hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
8ab6b7c8d71f0cda06a229e8ccc03d12604ac015
11,871
py
Python
pybind/slxos/v16r_1_00b/rbridge_id/threshold_monitor/security/policy/area/alert/below/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/rbridge_id/threshold_monitor/security/policy/area/alert/below/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/rbridge_id/threshold_monitor/security/policy/area/alert/below/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class below(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-rbridge - based on the path /rbridge-id/threshold-monitor/security/policy/area/alert/below. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__sec_below_highthresh_action','__sec_below_lowthresh_action',) _yang_name = 'below' _rest_name = 'below' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__sec_below_highthresh_action = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-highthresh-action", rest_name="highthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'highthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) self.__sec_below_lowthresh_action = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-lowthresh-action", rest_name="lowthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'lowthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'rbridge-id', u'threshold-monitor', u'security', u'policy', u'area', u'alert', u'below'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'rbridge-id', u'threshold-monitor', u'security', u'policy', u'area', u'alert', u'below'] def _get_sec_below_highthresh_action(self): """ Getter method for sec_below_highthresh_action, mapped from YANG variable /rbridge_id/threshold_monitor/security/policy/area/alert/below/sec_below_highthresh_action (supported-actions) """ return self.__sec_below_highthresh_action def _set_sec_below_highthresh_action(self, v, load=False): """ Setter method for sec_below_highthresh_action, mapped from YANG variable /rbridge_id/threshold_monitor/security/policy/area/alert/below/sec_below_highthresh_action (supported-actions) If this variable is read-only (config: false) in the source YANG file, then _set_sec_below_highthresh_action is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_sec_below_highthresh_action() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-highthresh-action", rest_name="highthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'highthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """sec_below_highthresh_action must be of a type compatible with supported-actions""", 'defined-type': "brocade-threshold-monitor:supported-actions", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-highthresh-action", rest_name="highthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'highthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True)""", }) self.__sec_below_highthresh_action = t if hasattr(self, '_set'): self._set() def _unset_sec_below_highthresh_action(self): self.__sec_below_highthresh_action = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-highthresh-action", rest_name="highthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'highthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) def _get_sec_below_lowthresh_action(self): """ Getter method for sec_below_lowthresh_action, mapped from YANG variable /rbridge_id/threshold_monitor/security/policy/area/alert/below/sec_below_lowthresh_action (supported-actions) """ return self.__sec_below_lowthresh_action def _set_sec_below_lowthresh_action(self, v, load=False): """ Setter method for sec_below_lowthresh_action, mapped from YANG variable /rbridge_id/threshold_monitor/security/policy/area/alert/below/sec_below_lowthresh_action (supported-actions) If this variable is read-only (config: false) in the source YANG file, then _set_sec_below_lowthresh_action is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_sec_below_lowthresh_action() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-lowthresh-action", rest_name="lowthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'lowthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """sec_below_lowthresh_action must be of a type compatible with supported-actions""", 'defined-type': "brocade-threshold-monitor:supported-actions", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-lowthresh-action", rest_name="lowthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'lowthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True)""", }) self.__sec_below_lowthresh_action = t if hasattr(self, '_set'): self._set() def _unset_sec_below_lowthresh_action(self): self.__sec_below_lowthresh_action = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'loginfo': {'value': 4}, u'none': {'value': 0}, u'all': {'value': 1}, u'raslog': {'value': 3}, u'email': {'value': 2}},), is_leaf=True, yang_name="sec-below-lowthresh-action", rest_name="lowthresh-action", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'alt-name': u'lowthresh-action'}}, namespace='urn:brocade.com:mgmt:brocade-threshold-monitor', defining_module='brocade-threshold-monitor', yang_type='supported-actions', is_config=True) sec_below_highthresh_action = __builtin__.property(_get_sec_below_highthresh_action, _set_sec_below_highthresh_action) sec_below_lowthresh_action = __builtin__.property(_get_sec_below_lowthresh_action, _set_sec_below_lowthresh_action) _pyangbind_elements = {'sec_below_highthresh_action': sec_below_highthresh_action, 'sec_below_lowthresh_action': sec_below_lowthresh_action, }
75.132911
737
0.699351
b6850b7a6dc846495c5f3d3cfa18563765e5fe7f
835
py
Python
env/lib/python3.8/site-packages/plotly/validators/indicator/_title.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/lib/python3.8/site-packages/plotly/validators/indicator/_title.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/lib/python3.8/site-packages/plotly/validators/indicator/_title.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class TitleValidator(_plotly_utils.basevalidators.TitleValidator): def __init__(self, plotly_name="title", parent_name="indicator", **kwargs): super(TitleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Title"), data_docs=kwargs.pop( "data_docs", """ align Sets the horizontal alignment of the title. It defaults to `center` except for bullet charts for which it defaults to right. font Set the font used to display the title text Sets the title of this indicator. """, ), **kwargs )
33.4
79
0.564072
ebdb1b16311b68661316bd07d89b2bc3e6fb97ab
17,048
py
Python
scripts/parallel.py
fplaza/CAMISIM
4f2ab5e94773a355210568be946e732df7437cb6
[ "Apache-2.0" ]
null
null
null
scripts/parallel.py
fplaza/CAMISIM
4f2ab5e94773a355210568be946e732df7437cb6
[ "Apache-2.0" ]
null
null
null
scripts/parallel.py
fplaza/CAMISIM
4f2ab5e94773a355210568be946e732df7437cb6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ Copyright (C) 2014 Ivan Gregor This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Provides convenient functions to run functions and command line commands in parallel. """ import os import sys import time import multiprocessing as mp import subprocess import tempfile class TaskThread: def __init__(self, fun, args): """ Defines one function and its arguments to be executed in one thread. @param fun: a function to be executed @type fun: function @param args: arguments of the function @type args: tuple """ self.fun = fun self.args = args class TaskCmd: def __init__(self, cmd, cwd='.', stdin=None, stdout=None, stderr=None): """ Defines one task to be executed as a command line command. @param cmd: command to be executed on a command line @param cwd: current working directory in which the task will be executed @param stdin: process standard input @param stdout: process standard output @param stderr: process standard err """ self.cmd = cmd self.cwd = cwd self.stdin = stdin self.stdout = stdout self.stderr = stderr class AsyncParallel: pool = None max_processes = 1 task_handler_list = {} def __init__(self, max_processes=mp.cpu_count()): """ Execute several functions (threads, processes) in parallel until return values called. @param max_processes: maximum number of tasks that will be run in parallel at the same time """ assert isinstance(max_processes, int) # prevent overwrite of previous settings if AsyncParallel.pool is not None: return AsyncParallel.pool = mp.Pool(processes=max_processes) AsyncParallel.max_processes = max_processes @staticmethod def add_tasks(thread_task_list, identifier=None): """ Execute several functions (threads, processes) in parallel. @type thread_task_list: list of TaskThread @return: a list of respective return values """ assert isinstance(thread_task_list, list) if identifier is None: identifier = len(AsyncParallel.task_handler_list) # creates a pool of workers, add all tasks to the pool if AsyncParallel.pool is None: AsyncParallel.pool = mp.Pool(processes=AsyncParallel.max_processes) if identifier not in AsyncParallel.task_handler_list: AsyncParallel.task_handler_list[identifier] = [] for task in thread_task_list: assert isinstance(task, TaskThread) AsyncParallel.task_handler_list[identifier].append(AsyncParallel.pool.apply_async(task.fun, task.args)) return identifier @staticmethod def add_cmd_tasks(cmd_task_list, identifier=None, stdin_error_lock=mp.Manager().Lock()): """ Run several command line commands in parallel. @attention: use the Manager to get the lock as in this function definition !!! @type cmd_task_list: list of TaskCmd @param stdin_error_lock: acquiring the lock enables writing to the stdout and stderr @return: list of failed commands, dictionary (cmd, task process) """ assert isinstance(cmd_task_list, list) thread_task_list = [] for cmdTask in cmd_task_list: assert isinstance(cmdTask, TaskCmd) thread_task_list.append(TaskThread(_runCmd, (cmdTask, stdin_error_lock))) return AsyncParallel.add_tasks(thread_task_list, identifier) @staticmethod def wait(identifier): for taskHandler in AsyncParallel.task_handler_list[identifier]: taskHandler.wait() @staticmethod def get_results(): if AsyncParallel.pool is None: return None # finish all tasks AsyncParallel.pool.close() AsyncParallel.pool.join() # retrieve the return values return_value_list = [] for identifier in AsyncParallel.task_handler_list: for taskHandler in AsyncParallel.task_handler_list[identifier]: taskHandler.wait() # assert taskHandler.successful() return_value_list.append(taskHandler.get()) # reset pool AsyncParallel.pool = None AsyncParallel.task_handler_list = {} # return return_value_list fail_list = [] for return_value in return_value_list: if not isinstance(return_value, list): continue process, task = return_value if process.returncode is None: continue if process.returncode != 0: fail_list.append(dict(process=process, task=task)) if len(fail_list) > 0: return fail_list else: return None def runThreadParallel(threadTaskList, maxThreads=mp.cpu_count()): """ Execute several functions (threads, processes) in parallel. @type threadTaskList: list of TaskThread @param maxThreads: maximum number of tasks that will be run in parallel at the same time @return: a list of respective return values """ assert isinstance(threadTaskList, list) assert isinstance(maxThreads, int) # creates a pool of workers, add all tasks to the pool pool = mp.Pool(processes=maxThreads) taskHandlerList = [] for task in threadTaskList: assert isinstance(task, TaskThread) taskHandlerList.append(pool.apply_async(task.fun, task.args)) # finish all tasks pool.close() pool.join() # retrieve the return values retValList = [] for taskHandler in taskHandlerList: taskHandler.wait() # assert taskHandler.successful() try: retValList.append(taskHandler.get()) except Exception: pass # add to list? return retValList def _runCmd(taskCmd, stdInErrLock=None): """ Executes a command line task. @type taskCmd: TaskCmd @param stdInErrLock: acquiring the lock enables writing to the stdout and stderr (if not None) @type stdInErrLock: multiprocessing.Lock @return: a tuple (process, TaskCmd) """ # setting up stdin and stdout (to buffer the output) if taskCmd.stdout is None and stdInErrLock is not None: stdout = tempfile.TemporaryFile(mode='a+') stdoutP = stdout else: stdout = None stdoutP = taskCmd.stdout if taskCmd.stderr is None and stdInErrLock is not None: stderr = tempfile.TemporaryFile(mode='a+') stderrP = stderr else: stderr = None stderrP = taskCmd.stderr # running the command line task try: process = subprocess.Popen( taskCmd.cmd, shell=True, bufsize=-1, cwd=taskCmd.cwd, stdin=taskCmd.stdin, stdout=stdoutP, stderr=stderrP) process.wait() finally: # exclusive writing to the stdin or stderr (empty the buffers containing stdin or stdout of the run) if stdout is not None or stderr is not None: stdInErrLock.acquire() if stdout is not None: stdout.flush() stdout.seek(0) sys.stdout.write(stdout.read()) sys.stdout.flush() stdout.close() if stderr is not None: stderr.flush() stderr.seek(0) sys.stderr.write(stderr.read()) sys.stderr.flush() stderr.close() stdInErrLock.release() return (process, taskCmd) def runCmdParallel(cmdTaskList, maxProc=mp.cpu_count(), stdInErrLock=mp.Manager().Lock()): """ Run several command line commands in parallel. @attention: use the Manager to get the lock as in this function definition !!! @param cmdTaskList: list of command line tasks @type cmdTaskList: list of TaskCmd @param maxProc: maximum number of tasks that will be run in parallel at the same time @param stdInErrLock: acquiring the lock enables writing to the stdout and stderr @return: list of failed commands, dictionary (cmd, task process) """ assert isinstance(cmdTaskList, list) assert isinstance(maxProc, int) threadTaskList = [] for cmdTask in cmdTaskList: assert isinstance(cmdTask, TaskCmd) threadTaskList.append(TaskThread(_runCmd, (cmdTask, stdInErrLock))) returnValueList = runThreadParallel(threadTaskList, maxProc) failList = [] for process, task in returnValueList: if process.returncode != 0: failList.append(dict(process=process, task=task)) if len(failList) > 0: return failList else: return None def runCmdSerial(cmdTaskList, verbose=False, stopWhenError=True, stdInErrLock=None): """ Run several command line commands one by one. @attention: Use the Manager to get the lock (mp.Manager().Lock()) if the lock shared among multiple processes! @param cmdTaskList: list of command line tasks @type cmdTaskList: list of TaskCmd @param stdInErrLock: acquiring the lock enables writing to the stdout and stderr @type stdInErrLock: multiprocessing.Lock() """ assert isinstance(cmdTaskList, list) counter = 0 failList = [] for task in cmdTaskList: counter += 1 if verbose: msg = 'Starting "#%s" cmd: %s\n' % (counter, task.cmd) if stdInErrLock is not None: stdInErrLock.acquire() sys.stdout.write(msg) sys.stdout.flush() if stdInErrLock is not None: stdInErrLock.release() # run command process, taskCmd = _runCmd(task, stdInErrLock) if process.returncode != 0: failList.append(dict(process=process, task=task)) if stopWhenError: break if len(failList) > 0: return failList else: return None def reportFailedCmd(failList): """ Report on failed commands. """ if failList is not None: assert isinstance(failList, list) msgList = [] for task in failList: assert isinstance(task, dict) msg = 'Task failed with return code: %s, task: %s\n' % (task['process'].returncode, task['task'].cmd) msgList.append(msg) sys.stderr.write(msg) sys.stderr.flush() return msgList else: return None # Deprecated implementation! class _ProcHandlerCmd: """ Stores context of one process. @deprecated: there is a newer implementation !!! """ def __init__(self, task, timeout=None): """ @type task: TaskCmd """ self.process = subprocess.Popen('exec ' + task.cmd, shell=True, bufsize=-1, cwd=task.cwd) self.cmd = task.cmd self.runtime = 0. self.timeout = timeout def incRuntime(self, timeStep): self.runtime += timeStep def isTimeOut(self): if self.timeout is not None and self.runtime > self.timeout: return True return False def getPid(self): return self.process.pid def runCmdParallel0(cmdTaskList, maxProc=mp.cpu_count(), timeout=None, timeStep=0.3): """ Run several command line commands in parallel. @deprecated: there is a newer implementation !!! @see: runCmdParallel @warning: use just for testing purposes when making use of the timeout option @param cmdTaskList: list of command line tasks @type cmdTaskList: list of TaskCmd @param maxProc: maximum number of tasks that will be run in parallel at the same time @param timeout: after this number of seconds, the process will be killed, (None if no timeout set) @param timeStep: time interval in which processes will be actively checked whether they are running @return: list of failed commands, tuple (command, return code, runtime, pid) """ counter = 0 failList = [] cmdInGen = True cmdGen = iter(cmdTaskList) # generator of commands procArray = {} for i in range(maxProc): procArray[i] = None # loop until all processes finish (or are killed) while True: # run commands if cmdInGen: for i in range(maxProc): if procArray[i] is None: try: task = cmdGen.next() procArray[i] = _ProcHandlerCmd(task, timeout) # run process counter += 1 print('Running "%s" cmd: %s' % (counter, task.cmd)) except StopIteration: cmdInGen = False # there are no processes to be run # sleep for a while time.sleep(timeStep) # check for finished processes and processes passed timeout for i in range(maxProc): ph = procArray[i] if ph is not None: # there is a process in the slot if ph.process.poll() is None: # process running ph.incRuntime(timeStep) if ph.isTimeOut(): # process over time, kill it! ph.process.kill() print("Process (%s): %s killed! (after %ss)" % (ph.getPid(), ph.cmd, ph.runtime)) failList.append((ph.cmd, 9, ph.runtime, ph.getPid())) procArray[i] = None # free slot else: # process finished ph.process.wait() if ph.process.returncode != 0: print('Process(%s): "%s" ended with return code: "%s' % ( ph.getPid(), ph.cmd, ph.process.returncode)) failList.append((ph.cmd, ph.process.returncode, ph.runtime, ph.getPid())) procArray[i] = None # free slot # finish if no process is running and there is not process to be run if len(set(procArray.values())) == 1 and not cmdInGen: break return failList # TESTING !!! def _testCmd(parallel=True): print('Start: Test: runCmdParallel') inDir = '/Users/ivan/Documents/nobackup/hsim01/562/a' outDir = '/Users/ivan/Documents/nobackup/hsim01/562/b' MUSCLE_BINARY = '/Users/ivan/Documents/work/tools/muscle/muscle3.8.31_i86darwin64' assert os.path.isfile(MUSCLE_BINARY), 'Binnary file does not exist: %s' % MUSCLE_BINARY cmdListA = [] for fileName in os.listdir(inDir): cmd = '%s -in %s -out %s' % (MUSCLE_BINARY, os.path.join(inDir, fileName), os.path.join(outDir, fileName)) # print cmd cmdListA.append(TaskCmd(cmd, outDir)) # break if parallel: failList = runCmdParallel(cmdListA) else: lock = mp.Lock() failList = runCmdSerial(cmdListA, stdInErrLock=lock) reportFailedCmd(failList) print('Stop: Test: runCmdParallel') def _f(a, t, n, c): for i in range(n): print(a) cc = 333 for j in range(int(10000000*t)): c /= cc return t, c def _testThread(): print('Start: Test: RunThreadParallel') r = runThreadParallel([ TaskThread(_f, ('thread 1', 0.5, 5, 48749394857384234987)), TaskThread(_f, ('thread 2', 0.7, 6, 57395769304867332349)), TaskThread(_f, ('thread 3', 0.8, 7, 87263485768798234987)), TaskThread(_f, ('thread 4', 0.9, 8, 38573947573957684485)), TaskThread(_f, ('thread 5', 0.9, 8, 38573947573957684485)), TaskThread(_f, ('thread 6', 1.0, 8, 38573947573957684485)), TaskThread(_f, ('thread 7', 1.1, 8, 38573947573957684485))]) print(r) print('Stop: Test: RunThreadParallel') def _testMisc(): cmd = 'echo "a; echo "b" >&2' lock = mp.Manager().Lock() # print runCmdSerial([TaskCmd(cmd)], stdInErrLock=lock, verbose=True) t = TaskThread(_runCmd, (TaskCmd(cmd), lock)) print(runThreadParallel([t])) # if __name__ == "__main__": # pass # _testThread() # _testCmd() # _testMisc()
33.559055
118
0.612916
7fc8fd0d61e0c8cd7eaf0226f6444297d301c2fd
1,125
py
Python
KLSelection.py
KTloong/MyCookbook_Python
80c428fe9fb42c5e8328c666bc027adda61e100a
[ "MIT" ]
null
null
null
KLSelection.py
KTloong/MyCookbook_Python
80c428fe9fb42c5e8328c666bc027adda61e100a
[ "MIT" ]
1
2018-07-15T05:57:43.000Z
2018-07-15T05:57:43.000Z
KLSelection.py
KTloong/MyCookbook_Python
80c428fe9fb42c5e8328c666bc027adda61e100a
[ "MIT" ]
3
2018-07-15T05:51:31.000Z
2018-07-15T08:21:03.000Z
import os from tkinter import filedialog class KLSelection: #pop up a window to select a folder def Sfolder(self): dirname = filedialog.askdirectory(initialdir=os.getcwd(),title='Please select a folder') return dirname #type of dirname is str #pop up a window to select a file #return a list, [fullname, filename] def Sfile(self): rawname = filedialog.askopenfilename(title="Please choose a file").split()#divided by space fullname = rawname[0]+"/"+rawname[1] filename = rawname[1] del rawname return fullname, filename #get the filename list in a folder def Gflist(self,fpath): flist = os.listdir(fpath) print(flist) return flist #flist is a list of all the filename in the folder #list concatenate fullname def Catfullname(self,folder,flist): flistfull = [] for name in flist: flistfull.append(folder+"/"+name) return flistfull KLS = KLSelection() dirfolder = KLS.Sfolder() flist = KLS.Gflist(dirfolder) flist_full = KLS.Catfullname(dirfolder,flist) print(flist_full)
32.142857
99
0.667556
387b57dfe1901f1a52ddd5fa2bae31509c738539
917
bzl
Python
third_party/nasm/workspace.bzl
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
third_party/nasm/workspace.bzl
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
third_party/nasm/workspace.bzl
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
"""loads the nasm library, used by TF.""" load("//third_party:repo.bzl", "third_party_http_archive") def repo(): third_party_http_archive( name = "nasm", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/www.nasm.us/pub/nasm/releasebuilds/2.13.03/nasm-2.13.03.tar.bz2", "http://pkgs.fedoraproject.org/repo/pkgs/nasm/nasm-2.13.03.tar.bz2/sha512/d7a6b4cee8dfd603d8d4c976e5287b5cc542fa0b466ff989b743276a6e28114e64289bf02a7819eca63142a5278aa6eed57773007e5f589e15768e6456a8919d/nasm-2.13.03.tar.bz2", "http://www.nasm.us/pub/nasm/releasebuilds/2.13.03/nasm-2.13.03.tar.bz2", ], sha256 = "63ec86477ad3f0f6292325fd89e1d93aea2e2fd490070863f17d48f7cd387011", strip_prefix = "nasm-2.13.03", build_file = "//third_party/nasm:BUILD.bazel", system_build_file = "//third_party/nasm:BUILD.system", )
50.944444
238
0.688113
33ed4b4eb6e60554e4b9307e1507bb21a37d62f8
4,786
py
Python
nova/objects/instance_fault.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
1
2015-11-30T19:44:00.000Z
2015-11-30T19:44:00.000Z
nova/objects/instance_fault.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
11
2017-06-19T01:28:55.000Z
2017-06-23T02:01:47.000Z
nova/objects/instance_fault.py
viveknandavanam/nova
556377b6915936467436c9d5bb33bc0e22244e1e
[ "Apache-2.0" ]
7
2015-01-20T10:30:08.000Z
2020-02-05T10:29:05.000Z
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from oslo_log import log as logging from nova.cells import opts as cells_opts from nova.cells import rpcapi as cells_rpcapi from nova import db from nova import exception from nova.i18n import _LE from nova import objects from nova.objects import base from nova.objects import fields LOG = logging.getLogger(__name__) # TODO(berrange): Remove NovaObjectDictCompat @base.NovaObjectRegistry.register class InstanceFault(base.NovaPersistentObject, base.NovaObject, base.NovaObjectDictCompat): # Version 1.0: Initial version # Version 1.1: String attributes updated to support unicode # Version 1.2: Added create() VERSION = '1.2' fields = { 'id': fields.IntegerField(), 'instance_uuid': fields.UUIDField(), 'code': fields.IntegerField(), 'message': fields.StringField(nullable=True), 'details': fields.StringField(nullable=True), 'host': fields.StringField(nullable=True), } @staticmethod def _from_db_object(context, fault, db_fault): # NOTE(danms): These are identical right now for key in fault.fields: fault[key] = db_fault[key] fault._context = context fault.obj_reset_changes() return fault @base.remotable_classmethod def get_latest_for_instance(cls, context, instance_uuid): db_faults = db.instance_fault_get_by_instance_uuids(context, [instance_uuid]) if instance_uuid in db_faults and db_faults[instance_uuid]: return cls._from_db_object(context, cls(), db_faults[instance_uuid][0]) @base.remotable def create(self): if self.obj_attr_is_set('id'): raise exception.ObjectActionError(action='create', reason='already created') values = { 'instance_uuid': self.instance_uuid, 'code': self.code, 'message': self.message, 'details': self.details, 'host': self.host, } db_fault = db.instance_fault_create(self._context, values) self._from_db_object(self._context, self, db_fault) self.obj_reset_changes() # Cells should only try sending a message over to nova-cells # if cells is enabled and we're not the API cell. Otherwise, # if the API cell is calling this, we could end up with # infinite recursion. if cells_opts.get_cell_type() == 'compute': try: cells_rpcapi.CellsAPI().instance_fault_create_at_top( self._context, db_fault) except Exception: LOG.exception(_LE("Failed to notify cells of instance fault")) @base.NovaObjectRegistry.register class InstanceFaultList(base.ObjectListBase, base.NovaObject): # Version 1.0: Initial version # InstanceFault <= version 1.1 # Version 1.1: InstanceFault version 1.2 # Version 1.2: Added get_latest_by_instance_uuids() method VERSION = '1.2' fields = { 'objects': fields.ListOfObjectsField('InstanceFault'), } @base.remotable_classmethod def get_latest_by_instance_uuids(cls, context, instance_uuids): db_faultdict = db.instance_fault_get_by_instance_uuids(context, instance_uuids, latest=True) db_faultlist = itertools.chain(*db_faultdict.values()) return base.obj_make_list(context, cls(context), objects.InstanceFault, db_faultlist) @base.remotable_classmethod def get_by_instance_uuids(cls, context, instance_uuids): db_faultdict = db.instance_fault_get_by_instance_uuids(context, instance_uuids) db_faultlist = itertools.chain(*db_faultdict.values()) return base.obj_make_list(context, cls(context), objects.InstanceFault, db_faultlist)
39.229508
79
0.629127
78181c6e41647c09649d9191662e862ccc9bc77e
514
py
Python
docs/core/benchmarks/timer.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
3
2020-04-02T06:23:44.000Z
2020-08-13T20:32:31.000Z
docs/core/benchmarks/timer.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
1
2022-03-04T17:40:22.000Z
2022-03-04T17:40:22.000Z
docs/core/benchmarks/timer.py
ioggstream/twisted
34f9b1e3f097685839000c656332c66ee85be5d8
[ "Unlicense", "MIT" ]
1
2020-04-02T06:26:10.000Z
2020-04-02T06:26:10.000Z
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Helper stuff for benchmarks. """ import gc gc.disable() print 'Disabled GC' def timeit(func, iter = 1000, *args, **kwargs): """ timeit(func, iter = 1000 *args, **kwargs) -> elapsed time calls func iter times with args and kwargs, returns time elapsed """ from time import time as currentTime r = range(iter) t = currentTime() for i in r: func(*args, **kwargs) return currentTime() - t
20.56
68
0.634241
e30314ce5c4ff22a445a6cdbad4515348391a05d
3,596
py
Python
pidtree_bcc/utils.py
Yelp/pidtree-bcc
ea54752b873687a159091d509df3a4f9dcc4a994
[ "BSD-3-Clause" ]
20
2019-11-11T20:03:31.000Z
2022-01-26T05:53:34.000Z
pidtree_bcc/utils.py
Yelp/pidtree-bcc
ea54752b873687a159091d509df3a4f9dcc4a994
[ "BSD-3-Clause" ]
29
2019-10-21T21:38:33.000Z
2022-03-09T14:44:41.000Z
pidtree_bcc/utils.py
Yelp/pidtree-bcc
ea54752b873687a159091d509df3a4f9dcc4a994
[ "BSD-3-Clause" ]
4
2019-10-18T22:30:28.000Z
2021-09-10T02:36:04.000Z
import functools import importlib import inspect import logging import os import socket import struct import sys from typing import Callable from typing import List from typing import TextIO from typing import Type from typing import Union import psutil def crawl_process_tree(pid: int) -> List[dict]: """ Takes a process and returns all process ancestry until the ppid is 0 :param int pid: child process ID :return: yields dicts with pid, cmdline and username navigating up the tree """ result = [] while True: if pid == 0: break proc = psutil.Process(pid) result.append( { 'pid': proc.pid, 'cmdline': ' '.join(proc.cmdline()), 'username': proc.username(), }, ) pid = proc.ppid() return result def smart_open(filename: str = None, mode: str = 'r') -> TextIO: """ File OR stdout open :param str filename: filename :param str mode: file opening mode :return: file handle object """ if filename and filename != '-': return open(filename, mode) else: return sys.stdout def find_subclass(module_path: Union[str, List[str]], base_class: Type) -> Type: """ Get child class from module :param Union[str, List[str]] module_path: module path or list of paths in dot-notation :param Type base_class: class the child class inherits from :return: imported child class :raise ImportError: module path not valid :raise StopIteration: no class found """ if isinstance(module_path, str): module_path = [module_path] errors = '' module = None for path in module_path: try: module = importlib.import_module(path) break except ImportError as e: errors += '\n' + str(e) if module is None: raise ImportError( 'Unable to load any module from {}: {}' .format(module_path, errors), ) return next( obj for _, obj in inspect.getmembers(module) if inspect.isclass(obj) and issubclass(obj, base_class) and obj != base_class ) def ip_to_int(network: str) -> int: """ Takes an IP and returns the unsigned integer encoding of the address :param str network: ip address :return: unsigned integer encoding """ return struct.unpack('=L', socket.inet_aton(network))[0] def int_to_ip(encoded_ip: int) -> str: """ Takes IP in interger representation and makes it human readable :param int encoded_ip: integer encoded IP :return: dot-notation IP """ return socket.inet_ntoa(struct.pack('<L', encoded_ip)) def never_crash(func: Callable) -> Callable: """ Decorator for Thread targets which ensures the thread keeps running by chatching any exception. """ @functools.wraps(func) def wrapper(*args, **kwargs): while True: try: return func(*args, **kwargs) except Exception as e: logging.error('Error executing {}: {}'.format(func.__name__, e)) return wrapper def get_network_namespace(pid: int = None) -> int: """ Get network namespace identifier :param int pid: process ID (if not provided selects calling process) :return: network namespace inum """ if not pid: pid = 'self' try: ns_link = str(os.readlink('/proc/{}/ns/net'.format(pid))) # format will be "net:[<inum>]" return int(ns_link.strip()[5:-1]) except Exception: return None
27.450382
90
0.619855
410755537c75587be76d71185a1b07e41b283385
1,023
py
Python
.venv/Scripts/imgmaker-script.py
jefferdo/gpt-3-client
7acbc5f518fe3fcb55d0bdcbf93fc87b103b1148
[ "MIT" ]
null
null
null
.venv/Scripts/imgmaker-script.py
jefferdo/gpt-3-client
7acbc5f518fe3fcb55d0bdcbf93fc87b103b1148
[ "MIT" ]
null
null
null
.venv/Scripts/imgmaker-script.py
jefferdo/gpt-3-client
7acbc5f518fe3fcb55d0bdcbf93fc87b103b1148
[ "MIT" ]
null
null
null
#!"d:\users\jeewaka fernando\documents\github\gpt-3-client\.venv\scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'imgmaker==0.2','console_scripts','imgmaker' import re import sys # for compatibility with easy_install; see #2198 __requires__ = 'imgmaker==0.2' try: from importlib.metadata import distribution except ImportError: try: from importlib_metadata import distribution except ImportError: from pkg_resources import load_entry_point def importlib_load_entry_point(spec, group, name): dist_name, _, _ = spec.partition('==') matches = ( entry_point for entry_point in distribution(dist_name).entry_points if entry_point.group == group and entry_point.name == name ) return next(matches).load() globals().setdefault('load_entry_point', importlib_load_entry_point) if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(load_entry_point('imgmaker==0.2', 'console_scripts', 'imgmaker')())
30.088235
84
0.706745
08f98231fdadff83e46eef63d804abda684028cb
4,354
py
Python
experiment/build/gcb_build.py
chenju2k6/fuzzbench-1
be6d1f2590337e81ede7057ba2028d8b658f9a14
[ "Apache-2.0" ]
null
null
null
experiment/build/gcb_build.py
chenju2k6/fuzzbench-1
be6d1f2590337e81ede7057ba2028d8b658f9a14
[ "Apache-2.0" ]
null
null
null
experiment/build/gcb_build.py
chenju2k6/fuzzbench-1
be6d1f2590337e81ede7057ba2028d8b658f9a14
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for building things on Google Cloud Build for use in trials.""" import tempfile from typing import Dict from common import logs from common import new_process from common import utils from common import yaml_utils from experiment.build import build_utils from experiment.build import docker_images from experiment.build import generate_cloudbuild BUILDER_STEP_IDS = [ 'build-fuzzer-builder', 'build-fuzzer-benchmark-builder', 'build-fuzzer-benchmark-builder-intermediate', ] CONFIG_DIR = 'config' # Maximum time to wait for a GCB config to finish build. GCB_BUILD_TIMEOUT = 4 * 60 * 60 # 4 hours. # High cpu and memory configuration, matches OSS-Fuzz. GCB_MACHINE_TYPE = 'n1-highcpu-32' logger = logs.Logger('builder') # pylint: disable=invalid-name def _get_buildable_images(fuzzer=None, benchmark=None): return docker_images.get_images_to_build([fuzzer], [benchmark]) def build_base_images(): """Build base images on GCB.""" buildable_images = _get_buildable_images() image_templates = { image: buildable_images[image] for image in ['base-image', 'worker'] } config = generate_cloudbuild.create_cloudbuild_spec(image_templates, build_base_images=True) _build(config, 'base-images') def build_coverage(benchmark): """Build coverage image for benchmark on GCB.""" buildable_images = _get_buildable_images(benchmark=benchmark) image_templates = { image_name: image_specs for image_name, image_specs in buildable_images.items() if (image_name == (benchmark + '-project-builder') or image_specs['type'] == 'coverage') } config = generate_cloudbuild.create_cloudbuild_spec(image_templates, benchmark=benchmark) config_name = 'benchmark-{benchmark}-coverage'.format(benchmark=benchmark) _build(config, config_name) def _build( config: Dict, config_name: str, timeout_seconds: int = GCB_BUILD_TIMEOUT) -> new_process.ProcessResult: """Submit build to GCB.""" with tempfile.NamedTemporaryFile() as config_file: yaml_utils.write(config_file.name, config) logger.debug('Using build configuration: %s' % config) config_arg = '--config=%s' % config_file.name machine_type_arg = '--machine-type=%s' % GCB_MACHINE_TYPE # Use "s" suffix to denote seconds. timeout_arg = '--timeout=%ds' % timeout_seconds command = [ 'gcloud', 'builds', 'submit', str(utils.ROOT_DIR), config_arg, timeout_arg, machine_type_arg, ] # Don't write to stdout to make concurrent building faster. Otherwise # writing becomes the bottleneck. result = new_process.execute(command, write_to_stdout=False, kill_children=True, timeout=timeout_seconds) build_utils.store_build_logs(config_name, result) return result def build_fuzzer_benchmark(fuzzer: str, benchmark: str): """Builds |benchmark| for |fuzzer|.""" image_templates = {} buildable_images = _get_buildable_images(fuzzer=fuzzer, benchmark=benchmark) for image_name, image_specs in buildable_images.items(): if image_specs['type'] in ('base', 'coverage', 'dispatcher'): continue image_templates[image_name] = image_specs config = generate_cloudbuild.create_cloudbuild_spec(image_templates) config_name = 'benchmark-{benchmark}-fuzzer-{fuzzer}'.format( benchmark=benchmark, fuzzer=fuzzer) _build(config, config_name)
35.983471
80
0.673174
90de1d9fce7117ac822405a1a70d50672b31f0c8
25,668
py
Python
src/_pytest/capture.py
lewisbelcher/pytest
c928550e96ade8993170ad33b52bcae8768d154a
[ "MIT" ]
null
null
null
src/_pytest/capture.py
lewisbelcher/pytest
c928550e96ade8993170ad33b52bcae8768d154a
[ "MIT" ]
null
null
null
src/_pytest/capture.py
lewisbelcher/pytest
c928550e96ade8993170ad33b52bcae8768d154a
[ "MIT" ]
null
null
null
""" per-test stdout/stderr capturing mechanism. """ import collections import contextlib import io import os import sys from io import UnsupportedOperation from tempfile import TemporaryFile from typing import Generator from typing import Optional import pytest from _pytest.compat import CaptureAndPassthroughIO from _pytest.compat import CaptureIO from _pytest.compat import TYPE_CHECKING from _pytest.config import Config from _pytest.fixtures import FixtureRequest if TYPE_CHECKING: from typing_extensions import Literal _CaptureMethod = Literal["fd", "sys", "no", "tee-sys"] patchsysdict = {0: "stdin", 1: "stdout", 2: "stderr"} def pytest_addoption(parser): group = parser.getgroup("general") group._addoption( "--capture", action="store", default="fd", metavar="method", choices=["fd", "sys", "no", "tee-sys"], help="per-test capturing method: one of fd|sys|no|tee-sys.", ) group._addoption( "-s", action="store_const", const="no", dest="capture", help="shortcut for --capture=no.", ) @pytest.hookimpl(hookwrapper=True) def pytest_load_initial_conftests(early_config: Config): ns = early_config.known_args_namespace if ns.capture == "fd": _py36_windowsconsoleio_workaround(sys.stdout) _colorama_workaround() _readline_workaround() pluginmanager = early_config.pluginmanager capman = CaptureManager(ns.capture) pluginmanager.register(capman, "capturemanager") # make sure that capturemanager is properly reset at final shutdown early_config.add_cleanup(capman.stop_global_capturing) # finally trigger conftest loading but while capturing (issue93) capman.start_global_capturing() outcome = yield capman.suspend_global_capture() if outcome.excinfo is not None: out, err = capman.read_global_capture() sys.stdout.write(out) sys.stderr.write(err) def _get_multicapture(method: "_CaptureMethod") -> "MultiCapture": if method == "fd": return MultiCapture(out=True, err=True, Capture=FDCapture) elif method == "sys": return MultiCapture(out=True, err=True, Capture=SysCapture) elif method == "no": return MultiCapture(out=False, err=False, in_=False) elif method == "tee-sys": return MultiCapture(out=True, err=True, in_=False, Capture=TeeSysCapture) raise ValueError("unknown capturing method: {!r}".format(method)) class CaptureManager: """ Capture plugin, manages that the appropriate capture method is enabled/disabled during collection and each test phase (setup, call, teardown). After each of those points, the captured output is obtained and attached to the collection/runtest report. There are two levels of capture: * global: which is enabled by default and can be suppressed by the ``-s`` option. This is always enabled/disabled during collection and each test phase. * fixture: when a test function or one of its fixture depend on the ``capsys`` or ``capfd`` fixtures. In this case special handling is needed to ensure the fixtures take precedence over the global capture. """ def __init__(self, method: "_CaptureMethod") -> None: self._method = method self._global_capturing = None self._capture_fixture = None # type: Optional[CaptureFixture] def __repr__(self): return "<CaptureManager _method={!r} _global_capturing={!r} _capture_fixture={!r}>".format( self._method, self._global_capturing, self._capture_fixture ) def is_capturing(self): if self.is_globally_capturing(): return "global" if self._capture_fixture: return "fixture %s" % self._capture_fixture.request.fixturename return False # Global capturing control def is_globally_capturing(self): return self._method != "no" def start_global_capturing(self): assert self._global_capturing is None self._global_capturing = _get_multicapture(self._method) self._global_capturing.start_capturing() def stop_global_capturing(self): if self._global_capturing is not None: self._global_capturing.pop_outerr_to_orig() self._global_capturing.stop_capturing() self._global_capturing = None def resume_global_capture(self): # During teardown of the python process, and on rare occasions, capture # attributes can be `None` while trying to resume global capture. if self._global_capturing is not None: self._global_capturing.resume_capturing() def suspend_global_capture(self, in_=False): cap = getattr(self, "_global_capturing", None) if cap is not None: cap.suspend_capturing(in_=in_) def suspend(self, in_=False): # Need to undo local capsys-et-al if it exists before disabling global capture. self.suspend_fixture() self.suspend_global_capture(in_) def resume(self): self.resume_global_capture() self.resume_fixture() def read_global_capture(self): return self._global_capturing.readouterr() # Fixture Control (it's just forwarding, think about removing this later) @contextlib.contextmanager def _capturing_for_request( self, request: FixtureRequest ) -> Generator["CaptureFixture", None, None]: """ Context manager that creates a ``CaptureFixture`` instance for the given ``request``, ensuring there is only a single one being requested at the same time. This is used as a helper with ``capsys``, ``capfd`` etc. """ if self._capture_fixture: other_name = next( k for k, v in map_fixname_class.items() if v is self._capture_fixture.captureclass ) raise request.raiseerror( "cannot use {} and {} at the same time".format( request.fixturename, other_name ) ) capture_class = map_fixname_class[request.fixturename] self._capture_fixture = CaptureFixture(capture_class, request) self.activate_fixture() yield self._capture_fixture self._capture_fixture.close() self._capture_fixture = None def activate_fixture(self): """If the current item is using ``capsys`` or ``capfd``, activate them so they take precedence over the global capture. """ if self._capture_fixture: self._capture_fixture._start() def deactivate_fixture(self): """Deactivates the ``capsys`` or ``capfd`` fixture of this item, if any.""" if self._capture_fixture: self._capture_fixture.close() def suspend_fixture(self): if self._capture_fixture: self._capture_fixture._suspend() def resume_fixture(self): if self._capture_fixture: self._capture_fixture._resume() # Helper context managers @contextlib.contextmanager def global_and_fixture_disabled(self): """Context manager to temporarily disable global and current fixture capturing.""" self.suspend() try: yield finally: self.resume() @contextlib.contextmanager def item_capture(self, when, item): self.resume_global_capture() self.activate_fixture() try: yield finally: self.deactivate_fixture() self.suspend_global_capture(in_=False) out, err = self.read_global_capture() item.add_report_section(when, "stdout", out) item.add_report_section(when, "stderr", err) # Hooks @pytest.hookimpl(hookwrapper=True) def pytest_make_collect_report(self, collector): if isinstance(collector, pytest.File): self.resume_global_capture() outcome = yield self.suspend_global_capture() out, err = self.read_global_capture() rep = outcome.get_result() if out: rep.sections.append(("Captured stdout", out)) if err: rep.sections.append(("Captured stderr", err)) else: yield @pytest.hookimpl(hookwrapper=True) def pytest_runtest_setup(self, item): with self.item_capture("setup", item): yield @pytest.hookimpl(hookwrapper=True) def pytest_runtest_call(self, item): with self.item_capture("call", item): yield @pytest.hookimpl(hookwrapper=True) def pytest_runtest_teardown(self, item): with self.item_capture("teardown", item): yield @pytest.hookimpl(tryfirst=True) def pytest_keyboard_interrupt(self, excinfo): self.stop_global_capturing() @pytest.hookimpl(tryfirst=True) def pytest_internalerror(self, excinfo): self.stop_global_capturing() @pytest.fixture def capsys(request): """Enable text capturing of writes to ``sys.stdout`` and ``sys.stderr``. The captured output is made available via ``capsys.readouterr()`` method calls, which return a ``(out, err)`` namedtuple. ``out`` and ``err`` will be ``text`` objects. """ capman = request.config.pluginmanager.getplugin("capturemanager") with capman._capturing_for_request(request) as fixture: yield fixture @pytest.fixture def capsysbinary(request): """Enable bytes capturing of writes to ``sys.stdout`` and ``sys.stderr``. The captured output is made available via ``capsysbinary.readouterr()`` method calls, which return a ``(out, err)`` namedtuple. ``out`` and ``err`` will be ``bytes`` objects. """ capman = request.config.pluginmanager.getplugin("capturemanager") with capman._capturing_for_request(request) as fixture: yield fixture @pytest.fixture def capfd(request): """Enable text capturing of writes to file descriptors ``1`` and ``2``. The captured output is made available via ``capfd.readouterr()`` method calls, which return a ``(out, err)`` namedtuple. ``out`` and ``err`` will be ``text`` objects. """ capman = request.config.pluginmanager.getplugin("capturemanager") with capman._capturing_for_request(request) as fixture: yield fixture @pytest.fixture def capfdbinary(request): """Enable bytes capturing of writes to file descriptors ``1`` and ``2``. The captured output is made available via ``capfd.readouterr()`` method calls, which return a ``(out, err)`` namedtuple. ``out`` and ``err`` will be ``byte`` objects. """ capman = request.config.pluginmanager.getplugin("capturemanager") with capman._capturing_for_request(request) as fixture: yield fixture class CaptureFixture: """ Object returned by :py:func:`capsys`, :py:func:`capsysbinary`, :py:func:`capfd` and :py:func:`capfdbinary` fixtures. """ def __init__(self, captureclass, request): self.captureclass = captureclass self.request = request self._capture = None self._captured_out = self.captureclass.EMPTY_BUFFER self._captured_err = self.captureclass.EMPTY_BUFFER def _start(self): if self._capture is None: self._capture = MultiCapture( out=True, err=True, in_=False, Capture=self.captureclass ) self._capture.start_capturing() def close(self): if self._capture is not None: out, err = self._capture.pop_outerr_to_orig() self._captured_out += out self._captured_err += err self._capture.stop_capturing() self._capture = None def readouterr(self): """Read and return the captured output so far, resetting the internal buffer. :return: captured content as a namedtuple with ``out`` and ``err`` string attributes """ captured_out, captured_err = self._captured_out, self._captured_err if self._capture is not None: out, err = self._capture.readouterr() captured_out += out captured_err += err self._captured_out = self.captureclass.EMPTY_BUFFER self._captured_err = self.captureclass.EMPTY_BUFFER return CaptureResult(captured_out, captured_err) def _suspend(self): """Suspends this fixture's own capturing temporarily.""" if self._capture is not None: self._capture.suspend_capturing() def _resume(self): """Resumes this fixture's own capturing temporarily.""" if self._capture is not None: self._capture.resume_capturing() @contextlib.contextmanager def disabled(self): """Temporarily disables capture while inside the 'with' block.""" capmanager = self.request.config.pluginmanager.getplugin("capturemanager") with capmanager.global_and_fixture_disabled(): yield class EncodedFile(io.TextIOWrapper): __slots__ = () @property def name(self) -> str: # Ensure that file.name is a string. Workaround for a Python bug # fixed in >=3.7.4: https://bugs.python.org/issue36015 return repr(self.buffer) @property def mode(self) -> str: # TextIOWrapper doesn't expose a mode, but at least some of our # tests check it. return self.buffer.mode.replace("b", "") CaptureResult = collections.namedtuple("CaptureResult", ["out", "err"]) class MultiCapture: out = err = in_ = None _state = None _in_suspended = False def __init__(self, out=True, err=True, in_=True, Capture=None): if in_: self.in_ = Capture(0) if out: self.out = Capture(1) if err: self.err = Capture(2) def __repr__(self): return "<MultiCapture out={!r} err={!r} in_={!r} _state={!r} _in_suspended={!r}>".format( self.out, self.err, self.in_, self._state, self._in_suspended, ) def start_capturing(self): self._state = "started" if self.in_: self.in_.start() if self.out: self.out.start() if self.err: self.err.start() def pop_outerr_to_orig(self): """ pop current snapshot out/err capture and flush to orig streams. """ out, err = self.readouterr() if out: self.out.writeorg(out) if err: self.err.writeorg(err) return out, err def suspend_capturing(self, in_=False): self._state = "suspended" if self.out: self.out.suspend() if self.err: self.err.suspend() if in_ and self.in_: self.in_.suspend() self._in_suspended = True def resume_capturing(self): self._state = "resumed" if self.out: self.out.resume() if self.err: self.err.resume() if self._in_suspended: self.in_.resume() self._in_suspended = False def stop_capturing(self): """ stop capturing and reset capturing streams """ if self._state == "stopped": raise ValueError("was already stopped") self._state = "stopped" if self.out: self.out.done() if self.err: self.err.done() if self.in_: self.in_.done() def readouterr(self) -> CaptureResult: if self.out: out = self.out.snap() else: out = "" if self.err: err = self.err.snap() else: err = "" return CaptureResult(out, err) class NoCapture: EMPTY_BUFFER = None __init__ = start = done = suspend = resume = lambda *args: None class FDCaptureBinary: """Capture IO to/from a given os-level filedescriptor. snap() produces `bytes` """ EMPTY_BUFFER = b"" _state = None def __init__(self, targetfd, tmpfile=None): self.targetfd = targetfd try: self.targetfd_save = os.dup(self.targetfd) except OSError: self.start = lambda: None self.done = lambda: None else: self.start = self._start self.done = self._done if targetfd == 0: assert not tmpfile, "cannot set tmpfile with stdin" tmpfile = open(os.devnull, "r") self.syscapture = SysCapture(targetfd) else: if tmpfile is None: tmpfile = EncodedFile( TemporaryFile(buffering=0), encoding="utf-8", errors="replace", write_through=True, ) if targetfd in patchsysdict: self.syscapture = SysCapture(targetfd, tmpfile) else: self.syscapture = NoCapture() self.tmpfile = tmpfile self.tmpfile_fd = tmpfile.fileno() def __repr__(self): return "<{} {} oldfd={} _state={!r} tmpfile={}>".format( self.__class__.__name__, self.targetfd, getattr(self, "targetfd_save", "<UNSET>"), self._state, hasattr(self, "tmpfile") and repr(self.tmpfile) or "<UNSET>", ) def _start(self): """ Start capturing on targetfd using memorized tmpfile. """ try: os.fstat(self.targetfd_save) except (AttributeError, OSError): raise ValueError("saved filedescriptor not valid anymore") os.dup2(self.tmpfile_fd, self.targetfd) self.syscapture.start() self._state = "started" def snap(self): self.tmpfile.seek(0) res = self.tmpfile.buffer.read() self.tmpfile.seek(0) self.tmpfile.truncate() return res def _done(self): """ stop capturing, restore streams, return original capture file, seeked to position zero. """ targetfd_save = self.__dict__.pop("targetfd_save") os.dup2(targetfd_save, self.targetfd) os.close(targetfd_save) self.syscapture.done() self.tmpfile.close() self._state = "done" def suspend(self): self.syscapture.suspend() os.dup2(self.targetfd_save, self.targetfd) self._state = "suspended" def resume(self): self.syscapture.resume() os.dup2(self.tmpfile_fd, self.targetfd) self._state = "resumed" def writeorg(self, data): """ write to original file descriptor. """ os.write(self.targetfd_save, data) class FDCapture(FDCaptureBinary): """Capture IO to/from a given os-level filedescriptor. snap() produces text """ # Ignore type because it doesn't match the type in the superclass (bytes). EMPTY_BUFFER = str() # type: ignore def snap(self): self.tmpfile.seek(0) res = self.tmpfile.read() self.tmpfile.seek(0) self.tmpfile.truncate() return res def writeorg(self, data): """ write to original file descriptor. """ data = data.encode("utf-8") # XXX use encoding of original stream os.write(self.targetfd_save, data) class SysCaptureBinary: EMPTY_BUFFER = b"" _state = None def __init__(self, fd, tmpfile=None): name = patchsysdict[fd] self._old = getattr(sys, name) self.name = name if tmpfile is None: if name == "stdin": tmpfile = DontReadFromInput() else: tmpfile = CaptureIO() self.tmpfile = tmpfile def __repr__(self): return "<{} {} _old={} _state={!r} tmpfile={!r}>".format( self.__class__.__name__, self.name, hasattr(self, "_old") and repr(self._old) or "<UNSET>", self._state, self.tmpfile, ) def start(self): setattr(sys, self.name, self.tmpfile) self._state = "started" def snap(self): res = self.tmpfile.buffer.getvalue() self.tmpfile.seek(0) self.tmpfile.truncate() return res def done(self): setattr(sys, self.name, self._old) del self._old self.tmpfile.close() self._state = "done" def suspend(self): setattr(sys, self.name, self._old) self._state = "suspended" def resume(self): setattr(sys, self.name, self.tmpfile) self._state = "resumed" def writeorg(self, data): self._old.flush() self._old.buffer.write(data) self._old.buffer.flush() class SysCapture(SysCaptureBinary): EMPTY_BUFFER = str() # type: ignore[assignment] # noqa: F821 def snap(self): res = self.tmpfile.getvalue() self.tmpfile.seek(0) self.tmpfile.truncate() return res def writeorg(self, data): self._old.write(data) self._old.flush() class TeeSysCapture(SysCapture): def __init__(self, fd, tmpfile=None): name = patchsysdict[fd] self._old = getattr(sys, name) self.name = name if tmpfile is None: if name == "stdin": tmpfile = DontReadFromInput() else: tmpfile = CaptureAndPassthroughIO(self._old) self.tmpfile = tmpfile map_fixname_class = { "capfd": FDCapture, "capfdbinary": FDCaptureBinary, "capsys": SysCapture, "capsysbinary": SysCaptureBinary, } class DontReadFromInput: encoding = None def read(self, *args): raise IOError( "pytest: reading from stdin while output is captured! Consider using `-s`." ) readline = read readlines = read __next__ = read def __iter__(self): return self def fileno(self): raise UnsupportedOperation("redirected stdin is pseudofile, has no fileno()") def isatty(self): return False def close(self): pass @property def buffer(self): return self def _colorama_workaround(): """ Ensure colorama is imported so that it attaches to the correct stdio handles on Windows. colorama uses the terminal on import time. So if something does the first import of colorama while I/O capture is active, colorama will fail in various ways. """ if sys.platform.startswith("win32"): try: import colorama # noqa: F401 except ImportError: pass def _readline_workaround(): """ Ensure readline is imported so that it attaches to the correct stdio handles on Windows. Pdb uses readline support where available--when not running from the Python prompt, the readline module is not imported until running the pdb REPL. If running pytest with the --pdb option this means the readline module is not imported until after I/O capture has been started. This is a problem for pyreadline, which is often used to implement readline support on Windows, as it does not attach to the correct handles for stdout and/or stdin if they have been redirected by the FDCapture mechanism. This workaround ensures that readline is imported before I/O capture is setup so that it can attach to the actual stdin/out for the console. See https://github.com/pytest-dev/pytest/pull/1281 """ if sys.platform.startswith("win32"): try: import readline # noqa: F401 except ImportError: pass def _py36_windowsconsoleio_workaround(stream): """ Python 3.6 implemented unicode console handling for Windows. This works by reading/writing to the raw console handle using ``{Read,Write}ConsoleW``. The problem is that we are going to ``dup2`` over the stdio file descriptors when doing ``FDCapture`` and this will ``CloseHandle`` the handles used by Python to write to the console. Though there is still some weirdness and the console handle seems to only be closed randomly and not on the first call to ``CloseHandle``, or maybe it gets reopened with the same handle value when we suspend capturing. The workaround in this case will reopen stdio with a different fd which also means a different handle by replicating the logic in "Py_lifecycle.c:initstdio/create_stdio". :param stream: in practice ``sys.stdout`` or ``sys.stderr``, but given here as parameter for unittesting purposes. See https://github.com/pytest-dev/py/issues/103 """ if ( not sys.platform.startswith("win32") or sys.version_info[:2] < (3, 6) or hasattr(sys, "pypy_version_info") ): return # bail out if ``stream`` doesn't seem like a proper ``io`` stream (#2666) if not hasattr(stream, "buffer"): return buffered = hasattr(stream.buffer, "raw") raw_stdout = stream.buffer.raw if buffered else stream.buffer if not isinstance(raw_stdout, io._WindowsConsoleIO): return def _reopen_stdio(f, mode): if not buffered and mode[0] == "w": buffering = 0 else: buffering = -1 return io.TextIOWrapper( open(os.dup(f.fileno()), mode, buffering), f.encoding, f.errors, f.newlines, f.line_buffering, ) sys.stdin = _reopen_stdio(sys.stdin, "rb") sys.stdout = _reopen_stdio(sys.stdout, "wb") sys.stderr = _reopen_stdio(sys.stderr, "wb")
31.53317
117
0.624669
1a01f00893527289d306e954ceeccdd1de96e786
7,040
py
Python
kubernetes/client/models/extensions_v1beta1_pod_security_policy.py
pllsxyc/python
442ebc019056c2dc246be94f85cf61f1e1d26a88
[ "Apache-2.0" ]
1
2019-10-07T13:54:36.000Z
2019-10-07T13:54:36.000Z
kubernetes/client/models/extensions_v1beta1_pod_security_policy.py
pllsxyc/python
442ebc019056c2dc246be94f85cf61f1e1d26a88
[ "Apache-2.0" ]
8
2020-12-21T03:18:50.000Z
2022-03-02T03:06:30.000Z
kubernetes/client/models/extensions_v1beta1_pod_security_policy.py
pllsxyc/python
442ebc019056c2dc246be94f85cf61f1e1d26a88
[ "Apache-2.0" ]
1
2021-03-16T16:05:33.000Z
2021-03-16T16:05:33.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.16 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class ExtensionsV1beta1PodSecurityPolicy(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'spec': 'ExtensionsV1beta1PodSecurityPolicySpec' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'metadata': 'metadata', 'spec': 'spec' } def __init__(self, api_version=None, kind=None, metadata=None, spec=None, local_vars_configuration=None): # noqa: E501 """ExtensionsV1beta1PodSecurityPolicy - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_version = None self._kind = None self._metadata = None self._spec = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata if spec is not None: self.spec = spec @property def api_version(self): """Gets the api_version of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this ExtensionsV1beta1PodSecurityPolicy. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :type: str """ self._api_version = api_version @property def kind(self): """Gets the kind of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this ExtensionsV1beta1PodSecurityPolicy. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :return: The metadata of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :rtype: V1ObjectMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this ExtensionsV1beta1PodSecurityPolicy. :param metadata: The metadata of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :type: V1ObjectMeta """ self._metadata = metadata @property def spec(self): """Gets the spec of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :return: The spec of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :rtype: ExtensionsV1beta1PodSecurityPolicySpec """ return self._spec @spec.setter def spec(self, spec): """Sets the spec of this ExtensionsV1beta1PodSecurityPolicy. :param spec: The spec of this ExtensionsV1beta1PodSecurityPolicy. # noqa: E501 :type: ExtensionsV1beta1PodSecurityPolicySpec """ self._spec = spec def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExtensionsV1beta1PodSecurityPolicy): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ExtensionsV1beta1PodSecurityPolicy): return True return self.to_dict() != other.to_dict()
34.679803
312
0.644176
a22aa61b544b3ee77aba3680dd8549372cc4ded3
96
py
Python
fpi/main.py
mentix02/3do
fc505a012e273af82f1503d62b2c293f6559f1a2
[ "MIT" ]
null
null
null
fpi/main.py
mentix02/3do
fc505a012e273af82f1503d62b2c293f6559f1a2
[ "MIT" ]
null
null
null
fpi/main.py
mentix02/3do
fc505a012e273af82f1503d62b2c293f6559f1a2
[ "MIT" ]
null
null
null
import uvicorn if __name__ == '__main__': uvicorn.run('app:app', reload=True, debug=True)
16
51
0.6875
20601783ce40e0354b43bf9a8c49cc0b83bc7892
8,491
py
Python
test/package/test_save_load.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
5
2021-08-17T17:44:20.000Z
2021-08-21T05:03:42.000Z
test/package/test_save_load.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
1
2021-06-25T22:00:31.000Z
2021-06-25T22:00:31.000Z
test/package/test_save_load.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
1
2021-10-05T07:05:26.000Z
2021-10-05T07:05:26.000Z
import pickle from io import BytesIO from textwrap import dedent from unittest import skipIf from torch.package import PackageExporter, PackageImporter, sys_importer from torch.testing._internal.common_utils import run_tests, IS_FBCODE, IS_SANDCASTLE try: from .common import PackageTestCase except ImportError: # Support the case where we run this file directly. from common import PackageTestCase from pathlib import Path packaging_directory = Path(__file__).parent class TestSaveLoad(PackageTestCase): """Core save_* and loading API tests.""" @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_saving_source(self): filename = self.temp() with PackageExporter(filename) as he: he.save_source_file("foo", str(packaging_directory / "module_a.py")) he.save_source_file("foodir", str(packaging_directory / "package_a")) hi = PackageImporter(filename) foo = hi.import_module("foo") s = hi.import_module("foodir.subpackage") self.assertEqual(foo.result, "module_a") self.assertEqual(s.result, "package_a.subpackage") @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_saving_string(self): filename = self.temp() with PackageExporter(filename) as he: src = dedent( """\ import math the_math = math """ ) he.save_source_string("my_mod", src) hi = PackageImporter(filename) m = hi.import_module("math") import math self.assertIs(m, math) my_mod = hi.import_module("my_mod") self.assertIs(my_mod.math, math) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_save_module(self): filename = self.temp() with PackageExporter(filename) as he: import module_a import package_a he.save_module(module_a.__name__) he.save_module(package_a.__name__) hi = PackageImporter(filename) module_a_i = hi.import_module("module_a") self.assertEqual(module_a_i.result, "module_a") self.assertIsNot(module_a, module_a_i) package_a_i = hi.import_module("package_a") self.assertEqual(package_a_i.result, "package_a") self.assertIsNot(package_a_i, package_a) def test_dunder_imports(self): buffer = BytesIO() with PackageExporter(buffer) as he: import package_b obj = package_b.PackageBObject he.intern("**") he.save_pickle("res", "obj.pkl", obj) buffer.seek(0) hi = PackageImporter(buffer) loaded_obj = hi.load_pickle("res", "obj.pkl") package_b = hi.import_module("package_b") self.assertEqual(package_b.result, "package_b") math = hi.import_module("math") self.assertEqual(math.__name__, "math") xml_sub_sub_package = hi.import_module("xml.sax.xmlreader") self.assertEqual(xml_sub_sub_package.__name__, "xml.sax.xmlreader") subpackage_1 = hi.import_module("package_b.subpackage_1") self.assertEqual(subpackage_1.result, "subpackage_1") subpackage_2 = hi.import_module("package_b.subpackage_2") self.assertEqual(subpackage_2.result, "subpackage_2") subsubpackage_0 = hi.import_module("package_b.subpackage_0.subsubpackage_0") self.assertEqual(subsubpackage_0.result, "subsubpackage_0") def test_bad_dunder_imports(self): """Test to ensure bad __imports__ don't cause PackageExporter to fail.""" buffer = BytesIO() with PackageExporter(buffer) as e: e.save_source_string( "m", '__import__(these, unresolvable, "things", wont, crash, me)' ) def test_save_module_binary(self): f = BytesIO() with PackageExporter(f) as he: import module_a import package_a he.save_module(module_a.__name__) he.save_module(package_a.__name__) f.seek(0) hi = PackageImporter(f) module_a_i = hi.import_module("module_a") self.assertEqual(module_a_i.result, "module_a") self.assertIsNot(module_a, module_a_i) package_a_i = hi.import_module("package_a") self.assertEqual(package_a_i.result, "package_a") self.assertIsNot(package_a_i, package_a) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_pickle(self): import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) filename = self.temp() with PackageExporter(filename) as he: he.intern("**") he.save_pickle("obj", "obj.pkl", obj2) hi = PackageImporter(filename) # check we got dependencies sp = hi.import_module("package_a.subpackage") # check we didn't get other stuff with self.assertRaises(ImportError): hi.import_module("module_a") obj_loaded = hi.load_pickle("obj", "obj.pkl") self.assertIsNot(obj2, obj_loaded) self.assertIsInstance(obj_loaded.obj, sp.PackageASubpackageObject) self.assertIsNot( package_a.subpackage.PackageASubpackageObject, sp.PackageASubpackageObject ) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_save_imported_module_fails(self): """ Directly saving/requiring an PackageImported module should raise a specific error message. """ import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) f1 = self.temp() with PackageExporter(f1) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj) importer1 = PackageImporter(f1) loaded1 = importer1.load_pickle("obj", "obj.pkl") f2 = self.temp() pe = PackageExporter(f2, importer=(importer1, sys_importer)) with self.assertRaisesRegex(ModuleNotFoundError, "torch.package"): pe.save_module(loaded1.__module__) @skipIf( IS_FBCODE or IS_SANDCASTLE, "Tests that use temporary files are disabled in fbcode", ) def test_exporting_mismatched_code(self): """ If an object with the same qualified name is loaded from different packages, the user should get an error if they try to re-save the object with the wrong package's source code. """ import package_a.subpackage obj = package_a.subpackage.PackageASubpackageObject() obj2 = package_a.PackageAObject(obj) f1 = self.temp() with PackageExporter(f1) as pe: pe.intern("**") pe.save_pickle("obj", "obj.pkl", obj2) importer1 = PackageImporter(f1) loaded1 = importer1.load_pickle("obj", "obj.pkl") importer2 = PackageImporter(f1) loaded2 = importer2.load_pickle("obj", "obj.pkl") f2 = self.temp() def make_exporter(): pe = PackageExporter(f2, importer=[importer1, sys_importer]) # Ensure that the importer finds the 'PackageAObject' defined in 'importer1' first. return pe # This should fail. The 'PackageAObject' type defined from 'importer1' # is not necessarily the same 'obj2's version of 'PackageAObject'. pe = make_exporter() with self.assertRaises(pickle.PicklingError): pe.save_pickle("obj", "obj.pkl", obj2) # This should also fail. The 'PackageAObject' type defined from 'importer1' # is not necessarily the same as the one defined from 'importer2' pe = make_exporter() with self.assertRaises(pickle.PicklingError): pe.save_pickle("obj", "obj.pkl", loaded2) # This should succeed. The 'PackageAObject' type defined from # 'importer1' is a match for the one used by loaded1. pe = make_exporter() pe.save_pickle("obj", "obj.pkl", loaded1) if __name__ == "__main__": run_tests()
35.232365
98
0.639854
a8d84983e03933fce2874ff92f2e00e097811130
2,666
py
Python
tests/functional/fkey/primary/test_insert_pk_05.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2022-02-05T11:37:13.000Z
2022-02-05T11:37:13.000Z
tests/functional/fkey/primary/test_insert_pk_05.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-09-03T11:47:00.000Z
2021-09-03T12:42:10.000Z
tests/functional/fkey/primary/test_insert_pk_05.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-06-30T14:14:16.000Z
2021-06-30T14:14:16.000Z
#coding:utf-8 # # id: functional.fkey.primary.insert_pk_05 # title: Check correct work fix with foreign key # decription: Check foreign key work. # Master transaction modifies primary key and committed # Detail transaction inserts record in detail_table. # Expected: no errors # tracker_id: # min_versions: [] # versions: 2.1 # qmid: functional.fkey.primary.ins_05 import pytest from firebird.qa import db_factory, python_act, Action from firebird.driver import tpb, Isolation # version: 2.1 # resources: None substitutions_1 = [] init_script_1 = """CREATE TABLE MASTER_TABLE ( ID INTEGER PRIMARY KEY, INT_F INTEGER ); CREATE TABLE DETAIL_TABLE ( ID INTEGER PRIMARY KEY, FKEY INTEGER ); ALTER TABLE DETAIL_TABLE ADD CONSTRAINT FK_DETAIL_TABLE FOREIGN KEY (FKEY) REFERENCES MASTER_TABLE (ID); COMMIT; INSERT INTO MASTER_TABLE (ID, INT_F) VALUES (1, 10); commit;""" db_1 = db_factory(sql_dialect=3, init=init_script_1) # test_script_1 #--- # TPB_master = ( # chr(kdb.isc_tpb_write) # + chr(kdb.isc_tpb_read_committed) + chr(kdb.isc_tpb_rec_version) # + chr(kdb.isc_tpb_nowait) # ) # TPB_detail = ( # chr(kdb.isc_tpb_write) # + chr(kdb.isc_tpb_read_committed) + chr(kdb.isc_tpb_rec_version) # + chr(kdb.isc_tpb_nowait) # ) # # db_conn.begin(tpb=TPB_master) # c = db_conn.cursor() # c.execute("UPDATE MASTER_TABLE SET ID=2 WHERE ID=1") # db_conn.commit() # # #Create second connection for change detail table # con_detail = kdb.connect( # dsn=dsn.encode(), # user=user_name.encode(), # password=user_password.encode() # ) # # try: # con_detail.begin(tpb=TPB_detail) # c = con_detail.cursor() # c.execute("INSERT INTO DETAIL_TABLE (ID, FKEY) VALUES (1,2)") # con_detail.commit() # except Exception, e: # print (e[0]) #--- act_1 = python_act('db_1', substitutions=substitutions_1) @pytest.mark.version('>=2.1') def test_1(act_1: Action): with act_1.db.connect() as con: cust_tpb = tpb(isolation=Isolation.READ_COMMITTED_RECORD_VERSION, lock_timeout=0) con.begin(cust_tpb) with con.cursor() as c: c.execute("UPDATE MASTER_TABLE SET ID=2 WHERE ID=1") con.commit() #Create second connection for change detail table with act_1.db.connect() as con_detail: con_detail.begin(cust_tpb) with con_detail.cursor() as cd: cd.execute("INSERT INTO DETAIL_TABLE (ID, FKEY) VALUES (1,2)") con_detail.commit() # Passed.
29.296703
104
0.645536
bf9951cd928035c785301e49ea0aa2baf342df5d
1,897
py
Python
models/proto.py
TalSchuster/FewRel
af68f52b13977ca29808c38a54995363f76cdcad
[ "MIT" ]
null
null
null
models/proto.py
TalSchuster/FewRel
af68f52b13977ca29808c38a54995363f76cdcad
[ "MIT" ]
null
null
null
models/proto.py
TalSchuster/FewRel
af68f52b13977ca29808c38a54995363f76cdcad
[ "MIT" ]
null
null
null
import sys import FewRel.fewshot_re_kit as fewshot_re_kit import torch from torch import autograd, optim, nn from torch.autograd import Variable from torch.nn import functional as F class Proto(fewshot_re_kit.framework.FewShotREModel): def __init__(self, sentence_encoder, dot=False): fewshot_re_kit.framework.FewShotREModel.__init__(self, sentence_encoder) # self.fc = nn.Linear(hidden_size, hidden_size) self.drop = nn.Dropout() self.dot = dot def __dist__(self, x, y, dim): if self.dot: return (x * y).sum(dim) else: return -(torch.pow(x - y, 2)).sum(dim) def __batch_dist__(self, S, Q): return self.__dist__(S.unsqueeze(1), Q.unsqueeze(2), 3) def forward(self, support, query, N, K, total_Q): ''' support: Inputs of the support set. query: Inputs of the query set. N: Num of classes K: Num of instances for each class in the support set Q: Num of instances in the query set ''' support_emb = self.sentence_encoder(support) # (B * N * K, D), where D is the hidden size query_emb = self.sentence_encoder(query) # (B * total_Q, D) hidden_size = support_emb.size(-1) support = self.drop(support_emb) query = self.drop(query_emb) support = support.view(-1, N, K, hidden_size) # (B, N, K, D) query = query.view(-1, total_Q, hidden_size) # (B, total_Q, D) # Prototypical Networks # Ignore NA policy support = torch.mean(support, 2) # Calculate prototype for each class logits = self.__batch_dist__(support, query) # (B, total_Q, N) minn, _ = logits.min(-1) logits = torch.cat([logits, minn.unsqueeze(2) - 1], 2) # (B, total_Q, N + 1) _, pred = torch.max(logits.view(-1, N + 1), 1) return logits, pred
35.792453
97
0.615182
1e530612b4ac118fc6f484c3c14cf4848afccba9
852
py
Python
repos/system_upgrade/el7toel8/actors/addupgradebootentry/actor.py
fellipeh/leapp-repository
874e480fa84476fee37da4f184b47f2472748929
[ "Apache-2.0" ]
null
null
null
repos/system_upgrade/el7toel8/actors/addupgradebootentry/actor.py
fellipeh/leapp-repository
874e480fa84476fee37da4f184b47f2472748929
[ "Apache-2.0" ]
1
2020-04-03T07:41:43.000Z
2020-04-03T07:41:43.000Z
repos/system_upgrade/el7toel8/actors/addupgradebootentry/actor.py
pirat89/leapp-repository
aac51ab67ee22413a7ab1da6cec33e54b9357afd
[ "Apache-2.0" ]
null
null
null
from leapp.actors import Actor from leapp.libraries.actor.addupgradebootentry import add_boot_entry, fix_grub_config_error from leapp.models import BootContent, GrubConfigError from leapp.tags import InterimPreparationPhaseTag, IPUWorkflowTag class AddUpgradeBootEntry(Actor): """ Add new boot entry for Leapp provided initramfs. Using new boot entry, Leapp can continue the upgrade process in the initramfs after reboot """ name = 'add_upgrade_boot_entry' consumes = (BootContent, GrubConfigError) produces = () tags = (IPUWorkflowTag, InterimPreparationPhaseTag) def process(self): grub_config_error_detected = next(self.consume(GrubConfigError), GrubConfigError()).error_detected if grub_config_error_detected: fix_grub_config_error('/etc/default/grub') add_boot_entry()
34.08
106
0.75939
bfc65b84b46b4048c09c35f9e00b226acc9854db
332
py
Python
users/urls.py
hyeseong-dev/wecode_2nd_project
a0bb90818837fcab4607823140251cee35a4d6e5
[ "Unlicense" ]
null
null
null
users/urls.py
hyeseong-dev/wecode_2nd_project
a0bb90818837fcab4607823140251cee35a4d6e5
[ "Unlicense" ]
null
null
null
users/urls.py
hyeseong-dev/wecode_2nd_project
a0bb90818837fcab4607823140251cee35a4d6e5
[ "Unlicense" ]
null
null
null
from django.urls import path from users.views import SendSmSView, VerificationView, MobileSignUp, MobileSignIn urlpatterns = [ path('/sendsms', SendSmSView.as_view()), path('/verification', VerificationView.as_view()), path('/mobile_signup', MobileSignUp.as_view()), path('/mobile_signin', MobileSignIn.as_view()) ]
36.888889
81
0.740964
6851647060b612d04854c68a15434ccc60f8df50
670
py
Python
iiif_validator/tests/size_error_random.py
IIIF/image-api
890b120d19a7db1cde8a64da0ae6a986ae13e342
[ "Apache-2.0" ]
20
2015-03-25T21:30:15.000Z
2016-06-17T07:45:07.000Z
iiif_validator/tests/size_error_random.py
IIIF/image-validator
890b120d19a7db1cde8a64da0ae6a986ae13e342
[ "Apache-2.0" ]
50
2016-12-09T16:54:30.000Z
2022-03-11T23:16:57.000Z
iiif_validator/tests/size_error_random.py
IIIF/image-validator
890b120d19a7db1cde8a64da0ae6a986ae13e342
[ "Apache-2.0" ]
13
2016-10-27T23:38:14.000Z
2021-03-15T04:38:26.000Z
from .test import BaseTest, ValidatorError class Test_Size_Error_Random(BaseTest): label = 'Random size gives 400' level = 1 category = 3 versions = [u'1.0', u'1.1', u'2.0', u'3.0'] validationInfo = None def run(self, result): try: url = result.make_url({'size': self.validationInfo.make_randomstring(6)}) error = result.fetch(url) self.validationInfo.check('status', result.last_status, 400, result) return result except Exception as error: raise ValidatorError('url-check', str(error), 400, result, 'Failed to get random size with url {}.'.format(url))
37.222222
124
0.614925
97a32bfb8ad4998ccebd4fa5eafb969727fba67d
2,980
py
Python
pytest_clearread.py
adrianer/pytest-clearread
9e0ffcf064bc752ced0056da9e5162590a4888ea
[ "BSD-3-Clause" ]
null
null
null
pytest_clearread.py
adrianer/pytest-clearread
9e0ffcf064bc752ced0056da9e5162590a4888ea
[ "BSD-3-Clause" ]
null
null
null
pytest_clearread.py
adrianer/pytest-clearread
9e0ffcf064bc752ced0056da9e5162590a4888ea
[ "BSD-3-Clause" ]
null
null
null
import pytest from _pytest.terminal import TerminalReporter def pytest_addoption(parser): group = parser.getgroup("terminal reporting", "reporting", after="general") group._addoption( '--clear', action="store_true", dest="clear", default=False, help=( "make pytest reporting output more readable" ) ) @pytest.mark.trylast def pytest_configure(config): if hasattr(config, 'slaveinput'): return # xdist slave, we are already active on the master if config.option.clear: # Get the standard terminal reporter plugin... standard_reporter = config.pluginmanager.getplugin('terminalreporter') clear_reporter = ClearTerminalReporter(standard_reporter) # ...and replace it with our own clearing reporter. config.pluginmanager.unregister(standard_reporter) config.pluginmanager.register(clear_reporter, 'terminalreporter') def pytest_collection_modifyitems(config, items): for item in items: node = item.obj parent = item.parent.obj function_comment = node.__doc__ or '' class_comment = parent.__doc__ or '' item._nodeid = f"{item.nodeid};;;;;{class_comment};;;;;{function_comment}" # @pytest.mark.tryfirst # def pytest_runtest_teardown(item, nextitem): # # This fixes py.test writing stuff after the progress indication # print('\n') class ClearTerminalReporter(TerminalReporter): def __init__(self, reporter): TerminalReporter.__init__(self, reporter.config) self._tw = reporter._tw def pytest_runtest_logstart(self, nodeid, location): # ensure that the path is printed before the # 1st test of a module starts running real_node_id = nodeid.split(";;;;;")[0] if len(nodeid.split(";;;;;")) > 1: function_comment = nodeid.split(";;;;;")[-1] else: function_comment = None if len(nodeid.split(";;;;;")) > 2: class_comment = nodeid.split(";;;;;")[-2] else: class_comment = None if self.showlongtestinfo: line = self._locationline(real_node_id, *location) self.write_sep("-", line, bold=True) if class_comment: self.write(class_comment) self._tw.line() self.write_sep("-", bold=True) if function_comment: self.write(function_comment) self._tw.line() self.write_sep("-", bold=True) elif self.showfspath: fsid = real_node_id.split("::")[0] self.write_fspath_result(fsid, "") def pytest_runtest_logreport(self, report): report.nodeid = report.nodeid.split(";;;;;")[0] super().pytest_runtest_logreport(report=report) self._tw.line() def pytest_runtest_logfinish(self, nodeid): nodeid = nodeid.split(";;;;;")[0] super().pytest_runtest_logfinish(nodeid=nodeid)
35.47619
82
0.62651
84edca900cb44546b0f3fd3f7889f0760c6f4938
46
py
Python
strainer/widgets/tree/__init__.py
jmbreuer/strainer
cf8d5fbb0782ca9d9148107c28cdcd66ac2d6927
[ "Unlicense" ]
2
2020-04-10T22:20:14.000Z
2020-05-14T21:35:12.000Z
strainer/widgets/tree/__init__.py
jmbreuer/strainer
cf8d5fbb0782ca9d9148107c28cdcd66ac2d6927
[ "Unlicense" ]
31
2020-05-21T14:03:53.000Z
2022-03-11T12:04:50.000Z
strainer/widgets/tree/__init__.py
jmbreuer/strainer
cf8d5fbb0782ca9d9148107c28cdcd66ac2d6927
[ "Unlicense" ]
1
2022-03-09T18:19:55.000Z
2022-03-09T18:19:55.000Z
from .widget import Tree __all__ = ('Tree',)
11.5
24
0.673913
6ad30d3c324870a0b88a37e68ea8317d3efd38a7
1,019
py
Python
apistar/server/handlers.py
TheCulliganMan/apistarserver
faaf9f6fddc97e9bd97a2ea785d041bbaac91ad5
[ "BSD-3-Clause" ]
1
2018-09-27T14:50:47.000Z
2018-09-27T14:50:47.000Z
apistar/server/handlers.py
TheCulliganMan/apistar
faaf9f6fddc97e9bd97a2ea785d041bbaac91ad5
[ "BSD-3-Clause" ]
null
null
null
apistar/server/handlers.py
TheCulliganMan/apistar
faaf9f6fddc97e9bd97a2ea785d041bbaac91ad5
[ "BSD-3-Clause" ]
null
null
null
from apistar import App, http from apistar.codecs import OpenAPICodec from apistar.server.asgi import ASGIReceive, ASGIScope, ASGISend from apistar.server.wsgi import WSGIEnviron, WSGIStartResponse def serve_schema(app: App): codec = OpenAPICodec() content = codec.encode(app.document) headers = {"Content-Type": "application/vnd.oai.openapi"} return http.Response(content, headers=headers) def serve_documentation(app: App): template_name = "apistar/docs/index.html" code_style = None # pygments_css('emacs') return app.render_template( template_name, document=app.document, langs=["javascript", "python"], code_style=code_style, ) def serve_static_wsgi( app: App, environ: WSGIEnviron, start_response: WSGIStartResponse ): return app.statics(environ, start_response) async def serve_static_asgi( app: App, scope: ASGIScope, receive: ASGIReceive, send: ASGISend ): instance = app.statics(scope) await instance(receive, send)
28.305556
69
0.726202
7d1aab75f767995dd91f0f988c0c6806074e42cd
1,930
py
Python
var/spack/repos/builtin/packages/py-radical-pilot/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-radical-pilot/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
8
2021-11-09T20:28:40.000Z
2022-03-15T03:26:33.000Z
var/spack/repos/builtin/packages/py-radical-pilot/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-08T20:37:20.000Z
2019-03-31T15:19:26.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class PyRadicalPilot(PythonPackage): """RADICAL-Pilot is a Pilot system specialized in executing applications composed of many computational tasks on high performance computing (HPC) platforms.""" homepage = 'https://radical-cybertools.github.io' git = 'https://github.com/radical-cybertools/radical.pilot.git' pypi = 'radical.pilot/radical.pilot-1.11.2.tar.gz' maintainers = ['andre-merzky'] version('develop', branch='devel') version('1.11.2', sha256='9d239f747589b8ae5d6faaea90ea5304b6f230a1edfd8d4efb440bc3799c8a9d') version('1.10.2', sha256='56e9d8b1ce7ed05eff471d7df660e4940f485027e5f353aa36fd17425846a499') version('1.10.1', sha256='003f4c519b991bded31693026b69dd51547a5a69a5f94355dc8beff766524b3c') version('1.9.2', sha256='7c872ac9103a2aed0c5cd46057048a182f672191e194e0fd42794b0012e6e947') version('1.8.0', sha256='a4c3bca163db61206e15a2d820d9a64e888da5c72672448ae975c26768130b9d') version('1.6.8', sha256='fa8fd3f348a68b54ee8338d5c5cf1a3d99c10c0b6da804424a839239ee0d313d') version('1.6.7', sha256='6ca0a3bd3cda65034fa756f37fa05681d5a43441c1605408a58364f89c627970') depends_on('py-radical-utils', type=('build', 'run')) depends_on('py-radical-saga', type=('build', 'run')) depends_on('py-radical-utils@1.8.4:', type=('build', 'run'), when='@1.11:') depends_on('py-radical-saga@1.8.0:', type=('build', 'run'), when='@1.11:') depends_on('python@3.6:', type=('build', 'run')) depends_on('py-pymongo@:3', type=('build', 'run')) depends_on('py-setproctitle', type=('build', 'run')) depends_on('py-setuptools', type='build')
49.487179
97
0.706218
94927eb998e43a5f1ad4fb129a4bdb3f44a377ca
660
py
Python
fabfile.py
gsvaldes/toronjil
b5e7f063f377449dc375165367aed3025b6bb21f
[ "MIT" ]
null
null
null
fabfile.py
gsvaldes/toronjil
b5e7f063f377449dc375165367aed3025b6bb21f
[ "MIT" ]
null
null
null
fabfile.py
gsvaldes/toronjil
b5e7f063f377449dc375165367aed3025b6bb21f
[ "MIT" ]
null
null
null
from __future__ import with_statement from fabric.api import local, settings, abort, run, cd, put from fabric.contrib.console import confirm code_dir = '/home/django/toronjil' def update_remote(): with cd(code_dir): run('git pull origin master') def create_remote_test_file(): with cd(code_dir): run('touch hello.txt') def move_local_settings(): with cd(code_dir): put('toronjil/local_settings.py', 'toronjil') def move_nginx_config(): with cd('/etc/nginx/'): put('nginx', 'sites-available/toronjil') def move_upstart_config(): with cd('/etc/'): put('upstart', 'init/toronjil.conf')
22.758621
59
0.669697
404ce2416f3de51c2fb347fdc5aee2b80d8414aa
2,275
py
Python
airflow/providers/amazon/aws/operators/step_function_get_execution_output.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
1
2019-05-07T06:46:55.000Z
2019-05-07T06:46:55.000Z
airflow/providers/amazon/aws/operators/step_function_get_execution_output.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
7
2021-06-28T20:24:56.000Z
2022-02-26T02:01:36.000Z
airflow/providers/amazon/aws/operators/step_function_get_execution_output.py
troywinter/airflow
ba66ba0d97941c55d9f00f66329a9d3c7ad673e7
[ "Apache-2.0" ]
1
2019-06-15T08:38:53.000Z
2019-06-15T08:38:53.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json from airflow.models import BaseOperator from airflow.providers.amazon.aws.hooks.step_function import StepFunctionHook from airflow.utils.decorators import apply_defaults class StepFunctionGetExecutionOutputOperator(BaseOperator): """ An Operator that begins execution of an Step Function State Machine Additional arguments may be specified and are passed down to the underlying BaseOperator. .. seealso:: :class:`~airflow.models.BaseOperator` :param execution_arn: ARN of the Step Function State Machine Execution :type execution_arn: str :param aws_conn_id: aws connection to use, defaults to 'aws_default' :type aws_conn_id: str """ template_fields = ['execution_arn'] template_ext = () ui_color = '#f9c915' @apply_defaults def __init__(self, *, execution_arn: str, aws_conn_id='aws_default', region_name=None, **kwargs): super().__init__(**kwargs) self.execution_arn = execution_arn self.aws_conn_id = aws_conn_id self.region_name = region_name def execute(self, context): hook = StepFunctionHook(aws_conn_id=self.aws_conn_id, region_name=self.region_name) execution_status = hook.describe_execution(self.execution_arn) execution_output = json.loads(execution_status['output']) if 'output' in execution_status else None self.log.info('Got State Machine Execution output for %s', self.execution_arn) return execution_output
38.559322
107
0.747253
588f08356337c10eebaf999675d45872c6176455
1,878
py
Python
tests/test_matchers.py
duailibe/asymmetric-matchers
854040e2d062360e432ec6fa6ee6bf9b9b4c897c
[ "Apache-2.0" ]
2
2021-12-09T23:51:04.000Z
2021-12-10T14:27:10.000Z
tests/test_matchers.py
duailibe/asymmetric-matchers
854040e2d062360e432ec6fa6ee6bf9b9b4c897c
[ "Apache-2.0" ]
2
2021-12-10T00:33:28.000Z
2022-01-23T16:22:18.000Z
tests/test_matchers.py
duailibe/asymmetric-matchers
854040e2d062360e432ec6fa6ee6bf9b9b4c897c
[ "Apache-2.0" ]
null
null
null
import collections import re from asymmetric_matchers import ( anything, any as any_, string_matching, list_containing, dict_containing, ) def test_anything(): assert 0 == anything() assert "" == anything() assert [] == anything() assert {} == anything() assert None != anything() # noqa: E711 def test_any(): assert 0 == any_(int) assert "" == any_(str) def test_string_matching(): assert "foobarbaz" == string_matching("bar") assert "string" != string_matching("bar") assert 1 != string_matching("1") assert string_matching("bar") == "foobarbaz" assert "foobar" == string_matching(r"ba[rz]") assert "foobar" == string_matching(re.compile(r"ba[rz]")) assert repr(string_matching("foo")) == "'foo'" assert repr(string_matching(re.compile(r"foo"))) == "'foo'" def test_dict_containing(): assert {"foo": "bar"} == dict_containing({}) assert {"foo": "bar"} == dict_containing({"foo": anything()}) assert {"notfoo": "bar"} != dict_containing({"foo": anything()}) assert dict_containing({"foo": "bar"}) == dict_containing({"foo": "bar"}) assert repr(dict_containing({"foo": "bar"})) == "dict_containing({'foo': 'bar'})" assert dict_containing({"foo": "bar"}) != {"foo"} assert collections.Counter(foo=4) == dict_containing({"foo": anything()}) def test_list_containing(): assert ["foo", "bar"] == list_containing([]) assert ["foo", "bar"] == list_containing(["foo"]) assert ["notfoo", "bar"] != list_containing(["foo"]) assert list_containing(["foo", "bar"]) == list_containing(["bar", "foo"]) assert repr(list_containing(["foo", "bar"])) == "list_containing(['foo', 'bar'])" assert {"foo"} != list_containing(["foo"]) assert ["foo", [], "bar"] == list_containing([[]]) assert ["foo", [], "bar"] == list_containing(["foo"])
29.809524
85
0.612354
6a3c7e80026cadc74be9632abc965b29eb1a8056
466
py
Python
2015/day_17/containers_part2.py
ceronman/AdventOfCode2015
87b6d93df960045b5eff1ded107ac4e2719ee6e6
[ "MIT" ]
4
2019-12-03T02:03:23.000Z
2019-12-20T11:36:00.000Z
2015/day_17/containers_part2.py
ceronman/AdventOfCode2015
87b6d93df960045b5eff1ded107ac4e2719ee6e6
[ "MIT" ]
null
null
null
2015/day_17/containers_part2.py
ceronman/AdventOfCode2015
87b6d93df960045b5eff1ded107ac4e2719ee6e6
[ "MIT" ]
null
null
null
def combinations(target, sizes, used): accumulated = sum(used) if accumulated < target: for i, s in enumerate(sizes): yield from combinations(target, sizes[i+1:], used + [s]) elif accumulated == target: yield used sizes = [int(x) for x in open('input.txt')] all_combinations = list(combinations(150, sizes, [])) min_size = min(len(c) for c in all_combinations) print(len([c for c in all_combinations if len(c) == min_size]))
35.846154
68
0.656652
817ef80a97eb42f2eb9b9bab171575d092b4c49b
7,241
py
Python
pubsub/google/cloud/pubsub_v1/subscriber/client.py
deryrahman/google-cloud-python
b55058c4b2328fde32f29bfd8ea04708fcc578e0
[ "Apache-2.0" ]
null
null
null
pubsub/google/cloud/pubsub_v1/subscriber/client.py
deryrahman/google-cloud-python
b55058c4b2328fde32f29bfd8ea04708fcc578e0
[ "Apache-2.0" ]
null
null
null
pubsub/google/cloud/pubsub_v1/subscriber/client.py
deryrahman/google-cloud-python
b55058c4b2328fde32f29bfd8ea04708fcc578e0
[ "Apache-2.0" ]
null
null
null
# Copyright 2017, Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import pkg_resources import os import grpc from google.api_core import grpc_helpers from google.cloud.pubsub_v1 import _gapic from google.cloud.pubsub_v1 import types from google.cloud.pubsub_v1.gapic import subscriber_client from google.cloud.pubsub_v1.subscriber import futures from google.cloud.pubsub_v1.subscriber._protocol import streaming_pull_manager __version__ = pkg_resources.get_distribution('google-cloud-pubsub').version @_gapic.add_methods(subscriber_client.SubscriberClient, blacklist=('streaming_pull',)) class Client(object): """A subscriber client for Google Cloud Pub/Sub. This creates an object that is capable of subscribing to messages. Generally, you can instantiate this client with no arguments, and you get sensible defaults. Args: kwargs (dict): Any additional arguments provided are sent as keyword keyword arguments to the underlying :class:`~.gapic.pubsub.v1.subscriber_client.SubscriberClient`. Generally, you should not need to set additional keyword arguments. """ def __init__(self, **kwargs): # Sanity check: Is our goal to use the emulator? # If so, create a grpc insecure channel with the emulator host # as the target. if os.environ.get('PUBSUB_EMULATOR_HOST'): kwargs['channel'] = grpc.insecure_channel( target=os.environ.get('PUBSUB_EMULATOR_HOST'), ) # Use a custom channel. # We need this in order to set appropriate default message size and # keepalive options. if 'channel' not in kwargs: kwargs['channel'] = grpc_helpers.create_channel( credentials=kwargs.pop('credentials', None), target=self.target, scopes=subscriber_client.SubscriberClient._DEFAULT_SCOPES, options={ 'grpc.max_send_message_length': -1, 'grpc.max_receive_message_length': -1, 'grpc.keepalive_time_ms': 30000, }.items(), ) # Add the metrics headers, and instantiate the underlying GAPIC # client. self._api = subscriber_client.SubscriberClient(**kwargs) @property def target(self): """Return the target (where the API is). Returns: str: The location of the API. """ return subscriber_client.SubscriberClient.SERVICE_ADDRESS @property def api(self): """The underlying gapic API client.""" return self._api def subscribe( self, subscription, callback, flow_control=(), scheduler=None): """Asynchronously start receiving messages on a given subscription. This method starts a background thread to begin pulling messages from a Pub/Sub subscription and scheduling them to be processed using the provided ``callback``. The ``callback`` will be called with an individual :class:`google.cloud.pubsub_v1.subscriber.message.Message`. It is the responsibility of the callback to either call ``ack()`` or ``nack()`` on the message when it finished processing. If an exception occurs in the callback during processing, the exception is logged and the message is ``nack()`` ed. The ``flow_control`` argument can be used to control the rate of at which messages are pulled. The settings are relatively conservative by default to prevent "message hoarding" - a situation where the client pulls a large number of messages but can not process them fast enough leading it to "starve" other clients of messages. Increasing these settings may lead to faster throughput for messages that do not take a long time to process. This method starts the receiver in the background and returns a *Future* representing its execution. Waiting on the future (calling ``result()``) will block forever or until a non-recoverable error is encountered (such as loss of network connectivity). Cancelling the future will signal the process to shutdown gracefully and exit. .. note:: This uses Pub/Sub's *streaming pull* feature. This feature properties that may be surprising. Please take a look at https://cloud.google.com/pubsub/docs/pull#streamingpull for more details on how streaming pull behaves compared to the synchronous pull method. Example: .. code-block:: python from google.cloud import pubsub_v1 subscriber_client = pubsub_v1.SubscriberClient() # existing subscription subscription = subscriber_client.subscription_path( 'my-project-id', 'my-subscription') def callback(message): print(message) message.ack() future = subscriber.subscribe( subscription, callback) try: future.result() except KeyboardInterrupt: future.cancel() Args: subscription (str): The name of the subscription. The subscription should have already been created (for example, by using :meth:`create_subscription`). callback (Callable[~.pubsub_v1.subscriber.message.Message]): The callback function. This function receives the message as its only argument and will be called from a different thread/ process depending on the scheduling strategy. flow_control (~.pubsub_v1.types.FlowControl): The flow control settings. Use this to prevent situations where you are inundated with too many messages at once. scheduler (~.pubsub_v1.subscriber.scheduler.Scheduler): An optional *scheduler* to use when executing the callback. This controls how callbacks are executed concurrently. Returns: google.cloud.pubsub_v1.subscriber.futures.StreamingPullFuture: A Future object that can be used to manage the background stream. """ flow_control = types.FlowControl(*flow_control) manager = streaming_pull_manager.StreamingPullManager( self, subscription, flow_control=flow_control, scheduler=scheduler) future = futures.StreamingPullFuture(manager) manager.open(callback) return future
40.005525
79
0.660268
3abb2a229447e51ddfd43d2972e420e0676fd476
1,044
py
Python
best_api.py
adrianobrum/takecareofmyplant_bot
30828df1c769c840bcba9d272020995eebe4b1ec
[ "MIT" ]
null
null
null
best_api.py
adrianobrum/takecareofmyplant_bot
30828df1c769c840bcba9d272020995eebe4b1ec
[ "MIT" ]
null
null
null
best_api.py
adrianobrum/takecareofmyplant_bot
30828df1c769c840bcba9d272020995eebe4b1ec
[ "MIT" ]
null
null
null
import urllib2 import time import logfile import os import sys from config import * import xml.etree.ElementTree as ET def api(): logfile.logger('debug', 'Geting the data from API...') url = "http://www.stands4.com/services/v2/quotes.php?uid={0}&tokenid={1}&searchtype=RANDOM" url = url.format(MYUID, MYTOKEN) s = urllib2.urlopen(url) logfile.logger('debug', 'URL content downloaded!') contents = s.read() file = open("quotes.xml", "w") file.write(contents) logfile.logger('debug', 'Quotes.xml updated') file.close() tree = ET.parse('quotes.xml') logfile.logger('debug', 'XML Parsed') root = tree.getroot() control = root[0].text time.sleep(2) if (control == 'Daily Usage Exceeded'): print ("**ERROR** The best API it's not availabe!") logfile.logger('error', "The best API it's not available!") return ('false') else: quote = root[0][0].text return quote logfile.logger('debug', 'Quote script closed...')
26.1
95
0.62069
b7f65b4510bbd3e900ebf04d6bee573c482db0db
224
py
Python
dns_check/datadog_checks/dns_check/__init__.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
4
2021-06-21T19:21:49.000Z
2021-06-23T21:21:55.000Z
dns_check/datadog_checks/dns_check/__init__.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
1
2018-08-15T05:50:17.000Z
2018-08-15T05:50:17.000Z
dns_check/datadog_checks/dns_check/__init__.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
1
2021-06-21T19:21:51.000Z
2021-06-21T19:21:51.000Z
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from .__about__ import __version__ from .dns_check import DNSCheck __all__ = [ '__version__', 'DNSCheck' ]
18.666667
59
0.71875
7effeb3ba00ecad5201f2e19b714046b1533d33e
40,215
py
Python
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_data_lake_file_client.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_data_lake_file_client.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
2
2020-03-03T23:11:13.000Z
2020-03-30T18:50:55.000Z
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_data_lake_file_client.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from io import BytesIO try: from urllib.parse import quote, unquote except ImportError: from urllib2 import quote, unquote # type: ignore import six from ._quick_query_helper import DataLakeFileQueryReader from ._shared.base_client import parse_connection_str from ._shared.request_handlers import get_length, read_length from ._shared.response_handlers import return_response_headers from ._shared.uploads import IterStreamer from ._upload_helper import upload_datalake_file from ._generated.models import StorageErrorException from ._download import StorageStreamDownloader from ._path_client import PathClient from ._serialize import get_mod_conditions, get_path_http_headers, get_access_conditions, add_metadata_headers, \ convert_datetime_to_rfc1123 from ._deserialize import process_storage_error, deserialize_file_properties from ._models import FileProperties, DataLakeFileQueryError class DataLakeFileClient(PathClient): """A client to interact with the DataLake file, even if the file may not yet exist. :ivar str url: The full endpoint URL to the file system, including SAS token if used. :ivar str primary_endpoint: The full primary endpoint URL. :ivar str primary_hostname: The hostname of the primary endpoint. :param str account_url: The URI to the storage account. :param file_system_name: The file system for the directory or files. :type file_system_name: str :param file_path: The whole file path, so that to interact with a specific file. eg. "{directory}/{subdirectory}/{file}" :type file_path: str :param credential: The credentials with which to authenticate. This is optional if the account URL already has a SAS token. The value can be a SAS token string, and account shared access key, or an instance of a TokenCredentials class from azure.identity. If the URL already has a SAS token, specifying an explicit credential will take priority. .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_instantiate_client.py :start-after: [START instantiate_file_client_from_conn_str] :end-before: [END instantiate_file_client_from_conn_str] :language: python :dedent: 4 :caption: Creating the DataLakeServiceClient from connection string. """ def __init__( self, account_url, # type: str file_system_name, # type: str file_path, # type: str credential=None, # type: Optional[Any] **kwargs # type: Any ): # type: (...) -> None super(DataLakeFileClient, self).__init__(account_url, file_system_name, path_name=file_path, credential=credential, **kwargs) @classmethod def from_connection_string( cls, conn_str, # type: str file_system_name, # type: str file_path, # type: str credential=None, # type: Optional[Any] **kwargs # type: Any ): # type: (...) -> DataLakeFileClient """ Create DataLakeFileClient from a Connection String. :param str conn_str: A connection string to an Azure Storage account. :param file_system_name: The name of file system to interact with. :type file_system_name: str :param directory_name: The name of directory to interact with. The directory is under file system. :type directory_name: str :param file_name: The name of file to interact with. The file is under directory. :type file_name: str :param credential: The credentials with which to authenticate. This is optional if the account URL already has a SAS token, or the connection string already has shared access key values. The value can be a SAS token string, and account shared access key, or an instance of a TokenCredentials class from azure.identity. Credentials provided here will take precedence over those in the connection string. :return a DataLakeFileClient :rtype ~azure.storage.filedatalake.DataLakeFileClient """ account_url, _, credential = parse_connection_str(conn_str, credential, 'dfs') return cls( account_url, file_system_name=file_system_name, file_path=file_path, credential=credential, **kwargs) def create_file(self, content_settings=None, # type: Optional[ContentSettings] metadata=None, # type: Optional[Dict[str, str]] **kwargs): # type: (...) -> Dict[str, Union[str, datetime]] """ Create a new file. :param ~azure.storage.filedatalake.ContentSettings content_settings: ContentSettings object used to set path properties. :param metadata: Name-value pairs associated with the file as metadata. :type metadata: dict(str, str) :keyword lease: Required if the file has an active lease. Value can be a DataLakeLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword str umask: Optional and only valid if Hierarchical Namespace is enabled for the account. When creating a file or directory and the parent folder does not have a default ACL, the umask restricts the permissions of the file or directory to be created. The resulting permission is given by p & ^u, where p is the permission and u is the umask. For example, if p is 0777 and u is 0057, then the resulting permission is 0720. The default permission is 0777 for a directory and 0666 for a file. The default umask is 0027. The umask must be specified in 4-digit octal notation (e.g. 0766). :keyword str permissions: Optional and only valid if Hierarchical Namespace is enabled for the account. Sets POSIX access permissions for the file owner, the file owning group, and others. Each class may be granted read, write, or execute permission. The sticky bit is also supported. Both symbolic (rwxrw-rw-) and 4-digit octal notation (e.g. 0766) are supported. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :return: response dict (Etag and last modified). .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START create_file] :end-before: [END create_file] :language: python :dedent: 4 :caption: Create file. """ return self._create('file', content_settings=content_settings, metadata=metadata, **kwargs) def delete_file(self, **kwargs): # type: (...) -> None """ Marks the specified file for deletion. :keyword lease: Required if the file has an active lease. Value can be a LeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :return: None .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START delete_file] :end-before: [END delete_file] :language: python :dedent: 4 :caption: Delete file. """ return self._delete(**kwargs) def get_file_properties(self, **kwargs): # type: (**Any) -> FileProperties """Returns all user-defined metadata, standard HTTP properties, and system properties for the file. It does not return the content of the file. :keyword lease: Required if the directory or file has an active lease. Value can be a DataLakeLeaseClient object or the lease ID as a string. :type lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: FileProperties .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START get_file_properties] :end-before: [END get_file_properties] :language: python :dedent: 4 :caption: Getting the properties for a file. """ return self._get_path_properties(cls=deserialize_file_properties, **kwargs) # pylint: disable=protected-access def set_file_expiry(self, expiry_options, # type: str expires_on=None, # type: Optional[Union[datetime, int]] **kwargs): # type: (str, Optional[Union[datetime, int]], **Any) -> None """Sets the time a file will expire and be deleted. :param str expiry_options: Required. Indicates mode of the expiry time. Possible values include: 'NeverExpire', 'RelativeToCreation', 'RelativeToNow', 'Absolute' :param datetime or int expires_on: The time to set the file to expiry. When expiry_options is RelativeTo*, expires_on should be an int in milliseconds. If the type of expires_on is datetime, it should be in UTC time. :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None """ try: expires_on = convert_datetime_to_rfc1123(expires_on) except AttributeError: expires_on = str(expires_on) self._datalake_client_for_blob_operation.path \ .set_expiry(expiry_options, expires_on=expires_on, **kwargs) # pylint: disable=protected-access def _upload_options( # pylint:disable=too-many-statements self, data, # type: Union[Iterable[AnyStr], IO[AnyStr]] length=None, # type: Optional[int] **kwargs ): # type: (...) -> Dict[str, Any] encoding = kwargs.pop('encoding', 'UTF-8') if isinstance(data, six.text_type): data = data.encode(encoding) # type: ignore if length is None: length = get_length(data) if isinstance(data, bytes): data = data[:length] if isinstance(data, bytes): stream = BytesIO(data) elif hasattr(data, 'read'): stream = data elif hasattr(data, '__iter__'): stream = IterStreamer(data, encoding=encoding) else: raise TypeError("Unsupported data type: {}".format(type(data))) validate_content = kwargs.pop('validate_content', False) content_settings = kwargs.pop('content_settings', None) metadata = kwargs.pop('metadata', None) max_concurrency = kwargs.pop('max_concurrency', 1) kwargs['properties'] = add_metadata_headers(metadata) kwargs['lease_access_conditions'] = get_access_conditions(kwargs.pop('lease', None)) kwargs['modified_access_conditions'] = get_mod_conditions(kwargs) if content_settings: kwargs['path_http_headers'] = get_path_http_headers(content_settings) kwargs['stream'] = stream kwargs['length'] = length kwargs['validate_content'] = validate_content kwargs['max_concurrency'] = max_concurrency kwargs['client'] = self._client.path return kwargs def upload_data(self, data, # type: Union[AnyStr, Iterable[AnyStr], IO[AnyStr]] length=None, # type: Optional[int] overwrite=False, # type: Optional[bool] **kwargs): # type: (...) -> Dict[str, Any] """ Upload data to a file. :param data: Content to be uploaded to file :param int length: Size of the data in bytes. :param bool overwrite: to overwrite an existing file or not. :keyword ~azure.storage.filedatalake.ContentSettings content_settings: ContentSettings object used to set path properties. :keyword metadata: Name-value pairs associated with the blob as metadata. :paramtype metadata: dict(str, str) :keyword ~azure.storage.filedatalake.DataLakeLeaseClient or str lease: Required if the blob has an active lease. Value can be a DataLakeLeaseClient object or the lease ID as a string. :keyword str umask: Optional and only valid if Hierarchical Namespace is enabled for the account. When creating a file or directory and the parent folder does not have a default ACL, the umask restricts the permissions of the file or directory to be created. The resulting permission is given by p & ^u, where p is the permission and u is the umask. For example, if p is 0777 and u is 0057, then the resulting permission is 0720. The default permission is 0777 for a directory and 0666 for a file. The default umask is 0027. The umask must be specified in 4-digit octal notation (e.g. 0766). :keyword str permissions: Optional and only valid if Hierarchical Namespace is enabled for the account. Sets POSIX access permissions for the file owner, the file owning group, and others. Each class may be granted read, write, or execute permission. The sticky bit is also supported. Both symbolic (rwxrw-rw-) and 4-digit octal notation (e.g. 0766) are supported. :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :keyword int chunk_size: The maximum chunk size for uploading a file in chunks. Defaults to 100*1024*1024, or 100MB. :return: response dict (Etag and last modified). """ options = self._upload_options( data, length=length, overwrite=overwrite, **kwargs) return upload_datalake_file(**options) @staticmethod def _append_data_options(data, offset, length=None, **kwargs): # type: (Optional[ContentSettings], Optional[Dict[str, str]], **Any) -> Dict[str, Any] if isinstance(data, six.text_type): data = data.encode(kwargs.pop('encoding', 'UTF-8')) # type: ignore if length is None: length = get_length(data) if length is None: length, data = read_length(data) if isinstance(data, bytes): data = data[:length] access_conditions = get_access_conditions(kwargs.pop('lease', None)) options = { 'body': data, 'position': offset, 'content_length': length, 'lease_access_conditions': access_conditions, 'validate_content': kwargs.pop('validate_content', False), 'timeout': kwargs.pop('timeout', None), 'cls': return_response_headers} options.update(kwargs) return options def append_data(self, data, # type: Union[AnyStr, Iterable[AnyStr], IO[AnyStr]] offset, # type: int length=None, # type: Optional[int] **kwargs): # type: (...) -> Dict[str, Union[str, datetime, int]] """Append data to the file. :param data: Content to be appended to file :param offset: start position of the data to be appended to. :param length: Size of the data in bytes. :keyword bool validate_content: If true, calculates an MD5 hash of the block content. The storage service checks the hash of the content that has arrived with the hash that was sent. This is primarily valuable for detecting bitflips on the wire if using http instead of https as https (the default) will already validate. Note that this MD5 hash is not stored with the file. :keyword lease: Required if the file has an active lease. Value can be a DataLakeLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :return: dict of the response header .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START append_data] :end-before: [END append_data] :language: python :dedent: 4 :caption: Append data to the file. """ options = self._append_data_options( data, offset, length=length, **kwargs) try: return self._client.path.append_data(**options) except StorageErrorException as error: process_storage_error(error) @staticmethod def _flush_data_options(offset, content_settings=None, retain_uncommitted_data=False, **kwargs): # type: (Optional[ContentSettings], Optional[Dict[str, str]], **Any) -> Dict[str, Any] access_conditions = get_access_conditions(kwargs.pop('lease', None)) mod_conditions = get_mod_conditions(kwargs) path_http_headers = None if content_settings: path_http_headers = get_path_http_headers(content_settings) options = { 'position': offset, 'content_length': 0, 'path_http_headers': path_http_headers, 'retain_uncommitted_data': retain_uncommitted_data, 'close': kwargs.pop('close', False), 'lease_access_conditions': access_conditions, 'modified_access_conditions': mod_conditions, 'timeout': kwargs.pop('timeout', None), 'cls': return_response_headers} options.update(kwargs) return options def flush_data(self, offset, # type: int retain_uncommitted_data=False, # type: Optional[bool] **kwargs): # type: (...) -> Dict[str, Union[str, datetime]] """ Commit the previous appended data. :param offset: offset is equal to the length of the file after commit the previous appended data. :param bool retain_uncommitted_data: Valid only for flush operations. If "true", uncommitted data is retained after the flush operation completes; otherwise, the uncommitted data is deleted after the flush operation. The default is false. Data at offsets less than the specified position are written to the file when flush succeeds, but this optional parameter allows data after the flush position to be retained for a future flush operation. :keyword ~azure.storage.filedatalake.ContentSettings content_settings: ContentSettings object used to set path properties. :keyword bool close: Azure Storage Events allow applications to receive notifications when files change. When Azure Storage Events are enabled, a file changed event is raised. This event has a property indicating whether this is the final change to distinguish the difference between an intermediate flush to a file stream and the final close of a file stream. The close query parameter is valid only when the action is "flush" and change notifications are enabled. If the value of close is "true" and the flush operation completes successfully, the service raises a file change notification with a property indicating that this is the final update (the file stream has been closed). If "false" a change notification is raised indicating the file has changed. The default is false. This query parameter is set to true by the Hadoop ABFS driver to indicate that the file stream has been closed." :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :return: response header in dict .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_file_system.py :start-after: [START upload_file_to_file_system] :end-before: [END upload_file_to_file_system] :language: python :dedent: 8 :caption: Commit the previous appended data. """ options = self._flush_data_options( offset, retain_uncommitted_data=retain_uncommitted_data, **kwargs) try: return self._client.path.flush_data(**options) except StorageErrorException as error: process_storage_error(error) def download_file(self, offset=None, length=None, **kwargs): # type: (Optional[int], Optional[int], Any) -> StorageStreamDownloader """Downloads a file to the StorageStreamDownloader. The readall() method must be used to read all the content, or readinto() must be used to download the file into a stream. :param int offset: Start of byte range to use for downloading a section of the file. Must be set if length is provided. :param int length: Number of bytes to read from the stream. This is optional, but should be supplied for optimal performance. :keyword lease: If specified, download only succeeds if the file's lease is active and matches this ID. Required if the file has an active lease. :paramtype lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int max_concurrency: The number of parallel connections with which to download. :keyword int timeout: The timeout parameter is expressed in seconds. This method may make multiple calls to the Azure service and the timeout will apply to each call individually. :returns: A streaming object (StorageStreamDownloader) :rtype: ~azure.storage.filedatalake.StorageStreamDownloader .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START read_file] :end-before: [END read_file] :language: python :dedent: 4 :caption: Return the downloaded data. """ downloader = self._blob_client.download_blob(offset=offset, length=length, **kwargs) return StorageStreamDownloader(downloader) def rename_file(self, new_name, # type: str **kwargs): # type: (**Any) -> DataLakeFileClient """ Rename the source file. :param str new_name: the new file name the user want to rename to. The value must have the following format: "{filesystem}/{directory}/{subdirectory}/{file}". :keyword ~azure.storage.filedatalake.ContentSettings content_settings: ContentSettings object used to set path properties. :keyword source_lease: A lease ID for the source path. If specified, the source path must have an active lease and the leaase ID must match. :paramtype source_lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword lease: Required if the file/directory has an active lease. Value can be a LeaseClient object or the lease ID as a string. :type lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword ~datetime.datetime source_if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime source_if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str source_etag: The source ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions source_match_condition: The source match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :return: the renamed file client :rtype: DataLakeFileClient .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_upload_download.py :start-after: [START rename_file] :end-before: [END rename_file] :language: python :dedent: 4 :caption: Rename the source file. """ new_name = new_name.strip('/') new_file_system = new_name.split('/')[0] new_path_and_token = new_name[len(new_file_system):].strip('/').split('?') new_path = new_path_and_token[0] try: new_file_sas = new_path_and_token[1] or self._query_str.strip('?') except IndexError: if not self._raw_credential and new_file_system != self.file_system_name: raise ValueError("please provide the sas token for the new file") if not self._raw_credential and new_file_system == self.file_system_name: new_file_sas = self._query_str.strip('?') new_file_client = DataLakeFileClient( "{}://{}".format(self.scheme, self.primary_hostname), new_file_system, file_path=new_path, credential=self._raw_credential or new_file_sas, _hosts=self._hosts, _configuration=self._config, _pipeline=self._pipeline, _location_mode=self._location_mode, require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, key_resolver_function=self.key_resolver_function ) new_file_client._rename_path( # pylint: disable=protected-access '/{}/{}{}'.format(quote(unquote(self.file_system_name)), quote(unquote(self.path_name)), self._query_str), **kwargs) return new_file_client def query_file(self, query_expression, **kwargs): # type: (str, **Any) -> DataLakeFileQueryReader """ Enables users to select/project on datalake file data by providing simple query expressions. This operations returns a DataLakeFileQueryReader, users need to use readall() or readinto() to get query data. :param str query_expression: Required. a query statement. eg. Select * from DataLakeStorage :keyword Callable[~azure.storage.filedatalake.DataLakeFileQueryError] on_error: A function to be called on any processing errors returned by the service. :keyword file_format: Optional. Defines the serialization of the data currently stored in the file. The default is to treat the file data as CSV data formatted in the default dialect. This can be overridden with a custom DelimitedTextDialect, or alternatively a DelimitedJsonDialect. :paramtype file_format: ~azure.storage.filedatalake.DelimitedTextDialect or ~azure.storage.filedatalake.DelimitedJsonDialect :keyword output_format: Optional. Defines the output serialization for the data stream. By default the data will be returned as it is represented in the file. By providing an output format, the file data will be reformatted according to that profile. This value can be a DelimitedTextDialect or a DelimitedJsonDialect. :paramtype output_format: ~azure.storage.filedatalake.DelimitedTextDialect, ~azure.storage.filedatalake.DelimitedJsonDialect or list[~azure.storage.filedatalake.ArrowDialect] :keyword lease: Required if the file has an active lease. Value can be a DataLakeLeaseClient object or the lease ID as a string. :paramtype lease: ~azure.storage.filedatalake.DataLakeLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: A streaming object (DataLakeFileQueryReader) :rtype: ~azure.storage.filedatalake.DataLakeFileQueryReader .. admonition:: Example: .. literalinclude:: ../samples/datalake_samples_query.py :start-after: [START query] :end-before: [END query] :language: python :dedent: 4 :caption: select/project on datalake file data by providing simple query expressions. """ query_expression = query_expression.replace("from DataLakeStorage", "from BlobStorage") blob_quick_query_reader = self._blob_client.query_blob(query_expression, blob_format=kwargs.pop('file_format', None), error_cls=DataLakeFileQueryError, **kwargs) return DataLakeFileQueryReader(blob_quick_query_reader)
53.335544
119
0.647793
946459d6576c44f5f5d7703eb602d68af146a0f2
2,861
py
Python
postprocess/postprocess_text.py
alberto-poncelas/tesseract_postprocess
5b44e360a3575c640d68d38d8f7acaf48b5aee2e
[ "MIT" ]
6
2020-04-28T07:30:55.000Z
2021-07-07T02:47:19.000Z
postprocess/postprocess_text.py
alberto-poncelas/tesseract_postprocess
5b44e360a3575c640d68d38d8f7acaf48b5aee2e
[ "MIT" ]
null
null
null
postprocess/postprocess_text.py
alberto-poncelas/tesseract_postprocess
5b44e360a3575c640d68d38d8f7acaf48b5aee2e
[ "MIT" ]
null
null
null
import sys import string import nltk import ConfigParser import io config = ConfigParser.ConfigParser() config.readfp(open(r'../config')) language_model_path = config.get('DEFAULT', 'LM') input_data = sys.argv[1] replacement_dict_path = sys.argv[2] with io.open(input_data,"r", encoding="utf-8") as finp: data = finp.readlines() from nltk.tokenize.treebank import TreebankWordDetokenizer detok=TreebankWordDetokenizer() #Get Language Model import kenlm LMmodel = kenlm.Model(language_model_path) ##Get replacement dict with io.open(replacement_dict_path,"r", encoding="utf-8") as frep: alternative_dict_text = frep.readlines() alternative_elems=[x.strip().split("->") for x in alternative_dict_text] alternative_dict=dict() for elem in alternative_elems: #remove "[" and "]", then split values=elem[1][2:-2].split("', '") alternative_dict[elem[0]]=values unrecognized_words_list=alternative_dict.keys() #replace the i-th word in the sentence (as list) with the word w def replace_word_list(listS,i,w): new_sentence=list(listS) new_sentence[i]=w return new_sentence #Return w2, with the same case as w1 def same_case(w,w2): if w.isupper(): return w2.upper() elif w[0].isupper(): return w2.capitalize() else: return w2 #Get the alternative sentences for the word i def candidate_sentences_i(listS,i): alternative_sentences=[listS] replacements=[ [] ] w_orig=listS[i] w=w_orig.lower() if w in unrecognized_words_list: altern=alternative_dict[w] for alt_lower in altern: alt=same_case(w_orig,alt_lower) #Same case as the original word alternative_sentences.append(replace_word_list(listS,i,alt)) replacements.append([w_orig,alt]) return alternative_sentences , replacements #score a sentence (list of words) according to the LM def sentence_score(listS): return LMmodel.score(" ".join(listS).lower()) #get the best candidate according to the LM def postproc_sentence(s): listS=list(s.strip().split(" ")) replacements_list=[] for i in range(0,len(listS)): candidates ,replacements = candidate_sentences_i(listS,i) scores=[sentence_score(x) for x in candidates] best_sentence_idx=scores.index(max(scores)) #Replace the sentence with the best candidate listS = candidates[best_sentence_idx] replacements_list.append(replacements[best_sentence_idx] ) #return " ".join(listS),replacements_list return detok.detokenize(listS),replacements_list #Print postprocessed sentence (and the dictionaries of replacements done) def format_replacements_list(replac_list): replac_list_out=[] for x in replac_list: if len(x)>0: replac_list_out.append(x[0]+"->"+x[1]) return "; ".join(replac_list_out) for s in data: post_sent , replac = postproc_sentence(s) replac_str=format_replacements_list(replac) print( (post_sent+"\t"+replac_str).encode("UTF8") )
20.435714
73
0.749738
f1d6d33396ac0fd163b23cf07e1e987c4cade913
1,071
py
Python
stubs.min/Autodesk/Revit/DB/Electrical_parts/PanelConfiguration.py
ricardyn/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2021-02-02T13:39:16.000Z
2021-02-02T13:39:16.000Z
stubs.min/Autodesk/Revit/DB/Electrical_parts/PanelConfiguration.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/Autodesk/Revit/DB/Electrical_parts/PanelConfiguration.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class PanelConfiguration(Enum,IComparable,IFormattable,IConvertible): """ This enum declares the configuration for given panel schedule type. enum PanelConfiguration,values: OneColumn (0),TwoColumnsCircuitsAcross (1),TwoColumnsCircuitsDown (2) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass OneColumn=None TwoColumnsCircuitsAcross=None TwoColumnsCircuitsDown=None value__=None
30.6
215
0.691877
1eed11a533674cf0fcb436122d44286595322e7c
1,139
py
Python
chapter3/question1.py
AmatsukiUrato/study_python
e06afbc92a6f112ff9d3159bea4abcca6b17d280
[ "MIT" ]
null
null
null
chapter3/question1.py
AmatsukiUrato/study_python
e06afbc92a6f112ff9d3159bea4abcca6b17d280
[ "MIT" ]
null
null
null
chapter3/question1.py
AmatsukiUrato/study_python
e06afbc92a6f112ff9d3159bea4abcca6b17d280
[ "MIT" ]
1
2019-04-11T04:08:03.000Z
2019-04-11T04:08:03.000Z
def go_sukiya(wallet): menu = { "牛丼ミニ": 290, "牛丼並盛": 350, "牛丼中盛": 480 } print("いらっしゃいませ!") print("何をご注文なさいますか?") product = choice(menu) print("承知いたしました") if can_pay(wallet, menu[product]): wallet = wallet - menu[product] print("お釣りは" + str(wallet) + "です") print("ありがとうございました!またのご来店をお待ちしております") else: print("支払えるだけのお金を持っていないようですね") wallet = 0 return wallet def can_pay(wallet, price): if wallet == 0: return False if wallet - price < 0: return False return True def choice(menu): print(menu) product = input() if not product in menu: print() print("お店にある商品を選んでください") product = choice(menu) return product if __name__ == "__main__": wallet = 1000 while (True): print("現在の所持金:" + str(wallet)) wallet = go_sukiya(wallet) if wallet == 0: print("もうすき家にはいけません...") break else: print("もう一度すき家にいきますか?(y/n)") is_visit = input() if is_visit == "n": break
19.982456
45
0.524144
a31de5417037e1c6b1be098094a6c94c36dd6007
1,180
py
Python
sfdc.py
mkesicki/sfdc-batch-dataloader
aa34d108c613cfa9bc11b758a767139c20a1308d
[ "MIT" ]
null
null
null
sfdc.py
mkesicki/sfdc-batch-dataloader
aa34d108c613cfa9bc11b758a767139c20a1308d
[ "MIT" ]
null
null
null
sfdc.py
mkesicki/sfdc-batch-dataloader
aa34d108c613cfa9bc11b758a767139c20a1308d
[ "MIT" ]
null
null
null
#!/usr/bin/python3 -u import requests import pprint headers = {} instance = "" api_version = "v47.0" def login(args): url = "https://" + args.login_url.replace("https://", "") print("Login to salesforce: " + url) params = { "client_id": args.client_id, "client_secret": args.client_secret, "username": args.username, "password": args.password, "grant_type": "password" } r = requests.post(url + "/services/oauth2/token", data=params) access_token = r.json().get("access_token") instance_url = r.json().get("instance_url") global headers headers = { "Content-Type": "application/json", "Authorization": "Bearer " + access_token } print("Salesforce instance: " + instance_url) global instance instance = instance_url return instance_url def getFields(object): url = instance + "/services/data/"+ api_version + "/sobjects/" + object + "/describe" print("Get fields for: " + object) r = requests.get(url, headers=headers) fields = [] for field in r.json().get('fields'): fields.append(field.get('name')) return fields
20.701754
90
0.611017
f5f786ffa8468ca3a8fd0eb5d797b473c17335f4
467
py
Python
home/migrations/0013_auto_20200802_1712.py
Muia23/Share
32f3fa5d75ee147920eb5255de2fb07e960f0b0a
[ "Unlicense" ]
null
null
null
home/migrations/0013_auto_20200802_1712.py
Muia23/Share
32f3fa5d75ee147920eb5255de2fb07e960f0b0a
[ "Unlicense" ]
8
2021-04-08T19:40:41.000Z
2022-03-12T00:46:05.000Z
home/migrations/0013_auto_20200802_1712.py
Muia23/Share
32f3fa5d75ee147920eb5255de2fb07e960f0b0a
[ "Unlicense" ]
null
null
null
# Generated by Django 3.0.8 on 2020-08-02 14:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('home', '0012_auto_20200802_1710'), ] operations = [ migrations.AlterField( model_name='post', name='location', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='home.Location'), ), ]
23.35
101
0.635974
49ddabb28232e2824a0ee360b2cf0cf53e76ca94
4,305
py
Python
modules/pymol2/__init__.py
telamonian/pymol
8192e75bf3d4c1072d6bd399b7dacd065bf78a06
[ "CNRI-Python" ]
1
2017-10-05T15:25:56.000Z
2017-10-05T15:25:56.000Z
modules/pymol2/__init__.py
telamonian/pymol
8192e75bf3d4c1072d6bd399b7dacd065bf78a06
[ "CNRI-Python" ]
null
null
null
modules/pymol2/__init__.py
telamonian/pymol
8192e75bf3d4c1072d6bd399b7dacd065bf78a06
[ "CNRI-Python" ]
null
null
null
#A* ------------------------------------------------------------------- #B* This file contains source code for the PyMOL computer program #C* copyright 1998-2007 by Warren Lyford Delano of DeLano Scientific. #D* ------------------------------------------------------------------- #E* It is unlawful to modify or remove this copyright notice. #F* ------------------------------------------------------------------- #G* Please see the accompanying LICENSE file for further information. #H* ------------------------------------------------------------------- #I* Additional authors of this source file include: #-* #-* #-* #Z* ------------------------------------------------------------------- from __future__ import absolute_import import pymol from pymol import _cmd import threading import sys pymol2_lock = threading.RLock() ## ## FIXME: The PyMOL and SingletonPyMOL classes are partly redundant with the ## instance tracking of the "cmd" module (and the pymol2.cmd2.Cmd class), ## which also holds the _COb pointer. ## class SingletonPyMOL: ''' Start an exclusive PyMOL instance, only one instance allowed ''' def idle(self): return _cmd._idle(self._COb) def getRedisplay(self, reset=True): return _cmd._getRedisplay(self._COb, reset) def reshape(self, width, height, force=0): _cmd._reshape(self._COb, width, height, force) def draw(self): _cmd._draw(self._COb) def button(self, button, state, x, y, modifiers): _cmd._button(self._COb, button, state, x, y, modifiers) def drag(self, x, y, modifiers): _cmd._drag(self._COb, x, y, modifiers) def start(self): cmd = pymol.cmd if cmd._COb is not None: raise RuntimeError('can only start SingletonPyMOL once') with pymol2_lock: cmd._COb = _cmd._new(pymol, pymol.invocation.options) _cmd._start(cmd._COb, cmd) # this instance tracking is redundant with the "cmd" module itself self._COb = cmd._COb self.cmd = cmd def stop(self): with pymol2_lock: _cmd._stop(self._COb) _cmd._del(self._COb) pymol.cmd._COb = None class PyMOL(SingletonPyMOL): ''' Start a non-exclusive PyMOL instance, multiple instances are possible ''' def __getattr__(self, key): # Make this a proxy to the "pymol" module. return getattr(pymol, key) def __init__(self,scheme=None): # initialize a PyMOL instance from .cmd2 import Cmd with pymol2_lock: pymol._init_internals(self) self.invocation = self._invocation options = self.invocation.options if scheme!=None: # if scheme == 'presentation': options.quiet = 0 options.show_splash = 0 options.external_gui = 0 options.internal_feedback = 0 options.no_quit = 1 options.internal_gui = 0 options.presentation = 1 elif scheme == 'widget': # An embedded widget of some type options.quiet = 0 options.show_splash = 0 options.external_gui = 0 options.internal_feedback = 1 options.no_quit = 1 else: options.show_splash = 0 # suppress this annoyance by default self._COb = _cmd._new(self,self.invocation.options) # initialize the cmd API self.cmd = Cmd(self,self._COb) # begin assembling the instance member by member self.glutThread = None def __del__(self): _cmd._del(self._COb) self.cmd.__dict__.clear() def start(self): with pymol2_lock: _cmd._start(self._COb, self.cmd) def startWithTclTk(self, gui = None, skin=None): self.start() if gui == None: gui = self.invocation.options.gui if skin == None: skin = self.invocation.options.skin poll = 0 __import__(gui) sys.modules[gui].__init__(self,poll,skin) def stop(self): _cmd._stop(self._COb)
30.316901
76
0.54216
b47c7b63d900629404d67f045640c684b5286f80
39,422
py
Python
Server.py
mdkinney/edk2-email-archive-webhook
379ff29ac40f05f09dbf9fac35e8072e09a26a07
[ "BSD-2-Clause-Patent" ]
2
2021-01-15T18:37:25.000Z
2022-01-12T03:22:57.000Z
Server.py
mdkinney/edk2-email-archive-webhook
379ff29ac40f05f09dbf9fac35e8072e09a26a07
[ "BSD-2-Clause-Patent" ]
null
null
null
Server.py
mdkinney/edk2-email-archive-webhook
379ff29ac40f05f09dbf9fac35e8072e09a26a07
[ "BSD-2-Clause-Patent" ]
null
null
null
## @file # Assign reviewers to commits in a GitHub pull request based on assignments # documented in Maintainers.txt and generate email archive of all review # activities. # # Copyright (c) 2020, Intel Corporation. All rights reserved.<BR> # SPDX-License-Identifier: BSD-2-Clause-Patent # ''' TianoCore GitHub Webhook ''' from __future__ import print_function import os import sys import argparse import hmac import datetime from json import dumps from flask import Flask, request, abort from github import Github from GetMaintainers import GetMaintainers from GetMaintainers import ParseMaintainerAddresses from SendEmails import SendEmails from FetchPullRequest import FetchPullRequest from FetchPullRequest import FormatPatch from FetchPullRequest import FormatPatchSummary # # Globals for help information # __prog__ = 'TianoCoreGitHubWebHookServer' __copyright__ = 'Copyright (c) 2020, Intel Corporation. All rights reserved.' __description__ = 'Assign reviewers to commits in a GitHub pull request based on assignments documented in Maintainers.txt and generate email archive of all review activities.\n' GITHUB_TOKEN = os.environ['GITHUB_TOKEN'] GITHUB_WEBHOOK_SECRET = os.environ['GITHUB_WEBHOOK_SECRET'] GITHUB_WEBHOOK_ROUTE = os.environ['GITHUB_WEBHOOK_ROUTE'] GITHUB_WEBHOOK_PORT_NUMBER = int(os.environ['GITHUB_WEBHOOK_PORT_NUMBER']) GITHUB_REPO_WHITE_LIST = os.environ['GITHUB_REPO_WHITE_LIST'] REVIEW_REQUEST = '[CodeReview] Review-request @' REVIEWED_BY = '[CodeReview] Reviewed-by' SERIES_REVIEWED_BY = '[CodeReview] Series-reviewed-by' ACKED_BY = '[CodeReview] Acked-by' TESTED_BY = '[CodeReview] Acked-by' def UpdatePullRequestCommitReviewers (Commit, GitHubIdList): # # Retrieve all review comments for this commit # Body = [] for Comment in Commit.get_comments(): if Comment.body is not None: Body = Body + [Line.strip() for Line in Comment.body.splitlines()] # # Determine if any reviewers need to be added to this commit # AddReviewers = [] for Reviewer in GitHubIdList: if REVIEW_REQUEST + Reviewer not in Body: AddReviewers.append(REVIEW_REQUEST + Reviewer + '\n') if AddReviewers != []: for Reviewer in AddReviewers: print (' ' + ' '.join(AddReviewers)) # # NOTE: This triggers a recursion into this webhook that needs to be # ignored # Commit.create_comment (''.join(AddReviewers)) # # Return True if reviewers were added to this commit # return AddReviewers != [] def UpdatePullRequestReviewers (Hub, HubRepo, HubPullRequest, PullRequestGitHubIdList): # # Get list of reviewers already requested for the pull request # RequestedReviewers = HubPullRequest.get_review_requests()[0] # # Determine if any reviewers need to be removed # RemoveReviewerList = [] for Reviewer in RequestedReviewers: if Reviewer.login not in PullRequestGitHubIdList: print ('pr[%d]' % (HubPullRequest.number), 'Remove Reviewer : @' + Reviewer.login) RemoveReviewerList.append(Reviewer.login) # # Determine if any reviewers need to be added # AddReviewerList = [] Collaborators = HubRepo.get_collaborators() for Login in PullRequestGitHubIdList: Reviewer = Hub.get_user(Login) if Reviewer == HubPullRequest.user: print ('pr[%d]' % (HubPullRequest.number), 'Reviewer is Author : @' + Reviewer.login) elif Reviewer not in RequestedReviewers: if Reviewer in Collaborators: print ('pr[%d]' % (HubPullRequest.number), 'Add Reviewer : @' + Reviewer.login) AddReviewerList.append (Reviewer.login) else: print ('pr[%d]' % (HubPullRequest.number), 'Reviewer is not a collaborator : @' + Reviewer.login) else: print ('pr[%d]' % (HubPullRequest.number), 'Already Assigned : @' + Reviewer.login) # # Update review requests # if RemoveReviewerList != []: # # NOTE: This may trigger recursion into this webhook # HubPullRequest.delete_review_request (RemoveReviewerList) if AddReviewerList != []: # # NOTE: This may trigger recursion into this webhook # HubPullRequest.create_review_request (AddReviewerList) def GetReviewComments(Comment, ReviewComments, CommentIdDict): if Comment in ReviewComments: return ReviewComments.append(Comment) # # Add peer comments # if Comment.pull_request_review_id: for PeerComment in CommentIdDict.values(): if PeerComment.pull_request_review_id == Comment.pull_request_review_id: GetReviewComments (PeerComment, ReviewComments, CommentIdDict) # # Add child comments # for ChildComment in CommentIdDict.values(): if ChildComment.in_reply_to_id == Comment.id: GetReviewComments (ChildComment, ReviewComments, CommentIdDict) # # Add parent comment # if Comment.in_reply_to_id and Comment.in_reply_to_id in CommentIdDict: ParentComment = CommentIdDict[Comment.in_reply_to_id] GetReviewComments (ParentComment, ReviewComments, CommentIdDict) def GetReviewCommentsFromReview(Review, CommentId, CommentInReplyToId, CommentIdDict): ReviewComments = [] for Comment in CommentIdDict.values(): if Review: if Comment.pull_request_review_id == Review.id: GetReviewComments (Comment, ReviewComments, CommentIdDict) if CommentId: if Comment.in_reply_to_id == CommentId: GetReviewComments (Comment, ReviewComments, CommentIdDict) if CommentInReplyToId: if Comment.id == CommentInReplyToId: GetReviewComments (Comment, ReviewComments, CommentIdDict) return ReviewComments application = Flask(__name__) @application.route(GITHUB_WEBHOOK_ROUTE, methods=['GET', 'POST']) def index(): """ Main WSGI application entry. """ if args.Verbose: print (request.headers) # Only POST is implemented if request.method != 'POST': print (501, "only POST is supported") abort(501, "only POST is supported") # Enforce secret, so not just anybody can trigger these hooks secret = GITHUB_WEBHOOK_SECRET if secret: # Only SHA1 is supported header_signature = request.headers.get('X-Hub-Signature') if header_signature is None: print (403, "No header signature found") abort(403, "No header signature found") sha_name, signature = header_signature.split('=') if sha_name != 'sha1': print(501, "Only SHA1 is supported") abort(501, "Only SHA1 is supported") # HMAC requires the key to be bytes, but data is string mac = hmac.new(bytes(secret, 'utf-8'), msg=request.data, digestmod='sha1') # Python does not have hmac.compare_digest prior to 2.7.7 if sys.hexversion >= 0x020707F0: if not hmac.compare_digest(str(mac.hexdigest()), str(signature)): print(403, "hmac compare digest failed") abort(403) else: # What compare_digest provides is protection against timing # attacks; we can live without this protection for a web-based # application if not str(mac.hexdigest()) == str(signature): print(403, "hmac compare digest failed") abort(403) # Implement ping event = request.headers.get('X-GitHub-Event', 'ping') if event == 'ping': print ('ping request. respond with pong') return dumps({'msg': 'pong'}) # Implement meta if event == 'meta': return dumps({'msg': 'meta'}) # Gather data try: payload = request.get_json() except Exception: print(400, "Request parsing failed") abort(400, "Request parsing failed") # # Skip push and create events # if event in ['push', 'create']: print ('skip event', event) return dumps({'status': 'skipped'}) # # Skip payload that does not provide an action # if 'action' not in payload: print ('skip payload that does not provide an action. event =', event) return dumps({'status': 'skipped'}) # # Skip payload that does not provide a repository # if 'repository' not in payload: print ('skip payload that does not provide a repository. event=', event) return dumps({'status': 'skipped'}) # # Skip payload that does not provide a repository full name # if 'full_name' not in payload['repository']: print ('skip payload that does not provide a repository full name. event=', event) return dumps({'status': 'skipped'}) # # Skip requests that are not in GITHUB_REPO_WHITE_LIST # if payload['repository']['full_name'] not in GITHUB_REPO_WHITE_LIST: print ('skip event for different repo') return dumps({'status': 'skipped'}) print ('----> Process Event <----', event, payload['action']) ############################################################################ # Process issue comment events # These are comments against the entire pull request # Quote Patch #0 Body and add comment below below with commenters GitHubID ############################################################################ if event == 'issue_comment': action = payload['action'] if action not in ['created', 'edited', 'deleted']: print ('skip issue_comment event with action other than created or edited') return dumps({'status': 'skipped'}) if 'pull_request' not in payload['issue']: print ('skip issue_comment event without an associated pull request') return dumps({'status': 'skipped'}) # # Use GitHub API to get Pull Request # try: HubRepo = Hub.get_repo (payload['repository']['full_name']) HubPullRequest = HubRepo.get_pull(payload['issue']['number']) except: # # Skip requests if the PyGitHub objects can not be retrieved # print ('skip issue_comment event for which the PyGitHub objects can not be retrieved') return dumps({'status': 'skipped'}) # # Skip pull request that is not open # if HubPullRequest.state != 'open': print ('Skip issue_comment event against a pull request that is not open') return dumps({'status': 'skipped'}) # # Skip pull request with a base repo that is different than the expected repo # if HubPullRequest.base.repo.full_name != HubRepo.full_name: print ('Skip issue_comment event against a different repo', HubPullRequest.base.repo.full_name) return dumps({'status': 'skipped'}) # # Skip pull requests with a base branch that is not the default branch # if HubPullRequest.base.ref != HubRepo.default_branch: print ('Skip issue_comment event against non-default base branch', HubPullRequest.base.ref) return dumps({'status': 'skipped'}) # # Fetch the git commits for the pull request and return a git repo # object and the contents of Maintainers.txt # GitRepo, Maintainers = FetchPullRequest (HubPullRequest) if GitRepo is None or Maintainers is None: print ('Skip issue_comment event that can not be fetched') return dumps({'status': 'skipped'}) # # Count head_ref_force_pushed and reopened events to determine the # version of the patch series. # PatchSeriesVersion = 1; Events = HubPullRequest.get_issue_events() for Event in Events: if Event.event in ['head_ref_force_pushed', 'reopened']: PatchSeriesVersion = PatchSeriesVersion + 1; PullRequestAddressList = [] for Commit in HubPullRequest.get_commits(): # # Get list of files modifies by commit from GIT repository # CommitFiles = GitRepo.commit(Commit.sha).stats.files # # Get maintainers and reviewers for all files in this commit # Addresses = GetMaintainers (Maintainers, CommitFiles) AddressList, GitHubIdList, EmailList = ParseMaintainerAddresses(Addresses) PullRequestAddressList = list(set(PullRequestAddressList + AddressList)) # # Generate the summary email patch #0 with body of email prefixed with >. # UpdateDeltaTime = 0 if action == 'edited': # # The delta time is the number of seconds from the time the comment # was created to the time the comment was edited # UpdatedAt = datetime.datetime.strptime(payload['comment']['updated_at'], "%Y-%m-%dT%H:%M:%SZ") CreatedAt = datetime.datetime.strptime(payload['comment']['created_at'], "%Y-%m-%dT%H:%M:%SZ") UpdateDeltaTime = (UpdatedAt - CreatedAt).seconds if action == 'deleted': UpdateDeltaTime = -1 Summary = FormatPatchSummary ( event, GitRepo, HubRepo, HubPullRequest, PullRequestAddressList, PatchSeriesVersion, CommitRange = HubPullRequest.base.sha + '..' + HubPullRequest.head.sha, CommentUser = payload['comment']['user']['login'], CommentId = payload['comment']['id'], CommentPosition = None, CommentPath = None, Prefix = '> ', UpdateDeltaTime = UpdateDeltaTime ) # # Send any generated emails # SendEmails (HubPullRequest, [Summary], args.EmailServer) print ('----> Process Event Done <----', event, payload['action']) return dumps({'msg': 'issue_comment created or edited'}) ############################################################################ # Process commit comment events # These are comments against a specific commit # Quote Patch #n commit message and add comment below below with commenters GitHubID ############################################################################ if event == 'commit_comment': action = payload['action'] if action not in ['created', 'edited']: print ('skip commit_comment event with action other than created or edited') return dumps({'status': 'skipped'}) # # Skip REVIEW_REQUEST comments made by the webhook itself. This same # information is always present in the patch emails, so filtering these # comments prevent double emails when a pull request is opened or # synchronized. # Body = payload['comment']['body'].splitlines() for Line in payload['comment']['body'].splitlines(): if Line.startswith (REVIEW_REQUEST): print ('skip commit_comment event with review request body from this webhook') return dumps({'status': 'skipped'}) # # Search for issues/pull requests that contain the comment's commit_id # CommitId = payload['comment']['commit_id'] CommentId = payload['comment']['id'] CommentPosition = payload['comment']['position'] CommentPath = payload['comment']['path'] EmailContents = [] for Issue in Hub.search_issues('SHA:' + CommitId): # # Skip Issue for a different repository # if Issue.repository.full_name != payload['repository']['full_name']: print ('Skip commit_comment event against a different repo', HubPullRequest.base.repo.full_name) continue # # Use GitHub API to get Pull Request # try: HubRepo = Issue.repository HubPullRequest = Issue.as_pull_request() except: print ('skip commit_comment event for which the PyGitHub objects can not be retrieved') continue # # Skip pull request that is not open # if HubPullRequest.state != 'open': print ('Skip commit_comment event against a pull request that is not open') return dumps({'status': 'skipped'}) # # Skip commit_comment with a base repo that is different than the expected repo # if HubPullRequest.base.repo.full_name != HubRepo.full_name: print ('Skip commit_comment event against a different repo', HubPullRequest.base.repo.full_name) continue # # Skip commit_comment with a base branch that is not the default branch # if HubPullRequest.base.ref != HubRepo.default_branch: print ('Skip commit_comment event against non-default base branch', HubPullRequest.base.ref) continue # # Fetch the git commits for the pull request and return a git repo # object and the contents of Maintainers.txt # GitRepo, Maintainers = FetchPullRequest (HubPullRequest) if GitRepo is None or Maintainers is None: print ('Skip commit_comment event that can not be fetched') continue # # Count head_ref_force_pushed and reopened events to determine the # version of the patch series. # PatchSeriesVersion = 1; Events = HubPullRequest.get_issue_events() for Event in Events: if Event.event in ['head_ref_force_pushed', 'reopened']: PatchSeriesVersion = PatchSeriesVersion + 1; # # Determine the patch number of the commit with the comment # PatchNumber = 0 for Commit in HubPullRequest.get_commits(): PatchNumber = PatchNumber + 1 if Commit.sha == CommitId: break # # Get commit from GIT repository # CommitFiles = GitRepo.commit(Commit.sha).stats.files # # Get maintainers and reviewers for all files in this commit # Addresses = GetMaintainers (Maintainers, CommitFiles) AddressList, GitHubIdList, EmailList = ParseMaintainerAddresses(Addresses) Email = FormatPatch ( event, GitRepo, HubRepo, HubPullRequest, Commit, AddressList, PatchSeriesVersion, PatchNumber, CommentUser = payload['comment']['user']['login'], CommentId = CommentId, CommentPosition = CommentPosition, CommentPath = CommentPath, Prefix = '> ' ) EmailContents.append (Email) if EmailContents == []: print ('skip commit_comment that is not for any supported repo') return dumps({'status': 'skipped'}) # # Send any generated emails # SendEmails (HubPullRequest, EmailContents, args.EmailServer) print ('----> Process Event Done <----', event, payload['action']) return dumps({'msg': 'commit_comment created or edited'}) ############################################################################ # Process pull_request_review_comment and pull_request_review events # Quote Patch #0 commit message and patch diff of file comment is against ############################################################################ if event in ['pull_request_review_comment', 'pull_request_review']: action = payload['action'] Review = None ReviewComments = [] DeleteId = None ParentReviewId = None UpdateDeltaTime = 0 if event in ['pull_request_review_comment']: if action not in ['edited', 'deleted']: print ('skip pull_request_review_comment event with action other than edited or deleted') return dumps({'status': 'skipped'}) # # Skip REVIEW_REQUEST comments made by the webhook itself. This same # information is always present in the patch emails, so filtering these # comments prevent double emails when a pull request is opened or # synchronized. # Body = payload['comment']['body'].splitlines() for Line in payload['comment']['body'].splitlines(): if Line.startswith (REVIEW_REQUEST): print ('skip pull_request_review_comment event with review request body from this webhook') return dumps({'status': 'skipped'}) if event in ['pull_request_review']: if action not in ['submitted', 'edited']: print ('skip pull_request_review event with action other than submitted or edited') return dumps({'status': 'skipped'}) if action == 'edited' and payload['changes'] == {}: print ('skip pull_request_review event edited action that has no changes') return dumps({'status': 'skipped'}) EmailContents = [] # # Use GitHub API to get Pull Request # try: HubRepo = Hub.get_repo (payload['repository']['full_name']) HubPullRequest = HubRepo.get_pull(payload['pull_request']['number']) except: print ('skip pull_request_review_comment event for which the PyGitHub objects can not be retrieved') return dumps({'status': 'skipped'}) # # Skip pull request that is not open # if HubPullRequest.state != 'open': print ('Skip pull_request_review_comment event against a pull request that is not open') return dumps({'status': 'skipped'}) # # Skip pull_request_review_comment with a base repo that is different than the expected repo # if HubPullRequest.base.repo.full_name != HubRepo.full_name: print ('Skip pull_request_review_comment event against a different repo', HubPullRequest.base.repo.full_name) return dumps({'status': 'skipped'}) # # Skip pull_request_review_comment with a base branch that is not the default branch # if HubPullRequest.base.ref != HubRepo.default_branch: print ('Skip pull_request_review_comment event against non-default base branch', HubPullRequest.base.ref) return dumps({'status': 'skipped'}) # # Build dictionary of review comments # CommentIdDict = {} for Comment in HubPullRequest.get_review_comments(): Comment.pull_request_review_id = None if 'pull_request_review_id' in Comment.raw_data: Comment.pull_request_review_id = Comment.raw_data['pull_request_review_id'] CommentIdDict[Comment.id] = Comment # # Determine if review has a parent review, is being deleted, or has # an update time. # if event in ['pull_request_review']: CommitId = payload['review']['commit_id'] CommentUser = payload['review']['user']['login'], CommentId = None CommentPosition = None CommentPath = None CommentInReplyToId = None ReviewId = payload['review']['id'] try: Review = HubPullRequest.get_review(ReviewId) except: Review = None ReviewComments = GetReviewCommentsFromReview(Review, CommentId, CommentInReplyToId, CommentIdDict) if payload['action'] == 'submitted': UpdateDeltaTime = 0 for ReviewComment in ReviewComments: if ReviewComment.pull_request_review_id == ReviewId: if ReviewComment.in_reply_to_id and ReviewComment.in_reply_to_id in CommentIdDict: ParentReviewId = CommentIdDict[ReviewComment.in_reply_to_id].pull_request_review_id if ParentReviewId and ParentReviewId != ReviewId: break if payload['action'] == 'edited' and Review: UpdatedAt = datetime.datetime.strptime(payload['pull_request']['updated_at'], "%Y-%m-%dT%H:%M:%SZ") UpdateDeltaTime = (UpdatedAt - Review.submitted_at).seconds if event in ['pull_request_review_comment']: CommitId = payload['comment']['commit_id'] CommentId = payload['comment']['id'] CommentUser = payload['comment']['user']['login'], CommentPosition = payload['comment']['position'] CommentPath = payload['comment']['path'] CommentInReplyToId = None ReviewId = None if 'in_reply_to_id' in payload['comment']: CommentInReplyToId = payload['comment']['in_reply_to_id'] if 'pull_request_review_id' in payload['comment']: ReviewId = payload['comment']['pull_request_review_id'] try: Review = HubPullRequest.get_review(ReviewId) except: Review = None ReviewComments = GetReviewCommentsFromReview(Review, CommentId, CommentInReplyToId, CommentIdDict) if payload['action'] == 'deleted': UpdateDeltaTime = 0 DeleteId = payload['comment']['id'] if payload['action'] == 'edited' and Review: UpdatedAt = datetime.datetime.strptime(payload['comment']['updated_at'], "%Y-%m-%dT%H:%M:%SZ") UpdateDeltaTime = (UpdatedAt - Review.submitted_at).seconds # # Fetch the git commits for the pull request and return a git repo # object and the contents of Maintainers.txt # GitRepo, Maintainers = FetchPullRequest (HubPullRequest) if GitRepo is None or Maintainers is None: print ('Skip pull_request_review_comment event that can not be fetched') return dumps({'status': 'skipped'}) # # Count head_ref_force_pushed and reopened events to determine the # version of the patch series. # PatchSeriesVersion = 1; Events = HubPullRequest.get_issue_events() for Event in Events: if Event.event in ['head_ref_force_pushed', 'reopened']: PatchSeriesVersion = PatchSeriesVersion + 1; # # All pull request review comments are against patch #0 # PatchNumber = 0 # # Build dictionary of files in range of commits from the pull request # base sha up to the commit id of the pull request review comment. # CommitFiles = {} for Commit in HubPullRequest.get_commits(): CommitFiles.update (GitRepo.commit(Commit.sha).stats.files) # # Get maintainers and reviewers for all files in this commit # Addresses = GetMaintainers (Maintainers, CommitFiles) AddressList, GitHubIdList, EmailList = ParseMaintainerAddresses(Addresses) # # Generate the summary email patch #0 with body of email prefixed with >. # Email = FormatPatchSummary ( event, GitRepo, HubRepo, HubPullRequest, AddressList, PatchSeriesVersion, CommitRange = HubPullRequest.base.sha + '..' + HubPullRequest.head.sha, CommentUser = CommentUser, CommentId = CommentId, CommentPosition = CommentPosition, CommentPath = CommentPath, Prefix = '> ', CommentInReplyToId = CommentInReplyToId, UpdateDeltaTime = UpdateDeltaTime, Review = Review, ReviewId = ReviewId, ReviewComments = ReviewComments, DeleteId = DeleteId, ParentReviewId = ParentReviewId ) EmailContents.append (Email) # # Send any generated emails # SendEmails (HubPullRequest, EmailContents, args.EmailServer) print ('----> Process Event Done <----', event, payload['action']) return dumps({'msg': event + ' created or edited or deleted'}) ############################################################################ # Process pull request events ############################################################################ if event == 'pull_request': action = payload['action'] if action not in ['opened', 'synchronize', 'edited', 'closed', 'reopened']: print ('skip pull_request event with action other than opened or synchronized') return dumps({'status': 'skipped'}) # # Use GitHub API to get Pull Request # try: HubRepo = Hub.get_repo (payload['repository']['full_name']) HubPullRequest = HubRepo.get_pull(payload['pull_request']['number']) except: # # Skip requests if the PyGitHub objects can not be retrieved # print ('skip pull_request event for which the PyGitHub objects can not be retrieved') return dumps({'status': 'skipped'}) # # Skip pull request that is not open unless this is the event that is # closing the pull request # if action != 'closed': if HubPullRequest.state != 'open': print ('Skip pull_request event against a pull request that is not open') return dumps({'status': 'skipped'}) # # Skip pull request with a base repo that is different than the expected repo # if HubPullRequest.base.repo.full_name != HubRepo.full_name: print ('Skip PR event against a different repo', HubPullRequest.base.repo.full_name) return dumps({'status': 'skipped'}) # # Skip pull requests with a base branch that is not the default branch # if HubPullRequest.base.ref != HubRepo.default_branch: print ('Skip PR event against non-default base branch', HubPullRequest.base.ref) return dumps({'status': 'skipped'}) # # Fetch the git commits for the pull request and return a git repo # object and the contents of Maintainers.txt # GitRepo, Maintainers = FetchPullRequest (HubPullRequest) if GitRepo is None or Maintainers is None: print ('Skip pull_request_review event that can not be fetched') return dumps({'status': 'skipped'}) NewPatchSeries = False PatchSeriesVersion = 1; if action in ['opened', 'reopened']: # # New pull request was created # NewPatchSeries = True if action in ['synchronize', 'edited', 'closed', 'reopened']: # # Existing pull request was updated. # Commits were added to an existing pull request or an existing pull # request was forced push. Get events to determine what happened # Events = HubPullRequest.get_issue_events() for Event in Events: # # Count head_ref_force_pushed and reopened events to determine # the version of the patch series. # if Event.event in ['head_ref_force_pushed', 'reopened']: PatchSeriesVersion = PatchSeriesVersion + 1; if Event.event in ['head_ref_force_pushed']: # # If the head_ref_force_pushed event occurred at the exact # same date/time (or within 2 seconds) that the pull request # was updated, then this was a forced push and the entire # patch series should be emailed again. # if abs(Event.created_at - HubPullRequest.updated_at).seconds <= 2: NewPatchSeries = True PullRequestAddressList = [] PullRequestGitHubIdList = [] PullRequestEmailList = [] EmailContents = [] PatchNumber = 0 for Commit in HubPullRequest.get_commits(): PatchNumber = PatchNumber + 1 # # Get list of files modified by commit from GIT repository # CommitFiles = GitRepo.commit(Commit.sha).stats.files # # Get maintainers and reviewers for all files in this commit # Addresses = GetMaintainers (Maintainers, CommitFiles) AddressList, GitHubIdList, EmailList = ParseMaintainerAddresses(Addresses) PullRequestAddressList = list(set(PullRequestAddressList + AddressList)) PullRequestGitHubIdList = list(set(PullRequestGitHubIdList + GitHubIdList)) PullRequestEmailList = list(set(PullRequestEmailList + EmailList)) if action in ['opened', 'synchronize', 'reopened']: print ('pr[%d]' % (HubPullRequest.number), Commit.sha, ' @' + ' @'.join(PullRequestGitHubIdList)) # # Update the list of required reviewers for this commit # ReviewersUpdated = UpdatePullRequestCommitReviewers (Commit, GitHubIdList) # # Generate email contents for all commits in a pull request if this is # a new pull request or a forced push was done to an existing pull request. # Generate email contents for patches that add new reviewers. This # occurs when when new commits are added to an existing pull request. # if NewPatchSeries or ReviewersUpdated: Email = FormatPatch ( event, GitRepo, HubRepo, HubPullRequest, Commit, AddressList, PatchSeriesVersion, PatchNumber ) EmailContents.append (Email) if action in ['opened', 'synchronize', 'reopened']: # # Update the list of required reviewers for the pull request # UpdatePullRequestReviewers (Hub, HubRepo, HubPullRequest, PullRequestGitHubIdList) # # If this is a new pull request or a forced push on a pull request or an # edit of the pulle request title or description, then generate the # summary email patch #0 and add to be beginning of the list of emails # to send. # if NewPatchSeries or action in ['edited', 'closed']: UpdateDeltaTime = 0 if action in ['edited', 'closed']: UpdateDeltaTime = (HubPullRequest.updated_at - HubPullRequest.created_at).seconds Summary = FormatPatchSummary ( event, GitRepo, HubRepo, HubPullRequest, PullRequestAddressList, PatchSeriesVersion, UpdateDeltaTime = UpdateDeltaTime ) EmailContents.insert (0, Summary) # # Send any generated emails # SendEmails (HubPullRequest, EmailContents, args.EmailServer) print ('----> Process Event Done <----', event, payload['action']) return dumps({'msg': 'pull_request opened or synchronize'}) print ('skip unsupported event') return dumps({'status': 'skipped'}) if __name__ == '__main__': # # Create command line argument parser object # parser = argparse.ArgumentParser (prog = __prog__, description = __description__ + __copyright__, conflict_handler = 'resolve') parser.add_argument ("-e", "--email-server", dest = 'EmailServer', choices = ['Off', 'SMTP', 'SendGrid'], default = 'Off', help = "Email server type used to send emails.") parser.add_argument ("-v", "--verbose", dest = 'Verbose', action = "store_true", help = "Increase output messages") parser.add_argument ("-q", "--quiet", dest = 'Quiet', action = "store_true", help = "Reduce output messages") parser.add_argument ("--debug", dest = 'Debug', type = int, metavar = '[0-9]', choices = range (0, 10), default = 0, help = "Set debug level") # # Parse command line arguments # args = parser.parse_args () # # Create GitHub object authenticated using GitHub Token for the webhook # try: Hub = Github (GITHUB_TOKEN) except: print ('can not access GitHub APIs') sys.exit(1) try: application.run(debug=False, host='localhost', port=GITHUB_WEBHOOK_PORT_NUMBER, threaded=False) except: print ('can not create listener for GitHub HTTP requests') sys.exit(1)
42.207709
179
0.564735
2e1b3a03db82d659335a28f85104b595bca2a2f2
331
py
Python
algorithms-on-graph/week5_mst/1_connecting_points/connecting_points.py
yiping-wang/data-structures-and-algorithms-coursera
fc0ba34399c27b358ce52a323a52ab2eb095f156
[ "MIT" ]
7
2017-04-01T17:18:35.000Z
2022-01-12T05:23:23.000Z
algorithms-on-graph/week5_mst/1_connecting_points/connecting_points.py
yiping-wang/data-structures-and-algorithms-coursera
fc0ba34399c27b358ce52a323a52ab2eb095f156
[ "MIT" ]
6
2020-05-24T13:36:50.000Z
2022-02-15T06:44:20.000Z
algorithms-on-graph/week5_mst/1_connecting_points/connecting_points.py
yiping-wang/data-structures-and-algorithms-coursera
fc0ba34399c27b358ce52a323a52ab2eb095f156
[ "MIT" ]
2
2018-09-20T01:07:39.000Z
2019-02-22T14:55:38.000Z
#Uses python3 import sys import math def minimum_distance(x, y): result = 0. #write your code here return result if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) n = data[0] x = data[1::2] y = data[2::2] print("{0:.9f}".format(minimum_distance(x, y)))
18.388889
51
0.598187
0ffd131cf8343dfa577d9cdc91864271c9ce86b9
283
py
Python
itez/beneficiary/migrations/0032_merge_20211220_1405.py
Olipa776/itez
d6bba80c74d5ce385ae8a304e56546d927d24624
[ "MIT" ]
1
2021-12-12T11:46:47.000Z
2021-12-12T11:46:47.000Z
itez/beneficiary/migrations/0032_merge_20211220_1405.py
Olipa776/itez
d6bba80c74d5ce385ae8a304e56546d927d24624
[ "MIT" ]
11
2021-11-03T10:46:00.000Z
2021-12-20T11:35:00.000Z
itez/beneficiary/migrations/0032_merge_20211220_1405.py
Olipa776/itez
d6bba80c74d5ce385ae8a304e56546d927d24624
[ "MIT" ]
7
2021-11-01T15:03:02.000Z
2021-11-06T13:06:10.000Z
# Generated by Django 3.1.13 on 2021-12-20 14:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('beneficiary', '0031_merge_20211220_0030'), ('beneficiary', '0030_auto_20211215_1130'), ] operations = [ ]
18.866667
52
0.660777
fca3871cfc6a6b80e9216c7fa169f01a78cdb86c
6,922
py
Python
qa/rpc-tests/llmq-chainlocks.py
IcomTechRevolution/icomtech-coin
bb770b827ac9e65f3e535d72c9b7812d9b4e785a
[ "MIT" ]
1
2019-10-28T03:45:14.000Z
2019-10-28T03:45:14.000Z
qa/rpc-tests/llmq-chainlocks.py
icomtech/coin
e522302a3d16aac5666893d52114027fae6c330b
[ "MIT" ]
1
2020-05-12T16:08:44.000Z
2020-05-12T16:08:44.000Z
qa/rpc-tests/llmq-chainlocks.py
icomtech/coin
e522302a3d16aac5666893d52114027fae6c330b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Dash Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import IcomTechTestFramework from test_framework.util import * from time import * ''' llmq-chainlocks.py Checks LLMQs based ChainLocks ''' class LLMQChainLocksTest(IcomTechTestFramework): def __init__(self): super().__init__(6, 5, [], fast_dip3_enforcement=True) def run_test(self): while self.nodes[0].getblockchaininfo()["bip9_softforks"]["dip0008"]["status"] != "active": self.nodes[0].generate(10) sync_blocks(self.nodes, timeout=60*5) self.nodes[0].spork("SPORK_17_QUORUM_DKG_ENABLED", 0) self.nodes[0].spork("SPORK_19_CHAINLOCKS_ENABLED", 0) self.wait_for_sporks_same() for i in range(4): self.mine_quorum() # mine single block, wait for chainlock self.nodes[0].generate(1) self.wait_for_chainlock_tip_all_nodes() # mine many blocks, wait for chainlock self.nodes[0].generate(20) self.wait_for_chainlock_tip_all_nodes() # assert that all blocks up until the tip are chainlocked for h in range(1, self.nodes[0].getblockcount()): block = self.nodes[0].getblock(self.nodes[0].getblockhash(h)) assert(block['chainlock']) # Isolate node, mine on another, and reconnect isolate_node(self.nodes[0]) node0_tip = self.nodes[0].getbestblockhash() self.nodes[1].generate(5) self.wait_for_chainlock_tip(self.nodes[1]) assert(self.nodes[0].getbestblockhash() == node0_tip) reconnect_isolated_node(self.nodes[0], 1) self.nodes[1].generate(1) self.wait_for_chainlock(self.nodes[0], self.nodes[1].getbestblockhash()) # Isolate node, mine on both parts of the network, and reconnect isolate_node(self.nodes[0]) self.nodes[0].generate(5) self.nodes[1].generate(1) good_tip = self.nodes[1].getbestblockhash() self.wait_for_chainlock_tip(self.nodes[1]) assert(not self.nodes[0].getblock(self.nodes[0].getbestblockhash())["chainlock"]) reconnect_isolated_node(self.nodes[0], 1) self.nodes[1].generate(1) self.wait_for_chainlock(self.nodes[0], self.nodes[1].getbestblockhash()) assert(self.nodes[0].getblock(self.nodes[0].getbestblockhash())["previousblockhash"] == good_tip) assert(self.nodes[1].getblock(self.nodes[1].getbestblockhash())["previousblockhash"] == good_tip) # Keep node connected and let it try to reorg the chain good_tip = self.nodes[0].getbestblockhash() # Restart it so that it forgets all the chainlocks from the past stop_node(self.nodes[0], 0) self.nodes[0] = start_node(0, self.options.tmpdir, self.extra_args) connect_nodes(self.nodes[0], 1) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # Now try to reorg the chain self.nodes[0].generate(2) sleep(6) assert(self.nodes[1].getbestblockhash() == good_tip) self.nodes[0].generate(2) sleep(6) assert(self.nodes[1].getbestblockhash() == good_tip) # Now let the node which is on the wrong chain reorg back to the locked chain self.nodes[0].reconsiderblock(good_tip) assert(self.nodes[0].getbestblockhash() != good_tip) self.nodes[1].generate(1) self.wait_for_chainlock(self.nodes[0], self.nodes[1].getbestblockhash()) assert(self.nodes[0].getbestblockhash() == self.nodes[1].getbestblockhash()) # Enable LLMQ bases InstantSend, which also enables checks for "safe" transactions self.nodes[0].spork("SPORK_20_INSTANTSEND_LLMQ_BASED", 0) self.wait_for_sporks_same() # Isolate a node and let it create some transactions which won't get IS locked isolate_node(self.nodes[0]) txs = [] for i in range(3): txs.append(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)) txs += self.create_chained_txs(self.nodes[0], 1) # Assert that after block generation these TXs are NOT included (as they are "unsafe") self.nodes[0].generate(1) for txid in txs: tx = self.nodes[0].getrawtransaction(txid, 1) assert("confirmations" not in tx) sleep(1) assert(not self.nodes[0].getblock(self.nodes[0].getbestblockhash())["chainlock"]) # Disable LLMQ based InstantSend for a very short time (this never gets propagated to other nodes) self.nodes[0].spork("SPORK_20_INSTANTSEND_LLMQ_BASED", 4070908800) # Now the TXs should be included self.nodes[0].generate(1) self.nodes[0].spork("SPORK_20_INSTANTSEND_LLMQ_BASED", 0) # Assert that TXs got included now for txid in txs: tx = self.nodes[0].getrawtransaction(txid, 1) assert("confirmations" in tx and tx["confirmations"] > 0) # Enable network on first node again, which will cause the blocks to propagate and IS locks to happen retroactively # for the mined TXs, which will then allow the network to create a CLSIG reconnect_isolated_node(self.nodes[0], 1) self.wait_for_chainlock(self.nodes[0], self.nodes[1].getbestblockhash()) def wait_for_chainlock_tip_all_nodes(self): for node in self.nodes: tip = node.getbestblockhash() self.wait_for_chainlock(node, tip) def wait_for_chainlock_tip(self, node): tip = node.getbestblockhash() self.wait_for_chainlock(node, tip) def wait_for_chainlock(self, node, block_hash): t = time() while time() - t < 15: try: block = node.getblock(block_hash) if block["confirmations"] > 0 and block["chainlock"]: return except: # block might not be on the node yet pass sleep(0.1) raise AssertionError("wait_for_chainlock timed out") def create_chained_txs(self, node, amount): txid = node.sendtoaddress(node.getnewaddress(), amount) tx = node.getrawtransaction(txid, 1) inputs = [] valueIn = 0 for txout in tx["vout"]: inputs.append({"txid": txid, "vout": txout["n"]}) valueIn += txout["value"] outputs = { node.getnewaddress(): round(float(valueIn) - 0.0001, 6) } rawtx = node.createrawtransaction(inputs, outputs) rawtx = node.signrawtransaction(rawtx) rawtxid = node.sendrawtransaction(rawtx["hex"]) return [txid, rawtxid] if __name__ == '__main__': LLMQChainLocksTest().main()
41.449102
123
0.645912
375e72a3c340e920a21bd6b0b4d02ca1b2f59c3d
990
py
Python
ceph_deploy/lib/vendor/remoto/log.py
scibian/ceph-deploy
abc2626b8a797bbd1b313c38e1a79dbee8edd408
[ "MIT" ]
null
null
null
ceph_deploy/lib/vendor/remoto/log.py
scibian/ceph-deploy
abc2626b8a797bbd1b313c38e1a79dbee8edd408
[ "MIT" ]
null
null
null
ceph_deploy/lib/vendor/remoto/log.py
scibian/ceph-deploy
abc2626b8a797bbd1b313c38e1a79dbee8edd408
[ "MIT" ]
null
null
null
def reporting(conn, result, timeout=None): timeout = timeout or conn.global_timeout # -1 a.k.a. wait for ever log_map = { 'debug': conn.logger.debug, 'error': conn.logger.error, 'warning': conn.logger.warning } while True: try: received = result.receive(timeout) level_received, message = list(received.items())[0] if not isinstance(message, str): message = message.decode('utf-8') log_map[level_received](message.strip('\n')) except EOFError: break except Exception as err: # the things we need to do here :( # because execnet magic, we cannot catch this as # `except TimeoutError` if err.__class__.__name__ == 'TimeoutError': msg = 'No data was received after %s seconds, disconnecting...' % timeout conn.logger.warning(msg) break raise
34.137931
89
0.555556
fdd0b16b15c71a6de1fb623296ceefd885fce3ef
73,466
py
Python
src/transformers/models/roberta/modeling_roberta.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
src/transformers/models/roberta/modeling_roberta.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
src/transformers/models/roberta/modeling_roberta.py
techthiyanes/adapter-transformers
04aeaf63c4c54856d416925258393d9e06866b46
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RoBERTa model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...adapters.composition import adjust_tensors_for_parallel from ...adapters.context import ForwardContext from ...adapters.lora import Linear as LoRALinear from ...adapters.mixins.bert import BertModelAdaptersMixin, BertOutputAdaptersMixin, BertSelfOutputAdaptersMixin from ...adapters.model_mixin import ModelWithHeadsAdaptersMixin from ...adapters.prefix_tuning import PrefixTuningShim from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_roberta import RobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "roberta-base" _CONFIG_FOR_DOC = "RobertaConfig" _TOKENIZER_FOR_DOC = "RobertaTokenizer" ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "roberta-base", "roberta-large", "roberta-large-mnli", "distilroberta-base", "roberta-base-openai-detector", "roberta-large-openai-detector", # See all RoBERTa models at https://huggingface.co/models?filter=roberta ] class RobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta class RobertaSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None, location_key: Optional[str] = None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = LoRALinear(config.hidden_size, self.all_head_size, "selfattn", config) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = LoRALinear(config.hidden_size, self.all_head_size, "selfattn", config) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder self.prefix_tuning = PrefixTuningShim(location_key + "_prefix" if location_key else None, config) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) key_layer, value_layer, attention_mask = self.prefix_tuning(key_layer, value_layer, attention_mask) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.modeling_bert.BertSelfOutput class RobertaSelfOutput(BertSelfOutputAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self._init_adapter_modules() def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.adapter_layer_forward(hidden_states, input_tensor, self.LayerNorm) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta class RobertaAttention(nn.Module): def __init__(self, config, position_embedding_type=None, location_key: Optional[str] = None): super().__init__() self.self = RobertaSelfAttention( config, position_embedding_type=position_embedding_type, location_key=location_key ) self.output = RobertaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class RobertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = LoRALinear(config.hidden_size, config.intermediate_size, "intermediate", config) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class RobertaOutput(BertOutputAdaptersMixin, nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = LoRALinear(config.intermediate_size, config.hidden_size, "output", config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self._init_adapter_modules() def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.adapter_layer_forward(hidden_states, input_tensor, self.LayerNorm) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta class RobertaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = RobertaAttention(config, location_key="self") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = RobertaAttention(config, position_embedding_type="absolute", location_key="cross") self.intermediate = RobertaIntermediate(config) self.output = RobertaOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta class RobertaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] (attention_mask,) = adjust_tensors_for_parallel(hidden_states, attention_mask) if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class RobertaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class RobertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, RobertaEncoder): module.gradient_checkpointing = value def update_keys_to_ignore(self, config, del_keys_to_ignore): """Remove some keys from ignore list""" if not config.tie_word_embeddings: # must make a new list, or the class variable gets modified! self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] self._keys_to_ignore_on_load_missing = [ k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore ] ROBERTA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_START_DOCSTRING, ) class RobertaModel(BertModelAdaptersMixin, RobertaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ _keys_to_ignore_on_load_missing = [r"position_ids"] # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = RobertaEmbeddings(config) self.encoder = RobertaEncoder(config) self.pooler = RobertaPooler(config) if add_pooling_layer else None self._init_adapter_modules() # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) @ForwardContext.wrap # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) embedding_output = self.invertible_adapters_forward(embedding_output) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING ) class RobertaForCausalLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) # The LM head weights require special treatment only when they are tied with the word embeddings self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig >>> import torch >>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") >>> config = RobertaConfig.from_pretrained("roberta-base") >>> config.is_decoder = True >>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head( sequence_output, inv_lang_adapter=self.roberta.get_invertible_adapter(), ) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING) class RobertaForMaskedLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = RobertaModel(config, add_pooling_layer=False) self.lm_head = RobertaLMHead(config) # The LM head weights require special treatment only when they are tied with the word embeddings self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head( sequence_output, inv_lang_adapter=self.roberta.get_invertible_adapter(), ) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, inv_lang_adapter=None, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) if inv_lang_adapter: x = inv_lang_adapter(x, rev=True) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @add_start_docstrings( """ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForSequenceClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForMultipleChoice(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.roberta = RobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_START_DOCSTRING, ) class RobertaForTokenClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="Jean-Baptiste/roberta-large-ner-english", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_START_DOCSTRING, ) class RobertaForQuestionAnswering(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint="deepset/roberta-base-squad2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
45.659416
198
0.677592
0056b1dcadca5cdddaebfcaf911c53a91bdad8b8
2,575
py
Python
python/experiments/eval_train_test.py
Etienne-Meunier/davis
8f8d9b6d93ea0454b9754ba8f8bbfdc7f0e57ab6
[ "BSD-3-Clause" ]
135
2016-04-17T06:59:38.000Z
2022-01-27T03:46:04.000Z
python/experiments/eval_train_test.py
Etienne-Meunier/davis
8f8d9b6d93ea0454b9754ba8f8bbfdc7f0e57ab6
[ "BSD-3-Clause" ]
13
2016-08-06T15:13:33.000Z
2020-11-13T09:32:52.000Z
python/experiments/eval_train_test.py
Etienne-Meunier/davis
8f8d9b6d93ea0454b9754ba8f8bbfdc7f0e57ab6
[ "BSD-3-Clause" ]
52
2016-05-14T14:13:24.000Z
2021-01-08T16:30:22.000Z
#!/usr/bin/env python # ---------------------------------------------------------------------------- # S Benchmark Dataset and Evaluation Methodology for Video Object Segmentation #----------------------------------------------------------------------------- # Copyright (c) 2016 Federico Perazzi # Licensed under the BSD License [see LICENSE for details] # Written by Federico Perazzi # ---------------------------------------------------------------------------- """ Peform evaluation on separately on training and test set. EXAMPLE: python tools/eval_all.py """ import sys import h5py import glob import argparse import numpy as np import os.path as osp from davis import cfg,log from davis.dataset import * from prettytable import PrettyTable as ptable import matplotlib.pylab as plt def parse_args(): parser = argparse.ArgumentParser( description='Split evaluation between training and test set.') parser.add_argument('--measure', dest='measure',default='J', help='Measure selected for evaluation.') parser.add_argument('--statistic', dest='statistic',default='M', help='Measure statistics: [M]ean,[R]ecall,[D]ecay.') args = parser.parse_args() return args if __name__ == '__main__': # Parse command-line arguments args = parse_args() db_info = db_read_info() db_techniques = db_read_techniques() attributes = db_info.attributes distr = [] S = [] for t_set in db_info.sets: log.info("Filtering techniques in: %s"%(t_set)) # Filter sequences tagged with set=`t_set` X = [] db_sequences = filter( lambda s: t_set == s.set ,db_info.sequences) for s in db_sequences: X.append([1 if attr in s.attributes else 0for attr in attributes ]) distr.append(np.round(np.sum(X,axis=0).astype(np.float32)/np.sum(X),3)) db_eval_dict = db_read_eval(sequence=[s.name for s in db_sequences], measure=args.measure,raw_eval=False) statistics_to_id = {'M':0,'O':1,'D':2} R = [] for t in db_techniques: R.append(np.vstack(db_eval_dict[t.name][ args.measure].values())[:,statistics_to_id[args.statistic]]) S.append(np.average(np.array(R).T,axis=0)) print "\nAttributes Distribution" table = ptable(["Set"] + attributes) for attr,row in zip(db_info.sets,distr): table.add_row([attr] + \ ['{: .2f}'.format(np.round(r,2)) for r in row]) print table table = ptable(["Set"] + [t.name for t in db_techniques]) print "\nEvaluation (%s)"%args.measure for attr,row in zip(db_info.sets,S): table.add_row([attr] + \ ['{: .2f}'.format(np.round(r,2)) for r in row]) print table
26.010101
78
0.636117
38a608c0569c842f362154e8ecde65fffa31daa9
29,293
py
Python
eslearn/stylesheets/PyQt5_stylesheets/pyqt5_style_DarkOrange_rc.py
lichao312214129/easylearn
e77b51b26e0c75b3a4d59dd5a71cf1b63ac4347d
[ "MIT" ]
19
2020-02-29T06:00:18.000Z
2022-01-24T01:30:14.000Z
stylesheets/PyQt5_stylesheets/pyqt5_style_DarkOrange_rc.py
easylearn-fmri/easylearn
102ff264a7672b246244a489e0fbde8e3897c52f
[ "MIT" ]
7
2020-04-02T03:05:21.000Z
2020-11-11T11:45:05.000Z
stylesheets/PyQt5_stylesheets/pyqt5_style_DarkOrange_rc.py
easylearn-fmri/easylearn
102ff264a7672b246244a489e0fbde8e3897c52f
[ "MIT" ]
11
2020-03-03T03:02:15.000Z
2020-11-11T14:09:55.000Z
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.12.9) # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore qt_resource_data = b"\ \x00\x00\x08\x77\ \x00\ \x00\x2e\xc8\x78\x9c\xdd\x5a\x6d\x6f\xdb\x36\x10\xfe\x1e\x20\xff\ \x81\x45\xbe\x34\x45\x9c\x48\x8a\xed\x24\xca\xa7\x76\x5d\xbb\x01\ \x1b\xb6\xae\xc1\xfa\xb1\xa0\x25\xd9\xd6\xa2\x88\xaa\x24\x2f\x49\ \x8b\xfd\xf7\xdd\x91\xe2\x9b\x44\xc9\x76\xe2\x14\xd9\x42\xa0\x49\ \xf9\x7a\x7c\xee\xee\xe1\xf1\xa8\x0f\x57\x8c\x65\x57\x69\xb1\xbf\ \xf7\x6d\x7f\x8f\xe0\xcf\x8c\x95\x71\x52\x86\xc4\x2f\xee\x48\xc5\ \xb2\x34\x26\xb3\x8c\x46\xd7\x97\xb2\x19\xfe\x5e\x94\x6c\x95\xc7\ \xa3\x88\x65\x0c\x3a\x1e\xcc\xe7\xd4\x0b\xe6\xb2\x43\x41\xe3\x38\ \xcd\x17\x7c\x82\x4b\x6b\xce\x51\x49\xe3\x74\x55\x85\xe4\x54\xb7\ \xb0\x82\x46\x69\x7d\x0f\xbd\x3d\x0f\xea\xfe\xd9\xdf\xdb\xdf\xfb\ \xf0\x29\x8d\x17\x49\xad\x44\x92\xeb\xcc\x7c\x2c\xcd\x48\x87\x1c\ \xa7\x01\x16\x35\xcb\x55\x99\x24\x7f\xa6\xc9\xed\x11\xf9\xf0\x4b\ \x5a\xd5\xf8\xa7\x9a\xb2\x3b\xba\x4a\xb3\xbf\x93\xb2\x99\xfc\x86\ \x96\x8b\x34\x1f\x65\xc9\xbc\x0e\xc9\x84\x4b\x6b\x4a\x16\xa6\x75\ \x72\x13\x2e\x19\x0c\x18\x98\x11\x56\xcd\x13\x5a\xbe\xc7\x5d\x27\ \x79\xfd\x92\xdc\xf9\x21\xf1\x8e\xc8\xbd\xf8\x75\x17\x88\xff\xc1\ \x2f\xff\x88\x54\x35\x2b\xe0\xff\x12\x4c\x59\xe1\x93\x83\x88\x7a\ \x53\xff\xe2\xf0\xd2\xc6\xc2\xe3\x3f\x4e\xb9\xaa\x24\x4b\xa2\x3a\ \x89\x9f\x5e\xb4\xf8\xec\xdc\xf3\xe9\xa1\x92\xe2\xd7\x24\x5f\xbd\ \xa1\x65\xc8\xe5\x70\x2c\x1f\x92\xba\xa4\x79\x55\xd0\x12\x16\x75\ \x8f\x1a\x92\xbe\x3d\xdc\x6d\xad\x28\x26\x35\xa0\xb1\xa7\x2f\xca\ \xa4\xaa\x7a\x66\x3f\x18\x8f\xc7\xfd\xd3\x0a\xb8\x37\xc3\xb3\x31\ \x6e\xf8\x01\x60\x05\xae\xde\x91\x51\x19\x84\x02\x5e\xdf\xa8\xe4\ \xa8\x02\xa8\x81\x8f\xa5\xdd\xe0\x1d\x8f\xc1\xc0\xc7\x58\x4e\x5e\ \x75\x1b\x03\xd9\xd8\x6d\xf2\x25\x22\xaf\x4e\x44\xdb\xa1\x6d\xe4\ \x33\x56\xd7\xec\x26\x1c\x69\x77\x6d\x3c\x58\xb6\xf8\x86\xfd\x23\ \x98\x1a\xbb\x3e\x90\x74\xdf\x96\x29\x28\x6e\x08\x60\x48\xe0\xe1\ \x3f\xcd\x1f\x8e\x51\x5d\x53\x18\x36\xfe\x38\xad\xe8\x2c\x73\x74\ \x3f\xf7\xb0\x6c\xcc\x1b\xaf\x67\x15\xd8\x59\x54\xff\x0c\x32\xac\ \x21\x8d\x87\xf9\xd1\x38\xc6\xa2\x2a\x50\x43\xd3\x31\x16\xc3\xb5\ \x26\x31\x96\xc3\xf6\x1e\xe7\x2c\x5a\x55\x4a\xa0\x93\x57\x5d\x15\ \xc4\xb4\x04\x21\xe9\xfd\x25\xaa\x5b\x8c\x45\x21\x7f\x8c\xd3\xfa\ \xa9\x37\x32\xb8\x8d\x9e\xa3\xa1\x39\x19\xaa\xfa\x3e\x4b\x42\xb1\ \x85\x7e\x17\xf4\x13\x2c\xf6\x48\x79\xa6\x4c\x14\x54\xbf\xaf\xaa\ \xe5\x9b\x15\x98\x6e\xbe\xed\x09\xf2\x30\x14\x26\x53\x2c\x96\x3a\ \x27\x01\x16\x5d\x35\x01\xac\x12\x2c\xba\xea\x02\xaa\x28\x16\x03\ \x2d\x8e\xde\xf4\xd0\xde\xe0\x6d\x1a\xd7\x4b\x07\x64\x72\x4f\x2e\ \x50\x7a\xe1\x54\x70\x4d\xdb\x2a\xd1\x67\xf2\x9c\xe5\xf5\xa8\x4a\ \xbf\xc2\x04\xfe\x79\x87\x14\xcc\x33\xd1\xac\x2f\xd3\xc5\xd2\x6a\ \xb8\x01\x6e\x69\x64\x1f\x9b\x0e\xae\xd5\x33\x40\xc6\x8f\xd3\x48\ \x10\x63\xb1\x34\x12\xcc\xb0\x58\x1a\x09\x2e\xb0\x58\x1a\x09\xce\ \xb1\x18\x1a\xe1\x7a\x9c\x68\x37\xfc\x81\xdd\xcc\xd8\x1b\x76\xa7\ \x44\x16\x1c\x95\x32\xe0\x51\x67\x60\x44\xb7\x38\x35\x9e\x85\xb9\ \xed\xd2\x13\x25\x5a\x22\x54\x3a\x32\x55\xdf\x0a\x9e\x9a\x15\x02\ \xb5\xc2\xd3\x44\x28\xa6\x4c\x06\x3d\x48\x1b\xe6\xa3\x4e\x7b\x4c\ \x7e\xac\x1d\xf0\x19\x9b\xe9\xe6\x36\x69\xab\x88\x0c\x1c\x7b\x1d\ \xe5\xa8\x33\x66\xfd\x7a\x4f\x14\x69\x2a\x2d\x86\x71\xc9\x8a\x51\ \xcc\x6e\xb5\x36\x49\xb5\x9a\x45\xc0\x61\x25\xcb\x46\x0c\x68\x29\ \xcd\x43\xa9\xca\xcb\x6e\x8f\x82\x55\x29\xca\x0e\xc1\x25\x2b\x08\ \x67\x31\xd9\x4b\x32\xaf\xe0\x34\xfb\x2a\x83\x36\x21\xe9\xcd\xeb\ \x5c\x74\x78\x6b\x83\x40\x0b\x2c\xab\x8b\xe5\x6c\x70\x9c\x93\xbf\ \x56\x55\x4d\x28\x5c\x46\xf2\x45\x96\x90\x0c\xb0\x23\x32\x6c\x93\ \x03\x41\x4c\x41\xb6\xd6\x75\x0a\x07\x57\xf4\x26\x21\xa2\x92\xd0\ \x8a\xd4\xcb\x84\x68\xfd\xb6\xa7\x11\xc1\x9d\x63\x26\xe8\xd6\xc1\ \x18\xe0\x1d\xd1\xb2\x64\xda\x28\x48\x7a\x43\x17\x20\xfa\xaa\xcc\ \x5e\x86\x27\x5f\xaa\xea\x73\x0a\x88\x56\x27\x6f\x61\xb7\xbf\x41\ \x94\xbe\x48\x4e\x70\xd4\x67\x3e\xea\xb8\xc8\x17\x5a\x77\xef\xc1\ \x40\x0a\x93\x43\x07\x82\x18\x2b\x52\x15\xc6\x60\x9e\x25\x72\xaa\ \x56\x5c\x34\x38\x61\x73\x39\x4c\xee\x6a\x8c\x89\xb6\x1f\xf9\x31\ \x02\xb3\xc9\xf0\x46\xb1\x04\xeb\xfa\x0a\x66\x44\x33\xd2\x7f\x79\ \x3e\x08\xf8\x4f\xf7\xfa\xfc\x30\xdf\x38\x06\xef\xe0\x17\x04\x83\ \xee\x03\x07\x23\x8c\xcf\xb1\x48\x46\x20\xcb\x44\x1c\xcf\x67\xda\ \x54\x05\xa8\xdc\x7a\x89\x3f\x85\x7f\x3c\xfe\xcb\xb1\xcf\x70\x49\ \xf3\x18\xec\x54\xef\x57\x9b\xc1\xb6\x1b\xf2\xc5\x86\xbc\x5e\x67\ \xe7\x9c\x27\xdc\xdd\xd8\x8e\xe8\xa3\xb6\xc3\x83\x0b\xb9\xa7\xc0\ \xf0\xbf\xf6\x59\x14\xb8\x37\x04\x6c\x30\x42\xe7\x72\xa9\xd0\x79\ \xdc\x61\xd8\x78\x31\xbc\xc8\xd3\xc0\x61\x71\x1f\xb1\x68\x69\x6c\ \x2c\xeb\x24\x34\x8b\xcc\x5c\xac\x28\x4c\xc0\x05\x10\x74\xfe\x5f\ \x01\xe4\xc4\x07\x29\xd8\xd1\x61\x3d\x3a\x82\x34\x39\xb5\x19\x00\ \x1d\x11\xb3\x0f\xe7\xf7\x76\x17\xd3\x6f\x86\xd3\x6c\xa4\x13\xf6\ \x6b\x27\xf6\x7b\xe0\xbc\x5d\xc2\xb5\xb9\xcf\xdc\x0b\xa4\xeb\x3e\ \x61\x51\xdd\xad\x0e\x3d\x2e\x9e\xb3\xdc\xb5\x04\x04\x73\x75\x1a\ \xed\x94\x18\x1e\xc8\x74\x12\x38\x83\xe9\x14\xd5\x19\x34\x47\xbc\ \xcb\x01\x73\x56\x9c\xdd\x47\x85\x8f\xdf\xef\xda\xa8\xe7\xfb\x12\ \xa1\x6b\x43\xdf\xd1\xcd\xb7\x8b\x01\x5b\xee\xb0\x96\x08\x45\xac\ \xf3\x48\x26\x7c\x7e\x08\xad\x35\x8e\xcd\x11\x82\x19\x1e\x06\xcf\ \xaa\x68\x48\x4e\xc2\x63\x13\x8b\x8e\x1c\x37\xc3\x6f\xb7\x1c\xd8\ \xc3\x82\x6e\x51\x15\x07\xae\xf1\x6d\x8b\x01\x65\x18\x39\x90\xc2\ \x38\x08\xc6\x58\x74\xfe\x23\xa3\x69\xfe\x80\x71\x3f\x25\x14\xc0\ \xc2\x9b\x19\xc8\x2a\xee\x5b\x5b\x24\x4e\x8c\x3c\xb4\x99\x7e\x6e\ \x92\xc4\xe4\x60\xea\x63\xb1\xb8\x67\xe2\x61\xd1\x55\x53\xe0\x5a\ \x9e\x64\x3e\x52\xb9\x6a\x9e\x8a\x98\xb4\xde\x26\xa4\x0a\xb0\xaa\ \xf7\x0a\xdd\xf5\x9c\x69\x84\x45\xdf\xf0\x96\x49\x74\x8d\xa1\xbd\ \x95\xd6\x95\xd8\x8c\x7d\x2c\xaa\xf3\x5b\x16\x5d\x37\x19\xd2\xb0\ \x4e\xeb\x2c\x51\xc8\xd4\x00\xf4\x88\x66\xe9\x02\xac\x38\x02\x20\ \xd4\x13\x4f\x85\x0f\x4f\x32\xf1\xc5\x6f\x4f\xa2\x82\xcc\x92\xfa\ \x36\x49\x72\x82\x29\xe8\x8a\xa4\x39\xbf\x47\xd5\x8c\x65\x80\x72\ \xa9\xae\x51\x8f\x47\x5c\x64\x9d\xed\xab\x3e\xd7\xb8\x86\x57\x74\ \x39\x74\x6e\x33\xca\x58\x95\x8c\x66\x3c\x9b\x02\x86\x6c\x36\xcd\ \x33\x46\xeb\xa6\x69\x0b\x20\xfc\xff\x3e\x10\x4d\xa2\xa9\x1f\x8e\ \xde\x47\xbb\xae\xbf\xf5\xae\xd1\x64\x2d\x87\x56\x69\x27\x36\xcd\ \xc4\x37\x19\xa9\x7f\xac\x97\x15\x60\x85\x4f\x69\x0e\x84\x89\xee\ \x5d\xd0\x92\xd6\x6c\x9b\xd7\xc5\x75\x28\x73\xff\x9e\x5a\x28\xfb\ \x13\x2c\x96\x83\x37\x8f\x4f\x1a\x78\xee\xf1\xbb\x71\xf0\x71\x84\ \xe5\xf1\xee\x37\x80\x97\xa1\xde\x5d\xe1\x66\x1d\xb2\x1c\xb6\xd9\ \x64\x1a\xf9\x67\x0a\x22\xfb\xd0\xdd\x11\x07\xee\x04\x22\x7c\xda\ \x37\x82\x56\x23\x41\xf6\x38\xee\xb3\xdc\x66\x20\x01\x24\x96\xb5\ \x93\x3f\xe2\x79\xaf\x6b\xe0\x2a\x86\xdd\x22\xcb\xfa\xcc\x4c\xde\ \xfa\x68\xc0\xf7\xda\xf5\xd6\x03\x49\x13\x0a\x94\x6c\x81\x4c\x01\ \x4a\x1a\xc8\xb6\x42\x97\x7b\xcb\x64\x74\xa6\x5d\xad\xe1\x64\xf7\ \xce\x22\x40\x64\xcb\x55\x7e\x3d\x14\x74\x08\x73\x6f\x66\x6d\xe2\ \xaf\xe0\xd8\x9f\xb4\x76\xc3\xe1\x34\x76\x72\x45\x67\x7c\xfe\x9a\ \xce\x64\x9e\xc0\xfd\xe6\xe6\xa0\x85\xd6\xa3\xbb\xcc\x4c\x36\xb9\ \xd1\x26\xdc\xea\x11\x57\x3d\xdd\x76\x15\x63\x68\xa0\xf5\x46\xe5\ \x68\xe9\xc9\xfc\x37\x2f\xe0\x86\x55\xda\xca\x1c\xf9\x36\x06\xf2\ \x30\x28\x68\x9e\x90\x6f\x1b\x6c\x59\x44\xee\x6e\x20\xc3\x8c\x56\ \x3a\x40\xb4\x17\xf6\xb8\xdb\xa2\x77\x62\x27\x22\x5f\xca\x09\xe2\ \xbf\xa4\x15\xa0\x56\x2f\xd1\xa1\x6b\x46\x90\x11\x33\x5a\x80\x32\ \xeb\x25\x61\xc2\xa5\xf9\x2c\xfa\x08\x1f\x4a\x2c\xbb\x04\x9b\xa7\ \x65\x55\x87\x2f\xec\xf7\x79\xcb\xfc\xbd\x86\x58\x76\x20\xa1\xa2\ \x72\x2d\x25\xcf\xad\xac\x13\xf2\x45\xef\xe7\x03\x0e\x8b\x6c\x19\ \x9d\xf9\xfa\x65\x26\x9f\x4f\x77\xc5\x4e\x7e\x8b\x77\xf4\xd7\x1d\ \x87\xce\xcd\x74\xbf\x8a\x19\x44\x63\x03\xad\x1a\x5b\x93\x56\xee\ \xad\x43\xb2\x15\x3d\xc9\xcf\x0f\x04\x36\x9a\xb0\xec\x77\xcf\xb6\ \x2f\xe1\xf2\x0e\xcb\x7b\xf8\x2e\x76\xac\x0a\xe3\x4b\x1b\x55\x13\ \x74\x6a\xd4\x57\x35\x5a\x5f\x7f\xc0\x6a\xac\x79\xde\x0c\x21\x32\ \x81\x3b\x24\x86\x24\x11\x5e\x64\x78\xb8\xd8\xd3\x61\x95\x37\x5d\ \x06\xcd\x74\x0d\xf7\x39\x58\xc6\x65\xe6\xea\xf9\xdf\x50\xf5\xb0\ \xdc\x03\x87\xc5\x17\x9c\x8d\x66\x8b\xee\x57\x4f\xd1\x1d\x3f\x20\ \x8e\x48\x74\x2f\xfe\xd0\x4d\x73\xd9\x34\xef\x34\x49\xe1\xfc\x63\ \xaf\xfd\x19\x13\xe6\xfe\x26\x12\x72\x47\xe3\xa9\x84\x43\x34\x19\ \x0f\x85\xf2\x1a\xa9\x77\xf6\x94\x30\x37\x27\xe6\x85\x32\x4e\x19\ \xd7\x5c\xac\x05\xbc\xed\xda\x5b\xa8\x4a\xde\x7a\x1c\x9b\xed\x79\ \x68\xef\xff\x5c\xce\x35\x47\xdb\x14\xc4\xdb\xdf\x40\xe4\xc7\x07\ \xcc\xd8\x9d\x1d\xfb\xb9\xa6\x96\xb7\xfb\x7e\xf7\xe8\x7c\xd6\xd5\ \x7b\xa0\xaa\x9c\x0f\xd4\x41\x87\x10\x14\x09\x9b\x77\x3c\x61\x38\ \x66\x38\x7d\x7d\x7a\x71\x7a\xd1\x52\xda\xb9\x83\x63\xf0\xa2\xe8\ \xf9\xef\xfc\x77\xad\x78\x28\x30\x72\xca\x43\xb9\xd7\x46\xb6\xce\ \x93\x1a\xe9\xb8\xd9\x76\x69\x41\x95\xbd\x53\xd9\x73\xf1\x45\xab\ \x95\x3c\xa7\xe7\x58\x8c\x8c\xe1\x59\x80\xe5\xb0\xdf\xba\x2d\x5c\ \xba\x0f\x2b\x8e\x0c\xa3\x04\x64\x34\xde\x0e\x91\x46\x5b\x32\xfb\ \xb6\xa9\xae\x1a\x99\xb6\x51\x95\x67\xbc\xd8\x6f\xae\xaa\x8e\x60\ \x8f\x7f\xc9\x6d\x34\xd4\x56\xdd\x77\x56\x94\xc7\x55\xb5\x1e\x0f\ \xf9\x81\xc8\xc7\x22\xcd\xf1\x8b\x02\x3b\xb7\xa1\x82\x80\xb5\x21\ \xf4\xe0\x1b\xfb\x80\x14\x5c\x66\xfd\x51\xd9\xc4\x08\x57\xf6\xf7\ \xfe\x05\x9a\x6c\x73\xdd\ \x00\x00\x01\x57\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x09\x00\x00\x00\x09\x08\x06\x00\x00\x00\xe0\x91\x06\x10\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95\x2b\x0e\x1b\x00\x00\x00\x20\x63\x48\x52\x4d\x00\x00\x7a\ \x25\x00\x00\x80\x83\x00\x00\xf9\xff\x00\x00\x80\xe9\x00\x00\x75\ \x30\x00\x00\xea\x60\x00\x00\x3a\x98\x00\x00\x17\x6f\x92\x5f\xc5\ \x46\x00\x00\x00\xdd\x49\x44\x41\x54\x78\xda\x5c\x8e\xb1\x4e\x84\ \x40\x18\x84\x67\xef\x4c\x2c\xc8\xd9\x2c\x0d\x58\x50\x1b\x0b\xc3\ \xfa\x24\x77\xbd\x0d\x85\x4f\x40\x0b\xbb\xcb\x3b\xd0\x68\x41\x72\ \xc5\xd2\x28\x4f\x02\xcf\xb1\x97\x40\x61\xd4\xc2\xc4\x62\x2c\xbc\ \x4d\xd0\x49\xfe\xbf\xf8\x32\xff\x3f\x23\x48\xc2\x5a\x3b\x00\x80\ \xd6\xfa\x80\xb3\xac\xb5\x03\x49\x18\x63\x0e\x5b\x21\xc4\x90\xe7\ \xf9\x3e\x49\x92\x9b\xbe\xef\xef\xca\xb2\x7c\xf5\xde\xbf\x04\xe6\ \x9c\xbb\xbd\x20\xf9\x19\xae\x95\x52\xfb\x2c\xcb\xbe\xa5\x94\x01\ \x81\xe4\x9b\x38\xbf\x3c\x2a\xa5\x1e\xf0\x4f\xe3\x38\x3e\x37\x4d\ \xf3\x28\x48\x02\x00\xba\xae\x7b\x97\x52\xee\x82\x61\x59\x96\x8f\ \xa2\x28\xae\x00\x60\x03\x00\xc6\x98\xe3\xda\x00\x00\x71\x1c\xef\ \xb4\xd6\x4f\x00\xb0\x05\xf0\x27\x6a\x9e\x67\x44\x51\x04\x00\x48\ \xd3\xf4\xde\x39\x77\xbd\x21\xf9\xb5\xea\x70\x6a\xdb\xf6\x72\x9a\ \xa6\xd3\xaa\xf8\xef\xaa\xeb\xda\x57\x55\xe5\x49\x22\xcc\x9a\xfd\ \x0c\x00\x24\xab\x6e\xfa\x96\x21\xfc\xb8\x00\x00\x00\x00\x49\x45\ \x4e\x44\xae\x42\x60\x82\ \x00\x00\x0b\x15\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x06\x00\x00\x00\x06\x08\x06\x00\x00\x00\xe0\xcc\xef\x48\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\x0b\x13\ \x01\x00\x9a\x9c\x18\x00\x00\x0a\x4f\x69\x43\x43\x50\x50\x68\x6f\ \x74\x6f\x73\x68\x6f\x70\x20\x49\x43\x43\x20\x70\x72\x6f\x66\x69\ \x6c\x65\x00\x00\x78\xda\x9d\x53\x67\x54\x53\xe9\x16\x3d\xf7\xde\ \xf4\x42\x4b\x88\x80\x94\x4b\x6f\x52\x15\x08\x20\x52\x42\x8b\x80\ \x14\x91\x26\x2a\x21\x09\x10\x4a\x88\x21\xa1\xd9\x15\x51\xc1\x11\ \x45\x45\x04\x1b\xc8\xa0\x88\x03\x8e\x8e\x80\x8c\x15\x51\x2c\x0c\ \x8a\x0a\xd8\x07\xe4\x21\xa2\x8e\x83\xa3\x88\x8a\xca\xfb\xe1\x7b\ \xa3\x6b\xd6\xbc\xf7\xe6\xcd\xfe\xb5\xd7\x3e\xe7\xac\xf3\x9d\xb3\ \xcf\x07\xc0\x08\x0c\x96\x48\x33\x51\x35\x80\x0c\xa9\x42\x1e\x11\ \xe0\x83\xc7\xc4\xc6\xe1\xe4\x2e\x40\x81\x0a\x24\x70\x00\x10\x08\ \xb3\x64\x21\x73\xfd\x23\x01\x00\xf8\x7e\x3c\x3c\x2b\x22\xc0\x07\ \xbe\x00\x01\x78\xd3\x0b\x08\x00\xc0\x4d\x9b\xc0\x30\x1c\x87\xff\ \x0f\xea\x42\x99\x5c\x01\x80\x84\x01\xc0\x74\x91\x38\x4b\x08\x80\ \x14\x00\x40\x7a\x8e\x42\xa6\x00\x40\x46\x01\x80\x9d\x98\x26\x53\ \x00\xa0\x04\x00\x60\xcb\x63\x62\xe3\x00\x50\x2d\x00\x60\x27\x7f\ \xe6\xd3\x00\x80\x9d\xf8\x99\x7b\x01\x00\x5b\x94\x21\x15\x01\xa0\ \x91\x00\x20\x13\x65\x88\x44\x00\x68\x3b\x00\xac\xcf\x56\x8a\x45\ \x00\x58\x30\x00\x14\x66\x4b\xc4\x39\x00\xd8\x2d\x00\x30\x49\x57\ \x66\x48\x00\xb0\xb7\x00\xc0\xce\x10\x0b\xb2\x00\x08\x0c\x00\x30\ \x51\x88\x85\x29\x00\x04\x7b\x00\x60\xc8\x23\x23\x78\x00\x84\x99\ \x00\x14\x46\xf2\x57\x3c\xf1\x2b\xae\x10\xe7\x2a\x00\x00\x78\x99\ \xb2\x3c\xb9\x24\x39\x45\x81\x5b\x08\x2d\x71\x07\x57\x57\x2e\x1e\ \x28\xce\x49\x17\x2b\x14\x36\x61\x02\x61\x9a\x40\x2e\xc2\x79\x99\ \x19\x32\x81\x34\x0f\xe0\xf3\xcc\x00\x00\xa0\x91\x15\x11\xe0\x83\ \xf3\xfd\x78\xce\x0e\xae\xce\xce\x36\x8e\xb6\x0e\x5f\x2d\xea\xbf\ \x06\xff\x22\x62\x62\xe3\xfe\xe5\xcf\xab\x70\x40\x00\x00\xe1\x74\ \x7e\xd1\xfe\x2c\x2f\xb3\x1a\x80\x3b\x06\x80\x6d\xfe\xa2\x25\xee\ \x04\x68\x5e\x0b\xa0\x75\xf7\x8b\x66\xb2\x0f\x40\xb5\x00\xa0\xe9\ \xda\x57\xf3\x70\xf8\x7e\x3c\x3c\x45\xa1\x90\xb9\xd9\xd9\xe5\xe4\ \xe4\xd8\x4a\xc4\x42\x5b\x61\xca\x57\x7d\xfe\x67\xc2\x5f\xc0\x57\ \xfd\x6c\xf9\x7e\x3c\xfc\xf7\xf5\xe0\xbe\xe2\x24\x81\x32\x5d\x81\ \x47\x04\xf8\xe0\xc2\xcc\xf4\x4c\xa5\x1c\xcf\x92\x09\x84\x62\xdc\ \xe6\x8f\x47\xfc\xb7\x0b\xff\xfc\x1d\xd3\x22\xc4\x49\x62\xb9\x58\ \x2a\x14\xe3\x51\x12\x71\x8e\x44\x9a\x8c\xf3\x32\xa5\x22\x89\x42\ \x92\x29\xc5\x25\xd2\xff\x64\xe2\xdf\x2c\xfb\x03\x3e\xdf\x35\x00\ \xb0\x6a\x3e\x01\x7b\x91\x2d\xa8\x5d\x63\x03\xf6\x4b\x27\x10\x58\ \x74\xc0\xe2\xf7\x00\x00\xf2\xbb\x6f\xc1\xd4\x28\x08\x03\x80\x68\ \x83\xe1\xcf\x77\xff\xef\x3f\xfd\x47\xa0\x25\x00\x80\x66\x49\x92\ \x71\x00\x00\x5e\x44\x24\x2e\x54\xca\xb3\x3f\xc7\x08\x00\x00\x44\ \xa0\x81\x2a\xb0\x41\x1b\xf4\xc1\x18\x2c\xc0\x06\x1c\xc1\x05\xdc\ \xc1\x0b\xfc\x60\x36\x84\x42\x24\xc4\xc2\x42\x10\x42\x0a\x64\x80\ \x1c\x72\x60\x29\xac\x82\x42\x28\x86\xcd\xb0\x1d\x2a\x60\x2f\xd4\ \x40\x1d\x34\xc0\x51\x68\x86\x93\x70\x0e\x2e\xc2\x55\xb8\x0e\x3d\ \x70\x0f\xfa\x61\x08\x9e\xc1\x28\xbc\x81\x09\x04\x41\xc8\x08\x13\ \x61\x21\xda\x88\x01\x62\x8a\x58\x23\x8e\x08\x17\x99\x85\xf8\x21\ \xc1\x48\x04\x12\x8b\x24\x20\xc9\x88\x14\x51\x22\x4b\x91\x35\x48\ \x31\x52\x8a\x54\x20\x55\x48\x1d\xf2\x3d\x72\x02\x39\x87\x5c\x46\ \xba\x91\x3b\xc8\x00\x32\x82\xfc\x86\xbc\x47\x31\x94\x81\xb2\x51\ \x3d\xd4\x0c\xb5\x43\xb9\xa8\x37\x1a\x84\x46\xa2\x0b\xd0\x64\x74\ \x31\x9a\x8f\x16\xa0\x9b\xd0\x72\xb4\x1a\x3d\x8c\x36\xa1\xe7\xd0\ \xab\x68\x0f\xda\x8f\x3e\x43\xc7\x30\xc0\xe8\x18\x07\x33\xc4\x6c\ \x30\x2e\xc6\xc3\x42\xb1\x38\x2c\x09\x93\x63\xcb\xb1\x22\xac\x0c\ \xab\xc6\x1a\xb0\x56\xac\x03\xbb\x89\xf5\x63\xcf\xb1\x77\x04\x12\ \x81\x45\xc0\x09\x36\x04\x77\x42\x20\x61\x1e\x41\x48\x58\x4c\x58\ \x4e\xd8\x48\xa8\x20\x1c\x24\x34\x11\xda\x09\x37\x09\x03\x84\x51\ \xc2\x27\x22\x93\xa8\x4b\xb4\x26\xba\x11\xf9\xc4\x18\x62\x32\x31\ \x87\x58\x48\x2c\x23\xd6\x12\x8f\x13\x2f\x10\x7b\x88\x43\xc4\x37\ \x24\x12\x89\x43\x32\x27\xb9\x90\x02\x49\xb1\xa4\x54\xd2\x12\xd2\ \x46\xd2\x6e\x52\x23\xe9\x2c\xa9\x9b\x34\x48\x1a\x23\x93\xc9\xda\ \x64\x6b\xb2\x07\x39\x94\x2c\x20\x2b\xc8\x85\xe4\x9d\xe4\xc3\xe4\ \x33\xe4\x1b\xe4\x21\xf2\x5b\x0a\x9d\x62\x40\x71\xa4\xf8\x53\xe2\ \x28\x52\xca\x6a\x4a\x19\xe5\x10\xe5\x34\xe5\x06\x65\x98\x32\x41\ \x55\xa3\x9a\x52\xdd\xa8\xa1\x54\x11\x35\x8f\x5a\x42\xad\xa1\xb6\ \x52\xaf\x51\x87\xa8\x13\x34\x75\x9a\x39\xcd\x83\x16\x49\x4b\xa5\ \xad\xa2\x95\xd3\x1a\x68\x17\x68\xf7\x69\xaf\xe8\x74\xba\x11\xdd\ \x95\x1e\x4e\x97\xd0\x57\xd2\xcb\xe9\x47\xe8\x97\xe8\x03\xf4\x77\ \x0c\x0d\x86\x15\x83\xc7\x88\x67\x28\x19\x9b\x18\x07\x18\x67\x19\ \x77\x18\xaf\x98\x4c\xa6\x19\xd3\x8b\x19\xc7\x54\x30\x37\x31\xeb\ \x98\xe7\x99\x0f\x99\x6f\x55\x58\x2a\xb6\x2a\x7c\x15\x91\xca\x0a\ \x95\x4a\x95\x26\x95\x1b\x2a\x2f\x54\xa9\xaa\xa6\xaa\xde\xaa\x0b\ \x55\xf3\x55\xcb\x54\x8f\xa9\x5e\x53\x7d\xae\x46\x55\x33\x53\xe3\ \xa9\x09\xd4\x96\xab\x55\xaa\x9d\x50\xeb\x53\x1b\x53\x67\xa9\x3b\ \xa8\x87\xaa\x67\xa8\x6f\x54\x3f\xa4\x7e\x59\xfd\x89\x06\x59\xc3\ \x4c\xc3\x4f\x43\xa4\x51\xa0\xb1\x5f\xe3\xbc\xc6\x20\x0b\x63\x19\ \xb3\x78\x2c\x21\x6b\x0d\xab\x86\x75\x81\x35\xc4\x26\xb1\xcd\xd9\ \x7c\x76\x2a\xbb\x98\xfd\x1d\xbb\x8b\x3d\xaa\xa9\xa1\x39\x43\x33\ \x4a\x33\x57\xb3\x52\xf3\x94\x66\x3f\x07\xe3\x98\x71\xf8\x9c\x74\ \x4e\x09\xe7\x28\xa7\x97\xf3\x7e\x8a\xde\x14\xef\x29\xe2\x29\x1b\ \xa6\x34\x4c\xb9\x31\x65\x5c\x6b\xaa\x96\x97\x96\x58\xab\x48\xab\ \x51\xab\x47\xeb\xbd\x36\xae\xed\xa7\x9d\xa6\xbd\x45\xbb\x59\xfb\ \x81\x0e\x41\xc7\x4a\x27\x5c\x27\x47\x67\x8f\xce\x05\x9d\xe7\x53\ \xd9\x53\xdd\xa7\x0a\xa7\x16\x4d\x3d\x3a\xf5\xae\x2e\xaa\x6b\xa5\ \x1b\xa1\xbb\x44\x77\xbf\x6e\xa7\xee\x98\x9e\xbe\x5e\x80\x9e\x4c\ \x6f\xa7\xde\x79\xbd\xe7\xfa\x1c\x7d\x2f\xfd\x54\xfd\x6d\xfa\xa7\ \xf5\x47\x0c\x58\x06\xb3\x0c\x24\x06\xdb\x0c\xce\x18\x3c\xc5\x35\ \x71\x6f\x3c\x1d\x2f\xc7\xdb\xf1\x51\x43\x5d\xc3\x40\x43\xa5\x61\ \x95\x61\x97\xe1\x84\x91\xb9\xd1\x3c\xa3\xd5\x46\x8d\x46\x0f\x8c\ \x69\xc6\x5c\xe3\x24\xe3\x6d\xc6\x6d\xc6\xa3\x26\x06\x26\x21\x26\ \x4b\x4d\xea\x4d\xee\x9a\x52\x4d\xb9\xa6\x29\xa6\x3b\x4c\x3b\x4c\ \xc7\xcd\xcc\xcd\xa2\xcd\xd6\x99\x35\x9b\x3d\x31\xd7\x32\xe7\x9b\ \xe7\x9b\xd7\x9b\xdf\xb7\x60\x5a\x78\x5a\x2c\xb6\xa8\xb6\xb8\x65\ \x49\xb2\xe4\x5a\xa6\x59\xee\xb6\xbc\x6e\x85\x5a\x39\x59\xa5\x58\ \x55\x5a\x5d\xb3\x46\xad\x9d\xad\x25\xd6\xbb\xad\xbb\xa7\x11\xa7\ \xb9\x4e\x93\x4e\xab\x9e\xd6\x67\xc3\xb0\xf1\xb6\xc9\xb6\xa9\xb7\ \x19\xb0\xe5\xd8\x06\xdb\xae\xb6\x6d\xb6\x7d\x61\x67\x62\x17\x67\ \xb7\xc5\xae\xc3\xee\x93\xbd\x93\x7d\xba\x7d\x8d\xfd\x3d\x07\x0d\ \x87\xd9\x0e\xab\x1d\x5a\x1d\x7e\x73\xb4\x72\x14\x3a\x56\x3a\xde\ \x9a\xce\x9c\xee\x3f\x7d\xc5\xf4\x96\xe9\x2f\x67\x58\xcf\x10\xcf\ \xd8\x33\xe3\xb6\x13\xcb\x29\xc4\x69\x9d\x53\x9b\xd3\x47\x67\x17\ \x67\xb9\x73\x83\xf3\x88\x8b\x89\x4b\x82\xcb\x2e\x97\x3e\x2e\x9b\ \x1b\xc6\xdd\xc8\xbd\xe4\x4a\x74\xf5\x71\x5d\xe1\x7a\xd2\xf5\x9d\ \x9b\xb3\x9b\xc2\xed\xa8\xdb\xaf\xee\x36\xee\x69\xee\x87\xdc\x9f\ \xcc\x34\x9f\x29\x9e\x59\x33\x73\xd0\xc3\xc8\x43\xe0\x51\xe5\xd1\ \x3f\x0b\x9f\x95\x30\x6b\xdf\xac\x7e\x4f\x43\x4f\x81\x67\xb5\xe7\ \x23\x2f\x63\x2f\x91\x57\xad\xd7\xb0\xb7\xa5\x77\xaa\xf7\x61\xef\ \x17\x3e\xf6\x3e\x72\x9f\xe3\x3e\xe3\x3c\x37\xde\x32\xde\x59\x5f\ \xcc\x37\xc0\xb7\xc8\xb7\xcb\x4f\xc3\x6f\x9e\x5f\x85\xdf\x43\x7f\ \x23\xff\x64\xff\x7a\xff\xd1\x00\xa7\x80\x25\x01\x67\x03\x89\x81\ \x41\x81\x5b\x02\xfb\xf8\x7a\x7c\x21\xbf\x8e\x3f\x3a\xdb\x65\xf6\ \xb2\xd9\xed\x41\x8c\xa0\xb9\x41\x15\x41\x8f\x82\xad\x82\xe5\xc1\ \xad\x21\x68\xc8\xec\x90\xad\x21\xf7\xe7\x98\xce\x91\xce\x69\x0e\ \x85\x50\x7e\xe8\xd6\xd0\x07\x61\xe6\x61\x8b\xc3\x7e\x0c\x27\x85\ \x87\x85\x57\x86\x3f\x8e\x70\x88\x58\x1a\xd1\x31\x97\x35\x77\xd1\ \xdc\x43\x73\xdf\x44\xfa\x44\x96\x44\xde\x9b\x67\x31\x4f\x39\xaf\ \x2d\x4a\x35\x2a\x3e\xaa\x2e\x6a\x3c\xda\x37\xba\x34\xba\x3f\xc6\ \x2e\x66\x59\xcc\xd5\x58\x9d\x58\x49\x6c\x4b\x1c\x39\x2e\x2a\xae\ \x36\x6e\x6c\xbe\xdf\xfc\xed\xf3\x87\xe2\x9d\xe2\x0b\xe3\x7b\x17\ \x98\x2f\xc8\x5d\x70\x79\xa1\xce\xc2\xf4\x85\xa7\x16\xa9\x2e\x12\ \x2c\x3a\x96\x40\x4c\x88\x4e\x38\x94\xf0\x41\x10\x2a\xa8\x16\x8c\ \x25\xf2\x13\x77\x25\x8e\x0a\x79\xc2\x1d\xc2\x67\x22\x2f\xd1\x36\ \xd1\x88\xd8\x43\x5c\x2a\x1e\x4e\xf2\x48\x2a\x4d\x7a\x92\xec\x91\ \xbc\x35\x79\x24\xc5\x33\xa5\x2c\xe5\xb9\x84\x27\xa9\x90\xbc\x4c\ \x0d\x4c\xdd\x9b\x3a\x9e\x16\x9a\x76\x20\x6d\x32\x3d\x3a\xbd\x31\ \x83\x92\x91\x90\x71\x42\xaa\x21\x4d\x93\xb6\x67\xea\x67\xe6\x66\ \x76\xcb\xac\x65\x85\xb2\xfe\xc5\x6e\x8b\xb7\x2f\x1e\x95\x07\xc9\ \x6b\xb3\x90\xac\x05\x59\x2d\x0a\xb6\x42\xa6\xe8\x54\x5a\x28\xd7\ \x2a\x07\xb2\x67\x65\x57\x66\xbf\xcd\x89\xca\x39\x96\xab\x9e\x2b\ \xcd\xed\xcc\xb3\xca\xdb\x90\x37\x9c\xef\x9f\xff\xed\x12\xc2\x12\ \xe1\x92\xb6\xa5\x86\x4b\x57\x2d\x1d\x58\xe6\xbd\xac\x6a\x39\xb2\ \x3c\x71\x79\xdb\x0a\xe3\x15\x05\x2b\x86\x56\x06\xac\x3c\xb8\x8a\ \xb6\x2a\x6d\xd5\x4f\xab\xed\x57\x97\xae\x7e\xbd\x26\x7a\x4d\x6b\ \x81\x5e\xc1\xca\x82\xc1\xb5\x01\x6b\xeb\x0b\x55\x0a\xe5\x85\x7d\ \xeb\xdc\xd7\xed\x5d\x4f\x58\x2f\x59\xdf\xb5\x61\xfa\x86\x9d\x1b\ \x3e\x15\x89\x8a\xae\x14\xdb\x17\x97\x15\x7f\xd8\x28\xdc\x78\xe5\ \x1b\x87\x6f\xca\xbf\x99\xdc\x94\xb4\xa9\xab\xc4\xb9\x64\xcf\x66\ \xd2\x66\xe9\xe6\xde\x2d\x9e\x5b\x0e\x96\xaa\x97\xe6\x97\x0e\x6e\ \x0d\xd9\xda\xb4\x0d\xdf\x56\xb4\xed\xf5\xf6\x45\xdb\x2f\x97\xcd\ \x28\xdb\xbb\x83\xb6\x43\xb9\xa3\xbf\x3c\xb8\xbc\x65\xa7\xc9\xce\ \xcd\x3b\x3f\x54\xa4\x54\xf4\x54\xfa\x54\x36\xee\xd2\xdd\xb5\x61\ \xd7\xf8\x6e\xd1\xee\x1b\x7b\xbc\xf6\x34\xec\xd5\xdb\x5b\xbc\xf7\ \xfd\x3e\xc9\xbe\xdb\x55\x01\x55\x4d\xd5\x66\xd5\x65\xfb\x49\xfb\ \xb3\xf7\x3f\xae\x89\xaa\xe9\xf8\x96\xfb\x6d\x5d\xad\x4e\x6d\x71\ \xed\xc7\x03\xd2\x03\xfd\x07\x23\x0e\xb6\xd7\xb9\xd4\xd5\x1d\xd2\ \x3d\x54\x52\x8f\xd6\x2b\xeb\x47\x0e\xc7\x1f\xbe\xfe\x9d\xef\x77\ \x2d\x0d\x36\x0d\x55\x8d\x9c\xc6\xe2\x23\x70\x44\x79\xe4\xe9\xf7\ \x09\xdf\xf7\x1e\x0d\x3a\xda\x76\x8c\x7b\xac\xe1\x07\xd3\x1f\x76\ \x1d\x67\x1d\x2f\x6a\x42\x9a\xf2\x9a\x46\x9b\x53\x9a\xfb\x5b\x62\ \x5b\xba\x4f\xcc\x3e\xd1\xd6\xea\xde\x7a\xfc\x47\xdb\x1f\x0f\x9c\ \x34\x3c\x59\x79\x4a\xf3\x54\xc9\x69\xda\xe9\x82\xd3\x93\x67\xf2\ \xcf\x8c\x9d\x95\x9d\x7d\x7e\x2e\xf9\xdc\x60\xdb\xa2\xb6\x7b\xe7\ \x63\xce\xdf\x6a\x0f\x6f\xef\xba\x10\x74\xe1\xd2\x45\xff\x8b\xe7\ \x3b\xbc\x3b\xce\x5c\xf2\xb8\x74\xf2\xb2\xdb\xe5\x13\x57\xb8\x57\ \x9a\xaf\x3a\x5f\x6d\xea\x74\xea\x3c\xfe\x93\xd3\x4f\xc7\xbb\x9c\ \xbb\x9a\xae\xb9\x5c\x6b\xb9\xee\x7a\xbd\xb5\x7b\x66\xf7\xe9\x1b\ \x9e\x37\xce\xdd\xf4\xbd\x79\xf1\x16\xff\xd6\xd5\x9e\x39\x3d\xdd\ \xbd\xf3\x7a\x6f\xf7\xc5\xf7\xf5\xdf\x16\xdd\x7e\x72\x27\xfd\xce\ \xcb\xbb\xd9\x77\x27\xee\xad\xbc\x4f\xbc\x5f\xf4\x40\xed\x41\xd9\ \x43\xdd\x87\xd5\x3f\x5b\xfe\xdc\xd8\xef\xdc\x7f\x6a\xc0\x77\xa0\ \xf3\xd1\xdc\x47\xf7\x06\x85\x83\xcf\xfe\x91\xf5\x8f\x0f\x43\x05\ \x8f\x99\x8f\xcb\x86\x0d\x86\xeb\x9e\x38\x3e\x39\x39\xe2\x3f\x72\ \xfd\xe9\xfc\xa7\x43\xcf\x64\xcf\x26\x9e\x17\xfe\xa2\xfe\xcb\xae\ \x17\x16\x2f\x7e\xf8\xd5\xeb\xd7\xce\xd1\x98\xd1\xa1\x97\xf2\x97\ \x93\xbf\x6d\x7c\xa5\xfd\xea\xc0\xeb\x19\xaf\xdb\xc6\xc2\xc6\x1e\ \xbe\xc9\x78\x33\x31\x5e\xf4\x56\xfb\xed\xc1\x77\xdc\x77\x1d\xef\ \xa3\xdf\x0f\x4f\xe4\x7c\x20\x7f\x28\xff\x68\xf9\xb1\xf5\x53\xd0\ \xa7\xfb\x93\x19\x93\x93\xff\x04\x03\x98\xf3\xfc\x63\x33\x2d\xdb\ \x00\x00\x00\x20\x63\x48\x52\x4d\x00\x00\x7a\x25\x00\x00\x80\x83\ \x00\x00\xf9\xff\x00\x00\x80\xe9\x00\x00\x75\x30\x00\x00\xea\x60\ \x00\x00\x3a\x98\x00\x00\x17\x6f\x92\x5f\xc5\x46\x00\x00\x00\x40\ \x49\x44\x41\x54\x78\xda\x5c\x8c\x31\x11\x00\x30\x08\xc4\x42\x2d\ \x20\x03\xfc\x2b\x61\x45\x02\x1a\xe8\x54\xae\x6d\xc6\xcf\x7d\xc4\ \xcc\x1a\x20\x22\x84\x8b\x05\x90\x99\xa8\x6a\xdf\x42\xba\x7b\xc6\ \xaa\x92\x47\x1c\xdc\x7d\xb2\x8b\x8f\x93\x7d\x1e\xc0\x64\xf7\x00\ \xf5\x9f\x1d\xd3\x02\x88\xef\xaf\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x03\xf0\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x07\x00\x00\x00\x05\x08\x04\x00\x00\x00\x23\x93\x3e\x53\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\x0b\x13\ \x01\x00\x9a\x9c\x18\x00\x00\x03\x18\x69\x43\x43\x50\x50\x68\x6f\ \x74\x6f\x73\x68\x6f\x70\x20\x49\x43\x43\x20\x70\x72\x6f\x66\x69\ \x6c\x65\x00\x00\x78\xda\x63\x60\x60\x9e\xe0\xe8\xe2\xe4\xca\x24\ \xc0\xc0\x50\x50\x54\x52\xe4\x1e\xe4\x18\x19\x11\x19\xa5\xc0\x7e\ \x9e\x81\x8d\x81\x99\x81\x81\x81\x81\x81\x21\x31\xb9\xb8\xc0\x31\ \x20\xc0\x87\x81\x81\x81\x21\x2f\x3f\x2f\x95\x01\x15\x30\x32\x30\ \x7c\xbb\xc6\xc0\xc8\xc0\xc0\xc0\x70\x59\xd7\xd1\xc5\xc9\x95\x81\ \x34\xc0\x9a\x5c\x50\x54\xc2\xc0\xc0\x70\x80\x81\x81\xc1\x28\x25\ \xb5\x38\x99\x81\x81\xe1\x0b\x03\x03\x43\x7a\x79\x49\x41\x09\x03\ \x03\x63\x0c\x03\x03\x83\x48\x52\x76\x41\x09\x03\x03\x63\x01\x03\ \x03\x83\x48\x76\x48\x90\x33\x03\x03\x63\x0b\x03\x03\x13\x4f\x49\ \x6a\x45\x09\x03\x03\x03\x83\x73\x7e\x41\x65\x51\x66\x7a\x46\x89\ \x82\xa1\xa5\xa5\xa5\x82\x63\x4a\x7e\x52\xaa\x42\x70\x65\x71\x49\ \x6a\x6e\xb1\x82\x67\x5e\x72\x7e\x51\x41\x7e\x51\x62\x49\x6a\x0a\ \x03\x03\x03\xd4\x0e\x06\x06\x06\x06\x5e\x97\xfc\x12\x05\xf7\xc4\ \xcc\x3c\x05\x23\x03\x55\x06\x2a\x83\x88\xc8\x28\x05\x08\x0b\x11\ \x3e\x08\x31\x04\x48\x2e\x2d\x2a\x83\x07\x25\x03\x83\x00\x83\x02\ \x83\x01\x83\x03\x43\x00\x43\x22\x43\x3d\xc3\x02\x86\xa3\x0c\x6f\ \x18\xc5\x19\x5d\x18\x4b\x19\x57\x30\xde\x63\x12\x63\x0a\x62\x9a\ \xc0\x74\x81\x59\x98\x39\x92\x79\x21\xf3\x1b\x16\x4b\x96\x0e\x96\ \x5b\xac\x7a\xac\xad\xac\xf7\xd8\x2c\xd9\xa6\xb1\x7d\x63\x0f\x67\ \xdf\xcd\xa1\xc4\xd1\xc5\xf1\x85\x33\x91\xf3\x02\x97\x23\xd7\x16\ \x6e\x4d\xee\x05\x3c\x52\x3c\x53\x79\x85\x78\x27\xf1\x09\xf3\x4d\ \xe3\x97\xe1\x5f\x2c\xa0\x23\xb0\x43\xd0\x55\xf0\x8a\x50\xaa\xd0\ \x0f\xe1\x5e\x11\x15\x91\xbd\xa2\xe1\xa2\x5f\xc4\x26\x89\x1b\x89\ \x5f\x91\xa8\x90\x94\x93\x3c\x26\x95\x2f\x2d\x2d\x7d\x42\xa6\x4c\ \x56\x5d\xf6\x96\x5c\x9f\xbc\x8b\xfc\x1f\x85\xad\x8a\x85\x4a\x7a\ \x4a\x6f\x95\xd7\xaa\x14\xa8\x9a\xa8\xfe\x54\x3b\xa8\xde\xa5\x11\ \xaa\xa9\xa4\xf9\x41\xeb\x80\xf6\x24\x9d\x54\x5d\x2b\x3d\x41\xbd\ \x57\xfa\x47\x0c\x16\x18\xd6\x1a\xc5\x18\xdb\x9a\xc8\x9b\x32\x9b\ \xbe\x34\xbb\x60\xbe\xd3\x62\x89\xe5\x04\xab\x3a\xeb\x5c\x9b\x38\ \xdb\x40\x3b\x57\x7b\x6b\x07\x63\x47\x1d\x27\x35\x67\x25\x17\x05\ \x57\x79\x37\x05\x77\x65\x0f\x75\x4f\x5d\x2f\x13\x6f\x1b\x1f\x77\ \xdf\x60\xbf\x04\xff\xfc\x80\xfa\xc0\x89\x41\x4b\x83\x77\x85\x5c\ \x0c\x7d\x19\xce\x14\x21\x17\x69\x15\x15\x11\x5d\x11\x33\x33\x76\ \x4f\xdc\x83\x04\xb6\x44\xdd\xa4\xb0\xe4\x86\x94\x35\xa9\x37\xd3\ \x39\x32\x2c\x32\x33\xb3\xe6\x66\x5f\xcc\x65\xcf\xb3\xcf\xaf\x28\ \xd8\x54\xf8\xae\x58\xbb\x24\xab\x74\x55\xd9\x9b\x0a\xfd\xca\x92\ \xaa\x5d\x35\x8c\xb5\x5e\x75\x53\xeb\x1f\x36\xea\x35\xd5\x34\x9f\ \x6d\x95\x6b\x2b\x6c\x3f\xda\x29\xdd\x55\xd4\x7d\xba\x57\xb5\xaf\ \xb1\xff\xee\x44\x9b\x49\xb3\x27\xff\x9d\x1a\x3f\xed\xf0\x0c\x8d\ \x99\xfd\xb3\xbe\xcf\x49\x98\x7b\x7a\xbe\xf9\x82\xa5\x8b\x44\x16\ \xb7\x2e\xf9\xb6\x2c\x73\xf9\xbd\x95\x21\xab\x4e\xaf\x71\x59\xbb\ \x6f\xbd\xe5\x86\x6d\x9b\x4c\x36\x6f\xd9\x6a\xb2\x6d\xfb\x0e\xab\ \x9d\xfb\x77\xbb\xee\x39\xbb\x2f\x6c\xff\x83\x83\x39\x87\x7e\x1e\ \x69\x3f\x26\x7e\x7c\xc5\x49\xeb\x53\xe7\xce\x24\x9f\xfd\x75\x7e\ \xd2\x45\xed\x4b\x47\xaf\x24\x5e\xfd\x77\x7d\xce\x4d\x9b\x5b\x77\ \xef\xd4\xdf\x53\xbe\x7f\xe2\x61\xde\x63\xb1\x27\xfb\x9f\x65\xbe\ \x10\x79\x79\xf0\x75\xfe\x5b\xf9\x77\x17\x3e\x34\x7d\x32\xfd\xfc\ \xea\xeb\x82\xef\xe1\x3f\x05\x7e\x9d\xfa\xd3\xfa\xcf\xf1\xff\x7f\ \x00\x0d\x00\x0f\x34\xfa\x96\xf1\x5d\x00\x00\x00\x20\x63\x48\x52\ \x4d\x00\x00\x7a\x25\x00\x00\x80\x83\x00\x00\xf9\xff\x00\x00\x80\ \xe9\x00\x00\x75\x30\x00\x00\xea\x60\x00\x00\x3a\x98\x00\x00\x17\ \x6f\x92\x5f\xc5\x46\x00\x00\x00\x52\x49\x44\x41\x54\x78\xda\x62\ \x58\xf5\xe9\xca\x3f\x18\x5c\xfe\x9e\x21\xd3\xff\xc4\x8f\xab\xbf\ \xaf\xfe\xbe\xfa\xfb\xd0\x97\x68\x63\x86\xff\x0c\x85\x6b\xf7\x7e\ \xdc\xfb\x71\xf3\x87\xcc\xbc\xff\x0c\x0c\xff\x19\x18\x98\x73\xce\ \xce\xbd\x1f\x39\xff\x3f\xc3\x7f\x06\x86\xff\x0c\xff\x19\x14\xdd\ \x2c\xb6\xfe\x67\xf8\xcf\xf0\x9f\x01\x30\x00\x6a\x5f\x2c\x67\x74\ \xda\xec\xfb\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x09\ \x09\x5f\x97\x13\ \x00\x71\ \x00\x73\x00\x73\x00\x5f\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x73\ \x00\x11\ \x0b\x14\x5d\x13\ \x00\x50\ \x00\x79\x00\x51\x00\x74\x00\x35\x00\x5f\x00\x73\x00\x74\x00\x79\x00\x6c\x00\x65\x00\x73\x00\x68\x00\x65\x00\x65\x00\x74\x00\x73\ \ \x00\x14\ \x05\xce\x7b\xe3\ \x00\x73\ \x00\x74\x00\x79\x00\x6c\x00\x65\x00\x5f\x00\x44\x00\x61\x00\x72\x00\x6b\x00\x4f\x00\x72\x00\x61\x00\x6e\x00\x67\x00\x65\x00\x2e\ \x00\x71\x00\x73\x00\x73\ \x00\x0d\ \x05\x5f\xba\xa3\ \x00\x44\ \x00\x61\x00\x72\x00\x6b\x00\x4f\x00\x72\x00\x61\x00\x6e\x00\x67\x00\x65\x00\x5f\x00\x72\x00\x63\ \x00\x0c\ \x04\x56\x23\x67\ \x00\x63\ \x00\x68\x00\x65\x00\x63\x00\x6b\x00\x62\x00\x6f\x00\x78\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0a\ \x0b\x2d\x87\xc7\ \x00\x68\ \x00\x61\x00\x6e\x00\x64\x00\x6c\x00\x65\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0e\ \x04\xa2\xfc\xa7\ \x00\x64\ \x00\x6f\x00\x77\x00\x6e\x00\x5f\x00\x61\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x04\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x40\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x00\x6e\x00\x02\x00\x00\x00\x03\x00\x00\x00\x05\ \x00\x00\x00\x8e\x00\x00\x00\x00\x00\x01\x00\x00\x08\x7b\ \x00\x00\x00\xc6\x00\x00\x00\x00\x00\x01\x00\x00\x14\xef\ \x00\x00\x00\xac\x00\x00\x00\x00\x00\x01\x00\x00\x09\xd6\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x04\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x40\x00\x01\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x75\xb7\x3c\x4d\xb6\ \x00\x00\x00\x6e\x00\x02\x00\x00\x00\x03\x00\x00\x00\x05\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x8e\x00\x00\x00\x00\x00\x01\x00\x00\x08\x7b\ \x00\x00\x01\x75\xb7\x3c\x4d\x3b\ \x00\x00\x00\xc6\x00\x00\x00\x00\x00\x01\x00\x00\x14\xef\ \x00\x00\x01\x75\xb7\x3c\x4d\x3b\ \x00\x00\x00\xac\x00\x00\x00\x00\x00\x01\x00\x00\x09\xd6\ \x00\x00\x01\x75\xb7\x3c\x4d\x3f\ " qt_version = [int(v) for v in QtCore.qVersion().split('.')] if qt_version < [5, 8, 0]: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
58.703407
129
0.726214
11e490a14d1481903ebea580206283464b776d4f
1,734
py
Python
rummage/lib/gui/dialogs/error_text_dialog.py
facelessuser/Rummage
74f0ce1b078eef40c3ba683dbc4638112f3b9bb7
[ "MIT" ]
55
2015-02-15T08:17:55.000Z
2022-03-11T11:55:39.000Z
rummage/lib/gui/dialogs/error_text_dialog.py
facelessuser/Rummage
74f0ce1b078eef40c3ba683dbc4638112f3b9bb7
[ "MIT" ]
264
2015-01-29T20:27:40.000Z
2022-03-03T04:08:48.000Z
rummage/lib/gui/dialogs/error_text_dialog.py
facelessuser/Rummage
74f0ce1b078eef40c3ba683dbc4638112f3b9bb7
[ "MIT" ]
12
2017-08-30T22:54:20.000Z
2022-03-21T01:05:50.000Z
""" Error Text Dialog. Licensed under MIT Copyright (c) 2013 - 2015 Isaac Muse <isaacmuse@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..localization import _ from .. import gui class ErrorTextDialog(gui.ErrorTextDialog): """Error text dialog.""" def __init__(self, parent, text): """Initialize.""" super().__init__(parent) self.localize() self.refresh_localization() self.m_error_textbox.SetValue(text) self.m_error_text_panel.Fit() self.Fit() self.Centre() def localize(self): """Translate strings.""" self.ERROR = _("Error") def refresh_localization(self): """Localize the dialog.""" self.SetTitle(self.ERROR)
35.387755
113
0.72895
5d46332fe2befdc35c2eb293bd6e52f26a734691
1,050
py
Python
download_dataset.py
PytaichukBohdan/law-generator
8bf998c5c3138a540f68b3bf2d68907bd48a9699
[ "MIT" ]
null
null
null
download_dataset.py
PytaichukBohdan/law-generator
8bf998c5c3138a540f68b3bf2d68907bd48a9699
[ "MIT" ]
null
null
null
download_dataset.py
PytaichukBohdan/law-generator
8bf998c5c3138a540f68b3bf2d68907bd48a9699
[ "MIT" ]
null
null
null
import os import sys import requests from tqdm import tqdm subdir = 'data' if not os.path.exists(subdir): os.makedirs(subdir) subdir = subdir.replace('\\','/') # needed for Windows for ds in [ 'webtext', 'small-117M', 'small-117M-k40', 'medium-345M', 'medium-345M-k40', 'large-762M', 'large-762M-k40', 'xl-1542M', 'xl-1542M-k40', ]: for split in ['train', 'valid', 'test']: filename = ds + "." + split + '.jsonl' r = requests.get("https://storage.googleapis.com/gpt-2/output-dataset/v1/" + filename, stream=True) with open(os.path.join(subdir, filename), 'wb') as f: file_size = int(r.headers["content-length"]) chunk_size = 1000 with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar: # 1k for chunk_size, since Ethernet packet size is around 1500 bytes for chunk in r.iter_content(chunk_size=chunk_size): f.write(chunk) pbar.update(chunk_size)
36.206897
107
0.6
67b88d6ecff416e6dc687822e4800ad75b4aa8c4
708
py
Python
src/reset_counter.py
MatuMikey/gfg-reddit-bot
0690bb92a2bb3f6f78b5e7ee9ac90208a652ca34
[ "MIT" ]
null
null
null
src/reset_counter.py
MatuMikey/gfg-reddit-bot
0690bb92a2bb3f6f78b5e7ee9ac90208a652ca34
[ "MIT" ]
null
null
null
src/reset_counter.py
MatuMikey/gfg-reddit-bot
0690bb92a2bb3f6f78b5e7ee9ac90208a652ca34
[ "MIT" ]
null
null
null
import common.api as api from common.models.fixture import Fixture from common.models.result import Result from common.models.league import League from common.models.stat import Stat from common.models.user import User from common.config import config import logging logger = logging.getLogger() logger.setLevel(logging.INFO) def reset_counter(): logger.info("Resetting API counter...") api_call_stat = list(Stat.query("api-call"))[0] api_stat_dict = api_call_stat.stat_value.as_dict() api_stat_dict["count"] = 0 api_call_stat.stat_value = api_stat_dict api_call_stat.save() def lambda_handler(event, context): reset_counter() if __name__ == "__main__": reset_counter()
25.285714
54
0.761299
b7cdbca9a4520d8c42d79710431a3f28a8eceb81
85,050
py
Python
scripts/dts/edtlib.py
xiongyihui/zephyr
0ca84c0eb378fc2f126cdbb51d7195220746f36d
[ "Apache-2.0" ]
null
null
null
scripts/dts/edtlib.py
xiongyihui/zephyr
0ca84c0eb378fc2f126cdbb51d7195220746f36d
[ "Apache-2.0" ]
3
2021-08-11T18:14:01.000Z
2021-08-11T22:41:10.000Z
scripts/dts/edtlib.py
xiongyihui/zephyr
0ca84c0eb378fc2f126cdbb51d7195220746f36d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 Nordic Semiconductor ASA # Copyright (c) 2019 Linaro Limited # SPDX-License-Identifier: BSD-3-Clause # Tip: You can view just the documentation with 'pydoc3 edtlib' """ Library for working with devicetrees at a higher level compared to dtlib. Like dtlib, this library presents a tree of devicetree nodes, but the nodes are augmented with information from bindings and include some interpretation of properties. Bindings are files that describe devicetree nodes. Devicetree nodes are usually mapped to bindings via their 'compatible = "..."' property, but a binding can also come from a 'child-binding:' key in the binding for the parent devicetree node. Each devicetree node (dtlib.Node) gets a corresponding edtlib.Node instance, which has all the information related to the node. The top-level entry point of the library is the EDT class. EDT.__init__() takes a .dts file to parse and a list of paths to directories containing bindings. """ # NOTE: testedtlib.py is the test suite for this library. It can be run # directly as a script: # # ./testedtlib.py # Implementation notes # -------------------- # # A '_' prefix on an identifier in Python is a convention for marking it private. # Please do not access private things. Instead, think of what API you need, and # add it. # # This module is not meant to have any global state. It should be possible to # create several EDT objects with independent binding paths and flags. If you # need to add a configuration parameter or the like, store it in the EDT # instance, and initialize it e.g. with a constructor argument. # # This library is layered on top of dtlib, and is not meant to expose it to # clients. This keeps the header generation script simple. # # General biased advice: # # - Consider using @property for APIs that don't need parameters. It makes # functions look like attributes, which is less awkward in clients, and makes # it easy to switch back and forth between variables and functions. # # - Think about the data type of the thing you're exposing. Exposing something # as e.g. a list or a dictionary is often nicer and more flexible than adding # a function. # # - Avoid get_*() prefixes on functions. Name them after the thing they return # instead. This often makes the code read more naturally in callers. # # Also, consider using @property instead of get_*(). # # - Don't expose dtlib stuff directly. # # - Add documentation for any new APIs you add. # # The convention here is that docstrings (quoted strings) are used for public # APIs, and "doc comments" for internal functions. # # @properties are documented in the class docstring, as if they were # variables. See the existing @properties for a template. # # - Please use ""-quoted strings instead of ''-quoted strings, just to make # things consistent (''-quoting is more common otherwise in Python) from collections import OrderedDict, defaultdict import os import re import sys import yaml try: # Use the C LibYAML parser if available, rather than the Python parser. # This makes e.g. gen_defines.py more than twice as fast. from yaml import CLoader as Loader except ImportError: from yaml import Loader from dtlib import DT, DTError, to_num, to_nums, TYPE_EMPTY, TYPE_NUMS, \ TYPE_PHANDLE, TYPE_PHANDLES_AND_NUMS from grutils import Graph # # Public classes # class EDT: """ Represents a devicetree augmented with information from bindings. These attributes are available on EDT objects: nodes: A list of Node objects for the nodes that appear in the devicetree compat2enabled: A collections.defaultdict that maps each 'compatible' string that appears on some enabled Node to a list of enabled Nodes. For example, edt.compat2enabled["bar"] would include the 'foo' and 'bar' nodes below. foo { compatible = "bar"; status = "okay"; ... }; bar { compatible = "foo", "bar", "baz"; status = "okay"; ... }; This exists only for the sake of gen_legacy_defines.py. It will probably be removed following the Zephyr 2.3 release. compat2nodes: A collections.defaultdict that maps each 'compatible' string that appears on some Node to a list of Nodes with that compatible. compat2okay: Like compat2nodes, but just for nodes with status 'okay'. label2node: A collections.OrderedDict that maps a node label to the node with that label. chosen_nodes: A collections.OrderedDict that maps the properties defined on the devicetree's /chosen node to their values. 'chosen' is indexed by property name (a string), and values are converted to Node objects. Note that properties of the /chosen node which can't be converted to a Node are not included in the value. dts_path: The .dts path passed to __init__() dts_source: The final DTS source code of the loaded devicetree after merging nodes and processing /delete-node/ and /delete-property/, as a string bindings_dirs: The bindings directory paths passed to __init__() """ def __init__(self, dts, bindings_dirs, warn_file=None, warn_reg_unit_address_mismatch=True, default_prop_types=True): """ EDT constructor. This is the top-level entry point to the library. dts: Path to devicetree .dts file bindings_dirs: List of paths to directories containing bindings, in YAML format. These directories are recursively searched for .yaml files. warn_file (default: None): 'file' object to write warnings to. If None, sys.stderr is used. warn_reg_unit_address_mismatch (default: True): If True, a warning is printed if a node has a 'reg' property where the address of the first entry does not match the unit address of the node default_prop_types (default: True): If True, default property types will be used when a node has no bindings. """ # Do this indirection with None in case sys.stderr is deliberately # overridden self._warn_file = sys.stderr if warn_file is None else warn_file self._warn_reg_unit_address_mismatch = warn_reg_unit_address_mismatch self._default_prop_types = default_prop_types self.dts_path = dts self.bindings_dirs = bindings_dirs self._dt = DT(dts) _check_dt(self._dt) self._init_compat2binding(bindings_dirs) self._init_nodes() self._init_luts() self._define_order() def get_node(self, path): """ Returns the Node at the DT path or alias 'path'. Raises EDTError if the path or alias doesn't exist. """ try: return self._node2enode[self._dt.get_node(path)] except DTError as e: _err(e) @property def chosen_nodes(self): ret = OrderedDict() try: chosen = self._dt.get_node("/chosen") except DTError: return ret for name, prop in chosen.props.items(): try: node = prop.to_path() except DTError: # DTS value is not phandle or string, or path doesn't exist continue ret[name] = self._node2enode[node] return ret def chosen_node(self, name): """ Returns the Node pointed at by the property named 'name' in /chosen, or None if the property is missing """ return self.chosen_nodes.get(name) @property def dts_source(self): return f"{self._dt}" def __repr__(self): return "<EDT for '{}', binding directories '{}'>".format( self.dts_path, self.bindings_dirs) def scc_order(self): """ Returns a list of lists of Nodes where all elements of each list depend on each other, and the Nodes in any list do not depend on any Node in a subsequent list. Each list defines a Strongly Connected Component (SCC) of the graph. For an acyclic graph each list will be a singleton. Cycles will be represented by lists with multiple nodes. Cycles are not expected to be present in devicetree graphs. """ try: return self._graph.scc_order() except Exception as e: raise EDTError(e) def _define_order(self): # Constructs a graph of dependencies between Node instances, # then calculates a partial order over the dependencies. The # algorithm supports detecting dependency loops. self._graph = Graph() for node in self.nodes: # A Node always depends on its parent. for child in node.children.values(): self._graph.add_edge(child, node) # A Node depends on any Nodes present in 'phandle', # 'phandles', or 'phandle-array' property values. for prop in node.props.values(): if prop.type == 'phandle': self._graph.add_edge(node, prop.val) elif prop.type == 'phandles': for phandle_node in prop.val: self._graph.add_edge(node, phandle_node) elif prop.type == 'phandle-array': for cd in prop.val: self._graph.add_edge(node, cd.controller) # A Node depends on whatever supports the interrupts it # generates. for intr in node.interrupts: self._graph.add_edge(node, intr.controller) # Calculate an order that ensures no node is before any node # it depends on. This sets the dep_ordinal field in each # Node. self.scc_order() def _init_compat2binding(self, bindings_dirs): # Creates self._compat2binding. This is a dictionary that maps # (<compatible>, <bus>) tuples (both strings) to (<binding>, <path>) # tuples. <binding> is the binding in parsed PyYAML format, and <path> # the path to the binding (nice for binding-related error messages). # # For example, self._compat2binding["company,dev", "can"] contains the # binding/path for the 'company,dev' device, when it appears on the CAN # bus. # # For bindings that don't specify a bus, <bus> is None, so that e.g. # self._compat2binding["company,notonbus", None] contains the binding. # # Only bindings for 'compatible' strings that appear in the devicetree # are loaded. dt_compats = _dt_compats(self._dt) # Searches for any 'compatible' string mentioned in the devicetree # files, with a regex dt_compats_search = re.compile( "|".join(re.escape(compat) for compat in dt_compats) ).search self._binding_paths = _binding_paths(bindings_dirs) self._compat2binding = {} for binding_path in self._binding_paths: with open(binding_path, encoding="utf-8") as f: contents = f.read() # As an optimization, skip parsing files that don't contain any of # the .dts 'compatible' strings, which should be reasonably safe if not dt_compats_search(contents): continue # Load the binding and check that it actually matches one of the # compatibles. Might get false positives above due to comments and # stuff. try: # Parsed PyYAML output (Python lists/dictionaries/strings/etc., # representing the file) binding = yaml.load(contents, Loader=_BindingLoader) except yaml.YAMLError as e: self._warn("'{}' appears in binding directories but isn't " "valid YAML: {}".format(binding_path, e)) continue binding_compat = self._binding_compat(binding, binding_path) if binding_compat not in dt_compats: # Either not a binding (binding_compat is None -- might be a # binding fragment or a spurious file), or a binding whose # compatible does not appear in the devicetree (picked up via # some unrelated text in the binding file that happened to # match a compatible) continue # It's a match. Merge in the included bindings, do sanity checks, # and register the binding. binding = self._merge_included_bindings(binding, binding_path) self._check_binding(binding, binding_path) on_bus = _on_bus_from_binding(binding) # Do not allow two different bindings to have the same # 'compatible:'/'on-bus:' combo old_binding = self._compat2binding.get((binding_compat, on_bus)) if old_binding: msg = "both {} and {} have 'compatible: {}'".format( old_binding[1], binding_path, binding_compat) if on_bus is not None: msg += " and 'on-bus: {}'".format(on_bus) _err(msg) self._compat2binding[binding_compat, on_bus] = (binding, binding_path) def _binding_compat(self, binding, binding_path): # Returns the string listed in 'compatible:' in 'binding', or None if # no compatible is found. Only takes 'self' for the sake of # self._warn(). # # Also searches for legacy compatibles on the form # # properties: # compatible: # constraint: <string> def new_style_compat(): # New-style 'compatible: "foo"' compatible if binding is None or "compatible" not in binding: # Empty file, binding fragment, spurious file, or old-style # compat return None compatible = binding["compatible"] if not isinstance(compatible, str): _err("malformed 'compatible: {}' field in {} - " "should be a string, not {}" .format(compatible, binding_path, type(compatible).__name__)) return compatible def old_style_compat(): # Old-style 'constraint: "foo"' compatible try: return binding["properties"]["compatible"]["constraint"] except Exception: return None new_compat = new_style_compat() old_compat = old_style_compat() if old_compat: self._warn("The 'properties: compatible: constraint: ...' way of " "specifying the compatible in {} is deprecated. Put " "'compatible: \"{}\"' at the top level of the binding " "instead.".format(binding_path, old_compat)) if new_compat: _err("compatibles for {} should be specified with either " "'compatible:' at the top level or with the legacy " "'properties: compatible: constraint: ...' field, not " "both".format(binding_path)) return old_compat return new_compat def _merge_included_bindings(self, binding, binding_path): # Merges any bindings listed in the 'include:' section of 'binding' # into the top level of 'binding'. Also supports the legacy # 'inherits: !include ...' syntax for including bindings. # # Properties in 'binding' take precedence over properties from included # bindings. fnames = [] if "include" in binding: include = binding.pop("include") if isinstance(include, str): fnames.append(include) elif isinstance(include, list): if not all(isinstance(elm, str) for elm in include): _err("all elements in 'include:' in {} should be strings" .format(binding_path)) fnames += include else: _err("'include:' in {} should be a string or a list of strings" .format(binding_path)) if "child-binding" in binding and "include" in binding["child-binding"]: self._merge_included_bindings(binding["child-binding"], binding_path) # Legacy syntax if "inherits" in binding: self._warn("the 'inherits:' syntax in {} is deprecated and will " "be removed - please use 'include: foo.yaml' or " "'include: [foo.yaml, bar.yaml]' instead" .format(binding_path)) inherits = binding.pop("inherits") if not isinstance(inherits, list) or \ not all(isinstance(elm, str) for elm in inherits): _err("malformed 'inherits:' in " + binding_path) fnames += inherits if not fnames: return binding # Got a list of included files in 'fnames'. Now we need to merge them # together and then merge them into 'binding'. # First, merge the included files together. If more than one included # file has a 'required:' for a particular property, OR the values # together, so that 'required: true' wins. merged_included = self._load_binding(fnames[0]) for fname in fnames[1:]: included = self._load_binding(fname) _merge_props(merged_included, included, None, binding_path, check_required=False) # Next, merge the merged included files into 'binding'. Error out if # 'binding' has 'required: false' while the merged included files have # 'required: true'. _merge_props(binding, merged_included, None, binding_path, check_required=True) return binding def _load_binding(self, fname): # Returns the contents of the binding given by 'fname' after merging # any bindings it lists in 'include:' into it. 'fname' is just the # basename of the file, so we check that there aren't multiple # candidates. paths = [path for path in self._binding_paths if os.path.basename(path) == fname] if not paths: _err("'{}' not found".format(fname)) if len(paths) > 1: _err("multiple candidates for included file '{}': {}" .format(fname, ", ".join(paths))) with open(paths[0], encoding="utf-8") as f: return self._merge_included_bindings( yaml.load(f, Loader=_BindingLoader), paths[0]) def _init_nodes(self): # Creates a list of edtlib.Node objects from the dtlib.Node objects, in # self.nodes # Maps each dtlib.Node to its corresponding edtlib.Node self._node2enode = {} self.nodes = [] for dt_node in self._dt.node_iter(): # Warning: We depend on parent Nodes being created before their # children. This is guaranteed by node_iter(). node = Node() node.edt = self node._node = dt_node node.bus_node = node._bus_node() node._init_binding() node._init_regs() self.nodes.append(node) self._node2enode[dt_node] = node for node in self.nodes: # These depend on all Node objects having been created, because # they (either always or sometimes) reference other nodes, so we # run them separately node._init_props(default_prop_types=self._default_prop_types) node._init_interrupts() node._init_pinctrls() def _init_luts(self): # Initialize node lookup tables (LUTs). self.label2node = OrderedDict() self.compat2enabled = defaultdict(list) self.compat2nodes = defaultdict(list) self.compat2okay = defaultdict(list) for node in self.nodes: for label in node.labels: self.label2node[label] = node for compat in node.compats: self.compat2nodes[compat].append(node) if node.enabled: self.compat2enabled[compat].append(node) if node.status == "okay": self.compat2okay[compat].append(node) def _check_binding(self, binding, binding_path): # Does sanity checking on 'binding'. Only takes 'self' for the sake of # self._warn(). if "title" in binding: # This message is the message that people copy-pasting the old # format will see in practice self._warn("'title:' in {} is deprecated and will be removed (and " "was never used). Just put a 'description:' that " "describes the device instead. Use other bindings as " "a reference, and note that all bindings were updated " "recently. Think about what information would be " "useful to other people (e.g. explanations of " "acronyms, or datasheet links), and put that in as " "well. The description text shows up as a comment " "in the generated header. See yaml-multiline.info for " "how to deal with multiple lines. You probably want " "'description: |'.".format(binding_path)) if "description" not in binding: _err("missing 'description' property in " + binding_path) for prop in "title", "description": if prop in binding and (not isinstance(binding[prop], str) or not binding[prop]): _err("malformed or empty '{}' in {}" .format(prop, binding_path)) ok_top = {"title", "description", "compatible", "properties", "#cells", "bus", "on-bus", "parent-bus", "child-bus", "parent", "child", "child-binding", "sub-node"} for prop in binding: if prop not in ok_top and not prop.endswith("-cells"): _err("unknown key '{}' in {}, expected one of {}, or *-cells" .format(prop, binding_path, ", ".join(ok_top))) for bus_key in "bus", "on-bus": if bus_key in binding and \ not isinstance(binding[bus_key], str): _err("malformed '{}:' value in {}, expected string" .format(bus_key, binding_path)) # There are two legacy syntaxes for 'bus:' and 'on-bus:': # # child/parent-bus: foo # child/parent: bus: foo # # We support both, with deprecation warnings. for pc in "parent", "child": # Legacy 'parent/child-bus:' keys bus_key = pc + "-bus" if bus_key in binding: self._warn("'{}:' in {} is deprecated and will be removed - " "please use a top-level '{}:' key instead (see " "binding-template.yaml)" .format(bus_key, binding_path, "bus" if bus_key == "child-bus" else "on-bus")) if not isinstance(binding[bus_key], str): _err("malformed '{}:' value in {}, expected string" .format(bus_key, binding_path)) # Legacy 'child/parent: bus: ...' keys if pc in binding: self._warn("'{}: bus: ...' in {} is deprecated and will be " "removed - please use a top-level '{}' key instead " "(see binding-template.yaml)" .format(pc, binding_path, "bus" if pc == "child" else "on-bus:")) # Just 'bus:' is expected if binding[pc].keys() != {"bus"}: _err("expected (just) 'bus:' in '{}:' in {}" .format(pc, binding_path)) if not isinstance(binding[pc]["bus"], str): _err("malformed '{}: bus:' value in {}, expected string" .format(pc, binding_path)) self._check_binding_properties(binding, binding_path) if "child-binding" in binding: if not isinstance(binding["child-binding"], dict): _err("malformed 'child-binding:' in {}, expected a binding " "(dictionary with keys/values)".format(binding_path)) self._check_binding(binding["child-binding"], binding_path) if "sub-node" in binding: self._warn("'sub-node: properties: ...' in {} is deprecated and " "will be removed - please give a full binding for the " "child node in 'child-binding:' instead (see " "binding-template.yaml)".format(binding_path)) if binding["sub-node"].keys() != {"properties"}: _err("expected (just) 'properties:' in 'sub-node:' in {}" .format(binding_path)) self._check_binding_properties(binding["sub-node"], binding_path) if "#cells" in binding: self._warn('"#cells:" in {} is deprecated and will be removed - ' "please put 'interrupt-cells:', 'pwm-cells:', " "'gpio-cells:', etc., instead. The name should match " "the name of the corresponding phandle-array property " "(see binding-template.yaml)".format(binding_path)) def ok_cells_val(val): # Returns True if 'val' is an okay value for '*-cells:' (or the # legacy '#cells:') return isinstance(val, list) and \ all(isinstance(elm, str) for elm in val) for key, val in binding.items(): if key.endswith("-cells") or key == "#cells": if not ok_cells_val(val): _err("malformed '{}:' in {}, expected a list of strings" .format(key, binding_path)) def _check_binding_properties(self, binding, binding_path): # _check_binding() helper for checking the contents of 'properties:'. # Only takes 'self' for the sake of self._warn(). if "properties" not in binding: return ok_prop_keys = {"description", "type", "required", "category", "constraint", "enum", "const", "default"} for prop_name, options in binding["properties"].items(): for key in options: if key == "category": self._warn( "please put 'required: {}' instead of 'category: {}' " "in properties: {}: ...' in {} - 'category' will be " "removed".format( "true" if options["category"] == "required" else "false", options["category"], prop_name, binding_path)) if key not in ok_prop_keys: _err("unknown setting '{}' in 'properties: {}: ...' in {}, " "expected one of {}".format( key, prop_name, binding_path, ", ".join(ok_prop_keys))) _check_prop_type_and_default( prop_name, options.get("type"), options.get("required") or options.get("category") == "required", options.get("default"), binding_path) if "required" in options and not isinstance(options["required"], bool): _err("malformed 'required:' setting '{}' for '{}' in 'properties' " "in {}, expected true/false" .format(options["required"], prop_name, binding_path)) if "description" in options and \ not isinstance(options["description"], str): _err("missing, malformed, or empty 'description' for '{}' in " "'properties' in {}".format(prop_name, binding_path)) if "enum" in options and not isinstance(options["enum"], list): _err("enum in {} for property '{}' is not a list" .format(binding_path, prop_name)) if "const" in options and not isinstance(options["const"], (int, str)): _err("const in {} for property '{}' is not a scalar" .format(binding_path, prop_name)) def _warn(self, msg): print("warning: " + msg, file=self._warn_file) class Node: """ Represents a devicetree node, augmented with information from bindings, and with some interpretation of devicetree properties. There's a one-to-one correspondence between devicetree nodes and Nodes. These attributes are available on Node objects: edt: The EDT instance this node is from name: The name of the node unit_addr: An integer with the ...@<unit-address> portion of the node name, translated through any 'ranges' properties on parent nodes, or None if the node name has no unit-address portion description: The description string from the binding for the node, or None if the node has no binding. Leading and trailing whitespace (including newlines) is removed. path: The devicetree path of the node label: The text from the 'label' property on the node, or None if the node has no 'label' labels: A list of all of the devicetree labels for the node, in the same order as the labels appear, but with duplicates removed. This corresponds to the actual devicetree source labels, unlike the "label" attribute, which is the value of a devicetree property named "label". parent: The Node instance for the devicetree parent of the Node, or None if the node is the root node children: A dictionary with the Node instances for the devicetree children of the node, indexed by name dep_ordinal: A non-negative integer value such that the value for a Node is less than the value for all Nodes that depend on it. The ordinal is defined for all Nodes including those that are not 'enabled', and is unique among nodes in its EDT 'nodes' list. required_by: A list with the nodes that directly depend on the node depends_on: A list with the nodes that the node directly depends on status: The node's status property value, as a string, or "okay" if the node has no status property set. If the node's status property is "ok", it is converted to "okay" for consistency. enabled: True unless the node has 'status = "disabled"' This exists only for the sake of gen_legacy_defines.py. It will probably be removed following the Zephyr 2.3 release. read_only: True if the node has a 'read-only' property, and False otherwise matching_compat: The 'compatible' string for the binding that matched the node, or None if the node has no binding binding_path: The path to the binding file for the node, or None if the node has no binding compats: A list of 'compatible' strings for the node, in the same order that they're listed in the .dts file regs: A list of Register objects for the node's registers props: A collections.OrderedDict that maps property names to Property objects. Property objects are created for all devicetree properties on the node that are mentioned in 'properties:' in the binding. aliases: A list of aliases for the node. This is fetched from the /aliases node. interrupts: A list of ControllerAndData objects for the interrupts generated by the node. The list is empty if the node does not generate interrupts. pinctrls: A list of PinCtrl objects for the pinctrl-<index> properties on the node, sorted by index. The list is empty if the node does not have any pinctrl-<index> properties. bus: If the node is a bus node (has a 'bus:' key in its binding), then this attribute holds the bus type, e.g. "i2c" or "spi". If the node is not a bus node, then this attribute is None. on_bus: The bus the node appears on, e.g. "i2c" or "spi". The bus is determined by searching upwards for a parent node whose binding has a 'bus:' key, returning the value of the first 'bus:' key found. If none of the node's parents has a 'bus:' key, this attribute is None. bus_node: Like on_bus, but contains the Node for the bus controller, or None if the node is not on a bus. flash_controller: The flash controller for the node. Only meaningful for nodes representing flash partitions. spi_cs_gpio: The device's SPI GPIO chip select as a ControllerAndData instance, if it exists, and None otherwise. See Documentation/devicetree/bindings/spi/spi-controller.yaml in the Linux kernel. """ @property def name(self): "See the class docstring" return self._node.name @property def unit_addr(self): "See the class docstring" # TODO: Return a plain string here later, like dtlib.Node.unit_addr? if "@" not in self.name: return None try: addr = int(self.name.split("@", 1)[1], 16) except ValueError: _err("{!r} has non-hex unit address".format(self)) addr = _translate(addr, self._node) # Matches the simple_bus_reg warning in dtc if self.edt._warn_reg_unit_address_mismatch and \ self.regs and self.regs[0].addr != addr: self.edt._warn("unit address and first address in 'reg' " f"(0x{self.regs[0].addr:x}) don't match for " f"{self.path}") return addr @property def description(self): "See the class docstring." if self._binding and "description" in self._binding: return self._binding["description"].strip() return None @property def path(self): "See the class docstring" return self._node.path @property def label(self): "See the class docstring" if "label" in self._node.props: return self._node.props["label"].to_string() return None @property def labels(self): "See the class docstring" return self._node.labels @property def parent(self): "See the class docstring" return self.edt._node2enode.get(self._node.parent) @property def children(self): "See the class docstring" # Could be initialized statically too to preserve identity, but not # sure if needed. Parent nodes being initialized before their children # would need to be kept in mind. return OrderedDict((name, self.edt._node2enode[node]) for name, node in self._node.nodes.items()) @property def required_by(self): "See the class docstring" return self.edt._graph.required_by(self) @property def depends_on(self): "See the class docstring" return self.edt._graph.depends_on(self) @property def status(self): "See the class docstring" status = self._node.props.get("status") if status is None: as_string = "okay" else: as_string = status.to_string() if as_string == "ok": as_string = "okay" return as_string @property def enabled(self): "See the class docstring" return "status" not in self._node.props or self.status != "disabled" @property def read_only(self): "See the class docstring" return "read-only" in self._node.props @property def aliases(self): "See the class docstring" return [alias for alias, node in self._node.dt.alias2node.items() if node is self._node] @property def bus(self): "See the class docstring" binding = self._binding if not binding: return None if "bus" in binding: return binding["bus"] # Legacy key if "child-bus" in binding: return binding["child-bus"] # Legacy key if "child" in binding: # _check_binding() has checked that the "bus" key exists return binding["child"]["bus"] return None @property def on_bus(self): "See the class docstring" bus_node = self.bus_node return bus_node.bus if bus_node else None @property def flash_controller(self): "See the class docstring" # The node path might be something like # /flash-controller@4001E000/flash@0/partitions/partition@fc000. We go # up two levels to get the flash and check its compat. The flash # controller might be the flash itself (for cases like NOR flashes). # For the case of 'soc-nv-flash', we assume the controller is the # parent of the flash node. if not self.parent or not self.parent.parent: _err("flash partition {!r} lacks parent or grandparent node" .format(self)) controller = self.parent.parent if controller.matching_compat == "soc-nv-flash": return controller.parent return controller @property def spi_cs_gpio(self): "See the class docstring" if not (self.on_bus == "spi" and "cs-gpios" in self.bus_node.props): return None if not self.regs: _err("{!r} needs a 'reg' property, to look up the chip select index " "for SPI".format(self)) parent_cs_lst = self.bus_node.props["cs-gpios"].val # cs-gpios is indexed by the unit address cs_index = self.regs[0].addr if cs_index >= len(parent_cs_lst): _err("index from 'regs' in {!r} ({}) is >= number of cs-gpios " "in {!r} ({})".format( self, cs_index, self.bus_node, len(parent_cs_lst))) return parent_cs_lst[cs_index] def __repr__(self): return "<Node {} in '{}', {}>".format( self.path, self.edt.dts_path, "binding " + self.binding_path if self.binding_path else "no binding") def _init_binding(self): # Initializes Node.matching_compat, Node._binding, and # Node.binding_path. # # Node._binding holds the data from the node's binding file, in the # format returned by PyYAML (plain Python lists, dicts, etc.), or None # if the node has no binding. # This relies on the parent of the node having already been # initialized, which is guaranteed by going through the nodes in # node_iter() order. if "compatible" in self._node.props: self.compats = self._node.props["compatible"].to_strings() on_bus = self.on_bus for compat in self.compats: if (compat, on_bus) in self.edt._compat2binding: # Binding found self.matching_compat = compat self._binding, self.binding_path = \ self.edt._compat2binding[compat, on_bus] return else: # No 'compatible' property. See if the parent binding has a # 'child-binding:' key that gives the binding (or a legacy # 'sub-node:' key). self.compats = [] binding_from_parent = self._binding_from_parent() if binding_from_parent: self._binding = binding_from_parent self.binding_path = self.parent.binding_path self.matching_compat = self.parent.matching_compat return # No binding found self._binding = self.binding_path = self.matching_compat = None def _binding_from_parent(self): # Returns the binding from 'child-binding:' in the parent node's # binding (or from the legacy 'sub-node:' key), or None if missing if not self.parent: return None pbinding = self.parent._binding if not pbinding: return None if "child-binding" in pbinding: return pbinding["child-binding"] # Backwards compatibility if "sub-node" in pbinding: return {"title": pbinding["title"], "description": pbinding["description"], "properties": pbinding["sub-node"]["properties"]} return None def _bus_node(self): # Returns the value for self.bus_node. Relies on parent nodes being # initialized before their children. if not self.parent: # This is the root node return None if self.parent.bus: # The parent node is a bus node return self.parent # Same bus node as parent (possibly None) return self.parent.bus_node def _init_props(self, default_prop_types=False): # Creates self.props. See the class docstring. Also checks that all # properties on the node are declared in its binding. self.props = OrderedDict() node = self._node if self._binding: binding_props = self._binding.get("properties") else: binding_props = None # Initialize self.props if binding_props: for name, options in binding_props.items(): self._init_prop(name, options) self._check_undeclared_props() elif default_prop_types: for name in node.props: if name in _DEFAULT_PROP_TYPES: prop_type = _DEFAULT_PROP_TYPES[name] val = self._prop_val(name, prop_type, False, None) prop = Property() prop.node = self prop.name = name prop.description = None prop.val = val prop.type = prop_type # We don't set enum_index for "compatible" prop.enum_index = None self.props[name] = prop def _init_prop(self, name, options): # _init_props() helper for initializing a single property prop_type = options.get("type") if not prop_type: _err("'{}' in {} lacks 'type'".format(name, self.binding_path)) val = self._prop_val( name, prop_type, options.get("required") or options.get("category") == "required", options.get("default")) if val is None: # 'required: false' property that wasn't there, or a property type # for which we store no data. return enum = options.get("enum") if enum and val not in enum: _err("value of property '{}' on {} in {} ({!r}) is not in 'enum' " "list in {} ({!r})" .format(name, self.path, self.edt.dts_path, val, self.binding_path, enum)) const = options.get("const") if const is not None and val != const: _err("value of property '{}' on {} in {} ({!r}) is different from " "the 'const' value specified in {} ({!r})" .format(name, self.path, self.edt.dts_path, val, self.binding_path, const)) # Skip properties that start with '#', like '#size-cells', and mapping # properties like 'gpio-map'/'interrupt-map' if name[0] == "#" or name.endswith("-map"): return prop = Property() prop.node = self prop.name = name prop.description = options.get("description") if prop.description: prop.description = prop.description.strip() prop.val = val prop.type = prop_type prop.enum_index = None if enum is None else enum.index(val) self.props[name] = prop def _prop_val(self, name, prop_type, required, default): # _init_prop() helper for getting the property's value # # name: # Property name from binding # # prop_type: # Property type from binding (a string like "int") # # optional: # True if the property isn't required to exist # # default: # Default value to use when the property doesn't exist, or None if # the binding doesn't give a default value node = self._node prop = node.props.get(name) if not prop: if required and self.enabled: _err("'{}' is marked as required in 'properties:' in {}, but " "does not appear in {!r}".format( name, self.binding_path, node)) if default is not None: # YAML doesn't have a native format for byte arrays. We need to # convert those from an array like [0x12, 0x34, ...]. The # format has already been checked in # _check_prop_type_and_default(). if prop_type == "uint8-array": return bytes(default) return default return False if prop_type == "boolean" else None if prop_type == "boolean": if prop.type is not TYPE_EMPTY: _err("'{0}' in {1!r} is defined with 'type: boolean' in {2}, " "but is assigned a value ('{3}') instead of being empty " "('{0};')".format(name, node, self.binding_path, prop)) return True if prop_type == "int": return prop.to_num() if prop_type == "array": return prop.to_nums() if prop_type == "uint8-array": return prop.to_bytes() if prop_type == "string": return prop.to_string() if prop_type == "string-array": return prop.to_strings() if prop_type == "phandle": return self.edt._node2enode[prop.to_node()] if prop_type == "phandles": return [self.edt._node2enode[node] for node in prop.to_nodes()] if prop_type == "phandle-array": # This type is a bit high-level for dtlib as it involves # information from bindings and *-names properties, so there's no # to_phandle_array() in dtlib. Do the type check ourselves. if prop.type not in (TYPE_PHANDLE, TYPE_PHANDLES_AND_NUMS): _err("expected property '{0}' in {1} in {2} to be assigned " "with '{0} = < &foo 1 2 ... &bar 3 4 ... >' (a mix of " "phandles and numbers), not '{3}'" .format(name, node.path, node.dt.filename, prop)) return self._standard_phandle_val_list(prop) if prop_type == "path": return self.edt._node2enode[prop.to_path()] # prop_type == "compound". We have already checked that the 'type:' # value is valid, in _check_binding(). # # 'compound' is a dummy type for properties that don't fit any of the # patterns above, so that we can require all entries in 'properties:' # to have a 'type: ...'. No Property object is created for it. return None def _check_undeclared_props(self): # Checks that all properties are declared in the binding if "properties" in self._binding: declared_props = self._binding["properties"].keys() else: declared_props = set() for prop_name in self._node.props: # Allow a few special properties to not be declared in the binding if prop_name.endswith("-controller") or \ prop_name.startswith("#") or \ prop_name.startswith("pinctrl-") or \ prop_name in { "compatible", "status", "ranges", "phandle", "interrupt-parent", "interrupts-extended", "device_type"}: continue if prop_name not in declared_props: _err("'{}' appears in {} in {}, but is not declared in " "'properties:' in {}" .format(prop_name, self._node.path, self.edt.dts_path, self.binding_path)) def _init_regs(self): # Initializes self.regs node = self._node self.regs = [] if "reg" not in node.props: return address_cells = _address_cells(node) size_cells = _size_cells(node) for raw_reg in _slice(node, "reg", 4*(address_cells + size_cells), "4*(<#address-cells> (= {}) + <#size-cells> (= {}))" .format(address_cells, size_cells)): reg = Register() reg.node = self if address_cells == 0: reg.addr = None else: reg.addr = _translate(to_num(raw_reg[:4*address_cells]), node) if size_cells == 0: reg.size = None else: reg.size = to_num(raw_reg[4*address_cells:]) if size_cells != 0 and reg.size == 0: _err("zero-sized 'reg' in {!r} seems meaningless (maybe you " "want a size of one or #size-cells = 0 instead)" .format(self._node)) self.regs.append(reg) _add_names(node, "reg", self.regs) def _init_pinctrls(self): # Initializes self.pinctrls from any pinctrl-<index> properties node = self._node # pinctrl-<index> properties pinctrl_props = [prop for name, prop in node.props.items() if re.match("pinctrl-[0-9]+", name)] # Sort by index pinctrl_props.sort(key=lambda prop: prop.name) # Check indices for i, prop in enumerate(pinctrl_props): if prop.name != "pinctrl-" + str(i): _err("missing 'pinctrl-{}' property on {!r} - indices should " "be contiguous and start from zero".format(i, node)) self.pinctrls = [] for prop in pinctrl_props: pinctrl = PinCtrl() pinctrl.node = self pinctrl.conf_nodes = [ self.edt._node2enode[node] for node in prop.to_nodes() ] self.pinctrls.append(pinctrl) _add_names(node, "pinctrl", self.pinctrls) def _init_interrupts(self): # Initializes self.interrupts node = self._node self.interrupts = [] for controller_node, data in _interrupts(node): interrupt = ControllerAndData() interrupt.node = self interrupt.controller = self.edt._node2enode[controller_node] interrupt.data = self._named_cells(interrupt.controller, data, "interrupt") self.interrupts.append(interrupt) _add_names(node, "interrupt", self.interrupts) def _standard_phandle_val_list(self, prop): # Parses a property like # # <name>s = <phandle value phandle value ...> # (e.g., pwms = <&foo 1 2 &bar 3 4>) # # , where each phandle points to a node that has a # # #<name>-cells = <size> # # property that gives the number of cells in the value after the # phandle. These values are given names in *-cells in the binding for # the controller. # # Also parses any # # <name>-names = "...", "...", ... # # Returns a list of ControllerAndData instances. if prop.name.endswith("gpios"): # There's some slight special-casing for *-gpios properties in that # e.g. foo-gpios still maps to #gpio-cells rather than # #foo-gpio-cells basename = "gpio" else: # Strip -s. We've already checked that the property names end in -s # in _check_binding(). basename = prop.name[:-1] res = [] for controller_node, data in _phandle_val_list(prop, basename): mapped_controller, mapped_data = \ _map_phandle_array_entry(prop.node, controller_node, data, basename) entry = ControllerAndData() entry.node = self entry.controller = self.edt._node2enode[mapped_controller] entry.data = self._named_cells(entry.controller, mapped_data, basename) res.append(entry) _add_names(self._node, basename, res) return res def _named_cells(self, controller, data, basename): # Returns a dictionary that maps <basename>-cells names given in the # binding for 'controller' to cell values. 'data' is the raw data, as a # byte array. if not controller._binding: _err("{} controller {!r} for {!r} lacks binding" .format(basename, controller._node, self._node)) if basename + "-cells" in controller._binding: cell_names = controller._binding[basename + "-cells"] elif "#cells" in controller._binding: # Backwards compatibility cell_names = controller._binding["#cells"] else: # Treat no *-cells in the binding the same as an empty *-cells, so # that bindings don't have to have e.g. an empty 'clock-cells:' for # '#clock-cells = <0>'. cell_names = [] data_list = to_nums(data) if len(data_list) != len(cell_names): _err("unexpected '{}-cells:' length in binding for {!r} - {} " "instead of {}" .format(basename, controller._node, len(cell_names), len(data_list))) return OrderedDict(zip(cell_names, data_list)) class Register: """ Represents a register on a node. These attributes are available on Register objects: node: The Node instance this register is from name: The name of the register as given in the 'reg-names' property, or None if there is no 'reg-names' property addr: The starting address of the register, in the parent address space, or None if #address-cells is zero. Any 'ranges' properties are taken into account. size: The length of the register in bytes """ def __repr__(self): fields = [] if self.name is not None: fields.append("name: " + self.name) if self.addr is not None: fields.append("addr: " + hex(self.addr)) if self.size is not None: fields.append("size: " + hex(self.size)) return "<Register, {}>".format(", ".join(fields)) class ControllerAndData: """ Represents an entry in an 'interrupts' or 'type: phandle-array' property value, e.g. <&ctrl-1 4 0> in cs-gpios = <&ctrl-1 4 0 &ctrl-2 3 4>; These attributes are available on ControllerAndData objects: node: The Node instance the property appears on controller: The Node instance for the controller (e.g. the controller the interrupt gets sent to for interrupts) data: A dictionary that maps names from the *-cells key in the binding for the controller to data values, e.g. {"pin": 4, "flags": 0} for the example above. 'interrupts = <1 2>' might give {"irq": 1, "level": 2}. name: The name of the entry as given in 'interrupt-names'/'gpio-names'/'pwm-names'/etc., or None if there is no *-names property """ def __repr__(self): fields = [] if self.name is not None: fields.append("name: " + self.name) fields.append("controller: {}".format(self.controller)) fields.append("data: {}".format(self.data)) return "<ControllerAndData, {}>".format(", ".join(fields)) class PinCtrl: """ Represents a pin control configuration for a set of pins on a device, e.g. pinctrl-0 or pinctrl-1. These attributes are available on PinCtrl objects: node: The Node instance the pinctrl-* property is on name: The name of the configuration, as given in pinctrl-names, or None if there is no pinctrl-names property conf_nodes: A list of Node instances for the pin configuration nodes, e.g. the nodes pointed at by &state_1 and &state_2 in pinctrl-0 = <&state_1 &state_2>; """ def __repr__(self): fields = [] if self.name is not None: fields.append("name: " + self.name) fields.append("configuration nodes: " + str(self.conf_nodes)) return "<PinCtrl, {}>".format(", ".join(fields)) class Property: """ Represents a property on a Node, as set in its DT node and with additional info from the 'properties:' section of the binding. Only properties mentioned in 'properties:' get created. Properties of type 'compound' currently do not get Property instances, as I'm not sure what information to store for them. These attributes are available on Property objects: node: The Node instance the property is on name: The name of the property description: The description string from the property as given in the binding, or None if missing. Leading and trailing whitespace (including newlines) is removed. type: A string with the type of the property, as given in the binding. val: The value of the property, with the format determined by the 'type:' key from the binding. - For 'type: int/array/string/string-array', 'val' is what you'd expect (a Python integer or string, or a list of them) - For 'type: phandle' and 'type: path', 'val' is the pointed-to Node instance - For 'type: phandles', 'val' is a list of the pointed-to Node instances - For 'type: phandle-array', 'val' is a list of ControllerAndData instances. See the documentation for that class. enum_index: The index of the property's value in the 'enum:' list in the binding, or None if the binding has no 'enum:' """ def __repr__(self): fields = ["name: " + self.name, # repr() to deal with lists "type: " + self.type, "value: " + repr(self.val)] if self.enum_index is not None: fields.append("enum index: {}".format(self.enum_index)) return "<Property, {}>".format(", ".join(fields)) class EDTError(Exception): "Exception raised for devicetree- and binding-related errors" # # Private global functions # def _dt_compats(dt): # Returns a set() with all 'compatible' strings in the devicetree # represented by dt (a dtlib.DT instance) return {compat for node in dt.node_iter() if "compatible" in node.props for compat in node.props["compatible"].to_strings()} def _binding_paths(bindings_dirs): # Returns a list with the paths to all bindings (.yaml files) in # 'bindings_dirs' binding_paths = [] for bindings_dir in bindings_dirs: for root, _, filenames in os.walk(bindings_dir): for filename in filenames: if filename.endswith(".yaml"): binding_paths.append(os.path.join(root, filename)) return binding_paths def _on_bus_from_binding(binding): # Returns the bus specified by 'on-bus:' in the binding (or the # legacy 'parent-bus:' and 'parent: bus:'), or None if missing if not binding: return None if "on-bus" in binding: return binding["on-bus"] # Legacy key if "parent-bus" in binding: return binding["parent-bus"] # Legacy key if "parent" in binding: # _check_binding() has checked that the "bus" key exists return binding["parent"]["bus"] return None def _binding_inc_error(msg): # Helper for reporting errors in the !include implementation raise yaml.constructor.ConstructorError(None, None, "error: " + msg) def _merge_props(to_dict, from_dict, parent, binding_path, check_required): # Recursively merges 'from_dict' into 'to_dict', to implement 'include:'. # # If 'from_dict' and 'to_dict' contain a 'required:' key for the same # property, then the values are ORed together. # # If 'check_required' is True, then an error is raised if 'from_dict' has # 'required: true' while 'to_dict' has 'required: false'. This prevents # bindings from "downgrading" requirements from bindings they include, # which might help keep bindings well-organized. # # It's an error for most other keys to appear in both 'from_dict' and # 'to_dict'. When it's not an error, the value in 'to_dict' takes # precedence. # # 'parent' is the name of the parent key containing 'to_dict' and # 'from_dict', and 'binding_path' is the path to the top-level binding. # These are used to generate errors for sketchy property overwrites. for prop in from_dict: if isinstance(to_dict.get(prop), dict) and \ isinstance(from_dict[prop], dict): _merge_props(to_dict[prop], from_dict[prop], prop, binding_path, check_required) elif prop not in to_dict: to_dict[prop] = from_dict[prop] elif _bad_overwrite(to_dict, from_dict, prop, check_required): _err("{} (in '{}'): '{}' from included file overwritten " "('{}' replaced with '{}')".format( binding_path, parent, prop, from_dict[prop], to_dict[prop])) elif prop == "required": # Need a separate check here, because this code runs before # _check_binding() if not (isinstance(from_dict["required"], bool) and isinstance(to_dict["required"], bool)): _err("malformed 'required:' setting for '{}' in 'properties' " "in {}, expected true/false".format(parent, binding_path)) # 'required: true' takes precedence to_dict["required"] = to_dict["required"] or from_dict["required"] elif prop == "category": # Legacy property key. 'category: required' takes precedence. if "required" in (to_dict["category"], from_dict["category"]): to_dict["category"] = "required" def _bad_overwrite(to_dict, from_dict, prop, check_required): # _merge_props() helper. Returns True in cases where it's bad that # to_dict[prop] takes precedence over from_dict[prop]. if to_dict[prop] == from_dict[prop]: return False # These are overridden deliberately if prop in {"title", "description", "compatible"}: return False if prop == "required": if not check_required: return False return from_dict[prop] and not to_dict[prop] # Legacy property key if prop == "category": if not check_required: return False return from_dict[prop] == "required" and to_dict[prop] == "optional" return True def _binding_include(loader, node): # Implements !include, for backwards compatibility. '!include [foo, bar]' # just becomes [foo, bar]. if isinstance(node, yaml.ScalarNode): # !include foo.yaml return [loader.construct_scalar(node)] if isinstance(node, yaml.SequenceNode): # !include [foo.yaml, bar.yaml] return loader.construct_sequence(node) _binding_inc_error("unrecognised node type in !include statement") def _check_prop_type_and_default(prop_name, prop_type, required, default, binding_path): # _check_binding() helper. Checks 'type:' and 'default:' for the property # named 'prop_name' if prop_type is None: _err("missing 'type:' for '{}' in 'properties' in {}" .format(prop_name, binding_path)) ok_types = {"boolean", "int", "array", "uint8-array", "string", "string-array", "phandle", "phandles", "phandle-array", "path", "compound"} if prop_type not in ok_types: _err("'{}' in 'properties:' in {} has unknown type '{}', expected one " "of {}".format(prop_name, binding_path, prop_type, ", ".join(ok_types))) if prop_type == "phandle-array" and not prop_name.endswith("s"): _err("'{}' in 'properties:' in {} is 'type: phandle-array', but its " "name does not end in -s. This is required since property names " "like '#pwm-cells' and 'pwm-names' get derived from 'pwms', for " "example.".format(prop_name, binding_path)) # Check default if default is None: return if prop_type in {"boolean", "compound", "phandle", "phandles", "phandle-array", "path"}: _err("'default:' can't be combined with 'type: {}' for '{}' in " "'properties:' in {}".format(prop_type, prop_name, binding_path)) def ok_default(): # Returns True if 'default' is an okay default for the property's type if prop_type == "int" and isinstance(default, int) or \ prop_type == "string" and isinstance(default, str): return True # array, uint8-array, or string-array if not isinstance(default, list): return False if prop_type == "array" and \ all(isinstance(val, int) for val in default): return True if prop_type == "uint8-array" and \ all(isinstance(val, int) and 0 <= val <= 255 for val in default): return True # string-array return all(isinstance(val, str) for val in default) if not ok_default(): _err("'default: {}' is invalid for '{}' in 'properties:' in {}, which " "has type {}".format(default, prop_name, binding_path, prop_type)) def _translate(addr, node): # Recursively translates 'addr' on 'node' to the address space(s) of its # parent(s), by looking at 'ranges' properties. Returns the translated # address. # # node: # dtlib.Node instance if not node.parent or "ranges" not in node.parent.props: # No translation return addr if not node.parent.props["ranges"].value: # DT spec.: "If the property is defined with an <empty> value, it # specifies that the parent and child address space is identical, and # no address translation is required." # # Treat this the same as a 'range' that explicitly does a one-to-one # mapping, as opposed to there not being any translation. return _translate(addr, node.parent) # Gives the size of each component in a translation 3-tuple in 'ranges' child_address_cells = _address_cells(node) parent_address_cells = _address_cells(node.parent) child_size_cells = _size_cells(node) # Number of cells for one translation 3-tuple in 'ranges' entry_cells = child_address_cells + parent_address_cells + child_size_cells for raw_range in _slice(node.parent, "ranges", 4*entry_cells, "4*(<#address-cells> (= {}) + " "<#address-cells for parent> (= {}) + " "<#size-cells> (= {}))" .format(child_address_cells, parent_address_cells, child_size_cells)): child_addr = to_num(raw_range[:4*child_address_cells]) raw_range = raw_range[4*child_address_cells:] parent_addr = to_num(raw_range[:4*parent_address_cells]) raw_range = raw_range[4*parent_address_cells:] child_len = to_num(raw_range) if child_addr <= addr < child_addr + child_len: # 'addr' is within range of a translation in 'ranges'. Recursively # translate it and return the result. return _translate(parent_addr + addr - child_addr, node.parent) # 'addr' is not within range of any translation in 'ranges' return addr def _add_names(node, names_ident, objs): # Helper for registering names from <foo>-names properties. # # node: # edtlib.Node instance # # names-ident: # The <foo> part of <foo>-names, e.g. "reg" for "reg-names" # # objs: # list of objects whose .name field should be set full_names_ident = names_ident + "-names" if full_names_ident in node.props: names = node.props[full_names_ident].to_strings() if len(names) != len(objs): _err("{} property in {} in {} has {} strings, expected {} strings" .format(full_names_ident, node.path, node.dt.filename, len(names), len(objs))) for obj, name in zip(objs, names): obj.name = name else: for obj in objs: obj.name = None def _interrupt_parent(node): # Returns the node pointed at by the closest 'interrupt-parent', searching # the parents of 'node'. As of writing, this behavior isn't specified in # the DT spec., but seems to match what some .dts files except. while node: if "interrupt-parent" in node.props: return node.props["interrupt-parent"].to_node() node = node.parent _err("{!r} has an 'interrupts' property, but neither the node nor any " "of its parents has an 'interrupt-parent' property".format(node)) def _interrupts(node): # Returns a list of (<controller>, <data>) tuples, with one tuple per # interrupt generated by 'node'. <controller> is the destination of the # interrupt (possibly after mapping through an 'interrupt-map'), and <data> # the data associated with the interrupt (as a 'bytes' object). # Takes precedence over 'interrupts' if both are present if "interrupts-extended" in node.props: prop = node.props["interrupts-extended"] return [_map_interrupt(node, iparent, spec) for iparent, spec in _phandle_val_list(prop, "interrupt")] if "interrupts" in node.props: # Treat 'interrupts' as a special case of 'interrupts-extended', with # the same interrupt parent for all interrupts iparent = _interrupt_parent(node) interrupt_cells = _interrupt_cells(iparent) return [_map_interrupt(node, iparent, raw) for raw in _slice(node, "interrupts", 4*interrupt_cells, "4*<#interrupt-cells>")] return [] def _map_interrupt(child, parent, child_spec): # Translates an interrupt headed from 'child' to 'parent' with data # 'child_spec' through any 'interrupt-map' properties. Returns a # (<controller>, <data>) tuple with the final destination after mapping. if "interrupt-controller" in parent.props: return (parent, child_spec) def own_address_cells(node): # Used for parents pointed at by 'interrupt-map'. We can't use # _address_cells(), because it's the #address-cells property on 'node' # itself that matters. address_cells = node.props.get("#address-cells") if not address_cells: _err("missing #address-cells on {!r} (while handling interrupt-map)" .format(node)) return address_cells.to_num() def spec_len_fn(node): # Can't use _address_cells() here, because it's the #address-cells # property on 'node' itself that matters return own_address_cells(node) + _interrupt_cells(node) parent, raw_spec = _map( "interrupt", child, parent, _raw_unit_addr(child) + child_spec, spec_len_fn, require_controller=True) # Strip the parent unit address part, if any return (parent, raw_spec[4*own_address_cells(parent):]) def _map_phandle_array_entry(child, parent, child_spec, basename): # Returns a (<controller>, <data>) tuple with the final destination after # mapping through any '<basename>-map' (e.g. gpio-map) properties. See # _map_interrupt(). def spec_len_fn(node): prop_name = "#{}-cells".format(basename) if prop_name not in node.props: _err("expected '{}' property on {!r} (referenced by {!r})" .format(prop_name, node, child)) return node.props[prop_name].to_num() # Do not require <prefix>-controller for anything but interrupts for now return _map(basename, child, parent, child_spec, spec_len_fn, require_controller=False) def _map(prefix, child, parent, child_spec, spec_len_fn, require_controller): # Common code for mapping through <prefix>-map properties, e.g. # interrupt-map and gpio-map. # # prefix: # The prefix, e.g. "interrupt" or "gpio" # # child: # The "sender", e.g. the node with 'interrupts = <...>' # # parent: # The "receiver", e.g. a node with 'interrupt-map = <...>' or # 'interrupt-controller' (no mapping) # # child_spec: # The data associated with the interrupt/GPIO/etc., as a 'bytes' object, # e.g. <1 2> for 'foo-gpios = <&gpio1 1 2>'. # # spec_len_fn: # Function called on a parent specified in a *-map property to get the # length of the parent specifier (data after phandle in *-map), in cells # # require_controller: # If True, the final controller node after mapping is required to have # to have a <prefix>-controller property. map_prop = parent.props.get(prefix + "-map") if not map_prop: if require_controller and prefix + "-controller" not in parent.props: _err("expected '{}-controller' property on {!r} " "(referenced by {!r})".format(prefix, parent, child)) # No mapping return (parent, child_spec) masked_child_spec = _mask(prefix, child, parent, child_spec) raw = map_prop.value while raw: if len(raw) < len(child_spec): _err("bad value for {!r}, missing/truncated child data" .format(map_prop)) child_spec_entry = raw[:len(child_spec)] raw = raw[len(child_spec):] if len(raw) < 4: _err("bad value for {!r}, missing/truncated phandle" .format(map_prop)) phandle = to_num(raw[:4]) raw = raw[4:] # Parent specified in *-map map_parent = parent.dt.phandle2node.get(phandle) if not map_parent: _err("bad phandle ({}) in {!r}".format(phandle, map_prop)) map_parent_spec_len = 4*spec_len_fn(map_parent) if len(raw) < map_parent_spec_len: _err("bad value for {!r}, missing/truncated parent data" .format(map_prop)) parent_spec = raw[:map_parent_spec_len] raw = raw[map_parent_spec_len:] # Got one *-map row. Check if it matches the child data. if child_spec_entry == masked_child_spec: # Handle *-map-pass-thru parent_spec = _pass_thru( prefix, child, parent, child_spec, parent_spec) # Found match. Recursively map and return it. return _map(prefix, parent, map_parent, parent_spec, spec_len_fn, require_controller) _err("child specifier for {!r} ({}) does not appear in {!r}" .format(child, child_spec, map_prop)) def _mask(prefix, child, parent, child_spec): # Common code for handling <prefix>-mask properties, e.g. interrupt-mask. # See _map() for the parameters. mask_prop = parent.props.get(prefix + "-map-mask") if not mask_prop: # No mask return child_spec mask = mask_prop.value if len(mask) != len(child_spec): _err("{!r}: expected '{}-mask' in {!r} to be {} bytes, is {} bytes" .format(child, prefix, parent, len(child_spec), len(mask))) return _and(child_spec, mask) def _pass_thru(prefix, child, parent, child_spec, parent_spec): # Common code for handling <prefix>-map-thru properties, e.g. # interrupt-pass-thru. # # parent_spec: # The parent data from the matched entry in the <prefix>-map property # # See _map() for the other parameters. pass_thru_prop = parent.props.get(prefix + "-map-pass-thru") if not pass_thru_prop: # No pass-thru return parent_spec pass_thru = pass_thru_prop.value if len(pass_thru) != len(child_spec): _err("{!r}: expected '{}-map-pass-thru' in {!r} to be {} bytes, is {} bytes" .format(child, prefix, parent, len(child_spec), len(pass_thru))) res = _or(_and(child_spec, pass_thru), _and(parent_spec, _not(pass_thru))) # Truncate to length of parent spec. return res[-len(parent_spec):] def _raw_unit_addr(node): # _map_interrupt() helper. Returns the unit address (derived from 'reg' and # #address-cells) as a raw 'bytes' if 'reg' not in node.props: _err("{!r} lacks 'reg' property (needed for 'interrupt-map' unit " "address lookup)".format(node)) addr_len = 4*_address_cells(node) if len(node.props['reg'].value) < addr_len: _err("{!r} has too short 'reg' property (while doing 'interrupt-map' " "unit address lookup)".format(node)) return node.props['reg'].value[:addr_len] def _and(b1, b2): # Returns the bitwise AND of the two 'bytes' objects b1 and b2. Pads # with ones on the left if the lengths are not equal. # Pad on the left, to equal length maxlen = max(len(b1), len(b2)) return bytes(x & y for x, y in zip(b1.rjust(maxlen, b'\xff'), b2.rjust(maxlen, b'\xff'))) def _or(b1, b2): # Returns the bitwise OR of the two 'bytes' objects b1 and b2. Pads with # zeros on the left if the lengths are not equal. # Pad on the left, to equal length maxlen = max(len(b1), len(b2)) return bytes(x | y for x, y in zip(b1.rjust(maxlen, b'\x00'), b2.rjust(maxlen, b'\x00'))) def _not(b): # Returns the bitwise not of the 'bytes' object 'b' # ANDing with 0xFF avoids negative numbers return bytes(~x & 0xFF for x in b) def _phandle_val_list(prop, n_cells_name): # Parses a '<phandle> <value> <phandle> <value> ...' value. The number of # cells that make up each <value> is derived from the node pointed at by # the preceding <phandle>. # # prop: # dtlib.Property with value to parse # # n_cells_name: # The <name> part of the #<name>-cells property to look for on the nodes # the phandles point to, e.g. "gpio" for #gpio-cells. # # Returns a list of (<node>, <value>) tuples, where <node> is the node # pointed at by <phandle>. full_n_cells_name = "#{}-cells".format(n_cells_name) res = [] raw = prop.value while raw: if len(raw) < 4: # Not enough room for phandle _err("bad value for " + repr(prop)) phandle = to_num(raw[:4]) raw = raw[4:] node = prop.node.dt.phandle2node.get(phandle) if not node: _err("bad phandle in " + repr(prop)) if full_n_cells_name not in node.props: _err("{!r} lacks {}".format(node, full_n_cells_name)) n_cells = node.props[full_n_cells_name].to_num() if len(raw) < 4*n_cells: _err("missing data after phandle in " + repr(prop)) res.append((node, raw[:4*n_cells])) raw = raw[4*n_cells:] return res def _address_cells(node): # Returns the #address-cells setting for 'node', giving the number of <u32> # cells used to encode the address in the 'reg' property if "#address-cells" in node.parent.props: return node.parent.props["#address-cells"].to_num() return 2 # Default value per DT spec. def _size_cells(node): # Returns the #size-cells setting for 'node', giving the number of <u32> # cells used to encode the size in the 'reg' property if "#size-cells" in node.parent.props: return node.parent.props["#size-cells"].to_num() return 1 # Default value per DT spec. def _interrupt_cells(node): # Returns the #interrupt-cells property value on 'node', erroring out if # 'node' has no #interrupt-cells property if "#interrupt-cells" not in node.props: _err("{!r} lacks #interrupt-cells".format(node)) return node.props["#interrupt-cells"].to_num() def _slice(node, prop_name, size, size_hint): # Splits node.props[prop_name].value into 'size'-sized chunks, returning a # list of chunks. Raises EDTError if the length of the property is not # evenly divisible by 'size'. 'size_hint' is a string shown on errors that # gives a hint on how 'size' was calculated. raw = node.props[prop_name].value if len(raw) % size: _err("'{}' property in {!r} has length {}, which is not evenly " "divisible by {} (= {}). Note that #*-cells " "properties come either from the parent node or from the " "controller (in the case of 'interrupts')." .format(prop_name, node, len(raw), size, size_hint)) return [raw[i:i + size] for i in range(0, len(raw), size)] def _check_dt(dt): # Does devicetree sanity checks. dtlib is meant to be general and # anything-goes except for very special properties like phandle, but in # edtlib we can be pickier. # Check that 'status' has one of the values given in the devicetree spec. # Accept "ok" for backwards compatibility ok_status = {"ok", "okay", "disabled", "reserved", "fail", "fail-sss"} for node in dt.node_iter(): if "status" in node.props: try: status_val = node.props["status"].to_string() except DTError as e: # The error message gives the path _err(str(e)) if status_val not in ok_status: _err("unknown 'status' value \"{}\" in {} in {}, expected one " "of {} (see the devicetree specification)" .format(status_val, node.path, node.dt.filename, ", ".join(ok_status))) ranges_prop = node.props.get("ranges") if ranges_prop: if ranges_prop.type not in (TYPE_EMPTY, TYPE_NUMS): _err("expected 'ranges = < ... >;' in {} in {}, not '{}' " "(see the devicetree specification)" .format(node.path, node.dt.filename, ranges_prop)) def _err(msg): raise EDTError(msg) # Custom PyYAML binding loader class to avoid modifying yaml.Loader directly, # which could interfere with YAML loading in clients class _BindingLoader(Loader): pass # Add legacy '!include foo.yaml' handling _BindingLoader.add_constructor("!include", _binding_include) # Use OrderedDict instead of plain dict for YAML mappings, to preserve # insertion order on Python 3.5 and earlier (plain dicts only preserve # insertion order on Python 3.6+). This makes testing easier and avoids # surprises. # # Adapted from # https://stackoverflow.com/questions/5121931/in-python-how-can-you-load-yaml-mappings-as-ordereddicts. # Hopefully this API stays stable. _BindingLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, lambda loader, node: OrderedDict(loader.construct_pairs(node))) _DEFAULT_PROP_TYPES = { "compatible": "string-array", "status": "string", "reg": "array", "reg-names": "string-array", "label": "string", "interrupt": "array", "interrupts-extended": "compound", "interrupt-names": "string-array", "interrupt-controller": "boolean", }
36.346154
103
0.593216
60b069c93be56b6237f05c129061341d2a2dd8d2
4,356
py
Python
pcg_gazebo/parsers/types/custom.py
argenos/pcg_gazebo
643a2669b60419ce34d700d5c75fcca7273fd137
[ "ECL-2.0", "Apache-2.0" ]
40
2020-02-04T18:16:49.000Z
2022-02-22T11:36:34.000Z
pcg_gazebo/parsers/types/custom.py
argenos/pcg_gazebo
643a2669b60419ce34d700d5c75fcca7273fd137
[ "ECL-2.0", "Apache-2.0" ]
75
2020-01-23T13:40:50.000Z
2022-02-09T07:26:01.000Z
pcg_gazebo/parsers/types/custom.py
argenos/pcg_gazebo
643a2669b60419ce34d700d5c75fcca7273fd137
[ "ECL-2.0", "Apache-2.0" ]
18
2020-09-10T06:35:41.000Z
2022-02-20T19:08:17.000Z
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import XMLBase from lxml.etree import Element, SubElement class XMLCustom(XMLBase): _NAME = '' def __init__(self, default=dict()): XMLBase.__init__(self) assert isinstance(default, dict), 'The default input must be a dict' self._default = default self._value = default def _set_value(self, value): assert isinstance( value, dict), 'Input value must be a dict,' \ ' type={}, input={}'.format( self._NAME, value) self._value = value def _get_elem_as_xml(self, xml_elem, value): if isinstance(value, dict): for tag in value: if isinstance(value[tag], dict) and \ 'attributes' in value[tag] and \ 'value' in value[tag]: child = Element(tag, attrib=value[tag]['attributes']) self._get_elem_as_xml(child, value[tag]['value']) xml_elem.append(child) elif tag.startswith('@'): xml_elem.set(tag.replace('@', ''), value[tag]) else: child = Element(tag) self._get_elem_as_xml(child, value[tag]) xml_elem.append(child) elif isinstance(value, bool) or isinstance(value, int): xml_elem.text = '{}'.format(int(value)) elif isinstance(value, float) or isinstance(value, str): xml_elem.text = '{}'.format(value) elif isinstance(value, list): output_str = ' '.join(['{}'] * len(value)) xml_elem.text = output_str.format(*value) return xml_elem def reset(self, mode=None, with_optional_elements=False): self._value = self._default XMLBase.reset(self) def is_valid(self): if not isinstance(self._value, dict): print('Value must be a dict') return False return True def get_formatted_value_as_str(self): assert self.is_valid(), 'Invalid scalar value' return '{}'.format(self._value) def to_xml(self, root=None, version='1.6'): assert self.is_valid(), 'XML data is invalid' if root is None: base = Element(self._NAME, attrib=self.attributes) else: base = SubElement(root, self._NAME, attrib=self.attributes) self._get_elem_as_xml(base, self._value) return base def is_value(self, tag): return tag in self._value def find_values(self, pattern): output_tags = list() for tag in self._value: if pattern == self._value[tag]: output_tags.append(tag) return output_tags def replace_parameter_value(self, old_value, new_value): self._replace_value_in_dict(self._value, old_value, new_value) def from_dict(self, sdf_data, ignore_tags=list()): # For custom XML blocks that contain attributes but # are not standard SDF/URDF elements if 'attributes' in sdf_data and 'value' in sdf_data: for tag in sdf_data['attributes']: self._attributes[tag] = str(sdf_data['attributes'][tag]) # Set value setattr(self, 'value', sdf_data['value']) else: super().from_dict(sdf_data, ignore_tags) @staticmethod def _replace_value_in_dict(data, old_value, new_value): for tag in data: if isinstance(data[tag], dict): XMLCustom._replace_value_in_dict( data[tag], old_value, new_value) elif data[tag] == old_value: data[tag] = new_value
36.915254
76
0.605601
68bdf01996f3bba2f10b0e63e9f397d5a946c651
570
py
Python
python/decorator/amount_with_properties.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
python/decorator/amount_with_properties.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
python/decorator/amount_with_properties.py
y2ghost/study
c5278611b0a732fe19e3d805c0c079e530b1d3b2
[ "MIT" ]
null
null
null
class Amount: def __init__(self): # 私有属性 self._amount = None def get_amount(self): return self._amount def set_amount(self, value): if isinstance(value, int) or isinstance(value, float): self._amount = value else: print(f'值必须是int或float') amount = property(get_amount, set_amount) if __name__ == '__main__': amt = Amount() print(f'当前的amount值 {amt.amount}') amt.amount = 'the' print(f'当前的amount值 {amt.amount}') amt.amount = 5.5 print(f'当前的amount值 {amt.amount}')
21.923077
62
0.598246
62b147580e59bc279ea79bedfb8fb0b6742faecc
12,097
py
Python
examples/experiments/freezeout/batch.py
bestetc/batchflow
d2a843640383fbe860654236881483f755227e06
[ "Apache-2.0" ]
101
2017-06-05T07:33:54.000Z
2018-10-28T04:55:23.000Z
examples/experiments/freezeout/batch.py
bestetc/batchflow
d2a843640383fbe860654236881483f755227e06
[ "Apache-2.0" ]
243
2018-11-29T02:03:55.000Z
2022-02-21T08:28:29.000Z
examples/experiments/freezeout/batch.py
bestetc/batchflow
d2a843640383fbe860654236881483f755227e06
[ "Apache-2.0" ]
35
2019-01-29T14:26:14.000Z
2021-12-30T01:39:02.000Z
""" File with class batch with resnet network """ import numpy as np import tensorflow as tf from tensorflow.contrib.layers import xavier_initializer_conv2d as xavier from batchflow import action, model, Batch # pylint: disable=no-name-in-module def conv_block(input_tensor, kernel, filters, name, strides=(2, 2)): """ Function to create block of ResNet network which include three convolution layers and one skip-connection layer. Args: input_tensor: input tensorflow layer kernel: tuple of kernel size in convolution layer filters: list of nums filters in convolution layers name: name of block strides: typle of strides in convolution layer Output: x: Block output layer """ filters1, filters2, filters3 = filters x = tf.layers.conv2d(input_tensor, filters1, (1, 1), strides, name='convfir' + name, activation=tf.nn.relu,\ kernel_initializer=xavier()) x = tf.layers.conv2d(x, filters2, kernel, name='convsec' + name, activation=tf.nn.relu, padding='SAME',\ kernel_initializer=xavier()) x = tf.layers.conv2d(x, filters3, (1, 1), name='convthr' + name,\ kernel_initializer=xavier()) shortcut = tf.layers.conv2d(input_tensor, filters3, (1, 1), strides, name='short' + name, \ kernel_initializer=xavier()) x = tf.concat([x, shortcut], axis=1) x = tf.nn.relu(x) return x def identity_block(input_tensor, kernel, filters, name): """ Function to create block of ResNet network which include three convolution layers. Args: input_tensor: input tensorflow layer. kernel: tuple of kernel size in convolution layer. filters: list of nums filters in convolution layers. name: name of block. Output: x: Block output layer """ filters1, filters2, filters3 = filters x = tf.layers.conv2d(input_tensor, filters1, (1, 1), name='convfir' + name, activation=tf.nn.relu,\ kernel_initializer=xavier()) x = tf.layers.conv2d(x, filters2, kernel, name='convsec' + name, activation=tf.nn.relu, padding='SAME',\ kernel_initializer=xavier()) x = tf.layers.conv2d(x, filters3, (1, 1), name='convthr' + name,\ kernel_initializer=xavier()) x = tf.concat([x, input_tensor], axis=1) x = tf.nn.relu(x) return x def create_train(opt, src, global_step, loss, it, global_it, learn, scaled): """ Function for create optimizer to each layer. Args: src: name of layer which be optimize. glogal_step: tenforflow Variable. Need to count train steps. loss: loss function. it: number of last iteraion for current layer. global_it: number of last interation for all layers. learn: Basic learning rate for current layer. scaled: method of disable layers. Output: New optimizer. """ def learning_rate(last, src, global_it, learn, scaled): """ Function for create step of changing learning rate. Args: last: number of last iteration. src: mane of layer which be optimize. global_it: number of last interation for all layers. learn: Basic learning rate for current layer. scaled: method of disable layers. Output: bound: list of bounders - number of iteration, after which learning rate will change. values: list of new learnings rates. var: name of optimize layers""" last = int(last) if scaled is True: values = [0.5 * learn/last * (1 + np.cos(np.pi * i / last)) for i in range(2, last+1)] + [1e-2] else: values = [0.5 * learn * (1 + np.cos(np.pi * i / last)) for i in range(2, last+1)] + [1e-2] bound = list(np.linspace(0, last, len(range(2, last+1)), dtype=np.int32)) + [global_it] var = [i for i in tf.trainable_variables() if src in i.name or 'dense' in i.name] return list(np.int32(bound)), list(np.float32(values)), var b, val, var = learning_rate(it, src, global_it, learn, scaled) learning_rate = tf.train.piecewise_constant(global_step, b, val) return opt(learning_rate, 0.9, use_nesterov=True).minimize(loss, global_step, var) class ResBatch(Batch): """ Batch to train models with and without FreezeOut """ def __init__(self, index, *args, **kwargs): """ Init function """ super().__init__(index, *args, **kwargs) @property def components(self): """ Define componentis. """ return 'images', 'lables' @model(mode='dynamic') def freeznet(self, config=None): """ Simple implementation of ResNet with FreezeOut method. Args: config: dict with params: -iteartions: Total number iteration for train model. -degree: 1 or 3. -learning_rate: initial learning rate. -scaled: True or False. Outputs: Method return list with len = 2 and some params: [0][0]: indices - Plcaeholder which takes batch indices. [0][1]: all_data - Placeholder which takes all images. [0][2]; all_lables - Placeholder for lables. [0][3]: loss - Value of loss function. [0][4]: train - List of train optimizers. [0][5]: prob - softmax output, need to prediction. [1][0]: accuracy - Current accuracy [1][1]: session - tf session """ iteration = config['iteration'] learning_rate = config['learning_rate'] scaled = config['scaled'] with tf.Graph().as_default(): indices = tf.placeholder(tf.int32, shape=[None, 1], name='indices') all_data = tf.placeholder(tf.float32, shape=[50000, 28, 28], name='all_data') input_batch = tf.gather_nd(all_data, indices, name='input_batch') input_batch = tf.reshape(input_batch, shape=[-1, 28, 28, 1], name='x_to_tens') net = tf.layers.conv2d(input_batch, 32, (7, 7), strides=(2, 2), padding='SAME', activation=tf.nn.relu, \ kernel_initializer=xavier(), name='1') net = tf.layers.max_pooling2d(net, (2, 2), (2, 2), name='max_pool') net = conv_block(net, 3, [32, 32, 128], name='2', strides=(1, 1)) net = identity_block(net, 3, [32, 32, 128], name='3') net = conv_block(net, 3, [64, 64, 256], name='4', strides=(1, 1)) net = identity_block(net, 3, [64, 64, 256], name='5') net = tf.layers.average_pooling2d(net, (7, 7), strides=(1, 1)) net = tf.contrib.layers.flatten(net) with tf.variable_scope('dense'): net = tf.layers.dense(net, 10, kernel_initializer=tf.contrib.layers.xavier_initializer(), name='dense') prob = tf.nn.softmax(net, name='soft') all_labels = tf.placeholder(tf.float32, [None, 10], name='all_labels') y = tf.gather_nd(all_labels, indices, name='y') loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=net, labels=y), name='loss') global_steps = [] train = [] for i in range(1, 6): global_steps.append(tf.Variable(0, trainable=False, name='var_{}'.format(i))) train.append(create_train(tf.train.MomentumOptimizer, str(i), \ global_steps[-1], loss, iteration * (i / 10 + 0.5) ** config['degree'], \ iteration, learning_rate, scaled)) lables_hat = tf.cast(tf.argmax(net, axis=1), tf.float32, name='lables_hat') lables = tf.cast(tf.argmax(y, axis=1), tf.float32, name='lables') accuracy = tf.reduce_mean(tf.cast(tf.equal(lables_hat, lables), tf.float32, name='accuracy')) session = tf.Session() session.run(tf.global_variables_initializer()) return [[indices, all_data, all_labels, loss, train, prob], [accuracy, session]] @action(model='freeznet') def train_freez(self, models, train_loss, data, lables): """ Function for traning ResNet with freezeout method. Args: sess: tensorflow session. train_loss: list with info of train loss. train_acc: list with info of train accuracy. Output: self """ indices, all_data, all_lables, loss, train, _ = models[0] session = models[1][1] loss, _ = session.run([loss, train], feed_dict={indices:self.indices.reshape(-1, 1), all_lables:lables, \ all_data:data}) train_loss.append(loss) return self @model(mode='dynamic') def resnet(self): """ Simple implementation of Resnet. Args: self Outputs: Method return list with len = 2 and some params: [0][0]: indices - Placeholder which takes batch indices. [0][1]: all_data - Placeholder which takes all images. [0][2]; all_lables - Placeholder for lables. [0][3]: loss - Value of loss function. [0][4]: train - List of train optimizers. [0][5]: prob - softmax output, need to prediction. [1][0]: accuracy - Current accuracy [1][1]: session - tf session """ with tf.Graph().as_default(): indices = tf.placeholder(tf.int32, shape=[None, 1]) all_data = tf.placeholder(tf.float32, shape=[50000, 28, 28]) input_batch = tf.gather_nd(all_data, indices) x1_to_tens = tf.reshape(input_batch, shape=[-1, 28, 28, 1]) net1 = tf.layers.conv2d(x1_to_tens, 32, (7, 7), strides=(2, 2), padding='SAME', activation=tf.nn.relu, \ kernel_initializer=xavier(), name='11') net1 = tf.layers.max_pooling2d(net1, (2, 2), (2, 2)) net1 = conv_block(net1, 3, [32, 32, 128], name='22', strides=(1, 1)) net1 = identity_block(net1, 3, [32, 32, 128], name='33') net1 = conv_block(net1, 3, [64, 64, 256], name='53', strides=(1, 1)) net1 = identity_block(net1, 3, [64, 64, 256], name='63') net1 = tf.layers.average_pooling2d(net1, (7, 7), strides=(1, 1)) net1 = tf.contrib.layers.flatten(net1) with tf.variable_scope('dense3'): net1 = tf.layers.dense(net1, 10, kernel_initializer=tf.contrib.layers.xavier_initializer()) prob1 = tf.nn.softmax(net1) all_lables = tf.placeholder(tf.float32, [None, 10]) y = tf.gather_nd(all_lables, indices) loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=net1, labels=y), name='loss3') train1 = tf.train.MomentumOptimizer(0.03, 0.8, use_nesterov=True).minimize(loss1) lables_hat1 = tf.cast(tf.argmax(net1, axis=1), tf.float32, name='lables_3at') lables1 = tf.cast(tf.argmax(y, axis=1), tf.float32, name='labl3es') accuracy1 = tf.reduce_mean(tf.cast(tf.equal(lables_hat1, lables1), tf.float32, name='a3ccuracy')) session = tf.Session() session.run(tf.global_variables_initializer()) return [[indices, all_data, all_lables, loss1, train1, prob1], [accuracy1, session]] @action(model='resnet') def train_res(self, models, train_loss, data, lables): """ Function for traning ResNet. Args: sess: tensorflow session. train_loss: list with info of train loss. train_acc: list with info of train accuracy. Output: self """ session = models[1][1] indices, all_data, all_lables, loss, train, _ = models[0] loss, _ = session.run([loss, train], feed_dict={indices:self.indices.reshape(-1, 1),\ all_lables:lables, all_data:data}) train_loss.append(loss) return self
43.203571
119
0.592874
7482ad770d17f5d76af28b6be399539b42e00895
294
py
Python
ukpsummarizer-be/cplex/python/docplex/docplex/mp/sktrans/__init__.py
avineshpvs/vldb2018-sherlock
5e116f42f44c50bcb289be3c4b4b76e29b238c18
[ "Apache-2.0" ]
2
2019-01-13T08:41:00.000Z
2021-03-27T22:55:10.000Z
ukpsummarizer-be/cplex/python/docplex/docplex/mp/sktrans/__init__.py
AIPHES/vldb2018-sherlock
3746efa35c4c1769cc4aaeb15aeb9453564e1226
[ "Apache-2.0" ]
null
null
null
ukpsummarizer-be/cplex/python/docplex/docplex/mp/sktrans/__init__.py
AIPHES/vldb2018-sherlock
3746efa35c4c1769cc4aaeb15aeb9453564e1226
[ "Apache-2.0" ]
4
2018-11-06T16:12:55.000Z
2019-08-21T13:22:32.000Z
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2017 # --------------------------------------------------------------------------
58.8
77
0.343537
6d62173d80c07076f85258ceb8bd0e36a053c8b9
7,620
py
Python
apps/vote_summary.py
max-lutz/open-data-french-national-assembly
518c81618513a79a88200d392faa53d88c787c94
[ "MIT" ]
null
null
null
apps/vote_summary.py
max-lutz/open-data-french-national-assembly
518c81618513a79a88200d392faa53d88c787c94
[ "MIT" ]
null
null
null
apps/vote_summary.py
max-lutz/open-data-french-national-assembly
518c81618513a79a88200d392faa53d88c787c94
[ "MIT" ]
1
2022-02-16T04:02:23.000Z
2022-02-16T04:02:23.000Z
import streamlit as st import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import os from matplotlib.backends.backend_agg import RendererAgg #Loading the data @st.cache def get_data_votes(): df = pd.read_csv(os.path.join(os.getcwd(), 'data', 'df_vote_descr.csv')) df['year'] = df['date'].astype(str).str[0:4] df['month'] = df['date'].astype(str).str[5:7] df['day'] = df['date'].astype(str).str[8:10] df['datetime'] = pd.to_datetime(df[['year', 'month', 'day']], errors = 'coerce') df['percentage of votes in favor'] = 100*df['pour']/df['nb votants'] df['accepted'] = 'no' df.loc[df['pour'] >= df['requis'], 'accepted'] = 'yes' df = df.drop(columns=['date']) df.columns = df.columns.str.replace('demandeur ', '') return df @st.cache def get_data_deputies(): df = pd.read_csv(os.path.join(os.getcwd(), 'data', 'df_dep.csv')) df = df.drop(columns=['family name', 'first name', 'date of birth']) return df @st.cache def get_data_political_parties(): df = pd.read_csv(os.path.join(os.getcwd(), 'data', 'df_polpar.csv')) df = df.drop(columns=['code']) return df def app(): #configuration of the page #st.set_page_config(layout="wide") matplotlib.use("agg") _lock = RendererAgg.lock SPACER = .2 ROW = 1 df_votes = get_data_votes() df_polpar = get_data_political_parties() # Sidebar #selection box for the different features st.sidebar.header('Select what to display') nb_voters = st.sidebar.slider("Number of voters", int(df_votes['nb votants'].min()), int(df_votes['nb votants'].max()), (int(df_votes['nb votants'].min()), int(df_votes['nb votants'].max())), 1) #creates masks from the sidebar selection widgets mask_nb_voters = df_votes['nb votants'].between(nb_voters[0], nb_voters[1]) df_votes_selected = df_votes[mask_nb_voters] title_spacer1, title, title_spacer_2 = st.beta_columns((.1,ROW,.1)) with title: st.title('Vote vizualisation tool') row0_spacer1, row0_1, row0_spacer2 = st.beta_columns((SPACER/2,ROW, SPACER/2)) with row0_1: st.header('Data (all the votes from June 2017 to mid March 2021)') #st.write(df_votes_selected) ### Vote repartition row1_spacer1, row1_1, row1_spacer2, row1_2, row1_spacer3 = st.beta_columns((SPACER,ROW, SPACER,ROW, SPACER)) with row1_1, _lock: st.header('Repartition of vote presence') fig, ax = plt.subplots(figsize=(5, 5)) ax = sns.histplot(data=df_votes_selected, x="nb votants", hue="accepted", bins=40) ax.set_xlabel('Number of deputies voting') st.pyplot(fig) with row1_2, _lock: st.header('Repartition of votes in favor') fig, ax = plt.subplots(figsize=(5, 5)) ax = sns.histplot(data=df_votes_selected, x="percentage of votes in favor", bins=40) #ax = sns.scatterplot(data=df_votes_selected, x="nb votants", y="percentage of votes in favor") st.pyplot(fig) #heatmap (12;31) with a year selector and a data selector (nb of votes or presence) title_spacer2, title_2, title_spacer_2 = st.beta_columns((.1,ROW,.1)) with title_2: st.header('Heatmap of the votes during the year') row2_spacer1, row2_1, row2_spacer2, row2_2, row2_spacer3 = st.beta_columns((SPACER,ROW, SPACER,ROW, SPACER)) with row2_1, _lock: year_selected = st.selectbox('Select year', ['2017','2018','2019', '2020', '2021'], key='1') with row2_2, _lock: data_selected = st.selectbox('Select data', ['Nb of votes','Deputy presence'], key='2') df_heatmap = df_votes_selected.drop(columns=['code', 'type', 'titre', 'demandeur', 'requis', 'pour', 'contre', 'abstentions', 'datetime']) df_heatmap = df_heatmap.loc[df_heatmap['year'] == year_selected] df_heatmap['count'] = 1 df_heatmap['nb votants'] = df_heatmap['nb votants']/574 df_heatmap['nb votants'] = (df_heatmap['nb votants']*100).astype(int) df_heatmap = df_heatmap.groupby(['year','month','day']).agg({'nb votants':'mean','count':'sum'}) if(data_selected == 'Nb of votes'): df_heatmap = df_heatmap.reset_index().pivot(index='month', columns='day', values='count') heatmap_title = 'Number of votes at the national assembly on a particular day' elif(data_selected == 'Deputy presence'): df_heatmap = df_heatmap.reset_index().pivot(index='month', columns='day', values='nb votants').astype(float) heatmap_title = 'Percentage of deputy presence at the national assembly on a particular day' df_heatmap.fillna(0, inplace=True) df_heatmap.columns = df_heatmap.columns.astype(int) df_heatmap.index = df_heatmap.index.astype(int) # Ensure all month in table df_heatmap = df_heatmap.reindex(range(1,13), axis=0, fill_value=0) # Ensure all days in table df_heatmap = df_heatmap.reindex(range(1,32), axis=1, fill_value=0).astype(int) row3_spacer1, row3_1, row3_spacer2 = st.beta_columns((SPACER, ROW, SPACER)) palette = sns.color_palette("Greens",12) palette[0] = (1,1,1) with row3_1, _lock: fig, ax = plt.subplots(figsize=(10, 4)) ax = sns.heatmap(df_heatmap, cmap=palette, # Choose a squential colormap annot_kws={'fontsize':11}, # Reduce size of label to fit fmt='', # Interpret labels as strings square=True, # Force square cells linewidth=0.01, # Add gridlines linecolor="#222", # Adjust gridline color robust = True ) ax.set_title(heatmap_title) ax.set_ylabel('Month of the year') ax.set_xlabel('Days of the month') plt.tight_layout() st.pyplot(fig) row4_spacer1, row4_1, row4_spacer2, row4_2, row4_spacer3 = st.beta_columns((SPACER,ROW, SPACER,ROW, SPACER)) #get the total number of demand from each party df_demandeur = df_votes_selected.drop(df_votes_selected.columns[0:10], axis=1) df_demandeur = df_demandeur.drop(df_demandeur.columns[-7:-1], axis=1) df_demandeur = df_demandeur.sum(axis=0) df_demandeur = df_demandeur.drop(labels=['ND', 'GOV', 'EELV', 'MODEM', 'CDP']) #merge the dataframe with the number of demand with the polpar df to get colors and nb of members df = df_polpar.set_index('abreviated_name').merge(pd.DataFrame(data = [df_demandeur.values], columns = df_demandeur.index).T, left_index=True, right_index=True) df.columns = ['name', 'members', 'color', 'demand'] df['demand per deputy'] = df['demand']/df['members'] with row4_1, _lock: st.header('Number of law propositions') st.text('') st.text('') fig, ax = plt.subplots(figsize=(5, 5)) ax.pie(df['demand'], labels=(df.index + ' (' + df['demand'].map(str) + ')'), wedgeprops = { 'linewidth' : 7, 'edgecolor' : 'white'}, colors=df['color'].to_list()) p = plt.gcf() p.gca().add_artist(plt.Circle( (0,0), 0.7, color='white')) st.pyplot(fig) with row4_2, _lock: st.header('Average number of law propositions per deputy') st.text('') fig, ax = plt.subplots(figsize=(5, 5)) ax.pie(df['demand per deputy'], labels=(df.index + ' (' + round(df['demand per deputy'].map(float)).map(str) + ')'), wedgeprops = { 'linewidth' : 7, 'edgecolor' : 'white'}, colors=df['color'].to_list()) p = plt.gcf() p.gca().add_artist(plt.Circle( (0,0), 0.7, color='white')) st.pyplot(fig)
42.569832
198
0.639501
0b53eb2bfaa80d98e4b189f3be9447f4a1d055f1
1,232
py
Python
src/deliveroo_project/Deilveroo.py
jayjayspinks/DeliverooProject2
a7a5d2b03c6af4344308f924577ac3e7d0274126
[ "MIT" ]
null
null
null
src/deliveroo_project/Deilveroo.py
jayjayspinks/DeliverooProject2
a7a5d2b03c6af4344308f924577ac3e7d0274126
[ "MIT" ]
null
null
null
src/deliveroo_project/Deilveroo.py
jayjayspinks/DeliverooProject2
a7a5d2b03c6af4344308f924577ac3e7d0274126
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter import * class Game(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) headline_text = tk.Label(self, text="Meals Without Deliveroo!!", font=("Ariel",160), fg="red") headline_text.pack() self.label_var = tk.IntVar() label = tk.Label(self, textvariable=self.label_var, font=("Ariel",600), fg="black") # Assigned that variable to the label label.pack() deliveroo_button = tk.Button(self, text="Deliveroo", relief="groove", command=self.reset_var, width=20, height=20, font=("Ariel",70), fg="red") deliveroo_button.pack(side=LEFT) not_deliveroo = tk.Button(self, text="Not Deliveroo!!", relief="groove", command=self.add_var, width=20, height=20, font=("Ariel",70), fg="green") not_deliveroo.pack(side=RIGHT) def add_var(self): self.label_var.set(self.label_var.get() + 1) def reset_var(self): self.label_var.set(0) root = tk.Tk() root.title("Meals Without Deliveroo!!") root.attributes('-fullscreen', True) #root.resizable() #root.geometry("2500x1000") game = Game(root) game.pack() root.mainloop()
34.222222
131
0.627435
558f88cd519e1cd45eb1f2e4ca92f4221ac031e3
1,285
py
Python
src/api_v1/viewsets/system.py
iplweb/django-bpp
85f183a99d8d5027ae4772efac1e4a9f21675849
[ "BSD-3-Clause" ]
1
2017-04-27T19:50:02.000Z
2017-04-27T19:50:02.000Z
src/api_v1/viewsets/system.py
mpasternak/django-bpp
434338821d5ad1aaee598f6327151aba0af66f5e
[ "BSD-3-Clause" ]
41
2019-11-07T00:07:02.000Z
2022-02-27T22:09:39.000Z
src/api_v1/viewsets/system.py
iplweb/bpp
f027415cc3faf1ca79082bf7bacd4be35b1a6fdf
[ "BSD-3-Clause" ]
null
null
null
from rest_framework import viewsets from api_v1.serializers.system import ( Charakter_FormalnySerializer, Typ_KBNSerializer, JezykSerializer, Dyscyplina_NaukowaSerializer, KonferencjaSerializer, Seria_WydawniczaSerializer, ) from bpp.models import ( Charakter_Formalny, Typ_KBN, Jezyk, Dyscyplina_Naukowa, Konferencja, Seria_Wydawnicza, ) class Seria_WydawniczaViewSet(viewsets.ReadOnlyModelViewSet): queryset = Seria_Wydawnicza.objects.all() serializer_class = Seria_WydawniczaSerializer class KonferencjaViewSet(viewsets.ReadOnlyModelViewSet): queryset = Konferencja.objects.all() serializer_class = KonferencjaSerializer class Dyscyplina_NaukowaViewSet(viewsets.ReadOnlyModelViewSet): queryset = Dyscyplina_Naukowa.objects.all() serializer_class = Dyscyplina_NaukowaSerializer class Charakter_FormalnyViewSet(viewsets.ReadOnlyModelViewSet): queryset = Charakter_Formalny.objects.all() serializer_class = Charakter_FormalnySerializer class Typ_KBNViewSet(viewsets.ReadOnlyModelViewSet): queryset = Typ_KBN.objects.all() serializer_class = Typ_KBNSerializer class JezykViewSet(viewsets.ReadOnlyModelViewSet): queryset = Jezyk.objects.all() serializer_class = JezykSerializer
26.22449
63
0.796109
b28f7ecf27bc96f1e292831431fe03d1e16a3554
11,744
py
Python
pywraps/py_nalt.py
joeleong/idapython
d99a89369741ce272ba792d6f087d0739a2f8ac7
[ "BSD-3-Clause" ]
null
null
null
pywraps/py_nalt.py
joeleong/idapython
d99a89369741ce272ba792d6f087d0739a2f8ac7
[ "BSD-3-Clause" ]
null
null
null
pywraps/py_nalt.py
joeleong/idapython
d99a89369741ce272ba792d6f087d0739a2f8ac7
[ "BSD-3-Clause" ]
null
null
null
#<pycode(py_nalt)> import _ida_idaapi SWI_SPARSE = 0x1 """sparse switch ( value table present ) otherwise lowcase present""" SWI_V32 = 0x2 """32-bit values in table""" SWI_J32 = 0x4 """32-bit jump offsets""" SWI_VSPLIT = 0x8 """value table is split (only for 32-bit values)""" SWI_DEFAULT = 0x10 """default case is present""" SWI_DEF_IN_TBL = 0x20 """default case is an entry in the jump table. This flag is only applicable in the case of a sparse nonindirect switch (i.e. a switch with a values table). <jump table size> == <value table size> + 1. The default case entry is the last one in the table (or the first one in the case of an inversed jump table).""" SWI_JMP_INV = 0x40 """jumptable is inversed (last entry is for first entry in values table)""" SWI_SHIFT_MASK = 0x180 """use formula (element*shift + elbase) to find jump targets""" SWI_ELBASE = 0x200 """elbase is present (if not and shift!=0, endof(jumpea) is used)""" SWI_JSIZE = 0x400 """jump offset expansion bit""" SWI_VSIZE = 0x800 """value table element size expansion bit""" SWI_SEPARATE = 0x1000 """do not create an array of individual dwords""" SWI_SIGNED = 0x2000 """jump table entries are signed""" SWI_CUSTOM = 0x4000 """custom jump table. \ph{create_switch_xrefs} will be called to create code xrefs for the table. Custom jump table must be created by the module (see also #SWI_STDTBL)""" SWI_INDIRECT = 0x00010000 """value table elements are used as indexes into the jump table""" SWI_SUBTRACT = 0x00020000 """table values are subtracted from the elbase instead of being addded""" SWI_HXNOLOWCASE = 0x00040000 """lowcase value should not be used by the decompiler (internal flag)""" SWI_STDTBL = 0x00080000 """custom jump table with standard table formatting. ATM IDA doesn't use SWI_CUSTOM for switches with standard table formatting. So this flag can be considered as obsolete.""" SWI_DEFRET = 0x00100000 """return in the default case (defjump==BADADDR)""" # -------------------------------------------------------------------------- class switch_info_t(ida_idaapi.py_clinked_object_t): def __init__(self, lnk = None): ida_idaapi.py_clinked_object_t.__init__(self, lnk) self.bc695_api = False def _create_clink(self): return _ida_nalt.switch_info_t_create() def _del_clink(self, lnk): return _ida_nalt.switch_info_t_destroy(lnk) def assign(self, other): return _ida_nalt.switch_info_t_assign(self, other) def is_indirect(self): return (self.flags & SWI_INDIRECT) != 0 def is_subtract(self): return (self.flags & SWI_SUBTRACT) != 0 def get_jtable_size(self): return self.jcases if self.is_indirect() else self.ncases def get_lowcase(self): return self.ind_lowcase if self.is_indirect() else self.lowcase def set_expr(self, r, dt): self.regnum = r self.regdtype = dt def get_shift(self): return (self.flags & SWI_SHIFT_MASK) >> 7 def set_shift(self, shift): self.flags &= ~SWI_SHIFT_MASK self.flags |= ((shift & 3) << 7) def get_jtable_element_size(self): code = self.flags & (SWI_J32|SWI_JSIZE) if code == 0: return 2 elif code == SWI_J32: return 4 elif code == SWI_JSIZE: return 1 else: return 8 def set_jtable_element_size(self, size): self.flags &= ~(SWI_J32|SWI_JSIZE) if size == 4: self.flags |= SWI_J32 elif size == 1: self.flags |= SWI_JSIZE elif size == 8: self.flags |= SWI_J32|SWI_JSIZE elif size != 2: return False return True def get_vtable_element_size(self): code = self.flags & (SWI_V32|SWI_VSIZE) if code == 0: return 2 elif code == SWI_V32: return 4 elif code == SWI_VSIZE: return 1 return 8 def set_vtable_element_size(self, size): self.flags &= ~SWI_V32|SWI_VSIZE if size == 4: self.flags |= SWI_V32 elif size == 1: self.flags |= SWI_VSIZE elif size == 8: self.flags |= SWI_V32|SWI_VSIZE elif size != 2: return False return True # # Autogenerated # def __get_regdtype__(self): return _ida_nalt.switch_info_t_get_regdtype(self) def __set_regdtype__(self, v): _ida_nalt.switch_info_t_set_regdtype(self, v) def __get_jcases__(self): return _ida_nalt.switch_info_t_get_jcases(self) def __set_jcases__(self, v): _ida_nalt.switch_info_t_set_jcases(self, v) def __get_regnum__(self): return _ida_nalt.switch_info_t_get_regnum(self) def __set_regnum__(self, v): _ida_nalt.switch_info_t_set_regnum(self, v) def __get_flags__(self): return _ida_nalt.switch_info_t_get_flags(self) def __set_flags__(self, v): _ida_nalt.switch_info_t_set_flags(self, v) def __get_ncases__(self): return _ida_nalt.switch_info_t_get_ncases(self) def __set_ncases__(self, v): _ida_nalt.switch_info_t_set_ncases(self, v) def __get_defjump__(self): return _ida_nalt.switch_info_t_get_defjump(self) def __set_defjump__(self, v): _ida_nalt.switch_info_t_set_defjump(self, v) def __get_jumps__(self): return _ida_nalt.switch_info_t_get_jumps(self) def __set_jumps__(self, v): _ida_nalt.switch_info_t_set_jumps(self, v) def __get_elbase__(self): return _ida_nalt.switch_info_t_get_elbase(self) def __set_elbase__(self, v): _ida_nalt.switch_info_t_set_elbase(self, v) def __get_startea__(self): return _ida_nalt.switch_info_t_get_startea(self) def __set_startea__(self, v): _ida_nalt.switch_info_t_set_startea(self, v) def __get_custom__(self): return _ida_nalt.switch_info_t_get_custom(self) def __set_custom__(self, v): _ida_nalt.switch_info_t_set_custom(self, v) def __get_ind_lowcase__(self): return _ida_nalt.switch_info_t_get_ind_lowcase(self) def __set_ind_lowcase__(self, v): _ida_nalt.switch_info_t_set_ind_lowcase(self, v) def __get_values_lowcase__(self): return _ida_nalt.switch_info_t_get_values_lowcase(self) def __set_values_lowcase__(self, v): _ida_nalt.switch_info_t_set_values_lowcase(self, v) regdtype = property(__get_regdtype__, __set_regdtype__) """size of the switch expression register as dtype""" jcases = property(__get_jcases__, __set_jcases__) """number of entries in the jump table (SWI_INDIRECT)""" regnum = property(__get_regnum__, __set_regnum__) """the switch expression as a register number""" flags = property(__get_flags__, __set_flags__) """switch info flags""" ncases = property(__get_ncases__, __set_ncases__) """number of cases (excluding default)""" defjump = property(__get_defjump__, __set_defjump__) """default jump address""" jumps = property(__get_jumps__, __set_jumps__) """jump table address""" elbase = property(__get_elbase__, __set_elbase__) """element base""" startea = property(__get_startea__, __set_startea__) """start of switch idiom""" custom = property(__get_custom__, __set_custom__) """information for custom tables (filled and used by modules)""" ind_lowcase = property(__get_ind_lowcase__, __set_ind_lowcase__) values = property(__get_values_lowcase__, __set_values_lowcase__) lowcase = property(__get_values_lowcase__, __set_values_lowcase__) #</pycode(py_nalt)> #<pycode_BC695(py_nalt)> ASCSTR_LAST=7 ASCSTR_LEN2=STRTYPE_LEN2 ASCSTR_LEN4=STRTYPE_LEN4 ASCSTR_PASCAL=STRTYPE_PASCAL ASCSTR_TERMCHR=STRTYPE_TERMCHR ASCSTR_ULEN2=STRTYPE_LEN2_16 ASCSTR_ULEN4=STRTYPE_LEN4_16 ASCSTR_UNICODE=STRTYPE_C_16 ASCSTR_UTF16=STRTYPE_C_16 ASCSTR_UTF32=STRTYPE_C_32 REF_VHIGH=V695_REF_VHIGH REF_VLOW=V695_REF_VLOW SWI_END_IN_TBL=SWI_DEF_IN_TBL SWI_EXTENDED=0x8000 SWI2_INDIRECT=SWI_INDIRECT >> 16 SWI2_SUBTRACT=SWI_SUBTRACT >> 16 import ida_netnode RIDX_AUTO_PLUGINS=ida_netnode.BADNODE change_encoding_name=rename_encoding @bc695redef def del_tinfo2(ea, n=None): if n is not None: return del_op_tinfo(ea, n) else: return del_tinfo(ea) get_encodings_count=get_encoding_qty def get_op_tinfo(*args): import ida_typeinf if isinstance(args[2], ida_typeinf.tinfo_t): # 6.95: ea, n, tinfo_t ea, n, tif = args else: # 7.00: tinfo_t, ea, n tif, ea, n = args return _ida_nalt.get_op_tinfo(tif, ea, n) get_op_tinfo2=get_op_tinfo @bc695redef def is_unicode(strtype): return (strtype & STRWIDTH_MASK) > 0 set_op_tinfo2=set_op_tinfo set_tinfo2=set_tinfo switch_info_t.regdtyp = switch_info_t.regdtype def get_tinfo(*args): import ida_typeinf if isinstance(args[1], ida_typeinf.tinfo_t): # 6.95: ea, tinfo_t ea, tif = args else: # 7.00: tinfo_t, ea tif, ea = args return _ida_nalt.get_tinfo(tif, ea) get_tinfo2=get_tinfo def get_refinfo(*args): if isinstance(args[2], refinfo_t): # 6.95: ea, n, refinfo_t ea, n, ri = args else: # 7.00: refinfo_t, ea, n ri, ea, n = args return _ida_nalt.get_refinfo(ri, ea, n) get_switch_info_ex=get_switch_info set_switch_info_ex=set_switch_info del_switch_info_ex=del_switch_info switch_info_ex_t_assign=switch_info_t_assign switch_info_ex_t_create=switch_info_t_create switch_info_ex_t_destroy=switch_info_t_destroy switch_info_ex_t_get_custom=switch_info_t_get_custom switch_info_ex_t_get_defjump=switch_info_t_get_defjump switch_info_ex_t_get_elbase=switch_info_t_get_elbase switch_info_ex_t_get_flags=switch_info_t_get_flags switch_info_ex_t_get_ind_lowcase=switch_info_t_get_ind_lowcase switch_info_ex_t_get_jcases=switch_info_t_get_jcases switch_info_ex_t_get_jumps=switch_info_t_get_jumps switch_info_ex_t_get_ncases=switch_info_t_get_ncases switch_info_ex_t_get_regdtyp=switch_info_t_get_regdtype switch_info_ex_t_get_regnum=switch_info_t_get_regnum switch_info_ex_t_get_startea=switch_info_t_get_startea switch_info_ex_t_get_values_lowcase=switch_info_t_get_values_lowcase switch_info_ex_t_set_custom=switch_info_t_set_custom switch_info_ex_t_set_defjump=switch_info_t_set_defjump switch_info_ex_t_set_elbase=switch_info_t_set_elbase switch_info_ex_t_set_flags=switch_info_t_set_flags switch_info_ex_t_set_ind_lowcase=switch_info_t_set_ind_lowcase switch_info_ex_t_set_jcases=switch_info_t_set_jcases switch_info_ex_t_set_jumps=switch_info_t_set_jumps switch_info_ex_t_set_ncases=switch_info_t_set_ncases switch_info_ex_t_set_regdtyp=switch_info_t_set_regdtype switch_info_ex_t_set_regnum=switch_info_t_set_regnum switch_info_ex_t_set_startea=switch_info_t_set_startea switch_info_ex_t_set_values_lowcase=switch_info_t_set_values_lowcase def __switch_info_t_get_flags__(instance): return switch_info_t.__get_flags__(instance) | SWI_EXTENDED def __switch_info_t_set_flags__(instance, v): if instance.bc695_api: v |= (switch_info_t.__get_flags__(instance) & 0xFFFF0000) switch_info_t.__set_flags__(instance, v) switch_info_t.flags = property(__switch_info_t_get_flags__, __switch_info_t_set_flags__) def __switch_info_t_get_flags2__(instance): instance.bc695_api = True return switch_info_t.__get_flags__(instance) >> 16 def __switch_info_t_set_flags2__(instance, v): instance.bc695_api = True flags = switch_info_t.__get_flags__(instance) instance.flags = (flags & 0xFFFF) | (v << 16) switch_info_t.flags2 = property(__switch_info_t_get_flags2__, __switch_info_t_set_flags2__) switch_info_ex_t=switch_info_t #</pycode_BC695(py_nalt)>
36.47205
91
0.731012
8a884c1199d0d5aaf00c11bebcc0ccd3757378b9
23,464
py
Python
lxbuildenv.py
xobs/spibone
4666e36a6bd63980be7a3555dca32373e29fdf6c
[ "Apache-2.0" ]
11
2019-08-30T13:17:56.000Z
2022-03-16T17:39:37.000Z
lxbuildenv.py
xobs/spibone
4666e36a6bd63980be7a3555dca32373e29fdf6c
[ "Apache-2.0" ]
4
2019-11-13T22:38:17.000Z
2019-11-13T23:20:48.000Z
lxbuildenv.py
xobs/spibone
4666e36a6bd63980be7a3555dca32373e29fdf6c
[ "Apache-2.0" ]
1
2021-10-01T01:45:57.000Z
2021-10-01T01:45:57.000Z
#!/usr/bin/env python3 # This script enables easy, cross-platform building without the need # to install third-party Python modules. LXBUILDENV_VERSION = '2019.8.19.1' import sys import os import subprocess import argparse DEPS_DIR = "deps" DEFAULT_DEPS = { 'migen': 'https://github.com/m-labs/migen.git', 'litex': 'https://github.com/enjoy-digital/litex.git', 'litedram': 'https://github.com/enjoy-digital/litedram.git', 'litex_boards': 'https://github.com/litex-hub/litex-boards.git', 'litescope': 'https://github.com/enjoy-digital/litescope.git', 'pyserial': 'https://github.com/pyserial/pyserial.git', } OPTIONAL_DEPS = { 'liteeth': 'https://github.com/enjoy-digital/liteeth.git', 'liteusb': 'https://github.com/enjoy-digital/liteusb.git', 'litepcie': 'https://github.com/enjoy-digital/litepcie.git', 'litesdcard': 'https://github.com/enjoy-digital/litesdcard.git', 'liteiclink': 'https://github.com/enjoy-digital/liteiclink.git', 'litevideo': 'https://github.com/enjoy-digital/litevideo.git', 'usb': 'https://github.com/pyusb/pyusb.git', } # Obtain the path to this script, plus a trailing separator. This will # be used later on to construct various environment variables for paths # to a variety of support directories. script_path = os.path.dirname(os.path.realpath(__file__)) + os.path.sep def lxprint(s): print("lxbuildenv: " + s) # Look through the specified file for known variables to get the dependency list def read_configuration(filename, args): import ast # Always check the Python version dependencies = { 'python': 1 } configuration = { 'skip-git': False } main_src = "" try: with open(sys.argv[0], 'r') as f: main_src = f.read() main_ast = ast.parse(main_src, filename=filename) except: configuration['dependencies'] = list(dependencies.keys()) return configuration # Iterate through the top-level nodes looking for variables named # LX_DEPENDENCIES or LX_DEPENDENCY and get the values that are # assigned to them. for node in ast.iter_child_nodes(main_ast): if isinstance(node, ast.Assign): value = node.value for target in node.targets: if isinstance(target, ast.Name): if target.id == "LX_DEPENDENCIES" or target.id == "LX_DEPENDENCY": if isinstance(value, (ast.List, ast.Tuple)): for elt in value.elts: if isinstance(elt, ast.Str): dependencies[elt.s] = 1 elif isinstance(value, ast.Str): dependencies[value.s] = 1 elif target.id == "LX_CONFIGURATION" or target.id == "LX_CONFIG": if isinstance(value, (ast.List, ast.Tuple)): for elt in value.elts: if isinstance(elt, ast.Str): configuration[elt.s] = True elif isinstance(value, ast.Str): configuration[value.s] = True # Set up sub-dependencies if 'riscv' in dependencies: dependencies['make'] = 1 if args.lx_check_git or (not configuration['skip-git'] and not args.lx_ignore_git): dependencies['git'] = 1 configuration['dependencies'] = list(dependencies.keys()) return configuration def get_python_path(script_path, args): # Python has no concept of a local dependency path, such as the C `-I`` # switch, or the nodejs `node_modules` path, or the rust cargo registry. # Instead, it relies on an environment variable to append to the search # path. # Construct this variable by adding each subdirectory under the `deps/` # directory to the PYTHONPATH environment variable. python_path = [] if os.path.isdir(script_path + DEPS_DIR): for dep in os.listdir(script_path + DEPS_DIR): dep = script_path + DEPS_DIR + os.path.sep + dep if os.path.isdir(dep): python_path.append(dep) return python_path def fixup_env(script_path, args): os.environ["PYTHONPATH"] = os.pathsep.join(get_python_path(script_path, 0)) # Set the "LXBUILDENV_REEXEC" variable to prevent the script from continuously # reinvoking itself. os.environ["LXBUILDENV_REEXEC"] = "1" # Python randomizes the order in which it traverses hashes, and Migen uses # hashes an awful lot when bringing together modules. As such, the order # in which Migen generates its output Verilog will change with every run, # and the addresses for various modules will change. # Make builds deterministic so that the generated Verilog code won't change # across runs. os.environ["PYTHONHASHSEED"] = "1" # Some Makefiles are invoked as part of the build process, and those Makefiles # occasionally have calls to Python. Ensure those Makefiles use the same # interpreter that this script is using. os.environ["PYTHON"] = sys.executable # Set the environment variable "V" to 1. This causes Makefiles to print # the commands they run, which makes them easier to debug. if "lx_verbose" in args and args.lx_verbose: os.environ["V"] = "1" # If the user just wanted to print the environment variables, do that and quit. if args.lx_print_env: print("PYTHONPATH={}".format(os.environ["PYTHONPATH"])) print("PYTHONHASHSEED={}".format(os.environ["PYTHONHASHSEED"])) print("PYTHON={}".format(sys.executable)) print("LXBUILDENV_REEXEC={}".format(os.environ["LXBUILDENV_REEXEC"])) sys.exit(0) # Equivalent to the powershell Get-Command, and kinda like `which` def get_command(cmd): if os.name == 'nt': path_ext = os.environ["PATHEXT"].split(os.pathsep) else: path_ext = [""] for ext in path_ext: for path in os.environ["PATH"].split(os.pathsep): if os.path.exists(path + os.path.sep + cmd + ext): return path + os.path.sep + cmd + ext return None def check_python_version(args): import platform # Litex / Migen require Python 3.5 or newer. Ensure we're running # under a compatible version of Python. if sys.version_info[:3] < (3, 5): return (False, "python: You need Python 3.5+ (version {} found)".format(sys.version_info[:3])) return (True, "python 3.5+: ok (Python {} found)".format(platform.python_version())) def check_vivado(args): vivado_path = get_command("vivado") if vivado_path == None: # Look for the default Vivado install directory if os.name == 'nt': base_dir = r"C:\Xilinx\Vivado" else: base_dir = "/opt/Xilinx/Vivado" if os.path.exists(base_dir): for file in os.listdir(base_dir): bin_dir = base_dir + os.path.sep + file + os.path.sep + "bin" if os.path.exists(bin_dir + os.path.sep + "vivado"): os.environ["PATH"] += os.pathsep + bin_dir vivado_path = bin_dir break if vivado_path == None: return (False, "toolchain not found in your PATH", "download it from https://www.xilinx.com/support/download.html") return (True, "found at {}".format(vivado_path)) def check_cmd(args, cmd, name=None, fix=None): if name is None: name = cmd path = get_command(cmd) if path == None: return (False, name + " not found in your PATH", fix) return (True, "found at {}".format(path)) def check_make(args): return check_cmd(args, "make", "GNU Make") def check_riscv(args): riscv64 = check_cmd(args, "riscv64-unknown-elf-gcc", "riscv toolchain", "download it from https://www.sifive.com/boards/") if riscv64[0] == True: return riscv64 riscv32 = check_cmd(args, "riscv32-unknown-elf-gcc", "riscv toolchain", "download it from https://www.sifive.com/boards/") if riscv32[0] == True: return riscv32 return riscv64 def check_yosys(args): return check_cmd(args, "yosys") def check_arachne(args): return check_cmd(args, "arachne-pnr") def check_git(args): return check_cmd(args, "git") def check_icestorm(args): return check_cmd(args, "icepack") def check_nextpnr_ice40(args): return check_cmd(args, "nextpnr-ice40") def check_nextpnr_ecp5(args): return check_cmd(args, "nextpnr-ecp5") dependency_checkers = { 'python': check_python_version, 'vivado': check_vivado, 'make': check_make, 'git': check_git, 'riscv': check_riscv, 'yosys': check_yosys, 'arachne-pnr': check_arachne, 'icestorm': check_icestorm, 'nextpnr-ice40': check_nextpnr_ice40, 'nextpnr-ecp5': check_nextpnr_ecp5, } # Validate that the required dependencies (Vivado, compilers, etc.) # have been installed. def check_dependencies(args, dependency_list): dependency_errors = 0 for dependency_name in dependency_list: if not dependency_name in dependency_checkers: lxprint('WARNING: Unrecognized dependency "{}"'.format(dependency_name)) continue result = dependency_checkers[dependency_name](args) if result[0] == False: if len(result) > 2: lxprint('{}: {} -- {}'.format(dependency_name, result[1], result[2])) else: lxprint('{}: {}'.format(dependency_name, result[1])) dependency_errors = dependency_errors + 1 elif args.lx_check_deps or args.lx_verbose: lxprint('dependency: {}: {}'.format(dependency_name, result[1])) if dependency_errors > 0: if args.lx_ignore_deps: if not args.lx_quiet: lxprint('{} missing dependencies were found but continuing anyway'.format(dependency_errors)) else: if not args.lx_quiet: lxprint('To ignore dependencies, re-run with "--lx-ignore-deps"') raise SystemExit(str(dependency_errors) + " missing dependencies were found") if args.lx_check_deps: sys.exit(0) # Return True if the given tree needs to be initialized def check_module_recursive(root_path, depth, verbose=False, breadcrumbs=[]): if verbose: lxprint('git-dep: checking if "{}" requires updating (depth: {})...'.format(root_path, depth)) # If the directory isn't a valid git repo, initialization is required git_dir_cmd = subprocess.Popen(["git", "rev-parse", "--show-toplevel"], cwd=root_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (git_stdout, _) = git_dir_cmd.communicate() if git_dir_cmd.wait() != 0: if verbose: lxprint('git-dep: missing git directory, starting update...') return True git_dir = git_stdout.decode().strip() if git_dir in breadcrumbs: if verbose: lxprint('git-dep: root path {} is not in git path'.format(root_path)) return True breadcrumbs.append(git_dir) if not os.path.exists(git_dir + os.path.sep + '.git'): if verbose: lxprint('git-dep: .git not found in "{}"'.format(git_dir)) return True # If there are no submodules, no initialization needs to be done if not os.path.isfile(git_dir + os.path.sep + '.gitmodules'): if verbose: lxprint('git-dep: .gitmodules not found in "{}", so not updating'.format(git_dir)) return False # Loop through the gitmodules to check all submodules gitmodules = open(git_dir + os.path.sep + '.gitmodules', 'r') for line in gitmodules: parts = line.split("=", 2) if parts[0].strip() == "path": path = parts[1].strip() if check_module_recursive(git_dir + os.path.sep + path, depth + 1, verbose=verbose, breadcrumbs=breadcrumbs): return True return False # Determine whether we need to invoke "git submodules init --recurse" def check_submodules(script_path, args): if check_module_recursive(script_path, 0, verbose=args.lx_verbose): if not args.lx_quiet: lxprint("Missing git submodules -- updating") lxprint("To ignore git issues, re-run with --lx-ignore-git") subprocess.Popen(["git", "submodule", "update", "--init", "--recursive"], cwd=script_path).wait() elif args.lx_verbose: if not args.lx_quiet: lxprint("Submodule check: Submodules found") def lx_git(cmd, *args): import subprocess git_cmd = ["git", cmd] if args is not None: for arg in args: git_cmd = git_cmd + [arg] subprocess.call(git_cmd) def lx_print_deps(): lxprint('Supported dependencies:') for dep in dependency_checkers.keys(): lxprint(' {}'.format(dep)) lxprint('To define a dependency, add a variable inside {} at the top level called LX_DEPENDENCIES and assign it a list or tuple.'.format(sys.argv[0])) lxprint('For example:') lxprint('LX_DEPENDENCIES = ("riscv", "vivado")') def lx_main(args): if args.lx_print_env: fixup_env(script_path, args) elif args.lx_print_deps: lx_print_deps() elif args.lx_run is not None: script_name=args.lx_run[0] config = read_configuration(script_name, args) fixup_env(script_path, args) if not config['skip-git']: check_submodules(script_path, args) try: sys.exit(subprocess.Popen( [sys.executable] + [script_name] + args.lx_run[1:]).wait()) except: sys.exit(1) elif args.init: if args.main is None: main_name = os.getcwd().split(os.path.sep)[-1] + '.py' new_main_name = input('lxbuildenv: What would you like your main program to be called? [' + main_name + '] ') if new_main_name is not None and new_main_name != "": main_name = new_main_name else: main_name = args.main if not main_name.endswith('.py'): main_name = main_name + '.py' if args.no_git: lxprint("skipping git initialization") else: if not os.path.exists(DEPS_DIR): os.mkdir(DEPS_DIR) if not os.path.exists(".git"): lxprint("initializing git repository") lx_git('init') else: lxprint("using existing git repository") lx_git('add', str(__file__)) for dep_name, dep_url in DEFAULT_DEPS.items(): dest_path = '{}{}{}'.format(DEPS_DIR, '/', dep_name) if not os.path.exists(dest_path): lx_git('submodule', 'add', dep_url, dest_path) lx_git('add', dest_path) lx_git('submodule', 'update', '--init', '--recursive') if args.no_bin: lxprint("skipping bin/ initialization") elif os.path.exists("bin"): lxprint("bin/ directory exists -- remove bin/ directory to re-initialize") else: bin_tools = { 'mkmscimg': 'litex.soc.software.mkmscimg', 'litex_term': 'litex.tools.litex_term', 'litex_server': 'litex.tools.litex_server', 'litex_sim': 'litex.tools.litex_sim', 'litex_read_verilog': 'litex.tools.litex_read_verilog', 'litex_simple': 'litex.boards.targets.simple', } bin_template = """#!/usr/bin/env python3 import sys import os # This script lives in the "bin" directory, but uses a helper script in the parent # directory. Obtain the current path so we can get the absolute parent path. script_path = os.path.dirname(os.path.realpath( __file__)) + os.path.sep + os.path.pardir + os.path.sep sys.path.insert(0, script_path) import lxbuildenv """ lxprint("Creating binaries") os.mkdir("bin") for bin_name, python_module in bin_tools.items(): with open('bin' + os.path.sep + bin_name, 'w', newline='\n') as new_bin: new_bin.write(bin_template) new_bin.write('from ' + python_module + ' import main\n') new_bin.write('main()\n') import stat os.chmod('bin' + os.path.sep + bin_name, stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) if not args.no_git: lx_git('add', '--chmod=+x', 'bin' + os.path.sep + bin_name) if os.path.exists(main_name): lxprint("skipping creation of {}: file exists".format(main_name)) else: lxprint("creating main program {}".format(main_name)) with open(main_name, 'w') as m: program_template = """#!/usr/bin/env python3 # This variable defines all the external programs that this module # relies on. lxbuildenv reads this variable in order to ensure # the build will finish without exiting due to missing third-party # programs. LX_DEPENDENCIES = ["riscv", "vivado"] # Import lxbuildenv to integrate the deps/ directory import lxbuildenv # Disable pylint's E1101, which breaks completely on migen #pylint:disable=E1101 from migen import * from litex.build.xilinx import VivadoProgrammer, XilinxPlatform from litex.build.generic_platform import Pins, IOStandard from litex.soc.integration import SoCSDRAM from litex.soc.integration.builder import Builder from litex.soc.integration.soc_core import csr_map_update _io = [ ("clk50", 0, Pins("J19"), IOStandard("LVCMOS33")), ] class Platform(XilinxPlatform): def __init__(self, toolchain="vivado", programmer="vivado", part="35"): part = "xc7a" + part + "t-fgg484-2" def create_programmer(self): if self.programmer == "vivado": return VivadoProgrammer(flash_part="n25q128-3.3v-spi-x1_x2_x4") else: raise ValueError("{} programmer is not supported" .format(self.programmer)) def do_finalize(self, fragment): XilinxPlatform.do_finalize(self, fragment) class BaseSoC(SoCSDRAM): csr_peripherals = [ "ddrphy", # "dna", "xadc", "cpu_or_bridge", ] csr_map_update(SoCSDRAM.csr_map, csr_peripherals) def __init__(self, platform, **kwargs): clk_freq = int(100e6) def main(): platform = Platform() soc = BaseSoC(platform) builder = Builder(soc, output_dir="build", csr_csv="test/csr.csv") vns = builder.build() soc.do_exit(vns) if __name__ == "__main__": main() """ m.write(program_template) if not args.no_git: lx_git("add", main_name) else: return False return True # For the main command, parse args and hand it off to main() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Wrap Python code to enable quickstart", add_help=False) parser.add_argument( "-h", "--help", '--lx-help', help="show this help message and exit", action="help" ) parser.add_argument( '-i', '--init', '--lx-init', help='initialize a new project', action="store_true" ) parser.add_argument( '-m', '--main', '--lx-main', help='name of main project' ) parser.add_argument( '--no-bin', '--lx-no-bin', help="don't create a bin/ directory" ) parser.add_argument( '--no-git', '--lx-no-git', help="Don't create a git repository" ) parser.add_argument( '-e', '--print-env', '--lx-print-env', dest="lx_print_env", help="print environment variable listing for pycharm, vscode, or bash", action="store_true" ) parser.add_argument( '-d', '--print-deps', '--lx-print-deps', dest="lx_print_deps", help="print all possible dependencies and then exit", action="store_true" ) parser.add_argument( "--lx-verbose", help="increase verboseness of some processes", action="store_true" ) parser.add_argument( '-r', '--run', '--lx-run', dest='lx_run', help="run the given script under lxbuildenv", nargs=argparse.REMAINDER ) args = parser.parse_args() if not lx_main(args): parser.print_help() elif not os.path.isfile(sys.argv[0]): lxprint("lxbuildenv doesn't operate while in interactive mode") elif "LXBUILDENV_REEXEC" not in os.environ: parser = argparse.ArgumentParser( description="Wrap Python code to enable quickstart", add_help=False) parser.add_argument( "--lx-verbose", help="increase verboseness of some processes", action="store_true" ) parser.add_argument( "--lx-quiet", help="decrease verboseness of some processes", action="store_true" ) parser.add_argument( "--lx-print-env", help="print environment variable listing for pycharm, vscode, or bash", action="store_true" ) parser.add_argument( "--lx-check-deps", help="check build environment for dependencies such as compiler and fpga tools and then exit", action="store_true" ) parser.add_argument( "--lx-print-deps", help="print all possible dependencies and then exit", action="store_true" ) parser.add_argument( "--lx-help", action="help" ) parser.add_argument( "--lx-ignore-deps", help="try building even if dependencies are missing", action="store_true" ) parser.add_argument( "--lx-ignore-git", help="don't do a check of the git repo", action="store_true" ) parser.add_argument( "--lx-check-git", help="force a git check even if it's otherwise disabled", action="store_true" ) (args, rest) = parser.parse_known_args() if not args.lx_quiet: lxprint("v{} (run {} --lx-help for help)".format(LXBUILDENV_VERSION, sys.argv[0])) if args.lx_print_deps: lx_print_deps() sys.exit(0) config = read_configuration(sys.argv[0], args) deps = config['dependencies'] fixup_env(script_path, args) check_dependencies(args, deps) if args.lx_check_git: check_submodules(script_path, args) elif config['skip-git']: if not args.lx_quiet: lxprint('Skipping git configuration because "skip-git" was found in LX_CONFIGURATION') lxprint('To fetch from git, run {} --lx-check-git'.format(" ".join(sys.argv))) elif args.lx_ignore_git: if not args.lx_quiet: lxprint('Skipping git configuration because "--lx-ignore-git" Was specified') else: check_submodules(script_path, args) try: sys.exit(subprocess.Popen( [sys.executable] + [sys.argv[0]] + rest).wait()) except: sys.exit(1) else: # Overwrite the deps directory. # Because we're running with a predefined PYTHONPATH, you'd think that # the DEPS_DIR would be first. # Unfortunately, setuptools causes the sitewide packages to take precedence # over the PYTHONPATH variable. # Work around this bug by inserting paths into the first index. for path in get_python_path(script_path, None): sys.path.insert(0, path)
38.277325
159
0.622954
7d9d9e3b97ff5f1809e7f55be3c5665bf1ca28e0
1,869
py
Python
tools/harness-automation/cases_R140/ed_6_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
2,962
2016-05-11T15:06:06.000Z
2022-03-27T20:06:16.000Z
tools/harness-automation/cases_R140/ed_6_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
5,899
2016-05-11T19:21:49.000Z
2022-03-31T18:17:20.000Z
tools/harness-automation/cases_R140/ed_6_1_6.py
AdityaHPatwardhan/openthread
a201e9d5d0273bb51fa20efc8758be20a725018e
[ "BSD-3-Clause" ]
1,113
2016-05-11T15:37:42.000Z
2022-03-31T09:37:04.000Z
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest from autothreadharness.harness_case import HarnessCase class ED_6_1_6(HarnessCase): role = HarnessCase.ROLE_ED case = '6 1 6' golden_devices_required = 3 def on_dialog(self, dialog, title): pass if __name__ == '__main__': unittest.main()
40.630435
77
0.769395
ad2480c80d071a86a442b037bb0843f01bee1126
97
py
Python
bench/bench_long_empty_string.py
janaknat/markupsafe
770b029aac97da76d306a45a6f33998393a0835a
[ "BSD-3-Clause" ]
415
2016-03-29T13:11:21.000Z
2022-03-30T16:25:27.000Z
bench/bench_long_empty_string.py
janaknat/markupsafe
770b029aac97da76d306a45a6f33998393a0835a
[ "BSD-3-Clause" ]
116
2016-03-31T15:09:01.000Z
2022-03-18T01:46:10.000Z
bench/bench_long_empty_string.py
janaknat/markupsafe
770b029aac97da76d306a45a6f33998393a0835a
[ "BSD-3-Clause" ]
124
2016-03-29T15:55:23.000Z
2022-03-24T23:16:04.000Z
from markupsafe import escape def run(): string = "Hello World!" * 1000 escape(string)
13.857143
34
0.659794
82cf720edafd07719a19f852b78640086064242a
6,180
py
Python
p1_navigation/dqn_agent.py
aamonten/deep-reinforcement-learning
201969ea1cc829e57a1ccb79123279e6e4c44ca7
[ "MIT" ]
1
2021-11-21T19:09:10.000Z
2021-11-21T19:09:10.000Z
p1_navigation/dqn_agent.py
aamonten/deep-reinforcement-learning
201969ea1cc829e57a1ccb79123279e6e4c44ca7
[ "MIT" ]
null
null
null
p1_navigation/dqn_agent.py
aamonten/deep-reinforcement-learning
201969ea1cc829e57a1ccb79123279e6e4c44ca7
[ "MIT" ]
null
null
null
import numpy as np import random from collections import namedtuple, deque from model import QNetwork import torch import torch.nn.functional as F import torch.optim as optim BUFFER_SIZE = int(1e5) # replay buffer size BATCH_SIZE = 64 # minibatch size GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR = 5e-4 # learning rate UPDATE_EVERY = 4 # how often to update the network device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences ## TODO: compute and minimize the loss "*** YOUR CODE HERE ***" # max predicted q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1) # q targets q_targets = rewards + (gamma * q_targets_next * (1 - dones)) q_expected = self.qnetwork_local(states).gather(1, actions) loss = F.mse_loss(q_expected, q_targets) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data) class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory)
39.363057
127
0.620227
602d20dc9145d9f0d1361da1ac3d1ff086e48546
1,670
py
Python
checkerboard.py
balajirama/checkerboard
7882d604e90ab93914a4c8af798e5c4d95894251
[ "MIT" ]
null
null
null
checkerboard.py
balajirama/checkerboard
7882d604e90ab93914a4c8af798e5c4d95894251
[ "MIT" ]
null
null
null
checkerboard.py
balajirama/checkerboard
7882d604e90ab93914a4c8af798e5c4d95894251
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect, session from colour import Color app = Flask(__name__) app.secret_key = 'darksecret' @app.route("/") def checker_8_by_8(): return render_template("checker.html", num_rows=8, num_cols=8, colors=["salmon", "black"]) @app.route("/<x>") def checker_x_by_8(x): try: return render_template("checker.html", num_rows=int(x), num_cols=8,colors=["salmon", "black"]) except: return checker_8_by_8() @app.route("/<x>/<y>") def checker_x_by_y(x,y): try: return render_template("checker.html", num_rows=int(x), num_cols=int(y),colors=["salmon", "black"]) except: return checker_x_by_8(x) def is_valid_color(str): try: c = Color(str) return True except: return False @app.route("/<x>/<y>/<color1>") def checker_with_light_color(x,y,color1): if color1 == "black": color1="salmon" if not is_valid_color(color1): color1="salmon" try: return render_template("checker.html", num_rows=int(x), num_cols=int(y),colors=[color1,"black"]) except: return checker_x_by_8(x) @app.route("/<x>/<y>/<color1>/<color2>") def checker_with_colors(x,y,color1,color2): if not is_valid_color(color1): color1="salmon" if not is_valid_color(color2): color2="black" if color1 == color2: color2 = "black" if color1 == "black": color1 = "salmon" try: return render_template("checker.html", num_rows=int(x), num_cols=int(y),colors=[color1,color2]) except: return checker_x_by_8(x) if __name__ == '__main__': app.run(debug=True)
27.377049
107
0.634731
4604248dbc9e7b356cd820735a1f0eb4a36817fe
10,258
py
Python
hsdata/utils.py
youfou/hsdata
49866116eaeb78516829da59df59a2c0b1141c08
[ "Apache-2.0" ]
115
2016-10-20T10:03:48.000Z
2022-01-17T04:18:06.000Z
hsdata/utils.py
youfou/hs_data
49866116eaeb78516829da59df59a2c0b1141c08
[ "Apache-2.0" ]
3
2016-10-25T14:07:57.000Z
2020-03-26T10:35:53.000Z
hsdata/utils.py
youfou/hs_data
49866116eaeb78516829da59df59a2c0b1141c08
[ "Apache-2.0" ]
27
2016-10-26T05:31:54.000Z
2022-03-17T10:31:52.000Z
#!/usr/bin/env python3 # coding: utf-8 """ 一些实用的小功能 """ import csv import logging import os from collections import Counter from datetime import datetime, timedelta from .core import ( MODE_STANDARD, Decks, days_ago, Career, CAREERS, Cards) from .hearthstats import HearthStatsDecks from .hsbox import HSBoxDecks def diff_decks(*decks): """ 卡组对比 :param decks: 两个或以上的卡组 :return: 返回每个卡组特有的部分 """ intersection = decks[0].cards & decks[1].cards for deck in decks[2:]: intersection &= deck.cards differs = dict(intersection=intersection) for deck in decks: differs[deck] = deck.cards - intersection return differs def decks_expired(decks, expired=timedelta(days=1)): """ 检查 Decks 是否已过期 :param decks: Decks 对象 :param expired: 有效期长度 :return: 若已过期则返回True """ if os.path.isfile(decks.json_path): m_time = os.path.getmtime(decks.json_path) if datetime.fromtimestamp(m_time) < (datetime.today() - expired): return True else: return False return True def cards_value(decks, mode=MODE_STANDARD): """ 区分职业的单卡价值排名,可在纠结是否合成或拆解时作为参考 decks: 所在卡组数量 games: 所在卡组游戏次数总和 wins: 所在卡组获胜次数总和 win_rate: 所在卡组平均胜率 (wins/games) *_rank: 在当前职业所有卡牌中的 * 排名 *_rank%: 在当前职业所有卡牌中的 * 排名百分比 (排名/卡牌数) :param decks: 卡组合集,作为分析数据源 :param mode: 模式 :return: 单卡价值排名数据 """ if not isinstance(decks, Decks): raise TypeError('from_decks 须为 Decks 对象') total = 'total' ranked_keys = 'decks', 'games', 'wins', 'win_rate' rpf = '_rank' ppf = '%' stats = dict() stats[total] = dict() for deck in decks.search(mode=mode): career = deck.career if career not in stats: stats[career] = dict() for card, count in deck.cards.items(): for k in total, career: if card not in stats[k]: stats[k][card] = dict( decks=0, games=0, wins=0, count=0) stats[k][card]['decks'] += 1 stats[k][card]['games'] += deck.games or 0 stats[k][card]['wins'] += deck.wins or 0 stats[k][card]['count'] += count for k in stats: for c in stats[k]: try: stats[k][c]['win_rate'] = stats[k][c]['wins'] / stats[k][c]['games'] except ZeroDivisionError: stats[k][c]['win_rate'] = None stats[k][c]['avg_count'] = stats[k][c]['count'] / stats[k][c]['decks'] rkvl = dict() for k in stats: if k not in rkvl: rkvl[k] = dict() for rk in ranked_keys: vl = [s[rk] for c, s in stats[k].items()] vl = list(filter(lambda x: x, vl)) vl.sort(reverse=True) rkvl[k][rk] = vl for k in stats: for c in stats[k]: for rk in ranked_keys: if stats[k][c][rk]: rank = rkvl[k][rk].index(stats[k][c][rk]) + 1 stats[k][c][rk + rpf] = rank stats[k][c][rk + rpf + ppf] = rank / len(stats[k]) else: stats[k][c][rk + rpf] = None stats[k][c][rk + ppf] = None return stats def get_all_decks( hsn_email=None, hsn_password=None, hsn_min_games=300, hsn_created_after=days_ago(30), expired=timedelta(days=1) ): """ 获得获取所有卡组数据 :param hsn_email: Hearthstats 的登陆邮箱 :param hsn_password: Hearthstats 的登陆密码 :param hsn_min_games: Hearthstats 的搜索参数 最少游戏次数 :param hsn_created_after: Hearthstats 最早更新时间 :param expired: 过期时间,若载入的数据是次时间前获得的,则重新获取新数据 :return: 返回 Decks 对象,包含所有数据源的卡组 """ decks = Decks() hsb = HSBoxDecks() if decks_expired(hsb, expired): hsb.update() decks.extend(hsb) if hsn_email and hsn_password: hsn = HearthStatsDecks() if decks_expired(hsn, expired): hsn.login(hsn_email, hsn_password) hsn.search_online(min_games=hsn_min_games, created_after=hsn_created_after) decks.extend(hsn) return decks class DeckGenerator: def __init__( self, career, decks, include=None, exclude=None, mode=MODE_STANDARD): """ 通过若干包含游戏次数和胜率的卡组合集,找出其中高价值的卡牌,生成新的卡组(.cards) :param career: 指定职业 :param decks: 来源卡组合集 :param include: 生成的新卡组中将包含这些卡,应为 dict 对象,key为卡牌,value为数量 :param exclude: 生成的新卡组中将排除这些卡,应为 dict 对象,key为卡牌,value为数量 :param mode: 指定模式 """ self._career = None self.cards_stats = None self.top_decks = None self.career = career if decks and not isinstance(decks, list): raise TypeError('decks 应为 list') self.decks = decks or list() if include and not isinstance(include, dict): raise TypeError('include 应为 dict') self.include = include or Counter() if exclude and not isinstance(exclude, dict): raise TypeError('exclude 应为 dict') self.exclude = exclude or Counter() self.mode = mode self.top_decks_total_games = None self._gen_cards_stats() @property def cards(self): cards = Counter(self.include) exclude = Counter(self.exclude) for card, stats in self.cards_stats: count = 2 if stats['avg_count'] > 1.5 else 1 if cards.get(card, 0) > count: count = 1 if card.rarity == 'LEGENDARY' else 2 if card in exclude: count -= exclude.get(card) if count < 1: logging.info('排除卡牌: {}'.format(card.name)) continue games_percentage = stats['total_games'] / self.top_decks_total_games if card not in self.include and games_percentage < 0.1: logging.info('排除冷门卡牌: {} (使用率 {:.2%})'.format( card.name, games_percentage)) continue cards[card] = count cards_count = sum(list(cards.values())) if cards_count == 30: break elif cards_count > 30: cards.subtract([card]) break total_count = sum(cards.values()) if total_count < 30: logging.warning('推荐卡牌数量不足,仅为 {} 张!'.format(total_count)) return Counter(dict(filter(lambda x: x[1] > 0, cards.items()))) @property def career(self): return self._career @career.setter # TODO: 考虑做成公共的 def career(self, value): if not value: raise ValueError('career 不可为空') if isinstance(value, Career): career = value elif isinstance(value, str): career = CAREERS.search(value) else: raise TypeError('career 不支持 {} 类型的数值'.format(type(value).__name__)) if career in (CAREERS.get('NEUTRAL'), CAREERS.get('DREAM')): raise ValueError('不能为该职业: {}'.format(career.name)) if not career: raise ValueError('未找到该职业: {}'.format(value)) self._career = career logging.info('设置职业为: {}'.format(career.name)) def __setattr__(self, key, value): super(DeckGenerator, self).__setattr__(key, value) if key in ('career', 'decks', 'mode') and self.cards_stats: self._gen_cards_stats() def _gen_cards_stats(self): decks = list(filter(lambda x: x.games, self.decks)) self.decks = Decks(decks) cards_stats, self.top_decks = self.decks.career_cards_stats( career=self.career, mode=self.mode, top_win_rate_percentage=0.1) self.top_decks_total_games = sum(map(lambda x: x.games, self.top_decks)) self.cards_stats = list(cards_stats.items()) self.cards_stats.sort(key=lambda x: x[1]['avg_win_rate'], reverse=True) def add_include(self, card, count=1): self.include.update({card: count}) def add_exclude(self, card, count=1): self.exclude.update({card: count}) def remove_include(self, card, count=1): self.include.subtract({card: count}) def remove_exclude(self, card, count=1): self.exclude.subtract({card: count}) def print_cards(cards, return_text_only=False, sep=' ', rarity=True): """ 但法力值从小到大打印卡牌列表 :param cards: 卡牌 list 或 Counter :param return_text_only: 选项,仅返回文本 :param sep: 卡牌名称和数量之间的分隔符 """ if isinstance(cards, list): cards = Counter(cards) elif not isinstance(cards, Counter): raise TypeError('cards 参数应为 list 或 Counter 类型') cards = list(cards.items()) cards.sort(key=lambda x: x[0].name) cards.sort(key=lambda x: x[0].cost or 0) text = list() for card, count in cards: line = '{}{}{}'.format(card.name, sep, count) if rarity and card.rarity not in ('FREE', 'COMMON'): line = '({}) {}'.format(card.rarity[0], line) text.append(line) text = '\n'.join(text) if return_text_only: return text else: print(text) def cards_to_csv(save_path, cards=None): """ 将卡牌保存为 CSV 文件,方便使用 Excel 等工具进行分析 :param cards: cards 对象 :param save_path: 保存路径,例如 cards.csv """ if cards is None: cards = Cards() # 仅列出相对常用的字段 fields = [ 'id', 'name', 'text', 'cost', 'overload', 'type', 'race', 'careers', 'multiClassGroup', 'set', 'collectible', 'rarity', 'dust', 'howToEarn', 'howToEarnGolden', 'health', 'attack', 'durability', 'spellDamage', ] with open(save_path, 'w') as f: writer = csv.writer(f) writer.writerow(fields) for card in cards: row = list() for field in fields: field = getattr(card, field) if isinstance(field, (list, tuple, set)): field = ', '.join(list(map(str, field))) elif isinstance(field, type(None)): field = '' elif not isinstance(field, (str, int, float)): field = str(field) row.append(field) writer.writerow(row)
28.181319
87
0.56629
667c019dc0058486f74704eeb9eb88e840a157dc
40,260
py
Python
tests/cfngin/providers/aws/test_default.py
animaxcg/runway
dfe38107126b61a7f297874f235f68a045a5ca09
[ "Apache-2.0" ]
null
null
null
tests/cfngin/providers/aws/test_default.py
animaxcg/runway
dfe38107126b61a7f297874f235f68a045a5ca09
[ "Apache-2.0" ]
null
null
null
tests/cfngin/providers/aws/test_default.py
animaxcg/runway
dfe38107126b61a7f297874f235f68a045a5ca09
[ "Apache-2.0" ]
null
null
null
"""Tests for runway.cfngin.providers.aws.default.""" # pylint: disable=too-many-lines import copy import os.path import random import string import threading import unittest from datetime import datetime import boto3 from botocore.exceptions import ClientError, UnStubbedResponseError from botocore.stub import Stubber from mock import MagicMock, patch from runway.cfngin import exceptions from runway.cfngin.actions.diff import DictValue from runway.cfngin.providers.aws import default from runway.cfngin.providers.aws.default import (DEFAULT_CAPABILITIES, MAX_TAIL_RETRIES, Provider, ask_for_approval, create_change_set, generate_cloudformation_args, output_full_changeset, requires_replacement, summarize_params_diff, wait_till_change_set_complete) from runway.cfngin.providers.base import Template from runway.cfngin.session_cache import get_session from runway.cfngin.stack import Stack def random_string(length=12): """Return a random string of variable length. Args: length (int): The # of characters to use in the random string. Returns: str: The random string. """ return ''.join( [random.choice(string.ascii_letters) for _ in range(length)]) def generate_describe_stacks_stack(stack_name, creation_time=None, stack_status="CREATE_COMPLETE", tags=None): """Generate describe stacks stack.""" tags = tags or [] return { "StackName": stack_name, "StackId": stack_name, "CreationTime": creation_time or datetime(2015, 1, 1), "StackStatus": stack_status, "Tags": tags } def generate_get_template(file_name='cfn_template.json', stages_available=None): """Generate get template.""" fixture_dir = os.path.join(os.path.dirname(__file__), '../../fixtures') with open(os.path.join(fixture_dir, file_name), 'r') as _file: return { "StagesAvailable": stages_available or ['Original'], "TemplateBody": _file.read() } def generate_stack_object(stack_name, outputs=None): """Generate stack object.""" mock_stack = MagicMock(['name', 'fqn', 'blueprint']) if not outputs: outputs = { "FakeOutput": { "Value": {"Ref": "FakeResource"} } } mock_stack.name = stack_name mock_stack.fqn = stack_name mock_stack.blueprint = MagicMock(['get_output_definitions']) mock_stack.blueprint.get_output_definitions = MagicMock( return_value=outputs ) return mock_stack def generate_resource_change(replacement=True): """Generate resource change.""" resource_change = { "Action": "Modify", "Details": [], "LogicalResourceId": "Fake", "PhysicalResourceId": "arn:aws:fake", "Replacement": "True" if replacement else "False", "ResourceType": "AWS::Fake", "Scope": ["Properties"], } return { "ResourceChange": resource_change, "Type": "Resource", } def generate_change_set_response(status, execution_status="AVAILABLE", changes=None, status_reason="FAKE"): """Generate change set response.""" return { "ChangeSetName": "string", "ChangeSetId": "string", "StackId": "string", "StackName": "string", "Description": "string", "Parameters": [ { "ParameterKey": "string", "ParameterValue": "string", "UsePreviousValue": False }, ], "CreationTime": datetime(2015, 1, 1), "ExecutionStatus": execution_status, "Status": status, "StatusReason": status_reason, "NotificationARNs": [ "string", ], "Capabilities": [ "CAPABILITY_NAMED_IAM", "CAPABILITY_AUTO_EXPAND" ], "Tags": [ { "Key": "string", "Value": "string" }, ], "Changes": changes or [], "NextToken": "string" } def generate_change(action="Modify", resource_type="EC2::Instance", replacement="False", requires_recreation="Never"): """Generate a minimal change for a changeset.""" return { "Type": "Resource", "ResourceChange": { "Action": action, "LogicalResourceId": random_string(), "PhysicalResourceId": random_string(), "ResourceType": resource_type, "Replacement": replacement, "Scope": ["Properties"], "Details": [ { "Target": { "Attribute": "Properties", "Name": random_string(), "RequiresRecreation": requires_recreation }, "Evaluation": "Static", "ChangeSource": "ResourceReference", "CausingEntity": random_string() }, ] } } class TestMethods(unittest.TestCase): """Tests for runway.cfngin.providers.aws.default.""" def setUp(self): """Run before tests.""" self.cfn = boto3.client("cloudformation") self.stubber = Stubber(self.cfn) def test_requires_replacement(self): """Test requires replacement.""" changeset = [ generate_resource_change(), generate_resource_change(replacement=False), generate_resource_change(), ] replacement = requires_replacement(changeset) self.assertEqual(len(replacement), 2) for resource in replacement: self.assertEqual(resource["ResourceChange"]["Replacement"], "True") def test_summarize_params_diff(self): """Test summarize params diff.""" unmodified_param = DictValue("ParamA", "new-param-value", "new-param-value") modified_param = DictValue("ParamB", "param-b-old-value", "param-b-new-value-delta") added_param = DictValue("ParamC", None, "param-c-new-value") removed_param = DictValue("ParamD", "param-d-old-value", None) params_diff = [ unmodified_param, modified_param, added_param, removed_param, ] self.assertEqual(summarize_params_diff([]), "") self.assertEqual(summarize_params_diff(params_diff), '\n'.join([ "Parameters Added: ParamC", "Parameters Removed: ParamD", "Parameters Modified: ParamB\n", ])) only_modified_params_diff = [modified_param] self.assertEqual(summarize_params_diff(only_modified_params_diff), "Parameters Modified: ParamB\n") only_added_params_diff = [added_param] self.assertEqual(summarize_params_diff(only_added_params_diff), "Parameters Added: ParamC\n") only_removed_params_diff = [removed_param] self.assertEqual(summarize_params_diff(only_removed_params_diff), "Parameters Removed: ParamD\n") def test_ask_for_approval(self): """Test ask for approval.""" get_input_path = "runway.cfngin.ui.get_raw_input" with patch(get_input_path, return_value="y"): self.assertIsNone(ask_for_approval([], [], None)) for v in ("n", "N", "x", "\n"): with patch(get_input_path, return_value=v): with self.assertRaises(exceptions.CancelExecution): ask_for_approval([], []) with patch(get_input_path, side_effect=["v", "n"]) as mock_get_input: with patch( 'runway.cfngin.providers.aws.default.output_full_changeset' ) as mock_full_changeset: with self.assertRaises(exceptions.CancelExecution): ask_for_approval([], [], True) self.assertEqual(mock_full_changeset.call_count, 1) self.assertEqual(mock_get_input.call_count, 2) def test_ask_for_approval_with_params_diff(self): """Test ask for approval with params diff.""" get_input_path = "runway.cfngin.ui.get_raw_input" params_diff = [ DictValue('ParamA', None, 'new-param-value'), DictValue('ParamB', 'param-b-old-value', 'param-b-new-value-delta') ] with patch(get_input_path, return_value="y"): self.assertIsNone(ask_for_approval([], params_diff, None)) for v in ("n", "N", "x", "\n"): with patch(get_input_path, return_value=v): with self.assertRaises(exceptions.CancelExecution): ask_for_approval([], params_diff) with patch(get_input_path, side_effect=["v", "n"]) as mock_get_input: with patch( 'runway.cfngin.providers.aws.default.output_full_changeset' ) as mock_full_changeset: with self.assertRaises(exceptions.CancelExecution): ask_for_approval([], params_diff, True) self.assertEqual(mock_full_changeset.call_count, 1) self.assertEqual(mock_get_input.call_count, 2) @patch("runway.cfngin.providers.aws.default.format_params_diff") @patch('runway.cfngin.providers.aws.default.yaml.safe_dump') def test_output_full_changeset(self, mock_safe_dump, patched_format): """Test output full changeset.""" get_input_path = "runway.cfngin.ui.get_raw_input" safe_dump_counter = 0 for v in ['y', 'v', 'Y', 'V']: with patch(get_input_path, return_value=v) as prompt: self.assertIsNone(output_full_changeset(full_changeset=[], params_diff=[], fqn=None)) self.assertEqual(prompt.call_count, 1) safe_dump_counter += 1 self.assertEqual(mock_safe_dump.call_count, safe_dump_counter) self.assertEqual(patched_format.call_count, 0) for v in ['n', 'N']: with patch(get_input_path, return_value=v) as prompt: output_full_changeset(full_changeset=[], params_diff=[], answer=None, fqn=None) self.assertEqual(prompt.call_count, 1) self.assertEqual(mock_safe_dump.call_count, safe_dump_counter) self.assertEqual(patched_format.call_count, 0) with self.assertRaises(exceptions.CancelExecution): output_full_changeset(full_changeset=[], params_diff=[], answer='x', fqn=None) output_full_changeset(full_changeset=[], params_diff=['mock'], answer='y', fqn=None) safe_dump_counter += 1 self.assertEqual(mock_safe_dump.call_count, safe_dump_counter) self.assertEqual(patched_format.call_count, 1) def test_wait_till_change_set_complete_success(self): """Test wait till change set complete success.""" self.stubber.add_response( "describe_change_set", generate_change_set_response("CREATE_COMPLETE") ) with self.stubber: wait_till_change_set_complete(self.cfn, "FAKEID") self.stubber.add_response( "describe_change_set", generate_change_set_response("FAILED") ) with self.stubber: wait_till_change_set_complete(self.cfn, "FAKEID") def test_wait_till_change_set_complete_failed(self): """Test wait till change set complete failed.""" # Need 2 responses for try_count for _ in range(2): self.stubber.add_response( "describe_change_set", generate_change_set_response("CREATE_PENDING") ) with self.stubber: with self.assertRaises(exceptions.ChangesetDidNotStabilize): wait_till_change_set_complete(self.cfn, "FAKEID", try_count=2, sleep_time=.1) def test_create_change_set_stack_did_not_change(self): """Test create change set stack did not change.""" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) self.stubber.add_response( "describe_change_set", generate_change_set_response( "FAILED", status_reason="Stack didn't contain changes." ) ) self.stubber.add_response( "delete_change_set", {}, expected_params={"ChangeSetName": "CHANGESETID"} ) with self.stubber: with self.assertRaises(exceptions.StackDidNotChange): create_change_set( cfn_client=self.cfn, fqn="my-fake-stack", template=Template(url="http://fake.template.url.com/"), parameters=[], tags=[] ) def test_create_change_set_unhandled_failed_status(self): """Test create change set unhandled failed status.""" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) self.stubber.add_response( "describe_change_set", generate_change_set_response( "FAILED", status_reason="Some random bad thing." ) ) with self.stubber: with self.assertRaises(exceptions.UnhandledChangeSetStatus): create_change_set( cfn_client=self.cfn, fqn="my-fake-stack", template=Template(url="http://fake.template.url.com/"), parameters=[], tags=[] ) def test_create_change_set_bad_execution_status(self): """Test create change set bad execution status.""" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="UNAVAILABLE", ) ) with self.stubber: with self.assertRaises(exceptions.UnableToExecuteChangeSet): create_change_set( cfn_client=self.cfn, fqn="my-fake-stack", template=Template(url="http://fake.template.url.com/"), parameters=[], tags=[] ) def test_generate_cloudformation_args(self): """Test generate cloudformation args.""" stack_name = "mystack" template_url = "http://fake.s3url.com/blah.json" template_body = '{"fake_body": "woot"}' std_args = { "stack_name": stack_name, "parameters": [], "tags": [], "template": Template(url=template_url)} std_return = {"StackName": stack_name, "Parameters": [], "Tags": [], "Capabilities": DEFAULT_CAPABILITIES, "TemplateURL": template_url} result = generate_cloudformation_args(**std_args) self.assertEqual(result, std_return) result = generate_cloudformation_args(service_role="FakeRole", **std_args) service_role_result = copy.deepcopy(std_return) service_role_result["RoleARN"] = "FakeRole" self.assertEqual(result, service_role_result) result = generate_cloudformation_args(change_set_name="MyChanges", **std_args) change_set_result = copy.deepcopy(std_return) change_set_result["ChangeSetName"] = "MyChanges" self.assertEqual(result, change_set_result) # Check stack policy stack_policy = Template(body="{}") result = generate_cloudformation_args(stack_policy=stack_policy, **std_args) stack_policy_result = copy.deepcopy(std_return) stack_policy_result["StackPolicyBody"] = "{}" self.assertEqual(result, stack_policy_result) # If not TemplateURL is provided, use TemplateBody std_args["template"] = Template(body=template_body) template_body_result = copy.deepcopy(std_return) del template_body_result["TemplateURL"] template_body_result["TemplateBody"] = template_body result = generate_cloudformation_args(**std_args) self.assertEqual(result, template_body_result) class TestProviderDefaultMode(unittest.TestCase): """Tests for runway.cfngin.providers.aws.default default mode.""" def setUp(self): """Run before tests.""" region = "us-east-1" self.session = get_session(region=region) self.provider = Provider( self.session, region=region, recreate_failed=False) self.stubber = Stubber(self.provider.cloudformation) def test_destroy_stack(self): """Test destroy stack.""" stack = {'StackName': 'MockStack'} self.stubber.add_response('delete_stack', {}, stack) with self.stubber: self.assertIsNone(self.provider.destroy_stack(stack)) self.stubber.assert_no_pending_responses() def test_get_stack_stack_does_not_exist(self): """Test get stack stack does not exist.""" stack_name = "MockStack" self.stubber.add_client_error( "describe_stacks", service_error_code="ValidationError", service_message="Stack with id %s does not exist" % stack_name, expected_params={"StackName": stack_name} ) with self.assertRaises(exceptions.StackDoesNotExist): with self.stubber: self.provider.get_stack(stack_name) def test_get_stack_stack_exists(self): """Test get stack stack exists.""" stack_name = "MockStack" stack_response = { "Stacks": [generate_describe_stacks_stack(stack_name)] } self.stubber.add_response( "describe_stacks", stack_response, expected_params={"StackName": stack_name} ) with self.stubber: response = self.provider.get_stack(stack_name) self.assertEqual(response["StackName"], stack_name) def test_select_destroy_method(self): """Test select destroy method.""" for i in [[{'force_interactive': False}, self.provider.noninteractive_destroy_stack], [{'force_interactive': True}, self.provider.interactive_destroy_stack]]: self.assertEqual(self.provider.select_destroy_method(**i[0]), i[1]) def test_select_update_method(self): """Test select update method.""" for i in [[{'force_interactive': True, 'force_change_set': False}, self.provider.interactive_update_stack], [{'force_interactive': False, 'force_change_set': False}, self.provider.default_update_stack], [{'force_interactive': False, 'force_change_set': True}, self.provider.noninteractive_changeset_update], [{'force_interactive': True, 'force_change_set': True}, self.provider.interactive_update_stack]]: self.assertEqual( self.provider.select_update_method(**i[0]), i[1] ) def test_prepare_stack_for_update_completed(self): """Test prepare stack for update completed.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="UPDATE_COMPLETE") with self.stubber: self.assertTrue( self.provider.prepare_stack_for_update(stack, [])) def test_prepare_stack_for_update_in_progress(self): """Test prepare stack for update in progress.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="UPDATE_IN_PROGRESS") with self.assertRaises(exceptions.StackUpdateBadStatus) as raised: with self.stubber: self.provider.prepare_stack_for_update(stack, []) self.assertIn('in-progress', str(raised.exception)) def test_prepare_stack_for_update_non_recreatable(self): """Test prepare stack for update non recreatable.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="REVIEW_IN_PROGRESS") with self.assertRaises(exceptions.StackUpdateBadStatus) as raised: with self.stubber: self.provider.prepare_stack_for_update(stack, []) self.assertIn('Unsupported state', str(raised.exception)) def test_prepare_stack_for_update_disallowed(self): """Test prepare stack for update disallowed.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="ROLLBACK_COMPLETE") with self.assertRaises(exceptions.StackUpdateBadStatus) as raised: with self.stubber: self.provider.prepare_stack_for_update(stack, []) self.assertIn('re-creation is disabled', str(raised.exception)) # Ensure we point out to the user how to enable re-creation self.assertIn('--recreate-failed', str(raised.exception)) def test_prepare_stack_for_update_bad_tags(self): """Test prepare stack for update bad tags.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="ROLLBACK_COMPLETE") self.provider.recreate_failed = True with self.assertRaises(exceptions.StackUpdateBadStatus) as raised: with self.stubber: self.provider.prepare_stack_for_update( stack, tags=[{'Key': 'cfngin_namespace', 'Value': 'test'}]) self.assertIn('tags differ', str(raised.exception).lower()) def test_prepare_stack_for_update_recreate(self): """Test prepare stack for update recreate.""" stack_name = "MockStack" stack = generate_describe_stacks_stack( stack_name, stack_status="ROLLBACK_COMPLETE") self.stubber.add_response( "delete_stack", {}, expected_params={"StackName": stack_name} ) self.provider.recreate_failed = True with self.stubber: self.assertFalse( self.provider.prepare_stack_for_update(stack, [])) def test_noninteractive_changeset_update_no_stack_policy(self): """Test noninteractive changeset update no stack policy.""" stack_name = "MockStack" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("execute_change_set", {}) with self.stubber: self.provider.noninteractive_changeset_update( fqn=stack_name, template=Template(url="http://fake.template.url.com/"), old_parameters=[], parameters=[], stack_policy=None, tags=[], ) def test_noninteractive_changeset_update_with_stack_policy(self): """Test noninteractive changeset update with stack policy.""" stack_name = "MockStack" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("set_stack_policy", {}) self.stubber.add_response("execute_change_set", {}) with self.stubber: self.provider.noninteractive_changeset_update( fqn=stack_name, template=Template(url="http://fake.template.url.com/"), old_parameters=[], parameters=[], stack_policy=Template(body="{}"), tags=[], ) @patch('runway.cfngin.providers.aws.default.output_full_changeset') def test_get_stack_changes_update(self, mock_output_full_cs): """Test get stack changes update.""" stack_name = "MockStack" mock_stack = generate_stack_object(stack_name) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack(stack_name)]} ) self.stubber.add_response( 'get_template', generate_get_template('cfn_template.yaml') ) self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': stack_name} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("delete_change_set", {}) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack(stack_name)]} ) with self.stubber: result = self.provider.get_stack_changes( stack=mock_stack, template=Template( url="http://fake.template.url.com/" ), parameters=[], tags=[]) mock_output_full_cs.assert_called_with(full_changeset=changes, params_diff=[], fqn=stack_name, answer='y') expected_outputs = { 'FakeOutput': '<inferred-change: MockStack.FakeOutput={}>'.format( str({"Ref": "FakeResource"}) ) } self.assertEqual(self.provider.get_outputs(stack_name), expected_outputs) self.assertEqual(result, expected_outputs) @patch('runway.cfngin.providers.aws.default.output_full_changeset') def test_get_stack_changes_create(self, mock_output_full_cs): """Test get stack changes create.""" stack_name = "MockStack" mock_stack = generate_stack_object(stack_name) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack( stack_name, stack_status='REVIEW_IN_PROGRESS' )]} ) self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': stack_name} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("delete_change_set", {}) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack( stack_name, stack_status='REVIEW_IN_PROGRESS' )]} ) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack( stack_name, stack_status='REVIEW_IN_PROGRESS' )]} ) self.stubber.add_response("delete_stack", {}) with self.stubber: self.provider.get_stack_changes( stack=mock_stack, template=Template( url="http://fake.template.url.com/" ), parameters=[], tags=[]) mock_output_full_cs.assert_called_with(full_changeset=changes, params_diff=[], fqn=stack_name, answer='y') def test_tail_stack_retry_on_missing_stack(self): """Test tail stack retry on missing stack.""" stack_name = "SlowToCreateStack" stack = MagicMock(spec=Stack) stack.fqn = "my-namespace-{}".format(stack_name) default.TAIL_RETRY_SLEEP = .01 # Ensure the stack never appears before we run out of retries for i in range(MAX_TAIL_RETRIES + 5): self.stubber.add_client_error( "describe_stack_events", service_error_code="ValidationError", service_message="Stack [{}] does not exist".format(stack_name), http_status_code=400, response_meta={"attempt": i + 1}, ) with self.stubber: try: self.provider.tail_stack(stack, threading.Event()) except ClientError as exc: self.assertEqual( exc.response["ResponseMetadata"]["attempt"], MAX_TAIL_RETRIES ) def test_tail_stack_retry_on_missing_stack_eventual_success(self): """Test tail stack retry on missing stack eventual success.""" stack_name = "SlowToCreateStack" stack = MagicMock(spec=Stack) stack.fqn = "my-namespace-{}".format(stack_name) default.TAIL_RETRY_SLEEP = .01 default.GET_EVENTS_SLEEP = .01 received_events = [] def mock_log_func(event): received_events.append(event) def valid_event_response(stack, event_id): return { "StackEvents": [ { "StackId": stack.fqn + "12345", "EventId": event_id, "StackName": stack.fqn, "Timestamp": datetime.now() }, ] } # Ensure the stack never appears before we run out of retries for i in range(3): self.stubber.add_client_error( "describe_stack_events", service_error_code="ValidationError", service_message="Stack [{}] does not exist".format(stack_name), http_status_code=400, response_meta={"attempt": i + 1}, ) self.stubber.add_response( "describe_stack_events", valid_event_response(stack, "InitialEvents") ) self.stubber.add_response( "describe_stack_events", valid_event_response(stack, "Event1") ) with self.stubber: try: self.provider.tail_stack(stack, threading.Event(), log_func=mock_log_func) except UnStubbedResponseError: # Eventually we run out of responses - could not happen in # regular execution # normally this would just be dealt with when the threads were # shutdown, but doing so here is a little difficult because # we can't control the `tail_stack` loop pass self.assertEqual(received_events[0]["EventId"], "Event1") class TestProviderInteractiveMode(unittest.TestCase): """Tests for runway.cfngin.providers.aws.default interactive mode.""" def setUp(self): """Run before tests.""" region = "us-east-1" self.session = get_session(region=region) self.provider = Provider( self.session, interactive=True, recreate_failed=True) self.stubber = Stubber(self.provider.cloudformation) @patch('runway.cfngin.ui.get_raw_input') def test_destroy_stack(self, patched_input): """Test destroy stack.""" stack = {'StackName': 'MockStack'} patched_input.return_value = 'y' self.stubber.add_response('delete_stack', {}, stack) with self.stubber: self.assertIsNone(self.provider.destroy_stack(stack)) self.stubber.assert_no_pending_responses() @patch('runway.cfngin.ui.get_raw_input') def test_destroy_stack_canceled(self, patched_input): """Test destroy stack canceled.""" stack = {'StackName': 'MockStack'} patched_input.return_value = 'n' with self.assertRaises(exceptions.CancelExecution): self.provider.destroy_stack(stack) def test_successful_init(self): """Test successful init.""" replacements = True provider = Provider(self.session, interactive=True, replacements_only=replacements) self.assertEqual(provider.replacements_only, replacements) @patch("runway.cfngin.providers.aws.default.ask_for_approval") def test_update_stack_execute_success_no_stack_policy(self, patched_approval): """Test update stack execute success no stack policy.""" stack_name = "my-fake-stack" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("execute_change_set", {}) with self.stubber: self.provider.update_stack( fqn=stack_name, template=Template(url="http://fake.template.url.com/"), old_parameters=[], parameters=[], tags=[] ) patched_approval.assert_called_with(full_changeset=changes, params_diff=[], include_verbose=True, fqn=stack_name) self.assertEqual(patched_approval.call_count, 1) @patch("runway.cfngin.providers.aws.default.ask_for_approval") def test_update_stack_execute_success_with_stack_policy(self, patched_approval): """Test update stack execute success with stack policy.""" stack_name = "my-fake-stack" self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': 'STACKID'} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("set_stack_policy", {}) self.stubber.add_response("execute_change_set", {}) with self.stubber: self.provider.update_stack( fqn=stack_name, template=Template(url="http://fake.template.url.com/"), old_parameters=[], parameters=[], tags=[], stack_policy=Template(body="{}"), ) patched_approval.assert_called_with(full_changeset=changes, params_diff=[], include_verbose=True, fqn=stack_name) self.assertEqual(patched_approval.call_count, 1) def test_select_destroy_method(self): """Test select destroy method.""" for i in [[{'force_interactive': False}, self.provider.interactive_destroy_stack], [{'force_interactive': True}, self.provider.interactive_destroy_stack]]: self.assertEqual(self.provider.select_destroy_method(**i[0]), i[1]) def test_select_update_method(self): """Test select update method.""" for i in [[{'force_interactive': False, 'force_change_set': False}, self.provider.interactive_update_stack], [{'force_interactive': True, 'force_change_set': False}, self.provider.interactive_update_stack], [{'force_interactive': False, 'force_change_set': True}, self.provider.interactive_update_stack], [{'force_interactive': True, 'force_change_set': True}, self.provider.interactive_update_stack]]: self.assertEqual( self.provider.select_update_method(**i[0]), i[1] ) @patch('runway.cfngin.providers.aws.default.output_full_changeset') @patch('runway.cfngin.providers.aws.default.output_summary') def test_get_stack_changes_interactive(self, mock_output_summary, mock_output_full_cs): """Test get stack changes interactive.""" stack_name = "MockStack" mock_stack = generate_stack_object(stack_name) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack(stack_name)]} ) self.stubber.add_response( 'get_template', generate_get_template('cfn_template.yaml') ) self.stubber.add_response( "create_change_set", {'Id': 'CHANGESETID', 'StackId': stack_name} ) changes = [] changes.append(generate_change()) self.stubber.add_response( "describe_change_set", generate_change_set_response( status="CREATE_COMPLETE", execution_status="AVAILABLE", changes=changes, ) ) self.stubber.add_response("delete_change_set", {}) self.stubber.add_response( 'describe_stacks', {'Stacks': [generate_describe_stacks_stack(stack_name)]} ) with self.stubber: self.provider.get_stack_changes( stack=mock_stack, template=Template( url="http://fake.template.url.com/" ), parameters=[], tags=[]) mock_output_summary.assert_called_with(stack_name, 'changes', changes, [], replacements_only=False) mock_output_full_cs.assert_called_with(full_changeset=changes, params_diff=[], fqn=stack_name)
37.909605
79
0.573249
3085559a0626fb866660d4f39f77bd9ee1a99e6f
4,001
py
Python
semantic_release/ci_checks.py
TheTwitchy/python-semantic-release
6048843ea1642c67fcfbbd6fd402f0f3ebdabdb2
[ "MIT" ]
null
null
null
semantic_release/ci_checks.py
TheTwitchy/python-semantic-release
6048843ea1642c67fcfbbd6fd402f0f3ebdabdb2
[ "MIT" ]
null
null
null
semantic_release/ci_checks.py
TheTwitchy/python-semantic-release
6048843ea1642c67fcfbbd6fd402f0f3ebdabdb2
[ "MIT" ]
null
null
null
"""CI Checks """ import os from typing import Callable from semantic_release.errors import CiVerificationError def checker(func: Callable) -> Callable: """ A decorator that will convert AssertionErrors into CiVerificationError. :param func: A function that will raise AssertionError :return: The given function wrapped to raise a CiVerificationError on AssertionError """ def func_wrapper(*args, **kwargs): try: func(*args, **kwargs) return True except AssertionError: raise CiVerificationError( "The verification check for the environment did not pass." ) return func_wrapper @checker def travis(branch: str): """ Performs necessary checks to ensure that the travis build is one that should create releases. :param branch: The branch the environment should be running against. """ assert os.environ.get("TRAVIS_BRANCH") == branch assert os.environ.get("TRAVIS_PULL_REQUEST") == "false" @checker def semaphore(branch: str): """ Performs necessary checks to ensure that the semaphore build is successful, on the correct branch and not a pull-request. :param branch: The branch the environment should be running against. """ assert os.environ.get("BRANCH_NAME") == branch assert os.environ.get("PULL_REQUEST_NUMBER") is None assert os.environ.get("SEMAPHORE_THREAD_RESULT") != "failed" @checker def frigg(branch: str): """ Performs necessary checks to ensure that the frigg build is one that should create releases. :param branch: The branch the environment should be running against. """ assert os.environ.get("FRIGG_BUILD_BRANCH") == branch assert not os.environ.get("FRIGG_PULL_REQUEST") @checker def circle(branch: str): """ Performs necessary checks to ensure that the circle build is one that should create releases. :param branch: The branch the environment should be running against. """ assert os.environ.get("CIRCLE_BRANCH") == branch assert not os.environ.get("CI_PULL_REQUEST") @checker def gitlab(branch: str): """ Performs necessary checks to ensure that the gitlab build is one that should create releases. :param branch: The branch the environment should be running against. """ # assert os.environ.get("CI_COMMIT_REF_NAME") == branch # TODO - don't think there's a merge request indicator variable @checker def bitbucket(branch: str): """ Performs necessary checks to ensure that the bitbucket build is one that should create releases. :param branch: The branch the environment should be running against. """ assert os.environ.get("BITBUCKET_BRANCH") == branch assert not os.environ.get("BITBUCKET_PR_ID") @checker def jenkins(branch: str): """ Performs necessary checks to ensure that the jenkins build is one that should create releases. :param branch: The branch the environment should be running against. """ branch_name = os.environ.get("BRANCH_NAME") or os.environ.get("GIT_BRANCH") assert os.environ.get("JENKINS_URL") is not None assert branch_name == branch assert not os.environ.get("CHANGE_ID") # pull request id def check(branch: str = "master"): """ Detects the current CI environment, if any, and performs necessary environment checks. :param branch: The branch that should be the current branch. """ if os.environ.get("TRAVIS") == "true": travis(branch) elif os.environ.get("SEMAPHORE") == "true": semaphore(branch) elif os.environ.get("FRIGG") == "true": frigg(branch) elif os.environ.get("CIRCLECI") == "true": circle(branch) elif os.environ.get("GITLAB_CI") == "true": gitlab(branch) elif os.environ.get("JENKINS_URL") is not None: jenkins(branch) elif "BITBUCKET_BUILD_NUMBER" in os.environ: bitbucket(branch)
28.784173
88
0.683329
e29861b76e765132df1542aa3b1385e9bf77ca6f
6,800
py
Python
python/hmaps_postgres2es.py
jvanulde/opendrr-api
ab45369363d33f361ec7a2bc0ddbea7f293545aa
[ "MIT" ]
null
null
null
python/hmaps_postgres2es.py
jvanulde/opendrr-api
ab45369363d33f361ec7a2bc0ddbea7f293545aa
[ "MIT" ]
6
2021-06-03T16:30:22.000Z
2022-03-27T15:31:17.000Z
python/hmaps_postgres2es.py
jvanulde/opendrr-api
ab45369363d33f361ec7a2bc0ddbea7f293545aa
[ "MIT" ]
null
null
null
# ================================================================= # # Authors: Drew Rotheram <drew.rotheram@gmail.com> # # ================================================================= import json import os import sys import psycopg2 import configparser import logging import argparse import decimal from elasticsearch import Elasticsearch from elasticsearch import helpers ''' Script to convert hmap indicator views to ElasticSearch Index Can be run from the command line with mandatory arguments Run this script with a command like: python3 hmap_postgres2es.py --province=${PT} ''' # Main Function def main(): logFileName = '{}.log'.format(os.path.splitext(sys.argv[0])[0]) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[logging.FileHandler(logFileName), logging.StreamHandler()]) auth = get_config_params('config.ini') args = parse_args() view = "psra_{province}_hmaps".format(**{ 'province': args.province.lower()}) limit = 10000 offset = 0 # create index es = Elasticsearch([auth.get('es', 'es_endpoint')], http_auth=(auth.get('es', 'es_un'), auth.get('es', 'es_pw'))) if es.indices.exists(view): es.indices.delete(view) # if args.idField == 'sauid': # id_field = 'Sauid' # settings = { # 'settings': { # 'number_of_shards': 1, # 'number_of_replicas': 0 # }, # 'mappings': { # 'properties': { # 'geometry': { # 'type': 'geo_shape' # } # } # } # } # elif args.idField == 'building': # id_field = 'AssetID' settings = { 'settings': { 'number_of_shards': 1, 'number_of_replicas': 0 }, 'mappings': { 'properties': { 'coordinates': { 'type': 'geo_point' }, 'geometry': { 'type': 'geo_shape' } } } } es.indices.create(index=view, body=settings, request_timeout=90) while True: # if args.idField == 'sauid': # id_field = 'Sauid' # sqlquerystring = 'SELECT *, ST_AsGeoJSON(geom_poly) \ # FROM results_hmap_{eqScenario}.{view} \ # ORDER BY {view}."Sauid" \ # LIMIT {limit} \ # OFFSET {offset}'.format(**{'eqScenario': args.eqScenario, # 'view': view, # 'limit': limit, # 'offset': offset}) # elif args.idField == 'building': # id_field = 'AssetID' sqlquerystring = 'SELECT *, ST_AsGeoJSON(geom) \ FROM results_psra_{province}.{view} \ ORDER BY {view}."geom" \ LIMIT {limit} \ OFFSET {offset}'.format(**{'province': args.province.lower(), 'view': view, 'limit': limit, 'offset': offset}) offset += limit connection = None try: # Connect to the PostGIS database connection = psycopg2.connect(user=auth.get('rds', 'postgres_un'), password=auth.get('rds', 'postgres_pw'), host=auth.get('rds', 'postgres_host'), port=auth.get('rds', 'postgres_port'), database=auth.get('rds', 'postgres_db')) # Query the entire view with the geometries in geojson format cur = connection.cursor() cur.execute(sqlquerystring) rows = cur.fetchall() if rows: columns = [name[0] for name in cur.description] geomIndex = columns.index('st_asgeojson') feature_collection = {'type': 'FeatureCollection', 'features': []} # Format table into a geojson format for ES/Kibana consumption for row in rows: coordinates = json.loads(row[geomIndex])['coordinates'] feature = { 'type': 'Feature', 'geometry': json.loads(row[geomIndex]), 'coordinates': coordinates, 'properties': {}, } for index, column in enumerate(columns): if column != "st_asgeojson": value = row[index] feature['properties'][column] = value feature_collection['features'].append(feature) geojsonobject = json.dumps(feature_collection, indent=2, default=decimal_default) d = json.loads(geojsonobject) helpers.bulk(es, gendata(d, view), raise_on_error=False) else: if(connection): # cursor.close() connection.close() return except (Exception, psycopg2.Error) as error: logging.error(error) def gendata(data, view): for item in data['features']: yield { "_index": view, "_source": item } # Function to handle decimal encoder error def decimal_default(obj): if isinstance(obj, decimal.Decimal): return float(obj) raise TypeError def get_config_params(args): """ Parse Input/Output columns from supplied *.ini file """ configParseObj = configparser.ConfigParser() configParseObj.read(args) return configParseObj def parse_args(): parser = argparse.ArgumentParser(description="script description") parser.add_argument("--province", type=str, help="Two letters only", required=True) args = parser.parse_args() return args if __name__ == '__main__': main()
34.517766
78
0.446765
78c789bc439b97e169369d5c3ef8e8a44f77c192
1,798
py
Python
keybase_piazza_bot/keybase.py
andrew-fuchs/keybase-piazza-bot
7559120896c602ea398b7bb43640e8c273c03fe5
[ "MIT" ]
null
null
null
keybase_piazza_bot/keybase.py
andrew-fuchs/keybase-piazza-bot
7559120896c602ea398b7bb43640e8c273c03fe5
[ "MIT" ]
null
null
null
keybase_piazza_bot/keybase.py
andrew-fuchs/keybase-piazza-bot
7559120896c602ea398b7bb43640e8c273c03fe5
[ "MIT" ]
null
null
null
from pykeybasebot import Bot, KbEvent from pykeybasebot.types import chat1 async def chat_reply(bot: Bot, channel: chat1.ChatChannel, message_id: chat1.MessageID, message: str ) -> chat1.SendRes: await bot.ensure_initialized() # TODO do we need to handle `chat1.ConvIDStr` in `channel`? result = await bot.chat.execute({ "method": "send", "params": { "options": { "channel": { "name": channel.name }, "message": { "body": message, }, "reply_to": message_id, }, }, }) return chat1.SendRes.from_dict(result) async def create_message(bot: Bot, channel: chat1.ChatChannel): send_result = await bot.chat.send(channel, '[Piazza Post Notification Text Goes Here]') await bot.chat.react(channel, send_result.message_id, ':speech_baloon:') def kb_quote(in_str: str): return in_str.replace('\n', '\n>') def escape_chat_chars(escape_str: str): # replace formatting chars with escaped versions # # TODO I doubt this is comprehensive # # maybe escape anything not in [a-zA-Z0-9]? # escape_str = escape_str.replace('*', '\\*') # escape_str = escape_str.replace('_', '\\_') # escape_str = escape_str.replace('`', '\\`') # escape_str = escape_str.replace('>', '\\>') # escape_str = escape_str.replace('@', '\\@') # escape_str = escape_str.replace('#', '\\#') # return escape_str # escape anything that is not a letter ([a-zA-Z]), number ([0-9]), or whitespace out_str = '' for ch in escape_str: if ch.isalnum() or ch.isspace(): out_str += ch else: out_str += '\\' + ch return out_str
32.107143
91
0.573415
eedb27a6bbc1c2a1fbad4890111e7f45aa23c2bb
9,650
py
Python
brian2/tests/features/speed.py
awillats/brian2
e1107ed0cc4a7d6c69c1e2634b675ba09edfd9fc
[ "BSD-2-Clause" ]
1
2021-06-10T15:28:51.000Z
2021-06-10T15:28:51.000Z
brian2/tests/features/speed.py
awillats/brian2
e1107ed0cc4a7d6c69c1e2634b675ba09edfd9fc
[ "BSD-2-Clause" ]
null
null
null
brian2/tests/features/speed.py
awillats/brian2
e1107ed0cc4a7d6c69c1e2634b675ba09edfd9fc
[ "BSD-2-Clause" ]
null
null
null
''' Check the speed of different Brian 2 configurations ''' from brian2 import * from brian2.tests.features import SpeedTest __all__ = ['LinearNeuronsOnly', 'HHNeuronsOnly', 'CUBAFixedConnectivity', 'COBAHHFixedConnectivity', 'VerySparseMediumRateSynapsesOnly', 'SparseMediumRateSynapsesOnly', 'DenseMediumRateSynapsesOnly', 'SparseLowRateSynapsesOnly', 'SparseHighRateSynapsesOnly', 'STDP' ] class LinearNeuronsOnly(SpeedTest): category = "Neurons only" name = "Linear 1D" tags = ["Neurons"] n_range = [10, 100, 1000, 10000, 100000, 1000000] n_label = 'Num neurons' # configuration options duration = 10 * second def run(self): self.tau = tau = 1 * second self.v_init = linspace(0.1, 1, self.n) G = self.G = NeuronGroup(self.n, 'dv/dt=-v/tau:1') self.G.v = self.v_init self.timed_run(self.duration) class HHNeuronsOnly(SpeedTest): category = "Neurons only" name = "Hodgkin-Huxley" tags = ["Neurons"] n_range = [10, 100, 1000, 10000, 100000] n_label = 'Num neurons' # configuration options duration = 1 * second def run(self): num_neurons = self.n # Parameters area = 20000 * umetre**2 Cm = 1 * ufarad * cm**-2 * area gl = 5e-5 * siemens * cm**-2 * area El = -65 * mV EK = -90 * mV ENa = 50 * mV g_na = 100 * msiemens * cm**-2 * area g_kd = 30 * msiemens * cm**-2 * area VT = -63 * mV # The model eqs = Equations(''' dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/ (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/ (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1 dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/ (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1 dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1 I : amp ''') # Threshold and refractoriness are only used for spike counting group = NeuronGroup(num_neurons, eqs, threshold='v > -40*mV', refractory='v > -40*mV') group.v = El group.I = '0.7*nA * i / num_neurons' self.timed_run(self.duration) class CUBAFixedConnectivity(SpeedTest): category = "Full examples" name = "CUBA fixed connectivity" tags = ["Neurons", "Synapses", "SpikeMonitor"] n_range = [10, 100, 1000, 10000, 100000] n_label = 'Num neurons' # configuration options duration = 1 * second def run(self): N = self.n Ne = int(.8 * N) taum = 20 * ms taue = 5 * ms taui = 10 * ms Vt = -50 * mV Vr = -60 * mV El = -49 * mV eqs = ''' dv/dt = (ge+gi-(v-El))/taum : volt (unless refractory) dge/dt = -ge/taue : volt (unless refractory) dgi/dt = -gi/taui : volt (unless refractory) ''' P = NeuronGroup( N, eqs, threshold='v>Vt', reset='v = Vr', refractory=5 * ms) P.v = 'Vr + rand() * (Vt - Vr)' P.ge = 0 * mV P.gi = 0 * mV we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage) wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight Ce = Synapses(P, P, on_pre='ge += we') Ci = Synapses(P, P, on_pre='gi += wi') Ce.connect('i<Ne', p=80. / N) Ci.connect('i>=Ne', p=80. / N) s_mon = SpikeMonitor(P) self.timed_run(self.duration) class COBAHHFixedConnectivity(SpeedTest): category = "Full examples" name = "COBAHH fixed connectivity" tags = ["Neurons", "Synapses", "SpikeMonitor"] n_range = [100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000] n_label = 'Num neurons' # configuration options duration = 1 * second def run(self): N = self.n area = 20000 * umetre ** 2 Cm = (1 * ufarad * cm ** -2) * area gl = (5e-5 * siemens * cm ** -2) * area El = -60 * mV EK = -90 * mV ENa = 50 * mV g_na = (100 * msiemens * cm ** -2) * area g_kd = (30 * msiemens * cm ** -2) * area VT = -63 * mV # Time constants taue = 5 * ms taui = 10 * ms # Reversal potentials Ee = 0 * mV Ei = -80 * mV we = 6 * nS # excitatory synaptic weight wi = 67 * nS # inhibitory synaptic weight # The model eqs = Equations(''' dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)- g_na*(m*m*m)*h*(v-ENa)- g_kd*(n*n*n*n)*(v-EK))/Cm : volt dm/dt = alpha_m*(1-m)-beta_m*m : 1 dn/dt = alpha_n*(1-n)-beta_n*n : 1 dh/dt = alpha_h*(1-h)-beta_h*h : 1 dge/dt = -ge*(1./taue) : siemens dgi/dt = -gi*(1./taui) : siemens alpha_m = 0.32*(mV**-1)*(13*mV-v+VT)/ (exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz beta_m = 0.28*(mV**-1)*(v-VT-40*mV)/ (exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz alpha_h = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz beta_h = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz alpha_n = 0.032*(mV**-1)*(15*mV-v+VT)/ (exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz beta_n = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz ''') P = NeuronGroup(N, model=eqs, threshold='v>-20*mV', refractory=3 * ms, method='exponential_euler') P.v = 'El + (randn() * 5 - 5)*mV' P.ge = '(randn() * 1.5 + 4) * 10.*nS' P.gi = '(randn() * 12 + 20) * 10.*nS' Pe = P[:int(0.8*N)] Pi = P[int(0.8 * N):] Ce = Synapses(Pe, P, on_pre='ge+=we') Ci = Synapses(Pi, P, on_pre='gi+=wi') Ce.connect(p=80.0/N) Ci.connect(p=80.0/N) s_mon = SpikeMonitor(P) self.timed_run(self.duration) class STDP(SpeedTest): category = "Full examples" name = "STDP with Poisson input" tags = ["Neurons", "Synapses", "SpikeMonitor", "PoissonGroup"] n_range = [100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000] n_label = 'Num neurons' # configuration options duration = 1 * second def run(self): N = self.n taum = 10 * ms taupre = 20 * ms taupost = taupre Ee = 0 * mV vt = -54 * mV vr = -60 * mV El = -74 * mV taue = 5 * ms F = 15 * Hz gmax = .01 dApre = .01 dApost = -dApre * taupre / taupost * 1.05 dApost *= gmax dApre *= gmax eqs_neurons = ''' dv/dt = (ge * (Ee-vr) + El - v) / taum : volt dge/dt = -ge / taue : 1 ''' poisson_input = PoissonGroup(N, rates=F) neurons = NeuronGroup(1, eqs_neurons, threshold='v>vt', reset='v = vr', method='exact') S = Synapses(poisson_input, neurons, '''w : 1 dApre/dt = -Apre / taupre : 1 (event-driven) dApost/dt = -Apost / taupost : 1 (event-driven)''', on_pre='''ge += w Apre += dApre w = clip(w + Apost, 0, gmax)''', on_post='''Apost += dApost w = clip(w + Apre, 0, gmax)''', ) S.connect() S.w = 'rand() * gmax' s_mon = SpikeMonitor(poisson_input) self.timed_run(self.duration) class SynapsesOnly(object): category = "Synapses only" tags = ["Synapses"] n_range = [10, 100, 1000, 10000] n_label = 'Num neurons' duration = 1 * second # memory usage will be approximately p**2*rate*dt*N**2*bytes_per_synapse/1024**3 GB # for CPU, bytes_per_synapse appears to be around 40? def run(self): N = self.n rate = self.rate M = int(rate * N * defaultclock.dt) if M <= 0: M = 1 G = NeuronGroup(M, 'v:1', threshold='True') H = NeuronGroup(N, 'w:1') S = Synapses(G, H, on_pre='w += 1.0') S.connect(True, p=self.p) #M = SpikeMonitor(G) self.timed_run(self.duration, # report='text', ) #plot(M.t/ms, M.i, ',k') class VerySparseMediumRateSynapsesOnly(SynapsesOnly, SpeedTest): name = "Very sparse, medium rate (10s duration)" rate = 10 * Hz p = 0.02 n_range = [10, 100, 1000, 10000, 100000] duration = 10 * second class SparseMediumRateSynapsesOnly(SynapsesOnly, SpeedTest): name = "Sparse, medium rate (1s duration)" rate = 10 * Hz p = 0.2 n_range = [10, 100, 1000, 10000, 100000] class DenseMediumRateSynapsesOnly(SynapsesOnly, SpeedTest): name = "Dense, medium rate (1s duration)" rate = 10 * Hz p = 1.0 n_range = [10, 100, 1000, 10000, 40000] class SparseLowRateSynapsesOnly(SynapsesOnly, SpeedTest): name = "Sparse, low rate (10s duration)" rate = 1 * Hz p = 0.2 n_range = [10, 100, 1000, 10000, 100000] duration = 10 * second class SparseHighRateSynapsesOnly(SynapsesOnly, SpeedTest): name = "Sparse, high rate (1s duration)" rate = 100 * Hz p = 0.2 n_range = [10, 100, 1000, 10000] if __name__ == '__main__': #prefs.codegen.target = 'numpy' VerySparseMediumRateSynapsesOnly(100000).run() show()
29.968944
102
0.503731
389de58652834e7d67dd37cfade26eb8869cde8c
15,954
py
Python
Colorizing-with-GANs-master/src/models.py
adityajain28/Colorizing-with-GANs
7657da967ee29e53a8344b554b3d817bea215e69
[ "Apache-2.0" ]
null
null
null
Colorizing-with-GANs-master/src/models.py
adityajain28/Colorizing-with-GANs
7657da967ee29e53a8344b554b3d817bea215e69
[ "Apache-2.0" ]
null
null
null
Colorizing-with-GANs-master/src/models.py
adityajain28/Colorizing-with-GANs
7657da967ee29e53a8344b554b3d817bea215e69
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os import time import numpy as np import tensorflow as tf from tensorflow import keras from abc import abstractmethod from .networks import Generator, Discriminator from .dataset import Places365Dataset, Cifar10Dataset from .ops import pixelwise_accuracy, preprocess, postprocess from .ops import COLORSPACE_RGB, COLORSPACE_LAB from .utils import stitch_images, turingtest, imshow, visualize import matplotlib.pyplot as plt class BaseModel: def __init__(self, sess, options): self.sess = sess self.options = options self.name = options.name self.samples_dir = os.path.join(options.checkpoints_path, 'samples') self.test_log_file = os.path.join(options.checkpoints_path, 'log_test.dat') self.train_log_file = os.path.join(options.checkpoints_path, 'log_train.dat') self.global_step = tf.Variable(0, name='global_step', trainable=False) self.dataset_train = self.create_dataset(True) self.dataset_test = self.create_dataset(False) self.sample_generator = self.dataset_test.generator(options.sample_size, True) self.iteration = 0 self.epoch = 0 self.is_built = False def train(self): self.build() total = len(self.dataset_train) for epoch in range(self.options.epochs): lr_rate = self.sess.run(self.learning_rate) print('Training epoch: %d' % (epoch + 1) + " - learning rate: " + str(lr_rate)) self.epoch = epoch + 1 self.iteration = 0 generator = self.dataset_train.generator(self.options.batch_size) progbar = keras.utils.Progbar(total, stateful_metrics=['epoch', 'iteration', 'step']) for input_rgb in generator: feed_dic = {self.input_rgb: input_rgb} self.iteration = self.iteration + 1 self.sess.run([self.dis_train], feed_dict=feed_dic) self.sess.run([self.gen_train, self.accuracy], feed_dict=feed_dic) self.sess.run([self.gen_train, self.accuracy], feed_dict=feed_dic) lossD, lossD_fake, lossD_real, lossG, lossG_l1, lossG_gan, acc, step = self.eval_outputs(feed_dic=feed_dic) progbar.add(len(input_rgb), values=[ ("epoch", epoch + 1), ("iteration", self.iteration), ("step", step), ("D loss", lossD), ("D fake", lossD_fake), ("D real", lossD_real), ("G loss", lossG), ("G L1", lossG_l1), ("G gan", lossG_gan), ("accuracy", acc) ]) # # log model at checkpoints # if self.options.log and step % self.options.log_interval == 0: # with open(self.train_log_file, 'a') as f: # f.write('%d %d %f %f %f %f %f %f %f\n' % (self.epoch, step, lossD, lossD_fake, lossD_real, lossG, lossG_l1, lossG_gan, acc)) # if self.options.visualize: # visualize(self.train_log_file, self.test_log_file, self.options.visualize_window, self.name) # # sample model at checkpoints # if self.options.sample and step % self.options.sample_interval == 0: # self.sample(show=False) # # evaluate model at checkpoints # if self.options.validate and self.options.validate_interval > 0 and step % self.options.validate_interval == 0: # self.evaluate() # # save model at checkpoints # if self.options.save and step % self.options.save_interval == 0: # self.save() if self.options.save and step % self.options.save_interval == 0: self.save() if self.options.sample and step % self.options.sample_interval == 0: self.sample(show=False) if self.options.log and step % self.options.log_interval == 0: print("Logging") with open(self.train_log_file, 'a') as f: f.write('%d %d %f %f %f %f %f %f %f\n' % (self.epoch, step, lossD, lossD_fake, lossD_real, lossG, lossG_l1, lossG_gan, acc)) if self.options.visualize: visualize(self.train_log_file, self.test_log_file, self.options.visualize_window, self.name) #if self.options.validate: # self.evaluate() def evaluate(self): print('\n\nEvaluating epoch: %d' % self.epoch) test_total = len(self.dataset_test) test_generator = self.dataset_test.generator(self.options.batch_size) progbar = keras.utils.Progbar(test_total) result = [] for input_rgb in test_generator: feed_dic = {self.input_rgb: input_rgb} self.sess.run([self.dis_loss, self.gen_loss, self.accuracy], feed_dict=feed_dic) # returns (D loss, D_fake loss, D_real loss, G loss, G_L1 loss, G_gan loss, accuracy, step) result.append(self.eval_outputs(feed_dic=feed_dic)) progbar.add(len(input_rgb)) result = np.mean(np.array(result), axis=0) print('Results: D loss: %f - D fake: %f - D real: %f - G loss: %f - G L1: %f - G gan: %f - accuracy: %f' % (result[0], result[1], result[2], result[3], result[4], result[5], result[6])) if self.options.log: with open(self.test_log_file, 'a') as f: # (epoch, step, lossD, lossD_fake, lossD_real, lossG, lossG_l1, lossG_gan, acc) f.write('%d %d %f %f %f %f %f %f %f\n' % (self.epoch, result[7], result[0], result[1], result[2], result[3], result[4], result[5], result[6])) print('\n') def sample(self, show=True): self.build() input_rgb = next(self.sample_generator) feed_dic = {self.input_rgb: input_rgb} step, rate = self.sess.run([self.global_step, self.learning_rate]) fake_image, input_gray = self.sess.run([self.sampler, self.input_gray], feed_dict=feed_dic) fake_image = postprocess(tf.convert_to_tensor(fake_image), colorspace_in=self.options.color_space, colorspace_out=COLORSPACE_RGB) img = stitch_images(input_gray, input_rgb, fake_image.eval()) if not os.path.exists(self.samples_dir): os.makedirs(self.samples_dir) sample = self.options.dataset + "_" + str(step).zfill(5) + ".png" if show: imshow(np.array(img), self.name) else: print('\nsaving sample ' + sample + ' - learning rate: ' + str(rate)) img.save(os.path.join(self.samples_dir, sample)) def turing_test(self): batch_size = self.options.batch_size gen = self.dataset_test.generator(batch_size, True) count = 0 score = 0 fig = plt.figure() while count < self.options.test_size: input_rgb = next(gen) feed_dic = {self.input_rgb: input_rgb} fake_image = self.sess.run(self.sampler, feed_dict=feed_dic) fake_image = postprocess(tf.convert_to_tensor(fake_image), colorspace_in=self.options.color_space, colorspace_out=COLORSPACE_RGB) for i in range(np.min([batch_size, self.options.test_size - count])): res = turingtest( self.options.dataset_path, count, input_rgb[i], fake_image.eval()[i], self.options.test_delay) count += 1 score += res print('success: %d - fail: %d - rate: %f' % (score, count - score, (count - score) / count)) def build(self): if self.is_built: return self.is_built = True gen_factory = self.create_generator() dis_factory = self.create_discriminator() smoothing = 0.9 if self.options.label_smoothing else 1 seed = seed = self.options.seed kernel = self.options.kernel_size self.input_rgb = tf.placeholder(tf.float32, shape=(None, None, None, 3), name='input_rgb') self.input_gray = tf.image.rgb_to_grayscale(self.input_rgb) self.input_color = preprocess(self.input_rgb, colorspace_in=COLORSPACE_RGB, colorspace_out=self.options.color_space) gen = gen_factory.create(self.input_gray, kernel, seed) dis_real = dis_factory.create(tf.concat([self.input_gray, self.input_color], 3), kernel, seed) dis_fake = dis_factory.create(tf.concat([self.input_gray, gen], 3), kernel, seed, reuse_variables=True) gen_ce = tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_fake, labels=tf.ones_like(dis_fake)) dis_real_ce = tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_real, labels=tf.ones_like(dis_real) * smoothing) dis_fake_ce = tf.nn.sigmoid_cross_entropy_with_logits(logits=dis_fake, labels=tf.zeros_like(dis_fake)) self.dis_loss_real = tf.reduce_mean(dis_real_ce) self.dis_loss_fake = tf.reduce_mean(dis_fake_ce) self.dis_loss = tf.reduce_mean(dis_real_ce + dis_fake_ce) self.gen_loss_gan = tf.reduce_mean(gen_ce) self.gen_loss_l1 = tf.reduce_mean(tf.abs(self.input_color - gen)) * self.options.l1_weight self.gen_loss = self.gen_loss_gan + self.gen_loss_l1 self.sampler = gen_factory.create(self.input_gray, kernel, seed, reuse_variables=True) self.accuracy = pixelwise_accuracy(self.input_color, gen, self.options.color_space, self.options.acc_thresh) self.learning_rate = tf.constant(self.options.lr) # learning rate decay if self.options.lr_decay_rate > 0: self.learning_rate = tf.maximum(1e-8, tf.train.exponential_decay( learning_rate=self.options.lr, global_step=self.global_step, decay_steps=self.options.lr_decay_steps, decay_rate=self.options.lr_decay_rate)) # generator optimizaer self.gen_train = tf.train.AdamOptimizer( learning_rate=self.learning_rate, beta1=self.options.beta1 ).minimize(self.gen_loss, var_list=gen_factory.var_list) # discriminator optimizaer self.dis_train = tf.train.AdamOptimizer( learning_rate=self.learning_rate, beta1=self.options.beta1 ).minimize(self.dis_loss, var_list=dis_factory.var_list, global_step=self.global_step) self.saver = tf.train.Saver() def load(self): ckpt = tf.train.get_checkpoint_state(self.options.checkpoints_path) if ckpt is not None: print('loading model...\n') ckpt_name = os.path.basename(ckpt.model_checkpoint_path) self.saver.restore(self.sess, os.path.join(self.options.checkpoints_path, ckpt_name)) return True return False def save(self): print('saving model...\n') self.saver.save(self.sess, os.path.join(self.options.checkpoints_path, 'CGAN_' + self.options.dataset), write_meta_graph=False) def eval_outputs(self, feed_dic): ''' evaluates the loss and accuracy returns (D loss, D_fake loss, D_real loss, G loss, G_L1 loss, G_gan loss, accuracy, step) ''' lossD_fake = self.dis_loss_fake.eval(feed_dict=feed_dic) lossD_real = self.dis_loss_real.eval(feed_dict=feed_dic) lossD = self.dis_loss.eval(feed_dict=feed_dic) lossG_l1 = self.gen_loss_l1.eval(feed_dict=feed_dic) lossG_gan = self.gen_loss_gan.eval(feed_dict=feed_dic) lossG = lossG_l1 + lossG_gan acc = self.accuracy.eval(feed_dict=feed_dic) step = self.sess.run(self.global_step) return lossD, lossD_fake, lossD_real, lossG, lossG_l1, lossG_gan, acc, step @abstractmethod def create_generator(self): raise NotImplementedError @abstractmethod def create_discriminator(self): raise NotImplementedError @abstractmethod def create_dataset(self, training): raise NotImplementedError class Cifar10Model(BaseModel): def __init__(self, sess, options): super(Cifar10Model, self).__init__(sess, options) def create_generator(self): kernels_gen_encoder = [ (64, 1, 0), # [batch, 32, 32, ch] => [batch, 32, 32, 64] (128, 2, 0), # [batch, 32, 32, 64] => [batch, 16, 16, 128] (256, 2, 0), # [batch, 16, 16, 128] => [batch, 8, 8, 256] (512, 2, 0), # [batch, 8, 8, 256] => [batch, 4, 4, 512] (512, 2, 0), # [batch, 4, 4, 512] => [batch, 2, 2, 512] ] kernels_gen_decoder = [ (512, 2, 0.5), # [batch, 2, 2, 512] => [batch, 4, 4, 512] (256, 2, 0.5), # [batch, 4, 4, 512] => [batch, 8, 8, 256] (128, 2, 0), # [batch, 8, 8, 256] => [batch, 16, 16, 128] (64, 2, 0), # [batch, 16, 16, 128] => [batch, 32, 32, 64] ] return Generator('gen', kernels_gen_encoder, kernels_gen_decoder) def create_discriminator(self): kernels_dis = [ (64, 2, 0), # [batch, 32, 32, ch] => [batch, 16, 16, 64] (128, 2, 0), # [batch, 16, 16, 64] => [batch, 8, 8, 128] (256, 2, 0), # [batch, 8, 8, 128] => [batch, 4, 4, 256] (512, 1, 0), # [batch, 4, 4, 256] => [batch, 4, 4, 512] ] return Discriminator('dis', kernels_dis) def create_dataset(self, training=True): return Cifar10Dataset( path=self.options.dataset_path, training=training, augment=self.options.augment) class Places365Model(BaseModel): def __init__(self, sess, options): super(Places365Model, self).__init__(sess, options) def create_generator(self): kernels_gen_encoder = [ (64, 1, 0), # [batch, 256, 256, ch] => [batch, 256, 256, 64] (64, 2, 0), # [batch, 256, 256, 64] => [batch, 128, 128, 64] (128, 2, 0), # [batch, 128, 128, 64] => [batch, 64, 64, 128] (256, 2, 0), # [batch, 64, 64, 128] => [batch, 32, 32, 256] (512, 2, 0), # [batch, 32, 32, 256] => [batch, 16, 16, 512] (512, 2, 0), # [batch, 16, 16, 512] => [batch, 8, 8, 512] (512, 2, 0), # [batch, 8, 8, 512] => [batch, 4, 4, 512] (512, 2, 0) # [batch, 4, 4, 512] => [batch, 2, 2, 512] ] kernels_gen_decoder = [ (512, 2, 0.5), # [batch, 2, 2, 512] => [batch, 4, 4, 512] (512, 2, 0.5), # [batch, 4, 4, 512] => [batch, 8, 8, 512] (512, 2, 0.5), # [batch, 8, 8, 512] => [batch, 16, 16, 512] (256, 2, 0), # [batch, 16, 16, 512] => [batch, 32, 32, 256] (128, 2, 0), # [batch, 32, 32, 256] => [batch, 64, 64, 128] (64, 2, 0), # [batch, 64, 64, 128] => [batch, 128, 128, 64] (64, 2, 0) # [batch, 128, 128, 64] => [batch, 256, 256, 64] ] return Generator('gen', kernels_gen_encoder, kernels_gen_decoder) def create_discriminator(self): kernels_dis = [ (64, 2, 0), # [batch, 256, 256, ch] => [batch, 128, 128, 64] (128, 2, 0), # [batch, 128, 128, 64] => [batch, 64, 64, 128] (256, 2, 0), # [batch, 64, 64, 128] => [batch, 32, 32, 256] (512, 2, 0), # [batch, 32, 32, 256] => [batch, 16, 16, 512] (512, 2, 0), # [batch, 16, 16, 512] => [batch, 8, 8, 512] (512, 2, 0), # [batch, 8, 8, 512] => [batch, 4, 4, 512] (512, 1, 0), # [batch, 4, 4, 512] => [batch, 4, 4, 512] ] return Discriminator('dis', kernels_dis) def create_dataset(self, training=True): return Places365Dataset( path=self.options.dataset_path, training=training, augment=self.options.augment)
43.950413
158
0.586499
8d18e54ec36fbc8cbfabd72d0aa2c4531df69717
5,227
py
Python
src/data_setup.py
sukumargv/hurricane
98e792f94f6924e0b3fcfb8aef32a6638a551cd2
[ "MIT" ]
null
null
null
src/data_setup.py
sukumargv/hurricane
98e792f94f6924e0b3fcfb8aef32a6638a551cd2
[ "MIT" ]
2
2016-09-26T16:45:53.000Z
2016-09-26T17:11:35.000Z
src/data_setup.py
sukumargv/hurricane
98e792f94f6924e0b3fcfb8aef32a6638a551cd2
[ "MIT" ]
null
null
null
import numpy as np # For loading the data into Dataframes import pandas as pd # For string literal import ast # import packages related to gdal from osgeo import gdal import pyproj # For time Zone Conversions import pytz # for plots import matplotlib.pyplot as plt with open('../data_collection/track_data/r2_Queen_of_Nanaimo.json') as f: for line in f: data = line # Imported data now is in string format # Convert it into list of lists which we know the data structure of imported file. data = ast.literal_eval(data) # Covnert into numpy array np.array(data) # Assigning datatypes mt_data = np.array([tuple(x) for x in data], dtype = [('lon', 'f8'), ('lat', 'f8'), ('speed', 'i4'), ('course', 'i4'), ('heading', 'i4'), ('timestamp', 'M8[s]'), ('ut', 'i8'), ('station', 'i8'), ('gap','i4')]) mt_data = pd.DataFrame(mt_data) mt_data = mt_data.sort_values(by='timestamp') tz_est = pytz.timezone('UTC') tz_pst = "US/Pacific" # Convert timezone of the data to Pacific mt_data['timestamp'] = mt_data['timestamp'].dt.tz_localize(tz_est).dt.tz_convert(tz_pst) bc_data = pd.read_pickle('bc_data.pkl') #lon lat to cord def proj_transform(df): bng = pyproj.Proj(init="epsg:4326") wgs84 = pyproj.Proj(init="epsg:3857") cart_x = pd.Series() cart_y = pd.Series() for idx, val in enumerate(df['lon']): lon, lat = pyproj.transform(bng,wgs84,df['lon'][idx], df['lat'][idx]) cart_x.set_value(idx, lat) cart_y.set_value(idx, lon) df['cart_x'] = cart_y df['cart_y'] = cart_x return df mt_data = proj_transform(mt_data) mt_data['cart_x'] = mt_data['cart_x'].astype(float) mt_data['cart_y'] = mt_data['cart_y'].astype(float) # pixels to coordinates conversion funciton can only be applied upon def pixels_to_coordinates(bc_row,route_tif,index, **kwargs): if ('affine' in kwargs): pass else: # load in the route image ds = gdal.Open(route_tif) # unravel GDAL affine transform parameters c, a, b, f, d, e = ds.GetGeoTransform() def pixel2coord(col, row): # Returns global coordinates to pixel center using base-0 raster index xp = a * col + b * row + a * (-5.5) + b * (-5.5) + c yp = d * col + e * row + d * (-5.5) + e * (-5.5) + f return xp, yp cart_cord = pixel2coord(bc_row['cx'],bc_row['cy']) # Converting coordinates from EPSG 3857 to 4326 inProj = pyproj.Proj(init='epsg:3857') outProj = pyproj.Proj(init='epsg:4326') coordinates = pyproj.transform(inProj, outProj, cart_cord[0], cart_cord[1]) local_dict = {'lat': coordinates[1], 'lon': coordinates[0], 'cart_cord_x': cart_cord[0], 'cart_cord_y': cart_cord[1] } if index==0: return local_dict['lat'] if index==1: return local_dict['lon'] if index==2: return local_dict['cart_cord_x'] if index==3: return local_dict['cart_cord_y'] # Route file location route_file = "../qgis_approach/route2.tif" # Filter specific route based on timestamp mt_data_min_time = mt_data['timestamp'].min() mt_data_max_time = mt_data['timestamp'].max() # Localize time_Zone of Bc_Data to Pacific time. bc_data['Time'] = bc_data['Time'].dt.tz_localize(tz_pst) # Need to modify it so that can be supplied from input vessel_name = 'Queen of Nanaimo' bc_route_data = bc_data[(bc_data['Time'] >= mt_data_min_time) & (bc_data['Time'] <= mt_data_max_time) & (bc_data['Vessel'] == vessel_name)] bc_route_data['lon'] = bc_route_data.apply(lambda x: pixels_to_coordinates(x,route_file,0), axis = 1) bc_route_data['lat'] = bc_route_data.apply(lambda x: pixels_to_coordinates(x,route_file,1), axis = 1) bc_route_data['cart_x'] = bc_route_data.apply(lambda x: pixels_to_coordinates(x,route_file,2), axis = 1) bc_route_data['cart_y'] = bc_route_data.apply(lambda x: pixels_to_coordinates(x,route_file,3), axis = 1) bc_route_data['dup_key'] = bc_route_data['cx'] + bc_route_data['cy'] no_dups_bc_route_data = bc_route_data.drop_duplicates('dup_key') # Plot of all the route data # plt.plot(mt_data['lon'], mt_data['lat'],'-',linewidth=0.5, color = 'blue') # plt.plot(bc_route_data['lat'], bc_route_data['lon'],'-',linewidth=0.5, color ='green') #plt.plot(mt_data['cart_x'][:100], mt_data['cart_y'][:100],'-',linewidth=0.5, color = 'red') #plt.plot(bc_route_data['cart_x'][:200], bc_route_data['cart_y'][:200],'-',linewidth=0.5, color ='black') #plt.show() ''' # determining control points filter_1 = mt_data[['cart_x', 'cart_y','timestamp','speed']][(mt_data['speed']==0)] filter_1_ = bc_route_data[['cart_x', 'cart_y','Time', 'Status']][(bc_route_data['Status'] == 'In Port')] plt.scatter(filter_1['cart_x'], filter_1['cart_y'], color ='blue') plt.scatter(filter_1_['cart_x'],filter_1_['cart_y'], color = 'green') plt.show() ''' ''' Algorithm to solve for affine parameters def solve_affine(s1,s2,s3,t1,t2,t3): Source_S = np.array([[Xs1, Ys1, 1, 0, 0, 0], [Xs2, Ys2, 1, 0, 0, 0], [Xs3, Ys3, 1, 0, 0, 0], [0, 0, 0, Xs1, Ys1, 1], [0, 0, 0, Xs2, Ys2, 1], [0, 0, 0, Xs3, Ys3, 1]]) Target_T = np.array([Xt1, Xt2, Xt2, Yt1, Yt2, Yt3]) affine = np.linalg.solve(Source_S,Target_T) return affine '''
34.388158
209
0.6608
e5b238f11c698b7ab8f6fc664daf095bf1d7164b
1,568
py
Python
app/latches.py
bobosoft/intrepyd
13f0912b31f86f9bcc50f52ef4ad870e33f0cf65
[ "BSD-3-Clause" ]
2
2021-04-25T17:38:03.000Z
2022-03-20T20:48:50.000Z
app/latches.py
bobosoft/intrepyd
13f0912b31f86f9bcc50f52ef4ad870e33f0cf65
[ "BSD-3-Clause" ]
1
2016-11-30T22:25:00.000Z
2017-01-16T22:43:39.000Z
app/latches.py
bobosoft/intrepyd
13f0912b31f86f9bcc50f52ef4ad870e33f0cf65
[ "BSD-3-Clause" ]
null
null
null
""" Implementation of REST API for latch creation """ from flask import Blueprint, request from .utils import typename_to_type from .contexts import contexts lr = Blueprint('latches', __name__) @lr.route('', methods=['GET']) def list_latches(): """ Lists the available latches """ context = request.args.get('context') if context is None: return {'result': 'error'}, 400 ctx = contexts[context]['context'] return {'latches': [key for key, _ in ctx.latches.items()]}, 200 @lr.route('/create', methods=['POST']) def create_latch(): """ Creates a new latch """ context = request.get_json()['context'] typ = request.get_json()['type'] if context is None or typ is None: return {'result': 'error'}, 400 ctx = contexts[context]['context'] name = '__l{}'.format(len(ctx.latches.items())) ctx.mk_latch(name, typename_to_type(ctx, typ)) return {'result': name}, 201 @lr.route('/initnext', methods=['PUT']) def set_latch_init_next(): """ Sets the initial and next value of a latch """ context = request.get_json()['context'] latch = request.get_json()['latch'] init = request.get_json()['init'] nex = request.get_json()['next'] if context is None or latch is None or init is None or nex is None: return {'result': 'error'}, 400 ctx = contexts[context]['context'] latch_net = ctx.nets[latch] init_net = ctx.nets[init] next_net = ctx.nets[nex] ctx.set_latch_init_next(latch_net, init_net, next_net) return {'result': 'ok'}, 200
30.153846
71
0.639031
2da61cb367b97ce8b6d3bbbce3ec8c5bb46ca4d8
992
py
Python
isi_sdk_8_2_1/test/test_compatibilities_class_active.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_1/test/test_compatibilities_class_active.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_1/test/test_compatibilities_class_active.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_1 from isi_sdk_8_2_1.models.compatibilities_class_active import CompatibilitiesClassActive # noqa: E501 from isi_sdk_8_2_1.rest import ApiException class TestCompatibilitiesClassActive(unittest.TestCase): """CompatibilitiesClassActive unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCompatibilitiesClassActive(self): """Test CompatibilitiesClassActive""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_1.models.compatibilities_class_active.CompatibilitiesClassActive() # noqa: E501 pass if __name__ == '__main__': unittest.main()
24.195122
110
0.731855
871e4e2eb0be1ca002d7ca224cc085f0e0502f70
2,040
py
Python
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/AddLiveStreamTranscodeRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/AddLiveStreamTranscodeRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/AddLiveStreamTranscodeRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdklive.endpoint import endpoint_data class AddLiveStreamTranscodeRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'live', '2016-11-01', 'AddLiveStreamTranscode','live') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Template(self): return self.get_query_params().get('Template') def set_Template(self,Template): self.add_query_param('Template',Template) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_App(self): return self.get_query_params().get('App') def set_App(self,App): self.add_query_param('App',App) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_Domain(self): return self.get_query_params().get('Domain') def set_Domain(self,Domain): self.add_query_param('Domain',Domain)
33.442623
82
0.758333
3cd4b3f07265683633cdb6bc1e8f6be4215c5aee
255
py
Python
docs/examples/compute/internetsolutions/instantiate_driver.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
null
null
null
docs/examples/compute/internetsolutions/instantiate_driver.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
1
2021-12-06T12:29:13.000Z
2021-12-06T12:29:13.000Z
docs/examples/compute/internetsolutions/instantiate_driver.py
rgharris/libcloud
90971e17bfd7b6bb97b2489986472c531cc8e140
[ "Apache-2.0" ]
1
2019-08-05T10:12:02.000Z
2019-08-05T10:12:02.000Z
from pprint import pprint from libcloud.compute.types import Provider from libcloud.compute.providers import get_driver cls = get_driver(Provider.INTERNETSOLUTIONS) driver = cls("my username", "my password", region="is-af") pprint(driver.list_nodes())
25.5
58
0.796078
dd590419697592b5ea0aa11d7ec66dc35becbb63
105
py
Python
PyWC3/__init__.py
Blimba/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
14
2020-02-16T14:25:02.000Z
2021-12-07T13:57:34.000Z
PyWC3/__init__.py
sylvainSUPINTERNET/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
3
2020-04-20T02:31:31.000Z
2022-02-25T17:06:12.000Z
PyWC3/__init__.py
sylvainSUPINTERNET/PyWC3
16d519bbb98e7593b8d14d14d9b81b6d6932ef0c
[ "MIT" ]
2
2021-03-17T13:15:32.000Z
2021-09-26T09:24:21.000Z
from .PyWC3.map import Map from .PyWC3.jass import Jass from .PyWC3.obj import ObjFile, DataFile, DooFile
35
49
0.8
0e9457f9915d83fd71054beb322f6bfb59f2319e
4,627
py
Python
api/__init__.py
lyy321/BAR_API
82bcd83c72b6873d6cc9778214d1b41318200411
[ "MIT" ]
null
null
null
api/__init__.py
lyy321/BAR_API
82bcd83c72b6873d6cc9778214d1b41318200411
[ "MIT" ]
null
null
null
api/__init__.py
lyy321/BAR_API
82bcd83c72b6873d6cc9778214d1b41318200411
[ "MIT" ]
null
null
null
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_restx import Api from flask_cors import CORS from flask_caching import Cache from flask_limiter import Limiter from flask_limiter.util import get_remote_address from sqlalchemy import MetaData import os def create_app(): """Initialize the app factory based on the official Flask documentation""" bar_app = Flask(__name__) CORS(bar_app) # Load configuration if os.environ.get("CI"): # Travis print("We are now loading configuration.") bar_app.config.from_pyfile(os.getcwd() + "/config/BAR_API.cfg", silent=True) if bar_app.config.get("ADMIN_ENCRYPT_KEY"): os.environ["ADMIN_ENCRYPT_KEY"] = bar_app.config.get("ADMIN_ENCRYPT_KEY") if bar_app.config.get("ADMIN_PASSWORD_FILE"): os.environ["ADMIN_PASSWORD_FILE"] = bar_app.config.get( "ADMIN_PASSWORD_FILE" ) elif os.environ.get("BAR"): # The BAR bar_app.config.from_pyfile(os.environ.get("BAR_API_PATH"), silent=True) else: # The localhost bar_app.config.from_pyfile( os.path.expanduser("~") + "/.config/BAR_API.cfg", silent=True ) # Load environment variables if bar_app.config.get("ADMIN_ENCRYPT_KEY"): os.environ["ADMIN_ENCRYPT_KEY"] = bar_app.config.get("ADMIN_ENCRYPT_KEY") if bar_app.config.get("ADMIN_PASSWORD_FILE"): os.environ["ADMIN_PASSWORD_FILE"] = bar_app.config.get( "ADMIN_PASSWORD_FILE" ) if bar_app.config.get("PHENIX"): os.environ["PHENIX"] = bar_app.config.get("PHENIX") if bar_app.config.get("PHENIX_VERSION"): os.environ["PHENIX_VERSION"] = bar_app.config.get("PHENIX_VERSION") if bar_app.config.get("PATH"): os.environ["PATH"] = ( bar_app.config.get("PATH") + ":/usr/local/phenix-1.18.2-3874/build/bin" ) # Initialize the databases annotations_lookup_db.init_app(bar_app) eplant2_db.init_app(bar_app) eplant_poplar_db.init_app(bar_app) eplant_tomato_db.init_app(bar_app) poplar_nssnp_db.init_app(bar_app) tomato_nssnp_db.init_app(bar_app) tomato_seq_db.init_app(bar_app) single_cell_db.init_app(bar_app) summarization_db.init_app(bar_app) # Initialize the cache cache.init_app(bar_app) # Initialize rate limiter limiter.init_app(bar_app) # Configure the Swagger UI bar_api = Api( title="BAR API", version="0.0.1", description="API for the Bio-Analytic Resource", ) # Now add routes from api.resources.gene_information import gene_information from api.resources.rnaseq_gene_expression import rnaseq_gene_expression from api.resources.summarization_gene_expression import ( summarization_gene_expression, ) from api.resources.api_manager import api_manager from api.resources.proxy import bar_proxy from api.resources.thalemine import thalemine from api.resources.snps import snps from api.resources.sequence import sequence from api.resources.gene_annotation import gene_annotation bar_api.add_namespace(gene_information) bar_api.add_namespace(rnaseq_gene_expression) bar_api.add_namespace(summarization_gene_expression) bar_api.add_namespace(api_manager) bar_api.add_namespace(bar_proxy) bar_api.add_namespace(thalemine) bar_api.add_namespace(snps) bar_api.add_namespace(sequence) bar_api.add_namespace(gene_annotation) bar_api.init_app(bar_app) return bar_app # Initialize database system # This is needed because multiple databases have the same database name # Metadata cannot have multiple tables with the same name annotations_lookup_db = SQLAlchemy(metadata=MetaData()) eplant2_db = SQLAlchemy(metadata=MetaData()) eplant_poplar_db = SQLAlchemy(metadata=MetaData()) eplant_tomato_db = SQLAlchemy(metadata=MetaData()) poplar_nssnp_db = SQLAlchemy(metadata=MetaData()) tomato_nssnp_db = SQLAlchemy(metadata=MetaData()) tomato_seq_db = SQLAlchemy(metadata=MetaData()) single_cell_db = SQLAlchemy(metadata=MetaData()) summarization_db = SQLAlchemy(metadata=MetaData()) # Initialize Redis cache = Cache( config={ "CACHE_TYPE": "flask_caching.backends.redis", "CACHE_KEY_PREFIX": "BAR_API_", "CACHE_REDIS_PASSWORD": os.environ.get("BAR_REDIS_PASSWORD"), } ) # Initialize Limiter limiter = Limiter(key_func=get_remote_address) # Now create the bar_app app = create_app() if __name__ == "__main__": app.run()
34.789474
87
0.711692
9a810e32121034b6d588902f15d8068d6210319b
213
py
Python
aio_pika/patterns/__init__.py
aviramha/aio-pika
c480d2e62ac3f3e31a0714114e368bb6fd6eeb34
[ "Apache-2.0" ]
null
null
null
aio_pika/patterns/__init__.py
aviramha/aio-pika
c480d2e62ac3f3e31a0714114e368bb6fd6eeb34
[ "Apache-2.0" ]
null
null
null
aio_pika/patterns/__init__.py
aviramha/aio-pika
c480d2e62ac3f3e31a0714114e368bb6fd6eeb34
[ "Apache-2.0" ]
null
null
null
from .master import Master, Worker, NackMessage, RejectMessage, JsonMaster from .rpc import RPC, JsonRPC __all__ = ( 'Master', 'NackMessage', 'RejectMessage', 'RPC', 'Worker', 'JsonMaster', 'JsonRPC', )
23.666667
74
0.694836
4b280fb8590d009795cfb8b0746a89edb18e751f
1,497
py
Python
adventofcode/2021/1/test/test_process_depth.py
bneradt/toy
982e80ec98f4e951f7275e5f22cb0197f8f86c08
[ "Apache-2.0" ]
null
null
null
adventofcode/2021/1/test/test_process_depth.py
bneradt/toy
982e80ec98f4e951f7275e5f22cb0197f8f86c08
[ "Apache-2.0" ]
null
null
null
adventofcode/2021/1/test/test_process_depth.py
bneradt/toy
982e80ec98f4e951f7275e5f22cb0197f8f86c08
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from process_depth import count_increases, IntFileIterator from tempfile import NamedTemporaryFile import unittest class TestCountIncreasesWindowSize1(unittest.TestCase): """ Test count_increases with a window size of 1 (the default). """ def test_all_increases(self): l = [-20, 1, 2, 10, 100, 103] self.assertEqual(len(l) - 1, count_increases(l)) def test_all_decreases(self): l = [120, 8, 5, 0, -1] self.assertEqual(0, count_increases(l)) def test_mix(self): l = [-30, -40, -20, -5, 0, 3, 2, -1, 5, 8, 7, 8, 8, 6] self.assertEqual(7, count_increases(l)) class TestCountWindowIncreases(unittest.TestCase): """ Test count_increases with a window size greater than 1. """ def test_with_sample_input(self): l = [199, 200, 208, 210, 200, 207, 240, 269, 260, 263] self.assertEqual(5, count_increases(l, 3)) class TestIntFileIterator(unittest.TestCase): """ Test the IntFileIterator. """ def setUp(self): self.test_file = NamedTemporaryFile(mode='w+t') def test_iterator_functionality(self): input_list = [14, 24, 103, 2, -1, -1, 22, 22] for input_int in input_list: self.test_file.write(f'{input_int}\n') file_ints = IntFileIterator(self.test_file) for i, file_int in enumerate(file_ints): self.assertEqual(input_list[i], file_int) if __name__ == '__main__': unittest.main()
29.352941
63
0.640615
89304c1cae1226fe56067fa18038e2c32da5aceb
32,162
py
Python
test/functional/fundrawtransaction.py
tubacle/tubacle
b699ee9667e0997fab5c0327173f959b26177ba6
[ "MIT" ]
null
null
null
test/functional/fundrawtransaction.py
tubacle/tubacle
b699ee9667e0997fab5c0327173f959b26177ba6
[ "MIT" ]
null
null
null
test/functional/fundrawtransaction.py
tubacle/tubacle
b699ee9667e0997fab5c0327173f959b26177ba6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the fundrawtransaction RPC.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError('Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True def setup_network(self, split=False): self.setup_nodes() connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction([], {self.nodes[2].getnewaddress():50}) rawmatch = self.nodes[2].fundrawtransaction(rawmatch, {"changePosition":1, "subtractFeeFromOutputs":[0]}) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-3, "Unexpected key foo", self.nodes[2].fundrawtransaction, rawtx, {'foo':'bar'}) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-5, "changeAddress must be a valid tubaclecoin address", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':'foobar'}) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_rpc_error(-8, "changePosition out of bounds", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':change, 'changePosition':2}) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawtx) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawtx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.stop_node(0) self.nodes[1].node_encrypt_wallet("test") self.stop_node(2) self.stop_node(3) self.start_nodes() # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_rpc_error(-4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawtx) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill(8) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() assert_raises_rpc_error(-13, "walletpassphrase", self.nodes[1].sendtoaddress, self.nodes[0].getnewaddress(), 1.2) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('51.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('50.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True }) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress() : 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 1*min_relay_tx_fee}) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 10*min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) ################################ # Test no address reuse occurs # ################################ result3 = self.nodes[3].fundrawtransaction(rawtx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert(changeaddress != nextaddr) ###################################### # Test subtractFeeFromOutputs option # ###################################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0]}), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee, "subtractFeeFromOutputs": [0]})] dec_tx = [self.nodes[3].decoderawtransaction(tx['hex']) for tx in result] output = [d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result)] change = [d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result)] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = {self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3)} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0, 2, 3]})] dec_tx = [self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex'])] # Nested list of non-change output amounts for each transaction output = [[out['value'] for i, out in enumerate(d['vout']) if i != r['changepos']] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee']) if __name__ == '__main__': RawTransactionsTest().main()
44.60749
223
0.569865
2c5d1cd03e9897ab66e80adaccba702e97f80b59
1,184
py
Python
setup.py
brunobeltran/nuc_chain
ef03d7285e35788ea86b467303dfd78e52525114
[ "MIT" ]
null
null
null
setup.py
brunobeltran/nuc_chain
ef03d7285e35788ea86b467303dfd78e52525114
[ "MIT" ]
null
null
null
setup.py
brunobeltran/nuc_chain
ef03d7285e35788ea86b467303dfd78e52525114
[ "MIT" ]
1
2019-07-16T16:41:36.000Z
2019-07-16T16:41:36.000Z
import setuptools import nuc_chain long_description = nuc_chain.__doc__ setuptools.setup( name="nuc_chain", version=nuc_chain.__version__, author="Bruno Belran", author_email="brunobeltran0@gmail.com", description="Modeling chromatin as a chain of nucleosomes", long_description=long_description, long_description_content_type="text/rst", url="https://gitlab.com/brunobeltran/nuc_chain", packages=setuptools.find_packages(), install_requires=['numpy', 'scipy', 'matplotlib', 'pandas', 'seaborn', 'sympy'], setup_requires=['sphinx', 'sphinx_rtd_theme'], classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 1 - Planning", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: C", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Visualization", ), )
35.878788
74
0.652872
b371f56c23b68bba34d5c6c6b9cf0b43dda6fcdf
8,181
py
Python
src/extensions/BIOS COMMANDS/SetPasswordCommand.py
tomy781107/python-redfish-utility
1639871df55233ba8553bbf250e5caaa23ebd247
[ "Apache-2.0" ]
null
null
null
src/extensions/BIOS COMMANDS/SetPasswordCommand.py
tomy781107/python-redfish-utility
1639871df55233ba8553bbf250e5caaa23ebd247
[ "Apache-2.0" ]
1
2021-09-17T21:23:50.000Z
2021-11-24T01:47:24.000Z
src/extensions/BIOS COMMANDS/SetPasswordCommand.py
tomy781107/python-redfish-utility
1639871df55233ba8553bbf250e5caaa23ebd247
[ "Apache-2.0" ]
1
2021-10-18T08:36:53.000Z
2021-10-18T08:36:53.000Z
### # Copyright 2016-2021 Hewlett Packard Enterprise, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### # -*- coding: utf-8 -*- """ SetPassword Command for rdmc """ import getpass from argparse import ArgumentParser, SUPPRESS from rdmc_helper import ReturnCodes, InvalidCommandLineError, InvalidCommandLineErrorOPTS, \ Encryption, UnableToDecodeError class SetPasswordCommand(): """ Set password class command """ def __init__(self): self.ident = { 'name':'setpassword', 'usage': None, 'description':'Sets the admin password and power-on password\n' 'setpassword --newpassword <NEW_PASSWORD> --currentpassword <OLD_PASSWORD> [OPTIONS]\n\n\t' 'Setting the admin password with no previous password set.' '\n\texample: setpassword --newpassword testnew --currentpassword None\n\n\tSetting the admin ' 'password back to nothing.\n\texample: setpassword --newpassword None --currentpassword testnew ' '\n\n\tSetting the power on password.\n\texample: setpassword' ' --newpassword testnew --currentpassword None --poweron\n\tNote: ' 'if it is empty password, send None as above.', 'summary':'Sets the admin password and power-on password', 'aliases': [], 'auxcommands': ['LoginCommand', 'SetCommand', 'SelectCommand', 'CommitCommand', 'RebootCommand', 'LogoutCommand'] } self.cmdbase = None self.rdmc = None self.auxcommands = dict() def run(self, line, help_disp=False): """ Main set password worker function :param line: string of arguments passed in :type line: str. """ if help_disp: self.parser.print_help() return ReturnCodes.SUCCESS try: (options, args) = self.rdmc.rdmc_parse_arglist(self, line) if not line or line[0] == "help": self.parser.print_help() return ReturnCodes.SUCCESS except (InvalidCommandLineErrorOPTS, SystemExit): if ("-h" in line) or ("--help" in line): return ReturnCodes.SUCCESS else: raise InvalidCommandLineErrorOPTS("") self.setpasswordvalidation(options) #if not args: # self.rdmc.ui.printer('Please input the current password.\n') # tempoldpass = getpass.getpass() # if tempoldpass and tempoldpass != '\r': # tempoldpass = tempoldpass # else: # tempoldpass = '""' # self.rdmc.ui.printer('Please input the new password.\n') # tempnewpass = getpass.getpass() # if tempnewpass and tempnewpass != '\r': # tempnewpass = tempnewpass # else: # tempnewpass = '""' # args.extend([tempnewpass, tempoldpass]) #if len(args) < 2: # raise InvalidCommandLineError("Please pass both new password and old password.") args = list() args.append(options.newpassword) args.append(options.currentpassword) count = 0 for arg in args: if arg: if arg.lower() == 'none': args[count] = None elif len(arg) > 2: if ('"' in arg[0] and '"' in arg[-1]) or ('\'' in arg[0] and '\'' in arg[-1]): args[count] = arg[1:-1] elif len(arg) == 2: if (arg[0] == '"' and arg[1] == '"') or (arg[0] == '\'' and arg[1] == '\''): args[count] = None count += 1 if options.encode: _args = [] for arg in args: try: arg = Encryption.decode_credentials(arg) if isinstance(arg, bytes): arg = arg.decode('utf-8') _args.append(arg) except UnableToDecodeError: _args.append(arg) args = _args if self.rdmc.app.typepath.defs.isgen10: bodydict = self.rdmc.app.get_handler(self.rdmc.app.typepath.defs.biospath, service=True, silent=True).dict for item in bodydict['Actions']: if 'ChangePassword' in item: path = bodydict['Actions'][item]['target'] break if options.poweron: body = {"PasswordName": "User", "OldPassword": args[1], "NewPassword": args[0]} else: body = {"PasswordName": "Administrator", "OldPassword": args[1], "NewPassword": args[0]} self.rdmc.app.post_handler(path, body) else: if options.poweron: self.auxcommands['select'].run("HpBios.") self.auxcommands['set'].run("PowerOnPassword=%s OldPowerOnPassword=%s" % (args[0], args[1])) self.auxcommands['commit'].run("") else: self.auxcommands['select'].run("HpBios.") self.auxcommands['set'].run("AdminPassword=%s OldAdminPassword=%s" % (args[0], args[1])) self.auxcommands['commit'].run("") self.rdmc.ui.printer('\nThe session will now be terminated.\n' ' login again with updated credentials in order to continue.\n') self.auxcommands['logout'].run("") if options: if options.reboot: self.auxcommands['reboot'].run(options.reboot) self.cmdbase.logout_routine(self, options) return ReturnCodes.SUCCESS def setpasswordvalidation(self, options): """ Results method validation function :param options: command line options :type options: list. """ self.cmdbase.login_select_validation(self, options) def definearguments(self, customparser): """ Wrapper function for new command main function :param customparser: command line input :type customparser: parser. """ if not customparser: return self.cmdbase.add_login_arguments_group(customparser) customparser.add_argument( '--currentpassword', dest='currentpassword', help="Use this flag to provide current password.", required=True, ) customparser.add_argument( '--newpassword', dest='newpassword', help="Use this flag to provide new password.", required=True, ) customparser.add_argument( '--reboot', dest='reboot', help="Use this flag to perform a reboot command function after "\ "completion of operations. 'REBOOT' is a replaceable parameter "\ "that can have multiple values. For help with parameters and "\ "descriptions regarding the reboot flag, run help reboot.", default=None, ) customparser.add_argument( '--poweron', dest='poweron', action="store_true", help="""Use this flag to set power on password instead""", default=None, )
39.713592
118
0.538687
9c4fbe8a0e49f5ca98c21de9b202c245aa00306d
115
py
Python
apps/news/admin.py
kohhi/exist
c688a228ac9fee56ff29990a6d75b2a09f8457ca
[ "MIT" ]
159
2019-03-15T10:46:19.000Z
2022-03-12T09:19:31.000Z
apps/news/admin.py
kohhi/exist
c688a228ac9fee56ff29990a6d75b2a09f8457ca
[ "MIT" ]
6
2019-03-16T12:51:24.000Z
2020-07-09T02:25:42.000Z
apps/news/admin.py
kohhi/exist
c688a228ac9fee56ff29990a6d75b2a09f8457ca
[ "MIT" ]
36
2019-03-16T10:37:14.000Z
2021-11-14T21:04:18.000Z
from django.contrib import admin # Register your models here. from .models import News admin.site.register(News)
16.428571
32
0.791304
7ca0cfd0c9c38b26dc98545c16b0ff93ce8d6370
582
bzl
Python
third_party/darts_clone/workspace.bzl
jeongukjae/nori-clone
e0f8afb842499be4d55f1fc47292fbecdbca2a86
[ "Apache-2.0" ]
38
2022-01-07T05:19:28.000Z
2022-03-27T13:44:53.000Z
third_party/darts_clone/workspace.bzl
jeongukjae/nori-clone
e0f8afb842499be4d55f1fc47292fbecdbca2a86
[ "Apache-2.0" ]
19
2022-01-11T14:25:03.000Z
2022-02-18T14:24:19.000Z
third_party/darts_clone/workspace.bzl
jeongukjae/nori-clone
e0f8afb842499be4d55f1fc47292fbecdbca2a86
[ "Apache-2.0" ]
3
2022-02-14T13:51:20.000Z
2022-03-28T06:55:38.000Z
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("//third_party:repo.bzl", "clean_dep", "clean_deps") def configure_darts_clone(): http_archive( name = "darts_clone", build_file = clean_dep("//third_party/darts_clone:BUILD.bzl"), sha256 = "c97f55d05c98da6fcaf7f9ecc6a6dc6bc5b18b8564465f77abff8879d446491c", strip_prefix = "darts-clone-e40ce4627526985a7767444b6ed6893ab6ff8983", # darts_clone 0.32h url = "https://github.com/s-yata/darts-clone/archive/e40ce4627526985a7767444b6ed6893ab6ff8983.zip", )
44.769231
107
0.726804
6a566073eda12f49a456b7099709ff281750e0a6
846
py
Python
setup.py
jakejack13/gachapy
78c0ca5cd14a618a433009f9220049bcfc507516
[ "MIT" ]
5
2021-03-09T04:04:33.000Z
2021-05-27T03:28:15.000Z
setup.py
jakejack13/gachapy
78c0ca5cd14a618a433009f9220049bcfc507516
[ "MIT" ]
null
null
null
setup.py
jakejack13/gachapy
78c0ca5cd14a618a433009f9220049bcfc507516
[ "MIT" ]
3
2021-04-02T02:31:18.000Z
2021-04-20T03:03:04.000Z
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="gachapy", version="1.0.0", author="Jacob Kerr", author_email="jck268@cornell.edu", description="A gacha engine built in Python for developing gacha games", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jakejack13/gachapy", project_urls={ "Bug Tracker": "https://github.com/jakejack13/gachapy/issues", "Documentation": "https://gachapy.readthedocs.io/", }, classifiers=[ "Programming Language :: Python :: 3.10", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), python_requires=">=3.10", )
31.333333
76
0.658392
176519885e88d46b1a66e155e5a33a661059455b
7,648
py
Python
wot/graphics/plot_fates.py
Jabbath/wot
90b40f03ed1c5feb4018096b9e2c1294cf66f535
[ "BSD-3-Clause" ]
null
null
null
wot/graphics/plot_fates.py
Jabbath/wot
90b40f03ed1c5feb4018096b9e2c1294cf66f535
[ "BSD-3-Clause" ]
null
null
null
wot/graphics/plot_fates.py
Jabbath/wot
90b40f03ed1c5feb4018096b9e2c1294cf66f535
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import pandas as pd from matplotlib import patches from matplotlib import pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import math import wot.graphics class Fate_Plotter(): def __init__(self, fate_ds): """ Parameters ---------- fate_ds: pandas.DataFrame A df of cell fates as generated by wot.tmap.TransportMapModel.fates. """ self.fate_ds = fate_ds def plot_triangle(self, name1, name2, day, filename=None): """ Plots cells in barycentric coordinates (2D) according to their fates. Cells are placed by using the fates to generate a convex combination of the triangle's vertices. Parameters ---------- name1: str The cell population whose fate will the first of the triangle's vertices. name2: str The cell population whose fate will the second of the triangle's vertices. day: float The timepoint from which we want to plot cells. filename: str, optional The name of the file to save the plot as. None to skip saving. """ figure = plt.figure(figsize=(8, 8)) #Get the fates for our two cell populations fate1 = self.fate_ds[:,name1][self.fate_ds.obs['day']==day].X.flatten() fate2 = self.fate_ds[:,name2][self.fate_ds.obs['day']==day].X.flatten() #Take a convex combination of the triangle's vertices using the fates Nrows = len(fate1) x = np.zeros(Nrows) y = np.zeros(Nrows) P = np.array([[1,0],[np.cos(2*math.pi/3),math.sin(2*math.pi/3)],[math.cos(4*math.pi/3),math.sin(4*math.pi/3)]]) for i in range(0,Nrows): ff = np.array([fate1[i],fate2[i],1-(fate1[i]+fate2[i])]) x[i] = (ff @ P)[0] y[i] = (ff @ P)[1] #Plot the triangle t1 = plt.Polygon(P, color=(0,0,0,0.1)) plt.gca().add_patch(t1) #Plot the vertices vx = P[:,0] vy = P[:,1] plt.scatter(vx,vy) #Plot cells and labels plt.scatter(x, y, c='tab:blue') plt.text(P[0,0]+.1, P[0,1], name1) plt.text(P[1,0]-.1, P[1,1]+.1, name2) plt.text(P[2,0]-.1, P[2,1]-.2, 'Other') plt.axis('equal') plt.axis('off') plt.title('{} vs. {} on day {}'.format(name1, name2, day)) #Optionally save the figure if filename is not None: plt.savefig(filename) def plot_tetrahedron(self, name1, name2, name3, day, azimuth=40, elevation=20, filename=None): """ Plots cells in barycentric coordinates (3D) according to their fates. Cells are placed by using the fates to generate a convex combination of a tetrahedron's vertices. Works well with the "%matplotlib widget" cell magic if used in Jupyter notebooks. Parameters ---------- name1: str The cell population whose fate will the first of the tetrahedron's vertices. name2: str The cell population whose fate will the second of the tetrahedron's vertices. name3: str The cell population whose fate will the third of the tetrahedron's vertices. day: float The timepoint at which we want to plot cells. azimuth: float, optional The angle in degrees by which to rotate the xy plane. The face made by name1, name2, and name3 is normal to the xy plane. elevation: float, optional The angle in degrees by which to rotate the z plane. filename: str, optional The name of the file to save the plot as. None to skip saving. """ # Map the time to the closest time in the dataset days = pd.unique(self.fate_ds.obs.day) day = days[np.argmin(abs(days - day))] fate1 = self.fate_ds[:,name1][self.fate_ds.obs['day']==day].X.flatten() fate2 = self.fate_ds[:,name2][self.fate_ds.obs['day']==day].X.flatten() fate3 = self.fate_ds[:,name3][self.fate_ds.obs['day']==day].X.flatten() Nrows = len(fate1) x = np.zeros(Nrows) y = np.zeros(Nrows) z = np.zeros(Nrows) # Define coordinates for the vertices of the tetrahedron T = np.array([[ math.sqrt(8/9), 0, -1/3], [-math.sqrt(2/9), math.sqrt(2/3), -1/3], [ -math.sqrt(2/9), -math.sqrt(2/3), -1/3], [ 0, 0, 1]]) # Find the coordinates of each cell as a linear combination of the weight # of the cell towards each vertex fate. for i in range(0,Nrows): ff = np.array([fate1[i],fate2[i], fate3[i], 1-(fate1[i]+fate2[i]+fate3[i])]) x[i] = (ff @ T)[0] y[i] = (ff @ T)[1] z[i] = (ff @ T)[2] # Close the previous plot plt.close() # Create the plot and set axes settings fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') # Plot the cells ax.scatter(xs=x, ys=y, zs=z, zdir='z', s=4, c='tab:blue', depthshade=True) # Plot the vertices ax.scatter(xs=T[:,0], ys=T[:,1], zs=T[:,2], zdir='z', s=20, c='orange', depthshade=True) #Plot the labels, offsetting them from the vertices by a small factor fate_names = [name1, name2, name3, 'Other'] for x,y,z,fate in zip(T[:,0] + 0.1*np.sign(T[:,0]), T[:,1] + 0.05*np.sign(T[:,1]), T[:,2] + 0.05*np.sign(T[:,2]), fate_names): ax.text(x,y,z,fate,zdir=None) # Plot the faces of the tetrahedron ax.add_collection3d(Poly3DCollection(T[(0,1,2),:], color=(0.6,0.6,0.6), alpha=.05)) ax.add_collection3d(Poly3DCollection(T[(0,1,3),:], color=(0.6,0.6,0.6), alpha=.05)) ax.add_collection3d(Poly3DCollection(T[(0,2,3),:], color=(0.6,0.6,0.6), alpha=.05)) ax.add_collection3d(Poly3DCollection(T[(1,2,3),:], color=(0.6,0.6,0.6), alpha=.05)) # Set the angle of the plot ax.view_init(elev=elevation, azim=azimuth) # Turn off axes and trim extra space plt.axis('off') plt.title('{} vs. {} vs. {} on day {}'.format(name1, name2, name3, day)) plt.tight_layout() #Optionally save the figure if filename is not None: plt.savefig(filename) def plot_log_odds(self, name1, name2, filename=None): """ Displays log-odds for a pair of fates. This is the log of the ratio of fate probabilities. Parameters ---------- name1: str The cell population whose fate will the numerator. name2: str The cell population whose fate will denominator. filename: str, optional The name of the file to save the plot as. None to skip saving. """ figure = plt.figure(figsize=(8, 8)) #Extract the fate probabilities for the two cell populations fate1 = self.fate_ds[:, name1].X fate2 = self.fate_ds[:, name2].X #Calculate the log odds p = np.log(1e-9 + np.divide(fate1, fate2, out=np.zeros_like(fate1), where=fate2 != 0)) #Plot log-odds by day plt.scatter(self.fate_ds.obs['day'], p, s=4, marker=',', c='tab:blue') plt.xlabel('Day') plt.ylabel('Log Odds') plt.title('{} vs. {}'.format(name1, name2)) #Optionally save the figure if filename is not None: plt.savefig(filename)
38.049751
119
0.565507
c6d40e861d662a648636cfea43df0215df59cb53
4,932
py
Python
saleor/graphql/app/tests/mutations/test_app_install.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
15,337
2015-01-12T02:11:52.000Z
2021-10-05T19:19:29.000Z
saleor/graphql/app/tests/mutations/test_app_install.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
7,486
2015-02-11T10:52:13.000Z
2021-10-06T09:37:15.000Z
saleor/graphql/app/tests/mutations/test_app_install.py
aminziadna/saleor
2e78fb5bcf8b83a6278af02551a104cfa555a1fb
[ "CC-BY-4.0" ]
5,864
2015-01-16T14:52:54.000Z
2021-10-05T23:01:15.000Z
from unittest.mock import Mock import graphene from .....app.models import AppInstallation from .....core import JobStatus from ....core.enums import AppErrorCode, PermissionEnum from ....tests.utils import get_graphql_content INSTALL_APP_MUTATION = """ mutation AppInstall( $app_name: String, $manifest_url: String, $permissions: [PermissionEnum]){ appInstall( input:{appName: $app_name, manifestUrl: $manifest_url, permissions:$permissions}){ appInstallation{ id status appName manifestUrl } errors{ field message code permissions } } } """ def test_install_app_mutation( permission_manage_apps, permission_manage_orders, staff_api_client, staff_user, monkeypatch, ): mocked_task = Mock() monkeypatch.setattr( "saleor.graphql.app.mutations.install_app_task.delay", mocked_task ) query = INSTALL_APP_MUTATION staff_user.user_permissions.set([permission_manage_apps, permission_manage_orders]) variables = { "app_name": "New external integration", "manifest_url": "http://localhost:3000/manifest", "permissions": [PermissionEnum.MANAGE_ORDERS.name], } response = staff_api_client.post_graphql( query, variables=variables, ) content = get_graphql_content(response) app_installation = AppInstallation.objects.get() app_installation_data = content["data"]["appInstall"]["appInstallation"] _, app_id = graphene.Node.from_global_id(app_installation_data["id"]) assert int(app_id) == app_installation.id assert app_installation_data["status"] == JobStatus.PENDING.upper() assert app_installation_data["manifestUrl"] == app_installation.manifest_url mocked_task.assert_called_with(app_installation.pk, True) def test_install_app_mutation_by_app( permission_manage_apps, permission_manage_orders, app_api_client, monkeypatch ): mocked_task = Mock() monkeypatch.setattr( "saleor.graphql.app.mutations.install_app_task.delay", mocked_task ) query = INSTALL_APP_MUTATION app_api_client.app.permissions.set( [permission_manage_apps, permission_manage_orders] ) variables = { "app_name": "New external integration", "manifest_url": "http://localhost:3000/manifest", "permissions": [PermissionEnum.MANAGE_ORDERS.name], } response = app_api_client.post_graphql( query, variables=variables, ) content = get_graphql_content(response) app_installation = AppInstallation.objects.get() app_installation_data = content["data"]["appInstall"]["appInstallation"] _, app_id = graphene.Node.from_global_id(app_installation_data["id"]) assert int(app_id) == app_installation.id assert app_installation_data["status"] == JobStatus.PENDING.upper() assert app_installation_data["manifestUrl"] == app_installation.manifest_url mocked_task.assert_called_with(app_installation.pk, True) def test_app_install_mutation_out_of_scope_permissions( permission_manage_apps, staff_api_client, staff_user ): query = INSTALL_APP_MUTATION staff_user.user_permissions.set([permission_manage_apps]) variables = { "app_name": "New external integration", "manifest_url": "http://localhost:3000/manifest", "permissions": [PermissionEnum.MANAGE_ORDERS.name], } response = staff_api_client.post_graphql( query, variables=variables, ) content = get_graphql_content(response) data = content["data"]["appInstall"] errors = data["errors"] assert not data["appInstallation"] assert len(errors) == 1 error = errors[0] assert error["field"] == "permissions" assert error["code"] == AppErrorCode.OUT_OF_SCOPE_PERMISSION.name assert error["permissions"] == [PermissionEnum.MANAGE_ORDERS.name] def test_install_app_mutation_by_app_out_of_scope_permissions( permission_manage_apps, app_api_client ): query = INSTALL_APP_MUTATION app_api_client.app.permissions.set([permission_manage_apps]) variables = { "app_name": "New external integration", "manifest_url": "http://localhost:3000/manifest", "permissions": [PermissionEnum.MANAGE_ORDERS.name], } response = app_api_client.post_graphql( query, variables=variables, ) content = get_graphql_content(response) data = content["data"]["appInstall"] errors = data["errors"] assert not data["appInstallation"] assert len(errors) == 1 error = errors[0] assert error["field"] == "permissions" assert error["code"] == AppErrorCode.OUT_OF_SCOPE_PERMISSION.name assert error["permissions"] == [PermissionEnum.MANAGE_ORDERS.name]
33.780822
87
0.687956
9f466a25cd20bded9b0dcebd8afcf228cd48edac
718
py
Python
onadata/libs/permissions.py
amks1/kobocat
0f36c75cc55345716558e8bece2ef48567896997
[ "BSD-2-Clause" ]
87
2015-02-10T23:36:28.000Z
2022-01-31T00:51:10.000Z
onadata/libs/permissions.py
amks1/kobocat
0f36c75cc55345716558e8bece2ef48567896997
[ "BSD-2-Clause" ]
443
2015-04-28T18:50:25.000Z
2022-03-31T03:29:43.000Z
onadata/libs/permissions.py
amks1/kobocat
0f36c75cc55345716558e8bece2ef48567896997
[ "BSD-2-Clause" ]
122
2015-01-13T16:27:44.000Z
2022-01-24T09:35:56.000Z
# coding: utf-8 from guardian.shortcuts import get_users_with_perms def get_object_users_with_permissions(obj, exclude=None, serializable=False): """Returns users, roles and permissions for a object. When called with with `serializable=True`, return usernames (strings) instead of User objects, which cannot be serialized by REST Framework. """ result = [] if obj: users_with_perms = get_users_with_perms( obj, attach_perms=True, with_group_users=False).items() result = [{ 'user': user if not serializable else user.username, 'permissions': permissions} for user, permissions in users_with_perms ] return result
31.217391
77
0.679666
7c599f4e2533a2a68eaa819487a7bf1416e78801
30,376
py
Python
synphot/models.py
spacetelescope/pysynphot_DONOTUSE
2a382d7bdf29cc4a1e6b69e59d5c1d0f82dabffc
[ "BSD-3-Clause" ]
20
2016-09-08T22:01:21.000Z
2022-01-18T03:56:53.000Z
synphot/models.py
spacetelescope/pysynphot_DONOTUSE
2a382d7bdf29cc4a1e6b69e59d5c1d0f82dabffc
[ "BSD-3-Clause" ]
212
2016-04-13T21:30:38.000Z
2021-12-30T21:31:25.000Z
synphot/models.py
spacetelescope/pysynphot_DONOTUSE
2a382d7bdf29cc4a1e6b69e59d5c1d0f82dabffc
[ "BSD-3-Clause" ]
14
2016-06-12T17:49:57.000Z
2022-01-18T03:57:02.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Spectrum models not in `astropy.modeling`.""" # STDLIB import math import warnings from copy import deepcopy from functools import partial # THIRD-PARTY import numpy as np # ASTROPY from astropy import constants as const from astropy import units as u from astropy.modeling import Fittable1DModel, Model, Parameter from astropy.modeling import models as _models from astropy.modeling.models import Tabular1D from astropy.stats.funcs import gaussian_fwhm_to_sigma, gaussian_sigma_to_fwhm from astropy.utils import metadata from astropy.utils.exceptions import AstropyUserWarning # LOCAL from . import units from .compat import ASTROPY_LT_4_0, ASTROPY_LT_4_3, ASTROPY_LT_5_0 from .exceptions import SynphotError from .utils import merge_wavelengths if ASTROPY_LT_4_0: from astropy.modeling.core import _CompoundModel as CompoundModel from astropy.modeling.models import MexicanHat1D as _RickerWavelet1D else: from astropy.modeling.core import CompoundModel from astropy.modeling.models import RickerWavelet1D as _RickerWavelet1D __all__ = ['BlackBody1D', 'BlackBodyNorm1D', 'Box1D', 'ConstFlux1D', 'Empirical1D', 'Gaussian1D', 'GaussianAbsorption1D', 'GaussianFlux1D', 'Lorentz1D', 'MexicanHat1D', 'RickerWavelet1D', 'PowerLawFlux1D', 'Trapezoid1D', 'get_waveset', 'get_metadata'] class BlackBody1D(Fittable1DModel): """Create a :ref:`blackbody spectrum <synphot-planck-law>` model with given temperature. Parameters ---------- temperature : float Blackbody temperature in Kelvin. """ temperature = Parameter(default=5000) def __init__(self, *args, **kwargs): super(BlackBody1D, self).__init__(*args, **kwargs) self.meta['expr'] = 'bb({0})'.format(self.temperature.value) @property def lambda_max(self): """Peak wavelength in Angstrom when the curve is expressed as power density.""" return ((const.b_wien.value / self.temperature) * u.m).to_value(u.AA) def bounding_box(self, factor=10.0): """Tuple defining the default ``bounding_box`` limits, ``(x_low, x_high)``. .. math:: x_{\\mathrm{low}} = 0 x_{\\mathrm{high}} = \\log(\\lambda_{\\mathrm{max}} \\;\ (1 + \\mathrm{factor})) Parameters ---------- factor : float Used to calculate ``x_high``. """ w0 = self.lambda_max return (w0 * 0, np.log10(w0 + factor * w0)) def sampleset(self, factor_bbox=10.0, num=1000): """Return ``x`` array that samples the feature. Parameters ---------- factor_bbox : float Factor for ``bounding_box`` calculations. num : int Number of points to generate. """ w1, w2 = self.bounding_box(factor=factor_bbox) if self._n_models == 1: w = np.logspace(w1, w2, num) else: w = list(map(partial(np.logspace, num=num), w1, w2)) return np.asarray(w) @staticmethod def evaluate(x, temperature): """Evaluate the model. Parameters ---------- x : number or ndarray Wavelengths in Angstrom. temperature : number Temperature in Kelvin. Returns ------- y : number or ndarray Blackbody radiation in PHOTLAM per steradian. """ from synphot.blackbody import blackbody_nu # Silence Numpy old_np_err_cfg = np.seterr(all='ignore') wave = np.ascontiguousarray(x) * u.AA bbnu_flux = blackbody_nu(wave, temperature) bbflux = (bbnu_flux * u.sr).to( units.PHOTLAM, u.spectral_density(wave)) / u.sr # PHOTLAM/sr # Restore Numpy settings np.seterr(**old_np_err_cfg) return bbflux.value def integrate(self, *args): with u.add_enabled_equivalencies(u.temperature()): t = u.Quantity(self.temperature, u.K) return (const.sigma_sb * t ** 4 / math.pi) # per steradian class BlackBodyNorm1D(BlackBody1D): """Create a normalized :ref:`blackbody spectrum <synphot-planck-law>` with given temperature. It is normalized by multiplying `BlackBody1D` result with a solid angle, :math:`\\Omega`, as defined below, where :math:`d` is 1 kpc: .. math:: \\Omega = \\frac{\\pi R_{\\mathrm{Sun}}^{2}}{d^{2}} Parameters ---------- temperature : float Blackbody temperature in Kelvin. """ def __init__(self, *args, **kwargs): super(BlackBodyNorm1D, self).__init__(*args, **kwargs) self._omega = np.pi * (const.R_sun / const.kpc).value ** 2 # steradian def evaluate(self, x, temperature): """Evaluate the model. Parameters ---------- x : number or ndarray Wavelengths in Angstrom. temperature : number Temperature in Kelvin. Returns ------- y : number or ndarray Blackbody radiation in PHOTLAM. """ bbflux = super(BlackBodyNorm1D, self).evaluate(x, temperature) return bbflux * self._omega def integrate(self, *args): return super().integrate(*args) * self._omega class Box1D(_models.Box1D): """Same as `astropy.modeling.functional_models.Box1D`, except with ``sampleset`` defined. """ @staticmethod def _calc_sampleset(w1, w2, step, minimal): """Calculate sampleset for each model.""" if minimal: arr = [w1 - step, w1, w2, w2 + step] else: arr = np.arange(w1 - step, w2 + step + step, step) return arr def sampleset(self, step=0.01, minimal=False): """Return ``x`` array that samples the feature. Parameters ---------- step : float Distance of first and last points w.r.t. bounding box. minimal : bool Only return the minimal points needed to define the box; i.e., box edges and a point outside on each side. """ if ASTROPY_LT_5_0: w1, w2 = self.bounding_box else: w1, w2 = tuple(self.bounding_box.bounding_box()) if self._n_models == 1: w = self._calc_sampleset(w1, w2, step, minimal) else: w = list(map(partial( self._calc_sampleset, step=step, minimal=minimal), w1, w2)) return np.asarray(w) def integrate(self, *args): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): w = u.Quantity(self.width, u.AA) return self.amplitude * w class ConstFlux1D(_models.Const1D): """One dimensional constant flux model. Flux that is constant in a given unit might not be constant in another unit. During evaluation, flux is always converted to PHOTLAM. For multiple ``n_models``, this model only accepts amplitudes of the same flux unit; e.g., ``[1, 2]`` or ``Quantity([1, 2], 'photlam')``. Parameters ---------- amplitude : number or `~astropy.units.quantity.Quantity` Value and unit of the constant function. If not Quantity, assume the unit of PHOTLAM. """ def __init__(self, amplitude, **kwargs): if not isinstance(amplitude, u.Quantity): amplitude = amplitude * units.PHOTLAM if amplitude.unit == u.STmag: a = units.convert_flux(1, amplitude, units.FLAM) elif amplitude.unit == u.ABmag: a = units.convert_flux(1, amplitude, units.FNU) elif (amplitude.unit.physical_type in ('spectral flux density', 'spectral flux density wav', 'photon flux density', 'photon flux density wav')): a = amplitude else: raise NotImplementedError( '{0} not supported.'.format(amplitude.unit)) self._flux_unit = a.unit super(ConstFlux1D, self).__init__(amplitude=a.value, **kwargs) def evaluate(self, x, *args): """One dimensional constant flux model function. Parameters ---------- x : number or ndarray Wavelengths in Angstrom. Returns ------- y : number or ndarray Flux in PHOTLAM. """ a = (self.amplitude * np.ones_like(x)) * self._flux_unit y = units.convert_flux(x, a, units.PHOTLAM) return y.value def integrate(self, x): # TODO: Remove unit hardcoding when we use model with units natively. # TODO: We do not handle wav_unit as wave number nor energy for now. if ((ASTROPY_LT_4_3 and 'wav' in self._flux_unit.physical_type) or (not ASTROPY_LT_4_3 and any(['wav' in t for t in self._flux_unit.physical_type]))): wav_unit = u.AA else: wav_unit = u.Hz with u.add_enabled_equivalencies(u.spectral()): x = u.Quantity(x, wav_unit) amp = u.Quantity(self.amplitude, self._flux_unit) return (max(x) - min(x)) * amp class Empirical1D(Tabular1D): """Empirical (sampled) spectrum or bandpass model. .. note:: This model requires `SciPy <https://www.scipy.org>`_ 0.14 or later to be installed. Parameters ---------- keep_neg : bool Convert negative ``lookup_table`` values to zeroes? This is to be consistent with ASTROLIB PYSYNPHOT. kwargs : dict Keywords for `~astropy.modeling.tabular.Tabular1D` model creation or :func:`~scipy.interpolate.interpn`. When ``fill_value=np.nan`` is given, extrapolation is done based on nearest end points on each end; This is the default behavior. """ def __init__(self, **kwargs): # Manually insert user metadata here to accomodate any warning # from self._process_neg_flux() meta = kwargs.pop('meta', {}) self.meta = meta if 'warnings' not in self.meta: self.meta['warnings'] = {} x = kwargs['points'] y = kwargs['lookup_table'] # Points can only be ascending for interpn() if x[-1] < x[0]: x = x[::-1] y = y[::-1] kwargs['points'] = x # Handle negative flux keep_neg = kwargs.pop('keep_neg', False) self._keep_neg = keep_neg y = self._process_neg_flux(x, y) kwargs['lookup_table'] = y super(Empirical1D, self).__init__(**kwargs) # Set non-default interpolation default values. # For tapered model, just fill with zero; # Otherwise, extrapolate like ASTROLIB PYSYNPHOT. self.bounds_error = kwargs.get('bounds_error', False) if self.is_tapered(): self.fill_value = kwargs.get('fill_value', 0) else: self.fill_value = kwargs.get('fill_value', np.nan) def _process_neg_flux(self, x, y): """Remove negative flux.""" if self._keep_neg: # Nothing to do return y old_y = None if np.isscalar(y): # pragma: no cover if y < 0: n_neg = 1 old_x = x old_y = y y = 0 else: x = np.asarray(x) # In case input is just pure list y = np.asarray(y) i = np.where(y < 0) n_neg = len(i[0]) if n_neg > 0: old_x = x[i] old_y = y[i] y[i] = 0 if old_y is not None: warn_str = ('{0} bin(s) contained negative flux or throughput' '; it/they will be set to zero.'.format(n_neg)) warn_str += '\n points: {0}\n lookup_table: {1}'.format( old_x, old_y) # Extra info self.meta['warnings'].update({'NegativeFlux': warn_str}) warnings.warn(warn_str, AstropyUserWarning) return y def is_tapered(self): return np.array_equal( self.lookup_table[::self.lookup_table.size - 1], [0, 0]) def sampleset(self): """Return array that samples the feature.""" return np.squeeze(self.points) def evaluate(self, inputs): """Evaluate the model. Parameters ---------- inputs : number or ndarray Wavelengths in same unit as ``points``. Returns ------- y : number or ndarray Flux or throughput in same unit as ``lookup_table``. """ y = super(Empirical1D, self).evaluate(inputs) # Assume NaN at both ends need to be extrapolated based on # nearest end point. if self.fill_value is np.nan: # Cannot use sampleset() due to ExtinctionModel1D. x = np.squeeze(self.points) # np.squeeze may throw unit away. if (isinstance(self.points, tuple) and isinstance(self.points[0], u.Quantity) and not isinstance(x, u.Quantity)): x = x * self.points[0].unit if np.isscalar(y): # pragma: no cover if inputs < x[0]: y = self.lookup_table[0] elif inputs > x[-1]: y = self.lookup_table[-1] else: y[inputs < x[0]] = self.lookup_table[0] y[inputs > x[-1]] = self.lookup_table[-1] return self._process_neg_flux(inputs, y) class BaseGaussian1D(_models.Gaussian1D): """Same as `astropy.modeling.functional_models.BaseGaussian1D`, except with ``sampleset`` defined. """ _sqrt_2_pi = math.sqrt(2 * math.pi) def sampleset(self, factor_step=0.1, **kwargs): """Return ``x`` array that samples the feature. Parameters ---------- factor_step : float Factor for sample step calculation. The step is calculated using ``factor_step * self.stddev``. kwargs : dict Keyword(s) for ``bounding_box`` calculation. Default ``factor`` is set to 5 to be compatible with ASTROLIB PYSYNPHOT. """ if 'factor' not in kwargs: kwargs['factor'] = 5.0 w1, w2 = self.bounding_box(**kwargs) dw = factor_step * self.stddev if self._n_models == 1: w = np.arange(w1, w2, dw) else: w = list(map(np.arange, w1, w2, dw)) return np.asarray(w) class Gaussian1D(BaseGaussian1D): """Same as `astropy.modeling.functional_models.Gaussian1D`, except with ``sampleset`` defined. """ def integrate(self, *args): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): stddev = u.Quantity(self.stddev, u.AA) return self.amplitude * stddev * self._sqrt_2_pi # TODO: Deprecate this? # This is not really supported anymore but kept for backward compatibility. class GaussianAbsorption1D(BaseGaussian1D): """Same as ``astropy.modeling.functional_models.GaussianAbsorption1D``, except with ``sampleset`` defined. """ @staticmethod def evaluate(x, amplitude, mean, stddev): """ GaussianAbsorption1D model function. """ return 1.0 - Gaussian1D.evaluate(x, amplitude, mean, stddev) @staticmethod def fit_deriv(x, amplitude, mean, stddev): """ GaussianAbsorption1D model function derivatives. """ import operator return list(map( operator.neg, Gaussian1D.fit_deriv(x, amplitude, mean, stddev))) class GaussianFlux1D(Gaussian1D): """Same as `Gaussian1D` but accepts extra keywords below. Parameters ---------- amplitude : float Amplitude of the Gaussian in PHOTLAM. Also see ``total_flux``. mean : float Mean of the Gaussian in Angstrom. stddev : float Standard deviation of the Gaussian in Angstrom. Also see ``fwhm``. fwhm : float Full width at half maximum of the Gaussian in Angstrom. If given, this overrides ``stddev``. total_flux : float Total flux under the Gaussian in ``erg/s/cm^2``. If given, this overrides ``amplitude``. """ def __init__(self, *args, **kwargs): fwhm = kwargs.pop('fwhm', None) total_flux = kwargs.pop('total_flux', None) super(GaussianFlux1D, self).__init__(*args, **kwargs) if fwhm is None: fwhm = self.stddev * gaussian_sigma_to_fwhm else: self.stddev = fwhm * gaussian_fwhm_to_sigma gaussian_amp_to_totflux = self._sqrt_2_pi * self.stddev if total_flux is None: u_str = 'PHOTLAM' total_flux = self.amplitude * gaussian_amp_to_totflux else: u_str = 'FLAM' # total_flux is passed in unaltered, any conversion error would # happen here. tf_unit = u.erg / (u.cm * u.cm * u.s) if isinstance(total_flux, u.Quantity): total_flux = total_flux.to(tf_unit) else: total_flux = total_flux * tf_unit self.amplitude = (total_flux / (gaussian_amp_to_totflux * u.AA)).to_value(units.PHOTLAM, u.spectral_density(self.mean.value * u.AA)) # noqa total_flux = total_flux.value self.meta['expr'] = 'em({0:g}, {1:g}, {2:g}, {3})'.format( self.mean.value, fwhm, total_flux, u_str) def integrate(self, *args): # TODO: Remove unit hardcoding when we use model with units natively. return super(GaussianFlux1D, self).integrate(*args) * units.PHOTLAM class Lorentz1D(_models.Lorentz1D): """Same as `astropy.modeling.functional_models.Lorentz1D`, except with ``sampleset`` defined. """ def sampleset(self, factor_step=0.05, **kwargs): """Return ``x`` array that samples the feature. Parameters ---------- factor_step : float Factor for sample step calculation. The step is calculated using ``factor_step * self.fwhm``. kwargs : dict Keyword(s) for ``bounding_box`` calculation. """ w1, w2 = self.bounding_box(**kwargs) dw = factor_step * self.fwhm if self._n_models == 1: w = np.arange(w1, w2, dw) else: w = list(map(np.arange, w1, w2, dw)) return np.asarray(w) def integrate(self, x): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): x = u.Quantity(x, u.AA) x_0 = u.Quantity(self.x_0, u.AA) gamma = u.Quantity(self.fwhm, u.AA) * 0.5 a1 = np.arctan((min(x) - x_0) / gamma) a2 = np.arctan((max(x) - x_0) / gamma) da = (a2 - a1).to(u.dimensionless_unscaled, u.dimensionless_angles()) return self.amplitude * gamma * da class RickerWavelet1D(_RickerWavelet1D): """Same as `astropy.modeling.functional_models.RickerWavelet1D`, except with ``sampleset`` defined. """ def sampleset(self, factor_step=0.1, **kwargs): """Return ``x`` array that samples the feature. Parameters ---------- factor_step : float Factor for sample step calculation. The step is calculated using ``factor_step * self.sigma``. kwargs : dict Keyword(s) for ``bounding_box`` calculation. """ w1, w2 = self.bounding_box(**kwargs) dw = factor_step * self.sigma if self._n_models == 1: w = np.arange(w1, w2, dw) else: w = list(map(np.arange, w1, w2, dw)) return np.asarray(w) def integrate(self, x): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): x = u.Quantity(x, u.AA) x_0 = u.Quantity(self.x_0, u.AA) sig = u.Quantity(self.sigma, u.AA) # Roots, where y=0 root_left = x_0 - sig root_right = x_0 + sig x_min = min(x) x_max = max(x) if x_min >= root_left or x_max <= root_right: raise NotImplementedError( 'Partial analytic integration not supported') sig2 = sig * sig def _int_subregion(xx1, xx2): dx_min = xx1 - x_0 dx_max = xx2 - x_0 a1 = dx_min * np.exp(-0.5 * dx_min * dx_min / sig2) a2 = dx_max * np.exp(-0.5 * dx_max * dx_max / sig2) return abs(a2 - a1) # Unsigned area return self.amplitude * (_int_subregion(x_min, root_left) + _int_subregion(root_left, root_right) + _int_subregion(root_right, x_max)) # TODO: Emit proper deprecation warning. # https://github.com/spacetelescope/synphot_refactor/issues/249 class MexicanHat1D(RickerWavelet1D): """This is the deprecated name for `RickerWavelet1D`.""" class PowerLawFlux1D(_models.PowerLaw1D): """One dimensional power law model with proper flux handling. For multiple ``n_models``, this model only accepts parameters of the same unit; e.g., ``amplitude=[1, 2]`` or ``amplitude=Quantity([1, 2], 'photlam')``. Also see `~astropy.modeling.powerlaws.PowerLaw1D`. Parameters ---------- amplitude : number or `~astropy.units.quantity.Quantity` Model amplitude at the reference point. If not Quantity, assume the unit of PHOTLAM. x_0 : number or `~astropy.units.quantity.Quantity` Reference point. If not Quantity, assume the unit of Angstrom. alpha : float Power law index. """ def __init__(self, amplitude, x_0, alpha, **kwargs): if not isinstance(amplitude, u.Quantity): amplitude = amplitude * units.PHOTLAM if (amplitude.unit.physical_type in ('spectral flux density', 'spectral flux density wav', 'photon flux density', 'photon flux density wav')): self._flux_unit = amplitude.unit else: raise NotImplementedError( '{0} not supported.'.format(amplitude.unit)) if isinstance(x_0, u.Quantity): x_0 = x_0.to_value(u.AA, u.spectral()) super(PowerLawFlux1D, self).__init__( amplitude=amplitude.value, x_0=x_0, alpha=alpha, **kwargs) def evaluate(self, x, *args): """Return flux in PHOTLAM. Assume input wavelength is in Angstrom.""" xx = x / self.x_0 y = (self.amplitude * xx ** (-self.alpha)) * self._flux_unit flux = units.convert_flux(x, y, units.PHOTLAM) return flux.value def integrate(self, x): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): x = u.Quantity(x, u.AA) x_0 = u.Quantity(self.x_0, u.AA) amp = u.Quantity(self.amplitude, self._flux_unit) fac = 1 - self.alpha denom = x_0 ** -self.alpha * fac return amp * (max(x) ** fac - min(x) ** fac) / denom class Trapezoid1D(_models.Trapezoid1D): """Same as `astropy.modeling.functional_models.Trapezoid1D`, except with ``sampleset`` defined. """ def sampleset(self): """Return ``x`` array that samples the feature.""" if ASTROPY_LT_5_0: x1, x4 = self.bounding_box else: x1, x4 = tuple(self.bounding_box.bounding_box()) dw = self.width * 0.5 x2 = self.x_0 - dw x3 = self.x_0 + dw if self._n_models == 1: w = [x1, x2, x3, x4] else: w = list(zip(x1, x2, x3, x4)) return np.asarray(w) def integrate(self, *args): # TODO: Remove unit hardcoding when we use model with units natively. with u.add_enabled_equivalencies(u.spectral()): width = u.Quantity(self.width, u.AA) slope = u.Quantity(self.slope, 1 / u.AA) return self.amplitude * (width + self.amplitude / slope) # Functions below are for sampleset magic. def _get_sampleset(model): """Return sampleset of a model or `None` if undefined.""" w = None if isinstance(model, Model) and hasattr(model, 'sampleset'): w = model.sampleset() return w def _model_tree_evaluate_sampleset(root): # Not a CompoundModel, grab sampleset and be done. if not hasattr(root, 'op'): return _get_sampleset(root) model1 = root.left model2 = root.right # model2 is redshifted, apply the redshift if applicable. if isinstance(model1, _models.RedshiftScaleFactor): val = _model_tree_evaluate_sampleset(model2) if val is None: w = val else: w = model1.inverse(val) # This should not ever happen, so ignore the redshift. elif isinstance(model2, _models.RedshiftScaleFactor): w = _model_tree_evaluate_sampleset(model1) # One of the models is scaled. Non-redshift scaling does # not affect sampleset of the model. elif isinstance(model1, _models.Scale): w = _model_tree_evaluate_sampleset(model2) elif isinstance(model2, _models.Scale): w = _model_tree_evaluate_sampleset(model1) # Combine sampleset from both models. else: w1 = _model_tree_evaluate_sampleset(model1) w2 = _model_tree_evaluate_sampleset(model2) w = merge_wavelengths(w1, w2) return w def _model_tree_evaluate_sampleset_compat(model): """_model_tree_evaluate_sampleset for astropy<4""" def _get_sampleset_compat(model): # Return sampleset of a model or `None` if undefined. # Model could be a real model or evaluated sampleset. if isinstance(model, Model): if hasattr(model, 'sampleset'): w = model.sampleset() else: w = None else: w = model # Already a sampleset return w def _merge_sampleset_compat(model1, model2): # Simple merge of samplesets. w1 = _get_sampleset_compat(model1) w2 = _get_sampleset_compat(model2) return merge_wavelengths(w1, w2) def _shift_wavelengths_compat(model1, model2): # One of the models is either ``RedshiftScaleFactor`` or ``Scale``. # Possible combos:: # RedshiftScaleFactor | Model # Scale | Model # Model | Scale if isinstance(model1, _models.RedshiftScaleFactor): val = _get_sampleset_compat(model2) if val is None: w = val else: w = model1.inverse(val) elif isinstance(model1, _models.Scale): w = _get_sampleset_compat(model2) else: w = _get_sampleset_compat(model1) return w WAVESET_OPERATORS = { '+': _merge_sampleset_compat, '-': _merge_sampleset_compat, '*': _merge_sampleset_compat, '/': _merge_sampleset_compat, '**': _merge_sampleset_compat, '|': _shift_wavelengths_compat, '&': _merge_sampleset_compat} if isinstance(model, CompoundModel): waveset = model._tree.evaluate(WAVESET_OPERATORS, getter=None) else: waveset = _get_sampleset_compat(model) return waveset def get_waveset(model): """Get optimal wavelengths for sampling a given model. Parameters ---------- model : `~astropy.modeling.Model` Model. Returns ------- waveset : array-like or `None` Optimal wavelengths. `None` if undefined. Raises ------ synphot.exceptions.SynphotError Invalid model. """ if not isinstance(model, Model): raise SynphotError('{0} is not a model.'.format(model)) if ASTROPY_LT_4_0: waveset = _model_tree_evaluate_sampleset_compat(model) else: waveset = _model_tree_evaluate_sampleset(model) return waveset # Functions below are for meta magic. def _get_meta(model): """Return metadata of a model.""" w = {} if isinstance(model, Model): w = model.meta return w def _model_tree_evaluate_metadata(root): # Not a CompoundModel, grab metadata and be done. if not hasattr(root, 'op'): return _get_meta(root) m1 = _model_tree_evaluate_metadata(root.left) m2 = _model_tree_evaluate_metadata(root.right) return metadata.merge(m1, m2, metadata_conflicts='silent') def _model_tree_evaluate_metadata_compat(model): """_model_tree_evaluate_sampleset for astropy<4""" from collections import defaultdict def _get_meta_compat(model): # Return metadata of a model. # Model could be a real model or evaluated metadata. if isinstance(model, Model): w = model.meta else: w = model # Already metadata return w def _merge_meta_compat(model1, model2): # Simple merge of samplesets. m1 = _get_meta_compat(model1) m2 = _get_meta_compat(model2) return metadata.merge(m1, m2, metadata_conflicts='silent') if isinstance(model, CompoundModel): meta = model._tree.evaluate( defaultdict(lambda: _merge_meta_compat), getter=None) else: meta = deepcopy(model.meta) return meta def get_metadata(model): """Get metadata for a given model. Parameters ---------- model : `~astropy.modeling.Model` Model. Returns ------- meta : dict Metadata for the model. Raises ------ synphot.exceptions.SynphotError Invalid model. """ if not isinstance(model, Model): raise SynphotError('{0} is not a model.'.format(model)) if ASTROPY_LT_4_0: meta = _model_tree_evaluate_metadata_compat(model) else: # Deep copy to make sure modiyfing returned metadata # does not modify input model metadata, especially # if input model is not a compound model. meta = deepcopy(_model_tree_evaluate_metadata(model)) return meta
30.713852
152
0.595931
57b6cefac16501044d746dd27f7eff7cfe7ef6a1
3,829
py
Python
robustcode/parsers/parser.py
david-maine/robust-code
971b7336813bb856fafab368320be47a16919e4c
[ "Apache-2.0" ]
8
2020-08-16T23:26:37.000Z
2021-11-03T06:52:56.000Z
robustcode/parsers/parser.py
david-maine/robust-code
971b7336813bb856fafab368320be47a16919e4c
[ "Apache-2.0" ]
2
2020-08-16T23:11:46.000Z
2021-03-30T02:12:23.000Z
robustcode/parsers/parser.py
eth-sri/robust-code
971b7336813bb856fafab368320be47a16919e4c
[ "Apache-2.0" ]
2
2021-03-31T04:17:50.000Z
2021-10-21T20:49:27.000Z
#!/usr/bin/env python import argparse import collections import json import os import random import subprocess import sys import requests from robustcode.analysis.graph import AstTree def FindSubBinary(binary): for path in sys.path: abs_binary_path = os.path.join(os.path.abspath(path), binary) if os.path.isfile(abs_binary_path): return abs_binary_path return binary Parser = collections.namedtuple( "Parser", ["language", "file_extension", "path", "prefix"] ) parsers = [ Parser( "typescript", ".ts", FindSubBinary("robustcode/parsers/typescript/parser.js"), [], ), ] parsers_server = [] + [ Parser("typescript", ".ts", "http://localhost:{}/api/v1/parse".format(port), None) for port in range(3000, 3016) ] def print_ast(nodes, idx=0, depth=0): print(" " * depth, "id: {}".format(idx), nodes[idx]) if "children" not in nodes[idx]: return for child_id in nodes[idx]["children"]: print_ast(nodes, child_id, depth + 1) def get_lang_for_filename(filename): for parser in parsers: if filename.endswith(parser.file_extension): return parser.language return None def shuffle(data): random.shuffle(data) return data def get_parser_for_filename(filename, server=False): for parser in parsers if not server else shuffle(parsers_server): if filename.endswith(parser.file_extension): return parser return None def get_parser_by_name(name, server=False): for parser in parsers if not server else shuffle(parsers_server): if name == parser.language: return parser return None """ Avoid spawning new process whenever file is parsed The server needs to be started manually before the first call """ def parse_file_server(filename, data=None, parser_name=None): if parser_name is None: parser = get_parser_for_filename(filename, server=True) else: parser = get_parser_by_name(parser_name, server=True) if parser is None: return None headers = {"Content-type": "application/json"} data = {} if data is None else data data["filename"] = filename r = requests.post(url=parser.path, data=json.dumps(data), headers=headers) if r.text == "SyntaxError": return None return json.loads(r.text) def parse_file(filename, args=None): parser = get_parser_for_filename(filename) if parser is None: return None args = [] if args is None else args proc = subprocess.Popen( parser.prefix + [parser.path, filename] + args, stdout=subprocess.PIPE ) try: outs, errs = proc.communicate(timeout=15) if not outs: return None return json.loads(outs) except subprocess.TimeoutExpired: proc.kill() proc.communicate() return None def main(): parser = argparse.ArgumentParser() parser.add_argument("file", help="File to parse") parser.add_argument("--use_server", default=False, action="store_true") parser.add_argument( "--options", default=[], nargs="*", help="Options passed to the parser" ) parser.add_argument("--pretty", default=False, action="store_true") args = parser.parse_args() if not os.path.isfile(args.file): print("File '" + args.file + "' not found!") exit(1) if not args.use_server: ast_json = parse_file(args.file, ["--{}".format(key) for key in args.options]) else: ast_json = parse_file_server(args.file, {key: True for key in args.options}) if not args.pretty: print(ast_json) else: tree = AstTree.fromJson(ast_json, fields=["target"]) print(tree.dumpFieldsAsString(fields=["target"])) if __name__ == "__main__": main()
25.871622
86
0.653173
19bab1a39fca4116e1e13f27ef5bd12e7243f4f6
1,669
py
Python
twitapp/twitter.py
bmulas1535/twit-app
8d438ed162ee6c0c8b2cccb0fdbc2455a6b7f5ab
[ "MIT" ]
null
null
null
twitapp/twitter.py
bmulas1535/twit-app
8d438ed162ee6c0c8b2cccb0fdbc2455a6b7f5ab
[ "MIT" ]
3
2021-06-08T20:43:12.000Z
2022-01-13T01:54:50.000Z
twitapp/twitter.py
bmulas1535/twit-app
8d438ed162ee6c0c8b2cccb0fdbc2455a6b7f5ab
[ "MIT" ]
null
null
null
"""Retrieve tweets, embedding, save into database""" import basilica import tweepy from decouple import config from twitapp.models import db, Tweets, Tuser TWITTER_AUTH = tweepy.OAuthHandler(config('TWITTER_CONSUMER_KEY'), config('TWITTER_CONSUMER_SECRET')) TWITTER_AUTH.set_access_token(config('TWITTER_ACCESS_TOKEN'), config('TWITTER_ACCESS_TOKEN_SECRET')) TWITTER = tweepy.API(TWITTER_AUTH) BASILICA = basilica.Connection(config('BASILICA_KEY')) def add_or_update_user(username): """Add or update a user and their Tweets, or else raise""" try: twitter_user = TWITTER.get_user(username) db_user = (Tuser.query.get(twitter_user.id) or Tuser(id=twitter_user.id, name=username)) db.session.add(db_user) tweets = twitter_user.timeline(count=200, exclude_replies=True, include_rts=False, tweet_mode='extended', since_id=db_user.newest_tweet_id) if tweets: db_user.newest_tweet_id = tweets[0].id for tweet in tweets: embedding = BASILICA.embed_sentence(tweet.full_text, model='twitter') db_tweet = Tweets(id=tweet.id, content=tweet.full_text[:300], embedding=embedding) db_user.tweets.append(db_tweet) db.session.add(db_tweet) except Exception as e: print('Error processing {}: {}'.format(username, e)) raise e else: db.session.commit()
36.282609
73
0.589575
1a54025f327306a6502bf22bdc5696fd382003b7
1,729
py
Python
functions/adjust_cases_functions.py
biomac-lab/covid19_forecast
6613064f8a6d8023ecbdaddbc2e7525b6ad0796f
[ "Apache-2.0" ]
null
null
null
functions/adjust_cases_functions.py
biomac-lab/covid19_forecast
6613064f8a6d8023ecbdaddbc2e7525b6ad0796f
[ "Apache-2.0" ]
null
null
null
functions/adjust_cases_functions.py
biomac-lab/covid19_forecast
6613064f8a6d8023ecbdaddbc2e7525b6ad0796f
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np # Define functions for model def confirmed_to_onset(confirmed, p_delay, col_name='num_cases', min_onset_date=None): min_onset_date = pd.to_datetime(min_onset_date) # Reverse cases so that we convolve into the past convolved = np.convolve(np.squeeze(confirmed.iloc[::-1].values), p_delay) # Calculate the new date range dr = pd.date_range(end=confirmed.index[-1], periods=len(convolved)) # Flip the values and assign the date range onset = pd.Series(np.flip(convolved), index=dr, name=col_name) if min_onset_date: onset = np.round(onset.loc[min_onset_date:]) else: onset = np.round(onset.iloc[onset.values>=1]) onset.index.name = 'date' return pd.DataFrame(onset) # Smooths cases using a rolling window and gaussian sampling def prepare_cases(daily_cases, col='num_cases', out_col=None, cutoff=0): if not out_col: out_col = 'smoothed_'+str(col) daily_cases[out_col] = daily_cases[col].rolling(7, win_type='gaussian', min_periods=1, center=True).mean(std=2).round() idx_start = np.searchsorted(daily_cases[out_col], cutoff) daily_cases[out_col] = daily_cases[out_col].iloc[idx_start:] return daily_cases # Smooths cases using a rolling window and gaussian sampling def smooth_1d(signal, col='num_cases', out_col=None, cutoff=0): if not out_col: out_col = 'smoothed_'+str(col) signal[out_col] = signal[col].rolling(7, win_type='gaussian', min_periods=1, center=True).mean(std=2) idx_start = np.searchsorted(signal[out_col], cutoff) signal[out_col] = signal[out_col].iloc[idx_start:] return signal
35.285714
86
0.688259
9718090de23d6b4ff645e48b2e25552827e7e4f5
1,773
py
Python
linux_metrics/test_mem_stat.py
bobf/linux-metrics
73e5e68580d4c4018323a2e595a03fff7c8cea35
[ "MIT" ]
48
2015-02-06T11:51:59.000Z
2021-04-14T10:00:52.000Z
linux_metrics/test_mem_stat.py
bobf/linux-metrics
73e5e68580d4c4018323a2e595a03fff7c8cea35
[ "MIT" ]
2
2015-08-25T16:56:17.000Z
2019-01-25T16:10:53.000Z
linux_metrics/test_mem_stat.py
bobf/linux-metrics
73e5e68580d4c4018323a2e595a03fff7c8cea35
[ "MIT" ]
20
2015-05-01T04:04:20.000Z
2021-12-26T07:53:16.000Z
#!/usr/bin/env python # # Copyright (c) 2010-2013 Corey Goldberg (http://goldb.org) # # This file is part of linux-metrics # # License :: OSI Approved :: MIT License: # http://www.opensource.org/licenses/mit-license # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # from . import mem_stat import unittest class TestMemoryStats(unittest.TestCase): def setUp(self): (self.mem_active, self.mem_total, self.mem_cached, self.mem_free, self.swap_total, self.swap_free) = mem_stat.mem_stats() def test_mem_active(self): self.assertTrue(self.mem_active > 0) def test_mem_total(self): self.assertTrue(self.mem_total > 0) def test_mem_cached(self): self.assertTrue(self.mem_cached > 0) def test_mem_free(self): self.assertTrue(self.mem_free > 0) def test_swap_total(self): self.assertTrue(self.swap_total > 0) def test_swap_free(self): self.assertTrue(self.swap_free > 0) if __name__ == '__main__': test_suite = unittest.TestLoader().loadTestsFromTestCase(TestMemoryStats) unittest.TextTestRunner(verbosity=2).run(test_suite)
30.050847
84
0.681331
69c91890572456192e6dc8d3576551a20c36534c
100
py
Python
app/api/app/login_signup.py
kingyoungfan/v-mall-api
86ff05608162f6127d8af59c556ef5586bad8f68
[ "MIT" ]
null
null
null
app/api/app/login_signup.py
kingyoungfan/v-mall-api
86ff05608162f6127d8af59c556ef5586bad8f68
[ "MIT" ]
null
null
null
app/api/app/login_signup.py
kingyoungfan/v-mall-api
86ff05608162f6127d8af59c556ef5586bad8f68
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @author: yangyang # @date 5/4/21 15:30 """ 登录注册接口,只有这个文件下的接口不需要登录验证 """
11.111111
24
0.59
469ea60f51d89c38d596a47a5c98d28812beb465
101
py
Python
db_adapter/base/__init__.py
CUrW-SL/curw_db_adapter
9d9ef24f42080910e0bd251bc7f001b0a4b0ab31
[ "MIT" ]
2
2019-04-26T07:50:33.000Z
2019-09-28T20:15:33.000Z
db_adapter/base/__init__.py
CUrW-SL/curw_db_adapter
9d9ef24f42080910e0bd251bc7f001b0a4b0ab31
[ "MIT" ]
1
2019-04-03T09:30:38.000Z
2019-04-20T18:11:59.000Z
db_adapter/base/__init__.py
shadhini/curw_db_adapter
4db8e1ea8794ffbd0dce29ac954a13315e83d843
[ "MIT" ]
null
null
null
from .pymysql_base import get_Pool, destroy_Pool, destroy_Pool, get_connection_for_iterable_cursor
25.25
98
0.871287
9ce2725327456b6ccf6f2c80794fc8d0cb5f8928
800
py
Python
steenzout/__init__.py
mikebohdan/python-object
9a757427b5950cda2883b1305a7866437360935a
[ "Apache-2.0" ]
1
2015-04-18T01:35:54.000Z
2015-04-18T01:35:54.000Z
steenzout/__init__.py
mikebohdan/python-object
9a757427b5950cda2883b1305a7866437360935a
[ "Apache-2.0" ]
21
2015-12-24T04:40:30.000Z
2019-10-05T22:21:05.000Z
steenzout/__init__.py
mikebohdan/python-object
9a757427b5950cda2883b1305a7866437360935a
[ "Apache-2.0" ]
3
2016-08-15T15:46:14.000Z
2017-09-12T23:54:39.000Z
# -*- coding: utf-8 -*- # # Copyright 2016 Pedro Salgado # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """steenzout namespace package.""" try: __import__('pkg_resources').declare_namespace(__name__) except ImportError: import pkgutil __path__ = pkgutil.extend_path(__path__, __name__)
33.333333
74
0.74875
3007575572f347f07e88d520b286ae5d4b0e8911
2,987
py
Python
dbt_gen/py3env/lib/python3.5/site-packages/boto3/__init__.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
dbt_gen/py3env/lib/python3.5/site-packages/boto3/__init__.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
dbt_gen/py3env/lib/python3.5/site-packages/boto3/__init__.py
norton120/dbt_gen
712fc8698a77c3372f5a403a5ae50711d0cb3c7d
[ "MIT" ]
null
null
null
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging from boto3.session import Session __author__ = 'Amazon Web Services' __version__ = '1.5.26' # The default Boto3 session; autoloaded when needed. DEFAULT_SESSION = None def setup_default_session(**kwargs): """ Set up a default session, passing through any parameters to the session constructor. There is no need to call this unless you wish to pass custom parameters, because a default session will be created for you. """ global DEFAULT_SESSION DEFAULT_SESSION = Session(**kwargs) def set_stream_logger(name='boto3', level=logging.DEBUG, format_string=None): """ Add a stream handler for the given name and level to the logging module. By default, this logs all boto3 messages to ``stdout``. >>> import boto3 >>> boto3.set_stream_logger('boto3.resources', logging.INFO) :type name: string :param name: Log name :type level: int :param level: Logging level, e.g. ``logging.INFO`` :type format_string: str :param format_string: Log message format """ if format_string is None: format_string = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logger = logging.getLogger(name) logger.setLevel(level) handler = logging.StreamHandler() handler.setLevel(level) formatter = logging.Formatter(format_string) handler.setFormatter(formatter) logger.addHandler(handler) def _get_default_session(): """ Get the default session, creating one if needed. :rtype: :py:class:`~boto3.session.Session` :return: The default session """ if DEFAULT_SESSION is None: setup_default_session() return DEFAULT_SESSION def client(*args, **kwargs): """ Create a low-level service client by name using the default session. See :py:meth:`boto3.session.Session.client`. """ return _get_default_session().client(*args, **kwargs) def resource(*args, **kwargs): """ Create a resource service client by name using the default session. See :py:meth:`boto3.session.Session.resource`. """ return _get_default_session().resource(*args, **kwargs) # Set up logging to ``/dev/null`` like a library is supposed to. # http://docs.python.org/3.3/howto/logging.html#configuring-logging-for-a-library class NullHandler(logging.Handler): def emit(self, record): pass logging.getLogger('boto3').addHandler(NullHandler())
29
81
0.705055
bfee66e86d8cfbfa37e012361f574917f81842d1
620
py
Python
Demo/sgi/audio_stdwin/vumeter.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/sgi/audio_stdwin/vumeter.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/sgi/audio_stdwin/vumeter.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
#! /usr/local/python import audio import stdwin from VUMeter import VUMeter from WindowParent import WindowParent import MainLoop NBUFS=20 BUFSIZE = NBUFS*48 SCALE=128 class MyVUMeter(VUMeter): def init_reactivity(self): self.parent.need_mouse(self) def mouse_down(self, detail): if self.enabled: self.stop() else: self.start() def mouse_move(self, detail): pass def mouse_up(self, detail): pass def main(): audio.setrate(3) audio.setoutgain(0) w = WindowParent().create('VU Meter', (200, 100)) v = MyVUMeter().define(w) v.start() w.realize() while 1: w.dispatch(stdwin.getevent()) main()
17.222222
50
0.719355
732469eb4e760dfdb14730412b65c8d2635ab6e0
18,960
py
Python
frappe/model/db_schema.py
snehapatil1/frappe
dd2c33e34ad120e6305a2fa230a72d23a7a03e98
[ "MIT" ]
null
null
null
frappe/model/db_schema.py
snehapatil1/frappe
dd2c33e34ad120e6305a2fa230a72d23a7a03e98
[ "MIT" ]
9
2020-03-24T18:09:18.000Z
2022-03-12T00:12:04.000Z
frappe/model/db_schema.py
snehapatil1/frappe
dd2c33e34ad120e6305a2fa230a72d23a7a03e98
[ "MIT" ]
3
2018-01-16T17:59:55.000Z
2019-09-24T16:02:10.000Z
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals """ Syncs a database table to the `DocType` (metadata) .. note:: This module is only used internally """ import re import os import frappe from frappe import _ from frappe.utils import cstr, cint, flt # imports - third-party imports import pymysql from pymysql.constants import ER class InvalidColumnName(frappe.ValidationError): pass varchar_len = '140' standard_varchar_columns = ('name', 'owner', 'modified_by', 'parent', 'parentfield', 'parenttype') type_map = { 'Currency': ('decimal', '18,6'), 'Int': ('int', '11'), 'Long Int': ('bigint', '20'), # convert int to bigint if length is more than 11 'Float': ('decimal', '18,6'), 'Percent': ('decimal', '18,6'), 'Check': ('int', '1'), 'Small Text': ('text', ''), 'Long Text': ('longtext', ''), 'Code': ('longtext', ''), 'Text Editor': ('longtext', ''), 'Date': ('date', ''), 'Datetime': ('datetime', '6'), 'Time': ('time', '6'), 'Text': ('text', ''), 'Data': ('varchar', varchar_len), 'Link': ('varchar', varchar_len), 'Dynamic Link': ('varchar', varchar_len), 'Password': ('varchar', varchar_len), 'Select': ('varchar', varchar_len), 'Read Only': ('varchar', varchar_len), 'Attach': ('text', ''), 'Attach Image': ('text', ''), 'Signature': ('longtext', ''), 'Color': ('varchar', varchar_len), 'Barcode': ('longtext', ''), 'Geolocation': ('longtext', '') } default_columns = ['name', 'creation', 'modified', 'modified_by', 'owner', 'docstatus', 'parent', 'parentfield', 'parenttype', 'idx'] optional_columns = ["_user_tags", "_comments", "_assign", "_liked_by"] default_shortcuts = ['_Login', '__user', '_Full Name', 'Today', '__today', "now", "Now"] def updatedb(dt, meta=None): """ Syncs a `DocType` to the table * creates if required * updates columns * updates indices """ res = frappe.db.sql("select issingle from tabDocType where name=%s", (dt,)) if not res: raise Exception('Wrong doctype "%s" in updatedb' % dt) if not res[0][0]: tab = DbTable(dt, 'tab', meta) tab.validate() frappe.db.commit() tab.sync() frappe.db.begin() class DbTable: def __init__(self, doctype, prefix = 'tab', meta = None): self.doctype = doctype self.name = prefix + doctype self.columns = {} self.current_columns = {} self.meta = meta if not self.meta: self.meta = frappe.get_meta(self.doctype) # lists for change self.add_column = [] self.change_type = [] self.add_index = [] self.drop_index = [] self.set_default = [] # load self.get_columns_from_docfields() def validate(self): """Check if change in varchar length isn't truncating the columns""" if self.is_new(): return self.get_columns_from_db() columns = [frappe._dict({"fieldname": f, "fieldtype": "Data"}) for f in standard_varchar_columns] columns += self.columns.values() for col in columns: if len(col.fieldname) >= 64: frappe.throw(_("Fieldname is limited to 64 characters ({0})") .format(frappe.bold(col.fieldname))) if col.fieldtype in type_map and type_map[col.fieldtype][0]=="varchar": # validate length range new_length = cint(col.length) or cint(varchar_len) if not (1 <= new_length <= 1000): frappe.throw(_("Length of {0} should be between 1 and 1000").format(col.fieldname)) current_col = self.current_columns.get(col.fieldname, {}) if not current_col: continue current_type = self.current_columns[col.fieldname]["type"] current_length = re.findall('varchar\(([\d]+)\)', current_type) if not current_length: # case when the field is no longer a varchar continue current_length = current_length[0] if cint(current_length) != cint(new_length): try: # check for truncation max_length = frappe.db.sql("""select max(char_length(`{fieldname}`)) from `tab{doctype}`"""\ .format(fieldname=col.fieldname, doctype=self.doctype)) except pymysql.InternalError as e: if e.args[0] == ER.BAD_FIELD_ERROR: # Unknown column 'column_name' in 'field list' continue else: raise if max_length and max_length[0][0] and max_length[0][0] > new_length: if col.fieldname in self.columns: self.columns[col.fieldname].length = current_length frappe.msgprint(_("Reverting length to {0} for '{1}' in '{2}'; Setting the length as {3} will cause truncation of data.")\ .format(current_length, col.fieldname, self.doctype, new_length)) def sync(self): if self.is_new(): self.create() else: self.alter() def is_new(self): return self.name not in DbManager(frappe.db).get_tables_list(frappe.db.cur_db_name) def create(self): add_text = '' # columns column_defs = self.get_column_definitions() if column_defs: add_text += ',\n'.join(column_defs) + ',\n' # index index_defs = self.get_index_definitions() if index_defs: add_text += ',\n'.join(index_defs) + ',\n' # create table frappe.db.sql("""create table `%s` ( name varchar({varchar_len}) not null primary key, creation datetime(6), modified datetime(6), modified_by varchar({varchar_len}), owner varchar({varchar_len}), docstatus int(1) not null default '0', parent varchar({varchar_len}), parentfield varchar({varchar_len}), parenttype varchar({varchar_len}), idx int(8) not null default '0', %sindex parent(parent), index modified(modified)) ENGINE={engine} ROW_FORMAT=COMPRESSED CHARACTER SET=utf8mb4 COLLATE=utf8mb4_unicode_ci""".format(varchar_len=varchar_len, engine=self.meta.get("engine") or 'InnoDB') % (self.name, add_text)) def get_column_definitions(self): column_list = [] + default_columns ret = [] for k in self.columns.keys(): if k not in column_list: d = self.columns[k].get_definition() if d: ret.append('`'+ k + '` ' + d) column_list.append(k) return ret def get_index_definitions(self): ret = [] for key, col in self.columns.items(): if col.set_index and not col.unique and col.fieldtype in type_map and \ type_map.get(col.fieldtype)[0] not in ('text', 'longtext'): ret.append('index `' + key + '`(`' + key + '`)') return ret def get_columns_from_docfields(self): """ get columns from docfields and custom fields """ fl = frappe.db.sql("SELECT * FROM tabDocField WHERE parent = %s", self.doctype, as_dict = 1) lengths = {} precisions = {} uniques = {} # optional fields like _comments if not self.meta.istable: for fieldname in optional_columns: fl.append({ "fieldname": fieldname, "fieldtype": "Text" }) # add _seen column if track_seen if getattr(self.meta, 'track_seen', False): fl.append({ 'fieldname': '_seen', 'fieldtype': 'Text' }) if not frappe.flags.in_install_db and frappe.flags.in_install != "frappe": custom_fl = frappe.db.sql("""\ SELECT * FROM `tabCustom Field` WHERE dt = %s AND docstatus < 2""", (self.doctype,), as_dict=1) if custom_fl: fl += custom_fl # apply length, precision and unique from property setters for ps in frappe.get_all("Property Setter", fields=["field_name", "property", "value"], filters={ "doc_type": self.doctype, "doctype_or_field": "DocField", "property": ["in", ["precision", "length", "unique"]] }): if ps.property=="length": lengths[ps.field_name] = cint(ps.value) elif ps.property=="precision": precisions[ps.field_name] = cint(ps.value) elif ps.property=="unique": uniques[ps.field_name] = cint(ps.value) for f in fl: self.columns[f['fieldname']] = DbColumn(self, f['fieldname'], f['fieldtype'], lengths.get(f["fieldname"]) or f.get('length'), f.get('default'), f.get('search_index'), f.get('options'), uniques.get(f["fieldname"], f.get('unique')), precisions.get(f['fieldname']) or f.get('precision')) def get_columns_from_db(self): self.show_columns = frappe.db.sql("desc `%s`" % self.name) for c in self.show_columns: self.current_columns[c[0].lower()] = {'name': c[0], 'type':c[1], 'index':c[3]=="MUL", 'default':c[4], "unique":c[3]=="UNI"} # GET foreign keys def get_foreign_keys(self): fk_list = [] txt = frappe.db.sql("show create table `%s`" % self.name)[0][1] for line in txt.split('\n'): if line.strip().startswith('CONSTRAINT') and line.find('FOREIGN')!=-1: try: fk_list.append((line.split('`')[3], line.split('`')[1])) except IndexError: pass return fk_list # Drop foreign keys def drop_foreign_keys(self): if not self.drop_foreign_key: return fk_list = self.get_foreign_keys() # make dictionary of constraint names fk_dict = {} for f in fk_list: fk_dict[f[0]] = f[1] # drop for col in self.drop_foreign_key: frappe.db.sql("set foreign_key_checks=0") frappe.db.sql("alter table `%s` drop foreign key `%s`" % (self.name, fk_dict[col.fieldname])) frappe.db.sql("set foreign_key_checks=1") def alter(self): for col in self.columns.values(): col.build_for_alter_table(self.current_columns.get(col.fieldname.lower(), None)) query = [] for col in self.add_column: query.append("add column `{}` {}".format(col.fieldname, col.get_definition())) for col in self.change_type: current_def = self.current_columns.get(col.fieldname.lower(), None) query.append("change `{}` `{}` {}".format(current_def["name"], col.fieldname, col.get_definition())) for col in self.add_index: # if index key not exists if not frappe.db.sql("show index from `%s` where key_name = %s" % (self.name, '%s'), col.fieldname): query.append("add index `{}`(`{}`)".format(col.fieldname, col.fieldname)) for col in self.drop_index: if col.fieldname != 'name': # primary key # if index key exists if frappe.db.sql("""show index from `{0}` where key_name=%s and Non_unique=%s""".format(self.name), (col.fieldname, col.unique)): query.append("drop index `{}`".format(col.fieldname)) for col in self.set_default: if col.fieldname=="name": continue if col.fieldtype in ("Check", "Int"): col_default = cint(col.default) elif col.fieldtype in ("Currency", "Float", "Percent"): col_default = flt(col.default) elif not col.default: col_default = "null" else: col_default = '"{}"'.format(col.default.replace('"', '\\"')) query.append('alter column `{}` set default {}'.format(col.fieldname, col_default)) if query: try: frappe.db.sql("alter table `{}` {}".format(self.name, ", ".join(query))) except Exception as e: # sanitize if e.args[0]==1060: frappe.throw(str(e)) elif e.args[0]==1062: fieldname = str(e).split("'")[-2] frappe.throw(_("{0} field cannot be set as unique in {1}, as there are non-unique existing values".format(fieldname, self.name))) else: raise e class DbColumn: def __init__(self, table, fieldname, fieldtype, length, default, set_index, options, unique, precision): self.table = table self.fieldname = fieldname self.fieldtype = fieldtype self.length = length self.set_index = set_index self.default = default self.options = options self.unique = unique self.precision = precision def get_definition(self, with_default=1): column_def = get_definition(self.fieldtype, precision=self.precision, length=self.length) if not column_def: return column_def if self.fieldtype in ("Check", "Int"): default_value = cint(self.default) or 0 column_def += ' not null default {0}'.format(default_value) elif self.fieldtype in ("Currency", "Float", "Percent"): default_value = flt(self.default) or 0 column_def += ' not null default {0}'.format(default_value) elif self.default and (self.default not in default_shortcuts) \ and not self.default.startswith(":") and column_def not in ('text', 'longtext'): column_def += ' default "' + self.default.replace('"', '\"') + '"' if self.unique and (column_def not in ('text', 'longtext')): column_def += ' unique' return column_def def build_for_alter_table(self, current_def): column_def = get_definition(self.fieldtype, self.precision, self.length) # no columns if not column_def: return # to add? if not current_def: self.fieldname = validate_column_name(self.fieldname) self.table.add_column.append(self) return # type if (current_def['type'] != column_def) or\ self.fieldname != current_def['name'] or\ ((self.unique and not current_def['unique']) and column_def not in ('text', 'longtext')): self.table.change_type.append(self) else: # default if (self.default_changed(current_def) \ and (self.default not in default_shortcuts) \ and not cstr(self.default).startswith(":") \ and not (column_def in ['text','longtext'])): self.table.set_default.append(self) # index should be applied or dropped irrespective of type change if ( (current_def['index'] and not self.set_index and not self.unique) or (current_def['unique'] and not self.unique) ): # to drop unique you have to drop index self.table.drop_index.append(self) elif (not current_def['index'] and self.set_index) and not (column_def in ('text', 'longtext')): self.table.add_index.append(self) def default_changed(self, current_def): if "decimal" in current_def['type']: return self.default_changed_for_decimal(current_def) else: return current_def['default'] != self.default def default_changed_for_decimal(self, current_def): try: if current_def['default'] in ("", None) and self.default in ("", None): # both none, empty return False elif current_def['default'] in ("", None): try: # check if new default value is valid float(self.default) return True except ValueError: return False elif self.default in ("", None): # new default value is empty return True else: # NOTE float() raise ValueError when "" or None is passed return float(current_def['default'])!=float(self.default) except TypeError: return True class DbManager: """ Basically, a wrapper for oft-used mysql commands. like show tables,databases, variables etc... #TODO: 0. Simplify / create settings for the restore database source folder 0a. Merge restore database and extract_sql(from frappe_server_tools). 1. Setter and getter for different mysql variables. 2. Setter and getter for mysql variables at global level?? """ def __init__(self,db): """ Pass root_conn here for access to all databases. """ if db: self.db = db def get_current_host(self): return self.db.sql("select user()")[0][0].split('@')[1] def get_variables(self,regex): """ Get variables that match the passed pattern regex """ return list(self.db.sql("SHOW VARIABLES LIKE '%s'"%regex)) def get_table_schema(self,table): """ Just returns the output of Desc tables. """ return list(self.db.sql("DESC `%s`"%table)) def get_tables_list(self,target=None): """get list of tables""" if target: self.db.use(target) return [t[0] for t in self.db.sql("SHOW TABLES")] def create_user(self, user, password, host=None): #Create user if it doesn't exist. if not host: host = self.get_current_host() if password: self.db.sql("CREATE USER '%s'@'%s' IDENTIFIED BY '%s';" % (user[:16], host, password)) else: self.db.sql("CREATE USER '%s'@'%s';" % (user[:16], host)) def delete_user(self, target, host=None): if not host: host = self.get_current_host() try: self.db.sql("DROP USER '%s'@'%s';" % (target, host)) except Exception as e: if e.args[0]==1396: pass else: raise def create_database(self,target): if target in self.get_database_list(): self.drop_database(target) self.db.sql("CREATE DATABASE `%s` ;" % target) def drop_database(self,target): self.db.sql("DROP DATABASE IF EXISTS `%s`;"%target) def grant_all_privileges(self, target, user, host=None): if not host: host = self.get_current_host() self.db.sql("GRANT ALL PRIVILEGES ON `%s`.* TO '%s'@'%s';" % (target, user, host)) def grant_select_privilges(self, db, table, user, host=None): if not host: host = self.get_current_host() if table: self.db.sql("GRANT SELECT ON %s.%s to '%s'@'%s';" % (db, table, user, host)) else: self.db.sql("GRANT SELECT ON %s.* to '%s'@'%s';" % (db, user, host)) def flush_privileges(self): self.db.sql("FLUSH PRIVILEGES") def get_database_list(self): """get list of databases""" return [d[0] for d in self.db.sql("SHOW DATABASES")] def restore_database(self,target,source,user,password): from frappe.utils import make_esc esc = make_esc('$ ') os.system("mysql -u %s -p%s -h%s %s < %s" % \ (esc(user), esc(password), esc(frappe.db.host), esc(target), source)) def drop_table(self,table_name): """drop table if exists""" if not table_name in self.get_tables_list(): return self.db.sql("DROP TABLE IF EXISTS %s "%(table_name)) def validate_column_name(n): special_characters = re.findall("[\W]", n, re.UNICODE) if special_characters: special_characters = ", ".join('"{0}"'.format(c) for c in special_characters) frappe.throw(_("Fieldname {0} cannot have special characters like {1}").format(frappe.bold(cstr(n)), special_characters), InvalidColumnName) return n def validate_column_length(fieldname): """ In MySQL maximum column length is 64 characters, ref: https://dev.mysql.com/doc/refman/5.5/en/identifiers.html""" if len(fieldname) > 64: frappe.throw(_("Fieldname is limited to 64 characters ({0})").format(fieldname)) def remove_all_foreign_keys(): frappe.db.sql("set foreign_key_checks = 0") frappe.db.commit() for t in frappe.db.sql("select name from tabDocType where issingle=0"): dbtab = DbTable(t[0]) try: fklist = dbtab.get_foreign_keys() except Exception as e: if e.args[0]==1146: fklist = [] else: raise for f in fklist: frappe.db.sql("alter table `tab%s` drop foreign key `%s`" % (t[0], f[1])) def get_definition(fieldtype, precision=None, length=None): d = type_map.get(fieldtype) # convert int to long int if the length of the int is greater than 11 if fieldtype == "Int" and length and length>11: d = type_map.get("Long Int") if not d: return coltype = d[0] size = None if d[1]: size = d[1] if size: if fieldtype in ["Float", "Currency", "Percent"] and cint(precision) > 6: size = '21,9' if coltype == "varchar" and length: size = length if size is not None: coltype = "{coltype}({size})".format(coltype=coltype, size=size) return coltype def add_column(doctype, column_name, fieldtype, precision=None): if column_name in frappe.db.get_table_columns(doctype): # already exists return frappe.db.commit() frappe.db.sql("alter table `tab%s` add column %s %s" % (doctype, column_name, get_definition(fieldtype, precision)))
29.905363
142
0.664768
1a01be00c9592661de79b0c2130c3f998679576a
332
py
Python
2020/day1/part1.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
2020/day1/part1.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
2020/day1/part1.py
FranciscoAT/advent-of-code
69f20696e4c59ff6dfa010b22dd3593ea3d12208
[ "MIT" ]
null
null
null
from pathlib import Path def main() -> None: values = [int(value.rstrip()) for value in Path("day-1.in").open().readlines()] for value in values: required_value = 2020 - value if required_value in values: print(value * required_value) break if __name__ == "__main__": main()
20.75
83
0.599398
e8bb02426f3a563e1721c5c70de7ae8c6056bdb2
20,675
py
Python
autotest/test_gwt_dsp02.py
scharlton2/modflow6
83ac72ee3b6f580aaffef6352cf15c1697d3ce66
[ "CC0-1.0" ]
3
2019-07-10T21:16:57.000Z
2021-10-08T00:56:20.000Z
autotest/test_gwt_dsp02.py
scharlton2/modflow6
83ac72ee3b6f580aaffef6352cf15c1697d3ce66
[ "CC0-1.0" ]
null
null
null
autotest/test_gwt_dsp02.py
scharlton2/modflow6
83ac72ee3b6f580aaffef6352cf15c1697d3ce66
[ "CC0-1.0" ]
3
2019-11-28T16:26:50.000Z
2020-02-05T11:08:37.000Z
""" MODFLOW 6 Autotest Test the dispersion schemes in the gwt dispersion package for a one-dimensional model grid of triangular cells. The cells are created by starting with a regular grid of squares and then cutting every cell into a triangle, except the first and last. """ import os import pytest import sys import numpy as np try: import flopy import flopy.utils.cvfdutil except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from framework import testing_framework from simulation import Simulation ex = ["dsp02a", "dsp02b"] xt3d = [True, False] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) ddir = "data" def grid_triangulator(itri, delr, delc): nrow, ncol = itri.shape if np.isscalar(delr): delr = delr * np.ones(ncol) if np.isscalar(delc): delc = delc * np.ones(nrow) regular_grid = flopy.discretization.StructuredGrid(delc, delr) vertdict = {} icell = 0 for i in range(nrow): for j in range(ncol): vs = regular_grid.get_cell_vertices(i, j) if itri[i, j] == 0: vertdict[icell] = [vs[0], vs[1], vs[2], vs[3], vs[0]] icell += 1 elif itri[i, j] == 1: vertdict[icell] = [vs[0], vs[1], vs[3], vs[0]] icell += 1 vertdict[icell] = [vs[3], vs[1], vs[2], vs[3]] icell += 1 elif itri[i, j] == 2: vertdict[icell] = [vs[0], vs[2], vs[3], vs[0]] icell += 1 vertdict[icell] = [vs[0], vs[1], vs[2], vs[0]] icell += 1 else: raise Exception("Unknown itri value: {}".format(itri[i, j])) verts, iverts = flopy.utils.cvfdutil.to_cvfd(vertdict) return verts, iverts def cvfd_to_cell2d(verts, iverts): vertices = [] for i in range(verts.shape[0]): x = verts[i, 0] y = verts[i, 1] vertices.append([i, x, y]) cell2d = [] for icell2d, vs in enumerate(iverts): points = [tuple(verts[ip]) for ip in vs] xc, yc = flopy.utils.cvfdutil.centroid_of_polygon(points) cell2d.append([icell2d, xc, yc, len(vs), *vs]) return vertices, cell2d def build_model(idx, dir): nlay, nrow, ncol = 1, 1, 100 nper = 1 perlen = [5.0] nstp = [200] tsmult = [1.0] steady = [True] delr = 1.0 delc = 1.0 top = 1.0 botm = [0.0] strt = 1.0 hk = 1.0 laytyp = 0 nouter, ninner = 100, 300 hclose, rclose, relax = 1e-6, 1e-6, 1.0 tdis_rc = [] for i in range(nper): tdis_rc.append((perlen[i], nstp[i], tsmult[i])) name = ex[idx] # build MODFLOW 6 files ws = dir sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws ) # create tdis package tdis = flopy.mf6.ModflowTdis( sim, time_units="DAYS", nper=nper, perioddata=tdis_rc ) # create gwf model gwfname = "gwf_" + name gwf = flopy.mf6.ModflowGwf( sim, modelname=gwfname, save_flows=True, model_nam_file="{}.nam".format(gwfname), ) # create iterative model solution and register the gwf model with it imsgwf = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="NONE", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="CG", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, filename="{}.ims".format(gwfname), ) sim.register_ims_package(imsgwf, [gwf.name]) itri = np.zeros((nrow, ncol), dtype=int) itri[:, 1 : ncol - 1] = 1 verts, iverts = grid_triangulator(itri, delr, delc) vertices, cell2d = cvfd_to_cell2d(verts, iverts) ncpl = len(cell2d) nvert = len(verts) # constant heads on left and right so there is no flow c = {0: [((0, 0), 0.0000000), ((0, ncpl - 1), 0.0000000)]} disv = flopy.mf6.ModflowGwfdisv( gwf, nlay=nlay, ncpl=ncpl, nvert=nvert, top=top, botm=botm, vertices=vertices, cell2d=cell2d, filename="{}.disv".format(gwfname), ) # initial conditions ic = flopy.mf6.ModflowGwfic( gwf, strt=strt, filename="{}.ic".format(gwfname) ) # node property flow npf = flopy.mf6.ModflowGwfnpf( gwf, save_flows=False, icelltype=laytyp, k=hk, k33=hk, save_specific_discharge=True, ) # chd files chd = flopy.mf6.modflow.mfgwfchd.ModflowGwfchd( gwf, maxbound=len(c), stress_period_data=c, save_flows=False, pname="CHD-1", ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, budget_filerecord="{}.cbc".format(gwfname), head_filerecord="{}.hds".format(gwfname), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], printrecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], ) # create gwt model gwtname = "gwt_" + name gwt = flopy.mf6.MFModel( sim, model_type="gwt6", modelname=gwtname, model_nam_file="{}.nam".format(gwtname), ) gwt.name_file.save_flows = True # create iterative model solution and register the gwt model with it imsgwt = flopy.mf6.ModflowIms( sim, print_option="SUMMARY", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="NONE", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, filename="{}.ims".format(gwtname), ) sim.register_ims_package(imsgwt, [gwt.name]) disv = flopy.mf6.ModflowGwtdisv( gwt, nlay=nlay, ncpl=ncpl, nvert=nvert, top=top, botm=botm, vertices=vertices, cell2d=cell2d, filename="{}.disv".format(gwtname), ) # initial conditions ic = flopy.mf6.ModflowGwtic( gwt, strt=0.0, filename="{}.ic".format(gwtname) ) # advection adv = flopy.mf6.ModflowGwtadv( gwt, scheme="upstream", filename="{}.adv".format(gwtname) ) # dispersion xt3d_off = not xt3d[idx] dsp = flopy.mf6.ModflowGwtdsp( gwt, xt3d_off=xt3d_off, diffc=100.0, alh=0.0, alv=0.0, ath1=0.0, atv=0.0, filename="{}.dsp".format(gwtname), ) # mass storage and transfer mst = flopy.mf6.ModflowGwtmst(gwt, porosity=0.1) # constant concentration cncs = {0: [[(0, 0), 1.0]]} cnc = flopy.mf6.ModflowGwtcnc( gwt, stress_period_data=cncs, save_flows=False, pname="CNC-1" ) # sources ssm = flopy.mf6.ModflowGwtssm( gwt, sources=[[]], filename="{}.ssm".format(gwtname) ) # output control oc = flopy.mf6.ModflowGwtoc( gwt, budget_filerecord="{}.cbc".format(gwtname), concentration_filerecord="{}.ucn".format(gwtname), concentrationprintrecord=[ ("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL") ], saverecord=[("CONCENTRATION", "LAST"), ("BUDGET", "LAST")], printrecord=[("CONCENTRATION", "LAST"), ("BUDGET", "LAST")], ) # GWF GWT exchange gwfgwt = flopy.mf6.ModflowGwfgwt( sim, exgtype="GWF6-GWT6", exgmnamea=gwfname, exgmnameb=gwtname, filename="{}.gwfgwt".format(name), ) return sim, None def eval_transport(sim): print("evaluating transport...") name = ex[sim.idxsim] gwtname = "gwt_" + name fpth = os.path.join(sim.simpath, "{}.ucn".format(gwtname)) try: cobj = flopy.utils.HeadFile( fpth, precision="double", text="CONCENTRATION" ) conc = cobj.get_data() except: assert False, 'could not load data from "{}"'.format(fpth) # This is the answer to this problem. These concentrations are for # time step 200. cres1 = [ [ [ 1.0, 0.97843231, 0.97001134, 0.95317805, 0.94476996, 0.9279709, 0.91958413, 0.90283612, 0.89447905, 0.87779875, 0.86947965, 0.85288352, 0.84461056, 0.82811481, 0.81989601, 0.80351654, 0.79535977, 0.77911214, 0.77102507, 0.75492445, 0.74691457, 0.73097567, 0.72305022, 0.70728731, 0.69945329, 0.68388011, 0.67614426, 0.66077401, 0.65314277, 0.63798806, 0.63046759, 0.61554043, 0.60813657, 0.59344832, 0.5861666, 0.57172796, 0.56457354, 0.55039454, 0.54337227, 0.52946222, 0.52257658, 0.50894408, 0.50219919, 0.48885212, 0.48225173, 0.46919723, 0.46274472, 0.44998918, 0.44368756, 0.43123664, 0.42508856, 0.41294716, 0.40695489, 0.39512719, 0.38929262, 0.37778204, 0.37210672, 0.36091599, 0.35540108, 0.3445322, 0.33917854, 0.3286328, 0.32344087, 0.3132189, 0.30818885, 0.2982906, 0.29342225, 0.28384706, 0.2791399, 0.26988646, 0.26533971, 0.25640614, 0.25201871, 0.24340255, 0.23917307, 0.23087133, 0.22679818, 0.21880735, 0.21488866, 0.20720475, 0.20343841, 0.19605698, 0.19244068, 0.18535688, 0.18188808, 0.17509667, 0.17177266, 0.16526803, 0.16208593, 0.15586217, 0.15281894, 0.14686982, 0.14396229, 0.13828133, 0.13550621, 0.13008669, 0.12744057, 0.12227559, 0.11975497, 0.11483745, 0.11243875, 0.10776147, 0.10548106, 0.10103668, 0.09887086, 0.09465197, 0.09259703, 0.08859614, 0.08664832, 0.08285793, 0.08101347, 0.07742605, 0.07568121, 0.07228925, 0.07064027, 0.06743631, 0.06587947, 0.06285607, 0.06138769, 0.05853752, 0.05715393, 0.05446974, 0.05316736, 0.050642, 0.04941727, 0.04704373, 0.04589318, 0.04366456, 0.04258479, 0.04049435, 0.03948204, 0.03752321, 0.03657509, 0.03474147, 0.0338544, 0.03213974, 0.03131065, 0.02970893, 0.02893484, 0.02744019, 0.02671823, 0.02532501, 0.02465239, 0.02335515, 0.02272921, 0.02152269, 0.02094085, 0.01982002, 0.01927982, 0.01823984, 0.01773891, 0.01677517, 0.01631126, 0.01541935, 0.0149903, 0.01416602, 0.01376979, 0.01300915, 0.0126438, 0.01194301, 0.01160669, 0.01096219, 0.01065317, 0.01006157, 0.00977821, 0.00923636, 0.00897713, 0.00848205, 0.0082455, 0.00779441, 0.00757922, 0.00716954, 0.00697446, 0.0066038, 0.00642767, 0.00609383, 0.0059356, 0.00563654, 0.00549525, 0.00522914, 0.00510391, 0.00486909, 0.00475913, 0.0045541, 0.00445871, 0.00428216, 0.00420072, 0.00405151, 0.0039835, 0.00386064, 0.0038056, 0.00370829, 0.00366586, 0.00359344, 0.00356334, 0.00351533, 0.00349735, 0.00346792, ] ] ] cres1 = np.array(cres1) cres2 = [ [ [ 1.0, 0.9789382, 0.97051702, 0.95368454, 0.94527607, 0.92847748, 0.92009017, 0.90334227, 0.89498447, 0.87830394, 0.86998394, 0.85338722, 0.84511319, 0.82861649, 0.82039646, 0.80401567, 0.79585751, 0.7796082, 0.77151959, 0.75541693, 0.74740534, 0.73146407, 0.72353676, 0.70777112, 0.69993509, 0.68435885, 0.67662084, 0.6612472, 0.65361367, 0.63845524, 0.63093235, 0.61600116, 0.60859476, 0.59390218, 0.58661778, 0.57217453, 0.56501733, 0.55083343, 0.54380828, 0.52989307, 0.52300445, 0.50936655, 0.50261858, 0.48926588, 0.48266233, 0.46960198, 0.46314624, 0.45038465, 0.44407974, 0.43162258, 0.42547115, 0.41332335, 0.40732768, 0.39549342, 0.38965542, 0.37813816, 0.37245936, 0.36126184, 0.35574344, 0.34486766, 0.3395105, 0.32895779, 0.32376235, 0.31353335, 0.30849978, 0.29859447, 0.29372261, 0.28414033, 0.27942969, 0.27016915, 0.26561893, 0.25667827, 0.25228741, 0.24366417, 0.23943131, 0.23112253, 0.22704603, 0.21904822, 0.21512624, 0.20743541, 0.20366584, 0.19627758, 0.19265809, 0.18556756, 0.18209565, 0.17529761, 0.17197055, 0.16545942, 0.16227435, 0.1560442, 0.15299808, 0.14704271, 0.14413238, 0.13844531, 0.13566746, 0.130242, 0.12759323, 0.12242247, 0.11989929, 0.11497616, 0.11257499, 0.10789226, 0.10560948, 0.10115983, 0.09899173, 0.09476774, 0.0927106, 0.0887048, 0.08675489, 0.08295976, 0.0811133, 0.07752134, 0.07577458, 0.07237826, 0.07072746, 0.06751932, 0.06596074, 0.06293336, 0.06146332, 0.05860935, 0.0572242, 0.05453638, 0.05323252, 0.05070371, 0.0494776, 0.04710077, 0.04594892, 0.04371719, 0.04263619, 0.04054281, 0.03952934, 0.03756773, 0.03661854, 0.03478229, 0.03389421, 0.0321771, 0.03134706, 0.02974302, 0.02896805, 0.02747124, 0.02674846, 0.02535321, 0.02467983, 0.02338069, 0.02275405, 0.02154576, 0.02096328, 0.0198408, 0.0193, 0.0182585, 0.01775702, 0.01679186, 0.01632745, 0.01543423, 0.01500472, 0.01417922, 0.01378257, 0.01302081, 0.01265508, 0.01195326, 0.0116166, 0.01097115, 0.01066181, 0.01006936, 0.00978571, 0.00924308, 0.00898359, 0.00848779, 0.00825101, 0.00779927, 0.00758388, 0.00717361, 0.00697834, 0.00660715, 0.00643086, 0.00609654, 0.00593817, 0.00563869, 0.00549728, 0.0052308, 0.00510545, 0.0048703, 0.00476025, 0.00455494, 0.00445946, 0.00428267, 0.00420117, 0.00405175, 0.00398368, 0.00386065, 0.00380557, 0.00370812, 0.00366566, 0.00359314, 0.00356302, 0.00351495, 0.00349695, 0.00346702, ] ] ] cres2 = np.array(cres2) creslist = [cres1, cres2] assert np.allclose( creslist[sim.idxsim], conc ), "simulated concentrations do not match with known solution." return # - No need to change any code below @pytest.mark.parametrize( "idx, dir", list(enumerate(exdirs)), ) def test_mf6model(idx, dir): # initialize testing framework test = testing_framework() # build the models test.build_mf6_models(build_model, idx, dir) # run the test model test.run_mf6(Simulation(dir, exfunc=eval_transport, idxsim=idx)) def main(): # initialize testing framework test = testing_framework() # build the models # run the test model for idx, dir in enumerate(exdirs): test.build_mf6_models(build_model, idx, dir) sim = Simulation(dir, exfunc=eval_transport, idxsim=idx) test.run_mf6(sim) return if __name__ == "__main__": # print message print("standalone run of {}".format(os.path.basename(__file__))) # run main routine main()
26.781088
79
0.438114