecimal=None): if asdecimal is None: asdecimal = False super(DOUBLE_PRECISION, self).__init__( precision=precision, scale=scale, asdecimal=asdecimal) class BFILE(sqltypes.LargeBinary): __visit_name__ = 'BFILE' class LONG(sqltypes.Text): __visit_name__ = 'LONG' class DATE(sqltypes.DateTime): """Provide the oracle DATE type. This type has no special Python behavior, except that it subclasses :class:`.types.DateTime`; this is to suit the fact that the Oracle ``DATE`` type supports a time value. .. versionadded:: 0.9.4 """ __visit_name__ = 'DATE' def _compare_type_affinity(self, other): return other._type_affinity in (sqltypes.DateTime, sqltypes.Date) class INTERVAL(sqltypes.TypeEngine): __visit_name__ = 'INTERVAL' def __init__(self, day_precision=None, second_precision=None): """Construct an INTERVAL. Note that only DAY TO SECOND intervals are currently supported. This is due to a lack of support for YEAR TO MONTH intervals within available DBAPIs (cx_oracle and zxjdbc). :param day_precision: the day precision value. this is the number of digits to store for the day field. Defaults to "2" :param second_precision: the second precision value. this is the number of digits to store for the fractional seconds field. Defaults to "6". """ self.day_precision = day_precision self.second_precision = second_precision @classmethod def _adapt_from_generic_interval(cls, interval): return INTERVAL(day_precision=interval.day_precision, second_precision=interval.second_precision) @property def _type_affinity(self): return sqltypes.Interval class ROWID(sqltypes.TypeEngine): """Oracle ROWID type. When used in a cast() or similar, generates ROWID. """ __visit_name__ = 'ROWID' class _OracleBoolean(sqltypes.Boolean): def get_dbapi_type(self, dbapi): return dbapi.NUMBER colspecs = { sqltypes.Boolean: _OracleBoolean, sqltypes.Interval: INTERVAL, sqltypes.DateTime: DATE } ischema_names = { 'VARCHAR2': VARCHAR, 'NVARCHAR2': NVARCHAR, 'CHAR': CHAR, 'DATE': DATE, 'NUMBER': NUMBER, 'BLOB': BLOB, 'BFILE': BFILE, 'CLOB': CLOB, 'NCLOB': NCLOB, 'TIMESTAMP': TIMESTAMP, 'TIMESTAMP WITH TIME ZONE': TIMESTAMP, 'INTERVAL DAY TO SECOND': INTERVAL, 'RAW': RAW, 'FLOAT': FLOAT, 'DOUBLE PRECISION': DOUBLE_PRECISION, 'LONG': LONG, } class OracleTypeCompiler(compiler.GenericTypeCompiler): # Note: # Oracle DATE == DATETIME # Oracle does not allow milliseconds in DATE # Oracle does not support TIME columns def visit_datetime(self, type_, **kw): return self.visit_DATE(type_, **kw) def visit_float(self, type_, **kw): return self.visit_FLOAT(type_, **kw) def visit_unicode(self, type_, **kw): if self.dialect._supports_nchar: return self.visit_NVARCHAR2(type_, **kw) else: return self.visit_VARCHAR2(type_, **kw) def visit_INTERVAL(self, type_, **kw): return "INTERVAL DAY%s TO SECOND%s" % ( type_.day_precision is not None and "(%d)" % type_.day_precision or "", type_.second_precision is not None and "(%d)" % type_.second_precision or "", ) def visit_LONG(self, type_, **kw): return "LONG" def visit_TIMESTAMP(self, type_, **kw): if type_.timezone: return "TIMESTAMP WITH TIME ZONE" else: return "TIMESTAMP" def visit_DOUBLE_PRECISION(self, type_, **kw): return self._generate_numeric(type_, "DOUBLE PRECISION", **kw) def visit_NUMBER(self, type_, **kw): return self._generate_numeric(type_, "NUMBER", **kw) def _generate_numeric(self, type_, name, precision=None, scale=None, **kw): if precision is None: precision = type_.precision if scale is None: scale = getattr(type_, 'scale', None) if precision is None: return name elif scale is None: n = "%(name)s(%(precision)s)" return n % {'name': name, 'precision': precision} else: n = "%(name)s(%(precision)s, %(scale)s)" return n % {'name': name, 'precision': precision, 'scale': scale} def visit_string(self, type_, **kw): return self.visit_VARCHAR2(type_, **kw) def visit_VARCHAR2(self, type_, **kw): return self._visit_varchar(type_, '', '2') def visit_NVARCHAR2(self, type_, **kw): return self._visit_varchar(type_, 'N', '2') visit_NVARCHAR = visit_NVARCHAR2 def visit_VARCHAR(self, type_, **kw): return self._visit_varchar(type_, '', '') def _visit_varchar(self, type_, n, num): if not type_.length: return "%(n)sVARCHAR%(two)s" % {'two': num, 'n': n} elif not n and self.dialect._supports_char_length: varchar = "VARCHAR%(two)s(%(length)s CHAR)" return varchar % {'length': type_.length, 'two': num} else: varchar = "%(n)sVARCHAR%(two)s(%(length)s)" return varchar % {'length': type_.length, 'two': num, 'n': n} def visit_text(self, type_, **kw): return self.visit_CLOB(type_, **kw) def visit_unicode_text(self, type_, **kw): if self.dialect._supports_nchar: return self.visit_NCLOB(type_, **kw) else: return self.visit_CLOB(type_, **kw) def visit_large_binary(self, type_, **kw): return self.visit_BLOB(type_, **kw) def visit_big_integer(self, type_, **kw): return self.visit_NUMBER(type_, precision=19, **kw) def visit_boolean(self, type_, **kw): return self.visit_SMALLINT(type_, **kw) def visit_RAW(self, type_, **kw): if type_.length: return "RAW(%(length)s)" % {'length': type_.length} else: return "RAW" def visit_ROWID(self, type_, **kw): return "ROWID" class OracleCompiler(compiler.SQLCompiler): """Oracle compiler modifies the lexical structure of Select statements to work under non-ANSI configured Oracle databases, if the use_ansi flag is False. """ compound_keywords = util.update_copy( compiler.SQLCompiler.compound_keywords, { expression.CompoundSelect.EXCEPT: 'MINUS' } ) def __init__(self, *args, **kwargs): self.__wheres = {} self._quoted_bind_names = {} super(OracleCompiler, self).__init__(*args, **kwargs) def visit_mod_binary(self, binary, operator, **kw): return "mod(%s, %s)" % (self.process(binary.left, **kw), self.process(binary.right, **kw)) def visit_now_func(self, fn, **kw): return "CURRENT_TIMESTAMP" def visit_char_length_func(self, fn, **kw): return "LENGTH" + self.function_argspec(fn, **kw) def visit_match_op_binary(self, binary, operator, **kw): return "CONTAINS (%s, %s)" % (self.process(binary.left), self.process(binary.right)) def visit_true(self, expr, **kw): return '1' def visit_false(self, expr, **kw): return '0' def get_cte_preamble(self, recursive): return "WITH" def get_select_hint_text(self, byfroms): return " ".join( "/*+ %s */" % text for table, text in byfroms.items() ) def function_argspec(self, fn, **kw): if len(fn.clauses) > 0 or fn.name.upper() not in NO_ARG_FNS: return compiler.SQLCompiler.function_argspec(self, fn, **kw) else: return "" def default_from(self): """Called when a ``SELECT`` statement has no froms, and no ``FROM`` clause is to be appended. The Oracle compiler tacks a "FROM DUAL" to the statement. """ return " FROM DUAL" def visit_join(self, join, **kwargs): if self.dialect.use_ansi: return compiler.SQLCompiler.visit_join(self, join, **kwargs) else: kwargs['asfrom'] = True if isinstance(join.right, expression.FromGrouping): right = join.right.element else: right = join.right return self.process(join.left, **kwargs) + \ ", " + self.process(right, **kwargs) def _get_nonansi_join_whereclause(self, froms): clauses = [] def visit_join(join): if join.isouter: def visit_binary(binary): if binary.operator == sql_operators.eq: if join.right.is_derived_from(binary.left.table): binary.left = _OuterJoinColumn(binary.left) elif join.right.is_derived_from(binary.right.table): binary.right = _OuterJoinColumn(binary.right) clauses.append(visitors.cloned_traverse( join.onclause, {}, {'binary': visit_binary})) else: clauses.append(join.onclause) for j in join.left, join.right: if isinstance(j, expression.Join): visit_join(j) elif isinstance(j, expression.FromGrouping): visit_join(j.element) for f in froms: if isinstance(f, expression.Join): visit_join(f) if not clauses: return None else: return sql.and_(*clauses) def visit_outer_join_column(self, vc, **kw): return self.process(vc.column, **kw) + "(+)" def visit_sequence(self, seq): return (self.dialect.identifier_preparer.format_sequence(seq) + ".nextval") def get_render_as_alias_suffix(self, alias_name_text): """Oracle doesn't like ``FROM table AS alias``""" return " " + alias_name_text def returning_clause(self, stmt, returning_cols): columns = [] binds = [] for i, column in enumerate( expression._select_iterables(returning_cols)): if column.type._has_column_expression: col_expr = column.type.column_expression(column) else: col_expr = column outparam = sql.outparam("ret_%d" % i, type_=column.type) self.binds[outparam.key] = outparam binds.append( self.bindparam_string(self._truncate_bindparam(outparam))) columns.append( self.process(col_expr, within_columns_clause=False)) self._add_to_result_map( outparam.key, outparam.key, (column, getattr(column, 'name', None), getattr(column, 'key', None)), column.type ) return 'RETURNING ' + ', '.join(columns) + " INTO " + ", ".join(binds) def _TODO_visit_compound_select(self, select): """Need to determine how to get ``LIMIT``/``OFFSET`` into a ``UNION`` for Oracle. """ pass def visit_select(self, select, **kwargs): """Look for ``LIMIT`` and OFFSET in a select statement, and if so tries to wrap it in a subquery with ``rownum`` criterion. """ if not getattr(select, '_oracle_visit', None): if not self.dialect.use_ansi: froms = self._display_froms_for_select( select, kwargs.get('asfrom', False)) whereclause = self._get_nonansi_join_whereclause(froms) if whereclause is not None: select = select.where(whereclause) select._oracle_visit = True limit_clause = select._limit_clause offset_clause = select._offset_clause if limit_clause is not None or offset_clause is not None: # See http://www.oracle.com/technology/oramag/oracle/06-sep/\ # o56asktom.html # # Generalized form of an Oracle pagination query: # select ... from ( # select /*+ FIRST_ROWS(N) */ ...., rownum as ora_rn from # ( select distinct ... where ... order by ... # ) where ROWNUM <= :limit+:offset # ) where ora_rn > :offset # Outer select and "ROWNUM as ora_rn" can be dropped if # limit=0 kwargs['select_wraps_for'] = select select = select._generate() select._oracle_visit = True # Wrap the middle select and add the hint limitselect = sql.select([c for c in select.c]) if limit_clause is not None and \ self.dialect.optimize_limits and \ select._simple_int_limit: limitselect = limitselect.prefix_with( "/*+ FIRST_ROWS(%d) */" % select._limit) limitselect._oracle_visit = True limitselect._is_wrapper = True # add expressions to accomodate FOR UPDATE OF for_update = select._for_update_arg if for_update is not None and for_update.of: for_update = for_update._clone() for_update._copy_internals() for elem in for_update.of: select.append_column(elem) adapter = sql_util.ClauseAdapter(select) for_update.of = [ adapter.traverse(elem) for elem in for_update.of] # If needed, add the limiting clause if limit_clause is not None: if not self.dialect.use_binds_for_limits: # use simple int limits, will raise an exception # if the limit isn't specified this way max_row = select._limit if offset_clause is not None: max_row += select._offset max_row = sql.literal_column("%d" % max_row) else: max_row = limit_clause if offset_clause is not None: max_row = max_row + offset_clause limitselect.append_whereclause( sql.literal_column("ROWNUM") <= max_row) # If needed, add the ora_rn, and wrap again with offset. if offset_clause is None: limitselect._for_update_arg = for_update select = limitselect else: limitselect = limitselect.column( sql.literal_column("ROWNUM").label("ora_rn")) limitselect._oracle_visit = True limitselect._is_wrapper = True offsetselect = sql.select( [c for c in limitselect.c if c.key != 'ora_rn']) offsetselect._oracle_visit = True offsetselect._is_wrapper = True if for_update is not None and for_update.of: for elem in for_update.of: if limitselect.corresponding_column(elem) is None: limitselect.append_column(elem) if not self.dialect.use_binds_for_limits: offset_clause = sql.literal_column( "%d" % select._offset) offsetselect.append_whereclause( sql.literal_column("ora_rn") > offset_clause) offsetselect._for_update_arg = for_update select = offsetselect return compiler.SQLCompiler.visit_select(self, select, **kwargs) def limit_clause(self, select, **kw): return "" def for_update_clause(self, select, **kw): if self.is_subquery(): return "" tmp = ' FOR UPDATE' if select._for_update_arg.of: tmp += ' OF ' + ', '.join( self.process(elem, **kw) for elem in select._for_update_arg.of ) if select._for_update_arg.nowait: tmp += " NOWAIT" return tmp class OracleDDLCompiler(compiler.DDLCompiler): def define_constraint_cascades(self, constraint): text = "" if constraint.ondelete is not None: text += " ON DELETE %s" % constraint.ondelete # oracle has no ON UPDATE CASCADE - # its only available via triggers # http://asktom.oracle.com/tkyte/update_cascade/index.html if constraint.onupdate is not None: util.warn( "Oracle does not contain native UPDATE CASCADE " "functionality - onupdates will not be rendered for foreign " "keys. Consider using deferrable=True, initially='deferred' " "or triggers.") return text def visit_create_index(self, create): index = create.element self._verify_index_table(index) preparer = self.preparer text = "CREATE " if index.unique: text += "UNIQUE " if index.dialect_options['oracle']['bitmap']: text += "BITMAP " text += "INDEX %s ON %s (%s)" % ( self._prepared_index_name(index, include_schema=True), preparer.format_table(index.table, use_schema=True), ', '.join( self.sql_compiler.process( expr, include_table=False, literal_binds=True) for expr in index.expressions) ) if index.dialect_options['oracle']['compress'] is not False: if index.dialect_options['oracle']['compress'] is True: text += " COMPRESS" else: text += " COMPRESS %d" % ( index.dialect_options['oracle']['compress'] ) return text def post_create_table(self, table): table_opts = [] opts = table.dialect_options['oracle'] if opts['on_commit']: on_commit_options = opts['on_commit'].replace("_", " ").upper() table_opts.append('\n ON COMMIT %s' % on_commit_options) if opts['compress']: if opts['compress'] is True: table_opts.append("\n COMPRESS") else: table_opts.append("\n COMPRESS FOR %s" % ( opts['compress'] )) return ''.join(table_opts) class OracleIdentifierPreparer(compiler.IdentifierPreparer): reserved_words = set([x.lower() for x in RESERVED_WORDS]) illegal_initial_characters = set( (str(dig) for dig in range(0, 10))).union(["_", "$"]) def _bindparam_requires_quotes(self, value): """Return True if the given identifier requires quoting.""" lc_value = value.lower() return (lc_value in self.reserved_words or value[0] in self.illegal_initial_characters or not self.legal_characters.match(util.text_type(value)) ) def format_savepoint(self, savepoint): name = re.sub(r'^_+', '', savepoint.ident) return super( OracleIdentifierPreparer, self).format_savepoint(savepoint, name) class OracleExecutionContext(default.DefaultExecutionContext): def fire_sequence(self, seq, type_): return self._execute_scalar( "SELECT " + self.dialect.identifier_preparer.format_sequence(seq) + ".nextval FROM DUAL", type_) class OracleDialect(default.DefaultDialect): name = 'oracle' supports_alter = True supports_unicode_statements = False supports_unicode_binds = False max_identifier_length = 30 supports_sane_rowcount = True supports_sane_multi_rowcount = False supports_simple_order_by_label = False supports_sequences = True sequences_optional = False postfetch_lastrowid = False default_paramstyle = 'named' colspecs = colspecs ischema_names = ischema_names requires_name_normalize = True supports_default_values = False supports_empty_insert = False statement_compiler = OracleCompiler ddl_compiler = OracleDDLCompiler type_compiler = OracleTypeCompiler preparer = OracleIdentifierPreparer execution_ctx_cls = OracleExecutionContext reflection_options = ('oracle_resolve_synonyms', ) construct_arguments = [ (sa_schema.Table, { "resolve_synonyms": False, "on_commit": None, "compress": False }), (sa_schema.Index, { "bitmap": False, "compress": False }) ] def __init__(self, use_ansi=True, optimize_limits=False, use_binds_for_limits=True, **kwargs): default.DefaultDialect.__init__(self, **kwargs) self.use_ansi = use_ansi self.optimize_limits = optimize_limits self.use_binds_for_limits = use_binds_for_limits def initialize(self, connection): super(OracleDialect, self).initialize(connection) self.implicit_returning = self.__dict__.get( 'implicit_returning', self.server_version_info > (10, ) ) if self._is_oracle_8: self.colspecs = self.colspecs.copy() self.colspecs.pop(sqltypes.Interval) self.use_ansi = False @property def _is_oracle_8(self): return self.server_version_info and \ self.server_version_info < (9, ) @property def _supports_table_compression(self): return self.server_version_info and \ self.server_version_info >= (9, 2, ) @property def _supports_table_compress_for(self): return self.server_version_info and \ self.server_version_info >= (11, ) @property def _supports_char_length(self): return not self._is_oracle_8 @property def _supports_nchar(self): return not self._is_oracle_8 def do_release_savepoint(self, connection, name): # Oracle does not support RELEASE SAVEPOINT pass def has_table(self, connection, table_name, schema=None): if not schema: schema = self.default_schema_name cursor = connection.execute( sql.text("SELECT table_name FROM all_tables " "WHERE table_name = :name AND owner = :schema_name"), name=self.denormalize_name(table_name), schema_name=self.denormalize_name(schema)) return cursor.first() is not None def has_sequence(self, connection, sequence_name, schema=None): if not schema: schema = self.default_schema_name cursor = connection.execute( sql.text("SELECT sequence_name FROM all_sequences " "WHERE sequence_name = :name AND " "sequence_owner = :schema_name"), name=self.denormalize_name(sequence_name), schema_name=self.denormalize_name(schema)) return cursor.first() is not None def normalize_name(self, name): if name is None: return None if util.py2k: if isinstance(name, str): name = name.decode(self.encoding) if name.upper() == name and not \ self.identifier_preparer._requires_quotes(name.lower()): return name.lower() elif name.lower() == name: return quoted_name(name, quote=True) else: return name def denormalize_name(self, name): if name is None: return None elif name.lower() == name and not \ self.identifier_preparer._requires_quotes(name.lower()): name = name.upper() if util.py2k: if not self.supports_unicode_binds: name = name.encode(self.encoding) else: name = unicode(name) return name def _get_default_schema_name(self, connection): return self.normalize_name( connection.execute('SELECT USER FROM DUAL').scalar()) def _resolve_synonym(self, connection, desired_owner=None, desired_synonym=None, desired_table=None): """search for a local synonym matching the given desired owner/name. if desired_owner is None, attempts to locate a distinct owner. returns the actual name, owner, dblink name, and synonym name if found. """ q = "SELECT owner, table_owner, table_name, db_link, "\ "synonym_name FROM all_synonyms WHERE " clauses = [] params = {} if desired_synonym: clauses.append("synonym_name = :synonym_name") params['synonym_name'] = desired_synonym if desired_owner: clauses.append("owner = :desired_owner") params['desired_owner'] = desired_owner if desired_table: clauses.append("table_name = :tname") params['tname'] = desired_table q += " AND ".join(clauses) result = connection.execute(sql.text(q), **params) if desired_owner: row = result.first() if row: return (row['table_name'], row['table_owner'], row['db_link'], row['synonym_name']) else: return None, None, None, None else: rows = result.fetchall() if len(rows) > 1: raise AssertionError( "There are multiple tables visible to the schema, you " "must specify owner") elif len(rows) == 1: row = rows[0] return (row['table_name'], row['table_owner'], row['db_link'], row['synonym_name']) else: return None, None, None, None @reflection.cache def _prepare_reflection_args(self, connection, table_name, schema=None, resolve_synonyms=False, dblink='', **kw): if resolve_synonyms: actual_name, owner, dblink, synonym = self._resolve_synonym( connection, desired_owner=self.denormalize_name(schema), desired_synonym=self.denormalize_name(table_name) ) else: actual_name, owner, dblink, synonym = None, None, None, None if not actual_name: actual_name = self.denormalize_name(table_name) if dblink: # using user_db_links here since all_db_links appears # to have more restricted permissions. # http://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_admin005.htm # will need to hear from more users if we are doing # the right thing here. See [ticket:2619] owner = connection.scalar( sql.text("SELECT username FROM user_db_links " "WHERE db_link=:link"), link=dblink) dblink = "@" + dblink elif not owner: owner = self.denormalize_name(schema or self.default_schema_name) return (actual_name, owner, dblink or '', synonym) @reflection.cache def get_schema_names(self, connection, **kw): s = "SELECT username FROM all_users ORDER BY username" cursor = connection.execute(s,) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_table_names(self, connection, schema=None, **kw): schema = self.denormalize_name(schema or self.default_schema_name) # note that table_names() isn't loading DBLINKed or synonym'ed tables if schema is None: schema = self.default_schema_name s = sql.text( "SELECT table_name FROM all_tables " "WHERE nvl(tablespace_name, 'no tablespace') NOT IN " "('SYSTEM', 'SYSAUX') " "AND OWNER = :owner " "AND IOT_NAME IS NULL " "AND DURATION IS NULL") cursor = connection.execute(s, owner=schema) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_temp_table_names(self, connection, **kw): schema = self.denormalize_name(self.default_schema_name) s = sql.text( "SELECT table_name FROM all_tables " "WHERE nvl(tablespace_name, 'no tablespace') NOT IN " "('SYSTEM', 'SYSAUX') " "AND OWNER = :owner " "AND IOT_NAME IS NULL " "AND DURATION IS NOT NULL") cursor = connection.execute(s, owner=schema) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_view_names(self, connection, schema=None, **kw): schema = self.denormalize_name(schema or self.default_schema_name) s = sql.text("SELECT view_name FROM all_views WHERE owner = :owner") cursor = connection.execute(s, owner=self.denormalize_name(schema)) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_table_options(self, connection, table_name, schema=None, **kw): options = {} resolve_synonyms = kw.get('oracle_resolve_synonyms', False) dblink = kw.get('dblink', '') info_cache = kw.get('info_cache') (table_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache) params = {"table_name": table_name} columns = ["table_name"] if self._supports_table_compression: columns.append("compression") if self._supports_table_compress_for: columns.append("compress_for") text = "SELECT %(columns)s "\ "FROM ALL_TABLES%(dblink)s "\ "WHERE table_name = :table_name" if schema is not None: params['owner'] = schema text += " AND owner = :owner " text = text % {'dblink': dblink, 'columns': ", ".join(columns)} result = connection.execute(sql.text(text), **params) enabled = dict(DISABLED=False, ENABLED=True) row = result.first() if row: if "compression" in row and enabled.get(row.compression, False): if "compress_for" in row: options['oracle_compress'] = row.compress_for else: options['oracle_compress'] = True return options @reflection.cache def get_columns(self, connection, table_name, schema=None, **kw): """ kw arguments can be: oracle_resolve_synonyms dblink """ resolve_synonyms = kw.get('oracle_resolve_synonyms', False) dblink = kw.get('dblink', '') info_cache = kw.get('info_cache') (table_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache) columns = [] if self._supports_char_length: char_length_col = 'char_length' else: char_length_col = 'data_length' params = {"table_name": table_name} text = "SELECT column_name, data_type, %(char_length_col)s, "\ "data_precision, data_scale, "\ "nullable, data_default FROM ALL_TAB_COLUMNS%(dblink)s "\ "WHERE table_name = :table_name" if schema is not None: params['owner'] = schema text += " AND owner = :owner " text += " ORDER BY column_id" text = text % {'dblink': dblink, 'char_length_col': char_length_col} c = connection.execute(sql.text(text), **params) for row in c: (colname, orig_colname, coltype, length, precision, scale, nullable, default) = \ (self.normalize_name(row[0]), row[0], row[1], row[ 2], row[3], row[4], row[5] == 'Y', row[6]) if coltype == 'NUMBER': coltype = NUMBER(precision, scale) elif coltype in ('VARCHAR2', 'NVARCHAR2', 'CHAR'): coltype = self.ischema_names.get(coltype)(length) elif 'WITH TIME ZONE' in coltype: coltype = TIMESTAMP(timezone=True) else: coltype = re.sub(r'\(\d+\)', '', coltype) try: coltype = self.ischema_names[coltype] except KeyError: util.warn("Did not recognize type '%s' of column '%s'" % (coltype, colname)) coltype = sqltypes.NULLTYPE cdict = { 'name': colname, 'type': coltype, 'nullable': nullable, 'default': default, 'autoincrement': default is None } if orig_colname.lower() == orig_colname: cdict['quote'] = True columns.append(cdict) return columns @reflection.cache def get_indexes(self, connection, table_name, schema=None, resolve_synonyms=False, dblink='', **kw): info_cache = kw.get('info_cache') (table_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache) indexes = [] params = {'table_name': table_name} text = \ "SELECT a.index_name, a.column_name, "\ "\nb.index_type, b.uniqueness, b.compression, b.prefix_length "\ "\nFROM ALL_IND_COLUMNS%(dblink)s a, "\ "\nALL_INDEXES%(dblink)s b "\ "\nWHERE "\ "\na.index_name = b.index_name "\ "\nAND a.table_owner = b.table_owner "\ "\nAND a.table_name = b.table_name "\ "\nAND a.table_name = :table_name " if schema is not None: params['schema'] = schema text += "AND a.table_owner = :schema " text += "ORDER BY a.index_name, a.column_position" text = text % {'dblink': dblink} q = sql.text(text) rp = connection.execute(q, **params) indexes = [] last_index_name = None pk_constraint = self.get_pk_constraint( connection, table_name, schema, resolve_synonyms=resolve_synonyms, dblink=dblink, info_cache=kw.get('info_cache')) pkeys = pk_constraint['constrained_columns'] uniqueness = dict(NONUNIQUE=False, UNIQUE=True) enabled = dict(DISABLED=False, ENABLED=True) oracle_sys_col = re.compile(r'SYS_NC\d+\$', re.IGNORECASE) def upper_name_set(names): return set([i.upper() for i in names]) pk_names = upper_name_set(pkeys) def remove_if_primary_key(index): # don't include the primary key index if index is not None and \ upper_name_set(index['column_names']) == pk_names: indexes.pop() index = None for rset in rp: if rset.index_name != last_index_name: remove_if_primary_key(index) index = dict(name=self.normalize_name(rset.index_name), column_names=[], dialect_options={}) indexes.append(index) index['unique'] = uniqueness.get(rset.uniqueness, False) if rset.index_type in ('BITMAP', 'FUNCTION-BASED BITMAP'): index['dialect_options']['oracle_bitmap'] = True if enabled.get(rset.compression, False): index['dialect_options']['oracle_compress'] = rset.prefix_length # filter out Oracle SYS_NC names. could also do an outer join # to the all_tab_columns table and check for real col names there. if not oracle_sys_col.match(rset.column_name): index['column_names'].append( self.normalize_name(rset.column_name)) last_index_name = rset.index_name remove_if_primary_key(index) return indexes @reflection.cache def _get_constraint_data(self, connection, table_name, schema=None, dblink='', **kw): params = {'table_name': table_name} text = \ "SELECT"\ "\nac.constraint_name,"\ "\nac.constraint_type,"\ "\nloc.column_name AS local_column,"\ "\nrem.table_name AS remote_table,"\ "\nrem.column_name AS remote_column,"\ "\nrem.owner AS remote_owner,"\ "\nloc.position as loc_pos,"\ "\nrem.position as rem_pos"\ "\nFROM all_constraints%(dblink)s ac,"\ "\nall_cons_columns%(dblink)s loc,"\ "\nall_cons_columns%(dblink)s rem"\ "\nWHERE ac.table_name = :table_name"\ "\nAND ac.constraint_type IN ('R','P')" if schema is not None: params['owner'] = schema text += "\nAND ac.owner = :owner" text += \ "\nAND ac.owner = loc.owner"\ "\nAND ac.constraint_name = loc.constraint_name"\ "\nAND ac.r_owner = rem.owner(+)"\ "\nAND ac.r_constraint_name = rem.constraint_name(+)"\ "\nAND (rem.position IS NULL or loc.position=rem.position)"\ "\nORDER BY ac.constraint_name, loc.position" text = text % {'dblink': dblink} rp = connection.execute(sql.text(text), **params) constraint_data = rp.fetchall() return constraint_data @reflection.cache def get_pk_constraint(self, connection, table_name, schema=None, **kw): resolve_synonyms = kw.get('oracle_resolve_synonyms', False) dblink = kw.get('dblink', '') info_cache = kw.get('info_cache') (table_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache) pkeys = [] constraint_name = None constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get('info_cache')) for row in constraint_data: (cons_name, cons_type, local_column, remote_table, remote_column, remote_owner) = \ row[0:2] + tuple([self.normalize_name(x) for x in row[2:6]]) if cons_type == 'P': if constraint_name is None: constraint_name = self.normalize_name(cons_name) pkeys.append(local_column) return {'constrained_columns': pkeys, 'name': constraint_name} @reflection.cache def get_foreign_keys(self, connection, table_name, schema=None, **kw): """ kw arguments can be: oracle_resolve_synonyms dblink """ requested_schema = schema # to check later on resolve_synonyms = kw.get('oracle_resolve_synonyms', False) dblink = kw.get('dblink', '') info_cache = kw.get('info_cache') (table_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache) constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get('info_cache')) def fkey_rec(): return { 'name': None, 'constrained_columns': [], 'referred_schema': None, 'referred_table': None, 'referred_columns': [] } fkeys = util.defaultdict(fkey_rec) for row in constraint_data: (cons_name, cons_type, local_column, remote_table, remote_column, remote_owner) = \ row[0:2] + tuple([self.normalize_name(x) for x in row[2:6]]) if cons_type == 'R': if remote_table is None: # ticket 363 util.warn( ("Got 'None' querying 'table_name' from " "all_cons_columns%(dblink)s - does the user have " "proper rights to the table?") % {'dblink': dblink}) continue rec = fkeys[cons_name] rec['name'] = cons_name local_cols, remote_cols = rec[ 'constrained_columns'], rec['referred_columns'] if not rec['referred_table']: if resolve_synonyms: ref_remote_name, ref_remote_owner, ref_dblink, ref_synonym = \ self._resolve_synonym( connection, desired_owner=self.denormalize_name( remote_owner), desired_table=self.denormalize_name( remote_table) ) if ref_synonym: remote_table = self.normalize_name(ref_synonym) remote_owner = self.normalize_name( ref_remote_owner) rec['referred_table'] = remote_table if requested_schema is not None or \ self.denormalize_name(remote_owner) != schema: rec['referred_schema'] = remote_owner local_cols.append(local_column) remote_cols.append(remote_column) return list(fkeys.values()) @reflection.cache def get_view_definition(self, connection, view_name, schema=None, resolve_synonyms=False, dblink='', **kw): info_cache = kw.get('info_cache') (view_name, schema, dblink, synonym) = \ self._prepare_reflection_args(connection, view_name, schema, resolve_synonyms, dblink, info_cache=info_cache) params = {'view_name': view_name} text = "SELECT text FROM all_views WHERE view_name=:view_name" if schema is not None: text += " AND owner = :schema" params['schema'] = schema rp = connection.execute(sql.text(text), **params).scalar() if rp: if util.py2k: rp = rp.decode(self.encoding) return rp else: return None class _OuterJoinColumn(sql.ClauseElement): __visit_name__ = 'outer_join_column' def __init__(self, column): self.column = column
36.272669
95
0.601975
7dacd8e046ccc823467161e4d0e59a7887a035fc
4,717
py
Python
tests/python/unittest/test_tir_transform_coproc_sync.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
4,640
2017-08-17T19:22:15.000Z
2019-11-04T15:29:46.000Z
tests/python/unittest/test_tir_transform_coproc_sync.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
3,022
2020-11-24T14:02:31.000Z
2022-03-31T23:55:31.000Z
tests/python/unittest/test_tir_transform_coproc_sync.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
1,352
2017-08-17T19:30:38.000Z
2019-11-04T16:09:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te # register the ops tvm.ir.register_op_attr("tir.cop.coproc_sync", "TGlobalSymbol", "coproc_sync") tvm.ir.register_op_attr("tir.cop.coproc_read_barrier", "TGlobalSymbol", "coproc_readb") tvm.ir.register_op_attr("tir.cop.coproc_write_barrier", "TGlobalSymbol", "coproc_writeb") tvm.ir.register_op_attr("tir.cop.coproc_dep_push", "TGlobalSymbol", "coproc_dep_push") tvm.ir.register_op_attr("tir.cop.coproc_dep_pop", "TGlobalSymbol", "coproc_dep_pop") def test_coproc_sync(): @tvm.register_func("tvm.info.mem.global.cache") def meminfo_cache(): return tvm.ir.make_node( "MemoryInfo", unit_bits=8, max_simd_bits=32, max_num_bits=128, head_address=tvm.tir.call_extern("handle", "global_cache"), ) ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: A[i] = A[i] + 1 with ib.for_range(0, 8, name="k") as k: with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_scope", 1) A[j] = A[j + k * 10] + 2 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body body = stmt.body.body blist = tvm.tir.stmt_list(body) assert blist[1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_read_barrier")) assert blist[1].value.args[3].value == 80 assert blist[-2].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_sync")) assert blist[-1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_write_barrier")) assert blist[-1].value.args[3].value == 10 def test_coproc_sync2(): ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") ty = te.thread_axis("cthread") A = ib.allocate("float32", 128, name="A") ib.scope_attr(ty, "virtual_thread", 2) with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 0.0 with ib.for_range(0, n, name="i") as i: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[ty] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 1.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body def test_coproc_sync3(): def __check_list(tvm_array, py_list): for ti, li in zip(tvm_array, py_list): if ti.value != li: return False return True ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, n, name="i") as j: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 3) A[0] = 0.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body slist = tvm.tir.stmt_list(stmt[0].body) push_st = slist[2] slist = tvm.tir.stmt_list(slist[-1]) pop_st = slist[0].body[0] assert push_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_push")) assert __check_list(push_st.value.args, [2, 3]) assert pop_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_pop")) assert __check_list(pop_st.value.args, [2, 3]) if __name__ == "__main__": test_coproc_sync() test_coproc_sync2() test_coproc_sync3()
36.284615
89
0.634513
5f173a5909f012704284dcf04812fc2c5937c2b5
18,128
py
Python
sgdml/utils/perm.py
rangsimanketkaew/sGDML
3f06e0de33462afdfaecb310ac2d4e073b6ed2cf
[ "MIT" ]
72
2018-07-11T18:46:17.000Z
2022-03-13T03:33:09.000Z
sgdml/utils/perm.py
rangsimanketkaew/sGDML
3f06e0de33462afdfaecb310ac2d4e073b6ed2cf
[ "MIT" ]
11
2018-09-14T18:43:03.000Z
2021-06-15T12:21:52.000Z
sgdml/utils/perm.py
rangsimanketkaew/sGDML
3f06e0de33462afdfaecb310ac2d4e073b6ed2cf
[ "MIT" ]
31
2018-10-29T08:06:00.000Z
2022-03-25T13:53:43.000Z
#!/usr/bin/python # MIT License # # Copyright (c) 2018-2021 Stefan Chmiela # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import multiprocessing as mp Pool = mp.get_context('fork').Pool import sys import timeit from functools import partial import numpy as np import scipy.optimize import scipy.spatial.distance from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree from .. import DONE, NOT_DONE from .desc import Desc from . import ui glob = {} def share_array(arr_np, typecode): arr = mp.RawArray(typecode, arr_np.ravel()) return arr, arr_np.shape def _bipartite_match_wkr(i, n_train, same_z_cost): global glob adj_set = np.frombuffer(glob['adj_set']).reshape(glob['adj_set_shape']) v_set = np.frombuffer(glob['v_set']).reshape(glob['v_set_shape']) match_cost = np.frombuffer(glob['match_cost']).reshape(glob['match_cost_shape']) adj_i = scipy.spatial.distance.squareform(adj_set[i, :]) v_i = v_set[i, :, :] match_perms = {} for j in range(i + 1, n_train): adj_j = scipy.spatial.distance.squareform(adj_set[j, :]) v_j = v_set[j, :, :] cost = -np.fabs(v_i).dot(np.fabs(v_j).T) cost += same_z_cost * np.max(np.abs(cost)) _, perm = scipy.optimize.linear_sum_assignment(cost) adj_i_perm = adj_i[:, perm] adj_i_perm = adj_i_perm[perm, :] score_before = np.linalg.norm(adj_i - adj_j) score = np.linalg.norm(adj_i_perm - adj_j) match_cost[i, j] = score if score >= score_before: match_cost[i, j] = score_before elif not np.isclose(score_before, score): # otherwise perm is identity match_perms[i, j] = perm return match_perms def bipartite_match(R, z, lat_and_inv=None, max_processes=None, callback=None): global glob n_train, n_atoms, _ = R.shape # penalty matrix for mixing atom species same_z_cost = np.repeat(z[:, None], len(z), axis=1) - z same_z_cost[same_z_cost != 0] = 1 # NEW # penalty matrix for mixing differently bonded atoms # NOTE: needs ASE, expects R to be in angstrom, does not support bond breaking # from ase import Atoms # from ase.geometry.analysis import Analysis # atoms = Atoms( # z, positions=R[0] # ) # only use first molecule in dataset to find connected components (fix me later, maybe) # *0.529177249 # bonds = Analysis(atoms).all_bonds[0] # #n_bonds = np.array([len(bonds_i) for bonds_i in bonds]) # same_bonding_cost = np.zeros((n_atoms, n_atoms)) # for i in range(n_atoms): # bi = bonds[i] # z_bi = z[bi] # for j in range(i+1,n_atoms): # bj = bonds[j] # z_bj = z[bj] # if set(z_bi) == set(z_bj): # same_bonding_cost[i,j] = 1 # same_bonding_cost += same_bonding_cost.T # same_bonding_cost[np.diag_indices(n_atoms)] = 1 # same_bonding_cost = 1-same_bonding_cost #set(a) & set(b) #same_bonding_cost = np.repeat(n_bonds[:, None], len(n_bonds), axis=1) - n_bonds #same_bonding_cost[same_bonding_cost != 0] = 1 # NEW match_cost = np.zeros((n_train, n_train)) desc = Desc(n_atoms, max_processes=max_processes) adj_set = np.empty((n_train, desc.dim)) v_set = np.empty((n_train, n_atoms, n_atoms)) for i in range(n_train): r = np.squeeze(R[i, :, :]) if lat_and_inv is None: adj = scipy.spatial.distance.pdist(r, 'euclidean') # from ase import Atoms # from ase.geometry.analysis import Analysis # atoms = Atoms( # z, positions=r # ) # only use first molecule in dataset to find connected components (fix me later, maybe) # *0.529177249 # bonds = Analysis(atoms).all_bonds[0] #adj = scipy.spatial.distance.squareform(adj) #bonded = np.zeros((z.size, z.size)) #for j, bonded_to in enumerate(bonds): #inv_bonded_to = np.arange(n_atoms) #inv_bonded_to[bonded_to] = 0 #adj[j, inv_bonded_to] = 0 # bonded[j, bonded_to] = 1 # bonded = bonded + bonded.T # print(bonded) else: adj = scipy.spatial.distance.pdist( r, lambda u, v: np.linalg.norm(desc.pbc_diff(u - v, lat_and_inv)) ) w, v = np.linalg.eig(scipy.spatial.distance.squareform(adj)) v = v[:, w.argsort()[::-1]] adj_set[i, :] = adj v_set[i, :, :] = v glob['adj_set'], glob['adj_set_shape'] = share_array(adj_set, 'd') glob['v_set'], glob['v_set_shape'] = share_array(v_set, 'd') glob['match_cost'], glob['match_cost_shape'] = share_array(match_cost, 'd') if callback is not None: callback = partial(callback, disp_str='Bi-partite matching') start = timeit.default_timer() pool = Pool(max_processes) match_perms_all = {} for i, match_perms in enumerate( pool.imap_unordered( partial(_bipartite_match_wkr, n_train=n_train, same_z_cost=same_z_cost), list(range(n_train)), ) ): match_perms_all.update(match_perms) if callback is not None: callback(i, n_train) pool.close() pool.join() # Wait for the worker processes to terminate (to measure total runtime correctly). stop = timeit.default_timer() dur_s = (stop - start) / 2 sec_disp_str = 'took {:.1f} s'.format(dur_s) if dur_s >= 0.1 else '' if callback is not None: callback(n_train, n_train, sec_disp_str=sec_disp_str) match_cost = np.frombuffer(glob['match_cost']).reshape(glob['match_cost_shape']) match_cost = match_cost + match_cost.T match_cost[np.diag_indices_from(match_cost)] = np.inf match_cost = csr_matrix(match_cost) return match_perms_all, match_cost def sync_perm_mat(match_perms_all, match_cost, n_atoms, callback=None): if callback is not None: callback = partial( callback, disp_str='Multi-partite matching (permutation synchronization)' ) callback(NOT_DONE) tree = minimum_spanning_tree(match_cost, overwrite=True) perms = np.arange(n_atoms, dtype=int)[None, :] rows, cols = tree.nonzero() for com in zip(rows, cols): perm = match_perms_all.get(com) if perm is not None: perms = np.vstack((perms, perm)) perms = np.unique(perms, axis=0) if callback is not None: callback(DONE) return perms # convert permutation to dijoined cycles def to_cycles(perm): pi = {i: perm[i] for i in range(len(perm))} cycles = [] while pi: elem0 = next(iter(pi)) # arbitrary starting element this_elem = pi[elem0] next_item = pi[this_elem] cycle = [] while True: cycle.append(this_elem) del pi[this_elem] this_elem = next_item if next_item in pi: next_item = pi[next_item] else: break cycles.append(cycle) return cycles # find permutation group with larges cardinality # note: this is used if transitive closure fails (to salvage at least some permutations) def salvage_subgroup(perms): n_perms, n_atoms = perms.shape lcms = [] for i in range(n_perms): cy_lens = [len(cy) for cy in to_cycles(list(perms[i, :]))] lcm = np.lcm.reduce(cy_lens) lcms.append(lcm) keep_idx = np.argmax(lcms) perms = np.vstack((np.arange(n_atoms), perms[keep_idx,:])) return perms def complete_sym_group(perms, n_perms_max=None, disp_str='Permutation group completion', callback=None): if callback is not None: callback = partial(callback, disp_str=disp_str) callback(NOT_DONE) perm_added = True while perm_added: perm_added = False n_perms = perms.shape[0] for i in range(n_perms): for j in range(n_perms): new_perm = perms[i, perms[j, :]] if not (new_perm == perms).all(axis=1).any(): perm_added = True perms = np.vstack((perms, new_perm)) # Transitive closure is not converging! Give up and return identity permutation. if n_perms_max is not None and perms.shape[0] == n_perms_max: if callback is not None: callback( DONE, sec_disp_str='transitive closure has failed', done_with_warning=True, ) return None if callback is not None: callback( DONE, sec_disp_str='found {:d} symmetries'.format(perms.shape[0]), ) return perms def find_perms(R, z, lat_and_inv=None, callback=None, max_processes=None): m, n_atoms = R.shape[:2] # Find matching for all pairs. match_perms_all, match_cost = bipartite_match( R, z, lat_and_inv, max_processes, callback=callback ) # Remove inconsistencies. match_perms = sync_perm_mat(match_perms_all, match_cost, n_atoms, callback=callback) # Commplete symmetric group. # Give up, if transitive closure yields more than 100 unique permutations. sym_group_perms = complete_sym_group(match_perms, n_perms_max=100, callback=callback) # Limit closure to largest cardinality permutation in the set to get at least some symmetries. if sym_group_perms is None: match_perms_subset = salvage_subgroup(match_perms) sym_group_perms = complete_sym_group(match_perms_subset, n_perms_max=100, disp_str='Closure disaster recovery', callback=callback) return sym_group_perms def find_frag_perms(R, z, lat_and_inv=None, callback=None, max_processes=None): from ase import Atoms from ase.geometry.analysis import Analysis from scipy.sparse.csgraph import connected_components print('Finding permutable non-bonded fragments... (assumes Ang!)') # TODO: positions must be in Angstrom for this to work!! n_train, n_atoms = R.shape[:2] atoms = Atoms( z, positions=R[0] ) # only use first molecule in dataset to find connected components (fix me later, maybe) # *0.529177249 adj = Analysis(atoms).adjacency_matrix[0] _, labels = connected_components(csgraph=adj, directed=False, return_labels=True) frags = [] for label in np.unique(labels): frags.append(np.where(labels == label)[0]) n_frags = len(frags) if n_frags == n_atoms: print( 'Skipping fragment symmetry search (something went wrong, e.g. length unit not in Angstroms, etc.)' ) return [range(n_atoms)] # print(labels) # from . import ui, io # xyz_str = io.generate_xyz_str(R[0][np.where(labels == 0)[0], :]*0.529177249, z[np.where(labels == 0)[0]]) # xyz_str = ui.indent_str(xyz_str, 2) # sprint(xyz_str) # NEW # uniq_labels = np.unique(labels) # R_cg = np.empty((R.shape[0], len(uniq_labels), R.shape[2])) # z_frags = [] # z_cg = [] # for label in uniq_labels: # frag_idxs = np.where(labels == label)[0] # R_cg[:,label,:] = np.mean(R[:,frag_idxs,:], axis=1) # z_frag = np.sort(z[frag_idxs]) # z_frag_label = 0 # if len(z_frags) == 0: # z_frags.append(z_frag) # else: # z_frag_label = np.where(np.all(z_frags == z_frag, axis=1))[0] # if len(z_frag_label) == 0: # not found # z_frag_label = len(z_frags) # z_frags.append(z_frag) # else: # z_frag_label = z_frag_label[0] # z_cg.append(z_frag_label) # print(z_cg) # print(R_cg.shape) # perms = find_perms(R_cg, np.array(z_cg), lat_and_inv=lat_and_inv, max_processes=max_processes) # print('cg perms') # print(perms) # NEW # print(n_frags) print('| Found ' + str(n_frags) + ' disconnected fragments.') n_frags_unique = 0 # number of unique fragments # match fragments to find identical ones (allows permutations of fragments) swap_perms = [np.arange(n_atoms)] for f1 in range(n_frags): for f2 in range(f1 + 1, n_frags): sort_idx_f1 = np.argsort(z[frags[f1]]) sort_idx_f2 = np.argsort(z[frags[f2]]) inv_sort_idx_f2 = inv_perm(sort_idx_f2) z1 = z[frags[f1]][sort_idx_f1] z2 = z[frags[f2]][sort_idx_f2] if np.array_equal(z1, z2): # fragment have the same composition n_frags_unique += 1 for ri in range( min(10, R.shape[0]) ): # only use first molecule in dataset for matching (fix me later) R_match1 = R[ri, frags[f1], :] R_match2 = R[ri, frags[f2], :] #if np.array_equal(z1, z2): R_pair = np.concatenate( (R_match1[None, sort_idx_f1, :], R_match2[None, sort_idx_f2, :]) ) perms = find_perms( R_pair, z1, lat_and_inv=lat_and_inv, max_processes=max_processes ) # embed local permutation into global context for p in perms: match_perm = sort_idx_f1[p][inv_sort_idx_f2] swap_perm = np.arange(n_atoms) swap_perm[frags[f1]] = frags[f2][match_perm] swap_perm[frags[f2][match_perm]] = frags[f1] swap_perms.append(swap_perm) swap_perms = np.unique(np.array(swap_perms), axis=0) print('| Found ' + str(n_frags_unique) + ' (likely to be) *unique* disconnected fragments.') # commplete symmetric group sym_group_perms = complete_sym_group(swap_perms) print( '| Found ' + str(sym_group_perms.shape[0]) + ' fragment permutations after closure.' ) # match fragments with themselves (to find symmetries in each fragment) if n_frags > 1: print('| Matching individual fragments.') for f in range(n_frags): R_frag = R[:, frags[f], :] z_frag = z[frags[f]] # print(R_frag.shape) # print(z_frag) print(f) perms = find_perms( R_frag, z_frag, lat_and_inv=lat_and_inv, max_processes=max_processes ) # print(f) print(perms) f = 0 perms = find_perms_via_alignment(R[0, :, :], frags[f], [215, 214, 210, 211], [209, 208, 212, 213], z, lat_and_inv=lat_and_inv, max_processes=max_processes) #perms = find_perms_via_alignment(R[0, :, :], frags[f], [214, 215, 210, 211], [209, 208, 212, 213], z, lat_and_inv=lat_and_inv, max_processes=max_processes) sym_group_perms = np.vstack((perms[None,:], sym_group_perms)) sym_group_perms = complete_sym_group(sym_group_perms, callback=callback) #print(sym_group_perms.shape) #import sys #sys.exit() return sym_group_perms def find_perms_via_alignment(pts_full, frag_idxs, align_a_idxs, align_b_idxs, z, lat_and_inv=None, max_processes=None): # 1. find rotatino that aligns points (Nx3 matrix) in 'align_a_idxs' with points in 'align_b_idxs' # 2. rotate the whole thing # find perms by matching those two structures #align_a_ctr = np.mean(align_a_pts, axis=0) #align_b_ctr = np.mean(align_b_pts, axis=0) pts = pts_full[frag_idxs, :] align_a_pts = pts[align_a_idxs,:] align_b_pts = pts[align_b_idxs,:] ctr = np.mean(pts, axis=0) align_a_pts -= ctr align_b_pts -= ctr ab_cov = align_a_pts.T.dot(align_b_pts) u, s, vh = np.linalg.svd(ab_cov) R = u.dot(vh) if np.linalg.det(R) < 0: vh[2,:] *= -1 #multiply 3rd column of V by -1 R = u.dot(vh) pts -= ctr pts_R = pts.copy() pts_R = R.dot(pts_R.T).T pts += ctr pts_R += ctr pts_full_R = pts_full.copy() pts_full_R[frag_idxs, :] = pts_R R_pair = np.vstack((pts_full[None,:,:], pts_full_R[None,:,:])) #from . import io #xyz_str = io.generate_xyz_str(pts_full, z) #print(xyz_str) #xyz_str = io.generate_xyz_str(pts_full_R, z) #print(xyz_str) z_frag = z[frag_idxs] adj = scipy.spatial.distance.cdist(R_pair[0], R_pair[1], 'euclidean') _, perm = scipy.optimize.linear_sum_assignment(adj) score_before = np.linalg.norm(adj) adj_perm = scipy.spatial.distance.cdist(R_pair[0,:], R_pair[0, perm], 'euclidean') score = np.linalg.norm(adj_perm) #perms = find_perms( # R_pair, z, lat_and_inv=lat_and_inv, max_processes=max_processes #) return perm def inv_perm(perm): inv_perm = np.empty(perm.size, perm.dtype) inv_perm[perm] = np.arange(perm.size) return inv_perm
29.914191
160
0.616339
1df70361b98cb23ca3c4396c93c48529e5fc5b95
288
py
Python
logiclibrary/storage.py
ld4apps/lda-serverlib
e76441e658c24d6cd2d7826f50e7b8c0dfc65350
[ "Apache-2.0" ]
3
2015-07-08T12:35:08.000Z
2016-11-08T02:08:31.000Z
logiclibrary/storage.py
ld4apps/lda-serverlib
e76441e658c24d6cd2d7826f50e7b8c0dfc65350
[ "Apache-2.0" ]
null
null
null
logiclibrary/storage.py
ld4apps/lda-serverlib
e76441e658c24d6cd2d7826f50e7b8c0dfc65350
[ "Apache-2.0" ]
1
2015-02-23T17:49:55.000Z
2015-02-23T17:49:55.000Z
import os import importlib if 'OPERATION_PRIMITIVES' in os.environ: import_name = os.environ['OPERATION_PRIMITIVES'] else: import_name = 'operation_primitives' #assume it has the standard name and is on the python path operation_primitives = importlib.import_module(import_name)
32
99
0.798611
5b31b2e81d0f39ce9fd8e1e0e5ff0bf9b4490673
1,659
py
Python
homeassistant/components/uptime/sensor.py
nickna/core
c682d5d5e430de52e3da7e06026cd8b4087e864f
[ "Apache-2.0" ]
11
2018-02-16T15:35:47.000Z
2020-01-14T15:20:00.000Z
homeassistant/components/uptime/sensor.py
flexy2dd/core
1019ee22ff13e5f542e868179d791e6a0d87369a
[ "Apache-2.0" ]
77
2020-07-16T16:43:09.000Z
2022-03-31T06:14:37.000Z
homeassistant/components/uptime/sensor.py
Vaarlion/core
f3de8b9f28de01abf72c0f5bb0b457eb1841f201
[ "Apache-2.0" ]
6
2018-02-04T03:48:55.000Z
2022-01-24T20:37:04.000Z
"""Platform to retrieve uptime for Home Assistant.""" from __future__ import annotations import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity from homeassistant.const import ( CONF_NAME, CONF_UNIT_OF_MEASUREMENT, DEVICE_CLASS_TIMESTAMP, ) from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType import homeassistant.util.dt as dt_util DEFAULT_NAME = "Uptime" PLATFORM_SCHEMA = vol.All( cv.deprecated(CONF_UNIT_OF_MEASUREMENT), PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_UNIT_OF_MEASUREMENT, default="days"): vol.All( cv.string, vol.In(["minutes", "hours", "days", "seconds"]) ), } ), ) async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the uptime sensor platform.""" name = config[CONF_NAME] async_add_entities([UptimeSensor(name)], True) class UptimeSensor(SensorEntity): """Representation of an uptime sensor.""" def __init__(self, name: str) -> None: """Initialize the uptime sensor.""" self._attr_name: str = name self._attr_device_class: str = DEVICE_CLASS_TIMESTAMP self._attr_should_poll: bool = False self._attr_state: str = dt_util.now().isoformat()
30.722222
76
0.717902
42b44ca16ad4a76ab7e8f539bed8f5f3ea7b82ab
235
py
Python
Exercicios/mundo1-exercicios-01-35/ex015.py
rafaelbarretomg/Curso-Python-3
7e772cbaf4c1e1bf7f1a9fb2925ec2e0eecf2998
[ "MIT" ]
null
null
null
Exercicios/mundo1-exercicios-01-35/ex015.py
rafaelbarretomg/Curso-Python-3
7e772cbaf4c1e1bf7f1a9fb2925ec2e0eecf2998
[ "MIT" ]
null
null
null
Exercicios/mundo1-exercicios-01-35/ex015.py
rafaelbarretomg/Curso-Python-3
7e772cbaf4c1e1bf7f1a9fb2925ec2e0eecf2998
[ "MIT" ]
null
null
null
# Aluguel de carros custa 60 reais dia e 0.15 por km rodado dias = int(input('Quantos dias alugados? ')) km = float(input('Quantos Km rodados? ')) aluguel = (dias * 60) + (km * 0.15) print('O aluguel foi de R${:.2f}' .format(aluguel))
39.166667
59
0.66383
09601087429e188e4f256039ab06e7a51b9d3570
14,779
py
Python
chia/consensus/multiprocess_validation.py
Heather-Network/heather-blockchain
75a37c6f54d98b5c36c5e8cf5b27c5ed9ae977fa
[ "Apache-2.0" ]
1
2021-09-19T18:57:21.000Z
2021-09-19T18:57:21.000Z
chia/consensus/multiprocess_validation.py
Heather-Network/heather-blockchain
75a37c6f54d98b5c36c5e8cf5b27c5ed9ae977fa
[ "Apache-2.0" ]
null
null
null
chia/consensus/multiprocess_validation.py
Heather-Network/heather-blockchain
75a37c6f54d98b5c36c5e8cf5b27c5ed9ae977fa
[ "Apache-2.0" ]
null
null
null
import asyncio import logging import traceback from concurrent.futures.process import ProcessPoolExecutor from dataclasses import dataclass from typing import Dict, List, Optional, Sequence, Tuple, Union, Callable from chia.consensus.block_header_validation import validate_finished_header_block from chia.consensus.block_record import BlockRecord from chia.consensus.blockchain_interface import BlockchainInterface from chia.consensus.constants import ConsensusConstants from chia.consensus.cost_calculator import NPCResult from chia.consensus.difficulty_adjustment import get_next_sub_slot_iters_and_difficulty from chia.consensus.full_block_to_block_record import block_to_block_record from chia.consensus.get_block_challenge import get_block_challenge from chia.consensus.pot_iterations import calculate_iterations_quality, is_overflow_block from chia.full_node.mempool_check_conditions import get_name_puzzle_conditions from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.types.blockchain_format.sub_epoch_summary import SubEpochSummary from chia.types.full_block import FullBlock from chia.types.generator_types import BlockGenerator from chia.types.header_block import HeaderBlock from chia.util.block_cache import BlockCache from chia.util.errors import Err from chia.util.generator_tools import get_block_header, tx_removals_and_additions from chia.util.ints import uint16, uint64, uint32 from chia.util.streamable import Streamable, dataclass_from_dict, streamable #log = logging.getLogger(_ _name__) log = logging.getLogger("heather.consensus.multiprocesss_validationj") @dataclass(frozen=True) @streamable class PreValidationResult(Streamable): error: Optional[uint16] required_iters: Optional[uint64] # Iff error is None npc_result: Optional[NPCResult] # Iff error is None and block is a transaction block def batch_pre_validate_blocks( constants_dict: Dict, blocks_pickled: Dict[bytes, bytes], full_blocks_pickled: Optional[List[bytes]], header_blocks_pickled: Optional[List[bytes]], prev_transaction_generators: List[Optional[bytes]], npc_results: Dict[uint32, bytes], check_filter: bool, expected_difficulty: List[uint64], expected_sub_slot_iters: List[uint64], ) -> List[bytes]: blocks = {} for k, v in blocks_pickled.items(): blocks[k] = BlockRecord.from_bytes(v) results: List[PreValidationResult] = [] constants: ConsensusConstants = dataclass_from_dict(ConsensusConstants, constants_dict) if full_blocks_pickled is not None and header_blocks_pickled is not None: assert ValueError("Only one should be passed here") if full_blocks_pickled is not None: for i in range(len(full_blocks_pickled)): try: block: FullBlock = FullBlock.from_bytes(full_blocks_pickled[i]) tx_additions: List[Coin] = [] removals: List[bytes32] = [] npc_result: Optional[NPCResult] = None if block.height in npc_results: npc_result = NPCResult.from_bytes(npc_results[block.height]) assert npc_result is not None if npc_result.npc_list is not None: removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) else: removals, tx_additions = [], [] if block.transactions_generator is not None and npc_result is None: prev_generator_bytes = prev_transaction_generators[i] assert prev_generator_bytes is not None assert block.transactions_info is not None block_generator: BlockGenerator = BlockGenerator.from_bytes(prev_generator_bytes) assert block_generator.program == block.transactions_generator npc_result = get_name_puzzle_conditions( block_generator, min(constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), cost_per_byte=constants.COST_PER_BYTE, safe_mode=True, ) removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) header_block = get_block_header(block, tx_additions, removals) required_iters, error = validate_finished_header_block( constants, BlockCache(blocks), header_block, check_filter, expected_difficulty[i], expected_sub_slot_iters[i], ) error_int: Optional[uint16] = None if error is not None: error_int = uint16(error.code.value) results.append(PreValidationResult(error_int, required_iters, npc_result)) except Exception: error_stack = traceback.format_exc() log.error(f"Exception: {error_stack}") results.append(PreValidationResult(uint16(Err.UNKNOWN.value), None, None)) elif header_blocks_pickled is not None: for i in range(len(header_blocks_pickled)): try: header_block = HeaderBlock.from_bytes(header_blocks_pickled[i]) required_iters, error = validate_finished_header_block( constants, BlockCache(blocks), header_block, check_filter, expected_difficulty[i], expected_sub_slot_iters[i], ) error_int = None if error is not None: error_int = uint16(error.code.value) results.append(PreValidationResult(error_int, required_iters, None)) except Exception: error_stack = traceback.format_exc() log.error(f"Exception: {error_stack}") results.append(PreValidationResult(uint16(Err.UNKNOWN.value), None, None)) return [bytes(r) for r in results] async def pre_validate_blocks_multiprocessing( constants: ConsensusConstants, constants_json: Dict, block_records: BlockchainInterface, blocks: Sequence[Union[FullBlock, HeaderBlock]], pool: ProcessPoolExecutor, check_filter: bool, npc_results: Dict[uint32, NPCResult], get_block_generator: Optional[Callable], batch_size: int, wp_summaries: Optional[List[SubEpochSummary]] = None, ) -> Optional[List[PreValidationResult]]: """ This method must be called under the blockchain lock If all the full blocks pass pre-validation, (only validates header), returns the list of required iters. if any validation issue occurs, returns False. Args: check_filter: constants_json: pool: constants: block_records: blocks: list of full blocks to validate (must be connected to current chain) npc_results get_block_generator """ prev_b: Optional[BlockRecord] = None # Collects all the recent blocks (up to the previous sub-epoch) recent_blocks: Dict[bytes32, BlockRecord] = {} recent_blocks_compressed: Dict[bytes32, BlockRecord] = {} num_sub_slots_found = 0 num_blocks_seen = 0 if blocks[0].height > 0: if not block_records.contains_block(blocks[0].prev_header_hash): return [PreValidationResult(uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None)] curr = block_records.block_record(blocks[0].prev_header_hash) num_sub_slots_to_look_for = 3 if curr.overflow else 2 while ( curr.sub_epoch_summary_included is None or num_blocks_seen < constants.NUMBER_OF_TIMESTAMPS or num_sub_slots_found < num_sub_slots_to_look_for ) and curr.height > 0: if num_blocks_seen < constants.NUMBER_OF_TIMESTAMPS or num_sub_slots_found < num_sub_slots_to_look_for: recent_blocks_compressed[curr.header_hash] = curr if curr.first_in_sub_slot: assert curr.finished_challenge_slot_hashes is not None num_sub_slots_found += len(curr.finished_challenge_slot_hashes) recent_blocks[curr.header_hash] = curr if curr.is_transaction_block: num_blocks_seen += 1 curr = block_records.block_record(curr.prev_hash) recent_blocks[curr.header_hash] = curr recent_blocks_compressed[curr.header_hash] = curr block_record_was_present = [] for block in blocks: block_record_was_present.append(block_records.contains_block(block.header_hash)) diff_ssis: List[Tuple[uint64, uint64]] = [] for block in blocks: if block.height != 0: assert block_records.contains_block(block.prev_header_hash) if prev_b is None: prev_b = block_records.block_record(block.prev_header_hash) sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty( constants, len(block.finished_sub_slots) > 0, prev_b, block_records ) overflow = is_overflow_block(constants, block.reward_chain_block.signage_point_index) challenge = get_block_challenge(constants, block, BlockCache(recent_blocks), prev_b is None, overflow, False) if block.reward_chain_block.challenge_chain_sp_vdf is None: cc_sp_hash: bytes32 = challenge else: cc_sp_hash = block.reward_chain_block.challenge_chain_sp_vdf.output.get_hash() q_str: Optional[bytes32] = block.reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, challenge, cc_sp_hash ) if q_str is None: for i, block_i in enumerate(blocks): if not block_record_was_present[i] and block_records.contains_block(block_i.header_hash): block_records.remove_block_record(block_i.header_hash) return None required_iters: uint64 = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, q_str, block.reward_chain_block.proof_of_space.size, difficulty, cc_sp_hash, ) block_rec = block_to_block_record( constants, block_records, required_iters, block, None, ) if block_rec.sub_epoch_summary_included is not None and wp_summaries is not None: idx = int(block.height / constants.SUB_EPOCH_BLOCKS) - 1 next_ses = wp_summaries[idx] if not block_rec.sub_epoch_summary_included.get_hash() == next_ses.get_hash(): log.error("sub_epoch_summary does not match wp sub_epoch_summary list") return None # Makes sure to not override the valid blocks already in block_records if not block_records.contains_block(block_rec.header_hash): block_records.add_block_record(block_rec) # Temporarily add block to dict recent_blocks[block_rec.header_hash] = block_rec recent_blocks_compressed[block_rec.header_hash] = block_rec else: recent_blocks[block_rec.header_hash] = block_records.block_record(block_rec.header_hash) recent_blocks_compressed[block_rec.header_hash] = block_records.block_record(block_rec.header_hash) prev_b = block_rec diff_ssis.append((difficulty, sub_slot_iters)) block_dict: Dict[bytes32, Union[FullBlock, HeaderBlock]] = {} for i, block in enumerate(blocks): block_dict[block.header_hash] = block if not block_record_was_present[i]: block_records.remove_block_record(block.header_hash) recent_sb_compressed_pickled = {bytes(k): bytes(v) for k, v in recent_blocks_compressed.items()} npc_results_pickled = {} for k, v in npc_results.items(): npc_results_pickled[k] = bytes(v) futures = [] # Pool of workers to validate blocks concurrently for i in range(0, len(blocks), batch_size): end_i = min(i + batch_size, len(blocks)) blocks_to_validate = blocks[i:end_i] if any([len(block.finished_sub_slots) > 0 for block in blocks_to_validate]): final_pickled = {bytes(k): bytes(v) for k, v in recent_blocks.items()} else: final_pickled = recent_sb_compressed_pickled b_pickled: Optional[List[bytes]] = None hb_pickled: Optional[List[bytes]] = None previous_generators: List[Optional[bytes]] = [] for block in blocks_to_validate: # We ONLY add blocks which are in the past, based on header hashes (which are validated later) to the # prev blocks dict. This is important since these blocks are assumed to be valid and are used as previous # generator references prev_blocks_dict: Dict[uint32, Union[FullBlock, HeaderBlock]] = {} curr_b: Union[FullBlock, HeaderBlock] = block while curr_b.prev_header_hash in block_dict: curr_b = block_dict[curr_b.prev_header_hash] prev_blocks_dict[curr_b.header_hash] = curr_b if isinstance(block, FullBlock): assert get_block_generator is not None if b_pickled is None: b_pickled = [] b_pickled.append(bytes(block)) try: block_generator: Optional[BlockGenerator] = await get_block_generator(block, prev_blocks_dict) except ValueError: return None if block_generator is not None: previous_generators.append(bytes(block_generator)) else: previous_generators.append(None) else: if hb_pickled is None: hb_pickled = [] hb_pickled.append(bytes(block)) futures.append( asyncio.get_running_loop().run_in_executor( pool, batch_pre_validate_blocks, constants_json, final_pickled, b_pickled, hb_pickled, previous_generators, npc_results_pickled, check_filter, [diff_ssis[j][0] for j in range(i, end_i)], [diff_ssis[j][1] for j in range(i, end_i)], ) ) # Collect all results into one flat list return [ PreValidationResult.from_bytes(result) for batch_result in (await asyncio.gather(*futures)) for result in batch_result ]
46.329154
117
0.660194
1c699cb9b740f7c3cce4823b9ca663fad84601f3
107,581
py
Python
fhir/resources/fhirtypes.py
iatechicken/fhir.resources
8ccb21aaa00755c6d230522bd7ddb655155b4bcb
[ "BSD-3-Clause" ]
null
null
null
fhir/resources/fhirtypes.py
iatechicken/fhir.resources
8ccb21aaa00755c6d230522bd7ddb655155b4bcb
[ "BSD-3-Clause" ]
null
null
null
fhir/resources/fhirtypes.py
iatechicken/fhir.resources
8ccb21aaa00755c6d230522bd7ddb655155b4bcb
[ "BSD-3-Clause" ]
null
null
null
# _*_ coding: utf-8 _*_ import datetime import re from email.utils import formataddr, parseaddr from typing import TYPE_CHECKING, Any, Dict, Optional, Pattern, Union from uuid import UUID from pydantic import AnyUrl from pydantic.errors import DateError, DateTimeError, TimeError from pydantic.main import load_str_bytes from pydantic.networks import validate_email from pydantic.types import ( ConstrainedBytes, ConstrainedDecimal, ConstrainedInt, ConstrainedStr, ) from pydantic.validators import bool_validator, parse_date, parse_datetime, parse_time from .fhirabstractmodel import FHIRAbstractModel from .fhirtypesvalidators import run_validator_for_fhir_type if TYPE_CHECKING: from pydantic.types import CallableGenerator from pydantic.fields import ModelField from pydantic import BaseConfig __author__ = "Md Nazrul Islam<email2nazrul@gmail.com>" FHIR_DATE_PARTS = re.compile(r"(?P<year>\d{4})(-(?P<month>\d{2}))?(-(?P<day>\d{2}))?$") FHIR_PRIMITIVES = [ "boolean", "string", "base64Binary", "code", "id", "decimal", "integer", "unsignedInt", "positiveInt", "uri", "oid", "uuid", "canonical", "url", "markdown", "xhtml", "date", "dateTime", "instant", "time", ] class Primitive: """FHIR Primitive Data Type Base Class""" __fhir_release__: str = "R4" __visit_name__: Optional[str] = None regex: Optional[Pattern[str]] = None @classmethod def is_primitive(cls) -> bool: """ """ return True @classmethod def fhir_type_name(cls) -> Optional[str]: """ """ return cls.__visit_name__ if TYPE_CHECKING: Boolean = bool else: class Boolean(int, Primitive): """true | false""" regex = re.compile("true|false") __visit_name__ = "boolean" @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type="boolean") @classmethod def __get_validators__(cls) -> "CallableGenerator": yield bool_validator class String(ConstrainedStr, Primitive): """A sequence of Unicode characters Note that strings SHALL NOT exceed 1MB (1024*1024 characters) in size. Strings SHOULD not contain Unicode character points below 32, except for u0009 (horizontal tab), u0010 (carriage return) and u0013 (line feed). Leading and Trailing whitespace is allowed, but SHOULD be removed when using the XML format. Note: This means that a string that consists only of whitespace could be trimmed to nothing, which would be treated as an invalid element value. Therefore strings SHOULD always contain non-whitespace conten""" regex = re.compile(r"[ \r\n\t\S]+") __visit_name__ = "string" class Base64Binary(ConstrainedBytes, Primitive): """A stream of bytes, base64 encoded (RFC 4648 )""" regex = re.compile(r"(\s*([0-9a-zA-Z+=]){4}\s*)+") __visit_name__ = "base64Binary" class Code(ConstrainedStr, Primitive): """Indicates that the value is taken from a set of controlled strings defined elsewhere (see Using codes for further discussion). Technically, a code is restricted to a string which has at least one character and no leading or trailing whitespace, and where there is no whitespace other than single spaces in the contents""" regex = re.compile(r"[^\s]+(\s[^\s]+)*") __visit_name__ = "code" class Id(ConstrainedStr, Primitive): """Any combination of upper- or lower-case ASCII letters ('A'..'Z', and 'a'..'z', numerals ('0'..'9'), '-' and '.', with a length limit of 64 characters. (This might be an integer, an un-prefixed OID, UUID or any other identifier pattern that meets these constraints.) """ regex = re.compile(r"[A-Za-z0-9\-.]{1,64}") min_length = 1 max_length = 64 __visit_name__ = "id" class Decimal(ConstrainedDecimal, Primitive): """Rational numbers that have a decimal representation. See below about the precision of the number""" regex = re.compile(r"-?(0|[1-9][0-9]*)(\.[0-9]+)?([eE][+-]?[0-9]+)?") __visit_name__ = "decimal" class Integer(ConstrainedInt, Primitive): """A signed integer in the range −2,147,483,648..2,147,483,647 (32-bit; for larger values, use decimal)""" regex = re.compile(r"[0]|[-+]?[1-9][0-9]*") __visit_name__ = "integer" class UnsignedInt(ConstrainedInt, Primitive): """Any non-negative integer in the range 0..2,147,483,647""" regex = re.compile(r"[0]|([1-9][0-9]*)") __visit_name__ = "unsignedInt" ge = 0 class PositiveInt(ConstrainedInt, Primitive): """Any positive integer in the range 1..2,147,483,647""" regex = re.compile(r"\+?[1-9][0-9]*") __visit_name__ = "positiveInt" gt = 0 class Uri(ConstrainedStr, Primitive): """A Uniform Resource Identifier Reference (RFC 3986 ). Note: URIs are case sensitive. For UUID (urn:uuid:53fefa32-fcbb-4ff8-8a92-55ee120877b7) use all lowercase xs:anyURI A JSON string - a URI Regex: \\S* (This regex is very permissive, but URIs must be valid. Implementers are welcome to use more specific regex statements for a URI in specific contexts) URIs can be absolute or relative, and may have an optional fragment identifier This data type can be bound to a ValueSet""" __visit_name__ = "uri" regex = re.compile(r"\S*") class Oid(ConstrainedStr, Primitive): """An OID represented as a URI (RFC 3001 ); e.g. urn:oid:1.2.3.4.5""" __visit_name__ = "oid" regex = re.compile(r"urn:oid:[0-2](\.(0|[1-9][0-9]*))+") class Uuid(UUID, Primitive): """A UUID (aka GUID) represented as a URI (RFC 4122 ); e.g. urn:uuid:c757873d-ec9a-4326-a141-556f43239520""" __visit_name__ = "uuid" regex = None class Canonical(Uri): """A URI that refers to a resource by its canonical URL (resources with a url property). The canonical type differs from a uri in that it has special meaning in this specification, and in that it may have a version appended, separated by a vertical bar (|). Note that the type canonical is not used for the actual canonical URLs that are the target of these references, but for the URIs that refer to them, and may have the version suffix in them. Like other URIs, elements of type canonical may also have #fragment references""" __visit_name__ = "canonical" class Url(AnyUrl, Primitive): """A Uniform Resource Locator (RFC 1738 ). Note URLs are accessed directly using the specified protocol. Common URL protocols are http{s}:, ftp:, mailto: and mllp:, though many others are defined""" __visit_name__ = "url" @classmethod def validate( # type: ignore cls, value: str, field: "ModelField", config: "BaseConfig" ) -> Union["AnyUrl", str]: """ """ if value.startswith("mailto:"): schema = value[0:7] email = value[7:] realname = parseaddr(email)[0] name, email = validate_email(email) if realname: email = formataddr((name, email)) return schema + email elif value.startswith("mllp:") or value.startswith("llp:"): # xxx: find validation return value elif value in FHIR_PRIMITIVES: # Extensions may contain a valueUrl for a primitive FHIR type return value return AnyUrl.validate(value, field, config) class Markdown(ConstrainedStr, Primitive): """A FHIR string (see above) that may contain markdown syntax for optional processing by a markdown presentation engine, in the GFM extension of CommonMark format (see below)""" __visit_name__ = "markdown" regex = re.compile(r"\s*(\S|\s)*") class Xhtml(ConstrainedStr, Primitive): __visit_name__ = "xhtml" class Date(datetime.date, Primitive): """A date, or partial date (e.g. just year or year + month) as used in human communication. The format is YYYY, YYYY-MM, or YYYY-MM-DD, e.g. 2018, 1973-06, or 1905-08-23. There SHALL be no time zone. Dates SHALL be valid dates""" regex = re.compile( r"([0-9]([0-9]([0-9][1-9]|[1-9]0)|[1-9]00)|" r"[1-9]000)(-(0[1-9]|1[0-2])(-(0[1-9]|[1-2]" r"[0-9]|3[0-1]))?)?" ) __visit_name__ = "date" @classmethod def __get_validators__(cls) -> "CallableGenerator": yield cls.validate @classmethod def validate( cls, value: Union[datetime.date, str, bytes, int, float] ) -> Union[datetime.date, str]: """ """ if not isinstance(value, str): # default handler return parse_date(value) match = FHIR_DATE_PARTS.match(value) if not match: if not cls.regex.match(value): raise DateError() elif not match.groupdict().get("day"): if match.groupdict().get("month") and int(match.groupdict()["month"]) > 12: raise DateError() # we keep original return value return parse_date(value) class DateTime(datetime.datetime, Primitive): """A date, date-time or partial date (e.g. just year or year + month) as used in human communication. The format is YYYY, YYYY-MM, YYYY-MM-DD or YYYY-MM-DDThh:mm:ss+zz:zz, e.g. 2018, 1973-06, 1905-08-23, 2015-02-07T13:28:17-05:00 or 2017-01-01T00:00:00.000Z. If hours and minutes are specified, a time zone SHALL be populated. Seconds must be provided due to schema type constraints but may be zero-filled and may be ignored at receiver discretion. Dates SHALL be valid dates. The time "24:00" is not allowed. Leap Seconds are allowed - see below""" regex = re.compile( r"([0-9]([0-9]([0-9][1-9]|[1-9]0)|[1-9]00)|" r"[1-9]000)(-(0[1-9]|1[0-2])(-(0[1-9]|[1-2][0-9]|" r"3[0-1])(T([01][0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|" r"60)(\.[0-9]+)?(Z|([+\-])((0[0-9]|" r"1[0-3]):[0-5][0-9]|14:00)))?)?)?" ) __visit_name__ = "dateTime" @classmethod def __get_validators__(cls) -> "CallableGenerator": yield cls.validate @classmethod def validate( cls, value: Union[datetime.date, datetime.datetime, str, bytes, int, float] ) -> Union[datetime.datetime, datetime.date, str]: """ """ if isinstance(value, datetime.date): return value if not isinstance(value, str): # default handler return parse_datetime(value) match = FHIR_DATE_PARTS.match(value) if match: if ( match.groupdict().get("year") and match.groupdict().get("month") and match.groupdict().get("day") ): return parse_date(value) elif match.groupdict().get("year") and match.groupdict().get("month"): if int(match.groupdict()["month"]) > 12: raise DateError() # we don't want to loose actual information, so keep as string return value if not cls.regex.match(value): raise DateTimeError() return parse_datetime(value) class Instant(datetime.datetime, Primitive): """An instant in time in the format YYYY-MM-DDThh:mm:ss.sss+zz:zz (e.g. 2015-02-07T13:28:17.239+02:00 or 2017-01-01T00:00:00Z). The time SHALL specified at least to the second and SHALL include a time zone. Note: This is intended for when precisely observed times are required (typically system logs etc.), and not human-reported times - for those, use date or dateTime (which can be as precise as instant, but is not required to be). instant is a more constrained dateTime Note: This type is for system times, not human times (see date and dateTime below).""" regex = re.compile( r"([0-9]([0-9]([0-9][1-9]|[1-9]0)|[1-9]00)|" r"[1-9]000)-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|" r"3[0-1])T([01][0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]" r"|60)(\.[0-9]+)?(Z|([+\-])((0[0-9]|" r"1[0-3]):[0-5][0-9]|14:00))" ) __visit_name__ = "instant" @classmethod def __get_validators__(cls) -> "CallableGenerator": yield cls.validate @classmethod def validate(cls, value): """ """ if isinstance(value, str): if not cls.regex.match(value): raise DateTimeError() return parse_datetime(value) class Time(datetime.time, Primitive): """A time during the day, in the format hh:mm:ss. There is no date specified. Seconds must be provided due to schema type constraints but may be zero-filled and may be ignored at receiver discretion. The time "24:00" SHALL NOT be used. A time zone SHALL NOT be present. Times can be converted to a Duration since midnight.""" regex = re.compile(r"([01][0-9]|2[0-3]):[0-5][0-9]:([0-5][0-9]|60)(\.[0-9]+)?") __visit_name__ = "time" @classmethod def __get_validators__(cls) -> "CallableGenerator": yield cls.validate @classmethod def validate(cls, value): """ """ if isinstance(value, str): if not cls.regex.match(value): raise TimeError() return parse_time(value) def get_fhir_type_class(model_name): try: return globals()[model_name + "Type"] except KeyError: raise LookupError(f"'{__name__}.{model_name}Type' doesnt found.") class AbstractType(dict): """ """ __fhir_release__: str = "R4" __resource_type__: str = ... # type: ignore @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type=cls.__resource_type__) @classmethod def __get_validators__(cls) -> "CallableGenerator": from . import fhirtypesvalidators yield getattr(fhirtypesvalidators, cls.__resource_type__.lower() + "_validator") @classmethod def is_primitive(cls) -> bool: """ """ return False @classmethod def fhir_type_name(cls) -> str: """ """ return cls.__resource_type__ class FHIRPrimitiveExtensionType(AbstractType): """ """ __resource_type__ = "FHIRPrimitiveExtension" class AbstractBaseType(dict): """ """ __fhir_release__: str = "R4" __resource_type__: str = ... # type: ignore @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type=cls.__resource_type__) @classmethod def __get_validators__(cls) -> "CallableGenerator": yield cls.validate @classmethod def validate(cls, v, values, config, field): """ """ if isinstance(v, (bytes, str)): input_data = load_str_bytes(v) resource_type = input_data.get("resourceType", None) elif isinstance(v, FHIRAbstractModel): resource_type = v.resource_type else: resource_type = v.get("resourceType", None) if resource_type is None or resource_type == cls.__resource_type__: from . import fhirtypesvalidators v = getattr( fhirtypesvalidators, cls.__resource_type__.lower() + "_validator" )(v) return v type_class = get_fhir_type_class(resource_type) v = run_validator_for_fhir_type(type_class, v, values, config, field) return v @classmethod def is_primitive(cls) -> bool: """ """ return False @classmethod def fhir_type_name(cls) -> str: """ """ return cls.__resource_type__ class ElementType(AbstractBaseType): """ """ __resource_type__ = "Element" class ResourceType(AbstractBaseType): """ """ __resource_type__ = "Resource" class AccountType(AbstractType): __resource_type__ = "Account" class AccountCoverageType(AbstractType): __resource_type__ = "AccountCoverage" class AccountGuarantorType(AbstractType): __resource_type__ = "AccountGuarantor" class ActivityDefinitionType(AbstractType): __resource_type__ = "ActivityDefinition" class ActivityDefinitionDynamicValueType(AbstractType): __resource_type__ = "ActivityDefinitionDynamicValue" class ActivityDefinitionParticipantType(AbstractType): __resource_type__ = "ActivityDefinitionParticipant" class AddressType(AbstractType): __resource_type__ = "Address" class AdverseEventType(AbstractType): __resource_type__ = "AdverseEvent" class AdverseEventSuspectEntityType(AbstractType): __resource_type__ = "AdverseEventSuspectEntity" class AdverseEventSuspectEntityCausalityType(AbstractType): __resource_type__ = "AdverseEventSuspectEntityCausality" class AgeType(AbstractType): __resource_type__ = "Age" class AllergyIntoleranceType(AbstractType): __resource_type__ = "AllergyIntolerance" class AllergyIntoleranceReactionType(AbstractType): __resource_type__ = "AllergyIntoleranceReaction" class AnnotationType(AbstractType): __resource_type__ = "Annotation" class AppointmentType(AbstractType): __resource_type__ = "Appointment" class AppointmentParticipantType(AbstractType): __resource_type__ = "AppointmentParticipant" class AppointmentResponseType(AbstractType): __resource_type__ = "AppointmentResponse" class AttachmentType(AbstractType): __resource_type__ = "Attachment" class AuditEventType(AbstractType): __resource_type__ = "AuditEvent" class AuditEventAgentType(AbstractType): __resource_type__ = "AuditEventAgent" class AuditEventAgentNetworkType(AbstractType): __resource_type__ = "AuditEventAgentNetwork" class AuditEventEntityType(AbstractType): __resource_type__ = "AuditEventEntity" class AuditEventEntityDetailType(AbstractType): __resource_type__ = "AuditEventEntityDetail" class AuditEventSourceType(AbstractType): __resource_type__ = "AuditEventSource" class BackboneElementType(AbstractType): __resource_type__ = "BackboneElement" class BasicType(AbstractType): __resource_type__ = "Basic" class BinaryType(AbstractType): __resource_type__ = "Binary" class BiologicallyDerivedProductType(AbstractType): __resource_type__ = "BiologicallyDerivedProduct" class BiologicallyDerivedProductCollectionType(AbstractType): __resource_type__ = "BiologicallyDerivedProductCollection" class BiologicallyDerivedProductManipulationType(AbstractType): __resource_type__ = "BiologicallyDerivedProductManipulation" class BiologicallyDerivedProductProcessingType(AbstractType): __resource_type__ = "BiologicallyDerivedProductProcessing" class BiologicallyDerivedProductStorageType(AbstractType): __resource_type__ = "BiologicallyDerivedProductStorage" class BodyStructureType(AbstractType): __resource_type__ = "BodyStructure" class BundleType(AbstractType): __resource_type__ = "Bundle" class BundleEntryType(AbstractType): __resource_type__ = "BundleEntry" class BundleEntryRequestType(AbstractType): __resource_type__ = "BundleEntryRequest" class BundleEntryResponseType(AbstractType): __resource_type__ = "BundleEntryResponse" class BundleEntrySearchType(AbstractType): __resource_type__ = "BundleEntrySearch" class BundleLinkType(AbstractType): __resource_type__ = "BundleLink" class CapabilityStatementType(AbstractType): __resource_type__ = "CapabilityStatement" class CapabilityStatementDocumentType(AbstractType): __resource_type__ = "CapabilityStatementDocument" class CapabilityStatementImplementationType(AbstractType): __resource_type__ = "CapabilityStatementImplementation" class CapabilityStatementMessagingType(AbstractType): __resource_type__ = "CapabilityStatementMessaging" class CapabilityStatementMessagingEndpointType(AbstractType): __resource_type__ = "CapabilityStatementMessagingEndpoint" class CapabilityStatementMessagingSupportedMessageType(AbstractType): __resource_type__ = "CapabilityStatementMessagingSupportedMessage" class CapabilityStatementRestType(AbstractType): __resource_type__ = "CapabilityStatementRest" class CapabilityStatementRestInteractionType(AbstractType): __resource_type__ = "CapabilityStatementRestInteraction" class CapabilityStatementRestResourceType(AbstractType): __resource_type__ = "CapabilityStatementRestResource" class CapabilityStatementRestResourceInteractionType(AbstractType): __resource_type__ = "CapabilityStatementRestResourceInteraction" class CapabilityStatementRestResourceOperationType(AbstractType): __resource_type__ = "CapabilityStatementRestResourceOperation" class CapabilityStatementRestResourceSearchParamType(AbstractType): __resource_type__ = "CapabilityStatementRestResourceSearchParam" class CapabilityStatementRestSecurityType(AbstractType): __resource_type__ = "CapabilityStatementRestSecurity" class CapabilityStatementSoftwareType(AbstractType): __resource_type__ = "CapabilityStatementSoftware" class CarePlanType(AbstractType): __resource_type__ = "CarePlan" class CarePlanActivityType(AbstractType): __resource_type__ = "CarePlanActivity" class CarePlanActivityDetailType(AbstractType): __resource_type__ = "CarePlanActivityDetail" class CareTeamType(AbstractType): __resource_type__ = "CareTeam" class CareTeamParticipantType(AbstractType): __resource_type__ = "CareTeamParticipant" class CatalogEntryType(AbstractType): __resource_type__ = "CatalogEntry" class CatalogEntryRelatedEntryType(AbstractType): __resource_type__ = "CatalogEntryRelatedEntry" class ChargeItemType(AbstractType): __resource_type__ = "ChargeItem" class ChargeItemDefinitionType(AbstractType): __resource_type__ = "ChargeItemDefinition" class ChargeItemDefinitionApplicabilityType(AbstractType): __resource_type__ = "ChargeItemDefinitionApplicability" class ChargeItemDefinitionPropertyGroupType(AbstractType): __resource_type__ = "ChargeItemDefinitionPropertyGroup" class ChargeItemDefinitionPropertyGroupPriceComponentType(AbstractType): __resource_type__ = "ChargeItemDefinitionPropertyGroupPriceComponent" class ChargeItemPerformerType(AbstractType): __resource_type__ = "ChargeItemPerformer" class ClaimType(AbstractType): __resource_type__ = "Claim" class ClaimAccidentType(AbstractType): __resource_type__ = "ClaimAccident" class ClaimCareTeamType(AbstractType): __resource_type__ = "ClaimCareTeam" class ClaimDiagnosisType(AbstractType): __resource_type__ = "ClaimDiagnosis" class ClaimInsuranceType(AbstractType): __resource_type__ = "ClaimInsurance" class ClaimItemType(AbstractType): __resource_type__ = "ClaimItem" class ClaimItemDetailType(AbstractType): __resource_type__ = "ClaimItemDetail" class ClaimItemDetailSubDetailType(AbstractType): __resource_type__ = "ClaimItemDetailSubDetail" class ClaimPayeeType(AbstractType): __resource_type__ = "ClaimPayee" class ClaimProcedureType(AbstractType): __resource_type__ = "ClaimProcedure" class ClaimRelatedType(AbstractType): __resource_type__ = "ClaimRelated" class ClaimResponseType(AbstractType): __resource_type__ = "ClaimResponse" class ClaimResponseAddItemType(AbstractType): __resource_type__ = "ClaimResponseAddItem" class ClaimResponseAddItemDetailType(AbstractType): __resource_type__ = "ClaimResponseAddItemDetail" class ClaimResponseAddItemDetailSubDetailType(AbstractType): __resource_type__ = "ClaimResponseAddItemDetailSubDetail" class ClaimResponseErrorType(AbstractType): __resource_type__ = "ClaimResponseError" class ClaimResponseInsuranceType(AbstractType): __resource_type__ = "ClaimResponseInsurance" class ClaimResponseItemType(AbstractType): __resource_type__ = "ClaimResponseItem" class ClaimResponseItemAdjudicationType(AbstractType): __resource_type__ = "ClaimResponseItemAdjudication" class ClaimResponseItemDetailType(AbstractType): __resource_type__ = "ClaimResponseItemDetail" class ClaimResponseItemDetailSubDetailType(AbstractType): __resource_type__ = "ClaimResponseItemDetailSubDetail" class ClaimResponsePaymentType(AbstractType): __resource_type__ = "ClaimResponsePayment" class ClaimResponseProcessNoteType(AbstractType): __resource_type__ = "ClaimResponseProcessNote" class ClaimResponseTotalType(AbstractType): __resource_type__ = "ClaimResponseTotal" class ClaimSupportingInfoType(AbstractType): __resource_type__ = "ClaimSupportingInfo" class ClinicalImpressionType(AbstractType): __resource_type__ = "ClinicalImpression" class ClinicalImpressionFindingType(AbstractType): __resource_type__ = "ClinicalImpressionFinding" class ClinicalImpressionInvestigationType(AbstractType): __resource_type__ = "ClinicalImpressionInvestigation" class CodeSystemType(AbstractType): __resource_type__ = "CodeSystem" class CodeSystemConceptType(AbstractType): __resource_type__ = "CodeSystemConcept" class CodeSystemConceptDesignationType(AbstractType): __resource_type__ = "CodeSystemConceptDesignation" class CodeSystemConceptPropertyType(AbstractType): __resource_type__ = "CodeSystemConceptProperty" class CodeSystemFilterType(AbstractType): __resource_type__ = "CodeSystemFilter" class CodeSystemPropertyType(AbstractType): __resource_type__ = "CodeSystemProperty" class CodeableConceptType(AbstractType): __resource_type__ = "CodeableConcept" class CodingType(AbstractType): __resource_type__ = "Coding" class CommunicationType(AbstractType): __resource_type__ = "Communication" class CommunicationPayloadType(AbstractType): __resource_type__ = "CommunicationPayload" class CommunicationRequestType(AbstractType): __resource_type__ = "CommunicationRequest" class CommunicationRequestPayloadType(AbstractType): __resource_type__ = "CommunicationRequestPayload" class CompartmentDefinitionType(AbstractType): __resource_type__ = "CompartmentDefinition" class CompartmentDefinitionResourceType(AbstractType): __resource_type__ = "CompartmentDefinitionResource" class CompositionType(AbstractType): __resource_type__ = "Composition" class CompositionAttesterType(AbstractType): __resource_type__ = "CompositionAttester" class CompositionEventType(AbstractType): __resource_type__ = "CompositionEvent" class CompositionRelatesToType(AbstractType): __resource_type__ = "CompositionRelatesTo" class CompositionSectionType(AbstractType): __resource_type__ = "CompositionSection" class ConceptMapType(AbstractType): __resource_type__ = "ConceptMap" class ConceptMapGroupType(AbstractType): __resource_type__ = "ConceptMapGroup" class ConceptMapGroupElementType(AbstractType): __resource_type__ = "ConceptMapGroupElement" class ConceptMapGroupElementTargetType(AbstractType): __resource_type__ = "ConceptMapGroupElementTarget" class ConceptMapGroupElementTargetDependsOnType(AbstractType): __resource_type__ = "ConceptMapGroupElementTargetDependsOn" class ConceptMapGroupUnmappedType(AbstractType): __resource_type__ = "ConceptMapGroupUnmapped" class ConditionType(AbstractType): __resource_type__ = "Condition" class ConditionEvidenceType(AbstractType): __resource_type__ = "ConditionEvidence" class ConditionStageType(AbstractType): __resource_type__ = "ConditionStage" class ConsentType(AbstractType): __resource_type__ = "Consent" class ConsentPolicyType(AbstractType): __resource_type__ = "ConsentPolicy" class ConsentProvisionType(AbstractType): __resource_type__ = "ConsentProvision" class ConsentProvisionActorType(AbstractType): __resource_type__ = "ConsentProvisionActor" class ConsentProvisionDataType(AbstractType): __resource_type__ = "ConsentProvisionData" class ConsentVerificationType(AbstractType): __resource_type__ = "ConsentVerification" class ContactDetailType(AbstractType): __resource_type__ = "ContactDetail" class ContactPointType(AbstractType): __resource_type__ = "ContactPoint" class ContractType(AbstractType): __resource_type__ = "Contract" class ContractContentDefinitionType(AbstractType): __resource_type__ = "ContractContentDefinition" class ContractFriendlyType(AbstractType): __resource_type__ = "ContractFriendly" class ContractLegalType(AbstractType): __resource_type__ = "ContractLegal" class ContractRuleType(AbstractType): __resource_type__ = "ContractRule" class ContractSignerType(AbstractType): __resource_type__ = "ContractSigner" class ContractTermType(AbstractType): __resource_type__ = "ContractTerm" class ContractTermActionType(AbstractType): __resource_type__ = "ContractTermAction" class ContractTermActionSubjectType(AbstractType): __resource_type__ = "ContractTermActionSubject" class ContractTermAssetType(AbstractType): __resource_type__ = "ContractTermAsset" class ContractTermAssetContextType(AbstractType): __resource_type__ = "ContractTermAssetContext" class ContractTermAssetValuedItemType(AbstractType): __resource_type__ = "ContractTermAssetValuedItem" class ContractTermOfferType(AbstractType): __resource_type__ = "ContractTermOffer" class ContractTermOfferAnswerType(AbstractType): __resource_type__ = "ContractTermOfferAnswer" class ContractTermOfferPartyType(AbstractType): __resource_type__ = "ContractTermOfferParty" class ContractTermSecurityLabelType(AbstractType): __resource_type__ = "ContractTermSecurityLabel" class ContributorType(AbstractType): __resource_type__ = "Contributor" class CountType(AbstractType): __resource_type__ = "Count" class CoverageType(AbstractType): __resource_type__ = "Coverage" class CoverageClassType(AbstractType): __resource_type__ = "CoverageClass" class CoverageCostToBeneficiaryType(AbstractType): __resource_type__ = "CoverageCostToBeneficiary" class CoverageCostToBeneficiaryExceptionType(AbstractType): __resource_type__ = "CoverageCostToBeneficiaryException" class CoverageEligibilityRequestType(AbstractType): __resource_type__ = "CoverageEligibilityRequest" class CoverageEligibilityRequestInsuranceType(AbstractType): __resource_type__ = "CoverageEligibilityRequestInsurance" class CoverageEligibilityRequestItemType(AbstractType): __resource_type__ = "CoverageEligibilityRequestItem" class CoverageEligibilityRequestItemDiagnosisType(AbstractType): __resource_type__ = "CoverageEligibilityRequestItemDiagnosis" class CoverageEligibilityRequestSupportingInfoType(AbstractType): __resource_type__ = "CoverageEligibilityRequestSupportingInfo" class CoverageEligibilityResponseType(AbstractType): __resource_type__ = "CoverageEligibilityResponse" class CoverageEligibilityResponseErrorType(AbstractType): __resource_type__ = "CoverageEligibilityResponseError" class CoverageEligibilityResponseInsuranceType(AbstractType): __resource_type__ = "CoverageEligibilityResponseInsurance" class CoverageEligibilityResponseInsuranceItemType(AbstractType): __resource_type__ = "CoverageEligibilityResponseInsuranceItem" class CoverageEligibilityResponseInsuranceItemBenefitType(AbstractType): __resource_type__ = "CoverageEligibilityResponseInsuranceItemBenefit" class DataRequirementType(AbstractType): __resource_type__ = "DataRequirement" class DataRequirementCodeFilterType(AbstractType): __resource_type__ = "DataRequirementCodeFilter" class DataRequirementDateFilterType(AbstractType): __resource_type__ = "DataRequirementDateFilter" class DataRequirementSortType(AbstractType): __resource_type__ = "DataRequirementSort" class DetectedIssueType(AbstractType): __resource_type__ = "DetectedIssue" class DetectedIssueEvidenceType(AbstractType): __resource_type__ = "DetectedIssueEvidence" class DetectedIssueMitigationType(AbstractType): __resource_type__ = "DetectedIssueMitigation" class DeviceType(AbstractType): __resource_type__ = "Device" class DeviceDefinitionType(AbstractType): __resource_type__ = "DeviceDefinition" class DeviceDefinitionCapabilityType(AbstractType): __resource_type__ = "DeviceDefinitionCapability" class DeviceDefinitionDeviceNameType(AbstractType): __resource_type__ = "DeviceDefinitionDeviceName" class DeviceDefinitionMaterialType(AbstractType): __resource_type__ = "DeviceDefinitionMaterial" class DeviceDefinitionPropertyType(AbstractType): __resource_type__ = "DeviceDefinitionProperty" class DeviceDefinitionSpecializationType(AbstractType): __resource_type__ = "DeviceDefinitionSpecialization" class DeviceDefinitionUdiDeviceIdentifierType(AbstractType): __resource_type__ = "DeviceDefinitionUdiDeviceIdentifier" class DeviceDeviceNameType(AbstractType): __resource_type__ = "DeviceDeviceName" class DeviceMetricType(AbstractType): __resource_type__ = "DeviceMetric" class DeviceMetricCalibrationType(AbstractType): __resource_type__ = "DeviceMetricCalibration" class DevicePropertyType(AbstractType): __resource_type__ = "DeviceProperty" class DeviceRequestType(AbstractType): __resource_type__ = "DeviceRequest" class DeviceRequestParameterType(AbstractType): __resource_type__ = "DeviceRequestParameter" class DeviceSpecializationType(AbstractType): __resource_type__ = "DeviceSpecialization" class DeviceUdiCarrierType(AbstractType): __resource_type__ = "DeviceUdiCarrier" class DeviceUseStatementType(AbstractType): __resource_type__ = "DeviceUseStatement" class DeviceVersionType(AbstractType): __resource_type__ = "DeviceVersion" class DiagnosticReportType(AbstractType): __resource_type__ = "DiagnosticReport" class DiagnosticReportMediaType(AbstractType): __resource_type__ = "DiagnosticReportMedia" class DistanceType(AbstractType): __resource_type__ = "Distance" class DocumentManifestType(AbstractType): __resource_type__ = "DocumentManifest" class DocumentManifestRelatedType(AbstractType): __resource_type__ = "DocumentManifestRelated" class DocumentReferenceType(AbstractType): __resource_type__ = "DocumentReference" class DocumentReferenceContentType(AbstractType): __resource_type__ = "DocumentReferenceContent" class DocumentReferenceContextType(AbstractType): __resource_type__ = "DocumentReferenceContext" class DocumentReferenceRelatesToType(AbstractType): __resource_type__ = "DocumentReferenceRelatesTo" class DomainResourceType(AbstractType): __resource_type__ = "DomainResource" class DosageType(AbstractType): __resource_type__ = "Dosage" class DosageDoseAndRateType(AbstractType): __resource_type__ = "DosageDoseAndRate" class DurationType(AbstractType): __resource_type__ = "Duration" class EffectEvidenceSynthesisType(AbstractType): __resource_type__ = "EffectEvidenceSynthesis" class EffectEvidenceSynthesisCertaintyType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisCertainty" class EffectEvidenceSynthesisCertaintyCertaintySubcomponentType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisCertaintyCertaintySubcomponent" class EffectEvidenceSynthesisEffectEstimateType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisEffectEstimate" class EffectEvidenceSynthesisEffectEstimatePrecisionEstimateType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisEffectEstimatePrecisionEstimate" class EffectEvidenceSynthesisResultsByExposureType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisResultsByExposure" class EffectEvidenceSynthesisSampleSizeType(AbstractType): __resource_type__ = "EffectEvidenceSynthesisSampleSize" class ElementDefinitionType(AbstractType): __resource_type__ = "ElementDefinition" class ElementDefinitionBaseType(AbstractType): __resource_type__ = "ElementDefinitionBase" class ElementDefinitionBindingType(AbstractType): __resource_type__ = "ElementDefinitionBinding" class ElementDefinitionConstraintType(AbstractType): __resource_type__ = "ElementDefinitionConstraint" class ElementDefinitionExampleType(AbstractType): __resource_type__ = "ElementDefinitionExample" class ElementDefinitionMappingType(AbstractType): __resource_type__ = "ElementDefinitionMapping" class ElementDefinitionSlicingType(AbstractType): __resource_type__ = "ElementDefinitionSlicing" class ElementDefinitionSlicingDiscriminatorType(AbstractType): __resource_type__ = "ElementDefinitionSlicingDiscriminator" class ElementDefinitionTypeType(AbstractType): __resource_type__ = "ElementDefinitionType" class EncounterType(AbstractType): __resource_type__ = "Encounter" class EncounterClassHistoryType(AbstractType): __resource_type__ = "EncounterClassHistory" class EncounterDiagnosisType(AbstractType): __resource_type__ = "EncounterDiagnosis" class EncounterHospitalizationType(AbstractType): __resource_type__ = "EncounterHospitalization" class EncounterLocationType(AbstractType): __resource_type__ = "EncounterLocation" class EncounterParticipantType(AbstractType): __resource_type__ = "EncounterParticipant" class EncounterStatusHistoryType(AbstractType): __resource_type__ = "EncounterStatusHistory" class EndpointType(AbstractType): __resource_type__ = "Endpoint" class EnrollmentRequestType(AbstractType): __resource_type__ = "EnrollmentRequest" class EnrollmentResponseType(AbstractType): __resource_type__ = "EnrollmentResponse" class EpisodeOfCareType(AbstractType): __resource_type__ = "EpisodeOfCare" class EpisodeOfCareDiagnosisType(AbstractType): __resource_type__ = "EpisodeOfCareDiagnosis" class EpisodeOfCareStatusHistoryType(AbstractType): __resource_type__ = "EpisodeOfCareStatusHistory" class EventDefinitionType(AbstractType): __resource_type__ = "EventDefinition" class EvidenceType(AbstractType): __resource_type__ = "Evidence" class EvidenceVariableType(AbstractType): __resource_type__ = "EvidenceVariable" class EvidenceVariableCharacteristicType(AbstractType): __resource_type__ = "EvidenceVariableCharacteristic" class ExampleScenarioType(AbstractType): __resource_type__ = "ExampleScenario" class ExampleScenarioActorType(AbstractType): __resource_type__ = "ExampleScenarioActor" class ExampleScenarioInstanceType(AbstractType): __resource_type__ = "ExampleScenarioInstance" class ExampleScenarioInstanceContainedInstanceType(AbstractType): __resource_type__ = "ExampleScenarioInstanceContainedInstance" class ExampleScenarioInstanceVersionType(AbstractType): __resource_type__ = "ExampleScenarioInstanceVersion" class ExampleScenarioProcessType(AbstractType): __resource_type__ = "ExampleScenarioProcess" class ExampleScenarioProcessStepType(AbstractType): __resource_type__ = "ExampleScenarioProcessStep" class ExampleScenarioProcessStepAlternativeType(AbstractType): __resource_type__ = "ExampleScenarioProcessStepAlternative" class ExampleScenarioProcessStepOperationType(AbstractType): __resource_type__ = "ExampleScenarioProcessStepOperation" class ExplanationOfBenefitType(AbstractType): __resource_type__ = "ExplanationOfBenefit" class ExplanationOfBenefitAccidentType(AbstractType): __resource_type__ = "ExplanationOfBenefitAccident" class ExplanationOfBenefitAddItemType(AbstractType): __resource_type__ = "ExplanationOfBenefitAddItem" class ExplanationOfBenefitAddItemDetailType(AbstractType): __resource_type__ = "ExplanationOfBenefitAddItemDetail" class ExplanationOfBenefitAddItemDetailSubDetailType(AbstractType): __resource_type__ = "ExplanationOfBenefitAddItemDetailSubDetail" class ExplanationOfBenefitBenefitBalanceType(AbstractType): __resource_type__ = "ExplanationOfBenefitBenefitBalance" class ExplanationOfBenefitBenefitBalanceFinancialType(AbstractType): __resource_type__ = "ExplanationOfBenefitBenefitBalanceFinancial" class ExplanationOfBenefitCareTeamType(AbstractType): __resource_type__ = "ExplanationOfBenefitCareTeam" class ExplanationOfBenefitDiagnosisType(AbstractType): __resource_type__ = "ExplanationOfBenefitDiagnosis" class ExplanationOfBenefitInsuranceType(AbstractType): __resource_type__ = "ExplanationOfBenefitInsurance" class ExplanationOfBenefitItemType(AbstractType): __resource_type__ = "ExplanationOfBenefitItem" class ExplanationOfBenefitItemAdjudicationType(AbstractType): __resource_type__ = "ExplanationOfBenefitItemAdjudication" class ExplanationOfBenefitItemDetailType(AbstractType): __resource_type__ = "ExplanationOfBenefitItemDetail" class ExplanationOfBenefitItemDetailSubDetailType(AbstractType): __resource_type__ = "ExplanationOfBenefitItemDetailSubDetail" class ExplanationOfBenefitPayeeType(AbstractType): __resource_type__ = "ExplanationOfBenefitPayee" class ExplanationOfBenefitPaymentType(AbstractType): __resource_type__ = "ExplanationOfBenefitPayment" class ExplanationOfBenefitProcedureType(AbstractType): __resource_type__ = "ExplanationOfBenefitProcedure" class ExplanationOfBenefitProcessNoteType(AbstractType): __resource_type__ = "ExplanationOfBenefitProcessNote" class ExplanationOfBenefitRelatedType(AbstractType): __resource_type__ = "ExplanationOfBenefitRelated" class ExplanationOfBenefitSupportingInfoType(AbstractType): __resource_type__ = "ExplanationOfBenefitSupportingInfo" class ExplanationOfBenefitTotalType(AbstractType): __resource_type__ = "ExplanationOfBenefitTotal" class ExpressionType(AbstractType): __resource_type__ = "Expression" class ExtensionType(AbstractType): __resource_type__ = "Extension" class FamilyMemberHistoryType(AbstractType): __resource_type__ = "FamilyMemberHistory" class FamilyMemberHistoryConditionType(AbstractType): __resource_type__ = "FamilyMemberHistoryCondition" class FlagType(AbstractType): __resource_type__ = "Flag" class GoalType(AbstractType): __resource_type__ = "Goal" class GoalTargetType(AbstractType): __resource_type__ = "GoalTarget" class GraphDefinitionType(AbstractType): __resource_type__ = "GraphDefinition" class GraphDefinitionLinkType(AbstractType): __resource_type__ = "GraphDefinitionLink" class GraphDefinitionLinkTargetType(AbstractType): __resource_type__ = "GraphDefinitionLinkTarget" class GraphDefinitionLinkTargetCompartmentType(AbstractType): __resource_type__ = "GraphDefinitionLinkTargetCompartment" class GroupType(AbstractType): __resource_type__ = "Group" class GroupCharacteristicType(AbstractType): __resource_type__ = "GroupCharacteristic" class GroupMemberType(AbstractType): __resource_type__ = "GroupMember" class GuidanceResponseType(AbstractType): __resource_type__ = "GuidanceResponse" class HealthcareServiceType(AbstractType): __resource_type__ = "HealthcareService" class HealthcareServiceAvailableTimeType(AbstractType): __resource_type__ = "HealthcareServiceAvailableTime" class HealthcareServiceEligibilityType(AbstractType): __resource_type__ = "HealthcareServiceEligibility" class HealthcareServiceNotAvailableType(AbstractType): __resource_type__ = "HealthcareServiceNotAvailable" class HumanNameType(AbstractType): __resource_type__ = "HumanName" class IdentifierType(AbstractType): __resource_type__ = "Identifier" class ImagingStudyType(AbstractType): __resource_type__ = "ImagingStudy" class ImagingStudySeriesType(AbstractType): __resource_type__ = "ImagingStudySeries" class ImagingStudySeriesInstanceType(AbstractType): __resource_type__ = "ImagingStudySeriesInstance" class ImagingStudySeriesPerformerType(AbstractType): __resource_type__ = "ImagingStudySeriesPerformer" class ImmunizationType(AbstractType): __resource_type__ = "Immunization" class ImmunizationEducationType(AbstractType): __resource_type__ = "ImmunizationEducation" class ImmunizationEvaluationType(AbstractType): __resource_type__ = "ImmunizationEvaluation" class ImmunizationPerformerType(AbstractType): __resource_type__ = "ImmunizationPerformer" class ImmunizationProtocolAppliedType(AbstractType): __resource_type__ = "ImmunizationProtocolApplied" class ImmunizationReactionType(AbstractType): __resource_type__ = "ImmunizationReaction" class ImmunizationRecommendationType(AbstractType): __resource_type__ = "ImmunizationRecommendation" class ImmunizationRecommendationRecommendationType(AbstractType): __resource_type__ = "ImmunizationRecommendationRecommendation" class ImmunizationRecommendationRecommendationDateCriterionType(AbstractType): __resource_type__ = "ImmunizationRecommendationRecommendationDateCriterion" class ImplementationGuideType(AbstractType): __resource_type__ = "ImplementationGuide" class ImplementationGuideDefinitionType(AbstractType): __resource_type__ = "ImplementationGuideDefinition" class ImplementationGuideDefinitionGroupingType(AbstractType): __resource_type__ = "ImplementationGuideDefinitionGrouping" class ImplementationGuideDefinitionPageType(AbstractType): __resource_type__ = "ImplementationGuideDefinitionPage" class ImplementationGuideDefinitionParameterType(AbstractType): __resource_type__ = "ImplementationGuideDefinitionParameter" class ImplementationGuideDefinitionResourceType(AbstractType): __resource_type__ = "ImplementationGuideDefinitionResource" class ImplementationGuideDefinitionTemplateType(AbstractType): __resource_type__ = "ImplementationGuideDefinitionTemplate" class ImplementationGuideDependsOnType(AbstractType): __resource_type__ = "ImplementationGuideDependsOn" class ImplementationGuideGlobalType(AbstractType): __resource_type__ = "ImplementationGuideGlobal" class ImplementationGuideManifestType(AbstractType): __resource_type__ = "ImplementationGuideManifest" class ImplementationGuideManifestPageType(AbstractType): __resource_type__ = "ImplementationGuideManifestPage" class ImplementationGuideManifestResourceType(AbstractType): __resource_type__ = "ImplementationGuideManifestResource" class InsurancePlanType(AbstractType): __resource_type__ = "InsurancePlan" class InsurancePlanContactType(AbstractType): __resource_type__ = "InsurancePlanContact" class InsurancePlanCoverageType(AbstractType): __resource_type__ = "InsurancePlanCoverage" class InsurancePlanCoverageBenefitType(AbstractType): __resource_type__ = "InsurancePlanCoverageBenefit" class InsurancePlanCoverageBenefitLimitType(AbstractType): __resource_type__ = "InsurancePlanCoverageBenefitLimit" class InsurancePlanPlanType(AbstractType): __resource_type__ = "InsurancePlanPlan" class InsurancePlanPlanGeneralCostType(AbstractType): __resource_type__ = "InsurancePlanPlanGeneralCost" class InsurancePlanPlanSpecificCostType(AbstractType): __resource_type__ = "InsurancePlanPlanSpecificCost" class InsurancePlanPlanSpecificCostBenefitType(AbstractType): __resource_type__ = "InsurancePlanPlanSpecificCostBenefit" class InsurancePlanPlanSpecificCostBenefitCostType(AbstractType): __resource_type__ = "InsurancePlanPlanSpecificCostBenefitCost" class InvoiceType(AbstractType): __resource_type__ = "Invoice" class InvoiceLineItemType(AbstractType): __resource_type__ = "InvoiceLineItem" class InvoiceLineItemPriceComponentType(AbstractType): __resource_type__ = "InvoiceLineItemPriceComponent" class InvoiceParticipantType(AbstractType): __resource_type__ = "InvoiceParticipant" class LibraryType(AbstractType): __resource_type__ = "Library" class LinkageType(AbstractType): __resource_type__ = "Linkage" class LinkageItemType(AbstractType): __resource_type__ = "LinkageItem" class ListType(AbstractType): __resource_type__ = "List" class ListEntryType(AbstractType): __resource_type__ = "ListEntry" class LocationType(AbstractType): __resource_type__ = "Location" class LocationHoursOfOperationType(AbstractType): __resource_type__ = "LocationHoursOfOperation" class LocationPositionType(AbstractType): __resource_type__ = "LocationPosition" class MarketingStatusType(AbstractType): __resource_type__ = "MarketingStatus" class MeasureType(AbstractType): __resource_type__ = "Measure" class MeasureGroupType(AbstractType): __resource_type__ = "MeasureGroup" class MeasureGroupPopulationType(AbstractType): __resource_type__ = "MeasureGroupPopulation" class MeasureGroupStratifierType(AbstractType): __resource_type__ = "MeasureGroupStratifier" class MeasureGroupStratifierComponentType(AbstractType): __resource_type__ = "MeasureGroupStratifierComponent" class MeasureReportType(AbstractType): __resource_type__ = "MeasureReport" class MeasureReportGroupType(AbstractType): __resource_type__ = "MeasureReportGroup" class MeasureReportGroupPopulationType(AbstractType): __resource_type__ = "MeasureReportGroupPopulation" class MeasureReportGroupStratifierType(AbstractType): __resource_type__ = "MeasureReportGroupStratifier" class MeasureReportGroupStratifierStratumType(AbstractType): __resource_type__ = "MeasureReportGroupStratifierStratum" class MeasureReportGroupStratifierStratumComponentType(AbstractType): __resource_type__ = "MeasureReportGroupStratifierStratumComponent" class MeasureReportGroupStratifierStratumPopulationType(AbstractType): __resource_type__ = "MeasureReportGroupStratifierStratumPopulation" class MeasureSupplementalDataType(AbstractType): __resource_type__ = "MeasureSupplementalData" class MediaType(AbstractType): __resource_type__ = "Media" class MedicationType(AbstractType): __resource_type__ = "Medication" class MedicationAdministrationType(AbstractType): __resource_type__ = "MedicationAdministration" class MedicationAdministrationDosageType(AbstractType): __resource_type__ = "MedicationAdministrationDosage" class MedicationAdministrationPerformerType(AbstractType): __resource_type__ = "MedicationAdministrationPerformer" class MedicationBatchType(AbstractType): __resource_type__ = "MedicationBatch" class MedicationDispenseType(AbstractType): __resource_type__ = "MedicationDispense" class MedicationDispensePerformerType(AbstractType): __resource_type__ = "MedicationDispensePerformer" class MedicationDispenseSubstitutionType(AbstractType): __resource_type__ = "MedicationDispenseSubstitution" class MedicationIngredientType(AbstractType): __resource_type__ = "MedicationIngredient" class MedicationKnowledgeType(AbstractType): __resource_type__ = "MedicationKnowledge" class MedicationKnowledgeAdministrationGuidelinesType(AbstractType): __resource_type__ = "MedicationKnowledgeAdministrationGuidelines" class MedicationKnowledgeAdministrationGuidelinesDosageType(AbstractType): __resource_type__ = "MedicationKnowledgeAdministrationGuidelinesDosage" class MedicationKnowledgeAdministrationGuidelinesPatientCharacteristicsType( AbstractType ): __resource_type__ = ( "MedicationKnowledgeAdministrationGuidelinesPatientCharacteristics" ) class MedicationKnowledgeCostType(AbstractType): __resource_type__ = "MedicationKnowledgeCost" class MedicationKnowledgeDrugCharacteristicType(AbstractType): __resource_type__ = "MedicationKnowledgeDrugCharacteristic" class MedicationKnowledgeIngredientType(AbstractType): __resource_type__ = "MedicationKnowledgeIngredient" class MedicationKnowledgeKineticsType(AbstractType): __resource_type__ = "MedicationKnowledgeKinetics" class MedicationKnowledgeMedicineClassificationType(AbstractType): __resource_type__ = "MedicationKnowledgeMedicineClassification" class MedicationKnowledgeMonitoringProgramType(AbstractType): __resource_type__ = "MedicationKnowledgeMonitoringProgram" class MedicationKnowledgeMonographType(AbstractType): __resource_type__ = "MedicationKnowledgeMonograph" class MedicationKnowledgePackagingType(AbstractType): __resource_type__ = "MedicationKnowledgePackaging" class MedicationKnowledgeRegulatoryType(AbstractType): __resource_type__ = "MedicationKnowledgeRegulatory" class MedicationKnowledgeRegulatoryMaxDispenseType(AbstractType): __resource_type__ = "MedicationKnowledgeRegulatoryMaxDispense" class MedicationKnowledgeRegulatoryScheduleType(AbstractType): __resource_type__ = "MedicationKnowledgeRegulatorySchedule" class MedicationKnowledgeRegulatorySubstitutionType(AbstractType): __resource_type__ = "MedicationKnowledgeRegulatorySubstitution" class MedicationKnowledgeRelatedMedicationKnowledgeType(AbstractType): __resource_type__ = "MedicationKnowledgeRelatedMedicationKnowledge" class MedicationRequestType(AbstractType): __resource_type__ = "MedicationRequest" class MedicationRequestDispenseRequestType(AbstractType): __resource_type__ = "MedicationRequestDispenseRequest" class MedicationRequestDispenseRequestInitialFillType(AbstractType): __resource_type__ = "MedicationRequestDispenseRequestInitialFill" class MedicationRequestSubstitutionType(AbstractType): __resource_type__ = "MedicationRequestSubstitution" class MedicationStatementType(AbstractType): __resource_type__ = "MedicationStatement" class MedicinalProductType(AbstractType): __resource_type__ = "MedicinalProduct" class MedicinalProductAuthorizationType(AbstractType): __resource_type__ = "MedicinalProductAuthorization" class MedicinalProductAuthorizationJurisdictionalAuthorizationType(AbstractType): __resource_type__ = "MedicinalProductAuthorizationJurisdictionalAuthorization" class MedicinalProductAuthorizationProcedureType(AbstractType): __resource_type__ = "MedicinalProductAuthorizationProcedure" class MedicinalProductContraindicationType(AbstractType): __resource_type__ = "MedicinalProductContraindication" class MedicinalProductContraindicationOtherTherapyType(AbstractType): __resource_type__ = "MedicinalProductContraindicationOtherTherapy" class MedicinalProductIndicationType(AbstractType): __resource_type__ = "MedicinalProductIndication" class MedicinalProductIndicationOtherTherapyType(AbstractType): __resource_type__ = "MedicinalProductIndicationOtherTherapy" class MedicinalProductIngredientType(AbstractType): __resource_type__ = "MedicinalProductIngredient" class MedicinalProductIngredientSpecifiedSubstanceType(AbstractType): __resource_type__ = "MedicinalProductIngredientSpecifiedSubstance" class MedicinalProductIngredientSpecifiedSubstanceStrengthType(AbstractType): __resource_type__ = "MedicinalProductIngredientSpecifiedSubstanceStrength" class MedicinalProductIngredientSpecifiedSubstanceStrengthReferenceStrengthType( AbstractType ): __resource_type__ = ( "MedicinalProductIngredientSpecifiedSubstanceStrengthReferenceStrength" ) class MedicinalProductIngredientSubstanceType(AbstractType): __resource_type__ = "MedicinalProductIngredientSubstance" class MedicinalProductInteractionType(AbstractType): __resource_type__ = "MedicinalProductInteraction" class MedicinalProductInteractionInteractantType(AbstractType): __resource_type__ = "MedicinalProductInteractionInteractant" class MedicinalProductManufacturedType(AbstractType): __resource_type__ = "MedicinalProductManufactured" class MedicinalProductManufacturingBusinessOperationType(AbstractType): __resource_type__ = "MedicinalProductManufacturingBusinessOperation" class MedicinalProductNameType(AbstractType): __resource_type__ = "MedicinalProductName" class MedicinalProductNameCountryLanguageType(AbstractType): __resource_type__ = "MedicinalProductNameCountryLanguage" class MedicinalProductNameNamePartType(AbstractType): __resource_type__ = "MedicinalProductNameNamePart" class MedicinalProductPackagedType(AbstractType): __resource_type__ = "MedicinalProductPackaged" class MedicinalProductPackagedBatchIdentifierType(AbstractType): __resource_type__ = "MedicinalProductPackagedBatchIdentifier" class MedicinalProductPackagedPackageItemType(AbstractType): __resource_type__ = "MedicinalProductPackagedPackageItem" class MedicinalProductPharmaceuticalType(AbstractType): __resource_type__ = "MedicinalProductPharmaceutical" class MedicinalProductPharmaceuticalCharacteristicsType(AbstractType): __resource_type__ = "MedicinalProductPharmaceuticalCharacteristics" class MedicinalProductPharmaceuticalRouteOfAdministrationType(AbstractType): __resource_type__ = "MedicinalProductPharmaceuticalRouteOfAdministration" class MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpeciesType( AbstractType ): __resource_type__ = ( "MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpecies" ) class MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpeciesWithdrawalPeriodType( AbstractType ): __resource_type__ = "MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpeciesWithdrawalPeriod" # noqa:B950 class MedicinalProductSpecialDesignationType(AbstractType): __resource_type__ = "MedicinalProductSpecialDesignation" class MedicinalProductUndesirableEffectType(AbstractType): __resource_type__ = "MedicinalProductUndesirableEffect" class MessageDefinitionType(AbstractType): __resource_type__ = "MessageDefinition" class MessageDefinitionAllowedResponseType(AbstractType): __resource_type__ = "MessageDefinitionAllowedResponse" class MessageDefinitionFocusType(AbstractType): __resource_type__ = "MessageDefinitionFocus" class MessageHeaderType(AbstractType): __resource_type__ = "MessageHeader" class MessageHeaderDestinationType(AbstractType): __resource_type__ = "MessageHeaderDestination" class MessageHeaderResponseType(AbstractType): __resource_type__ = "MessageHeaderResponse" class MessageHeaderSourceType(AbstractType): __resource_type__ = "MessageHeaderSource" class MetaType(AbstractType): __resource_type__ = "Meta" class MetadataResourceType(AbstractType): __resource_type__ = "MetadataResource" class MolecularSequenceType(AbstractType): __resource_type__ = "MolecularSequence" class MolecularSequenceQualityType(AbstractType): __resource_type__ = "MolecularSequenceQuality" class MolecularSequenceQualityRocType(AbstractType): __resource_type__ = "MolecularSequenceQualityRoc" class MolecularSequenceReferenceSeqType(AbstractType): __resource_type__ = "MolecularSequenceReferenceSeq" class MolecularSequenceRepositoryType(AbstractType): __resource_type__ = "MolecularSequenceRepository" class MolecularSequenceStructureVariantType(AbstractType): __resource_type__ = "MolecularSequenceStructureVariant" class MolecularSequenceStructureVariantInnerType(AbstractType): __resource_type__ = "MolecularSequenceStructureVariantInner" class MolecularSequenceStructureVariantOuterType(AbstractType): __resource_type__ = "MolecularSequenceStructureVariantOuter" class MolecularSequenceVariantType(AbstractType): __resource_type__ = "MolecularSequenceVariant" class MoneyType(AbstractType): __resource_type__ = "Money" class NamingSystemType(AbstractType): __resource_type__ = "NamingSystem" class NamingSystemUniqueIdType(AbstractType): __resource_type__ = "NamingSystemUniqueId" class NarrativeType(AbstractType): __resource_type__ = "Narrative" class NutritionOrderType(AbstractType): __resource_type__ = "NutritionOrder" class NutritionOrderEnteralFormulaType(AbstractType): __resource_type__ = "NutritionOrderEnteralFormula" class NutritionOrderEnteralFormulaAdministrationType(AbstractType): __resource_type__ = "NutritionOrderEnteralFormulaAdministration" class NutritionOrderOralDietType(AbstractType): __resource_type__ = "NutritionOrderOralDiet" class NutritionOrderOralDietNutrientType(AbstractType): __resource_type__ = "NutritionOrderOralDietNutrient" class NutritionOrderOralDietTextureType(AbstractType): __resource_type__ = "NutritionOrderOralDietTexture" class NutritionOrderSupplementType(AbstractType): __resource_type__ = "NutritionOrderSupplement" class ObservationType(AbstractType): __resource_type__ = "Observation" class ObservationComponentType(AbstractType): __resource_type__ = "ObservationComponent" class ObservationDefinitionType(AbstractType): __resource_type__ = "ObservationDefinition" class ObservationDefinitionQualifiedIntervalType(AbstractType): __resource_type__ = "ObservationDefinitionQualifiedInterval" class ObservationDefinitionQuantitativeDetailsType(AbstractType): __resource_type__ = "ObservationDefinitionQuantitativeDetails" class ObservationReferenceRangeType(AbstractType): __resource_type__ = "ObservationReferenceRange" class OperationDefinitionType(AbstractType): __resource_type__ = "OperationDefinition" class OperationDefinitionOverloadType(AbstractType): __resource_type__ = "OperationDefinitionOverload" class OperationDefinitionParameterType(AbstractType): __resource_type__ = "OperationDefinitionParameter" class OperationDefinitionParameterBindingType(AbstractType): __resource_type__ = "OperationDefinitionParameterBinding" class OperationDefinitionParameterReferencedFromType(AbstractType): __resource_type__ = "OperationDefinitionParameterReferencedFrom" class OperationOutcomeType(AbstractType): __resource_type__ = "OperationOutcome" class OperationOutcomeIssueType(AbstractType): __resource_type__ = "OperationOutcomeIssue" class OrganizationType(AbstractType): __resource_type__ = "Organization" class OrganizationAffiliationType(AbstractType): __resource_type__ = "OrganizationAffiliation" class OrganizationContactType(AbstractType): __resource_type__ = "OrganizationContact" class ParameterDefinitionType(AbstractType): __resource_type__ = "ParameterDefinition" class ParametersType(AbstractType): __resource_type__ = "Parameters" class ParametersParameterType(AbstractType): __resource_type__ = "ParametersParameter" class PatientType(AbstractType): __resource_type__ = "Patient" class PatientCommunicationType(AbstractType): __resource_type__ = "PatientCommunication" class PatientContactType(AbstractType): __resource_type__ = "PatientContact" class PatientLinkType(AbstractType): __resource_type__ = "PatientLink" class PaymentNoticeType(AbstractType): __resource_type__ = "PaymentNotice" class PaymentReconciliationType(AbstractType): __resource_type__ = "PaymentReconciliation" class PaymentReconciliationDetailType(AbstractType): __resource_type__ = "PaymentReconciliationDetail" class PaymentReconciliationProcessNoteType(AbstractType): __resource_type__ = "PaymentReconciliationProcessNote" class PeriodType(AbstractType): __resource_type__ = "Period" class PersonType(AbstractType): __resource_type__ = "Person" class PersonLinkType(AbstractType): __resource_type__ = "PersonLink" class PlanDefinitionType(AbstractType): __resource_type__ = "PlanDefinition" class PlanDefinitionActionType(AbstractType): __resource_type__ = "PlanDefinitionAction" class PlanDefinitionActionConditionType(AbstractType): __resource_type__ = "PlanDefinitionActionCondition" class PlanDefinitionActionDynamicValueType(AbstractType): __resource_type__ = "PlanDefinitionActionDynamicValue" class PlanDefinitionActionParticipantType(AbstractType): __resource_type__ = "PlanDefinitionActionParticipant" class PlanDefinitionActionRelatedActionType(AbstractType): __resource_type__ = "PlanDefinitionActionRelatedAction" class PlanDefinitionGoalType(AbstractType): __resource_type__ = "PlanDefinitionGoal" class PlanDefinitionGoalTargetType(AbstractType): __resource_type__ = "PlanDefinitionGoalTarget" class PopulationType(AbstractType): __resource_type__ = "Population" class PractitionerType(AbstractType): __resource_type__ = "Practitioner" class PractitionerQualificationType(AbstractType): __resource_type__ = "PractitionerQualification" class PractitionerRoleType(AbstractType): __resource_type__ = "PractitionerRole" class PractitionerRoleAvailableTimeType(AbstractType): __resource_type__ = "PractitionerRoleAvailableTime" class PractitionerRoleNotAvailableType(AbstractType): __resource_type__ = "PractitionerRoleNotAvailable" class ProcedureType(AbstractType): __resource_type__ = "Procedure" class ProcedureFocalDeviceType(AbstractType): __resource_type__ = "ProcedureFocalDevice" class ProcedurePerformerType(AbstractType): __resource_type__ = "ProcedurePerformer" class ProdCharacteristicType(AbstractType): __resource_type__ = "ProdCharacteristic" class ProductShelfLifeType(AbstractType): __resource_type__ = "ProductShelfLife" class ProvenanceType(AbstractType): __resource_type__ = "Provenance" class ProvenanceAgentType(AbstractType): __resource_type__ = "ProvenanceAgent" class ProvenanceEntityType(AbstractType): __resource_type__ = "ProvenanceEntity" class QuantityType(AbstractType): __resource_type__ = "Quantity" class QuestionnaireType(AbstractType): __resource_type__ = "Questionnaire" class QuestionnaireItemType(AbstractType): __resource_type__ = "QuestionnaireItem" class QuestionnaireItemAnswerOptionType(AbstractType): __resource_type__ = "QuestionnaireItemAnswerOption" class QuestionnaireItemEnableWhenType(AbstractType): __resource_type__ = "QuestionnaireItemEnableWhen" class QuestionnaireItemInitialType(AbstractType): __resource_type__ = "QuestionnaireItemInitial" class QuestionnaireResponseType(AbstractType): __resource_type__ = "QuestionnaireResponse" class QuestionnaireResponseItemType(AbstractType): __resource_type__ = "QuestionnaireResponseItem" class QuestionnaireResponseItemAnswerType(AbstractType): __resource_type__ = "QuestionnaireResponseItemAnswer" class RangeType(AbstractType): __resource_type__ = "Range" class RatioType(AbstractType): __resource_type__ = "Ratio" class ReferenceType(AbstractType): __resource_type__ = "Reference" class RelatedArtifactType(AbstractType): __resource_type__ = "RelatedArtifact" class RelatedPersonType(AbstractType): __resource_type__ = "RelatedPerson" class RelatedPersonCommunicationType(AbstractType): __resource_type__ = "RelatedPersonCommunication" class RequestGroupType(AbstractType): __resource_type__ = "RequestGroup" class RequestGroupActionType(AbstractType): __resource_type__ = "RequestGroupAction" class RequestGroupActionConditionType(AbstractType): __resource_type__ = "RequestGroupActionCondition" class RequestGroupActionRelatedActionType(AbstractType): __resource_type__ = "RequestGroupActionRelatedAction" class ResearchDefinitionType(AbstractType): __resource_type__ = "ResearchDefinition" class ResearchElementDefinitionType(AbstractType): __resource_type__ = "ResearchElementDefinition" class ResearchElementDefinitionCharacteristicType(AbstractType): __resource_type__ = "ResearchElementDefinitionCharacteristic" class ResearchStudyType(AbstractType): __resource_type__ = "ResearchStudy" class ResearchStudyArmType(AbstractType): __resource_type__ = "ResearchStudyArm" class ResearchStudyObjectiveType(AbstractType): __resource_type__ = "ResearchStudyObjective" class ResearchSubjectType(AbstractType): __resource_type__ = "ResearchSubject" class RiskAssessmentType(AbstractType): __resource_type__ = "RiskAssessment" class RiskAssessmentPredictionType(AbstractType): __resource_type__ = "RiskAssessmentPrediction" class RiskEvidenceSynthesisType(AbstractType): __resource_type__ = "RiskEvidenceSynthesis" class RiskEvidenceSynthesisCertaintyType(AbstractType): __resource_type__ = "RiskEvidenceSynthesisCertainty" class RiskEvidenceSynthesisCertaintyCertaintySubcomponentType(AbstractType): __resource_type__ = "RiskEvidenceSynthesisCertaintyCertaintySubcomponent" class RiskEvidenceSynthesisRiskEstimateType(AbstractType): __resource_type__ = "RiskEvidenceSynthesisRiskEstimate" class RiskEvidenceSynthesisRiskEstimatePrecisionEstimateType(AbstractType): __resource_type__ = "RiskEvidenceSynthesisRiskEstimatePrecisionEstimate" class RiskEvidenceSynthesisSampleSizeType(AbstractType): __resource_type__ = "RiskEvidenceSynthesisSampleSize" class SampledDataType(AbstractType): __resource_type__ = "SampledData" class ScheduleType(AbstractType): __resource_type__ = "Schedule" class SearchParameterType(AbstractType): __resource_type__ = "SearchParameter" class SearchParameterComponentType(AbstractType): __resource_type__ = "SearchParameterComponent" class ServiceRequestType(AbstractType): __resource_type__ = "ServiceRequest" class SignatureType(AbstractType): __resource_type__ = "Signature" class SlotType(AbstractType): __resource_type__ = "Slot" class SpecimenType(AbstractType): __resource_type__ = "Specimen" class SpecimenCollectionType(AbstractType): __resource_type__ = "SpecimenCollection" class SpecimenContainerType(AbstractType): __resource_type__ = "SpecimenContainer" class SpecimenDefinitionType(AbstractType): __resource_type__ = "SpecimenDefinition" class SpecimenDefinitionTypeTestedType(AbstractType): __resource_type__ = "SpecimenDefinitionTypeTested" class SpecimenDefinitionTypeTestedContainerType(AbstractType): __resource_type__ = "SpecimenDefinitionTypeTestedContainer" class SpecimenDefinitionTypeTestedContainerAdditiveType(AbstractType): __resource_type__ = "SpecimenDefinitionTypeTestedContainerAdditive" class SpecimenDefinitionTypeTestedHandlingType(AbstractType): __resource_type__ = "SpecimenDefinitionTypeTestedHandling" class SpecimenProcessingType(AbstractType): __resource_type__ = "SpecimenProcessing" class StructureDefinitionType(AbstractType): __resource_type__ = "StructureDefinition" class StructureDefinitionContextType(AbstractType): __resource_type__ = "StructureDefinitionContext" class StructureDefinitionDifferentialType(AbstractType): __resource_type__ = "StructureDefinitionDifferential" class StructureDefinitionMappingType(AbstractType): __resource_type__ = "StructureDefinitionMapping" class StructureDefinitionSnapshotType(AbstractType): __resource_type__ = "StructureDefinitionSnapshot" class StructureMapType(AbstractType): __resource_type__ = "StructureMap" class StructureMapGroupType(AbstractType): __resource_type__ = "StructureMapGroup" class StructureMapGroupInputType(AbstractType): __resource_type__ = "StructureMapGroupInput" class StructureMapGroupRuleType(AbstractType): __resource_type__ = "StructureMapGroupRule" class StructureMapGroupRuleDependentType(AbstractType): __resource_type__ = "StructureMapGroupRuleDependent" class StructureMapGroupRuleSourceType(AbstractType): __resource_type__ = "StructureMapGroupRuleSource" class StructureMapGroupRuleTargetType(AbstractType): __resource_type__ = "StructureMapGroupRuleTarget" class StructureMapGroupRuleTargetParameterType(AbstractType): __resource_type__ = "StructureMapGroupRuleTargetParameter" class StructureMapStructureType(AbstractType): __resource_type__ = "StructureMapStructure" class SubscriptionType(AbstractType): __resource_type__ = "Subscription" class SubscriptionChannelType(AbstractType): __resource_type__ = "SubscriptionChannel" class SubstanceType(AbstractType): __resource_type__ = "Substance" class SubstanceAmountType(AbstractType): __resource_type__ = "SubstanceAmount" class SubstanceAmountReferenceRangeType(AbstractType): __resource_type__ = "SubstanceAmountReferenceRange" class SubstanceIngredientType(AbstractType): __resource_type__ = "SubstanceIngredient" class SubstanceInstanceType(AbstractType): __resource_type__ = "SubstanceInstance" class SubstanceNucleicAcidType(AbstractType): __resource_type__ = "SubstanceNucleicAcid" class SubstanceNucleicAcidSubunitType(AbstractType): __resource_type__ = "SubstanceNucleicAcidSubunit" class SubstanceNucleicAcidSubunitLinkageType(AbstractType): __resource_type__ = "SubstanceNucleicAcidSubunitLinkage" class SubstanceNucleicAcidSubunitSugarType(AbstractType): __resource_type__ = "SubstanceNucleicAcidSubunitSugar" class SubstancePolymerType(AbstractType): __resource_type__ = "SubstancePolymer" class SubstancePolymerMonomerSetType(AbstractType): __resource_type__ = "SubstancePolymerMonomerSet" class SubstancePolymerMonomerSetStartingMaterialType(AbstractType): __resource_type__ = "SubstancePolymerMonomerSetStartingMaterial" class SubstancePolymerRepeatType(AbstractType): __resource_type__ = "SubstancePolymerRepeat" class SubstancePolymerRepeatRepeatUnitType(AbstractType): __resource_type__ = "SubstancePolymerRepeatRepeatUnit" class SubstancePolymerRepeatRepeatUnitDegreeOfPolymerisationType(AbstractType): __resource_type__ = "SubstancePolymerRepeatRepeatUnitDegreeOfPolymerisation" class SubstancePolymerRepeatRepeatUnitStructuralRepresentationType(AbstractType): __resource_type__ = "SubstancePolymerRepeatRepeatUnitStructuralRepresentation" class SubstanceProteinType(AbstractType): __resource_type__ = "SubstanceProtein" class SubstanceProteinSubunitType(AbstractType): __resource_type__ = "SubstanceProteinSubunit" class SubstanceReferenceInformationType(AbstractType): __resource_type__ = "SubstanceReferenceInformation" class SubstanceReferenceInformationClassificationType(AbstractType): __resource_type__ = "SubstanceReferenceInformationClassification" class SubstanceReferenceInformationGeneType(AbstractType): __resource_type__ = "SubstanceReferenceInformationGene" class SubstanceReferenceInformationGeneElementType(AbstractType): __resource_type__ = "SubstanceReferenceInformationGeneElement" class SubstanceReferenceInformationTargetType(AbstractType): __resource_type__ = "SubstanceReferenceInformationTarget" class SubstanceSourceMaterialType(AbstractType): __resource_type__ = "SubstanceSourceMaterial" class SubstanceSourceMaterialFractionDescriptionType(AbstractType): __resource_type__ = "SubstanceSourceMaterialFractionDescription" class SubstanceSourceMaterialOrganismType(AbstractType): __resource_type__ = "SubstanceSourceMaterialOrganism" class SubstanceSourceMaterialOrganismAuthorType(AbstractType): __resource_type__ = "SubstanceSourceMaterialOrganismAuthor" class SubstanceSourceMaterialOrganismHybridType(AbstractType): __resource_type__ = "SubstanceSourceMaterialOrganismHybrid" class SubstanceSourceMaterialOrganismOrganismGeneralType(AbstractType): __resource_type__ = "SubstanceSourceMaterialOrganismOrganismGeneral" class SubstanceSourceMaterialPartDescriptionType(AbstractType): __resource_type__ = "SubstanceSourceMaterialPartDescription" class SubstanceSpecificationType(AbstractType): __resource_type__ = "SubstanceSpecification" class SubstanceSpecificationCodeType(AbstractType): __resource_type__ = "SubstanceSpecificationCode" class SubstanceSpecificationMoietyType(AbstractType): __resource_type__ = "SubstanceSpecificationMoiety" class SubstanceSpecificationNameType(AbstractType): __resource_type__ = "SubstanceSpecificationName" class SubstanceSpecificationNameOfficialType(AbstractType): __resource_type__ = "SubstanceSpecificationNameOfficial" class SubstanceSpecificationPropertyType(AbstractType): __resource_type__ = "SubstanceSpecificationProperty" class SubstanceSpecificationRelationshipType(AbstractType): __resource_type__ = "SubstanceSpecificationRelationship" class SubstanceSpecificationStructureType(AbstractType): __resource_type__ = "SubstanceSpecificationStructure" class SubstanceSpecificationStructureIsotopeType(AbstractType): __resource_type__ = "SubstanceSpecificationStructureIsotope" class SubstanceSpecificationStructureIsotopeMolecularWeightType(AbstractType): __resource_type__ = "SubstanceSpecificationStructureIsotopeMolecularWeight" class SubstanceSpecificationStructureRepresentationType(AbstractType): __resource_type__ = "SubstanceSpecificationStructureRepresentation" class SupplyDeliveryType(AbstractType): __resource_type__ = "SupplyDelivery" class SupplyDeliverySuppliedItemType(AbstractType): __resource_type__ = "SupplyDeliverySuppliedItem" class SupplyRequestType(AbstractType): __resource_type__ = "SupplyRequest" class SupplyRequestParameterType(AbstractType): __resource_type__ = "SupplyRequestParameter" class TaskType(AbstractType): __resource_type__ = "Task" class TaskInputType(AbstractType): __resource_type__ = "TaskInput" class TaskOutputType(AbstractType): __resource_type__ = "TaskOutput" class TaskRestrictionType(AbstractType): __resource_type__ = "TaskRestriction" class TerminologyCapabilitiesType(AbstractType): __resource_type__ = "TerminologyCapabilities" class TerminologyCapabilitiesClosureType(AbstractType): __resource_type__ = "TerminologyCapabilitiesClosure" class TerminologyCapabilitiesCodeSystemType(AbstractType): __resource_type__ = "TerminologyCapabilitiesCodeSystem" class TerminologyCapabilitiesCodeSystemVersionType(AbstractType): __resource_type__ = "TerminologyCapabilitiesCodeSystemVersion" class TerminologyCapabilitiesCodeSystemVersionFilterType(AbstractType): __resource_type__ = "TerminologyCapabilitiesCodeSystemVersionFilter" class TerminologyCapabilitiesExpansionType(AbstractType): __resource_type__ = "TerminologyCapabilitiesExpansion" class TerminologyCapabilitiesExpansionParameterType(AbstractType): __resource_type__ = "TerminologyCapabilitiesExpansionParameter" class TerminologyCapabilitiesImplementationType(AbstractType): __resource_type__ = "TerminologyCapabilitiesImplementation" class TerminologyCapabilitiesSoftwareType(AbstractType): __resource_type__ = "TerminologyCapabilitiesSoftware" class TerminologyCapabilitiesTranslationType(AbstractType): __resource_type__ = "TerminologyCapabilitiesTranslation" class TerminologyCapabilitiesValidateCodeType(AbstractType): __resource_type__ = "TerminologyCapabilitiesValidateCode" class TestReportType(AbstractType): __resource_type__ = "TestReport" class TestReportParticipantType(AbstractType): __resource_type__ = "TestReportParticipant" class TestReportSetupType(AbstractType): __resource_type__ = "TestReportSetup" class TestReportSetupActionType(AbstractType): __resource_type__ = "TestReportSetupAction" class TestReportSetupActionAssertType(AbstractType): __resource_type__ = "TestReportSetupActionAssert" class TestReportSetupActionOperationType(AbstractType): __resource_type__ = "TestReportSetupActionOperation" class TestReportTeardownType(AbstractType): __resource_type__ = "TestReportTeardown" class TestReportTeardownActionType(AbstractType): __resource_type__ = "TestReportTeardownAction" class TestReportTestType(AbstractType): __resource_type__ = "TestReportTest" class TestReportTestActionType(AbstractType): __resource_type__ = "TestReportTestAction" class TestScriptType(AbstractType): __resource_type__ = "TestScript" class TestScriptDestinationType(AbstractType): __resource_type__ = "TestScriptDestination" class TestScriptFixtureType(AbstractType): __resource_type__ = "TestScriptFixture" class TestScriptMetadataType(AbstractType): __resource_type__ = "TestScriptMetadata" class TestScriptMetadataCapabilityType(AbstractType): __resource_type__ = "TestScriptMetadataCapability" class TestScriptMetadataLinkType(AbstractType): __resource_type__ = "TestScriptMetadataLink" class TestScriptOriginType(AbstractType): __resource_type__ = "TestScriptOrigin" class TestScriptSetupType(AbstractType): __resource_type__ = "TestScriptSetup" class TestScriptSetupActionType(AbstractType): __resource_type__ = "TestScriptSetupAction" class TestScriptSetupActionAssertType(AbstractType): __resource_type__ = "TestScriptSetupActionAssert" class TestScriptSetupActionOperationType(AbstractType): __resource_type__ = "TestScriptSetupActionOperation" class TestScriptSetupActionOperationRequestHeaderType(AbstractType): __resource_type__ = "TestScriptSetupActionOperationRequestHeader" class TestScriptTeardownType(AbstractType): __resource_type__ = "TestScriptTeardown" class TestScriptTeardownActionType(AbstractType): __resource_type__ = "TestScriptTeardownAction" class TestScriptTestType(AbstractType): __resource_type__ = "TestScriptTest" class TestScriptTestActionType(AbstractType): __resource_type__ = "TestScriptTestAction" class TestScriptVariableType(AbstractType): __resource_type__ = "TestScriptVariable" class TimingType(AbstractType): __resource_type__ = "Timing" class TimingRepeatType(AbstractType): __resource_type__ = "TimingRepeat" class TriggerDefinitionType(AbstractType): __resource_type__ = "TriggerDefinition" class UsageContextType(AbstractType): __resource_type__ = "UsageContext" class ValueSetType(AbstractType): __resource_type__ = "ValueSet" class ValueSetComposeType(AbstractType): __resource_type__ = "ValueSetCompose" class ValueSetComposeIncludeType(AbstractType): __resource_type__ = "ValueSetComposeInclude" class ValueSetComposeIncludeConceptType(AbstractType): __resource_type__ = "ValueSetComposeIncludeConcept" class ValueSetComposeIncludeConceptDesignationType(AbstractType): __resource_type__ = "ValueSetComposeIncludeConceptDesignation" class ValueSetComposeIncludeFilterType(AbstractType): __resource_type__ = "ValueSetComposeIncludeFilter" class ValueSetExpansionType(AbstractType): __resource_type__ = "ValueSetExpansion" class ValueSetExpansionContainsType(AbstractType): __resource_type__ = "ValueSetExpansionContains" class ValueSetExpansionParameterType(AbstractType): __resource_type__ = "ValueSetExpansionParameter" class VerificationResultType(AbstractType): __resource_type__ = "VerificationResult" class VerificationResultAttestationType(AbstractType): __resource_type__ = "VerificationResultAttestation" class VerificationResultPrimarySourceType(AbstractType): __resource_type__ = "VerificationResultPrimarySource" class VerificationResultValidatorType(AbstractType): __resource_type__ = "VerificationResultValidator" class VisionPrescriptionType(AbstractType): __resource_type__ = "VisionPrescription" class VisionPrescriptionLensSpecificationType(AbstractType): __resource_type__ = "VisionPrescriptionLensSpecification" class VisionPrescriptionLensSpecificationPrismType(AbstractType): __resource_type__ = "VisionPrescriptionLensSpecificationPrism" __all__ = [ "Boolean", "String", "Base64Binary", "Code", "Id", "Decimal", "Integer", "UnsignedInt", "PositiveInt", "Uri", "Oid", "Uuid", "Canonical", "Url", "Markdown", "Xhtml", "Date", "DateTime", "Instant", "Time", "FHIRPrimitiveExtensionType", "ElementType", "ResourceType", "AccountType", "AccountCoverageType", "AccountGuarantorType", "ActivityDefinitionType", "ActivityDefinitionDynamicValueType", "ActivityDefinitionParticipantType", "AddressType", "AdverseEventType", "AdverseEventSuspectEntityType", "AdverseEventSuspectEntityCausalityType", "AgeType", "AllergyIntoleranceType", "AllergyIntoleranceReactionType", "AnnotationType", "AppointmentType", "AppointmentParticipantType", "AppointmentResponseType", "AttachmentType", "AuditEventType", "AuditEventAgentType", "AuditEventAgentNetworkType", "AuditEventEntityType", "AuditEventEntityDetailType", "AuditEventSourceType", "BackboneElementType", "BasicType", "BinaryType", "BiologicallyDerivedProductType", "BiologicallyDerivedProductCollectionType", "BiologicallyDerivedProductManipulationType", "BiologicallyDerivedProductProcessingType", "BiologicallyDerivedProductStorageType", "BodyStructureType", "BundleType", "BundleEntryType", "BundleEntryRequestType", "BundleEntryResponseType", "BundleEntrySearchType", "BundleLinkType", "CapabilityStatementType", "CapabilityStatementDocumentType", "CapabilityStatementImplementationType", "CapabilityStatementMessagingType", "CapabilityStatementMessagingEndpointType", "CapabilityStatementMessagingSupportedMessageType", "CapabilityStatementRestType", "CapabilityStatementRestInteractionType", "CapabilityStatementRestResourceType", "CapabilityStatementRestResourceInteractionType", "CapabilityStatementRestResourceOperationType", "CapabilityStatementRestResourceSearchParamType", "CapabilityStatementRestSecurityType", "CapabilityStatementSoftwareType", "CarePlanType", "CarePlanActivityType", "CarePlanActivityDetailType", "CareTeamType", "CareTeamParticipantType", "CatalogEntryType", "CatalogEntryRelatedEntryType", "ChargeItemType", "ChargeItemDefinitionType", "ChargeItemDefinitionApplicabilityType", "ChargeItemDefinitionPropertyGroupType", "ChargeItemDefinitionPropertyGroupPriceComponentType", "ChargeItemPerformerType", "ClaimType", "ClaimAccidentType", "ClaimCareTeamType", "ClaimDiagnosisType", "ClaimInsuranceType", "ClaimItemType", "ClaimItemDetailType", "ClaimItemDetailSubDetailType", "ClaimPayeeType", "ClaimProcedureType", "ClaimRelatedType", "ClaimResponseType", "ClaimResponseAddItemType", "ClaimResponseAddItemDetailType", "ClaimResponseAddItemDetailSubDetailType", "ClaimResponseErrorType", "ClaimResponseInsuranceType", "ClaimResponseItemType", "ClaimResponseItemAdjudicationType", "ClaimResponseItemDetailType", "ClaimResponseItemDetailSubDetailType", "ClaimResponsePaymentType", "ClaimResponseProcessNoteType", "ClaimResponseTotalType", "ClaimSupportingInfoType", "ClinicalImpressionType", "ClinicalImpressionFindingType", "ClinicalImpressionInvestigationType", "CodeSystemType", "CodeSystemConceptType", "CodeSystemConceptDesignationType", "CodeSystemConceptPropertyType", "CodeSystemFilterType", "CodeSystemPropertyType", "CodeableConceptType", "CodingType", "CommunicationType", "CommunicationPayloadType", "CommunicationRequestType", "CommunicationRequestPayloadType", "CompartmentDefinitionType", "CompartmentDefinitionResourceType", "CompositionType", "CompositionAttesterType", "CompositionEventType", "CompositionRelatesToType", "CompositionSectionType", "ConceptMapType", "ConceptMapGroupType", "ConceptMapGroupElementType", "ConceptMapGroupElementTargetType", "ConceptMapGroupElementTargetDependsOnType", "ConceptMapGroupUnmappedType", "ConditionType", "ConditionEvidenceType", "ConditionStageType", "ConsentType", "ConsentPolicyType", "ConsentProvisionType", "ConsentProvisionActorType", "ConsentProvisionDataType", "ConsentVerificationType", "ContactDetailType", "ContactPointType", "ContractType", "ContractContentDefinitionType", "ContractFriendlyType", "ContractLegalType", "ContractRuleType", "ContractSignerType", "ContractTermType", "ContractTermActionType", "ContractTermActionSubjectType", "ContractTermAssetType", "ContractTermAssetContextType", "ContractTermAssetValuedItemType", "ContractTermOfferType", "ContractTermOfferAnswerType", "ContractTermOfferPartyType", "ContractTermSecurityLabelType", "ContributorType", "CountType", "CoverageType", "CoverageClassType", "CoverageCostToBeneficiaryType", "CoverageCostToBeneficiaryExceptionType", "CoverageEligibilityRequestType", "CoverageEligibilityRequestInsuranceType", "CoverageEligibilityRequestItemType", "CoverageEligibilityRequestItemDiagnosisType", "CoverageEligibilityRequestSupportingInfoType", "CoverageEligibilityResponseType", "CoverageEligibilityResponseErrorType", "CoverageEligibilityResponseInsuranceType", "CoverageEligibilityResponseInsuranceItemType", "CoverageEligibilityResponseInsuranceItemBenefitType", "DataRequirementType", "DataRequirementCodeFilterType", "DataRequirementDateFilterType", "DataRequirementSortType", "DetectedIssueType", "DetectedIssueEvidenceType", "DetectedIssueMitigationType", "DeviceType", "DeviceDefinitionType", "DeviceDefinitionCapabilityType", "DeviceDefinitionDeviceNameType", "DeviceDefinitionMaterialType", "DeviceDefinitionPropertyType", "DeviceDefinitionSpecializationType", "DeviceDefinitionUdiDeviceIdentifierType", "DeviceDeviceNameType", "DeviceMetricType", "DeviceMetricCalibrationType", "DevicePropertyType", "DeviceRequestType", "DeviceRequestParameterType", "DeviceSpecializationType", "DeviceUdiCarrierType", "DeviceUseStatementType", "DeviceVersionType", "DiagnosticReportType", "DiagnosticReportMediaType", "DistanceType", "DocumentManifestType", "DocumentManifestRelatedType", "DocumentReferenceType", "DocumentReferenceContentType", "DocumentReferenceContextType", "DocumentReferenceRelatesToType", "DomainResourceType", "DosageType", "DosageDoseAndRateType", "DurationType", "EffectEvidenceSynthesisType", "EffectEvidenceSynthesisCertaintyType", "EffectEvidenceSynthesisCertaintyCertaintySubcomponentType", "EffectEvidenceSynthesisEffectEstimateType", "EffectEvidenceSynthesisEffectEstimatePrecisionEstimateType", "EffectEvidenceSynthesisResultsByExposureType", "EffectEvidenceSynthesisSampleSizeType", "ElementDefinitionType", "ElementDefinitionBaseType", "ElementDefinitionBindingType", "ElementDefinitionConstraintType", "ElementDefinitionExampleType", "ElementDefinitionMappingType", "ElementDefinitionSlicingType", "ElementDefinitionSlicingDiscriminatorType", "ElementDefinitionTypeType", "EncounterType", "EncounterClassHistoryType", "EncounterDiagnosisType", "EncounterHospitalizationType", "EncounterLocationType", "EncounterParticipantType", "EncounterStatusHistoryType", "EndpointType", "EnrollmentRequestType", "EnrollmentResponseType", "EpisodeOfCareType", "EpisodeOfCareDiagnosisType", "EpisodeOfCareStatusHistoryType", "EventDefinitionType", "EvidenceType", "EvidenceVariableType", "EvidenceVariableCharacteristicType", "ExampleScenarioType", "ExampleScenarioActorType", "ExampleScenarioInstanceType", "ExampleScenarioInstanceContainedInstanceType", "ExampleScenarioInstanceVersionType", "ExampleScenarioProcessType", "ExampleScenarioProcessStepType", "ExampleScenarioProcessStepAlternativeType", "ExampleScenarioProcessStepOperationType", "ExplanationOfBenefitType", "ExplanationOfBenefitAccidentType", "ExplanationOfBenefitAddItemType", "ExplanationOfBenefitAddItemDetailType", "ExplanationOfBenefitAddItemDetailSubDetailType", "ExplanationOfBenefitBenefitBalanceType", "ExplanationOfBenefitBenefitBalanceFinancialType", "ExplanationOfBenefitCareTeamType", "ExplanationOfBenefitDiagnosisType", "ExplanationOfBenefitInsuranceType", "ExplanationOfBenefitItemType", "ExplanationOfBenefitItemAdjudicationType", "ExplanationOfBenefitItemDetailType", "ExplanationOfBenefitItemDetailSubDetailType", "ExplanationOfBenefitPayeeType", "ExplanationOfBenefitPaymentType", "ExplanationOfBenefitProcedureType", "ExplanationOfBenefitProcessNoteType", "ExplanationOfBenefitRelatedType", "ExplanationOfBenefitSupportingInfoType", "ExplanationOfBenefitTotalType", "ExpressionType", "ExtensionType", "FamilyMemberHistoryType", "FamilyMemberHistoryConditionType", "FlagType", "GoalType", "GoalTargetType", "GraphDefinitionType", "GraphDefinitionLinkType", "GraphDefinitionLinkTargetType", "GraphDefinitionLinkTargetCompartmentType", "GroupType", "GroupCharacteristicType", "GroupMemberType", "GuidanceResponseType", "HealthcareServiceType", "HealthcareServiceAvailableTimeType", "HealthcareServiceEligibilityType", "HealthcareServiceNotAvailableType", "HumanNameType", "IdentifierType", "ImagingStudyType", "ImagingStudySeriesType", "ImagingStudySeriesInstanceType", "ImagingStudySeriesPerformerType", "ImmunizationType", "ImmunizationEducationType", "ImmunizationEvaluationType", "ImmunizationPerformerType", "ImmunizationProtocolAppliedType", "ImmunizationReactionType", "ImmunizationRecommendationType", "ImmunizationRecommendationRecommendationType", "ImmunizationRecommendationRecommendationDateCriterionType", "ImplementationGuideType", "ImplementationGuideDefinitionType", "ImplementationGuideDefinitionGroupingType", "ImplementationGuideDefinitionPageType", "ImplementationGuideDefinitionParameterType", "ImplementationGuideDefinitionResourceType", "ImplementationGuideDefinitionTemplateType", "ImplementationGuideDependsOnType", "ImplementationGuideGlobalType", "ImplementationGuideManifestType", "ImplementationGuideManifestPageType", "ImplementationGuideManifestResourceType", "InsurancePlanType", "InsurancePlanContactType", "InsurancePlanCoverageType", "InsurancePlanCoverageBenefitType", "InsurancePlanCoverageBenefitLimitType", "InsurancePlanPlanType", "InsurancePlanPlanGeneralCostType", "InsurancePlanPlanSpecificCostType", "InsurancePlanPlanSpecificCostBenefitType", "InsurancePlanPlanSpecificCostBenefitCostType", "InvoiceType", "InvoiceLineItemType", "InvoiceLineItemPriceComponentType", "InvoiceParticipantType", "LibraryType", "LinkageType", "LinkageItemType", "ListType", "ListEntryType", "LocationType", "LocationHoursOfOperationType", "LocationPositionType", "MarketingStatusType", "MeasureType", "MeasureGroupType", "MeasureGroupPopulationType", "MeasureGroupStratifierType", "MeasureGroupStratifierComponentType", "MeasureReportType", "MeasureReportGroupType", "MeasureReportGroupPopulationType", "MeasureReportGroupStratifierType", "MeasureReportGroupStratifierStratumType", "MeasureReportGroupStratifierStratumComponentType", "MeasureReportGroupStratifierStratumPopulationType", "MeasureSupplementalDataType", "MediaType", "MedicationType", "MedicationAdministrationType", "MedicationAdministrationDosageType", "MedicationAdministrationPerformerType", "MedicationBatchType", "MedicationDispenseType", "MedicationDispensePerformerType", "MedicationDispenseSubstitutionType", "MedicationIngredientType", "MedicationKnowledgeType", "MedicationKnowledgeAdministrationGuidelinesType", "MedicationKnowledgeAdministrationGuidelinesDosageType", "MedicationKnowledgeAdministrationGuidelinesPatientCharacteristicsType", "MedicationKnowledgeCostType", "MedicationKnowledgeDrugCharacteristicType", "MedicationKnowledgeIngredientType", "MedicationKnowledgeKineticsType", "MedicationKnowledgeMedicineClassificationType", "MedicationKnowledgeMonitoringProgramType", "MedicationKnowledgeMonographType", "MedicationKnowledgePackagingType", "MedicationKnowledgeRegulatoryType", "MedicationKnowledgeRegulatoryMaxDispenseType", "MedicationKnowledgeRegulatoryScheduleType", "MedicationKnowledgeRegulatorySubstitutionType", "MedicationKnowledgeRelatedMedicationKnowledgeType", "MedicationRequestType", "MedicationRequestDispenseRequestType", "MedicationRequestDispenseRequestInitialFillType", "MedicationRequestSubstitutionType", "MedicationStatementType", "MedicinalProductType", "MedicinalProductAuthorizationType", "MedicinalProductAuthorizationJurisdictionalAuthorizationType", "MedicinalProductAuthorizationProcedureType", "MedicinalProductContraindicationType", "MedicinalProductContraindicationOtherTherapyType", "MedicinalProductIndicationType", "MedicinalProductIndicationOtherTherapyType", "MedicinalProductIngredientType", "MedicinalProductIngredientSpecifiedSubstanceType", "MedicinalProductIngredientSpecifiedSubstanceStrengthType", "MedicinalProductIngredientSpecifiedSubstanceStrengthReferenceStrengthType", "MedicinalProductIngredientSubstanceType", "MedicinalProductInteractionType", "MedicinalProductInteractionInteractantType", "MedicinalProductManufacturedType", "MedicinalProductManufacturingBusinessOperationType", "MedicinalProductNameType", "MedicinalProductNameCountryLanguageType", "MedicinalProductNameNamePartType", "MedicinalProductPackagedType", "MedicinalProductPackagedBatchIdentifierType", "MedicinalProductPackagedPackageItemType", "MedicinalProductPharmaceuticalType", "MedicinalProductPharmaceuticalCharacteristicsType", "MedicinalProductPharmaceuticalRouteOfAdministrationType", "MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpeciesType", "MedicinalProductPharmaceuticalRouteOfAdministrationTargetSpeciesWithdrawalPeriodType", "MedicinalProductSpecialDesignationType", "MedicinalProductUndesirableEffectType", "MessageDefinitionType", "MessageDefinitionAllowedResponseType", "MessageDefinitionFocusType", "MessageHeaderType", "MessageHeaderDestinationType", "MessageHeaderResponseType", "MessageHeaderSourceType", "MetaType", "MetadataResourceType", "MolecularSequenceType", "MolecularSequenceQualityType", "MolecularSequenceQualityRocType", "MolecularSequenceReferenceSeqType", "MolecularSequenceRepositoryType", "MolecularSequenceStructureVariantType", "MolecularSequenceStructureVariantInnerType", "MolecularSequenceStructureVariantOuterType", "MolecularSequenceVariantType", "MoneyType", "NamingSystemType", "NamingSystemUniqueIdType", "NarrativeType", "NutritionOrderType", "NutritionOrderEnteralFormulaType", "NutritionOrderEnteralFormulaAdministrationType", "NutritionOrderOralDietType", "NutritionOrderOralDietNutrientType", "NutritionOrderOralDietTextureType", "NutritionOrderSupplementType", "ObservationType", "ObservationComponentType", "ObservationDefinitionType", "ObservationDefinitionQualifiedIntervalType", "ObservationDefinitionQuantitativeDetailsType", "ObservationReferenceRangeType", "OperationDefinitionType", "OperationDefinitionOverloadType", "OperationDefinitionParameterType", "OperationDefinitionParameterBindingType", "OperationDefinitionParameterReferencedFromType", "OperationOutcomeType", "OperationOutcomeIssueType", "OrganizationType", "OrganizationAffiliationType", "OrganizationContactType", "ParameterDefinitionType", "ParametersType", "ParametersParameterType", "PatientType", "PatientCommunicationType", "PatientContactType", "PatientLinkType", "PaymentNoticeType", "PaymentReconciliationType", "PaymentReconciliationDetailType", "PaymentReconciliationProcessNoteType", "PeriodType", "PersonType", "PersonLinkType", "PlanDefinitionType", "PlanDefinitionActionType", "PlanDefinitionActionConditionType", "PlanDefinitionActionDynamicValueType", "PlanDefinitionActionParticipantType", "PlanDefinitionActionRelatedActionType", "PlanDefinitionGoalType", "PlanDefinitionGoalTargetType", "PopulationType", "PractitionerType", "PractitionerQualificationType", "PractitionerRoleType", "PractitionerRoleAvailableTimeType", "PractitionerRoleNotAvailableType", "ProcedureType", "ProcedureFocalDeviceType", "ProcedurePerformerType", "ProdCharacteristicType", "ProductShelfLifeType", "ProvenanceType", "ProvenanceAgentType", "ProvenanceEntityType", "QuantityType", "QuestionnaireType", "QuestionnaireItemType", "QuestionnaireItemAnswerOptionType", "QuestionnaireItemEnableWhenType", "QuestionnaireItemInitialType", "QuestionnaireResponseType", "QuestionnaireResponseItemType", "QuestionnaireResponseItemAnswerType", "RangeType", "RatioType", "ReferenceType", "RelatedArtifactType", "RelatedPersonType", "RelatedPersonCommunicationType", "RequestGroupType", "RequestGroupActionType", "RequestGroupActionConditionType", "RequestGroupActionRelatedActionType", "ResearchDefinitionType", "ResearchElementDefinitionType", "ResearchElementDefinitionCharacteristicType", "ResearchStudyType", "ResearchStudyArmType", "ResearchStudyObjectiveType", "ResearchSubjectType", "RiskAssessmentType", "RiskAssessmentPredictionType", "RiskEvidenceSynthesisType", "RiskEvidenceSynthesisCertaintyType", "RiskEvidenceSynthesisCertaintyCertaintySubcomponentType", "RiskEvidenceSynthesisRiskEstimateType", "RiskEvidenceSynthesisRiskEstimatePrecisionEstimateType", "RiskEvidenceSynthesisSampleSizeType", "SampledDataType", "ScheduleType", "SearchParameterType", "SearchParameterComponentType", "ServiceRequestType", "SignatureType", "SlotType", "SpecimenType", "SpecimenCollectionType", "SpecimenContainerType", "SpecimenDefinitionType", "SpecimenDefinitionTypeTestedType", "SpecimenDefinitionTypeTestedContainerType", "SpecimenDefinitionTypeTestedContainerAdditiveType", "SpecimenDefinitionTypeTestedHandlingType", "SpecimenProcessingType", "StructureDefinitionType", "StructureDefinitionContextType", "StructureDefinitionDifferentialType", "StructureDefinitionMappingType", "StructureDefinitionSnapshotType", "StructureMapType", "StructureMapGroupType", "StructureMapGroupInputType", "StructureMapGroupRuleType", "StructureMapGroupRuleDependentType", "StructureMapGroupRuleSourceType", "StructureMapGroupRuleTargetType", "StructureMapGroupRuleTargetParameterType", "StructureMapStructureType", "SubscriptionType", "SubscriptionChannelType", "SubstanceType", "SubstanceAmountType", "SubstanceAmountReferenceRangeType", "SubstanceIngredientType", "SubstanceInstanceType", "SubstanceNucleicAcidType", "SubstanceNucleicAcidSubunitType", "SubstanceNucleicAcidSubunitLinkageType", "SubstanceNucleicAcidSubunitSugarType", "SubstancePolymerType", "SubstancePolymerMonomerSetType", "SubstancePolymerMonomerSetStartingMaterialType", "SubstancePolymerRepeatType", "SubstancePolymerRepeatRepeatUnitType", "SubstancePolymerRepeatRepeatUnitDegreeOfPolymerisationType", "SubstancePolymerRepeatRepeatUnitStructuralRepresentationType", "SubstanceProteinType", "SubstanceProteinSubunitType", "SubstanceReferenceInformationType", "SubstanceReferenceInformationClassificationType", "SubstanceReferenceInformationGeneType", "SubstanceReferenceInformationGeneElementType", "SubstanceReferenceInformationTargetType", "SubstanceSourceMaterialType", "SubstanceSourceMaterialFractionDescriptionType", "SubstanceSourceMaterialOrganismType", "SubstanceSourceMaterialOrganismAuthorType", "SubstanceSourceMaterialOrganismHybridType", "SubstanceSourceMaterialOrganismOrganismGeneralType", "SubstanceSourceMaterialPartDescriptionType", "SubstanceSpecificationType", "SubstanceSpecificationCodeType", "SubstanceSpecificationMoietyType", "SubstanceSpecificationNameType", "SubstanceSpecificationNameOfficialType", "SubstanceSpecificationPropertyType", "SubstanceSpecificationRelationshipType", "SubstanceSpecificationStructureType", "SubstanceSpecificationStructureIsotopeType", "SubstanceSpecificationStructureIsotopeMolecularWeightType", "SubstanceSpecificationStructureRepresentationType", "SupplyDeliveryType", "SupplyDeliverySuppliedItemType", "SupplyRequestType", "SupplyRequestParameterType", "TaskType", "TaskInputType", "TaskOutputType", "TaskRestrictionType", "TerminologyCapabilitiesType", "TerminologyCapabilitiesClosureType", "TerminologyCapabilitiesCodeSystemType", "TerminologyCapabilitiesCodeSystemVersionType", "TerminologyCapabilitiesCodeSystemVersionFilterType", "TerminologyCapabilitiesExpansionType", "TerminologyCapabilitiesExpansionParameterType", "TerminologyCapabilitiesImplementationType", "TerminologyCapabilitiesSoftwareType", "TerminologyCapabilitiesTranslationType", "TerminologyCapabilitiesValidateCodeType", "TestReportType", "TestReportParticipantType", "TestReportSetupType", "TestReportSetupActionType", "TestReportSetupActionAssertType", "TestReportSetupActionOperationType", "TestReportTeardownType", "TestReportTeardownActionType", "TestReportTestType", "TestReportTestActionType", "TestScriptType", "TestScriptDestinationType", "TestScriptFixtureType", "TestScriptMetadataType", "TestScriptMetadataCapabilityType", "TestScriptMetadataLinkType", "TestScriptOriginType", "TestScriptSetupType", "TestScriptSetupActionType", "TestScriptSetupActionAssertType", "TestScriptSetupActionOperationType", "TestScriptSetupActionOperationRequestHeaderType", "TestScriptTeardownType", "TestScriptTeardownActionType", "TestScriptTestType", "TestScriptTestActionType", "TestScriptVariableType", "TimingType", "TimingRepeatType", "TriggerDefinitionType", "UsageContextType", "ValueSetType", "ValueSetComposeType", "ValueSetComposeIncludeType", "ValueSetComposeIncludeConceptType", "ValueSetComposeIncludeConceptDesignationType", "ValueSetComposeIncludeFilterType", "ValueSetExpansionType", "ValueSetExpansionContainsType", "ValueSetExpansionParameterType", "VerificationResultType", "VerificationResultAttestationType", "VerificationResultPrimarySourceType", "VerificationResultValidatorType", "VisionPrescriptionType", "VisionPrescriptionLensSpecificationType", "VisionPrescriptionLensSpecificationPrismType", ]
27.914115
119
0.789266
4353b06a0ce18b0487c06aeaaa36b25441f0234f
3,087
py
Python
SGD2.py
parrt/gmdh
77d54c35ed22e007098c6105066b6bae18ed364a
[ "BSD-2-Clause" ]
3
2017-02-09T14:34:49.000Z
2020-03-23T15:50:08.000Z
SGD2.py
parrt/gmdh
77d54c35ed22e007098c6105066b6bae18ed364a
[ "BSD-2-Clause" ]
1
2017-05-23T06:08:12.000Z
2017-05-23T17:42:10.000Z
SGD2.py
parrt/gmdh
77d54c35ed22e007098c6105066b6bae18ed364a
[ "BSD-2-Clause" ]
1
2019-11-20T20:56:31.000Z
2019-11-20T20:56:31.000Z
import numpy as np import gzip, cPickle from numpy import linalg as LA from collections import Counter from decimal import Decimal import random from network2 import Network2, init_index_map # Load the dataset f = gzip.open('/Users/parrt/data/mnist.pkl.gz', 'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() images = train_set[0] labels = train_set[1] img = images[1] # use just a few images N = 1 # N = len(images) X = images[0:N] Y = labels[0:N] # Make one-hot-vectors # Y = [onehot(lab) for lab in labels[0:N]] print "N =",N # init_index_map([784,15,10]) init_index_map([784,15,10]) pos = Network2([784,15,10]) num_parameters = pos.size() print "num parameters =", num_parameters precision = 0.000000000001 eta = 40 steps = 0 h = 0.00001 cost = 1e20 NPARTIALS = 1 MINIBATCH = 30 print "NPARTIALS =", NPARTIALS print "MINIBATCH =", MINIBATCH print "eta =", eta def compute_finite_diff(pos, d): save = pos.get_parameter(d) pos.add_to_parameter(d, h) right = pos.cost(samples, sample_labels) pos.set_parameter(d, save) pos.add_to_parameter(d, -h) left = pos.cost(samples, sample_labels) pos.set_parameter(d, save) # restore position vector return (right - left) / (2 * h) while True: steps += 1 prevcost = cost # what is cost at current location? # indexes = np.random.randint(0,len(X),size=MINIBATCH) # samples = X[indexes] # sample_labels = labels[indexes] samples = X sample_labels = labels # compute finite difference for one parameter # (f(pos+h) - f(pos-h)) / 2h save = [0]*NPARTIALS d = [0]*NPARTIALS for i in range(NPARTIALS): d[i] = random.randint(0,num_parameters-1) # randint() is inclusive on both ends save[i] = pos.get_parameter(d[i]) finite_diff = compute_finite_diff(pos,d[i]) # move position in one direction pos.add_to_parameter(d[i], -eta * finite_diff) # delta = Decimal(cost) - Decimal(prevcost) cost = pos.cost(samples, sample_labels) # what is new cost if steps % 2000 == 0: correct = pos.fitness(X,Y) print "%d: cost = %3.5f, correct %d, weight norm neuron 0,0: %3.3f" % \ (steps, cost, correct, LA.norm(pos.weights[0][0])) # print "%d: cost = %3.5f, weight norm neuron 0,0: %3.3f" %\ # (steps,cost,LA.norm(pos.weights[0][0])) if cost > prevcost: lossratio = (cost - prevcost) / prevcost if lossratio > 0.035: # even sigmoid seems to get these weird pop ups in energy so don't let it # print "lossratio by %3.5f" % lossratio for i in range(NPARTIALS): pos.set_parameter(d[i], save[i]) # restore so we can try again # print "resetting to cost %3.5f from pop up %3.5f" % (prevcost,cost) cost = prevcost # reset cost too lest it think it hadn't jumped much next iteration # stop when small change in vertical but not heading down # Sometimes subtraction wipes out precision and we get an actual 0.0 # if delta >= 0 and abs(delta) < precision: # break
30.564356
103
0.646259
1d9c761f3c83798fd6723d0da3f054681695f01a
5,417
py
Python
Environment.py
zhangks93/ASPS
02f1f8cd563cdccea01dedc950fa38c570dc996e
[ "MIT" ]
2
2021-03-26T00:17:44.000Z
2021-08-17T12:23:56.000Z
Environment.py
zhangks93/ASPS
02f1f8cd563cdccea01dedc950fa38c570dc996e
[ "MIT" ]
null
null
null
Environment.py
zhangks93/ASPS
02f1f8cd563cdccea01dedc950fa38c570dc996e
[ "MIT" ]
null
null
null
import influent as If import reactor as Ra import clarifier as Ca import constant import pandas as pd import numpy as np class WWTP(): def __init__(self): self.Influent=If.influent('influent',0,'data/bsm1LT.xlsx') self.A=Ra.bioreactor('Reactor1',0,1000) self.B=Ra.bioreactor('Reactor2',0,1000) self.C=Ra.bioreactor('Reactor3',0,1333) self.D=Ra.bioreactor('Reactor4',0,1333) self.E=Ra.bioreactor('Reactor5',0,1333) self.A.set_comps([30,2.81,1149,82.1,2552,148,449,0.0043,5.37,7.92,1.22,5.28,4.93,3285]) self.B.set_comps([30,1.46,1149,76.4,2553,148,450,0.0000631,3.66,8.34,0.882,5.03,5.08,3282]) self.C.set_comps([30,1.15,1149,64.9,2557,149,450,1.72,6.54,5.55,0.829,4.39,4.67,3278]) self.D.set_comps([30,0.995,1149,55.7,2559,150,451,2.43,9.3,2.97,0.767,3.88,4.29,3274]) self.E.set_comps([30,0.889,1149,49.3,2559,150,452,0.491,10.4,1.73,0.688,3.53,4.13,3270]) self.log_A=pd.DataFrame(columns=['Si','Ss','Xi','Xs','Xbh','Xba','Xp','So','Sno','Snh','Snd','Xnd','Salk','TSS','KLa','Ks','μH','KNO','KOH','bH','ηg','ηh','kh','Kx','μA','KNH','ka','KOA','bA','out_flow_main','out_flow_side']) self.log_B=pd.DataFrame(columns=['Si','Ss','Xi','Xs','Xbh','Xba','Xp','So','Sno','Snh','Snd','Xnd','Salk','TSS','KLa','Ks','μH','KNO','KOH','bH','ηg','ηh','kh','Kx','μA','KNH','ka','KOA','bA','out_flow_main','out_flow_side']) self.log_C=pd.DataFrame(columns=['Si','Ss','Xi','Xs','Xbh','Xba','Xp','So','Sno','Snh','Snd','Xnd','Salk','TSS','KLa','Ks','μH','KNO','KOH','bH','ηg','ηh','kh','Kx','μA','KNH','ka','KOA','bA','out_flow_main','out_flow_side']) self.log_D=pd.DataFrame(columns=['Si','Ss','Xi','Xs','Xbh','Xba','Xp','So','Sno','Snh','Snd','Xnd','Salk','TSS','KLa','Ks','μH','KNO','KOH','bH','ηg','ηh','kh','Kx','μA','KNH','ka','KOA','bA','out_flow_main','out_flow_side']) self.log_E=pd.DataFrame(columns=['Si','Ss','Xi','Xs','Xbh','Xba','Xp','So','Sno','Snh','Snd','Xnd','Salk','TSS','KLa','Ks','μH','KNO','KOH','bH','ηg','ηh','kh','Kx','μA','KNH','ka','KOA','bA','out_flow_main','out_flow_side']) def pipe_connect(self): self.A.add_upstream(self.Influent,'Main') self.B.add_upstream(self.A,'Main') self.C.add_upstream(self.B,'Main') self.D.add_upstream(self.C,'Main') self.E.add_upstream(self.D,'Main') self.E.set_outflow_side(10) self.A.add_upstream(self.E,'Side') def run(self): self.Influent.update_inflow() self.Influent.update_comps() self.Influent.update_outflow_main() self.A.update_inflow(self.Influent) self.A.update_outflow_main() self.B.update_inflow(self.A) self.B.update_outflow_main() self.C.update_inflow(self.B) self.C.update_outflow_main() self.D.update_inflow(self.C) self.D.update_outflow_main() self.E.update_inflow(self.D) self.E.update_outflow_main() self.log_A.loc[self.A.time,0:14]=self.A.get_comps() self.log_A.loc[self.A.time,14:15]=self.A.KLa self.log_A.loc[self.A.time,15:29]=self.A.kin_paras self.log_A.loc[self.A.time,29:30]=self.A.outflow_main self.log_A.loc[self.A.time,30:31]=self.A.outflow_side self.A.biodegrade(self.Influent.temp,self.Influent,self.E) self.log_B.loc[self.B.time,0:14]=self.B.get_comps() self.log_B.loc[self.B.time,14:15]=self.B.KLa self.log_B.loc[self.B.time,15:29]=self.B.kin_paras self.log_B.loc[self.B.time,29:30]=self.B.outflow_main self.log_B.loc[self.B.time,30:31]=self.B.outflow_side self.B.biodegrade(self.Influent.temp,self.A) self.log_C.loc[self.C.time,0:14]=self.C.get_comps() self.log_C.loc[self.C.time,14:15]=self.C.KLa self.log_C.loc[self.C.time,15:29]=self.C.kin_paras self.log_C.loc[self.C.time,29:30]=self.C.outflow_main self.log_C.loc[self.C.time,30:31]=self.C.outflow_side self.C.biodegrade(self.Influent.temp,self.B) self.log_D.loc[self.D.time,0:14]=self.D.get_comps() self.log_D.loc[self.D.time,14:15]=self.D.KLa self.log_D.loc[self.D.time,15:29]=self.D.kin_paras self.log_D.loc[self.D.time,29:30]=self.D.outflow_main self.log_D.loc[self.D.time,30:31]=self.D.outflow_side self.D.biodegrade(self.Influent.temp,self.C) self.log_E.loc[self.E.time,0:14]=self.E.get_comps() self.log_E.loc[self.E.time,14:15]=self.E.KLa self.log_E.loc[self.E.time,15:29]=self.E.kin_paras self.log_E.loc[self.E.time,29:30]=self.E.outflow_main self.log_E.loc[self.E.time,30:31]=self.E.outflow_side self.E.biodegrade(self.Influent.temp,self.D) self.Influent.time=self.Influent.time+1 def control(op_para): #op_para=[KLa,outflow_side] self.E.set_KLa(op_para[0]) self.E.set_outflow_side(op_para[1]) A=WWTP() A.pipe_connect() for t in range (700): A.run() writer = pd.ExcelWriter('log.xlsx') A.log_A.to_excel(writer,'log_A') A.log_B.to_excel(writer,'log_B') A.log_C.to_excel(writer,'log_C') A.log_D.to_excel(writer,'log_D') A.log_E.to_excel(writer,'log_E') writer.save()
55.845361
234
0.602363
b3b78fe7db9285dc545bf40341c632ed871c1545
565
py
Python
makegbs.py
DevEd2/HokeyPokey-GB
b7d08b8c3eadc5f19519bfb2961cda7eacf11c6f
[ "MIT" ]
null
null
null
makegbs.py
DevEd2/HokeyPokey-GB
b7d08b8c3eadc5f19519bfb2961cda7eacf11c6f
[ "MIT" ]
null
null
null
makegbs.py
DevEd2/HokeyPokey-GB
b7d08b8c3eadc5f19519bfb2961cda7eacf11c6f
[ "MIT" ]
null
null
null
# makegbs.py - create GBS file from GBSHeader.bin and DevSound.gb # open files HdrFile = open("GBSHeader.bin", "rb") # GBS header ROMFile = open("HokeyPokey.gbc", "rb") # demo ROM OutFile = open("HokeyPokey.gbs", "wb") # output file # copy header OutFile.write(HdrFile.read(0x70)) # write GBS header # copy DevSound + song data ROMFile.seek(0x4000) # relevant data starts at offset 0x4000 OutFile.write(ROMFile.read(0x4000)) # write song data # close files HdrFile.close() ROMFile.close() OutFile.close()
29.736842
80
0.656637
dd00e200c627f7efdffc0413b9f09a77924f50b4
81,841
py
Python
src/transformers/models/bert/modeling_bert.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
1
2022-03-16T13:02:15.000Z
2022-03-16T13:02:15.000Z
src/transformers/models/bert/modeling_bert.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
2
2022-03-14T10:13:16.000Z
2022-03-14T11:50:27.000Z
src/transformers/models/bert/modeling_bert.py
bhavika/transformers
65cf33e7e53cd46313f3655f274b3f6ca0fd679d
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" import math import os import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", "bert-base-chinese", "bert-base-german-cased", "bert-large-uncased-whole-word-masking", "bert-large-cased-whole-word-masking", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-base-cased-finetuned-mrpc", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertAttention(config, position_embedding_type="absolute") self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BertEncoder): module.gradient_checkpointing = value @dataclass class BertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForPreTraining.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING ) class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> config = BertConfig.from_pretrained("bert-base-cased") >>> config.is_decoder = True >>> model = BertLMHeadModel.from_pretrained("bert-base-cased", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class BertForNextSentencePrediction(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForNextSentencePrediction >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class BertForMultipleChoice(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class BertForTokenClassification(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class BertForQuestionAnswering(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
43.602025
202
0.665632
46220da617b5efd4483962670eb50a9016d06156
35,967
py
Python
Mask-vs-No-Mask-Detection/Model/utils/general.py
talkshrey/ML-Reserve
62fe72ba7e7513be52955aff7a6c12d5fe44d757
[ "MIT" ]
12
2021-09-11T09:44:23.000Z
2022-03-12T09:16:53.000Z
Mask-vs-No-Mask-Detection/Model/utils/general.py
talkshrey/ML-Reserve
62fe72ba7e7513be52955aff7a6c12d5fe44d757
[ "MIT" ]
54
2021-09-11T09:48:07.000Z
2022-01-31T05:38:12.000Z
Mask-vs-No-Mask-Detection/Model/utils/general.py
talkshrey/ML-Reserve
62fe72ba7e7513be52955aff7a6c12d5fe44d757
[ "MIT" ]
39
2021-09-11T09:44:26.000Z
2022-03-12T09:16:55.000Z
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ General utils """ import contextlib import glob import logging import math import os import platform import random import re import signal import time import urllib from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from subprocess import check_output from zipfile import ZipFile import cv2 import numpy as np import pandas as pd import pkg_resources as pkg import torch import torchvision import yaml from utils.downloads import gsutil_getsize from utils.metrics import box_iou, fitness # Settings torch.set_printoptions(linewidth=320, precision=5, profile="long") np.set_printoptions( linewidth=320, formatter={"float_kind": "{:11.5g}".format} ) # format short g, %precision=5 pd.options.display.max_columns = 10 cv2.setNumThreads( 0 ) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ["NUMEXPR_MAX_THREADS"] = str(min(os.cpu_count(), 8)) # NumExpr max threads FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory class Profile(contextlib.ContextDecorator): # Usage: @Profile() decorator or 'with Profile():' context manager def __enter__(self): self.start = time.time() def __exit__(self, type, value, traceback): print(f"Profile results: {time.time() - self.start:.5f}s") class Timeout(contextlib.ContextDecorator): # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager def __init__(self, seconds, *, timeout_msg="", suppress_timeout_errors=True): self.seconds = int(seconds) self.timeout_message = timeout_msg self.suppress = bool(suppress_timeout_errors) def _timeout_handler(self, signum, frame): raise TimeoutError(self.timeout_message) def __enter__(self): signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM signal.alarm(self.seconds) # start countdown for SIGALRM to be raised def __exit__(self, exc_type, exc_val, exc_tb): signal.alarm(0) # Cancel SIGALRM if it's scheduled if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError return True def try_except(func): # try-except function. Usage: @try_except decorator def handler(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: print(e) return handler def methods(instance): # Get class/instance methods return [ f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__") ] def set_logging(rank=-1, verbose=True): logging.basicConfig( format="%(message)s", level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN, ) def print_args(name, opt): # Print argparser arguments print(colorstr(f"{name}: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items())) def init_seeds(seed=0): # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible import torch.backends.cudnn as cudnn random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) def get_latest_run(search_dir="."): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f"{search_dir}/**/last*.pt", recursive=True) return max(last_list, key=os.path.getctime) if last_list else "" def user_config_dir(dir="Ultralytics", env_var="YOLOV5_CONFIG_DIR"): # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. env = os.getenv(env_var) if env: path = Path(env) # use environment variable else: cfg = { "Windows": "AppData/Roaming", "Linux": ".config", "Darwin": "Library/Application Support", } # 3 OS dirs path = Path.home() / cfg.get(platform.system(), "") # OS-specific config dir path = ( path if is_writeable(path) else Path("/tmp") ) / dir # GCP and AWS lambda fix, only /tmp is writeable path.mkdir(exist_ok=True) # make if required return path def is_writeable(dir, test=False): # Return True if directory has write permissions, test opening a file with write permissions if test=True if test: # method 1 file = Path(dir) / "tmp.txt" try: with open(file, "w"): # open file with write permissions pass file.unlink() # remove file return True except IOError: return False else: # method 2 return os.access(dir, os.R_OK) # possible issues on Windows def is_docker(): # Is environment a Docker container? return Path("/workspace").exists() # or Path('/.dockerenv').exists() def is_colab(): # Is environment a Google Colab instance? try: import google.colab return True except ImportError: return False def is_pip(): # Is file in a pip package? return "site-packages" in Path(__file__).resolve().parts def is_ascii(s=""): # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) s = str(s) # convert list, tuple, None, etc. to str return len(s.encode().decode("ascii", "ignore")) == len(s) def is_chinese(s="人工智能"): # Is string composed of any Chinese characters? return re.search("[\u4e00-\u9fff]", s) def emojis(str=""): # Return platform-dependent emoji-safe version of string return ( str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str ) def file_size(path): # Return file/dir size (MB) path = Path(path) if path.is_file(): return path.stat().st_size / 1e6 elif path.is_dir(): return sum(f.stat().st_size for f in path.glob("**/*") if f.is_file()) / 1e6 else: return 0.0 def check_online(): # Check internet connectivity import socket try: socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility return True except OSError: return False @try_except def check_git_status(): # Recommend 'git pull' if code is out of date msg = ", for updates see https://github.com/ultralytics/yolov5" print(colorstr("github: "), end="") assert Path(".git").exists(), "skipping check (not a git repository)" + msg assert not is_docker(), "skipping check (Docker image)" + msg assert check_online(), "skipping check (offline)" + msg cmd = "git fetch && git config --get remote.origin.url" url = ( check_output(cmd, shell=True, timeout=5).decode().strip().rstrip(".git") ) # git fetch branch = ( check_output("git rev-parse --abbrev-ref HEAD", shell=True).decode().strip() ) # checked out n = int( check_output(f"git rev-list {branch}..origin/master --count", shell=True) ) # commits behind if n > 0: s = f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update." else: s = f"up to date with {url} ✅" print(emojis(s)) # emoji-safe def check_python(minimum="3.6.2"): # Check current python version vs. required python version check_version(platform.python_version(), minimum, name="Python ") def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False): # Check version vs. required version current, minimum = (pkg.parse_version(x) for x in (current, minimum)) result = (current == minimum) if pinned else (current >= minimum) assert ( result ), f"{name}{minimum} required by YOLOv5, but {name}{current} is currently installed" @try_except def check_requirements( requirements=ROOT / "requirements.txt", exclude=(), install=True ): # Check installed dependencies meet requirements (pass *.txt file or list of packages) prefix = colorstr("red", "bold", "requirements:") check_python() # check python version if isinstance(requirements, (str, Path)): # requirements.txt file file = Path(requirements) assert file.exists(), f"{prefix} {file.resolve()} not found, check failed." requirements = [ f"{x.name}{x.specifier}" for x in pkg.parse_requirements(file.open()) if x.name not in exclude ] else: # list or tuple of packages requirements = [x for x in requirements if x not in exclude] n = 0 # number of packages updates for r in requirements: try: pkg.require(r) except Exception as e: # DistributionNotFound or VersionConflict if requirements not met s = f"{prefix} {r} not found and is required by YOLOv5" if install: print(f"{s}, attempting auto-update...") try: assert check_online(), f"'pip install {r}' skipped (offline)" print(check_output(f"pip install '{r}'", shell=True).decode()) n += 1 except Exception as e: print(f"{prefix} {e}") else: print(f"{s}. Please install and rerun your command.") if n: # if packages updated source = file.resolve() if "file" in locals() else requirements s = ( f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" ) print(emojis(s)) def check_img_size(imgsz, s=32, floor=0): # Verify image size is a multiple of stride s in each dimension if isinstance(imgsz, int): # integer i.e. img_size=640 new_size = max(make_divisible(imgsz, int(s)), floor) else: # list i.e. img_size=[640, 480] new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] if new_size != imgsz: print( f"WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}" ) return new_size def check_imshow(): # Check if environment supports image displays try: assert not is_docker(), "cv2.imshow() is disabled in Docker environments" assert not is_colab(), "cv2.imshow() is disabled in Google Colab environments" cv2.imshow("test", np.zeros((1, 1, 3))) cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) return True except Exception as e: print( f"WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}" ) return False def check_suffix(file="yolov5s.pt", suffix=(".pt",), msg=""): # Check file(s) for acceptable suffix if file and suffix: if isinstance(suffix, str): suffix = [suffix] for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower() # file suffix if len(s): assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" def check_yaml(file, suffix=(".yaml", ".yml")): # Search/download YAML file (if necessary) and return path, checking suffix return check_file(file, suffix) def check_file(file, suffix=""): # Search/download file (if necessary) and return path check_suffix(file, suffix) # optional file = str(file) # convert to str() if Path(file).is_file() or file == "": # exists return file elif file.startswith(("http:/", "https:/")): # download url = str(Path(file)).replace(":/", "://") # Pathlib turns :// -> :/ file = Path( urllib.parse.unquote(file).split("?")[0] ).name # '%2F' to '/', split https://url.com/file.txt?auth print(f"Downloading {url} to {file}...") torch.hub.download_url_to_file(url, file) assert ( Path(file).exists() and Path(file).stat().st_size > 0 ), f"File download failed: {url}" # check return file else: # search files = [] for d in "data", "models", "utils": # search directories files.extend( glob.glob(str(ROOT / d / "**" / file), recursive=True) ) # find file assert len(files), f"File not found: {file}" # assert file was found assert ( len(files) == 1 ), f"Multiple files match '{file}', specify exact path: {files}" # assert unique return files[0] # return file def check_dataset(data, autodownload=True): # Download and/or unzip dataset if not found locally # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip # Download (optional) extract_dir = "" if isinstance(data, (str, Path)) and str(data).endswith( ".zip" ): # i.e. gs://bucket/dir/coco128.zip download( data, dir="../datasets", unzip=True, delete=False, curl=False, threads=1 ) data = next((Path("../datasets") / Path(data).stem).rglob("*.yaml")) extract_dir, autodownload = data.parent, False # Read yaml (optional) if isinstance(data, (str, Path)): with open(data, errors="ignore") as f: data = yaml.safe_load(f) # dictionary # Parse yaml path = extract_dir or Path(data.get("path") or "") # optional 'path' default to '.' for k in "train", "val", "test": if data.get(k): # prepend path data[k] = ( str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] ) assert "nc" in data, "Dataset 'nc' key missing." if "names" not in data: data["names"] = [ f"class{i}" for i in range(data["nc"]) ] # assign class names if missing train, val, test, s = [data.get(x) for x in ("train", "val", "test", "download")] if val: val = [ Path(x).resolve() for x in (val if isinstance(val, list) else [val]) ] # val path if not all(x.exists() for x in val): print( "\nWARNING: Dataset not found, nonexistent paths: %s" % [str(x) for x in val if not x.exists()] ) if s and autodownload: # download script root = ( path.parent if "path" in data else ".." ) # unzip directory i.e. '../' if s.startswith("http") and s.endswith(".zip"): # URL f = Path(s).name # filename print(f"Downloading {s} to {f}...") torch.hub.download_url_to_file(s, f) Path(root).mkdir(parents=True, exist_ok=True) # create root ZipFile(f).extractall(path=root) # unzip Path(f).unlink() # remove zip r = None # success elif s.startswith("bash "): # bash script print(f"Running {s} ...") r = os.system(s) else: # python script r = exec(s, {"yaml": data}) # return None print( f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n" ) else: raise Exception("Dataset not found.") return data # dictionary def url2file(url): # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt url = str(Path(url)).replace(":/", "://") # Pathlib turns :// -> :/ file = Path(urllib.parse.unquote(url)).name.split("?")[ 0 ] # '%2F' to '/', split https://url.com/file.txt?auth return file def download(url, dir=".", unzip=True, delete=True, curl=False, threads=1): # Multi-threaded file download and unzip function, used in data.yaml for autodownload def download_one(url, dir): # Download 1 file f = dir / Path(url).name # filename if Path(url).is_file(): # exists in current path Path(url).rename(f) # move to dir elif not f.exists(): print(f"Downloading {url} to {f}...") if curl: os.system( f"curl -L '{url}' -o '{f}' --retry 9 -C -" ) # curl download, retry and resume on fail else: torch.hub.download_url_to_file(url, f, progress=True) # torch download if unzip and f.suffix in (".zip", ".gz"): print(f"Unzipping {f}...") if f.suffix == ".zip": ZipFile(f).extractall(path=dir) # unzip elif f.suffix == ".gz": os.system(f"tar xfz {f} --directory {f.parent}") # unzip if delete: f.unlink() # remove zip dir = Path(dir) dir.mkdir(parents=True, exist_ok=True) # make directory if threads > 1: pool = ThreadPool(threads) pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded pool.close() pool.join() else: for u in [url] if isinstance(url, (str, Path)) else url: download_one(u, dir) def make_divisible(x, divisor): # Returns x evenly divisible by divisor return math.ceil(x / divisor) * divisor def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) def one_cycle(y1=0.0, y2=1.0, steps=100): # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = ( input if len(input) > 1 else ("blue", "bold", input[0]) ) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m", } return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurrences per class # Prepend gridpoint count (for uCE training) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class_weights and image contents class_counts = np.array( [np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels] ) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] return x def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y return y def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right if clip: clip_coords(x, (h - eps, w - eps)) # warning: inplace clip y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center y[:, 2] = (x[:, 2] - x[:, 0]) / w # width y[:, 3] = (x[:, 3] - x[:, 1]) / h # height return y def xyn2xy(x, w=640, h=640, padw=0, padh=0): # Convert normalized segments into pixel segments, shape (n,2) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * x[:, 0] + padw # top left x y[:, 1] = h * x[:, 1] + padh # top left y return y def segment2box(segment, width=640, height=640): # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = ( x[inside], y[inside], ) return ( np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) ) # xyxy def segments2boxes(segments): # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): # Up-sample an (n,2) segment for i, s in enumerate(segments): x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = ( np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]) .reshape(2, -1) .T ) # segment xy return segments def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min( img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1] ) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, ( img1_shape[0] - img0_shape[0] * gain ) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, shape): # Clip bounding xyxy bounding boxes to image shape (height, width) if isinstance(boxes, torch.Tensor): # faster individually boxes[:, 0].clamp_(0, shape[1]) # x1 boxes[:, 1].clamp_(0, shape[0]) # y1 boxes[:, 2].clamp_(0, shape[1]) # x2 boxes[:, 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 def non_max_suppression( prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300, ): """Runs Non-Maximum Suppression (NMS) on inference results Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Checks assert ( 0 <= conf_thres <= 1 ), f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0" assert ( 0 <= iou_thres <= 1 ), f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0" # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # Cat apriori labels if autolabelling if labels and len(labels[xi]): l = labels[xi] v = torch.zeros((len(l), nc + 5), device=x.device) v[:, :4] = l[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum( 1, keepdim=True ) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] if (time.time() - t) > time_limit: print(f"WARNING: NMS time limit {time_limit}s exceeded") break # time limit exceeded return output def strip_optimizer( f="best.pt", s="" ): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's' x = torch.load(f, map_location=torch.device("cpu")) if x.get("ema"): x["model"] = x["ema"] # replace model with ema for k in "optimizer", "training_results", "wandb_id", "ema", "updates": # keys x[k] = None x["epoch"] = -1 x["model"].half() # to FP16 for p in x["model"].parameters(): p.requires_grad = False torch.save(x, s or f) mb = os.path.getsize(s or f) / 1e6 # filesize print( f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB" ) def print_mutation(results, hyp, save_dir, bucket): evolve_csv, results_csv, evolve_yaml = ( save_dir / "evolve.csv", save_dir / "results.csv", save_dir / "hyp_evolve.yaml", ) keys = ( "metrics/precision", "metrics/recall", "metrics/mAP_0.5", "metrics/mAP_0.5:0.95", "val/box_loss", "val/obj_loss", "val/cls_loss", ) + tuple( hyp.keys() ) # [results + hyps] keys = tuple(x.strip() for x in keys) vals = results + tuple(hyp.values()) n = len(keys) # Download (optional) if bucket: url = f"gs://{bucket}/evolve.csv" if gsutil_getsize(url) > ( os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0 ): os.system( f"gsutil cp {url} {save_dir}" ) # download evolve.csv if larger than local # Log to evolve.csv s = ( "" if evolve_csv.exists() else (("%20s," * n % keys).rstrip(",") + "\n") ) # add header with open(evolve_csv, "a") as f: f.write(s + ("%20.5g," * n % vals).rstrip(",") + "\n") # Print to screen print(colorstr("evolve: ") + ", ".join(f"{x.strip():>20s}" for x in keys)) print(colorstr("evolve: ") + ", ".join(f"{x:20.5g}" for x in vals), end="\n\n\n") # Save yaml with open(evolve_yaml, "w") as f: data = pd.read_csv(evolve_csv) data = data.rename(columns=lambda x: x.strip()) # strip keys i = np.argmax(fitness(data.values[:, :7])) # f.write( "# YOLOv5 Hyperparameter Evolution Results\n" + f"# Best generation: {i}\n" + f"# Last generation: {len(data)}\n" + "# " + ", ".join(f"{x.strip():>20s}" for x in keys[:7]) + "\n" + "# " + ", ".join(f"{x:>20.5g}" for x in data.values[i, :7]) + "\n\n" ) yaml.safe_dump(hyp, f, sort_keys=False) if bucket: os.system(f"gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}") # upload def apply_classifier(x, model, img, im0): # Apply a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]) : int(a[3]), int(a[0]) : int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('example%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax( 1 ) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def save_one_box( xyxy, im, file="image.jpg", gain=1.02, pad=10, square=False, BGR=False, save=True ): # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop xyxy = torch.tensor(xyxy).view(-1, 4) b = xyxy2xywh(xyxy) # boxes if square: b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad xyxy = xywh2xyxy(b).long() clip_coords(xyxy, im.shape) crop = im[ int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1), ] if save: cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix(".jpg")), crop) return crop def increment_path(path, exist_ok=False, sep="", mkdir=False): # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. path = Path(path) # os-agnostic if path.exists() and not exist_ok: suffix = path.suffix path = path.with_suffix("") dirs = glob.glob(f"{path}{sep}*") # similar paths matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] i = [int(m.groups()[0]) for m in matches if m] # indices n = max(i) + 1 if i else 2 # increment number path = Path(f"{path}{sep}{n}{suffix}") # update path dir = path if path.suffix == "" else path.parent # directory if not dir.exists() and mkdir: dir.mkdir(parents=True, exist_ok=True) # make directory return path
34.418182
118
0.557622
64157e58daca1bb191592aa5abfd32c7d05d764a
511
py
Python
tuiuiu/tuiuiucore/migrations/0035_page_last_published_at.py
caputomarcos/tuiuiu.io
d8fb57cf95487e7fe1454b2130ef18acc916da46
[ "BSD-3-Clause" ]
3
2019-08-08T09:09:35.000Z
2020-12-15T18:04:17.000Z
tuiuiu/tuiuiucore/migrations/0035_page_last_published_at.py
caputomarcos/tuiuiu.io
d8fb57cf95487e7fe1454b2130ef18acc916da46
[ "BSD-3-Clause" ]
null
null
null
tuiuiu/tuiuiucore/migrations/0035_page_last_published_at.py
caputomarcos/tuiuiu.io
d8fb57cf95487e7fe1454b2130ef18acc916da46
[ "BSD-3-Clause" ]
1
2017-09-09T20:10:40.000Z
2017-09-09T20:10:40.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-22 13:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tuiuiucore', '0034_page_live_revision'), ] operations = [ migrations.AddField( model_name='page', name='last_published_at', field=models.DateTimeField(editable=False, null=True, verbose_name='last published at'), ), ]
24.333333
100
0.641879
8c7b819b66d9a9e85664a3dc91130f2a15bb620e
2,719
py
Python
tests/parser/functions/rlp/conftest.py
Dexaran/viper
9c1992f56c2b78416f981452f0457449f7670d1a
[ "MIT" ]
1
2018-07-26T00:56:30.000Z
2018-07-26T00:56:30.000Z
tests/parser/functions/rlp/conftest.py
Dexaran/viper
9c1992f56c2b78416f981452f0457449f7670d1a
[ "MIT" ]
null
null
null
tests/parser/functions/rlp/conftest.py
Dexaran/viper
9c1992f56c2b78416f981452f0457449f7670d1a
[ "MIT" ]
2
2018-04-06T02:55:43.000Z
2018-07-26T00:56:36.000Z
import pytest import rlp from viper import utils as viper_utils from ethereum import transactions, messages @pytest.fixture def inject_tx(utils, chain): def inject_tx(txhex): tx = rlp.decode(utils.decode_hex(txhex[2:]), transactions.Transaction) chain.head_state.set_balance(tx.sender, tx.startgas * tx.gasprice) chain.chain.state.set_balance(tx.sender, tx.startgas * tx.gasprice) messages.apply_transaction(chain.head_state, tx) chain.block.transactions.append(tx) contract_address = utils.sha3(rlp.encode([tx.sender, 0]))[12:] assert chain.head_state.get_code(contract_address) chain.mine(1) chain.head_state.gas_limit = 10**9 return contract_address return inject_tx @pytest.fixture def fake_tx(inject_tx): def fake_tx(): tx = "0xf9035b808506fc23ac0083045ef88080b903486103305660006109ac5260006109cc527f0100000000000000000000000000000000000000000000000000000000000000600035046109ec526000610a0c5260006109005260c06109ec51101515585760f86109ec51101561006e5760bf6109ec510336141558576001610a0c52610098565b60013560f76109ec51036020035260005160f66109ec510301361415585760f66109ec5103610a0c525b61010060016064818352015b36610a0c511015156100b557610291565b7f0100000000000000000000000000000000000000000000000000000000000000610a0c5135046109ec526109cc5160206109ac51026040015260016109ac51016109ac5260806109ec51101561013b5760016109cc5161044001526001610a0c516109cc5161046001376001610a0c5101610a0c5260216109cc51016109cc52610281565b60b86109ec5110156101d15760806109ec51036109cc51610440015260806109ec51036001610a0c51016109cc51610460013760816109ec5114156101ac5760807f01000000000000000000000000000000000000000000000000000000000000006001610a0c5101350410151558575b607f6109ec5103610a0c5101610a0c5260606109ec51036109cc51016109cc52610280565b60c06109ec51101561027d576001610a0c51013560b76109ec510360200352600051610a2c526038610a2c5110157f01000000000000000000000000000000000000000000000000000000000000006001610a0c5101350402155857610a2c516109cc516104400152610a2c5160b66109ec5103610a0c51016109cc516104600137610a2c5160b66109ec5103610a0c510101610a0c526020610a2c51016109cc51016109cc5261027f565bfe5b5b5b81516001018083528114156100a4575b5050601f6109ac511115155857602060206109ac5102016109005260206109005103610a0c5261010060016064818352015b6000610a0c5112156102d45761030a565b61090051610a0c516040015101610a0c51610900516104400301526020610a0c5103610a0c5281516001018083528114156102c3575b50506109cc516109005101610420526109cc5161090051016109005161044003f35b61000461033003610004600039610004610330036000f31b2d4f" address = inject_tx(tx) assert viper_utils.bytes_to_int(address) == viper_utils.RLP_DECODER_ADDRESS return address return fake_tx
93.758621
1,741
0.891136
9de3ba250eb73333853b29db3482e48a696b5b19
7,205
py
Python
implementations-from-scratch/neuralnetwork/neuralnetwork_test.py
georgepachitariu/machine-learning-portfolio
47452524b0f2ccf409ba12e6a717157e569d62e1
[ "Apache-2.0" ]
2
2020-11-25T11:27:34.000Z
2021-01-19T17:42:47.000Z
implementations-from-scratch/neuralnetwork/neuralnetwork_test.py
georgepachitariu/machine-learning-portfolio
47452524b0f2ccf409ba12e6a717157e569d62e1
[ "Apache-2.0" ]
null
null
null
implementations-from-scratch/neuralnetwork/neuralnetwork_test.py
georgepachitariu/machine-learning-portfolio
47452524b0f2ccf409ba12e6a717157e569d62e1
[ "Apache-2.0" ]
null
null
null
import neuralnetwork as nn import unittest import numpy as np import warnings class SigmoidTests(unittest.TestCase): def test_sigmoid(self): assert 0 < nn.Sigmoid.compute(np.array([-10])) < 0.0001 assert nn.Sigmoid.compute(np.array([0])) == 0.5 assert 0.9999 < nn.Sigmoid.compute(np.array([10])) < 1 def test_sigmoid_derivative(self): assert 0 < nn.Sigmoid.derivative(np.array([-10])) < 0.0001 assert nn.Sigmoid.derivative(np.array([0])) == 0.25 assert 0 < nn.Sigmoid.derivative(np.array([10])) < 0.0001 class FeedForward(unittest.TestCase): def test_feedforward_2nodes_bias_nextlayer_2nodes_4records(self): x = np.array([[1, 2, 2], [1, 0, 1], [1, -1, 0], [1, 1, 0]]) weights = np.array([[-1.0, 1.0, 0], [-0.1, 0.1, 0]]) result = nn.FeedForward.multiply_weights_and_input(x, weights) assert np.array_equal(result, np.array([[1, 0.1], [-1, -0.1], [-2, -0.2], [0, -0]])) class CostTests(unittest.TestCase): def test_compute_regularization_term_2layers_weights(self): reg_value = 0.5 nr_examples = 2 weights = [np.array([[0.1, 0.2], [0.1, 0.2]]), np.array([[0.1, 0.2]])] result = nn.Cost.get_regularization_term(reg_value, nr_examples, weights) assert abs(result - 0.01875) < 0.0001 def test_compute_cost_correct_1(self): predicted = np.array([[0.99999]]) y = np.array([[1]]) assert nn.Cost.compute(predicted, y, [], 0) < 0.0001 def test_compute_cost_correct_2(self): predicted = np.array([[0.00001]]) y = np.array([[0]]) assert nn.Cost.compute(predicted, y, [], 0) < 0.0001 def test_compute_cost_incorrect_1(self): predicted = np.array([[0.00001]]) y = np.array([[1]]) assert nn.Cost.compute(predicted, y, [], 0) > 1 def test_compute_cost_incorrect_2(self): predicted = np.array([[0.99999]]) y = np.array([[0]]) assert nn.Cost.compute(predicted, y, [], 0) > 1 def test_compute_cost_2records_2nodes_and_regularization(self): predicted = np.array([[0.99999], [0.00001]]) y = np.array([[0],[0]]) weights = [np.array([[0.1, 0.2], [0.1, 0.2]])] # -1/2 * (1*ln(1-0.99999)+1*ln(1-0.00001)) + # 0.5 / (2*2)*(0.01*2+0.04*2) = 5.7689 result = nn.Cost.compute(predicted, y, weights, 0.5) assert 0 < result - 5.7689 < 0.0001 def test_cost_compute_derivative_3nodes_4examples(self): # next layer has 2 nodes backpropagation_error=np.array([[0.5, 0.2], [0.5, 0.2], [0.5, 0.2], [0.5, 0.2]]) activation_values=np.array([[0.2, 0.2, 0.2], [0.3, 0.3, 0.3], [0.4, 0.4, 0.4], [0.5, 0.5, 0.5]]) reg_value=0.2 layer_weights=np.array([[0.5, 0.5, 0.5], [0.1, 0.1, 0.1]]) # (0.5, 0.5, 0.5, 0.5) (0.2, 0.2, 0.2) (0.175, 0.175, 0.175) # 1/4 * (0.2, 0.2, 0.2, 0.2) * (0.3, 0.3, 0.3) = (0.07, 0.07, 0.07 ) # (0.4, 0.4, 0.4) # (0.5, 0.5, 0.5) # (0.175, 0.175, 0.175) (0.5, 0.5, 0.5) (0.275, 0.275, 0.275) # (0.07, 0.07, 0.07 ) + 0.2 * (0.1, 0.1, 0.1) = (0.09, 0.09, 0.09 ) result = nn.Cost.derivative(backpropagation_error, activation_values, layer_weights, reg_value) assert np.allclose(result, np.array([[0.275, 0.275, 0.275], [0.09, 0.09, 0.09]])) class BackpropagationTests(unittest.TestCase): def test_compute_error_final_layer_3labels_2records(self): feedforward_mult = np.array([[0.1, 0.1, 0.9], [0.4, 0.4, 0.5]]) training_y = np.array([[0, 0, 1], [0, 1, 0]]) result=nn.BackPropagation.compute_last_layer_error_deriv(feedforward_mult, training_y) result=np.around(result, decimals=1) assert np.array_equal(result, np.array([[0.1, 0.1, -0.1], [0.4, -0.6, 0.5]])) def test_compute_error_middle_layer_3nodes_bias_2records(self): # previous layer, in backpropagation, has 3 nodes error_previous_layer = np.array([[0.5, 0.5, 0.5], [0.1, 0.4, -0.3]]) layer_weights = np.array([[1, 2, 3, 4], [1, 1, 1, 1], [1, 1, 1, 1]]) feedforward_mult = np.array([[1, 2, 3], [0.1, 0.2, 0.3]]) # feedforw prev_err # (1, 0.1) (0.5, 0.1) (0.5, 0.01) # (2, 0.2) * (0.5, 0.4) = (1, 0.08) # (3, 0.3) (0.5,-0.3) (1.5, -0.09) # (0.5, 1, 1.5 ) (1, 2, 3, 4) (3, 3.5, 4, 4.5 ) # (0.01, 0.08, -0.09) * (1, 1, 1, 1) = (0, 0.01, 0.02, 0.03) # (1, 1, 1, 1) result=nn.BackPropagation.compute_current_layer_error_deriv(error_previous_layer, layer_weights, feedforward_mult, lambda i: i, with_bias=True) assert np.allclose(result, np.array([[3.5, 4, 4.5], [0.01, 0.02, 0.03]])) def test_warning_0error(self): feedforward_mult = np.array([[1,0]]) training_y = np.array([[1,1]]) with warnings.catch_warnings(record=True) as w: nn.BackPropagation.compute_last_layer_error_deriv(feedforward_mult, training_y, debug=True) assert str(w[0].message) == 'Number of backpropagation errors ' \ 'with value zero increased to: 50% of total errors' class NeuralNetworkTests(unittest.TestCase): def test_basic(self): net=nn.NeuralNetwork(layers_shape=(2,3), with_bias=False) assert len(net.layers_weights) == 1 assert net.layers_weights[0].shape == (3,2) assert np.all(-1 <= net.layers_weights[0]) and np.all(net.layers_weights[0] < 1) def test_basic_weights(self, ): net = nn.NeuralNetwork(layers_weights=[np.array([1])], regularization_value=5) assert net.layers_weights == [np.array([1])] assert net.regularization_value == 5 def test_print_perc_predicted_correctly(self): predicted=np.array([[0.6, 0.2], [0.2, 0.9], [0.9, 0.99], [0.8, 0.2]]) y = np.array([[1, 0], [1, 0], [1, 0], [0, 1]]) count, percentage = nn.NeuralNetwork().get_predicted_correctly(predicted, y) assert count == 1 assert percentage == 25 if __name__ == '__main__': unittest.main()
39.80663
114
0.489382
9e883cacad4c967af960c181b102eb007d005e2d
8,176
py
Python
pyperformance/benchmarks/bm_pickle.py
sourcery-ai-bot/pyperformance
f4e5667b080e05227f530ec7c985e6399e86347f
[ "MIT" ]
null
null
null
pyperformance/benchmarks/bm_pickle.py
sourcery-ai-bot/pyperformance
f4e5667b080e05227f530ec7c985e6399e86347f
[ "MIT" ]
null
null
null
pyperformance/benchmarks/bm_pickle.py
sourcery-ai-bot/pyperformance
f4e5667b080e05227f530ec7c985e6399e86347f
[ "MIT" ]
null
null
null
"""Script for testing the performance of pickling/unpickling. This will pickle/unpickle several real world-representative objects a few thousand times. The methodology below was chosen for was chosen to be similar to real-world scenarios which operate on single objects at a time. Note that if we did something like pickle.dumps([dict(some_dict) for _ in range(10000)]) this isn't equivalent to dumping the dict 10000 times: pickle uses a highly-efficient encoding for the n-1 following copies. """ import datetime import random import sys import pyperf IS_PYPY = (pyperf.python_implementation() == 'pypy') __author__ = "collinwinter@google.com (Collin Winter)" DICT = { 'ads_flags': 0, 'age': 18, 'birthday': datetime.date(1980, 5, 7), 'bulletin_count': 0, 'comment_count': 0, 'country': 'BR', 'encrypted_id': 'G9urXXAJwjE', 'favorite_count': 9, 'first_name': '', 'flags': 412317970704, 'friend_count': 0, 'gender': 'm', 'gender_for_display': 'Male', 'id': 302935349, 'is_custom_profile_icon': 0, 'last_name': '', 'locale_preference': 'pt_BR', 'member': 0, 'tags': ['a', 'b', 'c', 'd', 'e', 'f', 'g'], 'profile_foo_id': 827119638, 'secure_encrypted_id': 'Z_xxx2dYx3t4YAdnmfgyKw', 'session_number': 2, 'signup_id': '201-19225-223', 'status': 'A', 'theme': 1, 'time_created': 1225237014, 'time_updated': 1233134493, 'unread_message_count': 0, 'user_group': '0', 'username': 'collinwinter', 'play_count': 9, 'view_count': 7, 'zip': ''} TUPLE = ( [265867233, 265868503, 265252341, 265243910, 265879514, 266219766, 266021701, 265843726, 265592821, 265246784, 265853180, 45526486, 265463699, 265848143, 265863062, 265392591, 265877490, 265823665, 265828884, 265753032], 60) def mutate_dict(orig_dict, random_source): new_dict = dict(orig_dict) for key, value in new_dict.items(): rand_val = random_source.random() * sys.maxsize if isinstance(key, (int, bytes, str)): new_dict[key] = type(key)(rand_val) return new_dict random_source = random.Random(5) # Fixed seed. DICT_GROUP = [mutate_dict(DICT, random_source) for _ in range(3)] def bench_pickle(loops, pickle, options): range_it = range(loops) # micro-optimization: use fast local variables dumps = pickle.dumps objs = (DICT, TUPLE, DICT_GROUP) protocol = options.protocol t0 = pyperf.perf_counter() for _ in range_it: for obj in objs: # 20 dumps dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) return pyperf.perf_counter() - t0 def bench_unpickle(loops, pickle, options): pickled_dict = pickle.dumps(DICT, options.protocol) pickled_tuple = pickle.dumps(TUPLE, options.protocol) pickled_dict_group = pickle.dumps(DICT_GROUP, options.protocol) range_it = range(loops) # micro-optimization: use fast local variables loads = pickle.loads objs = (pickled_dict, pickled_tuple, pickled_dict_group) t0 = pyperf.perf_counter() for _ in range_it: for obj in objs: # 20 loads dict loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) loads(obj) return pyperf.perf_counter() - t0 LIST = [[list(range(10)), list(range(10))] for _ in range(10)] def bench_pickle_list(loops, pickle, options): range_it = range(loops) # micro-optimization: use fast local variables dumps = pickle.dumps obj = LIST protocol = options.protocol t0 = pyperf.perf_counter() for _ in range_it: # 10 dumps list dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) dumps(obj, protocol) return pyperf.perf_counter() - t0 def bench_unpickle_list(loops, pickle, options): pickled_list = pickle.dumps(LIST, options.protocol) range_it = range(loops) # micro-optimization: use fast local variables loads = pickle.loads t0 = pyperf.perf_counter() for _ in range_it: # 10 loads list loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) loads(pickled_list) return pyperf.perf_counter() - t0 MICRO_DICT = {key: dict.fromkeys(range(10)) for key in range(100)} def bench_pickle_dict(loops, pickle, options): range_it = range(loops) # micro-optimization: use fast local variables protocol = options.protocol obj = MICRO_DICT t0 = pyperf.perf_counter() for _ in range_it: # 5 dumps dict pickle.dumps(obj, protocol) pickle.dumps(obj, protocol) pickle.dumps(obj, protocol) pickle.dumps(obj, protocol) pickle.dumps(obj, protocol) return pyperf.perf_counter() - t0 BENCHMARKS = { # 20 inner-loops: don't count the 3 pickled objects 'pickle': (bench_pickle, 20), # 20 inner-loops: don't count the 3 unpickled objects 'unpickle': (bench_unpickle, 20), 'pickle_list': (bench_pickle_list, 10), 'unpickle_list': (bench_unpickle_list, 10), 'pickle_dict': (bench_pickle_dict, 5), } def is_module_accelerated(module): return getattr(pickle.Pickler, '__module__', '<jython>') == 'pickle' def add_cmdline_args(cmd, args): if args.pure_python: cmd.append("--pure-python") cmd.extend(("--protocol", str(args.protocol))) cmd.append(args.benchmark) if __name__ == "__main__": runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) runner.metadata['description'] = "Test the performance of pickling." parser = runner.argparser parser.add_argument("--pure-python", action="store_true", help="Use the C version of pickle.") parser.add_argument("--protocol", action="store", default=None, type=int, help="Which protocol to use (default: highest protocol).") benchmarks = sorted(BENCHMARKS) parser.add_argument("benchmark", choices=benchmarks) options = runner.parse_args() benchmark, inner_loops = BENCHMARKS[options.benchmark] name = options.benchmark if options.pure_python: name += "_pure_python" if (options.pure_python or IS_PYPY): sys.modules['_pickle'] = None if not is_module_accelerated(pickle): raise RuntimeError("Unexpected C accelerators for pickle") else: if is_module_accelerated(pickle): raise RuntimeError("Missing C accelerators for pickle") # C accelerators are enabled by default on 3.x import pickle if options.protocol is None: options.protocol = pickle.HIGHEST_PROTOCOL runner.metadata['pickle_protocol'] = str(options.protocol) runner.metadata['pickle_module'] = pickle.__name__ runner.bench_time_func(name, benchmark, pickle, options, inner_loops=inner_loops)
28.587413
82
0.629036
939bd6e7476c81b3dc62c3e6627a94f14a0811d7
375
py
Python
backend/backend/accounts/migrations/0003_auto_20201116_0136.py
mightykim91/howaboutme
467c3a2eccc959084296bc7f4679e77b93b9d7f7
[ "Unlicense" ]
null
null
null
backend/backend/accounts/migrations/0003_auto_20201116_0136.py
mightykim91/howaboutme
467c3a2eccc959084296bc7f4679e77b93b9d7f7
[ "Unlicense" ]
null
null
null
backend/backend/accounts/migrations/0003_auto_20201116_0136.py
mightykim91/howaboutme
467c3a2eccc959084296bc7f4679e77b93b9d7f7
[ "Unlicense" ]
null
null
null
# Generated by Django 3.1.2 on 2020-11-15 16:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_user_like'), ] operations = [ migrations.AlterField( model_name='user', name='name', field=models.CharField(max_length=150), ), ]
19.736842
51
0.586667
794d6436b61ab02e0d8f6de8d32f421a23a8a200
11,749
py
Python
Lib/test/test_py_compile.py
oleksandr-pavlyk/cpython
eb002dbe0da9622245a355db5f0cd5aa2fc70b40
[ "0BSD" ]
5
2021-12-03T23:11:53.000Z
2022-01-08T21:02:50.000Z
Lib/test/test_py_compile.py
dalakatt/cpython
2f49b97cc5426087b46515254b9a97a22ee8c807
[ "0BSD" ]
8
2022-01-07T11:31:11.000Z
2022-03-04T00:07:16.000Z
Lib/test/test_py_compile.py
dalakatt/cpython
2f49b97cc5426087b46515254b9a97a22ee8c807
[ "0BSD" ]
3
2017-10-18T09:35:14.000Z
2018-09-09T16:40:13.000Z
import functools import importlib.util import os import py_compile import shutil import stat import subprocess import sys import tempfile import unittest from test import support from test.support import os_helper, script_helper def without_source_date_epoch(fxn): """Runs function with SOURCE_DATE_EPOCH unset.""" @functools.wraps(fxn) def wrapper(*args, **kwargs): with os_helper.EnvironmentVarGuard() as env: env.unset('SOURCE_DATE_EPOCH') return fxn(*args, **kwargs) return wrapper def with_source_date_epoch(fxn): """Runs function with SOURCE_DATE_EPOCH set.""" @functools.wraps(fxn) def wrapper(*args, **kwargs): with os_helper.EnvironmentVarGuard() as env: env['SOURCE_DATE_EPOCH'] = '123456789' return fxn(*args, **kwargs) return wrapper # Run tests with SOURCE_DATE_EPOCH set or unset explicitly. class SourceDateEpochTestMeta(type(unittest.TestCase)): def __new__(mcls, name, bases, dct, *, source_date_epoch): cls = super().__new__(mcls, name, bases, dct) for attr in dir(cls): if attr.startswith('test_'): meth = getattr(cls, attr) if source_date_epoch: wrapper = with_source_date_epoch(meth) else: wrapper = without_source_date_epoch(meth) setattr(cls, attr, wrapper) return cls class PyCompileTestsBase: def setUp(self): self.directory = tempfile.mkdtemp(dir=os.getcwd()) self.source_path = os.path.join(self.directory, '_test.py') self.pyc_path = self.source_path + 'c' self.cache_path = importlib.util.cache_from_source(self.source_path) self.cwd_drive = os.path.splitdrive(os.getcwd())[0] # In these tests we compute relative paths. When using Windows, the # current working directory path and the 'self.source_path' might be # on different drives. Therefore we need to switch to the drive where # the temporary source file lives. drive = os.path.splitdrive(self.source_path)[0] if drive: os.chdir(drive) with open(self.source_path, 'w') as file: file.write('x = 123\n') def tearDown(self): shutil.rmtree(self.directory) if self.cwd_drive: os.chdir(self.cwd_drive) def test_absolute_path(self): py_compile.compile(self.source_path, self.pyc_path) self.assertTrue(os.path.exists(self.pyc_path)) self.assertFalse(os.path.exists(self.cache_path)) def test_do_not_overwrite_symlinks(self): # In the face of a cfile argument being a symlink, bail out. # Issue #17222 try: os.symlink(self.pyc_path + '.actual', self.pyc_path) except (NotImplementedError, OSError): self.skipTest('need to be able to create a symlink for a file') else: assert os.path.islink(self.pyc_path) with self.assertRaises(FileExistsError): py_compile.compile(self.source_path, self.pyc_path) @unittest.skipIf(not os.path.exists(os.devnull) or os.path.isfile(os.devnull), 'requires os.devnull and for it to be a non-regular file') def test_do_not_overwrite_nonregular_files(self): # In the face of a cfile argument being a non-regular file, bail out. # Issue #17222 with self.assertRaises(FileExistsError): py_compile.compile(self.source_path, os.devnull) def test_cache_path(self): py_compile.compile(self.source_path) self.assertTrue(os.path.exists(self.cache_path)) def test_cwd(self): with os_helper.change_cwd(self.directory): py_compile.compile(os.path.basename(self.source_path), os.path.basename(self.pyc_path)) self.assertTrue(os.path.exists(self.pyc_path)) self.assertFalse(os.path.exists(self.cache_path)) def test_relative_path(self): py_compile.compile(os.path.relpath(self.source_path), os.path.relpath(self.pyc_path)) self.assertTrue(os.path.exists(self.pyc_path)) self.assertFalse(os.path.exists(self.cache_path)) @unittest.skipIf(hasattr(os, 'geteuid') and os.geteuid() == 0, 'non-root user required') @unittest.skipIf(os.name == 'nt', 'cannot control directory permissions on Windows') def test_exceptions_propagate(self): # Make sure that exceptions raised thanks to issues with writing # bytecode. # http://bugs.python.org/issue17244 mode = os.stat(self.directory) os.chmod(self.directory, stat.S_IREAD) try: with self.assertRaises(IOError): py_compile.compile(self.source_path, self.pyc_path) finally: os.chmod(self.directory, mode.st_mode) def test_bad_coding(self): bad_coding = os.path.join(os.path.dirname(__file__), 'bad_coding2.py') with support.captured_stderr(): self.assertIsNone(py_compile.compile(bad_coding, doraise=False)) self.assertFalse(os.path.exists( importlib.util.cache_from_source(bad_coding))) def test_source_date_epoch(self): py_compile.compile(self.source_path, self.pyc_path) self.assertTrue(os.path.exists(self.pyc_path)) self.assertFalse(os.path.exists(self.cache_path)) with open(self.pyc_path, 'rb') as fp: flags = importlib._bootstrap_external._classify_pyc( fp.read(), 'test', {}) if os.environ.get('SOURCE_DATE_EPOCH'): expected_flags = 0b11 else: expected_flags = 0b00 self.assertEqual(flags, expected_flags) @unittest.skipIf(sys.flags.optimize > 0, 'test does not work with -O') def test_double_dot_no_clobber(self): # http://bugs.python.org/issue22966 # py_compile foo.bar.py -> __pycache__/foo.cpython-34.pyc weird_path = os.path.join(self.directory, 'foo.bar.py') cache_path = importlib.util.cache_from_source(weird_path) pyc_path = weird_path + 'c' head, tail = os.path.split(cache_path) penultimate_tail = os.path.basename(head) self.assertEqual( os.path.join(penultimate_tail, tail), os.path.join( '__pycache__', 'foo.bar.{}.pyc'.format(sys.implementation.cache_tag))) with open(weird_path, 'w') as file: file.write('x = 123\n') py_compile.compile(weird_path) self.assertTrue(os.path.exists(cache_path)) self.assertFalse(os.path.exists(pyc_path)) def test_optimization_path(self): # Specifying optimized bytecode should lead to a path reflecting that. self.assertIn('opt-2', py_compile.compile(self.source_path, optimize=2)) def test_invalidation_mode(self): py_compile.compile( self.source_path, invalidation_mode=py_compile.PycInvalidationMode.CHECKED_HASH, ) with open(self.cache_path, 'rb') as fp: flags = importlib._bootstrap_external._classify_pyc( fp.read(), 'test', {}) self.assertEqual(flags, 0b11) py_compile.compile( self.source_path, invalidation_mode=py_compile.PycInvalidationMode.UNCHECKED_HASH, ) with open(self.cache_path, 'rb') as fp: flags = importlib._bootstrap_external._classify_pyc( fp.read(), 'test', {}) self.assertEqual(flags, 0b1) def test_quiet(self): bad_coding = os.path.join(os.path.dirname(__file__), 'bad_coding2.py') with support.captured_stderr() as stderr: self.assertIsNone(py_compile.compile(bad_coding, doraise=False, quiet=2)) self.assertIsNone(py_compile.compile(bad_coding, doraise=True, quiet=2)) self.assertEqual(stderr.getvalue(), '') with self.assertRaises(py_compile.PyCompileError): py_compile.compile(bad_coding, doraise=True, quiet=1) class PyCompileTestsWithSourceEpoch(PyCompileTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class PyCompileTestsWithoutSourceEpoch(PyCompileTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass class PyCompileCLITestCase(unittest.TestCase): def setUp(self): self.directory = tempfile.mkdtemp() self.source_path = os.path.join(self.directory, '_test.py') self.cache_path = importlib.util.cache_from_source(self.source_path) with open(self.source_path, 'w') as file: file.write('x = 123\n') def tearDown(self): os_helper.rmtree(self.directory) @support.requires_subprocess() def pycompilecmd(self, *args, **kwargs): # assert_python_* helpers don't return proc object. We'll just use # subprocess.run() instead of spawn_python() and its friends to test # stdin support of the CLI. if args and args[0] == '-' and 'input' in kwargs: return subprocess.run([sys.executable, '-m', 'py_compile', '-'], input=kwargs['input'].encode(), capture_output=True) return script_helper.assert_python_ok('-m', 'py_compile', *args, **kwargs) def pycompilecmd_failure(self, *args): return script_helper.assert_python_failure('-m', 'py_compile', *args) def test_stdin(self): result = self.pycompilecmd('-', input=self.source_path) self.assertEqual(result.returncode, 0) self.assertEqual(result.stdout, b'') self.assertEqual(result.stderr, b'') self.assertTrue(os.path.exists(self.cache_path)) def test_with_files(self): rc, stdout, stderr = self.pycompilecmd(self.source_path, self.source_path) self.assertEqual(rc, 0) self.assertEqual(stdout, b'') self.assertEqual(stderr, b'') self.assertTrue(os.path.exists(self.cache_path)) def test_bad_syntax(self): bad_syntax = os.path.join(os.path.dirname(__file__), 'badsyntax_3131.py') rc, stdout, stderr = self.pycompilecmd_failure(bad_syntax) self.assertEqual(rc, 1) self.assertEqual(stdout, b'') self.assertIn(b'SyntaxError', stderr) def test_bad_syntax_with_quiet(self): bad_syntax = os.path.join(os.path.dirname(__file__), 'badsyntax_3131.py') rc, stdout, stderr = self.pycompilecmd_failure('-q', bad_syntax) self.assertEqual(rc, 1) self.assertEqual(stdout, b'') self.assertEqual(stderr, b'') def test_file_not_exists(self): should_not_exists = os.path.join(os.path.dirname(__file__), 'should_not_exists.py') rc, stdout, stderr = self.pycompilecmd_failure(self.source_path, should_not_exists) self.assertEqual(rc, 1) self.assertEqual(stdout, b'') self.assertIn(b'no such file or directory', stderr.lower()) def test_file_not_exists_with_quiet(self): should_not_exists = os.path.join(os.path.dirname(__file__), 'should_not_exists.py') rc, stdout, stderr = self.pycompilecmd_failure('-q', self.source_path, should_not_exists) self.assertEqual(rc, 1) self.assertEqual(stdout, b'') self.assertEqual(stderr, b'') if __name__ == "__main__": unittest.main()
40.236301
97
0.637671
b60f40d1e1c9e034584ea409c44e9b084d421363
7,085
py
Python
test/integration/test_remote_files.py
fubar2/galaxy
2d363ea6a374d9339ed1eb55b5565f9bba3fcab1
[ "CC-BY-3.0" ]
null
null
null
test/integration/test_remote_files.py
fubar2/galaxy
2d363ea6a374d9339ed1eb55b5565f9bba3fcab1
[ "CC-BY-3.0" ]
2
2020-08-19T18:14:59.000Z
2020-08-20T01:19:12.000Z
test/integration/test_remote_files.py
CloudVE/galaxy
002fac90618529c53c11ec846566ca438a7e02cf
[ "CC-BY-3.0" ]
null
null
null
import json import operator import os import shutil from tempfile import mkdtemp from galaxy.exceptions import error_codes from galaxy_test.base.api_asserts import assert_error_code_is, assert_error_message_contains from galaxy_test.base.populators import DatasetPopulator from galaxy_test.driver import integration_util SCRIPT_DIRECTORY = os.path.abspath(os.path.dirname(__file__)) FILE_SOURCES_JOB_CONF = os.path.join(SCRIPT_DIRECTORY, "file_sources_conf.yml") USERNAME = 'user--bx--psu--edu' USER_EMAIL = 'user@bx.psu.edu' class RemoteFilesIntegrationTestCase(integration_util.IntegrationTestCase): @classmethod def handle_galaxy_config_kwds(cls, config): root = os.path.realpath(mkdtemp()) cls._test_driver.temp_directories.append(root) cls.root = root cls.library_dir = os.path.join(root, "library") cls.user_library_dir = os.path.join(root, "user_library") cls.ftp_upload_dir = os.path.join(root, "ftp") config["library_import_dir"] = cls.library_dir config["user_library_import_dir"] = cls.user_library_dir config["ftp_upload_dir"] = cls.ftp_upload_dir config["ftp_upload_site"] = "ftp://cow.com" # driver_util sets this to False, though the Galaxy default is True. # Restore default for these tests. config["ftp_upload_purge"] = True def setUp(self): super(RemoteFilesIntegrationTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) for d in [self.library_dir, self.user_library_dir, self.ftp_upload_dir]: if os.path.exists(d): shutil.rmtree(d) os.mkdir(d) def test_index(self): index = self.galaxy_interactor.get("remote_files?target=importdir").json() self._assert_index_empty(index) _write_file_fixtures(self.root, self.library_dir) index = self.galaxy_interactor.get("remote_files?target=importdir").json() self._assert_index_matches_fixtures(index) # Get a 404 if the directory doesn't exist. index = self.galaxy_interactor.get("remote_files?target=userdir").json() assert_error_code_is(index, error_codes.USER_OBJECT_NOT_FOUND) users_dir = os.path.join(self.user_library_dir, USER_EMAIL) os.mkdir(users_dir) index = self.galaxy_interactor.get("remote_files?target=userdir").json() self._assert_index_empty(index) _write_file_fixtures(self.root, users_dir) index = self.galaxy_interactor.get("remote_files?target=userdir").json() self._assert_index_matches_fixtures(index) index = self.galaxy_interactor.get("remote_files?target=userdir&format=jstree").json() self._assert_index_matches_fixtures_jstree(index) def test_fetch_from_import(self): _write_file_fixtures(self.root, self.library_dir) with self.dataset_populator.test_history() as history_id: element = dict(src="url", url="gximport://a") target = { "destination": {"type": "hdas"}, "elements": [element], } targets = json.dumps([target]) payload = { "history_id": history_id, "targets": targets, } new_dataset = self.dataset_populator.fetch(payload, assert_ok=True).json()["outputs"][0] content = self.dataset_populator.get_history_dataset_content(history_id, dataset=new_dataset) assert content == "a\n", content assert os.path.exists(os.path.join(self.library_dir, "a")) def test_fetch_from_ftp(self): ftp_dir = os.path.join(self.ftp_upload_dir, USER_EMAIL) _write_file_fixtures(self.root, ftp_dir) with self.dataset_populator.test_history() as history_id: element = dict(src="url", url="gxftp://a") target = { "destination": {"type": "hdas"}, "elements": [element], } targets = json.dumps([target]) payload = { "history_id": history_id, "targets": targets, } new_dataset = self.dataset_populator.fetch(payload, assert_ok=True).json()["outputs"][0] content = self.dataset_populator.get_history_dataset_content(history_id, dataset=new_dataset) assert content == "a\n", content assert not os.path.exists(os.path.join(ftp_dir, "a")) def _assert_index_empty(self, index): assert len(index) == 0 def _assert_index_matches_fixtures(self, index): paths = map(operator.itemgetter("path"), index) assert "a" in paths assert "subdir1/c" in paths def _assert_index_matches_fixtures_jstree(self, index): a_file = index[0] assert a_file["li_attr"]["full_path"] == "a" subdir1 = index[1] assert subdir1["type"] == "folder" assert subdir1["state"]["disabled"] assert subdir1["li_attr"]["full_path"] == "subdir1" subdir1_children = subdir1["children"] assert len(subdir1_children) == 2 c = subdir1_children[0] assert c["li_attr"]["full_path"] == "subdir1/c" class RemoteFilesNotConfiguredIntegrationTestCase(integration_util.IntegrationTestCase): @classmethod def handle_galaxy_config_kwds(cls, config): config["library_import_dir"] = None config["user_library_import_dir"] = None config["ftp_upload_dir"] = None def test_configuration_statuses(self): importfiles = self.galaxy_interactor.get("remote_files?target=importdir") assert_error_code_is(importfiles, error_codes.CONFIG_DOES_NOT_ALLOW) assert_error_message_contains(importfiles, 'import directory') importfiles = self.galaxy_interactor.get("remote_files?target=ftpdir") assert_error_code_is(importfiles, error_codes.CONFIG_DOES_NOT_ALLOW) assert_error_message_contains(importfiles, 'FTP directories') importfiles = self.galaxy_interactor.get("remote_files?target=userdir") assert_error_code_is(importfiles, error_codes.CONFIG_DOES_NOT_ALLOW) assert_error_message_contains(importfiles, 'user directories') # invalid request parameter waitwhat... importfiles = self.galaxy_interactor.get("remote_files?target=waitwhat") assert_error_code_is(importfiles, error_codes.USER_REQUEST_INVALID_PARAMETER) def _write_file_fixtures(tmp, root): if not os.path.exists(root): os.mkdir(root) os.symlink(os.path.join(tmp, "b"), os.path.join(root, "unsafe")) with open(os.path.join(root, "a"), "w") as f: f.write("a\n") with open(os.path.join(tmp, "b"), "w") as f: f.write("b\n") subdir1 = os.path.join(root, "subdir1") os.mkdir(subdir1) with open(os.path.join(subdir1, "c"), "w") as f: f.write("c\n") subdir2 = os.path.join(subdir1, "subdir2") os.mkdir(subdir2) with open(os.path.join(subdir2, "d"), "w") as f: f.write("d\n") return tmp, root
39.581006
105
0.668313
de126ca073811e55758c3de646079c009a0af5ef
3,068
py
Python
setup.py
rserran/FLAML
7d6822aa40883550e72c4ee24adb765c6e937ce7
[ "MIT" ]
null
null
null
setup.py
rserran/FLAML
7d6822aa40883550e72c4ee24adb765c6e937ce7
[ "MIT" ]
null
null
null
setup.py
rserran/FLAML
7d6822aa40883550e72c4ee24adb765c6e937ce7
[ "MIT" ]
null
null
null
import setuptools import os here = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r", encoding="UTF-8") as fh: long_description = fh.read() # Get the code version version = {} with open(os.path.join(here, "flaml/version.py")) as fp: exec(fp.read(), version) __version__ = version["__version__"] install_requires = [ "NumPy>=1.17.0rc1", "lightgbm>=2.3.1", "xgboost>=0.90", "scipy>=1.4.1", "pandas>=1.1.4", "scikit-learn>=0.24", ] setuptools.setup( name="FLAML", version=__version__, author="Microsoft Corporation", author_email="hpo@microsoft.com", description="A fast library for automated machine learning and tuning", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/microsoft/FLAML", packages=setuptools.find_packages(include=["flaml*"]), package_data={ "flaml.default": ["*/*.json"], }, include_package_data=True, install_requires=install_requires, extras_require={ "notebook": [ "openml==0.10.2", "jupyter", "matplotlib", "rgf-python", "catboost>=0.26", ], "test": [ "flake8>=3.8.4", "pytest>=6.1.1", "coverage>=5.3", "pre-commit", "catboost>=0.26", "rgf-python", "optuna==2.8.0", "vowpalwabbit", "openml", "statsmodels>=0.12.2", "psutil==5.8.0", "dataclasses", "transformers>=4.14", "datasets", "torch", "nltk", "rouge_score", "hcrystalball==0.1.10", "seqeval", "protobuf<4", # to prevent TypeError in ray ], "catboost": ["catboost>=0.26"], "blendsearch": ["optuna==2.8.0"], "ray": [ "ray[tune]~=1.10", "protobuf<4", # to prevent TypeError in ray ], "azureml": [ "azureml-mlflow", ], "nni": [ "nni", ], "vw": [ "vowpalwabbit", ], "nlp": [ "transformers>=4.14", "datasets", "torch", "seqeval", "nltk", "rouge_score", ], "ts_forecast": [ "holidays<0.14", # to prevent installation error for prophet "prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10", ], "forecast": [ "holidays<0.14", # to prevent installation error for prophet "prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10", ], "benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"], }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.7", )
26.678261
75
0.489896
1ad8e8179bdd27c92a847bee4e813ea9fa54a387
740
py
Python
yodatools/dataloader/controller/WizardDatabasePageController.py
ODM2/YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
null
null
null
yodatools/dataloader/controller/WizardDatabasePageController.py
ODM2/YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
21
2016-02-06T00:43:44.000Z
2018-02-02T20:22:05.000Z
yodatools/dataloader/controller/WizardDatabasePageController.py
ODM2/ODM2YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
1
2017-07-06T18:42:22.000Z
2017-07-06T18:42:22.000Z
from yodatools.dataloader.view.WizardDatabasePageView import WizardDatabasePageView import os class WizardDatabasePageController(WizardDatabasePageView): def __init__(self, parent, title=''): super(WizardDatabasePageController, self).__init__(parent) del self.panel.choices['SQLite'] self.panel.cbDatabaseType.SetItems(self.panel.choices.keys()) self.panel.cbDatabaseType.SetStringSelection(os.getenv('DB_ENGINE', '')) self.panel.txtServer.SetValue(os.getenv('DB_HOST', '')) self.panel.txtUser.SetValue(os.getenv('DB_USER', '')) self.panel.txtDBName.SetValue(os.getenv('DB_NAME', '')) self.panel.txtPass.SetValue(os.getenv('DB_PWORD', '')) self.title = title
38.947368
83
0.710811
38e4c2c20a76b2cf6a9f2ff52cc59e63d7338f12
2,438
py
Python
views/config.py
dev-easyshares/mighty
a6cf473fb8cfbf5b92db68c7b068fc8ae2911b8b
[ "MIT" ]
null
null
null
views/config.py
dev-easyshares/mighty
a6cf473fb8cfbf5b92db68c7b068fc8ae2911b8b
[ "MIT" ]
1
2022-03-12T00:57:37.000Z
2022-03-12T00:57:37.000Z
views/config.py
dev-easyshares/mighty
a6cf473fb8cfbf5b92db68c7b068fc8ae2911b8b
[ "MIT" ]
null
null
null
from django.core.exceptions import ObjectDoesNotExist from django.http import JsonResponse, Http404 from mighty.functions import setting from mighty.views.template import TemplateView from mighty.views.crud import ListView, DetailView from mighty.apps import MightyConfig as conf from mighty.models import ConfigClient, ConfigSimple from mighty.applications.twofactor.apps import TwofactorConfig from mighty.applications.nationality.apps import NationalityConfig from mighty.applications.user import get_form_fields base_config = { 'base': { 'logo': conf.logo, 'email': TwofactorConfig.method.email, 'sms': TwofactorConfig.method.sms, 'basic': TwofactorConfig.method.basic, 'languages': NationalityConfig.availables, 'fields': get_form_fields(), }} base_config.update(setting('BASE_CONFIG', {})) # Return the base config of mighty class Config(TemplateView): def get_config(self): return base_config def get_context_data(self, **kwargs): return self.get_config() def render_to_response(self, context, **response_kwargs): return JsonResponse(context, **response_kwargs) # Return all configs in model ConfigClient class ConfigListView(ListView): model = ConfigClient def get_queryset(self): return [ConfigClient.objects.filter(is_disable=False), ConfigSimple.objects.filter(is_disable=False)] def render_to_response(self, context): cfg = base_config if 'mighty.applications.nationality' in setting('INSTALLED_APPS'): from mighty.applications.nationality import conf_prefix_numbering cfg.update({"phones": conf_prefix_numbering()}) for cfgs in context['object_list']: cfg.update({cfg.url_name: cfg.config for cfg in cfgs}) return JsonResponse(cfg) # Return a named Config class ConfigDetailView(DetailView): model = ConfigClient def get_config(self): try: return ConfigClient.objects.get(url_name=self.kwargs.get('name')) except ConfigClient.DoesNotExist: return ConfigSimple.objects.get(url_name=self.kwargs.get('name')) def get_object(self, queryset=None): try: return self.get_config() except ObjectDoesNotExist: raise Http404 def render_to_response(self, context): cfg = self.get_object() return JsonResponse({cfg.name: cfg.config})
35.333333
109
0.7137
83fe275186397f48c02c3fe1d98cbee2351c1b36
957
py
Python
NU-CS5001/lab02/weather.py
zahraaliaghazadeh/python
2f2d0141a916c99e8724f803bd4e5c7246a7a02e
[ "MIT" ]
null
null
null
NU-CS5001/lab02/weather.py
zahraaliaghazadeh/python
2f2d0141a916c99e8724f803bd4e5c7246a7a02e
[ "MIT" ]
null
null
null
NU-CS5001/lab02/weather.py
zahraaliaghazadeh/python
2f2d0141a916c99e8724f803bd4e5c7246a7a02e
[ "MIT" ]
null
null
null
# Note date now is 9/21/2021 , and the location Seattle WA # is used to answer the questions # What is the difference between the highest and the lowest temperature values # predicted for the 10 day forecast? highest = 73 lowest = 55 print("The difference of highest and lowest temp predicted for the 10 day forecast is {}" .format(highest-lowest)) print("-"*50) # What is the average temperature at noon predicted for the 10 day # forecast? data1 = [61, 63, 62, 61, 59, 60, 64, 65, 65, 63] average = sum(data1)/10 print("Average temoerature at noon predicted for the 10 day forecast is: {} F" .format(average)) print() print("-"*50) # What is the highest temperature predicted for the 10 day forecast, # converted from Fahrenheit to Celsius? data2 = [69, 64, 62, 63, 62, 68, 70, 73, 72, 77] high = max(data2) high_celcius = (high - 32) * (5/9) print("The highest temperature predicted for the next 10 days forecast is: {}" .format(high_celcius))
29.90625
89
0.716823
d37940c738af61cb5ab647d0dbd43502f76204e7
1,553
py
Python
config/urls.py
caseydm/militaryhomes
25dd2a2d1f85bec5c9200e0961e8a2aacd82fd03
[ "MIT" ]
null
null
null
config/urls.py
caseydm/militaryhomes
25dd2a2d1f85bec5c9200e0961e8a2aacd82fd03
[ "MIT" ]
null
null
null
config/urls.py
caseydm/militaryhomes
25dd2a2d1f85bec5c9200e0961e8a2aacd82fd03
[ "MIT" ]
null
null
null
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='pages/home.html'), name='home'), url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name='about'), # Django Admin, use {% url 'admin:index' %} url(settings.ADMIN_URL, admin.site.urls), # User management url(r'^users/', include('militaryhomes.users.urls', namespace='users')), url(r'^accounts/', include('allauth.urls')), # Your stuff: custom urls includes go here ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ url(r'^400/$', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), url(r'^403/$', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), url(r'^404/$', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), url(r'^500/$', default_views.server_error), ] if 'debug_toolbar' in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [ url(r'^__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
40.868421
110
0.696072
a1e6521c8c7f9486d911e64cb5fe7ec77d24ccd8
695
py
Python
NEMbox/logger.py
hyskyder/musicbox
ec06a49cc59c683f7f5e69fad5097c34a8a7984c
[ "MIT" ]
null
null
null
NEMbox/logger.py
hyskyder/musicbox
ec06a49cc59c683f7f5e69fad5097c34a8a7984c
[ "MIT" ]
null
null
null
NEMbox/logger.py
hyskyder/musicbox
ec06a49cc59c683f7f5e69fad5097c34a8a7984c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: omi # @Date: 2014-08-24 21:51:57 from __future__ import ( print_function, unicode_literals, division, absolute_import ) import logging from future.builtins import open from . import const FILE_NAME = const.Constant.log_path with open(FILE_NAME, 'a+') as f: f.write('#' * 80) f.write('\n') def getLogger(name): log = logging.getLogger(name) log.setLevel(logging.INFO) # File output handler fh = logging.FileHandler(FILE_NAME) fh.setLevel(logging.DEBUG) fh.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(name)s:%(lineno)s: %(message)s')) log.addHandler(fh) return log
21.060606
104
0.673381
a5799dd45d794b94ea3a9db12f3ea6ae19c07f11
1,130
py
Python
amazon_asin_fetcher/amazon_asin_fetcher/spiders/asin_spider.py
turboLJY/amazon-reviews-scrapy
31278183a1530ea1a8f2e27f3d85dfbd4848354c
[ "MIT" ]
4
2020-04-19T08:17:03.000Z
2022-02-17T05:00:03.000Z
amazon_asin_fetcher/amazon_asin_fetcher/spiders/asin_spider.py
turboLJY/amazon-reviews-scrapy
31278183a1530ea1a8f2e27f3d85dfbd4848354c
[ "MIT" ]
null
null
null
amazon_asin_fetcher/amazon_asin_fetcher/spiders/asin_spider.py
turboLJY/amazon-reviews-scrapy
31278183a1530ea1a8f2e27f3d85dfbd4848354c
[ "MIT" ]
1
2020-09-01T00:44:01.000Z
2020-09-01T00:44:01.000Z
# *-* coding: utf-8 *-* """ Created on: 5-Jul-2018 @author: Ai """ import scrapy from googletrans import Translator class ASINSpider(scrapy.Spider): name = "asin" def __init__(self, store=None, key=None, *args, **kwargs): super(ASINSpider, self).__init__(*args, **kwargs) self.store = store self.key = key if not store: raise Exception('store is required') self.start_urls = ['https://www.{0}/s/?keywords={1}'.format(self.store, self.key)] def parse(self, response): for item in response.css('li.s-result-item'): if item.css('h2::attr(data-attribute)').extract_first() is not None: gt = Translator() yield { 'ASIN': item.css('li::attr(data-asin)').extract_first(), 'Product': gt.translate(item.css('h2::attr(data-attribute)').extract_first()).text } next_page = response.css('a[id="pagnNextLink"]::attr(href)').extract_first() if next_page is not None: yield response.follow(next_page, callback=self.parse)
32.285714
106
0.574336
150ff08a6742385ae301ebc0a725eae9f721682f
4,487
py
Python
server/app/outputs/dmx.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
1
2020-05-14T06:27:34.000Z
2020-05-14T06:27:34.000Z
server/app/outputs/dmx.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
null
null
null
server/app/outputs/dmx.py
BasementCat/audio-reactive-led-strip
acbfd3709ecf3f970c604045bb62da0b47661330
[ "MIT" ]
null
null
null
import os import glob import logging import threading import time import subprocess import re from dmxpy.DmxPy import DmxPy from app import Task from app.lib.misc import FPSCounter logger = logging.getLogger(__name__) hexint = lambda v: int(v, 16) def find_device_file__linux(vendor, product): if not os.path.exists('/sys') or not os.path.isdir('/sys'): return None for dev in glob.glob('/sys/bus/usb-serial/devices/*'): devname = os.path.basename(dev) with open(os.path.join(dev, '../uevent'), 'r') as fp: for line in fp: line = line.strip() if line and '=' in line: param, value = line.split('=') if param == 'PRODUCT': testvendor, testproduct = map(hexint, value.split('/')[:2]) if testvendor == vendor and testproduct == product: return os.path.join('/dev', devname) def find_device_file__macos(vendor, product): devices = [] curdevice = {} res = subprocess.check_output(['ioreg', '-p', 'IOUSB', '-l', '-b']).decode('utf-8') for line in res.split('\n'): line = line.strip() if not line: continue match = re.match(u'^\+-o (.+)\s+<', line) if match: if curdevice: devices.append(curdevice) curdevice = {} continue match = re.match(u'^[\|\s]*"([\w\d\s]+)"\s+=\s+(.+)$', line) if match: k, v = match.groups() if v.startswith('"'): v = v[1:-1] else: try: v = int(v) except: pass curdevice[k] = v if curdevice: devices.append(curdevice) for d in devices: if d.get('idVendor') == vendor and d.get('idProduct') == product: return '/dev/tty.usbserial-' + d['USB Serial Number'] def find_device_file(name): # Name is either a path (/dev/ttyUSB0) which might change, or a device ID (0403:6001) which does not if name.startswith('/') or ':' not in name: # Assume file return name if ':' not in name: raise ValueError(f"Not a valid device ID: {name}") vendor, product = map(hexint, name.split(':')) for fn in (find_device_file__linux, find_device_file__macos): try: file = fn(vendor, product) if file: return file except: logger.debug("Failure in find device file", exc_info=True) raise RuntimeError(f"Can't find USB device {name}") class DMX(Task): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not self.config.get('DMX_DEVICE'): raise ValueError("No DMX_DEVICE in config") self.dmx = None self.dmx_lock = threading.Lock() self.dmx_attempt = None self.delay = 1.0 / float(self.config.get('FPS', 60)) self.last_send = 0 self.fps = FPSCounter('DMX') self.get_dmx() def get_dmx(self): if not self.dmx and self.config.get('DMX_DEVICE') != 'sink': if self.dmx_attempt is None or time.time() - self.dmx_attempt > 1: self.dmx_attempt = time.time() if not self.config.get('DMX_DEVICE'): if self.config.get('DMX_DEVICE') is None: logger.error("No DMX device configured") self.config['DMX_DEVICE'] = False return with self.dmx_lock: try: self.dmx = DmxPy(find_device_file(self.config['DMX_DEVICE'])) except: logger.error("Can't open DMX device %s", self.config['DMX_DEVICE'], exc_info=True) return self.dmx def run(self, data): dmx = self.get_dmx() if dmx: if data.get('dmx_force'): with self.fps: for chan, val in data['dmx_force'].items(): dmx.setChannel(chan, val) dmx.render() if data.get('dmx'): for chan, val in data['dmx'].items(): dmx.setChannel(chan, val) if time.time() - self.last_send >= self.delay: self.last_send = time.time() with self.fps: dmx.render()
31.377622
106
0.516158
0547e42bf8128476ba489e42c087078e17dd282b
1,325
py
Python
object-generation-using-gans/data/unaligned_dataset.py
sevmardi/ml-projects
0eb218c77cda61285cfcf599599ff28a8a8deba7
[ "MIT" ]
null
null
null
object-generation-using-gans/data/unaligned_dataset.py
sevmardi/ml-projects
0eb218c77cda61285cfcf599599ff28a8a8deba7
[ "MIT" ]
7
2020-06-06T01:26:08.000Z
2022-02-10T11:26:58.000Z
object-generation-using-gans/data/unaligned_dataset.py
sevmardi/ml-projects
0eb218c77cda61285cfcf599599ff28a8a8deba7
[ "MIT" ]
null
null
null
import os.path import torchvision.transforms as transforms from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from PIL import Image import PIL from pdb import set_trace as st class UnalignedDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt) def __getitem__(self, index): A_path = self.A_paths[index % self.A_size] B_path = self.B_paths[index % self.B_size] A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') A_img = self.transform(A_img) B_img = self.transform(B_img) return {'A': A_img, 'B': B_img, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): return max(self.A_size, self.B_size) def name(self): return 'UnalignedDataset'
29.444444
64
0.649811
c948f63b55fa433ae8b7ee45a10eedd007753508
7,048
py
Python
smith/modeling_test.py
egonrian/google-research
8177adbe9ca0d7e5a9463b54581fe6dd27be0974
[ "Apache-2.0" ]
3
2021-01-18T04:46:49.000Z
2021-03-05T09:21:40.000Z
smith/modeling_test.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
7
2021-11-10T19:44:38.000Z
2022-02-10T06:48:39.000Z
smith/modeling_test.py
Alfaxad/google-research
2c0043ecd507e75e2df9973a3015daf9253e1467
[ "Apache-2.0" ]
4
2021-02-08T10:25:45.000Z
2021-04-17T14:46:26.000Z
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile from absl import flags import numpy as np import tensorflow.compat.v1 as tf from smith import constants from smith import experiment_config_pb2 from smith import modeling FLAGS = flags.FLAGS class ModelingTest(tf.test.TestCase): def setUp(self): super(ModelingTest, self).setUp() bert_config = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 16, "initializer_range": 0.02, "intermediate_size": 32, "max_position_embeddings": 16, "num_attention_heads": 2, "num_hidden_layers": 2, "type_vocab_size": 2, "vocab_size": 9 } with tempfile.NamedTemporaryFile(delete=False) as bert_config_writer: bert_config_writer.write(json.dumps(bert_config).encode("utf-8")) # Note that in practice the bert_config_file and doc_bert_config_file can # be different. bert_config_file = bert_config_writer.name doc_bert_config_file = bert_config_writer.name # Construct a dual_encoder_config for testing purpose. dual_encoder_config = experiment_config_pb2.DualEncoderConfig() encoder_config = dual_encoder_config.encoder_config encoder_config.model_name = constants.MODEL_NAME_SMITH_DUAL_ENCODER encoder_config.max_seq_length = 6 encoder_config.max_sent_length_by_word = 2 encoder_config.max_doc_length_by_sentence = 3 encoder_config.loop_sent_number_per_doc = 3 encoder_config.max_predictions_per_seq = 1 encoder_config.use_masked_sentence_lm_loss = True encoder_config.max_masked_sent_per_doc = 2 encoder_config.bert_config_file = bert_config_file encoder_config.doc_bert_config_file = doc_bert_config_file # Set train_batch_size and eval_batch_size for the batch_size_static used # in the build_smith_ca function. train_eval_config = dual_encoder_config.train_eval_config train_eval_config.train_batch_size = 1 train_eval_config.eval_batch_size = 1 self.dual_encoder_config = dual_encoder_config self.train_mode = constants.TRAIN_MODE_JOINT_TRAIN self.model_fn = modeling.model_fn_builder( dual_encoder_config=dual_encoder_config, train_mode=self.train_mode, learning_rate=1e-5, num_train_steps=100000, num_warmup_steps=500, use_tpu=False, use_one_hot_embeddings=False, debugging=True) self.features = { "input_ids_1": tf.constant([[0, 5, 5, 7, 1, 1]], dtype=tf.int32), "input_mask_1": tf.constant([[1, 1, 1, 1, 1, 1]], dtype=tf.int32), "masked_lm_positions_1": tf.constant([[3]], dtype=tf.int32), "masked_lm_ids_1": tf.constant([[5]], dtype=tf.int32), "masked_lm_weights_1": tf.constant([[1.0]], dtype=tf.float32), "input_ids_2": tf.constant([[0, 4, 4, 7, 1, 1]], dtype=tf.int32), "input_mask_2": tf.constant([[1, 1, 1, 1, 1, 1]], dtype=tf.int32), "masked_lm_positions_2": tf.constant([[3]], dtype=tf.int32), "masked_lm_ids_2": tf.constant([[4]], dtype=tf.int32), "masked_lm_weights_2": tf.constant([[1.0]], dtype=tf.float32), "documents_match_labels": tf.constant([[1.0]], dtype=tf.float32) } def test_build_smith_dual_encoder(self): masked_lm_positions_1 = tf.constant([[0, 2, 5]], dtype=tf.int32) masked_lm_ids_1 = tf.constant([[0, 5, 1]], dtype=tf.int32) masked_lm_weights_1 = tf.constant([[1.0, 1.0, 1.0]], dtype=tf.float32) masked_lm_positions_2 = tf.constant([[0, 2, 5]], dtype=tf.int32) masked_lm_ids_2 = tf.constant([[0, 5, 1]], dtype=tf.int32) masked_lm_weights_2 = tf.constant([[1.0, 1.0, 1.0]], dtype=tf.float32) (masked_lm_loss_1, _, masked_lm_example_loss_1, _, _, _, masked_sent_lm_loss_1, _, _, _, _, _, sequence_encoding_1, _, _, _, _, _, siamese_loss, siamese_example_loss, siamese_logits) = \ modeling.build_smith_dual_encoder( dual_encoder_config=self.dual_encoder_config, train_mode=self.train_mode, is_training=True, input_ids_1=self.features["input_ids_1"], input_mask_1=self.features["input_mask_1"], masked_lm_positions_1=masked_lm_positions_1, masked_lm_ids_1=masked_lm_ids_1, masked_lm_weights_1=masked_lm_weights_1, input_ids_2=self.features["input_ids_2"], input_mask_2=self.features["input_mask_2"], masked_lm_positions_2=masked_lm_positions_2, masked_lm_ids_2=masked_lm_ids_2, masked_lm_weights_2=masked_lm_weights_2, use_one_hot_embeddings=False, documents_match_labels=self.features["documents_match_labels"]) with tf.Session() as sess: sess.run([tf.global_variables_initializer()]) result_numpy = sess.run([ masked_lm_loss_1, masked_lm_example_loss_1, sequence_encoding_1, siamese_loss, siamese_example_loss, siamese_logits, masked_sent_lm_loss_1 ]) self.assertEqual(result_numpy[0].shape, ()) self.assertDTypeEqual(result_numpy[0], np.float32) self.assertEqual(result_numpy[1].shape, (1, 3)) self.assertDTypeEqual(result_numpy[1], np.float32) self.assertEqual(result_numpy[2].shape, (1, 16)) self.assertDTypeEqual(result_numpy[2], np.float32) self.assertEqual(result_numpy[3].shape, ()) self.assertDTypeEqual(result_numpy[3], np.float32) self.assertEqual(result_numpy[4].shape, (1,)) self.assertDTypeEqual(result_numpy[4], np.float32) self.assertEqual(result_numpy[5].shape, (1,)) self.assertDTypeEqual(result_numpy[5], np.float32) self.assertEqual(result_numpy[6].shape, ()) self.assertDTypeEqual(result_numpy[6], np.float32) def test_model_fn_builder_train(self): self.model_fn( features=self.features, labels=None, mode=tf.estimator.ModeKeys.TRAIN, params=None) def test_model_fn_builder_eval(self): self.model_fn( features=self.features, labels=None, mode=tf.estimator.ModeKeys.EVAL, params=None) def test_model_fn_builder_predict(self): self.model_fn( features=self.features, labels=None, mode=tf.estimator.ModeKeys.PREDICT, params=None) if __name__ == "__main__": tf.test.main()
38.097297
77
0.690267
f3641bf7fb85f833b58ccd80f2cda096701aedbe
10,032
py
Python
misp_epo_policy.py
mohlcyber/MISP-ENS-ExpertRules
00a3558121c248f564007b78c20aef85cbc10dbc
[ "Apache-2.0" ]
1
2020-11-09T00:24:09.000Z
2020-11-09T00:24:09.000Z
misp_epo_policy.py
mohlcyber/MISP-ENS-ExpertRules
00a3558121c248f564007b78c20aef85cbc10dbc
[ "Apache-2.0" ]
null
null
null
misp_epo_policy.py
mohlcyber/MISP-ENS-ExpertRules
00a3558121c248f564007b78c20aef85cbc10dbc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Written by mohlcyber v.0.2 12/08/2020 import os import time import sys import requests import json import xml.etree.ElementTree as ET import base64 import re import logging from pymisp import ExpandedPyMISP requests.packages.urllib3.disable_warnings() EPO_URL = 'https://1.1.1.1' EPO_PORT = '8443' EPO_USERNAME = 'admin' EPO_PASSWORD = 'pass' EPO_POLICY_NAME = 'Expert Rule Policy' EPO_SIGNATURE_ID = '20000' MISP_URL = 'https://2.2.2.2/' MISP_KEY = 'api key' MISP_VERIFY = False MISP_TAG = 'McAfee: Update ENS Expert Rules' HASH_FILE = 'exports/misp_hashes.txt' MAXIMUM = 10 loglevel = 'INFO' logger = logging.getLogger('logs') logger.setLevel(loglevel) consoleHandler = logging.StreamHandler() consoleHandler.setLevel(loglevel) logger.addHandler(consoleHandler) formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s") consoleHandler.setFormatter(formatter) class MISP(): def __init__(self): self.misp = ExpandedPyMISP(MISP_URL, MISP_KEY, MISP_VERIFY) self.misp_hashes = [] def query(self): try: events = self.misp.search(tags=MISP_TAG) if events: for event in events: eventid = str(event['Event']['id']) for attributes in event['Event']['Attribute']: if attributes['type'] == 'md5': self.misp_hashes.append(attributes['value']) for objects in event['Event']['Object']: for attributes in objects['Attribute']: if attributes['type'] == 'md5': self.misp_hashes.append(attributes['value']) self.misp.untag(event['Event']['uuid'], MISP_TAG) logger.info('STATUS: Found {0} Hash in MISP Events that use tag {1}.'.format(str(len(self.misp_hashes)), MISP_TAG)) self.write_to_file() return True else: return False except Exception as error: exc_type, exc_obj, exc_tb = sys.exc_info() logger.info('ERROR: Error in {location}.{funct_name}() - line {line_no} : {error}' .format(location=__name__, funct_name=sys._getframe().f_code.co_name, line_no=exc_tb.tb_lineno, error=str(error))) def write_to_file(self): if os.path.exists(HASH_FILE): tmp_dict = [] hashes = open(HASH_FILE, 'r') hashes_read = hashes.read() for line in hashes_read.split('\n'): tmp_dict.append(line) for hash in self.misp_hashes: if hash not in tmp_dict: tmp_dict.append(hash) count = len(tmp_dict) if count > MAXIMUM: logger.info('ATTENTION: Maximum amount of hashes reached. Removing oldest.') diff = count - MAXIMUM s = slice(diff, None) tmp_dict = tmp_dict[s] os.remove(HASH_FILE) hashes = open(HASH_FILE, 'w') if count > MAXIMUM: count = MAXIMUM for hash in tmp_dict: if count > 1: hashes.write(hash + '\n') else: hashes.write(hash) count -= 1 hashes.close() else: hashes = open(HASH_FILE, 'w') count = len(self.misp_hashes) if count > MAXIMUM: logger.info('ATTENTION: Maximum amount of hashes reached. Removing oldest.') diff = count - MAXIMUM s = slice(diff, None) self.misp_hashes = self.misp_hashes[s] if count > MAXIMUM: count = MAXIMUM for hash in self.misp_hashes: if count > 1: hashes.write(hash + '\n') else: hashes.write(hash) count -= 1 hashes.close() class EPO(): def __init__(self): self.epo_url = EPO_URL self.epo_port = EPO_PORT self.epo_verify = False self.epo_user = EPO_USERNAME self.epo_pw = EPO_PASSWORD self.session = requests.Session() self.policy = EPO_POLICY_NAME self.expert_tmp = open('expert_tmp.txt', 'r').read() self.expert_rule = '' def request(self, option, **kwargs): try: kwargs.setdefault('auth', (self.epo_user, self.epo_pw)) kwargs.setdefault('verify', self.epo_verify) kwargs.setdefault('params', {}) kwargs['params'][':output'] = 'json' url = '{}:{}/remote/{}'.format(self.epo_url, self.epo_port, option) if kwargs.get('data') or kwargs.get('json') or kwargs.get('files'): res = self.session.post(url, **kwargs) else: res = self.session.get(url, **kwargs) return res.status_code, res except Exception as error: exc_type, exc_obj, exc_tb = sys.exc_info() logger.info('ERROR: Error in {location}.{funct_name}() - line {line_no} : {error}' .format(location=__name__, funct_name=sys._getframe().f_code.co_name, line_no=exc_tb.tb_lineno, error=str(error))) def prep_xml(self): org_xml = open('exports/policy_old.xml', 'r') hashes = open(HASH_FILE, 'r').read() tmp_hashes = [] for line in hashes.split('\n'): tmp_hashes.append(line) tree_org = ET.parse(org_xml) root_org = tree_org.getroot() tree_mod = ET.ElementTree() root_mod = ET.Element('epo:EPOPolicySchema') root_mod.attrib = { 'xmlns:epo': 'mcafee-epo-policy', 'xmlns:xsi': 'http://www.w3.org/2001/XMLSchema-instance' } for shema in root_org.iter('epo:EPOPolicySchema'): root_mod.append(shema) for info in root_org.iter('EPOPolicyVerInfo'): root_mod.append(info) for set in root_org.iter('EPOPolicySettings'): if EPO_POLICY_NAME in set.attrib['name']: if set.attrib['categoryid'] == 'EAM_BufferOverflow_Policies': for setting in set.iter('Setting'): if setting.attrib['name'] == 'SignatureID' and setting.attrib['value'] == EPO_SIGNATURE_ID: for setting in set.iter('Setting'): if 'SignatureContent' in setting.attrib['name']: # org_payload = setting.attrib['value'] # enc_org_payload = (base64.b64decode(org_payload)).decode() for line in self.expert_tmp.split('\n'): md5_line = re.findall(r'.-v\s\x22', line) if len(md5_line) > 0: for hash in tmp_hashes: nline = re.sub(r'(HASH)', hash, line) self.expert_rule += nline + '\r\n' else: self.expert_rule += line + '\r\n' setting.attrib['value'] = base64.b64encode(self.expert_rule.encode()).decode() root_mod.append(set) for obj in root_org.iter('EPOPolicyObject'): if EPO_POLICY_NAME in obj.attrib['name']: root_mod.append(obj) tree_mod._setroot(root_mod) tree_mod.write('exports/policy_new.xml', encoding='utf-8', xml_declaration=True) def main(): misp = MISP() logger.debug('STATUS: Starting to query MISP for Events with tag {0}.'.format(str(MISP_TAG))) if misp.query() is False: logger.debug('SUCCESS: No MISP Events found with tag {0}.'.format(MISP_TAG)) return epo = EPO() status, policy_res = epo.request('policy.find', data={'searchText': EPO_POLICY_NAME}) if status != 200: logger.info('ERROR: Could not run ePO API request. Error: {} - {}'.format(str(status), policy_res)) return policy_res_json = json.loads(policy_res.text.strip('OK:')) if len(policy_res_json) > 1: logger.info('ERROR: Found multiple policies with the same name. Please be more specific.') return elif len(policy_res_json) < 1: logger.info('STATUS: Policy does not exist. Please create policy manually and assign to the right systems.') return else: logger.debug('STATUS: Identified policy. Going to download, make changes and upload policy again.') productId = policy_res_json[0]['productId'] status, policy_exp = epo.request('policy.export', params={'productId': productId}) if status != 200: logger.info('ERROR: Could not export policy. Error: {} - {}'.format(str(status), policy_exp)) return policy_exp_json = json.loads(policy_exp.text.strip('OK:')) with open('exports/policy_old.xml', 'w') as output: output.write(policy_exp_json) output.close() epo.prep_xml() logger.debug('STATUS: Successfully made changes to the policy. Trying to upload.') status, policy_import = epo.request('policy.importPolicy', params={'force': True}, files={'file': ('policy_new.xml', open('exports/policy_new.xml', 'rb'), 'multipart/form-data')}) if status != 200: logger.info('ERROR: Could not import new policy. Error: {} - {}'.format(str(status), policy_import)) return else: logger.info('SUCCESS: Successful import new policy in ePO.') if __name__ == '__main__': while True: main() time.sleep(60)
36.48
131
0.546551
cab401857149e5c12cf56d504ec19f1639d115ee
37,217
py
Python
qiskit/optimization/algorithms/admm_optimizer.py
Cristian-Malinescu/qiskit-aqua
b29596800447c3130a20ec72a18b7fd8ed9fdb2f
[ "Apache-2.0" ]
null
null
null
qiskit/optimization/algorithms/admm_optimizer.py
Cristian-Malinescu/qiskit-aqua
b29596800447c3130a20ec72a18b7fd8ed9fdb2f
[ "Apache-2.0" ]
null
null
null
qiskit/optimization/algorithms/admm_optimizer.py
Cristian-Malinescu/qiskit-aqua
b29596800447c3130a20ec72a18b7fd8ed9fdb2f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """An implementation of the ADMM algorithm.""" import copy import logging import time import warnings from typing import List, Optional, Tuple import numpy as np from qiskit.aqua.algorithms import NumPyMinimumEigensolver from .minimum_eigen_optimizer import MinimumEigenOptimizer from .optimization_algorithm import OptimizationAlgorithm, OptimizationResult from .slsqp_optimizer import SlsqpOptimizer from ..problems.constraint import Constraint from ..problems.linear_constraint import LinearConstraint from ..problems.quadratic_objective import QuadraticObjective from ..problems.quadratic_program import QuadraticProgram from ..problems.variable import VarType, Variable UPDATE_RHO_BY_TEN_PERCENT = 0 UPDATE_RHO_BY_RESIDUALS = 1 logger = logging.getLogger(__name__) class ADMMParameters: """Defines a set of parameters for ADMM optimizer.""" def __init__(self, rho_initial: float = 10000, factor_c: float = 100000, beta: float = 1000, maxiter: int = 10, tol: float = 1.e-4, max_time: float = np.inf, three_block: bool = True, vary_rho: int = UPDATE_RHO_BY_TEN_PERCENT, tau_incr: float = 2, tau_decr: float = 2, mu_res: float = 10, mu_merit: float = 1000, warm_start: bool = False, max_iter: Optional[int] = None) -> None: """Defines parameters for ADMM optimizer and their default values. Args: rho_initial: Initial value of rho parameter of ADMM. factor_c: Penalizing factor for equality constraints, when mapping to QUBO. beta: Penalization for y decision variables. maxiter: Maximum number of iterations for ADMM. tol: Tolerance for the residual convergence. max_time: Maximum running time (in seconds) for ADMM. three_block: Boolean flag to select the 3-block ADMM implementation. vary_rho: Flag to select the rule to update rho. If set to 0, then rho increases by 10% at each iteration. If set to 1, then rho is modified according to primal and dual residuals. tau_incr: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS). The update rule can be found in: Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1), 1-122. tau_decr: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS). mu_res: Parameter used in the rho update (UPDATE_RHO_BY_RESIDUALS). mu_merit: Penalization for constraint residual. Used to compute the merit values. warm_start: Start ADMM with pre-initialized values for binary and continuous variables by solving a relaxed (all variables are continuous) problem first. This option does not guarantee the solution will optimal or even feasible. The option should be used when tuning other options does not help and should be considered as a hint to the optimizer where to start its iterative process. max_iter: Deprecated, use maxiter. """ super().__init__() if max_iter is not None: warnings.warn('The max_iter parameter is deprecated as of ' '0.8.0 and will be removed no sooner than 3 months after the release. ' 'You should use maxiter instead.', DeprecationWarning) maxiter = max_iter self.mu_merit = mu_merit self.mu_res = mu_res self.tau_decr = tau_decr self.tau_incr = tau_incr self.vary_rho = vary_rho self.three_block = three_block self.max_time = max_time self.tol = tol self.maxiter = maxiter self.factor_c = factor_c self.beta = beta self.rho_initial = rho_initial self.warm_start = warm_start def __repr__(self) -> str: props = ", ".join(["{}={}".format(key, value) for (key, value) in vars(self).items()]) return "{0}({1})".format(type(self).__name__, props) class ADMMState: """Internal computation state of the ADMM implementation. The state keeps track of various variables are stored that are being updated during problem solving. The values are relevant to the problem being solved. The state is recreated for each optimization problem. State is returned as the third value. """ def __init__(self, op: QuadraticProgram, rho_initial: float) -> None: """ Args: op: The optimization problem being solved. rho_initial: Initial value of the rho parameter. """ super().__init__() # Optimization problem itself self.op = op # Indices of the variables self.binary_indices = None # type: Optional[List[int]] self.continuous_indices = None # type: Optional[List[int]] self.step1_absolute_indices = None # type: Optional[List[int]] self.step1_relative_indices = None # type: Optional[List[int]] # define heavily used matrix, they are used at each iteration, so let's cache them, # they are np.ndarrays # pylint:disable=invalid-name # objective self.q0 = None # type: Optional[np.ndarray] self.c0 = None # type: Optional[np.ndarray] self.q1 = None # type: Optional[np.ndarray] self.c1 = None # type: Optional[np.ndarray] # constraints self.a0 = None # type: Optional[np.ndarray] self.b0 = None # type: Optional[np.ndarray] # These are the parameters that are updated in the ADMM iterations. self.u = np.zeros(op.get_num_continuous_vars()) binary_size = op.get_num_binary_vars() self.x0 = np.zeros(binary_size) self.z = np.zeros(binary_size) self.z_init = self.z self.y = np.zeros(binary_size) self.lambda_mult = np.zeros(binary_size) # The following structures store quantities obtained in each ADMM iteration. self.cost_iterates = [] # type: List[float] self.residuals = [] # type: List[float] self.dual_residuals = [] # type: List[float] self.cons_r = [] # type: List[float] self.merits = [] # type: List[float] self.lambdas = [] # type: List[float] self.x0_saved = [] # type: List[np.ndarray] self.u_saved = [] # type: List[np.ndarray] self.z_saved = [] # type: List[np.ndarray] self.y_saved = [] # type: List[np.ndarray] self.rho = rho_initial # lin. eq. constraints with bin. vars. only self.binary_equality_constraints = [] # type: List[LinearConstraint] # all equality constraints self.equality_constraints = [] # type: List[Constraint] # all inequality constraints self.inequality_constraints = [] # type: List[Constraint] class ADMMOptimizationResult(OptimizationResult): """ ADMMOptimization Result.""" def __init__(self, x: np.ndarray, fval: float, variables: List[Variable], state: ADMMState) -> None: """ Args: x: the optimal value found by ADMM. fval: the optimal function value. variables: the list of variables of the optimization problem. state: the internal computation state of ADMM. """ super().__init__(x=x, fval=fval, variables=variables, raw_results=state) @property def state(self) -> ADMMState: """ returns state """ return self._raw_results class ADMMOptimizer(OptimizationAlgorithm): """An implementation of the ADMM-based heuristic. This algorithm is introduced in [1]. **References:** [1] Gambella, C., & Simonetto, A. (2020). Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical and Quantum Computers. arXiv preprint arXiv:2001.02069. """ def __init__(self, qubo_optimizer: Optional[OptimizationAlgorithm] = None, continuous_optimizer: Optional[OptimizationAlgorithm] = None, params: Optional[ADMMParameters] = None) -> None: """ Args: qubo_optimizer: An instance of OptimizationAlgorithm that can effectively solve QUBO problems. If not specified then :class:`MinimumEigenOptimizer` initialized with an instance of :class:`NumPyMinimumEigensolver` will be used. continuous_optimizer: An instance of OptimizationAlgorithm that can solve continuous problems. If not specified then :class:`SlsqpOptimizer` will be used. params: An instance of ADMMParameters. """ super().__init__() self._log = logging.getLogger(__name__) # create default params if not present self._params = params or ADMMParameters() # create optimizers if not specified self._qubo_optimizer = qubo_optimizer or MinimumEigenOptimizer(NumPyMinimumEigensolver()) self._continuous_optimizer = continuous_optimizer or SlsqpOptimizer() # internal state where we'll keep intermediate solution # here, we just declare the class variable, the variable is initialized in kept in # the solve method. self._state = None # type: Optional[ADMMState] def get_compatibility_msg(self, problem: QuadraticProgram) -> Optional[str]: """Checks whether a given problem can be solved with the optimizer implementing this method. Args: problem: The optimization problem to check compatibility. Returns: Returns True if the problem is compatible, otherwise raises an error. Raises: QiskitOptimizationError: If the problem is not compatible with the ADMM optimizer. """ msg = '' # 1. get bin/int and continuous variable indices bin_int_indices = self._get_variable_indices(problem, Variable.Type.BINARY) continuous_indices = self._get_variable_indices(problem, Variable.Type.CONTINUOUS) # 2. binary and continuous variables are separable in objective for bin_int_index in bin_int_indices: for continuous_index in continuous_indices: coeff = problem.objective.quadratic[bin_int_index, continuous_index] if coeff != 0: # binary and continuous vars are mixed. msg += 'Binary and continuous variables are not separable in the objective. ' # if an error occurred, return error message, otherwise, return None return msg def solve(self, problem: QuadraticProgram) -> ADMMOptimizationResult: """Tries to solves the given problem using ADMM algorithm. Args: problem: The problem to be solved. Returns: The result of the optimizer applied to the problem. Raises: QiskitOptimizationError: If the problem is not compatible with the ADMM optimizer. """ self._verify_compatibility(problem) # debug self._log.debug("Initial problem: %s", problem.export_as_lp_string()) # map integer variables to binary variables from ..converters.integer_to_binary import IntegerToBinary int2bin = IntegerToBinary() original_variables = problem.variables problem = int2bin.convert(problem) # we deal with minimization in the optimizer, so turn the problem to minimization problem, sense = self._turn_to_minimization(problem) # create our computation state. self._state = ADMMState(problem, self._params.rho_initial) # parse problem and convert to an ADMM specific representation. self._state.binary_indices = self._get_variable_indices(problem, Variable.Type.BINARY) self._state.continuous_indices = self._get_variable_indices(problem, Variable.Type.CONTINUOUS) if self._params.warm_start: # warm start injection for the initial values of the variables self._warm_start(problem) # convert optimization problem to a set of matrices and vector that are used # at each iteration. self._convert_problem_representation() start_time = time.time() # we have not stated our computations yet, so elapsed time initialized as zero. elapsed_time = 0.0 iteration = 0 residual = 1.e+2 while (iteration < self._params.maxiter and residual > self._params.tol) \ and (elapsed_time < self._params.max_time): if self._state.step1_absolute_indices: op1 = self._create_step1_problem() self._state.x0 = self._update_x0(op1) # debug self._log.debug("Step 1 sub-problem: %s", op1.export_as_lp_string()) # else, no binary variables exist, and no update to be done in this case. # debug self._log.debug("x0=%s", self._state.x0) op2 = self._create_step2_problem() self._state.u, self._state.z = self._update_x1(op2) # debug self._log.debug("Step 2 sub-problem: %s", op2.export_as_lp_string()) self._log.debug("u=%s", self._state.u) self._log.debug("z=%s", self._state.z) if self._params.three_block: if self._state.binary_indices: op3 = self._create_step3_problem() self._state.y = self._update_y(op3) # debug self._log.debug("Step 3 sub-problem: %s", op3.export_as_lp_string()) # debug self._log.debug("y=%s", self._state.y) self._state.lambda_mult = self._update_lambda_mult() # debug self._log.debug("lambda: %s", self._state.lambda_mult) cost_iterate = self._get_objective_value() constraint_residual = self._get_constraint_residual() residual, dual_residual = self._get_solution_residuals(iteration) merit = self._get_merit(cost_iterate, constraint_residual) # debug self._log.debug("cost_iterate=%s, cr=%s, merit=%s", cost_iterate, constraint_residual, merit) # costs are saved with their original sign. self._state.cost_iterates.append(cost_iterate) self._state.residuals.append(residual) self._state.dual_residuals.append(dual_residual) self._state.cons_r.append(constraint_residual) self._state.merits.append(merit) self._state.lambdas.append(np.linalg.norm(self._state.lambda_mult)) self._state.x0_saved.append(self._state.x0) self._state.u_saved.append(self._state.u) self._state.z_saved.append(self._state.z) self._state.z_saved.append(self._state.y) self._update_rho(residual, dual_residual) iteration += 1 elapsed_time = time.time() - start_time binary_vars, continuous_vars, objective_value = self._get_best_merit_solution() solution = self._revert_solution_indexes(binary_vars, continuous_vars) # flip the objective sign again if required objective_value = objective_value * sense # convert back integer to binary base_result = OptimizationResult(solution, objective_value, original_variables) base_result = int2bin.interpret(base_result) # third parameter is our internal state of computations. result = ADMMOptimizationResult(x=base_result.x, fval=base_result.fval, variables=base_result.variables, state=self._state) # debug self._log.debug("solution=%s, objective=%s at iteration=%s", solution, objective_value, iteration) return result @staticmethod def _turn_to_minimization(problem: QuadraticProgram) -> Tuple[QuadraticProgram, float]: """ Turns the problem to `ObjSense.MINIMIZE` by flipping the sign of the objective function if initially it is `ObjSense.MAXIMIZE`. Otherwise returns the original problem. Args: problem: a problem to turn to minimization. Returns: A copy of the problem if sign flip is required, otherwise the original problem and the original sense of the problem in the numerical representation. """ sense = problem.objective.sense.value if problem.objective.sense == QuadraticObjective.Sense.MAXIMIZE: problem = copy.deepcopy(problem) problem.objective.sense = QuadraticObjective.Sense.MINIMIZE problem.objective.constant = (-1) * problem.objective.constant problem.objective.linear = (-1) * problem.objective.linear.coefficients problem.objective.quadratic = (-1) * problem.objective.quadratic.coefficients return problem, sense @staticmethod def _get_variable_indices(op: QuadraticProgram, var_type: VarType) -> List[int]: """Returns a list of indices of the variables of the specified type. Args: op: Optimization problem. var_type: type of variables to look for. Returns: List of indices. """ indices = [] for i, variable in enumerate(op.variables): if variable.vartype == var_type: indices.append(i) return indices def _get_current_solution(self) -> np.ndarray: """ Returns current solution of the problem. Returns: An array of the current solution. """ return self._revert_solution_indexes(self._state.x0, self._state.u) def _revert_solution_indexes(self, binary_vars: np.ndarray, continuous_vars: np.ndarray) \ -> np.ndarray: """Constructs a solution array where variables are stored in the correct order. Args: binary_vars: solution for binary variables continuous_vars: solution for continuous variables Returns: A solution array. """ solution = np.zeros(len(self._state.binary_indices) + len(self._state.continuous_indices)) # restore solution at the original index location solution.put(self._state.binary_indices, binary_vars) solution.put(self._state.continuous_indices, continuous_vars) return solution def _convert_problem_representation(self) -> None: """Converts problem representation into set of matrices and vectors.""" binary_var_indices = set(self._state.binary_indices) # separate constraints for l_constraint in self._state.op.linear_constraints: if l_constraint.sense == Constraint.Sense.EQ: self._state.equality_constraints.append(l_constraint) # verify that there are only binary variables in the constraint # this is to build A0, b0 in step 1 constraint_var_indices = set(l_constraint.linear.to_dict().keys()) if constraint_var_indices.issubset(binary_var_indices): self._state.binary_equality_constraints.append(l_constraint) elif l_constraint.sense in (Constraint.Sense.LE, Constraint.Sense.GE): self._state.inequality_constraints.append(l_constraint) # separate quadratic constraints into eq and non-eq for q_constraint in self._state.op.quadratic_constraints: if q_constraint.sense == Constraint.Sense.EQ: self._state.equality_constraints.append(q_constraint) elif q_constraint.sense in (Constraint.Sense.LE, Constraint.Sense.GE): self._state.inequality_constraints.append(q_constraint) # separately keep binary variables that are for step 1 only # temp variables are due to limit of 100 chars per line step1_absolute_indices, step1_relative_indices = self._get_step1_indices() self._state.step1_absolute_indices = step1_absolute_indices self._state.step1_relative_indices = step1_relative_indices # objective self._state.q0 = self._get_q(self._state.step1_absolute_indices) c0_vec = self._state.op.objective.linear.to_array()[self._state.step1_absolute_indices] self._state.c0 = c0_vec self._state.q1 = self._get_q(self._state.continuous_indices) self._state.c1 = self._state.op.objective.linear.to_array()[self._state.continuous_indices] # equality constraints with binary vars only self._state.a0, self._state.b0 = self._get_a0_b0() def _get_step1_indices(self) -> Tuple[List[int], List[int]]: """ Constructs two arrays of absolute (pointing to the original problem) and relative (pointing to the list of all binary variables) indices of the variables considered to be included in the step1(QUBO) problem. Returns: A tuple of lists with absolute and relative indices """ # here we keep binary indices from the original problem step1_absolute_indices = [] # iterate over binary variables and put all binary variables mentioned in the objective # to the array for the step1 for binary_index in self._state.binary_indices: # here we check if this binary variable present in the objective # either in the linear or quadratic terms if self._state.op.objective.linear[binary_index] != 0 or np.abs( self._state.op.objective.quadratic.coefficients[binary_index, :]).sum() != 0: # add the variable if it was not added before if binary_index not in step1_absolute_indices: step1_absolute_indices.append(binary_index) # compute all unverified binary variables (the variables that are present in constraints # but not in objective): # rest variables := all binary variables - already verified for step 1 rest_binary = set(self._state.binary_indices).difference(step1_absolute_indices) # verify if an equality contains binary variables for constraint in self._state.binary_equality_constraints: for binary_index in list(rest_binary): if constraint.linear[binary_index] > 0 \ and binary_index not in step1_absolute_indices: # a binary variable with the binary_index is present in this constraint step1_absolute_indices.append(binary_index) # we want to preserve order of the variables but this order could be broken by adding # a variable in the previous for loop. step1_absolute_indices.sort() # compute relative indices, these indices are used when we generate step1 and # update variables on step1. # on step1 we solve for a subset of all binary variables, # so we want to operate only these indices step1_relative_indices = [] relative_index = 0 # for each binary variable that comes from lin.eq/obj and which is denoted by abs_index for abs_index in step1_absolute_indices: found = False # we want to find relative index of a variable the comes from linear constraints # or objective across all binary variables for j in range(relative_index, len(self._state.binary_indices)): if self._state.binary_indices[j] == abs_index: found = True relative_index = j break if found: step1_relative_indices.append(relative_index) else: raise ValueError("No relative index found!") return step1_absolute_indices, step1_relative_indices def _get_q(self, variable_indices: List[int]) -> np.ndarray: """Constructs a quadratic matrix for the variables with the specified indices from the quadratic terms in the objective. Args: variable_indices: variable indices to look for. Returns: A matrix as a numpy array of the shape(len(variable_indices), len(variable_indices)). """ size = len(variable_indices) q = np.zeros(shape=(size, size)) # fill in the matrix # in fact we use re-indexed variables # we build upper triangular matrix to avoid doubling of the coefficients for i in range(0, size): for j in range(i, size): q[i, j] = \ self._state.op.objective.quadratic[variable_indices[i], variable_indices[j]] return q def _get_a0_b0(self) -> Tuple[np.ndarray, np.ndarray]: """Constructs a matrix and a vector from the constraints in a form of Ax = b, where x is a vector of binary variables. Returns: Corresponding matrix and vector as numpy arrays. Raises: ValueError: if the problem is not suitable for this optimizer. """ matrix = [] vector = [] for constraint in self._state.binary_equality_constraints: row = constraint.linear.to_array().take(self._state.step1_absolute_indices).tolist() matrix.append(row) vector.append(constraint.rhs) if len(matrix) != 0: np_matrix = np.array(matrix) np_vector = np.array(vector) else: np_matrix = np.array([0] * len(self._state.step1_absolute_indices)).reshape((1, -1)) np_vector = np.zeros(shape=(1,)) return np_matrix, np_vector def _create_step1_problem(self) -> QuadraticProgram: """Creates a step 1 sub-problem. Returns: A newly created optimization problem. """ op1 = QuadraticProgram() binary_size = len(self._state.step1_absolute_indices) # create the same binary variables. for i in range(binary_size): name = self._state.op.variables[self._state.step1_absolute_indices[i]].name op1.binary_var(name=name) # prepare and set quadratic objective. quadratic_objective = self._state.q0 + \ self._params.factor_c / 2 * np.dot(self._state.a0.transpose(), self._state.a0) +\ self._state.rho / 2 * np.eye(binary_size) op1.objective.quadratic = quadratic_objective # prepare and set linear objective. linear_objective = self._state.c0 - \ self._params.factor_c * np.dot(self._state.b0, self._state.a0) + \ self._state.rho * (- self._state.y[self._state.step1_relative_indices] - self._state.z[self._state.step1_relative_indices]) + \ self._state.lambda_mult[self._state.step1_relative_indices] op1.objective.linear = linear_objective return op1 def _create_step2_problem(self) -> QuadraticProgram: """Creates a step 2 sub-problem. Returns: A newly created optimization problem. """ op2 = copy.deepcopy(self._state.op) # replace binary variables with the continuous ones bound in [0,1] # x0(bin) -> z(cts) # u (cts) are still there unchanged for i, var_index in enumerate(self._state.binary_indices): variable = op2.variables[var_index] variable.vartype = Variable.Type.CONTINUOUS variable.upperbound = 1. variable.lowerbound = 0. # replacing Q0 objective and take of min/max sense, initially we consider minimization op2.objective.quadratic[var_index, var_index] = self._state.rho / 2 # replacing linear objective op2.objective.linear[var_index] = -1 * self._state.lambda_mult[i] - self._state.rho * \ (self._state.x0[i] - self._state.y[i]) # remove A0 x0 = b0 constraints for constraint in self._state.binary_equality_constraints: op2.remove_linear_constraint(constraint.name) return op2 def _create_step3_problem(self) -> QuadraticProgram: """Creates a step 3 sub-problem. Returns: A newly created optimization problem. """ op3 = QuadraticProgram() # add y variables. binary_size = len(self._state.binary_indices) for i in range(binary_size): name = self._state.op.variables[self._state.binary_indices[i]].name op3.continuous_var(lowerbound=-np.inf, upperbound=np.inf, name=name) # set quadratic objective y quadratic_y = self._params.beta / 2 * np.eye(binary_size) + \ self._state.rho / 2 * np.eye(binary_size) op3.objective.quadratic = quadratic_y # set linear objective for y linear_y = - self._state.lambda_mult - self._state.rho * (self._state.x0 - self._state.z) op3.objective.linear = linear_y return op3 def _update_x0(self, op1: QuadraticProgram) -> np.ndarray: """Solves the Step1 QuadraticProgram via the qubo optimizer. Args: op1: the Step1 QuadraticProgram. Returns: A solution of the Step1, as a numpy array. """ x0_all_binaries = np.zeros(len(self._state.binary_indices)) x0_qubo = np.asarray(self._qubo_optimizer.solve(op1).x) x0_all_binaries[self._state.step1_relative_indices] = x0_qubo return x0_all_binaries def _update_x1(self, op2: QuadraticProgram) -> Tuple[np.ndarray, np.ndarray]: """Solves the Step2 QuadraticProgram via the continuous optimizer. Args: op2: the Step2 QuadraticProgram Returns: A solution of the Step2, as a pair of numpy arrays. First array contains the values of decision variables u, and second array contains the values of decision variables z. """ vars_op2 = np.asarray(self._continuous_optimizer.solve(op2).x) vars_u = vars_op2.take(self._state.continuous_indices) vars_z = vars_op2.take(self._state.binary_indices) return vars_u, vars_z def _update_y(self, op3: QuadraticProgram) -> np.ndarray: """Solves the Step3 QuadraticProgram via the continuous optimizer. Args: op3: the Step3 QuadraticProgram Returns: A solution of the Step3, as a numpy array. """ return np.asarray(self._continuous_optimizer.solve(op3).x) def _get_best_merit_solution(self) -> Tuple[np.ndarray, np.ndarray, float]: """The ADMM solution is that for which the merit value is the min * sol: Iterate with the min merit value * sol_val: Value of sol, according to the original objective Returns: A tuple of (binary_vars, continuous_vars, sol_val), where * binary_vars: binary variable values with the min merit value * continuous_vars: continuous variable values with the min merit value * sol_val: Value of the objective function """ it_min_merits = self._state.merits.index(min(self._state.merits)) binary_vars = self._state.x0_saved[it_min_merits] continuous_vars = self._state.u_saved[it_min_merits] sol_val = self._state.cost_iterates[it_min_merits] return binary_vars, continuous_vars, sol_val def _update_lambda_mult(self) -> np.ndarray: """ Updates the values of lambda multiplier, given the updated iterates x0, z, and y. Returns: The updated array of values of lambda multiplier. """ return self._state.lambda_mult + \ self._state.rho * (self._state.x0 - self._state.z - self._state.y) def _update_rho(self, primal_residual: float, dual_residual: float) -> None: """Updating the rho parameter in ADMM. Args: primal_residual: primal residual dual_residual: dual residual """ if self._params.vary_rho == UPDATE_RHO_BY_TEN_PERCENT: # Increase rho, to aid convergence. if self._state.rho < 1.e+10: self._state.rho *= 1.1 elif self._params.vary_rho == UPDATE_RHO_BY_RESIDUALS: if primal_residual > self._params.mu_res * dual_residual: self._state.rho = self._params.tau_incr * self._state.rho elif dual_residual > self._params.mu_res * primal_residual: self._state.rho = self._params.tau_decr * self._state.rho def _get_constraint_residual(self) -> float: """Compute violation of the constraints of the original problem, as: * norm 1 of the body-rhs of eq. constraints * -1 * min(body - rhs, 0) for geq constraints * max(body - rhs, 0) for leq constraints Returns: Violation of the constraints as a float value """ solution = self._get_current_solution() # equality constraints cr_eq = 0 for constraint in self._state.equality_constraints: cr_eq += np.abs(constraint.evaluate(solution) - constraint.rhs) # inequality constraints cr_ineq = 0.0 for constraint in self._state.inequality_constraints: sense = -1.0 if constraint.sense == Constraint.Sense.GE else 1.0 cr_ineq += max(sense * (constraint.evaluate(solution) - constraint.rhs), 0.0) return cr_eq + cr_ineq def _get_merit(self, cost_iterate: float, constraint_residual: float) -> float: """Compute merit value associated with the current iterate Args: cost_iterate: Cost at the certain iteration. constraint_residual: Value of violation of the constraints. Returns: Merit value as a float """ return cost_iterate + self._params.mu_merit * constraint_residual def _get_objective_value(self) -> float: """Computes the value of the objective function. Returns: Value of the objective function as a float """ return self._state.op.objective.evaluate(self._get_current_solution()) def _get_solution_residuals(self, iteration: int) -> Tuple[float, float]: """Compute primal and dual residual. Args: iteration: Iteration number. Returns: r, s as primary and dual residuals. """ elements = self._state.x0 - self._state.z - self._state.y primal_residual = np.linalg.norm(elements) if iteration > 0: elements_dual = self._state.z - self._state.z_saved[iteration - 1] else: elements_dual = self._state.z - self._state.z_init dual_residual = self._state.rho * np.linalg.norm(elements_dual) return primal_residual, dual_residual def _warm_start(self, problem: QuadraticProgram) -> None: """Solves a relaxed (all variables are continuous) and initializes the optimizer state with the found solution. Args: problem: a problem to solve. Returns: None """ qp_copy = copy.deepcopy(problem) for variable in qp_copy.variables: variable.vartype = VarType.CONTINUOUS cts_result = self._continuous_optimizer.solve(qp_copy) logger.debug("Continuous relaxation: %s", cts_result.x) self._state.x0 = cts_result.x[self._state.binary_indices] self._state.u = cts_result.x[self._state.continuous_indices] self._state.z = cts_result.x[self._state.binary_indices] @property def parameters(self) -> ADMMParameters: """Returns current parameters of the optimizer. Returns: The parameters. """ return self._params @parameters.setter def parameters(self, params: ADMMParameters) -> None: """Sets the parameters of the optimizer. Args: params: New parameters to set. """ self._params = params
42.292045
100
0.637961
206c47ebc0fdc5a6a9e4a9d94663da5d43e0ab4f
2,237
py
Python
code/DNN/dnn_classification-keras.py
Knowledge-Precipitation-Tribe/Neural-network
eac2e66cdde85b34ddf9313ce4d2b123cc1b8be8
[ "MIT" ]
3
2021-05-25T10:18:23.000Z
2022-02-09T08:55:14.000Z
code/DNN/dnn_classification-keras.py
Knowledge-Precipitation-Tribe/Neural-network
eac2e66cdde85b34ddf9313ce4d2b123cc1b8be8
[ "MIT" ]
null
null
null
code/DNN/dnn_classification-keras.py
Knowledge-Precipitation-Tribe/Neural-network
eac2e66cdde85b34ddf9313ce4d2b123cc1b8be8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*-# ''' # Name: dnn_classification-keras # Description: # Author: super # Date: 2020/6/2 ''' from MiniFramework.DataReader_2_0 import * from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt import os os.environ['KMP_DUPLICATE_LIB_OK']='True' def load_data(): train_data_name = "../data/ch10.train.npz" test_data_name = "../data/ch10.test.npz" dataReader = DataReader_2_0(train_data_name, test_data_name) dataReader.ReadData() dataReader.NormalizeX() dataReader.Shuffle() dataReader.GenerateValidationSet() x_train, y_train = dataReader.XTrain, dataReader.YTrain x_test, y_test = dataReader.XTest, dataReader.YTest x_val, y_val = dataReader.XDev, dataReader.YDev return x_train, y_train, x_test, y_test, x_val, y_val def build_model(): model = Sequential() model.add(Dense(3, activation='sigmoid', input_shape=(2, ))) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy']) return model #画出训练过程中训练和验证的精度与损失 def draw_train_history(history): plt.figure(1) # summarize history for accuracy plt.subplot(211) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') # summarize history for loss plt.subplot(212) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() if __name__ == '__main__': x_train, y_train, x_test, y_test, x_val, y_val = load_data() model = build_model() history = model.fit(x_train, y_train, epochs=200, batch_size=5, validation_data=(x_val, y_val)) draw_train_history(history) loss, accuracy = model.evaluate(x_test, y_test) print("test loss: {}, test accuracy: {}".format(loss, accuracy)) weights = model.get_weights() print("weights: ", weights)
28.316456
99
0.675011
1a000d88a2cc54e47f4608e2a4b44d6fefafa5d2
12,426
py
Python
samples/train_cancer.py
robvcc/Mask_RCNN_shoe
67cb95bf931782a166ee8219c5dca41f660aa5a6
[ "MIT" ]
null
null
null
samples/train_cancer.py
robvcc/Mask_RCNN_shoe
67cb95bf931782a166ee8219c5dca41f660aa5a6
[ "MIT" ]
null
null
null
samples/train_cancer.py
robvcc/Mask_RCNN_shoe
67cb95bf931782a166ee8219c5dca41f660aa5a6
[ "MIT" ]
null
null
null
import os import numpy as np import cv2 import matplotlib.pyplot as plt from mrcnn.config import Config #import utils from mrcnn import model as modellib from mrcnn import utils from mrcnn import visualize import yaml from mrcnn.model import log from PIL import Image class ShapesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "shape" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 8 # Number of classes (including background) NUM_CLASSES = 1 + 8 # background + 8 shapes # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 100 IMAGE_MAX_DIM = 448 # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 100 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small VALIDATION_STEPS = 50 class DrugDataset(utils.Dataset): # 得到该图中有多少个实例(物体) def get_obj_index(self, image): n = np.max(image) return n # 解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签 def from_yaml_get_class(self, image_id): info = self.image_info[image_id] with open(info['yaml_path']) as f: temp = yaml.load(f.read()) labels = temp['label_names'] del labels[0] return labels # 重新写draw_mask def draw_mask(self, num_obj, mask, image,image_id): #print("draw_mask-->",image_id) #print("self.image_info",self.image_info) info = self.image_info[image_id] #print("info-->",info) #print("info[width]----->",info['width'],"-info[height]--->",info['height']) for index in range(num_obj): for i in range(info['width']): for j in range(info['height']): #print("image_id-->",image_id,"-i--->",i,"-j--->",j) #print("info[width]----->",info['width'],"-info[height]--->",info['height']) at_pixel = image.getpixel((i, j)) if at_pixel == index + 1: mask[j, i, index] = 1 return mask # 重新写load_shapes,里面包含自己的类别,可以任意添加 # 并在self.image_info信息中添加了path、mask_path 、yaml_path # yaml_pathdataset_root_path = "/tongue_dateset/" # img_floder = dataset_root_path + "rgb" # mask_floder = dataset_root_path + "mask" # dataset_root_path = "/tongue_dateset/" def load_shapes(self, count, img_floder, mask_floder, imglist, dataset_root_path): """Generate the requested number of synthetic images. count: number of images to generate. height, width: the size of the generated images. """ # Add classes,可通过这种方式扩展多个物体 self.add_class("shapes", 1, "high-heeled") self.add_class("shapes", 2, "high-heeled-welt") self.add_class("shapes", 3, "sports") self.add_class("shapes", 4, "sports-welt") self.add_class("shapes", 5, "sandals") self.add_class("shapes", 6, "sandals-welt") self.add_class("shapes", 7, "slippers") self.add_class("shapes", 8, "slippers-welt") for i in range(count): # 获取图片宽和高 filestr = imglist[i].split(".")[0] #print(imglist[i],"-->",cv_img.shape[1],"--->",cv_img.shape[0]) #print("id-->", i, " imglist[", i, "]-->", imglist[i],"filestr-->",filestr) #filestr = filestr.split("_")[1] mask_path = mask_floder + "/" + filestr + ".png" yaml_path = dataset_root_path + "labelme_json/" + filestr + "_json/info.yaml" # print(dataset_root_path + "labelme_json/" + filestr + "_json/img.png") cv_img = cv2.imread(dataset_root_path + "pic/" + filestr + ".png") self.add_image("shapes", image_id=i, path=img_floder + "/" + imglist[i], width=cv_img.shape[1], height=cv_img.shape[0], mask_path=mask_path, yaml_path=yaml_path) # 重写load_mask def load_mask(self, image_id): """Generate instance masks for shapes of the given image ID. """ global iter_num print("image_id",image_id) info = self.image_info[image_id] count = 1 # number of object img = Image.open(info['mask_path']) num_obj = self.get_obj_index(img) mask = np.zeros([info['height'], info['width'], num_obj], dtype=np.uint8) mask = self.draw_mask(num_obj, mask, img,image_id) occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8) for i in range(count - 2, -1, -1): mask[:, :, i] = mask[:, :, i] * occlusion occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i])) labels = [] labels = self.from_yaml_get_class(image_id) labels_form = [] for i in range(len(labels)): if labels[i].find("high-heeled-welt") != -1: labels_form.append("high-heeled-welt") elif labels[i].find("high-heeled") != -1: labels_form.append("high-heeled") elif labels[i].find("sports-welt") != -1: labels_form.append("sports-welt") elif labels[i].find("sports") != -1: labels_form.append("sports") elif labels[i].find("sandals-welt") != -1: labels_form.append("sandals-welt") elif labels[i].find("sandals") != -1: labels_form.append("sandals") elif labels[i].find("slippers-welt") != -1: labels_form.append("slippers-welt") elif labels[i].find("slippers") != -1: labels_form.append("slippers") class_ids = np.array([self.class_names.index(s) for s in labels_form]) return mask, class_ids.astype(np.int32) class Detect_Config(ShapesConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 #shoes_train_class class Shoes(): def __init__(self): self.ROOT_DIR = os.path.abspath("..") # Directory to save logs and trained model self.MODEL_DIR = os.path.join(self.ROOT_DIR, "logs") print(self.MODEL_DIR) self.iter_num = 0 # Local path to trained weights file self.COCO_MODEL_PATH = os.path.join(self.ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(self.COCO_MODEL_PATH): utils.download_trained_weights(self.COCO_MODEL_PATH) self.config = ShapesConfig() # self.config.display() #self.dataset_root_path=self.ROOT_DIR+"/corner_data/" self.dataset_root_path="/home/ljt/Shoe-data-V2/" self.img_floder = self.dataset_root_path + "pic" # print(img_floder) self.mask_floder = self.dataset_root_path + "cv2_mask" #yaml_floder = dataset_root_path self.imglist = os.listdir(self.img_floder) self.count = len(self.imglist) #print(self.imglist) #print(self.count) self.detectconfig = Detect_Config() def prepare_data(self): #train与val数据集准备 self.dataset_train = DrugDataset() self.dataset_train.load_shapes(self.count, self.img_floder, self.mask_floder, self.imglist, self.dataset_root_path) self.dataset_train.prepare() self.dataset_val = DrugDataset() self.dataset_val.load_shapes(10, self.img_floder, self.mask_floder, self.imglist, self.dataset_root_path) self.dataset_val.prepare() print("dataset_val-->",self.dataset_val._image_ids) def load_pretrain_model(self): self.model = modellib.MaskRCNN(mode="training", config=self.config, model_dir=self.MODEL_DIR) init_with = "coco" # imagenet, coco, or last if init_with == "imagenet": self.model.load_weights(self.model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights self.model.load_weights(self.COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training self.model.load_weights(self.model.find_last()[1], by_name=True) def tarin(self): self.model.train(self.dataset_train, self.dataset_val, learning_rate=self.config.LEARNING_RATE/10, epochs=110, layers='all') def detect(self): self.model = modellib.MaskRCNN(mode="inference", config=self.detectconfig, model_dir=self.MODEL_DIR) #SHARP_MODEL_PATH=os.path.join(SHARP_MODEL_DIR,"mask_rcnn_shapes_0000.h5") self.SHARP_MODEL_PATH="/home/ljt/Mask_RCNN_shoes/logs/shape20190613T1601/mask_rcnn_shape_0010.h5" self.model.load_weights(self.SHARP_MODEL_PATH, by_name=True) print(self.SHARP_MODEL_PATH) import skimage Quilt_DIR="/home/ljt/Shoe-data-V2/test" IMAGE_DIR=os.path.join(Quilt_DIR,"/") #image = skimage.io.imread(os.path.join(IMAGE_DIR, "17.png")) #image = skimage.io.imread("/home/ljt/Shoe-data-V2/test/1.png") # image = skimage.io.imread("C:/Users/VCC/Desktop/3.jpg") # Run detection # print(image.shape) #image = cv2.imread(os.path.join(IMAGE_DIR, "65.png")) image = cv2.imread("/home/ljt/Shoe-data-V2/test/20.png") results = self.model.detect([image], verbose=1) r = results[0] a = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], self.dataset_val.class_names, r['scores']) def mAP(self): image_ids = np.random.choice(self.dataset_val.image_ids, 10) APs = [] for image_id in image_ids: # Load image and ground truth data image, image_meta, gt_class_id, gt_bbox, gt_mask = \ modellib.load_image_gt(self.dataset_val, self.detectconfig, image_id, use_mini_mask=False) molded_images = np.expand_dims(modellib.mold_image(image, self.detectconfig), 0) # Run object detection results = self.model.detect([image], verbose=0) r = results[0] # Compute AP AP, precisions, recalls, overlaps = \ utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"], r["class_ids"], r["scores"], r['masks']) APs.append(AP) print("mAP: ", np.mean(APs)) def acc(self): image_ids = np.random.choice(self.dataset_val.image_ids, 20) acc = [] for image_id in image_ids: # Load image and ground truth data image, image_meta, gt_class_id, gt_bbox, gt_mask = \ modellib.load_image_gt(self.dataset_val, self.detectconfig, image_id, use_mini_mask=False) molded_images = np.expand_dims(modellib.mold_image(image, self.detectconfig), 0) # Run object detection results = self.model.detect([image], verbose=0) r = results[0] if not r["scores"]: r["scores"] = [0.5662385] # Compute acc print(r["scores"]) acc.append(r["scores"]) print("acc: ", np.mean(acc)) if __name__ == "__main__": shoes = Shoes() shoes.prepare_data() #shoes.load_pretrain_model() #shoes.tarin() shoes.detect() shoes.acc()
40.875
123
0.601642
8203d2474e6c729b07d76277f99a3bc5cf2d0d6e
47,210
py
Python
flopy/plot/crosssection.py
emorway-usgs/flopy
1fa24026d890abc4508a39eddf9049399c1e4d3f
[ "CC0-1.0", "BSD-3-Clause" ]
351
2015-01-03T15:18:48.000Z
2022-03-31T09:46:43.000Z
flopy/plot/crosssection.py
emorway-usgs/flopy
1fa24026d890abc4508a39eddf9049399c1e4d3f
[ "CC0-1.0", "BSD-3-Clause" ]
1,256
2015-01-15T21:10:42.000Z
2022-03-31T22:43:06.000Z
flopy/plot/crosssection.py
emorway-usgs/flopy
1fa24026d890abc4508a39eddf9049399c1e4d3f
[ "CC0-1.0", "BSD-3-Clause" ]
553
2015-01-31T22:46:48.000Z
2022-03-31T17:43:35.000Z
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors from matplotlib.patches import Polygon from . import plotutil from ..utils import geometry import copy import warnings warnings.simplefilter("always", PendingDeprecationWarning) class PlotCrossSection: """ Class to create a cross sectional plot of a model. Parameters ---------- ax : matplotlib.pyplot axis The plot axis. If not provided it, plt.gca() will be used. model : flopy.modflow object flopy model object. (Default is None) modelgrid : flopy.discretization.Grid object can be a StructuredGrid, VertexGrid, or UnstructuredGrid object line : dict Dictionary with either "row", "column", or "line" key. If key is "row" or "column" key value should be the zero-based row or column index for cross-section. If key is "line" value should be an array of (x, y) tuples with vertices of cross-section. Vertices should be in map coordinates consistent with xul, yul, and rotation. extent : tuple of floats (xmin, xmax, ymin, ymax) will be used to specify axes limits. If None then these will be calculated based on grid, coordinates, and rotation. geographic_coords : bool boolean flag to allow the user to plot cross section lines in geographic coordinates. If False (default), cross section is plotted as the distance along the cross section line. """ def __init__( self, model=None, modelgrid=None, ax=None, line=None, extent=None, geographic_coords=False, ): self.ax = ax self.geographic_coords = geographic_coords self.model = model if modelgrid is not None: self.mg = modelgrid elif model is not None: self.mg = model.modelgrid else: raise Exception("Cannot find model grid") if self.mg.top is None or self.mg.botm is None: raise AssertionError("modelgrid top and botm must be defined") if not isinstance(line, dict): raise AssertionError("A line dictionary must be provided") line = {k.lower(): v for k, v in line.items()} if len(line) != 1: s = ( "only row, column, or line can be specified in line " "dictionary keys specified: " ) for k in line.keys(): s += f"{k} " raise AssertionError(s) if ax is None: self.ax = plt.gca() else: self.ax = ax onkey = list(line.keys())[0] self.__geographic_xpts = None # un-translate model grid into model coordinates xcellcenters, ycellcenters = geometry.transform( self.mg.xcellcenters, self.mg.ycellcenters, self.mg.xoffset, self.mg.yoffset, self.mg.angrot_radians, inverse=True, ) xverts, yverts = self.mg.cross_section_vertices ( xverts, yverts, ) = plotutil.UnstructuredPlotUtilities.irregular_shape_patch( xverts, yverts ) self.xvertices, self.yvertices = geometry.transform( xverts, yverts, self.mg.xoffset, self.mg.yoffset, self.mg.angrot_radians, inverse=True, ) if onkey in ("row", "column"): eps = 1.0e-4 xedge, yedge = self.mg.xyedges if onkey == "row": self.direction = "x" ycenter = ycellcenters.T[0] pts = [ (xedge[0] - eps, ycenter[int(line[onkey])]), (xedge[-1] + eps, ycenter[int(line[onkey])]), ] else: self.direction = "y" xcenter = xcellcenters[0, :] pts = [ (xcenter[int(line[onkey])], yedge[0] + eps), (xcenter[int(line[onkey])], yedge[-1] - eps), ] else: verts = line[onkey] xp = [] yp = [] for [v1, v2] in verts: xp.append(v1) yp.append(v2) xp, yp = self.mg.get_local_coords(xp, yp) if np.max(xp) - np.min(xp) > np.max(yp) - np.min(yp): # this is x-projection and we should buffer x by small amount idx0 = list(xp).index(np.max(xp)) idx1 = list(xp).index(np.min(xp)) xp[idx0] += 1e-04 xp[idx1] -= 1e-04 self.direction = "x" else: # this is y-projection and we should buffer y by small amount idx0 = list(yp).index(np.max(yp)) idx1 = list(yp).index(np.min(yp)) yp[idx0] += 1e-04 yp[idx1] -= 1e-04 self.direction = "y" pts = [(xt, yt) for xt, yt in zip(xp, yp)] self.pts = np.array(pts) self.xypts = plotutil.UnstructuredPlotUtilities.line_intersect_grid( self.pts, self.xvertices, self.yvertices ) if len(self.xypts) < 2: s = "cross-section cannot be created\n." s += " less than 2 points intersect the model grid\n" s += f" {len(self.xypts)} points intersect the grid." raise Exception(s) if self.geographic_coords: # transform back to geographic coordinates xypts = {} for nn, pt in self.xypts.items(): xp = [t[0] for t in pt] yp = [t[1] for t in pt] xp, yp = geometry.transform( xp, yp, self.mg.xoffset, self.mg.yoffset, self.mg.angrot_radians, ) xypts[nn] = [(xt, yt) for xt, yt in zip(xp, yp)] self.xypts = xypts laycbd = [] self.ncb = 0 if self.model is not None: if self.model.laycbd is not None: laycbd = list(self.model.laycbd) self.ncb = np.count_nonzero(laycbd) if laycbd: self.active = [] for k in range(self.mg.nlay): self.active.append(1) if laycbd[k] > 0: self.active.append(0) self.active = np.array(self.active, dtype=int) else: self.active = np.ones(self.mg.nlay, dtype=int) self._nlay, self._ncpl, self.ncb = self.mg.cross_section_lay_ncpl_ncb( self.ncb ) top = self.mg.top.reshape(1, self._ncpl) botm = self.mg.botm.reshape(self._nlay + self.ncb, self._ncpl) self.elev = np.concatenate((top, botm), axis=0) self.idomain = self.mg.idomain if self.mg.idomain is None: self.idomain = np.ones(botm.shape, dtype=int) self.projpts = self.set_zpts(None) # Create cross-section extent if extent is None: self.extent = self.get_extent() else: self.extent = extent # this is actually x or y based on projection self.xcenters = [ np.mean(np.array(v).T[0]) for i, v in sorted(self.projpts.items()) ] self.mean_dx = np.mean( np.max(self.xvertices, axis=1) - np.min(self.xvertices, axis=1) ) self.mean_dy = np.mean( np.max(self.yvertices, axis=1) - np.min(self.yvertices, axis=1) ) self._polygons = {} # Set axis limits self.ax.set_xlim(self.extent[0], self.extent[1]) self.ax.set_ylim(self.extent[2], self.extent[3]) @property def polygons(self): """ Method to return cached matplotlib polygons for a cross section Returns ------- dict : [matplotlib.patches.Polygon] """ if not self._polygons: for cell, poly in self.projpts.items(): if len(poly) > 4: # this is the rare multipolygon instance... n = 0 p = [] polys = [] for vn, v in enumerate(poly): if vn == 3 + 4 * n: n += 1 p.append(v) polys.append(p) p = [] else: p.append(v) else: polys = [poly] for polygon in polys: verts = plotutil.UnstructuredPlotUtilities.arctan2( np.array(polygon) ) if cell not in self._polygons: self._polygons[cell] = [Polygon(verts, closed=True)] else: self._polygons[cell].append( Polygon(verts, closed=True) ) return copy.copy(self._polygons) def get_extent(self): """ Get the extent of the rotated and offset grid Returns ------- tuple : (xmin, xmax, ymin, ymax) """ xpts = [] for _, verts in self.projpts.items(): for v in verts: xpts.append(v[0]) xmin = np.min(xpts) xmax = np.max(xpts) ymin = np.min(self.elev) ymax = np.max(self.elev) return xmin, xmax, ymin, ymax def plot_array(self, a, masked_values=None, head=None, **kwargs): """ Plot a three-dimensional array as a patch collection. Parameters ---------- a : numpy.ndarray Three-dimensional array to plot. masked_values : iterable of floats, ints Values to mask. head : numpy.ndarray Three-dimensional array to set top of patches to the minimum of the top of a layer or the head value. Used to create patches that conform to water-level elevations. **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- patches : matplotlib.collections.PatchCollection """ ax = kwargs.pop("ax", self.ax) if not isinstance(a, np.ndarray): a = np.array(a) if a.ndim > 1: a = np.ravel(a) if masked_values is not None: for mval in masked_values: a = np.ma.masked_values(a, mval) if isinstance(head, np.ndarray): projpts = self.set_zpts(np.ravel(head)) else: projpts = None pc = self.get_grid_patch_collection(a, projpts, **kwargs) if pc is not None: ax.add_collection(pc) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return pc def plot_surface(self, a, masked_values=None, **kwargs): """ Plot a two- or three-dimensional array as line(s). Parameters ---------- a : numpy.ndarray Two- or three-dimensional array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.plot Returns ------- plot : list containing matplotlib.plot objects """ ax = kwargs.pop("ax", self.ax) color = kwargs.pop("color", "b") color = kwargs.pop("c", color) if not isinstance(a, np.ndarray): a = np.array(a) if a.ndim > 1: a = np.ravel(a) if a.size % self._ncpl != 0: raise AssertionError("Array size must be a multiple of ncpl") if masked_values is not None: for mval in masked_values: a = np.ma.masked_values(a, mval) d = { i: (np.min(np.array(v).T[0]), np.max(np.array(v).T[0])) for i, v in sorted(self.projpts.items()) } surface = [] for cell, val in d.items(): if cell >= a.size: continue elif np.isnan(a[cell]): continue elif a[cell] is np.ma.masked: continue else: line = ax.plot( d[cell], [a[cell], a[cell]], color=color, **kwargs ) surface.append(line) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return surface def plot_fill_between( self, a, colors=("blue", "red"), masked_values=None, head=None, **kwargs, ): """ Plot a three-dimensional array as lines. Parameters ---------- a : numpy.ndarray Three-dimensional array to plot. colors : list matplotlib fill colors, two required masked_values : iterable of floats, ints Values to mask. head : numpy.ndarray Three-dimensional array to set top of patches to the minimum of the top of a layer or the head value. Used to create patches that conform to water-level elevations. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.plot Returns ------- plot : list containing matplotlib.fillbetween objects """ ax = kwargs.pop("ax", self.ax) kwargs["colors"] = colors if not isinstance(a, np.ndarray): a = np.array(a) a = np.ravel(a) if masked_values is not None: for mval in masked_values: a = np.ma.masked_values(a, mval) if isinstance(head, np.ndarray): projpts = self.set_zpts(head) else: projpts = self.projpts pc = self.get_grid_patch_collection( a, projpts, fill_between=True, **kwargs ) if pc is not None: ax.add_collection(pc) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return pc def contour_array(self, a, masked_values=None, head=None, **kwargs): """ Contour a two-dimensional array. Parameters ---------- a : numpy.ndarray Three-dimensional array to plot. masked_values : iterable of floats, ints Values to mask. head : numpy.ndarray Three-dimensional array to set top of patches to the minimum of the top of a layer or the head value. Used to create patches that conform to water-level elevations. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.contour Returns ------- contour_set : matplotlib.pyplot.contour """ import matplotlib.tri as tri if not isinstance(a, np.ndarray): a = np.array(a) if a.ndim > 1: a = np.ravel(a) ax = kwargs.pop("ax", self.ax) xcenters = self.xcenters plotarray = np.array([a[cell] for cell in sorted(self.projpts)]) ( plotarray, xcenters, zcenters, mplcontour, ) = self.mg.cross_section_set_contour_arrays( plotarray, xcenters, head, self.elev, self.projpts ) if not mplcontour: if isinstance(head, np.ndarray): zcenters = self.set_zcentergrid(np.ravel(head)) else: zcenters = np.array( [ np.mean(np.array(v).T[1]) for i, v in sorted(self.projpts.items()) ] ) # work around for tri-contour ignore vmin & vmax # necessary for the tri-contour NaN issue fix if "levels" not in kwargs: vmin = kwargs.pop("vmin", np.nanmin(plotarray)) vmax = kwargs.pop("vmax", np.nanmax(plotarray)) levels = np.linspace(vmin, vmax, 7) kwargs["levels"] = levels # workaround for tri-contour nan issue plotarray[np.isnan(plotarray)] = -(2 ** 31) if masked_values is None: masked_values = [-(2 ** 31)] else: masked_values = list(masked_values) if -(2 ** 31) not in masked_values: masked_values.append(-(2 ** 31)) ismasked = None if masked_values is not None: for mval in masked_values: if ismasked is None: ismasked = np.isclose(plotarray, mval) else: t = np.isclose(plotarray, mval) ismasked += t plot_triplot = kwargs.pop("plot_triplot", False) if "extent" in kwargs: extent = kwargs.pop("extent") idx = ( (xcenters >= extent[0]) & (xcenters <= extent[1]) & (zcenters >= extent[2]) & (zcenters <= extent[3]) ) plotarray = plotarray[idx].flatten() xcenters = xcenters[idx].flatten() zcenters = zcenters[idx].flatten() if mplcontour: plotarray = np.ma.masked_array(plotarray, ismasked) contour_set = ax.contour(xcenters, zcenters, plotarray, **kwargs) else: triang = tri.Triangulation(xcenters, zcenters) if ismasked is not None: ismasked = ismasked.flatten() mask = np.any( np.where(ismasked[triang.triangles], True, False), axis=1 ) triang.set_mask(mask) contour_set = ax.tricontour(triang, plotarray, **kwargs) if plot_triplot: ax.triplot(triang, color="black", marker="o", lw=0.75) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return contour_set def plot_inactive(self, ibound=None, color_noflow="black", **kwargs): """ Make a plot of inactive cells. If not specified, then pull ibound from the self.ml Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in 'BAS6' package.) color_noflow : string (Default is 'black') Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if ibound is None: if self.mg.idomain is None: raise AssertionError("An idomain array must be provided") else: ibound = self.mg.idomain plotarray = np.zeros(ibound.shape, dtype=int) idx1 = ibound == 0 plotarray[idx1] = 1 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap(["0", color_noflow]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) patches = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return patches def plot_ibound( self, ibound=None, color_noflow="black", color_ch="blue", color_vpt="red", head=None, **kwargs, ): """ Make a plot of ibound. If not specified, then pull ibound from the self.model Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in 'BAS6' package.) color_noflow : string (Default is 'black') color_ch : string Color for constant heads (Default is 'blue'.) head : numpy.ndarray Three-dimensional array to set top of patches to the minimum of the top of a layer or the head value. Used to create patches that conform to water-level elevations. **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- patches : matplotlib.collections.PatchCollection """ if ibound is None: if self.model is not None: if self.model.version == "mf6": color_ch = color_vpt if self.mg.idomain is None: raise AssertionError("Ibound/Idomain array must be provided") ibound = self.mg.idomain plotarray = np.zeros(ibound.shape, dtype=int) idx1 = ibound == 0 idx2 = ibound < 0 plotarray[idx1] = 1 plotarray[idx2] = 2 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap( ["none", color_noflow, color_ch] ) bounds = [0, 1, 2, 3] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) # mask active cells patches = self.plot_array( plotarray, masked_values=[0], head=head, cmap=cmap, norm=norm, **kwargs, ) return patches def plot_grid(self, **kwargs): """ Plot the grid lines. Parameters ---------- kwargs : ax, colors. The remaining kwargs are passed into the the LineCollection constructor. Returns ------- lc : matplotlib.collections.LineCollection """ ax = kwargs.pop("ax", self.ax) col = self.get_grid_line_collection(**kwargs) if col is not None: ax.add_collection(col) # ax.set_xlim(self.extent[0], self.extent[1]) # ax.set_ylim(self.extent[2], self.extent[3]) return col def plot_bc( self, name=None, package=None, kper=0, color=None, head=None, **kwargs ): """ Plot boundary conditions locations for a specific boundary type from a flopy model Parameters ---------- name : string Package name string ('WEL', 'GHB', etc.). (Default is None) package : flopy.modflow.Modflow package class instance flopy package class instance. (Default is None) kper : int Stress period to plot color : string matplotlib color string. (Default is None) head : numpy.ndarray Three-dimensional array (structured grid) or Two-dimensional array (vertex grid) to set top of patches to the minimum of the top of a\ layer or the head value. Used to create patches that conform to water-level elevations. **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- patches : matplotlib.collections.PatchCollection """ if "ftype" in kwargs and name is None: name = kwargs.pop("ftype") # Find package to plot if package is not None: p = package elif self.model is not None: if name is None: raise Exception("ftype not specified") name = name.upper() p = self.model.get_package(name) else: raise Exception("Cannot find package to plot") # trap for mf6 'cellid' vs mf2005 'k', 'i', 'j' convention if isinstance(p, list) or p.parent.version == "mf6": if not isinstance(p, list): p = [p] idx = np.array([]) for pp in p: if pp.package_type in ("lak", "sfr", "maw", "uzf"): t = plotutil.advanced_package_bc_helper(pp, self.mg, kper) else: try: mflist = pp.stress_period_data.array[kper] except Exception as e: raise Exception( f"Not a list-style boundary package: {e!s}" ) if mflist is None: return t = np.array( [list(i) for i in mflist["cellid"]], dtype=int ).T if len(idx) == 0: idx = np.copy(t) else: idx = np.append(idx, t, axis=1) else: # modflow-2005 structured and unstructured grid if p.package_type in ("uzf", "lak"): idx = plotutil.advanced_package_bc_helper(p, self.mg, kper) else: try: mflist = p.stress_period_data[kper] except Exception as e: raise Exception( f"Not a list-style boundary package: {e!s}" ) if mflist is None: return if len(self.mg.shape) == 3: idx = [mflist["k"], mflist["i"], mflist["j"]] else: idx = mflist["node"] if len(self.mg.shape) != 3: plotarray = np.zeros((self._nlay, self._ncpl), dtype=int) plotarray[tuple(idx)] = 1 else: plotarray = np.zeros( (self.mg.nlay, self.mg.nrow, self.mg.ncol), dtype=int ) plotarray[idx[0], idx[1], idx[2]] = 1 plotarray = np.ma.masked_equal(plotarray, 0) if color is None: key = name[:3].upper() if key in plotutil.bc_color_dict: c = plotutil.bc_color_dict[key] else: c = plotutil.bc_color_dict["default"] else: c = color cmap = matplotlib.colors.ListedColormap(["none", c]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) patches = self.plot_array( plotarray, masked_values=[0], head=head, cmap=cmap, norm=norm, **kwargs, ) return patches def plot_vector( self, vx, vy, vz, head=None, kstep=1, hstep=1, normalize=False, masked_values=None, **kwargs, ): """ Plot a vector. Parameters ---------- vx : np.ndarray x component of the vector to be plotted (non-rotated) array shape must be (nlay, nrow, ncol) for a structured grid array shape must be (nlay, ncpl) for a unstructured grid vy : np.ndarray y component of the vector to be plotted (non-rotated) array shape must be (nlay, nrow, ncol) for a structured grid array shape must be (nlay, ncpl) for a unstructured grid vz : np.ndarray y component of the vector to be plotted (non-rotated) array shape must be (nlay, nrow, ncol) for a structured grid array shape must be (nlay, ncpl) for a unstructured grid head : numpy.ndarray MODFLOW's head array. If not provided, then the quivers will be plotted in the cell center. kstep : int layer frequency to plot (default is 1) hstep : int horizontal frequency to plot (default is 1) normalize : bool boolean flag used to determine if vectors should be normalized using the vector magnitude in each cell (default is False) masked_values : iterable of floats values to mask kwargs : matplotlib.pyplot keyword arguments for the plt.quiver method Returns ------- quiver : matplotlib.pyplot.quiver result of the quiver function """ ax = kwargs.pop("ax", self.ax) pivot = kwargs.pop("pivot", "middle") # Check that the cross section is not arbitrary with a tolerance # of the mean cell size in each direction arbitrary = False pts = self.pts xuniform = [ True if abs(pts.T[0, 0] - i) < self.mean_dy else False for i in pts.T[0] ] yuniform = [ True if abs(pts.T[1, 0] - i) < self.mean_dx else False for i in pts.T[1] ] if not np.all(xuniform) and not np.all(yuniform): arbitrary = True if arbitrary: err_msg = ( "plot_specific_discharge() does not " "support arbitrary cross-sections" ) raise AssertionError(err_msg) # get ibound array to mask inactive cells ib = np.ones((self.mg.nnodes,), dtype=int) if self.mg.idomain is not None: ib = self.mg.idomain.ravel() # get the actual values to plot and set xcenters if self.direction == "x": u_tmp = vx else: u_tmp = vy * -1.0 # kstep implementation for vertex grid projpts = { key: value for key, value in self.projpts.items() if (key // self._ncpl) % kstep == 0 } # set x and z centers if isinstance(head, np.ndarray): # pipe kstep to set_zcentergrid to assure consistent array size zcenters = self.set_zcentergrid(np.ravel(head), kstep=kstep) else: zcenters = [ np.mean(np.array(v).T[1]) for i, v in sorted(projpts.items()) ] xcenters = np.array( [np.mean(np.array(v).T[0]) for i, v in sorted(projpts.items())] ) x = np.ravel(xcenters) z = np.ravel(zcenters) u = np.array([u_tmp.ravel()[cell] for cell in sorted(projpts)]) v = np.array([vz.ravel()[cell] for cell in sorted(projpts)]) ib = np.array([ib[cell] for cell in sorted(projpts)]) x = x[::hstep] z = z[::hstep] u = u[::hstep] v = v[::hstep] ib = ib[::hstep] # mask values if masked_values is not None: for mval in masked_values: to_mask = np.logical_or(u == mval, v == mval) u[to_mask] = np.nan v[to_mask] = np.nan # normalize if normalize: vmag = np.sqrt(u ** 2.0 + v ** 2.0) idx = vmag > 0.0 u[idx] /= vmag[idx] v[idx] /= vmag[idx] # mask with an ibound array u[ib == 0] = np.nan v[ib == 0] = np.nan # plot with quiver quiver = ax.quiver(x, z, u, v, pivot=pivot, **kwargs) return quiver def plot_pathline( self, pl, travel_time=None, method="cell", head=None, **kwargs ): """ Plot the MODPATH pathlines Parameters ---------- pl : list of rec arrays or a single rec array rec array or list of rec arrays is data returned from modpathfile PathlineFile get_data() or get_alldata() methods. Data in rec array is 'x', 'y', 'z', 'time', 'k', and 'particleid'. travel_time : float or str travel_time is a travel time selection for the displayed pathlines. If a float is passed then pathlines with times less than or equal to the passed time are plotted. If a string is passed a variety logical constraints can be added in front of a time value to select pathlines for a select period of time. Valid logical constraints are <=, <, >=, and >. For example, to select all pathlines less than 10000 days travel_time='< 10000' would be passed to plot_pathline. (default is None) method : str "cell" shows only pathlines that intersect with a cell "all" projects all pathlines onto the cross section regardless of whether they intersect with a given cell head : np.ndarray optional adjustment to only show pathlines that are <= to the top of the water table given a user supplied head array kwargs : layer, ax, colors. The remaining kwargs are passed into the LineCollection constructor. Returns ------- lc : matplotlib.collections.LineCollection """ from matplotlib.collections import LineCollection from ..utils.geometry import point_in_polygon # make sure pathlines is a list if not isinstance(pl, list): pl = [pl] marker = kwargs.pop("marker", None) markersize = kwargs.pop("markersize", None) markersize = kwargs.pop("ms", markersize) markercolor = kwargs.pop("markercolor", None) markerevery = kwargs.pop("markerevery", 1) ax = kwargs.pop("ax", self.ax) if "colors" not in kwargs: kwargs["colors"] = "0.5" projpts = self.projpts if head is not None: projpts = self.set_zpts(head) pl2 = [] for p in pl: tp = plotutil.filter_modpath_by_travel_time(p, travel_time) pl2.append(tp) tp = plotutil.intersect_modpath_with_crosssection( pl2, projpts, self.xvertices, self.yvertices, self.direction, self._ncpl, method=method, ) plines = plotutil.reproject_modpath_to_crosssection( tp, projpts, self.xypts, self.direction, self.mg, self._ncpl, self.geographic_coords, ) # build linecollection and markers arrays linecol = [] markers = [] for _, arr in plines.items(): arr = np.array(arr) arr = arr[arr[:, 0].argsort()] linecol.append(arr) if marker is not None: for xy in arr[::markerevery]: markers.append(xy) lc = None if len(linecol) > 0: lc = LineCollection(linecol, **kwargs) ax.add_collection(lc) if marker is not None: markers = np.array(markers) ax.plot( markers[:, 0], markers[:, 1], lw=0, marker=marker, color=markercolor, ms=markersize, ) return lc def plot_timeseries( self, ts, travel_time=None, method="cell", head=None, **kwargs ): """ Plot the MODPATH timeseries. Parameters ---------- ts : list of rec arrays or a single rec array rec array or list of rec arrays is data returned from modpathfile TimeseriesFile get_data() or get_alldata() methods. Data in rec array is 'x', 'y', 'z', 'time', 'k', and 'particleid'. travel_time : float or str travel_time is a travel time selection for the displayed pathlines. If a float is passed then pathlines with times less than or equal to the passed time are plotted. If a string is passed a variety logical constraints can be added in front of a time value to select pathlines for a select period of time. Valid logical constraints are <=, <, >=, and >. For example, to select all pathlines less than 10000 days travel_time='< 10000' would be passed to plot_pathline. (default is None) kwargs : layer, ax, colors. The remaining kwargs are passed into the LineCollection constructor. If layer='all', pathlines are output for all layers Returns ------- lo : list of Line2D objects """ if "color" in kwargs: kwargs["markercolor"] = kwargs["color"] return self.plot_pathline( ts, travel_time=travel_time, method=method, head=head, **kwargs ) def plot_endpoint( self, ep, direction="ending", selection=None, selection_direction=None, method="cell", head=None, **kwargs, ): """ Parameters ---------- Returns ------- """ ax = kwargs.pop("ax", self.ax) # colorbar kwargs createcb = kwargs.pop("colorbar", False) colorbar_label = kwargs.pop("colorbar_label", "Endpoint Time") shrink = float(kwargs.pop("shrink", 1.0)) # marker kwargs s = kwargs.pop("s", np.sqrt(50)) s = float(kwargs.pop("size", s)) ** 2.0 cd = {} if "c" not in kwargs: vmin, vmax = 1e10, -1e10 for rec in ep: tt = float(rec["time"] - rec["time0"]) if tt < vmin: vmin = tt if tt > vmax: vmax = tt cd[int(rec["particleid"])] = tt kwargs["vmin"] = vmin kwargs["vmax"] = vmax else: tc = kwargs.pop("c") for rec in ep: cd[int(rec["praticleid"])] = tc tep, istart = plotutil.parse_modpath_selection_options( ep, direction, selection, selection_direction )[0:2] projpts = self.projpts if head is not None: projpts = self.set_zpts(head) tep = plotutil.intersect_modpath_with_crosssection( tep, projpts, self.xvertices, self.yvertices, self.direction, method=method, starting=istart, ) if not tep: return epdict = plotutil.reproject_modpath_to_crosssection( tep, projpts, self.xypts, self.direction, self.mg, self.geographic_coords, starting=istart, ) arr = [] c = [] for node, epl in sorted(epdict.items()): c.append(cd[node]) for xy in epl: arr.append(xy) arr = np.array(arr) sp = ax.scatter(arr[:, 0], arr[:, 1], c=c, s=s, **kwargs) # add a colorbar for travel times if createcb: cb = plt.colorbar(sp, ax=ax, shrink=shrink) cb.set_label(colorbar_label) return sp def get_grid_line_collection(self, **kwargs): """ Get a PatchCollection of the grid Parameters ---------- **kwargs : dictionary keyword arguments passed to matplotlib.collections.LineCollection Returns ------- PatchCollection : matplotlib.collections.LineCollection """ from matplotlib.collections import PatchCollection edgecolor = kwargs.pop("colors", "grey") edgecolor = kwargs.pop("color", edgecolor) edgecolor = kwargs.pop("ec", edgecolor) edgecolor = kwargs.pop("edgecolor", edgecolor) facecolor = kwargs.pop("facecolor", "none") facecolor = kwargs.pop("fc", facecolor) polygons = [ p for _, polys in sorted(self.polygons.items()) for p in polys ] if len(polygons) > 0: patches = PatchCollection( polygons, edgecolor=edgecolor, facecolor=facecolor, **kwargs ) else: patches = None return patches def set_zpts(self, vs): """ Get an array of projected vertices corrected with corrected elevations based on minimum of cell elevation (self.elev) or passed vs numpy.ndarray Parameters ---------- vs : numpy.ndarray Two-dimensional array to plot. Returns ------- zpts : dict """ # make vertex array based on projection direction if vs is not None: if not isinstance(vs, np.ndarray): vs = np.array(vs) if self.direction == "x": xyix = 0 else: xyix = -1 projpts = {} nlay = self.mg.nlay + self.ncb nodeskip = self.mg.cross_section_nodeskip(nlay, self.xypts) cbcnt = 0 for k in range(1, nlay + 1): if not self.active[k - 1]: cbcnt += 1 continue k, ns, ncbnn = self.mg.cross_section_adjust_indicies(k - 1, cbcnt) top = self.elev[k - 1, :] botm = self.elev[k, :] d0 = 0 # trap to split multipolygons xypts = [] for nn, verts in self.xypts.items(): if nn in nodeskip[ns - 1]: continue if len(verts) > 2: i0 = 2 for ix in range(len(verts)): if ix == i0 - 1: xypts.append((nn, verts[i0 - 2 : i0])) i0 += 2 else: xypts.append((nn, verts)) xypts = sorted(xypts, key=lambda q: q[-1][xyix][xyix]) if self.direction == "y": xypts = xypts[::-1] for nn, verts in xypts: if vs is None: t = top[nn] else: t = vs[nn + ncbnn] if np.isclose(t, -1e30): t = botm[nn] if t < botm[nn]: t = botm[nn] if top[nn] < t: t = top[nn] b = botm[nn] if self.geographic_coords: if self.direction == "x": projt = [(v[0], t) for v in verts] projb = [(v[0], b) for v in verts] else: projt = [(v[1], t) for v in verts] projb = [(v[1], b) for v in verts] else: verts = np.array(verts).T a2 = (np.max(verts[0]) - np.min(verts[0])) ** 2 b2 = (np.max(verts[1]) - np.min(verts[1])) ** 2 c = np.sqrt(a2 + b2) d1 = d0 + c projt = [(d0, t), (d1, t)] projb = [(d0, b), (d1, b)] d0 += c projpt = projt + projb node = nn + ncbnn if node not in projpts: projpts[node] = projpt else: projpts[node] += projpt return projpts def set_zcentergrid(self, vs, kstep=1): """ Get an array of z elevations at the center of a cell that is based on minimum of cell top elevation (self.elev) or passed vs numpy.ndarray Parameters ---------- vs : numpy.ndarray Three-dimensional array to plot. kstep : int plotting layer interval Returns ------- zcentergrid : numpy.ndarray """ verts = self.set_zpts(vs) zcenters = [ np.mean(np.array(v).T[1]) for i, v in sorted(verts.items()) if (i // self._ncpl) % kstep == 0 ] return zcenters def get_grid_patch_collection( self, plotarray, projpts=None, fill_between=False, **kwargs ): """ Get a PatchCollection of plotarray in unmasked cells Parameters ---------- plotarray : numpy.ndarray One-dimensional array to attach to the Patch Collection. projpts : dict dictionary defined by node number which contains model patch vertices. fill_between : bool flag to create polygons that mimick the matplotlib fill between method. Only used by the plot_fill_between method. **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- patches : matplotlib.collections.PatchCollection """ from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection use_cache = False if projpts is None: use_cache = True projpts = self.polygons vmin = kwargs.pop("vmin", None) vmax = kwargs.pop("vmax", None) match_original = False if fill_between: match_original = True colors = kwargs.pop("colors") rectcol = [] data = [] for cell, poly in sorted(projpts.items()): if not use_cache: if len(poly) > 4: # multipolygon instance... n = 0 p = [] polys = [] for vn, v in enumerate(poly): if vn == 3 + 4 * n: n += 1 p.append(v) polys.append(p) p = [] else: p.append(v) else: polys = [poly] else: polys = poly for polygon in polys: if not use_cache: polygon = plotutil.UnstructuredPlotUtilities.arctan2( np.array(polygon) ) if np.isnan(plotarray[cell]): continue elif plotarray[cell] is np.ma.masked: continue if use_cache: rectcol.append(polygon) elif fill_between: x = list(set(np.array(polygon).T[0])) y1 = np.max(np.array(polygon).T[1]) y = np.min(np.array(polygon).T[1]) v = plotarray[cell] if v > y1: v = y if v < y: v = y p1 = [(x[0], y1), (x[1], y1), (x[1], v), (x[0], v)] p2 = [(x[0], v), (x[1], v), (x[1], y), (x[0], y)] rectcol.append(Polygon(p1, closed=True, color=colors[0])) rectcol.append(Polygon(p2, closed=True, color=colors[1])) else: rectcol.append(Polygon(polygon, closed=True)) data.append(plotarray[cell]) if len(rectcol) > 0: patches = PatchCollection(rectcol, match_original, **kwargs) if not fill_between: patches.set_array(np.array(data)) patches.set_clim(vmin, vmax) else: patches = None return patches
31.515354
79
0.502245
06f0ea901eb9d0c87cc6b5f8a0f42075d0b79213
6,044
py
Python
wbia/viz/interact/interact_qres.py
WildMeOrg/wildbook-ia
a18d57611e5936bea02a964716466e062415aa1a
[ "Apache-2.0" ]
20
2021-01-19T23:17:21.000Z
2022-03-21T10:25:56.000Z
wbia/viz/interact/interact_qres.py
solomonkimunyu/wildbook-ia
ac433d4f2a47b1d905c421a36c497f787003afc3
[ "Apache-2.0" ]
16
2021-01-28T23:05:29.000Z
2022-03-31T20:39:36.000Z
wbia/viz/interact/interact_qres.py
solomonkimunyu/wildbook-ia
ac433d4f2a47b1d905c421a36c497f787003afc3
[ "Apache-2.0" ]
9
2021-02-13T20:19:46.000Z
2022-03-29T10:47:11.000Z
# -*- coding: utf-8 -*- import logging import utool as ut import wbia.plottool as pt from wbia.plottool import plot_helpers as ph from wbia.plottool import abstract_interaction from wbia import viz from wbia.viz.interact.interact_sver import ishow_sver (print, rrr, profile) = ut.inject2(__name__, '[interact_qres]') logger = logging.getLogger('wbia') def ishow_analysis(ibs, cm, qreq_=None, **kwargs): """ CommandLine: python -m wbia.viz.interact.interact_qres --test-ishow_analysis:0 --show python -m wbia.viz.interact.interact_qres --test-ishow_analysis:1 --show Example: >>> # SLOW_DOCTEST >>> from wbia.viz.interact.interact_qres import * # NOQA >>> import wbia >>> cm, qreq_ = wbia.testdata_cm() >>> fig = ishow_analysis(qreq_.ibs, cm, qreq_=qreq_) >>> pt.show_if_requested() Example: >>> # DISABLE_DOCTEST >>> from wbia.viz.interact.interact_qres import * # NOQA >>> import wbia >>> cm, qreq_ = wbia.testdata_cm() >>> fig = ishow_analysis(qreq_.ibs, cm, qreq_=qreq_) >>> pt.show_if_requested() """ interact = InteractQres(ibs, cm, analysis=True, qreq_=qreq_, **kwargs) interact.show_page() interact.show() return interact BASE_CLASS = abstract_interaction.AbstractInteraction class InteractQres(BASE_CLASS): """ Displays query chip, groundtruth matches, and top matches THERE IS A DIFFERENCE BETWEEN THIS AND MATCH INTERACTION. THIS IS FOR DISPLAYING THE RANKED LIST MATCH INTERACTION IS LOOKING AT A SINGLE PAIR SeeAlso: #interact_matches.MatchInteraction2 #wbia.viz.interact.MatchInteraction """ def __init__(self, ibs, cm, analysis=False, qreq_=None, **kwargs): self.ibs = ibs self.cm = cm self.analysis = analysis self.qreq_ = qreq_ self.kwargs = kwargs.copy() self.verbose = True super(InteractQres, self).__init__(**kwargs) self.fnum logger.info('self.fnum = %r' % (self.fnum,)) def plot(self, *args, **kwargs): if self.analysis: self._analysis_view(toggle=1) else: self._top_matches_view(toggle=1) def _top_matches_view(self, toggle=0): # Toggle if the click is not in any axis self.kwargs['annot_mode'] = self.kwargs.get('annot_mode', 0) + toggle self.kwargs['fnum'] = self.fnum fig = viz.show_qres(self.ibs, self.cm, qreq_=self.qreq_, **self.kwargs) return fig def _analysis_view(self, toggle=0): # Toggle if the click is not in any axis if self.verbose: logger.info('clicked none') self.kwargs['annot_mode'] = self.kwargs.get('annot_mode', 0) + toggle self.kwargs['fnum'] = self.fnum # if isinstance(self.cm, chip_match.ChipMatch): fig = self.cm.show_analysis(self.qreq_, **self.kwargs) # else: # fig = self.cm.show_analysis(self.ibs, qreq_=self.qreq_, **self.kwargs) self.draw() return fig def show_sver_process_to_aid(self, aid2): if self.verbose: logger.info('ctrl+clicked aid2=%r' % aid2) fnum_ = pt.next_fnum() ishow_sver(self.ibs, self.cm.qaid, aid2, qreq_=self.qreq_, fnum=fnum_) self.draw() self.bring_to_front() def show_matches_to_aid(self, aid2): if self.verbose: logger.info('clicked aid2=%r' % aid2) fnum_ = pt.next_fnum() # if isinstance(self.cm, chip_match.ChipMatch): self.cm.ishow_match(self.qreq_, aid2, fnum=fnum_) # else: # self.cm.ishow_matches(self.ibs, aid2, qreq_=self.qreq_, fnum=fnum_) self.draw() # self.bring_to_front() # fig = pt.gcf() # fig.canvas.draw() # pt.bring_to_front(fig) def on_click_outside(self, event): self.show_page() def on_click_inside(self, event, ax): ax = event.inaxes viztype = ph.get_plotdat(ax, 'viztype', '') # if verbose: # logger.info(str(event.__dict__)) logger.info('viztype=%r' % viztype) # Clicked a specific matches logger.info('plodat_dict = ' + ut.repr2(ph.get_plotdat_dict(ax))) if viztype.startswith('chip'): from wbia.viz.interact import interact_chip options = interact_chip.build_annot_context_options( self.ibs, self.cm.qaid, refresh_func=self._analysis_view, with_interact_chip=False, ) self.show_popup_menu(options, event) if viztype.startswith('matches') or viztype == 'multi_match': # why startswith? aid2 = ph.get_plotdat(ax, 'aid2', None) aid_list = ph.get_plotdat(ax, 'aid_list', None) if event.button == 3: # right-click # TODO; this functionality should be in viz.interact from wbia.gui import inspect_gui logger.info('right click') logger.info('qreq_ = %r' % (self.qreq_,)) options = inspect_gui.get_aidpair_context_menu_options( self.ibs, self.cm.qaid, aid2, self.cm, qreq_=self.qreq_, update_callback=self.show_page, backend_callback=None, aid_list=aid_list, ) self.show_popup_menu(options, event) else: # Ctrl-Click key = '' if event.key is None else event.key logger.info('key = %r' % key) if key.find('control') == 0: logger.info('[viz] result control clicked') self.show_sver_process_to_aid(aid2) # Left-Click else: logger.info('[viz] result clicked') self.show_matches_to_aid(aid2) self.draw()
35.345029
88
0.58405
a8488f5e4727af056052b884ad58eaed19ccaa8b
3,934
py
Python
tests/addons/test_config.py
carver7/supervisor-master
e9802f92c9f77481276ed3c0d524427cc03e4271
[ "Apache-2.0" ]
null
null
null
tests/addons/test_config.py
carver7/supervisor-master
e9802f92c9f77481276ed3c0d524427cc03e4271
[ "Apache-2.0" ]
null
null
null
tests/addons/test_config.py
carver7/supervisor-master
e9802f92c9f77481276ed3c0d524427cc03e4271
[ "Apache-2.0" ]
null
null
null
"""Validate Add-on configs.""" import pytest import voluptuous as vol from supervisor.addons import validate as vd from ..common import load_json_fixture def test_basic_config(): """Validate basic config and check the default values.""" config = load_json_fixture("basic-addon-config.json") valid_config = vd.SCHEMA_ADDON_CONFIG(config) assert valid_config["name"] == "Test Add-on" assert valid_config["image"] == "test/{arch}-my-custom-addon" # Check defaults assert not valid_config["host_network"] assert not valid_config["host_ipc"] assert not valid_config["host_dbus"] assert not valid_config["host_pid"] assert not valid_config["hassio_api"] assert not valid_config["homeassistant_api"] assert not valid_config["docker_api"] def test_invalid_repository(): """Validate basic config with invalid repositories.""" config = load_json_fixture("basic-addon-config.json") config["image"] = "something" with pytest.raises(vol.Invalid): vd.SCHEMA_ADDON_CONFIG(config) config["image"] = "homeassistant/no-valid-repo:no-tag-allow" with pytest.raises(vol.Invalid): vd.SCHEMA_ADDON_CONFIG(config) config[ "image" ] = "registry.gitlab.com/company/add-ons/test-example/text-example:no-tag-allow" with pytest.raises(vol.Invalid): vd.SCHEMA_ADDON_CONFIG(config) def test_valid_repository(): """Validate basic config with different valid repositories.""" config = load_json_fixture("basic-addon-config.json") custom_registry = "registry.gitlab.com/company/add-ons/core/test-example" config["image"] = custom_registry valid_config = vd.SCHEMA_ADDON_CONFIG(config) assert valid_config["image"] == custom_registry def test_valid_map(): """Validate basic config with different valid maps.""" config = load_json_fixture("basic-addon-config.json") config["map"] = ["backup:rw", "ssl:ro", "config"] vd.SCHEMA_ADDON_CONFIG(config) def test_valid_basic_build(): """Validate basic build config.""" config = load_json_fixture("basic-build-config.json") vd.SCHEMA_BUILD_CONFIG(config) def test_valid_machine(): """Validate valid machine config.""" config = load_json_fixture("basic-addon-config.json") config["machine"] = [ "intel-nuc", "odroid-c2", "odroid-n2", "odroid-xu", "qemuarm-64", "qemuarm", "qemux86-64", "qemux86", "raspberrypi", "raspberrypi2", "raspberrypi3-64", "raspberrypi3", "raspberrypi4-64", "raspberrypi4", "tinker", ] assert vd.SCHEMA_ADDON_CONFIG(config) config["machine"] = [ "!intel-nuc", "!odroid-c2", "!odroid-n2", "!odroid-xu", "!qemuarm-64", "!qemuarm", "!qemux86-64", "!qemux86", "!raspberrypi", "!raspberrypi2", "!raspberrypi3-64", "!raspberrypi3", "!raspberrypi4-64", "!raspberrypi4", "!tinker", ] assert vd.SCHEMA_ADDON_CONFIG(config) config["machine"] = [ "odroid-n2", "!odroid-xu", "qemuarm-64", "!qemuarm", "qemux86-64", "qemux86", "raspberrypi", "raspberrypi4-64", "raspberrypi4", "!tinker", ] assert vd.SCHEMA_ADDON_CONFIG(config) def test_invalid_machine(): """Validate invalid machine config.""" config = load_json_fixture("basic-addon-config.json") config["machine"] = [ "intel-nuc", "raspberrypi3", "raspberrypi4-64", "raspberrypi4", "tinkerxy", ] with pytest.raises(vol.Invalid): assert vd.SCHEMA_ADDON_CONFIG(config) config["machine"] = [ "intel-nuc", "intel-nuc", ] with pytest.raises(vol.Invalid): assert vd.SCHEMA_ADDON_CONFIG(config)
25.057325
84
0.624555
e46778e2334b0fb6582c208a92a587c1a93db058
2,884
py
Python
linear_classifier.py
ashwanikumar04/udacity-mlnd-capstone
f4b067b9f950f5b2d1763b808d296903345577a0
[ "MIT" ]
1
2019-07-15T17:08:49.000Z
2019-07-15T17:08:49.000Z
linear_classifier.py
ashwanikumar04/udacity-mlnd-capstone
f4b067b9f950f5b2d1763b808d296903345577a0
[ "MIT" ]
null
null
null
linear_classifier.py
ashwanikumar04/udacity-mlnd-capstone
f4b067b9f950f5b2d1763b808d296903345577a0
[ "MIT" ]
1
2020-01-10T05:16:40.000Z
2020-01-10T05:16:40.000Z
import tensorflow as tf from helpers import one_hot_encode, get_batch, get_training_set, get_test_set, log from sklearn.utils import shuffle class LinearClassifer: def __init__(self, params, labels, image_size): self.params = params self.labels = labels self.image_size = image_size def run(self, train_X, train_y, test_X, test_y, validate_X, validate_y): accuracyDictionary = {} x = tf.placeholder(tf.float32, shape=[None, self.image_size]) W = tf.Variable(tf.zeros([self.image_size, self.labels])) b = tf.Variable(tf.zeros([self.labels])) y = tf.matmul(x, W) + b y_true = tf.placeholder(tf.float32, [None, self.labels]) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true, logits=y)) optimizer = tf.train.GradientDescentOptimizer( learning_rate=self.params.learning_rate) goal = optimizer.minimize(loss) init = tf.global_variables_initializer() correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_true, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) loss_trace = [] train_acc = [] test_acc = [] with tf.Session() as sess: sess.run(init) for step in range(self.params.epoch): X, y = shuffle(train_X, train_y) for current_batch in range(self.params.num_batches): batch_X, batch_y = get_batch( X, y, current_batch, self.params.batch_size) sess.run(goal, feed_dict={x: batch_X, y_true: batch_y}) if step % self.params.epoch_to_report == 0: log(step, "Epoch") temp_loss = sess.run( loss, feed_dict={x: batch_X, y_true: batch_y}) # convert into a matrix, and the shape of the placeholder to correspond temp_train_acc = sess.run( accuracy, feed_dict={x: train_X, y_true: train_y}) temp_test_acc = sess.run(accuracy, feed_dict={ x: test_X, y_true: test_y}) # recode the result loss_trace.append(temp_loss) train_acc.append(temp_train_acc) test_acc.append(temp_test_acc) accuracyDictionary[step] = sess.run(accuracy, feed_dict={x: test_X, y_true: test_y}) log(accuracyDictionary[step], "model accuracy") log(sess.run(accuracy, feed_dict={x: validate_X, y_true: validate_y}), "Final accuracy") return accuracyDictionary, loss_trace, train_acc, test_acc
49.724138
93
0.564147
b8728af35d6022f1ab9036d8162c2f4d90db326f
6,434
py
Python
contrib/pyminer/pyminer.py
TimMaylon/corecoin
650b4829e81e51110f0abf13bba0e77d73eb1c07
[ "MIT" ]
null
null
null
contrib/pyminer/pyminer.py
TimMaylon/corecoin
650b4829e81e51110f0abf13bba0e77d73eb1c07
[ "MIT" ]
null
null
null
contrib/pyminer/pyminer.py
TimMaylon/corecoin
650b4829e81e51110f0abf13bba0e77d73eb1c07
[ "MIT" ]
null
null
null
#!/usr/bin/python # # Copyright (c) 2011 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import time import json import pprint import hashlib import struct import re import base64 import httplib import sys from multiprocessing import Process ERR_SLEEP = 15 MAX_NONCE = 1000000L settings = {} pp = pprint.PrettyPrinter(indent=4) class BitcoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblockcount(self): return self.rpc('getblockcount') def getwork(self, data=None): return self.rpc('getwork', data) def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) class Miner: def __init__(self, id): self.id = id self.max_nonce = MAX_NONCE def work(self, datastr, targetstr): # decode work data hex string to binary static_data = datastr.decode('hex') static_data = bufreverse(static_data) # the first 76b of 80b do not change blk_hdr = static_data[:76] # decode 256-bit target value targetbin = targetstr.decode('hex') targetbin = targetbin[::-1] # byte-swap and dword-swap targetbin_str = targetbin.encode('hex') target = long(targetbin_str, 16) # pre-hash first 76b of block header static_hash = hashlib.sha256() static_hash.update(blk_hdr) for nonce in xrange(self.max_nonce): # encode 32-bit nonce value nonce_bin = struct.pack("<I", nonce) # hash final 4b, the nonce value hash1_o = static_hash.copy() hash1_o.update(nonce_bin) hash1 = hash1_o.digest() # sha256 hash of sha256 hash hash_o = hashlib.sha256() hash_o.update(hash1) hash = hash_o.digest() # quick test for winning solution: high 32 bits zero? if hash[-4:] != '\0\0\0\0': continue # convert binary hash to 256-bit Python long hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') l = long(hash_str, 16) # proof-of-work test: hash < target if l < target: print time.asctime(), "PROOF-OF-WORK found: %064x" % (l,) return (nonce + 1, nonce_bin) else: print time.asctime(), "PROOF-OF-WORK false positive %064x" % (l,) # return (nonce + 1, nonce_bin) return (nonce + 1, None) def submit_work(self, rpc, original_data, nonce_bin): nonce_bin = bufreverse(nonce_bin) nonce = nonce_bin.encode('hex') solution = original_data[:152] + nonce + original_data[160:256] param_arr = [ solution ] result = rpc.getwork(param_arr) print time.asctime(), "--> Upstream RPC result:", result def iterate(self, rpc): work = rpc.getwork() if work is None: time.sleep(ERR_SLEEP) return if 'data' not in work or 'target' not in work: time.sleep(ERR_SLEEP) return time_start = time.time() (hashes_done, nonce_bin) = self.work(work['data'], work['target']) time_end = time.time() time_diff = time_end - time_start self.max_nonce = long( (hashes_done * settings['scantime']) / time_diff) if self.max_nonce > 0xfffffffaL: self.max_nonce = 0xfffffffaL if settings['hashmeter']: print "HashMeter(%d): %d hashes, %.2f Khash/sec" % ( self.id, hashes_done, (hashes_done / 1000.0) / time_diff) if nonce_bin is not None: self.submit_work(rpc, work['data'], nonce_bin) def loop(self): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpass']) if rpc is None: return while True: self.iterate(rpc) def miner_thread(id): miner = Miner(id) miner.loop() if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: pyminer.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 4496 if 'threads' not in settings: settings['threads'] = 1 if 'hashmeter' not in settings: settings['hashmeter'] = 0 if 'scantime' not in settings: settings['scantime'] = 30L if 'rpcuser' not in settings or 'rpcpass' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['threads'] = int(settings['threads']) settings['hashmeter'] = int(settings['hashmeter']) settings['scantime'] = long(settings['scantime']) thr_list = [] for thr_id in range(settings['threads']): p = Process(target=miner_thread, args=(thr_id,)) p.start() thr_list.append(p) time.sleep(1) # stagger threads print settings['threads'], "mining threads started" print time.asctime(), "Miner Starts - %s:%s" % (settings['host'], settings['port']) try: for thr_proc in thr_list: thr_proc.join() except KeyboardInterrupt: pass print time.asctime(), "Miner Stops - %s:%s" % (settings['host'], settings['port'])
25.43083
84
0.664905
f4b1987679486f5e35154e82baf63a30d1a703d0
6,906
py
Python
nimbus/fabnet/asyncio_rpc.py
fabregas/nimbusfs-node
7af3ecc14f78526b477ed29fb9e9b9eb972d6b4e
[ "Apache-2.0" ]
null
null
null
nimbus/fabnet/asyncio_rpc.py
fabregas/nimbusfs-node
7af3ecc14f78526b477ed29fb9e9b9eb972d6b4e
[ "Apache-2.0" ]
null
null
null
nimbus/fabnet/asyncio_rpc.py
fabregas/nimbusfs-node
7af3ecc14f78526b477ed29fb9e9b9eb972d6b4e
[ "Apache-2.0" ]
null
null
null
import asyncio import random import uuid import sys import traceback import pickle import inspect from base64 import b64encode from hashlib import sha1 from .utils import logger class TimeoutException(Exception): pass class RemoteError(Exception): pass def serializable_error(msg): traceback.print_exc(file=sys.stderr) return {'__error__': str(msg)} def check_remote_error(obj): if isinstance(obj, dict): if '__error__' in obj: return RemoteError(obj['__error__']) # packet's markers PM_REQUEST = 0 PM_RESPONSE = 1 PM_END = bytes([66, 99, 66]) class AbstractRPC(asyncio.Protocol): def __init__(self, wait_response_time=5): super(asyncio.Protocol, self).__init__() self.wait_response_time = wait_response_time self._outstanding = {} self.buf = bytes() def connection_made(self, transport): self.transport = transport def _accept_request(self, msg_id, data, address): if not isinstance(data, list) or len(data) != 3: raise RuntimeError("Could not read packet: %s" % data) funcname, args, kwargs = data api_method = getattr(self, "api_%s" % funcname, None) if api_method is None or not callable(api_method): logger.info("%s has no callable method api_%s; ignoring request", self.__class__.__name__, funcname) return @asyncio.coroutine def proc_request(address, *args): if inspect.isgeneratorfunction(api_method): ret = yield from api_method(address, *args) return ret else: return api_method(address, *args) def resp_func(task): try: resp = task.result() except Exception as err: resp = serializable_error(err) txdata = b'\x01' + msg_id + pickle.dumps(resp) + PM_END self._send_response(address, txdata) resp = asyncio.async(proc_request(address, *args)) if not kwargs.get('nowait', False): resp.add_done_callback(resp_func) def _accept_response(self, msg_id, data, address): if msg_id not in self._outstanding: msgargs = (b64encode(msg_id), address) logger.info("received unknown message %s from %s; ignoring" % msgargs) return future, timeout = self._outstanding[msg_id] timeout.cancel() err = check_remote_error(data) if err: future.set_exception(err) else: future.set_result(data) del self._outstanding[msg_id] def __getattribute__(self, name): try: return object.__getattribute__(self, name) except AttributeError: pass @asyncio.coroutine def func(address, *args, **kwargs): msg_id = sha1(str(random.getrandbits(255)).encode()).digest() data = pickle.dumps([name, args, kwargs]) if len(data) > 8192: raise RuntimeError('RPC message is too long! Max is 8K') txdata = b'\x00' + msg_id + data + PM_END isok = yield from self._send_request(address, txdata) if kwargs.get('nowait', False): return isok if isok is False: future = asyncio.Future() future.set_result(None) return future loop = asyncio.get_event_loop() timeout = loop.call_later(self.wait_response_time, self._timeout, msg_id) future = asyncio.Future() self._outstanding[msg_id] = (future, timeout) ret = yield from future return ret return func def _send_response(self, address, data): raise RuntimeError('not implemented') def _send_request(self, address, txdata): raise RuntimeError('not implemented') def _timeout(self, msg_id): args = (b64encode(msg_id), self.wait_response_time) logger.info("Did not received reply for msg id %s within %i seconds" % args) # self._outstanding[msg_id][0].set_exception(TimeoutException()) self._outstanding[msg_id][0].set_result(None) del self._outstanding[msg_id] def _on_received(self, data, addr): if self.buf: data = self.buf + data while True: found = data.find(PM_END) if found == -1: self.buf += data return self.buf = data[found+3:] datagram = data[:found] msg_id = datagram[1:21] data = pickle.loads(datagram[21:]) if datagram[0] == PM_REQUEST: self._accept_request(msg_id, data, addr) elif datagram[0] == PM_RESPONSE: self._accept_response(msg_id, data, addr) else: logger.info("Received unknown message from %s, ignoring", repr(addr)) data = self.buf class UDPRPC(AbstractRPC): def datagram_received(self, data, addr): self._on_received(data, addr) @asyncio.coroutine def _send_request(self, address, data): self.transport.sendto(data, address) def _send_response(self, address, data): self.transport.sendto(data, address) class TCPRPC(AbstractRPC): def __init__(self, wait_response_time=5): super().__init__(wait_response_time) self.connections = {} self.buf = bytes() self._keep_alive_timeout = 30 def data_received(self, data): addr = self.transport.get_extra_info('peername') self._on_received(data, addr) def connection_lost(self, exc): logger.info('connection is lost (%s)' % exc) @asyncio.coroutine def __connect(self, address): loop = asyncio.get_event_loop() transport, protocol = yield from \ loop.create_connection(lambda: self, address[0], address[1]) return transport @asyncio.coroutine def _send_request(self, address, data): transport = self.connections.get(address, None) try: if transport is None: self.connections[address] = asyncio.Future() transport = yield from self.__connect(address) self.connections[address].set_result(transport) self.connections[address] = transport elif isinstance(transport, asyncio.Future): transport = yield from transport except OSError as err: del self.connections[address] logger.info(err) return False transport.write(data) def _send_response(self, address, data): self.transport.write(data)
30.157205
77
0.589343
3b66cf9721c9e0b3fef293dbc2e5d11cff77662e
1,011
py
Python
tests/test_str.py
uit-cosmo/2d-propagating-blobs
2c19458a5ba6d0d138461fadf3e935273bee4b5c
[ "MIT" ]
1
2021-10-02T17:58:16.000Z
2021-10-02T17:58:16.000Z
tests/test_str.py
uit-cosmo/2d_propagating_blobs
2c19458a5ba6d0d138461fadf3e935273bee4b5c
[ "MIT" ]
20
2021-10-04T10:44:34.000Z
2022-01-28T15:20:39.000Z
tests/test_str.py
uit-cosmo/2d-propagating-blobs
2c19458a5ba6d0d138461fadf3e935273bee4b5c
[ "MIT" ]
1
2021-12-06T13:31:58.000Z
2021-12-06T13:31:58.000Z
import pytest from blobmodel import Model from blobmodel.geometry import Geometry def test_blob_shape_exception(): with pytest.raises(NotImplementedError): bm = Model( Nx=2, Ny=2, Lx=10, Ly=10, dt=0.5, T=1, periodic_y=False, blob_shape="different_shape", num_blobs=1, ) bm.make_realization(speed_up=True, error=0.1) def test_geometry_str(): geo = Geometry(1, 1, 1, 1, 1, 1, False) assert ( str(geo) == "Geometry parameters: Nx:1, Ny:1, Lx:1, Ly:1, dt:1, T:1, y-periodicity:False" ) def test_model_str(): bm = Model( Nx=2, Ny=2, Lx=10, Ly=10, dt=0.5, T=1, periodic_y=False, blob_shape="exp", num_blobs=1, ) assert str(bm) == "2d Blob Model with blob shape:exp, num_blobs:1 and t_drain:10" test_blob_shape_exception() test_geometry_str() test_model_str()
21.0625
90
0.545994
e90b535f739ae9f77823717ce766f80ad9ae27bb
6,143
py
Python
week_04/feature_preprocessing.py
MrRozum/DeepLearning_Winter22
3bbce7315b342036d6c050e82170fa5d4c4b4993
[ "MIT" ]
5
2022-02-01T07:25:28.000Z
2022-02-02T13:58:34.000Z
week_04/feature_preprocessing.py
MrRozum/DeepLearning_Winter22
3bbce7315b342036d6c050e82170fa5d4c4b4993
[ "MIT" ]
2
2021-06-14T21:11:02.000Z
2021-06-30T20:03:39.000Z
week_04/feature_preprocessing.py
MrRozum/DeepLearning_Winter22
3bbce7315b342036d6c050e82170fa5d4c4b4993
[ "MIT" ]
8
2021-04-07T07:38:20.000Z
2021-04-24T06:08:01.000Z
import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt plt.style.use('ggplot') import torch print(torch.__version__) import torch.nn as nn import torch.optim as optim import torch.utils.data as data_utils from torch.utils.data import DataLoader, Dataset, Sampler from torch.utils.data.dataloader import default_collate from torch.utils.tensorboard import SummaryWriter from pytorch_lightning.metrics import Accuracy from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder INPUT_SIZE = 36 HIDDEN_SIZE = 25 OUTPUT_SIZE = 5 LEARNING_RATE = 1e-2 EPOCHS = 400 BATCH_SIZE = 256 EMBEDDING_SIZE = 5 class CustomDataset(Dataset): # Конструктор, где считаем датасет def __init__(self): X = pd.read_csv('./data/X_cat.csv', sep='\t', index_col=0) target = pd.read_csv('./data/y_cat.csv', sep='\t', index_col=0, names=['status']) # header=-1, weekday_columns = ['Weekday_0', 'Weekday_1', 'Weekday_2', 'Weekday_3', 'Weekday_4', 'Weekday_5', 'Weekday_6'] weekdays = np.argmax(X[weekday_columns].values, axis=1) X.drop(weekday_columns, axis=1, inplace=True) X['Weekday_cos'] = np.cos(2 * np.pi / 7.) * weekdays X['Weekday_sin'] = np.sin(2 * np.pi / 7.) * weekdays X['Hour_cos'] = np.cos(2 * np.pi / 24.) * X['Hour'].values X['Hour_sin'] = np.sin(2 * np.pi / 24.) * X['Hour'].values X['Month_cos'] = np.cos(2 * np.pi / 12.) * X['Month'].values X['Month_sin'] = np.sin(2 * np.pi / 12.) * X['Month'].values X['Gender'] = np.argmax(X[['Sex_Female', 'Sex_Male', 'Sex_Unknown']].values, axis=1) X.drop(['Sex_Female', 'Sex_Male', 'Sex_Unknown'], axis=1, inplace=True) print(X.shape) print(X.head()) target = target.iloc[:, :].values target[target == 'Died'] = 'Euthanasia' le = LabelEncoder() self.y = le.fit_transform(target) self.X = X.values self.columns = X.columns.values self.embedding_column = 'Gender' self.nrof_emb_categories = 3 self.numeric_columns = ['IsDog', 'Age', 'HasName', 'NameLength', 'NameFreq', 'MixColor', 'ColorFreqAsIs', 'ColorFreqBase', 'TabbyColor', 'MixBreed', 'Domestic', 'Shorthair', 'Longhair', 'Year', 'Day', 'Breed_Chihuahua Shorthair Mix', 'Breed_Domestic Medium Hair Mix', 'Breed_Domestic Shorthair Mix', 'Breed_German Shepherd Mix', 'Breed_Labrador Retriever Mix', 'Breed_Pit Bull Mix', 'Breed_Rare', 'SexStatus_Flawed', 'SexStatus_Intact', 'SexStatus_Unknown', 'Weekday_cos', 'Weekday_sin', 'Hour_cos', 'Hour_sin', 'Month_cos', 'Month_sin'] return def __len__(self): return len(self.X) # Переопределяем метод, # который достает по индексу наблюдение из датасет def __getitem__(self, idx): row = self.X[idx, :] row = {col: torch.tensor(row[i]) for i, col in enumerate(self.columns)} return row, self.y[idx] class MLPNet(nn.Module): def __init__(self, input_size, hidden_size, output_size, nrof_cat, emb_dim, emb_columns, numeric_columns): super(MLPNet, self).__init__() self.emb_columns = emb_columns self.numeric_columns = numeric_columns self.emb_layer = torch.nn.Embedding(nrof_cat, emb_dim) self.feature_bn = torch.nn.BatchNorm1d(input_size) self.linear1 = torch.nn.Linear(input_size, hidden_size) self.linear1.apply(self.init_weights) self.bn1 = torch.nn.BatchNorm1d(hidden_size) self.linear2 = torch.nn.Linear(hidden_size, hidden_size) self.linear2.apply(self.init_weights) self.bn2 = torch.nn.BatchNorm1d(hidden_size) self.linear3 = torch.nn.Linear(hidden_size, output_size) def init_weights(self, m): if type(m) == nn.Linear: torch.nn.init.xavier_uniform(m.weight) # m.bias.data.fill_(0.001) def forward(self, x): emb_output = self.emb_layer(torch.tensor(x[self.emb_columns], dtype=torch.int64)) numeric_feats = torch.tensor(pd.DataFrame(x)[self.numeric_columns].values, dtype=torch.float32) concat_input = torch.cat([numeric_feats, emb_output], dim=1) output = self.feature_bn(concat_input) output = self.linear1(output) output = self.bn1(output) output = torch.relu(output) output = self.linear2(output) output = self.bn2(output) output = torch.relu(output) output = self.linear3(output) predictions = torch.softmax(output, dim=1) return predictions def run_train(model, train_loader): step = 0 for epoch in range(EPOCHS): model.train() for features, label in train_loader: # Reset gradients optimizer.zero_grad() output = model(features) # Calculate error and backpropagate loss = criterion(output, label) loss.backward() acc = accuracy(output, label).item() # Update weights with gradients optimizer.step() step += 1 if step % 100 == 0: print('EPOCH %d STEP %d : train_loss: %f train_acc: %f' % (epoch, step, loss.item(), acc)) return step animal_dataset = CustomDataset() train_loader = data_utils.DataLoader(dataset=animal_dataset, batch_size=BATCH_SIZE, shuffle=True) model = MLPNet(INPUT_SIZE, HIDDEN_SIZE, OUTPUT_SIZE, animal_dataset.nrof_emb_categories, EMBEDDING_SIZE, animal_dataset.embedding_column, animal_dataset.numeric_columns) criterion = nn.CrossEntropyLoss() accuracy = Accuracy() optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) step = run_train(model, train_loader)
32.850267
124
0.621846
46519bdc3adc16e6473b990b3ceab058328351f5
2,107
py
Python
indico/web/forms/fields/protection.py
bpedersen2/indico
8410ee5f8f8530a8692f3dd2d4015c3074b0aa30
[ "MIT" ]
1
2021-02-24T10:20:14.000Z
2021-02-24T10:20:14.000Z
indico/web/forms/fields/protection.py
bpedersen2/indico
8410ee5f8f8530a8692f3dd2d4015c3074b0aa30
[ "MIT" ]
5
2021-04-08T19:26:47.000Z
2022-01-24T16:30:18.000Z
indico/web/forms/fields/protection.py
bpedersen2/indico
8410ee5f8f8530a8692f3dd2d4015c3074b0aa30
[ "MIT" ]
2
2019-02-24T17:29:10.000Z
2021-04-08T19:23:27.000Z
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from flask import render_template from markupsafe import Markup from indico.core.db import db from indico.core.db.sqlalchemy.protection import ProtectionMode from indico.util.i18n import _ from indico.web.forms.fields import IndicoEnumRadioField from indico.web.forms.widgets import JinjaWidget class IndicoProtectionField(IndicoEnumRadioField): widget = JinjaWidget('forms/protection_widget.html', single_kwargs=True) radio_widget = JinjaWidget('forms/radio_buttons_widget.html', orientation='horizontal', single_kwargs=True) def __init__(self, *args, **kwargs): self.protected_object = kwargs.pop('protected_object')(kwargs['_form']) get_acl_message_url = kwargs.pop('acl_message_url', None) self.acl_message_url = get_acl_message_url(kwargs['_form']) if get_acl_message_url else None self.can_inherit_protection = self.protected_object.protection_parent is not None if not self.can_inherit_protection: kwargs['skip'] = {ProtectionMode.inheriting} super().__init__(*args, enum=ProtectionMode, **kwargs) def render_protection_message(self): protected_object = self.get_form().protected_object if hasattr(protected_object, 'get_non_inheriting_objects'): non_inheriting_objects = protected_object.get_non_inheriting_objects() else: non_inheriting_objects = [] if isinstance(protected_object.protection_parent, db.m.Event): parent_type = _('Event') elif isinstance(protected_object.protection_parent, db.m.Category): parent_type = _('Category') else: parent_type = _('Session') rv = render_template('_protection_info.html', field=self, protected_object=protected_object, parent_type=parent_type, non_inheriting_objects=non_inheriting_objects) return Markup(rv)
45.804348
111
0.728524
0b6073a7cd51dad23173cb33a42118d333820dbb
7,698
py
Python
tests/python/Lut1DTransformTest.py
Shrinks99/OpenColorIO
94ca1fc2f0c0eae3a8678d7fe3c98cfef70f5545
[ "BSD-3-Clause" ]
null
null
null
tests/python/Lut1DTransformTest.py
Shrinks99/OpenColorIO
94ca1fc2f0c0eae3a8678d7fe3c98cfef70f5545
[ "BSD-3-Clause" ]
null
null
null
tests/python/Lut1DTransformTest.py
Shrinks99/OpenColorIO
94ca1fc2f0c0eae3a8678d7fe3c98cfef70f5545
[ "BSD-3-Clause" ]
null
null
null
# SPDX-License-Identifier: BSD-3-Clause # Copyright Contributors to the OpenColorIO Project. import logging import unittest logger = logging.getLogger(__name__) try: import numpy as np except ImportError: logger.warning( "NumPy could not be imported. " "Test case will lack significant coverage!" ) np = None import PyOpenColorIO as OCIO class Lut1DTransformTest(unittest.TestCase): def test_default_constructor(self): """ Test the default constructor. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getLength(), 2) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_FORWARD) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) self.assertFalse(lut.getInputHalfDomain()) self.assertFalse(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_DEFAULT) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) r, g, b = lut.getValue(1) self.assertEqual([r, g, b], [1, 1, 1]) def test_direction(self): """ Test the setDirection() and getDirection() methods. """ lut = OCIO.Lut1DTransform() for direction in OCIO.TransformDirection.__members__.values(): lut.setDirection(direction) self.assertEqual(lut.getDirection(), direction) # Wrong type tests. for invalid in (None, 1, 'test'): with self.assertRaises(TypeError): lut.setDirection(invalid) def test_format_metadata(self): """ Test the getFormatMetadata() method. """ lut = OCIO.Lut1DTransform() format_metadata = lut.getFormatMetadata() self.assertIsInstance(format_metadata, OCIO.FormatMetadata) self.assertEqual(format_metadata.getElementName(), 'ROOT') self.assertEqual(format_metadata.getName(), '') self.assertEqual(format_metadata.getID(), '') format_metadata.setName('name') format_metadata.setID('id') self.assertEqual(format_metadata.getName(), 'name') self.assertEqual(format_metadata.getID(), 'id') def test_file_output_bit_depth(self): """ Test get/setFileOutputBitDepth. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) lut.setFileOutputBitDepth(OCIO.BIT_DEPTH_UINT10) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) def test_hue_adjust(self): """ Test get/setHueAdjust. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) lut.setHueAdjust(OCIO.HUE_DW3) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) with self.assertRaises(OCIO.Exception): lut.setHueAdjust(OCIO.HUE_WYPN) def test_input_half_domain(self): """ Test get/getInputHalfDomain. """ lut = OCIO.Lut1DTransform() self.assertFalse(lut.getInputHalfDomain()) lut.setInputHalfDomain(True) self.assertTrue(lut.getInputHalfDomain()) def test_output_raw_halfs(self): """ Test get/setOutputRawHalfs. """ lut = OCIO.Lut1DTransform() self.assertFalse(lut.getOutputRawHalfs()) lut.setOutputRawHalfs(True) self.assertTrue(lut.getOutputRawHalfs()) def test_length(self): """ Test get/setLength. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getLength(), 2) lut.setValue(0, 0.1, 0.2, 0.3) lut.setLength(3) self.assertEqual(lut.getLength(), 3) # Changing the length reset LUT values to identity. r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) def test_constructor_with_keywords(self): """ Test Lut1DTransform constructor with keywords and validate its values. """ lut = OCIO.Lut1DTransform( length=65536, inputHalfDomain=True, outputRawHalfs=True, fileOutputBitDepth=OCIO.BIT_DEPTH_UINT10, hueAdjust=OCIO.HUE_DW3, interpolation=OCIO.INTERP_BEST, direction=OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 65536) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) self.assertTrue(lut.getInputHalfDomain()) self.assertTrue(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_BEST) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) lut = OCIO.Lut1DTransform( length=4, direction=OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 4) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) self.assertFalse(lut.getInputHalfDomain()) self.assertFalse(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_DEFAULT) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) def test_constructor_with_positional(self): """ Test Lut1DTransform constructor without keywords and validate its values. """ lut = OCIO.Lut1DTransform(65536, True, True, OCIO.BIT_DEPTH_UINT10, OCIO.HUE_DW3, OCIO.INTERP_BEST, OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 65536) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) self.assertTrue(lut.getInputHalfDomain()) self.assertTrue(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_BEST) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) def test_array(self): """ Get & set Lut array values. """ lut = OCIO.Lut1DTransform(length=3) r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) r, g, b = lut.getValue(1) self.assertEqual([r, g, b], [0.5, 0.5, 0.5]) r, g, b = lut.getValue(2) self.assertEqual([r, g, b], [1, 1, 1]) lut.setValue(0, 0.1, 0.2, 0.3) r, g, b = lut.getValue(0) # Values are stored as float. self.assertAlmostEqual(r, 0.1, delta=1e-6) self.assertAlmostEqual(g, 0.2, delta=1e-6) self.assertAlmostEqual(b, 0.3, delta=1e-6) if not np: logger.warning("NumPy not found. Skipping part of test!") return data = lut.getData() expected = np.array([0.1, 0.2, 0.3, 0.5, 0.5, 0.5, 1., 1., 1.]).astype(np.float32) self.assertEqual(data.all(), expected.all()) data[6] = 0.9 data[7] = 1.1 data[8] = 1.2 lut.setData(data) r, g, b = lut.getValue(2) self.assertAlmostEqual(r, 0.9, delta=1e-6) self.assertAlmostEqual(g, 1.1, delta=1e-6) self.assertAlmostEqual(b, 1.2, delta=1e-6) def test_equals(self): """ Test equals. """ lut = OCIO.Lut1DTransform() lut2 = OCIO.Lut1DTransform() self.assertTrue(lut.equals(lut2)) lut.setValue(0, 0.1, 0.2, 0.3) self.assertFalse(lut.equals(lut2))
35.474654
81
0.615095
82fe853041bb9d462b91a5fbe0e8660c732514db
8,513
py
Python
configs/cascade_rcnn_x101_32x4d_fpn_1x.py
eryuehouniao/mmdetection
e80df144aeb2000116f1a8deb98fa4916b1fe5c3
[ "Apache-2.0" ]
1
2019-10-29T06:45:12.000Z
2019-10-29T06:45:12.000Z
configs/cascade_rcnn_x101_32x4d_fpn_1x.py
eryuehouniao/mmdetection
e80df144aeb2000116f1a8deb98fa4916b1fe5c3
[ "Apache-2.0" ]
null
null
null
configs/cascade_rcnn_x101_32x4d_fpn_1x.py
eryuehouniao/mmdetection
e80df144aeb2000116f1a8deb98fa4916b1fe5c3
[ "Apache-2.0" ]
1
2020-09-24T12:17:55.000Z
2020-09-24T12:17:55.000Z
# model settings model = dict( type='CascadeRCNN', num_stages=3, # pretrained='open-mmlab://resnext101_32x4d', pretrained=None, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch', # dcn=dict( # modulated=False, # groups=32, # deformable_groups=1, # fallback_on_stride=False), # stage_with_dcn=(False, True, True, True), ), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.02, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 20.0, 50.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=16, target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ]) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='OHEMSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100), keep_all_stages=False) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(2048, 905), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1228, 614), flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=1, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=["/data1/bupi_data/round2/sparse_train_2coco_padding_1.json", "/data1/bupi_data/round2/val_coco.json", "/data1/bupi_data/round2/crop_val_image/after_slice_coco.json", "/data1/bupi_data/round2/dense_crop_train_image/crop_dense_train_coco_fixbox.json", "/data1/bupi_data/round2/sparse_crop_train_image/after_slice_coco.json" ], img_prefix=["/data1/bupi_data/round2/sparse_trian_2coo_padding/", "/data1/bupi_data/round2/val/", "/data1/bupi_data/round2/crop_val_image/defect_image/", "/data1/bupi_data/round2/dense_crop_train_image/defect/", "/data1/bupi_data/round2/sparse_crop_train_image/defect_image/", ], pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.0025, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = '/data1/lgj/bupi/round2/work_dirs/resnext101_data_aug/' load_from = "/data1/lgj/bupi/round2/pretrained_model/epoch_12.pth" # load_from = None resume_from = None workflow = [('train', 1)] gpus_id = '0,1' gpus_num = 2
32.996124
101
0.553389
7ffbf572ea3d56d9a205e9e1174bb29a3ebae148
11,638
py
Python
tensorqtl/tensorqtl.py
susie-song/tensorqtl
97d6f26eae9c2d8624214c4e15b52c528e823001
[ "BSD-3-Clause" ]
null
null
null
tensorqtl/tensorqtl.py
susie-song/tensorqtl
97d6f26eae9c2d8624214c4e15b52c528e823001
[ "BSD-3-Clause" ]
null
null
null
tensorqtl/tensorqtl.py
susie-song/tensorqtl
97d6f26eae9c2d8624214c4e15b52c528e823001
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function import pandas as pd import numpy as np from datetime import datetime import sys import os import argparse sys.path.insert(1, os.path.dirname(__file__)) from core import * from post import * import genotypeio import cis import trans def main(): parser = argparse.ArgumentParser(description='tensorQTL: GPU-based QTL mapper') parser.add_argument('genotype_path', help='Genotypes in PLINK format') parser.add_argument('phenotype_bed', help='Phenotypes in BED format') parser.add_argument('prefix', help='Prefix for output file names') parser.add_argument('--mode', default='cis', choices=['cis', 'cis_nominal', 'cis_independent', 'trans'], help='Mapping mode. Default: cis') parser.add_argument('--covariates', default=None, help='Covariates file, tab-delimited, covariates x samples') parser.add_argument('--permutations', type=int, default=10000, help='Number of permutations. Default: 10000') parser.add_argument('--interaction', default=None, type=str, help='Interaction term(s)') parser.add_argument('--cis_output', default=None, type=str, help="Output from 'cis' mode with q-values. Required for independent cis-QTL mapping.") parser.add_argument('--phenotype_groups', default=None, type=str, help='Phenotype groups. Header-less TSV with two columns: phenotype_id, group_id') parser.add_argument('--window', default=1000000, type=np.int32, help='Cis-window size, in bases. Default: 1000000.') parser.add_argument('--pval_threshold', default=None, type=np.float64, help='Output only significant phenotype-variant pairs with a p-value below threshold. Default: 1e-5 for trans-QTL') parser.add_argument('--maf_threshold', default=0, type=np.float64, help='Include only genotypes with minor allele frequency >= maf_threshold. Default: 0') parser.add_argument('--maf_threshold_interaction', default=0.05, type=np.float64, help='MAF threshold for interactions, applied to lower and upper half of samples') parser.add_argument('--return_dense', action='store_true', help='Return dense output for trans-QTL.') parser.add_argument('--return_r2', action='store_true', help='Return r2 (only for sparse trans-QTL output)') parser.add_argument('--best_only', action='store_true', help='Only write lead association for each phenotype (interaction mode only)') parser.add_argument('--output_text', action='store_true', help='Write output in txt.gz format instead of parquet (trans-QTL mode only)') parser.add_argument('--batch_size', type=int, default=20000, help='Batch size. Reduce this if encountering OOM errors.') parser.add_argument('--load_split', action='store_true', help='Load genotypes into memory separately for each chromosome.') parser.add_argument('--fdr', default=0.05, type=np.float64, help='FDR for cis-QTLs') parser.add_argument('--qvalue_lambda', default=None, type=np.float64, help='lambda parameter for pi0est in qvalue.') parser.add_argument('--seed', default=None, type=int, help='Seed for permutations.') parser.add_argument('-o', '--output_dir', default='.', help='Output directory') args = parser.parse_args() # check inputs if args.mode == 'cis_independent' and (args.cis_output is None or not os.path.exists(args.cis_output)): raise ValueError("Output from 'cis' mode must be provided.") if args.interaction is not None and args.mode not in ['cis_nominal', 'trans']: raise ValueError("Interactions are only supported in 'cis_nominal' or 'trans' mode.") logger = SimpleLogger(os.path.join(args.output_dir, f'{args.prefix}.tensorQTL.{args.mode}.log')) logger.write(f'[{datetime.now().strftime("%b %d %H:%M:%S")}] Running TensorQTL: {args.mode.split("_")[0]}-QTL mapping') if torch.cuda.is_available(): logger.write(f' * using GPU ({torch.cuda.get_device_name(torch.cuda.current_device())})') else: logger.write(' * WARNING: using CPU!') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if args.seed is not None: logger.write(f' * using seed {args.seed}') # load inputs logger.write(f' * reading phenotypes ({args.phenotype_bed})') phenotype_df, phenotype_pos_df = read_phenotype_bed(args.phenotype_bed) tss_dict = phenotype_pos_df.T.to_dict() if args.covariates is not None: logger.write(f' * reading covariates ({args.covariates})') covariates_df = pd.read_csv(args.covariates, sep='\t', index_col=0).T assert phenotype_df.columns.equals(covariates_df.index) if args.interaction is not None: logger.write(f' * reading interaction term(s) ({args.interaction})') # allow headerless input for single interactions with open(args.interaction) as f: f.readline() s = f.readline().strip() if len(s.split('\t')) == 2: # index + value interaction_df = pd.read_csv(args.interaction, sep='\t', index_col=0, header=None) else: interaction_df = pd.read_csv(args.interaction, sep='\t', index_col=0) # select samples assert covariates_df.index.isin(interaction_df.index).all() interaction_df = interaction_df.loc[covariates_df.index].astype(np.float32) else: interaction_df = None if args.maf_threshold is None: if args.mode == 'trans': maf_threshold = 0.05 else: maf_threshold = 0 else: maf_threshold = args.maf_threshold if args.phenotype_groups is not None: group_s = pd.read_csv(args.phenotype_groups, sep='\t', index_col=0, header=None).squeeze('columns') # verify sort order group_dict = group_s.to_dict() previous_group = '' parsed_groups = 0 for i in phenotype_df.index: if group_dict[i]!=previous_group: parsed_groups += 1 previous_group = group_dict[i] if not parsed_groups == len(group_s.unique()): raise ValueError('Groups defined in input do not match phenotype file (check sort order).') else: group_s = None # load genotypes pr = genotypeio.PlinkReader(args.genotype_path, select_samples=phenotype_df.columns, dtype=np.int8) variant_df = pr.bim.set_index('snp')[['chrom', 'pos']] if args.mode != 'cis_nominal' or not args.load_split: # load all genotypes into memory genotype_df = pd.DataFrame(pr.load_genotypes(), index=pr.bim['snp'], columns=pr.fam['iid']) if args.mode.startswith('cis'): if args.mode == 'cis': res_df = cis.map_cis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df, group_s=group_s, nperm=args.permutations, window=args.window, maf_threshold=maf_threshold, logger=logger, seed=args.seed, verbose=True) logger.write(' * writing output') if has_rpy2: calculate_qvalues(res_df, fdr=args.fdr, qvalue_lambda=args.qvalue_lambda, logger=logger) out_file = os.path.join(args.output_dir, args.prefix+'.cis_qtl.txt.gz') res_df.to_csv(out_file, sep='\t', float_format='%.6g') elif args.mode == 'cis_nominal': if not args.load_split: cis.map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df, args.prefix, covariates_df=covariates_df, interaction_df=interaction_df, maf_threshold_interaction=args.maf_threshold_interaction, group_s=None, window=args.window, maf_threshold=maf_threshold, run_eigenmt=True, output_dir=args.output_dir, write_top=True, write_stats=not args.best_only, logger=logger, verbose=True) else: # load genotypes for each chromosome separately top_df = [] for chrom in pr.chrs: g, pos_s = pr.get_region(chrom) genotype_df = pd.DataFrame(g, index=pos_s.index, columns=pr.fam['iid'])[phenotype_df.columns] variant_df = pr.bim.set_index('snp')[['chrom', 'pos']] chr_df = cis.map_nominal(genotype_df, variant_df[variant_df['chrom'] == chrom], phenotype_df[phenotype_pos_df['chr'] == chrom], phenotype_pos_df[phenotype_pos_df['chr'] == chrom], args.prefix, covariates_df=covariates_df, interaction_df=interaction_df, maf_threshold_interaction=args.maf_threshold_interaction, group_s=None, window=args.window, maf_threshold=maf_threshold, run_eigenmt=True, output_dir=args.output_dir, write_top=True, write_stats=not args.best_only, logger=logger, verbose=True) top_df.append(chr_df) if interaction_df is not None: top_df = pd.concat(top_df) top_df.to_csv(os.path.join(args.output_dir, f'{args.prefix}.cis_qtl_top_assoc.txt.gz'), sep='\t', float_format='%.6g') elif args.mode == 'cis_independent': summary_df = pd.read_csv(args.cis_output, sep='\t', index_col=0) summary_df.rename(columns={'minor_allele_samples':'ma_samples', 'minor_allele_count':'ma_count'}, inplace=True) res_df = cis.map_independent(genotype_df, variant_df, summary_df, phenotype_df, phenotype_pos_df, covariates_df, group_s=group_s, fdr=args.fdr, nperm=args.permutations, window=args.window, maf_threshold=maf_threshold, logger=logger, seed=args.seed, verbose=True) logger.write(' * writing output') out_file = os.path.join(args.output_dir, args.prefix+'.cis_independent_qtl.txt.gz') res_df.to_csv(out_file, sep='\t', index=False, float_format='%.6g') elif args.mode == 'trans': return_sparse = not args.return_dense pval_threshold = args.pval_threshold if pval_threshold is None and return_sparse: pval_threshold = 1e-5 logger.write(f' * p-value threshold: {pval_threshold:.2g}') if interaction_df is not None: if interaction_df.shape[1] > 1: raise NotImplementedError('trans-QTL mapping currently only supports a single interaction.') else: interaction_df = interaction_df.squeeze('columns') pairs_df = trans.map_trans(genotype_df, phenotype_df, covariates_df, interaction_s=interaction_df, return_sparse=return_sparse, pval_threshold=pval_threshold, maf_threshold=maf_threshold, batch_size=args.batch_size, return_r2=args.return_r2, logger=logger) logger.write(' * filtering out cis-QTLs (within +/-5Mb)') pairs_df = trans.filter_cis(pairs_df, tss_dict, variant_df, window=5000000) logger.write(' * writing output') if not args.output_text: pairs_df.to_parquet(os.path.join(args.output_dir, args.prefix+'.trans_qtl_pairs.parquet')) else: out_file = os.path.join(args.output_dir, args.prefix+'.trans_qtl_pairs.txt.gz') pairs_df.to_csv(out_file, sep='\t', index=False, float_format='%.6g') logger.write(f'[{datetime.now().strftime("%b %d %H:%M:%S")}] Finished mapping') if __name__ == '__main__': main()
60.931937
190
0.653892
e115b84c1b43f585764d4356ab8fd6427bb85efd
292
py
Python
docs/build/docutils/test/functional/tests/math_output_latex.py
mjtamlyn/django-braces
8adc9bc4f5139e3d032d4e38657bf86413388b78
[ "BSD-3-Clause" ]
1
2015-03-22T16:49:07.000Z
2015-03-22T16:49:07.000Z
docs/build/docutils/test/functional/tests/math_output_latex.py
mjtamlyn/django-braces
8adc9bc4f5139e3d032d4e38657bf86413388b78
[ "BSD-3-Clause" ]
null
null
null
docs/build/docutils/test/functional/tests/math_output_latex.py
mjtamlyn/django-braces
8adc9bc4f5139e3d032d4e38657bf86413388b78
[ "BSD-3-Clause" ]
null
null
null
# Source and destination file names. test_source = "data/math.txt" test_destination = "math_output_latex.html" # Keyword parameters passed to publish_file. reader_name = "standalone" parser_name = "rst" writer_name = "html" # Extra setting settings_overrides['math_output'] = 'latex'
20.857143
44
0.756849
5629458ddf65146eec3a0907db863041c0f2409c
2,775
py
Python
DQM/TrackingMonitor/python/TrackEfficiencyMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
DQM/TrackingMonitor/python/TrackEfficiencyMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
DQM/TrackingMonitor/python/TrackEfficiencyMonitor_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
# The following comments couldn't be translated into the new config version: # All/OuterSurface/InnerSurface/ImpactPoint/default(track) # import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer TrackEffMon = DQMEDAnalyzer('TrackEfficiencyMonitor', theRadius = cms.double(85.0), theMaxZ = cms.double(110.0), isBFieldOff = cms.bool(False), TKTrackCollection = cms.InputTag("rsWithMaterialTracksP5"), STATrackCollection = cms.InputTag("cosmicMuons"), trackEfficiency = cms.bool(True), OutputMEsInRootFile = cms.bool(False), OutputFileName = cms.string('MonitorTrackEfficiency.root'), FolderName = cms.string('Track/Efficiencies'), AlgoName = cms.string('CTF'), muoncoll = cms.InputTag('muons'), muonXBin = cms.int32(50), muonXMin = cms.double(-100), muonXMax = cms.double(100), muonYBin = cms.int32(50), muonYMin = cms.double(-100), muonYMax = cms.double(100), muonZBin = cms.int32(50), muonZMin = cms.double(-500), muonZMax = cms.double(500), muonEtaBin = cms.int32(50), muonEtaMin = cms.double(-3.2), muonEtaMax = cms.double(3.2), muonPhiBin = cms.int32(50), muonPhiMin = cms.double(-3.2), muonPhiMax = cms.double(0.), muonD0Bin = cms.int32(50), muonD0Min = cms.double(-100), muonD0Max = cms.double(100), muonCompatibleLayersBin = cms.int32(10), muonCompatibleLayersMin = cms.double(0), muonCompatibleLayersMax = cms.double(30), trackXBin = cms.int32(50), trackXMin = cms.double(-100), trackXMax = cms.double(100), trackYBin = cms.int32(50), trackYMin = cms.double(-100), trackYMax = cms.double(100), trackZBin = cms.int32(50), trackZMin = cms.double(-500), trackZMax = cms.double(500), trackEtaBin = cms.int32(50), trackEtaMin = cms.double(-3.2), trackEtaMax = cms.double(3.2), trackPhiBin = cms.int32(50), trackPhiMin = cms.double(-3.2), trackPhiMax = cms.double(0.), trackD0Bin = cms.int32(50), trackD0Min = cms.double(-100), trackD0Max = cms.double(100), trackCompatibleLayersBin = cms.int32(10), trackCompatibleLayersMin = cms.double(0), trackCompatibleLayersMax = cms.double(30), deltaXBin = cms.int32(50), deltaXMin = cms.double(-100), deltaXMax = cms.double(100), deltaYBin = cms.int32(50), deltaYMin = cms.double(-100), deltaYMax = cms.double(100), signDeltaXBin = cms.int32(50), signDeltaXMin = cms.double(-5), signDeltaXMax = cms.double(5), signDeltaYBin = cms.int32(50), signDeltaYMin = cms.double(-5), signDeltaYMax = cms.double(5), )
28.608247
76
0.641802
b149f7ef4b3a745f29a9235debfd572e21452081
2,327
py
Python
core/api/users/exceptions.py
p-panagiotis/venom
8544f44b10e95bd3964ddde997cda4169c6d34f0
[ "MIT" ]
null
null
null
core/api/users/exceptions.py
p-panagiotis/venom
8544f44b10e95bd3964ddde997cda4169c6d34f0
[ "MIT" ]
null
null
null
core/api/users/exceptions.py
p-panagiotis/venom
8544f44b10e95bd3964ddde997cda4169c6d34f0
[ "MIT" ]
null
null
null
from core.venom import messages class UserUsernameAlreadyInUseException(Exception): def __init__(self, username): self.detail = messages["core.api.users.username_already_in_use"] % username super(UserUsernameAlreadyInUseException, self).__init__(self.detail) class UserEmailAlreadyInUseException(Exception): def __init__(self, email): self.detail = messages["core.api.users.email_already_in_use"] % email super(UserEmailAlreadyInUseException, self).__init__(self.detail) class UserNotFoundException(Exception): def __init__(self, user_id): self.detail = messages["core.api.users.user_not_found"] % user_id super(UserNotFoundException, self).__init__(self.detail) class UserOldPasswordCannotBeVerifiedException(Exception): def __init__(self): self.detail = messages["core.api.users.user_old_password_cannot_be_verified"] super(UserOldPasswordCannotBeVerifiedException, self).__init__(self.detail) class UserPasswordsCannotBeConfirmedException(Exception): def __init__(self): self.detail = messages["core.api.users.user_passwords_cannot_be_confirmed"] super(UserPasswordsCannotBeConfirmedException, self).__init__(self.detail) class UserGroupNotFoundException(Exception): def __init__(self, user_group_id): self.detail = messages["core.api.users.user_group_not_found"] % user_group_id super(UserGroupNotFoundException, self).__init__(self.detail) class UserGroupAlreadyAssignedWithRoleException(Exception): def __init__(self, user_group_name, role_name): self.detail = messages["core.api.users.user_group_already_assigned_with_role"] % (user_group_name, role_name) super(UserGroupAlreadyAssignedWithRoleException, self).__init__(self.detail) class UserGroupAlreadyInUseException(Exception): def __init__(self, name): self.detail = messages["core.api.users.user_group_already_in_use"] % name super(UserGroupAlreadyInUseException, self).__init__(self.detail) class UserAlreadyAssignedWithRoleException(Exception): def __init__(self, username, role_name): self.detail = messages["core.api.users.user_already_assigned_with_role"] % (username, role_name) super(UserAlreadyAssignedWithRoleException, self).__init__(self.detail)
35.8
117
0.768801
8d07b918502535d6126720d9f9bf2e28d8b9f6c5
5,247
py
Python
neurom/apps/cli.py
musicinmybrain/NeuroM
76b8c557b81d4189b6c04598e62af3a1a67bebfd
[ "BSD-3-Clause" ]
null
null
null
neurom/apps/cli.py
musicinmybrain/NeuroM
76b8c557b81d4189b6c04598e62af3a1a67bebfd
[ "BSD-3-Clause" ]
null
null
null
neurom/apps/cli.py
musicinmybrain/NeuroM
76b8c557b81d4189b6c04598e62af3a1a67bebfd
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project # All rights reserved. # # This file is part of NeuroM <https://github.com/BlueBrain/NeuroM> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of # its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """The morph-tool command line launcher.""" import logging import click import matplotlib.pyplot as plt from neurom.apps import morph_stats, morph_check from neurom import load_neuron from neurom.viewer import draw as pyplot_draw @click.group() @click.option('-v', '--verbose', count=True, default=0, help='-v for WARNING, -vv for INFO, -vvv for DEBUG') def cli(verbose): """The CLI entry point.""" level = (logging.WARNING, logging.INFO, logging.DEBUG)[min(verbose, 2)] logging.basicConfig(level=level) @cli.command() @click.argument('input_file') @click.option('--plane', type=click.Choice(['3d', 'xy', 'yx', 'yz', 'zy', 'xz', 'zx']), default='3d') @click.option('--backend', type=click.Choice(['plotly', 'matplotlib']), default='matplotlib') @click.option('-r', '--realistic-diameters/--no-realistic-diameters', default=False, help='Scale diameters according to the plot axis\n' 'Warning: Only works with the matplotlib backend') def view(input_file, plane, backend, realistic_diameters): """A simple neuron viewer.""" # pylint: disable=import-outside-toplevel if backend == 'matplotlib': kwargs = { 'mode': '3d' if plane == '3d' else '2d', 'realistic_diameters': realistic_diameters, } if plane != '3d': kwargs['plane'] = plane pyplot_draw(load_neuron(input_file), **kwargs) plt.show() else: from neurom.view.plotly import draw as plotly_draw plotly_draw(load_neuron(input_file), plane=plane) @cli.command(short_help='Morphology statistics extractor, more details at' 'https://neurom.readthedocs.io/en/latest/morph_stats.html') @click.argument('datapath', required=False) @click.option('-C', '--config', type=click.Path(exists=True, dir_okay=False), default=morph_stats.EXAMPLE_CONFIG, show_default=True, help='Configuration File') @click.option('-o', '--output', type=click.Path(exists=False, dir_okay=False), help='Path to output file, if it ends in .json, a json file is created,' 'otherwise a csv file is created') @click.option('-f', '--full-config', is_flag=True, default=False, help='If passed then --config is ignored. Compute statistics for all neurite' 'types, all modes and all features') @click.option('--as-population', is_flag=True, default=False, help='If enabled the directory is treated as a population') @click.option('-I', '--ignored-exceptions', help='Exception to ignore', type=click.Choice(morph_stats.IGNORABLE_EXCEPTIONS.keys())) def stats(datapath, config, output, full_config, as_population, ignored_exceptions): """Cli for apps/morph_stats.""" morph_stats.main(datapath, config, output, full_config, as_population, ignored_exceptions) @cli.command(short_help='Perform checks on morphologies, more details at' 'https://neurom.readthedocs.io/en/latest/morph_check.html') @click.argument('datapath') @click.option('-C', '--config', type=click.Path(exists=True, dir_okay=False), default=morph_check.EXAMPLE_CONFIG, show_default=True, help='Configuration File') @click.option('-o', '--output', type=click.Path(exists=False, dir_okay=False), help='Path to output json summary file') def check(datapath, config, output): """Cli for apps/morph_check.""" morph_check.main(datapath, config, output)
49.037383
94
0.693539
4654c770f2c695e38705046ada12231ddcd3ecce
799
py
Python
python/validParentheses.py
guozengxin/myleetcode
ed7ab4f716845646cf164a08f03ea342f60b14e1
[ "MIT" ]
null
null
null
python/validParentheses.py
guozengxin/myleetcode
ed7ab4f716845646cf164a08f03ea342f60b14e1
[ "MIT" ]
null
null
null
python/validParentheses.py
guozengxin/myleetcode
ed7ab4f716845646cf164a08f03ea342f60b14e1
[ "MIT" ]
null
null
null
class Solution(object): def isValid(self, s): """ :type s: str :rtype: bool """ if len(s) & 1 != 0: return False stack = [] mymap = {'}':'{', ']':'[', ')': '('} for c in s: if c == '[' or c == '(' or c == '{': stack.append(c) else: if len(stack) == 0: return False elif c not in mymap: return False elif mymap[c] != stack[-1]: return False stack.pop() if len(stack) == 0: return True else: return False strs = [ '()', '{()}[]', '{(})', ] solu = Solution() for s in strs: print s, solu.isValid(s)
21.594595
48
0.34418
181ead5f6730bd5224515626f5af0e4f6b490413
13,057
py
Python
dev_nb/nb_002.py
gurvindersingh/fastai_v1
18c6170f7fa852f6f24c03badb1bdb03f40c5be9
[ "Apache-2.0" ]
null
null
null
dev_nb/nb_002.py
gurvindersingh/fastai_v1
18c6170f7fa852f6f24c03badb1bdb03f40c5be9
[ "Apache-2.0" ]
null
null
null
dev_nb/nb_002.py
gurvindersingh/fastai_v1
18c6170f7fa852f6f24c03badb1bdb03f40c5be9
[ "Apache-2.0" ]
null
null
null
################################################# ### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ### ################################################# from nb_001b import * import sys, PIL, matplotlib.pyplot as plt, itertools, math, random, collections, torch import scipy.stats, scipy.special from enum import Enum, IntEnum from torch import tensor, Tensor, FloatTensor, LongTensor, ByteTensor, DoubleTensor, HalfTensor, ShortTensor from operator import itemgetter, attrgetter from numpy import cos, sin, tan, tanh, log, exp from dataclasses import field from functools import reduce from collections import defaultdict, abc, namedtuple, Iterable def find_classes(folder): classes = [d for d in folder.iterdir() if d.is_dir() and not d.name.startswith('.')] assert(len(classes)>0) return sorted(classes, key=lambda d: d.name) def get_image_files(c): return [o for o in list(c.iterdir()) if not o.name.startswith('.') and not o.is_dir()] def pil2tensor(image): arr = torch.ByteTensor(torch.ByteStorage.from_buffer(image.tobytes())) arr = arr.view(image.size[1], image.size[0], -1) arr = arr.permute(2,0,1) return arr.float().div_(255) def open_image(fn): x = PIL.Image.open(fn).convert('RGB') return pil2tensor(x) class FilesDataset(Dataset): def __init__(self, folder, classes=None): self.fns, self.y = [], [] if classes is None: classes = [cls.name for cls in find_classes(folder)] self.classes = classes for i, cls in enumerate(classes): fnames = get_image_files(folder/cls) self.fns += fnames self.y += [i] * len(fnames) def __len__(self): return len(self.fns) def __getitem__(self,i): return open_image(self.fns[i]),self.y[i] def image2np(image): return image.cpu().permute(1,2,0).numpy() def show_image(img, ax=None, figsize=(3,3), hide_axis=True): if ax is None: fig,ax = plt.subplots(figsize=figsize) ax.imshow(image2np(img)) if hide_axis: ax.axis('off') def show_image_batch(dl, classes, rows=None, figsize=(12,15)): x,y = next(iter(dl)) if rows is None: rows = int(math.sqrt(len(x))) show_images(x[:rows*rows],y[:rows*rows],rows, classes) def show_images(x,y,rows, classes, figsize=(9,9)): fig, axs = plt.subplots(rows,rows,figsize=figsize) for i, ax in enumerate(axs.flatten()): show_image(x[i], ax) ax.set_title(classes[y[i]]) plt.tight_layout() def logit(x): return -(1/x-1).log() def logit_(x): return (x.reciprocal_().sub_(1)).log_().neg_() def uniform(low, high, size=None): return random.uniform(low,high) if size is None else torch.FloatTensor(size).uniform_(low,high) def log_uniform(low, high, size=None): res = uniform(log(low), log(high), size) return exp(res) if size is None else res.exp_() def rand_bool(p, size=None): return uniform(0,1,size)<p import inspect from copy import copy,deepcopy def get_default_args(func): return {k: v.default for k, v in inspect.signature(func).parameters.items() if v.default is not inspect.Parameter.empty} def listify(p=None, q=None): if p is None: p=[] elif not isinstance(p, Iterable): p=[p] n = q if type(q)==int else 1 if q is None else len(q) if len(p)==1: p = p * n return p class Transform(): _wrap=None order=0 def __init__(self, func, order=None): if order is not None: self.order=order self.func=func self.params = copy(func.__annotations__) self.def_args = get_default_args(func) def __call__(self, *args, p=1., **kwargs): if args: return self.calc(*args, **kwargs) else: return RandTransform(self, kwargs=kwargs, p=p) def calc(self, x, *args, **kwargs): if self._wrap: return getattr(x, self._wrap)(self.func, *args, **kwargs) else: return self.func(x, *args, **kwargs) @property def name(self): return self.__class__.__name__ def __repr__(self): return f'{self.name} ({self.func.__name__})' class TfmLighting(Transform): order,_wrap = 8,'lighting' @dataclass class RandTransform(): tfm:Transform kwargs:dict p:int=1.0 resolved:dict = field(default_factory=dict) do_run:bool = True def resolve(self): self.resolved = {} # for each param passed to tfm... for k,v in self.kwargs.items(): # ...if it's annotated, call that fn... if k in self.tfm.params: rand_func = self.tfm.params[k] self.resolved[k] = rand_func(*listify(v)) # ...otherwise use the value directly else: self.resolved[k] = v # use defaults for any args not filled in yet for k,v in self.tfm.def_args.items(): if k not in self.resolved: self.resolved[k]=v # anything left over must be callable without params for k,v in self.tfm.params.items(): if k not in self.resolved: self.resolved[k]=v() self.do_run = rand_bool(self.p) @property def order(self): return self.tfm.order def __call__(self, x, *args, **kwargs): return self.tfm(x, *args, **{**self.resolved, **kwargs}) if self.do_run else x @TfmLighting def brightness(x, change:uniform): return x.add_(scipy.special.logit(change)) @TfmLighting def contrast(x, scale:log_uniform): return x.mul_(scale) def resolve_tfms(tfms): for f in listify(tfms): f.resolve() def apply_tfms(tfms, x, do_resolve=True): if not tfms: return x tfms = listify(tfms) if do_resolve: resolve_tfms(tfms) x = Image(x.clone()) for tfm in tfms: x = tfm(x) return x.px def grid_sample_nearest(input, coords, padding_mode='zeros'): if padding_mode=='border': coords.clamp(-1,1) bs,ch,h,w = input.size() sz = torch.tensor([w,h]).float()[None,None] coords.add_(1).mul_(sz/2) coords = coords[0].round_().long() if padding_mode=='zeros': mask = (coords[...,0] < 0) + (coords[...,1] < 0) + (coords[...,0] >= w) + (coords[...,1] >= h) mask.clamp_(0,1) coords[...,0].clamp_(0,w-1) coords[...,1].clamp_(0,h-1) result = input[...,coords[...,1],coords[...,0]] if padding_mode=='zeros': result[...,mask] = result[...,mask].zero_() return result def grid_sample(x, coords, mode='bilinear', padding_mode='reflect'): if padding_mode=='reflect': padding_mode='reflection' if mode=='nearest': return grid_sample_nearest(x[None], coords, padding_mode)[0] return F.grid_sample(x[None], coords, mode=mode, padding_mode=padding_mode)[0] def affine_grid(size): size = ((1,)+size) N, C, H, W = size grid = FloatTensor(N, H, W, 2) linear_points = torch.linspace(-1, 1, W) if W > 1 else torch.Tensor([-1]) grid[:, :, :, 0] = torch.ger(torch.ones(H), linear_points).expand_as(grid[:, :, :, 0]) linear_points = torch.linspace(-1, 1, H) if H > 1 else torch.Tensor([-1]) grid[:, :, :, 1] = torch.ger(linear_points, torch.ones(W)).expand_as(grid[:, :, :, 1]) return grid def affine_mult(c,m): if m is None: return c size = c.size() c = c.view(-1,2) c = torch.addmm(m[:2,2], c, m[:2,:2].t()) return c.view(size) class Image(): def __init__(self, px): self._px = px self._logit_px=None self._flow=None self._affine_mat=None self.sample_kwargs = {} @property def shape(self): return self._px.shape def __repr__(self): return f'{self.__class__.__name__} ({self.px.shape})' def refresh(self): if self._logit_px is not None: self._px = self._logit_px.sigmoid_() self._logit_px = None if self._affine_mat is not None or self._flow is not None: self._px = grid_sample(self._px, self.flow, **self.sample_kwargs) self.sample_kwargs = {} self._flow = None return self @property def px(self): self.refresh() return self._px @px.setter def px(self,v): self._px=v @property def flow(self): if self._flow is None: self._flow = affine_grid(self.shape) if self._affine_mat is not None: self._flow = affine_mult(self._flow,self._affine_mat) self._affine_mat = None return self._flow @flow.setter def flow(self,v): self._flow=v def lighting(self, func, *args, **kwargs): self.logit_px = func(self.logit_px, *args, **kwargs) return self def pixel(self, func, *args, **kwargs): self.px = func(self.px, *args, **kwargs) return self def coord(self, func, *args, **kwargs): self.flow = func(self.flow, self.shape, *args, **kwargs) return self def affine(self, func, *args, **kwargs): m = func(*args, **kwargs) self.affine_mat = self.affine_mat @ self._px.new(m) return self def set_sample(self, **kwargs): self.sample_kwargs = kwargs return self def resize(self, size): assert self._flow is None if isinstance(size, int): size=(self.shape[0], size, size) self.flow = affine_grid(size) return self @property def affine_mat(self): if self._affine_mat is None: self._affine_mat = self._px.new(torch.eye(3)) return self._affine_mat @affine_mat.setter def affine_mat(self,v): self._affine_mat=v @property def logit_px(self): if self._logit_px is None: self._logit_px = logit_(self.px) return self._logit_px @logit_px.setter def logit_px(self,v): self._logit_px=v def show(self, ax=None, **kwargs): show_image(self.px, ax=ax, **kwargs) def clone(self): return self.__class__(self.px.clone()) class TfmAffine(Transform): order,_wrap = 5,'affine' class TfmPixel(Transform): order,_wrap = 10,'pixel' @TfmAffine def rotate(degrees:uniform): angle = degrees * math.pi / 180 return [[cos(angle), -sin(angle), 0.], [sin(angle), cos(angle), 0.], [0. , 0. , 1.]] def get_zoom_mat(sw, sh, c, r): return [[sw, 0, c], [0, sh, r], [0, 0, 1.]] @TfmAffine def zoom(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5): s = 1-1/scale col_c = s * (2*col_pct - 1) row_c = s * (2*row_pct - 1) return get_zoom_mat(1/scale, 1/scale, col_c, row_c) @TfmAffine def squish(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5): if scale <= 1: col_c = (1-scale) * (2*col_pct - 1) return get_zoom_mat(scale, 1, col_c, 0.) else: row_c = (1-1/scale) * (2*row_pct - 1) return get_zoom_mat(1, 1/scale, 0., row_c) @partial(Transform, order=TfmAffine.order-2) def resize_image(x, size): return x.resize(size) def apply_tfms(tfms, x, do_resolve=True, xtra=None, size=None, **kwargs): if not tfms: return x if not xtra: xtra={} tfms = sorted(listify(tfms), key=lambda o: o.tfm.order) if do_resolve: resolve_tfms(tfms) x = Image(x.clone()) if kwargs: x.set_sample(**kwargs) if size: x.resize(size) for tfm in tfms: if tfm.tfm in xtra: x = tfm(x, **xtra[tfm.tfm]) else: x = tfm(x) return x.px class TfmCoord(Transform): order,_wrap = 4,'coord' @TfmCoord def jitter(c, size, magnitude:uniform): return c.add_((torch.rand_like(c)-0.5)*magnitude*2) @TfmPixel def flip_lr(x): return x.flip(2) @partial(TfmPixel, order=-10) def pad(x, padding, mode='reflect'): return F.pad(x[None], (padding,)*4, mode=mode)[0] @TfmPixel def crop(x, size, row_pct:uniform=0.5, col_pct:uniform=0.5): size = listify(size,2) rows,cols = size row = int((x.size(1)-rows+1) * row_pct) col = int((x.size(2)-cols+1) * col_pct) return x[:, row:row+rows, col:col+cols].contiguous() def compute_zs_mat(sz, scale, squish, invert, row_pct, col_pct): orig_ratio = math.sqrt(sz[2]/sz[1]) for s,r,i in zip(scale,squish, invert): s,r = math.sqrt(s),math.sqrt(r) if s * r <= 1 and s / r <= 1: #Test if we are completely inside the picture w,h = (s/r, s*r) if i else (s*r,s/r) w /= orig_ratio h *= orig_ratio col_c = (1-w) * (2*col_pct - 1) row_c = (1-h) * (2*row_pct - 1) return get_zoom_mat(w, h, col_c, row_c) #Fallback, hack to emulate a center crop without cropping anything yet. if orig_ratio > 1: return get_zoom_mat(1/orig_ratio**2, 1, 0, 0.) else: return get_zoom_mat(1, orig_ratio**2, 0, 0.) @TfmCoord def zoom_squish(c, size, scale:uniform=1.0, squish:uniform=1.0, invert:rand_bool=False, row_pct:uniform=0.5, col_pct:uniform=0.5): #This is intended for scale, squish and invert to be of size 10 (or whatever) so that the transform #can try a few zoom/squishes before falling back to center crop (like torchvision.RandomResizedCrop) m = compute_zs_mat(size, scale, squish, invert, row_pct, col_pct) return affine_mult(c, FloatTensor(m))
34.002604
108
0.618059