hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
7ceaba19b2ae0fdea8ed8a631ad36be10ed6c44e
1,109
py
Python
cron2/removeExpiredPremium.py
B1N4R1/HackSkill
0910f274a462dc58d45cf6442886634d027f139b
[ "MIT" ]
null
null
null
cron2/removeExpiredPremium.py
B1N4R1/HackSkill
0910f274a462dc58d45cf6442886634d027f139b
[ "MIT" ]
null
null
null
cron2/removeExpiredPremium.py
B1N4R1/HackSkill
0910f274a462dc58d45cf6442886634d027f139b
[ "MIT" ]
null
null
null
import MySQLdb import sys import time start_time = time.time() db = MySQLdb.connect(host="127.0.0.1",user="root",passwd="",db="game") cur = db.cursor() cur.execute(" SELECT id, boughtDate, premiumUntil, totalPaid \ FROM users_premium \ WHERE TIMESTAMPDIFF(SECOND, NOW(), premiumUntil) < 0 \ ") imported = False for userID, bought, premium, paid in cur.fetchall(): if not imported: imported = True sys.path.insert(0, '/opt/lampp/htdocs/HE/python') import badge_add badge_add.userBadge = 'user' badge_add.userID = userID badge_add.badgeID = 80 #Donator badge badge_add.badge_add() cur.execute("INSERT INTO premium_history \ (userID, boughtDate, premiumUntil, paid)\ VALUES \ (%s, %s, %s, %s)\ ", (userID, bought, premium, paid)) cur.execute(" DELETE FROM users_premium \ WHERE id = %s AND premiumUntil = %s \ ", (userID, premium)) cur.execute(" UPDATE internet_webserver \ SET active = 0 \ WHERE id = %s \ ", userID) db.commit() print time.strftime("%d/%m/%y %H:%M:%S"),' - ',__file__,' - ',round(time.time() - start_time, 4), "s"
22.632653
101
0.65284
3a087e62ac22911da5fdb8885a38a29be59f29a3
3,390
py
Python
xmrnodes/helpers.py
lalanza808/monero.fail
f55dc9e893944ba093bda055ea5b93cd96dcf051
[ "MIT" ]
17
2020-10-24T15:50:18.000Z
2022-03-17T07:56:07.000Z
xmrnodes/helpers.py
savg110/monero.fail
b88bd19578dd177503ae7e92ef22d83535dcaadb
[ "MIT" ]
7
2020-10-18T11:30:16.000Z
2022-03-19T04:47:51.000Z
xmrnodes/helpers.py
savg110/monero.fail
b88bd19578dd177503ae7e92ef22d83535dcaadb
[ "MIT" ]
8
2020-10-18T11:18:10.000Z
2022-03-31T15:08:29.000Z
import sys import socket import pickle from os import path from requests import get as r_get from levin.section import Section from levin.bucket import Bucket from levin.ctypes import * from levin.constants import LEVIN_SIGNATURE from xmrnodes import config def make_request(url: str, path="/get_info", data=None): if is_onion(url): proxies = {"http": f"socks5h://{config.TOR_HOST}:{config.TOR_PORT}"} timeout = 18 else: proxies = None timeout = 6 r = r_get(url + path, timeout=timeout, proxies=proxies, json=data) r.raise_for_status() return r def determine_crypto(url): data = {"method": "get_block_header_by_height", "params": {"height": 0}} hashes = { "monero": [ "418015bb9ae982a1975da7d79277c2705727a56894ba0fb246adaabb1f4632e3", #mainnet "48ca7cd3c8de5b6a4d53d2861fbdaedca141553559f9be9520068053cda8430b", #testnet "76ee3cc98646292206cd3e86f74d88b4dcc1d937088645e9b0cbca84b7ce74eb" #stagenet ], "wownero": [ "a3fd635dd5cb55700317783469ba749b5259f0eeac2420ab2c27eb3ff5ffdc5c", #mainnet "d81a24c7aad4628e5c9129f8f2ec85888885b28cf468597a9762c3945e9f29aa", #testnet ] } try: r = make_request(url, "/json_rpc", data) assert "result" in r.json() hash = r.json()["result"]["block_header"]["hash"] crypto = "unknown" for c, h in hashes.items(): if hash in h: crypto = c break return crypto except: return "unknown" def is_onion(url: str): _split = url.split(":") if len(_split) < 2: return False if _split[1].endswith(".onion"): return True else: return False # Use hacky filesystem cache since i dont feel like shipping redis def rw_cache(key_name, data=None): pickle_file = path.join(config.DATA_DIR, f'{key_name}.pkl') if data: with open(pickle_file, 'wb') as f: f.write(pickle.dumps(data)) return data else: with open(pickle_file, 'rb') as f: pickled_data = pickle.load(f) return pickled_data def retrieve_peers(host, port): try: print(f'[.] Connecting to {host}:{port}') sock = socket.socket() sock.settimeout(5) sock.connect((host, int(port))) except: sys.stderr.write("unable to connect to %s:%d\n" % (host, int([port]))) sys.exit() bucket = Bucket.create_handshake_request() sock.send(bucket.header()) sock.send(bucket.payload()) buckets = [] peers = [] while 1: buffer = sock.recv(8) if not buffer: sys.stderr.write("Invalid response; exiting\n") break if not buffer.startswith(bytes(LEVIN_SIGNATURE)): sys.stderr.write("Invalid response; exiting\n") break bucket = Bucket.from_buffer(signature=buffer, sock=sock) buckets.append(bucket) if bucket.command == 1001: _peers = bucket.get_peers() or [] for peer in _peers: try: peers.append('http://%s:%d' % (peer['ip'].ip, peer['port'].value)) except: pass sock.close() break if peers: return peers else: return None
28.25
89
0.59587
3fbe0814e0cc979a4f22fd4d27c849268addcb19
838
py
Python
python/arrays/guess_game.py
hs634/algorithms
e411d747eb27a1c784605e44111de2703f6dde4d
[ "MIT" ]
null
null
null
python/arrays/guess_game.py
hs634/algorithms
e411d747eb27a1c784605e44111de2703f6dde4d
[ "MIT" ]
null
null
null
python/arrays/guess_game.py
hs634/algorithms
e411d747eb27a1c784605e44111de2703f6dde4d
[ "MIT" ]
null
null
null
__author__ = 'harsh' import random inclusive_range = (1, 1000) print("Guess my target number that is between %i and %i (inclusive).\n" % inclusive_range) target = random.randint(*inclusive_range) answer, i = None, 0 while answer != target: i += 1 try: txt = input("Your guess(%i): " % i) answer = int(txt) except ValueError: print(" I don't understand your input of '%s' ?" % txt) continue except SyntaxError, e: print(" Why are you entering EOF ?") continue if answer < inclusive_range[0] or answer > inclusive_range[1]: print(" Out of range!") continue if answer == target: print(" Ye-Haw!!") break if answer < target: print(" Too low.") if answer > target: print(" Too high.") print("\nThanks for playing.")
26.1875
71
0.591885
105210cb91ff98016e26321ba885a0ed1211eb33
732
py
Python
nlcpy_test/247_Irecv_Waitany.py
SX-Aurora/mpi4py-ve
aa6b1f97933196f8a485d5d808e89d5a29b58b1c
[ "BSD-2-Clause" ]
null
null
null
nlcpy_test/247_Irecv_Waitany.py
SX-Aurora/mpi4py-ve
aa6b1f97933196f8a485d5d808e89d5a29b58b1c
[ "BSD-2-Clause" ]
null
null
null
nlcpy_test/247_Irecv_Waitany.py
SX-Aurora/mpi4py-ve
aa6b1f97933196f8a485d5d808e89d5a29b58b1c
[ "BSD-2-Clause" ]
null
null
null
from mpi4pyve import MPI import numpy as np import nlcpy as vp comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() if rank == 0: print("rank = ",rank) x = vp.array([1,2,3], dtype=int) print("x = ",x) print("type(x) = ",type(x)) comm.Send([x, MPI.INT], dest=1) elif rank == 1: print("rank = ",rank) y = vp.empty(3, dtype=int) req = comm.Irecv([y, MPI.INT]) MPI.Request.Waitany([req]) print("y = ",y) print("type(y) = ",type(y)) import sys try: y if not isinstance(y, vp.core.core.ndarray): print("NG : ", __file__, file=sys.stderr) except NameError: print("Failure test case : ", __file__, file=sys.stderr)
22.875
64
0.561475
cf7a1fd452f713ff0f0feac226ee5ec1e892cd26
875
py
Python
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/_opaque.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/_opaque.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/_opaque.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
"""Data-type definitions for EGL/GLES""" import ctypes pointer = ctypes.pointer class _Opaque( ctypes.Structure ): """An Opaque Structure reference (base class)""" class _opaque_pointer( ctypes.POINTER( _Opaque ) ): _type_ = _Opaque @classmethod def from_param( cls, value ): return ctypes.cast( value, cls ) @property def address( self ): return ctypes.addressof( self.contents ) @property def as_voidp( self ): return ctypes.c_voidp( self.address ) def __hash__(self): """Allow these pointers to be used as keys in dictionaries""" return self.address def opaque_pointer_cls( name ): """Create an Opaque pointer class for the given name""" typ = type( name, (_Opaque,), {} ) p_typ = type( name+'_pointer', (_opaque_pointer,), {'_type_':typ}) return p_typ
33.653846
71
0.637714
0a5ce34073548f67fcc1caf2cdf0514cf60748d5
5,347
py
Python
mpilogger/__init__.py
mbkumar/python-mpi-logger
0ec9890b0b5a1afe17c4f67dafed63d9637db023
[ "BSD-2-Clause" ]
null
null
null
mpilogger/__init__.py
mbkumar/python-mpi-logger
0ec9890b0b5a1afe17c4f67dafed63d9637db023
[ "BSD-2-Clause" ]
null
null
null
mpilogger/__init__.py
mbkumar/python-mpi-logger
0ec9890b0b5a1afe17c4f67dafed63d9637db023
[ "BSD-2-Clause" ]
null
null
null
import sys import time import logging import array import atexit import mpi4py from mpi4py import MPI # Maximum length of message in characters _message_maxlen = 2048 # Interval between checking for new logging messages. # Used instead of Waitsome to reduce CPU load. _sleep_interval = 0.01 # Because of clashes between `mpi4py` and `logging` when python is exiting we # need to destroy the connections to the logging proceses at the module level. # Object level destructors, or the `Handler.close` method will not work. @atexit.register def _destroy_log_comm(): for lc in _log_comm_list: if lc.rank == 0: lc.Isend([None, MPI.INT], dest=0, tag=1) lc.Disconnect() # Internal variable for keeping track of the log communicators. _log_comm_list = [] class MPILogHandler(logging.Handler): """A Handler which logs messages over MPI to a single process which then write them to a file. This uses MPI-2's Dynamic Process Management to spawn a child process which listens for log messages and then writes them to the specified file. It checks for new messages every 0.01s. Note ---- This Handler also makes `rank` and `size` available in the `logger.Record` for any formatter to use. """ def __init__(self, logfile, comm=None, *args, **kwargs): """Create the logger. Parameters ---------- logfile : string Name of file to write. comm : MPI.Intracomm MPI communicator used by this logger. """ super().__init__(*args, **kwargs) self._logfile = logfile self._comm = MPI.COMM_WORLD if comm is None else comm # Spawn new process for logging self._log_comm = self._comm.Spawn(sys.executable, args=[__file__, self._logfile]) # Add the communicator to the list of ones to keep track of. _log_comm_list.append(self._log_comm) def __del__(self): # Note this does not get called unless the Handler has been removed # from the logger. _log_comm_list.remove(self._log_comm) if self._log_comm.rank == 0: self._log_comm.Isend([None, MPI.INT], dest=0, tag=1) self._log_comm.Disconnect() def emit(self, record): """Emit the log message. Parameters ---------- record : logging.Record logging record that will get written to disk. """ try: record.rank = self._comm.rank record.size = self._comm.size msg = self.format(record) # If message too long, truncate it if len(msg) > _message_maxlen: msg = msg[:_message_maxlen] msg_buf = array.array('b', msg.encode()) # Send message to the logging process self._request = self._log_comm.Issend([msg_buf, MPI.CHAR], dest=0, tag=0) s = MPI.Status() self._request.Wait(status=s) except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) if __name__ == '__main__': if len(sys.argv) < 2: raise Exception("Too few arguments to MPI logging process.") # Get the logfile and tag from the command line arguments logfile = sys.argv[1] # Open the logfile fh = open(logfile, 'w') # Get the parent Intracomm comm_parent = MPI.Comm.Get_parent() # Initialise all the buffers to receive logging messages buffers = [(array.array('b', '\0'.encode()) * _message_maxlen) for pi in range(comm_parent.remote_size)] requests = [] # Create a request for checking if we should exit exit_request = comm_parent.Irecv([None, MPI.INT], source=0, tag=1) # Establish all the initial connections for receiving messages for pi in range(comm_parent.remote_size): request = comm_parent.Irecv([buffers[pi], MPI.CHAR], source=pi, tag=0) requests.append(request) while True: # Wait until any connection receives a message status_list = [] ind_requests = MPI.Request.Testsome(requests, statuses=status_list) # Request.Waitsome() and Request.Testsome() return None or list from mpi4py 2.0.0 num_requests = len(ind_requests) # If a request has changed if num_requests > 0: # Iterate over changed requests and process them for ind, s in zip(ind_requests, status_list): # Check to see if there was an error. if s.Get_error() != 0: raise Exception("Logging error (code %i)." % s.Get_error()) # Write the message to disk msg_rank = s.Get_source() msg = buffers[msg_rank].tobytes().decode().rstrip('\0') fh.write('%s\n' % msg) fh.flush() # Replace the buffer and connection buffers[ind] = (array.array('b', '\0'.encode()) * _message_maxlen) requests[ind] = comm_parent.Irecv([buffers[ind], MPI.CHAR], source=msg_rank, tag=0) if MPI.Request.Test(exit_request): # We should exit from this process. break time.sleep(_sleep_interval) comm_parent.Disconnect() fh.close()
29.541436
108
0.614363
88c3a5115a388ef59e047ed01803306213048fb1
512
py
Python
blog/urls.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
blog/urls.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
blog/urls.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
from django.conf.urls import include, url from . import views from django.views.generic.base import TemplateView from unidecode import unidecode app_name = 'blog' urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), url(r'^post/(?P<slug>[^\.]+)/$', views.DetailView.as_view(), name='post-detail'), url(r'^category/(?P<category>[^\.]+)/$', views.CategoryIndexView.as_view(), name='category-index'), url(r'^tag/(?P<tag>[^\.]+)/$', views.TagIndexView.as_view(), name='tag-index'), ]
42.666667
103
0.666016
2f1716febd3efe8157a74a82dff8728a840a1eca
32,517
py
Python
src/oci/database/models/vm_cluster_summary.py
xjuarez/oci-python-sdk
3c1604e4e212008fb6718e2f68cdb5ef71fd5793
[ "Apache-2.0", "BSD-3-Clause" ]
3
2020-09-10T22:09:45.000Z
2021-12-24T17:00:07.000Z
src/oci/database/models/vm_cluster_summary.py
xjuarez/oci-python-sdk
3c1604e4e212008fb6718e2f68cdb5ef71fd5793
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/database/models/vm_cluster_summary.py
xjuarez/oci-python-sdk
3c1604e4e212008fb6718e2f68cdb5ef71fd5793
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class VmClusterSummary(object): """ Details of the Exadata Cloud@Customer VM cluster. """ #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "PROVISIONING" LIFECYCLE_STATE_PROVISIONING = "PROVISIONING" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "AVAILABLE" LIFECYCLE_STATE_AVAILABLE = "AVAILABLE" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "UPDATING" LIFECYCLE_STATE_UPDATING = "UPDATING" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "TERMINATING" LIFECYCLE_STATE_TERMINATING = "TERMINATING" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "TERMINATED" LIFECYCLE_STATE_TERMINATED = "TERMINATED" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "FAILED" LIFECYCLE_STATE_FAILED = "FAILED" #: A constant which can be used with the lifecycle_state property of a VmClusterSummary. #: This constant has a value of "MAINTENANCE_IN_PROGRESS" LIFECYCLE_STATE_MAINTENANCE_IN_PROGRESS = "MAINTENANCE_IN_PROGRESS" #: A constant which can be used with the license_model property of a VmClusterSummary. #: This constant has a value of "LICENSE_INCLUDED" LICENSE_MODEL_LICENSE_INCLUDED = "LICENSE_INCLUDED" #: A constant which can be used with the license_model property of a VmClusterSummary. #: This constant has a value of "BRING_YOUR_OWN_LICENSE" LICENSE_MODEL_BRING_YOUR_OWN_LICENSE = "BRING_YOUR_OWN_LICENSE" def __init__(self, **kwargs): """ Initializes a new VmClusterSummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param id: The value to assign to the id property of this VmClusterSummary. :type id: str :param compartment_id: The value to assign to the compartment_id property of this VmClusterSummary. :type compartment_id: str :param last_patch_history_entry_id: The value to assign to the last_patch_history_entry_id property of this VmClusterSummary. :type last_patch_history_entry_id: str :param lifecycle_state: The value to assign to the lifecycle_state property of this VmClusterSummary. Allowed values for this property are: "PROVISIONING", "AVAILABLE", "UPDATING", "TERMINATING", "TERMINATED", "FAILED", "MAINTENANCE_IN_PROGRESS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type lifecycle_state: str :param display_name: The value to assign to the display_name property of this VmClusterSummary. :type display_name: str :param time_created: The value to assign to the time_created property of this VmClusterSummary. :type time_created: datetime :param lifecycle_details: The value to assign to the lifecycle_details property of this VmClusterSummary. :type lifecycle_details: str :param time_zone: The value to assign to the time_zone property of this VmClusterSummary. :type time_zone: str :param is_local_backup_enabled: The value to assign to the is_local_backup_enabled property of this VmClusterSummary. :type is_local_backup_enabled: bool :param exadata_infrastructure_id: The value to assign to the exadata_infrastructure_id property of this VmClusterSummary. :type exadata_infrastructure_id: str :param is_sparse_diskgroup_enabled: The value to assign to the is_sparse_diskgroup_enabled property of this VmClusterSummary. :type is_sparse_diskgroup_enabled: bool :param vm_cluster_network_id: The value to assign to the vm_cluster_network_id property of this VmClusterSummary. :type vm_cluster_network_id: str :param cpus_enabled: The value to assign to the cpus_enabled property of this VmClusterSummary. :type cpus_enabled: int :param ocpus_enabled: The value to assign to the ocpus_enabled property of this VmClusterSummary. :type ocpus_enabled: float :param memory_size_in_gbs: The value to assign to the memory_size_in_gbs property of this VmClusterSummary. :type memory_size_in_gbs: int :param db_node_storage_size_in_gbs: The value to assign to the db_node_storage_size_in_gbs property of this VmClusterSummary. :type db_node_storage_size_in_gbs: int :param data_storage_size_in_tbs: The value to assign to the data_storage_size_in_tbs property of this VmClusterSummary. :type data_storage_size_in_tbs: float :param data_storage_size_in_gbs: The value to assign to the data_storage_size_in_gbs property of this VmClusterSummary. :type data_storage_size_in_gbs: float :param shape: The value to assign to the shape property of this VmClusterSummary. :type shape: str :param gi_version: The value to assign to the gi_version property of this VmClusterSummary. :type gi_version: str :param system_version: The value to assign to the system_version property of this VmClusterSummary. :type system_version: str :param ssh_public_keys: The value to assign to the ssh_public_keys property of this VmClusterSummary. :type ssh_public_keys: list[str] :param license_model: The value to assign to the license_model property of this VmClusterSummary. Allowed values for this property are: "LICENSE_INCLUDED", "BRING_YOUR_OWN_LICENSE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type license_model: str :param db_servers: The value to assign to the db_servers property of this VmClusterSummary. :type db_servers: list[str] :param freeform_tags: The value to assign to the freeform_tags property of this VmClusterSummary. :type freeform_tags: dict(str, str) :param defined_tags: The value to assign to the defined_tags property of this VmClusterSummary. :type defined_tags: dict(str, dict(str, object)) """ self.swagger_types = { 'id': 'str', 'compartment_id': 'str', 'last_patch_history_entry_id': 'str', 'lifecycle_state': 'str', 'display_name': 'str', 'time_created': 'datetime', 'lifecycle_details': 'str', 'time_zone': 'str', 'is_local_backup_enabled': 'bool', 'exadata_infrastructure_id': 'str', 'is_sparse_diskgroup_enabled': 'bool', 'vm_cluster_network_id': 'str', 'cpus_enabled': 'int', 'ocpus_enabled': 'float', 'memory_size_in_gbs': 'int', 'db_node_storage_size_in_gbs': 'int', 'data_storage_size_in_tbs': 'float', 'data_storage_size_in_gbs': 'float', 'shape': 'str', 'gi_version': 'str', 'system_version': 'str', 'ssh_public_keys': 'list[str]', 'license_model': 'str', 'db_servers': 'list[str]', 'freeform_tags': 'dict(str, str)', 'defined_tags': 'dict(str, dict(str, object))' } self.attribute_map = { 'id': 'id', 'compartment_id': 'compartmentId', 'last_patch_history_entry_id': 'lastPatchHistoryEntryId', 'lifecycle_state': 'lifecycleState', 'display_name': 'displayName', 'time_created': 'timeCreated', 'lifecycle_details': 'lifecycleDetails', 'time_zone': 'timeZone', 'is_local_backup_enabled': 'isLocalBackupEnabled', 'exadata_infrastructure_id': 'exadataInfrastructureId', 'is_sparse_diskgroup_enabled': 'isSparseDiskgroupEnabled', 'vm_cluster_network_id': 'vmClusterNetworkId', 'cpus_enabled': 'cpusEnabled', 'ocpus_enabled': 'ocpusEnabled', 'memory_size_in_gbs': 'memorySizeInGBs', 'db_node_storage_size_in_gbs': 'dbNodeStorageSizeInGBs', 'data_storage_size_in_tbs': 'dataStorageSizeInTBs', 'data_storage_size_in_gbs': 'dataStorageSizeInGBs', 'shape': 'shape', 'gi_version': 'giVersion', 'system_version': 'systemVersion', 'ssh_public_keys': 'sshPublicKeys', 'license_model': 'licenseModel', 'db_servers': 'dbServers', 'freeform_tags': 'freeformTags', 'defined_tags': 'definedTags' } self._id = None self._compartment_id = None self._last_patch_history_entry_id = None self._lifecycle_state = None self._display_name = None self._time_created = None self._lifecycle_details = None self._time_zone = None self._is_local_backup_enabled = None self._exadata_infrastructure_id = None self._is_sparse_diskgroup_enabled = None self._vm_cluster_network_id = None self._cpus_enabled = None self._ocpus_enabled = None self._memory_size_in_gbs = None self._db_node_storage_size_in_gbs = None self._data_storage_size_in_tbs = None self._data_storage_size_in_gbs = None self._shape = None self._gi_version = None self._system_version = None self._ssh_public_keys = None self._license_model = None self._db_servers = None self._freeform_tags = None self._defined_tags = None @property def id(self): """ Gets the id of this VmClusterSummary. The `OCID`__ of the VM cluster. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The id of this VmClusterSummary. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this VmClusterSummary. The `OCID`__ of the VM cluster. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param id: The id of this VmClusterSummary. :type: str """ self._id = id @property def compartment_id(self): """ Gets the compartment_id of this VmClusterSummary. The `OCID`__ of the compartment. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The compartment_id of this VmClusterSummary. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this VmClusterSummary. The `OCID`__ of the compartment. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this VmClusterSummary. :type: str """ self._compartment_id = compartment_id @property def last_patch_history_entry_id(self): """ Gets the last_patch_history_entry_id of this VmClusterSummary. The `OCID`__ of the last patch history. This value is updated as soon as a patch operation starts. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The last_patch_history_entry_id of this VmClusterSummary. :rtype: str """ return self._last_patch_history_entry_id @last_patch_history_entry_id.setter def last_patch_history_entry_id(self, last_patch_history_entry_id): """ Sets the last_patch_history_entry_id of this VmClusterSummary. The `OCID`__ of the last patch history. This value is updated as soon as a patch operation starts. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param last_patch_history_entry_id: The last_patch_history_entry_id of this VmClusterSummary. :type: str """ self._last_patch_history_entry_id = last_patch_history_entry_id @property def lifecycle_state(self): """ Gets the lifecycle_state of this VmClusterSummary. The current state of the VM cluster. Allowed values for this property are: "PROVISIONING", "AVAILABLE", "UPDATING", "TERMINATING", "TERMINATED", "FAILED", "MAINTENANCE_IN_PROGRESS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The lifecycle_state of this VmClusterSummary. :rtype: str """ return self._lifecycle_state @lifecycle_state.setter def lifecycle_state(self, lifecycle_state): """ Sets the lifecycle_state of this VmClusterSummary. The current state of the VM cluster. :param lifecycle_state: The lifecycle_state of this VmClusterSummary. :type: str """ allowed_values = ["PROVISIONING", "AVAILABLE", "UPDATING", "TERMINATING", "TERMINATED", "FAILED", "MAINTENANCE_IN_PROGRESS"] if not value_allowed_none_or_none_sentinel(lifecycle_state, allowed_values): lifecycle_state = 'UNKNOWN_ENUM_VALUE' self._lifecycle_state = lifecycle_state @property def display_name(self): """ Gets the display_name of this VmClusterSummary. The user-friendly name for the Exadata Cloud@Customer VM cluster. The name does not need to be unique. :return: The display_name of this VmClusterSummary. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this VmClusterSummary. The user-friendly name for the Exadata Cloud@Customer VM cluster. The name does not need to be unique. :param display_name: The display_name of this VmClusterSummary. :type: str """ self._display_name = display_name @property def time_created(self): """ Gets the time_created of this VmClusterSummary. The date and time that the VM cluster was created. :return: The time_created of this VmClusterSummary. :rtype: datetime """ return self._time_created @time_created.setter def time_created(self, time_created): """ Sets the time_created of this VmClusterSummary. The date and time that the VM cluster was created. :param time_created: The time_created of this VmClusterSummary. :type: datetime """ self._time_created = time_created @property def lifecycle_details(self): """ Gets the lifecycle_details of this VmClusterSummary. Additional information about the current lifecycle state. :return: The lifecycle_details of this VmClusterSummary. :rtype: str """ return self._lifecycle_details @lifecycle_details.setter def lifecycle_details(self, lifecycle_details): """ Sets the lifecycle_details of this VmClusterSummary. Additional information about the current lifecycle state. :param lifecycle_details: The lifecycle_details of this VmClusterSummary. :type: str """ self._lifecycle_details = lifecycle_details @property def time_zone(self): """ Gets the time_zone of this VmClusterSummary. The time zone of the Exadata infrastructure. For details, see `Exadata Infrastructure Time Zones`__. __ https://docs.cloud.oracle.com/Content/Database/References/timezones.htm :return: The time_zone of this VmClusterSummary. :rtype: str """ return self._time_zone @time_zone.setter def time_zone(self, time_zone): """ Sets the time_zone of this VmClusterSummary. The time zone of the Exadata infrastructure. For details, see `Exadata Infrastructure Time Zones`__. __ https://docs.cloud.oracle.com/Content/Database/References/timezones.htm :param time_zone: The time_zone of this VmClusterSummary. :type: str """ self._time_zone = time_zone @property def is_local_backup_enabled(self): """ Gets the is_local_backup_enabled of this VmClusterSummary. If true, database backup on local Exadata storage is configured for the VM cluster. If false, database backup on local Exadata storage is not available in the VM cluster. :return: The is_local_backup_enabled of this VmClusterSummary. :rtype: bool """ return self._is_local_backup_enabled @is_local_backup_enabled.setter def is_local_backup_enabled(self, is_local_backup_enabled): """ Sets the is_local_backup_enabled of this VmClusterSummary. If true, database backup on local Exadata storage is configured for the VM cluster. If false, database backup on local Exadata storage is not available in the VM cluster. :param is_local_backup_enabled: The is_local_backup_enabled of this VmClusterSummary. :type: bool """ self._is_local_backup_enabled = is_local_backup_enabled @property def exadata_infrastructure_id(self): """ Gets the exadata_infrastructure_id of this VmClusterSummary. The `OCID`__ of the Exadata infrastructure. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The exadata_infrastructure_id of this VmClusterSummary. :rtype: str """ return self._exadata_infrastructure_id @exadata_infrastructure_id.setter def exadata_infrastructure_id(self, exadata_infrastructure_id): """ Sets the exadata_infrastructure_id of this VmClusterSummary. The `OCID`__ of the Exadata infrastructure. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param exadata_infrastructure_id: The exadata_infrastructure_id of this VmClusterSummary. :type: str """ self._exadata_infrastructure_id = exadata_infrastructure_id @property def is_sparse_diskgroup_enabled(self): """ Gets the is_sparse_diskgroup_enabled of this VmClusterSummary. If true, sparse disk group is configured for the VM cluster. If false, sparse disk group is not created. :return: The is_sparse_diskgroup_enabled of this VmClusterSummary. :rtype: bool """ return self._is_sparse_diskgroup_enabled @is_sparse_diskgroup_enabled.setter def is_sparse_diskgroup_enabled(self, is_sparse_diskgroup_enabled): """ Sets the is_sparse_diskgroup_enabled of this VmClusterSummary. If true, sparse disk group is configured for the VM cluster. If false, sparse disk group is not created. :param is_sparse_diskgroup_enabled: The is_sparse_diskgroup_enabled of this VmClusterSummary. :type: bool """ self._is_sparse_diskgroup_enabled = is_sparse_diskgroup_enabled @property def vm_cluster_network_id(self): """ Gets the vm_cluster_network_id of this VmClusterSummary. The `OCID`__ of the VM cluster network. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :return: The vm_cluster_network_id of this VmClusterSummary. :rtype: str """ return self._vm_cluster_network_id @vm_cluster_network_id.setter def vm_cluster_network_id(self, vm_cluster_network_id): """ Sets the vm_cluster_network_id of this VmClusterSummary. The `OCID`__ of the VM cluster network. __ https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm :param vm_cluster_network_id: The vm_cluster_network_id of this VmClusterSummary. :type: str """ self._vm_cluster_network_id = vm_cluster_network_id @property def cpus_enabled(self): """ Gets the cpus_enabled of this VmClusterSummary. The number of enabled CPU cores. :return: The cpus_enabled of this VmClusterSummary. :rtype: int """ return self._cpus_enabled @cpus_enabled.setter def cpus_enabled(self, cpus_enabled): """ Sets the cpus_enabled of this VmClusterSummary. The number of enabled CPU cores. :param cpus_enabled: The cpus_enabled of this VmClusterSummary. :type: int """ self._cpus_enabled = cpus_enabled @property def ocpus_enabled(self): """ Gets the ocpus_enabled of this VmClusterSummary. The number of enabled OCPU cores. :return: The ocpus_enabled of this VmClusterSummary. :rtype: float """ return self._ocpus_enabled @ocpus_enabled.setter def ocpus_enabled(self, ocpus_enabled): """ Sets the ocpus_enabled of this VmClusterSummary. The number of enabled OCPU cores. :param ocpus_enabled: The ocpus_enabled of this VmClusterSummary. :type: float """ self._ocpus_enabled = ocpus_enabled @property def memory_size_in_gbs(self): """ Gets the memory_size_in_gbs of this VmClusterSummary. The memory allocated in GBs. :return: The memory_size_in_gbs of this VmClusterSummary. :rtype: int """ return self._memory_size_in_gbs @memory_size_in_gbs.setter def memory_size_in_gbs(self, memory_size_in_gbs): """ Sets the memory_size_in_gbs of this VmClusterSummary. The memory allocated in GBs. :param memory_size_in_gbs: The memory_size_in_gbs of this VmClusterSummary. :type: int """ self._memory_size_in_gbs = memory_size_in_gbs @property def db_node_storage_size_in_gbs(self): """ Gets the db_node_storage_size_in_gbs of this VmClusterSummary. The local node storage allocated in GBs. :return: The db_node_storage_size_in_gbs of this VmClusterSummary. :rtype: int """ return self._db_node_storage_size_in_gbs @db_node_storage_size_in_gbs.setter def db_node_storage_size_in_gbs(self, db_node_storage_size_in_gbs): """ Sets the db_node_storage_size_in_gbs of this VmClusterSummary. The local node storage allocated in GBs. :param db_node_storage_size_in_gbs: The db_node_storage_size_in_gbs of this VmClusterSummary. :type: int """ self._db_node_storage_size_in_gbs = db_node_storage_size_in_gbs @property def data_storage_size_in_tbs(self): """ Gets the data_storage_size_in_tbs of this VmClusterSummary. Size, in terabytes, of the DATA disk group. :return: The data_storage_size_in_tbs of this VmClusterSummary. :rtype: float """ return self._data_storage_size_in_tbs @data_storage_size_in_tbs.setter def data_storage_size_in_tbs(self, data_storage_size_in_tbs): """ Sets the data_storage_size_in_tbs of this VmClusterSummary. Size, in terabytes, of the DATA disk group. :param data_storage_size_in_tbs: The data_storage_size_in_tbs of this VmClusterSummary. :type: float """ self._data_storage_size_in_tbs = data_storage_size_in_tbs @property def data_storage_size_in_gbs(self): """ Gets the data_storage_size_in_gbs of this VmClusterSummary. Size, in gigabytes, of the DATA disk group. :return: The data_storage_size_in_gbs of this VmClusterSummary. :rtype: float """ return self._data_storage_size_in_gbs @data_storage_size_in_gbs.setter def data_storage_size_in_gbs(self, data_storage_size_in_gbs): """ Sets the data_storage_size_in_gbs of this VmClusterSummary. Size, in gigabytes, of the DATA disk group. :param data_storage_size_in_gbs: The data_storage_size_in_gbs of this VmClusterSummary. :type: float """ self._data_storage_size_in_gbs = data_storage_size_in_gbs @property def shape(self): """ Gets the shape of this VmClusterSummary. The shape of the Exadata infrastructure. The shape determines the amount of CPU, storage, and memory resources allocated to the instance. :return: The shape of this VmClusterSummary. :rtype: str """ return self._shape @shape.setter def shape(self, shape): """ Sets the shape of this VmClusterSummary. The shape of the Exadata infrastructure. The shape determines the amount of CPU, storage, and memory resources allocated to the instance. :param shape: The shape of this VmClusterSummary. :type: str """ self._shape = shape @property def gi_version(self): """ Gets the gi_version of this VmClusterSummary. The Oracle Grid Infrastructure software version for the VM cluster. :return: The gi_version of this VmClusterSummary. :rtype: str """ return self._gi_version @gi_version.setter def gi_version(self, gi_version): """ Sets the gi_version of this VmClusterSummary. The Oracle Grid Infrastructure software version for the VM cluster. :param gi_version: The gi_version of this VmClusterSummary. :type: str """ self._gi_version = gi_version @property def system_version(self): """ Gets the system_version of this VmClusterSummary. Operating system version of the image. :return: The system_version of this VmClusterSummary. :rtype: str """ return self._system_version @system_version.setter def system_version(self, system_version): """ Sets the system_version of this VmClusterSummary. Operating system version of the image. :param system_version: The system_version of this VmClusterSummary. :type: str """ self._system_version = system_version @property def ssh_public_keys(self): """ Gets the ssh_public_keys of this VmClusterSummary. The public key portion of one or more key pairs used for SSH access to the VM cluster. :return: The ssh_public_keys of this VmClusterSummary. :rtype: list[str] """ return self._ssh_public_keys @ssh_public_keys.setter def ssh_public_keys(self, ssh_public_keys): """ Sets the ssh_public_keys of this VmClusterSummary. The public key portion of one or more key pairs used for SSH access to the VM cluster. :param ssh_public_keys: The ssh_public_keys of this VmClusterSummary. :type: list[str] """ self._ssh_public_keys = ssh_public_keys @property def license_model(self): """ Gets the license_model of this VmClusterSummary. The Oracle license model that applies to the VM cluster. The default is LICENSE_INCLUDED. Allowed values for this property are: "LICENSE_INCLUDED", "BRING_YOUR_OWN_LICENSE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The license_model of this VmClusterSummary. :rtype: str """ return self._license_model @license_model.setter def license_model(self, license_model): """ Sets the license_model of this VmClusterSummary. The Oracle license model that applies to the VM cluster. The default is LICENSE_INCLUDED. :param license_model: The license_model of this VmClusterSummary. :type: str """ allowed_values = ["LICENSE_INCLUDED", "BRING_YOUR_OWN_LICENSE"] if not value_allowed_none_or_none_sentinel(license_model, allowed_values): license_model = 'UNKNOWN_ENUM_VALUE' self._license_model = license_model @property def db_servers(self): """ Gets the db_servers of this VmClusterSummary. The list of Db server. :return: The db_servers of this VmClusterSummary. :rtype: list[str] """ return self._db_servers @db_servers.setter def db_servers(self, db_servers): """ Sets the db_servers of this VmClusterSummary. The list of Db server. :param db_servers: The db_servers of this VmClusterSummary. :type: list[str] """ self._db_servers = db_servers @property def freeform_tags(self): """ Gets the freeform_tags of this VmClusterSummary. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The freeform_tags of this VmClusterSummary. :rtype: dict(str, str) """ return self._freeform_tags @freeform_tags.setter def freeform_tags(self, freeform_tags): """ Sets the freeform_tags of this VmClusterSummary. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param freeform_tags: The freeform_tags of this VmClusterSummary. :type: dict(str, str) """ self._freeform_tags = freeform_tags @property def defined_tags(self): """ Gets the defined_tags of this VmClusterSummary. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The defined_tags of this VmClusterSummary. :rtype: dict(str, dict(str, object)) """ return self._defined_tags @defined_tags.setter def defined_tags(self, defined_tags): """ Sets the defined_tags of this VmClusterSummary. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param defined_tags: The defined_tags of this VmClusterSummary. :type: dict(str, dict(str, object)) """ self._defined_tags = defined_tags def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
34.666311
245
0.66965
a089540c79194b9dcc83a29076eb3387a911b327
11,500
py
Python
o3seespy/command/uniaxial_material/pytz.py
o3seespy/o3seespy
4fdd942370df1ac8d454e361f651405717b8584c
[ "MIT", "BSD-3-Clause" ]
16
2019-10-24T17:58:46.000Z
2022-03-01T19:48:06.000Z
o3seespy/command/uniaxial_material/pytz.py
o3seespy/o3seespy
4fdd942370df1ac8d454e361f651405717b8584c
[ "MIT", "BSD-3-Clause" ]
5
2020-04-17T01:39:27.000Z
2020-12-18T05:07:58.000Z
o3seespy/command/uniaxial_material/pytz.py
o3seespy/o3seespy
4fdd942370df1ac8d454e361f651405717b8584c
[ "MIT", "BSD-3-Clause" ]
6
2020-02-20T02:13:11.000Z
2021-11-01T19:08:41.000Z
from o3seespy.command.uniaxial_material.base_material import UniaxialMaterialBase class PySimple1(UniaxialMaterialBase): """ The PySimple1 UniaxialMaterial Class This command is used to construct a PySimple1 uniaxial material object. """ op_type = 'PySimple1' def __init__(self, osi, soil_type, pult, y50, cd, c=0.0): """ Initial method for PySimple1 Parameters ---------- osi: o3seespy.OpenSeesInstance soil_type: int Soiltype = 1 backbone of p-y curve approximates matlock (1970) soft clay relation. soiltype = 2 backbone of p-y curve approximates api (1993) sand relation. pult: float Ultimate capacity of the p-y material. note that "p" or "pult" are distributed loads [force per length of pile] in common design equations, but are both loads for this uniaxial_material [i.e., distributed load times the tributary length of the pile]. y50: float Displacement at which 50% of pult is mobilized in monotonic loading. cd: float Variable that sets the drag resistance within a fully-mobilized gap as cd*pult. c: float, optional The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). (optional default = 0.0). nonzero c values are used to represent radiation damping effects Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.uniaxial_material.PySimple1(osi, soil_type=1, pult=1.0, y50=1.0, cd=1.0, c=0.0) """ self.osi = osi self.soil_type = int(soil_type) self.pult = float(pult) self.y50 = float(y50) self.cd = float(cd) self.c = float(c) if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.soil_type, self.pult, self.y50, self.cd, self.c] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) class TzSimple1(UniaxialMaterialBase): """ The TzSimple1 UniaxialMaterial Class This command is used to construct a TzSimple1 uniaxial material object. """ op_type = 'TzSimple1' def __init__(self, osi, soil_type, tult, z50, c=0.0): """ Initial method for TzSimple1 Parameters ---------- osi: o3seespy.OpenSeesInstance soil_type: int Soiltype = 1 backbone of t-z curve approximates reese and o'neill (1987). soiltype = 2 backbone of t-z curve approximates mosher (1984) relation. tult: float Ultimate capacity of the t-z material. see note 1. z50: float Displacement at which 50% of tult is mobilized in monotonic loading. c: float, optional The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). (optional default = 0.0). see note 2. Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.uniaxial_material.TzSimple1(osi, soil_type=1, tult=1.0, z50=1.0, c=0.0) """ self.osi = osi self.soil_type = int(soil_type) self.tult = float(tult) self.z50 = float(z50) self.c = float(c) if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.soil_type, self.tult, self.z50, self.c] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) class QzSimple1(UniaxialMaterialBase): """ The QzSimple1 UniaxialMaterial Class This command is used to construct a QzSimple1 uniaxial material object. """ op_type = 'QzSimple1' def __init__(self, osi, qz_type, qult, z50, suction=0.0, c=0.0): """ Initial method for QzSimple1 Parameters ---------- osi: o3seespy.OpenSeesInstance qz_type: int Qztype = 1 backbone of q-z curve approximates reese and o'neill's (1987) relation for drilled shafts in clay. qztype = 2 backbone of q-z curve approximates vijayvergiya's (1977) relation for piles in sand. qult: float Ultimate capacity of the q-z material. see note 1. z50: float Displacement at which 50% of qult is mobilized in monotonic loading. see note 2. suction: float, optional Uplift resistance is equal to suction*qult. default = 0.0. the value of suction must be 0.0 to 0.1.* c: float, optional The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). default = 0.0. nonzero c values are used to represent radiation damping effects.* Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.uniaxial_material.QzSimple1(osi, qz_type=1, qult=1.0, z50=1.0, suction=0.0, c=0.0) """ self.osi = osi self.qz_type = int(qz_type) self.qult = float(qult) self.z50 = float(z50) self.suction = float(suction) self.c = float(c) if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.qz_type, self.qult, self.z50, self.suction, self.c] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) class PyLiq1(UniaxialMaterialBase): """ The PyLiq1 UniaxialMaterial Class """ op_type = 'PyLiq1' def __init__(self, osi, soil_type, pult, y50, cd, c, p_res, ele1, ele2, time_series=None): """ Initial method for PyLiq1 Parameters ---------- osi: o3seespy.OpenSeesInstance soil_type: int Soiltype = 1 backbone of p-y curve approximates matlock (1970) soft clay relation. soiltype = 2 backbone of p-y curve approximates api (1993) sand relation. pult: float Ultimate capacity of the p-y material. note that "p" or "pult" are distributed loads [force per length of pile] in common design equations, but are both loads for this uniaxial_material [i.e., distributed load times the tributary length of the pile]. y50: float Displacement at which 50% of pult is mobilized in monotonic loading. cd: float Variable that sets the drag resistance within a fully-mobilized gap as cd*pult. c: float The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). (optional default = 0.0). nonzero c values are used to represent radiation damping effects p_res: float Sets the minimum (or residual) peak resistance that the material retains as the adjacent solid soil elements liquefy ele1: float Are the eleobject (element numbers) for the two solid elements from which pyliq1 will obtain mean effective stresses and excess pore pressures ele2: float Are the eleobject (element numbers) for the two solid elements from which pyliq1 will obtain mean effective stresses and excess pore pressures time_series: obj, optional Alternatively, mean effective stress can be supplied by a time series by specifying the text string ``'-timeseries'`` and the object of the series ``seriesobject``. Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.uniaxial_material.PyLiq1(osi, soil_type=1, pult=1.0, y50=1.0, cd=1.0, c=1.0, p_res=1.0, ele1=1.0, ele2=1.0) """ self.osi = osi self.soil_type = int(soil_type) self.pult = float(pult) self.y50 = float(y50) self.cd = float(cd) self.c = float(c) self.p_res = float(p_res) self.ele1 = float(ele1) self.ele2 = float(ele2) self.time_series = time_series if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.soil_type, self.pult, self.y50, self.cd, self.c, self.p_res, self.ele1, self.ele2] if getattr(self, 'time_series') is not None: self._parameters += ['-timeSeries', self.time_series.tag] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) def set_update_material_stage(self, value, ele=None, eles=None): self.set_parameter(self.osi, 'updateMaterialStage', value, ele, eles) class TzLiq1(UniaxialMaterialBase): """ The TzLiq1 UniaxialMaterial Class """ op_type = 'TzLiq1' def __init__(self, osi, tz_type, tult, z50, c, ele1, ele2, time_series=None): """ Initial method for TzLiq1 Parameters ---------- osi: o3seespy.OpenSeesInstance tz_type: int Tztype = 1 backbone of t-z curve approximates reese and o'neill (1987). tztype = 2 backbone of t-z curve approximates mosher (1984) relation. tult: float Ultimate capacity of the t-z material. see note 1. z50: float Displacement at which 50% of tult is mobilized in monotonic loading. c: float The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). ele1: float Are the eleobject (element numbers) for the two solid elements from which pyliq1 will obtain mean effective stresses and excess pore pressures ele2: float Are the eleobject (element numbers) for the two solid elements from which pyliq1 will obtain mean effective stresses and excess pore pressures time_series: obj, optional Alternatively, mean effective stress can be supplied by a time series by specifying the text string ``'-timeseries'`` and the object of the seriesm ``seriesobject``. Examples -------- >>> import o3seespy as o3 >>> osi = o3.OpenSeesInstance(ndm=2) >>> o3.uniaxial_material.TzLiq1(osi, tz_type=1, tult=1.0, z50=1.0, c=1.0, ele1=1.0, ele2=1.0) """ self.osi = osi self.tz_type = int(tz_type) self.tult = float(tult) self.z50 = float(z50) self.c = float(c) self.ele1 = float(ele1) self.ele2 = float(ele2) self.time_series = time_series if osi is not None: osi.n_mat += 1 self._tag = osi.n_mat self._parameters = [self.op_type, self._tag, self.tz_type, self.tult, self.z50, self.c, self.ele1, self.ele2] if getattr(self, 'time_series') is not None: self._parameters += ['-timeSeries', self.time_series.tag] if osi is None: self.built = 0 if osi is not None: self.to_process(osi) def set_update_material_stage(self, value, ele=None, eles=None): self.set_parameter(self.osi, 'updateMaterialStage', value, ele, eles)
39.930556
140
0.607652
543f1fb0cc8ee77fc6838c3d2fcab5cd2b6f2d3f
158
py
Python
pykp/metric/__init__.py
VieZhong/seq2seq-keyphrase-pytorch
92a41469ddbe6d76a545c4e24f6c672b98e0b289
[ "Apache-2.0" ]
152
2019-10-07T03:15:53.000Z
2022-03-24T16:26:26.000Z
pykp/metric/__init__.py
VieZhong/seq2seq-keyphrase-pytorch
92a41469ddbe6d76a545c4e24f6c672b98e0b289
[ "Apache-2.0" ]
46
2019-11-04T09:51:51.000Z
2022-03-06T18:40:13.000Z
pykp/metric/__init__.py
VieZhong/seq2seq-keyphrase-pytorch
92a41469ddbe6d76a545c4e24f6c672b98e0b289
[ "Apache-2.0" ]
41
2018-03-29T13:41:12.000Z
2021-06-22T14:28:21.000Z
# -*- coding: utf-8 -*- """ Python File Template """ import os __author__ = "Rui Meng" __email__ = "rui.meng@pitt.edu" if __name__ == '__main__': pass
13.166667
31
0.620253
acd1fbf32e2713c6a1e36d0b3d940b9ca8919618
11,668
py
Python
torchdynamo/variables/lists.py
frank-wei/torchdynamo
26c4c1b593bebf4246e566749dade38254b59ffb
[ "BSD-3-Clause" ]
41
2021-09-14T14:58:06.000Z
2022-02-25T12:36:22.000Z
torchdynamo/variables/lists.py
frank-wei/torchdynamo
26c4c1b593bebf4246e566749dade38254b59ffb
[ "BSD-3-Clause" ]
62
2022-03-11T00:12:37.000Z
2022-03-31T20:04:27.000Z
torchdynamo/variables/lists.py
frank-wei/torchdynamo
26c4c1b593bebf4246e566749dade38254b59ffb
[ "BSD-3-Clause" ]
6
2021-11-19T17:50:56.000Z
2022-02-10T22:31:58.000Z
from typing import Dict from typing import List import torch from .. import variables from ..bytecode_transformation import create_instruction from ..exc import unimplemented from ..source import GetItemSource from ..utils import namedtuple_fields from .base import MutableLocal from .base import VariableTracker class BaseListVariable(VariableTracker): @staticmethod def cls_for(obj): return { iter: ListIteratorVariable, list: ListVariable, slice: SliceVariable, torch.Size: SizeVariable, tuple: TupleVariable, }[obj] def __init__(self, items: List[VariableTracker], **kwargs): super(BaseListVariable, self).__init__(**kwargs) assert isinstance(items, list) assert all(isinstance(x, VariableTracker) for x in items) self.items: List[VariableTracker] = items def _as_proxy(self): return [x.as_proxy() for x in self.items] def as_python_constant(self): return self.python_type()([x.as_python_constant() for x in self.items]) def as_proxy(self): return self.python_type()(self._as_proxy()) def getitem_const(self, arg: VariableTracker): index = arg.as_python_constant() if isinstance(index, slice): if self.source is not None: return self.clone( items=self.items[index], source=GetItemSource(self.source, index), mutable_local=None, ).add_options(arg, self) else: return self.clone( items=self.items[index], mutable_local=None ).add_options(arg, self) else: assert isinstance(index, int) return self.items[index].add_options(arg, self) def unpack_var_sequence(self, tx): return [x.add_options(self) for x in self.items] def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) if name == "__getitem__": assert not kwargs and len(args) == 1 return self.getitem_const(args[0]) elif name == "__add__": assert not kwargs and len(args) == 1 return type(self)(self.items + args[0].items, **options) elif ( name == "__contains__" and len(args) == 1 and args[0].is_python_constant() and all(x.is_python_constant() for x in self.items) ): assert not kwargs search = args[0].as_python_constant() result = any(x.as_python_constant() == search for x in self.items) return variables.ConstantVariable(result, **options) return super(BaseListVariable, self).call_method(tx, name, args, kwargs) class RangeVariable(BaseListVariable): def __init__(self, value, items=None, guards=None, **kwargs): if items is None: items = [variables.ConstantVariable(x, guards=guards) for x in value] super().__init__(items, guards=guards, **kwargs) self.value = value def python_type(self): return range def as_python_constant(self): return self.value def reconstruct(self, codegen): assert "range" not in codegen.tx.f_globals range_fn = codegen.create_load_global("range", add=True) if self.value.step == 1: if self.value.start == 0: return [ range_fn, codegen.create_load_const(self.value.stop), create_instruction("CALL_FUNCTION", 1), ] return [ range_fn, codegen.create_load_const(self.value.start), codegen.create_load_const(self.value.stop), create_instruction("CALL_FUNCTION", 2), ] return [ range_fn, codegen.create_load_const(self.value.start), codegen.create_load_const(self.value.stop), codegen.create_load_const(self.value.step), create_instruction("CALL_FUNCTION", 3), ] class ListVariable(BaseListVariable): def python_type(self): return list def reconstruct(self, codegen): codegen.foreach(self.items) return [create_instruction("BUILD_LIST", len(self.items))] def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) if name == "append" and self.mutable_local: assert not kwargs (arg,) = args return tx.replace_all( self, ListVariable(self.items + [arg], **options), ) elif ( name in ("extend", "__iadd__") and self.mutable_local and args and args[0].has_unpack_var_sequence(tx) ): assert not kwargs (arg,) = args return tx.replace_all( self, ListVariable( list(self.items) + list(arg.unpack_var_sequence(tx)), **options, ), ) elif name == "insert" and self.mutable_local: assert not kwargs idx, value = args items = list(self.items) items.insert(idx.as_python_constant(), value) return tx.replace_all( self, ListVariable(items, **options), ) elif name == "pop" and self.mutable_local: assert not kwargs items = list(self.items) result = items.pop(*[a.as_python_constant() for a in args]) tx.replace_all( self, ListVariable(items, **options), ) return result elif name == "clear" and self.mutable_local: assert not kwargs and not args return tx.replace_all( self, ListVariable([], **options), ) elif ( name == "__setitem__" and self.mutable_local and args and args[0].is_python_constant() ): assert not kwargs key, value = args items = list(self.items) items[key.as_python_constant()] = value result = ListVariable(items, **options) return tx.replace_all(self, result) else: return super().call_method(tx, name, args, kwargs) class TupleVariable(BaseListVariable): def python_type(self): return tuple def reconstruct(self, codegen): codegen.foreach(self.items) return [create_instruction("BUILD_TUPLE", len(self.items))] def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": options = VariableTracker.propagate(self, args, kwargs.values()) if ( name in ("__add__", "__iadd__") and len(args) == 1 and isinstance(args[0], TupleVariable) ): assert not kwargs return TupleVariable(self.items + args[0].items, **options) elif ( name in ("__add__", "__iadd__") and len(args) == 1 and isinstance(args[0], variables.ConstantVariable) ): assert not kwargs return TupleVariable( self.items + list(args[0].unpack_var_sequence(self)), **options ) return super().call_method(tx, name, args, kwargs) class SizeVariable(TupleVariable): """torch.Size(...)""" def python_type(self): return torch.Size def reconstruct(self, codegen): codegen.load_import_from("torch", "Size") codegen.foreach(self.items) build_torch_size = [ create_instruction("BUILD_TUPLE", len(self.items)), create_instruction("CALL_FUNCTION", 1), ] return build_torch_size class NamedTupleVariable(TupleVariable): def __init__(self, items, tuple_cls, **kwargs): super().__init__(items, **kwargs) self.tuple_cls = tuple_cls def python_type(self): return self.tuple_cls def reconstruct(self, codegen): create_fn = getattr(self.tuple_cls, "_make", self.tuple_cls) codegen.append_output(codegen._create_load_const(create_fn)) codegen.foreach(self.items) return [ create_instruction("BUILD_TUPLE", len(self.items)), create_instruction("CALL_FUNCTION", 1), ] def var_getattr(self, tx, name): fields = namedtuple_fields(self.tuple_cls) if name not in fields: unimplemented(f"NamedTupleVariable.{name}") return self.items[fields.index(name)].add_options(self) def call_hasattr(self, tx, name: str) -> "VariableTracker": options = VariableTracker.propagate(self) fields = namedtuple_fields(self.tuple_cls) return variables.ConstantVariable(name in fields, **options) class SliceVariable(BaseListVariable): def __init__(self, items, **kwargs): start, stop, step = [variables.ConstantVariable(None)] * 3 if len(items) == 1: (stop,) = items elif len(items) == 2: start, stop = items elif len(items) == 3: start, stop, step = items else: assert False super().__init__([start, stop, step], **kwargs) def as_proxy(self): return slice(*self._as_proxy()) def python_type(self): return slice def as_python_constant(self): return slice(*[x.as_python_constant() for x in self.items]) def reconstruct(self, codegen): codegen.foreach(self.items) return [create_instruction("BUILD_SLICE", len(self.items))] def var_getattr(self, tx, name): fields = ["start", "stop", "step"] if name not in fields: unimplemented(f"slice.{name}") return self.items[fields.index(name)].add_options(self) class ListIteratorVariable(VariableTracker): def __init__(self, items, index: int = 0, **kwargs): super(ListIteratorVariable, self).__init__(**kwargs) assert isinstance(items, list) assert all(isinstance(x, VariableTracker) for x in items) self.items = items self.index = index def next_variables(self): assert self.mutable_local if self.index >= len(self.items): raise StopIteration() return self.items[self.index].add_options(self), ListIteratorVariable( self.items, self.index + 1, mutable_local=MutableLocal(), **VariableTracker.propagate([self]), ) def as_python_constant(self): if self.index > 0: raise NotImplementedError() return iter([x.as_python_constant() for x in self.items]) def unpack_var_sequence(self, tx): return [x.add_options(self) for x in self.items[self.index :]] def reconstruct(self, codegen): remaining_items = self.items[self.index :] codegen.foreach(remaining_items) return [ create_instruction("BUILD_TUPLE", len(remaining_items)), create_instruction("GET_ITER"), ]
33.147727
81
0.580905
374f4269ce4ea2819f2c0716553a24bf9355229d
530
py
Python
projects/migrations/0015_review_project_id.py
kiptoo-rotich/Awards
7206861279df86328b49e81af0429380a14676de
[ "MIT" ]
null
null
null
projects/migrations/0015_review_project_id.py
kiptoo-rotich/Awards
7206861279df86328b49e81af0429380a14676de
[ "MIT" ]
null
null
null
projects/migrations/0015_review_project_id.py
kiptoo-rotich/Awards
7206861279df86328b49e81af0429380a14676de
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-07-19 16:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('projects', '0014_remove_review_project_id'), ] operations = [ migrations.AddField( model_name='review', name='project_id', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='projects.projects'), preserve_default=False, ), ]
25.238095
116
0.645283
90a6ee5541cdf2baf41de31f5e91b873be0c5a34
39,294
py
Python
test/aqua/operators/test_op_construction.py
TDHTTTT/qiskit-aqua
3486ea6da7a2c799c86a6590d2813088d76c99e0
[ "Apache-2.0" ]
1
2020-10-02T15:35:03.000Z
2020-10-02T15:35:03.000Z
test/aqua/operators/test_op_construction.py
vikpande/qiskit-aqua
b45f952e342398156e9ed61a2126a85b4d55effd
[ "Apache-2.0" ]
null
null
null
test/aqua/operators/test_op_construction.py
vikpande/qiskit-aqua
b45f952e342398156e9ed61a2126a85b4d55effd
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Operator construction, including OpPrimitives and singletons. """ import unittest from test.aqua import QiskitAquaTestCase import itertools import scipy from scipy.stats import unitary_group import numpy as np from ddt import ddt, data from qiskit import QiskitError from qiskit.aqua import AquaError from qiskit.circuit import QuantumCircuit, QuantumRegister, Instruction, Parameter, ParameterVector from qiskit.extensions.exceptions import ExtensionError from qiskit.quantum_info import Operator, Pauli, Statevector from qiskit.circuit.library import CZGate, ZGate from qiskit.aqua.operators import ( X, Y, Z, I, CX, T, H, Minus, PrimitiveOp, PauliOp, CircuitOp, MatrixOp, EvolvedOp, StateFn, CircuitStateFn, VectorStateFn, DictStateFn, OperatorStateFn, ListOp, ComposedOp, TensoredOp, SummedOp ) # pylint: disable=invalid-name @ddt class TestOpConstruction(QiskitAquaTestCase): """Operator Construction tests.""" def test_pauli_primitives(self): """ from to file test """ newop = X ^ Y ^ Z ^ I self.assertEqual(newop.primitive, Pauli(label='XYZI')) kpower_op = (Y ^ 5) ^ (I ^ 3) self.assertEqual(kpower_op.primitive, Pauli(label='YYYYYIII')) kpower_op2 = (Y ^ I) ^ 4 self.assertEqual(kpower_op2.primitive, Pauli(label='YIYIYIYI')) # Check immutability self.assertEqual(X.primitive, Pauli(label='X')) self.assertEqual(Y.primitive, Pauli(label='Y')) self.assertEqual(Z.primitive, Pauli(label='Z')) self.assertEqual(I.primitive, Pauli(label='I')) def test_composed_eval(self): """ Test eval of ComposedOp """ self.assertAlmostEqual(Minus.eval('1'), -.5 ** .5) def test_evals(self): """ evals test """ # pylint: disable=no-member # TODO: Think about eval names self.assertEqual(Z.eval('0').eval('0'), 1) self.assertEqual(Z.eval('1').eval('0'), 0) self.assertEqual(Z.eval('0').eval('1'), 0) self.assertEqual(Z.eval('1').eval('1'), -1) self.assertEqual(X.eval('0').eval('0'), 0) self.assertEqual(X.eval('1').eval('0'), 1) self.assertEqual(X.eval('0').eval('1'), 1) self.assertEqual(X.eval('1').eval('1'), 0) self.assertEqual(Y.eval('0').eval('0'), 0) self.assertEqual(Y.eval('1').eval('0'), -1j) self.assertEqual(Y.eval('0').eval('1'), 1j) self.assertEqual(Y.eval('1').eval('1'), 0) with self.assertRaises(ValueError): Y.eval('11') with self.assertRaises(ValueError): (X ^ Y).eval('1111') with self.assertRaises(ValueError): Y.eval((X ^ X).to_matrix_op()) # Check that Pauli logic eval returns same as matrix logic self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('0'), 1) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('0'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('1'), 0) self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('1'), -1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('0'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('1'), 1) self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('1'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('0'), 0) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('0'), -1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('1'), 1j) self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('1'), 0) pauli_op = Z ^ I ^ X ^ Y mat_op = PrimitiveOp(pauli_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=pauli_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): # print('{} {} {} {}'.format(bstr1, bstr2, pauli_op.eval(bstr1, bstr2), # mat_op.eval(bstr1, bstr2))) np.testing.assert_array_almost_equal(pauli_op.eval(bstr1).eval(bstr2), mat_op.eval(bstr1).eval(bstr2)) gnarly_op = SummedOp([(H ^ I ^ Y).compose(X ^ X ^ Z).tensor(Z), PrimitiveOp(Operator.from_label('+r0I')), 3 * (X ^ CX ^ T)], coeff=3 + .2j) gnarly_mat_op = PrimitiveOp(gnarly_op.to_matrix()) full_basis = list(map(''.join, itertools.product('01', repeat=gnarly_op.num_qubits))) for bstr1, bstr2 in itertools.product(full_basis, full_basis): np.testing.assert_array_almost_equal(gnarly_op.eval(bstr1).eval(bstr2), gnarly_mat_op.eval(bstr1).eval(bstr2)) def test_circuit_construction(self): """ circuit construction test """ hadq2 = H ^ I cz = hadq2.compose(CX).compose(hadq2) qc = QuantumCircuit(2) qc.append(cz.primitive, qargs=range(2)) ref_cz_mat = PrimitiveOp(CZGate()).to_matrix() np.testing.assert_array_almost_equal(cz.to_matrix(), ref_cz_mat) def test_io_consistency(self): """ consistency test """ new_op = X ^ Y ^ I label = 'XYI' # label = new_op.primitive.to_label() self.assertEqual(str(new_op.primitive), label) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), Operator.from_label(label).data) self.assertEqual(new_op.primitive, Pauli(label=label)) x_mat = X.primitive.to_matrix() y_mat = Y.primitive.to_matrix() i_mat = np.eye(2, 2) np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), np.kron(np.kron(x_mat, y_mat), i_mat)) hi = np.kron(H.to_matrix(), I.to_matrix()) hi2 = Operator.from_label('HI').data hi3 = (H ^ I).to_matrix() np.testing.assert_array_almost_equal(hi, hi2) np.testing.assert_array_almost_equal(hi2, hi3) xy = np.kron(X.to_matrix(), Y.to_matrix()) xy2 = Operator.from_label('XY').data xy3 = (X ^ Y).to_matrix() np.testing.assert_array_almost_equal(xy, xy2) np.testing.assert_array_almost_equal(xy2, xy3) # Check if numpy array instantiation is the same as from Operator matrix_op = Operator.from_label('+r') np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # Ditto list of lists np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op.data.tolist()).to_matrix(), PrimitiveOp(matrix_op.data).to_matrix()) # TODO make sure this works once we resolve endianness mayhem # qc = QuantumCircuit(3) # qc.x(2) # qc.y(1) # from qiskit import BasicAer, QuantumCircuit, execute # unitary = execute(qc, BasicAer.get_backend('unitary_simulator')).result().get_unitary() # np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(), unitary) def test_to_matrix(self): """to matrix text """ np.testing.assert_array_equal(X.to_matrix(), Operator.from_label('X').data) np.testing.assert_array_equal(Y.to_matrix(), Operator.from_label('Y').data) np.testing.assert_array_equal(Z.to_matrix(), Operator.from_label('Z').data) op1 = Y + H np.testing.assert_array_almost_equal(op1.to_matrix(), Y.to_matrix() + H.to_matrix()) op2 = op1 * .5 np.testing.assert_array_almost_equal(op2.to_matrix(), op1.to_matrix() * .5) op3 = (4 - .6j) * op2 np.testing.assert_array_almost_equal(op3.to_matrix(), op2.to_matrix() * (4 - .6j)) op4 = op3.tensor(X) np.testing.assert_array_almost_equal(op4.to_matrix(), np.kron(op3.to_matrix(), X.to_matrix())) op5 = op4.compose(H ^ I) np.testing.assert_array_almost_equal(op5.to_matrix(), np.dot(op4.to_matrix(), (H ^ I).to_matrix())) op6 = op5 + PrimitiveOp(Operator.from_label('+r').data) np.testing.assert_array_almost_equal( op6.to_matrix(), op5.to_matrix() + Operator.from_label('+r').data) def test_circuit_op_to_matrix(self): """ test CircuitOp.to_matrix """ qc = QuantumCircuit(1) qc.rz(1.0, 0) qcop = CircuitOp(qc) np.testing.assert_array_almost_equal( qcop.to_matrix(), scipy.linalg.expm(-0.5j * Z.to_matrix())) def test_matrix_to_instruction(self): """Test MatrixOp.to_instruction yields an Instruction object.""" matop = (H ^ 3).to_matrix_op() with self.subTest('assert to_instruction returns Instruction'): self.assertIsInstance(matop.to_instruction(), Instruction) matop = ((H ^ 3) + (Z ^ 3)).to_matrix_op() with self.subTest('matrix operator is not unitary'): with self.assertRaises(ExtensionError): matop.to_instruction() def test_adjoint(self): """ adjoint test """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) np.testing.assert_array_almost_equal(np.conj(np.transpose(gnarly_op.to_matrix())), gnarly_op.adjoint().to_matrix()) def test_primitive_strings(self): """ get primitives test """ self.assertEqual(X.primitive_strings(), {'Pauli'}) gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) self.assertEqual(gnarly_op.primitive_strings(), {'QuantumCircuit', 'Matrix'}) def test_to_pauli_op(self): """ Test to_pauli_op method """ gnarly_op = 3 * (H ^ I ^ Y).compose(X ^ X ^ Z).tensor(T ^ Z) + \ PrimitiveOp(Operator.from_label('+r0IX').data) mat_op = gnarly_op.to_matrix_op() pauli_op = gnarly_op.to_pauli_op() self.assertIsInstance(pauli_op, SummedOp) for p in pauli_op: self.assertIsInstance(p, PauliOp) np.testing.assert_array_almost_equal(mat_op.to_matrix(), pauli_op.to_matrix()) def test_circuit_permute(self): r""" Test the CircuitOp's .permute method """ perm = range(7)[::-1] c_op = (((CX ^ 3) ^ X) @ (H ^ 7) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X) @ (Y ^ (CX ^ 3)) @ (X ^ Y ^ Z ^ I ^ X ^ X ^ X)) c_op_perm = c_op.permute(perm) self.assertNotEqual(c_op, c_op_perm) c_op_id = c_op_perm.permute(perm) self.assertEqual(c_op, c_op_id) def test_summed_op_reduce(self): """Test SummedOp""" sum_op = (X ^ X * 2) + (Y ^ Y) # type: SummedOp with self.subTest('SummedOp test 1'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1]) sum_op = (X ^ X * 2) + (Y ^ Y) sum_op += Y ^ Y with self.subTest('SummedOp test 2-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 2-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 2]) sum_op = (X ^ X * 2) + (Y ^ Y) sum_op += (Y ^ Y) + (X ^ X * 2) with self.subTest('SummedOp test 3-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY', 'XX']) self.assertListEqual([op.coeff for op in sum_op], [2, 1, 1, 2]) sum_op = sum_op.reduce() with self.subTest('SummedOp test 3-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) with self.subTest('SummedOp test 4-a'): self.assertEqual(sum_op.coeff, 2) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 4-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += Y ^ Y with self.subTest('SummedOp test 5-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 5-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 3]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += (X ^ X) * 2 + (Y ^ Y) with self.subTest('SummedOp test 6-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 2, 1]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 6-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [6, 3]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) sum_op += sum_op with self.subTest('SummedOp test 7-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 4, 2]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 7-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY']) self.assertListEqual([op.coeff for op in sum_op], [8, 4]) sum_op = SummedOp([X ^ X * 2, Y ^ Y], 2) + SummedOp([X ^ X * 2, Z ^ Z], 3) with self.subTest('SummedOp test 8-a'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'XX', 'ZZ']) self.assertListEqual([op.coeff for op in sum_op], [4, 2, 6, 3]) sum_op = sum_op.collapse_summands() with self.subTest('SummedOp test 8-b'): self.assertEqual(sum_op.coeff, 1) self.assertListEqual([str(op.primitive) for op in sum_op], ['XX', 'YY', 'ZZ']) self.assertListEqual([op.coeff for op in sum_op], [10, 2, 3]) def test_compose_op_of_different_dim(self): """ Test if smaller operator expands to correct dim when composed with bigger operator. Test if PrimitiveOps compose methods are consistent. """ # PauliOps of different dim xy_p = (X ^ Y) xyz_p = (X ^ Y ^ Z) pauli_op = xy_p @ xyz_p expected_result = (I ^ I ^ Z) self.assertEqual(pauli_op, expected_result) # MatrixOps of different dim xy_m = xy_p.to_matrix_op() xyz_m = xyz_p.to_matrix_op() matrix_op = xy_m @ xyz_m self.assertEqual(matrix_op, expected_result.to_matrix_op()) # CircuitOps of different dim xy_c = xy_p.to_circuit_op() xyz_c = xyz_p.to_circuit_op() circuit_op = xy_c @ xyz_c self.assertTrue(np.array_equal(pauli_op.to_matrix(), matrix_op.to_matrix())) self.assertTrue(np.allclose(pauli_op.to_matrix(), circuit_op.to_matrix(), rtol=1e-14)) self.assertTrue(np.allclose(matrix_op.to_matrix(), circuit_op.to_matrix(), rtol=1e-14)) def test_permute_on_primitive_op(self): """ Test if permute methods of PrimitiveOps are consistent and work as expected. """ indices = [1, 2, 4] # PauliOp pauli_op = (X ^ Y ^ Z) permuted_pauli_op = pauli_op.permute(indices) expected_pauli_op = (X ^ I ^ Y ^ Z ^ I) self.assertEqual(permuted_pauli_op, expected_pauli_op) # CircuitOp circuit_op = pauli_op.to_circuit_op() permuted_circuit_op = circuit_op.permute(indices) expected_circuit_op = expected_pauli_op.to_circuit_op() self.assertEqual(permuted_circuit_op.primitive.__str__(), expected_circuit_op.primitive.__str__()) # MatrixOp matrix_op = pauli_op.to_matrix_op() permuted_matrix_op = matrix_op.permute(indices) expected_matrix_op = expected_pauli_op.to_matrix_op() equal = np.allclose(permuted_matrix_op.to_matrix(), expected_matrix_op.to_matrix()) self.assertTrue(equal) def test_permute_on_list_op(self): """ Test if ListOp permute method is consistent with PrimitiveOps permute methods. """ op1 = (X ^ Y ^ Z).to_circuit_op() op2 = (Z ^ X ^ Y) # ComposedOp indices = [1, 2, 0] primitive_op = op1 @ op2 primitive_op_perm = primitive_op.permute(indices) # CircuitOp.permute composed_op = ComposedOp([op1, op2]) composed_op_perm = composed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = composed_op_perm.oplist[0] @ composed_op_perm.oplist[1] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # TensoredOp indices = [3, 5, 4, 0, 2, 1] primitive_op = op1 ^ op2 primitive_op_perm = primitive_op.permute(indices) tensored_op = TensoredOp([op1, op2]) tensored_op_perm = tensored_op.permute(indices) # reduce the ListOp to PrimitiveOp composed_oplist = tensored_op_perm.oplist to_primitive = \ composed_oplist[0] @ (composed_oplist[1].oplist[0] ^ composed_oplist[1].oplist[1]) @ \ composed_oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) # SummedOp primitive_op = (X ^ Y ^ Z) summed_op = SummedOp([primitive_op]) indices = [1, 2, 0] primitive_op_perm = primitive_op.permute(indices) # PauliOp.permute summed_op_perm = summed_op.permute(indices) # reduce the ListOp to PrimitiveOp to_primitive = summed_op_perm.oplist[0] @ primitive_op @ summed_op_perm.oplist[2] # compare resulting PrimitiveOps equal = np.allclose(primitive_op_perm.to_matrix(), to_primitive.to_matrix()) self.assertTrue(equal) def test_expand_on_list_op(self): """ Test if expanded ListOp has expected num_qubits. """ add_qubits = 3 # ComposedOp composed_op = ComposedOp([(X ^ Y ^ Z), (H ^ T), (Z ^ X ^ Y ^ Z).to_matrix_op()]) expanded = composed_op._expand_dim(add_qubits) self.assertEqual(composed_op.num_qubits + add_qubits, expanded.num_qubits) # TensoredOp tensored_op = TensoredOp([(X ^ Y), (Z ^ I)]) expanded = tensored_op._expand_dim(add_qubits) self.assertEqual(tensored_op.num_qubits + add_qubits, expanded.num_qubits) # SummedOp summed_op = SummedOp([(X ^ Y), (Z ^ I ^ Z)]) expanded = summed_op._expand_dim(add_qubits) self.assertEqual(summed_op.num_qubits + add_qubits, expanded.num_qubits) def test_expand_on_state_fn(self): """ Test if expanded StateFn has expected num_qubits. """ num_qubits = 3 add_qubits = 2 # case CircuitStateFn, with primitive QuantumCircuit qc2 = QuantumCircuit(num_qubits) qc2.cx(0, 1) cfn = CircuitStateFn(qc2, is_measurement=True) cfn_exp = cfn._expand_dim(add_qubits) self.assertEqual(cfn_exp.num_qubits, add_qubits + num_qubits) # case OperatorStateFn, with OperatorBase primitive, in our case CircuitStateFn osfn = OperatorStateFn(cfn) osfn_exp = osfn._expand_dim(add_qubits) self.assertEqual(osfn_exp.num_qubits, add_qubits + num_qubits) # case DictStateFn dsfn = DictStateFn('1'*num_qubits, is_measurement=True) self.assertEqual(dsfn.num_qubits, num_qubits) dsfn_exp = dsfn._expand_dim(add_qubits) self.assertEqual(dsfn_exp.num_qubits, num_qubits + add_qubits) # case VectorStateFn vsfn = VectorStateFn(np.ones(2**num_qubits, dtype=complex)) self.assertEqual(vsfn.num_qubits, num_qubits) vsfn_exp = vsfn._expand_dim(add_qubits) self.assertEqual(vsfn_exp.num_qubits, num_qubits + add_qubits) def test_permute_on_state_fn(self): """ Test if StateFns permute are consistent. """ num_qubits = 4 dim = 2**num_qubits primitive_list = [1.0/(i+1) for i in range(dim)] primitive_dict = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)} dict_fn = DictStateFn(primitive=primitive_dict, is_measurement=True) vec_fn = VectorStateFn(primitive=primitive_list, is_measurement=True) # check if dict_fn and vec_fn are equivalent equivalent = np.allclose(dict_fn.to_matrix(), vec_fn.to_matrix()) self.assertTrue(equivalent) # permute indices = [2, 3, 0, 1] permute_dict = dict_fn.permute(indices) permute_vect = vec_fn.permute(indices) equivalent = np.allclose(permute_dict.to_matrix(), permute_vect.to_matrix()) self.assertTrue(equivalent) def test_compose_consistency(self): """Test if PrimitiveOp @ ComposedOp is consistent with ComposedOp @ PrimitiveOp.""" # PauliOp op1 = (X ^ Y ^ Z) op2 = (X ^ Y ^ Z) op3 = (X ^ Y ^ Z).to_circuit_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) # CircitOp op1 = op1.to_circuit_op() op2 = op2.to_circuit_op() op3 = op3.to_matrix_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) # MatrixOp op1 = op1.to_matrix_op() op2 = op2.to_matrix_op() op3 = op3.to_pauli_op() comp1 = op1 @ ComposedOp([op2, op3]) comp2 = ComposedOp([op3, op2]) @ op1 self.assertListEqual(comp1.oplist, list(reversed(comp2.oplist))) def test_compose_with_indices(self): """ Test compose method using its permutation feature.""" pauli_op = (X ^ Y ^ Z) circuit_op = (T ^ H) matrix_op = (X ^ Y ^ H ^ T).to_matrix_op() evolved_op = EvolvedOp(matrix_op) # composition of PrimitiveOps num_qubits = 4 primitive_op = pauli_op @ circuit_op @ matrix_op composed_op = pauli_op @ circuit_op @ evolved_op self.assertEqual(primitive_op.num_qubits, num_qubits) self.assertEqual(composed_op.num_qubits, num_qubits) # with permutation num_qubits = 5 indices = [1, 4] permuted_primitive_op = evolved_op @ circuit_op.permute(indices) @ pauli_op @ matrix_op composed_primitive_op = \ evolved_op @ pauli_op.compose(circuit_op, permutation=indices, front=True) @ matrix_op self.assertTrue(np.allclose(permuted_primitive_op.to_matrix(), composed_primitive_op.to_matrix())) self.assertEqual(num_qubits, permuted_primitive_op.num_qubits) # ListOp num_qubits = 6 tensored_op = TensoredOp([pauli_op, circuit_op]) summed_op = pauli_op + circuit_op.permute([2, 1]) composed_op = circuit_op @ evolved_op @ matrix_op list_op = summed_op @ composed_op.compose(tensored_op, permutation=[1, 2, 3, 5, 4], front=True) self.assertEqual(num_qubits, list_op.num_qubits) num_qubits = 4 circuit_fn = CircuitStateFn(primitive=circuit_op.primitive, is_measurement=True) operator_fn = OperatorStateFn(primitive=circuit_op ^ circuit_op, is_measurement=True) no_perm_op = circuit_fn @ operator_fn self.assertEqual(no_perm_op.num_qubits, num_qubits) indices = [0, 4] perm_op = operator_fn.compose(circuit_fn, permutation=indices, front=True) self.assertEqual(perm_op.num_qubits, max(indices) + 1) # StateFn num_qubits = 3 dim = 2**num_qubits vec = [1.0/(i+1) for i in range(dim)] dic = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)} is_measurement = True op_state_fn = OperatorStateFn(matrix_op, is_measurement=is_measurement) # num_qubit = 4 vec_state_fn = VectorStateFn(vec, is_measurement=is_measurement) # 3 dic_state_fn = DictStateFn(dic, is_measurement=is_measurement) # 3 circ_state_fn = CircuitStateFn(circuit_op.to_circuit(), is_measurement=is_measurement) # 2 composed_op = op_state_fn @ vec_state_fn @ dic_state_fn @ circ_state_fn self.assertEqual(composed_op.num_qubits, op_state_fn.num_qubits) # with permutation perm = [2, 4, 6] composed = \ op_state_fn @ dic_state_fn.compose(vec_state_fn, permutation=perm, front=True) @ \ circ_state_fn self.assertEqual(composed.num_qubits, max(perm) + 1) def test_summed_op_equals(self): """Test corner cases of SummedOp's equals function.""" with self.subTest('multiplicative factor'): self.assertEqual(2 * X, X + X) with self.subTest('commutative'): self.assertEqual(X + Z, Z + X) with self.subTest('circuit and paulis'): z = CircuitOp(ZGate()) self.assertEqual(Z + z, z + Z) with self.subTest('matrix op and paulis'): z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(Z + z, z + Z) with self.subTest('matrix multiplicative'): z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(2 * z, z + z) with self.subTest('parameter coefficients'): expr = Parameter('theta') z = MatrixOp([[1, 0], [0, -1]]) self.assertEqual(expr * z, expr * z) with self.subTest('different coefficient types'): expr = Parameter('theta') z = MatrixOp([[1, 0], [0, -1]]) self.assertNotEqual(expr * z, 2 * z) with self.subTest('additions aggregation'): z = MatrixOp([[1, 0], [0, -1]]) a = z + z + Z b = 2 * z + Z c = z + Z + z self.assertEqual(a, b) self.assertEqual(b, c) self.assertEqual(a, c) def test_circuit_compose_register_independent(self): """Test that CircuitOp uses combines circuits independent of the register. I.e. that is uses ``QuantumCircuit.compose`` over ``combine`` or ``extend``. """ op = Z ^ 2 qr = QuantumRegister(2, 'my_qr') circuit = QuantumCircuit(qr) composed = op.compose(CircuitOp(circuit)) self.assertEqual(composed.num_qubits, 2) def test_matrix_op_conversions(self): """Test to reveal QiskitError when to_instruction or to_circuit method is called on parametrized matrix op.""" m = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, -1, 0, 0]]) matrix_op = MatrixOp(m, Parameter('beta')) for method in ['to_instruction', 'to_circuit']: with self.subTest(method): # QiskitError: multiplication of Operator with ParameterExpression isn't implemented self.assertRaises(QiskitError, getattr(matrix_op, method)) def test_primitive_op_to_matrix(self): """Test to reveal TypeError: multiplication of 'complex' and 'Parameter' is not implemented, which is raised on PrimitiveOps with parameter, when to_matrix is called. """ # MatrixOp m = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, -1, 0, 0]]) matrix_op = MatrixOp(m, Parameter('beta')) # PauliOp pauli_op = PauliOp(primitive=Pauli(label='XYZ'), coeff=Parameter('beta')) self.assertRaises(TypeError, pauli_op.to_matrix) # CircuitOp qc = QuantumCircuit(2) qc.cx(0, 1) circuit_op = CircuitOp(qc, coeff=Parameter('alpha')) for operator in [matrix_op, pauli_op, circuit_op]: with self.subTest(operator): self.assertRaises(TypeError, operator.to_matrix) def test_list_op_to_circuit(self): """Test if unitary ListOps transpile to circuit. """ # generate unitary matrices of dimension 2,4,8, seed is fixed np.random.seed(233423) u2 = unitary_group.rvs(2) u4 = unitary_group.rvs(4) u8 = unitary_group.rvs(8) # pauli matrices as numpy.arrays x = np.array([[0.0, 1.0], [1.0, 0.0]]) y = np.array([[0.0, -1.0j], [1.0j, 0.0]]) z = np.array([[1.0, 0.0], [0.0, -1.0]]) # create MatrixOp and CircuitOp out of matrices op2 = MatrixOp(u2) op4 = MatrixOp(u4) op8 = MatrixOp(u8) c2 = op2.to_circuit_op() # algorithm using only matrix operations on numpy.arrays xu4 = np.kron(x, u4) zc2 = np.kron(z, u2) zc2y = np.kron(zc2, y) matrix = np.matmul(xu4, zc2y) matrix = np.matmul(matrix, u8) matrix = np.kron(matrix, u2) operator = Operator(matrix) # same algorithm as above, but using PrimitiveOps list_op = ((X ^ op4) @ (Z ^ c2 ^ Y) @ op8) ^ op2 circuit = list_op.to_circuit() # verify that ListOp.to_circuit() outputs correct quantum circuit self.assertTrue(operator.equiv(circuit), "ListOp.to_circuit() outputs wrong circuit!") def test_composed_op_to_circuit(self): """ Test if unitary ComposedOp transpile to circuit and represents expected operator. Test if to_circuit on non-unitary ListOp raises exception. """ x = np.array([[0.0, 1.0], [1.0, 0.0]]) # Pauli X as numpy array y = np.array([[0.0, -1.0j], [1.0j, 0.0]]) # Pauli Y as numpy array m1 = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0]]) # non-unitary m2 = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, -1, 0, 0]]) # non-unitary m_op1 = MatrixOp(m1) m_op2 = MatrixOp(m2) pm1 = (X ^ Y) ^ m_op1 # non-unitary TensoredOp pm2 = (X ^ Y) ^ m_op2 # non-unitary TensoredOp self.assertRaises(ExtensionError, pm1.to_circuit) self.assertRaises(ExtensionError, pm2.to_circuit) summed_op = pm1 + pm2 # unitary SummedOp([TensoredOp, TensoredOp]) circuit = summed_op.to_circuit() # should transpile without any exception # same algorithm that leads to summed_op above, but using only arrays and matrix operations unitary = np.kron(np.kron(x, y), m1 + m2) self.assertTrue(Operator(unitary).equiv(circuit)) def test_op_to_circuit_with_parameters(self): """On parametrized SummedOp, to_matrix_op returns ListOp, instead of MatrixOp. To avoid the infinite recursion, AquaError is raised. """ m1 = np.array([[0, 0, 1, 0], [0, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0]]) # non-unitary m2 = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, -1, 0, 0]]) # non-unitary op1_with_param = MatrixOp(m1, Parameter('alpha')) # non-unitary op2_with_param = MatrixOp(m2, Parameter('beta')) # non-unitary summed_op_with_param = op1_with_param + op2_with_param # unitary self.assertRaises(AquaError, summed_op_with_param.to_circuit) # should raise Aqua error def test_permute_list_op_with_inconsistent_num_qubits(self): """Test if permute raises error if ListOp contains operators with different num_qubits.""" list_op = ListOp([X, X ^ X]) self.assertRaises(AquaError, list_op.permute, [0, 1]) @data(Z, CircuitOp(ZGate()), MatrixOp([[1, 0], [0, -1]])) def test_op_hashing(self, op): """Regression test against faulty set comparison. Set comparisons rely on a hash table which requires identical objects to have identical hashes. Thus, the PrimitiveOp.__hash__ should support this requirement. """ self.assertEqual(set([2 * op]), set([2 * op])) @data(Z, CircuitOp(ZGate()), MatrixOp([[1, 0], [0, -1]])) def test_op_indent(self, op): """Test that indentation correctly adds INDENTATION at the beginning of each line""" initial_str = str(op) indented_str = op._indent(initial_str) starts_with_indent = indented_str.startswith(op.INDENTATION) self.assertTrue(starts_with_indent) indented_str_content = ( indented_str[len(op.INDENTATION):] ).split("\n{}".format(op.INDENTATION)) self.assertListEqual(indented_str_content, initial_str.split("\n")) def test_composed_op_immutable_under_eval(self): """Test ``ComposedOp.eval`` does not change the operator instance.""" op = 2 * ComposedOp([X]) _ = op.eval() # previous bug: after op.eval(), op was 2 * ComposedOp([2 * X]) self.assertEqual(op, 2 * ComposedOp([X])) def test_op_parameters(self): """Test that Parameters are stored correctly""" phi = Parameter('φ') theta = ParameterVector(name='θ', length=2) qc = QuantumCircuit(2) qc.rz(phi, 0) qc.rz(phi, 1) for i in range(2): qc.rx(theta[i], i) qc.h(0) qc.x(1) l = Parameter('λ') op = PrimitiveOp(qc, coeff=l) params = set([phi, l, *theta.params]) self.assertEqual(params, op.parameters) self.assertEqual(params, StateFn(op).parameters) self.assertEqual(params, StateFn(qc, coeff=l).parameters) def test_list_op_parameters(self): """Test that Parameters are stored correctly in a List Operator""" lam = Parameter('λ') phi = Parameter('φ') omega = Parameter('ω') mat_op = PrimitiveOp([[0, 1], [1, 0]], coeff=omega) qc = QuantumCircuit(1) qc.rx(phi, 0) qc_op = PrimitiveOp(qc) op1 = SummedOp([mat_op, qc_op]) params = [phi, omega] self.assertEqual(op1.parameters, set(params)) # check list nesting case op2 = PrimitiveOp([[1, 0], [0, -1]], coeff=lam) list_op = ListOp([op1, op2]) params.append(lam) self.assertEqual(list_op.parameters, set(params)) @data(VectorStateFn([1, 0]), DictStateFn({'0': 1}), CircuitStateFn(QuantumCircuit(1)), OperatorStateFn(I), OperatorStateFn(MatrixOp([[1, 0], [0, 1]])), OperatorStateFn(CircuitOp(QuantumCircuit(1)))) def test_statefn_eval(self, op): """Test calling eval on StateFn returns the statevector.""" expected = Statevector([1, 0]) self.assertEqual(op.eval().primitive, expected) class TestOpMethods(QiskitAquaTestCase): """Basic method tests.""" def test_listop_num_qubits(self): """Test that ListOp.num_qubits checks that all operators have the same number of qubits.""" op = ListOp([X ^ Y, Y ^ Z]) with self.subTest('All operators have the same numbers of qubits'): self.assertEqual(op.num_qubits, 2) op = ListOp([X ^ Y, Y]) with self.subTest('Operators have different numbers of qubits'): with self.assertRaises(ValueError): op.num_qubits # pylint: disable=pointless-statement with self.assertRaises(ValueError): X @ op # pylint: disable=pointless-statement class TestListOpComboFn(QiskitAquaTestCase): """Test combo fn is propagated.""" def setUp(self): super().setUp() self.combo_fn = lambda x: [x_i ** 2 for x_i in x] self.listop = ListOp([X], combo_fn=self.combo_fn) def assertComboFnPreserved(self, processed_op): """Assert the quadratic combo_fn is preserved.""" x = [1, 2, 3] self.assertListEqual(processed_op.combo_fn(x), self.combo_fn(x)) def test_at_conversion(self): """Test after conversion the combo_fn is preserved.""" for method in ['to_matrix_op', 'to_pauli_op', 'to_circuit_op']: with self.subTest(method): converted = getattr(self.listop, method)() self.assertComboFnPreserved(converted) def test_after_mul(self): """Test after multiplication the combo_fn is preserved.""" self.assertComboFnPreserved(2 * self.listop) def test_at_traverse(self): """Test after traversing the combo_fn is preserved.""" def traverse_fn(op): return -op traversed = self.listop.traverse(traverse_fn) self.assertComboFnPreserved(traversed) def test_after_adjoint(self): """Test after traversing the combo_fn is preserved.""" self.assertComboFnPreserved(self.listop.adjoint()) def test_after_reduce(self): """Test after reducing the combo_fn is preserved.""" self.assertComboFnPreserved(self.listop.reduce()) if __name__ == '__main__': unittest.main()
40.803738
100
0.606505
5fb4dd50fc3fd4c152d26007b54559f48bae1c49
664
py
Python
tests/test.py
xmonader/pyvalidators
e4940a73fc1e9466437801df04833bdde2eb9972
[ "Apache-2.0" ]
null
null
null
tests/test.py
xmonader/pyvalidators
e4940a73fc1e9466437801df04833bdde2eb9972
[ "Apache-2.0" ]
null
null
null
tests/test.py
xmonader/pyvalidators
e4940a73fc1e9466437801df04833bdde2eb9972
[ "Apache-2.0" ]
null
null
null
from validators.extensions.string import * from validators.extensions.numeric import * class Point: def __init__(self, x, y, name): self._x = x self._y = y self._name = name @Upper def name(self): return self._name @name.setter def name(self, val): self._name = val @ValidatingProperty def x(self): return self._x @x.setter def x(self, val): self._x = val @Int def y(self): return self._x @y.setter def y(self, val): self._x = val p = Point(3, 4, "CIRCLE") print(p) p.x = "dmdm" p.y = 9 p.name = "AHMED" p.name = "ahmed"
15.809524
43
0.545181
2f477c6496f89f67b4136845736ec47b0b1d3bc2
1,160
py
Python
plugins/zendesk/icon_zendesk/actions/delete_membership/schema.py
jakub-kaluza/insightconnect-plugins
f36292a65439dfc61cf99f0a1e65ce9ec0703877
[ "MIT" ]
null
null
null
plugins/zendesk/icon_zendesk/actions/delete_membership/schema.py
jakub-kaluza/insightconnect-plugins
f36292a65439dfc61cf99f0a1e65ce9ec0703877
[ "MIT" ]
null
null
null
plugins/zendesk/icon_zendesk/actions/delete_membership/schema.py
jakub-kaluza/insightconnect-plugins
f36292a65439dfc61cf99f0a1e65ce9ec0703877
[ "MIT" ]
null
null
null
# GENERATED BY KOMAND SDK - DO NOT EDIT import insightconnect_plugin_runtime import json class Component: DESCRIPTION = "Delete organization membership" class Input: MEMBERSHIP_ID = "membership_id" class Output: STATUS = "status" class DeleteMembershipInput(insightconnect_plugin_runtime.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "membership_id": { "type": "integer", "title": "Membership ID", "description": "ID of membership to delete E.g. 1401295821555", "order": 1 } }, "required": [ "membership_id" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class DeleteMembershipOutput(insightconnect_plugin_runtime.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "status": { "type": "boolean", "title": "Status", "description": "Success or failure", "order": 1 } }, "required": [ "status" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
18.709677
69
0.609483
2cb1f1d4f8eca8271a6f7761ba7d7401042ab08d
4,330
py
Python
mooclet_engine/engine/migrations/0001_initial.py
marshallho/mooclet-engine
176c23299df89b624d008dc903646555c0c0cc4e
[ "MIT" ]
5
2018-11-13T22:01:51.000Z
2021-05-29T02:37:20.000Z
mooclet_engine/engine/migrations/0001_initial.py
marshallho/mooclet-engine
176c23299df89b624d008dc903646555c0c0cc4e
[ "MIT" ]
3
2020-02-11T22:44:25.000Z
2021-06-10T17:49:12.000Z
mooclet_engine/engine/migrations/0001_initial.py
marshallho/mooclet-engine
176c23299df89b624d008dc903646555c0c0cc4e
[ "MIT" ]
7
2017-01-19T15:58:25.000Z
2018-11-10T06:47:44.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-02 17:49 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Environment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=200)), ], ), migrations.CreateModel( name='Learner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('environment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='engine.Environment')), ], ), migrations.CreateModel( name='Mooclet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=100)), ('environment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='engine.Environment')), ], ), migrations.CreateModel( name='Policy', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('environment', models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Environment')), ], options={ 'verbose_name_plural': 'policies', }, ), migrations.CreateModel( name='Value', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('value', models.FloatField(blank=True, null=True)), ('text', models.TextField(blank=True, default='')), ('timestamp', models.DateTimeField(auto_now=True, null=True)), ('learner', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Learner')), ('mooclet', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Mooclet')), ('policy', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Policy')), ], ), migrations.CreateModel( name='Variable', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('environment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='engine.Environment')), ], ), migrations.CreateModel( name='Version', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=200)), ('text', models.TextField(blank=True, default='')), ('mooclet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='engine.Mooclet')), ], ), migrations.AddField( model_name='value', name='variable', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='engine.Variable'), ), migrations.AddField( model_name='value', name='version', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Version'), ), migrations.AddField( model_name='mooclet', name='policy', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='engine.Policy'), ), ]
45.104167
158
0.581524
f151d313b7147a367622827db4a6a31b70611001
699
py
Python
social_app/middleware/restrict_users_middleware.py
sh3b/social_app
64aadd05570373ea75834b53b0b4abd2b16c8451
[ "MIT" ]
null
null
null
social_app/middleware/restrict_users_middleware.py
sh3b/social_app
64aadd05570373ea75834b53b0b4abd2b16c8451
[ "MIT" ]
4
2021-06-04T23:11:02.000Z
2022-02-10T11:23:57.000Z
social_app/middleware/restrict_users_middleware.py
shuayb/social_app
64aadd05570373ea75834b53b0b4abd2b16c8451
[ "MIT" ]
null
null
null
from django.shortcuts import redirect class RestrictAdminToAdminArea: def __init__(self, get_response): self.get_response = get_response def __call__(self, request): # Code to be executed for each request before # the view (and later middleware) are called. is_authenticated = request.user.is_authenticated # For Admins if is_authenticated and request.user.is_superuser: if not request.path.startswith('/admin/'): return redirect('admin:index') response = self.get_response(request) # Code to be executed for each request/response after # the view is called. return response
27.96
61
0.662375
f75561a740ca41a1fc5f1f92084b941d610610c1
2,143
py
Python
pennylane/drawer/utils.py
therooler/pennylane
88a8a5960a2ffd218a12f85ace632021eef2abf5
[ "Apache-2.0" ]
539
2018-11-13T08:45:42.000Z
2020-07-27T18:17:16.000Z
pennylane/drawer/utils.py
therooler/pennylane
88a8a5960a2ffd218a12f85ace632021eef2abf5
[ "Apache-2.0" ]
588
2018-11-14T10:21:47.000Z
2020-07-28T06:27:14.000Z
pennylane/drawer/utils.py
therooler/pennylane
88a8a5960a2ffd218a12f85ace632021eef2abf5
[ "Apache-2.0" ]
165
2018-11-13T18:58:56.000Z
2020-07-27T17:18:17.000Z
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains some useful utility functions for circuit drawing. """ def default_wire_map(tape): """Create a dictionary mapping used wire labels to non-negative integers Args: tape [~.tape.QuantumTape): the QuantumTape containing operations and measurements Returns: dict: map from wires to sequential positive integers """ # Use dictionary to preserve ordering, sets break order used_wires = {wire: None for op in tape for wire in op.wires} return {wire: ind for ind, wire in enumerate(used_wires)} def convert_wire_order(tape, wire_order=None, show_all_wires=False): """Creates the mapping between wire labels and place in order. Args: tape (~.tape.QuantumTape): the Quantum Tape containing operations and measurements wire_order Sequence[Any]: the order (from top to bottom) to print the wires Keyword Args: show_all_wires=False (bool): whether to display all wires in ``wire_order`` or only include ones used by operations in ``ops`` Returns: dict: map from wire labels to sequential positive integers """ default = default_wire_map(tape) if wire_order is None: return default wire_order = list(wire_order) + [wire for wire in default if wire not in wire_order] if not show_all_wires: used_wires = {wire for op in tape for wire in op.wires} wire_order = [wire for wire in wire_order if wire in used_wires] return {wire: ind for ind, wire in enumerate(wire_order)}
35.716667
90
0.719085
4295e3bb3675f8ba1c61332882a50bc28d24ceba
1,868
py
Python
homeassistant/components/lutron_caseta/binary_sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
6
2020-07-18T16:33:25.000Z
2021-09-26T09:52:04.000Z
homeassistant/components/lutron_caseta/binary_sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
47
2020-07-23T07:14:33.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/lutron_caseta/binary_sensor.py
klauern/home-assistant-core
c18ba6aec0627e6afb6442c678edb5ff2bb17db6
[ "Apache-2.0" ]
5
2020-03-29T00:29:13.000Z
2021-09-06T20:58:40.000Z
"""Support for Lutron Caseta Occupancy/Vacancy Sensors.""" from pylutron_caseta import OCCUPANCY_GROUP_OCCUPIED from homeassistant.components.binary_sensor import ( DEVICE_CLASS_OCCUPANCY, BinarySensorEntity, ) from . import DOMAIN as CASETA_DOMAIN, LutronCasetaDevice async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the Lutron Caseta binary_sensor platform. Adds occupancy groups from the Caseta bridge associated with the config_entry as binary_sensor entities. """ entities = [] bridge = hass.data[CASETA_DOMAIN][config_entry.entry_id] occupancy_groups = bridge.occupancy_groups for occupancy_group in occupancy_groups.values(): entity = LutronOccupancySensor(occupancy_group, bridge) entities.append(entity) async_add_entities(entities, True) class LutronOccupancySensor(LutronCasetaDevice, BinarySensorEntity): """Representation of a Lutron occupancy group.""" @property def device_class(self): """Flag supported features.""" return DEVICE_CLASS_OCCUPANCY @property def is_on(self): """Return the brightness of the light.""" return self._device["status"] == OCCUPANCY_GROUP_OCCUPIED async def async_added_to_hass(self): """Register callbacks.""" self._smartbridge.add_occupancy_subscriber( self.device_id, self.async_write_ha_state ) @property def device_id(self): """Return the device ID used for calling pylutron_caseta.""" return self._device["occupancy_group_id"] @property def unique_id(self): """Return a unique identifier.""" return f"occupancygroup_{self.device_id}" @property def device_state_attributes(self): """Return the state attributes.""" return {"device_id": self.device_id}
29.650794
68
0.709315
269a9a41aabb54e076d9738fa4616234e1afb19c
75
py
Python
sssdevops/listtools.py
jvaldiviezom/sssdevops
b8843a8a9161e9d76069e3c6d188874b63948559
[ "BSD-3-Clause" ]
null
null
null
sssdevops/listtools.py
jvaldiviezom/sssdevops
b8843a8a9161e9d76069e3c6d188874b63948559
[ "BSD-3-Clause" ]
1
2018-07-09T19:22:15.000Z
2018-07-09T19:23:59.000Z
sssdevops/listtools.py
jvaldiviezom/sssdevops
b8843a8a9161e9d76069e3c6d188874b63948559
[ "BSD-3-Clause" ]
1
2018-07-09T19:36:13.000Z
2018-07-09T19:36:13.000Z
""" Miscellaneous list manipulation """ def split(num_lst, index): pass
9.375
31
0.706667
6c9943e96679919a26a5059259ea3ddf53a684df
10,864
py
Python
tests/unit/frontend/tvm/test_relay.py
anilmartha/pyxir
0972aed63748afd82ef414b67a6cceaedd738b38
[ "Apache-2.0" ]
25
2020-06-17T22:41:13.000Z
2022-03-22T16:28:22.000Z
tests/unit/frontend/tvm/test_relay.py
anilmartha/pyxir
0972aed63748afd82ef414b67a6cceaedd738b38
[ "Apache-2.0" ]
25
2021-03-16T06:26:44.000Z
2022-03-18T11:28:33.000Z
tests/unit/frontend/tvm/test_relay.py
anilmartha/pyxir
0972aed63748afd82ef414b67a6cceaedd738b38
[ "Apache-2.0" ]
19
2020-07-30T10:03:02.000Z
2021-06-29T01:18:16.000Z
# Copyright 2020 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing the relay pyxir frontend""" import unittest import numpy as np # ! To import tvm import pyxir try: import tvm from tvm import relay from tvm.relay import testing skip = False except Exception as e: # Skip TVM tests skip = True if not skip: from pyxir.frontend.tvm import relay as xf_relay class TestRelayFrontend(unittest.TestCase): @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_simple_network(self): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") simple_net = relay.nn.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) simple_net = relay.nn.conv2d( data=simple_net, weight=weight, kernel_size=(3, 3), channels=16, padding=(0, 0), ) simple_net = relay.nn.batch_norm( simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] simple_net = relay.nn.relu(simple_net) simple_net = relay.op.reduce.mean(simple_net, axis=(2, 3)) simple_net = relay.op.transform.reshape(simple_net, newshape=(1, 16)) dense_weight = relay.var("dense_weight") dense_bias = relay.var("dense_bias") simple_net = relay.nn.dense(simple_net, weight=dense_weight, units=10) simple_net = relay.nn.bias_add(simple_net, dense_bias, axis=1) simple_net = relay.nn.softmax(simple_net, axis=1) simple_net = relay.op.transform.reshape(simple_net, newshape=(1, 10)) func = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Pad" assert layers[2].type[0] == "Convolution" assert layers[3].type[0] == "BatchNorm" assert layers[4].type[0] == "ReLU" assert layers[5].type[0] == "Mean" assert layers[6].type[0] == "Reshape" assert layers[7].type[0] == "Dense" assert layers[8].type[0] == "BiasAdd" assert layers[9].type[0] == "Softmax" assert layers[10].type[0] == "Reshape" @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_simple_network_cvx(self): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") simple_net = relay.nn.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) simple_net = relay.nn.conv2d( data=simple_net, weight=weight, kernel_size=(3, 3), channels=16, padding=(0, 0), ) simple_net = relay.nn.relu(simple_net) simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay( mod, params, cvx_preprocessing={"data": "scale-0.5__transpose-2,0,1"} ) assert len(xgraph.get_input_names()) == 1 layers = xgraph.get_layers() # assert layers[0].type[0] == "Constant" assert layers[0].type[0] == "StrInput" assert layers[0].shapes == [-1] assert layers[1].type[0] == "Cvx" assert layers[1].shapes == [-1, 3, 224, 224] assert layers[2].type[0] == "Pad" assert layers[3].type[0] == "Convolution" assert layers[4].type[0] == "ReLU" assert layers[0].tops == ["data_cvx"] assert layers[1].bottoms == ["data"] assert layers[1].tops[0][:7] == "nn.pad-" @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_conv2d_transpose(self): data = relay.var("data", relay.TensorType((-1, 1, 3, 3), "float32")) weight = relay.var("weight") simple_net = relay.nn.conv2d_transpose( data=data, weight=weight, kernel_size=(2, 2), channels=1, padding=(0, 0), strides=(2, 2), data_layout="NCHW", kernel_layout="IOHW", ) simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[0].shapes == [-1, 1, 3, 3] assert layers[1].type[0] == "Conv2DTranspose" assert layers[1].shapes == [-1, 1, 6, 6] assert layers[1].sizes == [36] assert layers[1].attrs["padding"] == [[0, 0], [0, 0], [0, 0], [0, 0]] assert layers[1].attrs["strides"] == [2, 2] assert layers[1].attrs["dilation"] == [1, 1] @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_resnet_block(self): data = relay.var("data", relay.TensorType((-1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") conv2d0_expr = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn0_expr = relay.nn.batch_norm( conv2d0_expr, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] relu0_expr = relay.nn.relu(bn0_expr) max_pool0_expr = relay.nn.max_pool2d( relu0_expr, pool_size=(2, 2), strides=(2, 2) ) conv2d1_weight = relay.var("conv2d1_weight") conv2d1_bias = relay.var("conv2d1_bias") conv2d1_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d1_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), ) bias_add0_expr = relay.nn.bias_add(conv2d1_expr, conv2d1_bias, axis=1) relu1_expr = relay.nn.relu(bias_add0_expr) add0_expr = relay.op.tensor.add(max_pool0_expr, relu1_expr) avg_pool0_expr = relay.nn.avg_pool2d( add0_expr, pool_size=(2, 2), strides=(2, 2) ) global_avg_pool0_expr = relay.op.nn.global_avg_pool2d(avg_pool0_expr) bf_expr = relay.nn.batch_flatten(global_avg_pool0_expr) net = avg_pool0_expr net = relay.Function(relay.analysis.free_vars(net), net) mod, params = testing.create_workload(net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Convolution" assert layers[2].type[0] == "BatchNorm" assert layers[3].type[0] == "ReLU" assert layers[4].type[0] == "Pooling" assert layers[5].type[0] == "Convolution" assert layers[6].type[0] == "BiasAdd" assert layers[7].type[0] == "ReLU" assert layers[8].type[0] == "Eltwise" assert layers[9].type[0] == "Pooling" assert layers[9].shapes == [-1, 16, 56, 56] @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_inception_block(self): data = relay.var("data", relay.TensorType((-1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") conv2d0_expr = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn0_expr = relay.nn.batch_norm( conv2d0_expr, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] relu0_expr = relay.nn.relu(bn0_expr) max_pool0_expr = relay.nn.max_pool2d( relu0_expr, pool_size=(2, 2), strides=(2, 2) ) conv2d1_weight = relay.var("conv2d1_weight") conv2d1_bias = relay.var("conv2d1_bias") conv2d1_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d1_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), strides=(2, 2), ) bias_add1_expr = relay.nn.bias_add(conv2d1_expr, conv2d1_bias, axis=1) relu1_expr = relay.nn.relu(bias_add1_expr) conv2d2_weight = relay.var("conv2d2_weight") conv2d2_bias = relay.var("conv2d2_bias") conv2d2_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d2_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), strides=(2, 2), ) bias_add2_expr = relay.nn.bias_add(conv2d2_expr, conv2d2_bias, axis=1) relu2_expr = relay.nn.relu(bias_add2_expr) concat0_expr = relay.op.tensor.concatenate([relu1_expr, relu2_expr], axis=1) global_max_pool0_expr = relay.op.nn.global_max_pool2d(concat0_expr) net = global_max_pool0_expr net = relay.Function(relay.analysis.free_vars(net), net) mod, params = testing.create_workload(net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Convolution" assert layers[2].type[0] == "BatchNorm" assert layers[3].type[0] == "ReLU" assert layers[4].type[0] == "Pooling" assert layers[5].type[0] == "Convolution" assert layers[6].type[0] == "BiasAdd" assert layers[7].type[0] == "ReLU" assert layers[8].type[0] == "Convolution" assert layers[9].type[0] == "BiasAdd" assert layers[10].type[0] == "ReLU" assert layers[11].type[0] == "Concat" assert layers[12].type[0] == "Pooling" assert layers[12].shapes == [-1, 32, 1, 1]
35.736842
85
0.594348
7af6b5480bc1b71e5979ff265a38e2cde8a8cf1d
2,631
py
Python
tests/restart/walls.py
Uornca/mirheo
162c722ffa27c02e1f5b0d1866816e44c2393f0f
[ "MIT" ]
22
2019-07-17T13:06:41.000Z
2021-12-15T14:45:24.000Z
tests/restart/walls.py
Uornca/mirheo
162c722ffa27c02e1f5b0d1866816e44c2393f0f
[ "MIT" ]
63
2019-06-26T13:30:47.000Z
2021-02-23T10:13:10.000Z
tests/restart/walls.py
dimaleks/uDeviceX
2ad5e9dd9f118e3998b291cbfc35ee91205bbef8
[ "MIT" ]
9
2019-10-11T07:32:19.000Z
2021-05-17T11:25:35.000Z
#!/usr/bin/env python import argparse import mirheo as mir parser = argparse.ArgumentParser() parser.add_argument("--restart", action='store_true', default=False) parser.add_argument("--ranks", type=int, nargs=3, default=(1,1,1)) args = parser.parse_args() dt = 0.001 domain = (8, 16, 8) force = (1.0, 0, 0) density = 8 rc = 1.0 gdot = 0.5 # shear rate T = 3.0 # period for oscillating plate case tend = 5.0 nsteps = int (tend / dt) u = mir.Mirheo(args.ranks, domain, debug_level=3, log_filename='log', no_splash=True, checkpoint_every = (0 if args.restart else nsteps)) pv = mir.ParticleVectors.ParticleVector('pv', mass = 1) ic = mir.InitialConditions.Uniform(number_density=density) u.registerParticleVector(pv=pv, ic=ic) dpd = mir.Interactions.Pairwise('dpd', rc=rc, kind="DPD", a=10.0, gamma=20.0, kBT=1.0, power=0.125) u.registerInteraction(dpd) vx = gdot*(domain[2] - 2*rc) plate_lo = mir.Walls.Plane ("plate_lo", normal=(0, 0, -1), pointThrough=(0, 0, rc)) plate_hi = mir.Walls.MovingPlane("plate_hi", normal=(0, 0, 1), pointThrough=(0, 0, domain[2] - rc), velocity=(vx, 0, 0)) nsteps_eq = (1 if args.restart else 1000) u.registerWall(plate_lo, nsteps_eq) u.registerWall(plate_hi, nsteps_eq) vv = mir.Integrators.VelocityVerlet("vv", ) frozen_lo = u.makeFrozenWallParticles(pvName="plate_lo", walls=[plate_lo], interactions=[dpd], integrator=vv, number_density=density, dt=dt) frozen_hi = u.makeFrozenWallParticles(pvName="plate_hi", walls=[plate_hi], interactions=[dpd], integrator=vv, number_density=density, dt=dt) u.setWall(plate_lo, pv) u.setWall(plate_hi, pv) for p in [pv, frozen_lo, frozen_hi]: u.setInteraction(dpd, p, pv) u.registerIntegrator(vv) u.setIntegrator(vv, pv) move = mir.Integrators.Translate('move', velocity=(vx, 0, 0)) u.registerIntegrator(move) u.setIntegrator(move, frozen_hi) sample_every = 2 dump_every = 1000 bin_size = (8., 8., 1.0) u.registerPlugins(mir.Plugins.createDumpAverage('field', [pv], sample_every, dump_every, bin_size, ["velocities"], 'h5/solvent-')) if args.restart: u.restart("restart") u.run(nsteps + 1, dt=dt) # nTEST: restart.walls # cd restart # rm -rf h5 # mir.run --runargs "-n 2" ./walls.py # mir.run --runargs "-n 2" ./walls.py --restart # mir.avgh5 xy velocities h5/solvent-0000[7-9].h5 | awk '{print $1}' > profile.out.txt # nTEST: restart.walls.mpi # cd restart # rm -rf h5 # mir.run --runargs "-n 4" ./walls.py --ranks 1 2 1 # mir.run --runargs "-n 4" ./walls.py --ranks 1 2 1 --restart # mir.avgh5 xy velocities h5/solvent-0000[7-9].h5 | awk '{print $1}' > profile.out.txt
31.698795
140
0.687571
a6c542ab4db206e7a4c52c0cb6ba4fb428cc883a
1,151
py
Python
app/core/tests/test_models.py
Rokiaa/recipe-app-API
991fc93824cd3e4137fda255c39afbe1f120b1aa
[ "MIT" ]
null
null
null
app/core/tests/test_models.py
Rokiaa/recipe-app-API
991fc93824cd3e4137fda255c39afbe1f120b1aa
[ "MIT" ]
null
null
null
app/core/tests/test_models.py
Rokiaa/recipe-app-API
991fc93824cd3e4137fda255c39afbe1f120b1aa
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model class ModelTests(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with an email is successful""" email = 'test@londonappdev.com' password = 'Testpass123' user = get_user_model().objects.create_user( email = email, password = password, ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test the email for a new user is normlized""" email = 'test@LONDONAPPDEV.COM' user = get_user_model().objects.create_user(email, 'test123') self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): """Test creating user with no email raises error""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'test123') def test_create_new_superuser(self): """Test creating a new superuser""" user = get_user_model().objects.create_superuser( 'test@londonappdev.com', 'test123' ) self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
29.512821
63
0.743701
79172c37be5acbd28e438c9ad9a3a402b7f462b7
145,314
py
Python
research/object_detection/meta_architectures/center_net_meta_arch.py
TUDelftHao/models
faf0c2dc442ceaa8425aff73abd00f92f3137b7b
[ "Apache-2.0" ]
1
2020-09-25T14:30:08.000Z
2020-09-25T14:30:08.000Z
research/object_detection/meta_architectures/center_net_meta_arch.py
TUDelftHao/models
faf0c2dc442ceaa8425aff73abd00f92f3137b7b
[ "Apache-2.0" ]
null
null
null
research/object_detection/meta_architectures/center_net_meta_arch.py
TUDelftHao/models
faf0c2dc442ceaa8425aff73abd00f92f3137b7b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The CenterNet meta architecture as described in the "Objects as Points" paper [1]. [1]: https://arxiv.org/abs/1904.07850 """ import abc import collections import functools import numpy as np import tensorflow.compat.v1 as tf import tensorflow.compat.v2 as tf2 from object_detection.core import box_list from object_detection.core import box_list_ops from object_detection.core import keypoint_ops from object_detection.core import model from object_detection.core import standard_fields as fields from object_detection.core import target_assigner as cn_assigner from object_detection.utils import shape_utils # Number of channels needed to predict size and offsets. NUM_OFFSET_CHANNELS = 2 NUM_SIZE_CHANNELS = 2 # Error range for detecting peaks. PEAK_EPSILON = 1e-6 # Constants shared between all keypoint tasks. UNMATCHED_KEYPOINT_SCORE = 0.1 KEYPOINT_CANDIDATE_SEARCH_SCALE = 0.3 class CenterNetFeatureExtractor(tf.keras.Model): """Base class for feature extractors for the CenterNet meta architecture. Child classes are expected to override the _output_model property which will return 1 or more tensors predicted by the feature extractor. """ __metaclass__ = abc.ABCMeta def __init__(self, name=None, channel_means=(0., 0., 0.), channel_stds=(1., 1., 1.), bgr_ordering=False): """Initializes a CenterNet feature extractor. Args: name: str, the name used for the underlying keras model. channel_means: A tuple of floats, denoting the mean of each channel which will be subtracted from it. If None or empty, we use 0s. channel_stds: A tuple of floats, denoting the standard deviation of each channel. Each channel will be divided by its standard deviation value. If None or empty, we use 1s. bgr_ordering: bool, if set will change the channel ordering to be in the [blue, red, green] order. """ super(CenterNetFeatureExtractor, self).__init__(name=name) if channel_means is None or len(channel_means) == 0: # pylint:disable=g-explicit-length-test channel_means = [0., 0., 0.] if channel_stds is None or len(channel_stds) == 0: # pylint:disable=g-explicit-length-test channel_stds = [1., 1., 1.] self._channel_means = channel_means self._channel_stds = channel_stds self._bgr_ordering = bgr_ordering def preprocess(self, inputs): """Converts a batch of unscaled images to a scale suitable for the model. This method normalizes the image using the given `channel_means` and `channels_stds` values at initialization time while optionally flipping the channel order if `bgr_ordering` is set. Args: inputs: a [batch, height, width, channels] float32 tensor Returns: outputs: a [batch, height, width, channels] float32 tensor """ if self._bgr_ordering: red, green, blue = tf.unstack(inputs, axis=3) inputs = tf.stack([blue, green, red], axis=3) channel_means = tf.reshape(tf.constant(self._channel_means), [1, 1, 1, -1]) channel_stds = tf.reshape(tf.constant(self._channel_stds), [1, 1, 1, -1]) return (inputs - channel_means)/channel_stds @property @abc.abstractmethod def out_stride(self): """The stride in the output image of the network.""" pass @property @abc.abstractmethod def num_feature_outputs(self): """Ther number of feature outputs returned by the feature extractor.""" pass @property @abc.abstractmethod def supported_sub_model_types(self): """Valid sub model types supported by the get_sub_model function.""" pass @abc.abstractmethod def get_sub_model(self, sub_model_type): """Returns the underlying keras model for the given sub_model_type. This function is useful when we only want to get a subset of weights to be restored from a checkpoint. Args: sub_model_type: string, the type of sub model. Currently, CenterNet feature extractors support 'detection' and 'classification'. """ pass def make_prediction_net(num_out_channels, kernel_size=3, num_filters=256, bias_fill=None): """Creates a network to predict the given number of output channels. This function is intended to make the prediction heads for the CenterNet meta architecture. Args: num_out_channels: Number of output channels. kernel_size: The size of the conv kernel in the intermediate layer num_filters: The number of filters in the intermediate conv layer. bias_fill: If not None, is used to initialize the bias in the final conv layer. Returns: net: A keras module which when called on an input tensor of size [batch_size, height, width, num_in_channels] returns an output of size [batch_size, height, width, num_out_channels] """ out_conv = tf.keras.layers.Conv2D(num_out_channels, kernel_size=1) if bias_fill is not None: out_conv.bias_initializer = tf.keras.initializers.constant(bias_fill) net = tf.keras.Sequential( [tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding='same'), tf.keras.layers.ReLU(), out_conv] ) return net def _to_float32(x): return tf.cast(x, tf.float32) def _get_shape(tensor, num_dims): tf.Assert(tensor.get_shape().ndims == num_dims, [tensor]) return shape_utils.combined_static_and_dynamic_shape(tensor) def _flatten_spatial_dimensions(batch_images): batch_size, height, width, channels = _get_shape(batch_images, 4) return tf.reshape(batch_images, [batch_size, height * width, channels]) def top_k_feature_map_locations(feature_map, max_pool_kernel_size=3, k=100, per_channel=False): """Returns the top k scores and their locations in a feature map. Given a feature map, the top k values (based on activation) are returned. If `per_channel` is True, the top k values **per channel** are returned. The `max_pool_kernel_size` argument allows for selecting local peaks in a region. This filtering is done per channel, so nothing prevents two values at the same location to be returned. Args: feature_map: [batch, height, width, channels] float32 feature map. max_pool_kernel_size: integer, the max pool kernel size to use to pull off peak score locations in a neighborhood (independently for each channel). For example, to make sure no two neighboring values (in the same channel) are returned, set max_pool_kernel_size=3. If None or 1, will not apply max pooling. k: The number of highest scoring locations to return. per_channel: If True, will return the top k scores and locations per feature map channel. If False, the top k across the entire feature map (height x width x channels) are returned. Returns: Tuple of scores: A [batch, N] float32 tensor with scores from the feature map in descending order. If per_channel is False, N = k. Otherwise, N = k * channels, and the first k elements correspond to channel 0, the second k correspond to channel 1, etc. y_indices: A [batch, N] int tensor with y indices of the top k feature map locations. If per_channel is False, N = k. Otherwise, N = k * channels. x_indices: A [batch, N] int tensor with x indices of the top k feature map locations. If per_channel is False, N = k. Otherwise, N = k * channels. channel_indices: A [batch, N] int tensor with channel indices of the top k feature map locations. If per_channel is False, N = k. Otherwise, N = k * channels. """ if not max_pool_kernel_size or max_pool_kernel_size == 1: feature_map_peaks = feature_map else: feature_map_max_pool = tf.nn.max_pool( feature_map, ksize=max_pool_kernel_size, strides=1, padding='SAME') feature_map_peak_mask = tf.math.abs( feature_map - feature_map_max_pool) < PEAK_EPSILON # Zero out everything that is not a peak. feature_map_peaks = ( feature_map * _to_float32(feature_map_peak_mask)) batch_size, _, width, num_channels = _get_shape(feature_map, 4) if per_channel: # Perform top k over batch and channels. feature_map_peaks_transposed = tf.transpose(feature_map_peaks, perm=[0, 3, 1, 2]) feature_map_peaks_transposed = tf.reshape( feature_map_peaks_transposed, [batch_size, num_channels, -1]) scores, peak_flat_indices = tf.math.top_k(feature_map_peaks_transposed, k=k) # Convert the indices such that they represent the location in the full # (flattened) feature map of size [batch, height * width * channels]. channel_idx = tf.range(num_channels)[tf.newaxis, :, tf.newaxis] peak_flat_indices = num_channels * peak_flat_indices + channel_idx scores = tf.reshape(scores, [batch_size, -1]) peak_flat_indices = tf.reshape(peak_flat_indices, [batch_size, -1]) else: feature_map_peaks_flat = tf.reshape(feature_map_peaks, [batch_size, -1]) scores, peak_flat_indices = tf.math.top_k(feature_map_peaks_flat, k=k) # Get x, y and channel indices corresponding to the top indices in the flat # array. y_indices, x_indices, channel_indices = ( row_col_channel_indices_from_flattened_indices( peak_flat_indices, width, num_channels)) return scores, y_indices, x_indices, channel_indices def prediction_tensors_to_boxes(detection_scores, y_indices, x_indices, channel_indices, height_width_predictions, offset_predictions): """Converts CenterNet class-center, offset and size predictions to boxes. Args: detection_scores: A [batch, num_boxes] float32 tensor with detection scores in range [0, 1]. y_indices: A [batch, num_boxes] int32 tensor with y indices corresponding to object center locations (expressed in output coordinate frame). x_indices: A [batch, num_boxes] int32 tensor with x indices corresponding to object center locations (expressed in output coordinate frame). channel_indices: A [batch, num_boxes] int32 tensor with channel indices corresponding to object classes. height_width_predictions: A float tensor of shape [batch_size, height, width, 2] representing the height and width of a box centered at each pixel. offset_predictions: A float tensor of shape [batch_size, height, width, 2] representing the y and x offsets of a box centered at each pixel. This helps reduce the error from downsampling. Returns: detection_boxes: A tensor of shape [batch_size, num_boxes, 4] holding the the raw bounding box coordinates of boxes. detection_classes: An integer tensor of shape [batch_size, num_boxes] indicating the predicted class for each box. detection_scores: A float tensor of shape [batch_size, num_boxes] indicating the score for each box. num_detections: An integer tensor of shape [batch_size,] indicating the number of boxes detected for each sample in the batch. """ _, _, width, _ = _get_shape(height_width_predictions, 4) peak_spatial_indices = flattened_indices_from_row_col_indices( y_indices, x_indices, width) y_indices = _to_float32(y_indices) x_indices = _to_float32(x_indices) height_width_flat = _flatten_spatial_dimensions(height_width_predictions) offsets_flat = _flatten_spatial_dimensions(offset_predictions) height_width = tf.gather(height_width_flat, peak_spatial_indices, batch_dims=1) height_width = tf.maximum(height_width, 0) offsets = tf.gather(offsets_flat, peak_spatial_indices, batch_dims=1) heights, widths = tf.unstack(height_width, axis=2) y_offsets, x_offsets = tf.unstack(offsets, axis=2) detection_classes = channel_indices num_detections = tf.reduce_sum(tf.to_int32(detection_scores > 0), axis=1) boxes = tf.stack([y_indices + y_offsets - heights / 2.0, x_indices + x_offsets - widths / 2.0, y_indices + y_offsets + heights / 2.0, x_indices + x_offsets + widths / 2.0], axis=2) return boxes, detection_classes, detection_scores, num_detections def prediction_tensors_to_temporal_offsets( y_indices, x_indices, offset_predictions): """Converts CenterNet temporal offset map predictions to batched format. This function is similiar to the box offset conversion function, as both temporal offsets and box offsets are size-2 vectors. Args: y_indices: A [batch, num_boxes] int32 tensor with y indices corresponding to object center locations (expressed in output coordinate frame). x_indices: A [batch, num_boxes] int32 tensor with x indices corresponding to object center locations (expressed in output coordinate frame). offset_predictions: A float tensor of shape [batch_size, height, width, 2] representing the y and x offsets of a box's center across adjacent frames. Returns: offsets: A tensor of shape [batch_size, num_boxes, 2] holding the the object temporal offsets of (y, x) dimensions. """ _, _, width, _ = _get_shape(offset_predictions, 4) peak_spatial_indices = flattened_indices_from_row_col_indices( y_indices, x_indices, width) y_indices = _to_float32(y_indices) x_indices = _to_float32(x_indices) offsets_flat = _flatten_spatial_dimensions(offset_predictions) offsets = tf.gather(offsets_flat, peak_spatial_indices, batch_dims=1) return offsets def prediction_tensors_to_keypoint_candidates( keypoint_heatmap_predictions, keypoint_heatmap_offsets, keypoint_score_threshold=0.1, max_pool_kernel_size=1, max_candidates=20): """Convert keypoint heatmap predictions and offsets to keypoint candidates. Args: keypoint_heatmap_predictions: A float tensor of shape [batch_size, height, width, num_keypoints] representing the per-keypoint heatmaps. keypoint_heatmap_offsets: A float tensor of shape [batch_size, height, width, 2] (or [batch_size, height, width, 2 * num_keypoints] if 'per_keypoint_offset' is set True) representing the per-keypoint offsets. keypoint_score_threshold: float, the threshold for considering a keypoint a candidate. max_pool_kernel_size: integer, the max pool kernel size to use to pull off peak score locations in a neighborhood. For example, to make sure no two neighboring values for the same keypoint are returned, set max_pool_kernel_size=3. If None or 1, will not apply any local filtering. max_candidates: integer, maximum number of keypoint candidates per keypoint type. Returns: keypoint_candidates: A tensor of shape [batch_size, max_candidates, num_keypoints, 2] holding the location of keypoint candidates in [y, x] format (expressed in absolute coordinates in the output coordinate frame). keypoint_scores: A float tensor of shape [batch_size, max_candidates, num_keypoints] with the scores for each keypoint candidate. The scores come directly from the heatmap predictions. num_keypoint_candidates: An integer tensor of shape [batch_size, num_keypoints] with the number of candidates for each keypoint type, as it's possible to filter some candidates due to the score threshold. """ batch_size, _, width, num_keypoints = _get_shape( keypoint_heatmap_predictions, 4) # Get x, y and channel indices corresponding to the top indices in the # keypoint heatmap predictions. # Note that the top k candidates are produced for **each keypoint type**. # Might be worth eventually trying top k in the feature map, independent of # the keypoint type. keypoint_scores, y_indices, x_indices, channel_indices = ( top_k_feature_map_locations(keypoint_heatmap_predictions, max_pool_kernel_size=max_pool_kernel_size, k=max_candidates, per_channel=True)) peak_spatial_indices = flattened_indices_from_row_col_indices( y_indices, x_indices, width) y_indices = _to_float32(y_indices) x_indices = _to_float32(x_indices) offsets_flat = _flatten_spatial_dimensions(keypoint_heatmap_offsets) selected_offsets = tf.gather(offsets_flat, peak_spatial_indices, batch_dims=1) _, num_indices, num_channels = _get_shape(selected_offsets, 3) if num_channels > 2: reshaped_offsets = tf.reshape(selected_offsets, [batch_size, num_indices, -1, 2]) offsets = tf.gather(reshaped_offsets, channel_indices, batch_dims=2) else: offsets = selected_offsets y_offsets, x_offsets = tf.unstack(offsets, axis=2) keypoint_candidates = tf.stack([y_indices + y_offsets, x_indices + x_offsets], axis=2) keypoint_candidates = tf.reshape( keypoint_candidates, [batch_size, num_keypoints, max_candidates, 2]) keypoint_candidates = tf.transpose(keypoint_candidates, [0, 2, 1, 3]) keypoint_scores = tf.reshape( keypoint_scores, [batch_size, num_keypoints, max_candidates]) keypoint_scores = tf.transpose(keypoint_scores, [0, 2, 1]) num_candidates = tf.reduce_sum( tf.to_int32(keypoint_scores >= keypoint_score_threshold), axis=1) return keypoint_candidates, keypoint_scores, num_candidates def regressed_keypoints_at_object_centers(regressed_keypoint_predictions, y_indices, x_indices): """Returns the regressed keypoints at specified object centers. The original keypoint predictions are regressed relative to each feature map location. The returned keypoints are expressed in absolute coordinates in the output frame (i.e. the center offsets are added to each individual regressed set of keypoints). Args: regressed_keypoint_predictions: A float tensor of shape [batch_size, height, width, 2 * num_keypoints] holding regressed keypoints. The last dimension has keypoint coordinates ordered as follows: [y0, x0, y1, x1, ..., y{J-1}, x{J-1}] where J is the number of keypoints. y_indices: A [batch, num_instances] int tensor holding y indices for object centers. These indices correspond to locations in the output feature map. x_indices: A [batch, num_instances] int tensor holding x indices for object centers. These indices correspond to locations in the output feature map. Returns: A float tensor of shape [batch_size, num_objects, 2 * num_keypoints] where regressed keypoints are gathered at the provided locations, and converted to absolute coordinates in the output coordinate frame. """ batch_size, _, width, _ = _get_shape(regressed_keypoint_predictions, 4) flattened_indices = flattened_indices_from_row_col_indices( y_indices, x_indices, width) _, num_instances = _get_shape(flattened_indices, 2) regressed_keypoints_flat = _flatten_spatial_dimensions( regressed_keypoint_predictions) relative_regressed_keypoints = tf.gather( regressed_keypoints_flat, flattened_indices, batch_dims=1) relative_regressed_keypoints = tf.reshape( relative_regressed_keypoints, [batch_size, num_instances, -1, 2]) relative_regressed_keypoints_y, relative_regressed_keypoints_x = tf.unstack( relative_regressed_keypoints, axis=3) y_indices = _to_float32(tf.expand_dims(y_indices, axis=-1)) x_indices = _to_float32(tf.expand_dims(x_indices, axis=-1)) absolute_regressed_keypoints = tf.stack( [y_indices + relative_regressed_keypoints_y, x_indices + relative_regressed_keypoints_x], axis=3) return tf.reshape(absolute_regressed_keypoints, [batch_size, num_instances, -1]) def refine_keypoints(regressed_keypoints, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=None, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance'): """Refines regressed keypoints by snapping to the nearest candidate keypoints. The initial regressed keypoints represent a full set of keypoints regressed from the centers of the objects. The keypoint candidates are estimated independently from heatmaps, and are not associated with any object instances. This function refines the regressed keypoints by "snapping" to the nearest/highest score/highest score-distance ratio (depending on the candidate_ranking_mode) candidate of the same keypoint type (e.g. "nose"). If no candidates are nearby, the regressed keypoint remains unchanged. In order to snap a regressed keypoint to a candidate keypoint, the following must be satisfied: - the candidate keypoint must be of the same type as the regressed keypoint - the candidate keypoint must not lie outside the predicted boxes (or the boxes which encloses the regressed keypoints for the instance if `bboxes` is not provided). Note that the box is scaled by `regressed_box_scale` in height and width, to provide some margin around the keypoints - the distance to the closest candidate keypoint cannot exceed candidate_search_scale * max(height, width), where height and width refer to the bounding box for the instance. Note that the same candidate keypoint is allowed to snap to regressed keypoints in difference instances. Args: regressed_keypoints: A float tensor of shape [batch_size, num_instances, num_keypoints, 2] with the initial regressed keypoints. keypoint_candidates: A tensor of shape [batch_size, max_candidates, num_keypoints, 2] holding the location of keypoint candidates in [y, x] format (expressed in absolute coordinates in the output coordinate frame). keypoint_scores: A float tensor of shape [batch_size, max_candidates, num_keypoints] indicating the scores for keypoint candidates. num_keypoint_candidates: An integer tensor of shape [batch_size, num_keypoints] indicating the number of valid candidates for each keypoint type, as there may be padding (dim 1) of `keypoint_candidates` and `keypoint_scores`. bboxes: A tensor of shape [batch_size, num_instances, 4] with predicted bounding boxes for each instance, expressed in the output coordinate frame. If not provided, boxes will be computed from regressed keypoints. unmatched_keypoint_score: float, the default score to use for regressed keypoints that are not successfully snapped to a nearby candidate. box_scale: float, the multiplier to expand the bounding boxes (either the provided boxes or those which tightly cover the regressed keypoints) for an instance. This scale is typically larger than 1.0 when not providing `bboxes`. candidate_search_scale: float, the scale parameter that multiplies the largest dimension of a bounding box. The resulting distance becomes a search radius for candidates in the vicinity of each regressed keypoint. candidate_ranking_mode: A string as one of ['min_distance', 'score_distance_ratio'] indicating how to select the candidate. If invalid value is provided, an ValueError will be raised. Returns: A tuple with: refined_keypoints: A float tensor of shape [batch_size, num_instances, num_keypoints, 2] with the final, refined keypoints. refined_scores: A float tensor of shape [batch_size, num_instances, num_keypoints] with scores associated with all instances and keypoints in `refined_keypoints`. Raises: ValueError: if provided candidate_ranking_mode is not one of ['min_distance', 'score_distance_ratio'] """ batch_size, num_instances, num_keypoints, _ = ( shape_utils.combined_static_and_dynamic_shape(regressed_keypoints)) max_candidates = keypoint_candidates.shape[1] # Replace all invalid (i.e. padded) keypoint candidates with NaN. # This will prevent them from being considered. range_tiled = tf.tile( tf.reshape(tf.range(max_candidates), [1, max_candidates, 1]), [batch_size, 1, num_keypoints]) num_candidates_tiled = tf.tile(tf.expand_dims(num_keypoint_candidates, 1), [1, max_candidates, 1]) invalid_candidates = range_tiled >= num_candidates_tiled nan_mask = tf.where( invalid_candidates, np.nan * tf.ones_like(invalid_candidates, dtype=tf.float32), tf.ones_like(invalid_candidates, dtype=tf.float32)) keypoint_candidates_with_nans = tf.math.multiply( keypoint_candidates, tf.expand_dims(nan_mask, -1)) # Pairwise squared distances between regressed keypoints and candidate # keypoints (for a single keypoint type). # Shape [batch_size, num_instances, max_candidates, num_keypoints]. regressed_keypoint_expanded = tf.expand_dims(regressed_keypoints, axis=2) keypoint_candidates_expanded = tf.expand_dims( keypoint_candidates_with_nans, axis=1) sqrd_distances = tf.math.reduce_sum( tf.math.squared_difference(regressed_keypoint_expanded, keypoint_candidates_expanded), axis=-1) distances = tf.math.sqrt(sqrd_distances) # Determine the candidates that have the minimum distance to the regressed # keypoints. Shape [batch_size, num_instances, num_keypoints]. min_distances = tf.math.reduce_min(distances, axis=2) if candidate_ranking_mode == 'min_distance': nearby_candidate_inds = tf.math.argmin(distances, axis=2) elif candidate_ranking_mode == 'score_distance_ratio': # tiled_keypoint_scores: # Shape [batch_size, num_instances, max_candidates, num_keypoints]. tiled_keypoint_scores = tf.tile( tf.expand_dims(keypoint_scores, axis=1), multiples=[1, num_instances, 1, 1]) ranking_scores = tiled_keypoint_scores / (distances + 1e-6) nearby_candidate_inds = tf.math.argmax(ranking_scores, axis=2) else: raise ValueError('Not recognized candidate_ranking_mode: %s' % candidate_ranking_mode) # Gather the coordinates and scores corresponding to the closest candidates. # Shape of tensors are [batch_size, num_instances, num_keypoints, 2] and # [batch_size, num_instances, num_keypoints], respectively. nearby_candidate_coords, nearby_candidate_scores = ( _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, nearby_candidate_inds)) if bboxes is None: # Create bboxes from regressed keypoints. # Shape [batch_size * num_instances, 4]. regressed_keypoints_flattened = tf.reshape( regressed_keypoints, [-1, num_keypoints, 2]) bboxes_flattened = keypoint_ops.keypoints_to_enclosing_bounding_boxes( regressed_keypoints_flattened) else: bboxes_flattened = tf.reshape(bboxes, [-1, 4]) # Scale the bounding boxes. # Shape [batch_size, num_instances, 4]. boxlist = box_list.BoxList(bboxes_flattened) boxlist_scaled = box_list_ops.scale_height_width( boxlist, box_scale, box_scale) bboxes_scaled = boxlist_scaled.get() bboxes = tf.reshape(bboxes_scaled, [batch_size, num_instances, 4]) # Get ymin, xmin, ymax, xmax bounding box coordinates, tiled per keypoint. # Shape [batch_size, num_instances, num_keypoints]. bboxes_tiled = tf.tile(tf.expand_dims(bboxes, 2), [1, 1, num_keypoints, 1]) ymin, xmin, ymax, xmax = tf.unstack(bboxes_tiled, axis=3) # Produce a mask that indicates whether the original regressed keypoint # should be used instead of a candidate keypoint. # Shape [batch_size, num_instances, num_keypoints]. search_radius = ( tf.math.maximum(ymax - ymin, xmax - xmin) * candidate_search_scale) mask = (tf.cast(nearby_candidate_coords[:, :, :, 0] < ymin, tf.int32) + tf.cast(nearby_candidate_coords[:, :, :, 0] > ymax, tf.int32) + tf.cast(nearby_candidate_coords[:, :, :, 1] < xmin, tf.int32) + tf.cast(nearby_candidate_coords[:, :, :, 1] > xmax, tf.int32) + # Filter out the chosen candidate with score lower than unmatched # keypoint score. tf.cast(nearby_candidate_scores < unmatched_keypoint_score, tf.int32) + tf.cast(min_distances > search_radius, tf.int32)) mask = mask > 0 # Create refined keypoints where candidate keypoints replace original # regressed keypoints if they are in the vicinity of the regressed keypoints. # Shape [batch_size, num_instances, num_keypoints, 2]. refined_keypoints = tf.where( tf.tile(tf.expand_dims(mask, -1), [1, 1, 1, 2]), regressed_keypoints, nearby_candidate_coords) # Update keypoints scores. In the case where we use the original regressed # keypoints, we use a default score of `unmatched_keypoint_score`. # Shape [batch_size, num_instances, num_keypoints]. refined_scores = tf.where( mask, unmatched_keypoint_score * tf.ones_like(nearby_candidate_scores), nearby_candidate_scores) return refined_keypoints, refined_scores def _pad_to_full_keypoint_dim(keypoint_coords, keypoint_scores, keypoint_inds, num_total_keypoints): """Scatter keypoint elements into tensors with full keypoints dimension. Args: keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32 tensor. keypoint_scores: a [batch_size, num_instances, num_keypoints] float32 tensor. keypoint_inds: a list of integers that indicate the keypoint indices for this specific keypoint class. These indices are used to scatter into tensors that have a `num_total_keypoints` dimension. num_total_keypoints: The total number of keypoints that this model predicts. Returns: A tuple with keypoint_coords_padded: a [batch_size, num_instances, num_total_keypoints,2] float32 tensor. keypoint_scores_padded: a [batch_size, num_instances, num_total_keypoints] float32 tensor. """ batch_size, num_instances, _, _ = ( shape_utils.combined_static_and_dynamic_shape(keypoint_coords)) kpt_coords_transposed = tf.transpose(keypoint_coords, [2, 0, 1, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [2, 0, 1]) kpt_inds_tensor = tf.expand_dims(keypoint_inds, axis=-1) kpt_coords_scattered = tf.scatter_nd( indices=kpt_inds_tensor, updates=kpt_coords_transposed, shape=[num_total_keypoints, batch_size, num_instances, 2]) kpt_scores_scattered = tf.scatter_nd( indices=kpt_inds_tensor, updates=kpt_scores_transposed, shape=[num_total_keypoints, batch_size, num_instances]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 2, 0, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 2, 0]) return keypoint_coords_padded, keypoint_scores_padded def _pad_to_full_instance_dim(keypoint_coords, keypoint_scores, instance_inds, max_instances): """Scatter keypoint elements into tensors with full instance dimension. Args: keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32 tensor. keypoint_scores: a [batch_size, num_instances, num_keypoints] float32 tensor. instance_inds: a list of integers that indicate the instance indices for these keypoints. These indices are used to scatter into tensors that have a `max_instances` dimension. max_instances: The maximum number of instances detected by the model. Returns: A tuple with keypoint_coords_padded: a [batch_size, max_instances, num_keypoints, 2] float32 tensor. keypoint_scores_padded: a [batch_size, max_instances, num_keypoints] float32 tensor. """ batch_size, _, num_keypoints, _ = ( shape_utils.combined_static_and_dynamic_shape(keypoint_coords)) kpt_coords_transposed = tf.transpose(keypoint_coords, [1, 0, 2, 3]) kpt_scores_transposed = tf.transpose(keypoint_scores, [1, 0, 2]) instance_inds = tf.expand_dims(instance_inds, axis=-1) kpt_coords_scattered = tf.scatter_nd( indices=instance_inds, updates=kpt_coords_transposed, shape=[max_instances, batch_size, num_keypoints, 2]) kpt_scores_scattered = tf.scatter_nd( indices=instance_inds, updates=kpt_scores_transposed, shape=[max_instances, batch_size, num_keypoints]) keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 0, 2, 3]) keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 0, 2]) return keypoint_coords_padded, keypoint_scores_padded def _gather_candidates_at_indices(keypoint_candidates, keypoint_scores, indices): """Gathers keypoint candidate coordinates and scores at indices. Args: keypoint_candidates: a float tensor of shape [batch_size, max_candidates, num_keypoints, 2] with candidate coordinates. keypoint_scores: a float tensor of shape [batch_size, max_candidates, num_keypoints] with keypoint scores. indices: an integer tensor of shape [batch_size, num_indices, num_keypoints] with indices. Returns: A tuple with gathered_keypoint_candidates: a float tensor of shape [batch_size, num_indices, num_keypoints, 2] with gathered coordinates. gathered_keypoint_scores: a float tensor of shape [batch_size, num_indices, num_keypoints, 2]. """ # Transpose tensors so that all batch dimensions are up front. keypoint_candidates_transposed = tf.transpose(keypoint_candidates, [0, 2, 1, 3]) keypoint_scores_transposed = tf.transpose(keypoint_scores, [0, 2, 1]) nearby_candidate_inds_transposed = tf.transpose(indices, [0, 2, 1]) nearby_candidate_coords_tranposed = tf.gather( keypoint_candidates_transposed, nearby_candidate_inds_transposed, batch_dims=2) nearby_candidate_scores_transposed = tf.gather( keypoint_scores_transposed, nearby_candidate_inds_transposed, batch_dims=2) gathered_keypoint_candidates = tf.transpose(nearby_candidate_coords_tranposed, [0, 2, 1, 3]) gathered_keypoint_scores = tf.transpose(nearby_candidate_scores_transposed, [0, 2, 1]) return gathered_keypoint_candidates, gathered_keypoint_scores def flattened_indices_from_row_col_indices(row_indices, col_indices, num_cols): """Get the index in a flattened array given row and column indices.""" return (row_indices * num_cols) + col_indices def row_col_channel_indices_from_flattened_indices(indices, num_cols, num_channels): """Computes row, column and channel indices from flattened indices. Args: indices: An integer tensor of any shape holding the indices in the flattened space. num_cols: Number of columns in the image (width). num_channels: Number of channels in the image. Returns: row_indices: The row indices corresponding to each of the input indices. Same shape as indices. col_indices: The column indices corresponding to each of the input indices. Same shape as indices. channel_indices. The channel indices corresponding to each of the input indices. """ row_indices = (indices // num_channels) // num_cols col_indices = (indices // num_channels) % num_cols channel_indices = indices % num_channels return row_indices, col_indices, channel_indices def get_valid_anchor_weights_in_flattened_image(true_image_shapes, height, width): """Computes valid anchor weights for an image assuming pixels will be flattened. This function is useful when we only want to penalize valid areas in the image in the case when padding is used. The function assumes that the loss function will be applied after flattening the spatial dimensions and returns anchor weights accordingly. Args: true_image_shapes: An integer tensor of shape [batch_size, 3] representing the true image shape (without padding) for each sample in the batch. height: height of the prediction from the network. width: width of the prediction from the network. Returns: valid_anchor_weights: a float tensor of shape [batch_size, height * width] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. """ indices = tf.reshape(tf.range(height * width), [1, -1]) batch_size = tf.shape(true_image_shapes)[0] batch_indices = tf.ones((batch_size, 1), dtype=tf.int32) * indices y_coords, x_coords, _ = row_col_channel_indices_from_flattened_indices( batch_indices, width, 1) max_y, max_x = true_image_shapes[:, 0], true_image_shapes[:, 1] max_x = _to_float32(tf.expand_dims(max_x, 1)) max_y = _to_float32(tf.expand_dims(max_y, 1)) x_coords = _to_float32(x_coords) y_coords = _to_float32(y_coords) valid_mask = tf.math.logical_and(x_coords < max_x, y_coords < max_y) return _to_float32(valid_mask) def convert_strided_predictions_to_normalized_boxes(boxes, stride, true_image_shapes): """Converts predictions in the output space to normalized boxes. Boxes falling outside the valid image boundary are clipped to be on the boundary. Args: boxes: A tensor of shape [batch_size, num_boxes, 4] holding the raw coordinates of boxes in the model's output space. stride: The stride in the output space. true_image_shapes: A tensor of shape [batch_size, 3] representing the true shape of the input not considering padding. Returns: boxes: A tensor of shape [batch_size, num_boxes, 4] representing the coordinates of the normalized boxes. """ def _normalize_boxlist(args): boxes, height, width = args boxes = box_list_ops.scale(boxes, stride, stride) boxes = box_list_ops.to_normalized_coordinates(boxes, height, width) boxes = box_list_ops.clip_to_window(boxes, [0., 0., 1., 1.], filter_nonoverlapping=False) return boxes box_lists = [box_list.BoxList(boxes) for boxes in tf.unstack(boxes, axis=0)] true_heights, true_widths, _ = tf.unstack(true_image_shapes, axis=1) true_heights_list = tf.unstack(true_heights, axis=0) true_widths_list = tf.unstack(true_widths, axis=0) box_lists = list(map(_normalize_boxlist, zip(box_lists, true_heights_list, true_widths_list))) boxes = tf.stack([box_list_instance.get() for box_list_instance in box_lists], axis=0) return boxes def convert_strided_predictions_to_normalized_keypoints( keypoint_coords, keypoint_scores, stride, true_image_shapes, clip_out_of_frame_keypoints=False): """Converts predictions in the output space to normalized keypoints. If clip_out_of_frame_keypoints=False, keypoint coordinates falling outside the valid image boundary are normalized but not clipped; If clip_out_of_frame_keypoints=True, keypoint coordinates falling outside the valid image boundary are clipped to the closest image boundary and the scores will be set to 0.0. Args: keypoint_coords: A tensor of shape [batch_size, num_instances, num_keypoints, 2] holding the raw coordinates of keypoints in the model's output space. keypoint_scores: A tensor of shape [batch_size, num_instances, num_keypoints] holding the keypoint scores. stride: The stride in the output space. true_image_shapes: A tensor of shape [batch_size, 3] representing the true shape of the input not considering padding. clip_out_of_frame_keypoints: A boolean indicating whether keypoints outside the image boundary should be clipped. If True, keypoint coords will be clipped to image boundary. If False, keypoints are normalized but not filtered based on their location. Returns: keypoint_coords_normalized: A tensor of shape [batch_size, num_instances, num_keypoints, 2] representing the coordinates of the normalized keypoints. keypoint_scores: A tensor of shape [batch_size, num_instances, num_keypoints] representing the updated keypoint scores. """ # Flatten keypoints and scores. batch_size, _, _, _ = ( shape_utils.combined_static_and_dynamic_shape(keypoint_coords)) # Scale and normalize keypoints. true_heights, true_widths, _ = tf.unstack(true_image_shapes, axis=1) yscale = float(stride) / tf.cast(true_heights, tf.float32) xscale = float(stride) / tf.cast(true_widths, tf.float32) yx_scale = tf.stack([yscale, xscale], axis=1) keypoint_coords_normalized = keypoint_coords * tf.reshape( yx_scale, [batch_size, 1, 1, 2]) if clip_out_of_frame_keypoints: # Determine the keypoints that are in the true image regions. valid_indices = tf.logical_and( tf.logical_and(keypoint_coords_normalized[:, :, :, 0] >= 0.0, keypoint_coords_normalized[:, :, :, 0] <= 1.0), tf.logical_and(keypoint_coords_normalized[:, :, :, 1] >= 0.0, keypoint_coords_normalized[:, :, :, 1] <= 1.0)) batch_window = tf.tile( tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32), multiples=[batch_size, 1]) def clip_to_window(inputs): keypoints, window = inputs return keypoint_ops.clip_to_window(keypoints, window) keypoint_coords_normalized = tf.map_fn( clip_to_window, (keypoint_coords_normalized, batch_window), dtype=tf.float32, back_prop=False) keypoint_scores = tf.where(valid_indices, keypoint_scores, tf.zeros_like(keypoint_scores)) return keypoint_coords_normalized, keypoint_scores def convert_strided_predictions_to_instance_masks( boxes, classes, masks, true_image_shapes, densepose_part_heatmap=None, densepose_surface_coords=None, stride=4, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=-1): """Converts predicted full-image masks into instance masks. For each predicted detection box: * Crop and resize the predicted mask (and optionally DensePose coordinates) based on the detected bounding box coordinates and class prediction. Uses bilinear resampling. * Binarize the mask using the provided score threshold. Args: boxes: A tensor of shape [batch, max_detections, 4] holding the predicted boxes, in normalized coordinates (relative to the true image dimensions). classes: An integer tensor of shape [batch, max_detections] containing the detected class for each box (0-indexed). masks: A [batch, output_height, output_width, num_classes] float32 tensor with class probabilities. true_image_shapes: A tensor of shape [batch, 3] representing the true shape of the inputs not considering padding. densepose_part_heatmap: (Optional) A [batch, output_height, output_width, num_parts] float32 tensor with part scores (i.e. logits). densepose_surface_coords: (Optional) A [batch, output_height, output_width, 2 * num_parts] float32 tensor with predicted part coordinates (in vu-format). stride: The stride in the output space. mask_height: The desired resized height for instance masks. mask_width: The desired resized width for instance masks. score_threshold: The threshold at which to convert predicted mask into foreground pixels. densepose_class_index: The class index (0-indexed) corresponding to the class which has DensePose labels (e.g. person class). Returns: A tuple of masks and surface_coords. instance_masks: A [batch_size, max_detections, mask_height, mask_width] uint8 tensor with predicted foreground mask for each instance. If DensePose tensors are provided, then each pixel value in the mask encodes the 1-indexed part. surface_coords: A [batch_size, max_detections, mask_height, mask_width, 2] float32 tensor with (v, u) coordinates. Note that v, u coordinates are only defined on instance masks, and the coordinates at each location of the foreground mask correspond to coordinates on a local part coordinate system (the specific part can be inferred from the `instance_masks` output. If DensePose feature maps are not passed to this function, this output will be None. Raises: ValueError: If one but not both of `densepose_part_heatmap` and `densepose_surface_coords` is provided. """ batch_size, output_height, output_width, _ = ( shape_utils.combined_static_and_dynamic_shape(masks)) input_height = stride * output_height input_width = stride * output_width true_heights, true_widths, _ = tf.unstack(true_image_shapes, axis=1) # If necessary, create dummy DensePose tensors to simplify the map function. densepose_present = True if ((densepose_part_heatmap is not None) ^ (densepose_surface_coords is not None)): raise ValueError('To use DensePose, both `densepose_part_heatmap` and ' '`densepose_surface_coords` must be provided') if densepose_part_heatmap is None and densepose_surface_coords is None: densepose_present = False densepose_part_heatmap = tf.zeros( (batch_size, output_height, output_width, 1), dtype=tf.float32) densepose_surface_coords = tf.zeros( (batch_size, output_height, output_width, 2), dtype=tf.float32) crop_and_threshold_fn = functools.partial( crop_and_threshold_masks, input_height=input_height, input_width=input_width, mask_height=mask_height, mask_width=mask_width, score_threshold=score_threshold, densepose_class_index=densepose_class_index) instance_masks, surface_coords = shape_utils.static_or_dynamic_map_fn( crop_and_threshold_fn, elems=[boxes, classes, masks, densepose_part_heatmap, densepose_surface_coords, true_heights, true_widths], dtype=[tf.uint8, tf.float32], back_prop=False) surface_coords = surface_coords if densepose_present else None return instance_masks, surface_coords def crop_and_threshold_masks(elems, input_height, input_width, mask_height=256, mask_width=256, score_threshold=0.5, densepose_class_index=-1): """Crops and thresholds masks based on detection boxes. Args: elems: A tuple of boxes - float32 tensor of shape [max_detections, 4] classes - int32 tensor of shape [max_detections] (0-indexed) masks - float32 tensor of shape [output_height, output_width, num_classes] part_heatmap - float32 tensor of shape [output_height, output_width, num_parts] surf_coords - float32 tensor of shape [output_height, output_width, 2 * num_parts] true_height - scalar int tensor true_width - scalar int tensor input_height: Input height to network. input_width: Input width to network. mask_height: Height for resizing mask crops. mask_width: Width for resizing mask crops. score_threshold: The threshold at which to convert predicted mask into foreground pixels. densepose_class_index: scalar int tensor with the class index (0-indexed) for DensePose. Returns: A tuple of all_instances: A [max_detections, mask_height, mask_width] uint8 tensor with a predicted foreground mask for each instance. Background is encoded as 0, and foreground is encoded as a positive integer. Specific part indices are encoded as 1-indexed parts (for classes that have part information). surface_coords: A [max_detections, mask_height, mask_width, 2] float32 tensor with (v, u) coordinates. for each part. """ (boxes, classes, masks, part_heatmap, surf_coords, true_height, true_width) = elems # Boxes are in normalized coordinates relative to true image shapes. Convert # coordinates to be normalized relative to input image shapes (since masks # may still have padding). boxlist = box_list.BoxList(boxes) y_scale = true_height / input_height x_scale = true_width / input_width boxlist = box_list_ops.scale(boxlist, y_scale, x_scale) boxes = boxlist.get() # Convert masks from [output_height, output_width, num_classes] to # [num_classes, output_height, output_width, 1]. num_classes = tf.shape(masks)[-1] masks_4d = tf.transpose(masks, perm=[2, 0, 1])[:, :, :, tf.newaxis] # Tile part and surface coordinate masks for all classes. part_heatmap_4d = tf.tile(part_heatmap[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) surf_coords_4d = tf.tile(surf_coords[tf.newaxis, :, :, :], multiples=[num_classes, 1, 1, 1]) feature_maps_concat = tf.concat([masks_4d, part_heatmap_4d, surf_coords_4d], axis=-1) # The following tensor has shape # [max_detections, mask_height, mask_width, 1 + 3 * num_parts]. cropped_masks = tf2.image.crop_and_resize( feature_maps_concat, boxes=boxes, box_indices=classes, crop_size=[mask_height, mask_width], method='bilinear') # Split the cropped masks back into instance masks, part masks, and surface # coordinates. num_parts = tf.shape(part_heatmap)[-1] instance_masks, part_heatmap_cropped, surface_coords_cropped = tf.split( cropped_masks, [1, num_parts, 2 * num_parts], axis=-1) # Threshold the instance masks. Resulting tensor has shape # [max_detections, mask_height, mask_width, 1]. instance_masks_int = tf.cast( tf.math.greater_equal(instance_masks, score_threshold), dtype=tf.int32) # Produce a binary mask that is 1.0 only: # - in the foreground region for an instance # - in detections corresponding to the DensePose class det_with_parts = tf.equal(classes, densepose_class_index) det_with_parts = tf.cast( tf.reshape(det_with_parts, [-1, 1, 1, 1]), dtype=tf.int32) instance_masks_with_parts = tf.math.multiply(instance_masks_int, det_with_parts) # Similarly, produce a binary mask that holds the foreground masks only for # instances without parts (i.e. non-DensePose classes). det_without_parts = 1 - det_with_parts instance_masks_without_parts = tf.math.multiply(instance_masks_int, det_without_parts) # Assemble a tensor that has standard instance segmentation masks for # non-DensePose classes (with values in [0, 1]), and part segmentation masks # for DensePose classes (with vaues in [0, 1, ..., num_parts]). part_mask_int_zero_indexed = tf.math.argmax( part_heatmap_cropped, axis=-1, output_type=tf.int32)[:, :, :, tf.newaxis] part_mask_int_one_indexed = part_mask_int_zero_indexed + 1 all_instances = (instance_masks_without_parts + instance_masks_with_parts * part_mask_int_one_indexed) # Gather the surface coordinates for the parts. surface_coords_cropped = tf.reshape( surface_coords_cropped, [-1, mask_height, mask_width, num_parts, 2]) surface_coords = gather_surface_coords_for_parts(surface_coords_cropped, part_mask_int_zero_indexed) surface_coords = ( surface_coords * tf.cast(instance_masks_with_parts, tf.float32)) return [tf.squeeze(all_instances, axis=3), surface_coords] def gather_surface_coords_for_parts(surface_coords_cropped, highest_scoring_part): """Gathers the (v, u) coordinates for the highest scoring DensePose parts. Args: surface_coords_cropped: A [max_detections, height, width, num_parts, 2] float32 tensor with (v, u) surface coordinates. highest_scoring_part: A [max_detections, height, width] integer tensor with the highest scoring part (0-indexed) indices for each location. Returns: A [max_detections, height, width, 2] float32 tensor with the (v, u) coordinates selected from the highest scoring parts. """ max_detections, height, width, num_parts, _ = ( shape_utils.combined_static_and_dynamic_shape(surface_coords_cropped)) flattened_surface_coords = tf.reshape(surface_coords_cropped, [-1, 2]) flattened_part_ids = tf.reshape(highest_scoring_part, [-1]) # Produce lookup indices that represent the locations of the highest scoring # parts in the `flattened_surface_coords` tensor. flattened_lookup_indices = ( num_parts * tf.range(max_detections * height * width) + flattened_part_ids) vu_coords_flattened = tf.gather(flattened_surface_coords, flattened_lookup_indices, axis=0) return tf.reshape(vu_coords_flattened, [max_detections, height, width, 2]) def predicted_embeddings_at_object_centers(embedding_predictions, y_indices, x_indices): """Returns the predicted embeddings at specified object centers. Args: embedding_predictions: A float tensor of shape [batch_size, height, width, reid_embed_size] holding predicted embeddings. y_indices: A [batch, num_instances] int tensor holding y indices for object centers. These indices correspond to locations in the output feature map. x_indices: A [batch, num_instances] int tensor holding x indices for object centers. These indices correspond to locations in the output feature map. Returns: A float tensor of shape [batch_size, num_objects, reid_embed_size] where predicted embeddings are gathered at the provided locations. """ batch_size, _, width, _ = _get_shape(embedding_predictions, 4) flattened_indices = flattened_indices_from_row_col_indices( y_indices, x_indices, width) _, num_instances = _get_shape(flattened_indices, 2) embeddings_flat = _flatten_spatial_dimensions(embedding_predictions) embeddings = tf.gather(embeddings_flat, flattened_indices, batch_dims=1) embeddings = tf.reshape(embeddings, [batch_size, num_instances, -1]) return embeddings class ObjectDetectionParams( collections.namedtuple('ObjectDetectionParams', [ 'localization_loss', 'scale_loss_weight', 'offset_loss_weight', 'task_loss_weight' ])): """Namedtuple to host object detection related parameters. This is a wrapper class over the fields that are either the hyper-parameters or the loss functions needed for the object detection task. The class is immutable after constructed. Please see the __new__ function for detailed information for each fields. """ __slots__ = () def __new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight=1.0): """Constructor with default values for ObjectDetectionParams. Args: localization_loss: a object_detection.core.losses.Loss object to compute the loss for the center offset and height/width predictions in CenterNet. scale_loss_weight: float, The weight for localizing box size. Note that the scale loss is dependent on the input image size, since we penalize the raw height and width. This constant may need to be adjusted depending on the input size. offset_loss_weight: float, The weight for localizing center offsets. task_loss_weight: float, the weight of the object detection loss. Returns: An initialized ObjectDetectionParams namedtuple. """ return super(ObjectDetectionParams, cls).__new__(cls, localization_loss, scale_loss_weight, offset_loss_weight, task_loss_weight) class KeypointEstimationParams( collections.namedtuple('KeypointEstimationParams', [ 'task_name', 'class_id', 'keypoint_indices', 'classification_loss', 'localization_loss', 'keypoint_labels', 'keypoint_std_dev', 'keypoint_heatmap_loss_weight', 'keypoint_offset_loss_weight', 'keypoint_regression_loss_weight', 'keypoint_candidate_score_threshold', 'heatmap_bias_init', 'num_candidates_per_keypoint', 'task_loss_weight', 'peak_max_pool_kernel_size', 'unmatched_keypoint_score', 'box_scale', 'candidate_search_scale', 'candidate_ranking_mode', 'offset_peak_radius', 'per_keypoint_offset' ])): """Namedtuple to host object detection related parameters. This is a wrapper class over the fields that are either the hyper-parameters or the loss functions needed for the keypoint estimation task. The class is immutable after constructed. Please see the __new__ function for detailed information for each fields. """ __slots__ = () def __new__(cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels=None, keypoint_std_dev=None, keypoint_heatmap_loss_weight=1.0, keypoint_offset_loss_weight=1.0, keypoint_regression_loss_weight=1.0, keypoint_candidate_score_threshold=0.1, heatmap_bias_init=-2.19, num_candidates_per_keypoint=100, task_loss_weight=1.0, peak_max_pool_kernel_size=3, unmatched_keypoint_score=0.1, box_scale=1.2, candidate_search_scale=0.3, candidate_ranking_mode='min_distance', offset_peak_radius=0, per_keypoint_offset=False): """Constructor with default values for KeypointEstimationParams. Args: task_name: string, the name of the task this namedtuple corresponds to. Note that it should be an unique identifier of the task. class_id: int, the ID of the class that contains the target keypoints to considered in this task. For example, if the task is human pose estimation, the class id should correspond to the "human" class. Note that the ID is 0-based, meaning that class 0 corresponds to the first non-background object class. keypoint_indices: A list of integers representing the indicies of the keypoints to be considered in this task. This is used to retrieve the subset of the keypoints from gt_keypoints that should be considered in this task. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. localization_loss: an object_detection.core.losses.Loss object to compute the loss for the center offset and height/width predictions in CenterNet. keypoint_labels: A list of strings representing the label text of each keypoint, e.g. "nose", 'left_shoulder". Note that the length of this list should be equal to keypoint_indices. keypoint_std_dev: A list of float represent the standard deviation of the Gaussian kernel used to generate the keypoint heatmap. It is to provide the flexibility of using different sizes of Gaussian kernel for each keypoint class. keypoint_heatmap_loss_weight: float, The weight for the keypoint heatmap. keypoint_offset_loss_weight: float, The weight for the keypoint offsets loss. keypoint_regression_loss_weight: float, The weight for keypoint regression loss. Note that the loss is dependent on the input image size, since we penalize the raw height and width. This constant may need to be adjusted depending on the input size. keypoint_candidate_score_threshold: float, The heatmap score threshold for a keypoint to become a valid candidate. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the class prediction head. If set to None, the bias is initialized with zeros. num_candidates_per_keypoint: The maximum number of candidates to retrieve for each keypoint. task_loss_weight: float, the weight of the keypoint estimation loss. peak_max_pool_kernel_size: Max pool kernel size to use to pull off peak score locations in a neighborhood (independently for each keypoint types). unmatched_keypoint_score: The default score to use for regressed keypoints that are not successfully snapped to a nearby candidate. box_scale: The multiplier to expand the bounding boxes (either the provided boxes or those which tightly cover the regressed keypoints). candidate_search_scale: The scale parameter that multiplies the largest dimension of a bounding box. The resulting distance becomes a search radius for candidates in the vicinity of each regressed keypoint. candidate_ranking_mode: One of ['min_distance', 'score_distance_ratio'] indicating how to select the keypoint candidate. offset_peak_radius: The radius (in the unit of output pixel) around groundtruth heatmap peak to assign the offset targets. If set 0, then the offset target will only be assigned to the heatmap peak (same behavior as the original paper). per_keypoint_offset: A bool indicates whether to assign offsets for each keypoint channel separately. If set False, the output offset target has the shape [batch_size, out_height, out_width, 2] (same behavior as the original paper). If set True, the output offset target has the shape [batch_size, out_height, out_width, 2 * num_keypoints] (recommended when the offset_peak_radius is not zero). Returns: An initialized KeypointEstimationParams namedtuple. """ return super(KeypointEstimationParams, cls).__new__( cls, task_name, class_id, keypoint_indices, classification_loss, localization_loss, keypoint_labels, keypoint_std_dev, keypoint_heatmap_loss_weight, keypoint_offset_loss_weight, keypoint_regression_loss_weight, keypoint_candidate_score_threshold, heatmap_bias_init, num_candidates_per_keypoint, task_loss_weight, peak_max_pool_kernel_size, unmatched_keypoint_score, box_scale, candidate_search_scale, candidate_ranking_mode, offset_peak_radius, per_keypoint_offset) class ObjectCenterParams( collections.namedtuple('ObjectCenterParams', [ 'classification_loss', 'object_center_loss_weight', 'heatmap_bias_init', 'min_box_overlap_iou', 'max_box_predictions', 'use_only_known_classes' ])): """Namedtuple to store object center prediction related parameters.""" __slots__ = () def __new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init=-2.19, min_box_overlap_iou=0.7, max_box_predictions=100, use_labeled_classes=False): """Constructor with default values for ObjectCenterParams. Args: classification_loss: an object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. object_center_loss_weight: float, The weight for the object center loss. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the object center prediction head. If set to None, the bias is initialized with zeros. min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes need have with groundtruth boxes to not be penalized. This is used for computing the class specific center heatmaps. max_box_predictions: int, the maximum number of boxes to predict. use_labeled_classes: boolean, compute the loss only labeled classes. Returns: An initialized ObjectCenterParams namedtuple. """ return super(ObjectCenterParams, cls).__new__(cls, classification_loss, object_center_loss_weight, heatmap_bias_init, min_box_overlap_iou, max_box_predictions, use_labeled_classes) class MaskParams( collections.namedtuple('MaskParams', [ 'classification_loss', 'task_loss_weight', 'mask_height', 'mask_width', 'score_threshold', 'heatmap_bias_init' ])): """Namedtuple to store mask prediction related parameters.""" __slots__ = () def __new__(cls, classification_loss, task_loss_weight=1.0, mask_height=256, mask_width=256, score_threshold=0.5, heatmap_bias_init=-2.19): """Constructor with default values for MaskParams. Args: classification_loss: an object_detection.core.losses.Loss object to compute the loss for the semantic segmentation predictions in CenterNet. task_loss_weight: float, The loss weight for the segmentation task. mask_height: The height of the resized instance segmentation mask. mask_width: The width of the resized instance segmentation mask. score_threshold: The threshold at which to convert predicted mask probabilities (after passing through sigmoid) into foreground pixels. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the semantic segmentation prediction head. If set to None, the bias is initialized with zeros. Returns: An initialized MaskParams namedtuple. """ return super(MaskParams, cls).__new__(cls, classification_loss, task_loss_weight, mask_height, mask_width, score_threshold, heatmap_bias_init) class DensePoseParams( collections.namedtuple('DensePoseParams', [ 'class_id', 'classification_loss', 'localization_loss', 'part_loss_weight', 'coordinate_loss_weight', 'num_parts', 'task_loss_weight', 'upsample_to_input_res', 'upsample_method', 'heatmap_bias_init' ])): """Namedtuple to store DensePose prediction related parameters.""" __slots__ = () def __new__(cls, class_id, classification_loss, localization_loss, part_loss_weight=1.0, coordinate_loss_weight=1.0, num_parts=24, task_loss_weight=1.0, upsample_to_input_res=True, upsample_method='bilinear', heatmap_bias_init=-2.19): """Constructor with default values for DensePoseParams. Args: class_id: the ID of the class that contains the DensePose groundtruth. This should typically correspond to the "person" class. Note that the ID is 0-based, meaning that class 0 corresponds to the first non-background object class. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the body part predictions in CenterNet. localization_loss: an object_detection.core.losses.Loss object to compute the loss for the surface coordinate regression in CenterNet. part_loss_weight: The loss weight to apply to part prediction. coordinate_loss_weight: The loss weight to apply to surface coordinate prediction. num_parts: The number of DensePose parts to predict. task_loss_weight: float, the loss weight for the DensePose task. upsample_to_input_res: Whether to upsample the DensePose feature maps to the input resolution before applying loss. Note that the prediction outputs are still at the standard CenterNet output stride. upsample_method: Method for upsampling DensePose feature maps. Options are either 'bilinear' or 'nearest'). This takes no effect when `upsample_to_input_res` is False. heatmap_bias_init: float, the initial value of bias in the convolutional kernel of the part prediction head. If set to None, the bias is initialized with zeros. Returns: An initialized DensePoseParams namedtuple. """ return super(DensePoseParams, cls).__new__(cls, class_id, classification_loss, localization_loss, part_loss_weight, coordinate_loss_weight, num_parts, task_loss_weight, upsample_to_input_res, upsample_method, heatmap_bias_init) class TrackParams( collections.namedtuple('TrackParams', [ 'num_track_ids', 'reid_embed_size', 'num_fc_layers', 'classification_loss', 'task_loss_weight' ])): """Namedtuple to store tracking prediction related parameters.""" __slots__ = () def __new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight=1.0): """Constructor with default values for TrackParams. Args: num_track_ids: int. The maximum track ID in the dataset. Used for ReID embedding classification task. reid_embed_size: int. The embedding size for ReID task. num_fc_layers: int. The number of (fully-connected, batch-norm, relu) layers for track ID classification head. classification_loss: an object_detection.core.losses.Loss object to compute the loss for the ReID embedding in CenterNet. task_loss_weight: float, the loss weight for the tracking task. Returns: An initialized TrackParams namedtuple. """ return super(TrackParams, cls).__new__(cls, num_track_ids, reid_embed_size, num_fc_layers, classification_loss, task_loss_weight) class TemporalOffsetParams( collections.namedtuple('TemporalOffsetParams', [ 'localization_loss', 'task_loss_weight' ])): """Namedtuple to store temporal offset related parameters.""" __slots__ = () def __new__(cls, localization_loss, task_loss_weight=1.0): """Constructor with default values for TrackParams. Args: localization_loss: an object_detection.core.losses.Loss object to compute the loss for the temporal offset in CenterNet. task_loss_weight: float, the loss weight for the temporal offset task. Returns: An initialized TemporalOffsetParams namedtuple. """ return super(TemporalOffsetParams, cls).__new__(cls, localization_loss, task_loss_weight) # The following constants are used to generate the keys of the # (prediction, loss, target assigner,...) dictionaries used in CenterNetMetaArch # class. DETECTION_TASK = 'detection_task' OBJECT_CENTER = 'object_center' BOX_SCALE = 'box/scale' BOX_OFFSET = 'box/offset' KEYPOINT_REGRESSION = 'keypoint/regression' KEYPOINT_HEATMAP = 'keypoint/heatmap' KEYPOINT_OFFSET = 'keypoint/offset' SEGMENTATION_TASK = 'segmentation_task' SEGMENTATION_HEATMAP = 'segmentation/heatmap' DENSEPOSE_TASK = 'densepose_task' DENSEPOSE_HEATMAP = 'densepose/heatmap' DENSEPOSE_REGRESSION = 'densepose/regression' LOSS_KEY_PREFIX = 'Loss' TRACK_TASK = 'track_task' TRACK_REID = 'track/reid' TEMPORALOFFSET_TASK = 'temporal_offset_task' TEMPORAL_OFFSET = 'track/offset' def get_keypoint_name(task_name, head_name): return '%s/%s' % (task_name, head_name) def get_num_instances_from_weights(groundtruth_weights_list): """Computes the number of instances/boxes from the weights in a batch. Args: groundtruth_weights_list: A list of float tensors with shape [max_num_instances] representing whether there is an actual instance in the image (with non-zero value) or is padded to match the max_num_instances (with value 0.0). The list represents the batch dimension. Returns: A scalar integer tensor incidating how many instances/boxes are in the images in the batch. Note that this function is usually used to normalize the loss so the minimum return value is 1 to avoid weird behavior. """ num_instances = tf.reduce_sum( [tf.math.count_nonzero(w) for w in groundtruth_weights_list]) num_instances = tf.maximum(num_instances, 1) return num_instances class CenterNetMetaArch(model.DetectionModel): """The CenterNet meta architecture [1]. [1]: https://arxiv.org/abs/1904.07850 """ def __init__(self, is_training, add_summaries, num_classes, feature_extractor, image_resizer_fn, object_center_params, object_detection_params=None, keypoint_params_dict=None, mask_params=None, densepose_params=None, track_params=None, temporal_offset_params=None): """Initializes a CenterNet model. Args: is_training: Set to True if this model is being built for training. add_summaries: Whether to add tf summaries in the model. num_classes: int, The number of classes that the model should predict. feature_extractor: A CenterNetFeatureExtractor to use to extract features from an image. image_resizer_fn: a callable for image resizing. This callable always takes a rank-3 image tensor (corresponding to a single image) and returns a rank-3 image tensor, possibly with new spatial dimensions and a 1-D tensor of shape [3] indicating shape of true image within the resized image tensor as the resized image tensor could be padded. See builders/image_resizer_builder.py. object_center_params: An ObjectCenterParams namedtuple. This object holds the hyper-parameters for object center prediction. This is required by either object detection or keypoint estimation tasks. object_detection_params: An ObjectDetectionParams namedtuple. This object holds the hyper-parameters necessary for object detection. Please see the class definition for more details. keypoint_params_dict: A dictionary that maps from task name to the corresponding KeypointEstimationParams namedtuple. This object holds the hyper-parameters necessary for multiple keypoint estimations. Please see the class definition for more details. mask_params: A MaskParams namedtuple. This object holds the hyper-parameters for segmentation. Please see the class definition for more details. densepose_params: A DensePoseParams namedtuple. This object holds the hyper-parameters for DensePose prediction. Please see the class definition for more details. Note that if this is provided, it is expected that `mask_params` is also provided. track_params: A TrackParams namedtuple. This object holds the hyper-parameters for tracking. Please see the class definition for more details. temporal_offset_params: A TemporalOffsetParams namedtuple. This object holds the hyper-parameters for offset prediction based tracking. """ assert object_detection_params or keypoint_params_dict # Shorten the name for convenience and better formatting. self._is_training = is_training # The Objects as Points paper attaches loss functions to multiple # (`num_feature_outputs`) feature maps in the the backbone. E.g. # for the hourglass backbone, `num_feature_outputs` is 2. self._feature_extractor = feature_extractor self._num_feature_outputs = feature_extractor.num_feature_outputs self._stride = self._feature_extractor.out_stride self._image_resizer_fn = image_resizer_fn self._center_params = object_center_params self._od_params = object_detection_params self._kp_params_dict = keypoint_params_dict self._mask_params = mask_params if densepose_params is not None and mask_params is None: raise ValueError('To run DensePose prediction, `mask_params` must also ' 'be supplied.') self._densepose_params = densepose_params self._track_params = track_params self._temporal_offset_params = temporal_offset_params # Construct the prediction head nets. self._prediction_head_dict = self._construct_prediction_heads( num_classes, self._num_feature_outputs, class_prediction_bias_init=self._center_params.heatmap_bias_init) # Initialize the target assigners. self._target_assigner_dict = self._initialize_target_assigners( stride=self._stride, min_box_overlap_iou=self._center_params.min_box_overlap_iou) # Will be used in VOD single_frame_meta_arch for tensor reshape. self._batched_prediction_tensor_names = [] super(CenterNetMetaArch, self).__init__(num_classes) @property def batched_prediction_tensor_names(self): if not self._batched_prediction_tensor_names: raise RuntimeError('Must call predict() method to get batched prediction ' 'tensor names.') return self._batched_prediction_tensor_names def _construct_prediction_heads(self, num_classes, num_feature_outputs, class_prediction_bias_init): """Constructs the prediction heads based on the specific parameters. Args: num_classes: An integer indicating how many classes in total to predict. num_feature_outputs: An integer indicating how many feature outputs to use for calculating the loss. The Objects as Points paper attaches loss functions to multiple (`num_feature_outputs`) feature maps in the the backbone. E.g. for the hourglass backbone, `num_feature_outputs` is 2. class_prediction_bias_init: float, the initial value of bias in the convolutional kernel of the class prediction head. If set to None, the bias is initialized with zeros. Returns: A dictionary of keras modules generated by calling make_prediction_net function. It will also create and set a private member of the class when learning the tracking task. """ prediction_heads = {} prediction_heads[OBJECT_CENTER] = [ make_prediction_net(num_classes, bias_fill=class_prediction_bias_init) for _ in range(num_feature_outputs) ] if self._od_params is not None: prediction_heads[BOX_SCALE] = [ make_prediction_net(NUM_SIZE_CHANNELS) for _ in range(num_feature_outputs) ] prediction_heads[BOX_OFFSET] = [ make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs) ] if self._kp_params_dict is not None: for task_name, kp_params in self._kp_params_dict.items(): num_keypoints = len(kp_params.keypoint_indices) prediction_heads[get_keypoint_name(task_name, KEYPOINT_HEATMAP)] = [ make_prediction_net( num_keypoints, bias_fill=kp_params.heatmap_bias_init) for _ in range(num_feature_outputs) ] prediction_heads[get_keypoint_name(task_name, KEYPOINT_REGRESSION)] = [ make_prediction_net(NUM_OFFSET_CHANNELS * num_keypoints) for _ in range(num_feature_outputs) ] if kp_params.per_keypoint_offset: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [ make_prediction_net(NUM_OFFSET_CHANNELS * num_keypoints) for _ in range(num_feature_outputs) ] else: prediction_heads[get_keypoint_name(task_name, KEYPOINT_OFFSET)] = [ make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs) ] if self._mask_params is not None: prediction_heads[SEGMENTATION_HEATMAP] = [ make_prediction_net(num_classes, bias_fill=self._mask_params.heatmap_bias_init) for _ in range(num_feature_outputs)] if self._densepose_params is not None: prediction_heads[DENSEPOSE_HEATMAP] = [ make_prediction_net( # pylint: disable=g-complex-comprehension self._densepose_params.num_parts, bias_fill=self._densepose_params.heatmap_bias_init) for _ in range(num_feature_outputs)] prediction_heads[DENSEPOSE_REGRESSION] = [ make_prediction_net(2 * self._densepose_params.num_parts) for _ in range(num_feature_outputs) ] if self._track_params is not None: prediction_heads[TRACK_REID] = [ make_prediction_net(self._track_params.reid_embed_size) for _ in range(num_feature_outputs)] # Creates a classification network to train object embeddings by learning # a projection from embedding space to object track ID space. self.track_reid_classification_net = tf.keras.Sequential() for _ in range(self._track_params.num_fc_layers - 1): self.track_reid_classification_net.add( tf.keras.layers.Dense(self._track_params.reid_embed_size, input_shape=( self._track_params.reid_embed_size,))) self.track_reid_classification_net.add( tf.keras.layers.BatchNormalization()) self.track_reid_classification_net.add(tf.keras.layers.ReLU()) self.track_reid_classification_net.add( tf.keras.layers.Dense(self._track_params.num_track_ids, input_shape=( self._track_params.reid_embed_size,))) if self._temporal_offset_params is not None: prediction_heads[TEMPORAL_OFFSET] = [ make_prediction_net(NUM_OFFSET_CHANNELS) for _ in range(num_feature_outputs) ] return prediction_heads def _initialize_target_assigners(self, stride, min_box_overlap_iou): """Initializes the target assigners and puts them in a dictionary. Args: stride: An integer indicating the stride of the image. min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes need have with groundtruth boxes to not be penalized. This is used for computing the class specific center heatmaps. Returns: A dictionary of initialized target assigners for each task. """ target_assigners = {} target_assigners[OBJECT_CENTER] = ( cn_assigner.CenterNetCenterHeatmapTargetAssigner( stride, min_box_overlap_iou)) if self._od_params is not None: target_assigners[DETECTION_TASK] = ( cn_assigner.CenterNetBoxTargetAssigner(stride)) if self._kp_params_dict is not None: for task_name, kp_params in self._kp_params_dict.items(): target_assigners[task_name] = ( cn_assigner.CenterNetKeypointTargetAssigner( stride=stride, class_id=kp_params.class_id, keypoint_indices=kp_params.keypoint_indices, keypoint_std_dev=kp_params.keypoint_std_dev, peak_radius=kp_params.offset_peak_radius, per_keypoint_offset=kp_params.per_keypoint_offset)) if self._mask_params is not None: target_assigners[SEGMENTATION_TASK] = ( cn_assigner.CenterNetMaskTargetAssigner(stride)) if self._densepose_params is not None: dp_stride = 1 if self._densepose_params.upsample_to_input_res else stride target_assigners[DENSEPOSE_TASK] = ( cn_assigner.CenterNetDensePoseTargetAssigner(dp_stride)) if self._track_params is not None: target_assigners[TRACK_TASK] = ( cn_assigner.CenterNetTrackTargetAssigner( stride, self._track_params.num_track_ids)) if self._temporal_offset_params is not None: target_assigners[TEMPORALOFFSET_TASK] = ( cn_assigner.CenterNetTemporalOffsetTargetAssigner(stride)) return target_assigners def _compute_object_center_loss(self, input_height, input_width, object_center_predictions, per_pixel_weights): """Computes the object center loss. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. object_center_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_classes] representing the object center feature maps. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A float scalar tensor representing the object center loss per instance. """ gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) if self._center_params.use_only_known_classes: gt_labeled_classes_list = self.groundtruth_lists( fields.InputDataFields.groundtruth_labeled_classes) batch_labeled_classes = tf.stack(gt_labeled_classes_list, axis=0) batch_labeled_classes_shape = tf.shape(batch_labeled_classes) batch_labeled_classes = tf.reshape( batch_labeled_classes, [batch_labeled_classes_shape[0], 1, batch_labeled_classes_shape[-1]]) per_pixel_weights = per_pixel_weights * batch_labeled_classes # Convert the groundtruth to targets. assigner = self._target_assigner_dict[OBJECT_CENTER] heatmap_targets = assigner.assign_center_targets_from_boxes( height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) loss = 0.0 object_center_loss = self._center_params.classification_loss # Loop through each feature output head. for pred in object_center_predictions: pred = _flatten_spatial_dimensions(pred) loss += object_center_loss( pred, flattened_heatmap_targets, weights=per_pixel_weights) loss_per_instance = tf.reduce_sum(loss) / ( float(len(object_center_predictions)) * num_boxes) return loss_per_instance def _compute_object_detection_losses(self, input_height, input_width, prediction_dict, per_pixel_weights): """Computes the weighted object detection losses. This wrapper function calls the function which computes the losses for object detection task and applies corresponding weights to the losses. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: A dictionary holding predicted tensors output by "predict" function. See "predict" function for more detailed description. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A dictionary of scalar float tensors representing the weighted losses for object detection task: BOX_SCALE: the weighted scale (height/width) loss. BOX_OFFSET: the weighted object offset loss. """ od_scale_loss, od_offset_loss = self._compute_box_scale_and_offset_loss( scale_predictions=prediction_dict[BOX_SCALE], offset_predictions=prediction_dict[BOX_OFFSET], input_height=input_height, input_width=input_width) loss_dict = {} loss_dict[BOX_SCALE] = ( self._od_params.scale_loss_weight * od_scale_loss) loss_dict[BOX_OFFSET] = ( self._od_params.offset_loss_weight * od_offset_loss) return loss_dict def _compute_box_scale_and_offset_loss(self, input_height, input_width, scale_predictions, offset_predictions): """Computes the scale loss of the object detection task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. scale_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for object scale (i.e height and width). offset_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for object offset. Returns: A tuple of two losses: scale_loss: A float scalar tensor representing the object height/width loss normalized by total number of boxes. offset_loss: A float scalar tensor representing the object offset loss normalized by total number of boxes """ # TODO(vighneshb) Explore a size invariant version of scale loss. gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) num_predictions = float(len(scale_predictions)) assigner = self._target_assigner_dict[DETECTION_TASK] (batch_indices, batch_height_width_targets, batch_offset_targets, batch_weights) = assigner.assign_size_and_offset_targets( height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, -1) scale_loss = 0 offset_loss = 0 localization_loss_fn = self._od_params.localization_loss for scale_pred, offset_pred in zip(scale_predictions, offset_predictions): # Compute the scale loss. scale_pred = cn_assigner.get_batch_predictions_from_indices( scale_pred, batch_indices) scale_loss += localization_loss_fn( scale_pred, batch_height_width_targets, weights=batch_weights) # Compute the offset loss. offset_pred = cn_assigner.get_batch_predictions_from_indices( offset_pred, batch_indices) offset_loss += localization_loss_fn( offset_pred, batch_offset_targets, weights=batch_weights) scale_loss = tf.reduce_sum(scale_loss) / ( num_predictions * num_boxes) offset_loss = tf.reduce_sum(offset_loss) / ( num_predictions * num_boxes) return scale_loss, offset_loss def _compute_keypoint_estimation_losses(self, task_name, input_height, input_width, prediction_dict, per_pixel_weights): """Computes the weighted keypoint losses.""" kp_params = self._kp_params_dict[task_name] heatmap_key = get_keypoint_name(task_name, KEYPOINT_HEATMAP) offset_key = get_keypoint_name(task_name, KEYPOINT_OFFSET) regression_key = get_keypoint_name(task_name, KEYPOINT_REGRESSION) heatmap_loss = self._compute_kp_heatmap_loss( input_height=input_height, input_width=input_width, task_name=task_name, heatmap_predictions=prediction_dict[heatmap_key], classification_loss_fn=kp_params.classification_loss, per_pixel_weights=per_pixel_weights) offset_loss = self._compute_kp_offset_loss( input_height=input_height, input_width=input_width, task_name=task_name, offset_predictions=prediction_dict[offset_key], localization_loss_fn=kp_params.localization_loss) reg_loss = self._compute_kp_regression_loss( input_height=input_height, input_width=input_width, task_name=task_name, regression_predictions=prediction_dict[regression_key], localization_loss_fn=kp_params.localization_loss) loss_dict = {} loss_dict[heatmap_key] = ( kp_params.keypoint_heatmap_loss_weight * heatmap_loss) loss_dict[offset_key] = ( kp_params.keypoint_offset_loss_weight * offset_loss) loss_dict[regression_key] = ( kp_params.keypoint_regression_loss_weight * reg_loss) return loss_dict def _compute_kp_heatmap_loss(self, input_height, input_width, task_name, heatmap_predictions, classification_loss_fn, per_pixel_weights): """Computes the heatmap loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. heatmap_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_keypoints] representing the prediction heads of the model for keypoint heatmap. classification_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the class predictions in CenterNet. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: loss: A float scalar tensor representing the object keypoint heatmap loss normalized by number of instances. """ gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) assigner = self._target_assigner_dict[task_name] (keypoint_heatmap, num_instances_per_kp_type, valid_mask_batch) = assigner.assign_keypoint_heatmap_targets( height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list, gt_boxes_list=gt_boxes_list) flattened_valid_mask = _flatten_spatial_dimensions( tf.expand_dims(valid_mask_batch, axis=-1)) flattened_heapmap_targets = _flatten_spatial_dimensions(keypoint_heatmap) # Sum over the number of instances per keypoint types to get the total # number of keypoints. Note that this is used to normalized the loss and we # keep the minimum value to be 1 to avoid generating weird loss value when # no keypoint is in the image batch. num_instances = tf.maximum( tf.cast(tf.reduce_sum(num_instances_per_kp_type), dtype=tf.float32), 1.0) loss = 0.0 # Loop through each feature output head. for pred in heatmap_predictions: pred = _flatten_spatial_dimensions(pred) unweighted_loss = classification_loss_fn( pred, flattened_heapmap_targets, weights=tf.ones_like(per_pixel_weights)) # Apply the weights after the loss function to have full control over it. loss += unweighted_loss * per_pixel_weights * flattened_valid_mask loss = tf.reduce_sum(loss) / ( float(len(heatmap_predictions)) * num_instances) return loss def _compute_kp_offset_loss(self, input_height, input_width, task_name, offset_predictions, localization_loss_fn): """Computes the offset loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. offset_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2] representing the prediction heads of the model for keypoint offset. localization_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the keypoint offset predictions in CenterNet. Returns: loss: A float scalar tensor representing the keypoint offset loss normalized by number of total keypoints. """ gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[task_name] (batch_indices, batch_offsets, batch_weights) = assigner.assign_keypoints_offset_targets( height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_weights_list=gt_weights_list, gt_classes_list=gt_classes_list) # Keypoint offset loss. loss = 0.0 for prediction in offset_predictions: batch_size, out_height, out_width, channels = _get_shape(prediction, 4) if channels > 2: prediction = tf.reshape( prediction, shape=[batch_size, out_height, out_width, -1, 2]) prediction = cn_assigner.get_batch_predictions_from_indices( prediction, batch_indices) # The dimensions passed are not as per the doc string but the loss # still computes the correct value. unweighted_loss = localization_loss_fn( prediction, batch_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), -1)) # Apply the weights after the loss function to have full control over it. loss += batch_weights * tf.reduce_sum(unweighted_loss, axis=1) loss = tf.reduce_sum(loss) / ( float(len(offset_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0)) return loss def _compute_kp_regression_loss(self, input_height, input_width, task_name, regression_predictions, localization_loss_fn): """Computes the keypoint regression loss of the keypoint estimation task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. task_name: A string representing the name of the keypoint task. regression_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2 * num_keypoints] representing the prediction heads of the model for keypoint regression offset. localization_loss_fn: An object_detection.core.losses.Loss object to compute the loss for the keypoint regression offset predictions in CenterNet. Returns: loss: A float scalar tensor representing the keypoint regression offset loss normalized by number of total keypoints. """ gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) # keypoint regression offset loss. assigner = self._target_assigner_dict[task_name] (batch_indices, batch_regression_offsets, batch_weights) = assigner.assign_joint_regression_targets( height=input_height, width=input_width, gt_keypoints_list=gt_keypoints_list, gt_classes_list=gt_classes_list, gt_weights_list=gt_weights_list, gt_boxes_list=gt_boxes_list) loss = 0.0 for prediction in regression_predictions: batch_size, out_height, out_width, _ = _get_shape(prediction, 4) reshaped_prediction = tf.reshape( prediction, shape=[batch_size, out_height, out_width, -1, 2]) reg_prediction = cn_assigner.get_batch_predictions_from_indices( reshaped_prediction, batch_indices) unweighted_loss = localization_loss_fn( reg_prediction, batch_regression_offsets, weights=tf.expand_dims(tf.ones_like(batch_weights), -1)) # Apply the weights after the loss function to have full control over it. loss += batch_weights * tf.reduce_sum(unweighted_loss, axis=1) loss = tf.reduce_sum(loss) / ( float(len(regression_predictions)) * tf.maximum(tf.reduce_sum(batch_weights), 1.0)) return loss def _compute_segmentation_losses(self, prediction_dict, per_pixel_weights): """Computes all the losses associated with segmentation. Args: prediction_dict: The dictionary returned from the predict() method. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A dictionary with segmentation losses. """ segmentation_heatmap = prediction_dict[SEGMENTATION_HEATMAP] mask_loss = self._compute_mask_loss( segmentation_heatmap, per_pixel_weights) losses = { SEGMENTATION_HEATMAP: mask_loss } return losses def _compute_mask_loss(self, segmentation_predictions, per_pixel_weights): """Computes the mask loss. Args: segmentation_predictions: A list of float32 tensors of shape [batch_size, out_height, out_width, num_classes]. per_pixel_weights: A float tensor of shape [batch_size, out_height * out_width, 1] with 1s in locations where the spatial coordinates fall within the height and width in true_image_shapes. Returns: A float scalar tensor representing the mask loss. """ gt_masks_list = self.groundtruth_lists(fields.BoxListFields.masks) gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes) # Convert the groundtruth to targets. assigner = self._target_assigner_dict[SEGMENTATION_TASK] heatmap_targets = assigner.assign_segmentation_targets( gt_masks_list=gt_masks_list, gt_classes_list=gt_classes_list) flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets) loss = 0.0 mask_loss_fn = self._mask_params.classification_loss total_pixels_in_loss = tf.reduce_sum(per_pixel_weights) # Loop through each feature output head. for pred in segmentation_predictions: pred = _flatten_spatial_dimensions(pred) loss += mask_loss_fn( pred, flattened_heatmap_targets, weights=per_pixel_weights) # TODO(ronnyvotel): Consider other ways to normalize loss. total_loss = tf.reduce_sum(loss) / ( float(len(segmentation_predictions)) * total_pixels_in_loss) return total_loss def _compute_densepose_losses(self, input_height, input_width, prediction_dict): """Computes the weighted DensePose losses. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: A dictionary holding predicted tensors output by the "predict" function. See the "predict" function for more detailed description. Returns: A dictionary of scalar float tensors representing the weighted losses for the DensePose task: DENSEPOSE_HEATMAP: the weighted part segmentation loss. DENSEPOSE_REGRESSION: the weighted part surface coordinate loss. """ dp_heatmap_loss, dp_regression_loss = ( self._compute_densepose_part_and_coordinate_losses( input_height=input_height, input_width=input_width, part_predictions=prediction_dict[DENSEPOSE_HEATMAP], surface_coord_predictions=prediction_dict[DENSEPOSE_REGRESSION])) loss_dict = {} loss_dict[DENSEPOSE_HEATMAP] = ( self._densepose_params.part_loss_weight * dp_heatmap_loss) loss_dict[DENSEPOSE_REGRESSION] = ( self._densepose_params.coordinate_loss_weight * dp_regression_loss) return loss_dict def _compute_densepose_part_and_coordinate_losses( self, input_height, input_width, part_predictions, surface_coord_predictions): """Computes the individual losses for the DensePose task. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. part_predictions: A list of float tensors of shape [batch_size, out_height, out_width, num_parts]. surface_coord_predictions: A list of float tensors of shape [batch_size, out_height, out_width, 2 * num_parts]. Returns: A tuple with two scalar loss tensors: part_prediction_loss and surface_coord_loss. """ gt_dp_num_points_list = self.groundtruth_lists( fields.BoxListFields.densepose_num_points) gt_dp_part_ids_list = self.groundtruth_lists( fields.BoxListFields.densepose_part_ids) gt_dp_surface_coords_list = self.groundtruth_lists( fields.BoxListFields.densepose_surface_coords) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) assigner = self._target_assigner_dict[DENSEPOSE_TASK] batch_indices, batch_part_ids, batch_surface_coords, batch_weights = ( assigner.assign_part_and_coordinate_targets( height=input_height, width=input_width, gt_dp_num_points_list=gt_dp_num_points_list, gt_dp_part_ids_list=gt_dp_part_ids_list, gt_dp_surface_coords_list=gt_dp_surface_coords_list, gt_weights_list=gt_weights_list)) part_prediction_loss = 0 surface_coord_loss = 0 classification_loss_fn = self._densepose_params.classification_loss localization_loss_fn = self._densepose_params.localization_loss num_predictions = float(len(part_predictions)) num_valid_points = tf.math.count_nonzero(batch_weights) num_valid_points = tf.cast(tf.math.maximum(num_valid_points, 1), tf.float32) for part_pred, surface_coord_pred in zip(part_predictions, surface_coord_predictions): # Potentially upsample the feature maps, so that better quality (i.e. # higher res) groundtruth can be applied. if self._densepose_params.upsample_to_input_res: part_pred = tf.keras.layers.UpSampling2D( self._stride, interpolation=self._densepose_params.upsample_method)( part_pred) surface_coord_pred = tf.keras.layers.UpSampling2D( self._stride, interpolation=self._densepose_params.upsample_method)( surface_coord_pred) # Compute the part prediction loss. part_pred = cn_assigner.get_batch_predictions_from_indices( part_pred, batch_indices[:, 0:3]) part_prediction_loss += classification_loss_fn( part_pred[:, tf.newaxis, :], batch_part_ids[:, tf.newaxis, :], weights=batch_weights[:, tf.newaxis, tf.newaxis]) # Compute the surface coordinate loss. batch_size, out_height, out_width, _ = _get_shape( surface_coord_pred, 4) surface_coord_pred = tf.reshape( surface_coord_pred, [batch_size, out_height, out_width, -1, 2]) surface_coord_pred = cn_assigner.get_batch_predictions_from_indices( surface_coord_pred, batch_indices) surface_coord_loss += localization_loss_fn( surface_coord_pred, batch_surface_coords, weights=batch_weights[:, tf.newaxis]) part_prediction_loss = tf.reduce_sum(part_prediction_loss) / ( num_predictions * num_valid_points) surface_coord_loss = tf.reduce_sum(surface_coord_loss) / ( num_predictions * num_valid_points) return part_prediction_loss, surface_coord_loss def _compute_track_losses(self, input_height, input_width, prediction_dict): """Computes all the losses associated with tracking. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: The dictionary returned from the predict() method. Returns: A dictionary with tracking losses. """ object_reid_predictions = prediction_dict[TRACK_REID] embedding_loss = self._compute_track_embedding_loss( input_height=input_height, input_width=input_width, object_reid_predictions=object_reid_predictions) losses = { TRACK_REID: embedding_loss } return losses def _compute_track_embedding_loss(self, input_height, input_width, object_reid_predictions): """Computes the object ReID loss. The embedding is trained as a classification task where the target is the ID of each track among all tracks in the whole dataset. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. object_reid_predictions: A list of float tensors of shape [batch_size, out_height, out_width, reid_embed_size] representing the object embedding feature maps. Returns: A float scalar tensor representing the object ReID loss per instance. """ gt_track_ids_list = self.groundtruth_lists(fields.BoxListFields.track_ids) gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list)) # Convert the groundtruth to targets. assigner = self._target_assigner_dict[TRACK_TASK] batch_indices, batch_weights, track_targets = assigner.assign_track_targets( height=input_height, width=input_width, gt_track_ids_list=gt_track_ids_list, gt_boxes_list=gt_boxes_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, -1) loss = 0.0 object_reid_loss = self._track_params.classification_loss # Loop through each feature output head. for pred in object_reid_predictions: embedding_pred = cn_assigner.get_batch_predictions_from_indices( pred, batch_indices) reid_classification = self.track_reid_classification_net(embedding_pred) loss += object_reid_loss( reid_classification, track_targets, weights=batch_weights) loss_per_instance = tf.reduce_sum(loss) / ( float(len(object_reid_predictions)) * num_boxes) return loss_per_instance def _compute_temporal_offset_loss(self, input_height, input_width, prediction_dict): """Computes the temporal offset loss for tracking. Args: input_height: An integer scalar tensor representing input image height. input_width: An integer scalar tensor representing input image width. prediction_dict: The dictionary returned from the predict() method. Returns: A dictionary with track/temporal_offset losses. """ gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes) gt_offsets_list = self.groundtruth_lists( fields.BoxListFields.temporal_offsets) gt_match_list = self.groundtruth_lists( fields.BoxListFields.track_match_flags) gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights) num_boxes = tf.cast( get_num_instances_from_weights(gt_weights_list), tf.float32) offset_predictions = prediction_dict[TEMPORAL_OFFSET] num_predictions = float(len(offset_predictions)) assigner = self._target_assigner_dict[TEMPORALOFFSET_TASK] (batch_indices, batch_offset_targets, batch_weights) = assigner.assign_temporal_offset_targets( height=input_height, width=input_width, gt_boxes_list=gt_boxes_list, gt_offsets_list=gt_offsets_list, gt_match_list=gt_match_list, gt_weights_list=gt_weights_list) batch_weights = tf.expand_dims(batch_weights, -1) offset_loss_fn = self._temporal_offset_params.localization_loss loss_dict = {} offset_loss = 0 for offset_pred in offset_predictions: offset_pred = cn_assigner.get_batch_predictions_from_indices( offset_pred, batch_indices) offset_loss += offset_loss_fn(offset_pred[:, None], batch_offset_targets[:, None], weights=batch_weights) offset_loss = tf.reduce_sum(offset_loss) / (num_predictions * num_boxes) loss_dict[TEMPORAL_OFFSET] = offset_loss return loss_dict def preprocess(self, inputs): outputs = shape_utils.resize_images_and_return_shapes( inputs, self._image_resizer_fn) resized_inputs, true_image_shapes = outputs return (self._feature_extractor.preprocess(resized_inputs), true_image_shapes) def predict(self, preprocessed_inputs, _): """Predicts CenterNet prediction tensors given an input batch. Feature extractors are free to produce predictions from multiple feature maps and therefore we return a dictionary mapping strings to lists. E.g. the hourglass backbone produces two feature maps. Args: preprocessed_inputs: a [batch, height, width, channels] float32 tensor representing a batch of images. Returns: prediction_dict: a dictionary holding predicted tensors with 'preprocessed_inputs' - The input image after being resized and preprocessed by the feature extractor. 'object_center' - A list of size num_feature_outputs containing float tensors of size [batch_size, output_height, output_width, num_classes] representing the predicted object center heatmap logits. 'box/scale' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted box height and width at each output location. This field exists only when object detection task is specified. 'box/offset' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted y and x offsets at each output location. '$TASK_NAME/keypoint_heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_keypoints] representing the predicted keypoint heatmap logits. '$TASK_NAME/keypoint_offset' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2] representing the predicted keypoint offsets at each output location. '$TASK_NAME/keypoint_regression' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2 * num_keypoints] representing the predicted keypoint regression at each output location. 'segmentation/heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_classes] representing the mask logits. 'densepose/heatmap' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, num_parts] representing the mask logits for each part. 'densepose/regression' - [optional] A list of size num_feature_outputs holding float tensors of size [batch_size, output_height, output_width, 2 * num_parts] representing the DensePose surface coordinate predictions. Note the $TASK_NAME is provided by the KeypointEstimation namedtuple used to differentiate between different keypoint tasks. """ features_list = self._feature_extractor(preprocessed_inputs) predictions = {} for head_name, heads in self._prediction_head_dict.items(): predictions[head_name] = [ head(feature) for (feature, head) in zip(features_list, heads) ] predictions['preprocessed_inputs'] = preprocessed_inputs self._batched_prediction_tensor_names = predictions.keys() return predictions def loss(self, prediction_dict, true_image_shapes, scope=None): """Computes scalar loss tensors with respect to provided groundtruth. This function implements the various CenterNet losses. Args: prediction_dict: a dictionary holding predicted tensors returned by "predict" function. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. scope: Optional scope name. Returns: A dictionary mapping the keys [ 'Loss/object_center', 'Loss/box/scale', (optional) 'Loss/box/offset', (optional) 'Loss/$TASK_NAME/keypoint/heatmap', (optional) 'Loss/$TASK_NAME/keypoint/offset', (optional) 'Loss/$TASK_NAME/keypoint/regression', (optional) 'Loss/segmentation/heatmap', (optional) 'Loss/densepose/heatmap', (optional) 'Loss/densepose/regression', (optional) 'Loss/track/reid'] (optional) 'Loss/track/offset'] (optional) scalar tensors corresponding to the losses for different tasks. Note the $TASK_NAME is provided by the KeypointEstimation namedtuple used to differentiate between different keypoint tasks. """ _, input_height, input_width, _ = _get_shape( prediction_dict['preprocessed_inputs'], 4) output_height, output_width = (input_height // self._stride, input_width // self._stride) # TODO(vighneshb) Explore whether using floor here is safe. output_true_image_shapes = tf.ceil( tf.to_float(true_image_shapes) / self._stride) valid_anchor_weights = get_valid_anchor_weights_in_flattened_image( output_true_image_shapes, output_height, output_width) valid_anchor_weights = tf.expand_dims(valid_anchor_weights, 2) object_center_loss = self._compute_object_center_loss( object_center_predictions=prediction_dict[OBJECT_CENTER], input_height=input_height, input_width=input_width, per_pixel_weights=valid_anchor_weights) losses = { OBJECT_CENTER: self._center_params.object_center_loss_weight * object_center_loss } if self._od_params is not None: od_losses = self._compute_object_detection_losses( input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in od_losses: od_losses[key] = od_losses[key] * self._od_params.task_loss_weight losses.update(od_losses) if self._kp_params_dict is not None: for task_name, params in self._kp_params_dict.items(): kp_losses = self._compute_keypoint_estimation_losses( task_name=task_name, input_height=input_height, input_width=input_width, prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in kp_losses: kp_losses[key] = kp_losses[key] * params.task_loss_weight losses.update(kp_losses) if self._mask_params is not None: seg_losses = self._compute_segmentation_losses( prediction_dict=prediction_dict, per_pixel_weights=valid_anchor_weights) for key in seg_losses: seg_losses[key] = seg_losses[key] * self._mask_params.task_loss_weight losses.update(seg_losses) if self._densepose_params is not None: densepose_losses = self._compute_densepose_losses( input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in densepose_losses: densepose_losses[key] = ( densepose_losses[key] * self._densepose_params.task_loss_weight) losses.update(densepose_losses) if self._track_params is not None: track_losses = self._compute_track_losses( input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in track_losses: track_losses[key] = ( track_losses[key] * self._track_params.task_loss_weight) losses.update(track_losses) if self._temporal_offset_params is not None: offset_losses = self._compute_temporal_offset_loss( input_height=input_height, input_width=input_width, prediction_dict=prediction_dict) for key in offset_losses: offset_losses[key] = ( offset_losses[key] * self._temporal_offset_params.task_loss_weight) losses.update(offset_losses) # Prepend the LOSS_KEY_PREFIX to the keys in the dictionary such that the # losses will be grouped together in Tensorboard. return dict([('%s/%s' % (LOSS_KEY_PREFIX, key), val) for key, val in losses.items()]) def postprocess(self, prediction_dict, true_image_shapes, **params): """Produces boxes given a prediction dict returned by predict(). Although predict returns a list of tensors, only the last tensor in each list is used for making box predictions. Args: prediction_dict: a dictionary holding predicted tensors from "predict" function. true_image_shapes: int32 tensor of shape [batch, 3] where each row is of the form [height, width, channels] indicating the shapes of true images in the resized images, as resized images can be padded with zeros. **params: Currently ignored. Returns: detections: a dictionary containing the following fields detection_boxes - A tensor of shape [batch, max_detections, 4] holding the predicted boxes. detection_boxes_strided: A tensor of shape [batch_size, num_detections, 4] holding the predicted boxes in absolute coordinates of the feature extractor's final layer output. detection_scores: A tensor of shape [batch, max_detections] holding the predicted score for each box. detection_classes: An integer tensor of shape [batch, max_detections] containing the detected class for each box. num_detections: An integer tensor of shape [batch] containing the number of detected boxes for each sample in the batch. detection_keypoints: (Optional) A float tensor of shape [batch, max_detections, num_keypoints, 2] with normalized keypoints. Any invalid keypoints have their coordinates and scores set to 0.0. detection_keypoint_scores: (Optional) A float tensor of shape [batch, max_detection, num_keypoints] with scores for each keypoint. detection_masks: (Optional) A uint8 tensor of shape [batch, max_detections, mask_height, mask_width] with masks for each detection. Background is specified with 0, and foreground is specified with positive integers (1 for standard instance segmentation mask, and 1-indexed parts for DensePose task). detection_surface_coords: (Optional) A float32 tensor of shape [batch, max_detection, mask_height, mask_width, 2] with DensePose surface coordinates, in (v, u) format. detection_embeddings: (Optional) A float tensor of shape [batch, max_detections, reid_embed_size] containing object embeddings. """ object_center_prob = tf.nn.sigmoid(prediction_dict[OBJECT_CENTER][-1]) # Get x, y and channel indices corresponding to the top indices in the class # center predictions. detection_scores, y_indices, x_indices, channel_indices = ( top_k_feature_map_locations( object_center_prob, max_pool_kernel_size=3, k=self._center_params.max_box_predictions)) boxes_strided, classes, scores, num_detections = ( prediction_tensors_to_boxes( detection_scores, y_indices, x_indices, channel_indices, prediction_dict[BOX_SCALE][-1], prediction_dict[BOX_OFFSET][-1])) boxes = convert_strided_predictions_to_normalized_boxes( boxes_strided, self._stride, true_image_shapes) postprocess_dict = { fields.DetectionResultFields.detection_boxes: boxes, fields.DetectionResultFields.detection_scores: scores, fields.DetectionResultFields.detection_classes: classes, fields.DetectionResultFields.num_detections: num_detections, 'detection_boxes_strided': boxes_strided } if self._kp_params_dict: keypoints, keypoint_scores = self._postprocess_keypoints( prediction_dict, classes, y_indices, x_indices, boxes_strided, num_detections) keypoints, keypoint_scores = ( convert_strided_predictions_to_normalized_keypoints( keypoints, keypoint_scores, self._stride, true_image_shapes, clip_out_of_frame_keypoints=True)) postprocess_dict.update({ fields.DetectionResultFields.detection_keypoints: keypoints, fields.DetectionResultFields.detection_keypoint_scores: keypoint_scores }) if self._mask_params: masks = tf.nn.sigmoid(prediction_dict[SEGMENTATION_HEATMAP][-1]) densepose_part_heatmap, densepose_surface_coords = None, None densepose_class_index = 0 if self._densepose_params: densepose_part_heatmap = prediction_dict[DENSEPOSE_HEATMAP][-1] densepose_surface_coords = prediction_dict[DENSEPOSE_REGRESSION][-1] densepose_class_index = self._densepose_params.class_id instance_masks, surface_coords = ( convert_strided_predictions_to_instance_masks( boxes, classes, masks, true_image_shapes, densepose_part_heatmap, densepose_surface_coords, stride=self._stride, mask_height=self._mask_params.mask_height, mask_width=self._mask_params.mask_width, score_threshold=self._mask_params.score_threshold, densepose_class_index=densepose_class_index)) postprocess_dict[ fields.DetectionResultFields.detection_masks] = instance_masks if self._densepose_params: postprocess_dict[ fields.DetectionResultFields.detection_surface_coords] = ( surface_coords) if self._track_params: embeddings = self._postprocess_embeddings(prediction_dict, y_indices, x_indices) postprocess_dict.update({ fields.DetectionResultFields.detection_embeddings: embeddings }) if self._temporal_offset_params: offsets = prediction_tensors_to_temporal_offsets( y_indices, x_indices, prediction_dict[TEMPORAL_OFFSET][-1]) postprocess_dict[fields.DetectionResultFields.detection_offsets] = offsets return postprocess_dict def _postprocess_embeddings(self, prediction_dict, y_indices, x_indices): """Performs postprocessing on embedding predictions. Args: prediction_dict: a dictionary holding predicted tensors, returned from the predict() method. This dictionary should contain embedding prediction feature maps for tracking task. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. Returns: embeddings: A [batch_size, max_detection, reid_embed_size] float32 tensor with L2 normalized embeddings extracted from detection box centers. """ embedding_predictions = prediction_dict[TRACK_REID][-1] embeddings = predicted_embeddings_at_object_centers( embedding_predictions, y_indices, x_indices) embeddings, _ = tf.linalg.normalize(embeddings, axis=-1) return embeddings def _postprocess_keypoints(self, prediction_dict, classes, y_indices, x_indices, boxes, num_detections): """Performs postprocessing on keypoint predictions. Args: prediction_dict: a dictionary holding predicted tensors, returned from the predict() method. This dictionary should contain keypoint prediction feature maps for each keypoint task. classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. boxes: A [batch_size, max_detections, 4] float32 tensor with bounding boxes in (un-normalized) output space. num_detections: A [batch_size] int tensor with the number of valid detections for each image. Returns: A tuple of keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32 tensor with keypoints in the output (strided) coordinate frame. keypoint_scores: a [batch_size, max_detections, num_total_keypoints] float32 tensor with keypoint scores. """ total_num_keypoints = sum(len(kp_dict.keypoint_indices) for kp_dict in self._kp_params_dict.values()) batch_size, max_detections, _ = _get_shape(boxes, 3) kpt_coords_for_example_list = [] kpt_scores_for_example_list = [] for ex_ind in range(batch_size): kpt_coords_for_class_list = [] kpt_scores_for_class_list = [] instance_inds_for_class_list = [] for task_name, kp_params in self._kp_params_dict.items(): keypoint_heatmap = prediction_dict[ get_keypoint_name(task_name, KEYPOINT_HEATMAP)][-1] keypoint_offsets = prediction_dict[ get_keypoint_name(task_name, KEYPOINT_OFFSET)][-1] keypoint_regression = prediction_dict[ get_keypoint_name(task_name, KEYPOINT_REGRESSION)][-1] instance_inds = self._get_instance_indices( classes, num_detections, ex_ind, kp_params.class_id) def true_fn( keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params): """Logics to execute when instance_inds is not an empty set.""" # Postprocess keypoints and scores for class and single image. Shapes # are [1, num_instances_i, num_keypoints_i, 2] and # [1, num_instances_i, num_keypoints_i], respectively. Note that # num_instances_i and num_keypoints_i refers to the number of # instances and keypoints for class i, respectively. kpt_coords_for_class, kpt_scores_for_class = ( self._postprocess_keypoints_for_class_and_image( keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params)) # Expand keypoint dimension (with padding) so that coordinates and # scores have shape [1, num_instances_i, num_total_keypoints, 2] and # [1, num_instances_i, num_total_keypoints], respectively. kpts_coords_for_class_padded, kpt_scores_for_class_padded = ( _pad_to_full_keypoint_dim( kpt_coords_for_class, kpt_scores_for_class, kp_params.keypoint_indices, total_num_keypoints)) return kpts_coords_for_class_padded, kpt_scores_for_class_padded def false_fn(): """Logics to execute when the instance_inds is an empty set.""" return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32), tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32)) true_fn = functools.partial( true_fn, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, instance_inds, ex_ind, kp_params) results = tf.cond(tf.size(instance_inds) > 0, true_fn, false_fn) kpt_coords_for_class_list.append(results[0]) kpt_scores_for_class_list.append(results[1]) instance_inds_for_class_list.append(instance_inds) # Concatenate all keypoints across all classes (single example). kpt_coords_for_example = tf.concat(kpt_coords_for_class_list, axis=1) kpt_scores_for_example = tf.concat(kpt_scores_for_class_list, axis=1) instance_inds_for_example = tf.concat(instance_inds_for_class_list, axis=0) if tf.size(instance_inds_for_example) > 0: # Scatter into tensor where instances align with original detection # instances. New shape of keypoint coordinates and scores are # [1, max_detections, num_total_keypoints, 2] and # [1, max_detections, num_total_keypoints], respectively. kpt_coords_for_example_all_det, kpt_scores_for_example_all_det = ( _pad_to_full_instance_dim( kpt_coords_for_example, kpt_scores_for_example, instance_inds_for_example, self._center_params.max_box_predictions)) else: kpt_coords_for_example_all_det = tf.zeros( [1, max_detections, total_num_keypoints, 2], dtype=tf.float32) kpt_scores_for_example_all_det = tf.zeros( [1, max_detections, total_num_keypoints], dtype=tf.float32) kpt_coords_for_example_list.append(kpt_coords_for_example_all_det) kpt_scores_for_example_list.append(kpt_scores_for_example_all_det) # Concatenate all keypoints and scores from all examples in the batch. # Shapes are [batch_size, max_detections, num_total_keypoints, 2] and # [batch_size, max_detections, num_total_keypoints], respectively. keypoints = tf.concat(kpt_coords_for_example_list, axis=0) keypoint_scores = tf.concat(kpt_scores_for_example_list, axis=0) return keypoints, keypoint_scores def _get_instance_indices(self, classes, num_detections, batch_index, class_id): """Gets the instance indices that match the target class ID. Args: classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. num_detections: A [batch_size] int tensor with the number of valid detections for each image. batch_index: An integer specifying the index for an example in the batch. class_id: Class id Returns: instance_inds: A [num_instances] int tensor where each element indicates the instance location within the `classes` tensor. This is useful to associate the refined keypoints with the original detections (i.e. boxes) """ classes = classes[batch_index:batch_index+1, ...] _, max_detections = shape_utils.combined_static_and_dynamic_shape( classes) # Get the detection indices corresponding to the target class. valid_detections_with_kpt_class = tf.math.logical_and( tf.range(max_detections) < num_detections[batch_index], classes[0] == class_id) instance_inds = tf.where(valid_detections_with_kpt_class)[:, 0] return instance_inds def _postprocess_keypoints_for_class_and_image( self, keypoint_heatmap, keypoint_offsets, keypoint_regression, classes, y_indices, x_indices, boxes, indices_with_kpt_class, batch_index, kp_params): """Postprocess keypoints for a single image and class. This function performs the following postprocessing operations on a single image and single keypoint class: - Converts keypoints scores to range [0, 1] with sigmoid. - Determines the detections that correspond to the specified keypoint class. - Gathers the regressed keypoints at the detection (i.e. box) centers. - Gathers keypoint candidates from the keypoint heatmaps. - Snaps regressed keypoints to nearby keypoint candidates. Args: keypoint_heatmap: A [batch_size, height, width, num_keypoints] float32 tensor with keypoint heatmaps. keypoint_offsets: A [batch_size, height, width, 2] float32 tensor with local offsets to keypoint centers. keypoint_regression: A [batch_size, height, width, 2 * num_keypoints] float32 tensor with regressed offsets to all keypoints. classes: A [batch_size, max_detections] int tensor with class indices for all detected objects. y_indices: A [batch_size, max_detections] int tensor with y indices for all object centers. x_indices: A [batch_size, max_detections] int tensor with x indices for all object centers. boxes: A [batch_size, max_detections, 4] float32 tensor with detected boxes in the output (strided) frame. indices_with_kpt_class: A [num_instances] int tensor where each element indicates the instance location within the `classes` tensor. This is useful to associate the refined keypoints with the original detections (i.e. boxes) batch_index: An integer specifying the index for an example in the batch. kp_params: A `KeypointEstimationParams` object with parameters for a single keypoint class. Returns: A tuple of refined_keypoints: A [1, num_instances, num_keypoints, 2] float32 tensor with refined keypoints for a single class in a single image, expressed in the output (strided) coordinate frame. Note that `num_instances` is a dynamic dimension, and corresponds to the number of valid detections for the specific class. refined_scores: A [1, num_instances, num_keypoints] float32 tensor with keypoint scores. """ keypoint_indices = kp_params.keypoint_indices num_keypoints = len(keypoint_indices) keypoint_heatmap = tf.nn.sigmoid( keypoint_heatmap[batch_index:batch_index+1, ...]) keypoint_offsets = keypoint_offsets[batch_index:batch_index+1, ...] keypoint_regression = keypoint_regression[batch_index:batch_index+1, ...] y_indices = y_indices[batch_index:batch_index+1, ...] x_indices = x_indices[batch_index:batch_index+1, ...] # Gather the feature map locations corresponding to the object class. y_indices_for_kpt_class = tf.gather(y_indices, indices_with_kpt_class, axis=1) x_indices_for_kpt_class = tf.gather(x_indices, indices_with_kpt_class, axis=1) boxes_for_kpt_class = tf.gather(boxes, indices_with_kpt_class, axis=1) # Gather the regressed keypoints. Final tensor has shape # [1, num_instances, num_keypoints, 2]. regressed_keypoints_for_objects = regressed_keypoints_at_object_centers( keypoint_regression, y_indices_for_kpt_class, x_indices_for_kpt_class) regressed_keypoints_for_objects = tf.reshape( regressed_keypoints_for_objects, [1, -1, num_keypoints, 2]) # Get the candidate keypoints and scores. # The shape of keypoint_candidates and keypoint_scores is: # [1, num_candidates_per_keypoint, num_keypoints, 2] and # [1, num_candidates_per_keypoint, num_keypoints], respectively. keypoint_candidates, keypoint_scores, num_keypoint_candidates = ( prediction_tensors_to_keypoint_candidates( keypoint_heatmap, keypoint_offsets, keypoint_score_threshold=( kp_params.keypoint_candidate_score_threshold), max_pool_kernel_size=kp_params.peak_max_pool_kernel_size, max_candidates=kp_params.num_candidates_per_keypoint)) # Get the refined keypoints and scores, of shape # [1, num_instances, num_keypoints, 2] and # [1, num_instances, num_keypoints], respectively. refined_keypoints, refined_scores = refine_keypoints( regressed_keypoints_for_objects, keypoint_candidates, keypoint_scores, num_keypoint_candidates, bboxes=boxes_for_kpt_class, unmatched_keypoint_score=kp_params.unmatched_keypoint_score, box_scale=kp_params.box_scale, candidate_search_scale=kp_params.candidate_search_scale, candidate_ranking_mode=kp_params.candidate_ranking_mode) return refined_keypoints, refined_scores def regularization_losses(self): return [] def restore_map(self, fine_tune_checkpoint_type='detection', load_all_detection_checkpoint_vars=False): raise RuntimeError('CenterNetMetaArch not supported under TF1.x.') def restore_from_objects(self, fine_tune_checkpoint_type='detection'): """Returns a map of Trackable objects to load from a foreign checkpoint. Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module or Checkpoint). This enables the model to initialize based on weights from another task. For example, the feature extractor variables from a classification model can be used to bootstrap training of an object detector. When loading from an object detection model, the checkpoint model should have the same parameters as this detection model with exception of the num_classes parameter. Note that this function is intended to be used to restore Keras-based models when running Tensorflow 2, whereas restore_map (not implemented in CenterNet) is intended to be used to restore Slim-based models when running Tensorflow 1.x. TODO(jonathanhuang): Make this function consistent with other meta-architectures. Args: fine_tune_checkpoint_type: whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Valid values: `detection`, `classification`, `fine_tune`. Default 'detection'. 'detection': used when loading models pre-trained on other detection tasks. With this checkpoint type the weights of the feature extractor are expected under the attribute 'feature_extractor'. 'classification': used when loading models pre-trained on an image classification task. Note that only the encoder section of the network is loaded and not the upsampling layers. With this checkpoint type, the weights of only the encoder section are expected under the attribute 'feature_extractor'. 'fine_tune': used when loading the entire CenterNet feature extractor pre-trained on other tasks. The checkpoints saved during CenterNet model training can be directly loaded using this type. With this checkpoint type, the weights of the feature extractor are expected under the attribute 'model._feature_extractor'. For more details, see the tensorflow section on Loading mechanics. https://www.tensorflow.org/guide/checkpoint#loading_mechanics Returns: A dict mapping keys to Trackable objects (tf.Module or Checkpoint). """ supported_types = self._feature_extractor.supported_sub_model_types supported_types += ['fine_tune'] if fine_tune_checkpoint_type not in supported_types: message = ('Checkpoint type "{}" not supported for {}. ' 'Supported types are {}') raise ValueError( message.format(fine_tune_checkpoint_type, self._feature_extractor.__class__.__name__, supported_types)) elif fine_tune_checkpoint_type == 'fine_tune': feature_extractor_model = tf.train.Checkpoint( _feature_extractor=self._feature_extractor) return {'model': feature_extractor_model} else: return {'feature_extractor': self._feature_extractor.get_sub_model( fine_tune_checkpoint_type)} def updates(self): raise RuntimeError('This model is intended to be used with model_lib_v2 ' 'which does not support updates()')
45.883802
97
0.716559
67e13de7fefe80eb811d631330e4002f3f518687
1,775
py
Python
share/qt/extract_strings_qt.py
sk21new/sk21
1a98560d355653887c5ce0bcb0f3b7cbab837fe9
[ "MIT" ]
1
2017-12-08T21:45:38.000Z
2017-12-08T21:45:38.000Z
share/qt/extract_strings_qt.py
sk21new/sk21
1a98560d355653887c5ce0bcb0f3b7cbab837fe9
[ "MIT" ]
null
null
null
share/qt/extract_strings_qt.py
sk21new/sk21
1a98560d355653887c5ce0bcb0f3b7cbab837fe9
[ "MIT" ]
null
null
null
#!/usr/bin/python ''' Extract _("...") strings for translation and convert to Qt4 stringdefs so that they can be picked up by Qt linguist. ''' from subprocess import Popen, PIPE import glob OUT_CPP="src/qt/sk21strings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = glob.glob('src/*.cpp') + glob.glob('src/*.h') # xgettext -n --keyword=_ $FILES child = Popen(['xgettext','--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out) f = open(OUT_CPP, 'w') f.write("""#include <QtGlobal> // Automatically generated by extract_strings.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *sk21_strings[] = {') for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("sk21-core", %s),\n' % ('\n'.join(msgid))) f.write('};') f.close()
25
80
0.577465
bd2176b466118820f4db66a420409c099c50570b
5,735
py
Python
src/bin/shipyard_airflow/shipyard_airflow/plugins/ucp_base_operator.py
att-comdev/shipyard
14d66afb012025a5289818d8e8d2092ccce19ffa
[ "Apache-2.0" ]
14
2017-07-05T14:12:51.000Z
2021-05-20T23:31:55.000Z
src/bin/shipyard_airflow/shipyard_airflow/plugins/ucp_base_operator.py
att-comdev/shipyard
14d66afb012025a5289818d8e8d2092ccce19ffa
[ "Apache-2.0" ]
14
2017-06-09T04:33:44.000Z
2018-05-07T13:07:40.000Z
src/bin/shipyard_airflow/shipyard_airflow/plugins/ucp_base_operator.py
att-comdev/shipyard
14d66afb012025a5289818d8e8d2092ccce19ffa
[ "Apache-2.0" ]
16
2017-05-18T15:22:22.000Z
2019-06-14T16:43:44.000Z
# Copyright 2018 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import configparser import logging import math from datetime import datetime from airflow.models import BaseOperator from airflow.plugins_manager import AirflowPlugin from airflow.utils.decorators import apply_defaults try: from get_k8s_logs import get_pod_logs except ImportError: from shipyard_airflow.plugins.get_k8s_logs import get_pod_logs try: from get_k8s_logs import K8sLoggingException except ImportError: from shipyard_airflow.plugins.get_k8s_logs import K8sLoggingException try: from xcom_puller import XcomPuller except ImportError: from shipyard_airflow.plugins.xcom_puller import XcomPuller LOG = logging.getLogger(__name__) class UcpBaseOperator(BaseOperator): """UCP Base Operator All UCP related workflow operators will use the UCP base operator as the parent and inherit attributes and methods from this class """ @apply_defaults def __init__(self, main_dag_name=None, pod_selector_pattern=None, shipyard_conf=None, start_time=None, sub_dag_name=None, xcom_push=True, *args, **kwargs): """Initialization of UcpBaseOperator object. :param continue_processing: A boolean value on whether to continue with the workflow. Defaults to True. :param main_dag_name: Parent Dag :param pod_selector_pattern: A list containing the information on the patterns of the Pod name and name of the associated container for log queries. This will allow us to query multiple components, e.g. MAAS and Drydock at the same time. It also allows us to query the logs of specific container in Pods with multiple containers. For instance the Airflow worker pod contains both the airflow-worker container and the log-rotate container. :param shipyard_conf: Location of shipyard.conf :param start_time: Time when Operator gets executed :param sub_dag_name: Child Dag :param xcom_push: xcom usage """ super(UcpBaseOperator, self).__init__(*args, **kwargs) self.continue_processing = True self.main_dag_name = main_dag_name self.pod_selector_pattern = pod_selector_pattern or [] self.shipyard_conf = shipyard_conf self.start_time = datetime.now() self.sub_dag_name = sub_dag_name self.xcom_push_flag = xcom_push def execute(self, context): # Execute UCP base function self.ucp_base(context) # Execute base function self.run_base(context) if self.continue_processing: # Exeute child function self.do_execute() def ucp_base(self, context): LOG.info("Running UCP Base Operator...") # Read and parse shiyard.conf config = configparser.ConfigParser() config.read(self.shipyard_conf) # Initialize variable self.ucp_namespace = config.get('k8s_logs', 'ucp_namespace') # Define task_instance self.task_instance = context['task_instance'] # Set up and retrieve values from xcom self.xcom_puller = XcomPuller(self.main_dag_name, self.task_instance) self.action_info = self.xcom_puller.get_action_info() self.dc = self.xcom_puller.get_deployment_configuration() self.revision_id = self.action_info['committed_rev_id'] def get_k8s_logs(self): """Retrieve Kubernetes pod/container logs specified by an opererator This method is "best effort" and should not prevent the progress of the workflow processing """ if self.pod_selector_pattern: for selector in self.pod_selector_pattern: # Get difference in current time and time when the # operator was first executed (in seconds) t_diff = (datetime.now() - self.start_time).total_seconds() # Note that we will end up with a floating number for # 't_diff' and will need to round it up to the nearest # integer t_diff_int = int(math.ceil(t_diff)) try: get_pod_logs(selector['pod_pattern'], self.ucp_namespace, selector['container'], t_diff_int) except K8sLoggingException as e: LOG.error(e) else: LOG.debug("There are no pod logs specified to retrieve") class UcpBaseOperatorPlugin(AirflowPlugin): """Creates UcpBaseOperator in Airflow.""" name = 'ucp_base_operator_plugin' operators = [UcpBaseOperator]
35.84375
79
0.626678
37ffde90b437c0c57bc7b43d701f24860d1ac8cb
4,298
py
Python
learning/rnn_mlp_training.py
flclain/master
a40a2a5bf4e1017da3a5cf3456eb0b28de6f86e8
[ "MIT" ]
null
null
null
learning/rnn_mlp_training.py
flclain/master
a40a2a5bf4e1017da3a5cf3456eb0b28de6f86e8
[ "MIT" ]
null
null
null
learning/rnn_mlp_training.py
flclain/master
a40a2a5bf4e1017da3a5cf3456eb0b28de6f86e8
[ "MIT" ]
1
2020-12-15T07:34:39.000Z
2020-12-15T07:34:39.000Z
import torch import torch.nn as nn # import torch.nn.functional as f import torch.optim as optim # import torchvision # import torchvision.transforms as transforms # import matplotlib.pyplot as plt from torch.utils.data.dataset import Dataset from torch.utils.data import DataLoader from sklearn.model_selection import train_test_split import numpy as np import time from classes.datasets import CustomDataset from classes.rnn_mlp import RNN_MLP,custom_mse import helpers.helpers_training as training import sys import json import matplotlib.pyplot as plt """ This script trains a iatcnn model The data is loaded using custom dataset and pytorch dataloader THe model is trained on 80% of the dataset and evaluated on the rest. The objective function is the mean squared error between target sequence and predicted sequence. The training evaluates as well the Final Displacement Error At the end of the training, model is saved in master/learning/data/models. If the training is interrupted, the model is saved. The interrupted trianing can be resumed by assigning a file path to the load_path variable. Three curves are plotted: train ADE eval ADE eval FDE """ #python learning/rnn_mlp_training.py parameters/data.json parameters/rnn_mlp_training.json parameters/torch_extractors.json parameters/prepare_training.json def main(): # set pytorch # torch.manual_seed(10) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) print(torch.cuda.is_available()) args = sys.argv # data = json.load(open(args[1])) # torch_param = json.load(open(args[3])) # training_param = json.load(open(args[2])) # prepare_param = json.load(open(args[4])) training_param = json.load(open("parameters/rnn_mlp_training.json")) data = json.load(open("parameters/data.json")) torch_param = json.load(open("parameters/torch_extractors.json")) prepare_param = json.load(open("parameters/prepare_training.json")) # ids = np.array(json.load(open(torch_param["ids_path"]))["ids"]) ids = json.load(open(torch_param["ids_path"]))["ids"] train_ids,eval_ids,test_ids = training.split_train_eval_test(ids,prepare_param["train_scenes"],prepare_param["test_scenes"], eval_prop = prepare_param["eval_prop"]) train_indices = train_ids eval_indices = test_ids # load datasets train_dataset = CustomDataset(train_indices,data["torch_data"]) eval_dataset = CustomDataset(eval_indices,data["torch_data"]) # create dataloaders train_loader = torch.utils.data.DataLoader( train_dataset, batch_size= training_param["batch_size"], shuffle=True,num_workers= training_param["num_workers"],drop_last = True) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size= training_param["batch_size"], shuffle=False,num_workers= training_param["num_workers"],drop_last = True) net = RNN_MLP( device = device, batch_size = training_param["batch_size"], input_dim = training_param["input_dim"], hidden_size = training_param["hidden_size"], recurrent_layer = training_param["recurrent_layer"], mlp_layers = training_param["mlp_layers"], output_size = training_param["output_size"] ) print(net) net = net.to(device) optimizer = optim.Adam(net.parameters(),lr = training_param["lr"]) criterion = custom_mse training.training_loop(training_param["n_epochs"],training_param["batch_size"], net,device,train_loader,eval_loader,criterion,criterion,optimizer, data["scalers"], data["multiple_scalers"],training_param["model_type"], plot = training_param["plot"],early_stopping = True,load_path = training_param["load_path"]) load_path = "./learning/data/models/model_1552260631.156045.tar" checkpoint = torch.load(load_path) net.load_state_dict(checkpoint['state_dict']) net = net.to(device) # net.eval() # batch_test_losses = [] # for data in eval_loader: # samples,targets = data # samples = samples.to(device) # targets = targets.to(device) # outputs = net(samples) if __name__ == "__main__": main()
33.317829
178
0.715449
caf410dc4f803c362bb81514b33d542391fd4081
2,764
py
Python
reinforcement_learning/sequential_agent.py
TeamSerpentine/flatlands-2020
003ea89e13b148b3757bec1808d9d2cf66e29ed5
[ "BSD-3-Clause" ]
null
null
null
reinforcement_learning/sequential_agent.py
TeamSerpentine/flatlands-2020
003ea89e13b148b3757bec1808d9d2cf66e29ed5
[ "BSD-3-Clause" ]
null
null
null
reinforcement_learning/sequential_agent.py
TeamSerpentine/flatlands-2020
003ea89e13b148b3757bec1808d9d2cf66e29ed5
[ "BSD-3-Clause" ]
null
null
null
import sys from pathlib import Path import numpy as np from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.rail_env import RailEnv from flatland.envs.rail_generators import complex_rail_generator from flatland.envs.schedule_generators import complex_schedule_generator from flatland.utils.rendertools import RenderTool base_dir = Path(__file__).resolve().parent.parent sys.path.append(str(base_dir)) from reinforcement_learning.ordered_policy import OrderedPolicy """ This file shows how to move agents in a sequential way: it moves the trains one by one, following a shortest path strategy. This is obviously very slow, but it's a good way to get familiar with the different Flatland components: RailEnv, TreeObsForRailEnv, etc... multi_agent_training.py is a better starting point to train your own solution! """ np.random.seed(2) x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) env = RailEnv( width=x_dim, height=y_dim, rail_generator=complex_rail_generator( nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0 ), schedule_generator=complex_schedule_generator(), obs_builder_object=TreeObsForRailEnv(max_depth=1, predictor=ShortestPathPredictorForRailEnv()), number_of_agents=n_agents) env.reset(True, True) tree_depth = 1 observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv()) env_renderer = RenderTool(env, gl="PGL", ) handle = env.get_agent_handles() n_episodes = 10 max_steps = 100 * (env.height + env.width) record_images = False policy = OrderedPolicy() action_dict = dict() for trials in range(1, n_episodes + 1): # Reset environment obs, info = env.reset(True, True) done = env.dones env_renderer.reset() frame_step = 0 # Run episode for step in range(max_steps): env_renderer.render_env(show=True, show_observations=False, show_predictions=True) if record_images: env_renderer.gl.save_image("./Images/flatland_frame_{:04d}.bmp".format(frame_step)) frame_step += 1 # Action acting_agent = 0 for a in range(env.get_num_agents()): if done[a]: acting_agent += 1 if a == acting_agent: action = policy.act(obs[a]) else: action = 4 action_dict.update({a: action}) # Environment step obs, all_rewards, done, _ = env.step(action_dict) if done['__all__']: break
32.139535
139
0.713097
9b792e8a6a9822fb55a12c36c49ca0c2f9b81a71
5,835
py
Python
hummingbot/connector/derivative/binance_perpetual/binance_perpetual_user_stream_data_source.py
csdenboer/hummingbot
8a799675a325ebdbb74d76b2a44472cdbf74d691
[ "Apache-2.0" ]
4
2021-09-15T02:56:57.000Z
2022-03-01T19:59:19.000Z
hummingbot/connector/derivative/binance_perpetual/binance_perpetual_user_stream_data_source.py
csdenboer/hummingbot
8a799675a325ebdbb74d76b2a44472cdbf74d691
[ "Apache-2.0" ]
8
2020-10-01T05:17:54.000Z
2020-11-09T13:38:19.000Z
hummingbot/connector/derivative/binance_perpetual/binance_perpetual_user_stream_data_source.py
csdenboer/hummingbot
8a799675a325ebdbb74d76b2a44472cdbf74d691
[ "Apache-2.0" ]
3
2021-01-25T00:23:20.000Z
2022-03-21T18:57:33.000Z
import asyncio import logging from typing import Optional, Dict, AsyncIterable import aiohttp import ujson import websockets from websockets import ConnectionClosed from hummingbot.core.data_type.user_stream_tracker_data_source import UserStreamTrackerDataSource from hummingbot.core.utils.async_utils import safe_ensure_future from hummingbot.logger import HummingbotLogger BINANCE_USER_STREAM_ENDPOINT = "/fapi/v1/listenKey" class BinancePerpetualUserStreamDataSource(UserStreamTrackerDataSource): _bpusds_logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._bpusds_logger is None: cls._bpusds_logger = logging.getLogger(__name__) return cls._bpusds_logger @property def last_recv_time(self) -> float: return self._last_recv_time def __init__(self, base_url: str, stream_url: str, api_key: str): super().__init__() self._api_key: str = api_key self._current_listen_key = None self._listen_for_user_stream_task = None self._last_recv_time: float = 0 self._http_stream_url = base_url + BINANCE_USER_STREAM_ENDPOINT self._wss_stream_url = stream_url + "/ws/" async def get_listen_key(self): async with aiohttp.ClientSession() as client: async with client.post(self._http_stream_url, headers={"X-MBX-APIKEY": self._api_key}) as response: response: aiohttp.ClientResponse = response if response.status != 200: raise IOError(f"Error fetching Binance Perpetual user stream listen key. " f"HTTP status is {response.status}.") data: Dict[str, str] = await response.json() return data["listenKey"] async def ping_listen_key(self, listen_key: str) -> bool: async with aiohttp.ClientSession() as client: async with client.put(self._http_stream_url, headers={"X-MBX-APIKEY": self._api_key}, params={"listenKey": listen_key}) as response: data: [str, any] = await response.json() if "code" in data: self.logger().warning(f"Failed to refresh the listen key {listen_key}: {data}") return False return True async def ws_messages(self, client: websockets.WebSocketClientProtocol) -> AsyncIterable[str]: try: while True: try: raw_msg: str = await asyncio.wait_for(client.recv(), timeout=60.0) yield raw_msg except asyncio.TimeoutError: try: pong_waiter = await client.ping() await asyncio.wait_for(pong_waiter, timeout=60.0) except asyncio.TimeoutError: raise except asyncio.TimeoutError: self.logger().warning("Websocket ping timed out. Going to reconnect... ") return except ConnectionClosed: return finally: await client.close() async def log_user_stream(self, output: asyncio.Queue): while True: try: stream_url: str = f"{self._wss_stream_url}{self._current_listen_key}" async with websockets.connect(stream_url) as ws: ws: websockets.WebSocketClientProtocol = ws async for raw_msg in self.ws_messages(ws): msg_json: Dict[str, any] = ujson.loads(raw_msg) output.put_nowait(msg_json) except asyncio.CancelledError: raise except Exception: self.logger().error("Unexpected error. Retrying after 5 seconds... ", exc_info=True) await asyncio.sleep(5) async def listen_for_user_stream(self, ev_loop: asyncio.BaseEventLoop, output: asyncio.Queue): try: while True: try: if self._current_listen_key is None: self._current_listen_key = await self.get_listen_key() self.logger().debug(f"Obtained listen key {self._current_listen_key}.") if self._listen_for_user_stream_task is not None: self._listen_for_user_stream_task.cancel() self._listen_for_user_stream_task = safe_ensure_future(self.log_user_stream(output)) await self.wait_til_next_tick(seconds=3600) success: bool = await self.ping_listen_key(self._current_listen_key) if not success: self._current_listen_key = None if self._listen_for_user_stream_task is not None: self._listen_for_user_stream_task.cancel() self._listen_for_user_stream_task = None continue self.logger().debug(f"Refreshed listen key {self._current_listen_key}.") await self.wait_til_next_tick(seconds=60) except asyncio.CancelledError: raise except Exception: self.logger().error("Unexpected error while maintaning the user event listen key. Retrying after " "5 seconds...", exc_info=True) await asyncio.sleep(5) finally: if self._listen_for_user_stream_task is not None: self._listen_for_user_stream_task.cancel() self._listen_for_user_stream_task = None self._current_listen_key = None
45.944882
118
0.590917
fbaf02fb23637f10f0fccdbead266af6a6fdc1a7
39
py
Python
pybind_torch/example.py
nachovizzo/pybind_pytorch
8b99fa084b19bea6572122211761f241c0e43728
[ "MIT" ]
2
2021-07-06T17:09:18.000Z
2021-07-22T03:54:33.000Z
pybind_torch/example.py
nachovizzo/pybind_pytorch
8b99fa084b19bea6572122211761f241c0e43728
[ "MIT" ]
null
null
null
pybind_torch/example.py
nachovizzo/pybind_pytorch
8b99fa084b19bea6572122211761f241c0e43728
[ "MIT" ]
null
null
null
from pybind_torch import greet greet()
13
30
0.820513
d98c8cd8658d84b45a1e59ee41fa12b27889c85d
1,334
py
Python
src/ggrc_workflows/migrations/versions/20140806232046_520b31514bd2_add_relative_dates.py
Smotko/ggrc-core
b3abb58b24e7559960d71a94ba79c75539e7fe29
[ "Apache-2.0" ]
null
null
null
src/ggrc_workflows/migrations/versions/20140806232046_520b31514bd2_add_relative_dates.py
Smotko/ggrc-core
b3abb58b24e7559960d71a94ba79c75539e7fe29
[ "Apache-2.0" ]
12
2015-01-08T14:50:19.000Z
2017-11-29T19:37:53.000Z
src/ggrc_workflows/migrations/versions/20140806232046_520b31514bd2_add_relative_dates.py
mikecb/ggrc-core
1cda560cb0920021416e07740c6cca1acba56268
[ "ECL-2.0", "Apache-2.0" ]
1
2015-01-08T13:25:09.000Z
2015-01-08T13:25:09.000Z
# Copyright (C) 2015 Google Inc., authors, and contributors <see AUTHORS file> # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # Created By: anze@reciprocitylabs.com # Maintained By: anze@reciprocitylabs.com """Add relative dates Revision ID: 520b31514bd2 Revises: 32221e9f330c Create Date: 2014-08-06 23:20:46.059979 """ # revision identifiers, used by Alembic. revision = '520b31514bd2' down_revision = '32221e9f330c' from alembic import op import sqlalchemy as sa def upgrade(): op.add_column('task_group_tasks', sa.Column('relative_end_day', sa.Integer(), nullable=True)) op.add_column('task_group_tasks', sa.Column('relative_end_month', sa.Integer(), nullable=True)) op.add_column('task_group_tasks', sa.Column('relative_start_day', sa.Integer(), nullable=True)) op.add_column('task_group_tasks', sa.Column('relative_start_month', sa.Integer(), nullable=True)) op.add_column('workflows', sa.Column('next_cycle_start_date', sa.Date(), nullable=True)) def downgrade(): op.drop_column('workflows', 'next_cycle_start_date') op.drop_column('task_group_tasks', 'relative_start_month') op.drop_column('task_group_tasks', 'relative_start_day') op.drop_column('task_group_tasks', 'relative_end_month') op.drop_column('task_group_tasks', 'relative_end_day')
36.054054
101
0.755622
1f8b033a87f45127f41d3cf13eeb12197205500d
630
py
Python
web_manage/manage.py
chicken-noodle/mysite
6973edd1357a2490f7f47e5ce427af5b144fb50a
[ "bzip2-1.0.6" ]
1
2019-09-02T02:14:51.000Z
2019-09-02T02:14:51.000Z
web_manage/manage.py
chicken-noodle/mysite
6973edd1357a2490f7f47e5ce427af5b144fb50a
[ "bzip2-1.0.6" ]
null
null
null
web_manage/manage.py
chicken-noodle/mysite
6973edd1357a2490f7f47e5ce427af5b144fb50a
[ "bzip2-1.0.6" ]
1
2019-09-02T03:33:06.000Z
2019-09-02T03:33:06.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'web_manage.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.636364
74
0.684127
fbb5e5cca05c0f0db531fdacd35a3080f810441e
13
py
Python
constants.py
AntonMelentiev/aqa_sandbox
1ca71c71aa3be572b36eb8b9f95a57afb2ada87f
[ "Apache-2.0" ]
3
2021-09-02T13:52:01.000Z
2022-01-12T13:07:00.000Z
constants.py
AntonMelentiev/aqa_sandbox
1ca71c71aa3be572b36eb8b9f95a57afb2ada87f
[ "Apache-2.0" ]
null
null
null
constants.py
AntonMelentiev/aqa_sandbox
1ca71c71aa3be572b36eb8b9f95a57afb2ada87f
[ "Apache-2.0" ]
null
null
null
TIMEOUT = 10
6.5
12
0.692308
775f09a5879b55ec31c0cc774613efc4f38632f6
73
py
Python
celery_once/backends/__init__.py
alkymi-io/celery-once
adcb91d393569703b560c863305746b2e0e12d28
[ "BSD-2-Clause" ]
388
2017-06-02T00:10:24.000Z
2022-03-31T12:49:09.000Z
celery_once/backends/__init__.py
alkymi-io/celery-once
adcb91d393569703b560c863305746b2e0e12d28
[ "BSD-2-Clause" ]
82
2017-06-05T11:16:15.000Z
2021-11-25T12:59:03.000Z
celery_once/backends/__init__.py
alkymi-io/celery-once
adcb91d393569703b560c863305746b2e0e12d28
[ "BSD-2-Clause" ]
63
2017-05-12T17:39:09.000Z
2021-11-23T19:37:53.000Z
# -*- coding: utf-8 -*- from .file import File from .redis import Redis
14.6
24
0.657534
a89f2c2bb9be0f6c15c85e5ecc0c5974752d4cd6
4,878
py
Python
envoy/examples/puma-proxy/internal_lib/backend/loader.py
kevinjesse/puma
163a363275bf5d84d1957aaf23783be84053e40f
[ "MIT" ]
null
null
null
envoy/examples/puma-proxy/internal_lib/backend/loader.py
kevinjesse/puma
163a363275bf5d84d1957aaf23783be84053e40f
[ "MIT" ]
null
null
null
envoy/examples/puma-proxy/internal_lib/backend/loader.py
kevinjesse/puma
163a363275bf5d84d1957aaf23783be84053e40f
[ "MIT" ]
null
null
null
# # @author Kevin Jesse # @email kevin.r.jesse@gmail.com # """ Loader loads the configuration settings for parts of speech and loads the questions for Qlib """ import nltk from collections import defaultdict import json import os.path as path #old default weights nounw=.8, adjw=1, numw=.8, verbbw=.6, verbw=.2, pverbw=.2,whw=.1 def LoadLanguageResource(nounw=.8, adjw=1, numw=.8, verbbw=.6, verbw=.2, pverbw=.2,whw=.1): WeightRules = defaultdict(int) # nounlist = ['NN', 'NNS', 'NNP', 'NNPS','PRP'] # verblist = ['VBP','VB','VBG','VBZ'] # whlist = ['WDT','WP','WP$','WRB'] nounlist = ['NN', 'NNS', 'NNP', 'NNPS'] adjlist = ['JJ', 'JJR', 'JJS', 'RP'] verbbaselist = ['VB', 'VBN'] verblist = ['VBP','VBG', 'VBZ'] pastverblist = ['VBN', 'VBD'] whlist = ['WDT', 'WP', 'WP$', 'WRB'] numlist = ['CD'] for noun in nounlist: WeightRules[noun] = nounw for adj in adjlist: WeightRules[adj] = adjw for num in numlist: WeightRules[num] = numw for verb in verbbaselist: WeightRules[verb] = verbbw for verb in verblist: WeightRules[verb] = verbw for verb in pastverblist: WeightRules[verb] = pverbw for wh in whlist: WeightRules[wh] = whw # WeightRules['VBP','VB','VBG','VBZ','VBN','WDT','WP','WP$','WRB'] = 1 stop_dict = defaultdict(bool) for word in nltk.corpus.stopwords.words('english'): stop_dict[word] = True resource = {} resource['rules'] = WeightRules resource['stop_words'] = stop_dict return resource def LoadData(datalist): database = {} for datafile in datalist: f = open(datafile) line = f.readline() f.close() raw_data = json.loads(str(line.strip())) database = PushData(raw_data, database) return database def PushData(data, database): last = len(database.keys()) for pair in data: database[last] = nltk.word_tokenize(pair['question']) last += 1 database[last] = nltk.word_tokenize(pair['answer']) last += 1 return database def LoadDataPair(datalist): database = {} database['Q'] = {} database['A'] = {} # print datalist for datafile in datalist: f = open(datafile) # line = f.readline() line = f.read() f.close() # print (line) # print (str(line.strip())) # print line raw_data = json.loads(str(line.strip())) database = PushDataPair(raw_data, database) return database def PushDataPair(data, database): last = len(database['Q'].keys()) for pair in data: database['Q'][last] = nltk.word_tokenize(pair['question']) database['A'][last] = nltk.word_tokenize(pair['answer']) last += 1 return database def LoadTemplate(filelist): Library = {} for filepath in filelist: name = path.splitext(path.basename(filepath))[0] if name in ['template_init', 'template_joke']: Library[name] = {} for line in open(filepath): # print line theme, line_real = line.strip().split(';') # i think you want to split then strip... # print theme try: Library[name][theme].append(line_real) except KeyError: Library[name][theme] = [] Library[name][theme].append(line_real) else: Library[name] = [line.strip() for line in open(filepath)] return Library def LoadTopic(topicfile): return [line.strip() for line in open(topicfile)] def LoadQuestions(question_file, is_choice_file=False): qLib = [] if is_choice_file: for line in open(question_file): state_type, argc, question = line.split(';') state_type = state_type.strip() argc = argc.strip() question = question.strip() qLib.append(tuple((question, state_type, argc))) return qLib for line in open(question_file): a, q = line.split(';') a = a.strip() q = q.strip() qLib.append(tuple((q, a, 0))) # try: # qLib.append(tuple((q, a))) # except KeyError: # qLib[q] = [] # qLib[type].append(q) return qLib def LoadContinue(question_file): cLib = [] for line in open(question_file): c, a, q = line.split(';') c = c.strip() a = a.strip() q = q.strip() cLib.append(tuple((q, a, c))) # try: # qLib.append(tuple((q, a))) # except KeyError: # qLib[q] = [] # qLib[type].append(q) return cLib
29.92638
102
0.541
b6329102dc5d80ed9ba2001d701e9e1f67adb3f0
1,049
py
Python
Hill Climbing/HCRastrigin.py
aislan-leite/Metaheuristic
e3553a78a2df76188c764801968a702929758406
[ "MIT" ]
null
null
null
Hill Climbing/HCRastrigin.py
aislan-leite/Metaheuristic
e3553a78a2df76188c764801968a702929758406
[ "MIT" ]
1
2017-07-16T20:24:48.000Z
2017-07-16T20:24:48.000Z
Hill Climbing/HCRastrigin.py
aislan-leite/Metaheuristic
e3553a78a2df76188c764801968a702929758406
[ "MIT" ]
null
null
null
import math import random #Benchmarck Rastrigin def fo(x,y): z = 20 + (x * x - 10 * (math.cos(2 * math.pi * x))) + (y * y - 10 * (math.cos(2 * math.pi * y))) return z #inicialização das variaveis de decisão s0 = random.uniform(-5.12,5.12) s1 = random.uniform(-5.12,5.12) sx = s0 #variavel atual de s0 sy = s1 #variavel atual de s1 atual_sol = fo(sx,sy) print("Solução inicial \nS0: ", sx, ", s1: ", sy, ", f(x): ", fo(sx,sy)) i = 0 while i < 100000: ajuste = sx * 0.1 #pertubação de 10% if(atual_sol > fo(sx+ajuste,sy)): sx = sx + ajuste atual_sol = fo(sx,sy) elif(atual_sol > fo(sx-ajuste,sy)): sx = sx - ajuste atual_sol = fo(sx,sy) ajuste = sy * 0.1 #pertubação de 10% if(atual_sol > fo(sx,sy+ajuste)): sy = sy + ajuste atual_sol = fo(sx,sy) elif(atual_sol > fo(sx, sy-ajuste)): sy = sy - ajuste atual_sol = fo(sx, sy) i = i + 1 print("X: ", sx, ", Y: ", sy, ", f(x): ", fo(sx,sy))
29.138889
100
0.519542
f793dd5ddab841029b32ef726bb057c266ba5baa
406
py
Python
app/blueprints/events.py
vabs/quizzy
1ffe60c0f018c253e977c920b537a42cc7825e0e
[ "Apache-2.0" ]
null
null
null
app/blueprints/events.py
vabs/quizzy
1ffe60c0f018c253e977c920b537a42cc7825e0e
[ "Apache-2.0" ]
1
2021-02-08T20:22:55.000Z
2021-02-08T20:22:55.000Z
app/blueprints/events.py
vabs/quizzy
1ffe60c0f018c253e977c920b537a42cc7825e0e
[ "Apache-2.0" ]
null
null
null
from flask import session from flask_socketio import emit, join_room, leave_room from .. import socketio, connected_players @socketio.on('joined', namespace='/play') def joined(): join_room('quizzy') emit('status', {'msg': session.get('name') + ' has joined the game.'}, room='quizzy') @socketio.on('/status', namespace='/play') def players(): emit('players', { 'players': connected_players })
29
89
0.699507
eb893890ad5ca8b5af2efcfb2b2fa78dd5440406
1,576
py
Python
IDC/network.py
Khanhnn00/blind_sr_denoise
3153f90d20fd884ab69b47c30c685e0175276055
[ "Apache-2.0" ]
null
null
null
IDC/network.py
Khanhnn00/blind_sr_denoise
3153f90d20fd884ab69b47c30c685e0175276055
[ "Apache-2.0" ]
null
null
null
IDC/network.py
Khanhnn00/blind_sr_denoise
3153f90d20fd884ab69b47c30c685e0175276055
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn from util import swap_axis class Generator(nn.Module): def __init__(self, conf): super(Generator, self).__init__() struct = conf.G_structure # First layer - Converting RGB image to latent space self.first_layer = nn.Conv2d(in_channels=1, out_channels=conf.G_chan, kernel_size=struct[0], bias=False) feature_block = [] # Stacking intermediate layer for layer in range(1, len(struct) - 1): feature_block += [nn.Conv2d(in_channels=conf.G_chan, out_channels=conf.G_chan, kernel_size=struct[layer], bias=False)] self.feature_block = nn.Sequential(*feature_block) # Final layer - Down-sampling and converting back to image self.final_layer = nn.Conv2d(in_channels=conf.G_chan, out_channels=1, kernel_size=struct[-1], stride=int(1 / conf.scale_factor), bias=False) # Calculate number of pixels shaved in the forward pass self.output_size = self.forward(torch.FloatTensor(torch.ones([1, 1, conf.input_crop_size, conf.input_crop_size]))).shape[-1] self.forward_shave = int(conf.input_crop_size * conf.scale_factor) - self.output_size def forward(self, input_tensor): # Swap axis of RGB image for the network to get a "batch" of size = 3 rather the 3 channels input_tensor = swap_axis(input_tensor) downscaled = self.first_layer(input_tensor) features = self.feature_block(downscaled) output = self.final_layer(features) return swap_axis(output)
52.533333
132
0.685914
62ed500dfd499cd55a6e4bb728f7f0a8f4a88798
2,184
py
Python
comicolorization/models/ltbc/low_level.py
DwangoMediaVillage/Comicolorization
98f323e78baceae0b1086f01ac51b5e8a7515abb
[ "MIT" ]
122
2017-08-21T10:01:07.000Z
2022-03-21T13:52:19.000Z
comicolorization/models/ltbc/low_level.py
DwangoMediaVillage/Comicolorization
98f323e78baceae0b1086f01ac51b5e8a7515abb
[ "MIT" ]
7
2017-10-20T15:12:13.000Z
2022-01-30T23:04:37.000Z
comicolorization/models/ltbc/low_level.py
DwangoMediaVillage/Comicolorization
98f323e78baceae0b1086f01ac51b5e8a7515abb
[ "MIT" ]
26
2017-08-22T08:11:20.000Z
2022-03-09T14:59:18.000Z
import chainer class LowLevelNetwork(chainer.Chain): def __init__(self): super(LowLevelNetwork, self).__init__( conv1_1=chainer.links.Convolution2D( in_channels=None, out_channels=64, ksize=3, stride=2, pad=1), bn1_1=chainer.links.BatchNormalization(64), conv1_2=chainer.links.Convolution2D( in_channels=None, out_channels=128, ksize=3, stride=1, pad=1), bn1_2=chainer.links.BatchNormalization(128), conv2_1=chainer.links.Convolution2D( in_channels=None, out_channels=128, ksize=3, stride=2, pad=1), bn2_1=chainer.links.BatchNormalization(128), conv2_2=chainer.links.Convolution2D( in_channels=None, out_channels=256, ksize=3, stride=1, pad=1), bn2_2=chainer.links.BatchNormalization(256), conv3_1=chainer.links.Convolution2D( in_channels=None, out_channels=256, ksize=3, stride=2, pad=1), bn3_1=chainer.links.BatchNormalization(256), conv3_2=chainer.links.Convolution2D( in_channels=None, out_channels=512, ksize=3, stride=1, pad=1), bn3_2=chainer.links.BatchNormalization(512), ) def __call__(self, x, test=False): # type: (any, bool) -> any h = x h = chainer.functions.relu(self.bn1_1(self.conv1_1(h), test=test)) h = chainer.functions.relu(self.bn1_2(self.conv1_2(h), test=test)) h = chainer.functions.relu(self.bn2_1(self.conv2_1(h), test=test)) h = chainer.functions.relu(self.bn2_2(self.conv2_2(h), test=test)) h = chainer.functions.relu(self.bn3_1(self.conv3_1(h), test=test)) h = chainer.functions.relu(self.bn3_2(self.conv3_2(h), test=test)) return h
35.803279
74
0.521978
402b333f5405da00b984f2ec73e6a52965d3fd8e
21,385
py
Python
tegridy-tools/minGPT/minGPT.py
aikovsky/tegridy-tools
4a87e1a27e2ad9ee6e16049bde7835836caa4fdd
[ "Apache-2.0" ]
18
2020-12-27T09:29:34.000Z
2022-03-28T12:15:57.000Z
tegridy-tools/minGPT/minGPT.py
aikovsky/tegridy-tools
4a87e1a27e2ad9ee6e16049bde7835836caa4fdd
[ "Apache-2.0" ]
null
null
null
tegridy-tools/minGPT/minGPT.py
aikovsky/tegridy-tools
4a87e1a27e2ad9ee6e16049bde7835836caa4fdd
[ "Apache-2.0" ]
7
2021-02-16T14:11:03.000Z
2022-01-24T09:04:01.000Z
# -*- coding: utf-8 -*- # This is a stand-alone version of minGPT by Andrej Karpathy as a single Python module # Based on minGPT sorce code as it appears on Aug 25, 2020 # https://github.com/karpathy/minGPT ####################################################### # Critical requirements # !pip install numpy # !pip install torch # !pip install matplotlib # !pip install tqdm ####################################################### print('Loading minGPT modules...') import copy import math import random import numpy as np import torch import torch.nn as nn from torch.nn import functional as F import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from torch.utils.data.dataloader import DataLoader from torch.utils.data import Dataset dtype = torch.float device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assume that we are on a CUDA machine, then this should print a CUDA device: print('Available Processing Device is:', device) import matplotlib.pyplot as plt # %matplotlib inline import logging logger = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) import tqdm from tqdm import auto print('Done!') ###################################################################### """ GPT model: - the initial stem consists of a combination of token encoding and a positional encoding - the meat of it is a uniform sequence of Transformer blocks - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - all blocks feed into a central residual pathway similar to resnets - the final decoder is a linear projection into a vanilla Softmax classifier """ class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, vocab_size, block_size, **kwargs): self.vocab_size = vocab_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) class GPT1Config(GPTConfig): """ GPT-1 like network roughly 125M params """ n_layer = 12 n_head = 12 n_embd = 768 class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # https://github.com/karpathy/minGPT/pull/55/commits/a492a389014cc4262d8011edeffdedebcec0dc57 # perform sqrt(d) scaling on (B, nh, T, hs) instead of (B, nh, T, T). # q = q * (1.0 / math.sqrt(k.size(-1))) # att = (q @ k.transpose(-2, -1)) att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, config): super().__init__() # input embedding stem self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def configure_optimizers(self, train_config): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # special case the position embedding parameter in the root GPT module as not decayed no_decay.add('pos_emb') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ # % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, idx, targets=None): b, t = idx.size() assert t <= self.block_size, "Cannot forward, model block size is exhausted." # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss ########################################################################## class TrainerConfig: # optimization parameters max_epochs = 10 batch_size = 64 learning_rate = 3e-4 betas = (0.9, 0.95) grad_norm_clip = 1.0 weight_decay = 0.1 # only applied on matmul weights # learning rate decay params: linear warmup followed by cosine decay to 10% of original lr_decay = False warmup_tokens = 375e6 # these two numbers come from the GPT-3 paper, but may not be good defaults elsewhere final_tokens = 260e9 # (at what point we reach 10% of original LR) # checkpoint settings ckpt_path = None num_workers = 0 # for DataLoader def __init__(self, **kwargs): for k,v in kwargs.items(): setattr(self, k, v) class Trainer: def __init__(self, model, train_dataset, test_dataset, config, ckpt_path): self.model = model self.train_dataset = train_dataset self.test_dataset = test_dataset self.config = config self.config.ckpt_path = ckpt_path self.ckpt_path = ckpt_path # take over whatever gpus are on the system self.device = 'cpu' if torch.cuda.is_available(): self.device = torch.cuda.current_device() self.model = torch.nn.DataParallel(self.model).to(self.device) def load_checkpoint(self): if self.config.ckpt_path is not None: ckpt_model = self.model.module if hasattr(self.model, "module") else self.model logger.info("loading %s", self.config.ckpt_path) print('Loading checkpoint...') ck = torch.load(self.config.ckpt_path, device) ckpt_model.load_state_dict(copy.deepcopy(ck)) print('Checkpoint loaded!') # Print model's state_dict print("Model's state_dict:") for param_tensor in ckpt_model.state_dict(): print(param_tensor, "\t", ckpt_model.state_dict()[param_tensor].size()) def save_checkpoint(self): # DataParallel wrappers keep raw model object in .module attribute raw_model = self.model.module if hasattr(self.model, "module") else self.model logger.info("saving %s", self.config.ckpt_path) torch.save(raw_model.state_dict(), self.config.ckpt_path) def train(self): model, config = self.model, self.config raw_model = model.module if hasattr(self.model, "module") else model optimizer = raw_model.configure_optimizers(config) def run_epoch(split): is_train = split == 'train' model.train(is_train) data = self.train_dataset if is_train else self.test_dataset loader = DataLoader(data, shuffle=True, pin_memory=True, batch_size=config.batch_size, num_workers=config.num_workers) losses = [] pbar = tqdm.auto.tqdm(enumerate(loader), total=len(loader) if is_train else enumerate(loader)) for it, (x, y) in pbar: # Iterations save function if int(it) % 1000 == 0 and self.config.ckpt_path != None: self.save_checkpoint() # place data on the correct device x = x.to(self.device) y = y.to(self.device) # forward the model with torch.set_grad_enabled(is_train): logits, loss = model(x, y) loss = loss.mean() # collapse all losses if they are scattered on multiple gpus losses.append(loss.item()) if is_train: # backprop and update the parameters model.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip) optimizer.step() # decay the learning rate based on our progress if config.lr_decay: self.tokens += (y >= 0).sum() # number of tokens processed this step (i.e. label is not -100) if self.tokens < config.warmup_tokens: # linear warmup lr_mult = float(self.tokens) / float(max(1, config.warmup_tokens)) else: # cosine learning rate decay progress = float(self.tokens - config.warmup_tokens) / float(max(1, config.final_tokens - config.warmup_tokens)) lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress))) lr = config.learning_rate * lr_mult for param_group in optimizer.param_groups: param_group['lr'] = lr else: lr = config.learning_rate # report progress pbar.set_description(f"epoch {epoch+1} iter {it}: train loss {loss.item():.5f}. lr {lr:e}") if not is_train: test_loss = float(np.mean(losses)) logger.info("test loss: %f", test_loss) return test_loss best_loss = float('inf') self.tokens = 0 # counter used for learning rate decay self.load_checkpoint() for epoch in range(config.max_epochs): run_epoch('train') if self.test_dataset is not None: test_loss = run_epoch('test') # supports early stopping based on the test loss, or just save always if no test set is provided good_model = self.test_dataset is None or test_loss < best_loss if self.config.ckpt_path is not None and good_model: #best_loss = test_loss self.save_checkpoint() ########################################################################## def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def top_k_logits(logits, k): v, ix = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float('Inf') return out @torch.no_grad() def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() for k in tqdm.auto.tqdm(range(steps)): x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed logits, _ = model(x_cond) # pluck the logits at the final step and scale by temperature logits = logits[:, -1, :] / temperature # optionally crop probabilities to only the top k options if top_k is not None: logits = top_k_logits(logits, top_k) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix), dim=1) return x # make deterministic if needed # set_seed(42) ############################################################################ class CharDataset(Dataset): def __init__(self, data, block_size): chars = sorted(list(set(data))) data_size, vocab_size = len(data), len(chars) print('Dataset has %d characters, %d unique.' % (data_size, vocab_size)) self.stoi = { ch:i for i,ch in enumerate(chars) } self.itos = { i:ch for i,ch in enumerate(chars) } self.block_size = block_size self.vocab_size = vocab_size self.data = data def __len__(self): return len(self.data) - self.block_size def __getitem__(self, idx): # grab a chunk of (block_size + 1) characters from the data chunk = self.data[idx:idx + self.block_size + 1] # encode every character to an integer dix = [self.stoi[s] for s in chunk] x = torch.tensor(dix[:-1], dtype=torch.long) y = torch.tensor(dix[1:], dtype=torch.long) return x, y ############################################################################# def MainLoader(full_path_to_training_text_file, full_path_to_validation_text_file = None, number_of_dataloader_workers = 4, model_attention_span_in_tokens = 512, model_embed_size = 256, number_of_heads = 16, number_of_layers = 4, number_of_training_epochs = 2, training_batch_size = 48, model_learning_rate = 6e-4, ckpt_path = None): text = open(full_path_to_training_text_file, 'r').read() # don't worry we won't run out of file handles train_dataset = CharDataset(text, model_attention_span_in_tokens) # one line of poem is roughly 50 characters if full_path_to_validation_text_file is not None: text_val = open(full_path_to_validation_text_file, 'r').read() val_dataset = CharDataset(text_val, model_attention_span_in_tokens) mconf = GPTConfig(train_dataset.vocab_size, train_dataset.block_size, n_layer=number_of_layers, n_head=number_of_heads, n_embd=model_embed_size) model = GPT(mconf) tconf = TrainerConfig(max_epochs=number_of_training_epochs, batch_size=training_batch_size, learning_rate=model_learning_rate, num_workers=number_of_dataloader_workers) trainer = Trainer(model, train_dataset, full_path_to_validation_text_file, tconf, ckpt_path) print('Checkpoint =', ckpt_path) return trainer, model, train_dataset ############################################################################# def Generate(model, train_dataset, trainer, number_of_tokens_to_generate = 2048, creativity_temperature = 0.8, top_k_prob = 4, input_prompt = "Some text"): model.to(device) context = input_prompt x = torch.tensor([train_dataset.stoi[s] for s in context], dtype=torch.long)[None,...].to(trainer.device) y = sample(model, x, number_of_tokens_to_generate, temperature=creativity_temperature, sample=True, top_k=top_k_prob)[0] completion = ''.join([train_dataset.itos[int(i)] for i in y]) return completion ############################################################################ def PlotPositionalEmbeddings(model, attention_span): # visualize some of the learned positional embeddings, maybe they contain structure plt.figure(figsize=(18, 1)) ci = model.pos_emb.data[0, :, 0].cpu() zci = torch.cat((torch.tensor([0.0]), ci)) # pre-cat a zero plt.imshow(zci.view(1, attention_span+1).numpy()) plt.axis('off')
40.27307
140
0.599065
ebff2eaf768395dcee0f3048be569ef2108251f8
1,449
py
Python
scripts/sources/s_min_rel_ent_point_view.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2021-04-10T13:24:30.000Z
2022-03-26T08:20:42.000Z
scripts/sources/s_min_rel_ent_point_view.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
null
null
null
scripts/sources/s_min_rel_ent_point_view.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2019-08-13T22:02:17.000Z
2022-02-09T17:49:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_min_rel_ent_point_view [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_min_rel_ent_point_view&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ExViewTheoryPoint). # + import numpy as np from arpym.views import min_rel_entropy_normal # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_min_rel_ent_point_view-parameters) mu_base = np.array([0.26, 0.29, 0.33]) # base expectation sig2_base = np.array([[0.18, 0.11, 0.13], [0.11, 0.23, 0.16], [0.13, 0.16, 0.23]]) # base covariance v = np.array([[1, -1, 0], [0, 1, -1]]) # view matrix z_view = np.array([1.02, -0.5]) # point view # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_min_rel_ent_point_view-implementation-step01): Compute point view updated parameters # + k_, n_ = v.shape # market and view dimension mu_upd, sig2_upd = min_rel_entropy_normal(mu_base, sig2_base, v, z_view, v, np.zeros((k_)))
34.5
219
0.640442
123ba3a5bd385551f74597fccda733f67347c2b2
1,241
py
Python
project/get_db.py
c24-microws-mar/catalog-service
cc5489129e23181a68a29b39c38fc50a542e8095
[ "MIT" ]
null
null
null
project/get_db.py
c24-microws-mar/catalog-service
cc5489129e23181a68a29b39c38fc50a542e8095
[ "MIT" ]
null
null
null
project/get_db.py
c24-microws-mar/catalog-service
cc5489129e23181a68a29b39c38fc50a542e8095
[ "MIT" ]
null
null
null
url = "http://musicbrainz.org/ws/2/release?query={}&limit=50&fmt=json" cover_url_temp = 'http://coverartarchive.org/release/{}' import requests import json import string import random albums = [] for word in ['offspring', 'britney', 'baby', 'metal', 'house', 'dance','hot']:#string.ascii_lowercase[0:3]: print word out = requests.get(url.format(word)) data = json.loads(out.text) if 'releases' in data: print('nmatches {}'.format(len(data['releases']))) for album in data['releases']: alb = { 'album': album['title'], 'albumId': album['id'], 'artist': album['artist-credit'][0]['artist']['name'], 'artistId': album['artist-credit'][0]['artist']['id'], 'price': random.randint(10,15), } cover = requests.get(cover_url_temp.format(alb['albumId'])) cover_url = 'NOT FOUND' has_cover = False print('.') if cover.ok: cdata = json.loads(cover.text) try: cover_url = cdata['images'][0]['thumbnails']['large'] has_cover = True except: cover_url = 'FAILED' pass alb['coverUrl'] = cover_url alb['hasCover'] = has_cover albums.append(alb) print('generated {} elems'.format(len(albums))) with open('database.json', 'w') as f: json.dump(albums, f, indent=4)
28.860465
107
0.639001
27cc0fba65cadf85bf95f6d9e03cfca21768229f
2,590
py
Python
tests/test_monitor.py
insidus341/DeskLEDs
e0bb3f0258dc47198b88373ada83f545aa5ebf14
[ "MIT" ]
null
null
null
tests/test_monitor.py
insidus341/DeskLEDs
e0bb3f0258dc47198b88373ada83f545aa5ebf14
[ "MIT" ]
3
2021-06-08T22:01:10.000Z
2022-03-12T00:40:10.000Z
tests/test_monitor.py
insidus341/DeskLEDs
e0bb3f0258dc47198b88373ada83f545aa5ebf14
[ "MIT" ]
1
2020-07-19T13:33:14.000Z
2020-07-19T13:33:14.000Z
from run.monitor import Monitor MONITOR_ID = 1 def test_monitor_get_monitor_id(): monitor = Monitor(MONITOR_ID) assert monitor.get_monitor_id() == MONITOR_ID def test_monitor_get_monitor_middle(): monitor = Monitor(MONITOR_ID) assert isinstance(monitor.get_monitor_bounding_box(), tuple) def test_monitor_get_monitor_bounding_box_top_left_tuple(): monitor = Monitor(MONITOR_ID) assert isinstance(monitor.get_monitor_bounding_box_top_left(), tuple) def test_monitor_get_monitor_bounding_box_top_left_len(): monitor = Monitor(MONITOR_ID) assert len(monitor.get_monitor_bounding_box_top_left()) == 2 def test_monitor_get_monitor_bounding_box_bottom_right_tuple(): monitor = Monitor(MONITOR_ID) assert isinstance(monitor.get_monitor_bounding_box_bottom_right(), tuple) def test_monitor_get_monitor_bounding_box_bottom_right_len(): monitor = Monitor(MONITOR_ID) assert len(monitor.get_monitor_bounding_box_bottom_right()) == 2 def test_monitor_get_pixel_list_list(): monitor = Monitor(MONITOR_ID) assert isinstance(monitor.get_pixel_list(), list) def test_monitor_get_pixel_list_len(): monitor = Monitor(MONITOR_ID) assert len(monitor.get_pixel_list()) > 0 def test_monitor_get_monitor_average_color_tuple(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert isinstance(monitor_rgb, tuple) def test_monitor_get_monitor_average_color_red_greater_than_or_equal_zero(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[0] >= 0 def test_monitor_get_monitor_average_color_red_less_than_or_equal_255(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[0] <= 255 def test_monitor_get_monitor_average_color_green_greater_than_or_equal_zero(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[1] >= 0 def test_monitor_get_monitor_average_color_green_less_than_or_equal_255(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[1] <= 255 def test_monitor_get_monitor_average_color_blue_greater_than_or_equal_zero(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[2] >= 0 def test_monitor_get_monitor_average_color_blue_less_than_or_equal_255(): monitor = Monitor(MONITOR_ID) monitor_rgb = monitor.get_monitor_average_color() assert monitor_rgb[2] <= 255
36.478873
78
0.8
2714ab1dc920f4d69780fef5e1c153299b3abb2d
3,832
py
Python
stages/third/process_results_repack.py
ClaudioGuevara/rosetta
beb6a390433e7a98adb125b26a035ecd44e7b15a
[ "AFL-1.1" ]
null
null
null
stages/third/process_results_repack.py
ClaudioGuevara/rosetta
beb6a390433e7a98adb125b26a035ecd44e7b15a
[ "AFL-1.1" ]
null
null
null
stages/third/process_results_repack.py
ClaudioGuevara/rosetta
beb6a390433e7a98adb125b26a035ecd44e7b15a
[ "AFL-1.1" ]
null
null
null
import os import re from utils.create_file import create_file def process_results_repack(complex_folder, antibody, antigen, rosetta_path): structure_selected="" file_results=open(os.path.join(complex_folder, "repack.fasc"), "r").read().splitlines()[2:] score=0 rep_force=20 for line in file_results: results= re.sub(' +', ' ',line).split(" ") if float(results[1]) < score and float(results[6]) < rep_force: structure_selected=results[-1] score=float(results[1]) rep_force=float(results[6]) if not structure_selected: return False else: #rosetta_database_direct = f"/home/claudio/tesis/rosetta_src_2021.16.61629_bundle/main/database/" rosetta_database_direct = f"{rosetta_path}/database/" content = f"-database {rosetta_database_direct}\n-docking # the docking option group\n -partners HL_A # set rigid body docking partners\n -dock_pert 3 8 # set coarse perturbation parameters (degrees and angstroms)\n -dock_mcm_trans_magnitude 0.1 # refinement translational perturbation\n -dock_mcm_rot_magnitude 5.0 # refinement rotational perturbation\n-s {structure_selected}.pdb\n-run:max_retry_job 50 # if the mover fails, retry 50 times\n-use_input_sc # add the side chains from the input pdb to the rotamer library\n-ex1 # increase rotamer bins to include mean +- 1 standard deviation\n-ex2 # increase rotamer bins to include mean +- 2 standard deviations\n-out:path:all ../results/{antibody}-{antigen}/\n-out # out option group\n -file # out:file option group\n -scorefile docking2.fasc # the name of the model score file\n-score:weights talaris2014.wts # Set talaris2014 as default score function" create_file("docking_new.options", content, complex_folder) content = f'<ROSETTASCRIPTS>\n <SCOREFXNS>\n </SCOREFXNS>\n <TASKOPERATIONS>\n <InitializeFromCommandline name="ifcl" />\n <RestrictToRepacking name="rtr" />\n Restrict to residues within a distance and vector cutoff of the protein-protein interface\n <RestrictToInterfaceVector CB_dist_cutoff="10.0" chain1_num="1,2" chain2_num="3" name="rtiv" nearby_atom_cutoff="5.5" vector_angle_cutoff="75" vector_dist_cutoff="9.0" />\n Fix residues known experimentally to be critical in interaction\n <PreventResiduesFromRepacking name="prfrp" residues="187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,302,303,304,305,306,307,308,309,310,311,312,313,314" />\n </TASKOPERATIONS>\n <FILTERS>\n </FILTERS>\n <MOVERS>\n MINIMIZATION MOVERS\n Single cycle of FastRelax to minimize backbone of docking partners\n <FastRelax name="minimize_interface" repeats="1" scorefxn="talaris2014" task_operations="ifcl,rtr,rtiv,prfrp" />\n\n DOCKING MOVERS\n <Docking conserve_foldtree="0" design="0" fullatom="0" ignore_default_docking_task="0" jumps="1" local_refine="0" name="dock_low" optimize_fold_tree="1" score_high="talaris2014" score_low="score_docking_low" task_operations="ifcl,prfrp" />\n <Docking conserve_foldtree="0" design="0" fullatom="1" jumps="1" local_refine="1" name="dock_high" optimize_fold_tree="1" score_high="talaris2014" score_low="score_docking_low" task_operations="ifcl,prfrp" />\n\n <SaveAndRetrieveSidechains allsc="0" name="srsc" /> Speeds the move from centroid to full atom mode\n\n </MOVERS>\n <APPLY_TO_POSE>\n </APPLY_TO_POSE>\n <PROTOCOLS>\n Run docking protocol\n <Add mover="dock_low" />\n <Add mover="srsc" />\n <Add mover="dock_high" />\n\n Minimize interface\n <Add mover="minimize_interface" />\n </PROTOCOLS>\n <OUTPUT scorefxn="talaris2014" />\n</ROSETTASCRIPTS>' create_file("docking_full3.xml", content, complex_folder) return os.path.join(complex_folder, structure_selected)
127.733333
1,825
0.725992
727cbca9729a478b178a5d810021879554351863
516
py
Python
blender/arm/logicnode/native/LN_write_storage.py
onelsonic/armory
55cfead0844923d419d75bf4bd677ebed714b4b5
[ "Zlib" ]
2,583
2016-07-27T08:25:47.000Z
2022-03-31T10:42:17.000Z
blender/arm/logicnode/native/LN_write_storage.py
N8n5h/armory
5b4d24f067a2354bafd3ab417bb8e30ee0c5aff8
[ "Zlib" ]
2,122
2016-07-31T14:20:04.000Z
2022-03-31T20:44:14.000Z
blender/arm/logicnode/native/LN_write_storage.py
N8n5h/armory
5b4d24f067a2354bafd3ab417bb8e30ee0c5aff8
[ "Zlib" ]
451
2016-08-12T05:52:58.000Z
2022-03-31T01:33:07.000Z
from arm.logicnode.arm_nodes import * class WriteStorageNode(ArmLogicTreeNode): """Writes the given content in the given key. @seeNode Read Storage""" bl_idname = 'LNWriteStorageNode' bl_label = 'Write Storage' arm_section = 'file' arm_version = 1 def arm_init(self, context): self.add_input('ArmNodeSocketAction', 'In') self.add_input('ArmStringSocket', 'Key') self.add_input('ArmDynamicSocket', 'Value') self.add_output('ArmNodeSocketAction', 'Out')
28.666667
53
0.680233
5e82b0e549d258f31943ed40500785dd7a49dd3f
2,674
py
Python
setup.py
showmen15/testEEE
44619da6d0972903fc93691e30688b3c0fd4e6e7
[ "MIT" ]
null
null
null
setup.py
showmen15/testEEE
44619da6d0972903fc93691e30688b3c0fd4e6e7
[ "MIT" ]
null
null
null
setup.py
showmen15/testEEE
44619da6d0972903fc93691e30688b3c0fd4e6e7
[ "MIT" ]
null
null
null
# coding=utf-8 # !/usr/bin/env python import sys try: from setuptools import setup except ImportError: sys.stderr.write('using distutils\n') from distutils.core import setup with open('requirements.txt') as f: required = f.read().splitlines() setup( name='amber-python-drivers', packages=[ 'amberdriver', 'amberdriver.common', 'amberdriver.dummy', 'amberdriver.hokuyo', 'amberdriver.drive_to_point', 'amberdriver.collision_avoidance', 'amberdriver.null', 'amberdriver.tools', 'amberdriver.tests' ], package_dir={ 'amberdriver': 'src/amberdriver', 'amberdriver.common': 'src/amberdriver/common', 'amberdriver.dummy': 'src/amberdriver/dummy', 'amberdriver.hokuyo': 'src/amberdriver/hokuyo', 'amberdriver.drive_to_point': 'src/amberdriver/drive_to_point', 'amberdriver.collision_avoidance': 'src/amberdriver/collision_avoidance', 'amberdriver.null': 'src/amberdriver/null', 'amberdriver.tools': 'src/amberdriver/tools', 'amberdriver.tests': 'src/amberdriver/tests' }, package_data={'': [ 'src/amberdriver/common/amber.ini', 'src/amberdriver/dummy/dummy.ini', 'src/amberdriver/hokuyo/hokuyo.ini', 'src/amberdriver/drive_to_point/drive_to_point.ini', 'src/amberdriver/collision_avoidance/collision_avoidance.ini', 'src/amberdriver/tools/main.ini' ]}, data_files=[ ('', [ 'src/amberdriver/common/amber.ini', 'src/amberdriver/dummy/dummy.ini', 'src/amberdriver/hokuyo/hokuyo.ini', 'src/amberdriver/drive_to_point/drive_to_point.ini', 'src/amberdriver/collision_avoidance/collision_avoidance.ini', 'src/amberdriver/tools/main.ini' ]), ], test_suite="amberdriver.tests", include_package_data=True, install_requires=required, version='1.17', description='Amber drivers in python', author=u'Paweł Suder', author_email='pawel@suder.info', url='http://project-capo.github.io/', download_url='http://github.com/project-capo/amber-python-drivers/', keywords=[ 'amber', 'dummy', 'hokuyo', 'drive to point', 'collision avoidance', 'panda' ], classifiers=[ 'Programming Language :: Python', 'Development Status :: 4 - Beta', 'Environment :: Other Environment', 'Intended Audience :: Developers', 'License :: Other/Proprietary License', 'Operating System :: OS Independent', ], long_description='''\ ''' )
31.833333
81
0.624907
735c0f9b94a074e017423b24fdca158adb2505e9
2,719
py
Python
src/joemetry/utils.py
RESPULTE/Joemetry
7922fff9d28cfdbc60373dfba1e86e5206ffe7a4
[ "MIT" ]
null
null
null
src/joemetry/utils.py
RESPULTE/Joemetry
7922fff9d28cfdbc60373dfba1e86e5206ffe7a4
[ "MIT" ]
null
null
null
src/joemetry/utils.py
RESPULTE/Joemetry
7922fff9d28cfdbc60373dfba1e86e5206ffe7a4
[ "MIT" ]
null
null
null
from math import sqrt, acos, sin, cos, radians from joemetry._type_hints import * from joemetry import Point, Segment, Polygon # broke def get_circumcircle_of_triangle(triangle: List[Point], radius: bool = True) -> Union[Tuple[Point, float], Point]: point_a, point_b, point_c = triangle angle_a = sin(2 * point_b.angle_to(point_c, point_a)) angle_b = sin(2 * point_c.angle_to(point_a, point_b)) angle_c = sin(2 * point_a.angle_to(point_b, point_c)) circumcenter_x = (point_a[0] * angle_a + point_b[0] * angle_b + point_c[0] * angle_c) / (angle_a + angle_b + angle_c) circumcenter_y = (point_a[1] * angle_a + point_b[1] * angle_b + point_c[1] * angle_c) / (angle_a + angle_b + angle_c) circumcenter = (circumcenter_x, circumcenter_y) if radius: circumradius = get_length(point_a - point_b) / angle_c return circumcenter.astuple(), circumradius return circumcenter # broke def get_intersect(line1: List[Point], line2: List[Point]) -> Union[None, Point]: line1, line2 = Segment(*line1), Segment(*line2) start = line2[0] - line1[0] end_1, end_2 = line1[1] - line1[0], line2[1] - line2[0] determinant = end_1.cross(end_2) if determinant == 0: return None check_1 = (start).cross(end_2) / determinant check_2 = (start).cross(end_1) / determinant if (0 <= check_1 <= 1) and (0 <= check_2 <= 1): return round(line1[0] + (line1[1] - line1[0]) * check_1, 2).astuple() return None def get_support(shape1: List[Point], shape2: List[Point], direction: Point) -> Point: s1_furthestpoint = max(shape1, key=lambda point: point.dot(direction)) s2_furthestpoint = max(shape2, key=lambda point: point.dot(-direction)) support_point = s1_furthestpoint - s2_furthestpoint return support_point def is_collinear(*points: List['Point']) -> bool: if not all(isinstance(p, Point) for p in points): raise TypeError(f"'{type(p).__name__}' is invalid") if len(points) < 2: return True return all([point.cross(points[(ind + 1) % len(points)]) == 0 for ind, point in enumerate(points)]) def get_bounding_box(polygon) -> Tuple[Point, Point]: x_coords = [point.x for point in polygon] y_coords = [point.y for point in polygon] topright = max(x_coords), max(y_coords) bottomleft = min(x_coords), min(y_coords) return bottomleft, topright def get_center(polygon) -> Point: '''returns the center of the polygon using the bounding box of it as reference''' bottomleft, topright = get_bounding_box(polygon) center_x = bottomleft.x + ((topright.x - bottomleft.x) / 2) center_y = bottomleft.y + ((topright.y - bottomleft.y) / 2) return center_x, center_y
39.985294
121
0.677823
f5629fbd70ea52108e2042a7665256167b0decd5
3,531
py
Python
oneflow/python/test/ops/test_inplace.py
xxg1413/oneflow
f2e3c85a25b8aecfb6c0c0af1737833b1a77e135
[ "Apache-2.0" ]
1
2020-10-13T03:03:40.000Z
2020-10-13T03:03:40.000Z
oneflow/python/test/ops/test_inplace.py
xxg1413/oneflow
f2e3c85a25b8aecfb6c0c0af1737833b1a77e135
[ "Apache-2.0" ]
null
null
null
oneflow/python/test/ops/test_inplace.py
xxg1413/oneflow
f2e3c85a25b8aecfb6c0c0af1737833b1a77e135
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import oneflow as flow import oneflow.typing as oft def MakeFuncConfig(enable_inplace): func_config = flow.FunctionConfig() func_config.enable_inplace(enable_inplace) return func_config def test_loss_inplace(test_case): def IdentityLoss(name): w = flow.get_variable(name, (10,), initializer=flow.constant_initializer(100)) y = flow.math.reduce_sum(w) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [5]), momentum=0 ).minimize(y) return y TrainCompare(test_case, IdentityLoss) def test_inplace_variable(test_case): @flow.global_function(function_config=MakeFuncConfig(True)) def InplaceVariable(): w = flow.get_variable("w", (10,), initializer=flow.constant_initializer(1)) y = flow.math.relu(w) return y flow.train.CheckPoint().init() test_case.assertTrue( np.allclose(InplaceVariable().get().numpy(), np.ones((10,), np.float32)) ) def test_deadlock(test_case): @flow.global_function(function_config=MakeFuncConfig(True)) def Foo(x: oft.Numpy.Placeholder((10,))): y = flow.math.relu(x) y = flow.math.relu(y) Foo(np.ones((10,), dtype=np.float32)) def test_nodeadlock_with_return(test_case): @flow.global_function(function_config=MakeFuncConfig(True)) def Foo(x: oft.Numpy.Placeholder((10,))): y = flow.math.relu(x) y = flow.math.relu(y) return y Foo(np.ones((10,), dtype=np.float32)).get() def test_reentrant_lock_check_failed(test_case): @flow.global_function(function_config=MakeFuncConfig(True)) def Foo(x: oft.Numpy.Placeholder((10,))): y = flow.math.relu(x) y = flow.math.relu(y) Foo(np.ones((10,), dtype=np.float32)) def test_const_inplace_variable(test_case): @flow.global_function(function_config=MakeFuncConfig(True)) def InplaceVariable(): w = flow.get_variable("w", (2, 5), initializer=flow.constant_initializer(1)) y = flow.reshape(w, (10,)) return y flow.train.CheckPoint().init() of_ret = InplaceVariable().get().numpy() test_case.assertTrue(np.allclose(of_ret, np.ones((10,), np.float32))) def TrainCompare(test_case, func): func_config = MakeFuncConfig(True) @flow.global_function(type="train", function_config=func_config) def EnableInplace(): return func("w0") func_config.enable_inplace(False) @flow.global_function(type="train", function_config=func_config) def DisableInplace(): return func("w1") flow.train.CheckPoint().init() num_iter = 10 enable_inplace_losses = np.array( [EnableInplace().get().tolist() for _ in range(num_iter)] ) disable_inplace_losses = np.array( [DisableInplace().get().tolist() for _ in range(num_iter)] ) test_case.assertTrue(np.allclose(enable_inplace_losses, disable_inplace_losses))
30.973684
86
0.695837
aca1c0057270ef3c7589edc276ff4d60d077080d
5,319
py
Python
doclink/clients/requests_.py
Luoyufu/doclink
41e57f7e9891f47579cf9131000d87bb8cc09d05
[ "MIT" ]
4
2018-01-23T04:49:52.000Z
2018-09-09T01:56:13.000Z
doclink/clients/requests_.py
Luoyufu/doclink
41e57f7e9891f47579cf9131000d87bb8cc09d05
[ "MIT" ]
2
2019-10-18T15:48:06.000Z
2019-10-18T15:49:47.000Z
doclink/clients/requests_.py
Luoyufu/doclink
41e57f7e9891f47579cf9131000d87bb8cc09d05
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import atexit import os import requests from requests_toolbelt import MultipartEncoder from six import string_types class RequestsClient(object): optional_args = ( 'params', 'data', 'headers', 'cookies', 'files', 'auth', 'timeout', 'allow_redirects', 'proxies', 'hooks', 'stream', 'verify', 'cert', 'json', 'multipart') def __init__(self, session=None): if session is None: session = requests.Session() atexit.register(session.close) self._session = session @classmethod def _prepare_optional_args(cls, sending_kwargs, request_meta): for arg in cls.optional_args: value = request_meta.get(arg) if value is not None: if arg == 'auth': sending_kwargs['auth'] = cls._create_auth_arg(value) elif arg == 'files': files_arg = cls._create_files_arg(value) if files_arg: sending_kwargs['files'] = files_arg elif arg == 'multipart': multipart_arg = cls._create_multipart_arg(value) if multipart_arg: encoder = MultipartEncoder(multipart_arg) sending_kwargs['data'] = encoder headers = sending_kwargs.setdefault('headers', {}) headers['Content-Type'] = encoder.content_type else: sending_kwargs[arg] = value @classmethod def _get_sending_kwargs(cls, request_meta): sending_kwargs = {} sending_kwargs.update( method=request_meta['method'], url=request_meta.get_url(), ) cls._prepare_optional_args(sending_kwargs, request_meta) return sending_kwargs @classmethod def _create_files_arg(cls, files_meta): """Create files arg for requests. Args: files_meta (dict): Countain filed name and file_info mapping. Returns: A dict mapping field name to file_item for multipart/form-data """ def create_file_item(file_info): """Nested function to create a file item for files arg. Args: File_info: If it's a file_path str, open it as file_object. Else, pass it to requests files arg. Returns: File instance or file_info tuple. For example: open('report.xls', 'rb') ('report.xls', open('report.xls', 'rb')) """ if isinstance(file_info, string_types): try: return open(file_info, 'rb') # param is file_path except (IOError, TypeError): pass return file_info files_arg = {} for field, file_infos in files_meta.items(): if isinstance(file_infos, list): files_arg[field] = [create_file_item(file_info) for file_info in file_infos] else: files_arg[field] = create_file_item(file_infos) return files_arg @classmethod def _create_auth_arg(cls, auth_meta): if auth_meta['type'] == 'basic': return requests.auth.HTTPBasicAuth(auth_meta['username'], auth_meta['password']) else: return requests.auth.HTTPDigestAuth(auth_meta['username'], auth_meta['password']) @classmethod def _create_multipart_arg(cls, multipart_meta): """Create a MultipartEncoder instance for multipart/form-data. Requests_toolbelt will not try to guess file_name. To encode a file we need to give file_name explicitly. Args: multipart_meta (dict): Map field name to multipart form-data value. """ def create_multipart_item(item_info): """Nested function to create a multipart item for files arg. Args: item_info: If it's a file_path str, open it as file_object as set file_name. Else, pass it to requests_toolbelt MultipartEncoder. Returns: File instance or file_info tuple. For example: ('report.xls', open('report.xls', 'rb')) """ if isinstance(item_info, string_types): try: return (os.path.basename(item_info), open(item_info, 'rb')) # file_path except (IOError, TypeError): pass try: return (os.path.basename(item_info.name), item_info) # file_object except AttributeError: pass return item_info multipart_arg = {} for field, item_infos in multipart_meta.items(): if isinstance(item_infos, list): multipart_arg[field] = [create_multipart_item(item_info) for item_info in item_infos] else: multipart_arg[field] = create_multipart_item(item_infos) return multipart_arg def request(self, request_meta): sending_kwargs = self._get_sending_kwargs(request_meta) return self._session.request(**sending_kwargs)
34.096154
93
0.567964
384b97d644ed3a7235c2356d38f0bfdcdb6b972c
1,994
py
Python
Python/add-and-search-word-data-structure-design.py
bssrdf/LeetCode-5
746df5cff523361145a74d9d429dc541a7b99910
[ "MIT" ]
68
2018-01-13T07:15:37.000Z
2022-02-20T12:58:24.000Z
Python/add-and-search-word-data-structure-design.py
ambershen/LeetCode
0c53580697b05fadb3981d97bd25f1d9da65fd2f
[ "MIT" ]
2
2021-12-10T01:43:37.000Z
2021-12-14T21:48:53.000Z
Python/add-and-search-word-data-structure-design.py
ambershen/LeetCode
0c53580697b05fadb3981d97bd25f1d9da65fd2f
[ "MIT" ]
63
2017-04-10T03:38:25.000Z
2022-03-17T23:24:51.000Z
# Time: O(min(n, h)), per operation # Space: O(min(n, h)) # # Design a data structure that supports the following two operations: # # void addWord(word) # bool search(word) # search(word) can search a literal word or a regular expression string containing only letters a-z or .. # A . means it can represent any one letter. # # For example: # # addWord("bad") # addWord("dad") # addWord("mad") # search("pad") -> false # search("bad") -> true # search(".ad") -> true # search("b..") -> true # Note: # You may assume that all words are consist of lowercase letters a-z. # class TrieNode: # Initialize your data structure here. def __init__(self): self.is_string = False self.leaves = {} class WordDictionary: def __init__(self): self.root = TrieNode() # @param {string} word # @return {void} # Adds a word into the data structure. def addWord(self, word): curr = self.root for c in word: if not c in curr.leaves: curr.leaves[c] = TrieNode() curr = curr.leaves[c] curr.is_string = True # @param {string} word # @return {boolean} # Returns if the word is in the data structure. A word could # contain the dot character '.' to represent any one letter. def search(self, word): return self.searchHelper(word, 0, self.root) def searchHelper(self, word, start, curr): if start == len(word): return curr.is_string if word[start] in curr.leaves: return self.searchHelper(word, start+1, curr.leaves[word[start]]) elif word[start] == '.': for c in curr.leaves: if self.searchHelper(word, start+1, curr.leaves[c]): return True return False # Your WordDictionary object will be instantiated and called as such: # wordDictionary = WordDictionary() # wordDictionary.addWord("word") # wordDictionary.search("pattern")
29.323529
106
0.610331
e60f382ed573628bde9c01dbd7e51363f98ac3f0
685
py
Python
python/robot-name/robot_name.py
tamireinhorn/exercism
3ca78b262ad590b67c75c5d1cd83db02bc2d1e6e
[ "MIT" ]
null
null
null
python/robot-name/robot_name.py
tamireinhorn/exercism
3ca78b262ad590b67c75c5d1cd83db02bc2d1e6e
[ "MIT" ]
2
2021-12-18T16:31:51.000Z
2021-12-18T16:33:33.000Z
python/robot-name/robot_name.py
tamireinhorn/Exercism
3a3d5744e88ab4457df4e6ac20d772d8c50c43da
[ "MIT" ]
null
null
null
import string, random ALPHABET = string.ascii_uppercase robot_names = set() class Robot: def __init__(self): self.name = self.generate_name() def generate_name(self): letters = ''.join(random.sample(ALPHABET, 2)) numbers = ''.join(list(map(str,(random.sample(range(10), 3))))) name = f'{letters}{numbers}' while name in robot_names: letters = ''.join(random.sample(ALPHABET, 2)) numbers = ''.join(list(map(str,(random.sample(range(10), 3))))) name = f'{letters}{numbers}' robot_names.add(name) return name def reset(self): self.name = self.generate_name()
32.619048
75
0.586861
967a015e313688d5a31b45df961b8f245d62ad08
9,485
py
Python
gds3xtrude/gds3xtrude/gds3xtrude.py
diadatp/gds3xtrude_openjscad
49b82c0a905a59c82a97e151077c234c4cbc8eeb
[ "Apache-2.0" ]
null
null
null
gds3xtrude/gds3xtrude/gds3xtrude.py
diadatp/gds3xtrude_openjscad
49b82c0a905a59c82a97e151077c234c4cbc8eeb
[ "Apache-2.0" ]
null
null
null
gds3xtrude/gds3xtrude/gds3xtrude.py
diadatp/gds3xtrude_openjscad
49b82c0a905a59c82a97e151077c234c4cbc8eeb
[ "Apache-2.0" ]
null
null
null
## ## Copyright (c) 2018-2019 Thomas Kramer. ## ## This file is part of gds3xtrude ## (see https://codeberg.org/tok/gds3xtrude). ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU Affero General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU Affero General Public License for more details. ## ## You should have received a copy of the GNU Affero General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## from .polygon_approx import approximate_polygon from .layer_operations import LayerOp, AbstractLayer from functools import reduce from itertools import chain import importlib.util import importlib.machinery import types import logging from typing import Dict, List, Tuple, Optional from .builder import LayerStackBuilder, ApproximateLayerStackBuilder from .types import Material logger = logging.getLogger(__name__) # klayout.db should not be imported if script is run from KLayout GUI. try: import pya except: import klayout.db as pya DEFAULT_COLOR = [0.5, 0.5, 0.5] DEFAULT_MATERIAL = Material('DEFAULT_MATERIAL', color=DEFAULT_COLOR) class Mask: """ Wrapper around pya.Region. """ def __init__(self, region: pya.Region): self.region = region self.material = Material('<unnamed>', color=DEFAULT_COLOR) def __add__(self, other): m = Mask(self.region + other.region) m.material = self.material return m def __or__(self, other): return self + other def __and__(self, other): m = Mask(self.region & other.region) m.material = self.material return m def __sub__(self, other): m = Mask(self.region - other.region) m.material = self.material return m def __xor__(self, other): return Mask(self.region ^ other.region) def __hash__(self): return hash(self.region) def __equal__(self, other): return self.region == other.region def _build_masks(layout: pya.Layout, cell: pya.Cell, abstract_layerstack: List[Tuple[int, List[AbstractLayer]]], selection_box: Optional[pya.Box] = None, material_map: Optional[Dict[Tuple[int, int], Material]] = None, default_material: Material = DEFAULT_MATERIAL) -> List[Tuple[int, List[pya.Region]]]: """ Create the masks of `cell` based on the layer stack information. :param layout: :param cell: :param abstract_layerstack: Layer stack structure as defined in the technology file. :param selection_box: An optional pya.Box to select which part of the layout should be converted to masks. :param material_map: Mapping from layer number to color. Dict[(int, int), (r, g, b)] :param default_material: Color to be used if it is not defined in `color_map`. (r, g, b), 0 <= r, g, b <= 1 :return: List[(thickness: int, mask: pya.Region)] """ # Cache for evaluated sub trees. cache = dict() def eval_op_tree(op_node: LayerOp) -> Mask: """ Recursively evaluate the layer operation tree. :param op_node: Operand node or leaf. :return: Returns a `Mask` object containing a `pya.Region` of the layer. """ if op_node in cache: return cache[op_node] if isinstance(op_node, AbstractLayer): (idx, purpose, material) = op_node.eval() layer_index = layout.layer(idx, purpose) region = _flatten_cell(cell, layer_index, selection_box=selection_box, layout=layout) if selection_box is not None: region = region & selection_box result = Mask(region) if material_map is not None: result.material = material_map.get((idx, purpose), default_material) else: result.material = material if material is not None else default_material else: assert isinstance(op_node, LayerOp) op = op_node.op lhs = eval_op_tree(op_node.lhs) rhs = eval_op_tree(op_node.rhs) result = op(lhs, rhs) result.region.merge() cache[op_node] = result return result _layerstack = [] for thickness, layers in abstract_layerstack: if not isinstance(layers, list): layers = [layers] _layerstack.append( (thickness, [eval_op_tree(l) for l in layers]) ) return _layerstack def _flatten_cell(cell: pya.Cell, layer_index: int, selection_box: Optional[pya.Box] = None, cell_cache: Optional[Dict[int, pya.Region]] = None, layout: pya.Layout = None) -> pya.Region: """ Recursively convert a single layer of a cell into a pya.Region. :param cell: The pya.Cell to be converted. :param layer_index: KLayout layer index. :param cell_cache: Dict mapping cell indices to flattened `pya.Region`s. This allows to reuse flattened cells. :return: Merged pya.Region containing all polygons of the flattened cell hierarchy. """ if cell_cache is None: # Cache rendered cells # Dict[cell_index, volume] cell_cache = dict() region = pya.Region() if selection_box is None: instances = cell.each_inst() else: instances = cell.each_touching_inst(selection_box) for inst in instances: cell_id = inst.cell_index trans = inst.cplx_trans # Transform selection such that it can be used in recursive call. if selection_box: trans_selection = selection_box.transformed(trans.inverted()) else: trans_selection = None if cell_id in cell_cache: child_region = cell_cache[cell_id] if trans_selection is not None: child_region = child_region & trans_selection else: # Recursively flatten child instance. child_region = _flatten_cell(layout.cell(cell_id), layer_index, selection_box=trans_selection, cell_cache=cell_cache, layout=layout) # Cache the region only if the cell has been fully rendered and was not cropped to selection. if trans_selection is None or inst.cell.bbox().inside(trans_selection): cell_cache[cell_id] = child_region transformed = child_region.transformed(trans) region.insert(transformed) # Add shapes of this cell. if selection_box is None: own_shapes = cell.each_shape(layer_index) else: own_shapes = cell.each_touching_shape(layer_index, selection_box) # region.insert(own_shapes) for shape in own_shapes: polygon = shape.polygon # Texts may have no polygon representation. if polygon is not None: region.insert(shape.polygon) region.merge() return region def build_layerstack(builder: LayerStackBuilder, layout: pya.Layout, top_cell: pya.Cell, tech_file, approx_error: float = 0, material_map: Optional[Dict[Tuple[int, int], Material]] = None, centered: bool = False, scale_factor: float = 1, selection_box: Optional[pya.Box] = None): """ Transform the first pya.Cell in `layout` into a solidpython volume. :param layout: pya.Layout :param top_cell: pya.Cell :param tech_file: Path to description of the layer stack. :param approx_error: Approximate polygons before conversion. :param material_map: Mapping from layer number to color. Dict[(int, int), (r, g, b)] :param centered: Move the center of the layout to (0, 0). :param scale_factor: Scale the layout before conversion. :param selection_box: An optional pya.Box to select which part of the layout should be converted to masks. :return: solidpython volume """ logger.info('Loading tech file: %s', tech_file) loader = importlib.machinery.SourceFileLoader('tech', tech_file) tech = types.ModuleType(loader.name) loader.exec_module(tech) logger.info("Convert polygons into volumes.") layer_masks = _build_masks(layout, top_cell, tech.layerstack, material_map=material_map, selection_box=selection_box) approx_builder = ApproximateLayerStackBuilder(builder, approx_error=approx_error) offset = 0 for thickness, masks in layer_masks: for mask in masks: approx_builder.add_region(mask.region, thickness=thickness, z_offset=offset, material=mask.material) offset += thickness # Find bounding box of masks and center the volume. if centered and len(layer_masks) > 0: bboxes = chain(*((mask.region.bbox() for mask in masks) for (thickness, masks) in layer_masks)) # Find union bounding box. bbox = reduce(lambda a, b: a + b, bboxes) # Shift center to (0, 0). center = bbox.center() builder.translate((-center.x, -center.y, 0)) if scale_factor != 1: builder.scale(scale_factor)
35.792453
121
0.650817
b6326b5b3ce356788eb3f399409e47099e102f50
29
py
Python
optimizer/__init__.py
lorenz0890/pytorch-admm-pruning
85f15d86e6d9037fe4016ebcd435065ecba823b5
[ "BSD-3-Clause" ]
null
null
null
optimizer/__init__.py
lorenz0890/pytorch-admm-pruning
85f15d86e6d9037fe4016ebcd435065ecba823b5
[ "BSD-3-Clause" ]
null
null
null
optimizer/__init__.py
lorenz0890/pytorch-admm-pruning
85f15d86e6d9037fe4016ebcd435065ecba823b5
[ "BSD-3-Clause" ]
null
null
null
from .admm_optimizer import *
29
29
0.827586
3cb0c37f30178379ae72671077a8b4ea3cec370b
3,391
py
Python
invenio_records_resources/services/files/results.py
tzubaki/invenio-records-resources
82e77d5f6e89abf38c871e912cc97b4bdf289c20
[ "MIT" ]
null
null
null
invenio_records_resources/services/files/results.py
tzubaki/invenio-records-resources
82e77d5f6e89abf38c871e912cc97b4bdf289c20
[ "MIT" ]
null
null
null
invenio_records_resources/services/files/results.py
tzubaki/invenio-records-resources
82e77d5f6e89abf38c871e912cc97b4bdf289c20
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # Copyright (C) 2020 Northwestern University. # # Invenio-Records-Resources is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """File service results.""" from ..base import ServiceListResult from ..records.results import RecordItem class FileItem(RecordItem): """List of file items result.""" def __init__(self, service, identity, file_, record, errors=None, links_tpl=None): """Constructor.""" super(FileItem, self).__init__( service, identity, record, errors=errors, links_tpl=links_tpl, schema=service.file_schema, ) self._file = file_ @property def file_id(self): """Get the record id.""" return self._file.key @property def _obj(self): """Return the object to dump.""" return self._file @property def links(self): """Get links for this result item.""" return self._links_tpl.expand(self._file) def send_file(self, restricted=True, as_attachment=False): """Return file stream.""" return self._file.object_version.send_file( restricted=restricted, as_attachment=as_attachment) def open_stream(self, mode): """Return a file stream context manager.""" return self._file.open_stream(mode) def get_stream(self, mode): """Return a file stream. It is up to the caller to close the steam. """ return self._file.get_stream(mode) class FileList(ServiceListResult): """List of file items result.""" def __init__(self, service, identity, results, record, links_tpl=None, links_item_tpl=None): """Constructor. :params service: a service instance :params identity: an identity that performed the service request :params results: the search results :params links_config: a links store config """ self._identity = identity self._record = record self._results = results self._service = service self._links_tpl = links_tpl self._links_item_tpl = links_item_tpl @property def entries(self): """Iterator over the hits.""" for entry in self._results: # Project the record projection = self._service.file_schema.dump( entry, context=dict( identity=self._identity, ) ) if self._links_item_tpl: projection['links'] = self._links_item_tpl.expand(entry) yield projection def to_dict(self): """Return result as a dictionary.""" # TODO: Use a FilesSchema or something to dump the top-level object record_files = self._record.files result = { "enabled": record_files.enabled, } if self._links_tpl: result['links'] = self._links_tpl.expand(self._record) if result['enabled']: result.update({ 'entries': list(self.entries), 'default_preview': record_files.default_preview, 'order': record_files.order, }) return result
29.232759
76
0.592451
4c0c8056fb70152074788f94ec40e214d1e8a208
1,591
py
Python
logic/clustering.py
moff4/gladius
773a4e81fcfca7376292c8f9ba601b62324a65f0
[ "MIT" ]
null
null
null
logic/clustering.py
moff4/gladius
773a4e81fcfca7376292c8f9ba601b62324a65f0
[ "MIT" ]
null
null
null
logic/clustering.py
moff4/gladius
773a4e81fcfca7376292c8f9ba601b62324a65f0
[ "MIT" ]
null
null
null
from collections import defaultdict from conf import conf SQL_LOAD_NEAREST = ''' SELECT distinct pt1.tag, pt2.tag FROM ( select * from hashtag.post_tag where tag in (%s) ) pt1 inner join hashtag.post_tag pt2 on pt1.post = pt2.post and pt1.tag != pt2.tag ''' LOAD_LIMIT = 50 class Clustering: def __init__(self): # tag -> set of neighboors self.__near = defaultdict(set) self._loaded = set() self._queue = set() def nears(self, tag: str) -> set: if tag in self._loaded: return self.__near[tag] tags = [tag] for i, t in enumerate(self._queue - self._loaded): tags.append(t) if i > LOAD_LIMIT: break conn = conf.sql.get_connection() cur = conn.cursor() cur.execute(SQL_LOAD_NEAREST % ','.join(['%s'] * len(tags)), tags) row = cur.fetchone() while row is not None: self.__near[(t := row[0])].add(row[1]) if t in self._queue: self._queue.remove(row[0]) row = cur.fetchone() self._loaded.update(tags) return self.__near[tag] def clustering_coeff(self, tag: str) -> float: near = self.nears(tag) self._queue.update(near) k = len(near) if k <= 1: c = 1.0 else: fr_eges = { '@'.join([i, j] if i > j else [j, i]) for i in near for j in (near & self.nears(i)) } c = 2 * len(fr_eges) / (k * (k - 1)) return c
25.66129
74
0.516028
338e547573b8b81493ce3c8f0420f9097830b239
6,053
py
Python
my_string_utils.py
jeayu/MyStringUtils
5ed84b5b6b77b2d33e69ea9a0fe05d9619ddc0b9
[ "MIT" ]
2
2020-05-26T07:44:30.000Z
2020-05-26T07:44:33.000Z
my_string_utils.py
jeayu/MyStringUtils
5ed84b5b6b77b2d33e69ea9a0fe05d9619ddc0b9
[ "MIT" ]
null
null
null
my_string_utils.py
jeayu/MyStringUtils
5ed84b5b6b77b2d33e69ea9a0fe05d9619ddc0b9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sublime import sublime_plugin import re import json def camel2underline(camel_str): result = re.sub(r'([a-z]|\d)([A-Z])', r'\1_\2', camel_str) return result.lower() if result is not camel_str else camel_str def underline2camel(underline_str): return re.sub(r'(_\w)', lambda x: x.group(1)[1].upper( ), underline_str.lower()) if '_' in underline_str else underline_str def underline2words(text): return ' '.join(text.split('_')) def words2underline(text): return '_'.join(re.split(r'\s+', text)) if ' ' in text.strip() else text def camel2words(text): return re.sub(r'([a-z]|\d)([A-Z])', r'\1 \2', text) def words2camel(text): return underline2camel(words2underline(text)) if ' ' in text.strip() else text def split_line(text): return re.split(r'\n', text) class CamelUnderlineCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, camel2underline(text)) class UnderlineCamelCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, underline2camel(text)) class UnderlineWordsCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, underline2words(text)) class WordsUnderlineCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, words2underline(text)) class CamelWordsCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region).strip() self.view.replace(edit, region, camel2words(text)) class WordsCamelCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region).strip() self.view.replace(edit, region, words2camel(text)) class JsonListCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, json.dumps( text.split(), ensure_ascii=False)) class CsvJsonCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings("MyStringUtils.sublime-settings") separator_regex = settings.get("csv_separator_regex") indent = settings.get("csv_to_json_indent") for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) lines = split_line(text) keys = re.split(separator_regex, lines[0]) result = [dict(zip(keys, re.split(separator_regex, value))) for value in lines[1:]] self.view.replace(edit, region, json.dumps( result, ensure_ascii=False, indent=indent if indent else None)) class JsonCsvCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings("MyStringUtils.sublime-settings") separator = settings.get("csv_separator") for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) text_json = json.loads(text) result = [separator.join(text_json[0].keys())] + \ [separator.join(i.values()) for i in text_json] self.view.replace(edit, region, '\n'.join(result)) class FilterDuplicatedLinesCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) lines = split_line(text) self.view.replace(edit, region, '\n'.join( sorted(set(lines), key=lines.index))) class CsvTableSqlCommand(sublime_plugin.TextCommand): def run(self, edit): settings = sublime.load_settings("MyStringUtils.sublime-settings") separator_regex = settings.get("csv_separator_regex") for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) lines = split_line(text) table_name = lines[0].strip() comments = re.split(separator_regex, lines[1]) fields = re.split(separator_regex, lines[2]) field_types = re.split( separator_regex, lines[3]) self.view.replace(edit, region, self.create_table_sql( table_name, fields, field_types, comments)) def create_table_sql(self, table_name, fields, field_types, comments): details = ',\n '.join(["`{0}` {1} NOT NULL COMMENT '{2}'".format( field, field_type, comment) for field, field_type, comment in zip(fields, field_types, comments)]) return """ CREATE TABLE `{table_name}` ( {details}, PRIMARY KEY (`{primary_key}`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='{table_name}'; """.format(table_name=table_name, details=details, primary_key=fields[0]) class EvalCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): text = self.view.substr(region) self.view.replace(edit, region, str(eval(text)))
33.815642
110
0.609945
b68e6bd9e8ede3e31c39d27b5cec1f18c3e722e0
2,805
py
Python
toontown/models/clash/news.py
jaczerob/toontown.py
fe23ffaddb2a663cbca49ce2358ef266a9c72196
[ "MIT" ]
null
null
null
toontown/models/clash/news.py
jaczerob/toontown.py
fe23ffaddb2a663cbca49ce2358ef266a9c72196
[ "MIT" ]
null
null
null
toontown/models/clash/news.py
jaczerob/toontown.py
fe23ffaddb2a663cbca49ce2358ef266a9c72196
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2022-present jaczerob Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from dataclasses import dataclass from datetime import datetime from typing import Optional from ..base import BaseAPIModel __all__ = ['News', 'NewsList'] DATE_FMT = '%Y-%m-%dT%H:%M:%S.%fZ' @dataclass class News: """Wrapper class for the news data Attributes ---------- post_id : int the ID of the post title : str the title of the post author : str who wrote the post body_raw : str the raw body of the post containing HTML elements body : str a readable version of the body, with HTML elements stripped out date : datetime when the post was written image : str a link to the image of the post article_url : str the link to the full article """ __slots__ = ['id', 'author', 'posted', 'title', 'summary', 'category'] def __init__(self, **props) -> None: self.id: int = props.get('id') self.author: str = props.get('author') self.title: str = props.get('title') self.summary: str = props.get('summary') self.category: str = props.get('category') posted = props.get('posted') self.posted: Optional[datetime] = datetime.strptime(posted, DATE_FMT) if posted else None @property def article_url(self): return f'https://corporateclash.net/news/article/{self.id}' class NewsList(BaseAPIModel[News]): """Wrapper class for the /news response A tuple-like class containing `News` objects """ def __init__(self, **payload) -> None: iterable = tuple(( News(**props) for props in payload['iterable'] )) super().__init__(iterable)
28.333333
97
0.678788
4842bc0945519ad824f0ed739624add23d6778ac
10,322
py
Python
lldb/packages/Python/lldbsuite/test/functionalities/breakpoint/scripted_bkpt/TestScriptedResolver.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
456
2015-01-15T08:44:39.000Z
2022-03-31T22:34:57.000Z
lldb/packages/Python/lldbsuite/test/functionalities/breakpoint/scripted_bkpt/TestScriptedResolver.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
2
2018-01-23T09:02:40.000Z
2018-03-09T20:34:27.000Z
lldb/packages/Python/lldbsuite/test/functionalities/breakpoint/scripted_bkpt/TestScriptedResolver.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
254
2015-01-19T21:53:39.000Z
2022-02-23T19:38:56.000Z
""" Test setting breakpoints using a scripted resolver """ from __future__ import print_function import os import lldb import lldbsuite.test.lldbutil as lldbutil from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * class TestScriptedResolver(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr24528") def test_scripted_resolver(self): """Use a scripted resolver to set a by symbol name breakpoint""" self.build() self.do_test() @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr24528") def test_search_depths(self): """ Make sure we are called at the right depths depending on what we return from __get_depth__""" self.build() self.do_test_depths() @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr24528") def test_command_line(self): """ Make sure we are called at the right depths depending on what we return from __get_depth__""" self.build() self.do_test_cli() def test_bad_command_lines(self): """Make sure we get appropriate errors when we give invalid key/value options""" self.build() self.do_test_bad_options() def setUp(self): # Call super's setUp(). TestBase.setUp(self) def make_target_and_import(self): target = lldbutil.run_to_breakpoint_make_target(self) interp = self.dbg.GetCommandInterpreter() error = lldb.SBError() script_name = os.path.join(self.getSourceDir(), "resolver.py") source_name = os.path.join(self.getSourceDir(), "main.c") command = "command script import " + script_name result = lldb.SBCommandReturnObject() interp.HandleCommand(command, result) self.assertTrue(result.Succeeded(), "com scr imp failed: %s"%(result.GetError())) return target def make_extra_args(self): json_string = '{"symbol":"break_on_me", "test1": "value1"}' json_stream = lldb.SBStream() json_stream.Print(json_string) extra_args = lldb.SBStructuredData() error = extra_args.SetFromJSON(json_stream) self.assertTrue(error.Success(), "Error making SBStructuredData: %s"%(error.GetCString())) return extra_args def do_test(self): """This reads in a python file and sets a breakpoint using it.""" target = self.make_target_and_import() extra_args = self.make_extra_args() file_list = lldb.SBFileSpecList() module_list = lldb.SBFileSpecList() # Make breakpoints with this resolver using different filters, first ones that will take: right = [] # one with no file or module spec - this one should fire: right.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # one with the right source file and no module - should also fire: file_list.Append(lldb.SBFileSpec("main.c")) right.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # Make sure the help text shows up in the "break list" output: self.expect("break list", substrs=["I am a python breakpoint resolver"], msg="Help is listed in break list") # one with the right source file and right module - should also fire: module_list.Append(lldb.SBFileSpec("a.out")) right.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # And one with no source file but the right module: file_list.Clear() right.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # Make sure these all got locations: for i in range (0, len(right)): self.assertTrue(right[i].GetNumLocations() >= 1, "Breakpoint %d has no locations."%(i)) # Now some ones that won't take: module_list.Clear() file_list.Clear() wrong = [] # one with the wrong module - should not fire: module_list.Append(lldb.SBFileSpec("noSuchModule")) wrong.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # one with the wrong file - also should not fire: file_list.Clear() module_list.Clear() file_list.Append(lldb.SBFileSpec("noFileOfThisName.xxx")) wrong.append(target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list)) # Now make sure the CU level iteration obeys the file filters: file_list.Clear() module_list.Clear() file_list.Append(lldb.SBFileSpec("no_such_file.xxx")) wrong.append(target.BreakpointCreateFromScript("resolver.ResolverCUDepth", extra_args, module_list, file_list)) # And the Module filters: file_list.Clear() module_list.Clear() module_list.Append(lldb.SBFileSpec("NoSuchModule.dylib")) wrong.append(target.BreakpointCreateFromScript("resolver.ResolverCUDepth", extra_args, module_list, file_list)) # Now make sure the Function level iteration obeys the file filters: file_list.Clear() module_list.Clear() file_list.Append(lldb.SBFileSpec("no_such_file.xxx")) wrong.append(target.BreakpointCreateFromScript("resolver.ResolverFuncDepth", extra_args, module_list, file_list)) # And the Module filters: file_list.Clear() module_list.Clear() module_list.Append(lldb.SBFileSpec("NoSuchModule.dylib")) wrong.append(target.BreakpointCreateFromScript("resolver.ResolverFuncDepth", extra_args, module_list, file_list)) # Make sure these didn't get locations: for i in range(0, len(wrong)): self.assertEqual(wrong[i].GetNumLocations(), 0, "Breakpoint %d has locations."%(i)) # Now run to main and ensure we hit the breakpoints we should have: lldbutil.run_to_breakpoint_do_run(self, target, right[0]) # Test the hit counts: for i in range(0, len(right)): self.assertEqual(right[i].GetHitCount(), 1, "Breakpoint %d has the wrong hit count"%(i)) for i in range(0, len(wrong)): self.assertEqual(wrong[i].GetHitCount(), 0, "Breakpoint %d has the wrong hit count"%(i)) def do_test_depths(self): """This test uses a class variable in resolver.Resolver which gets set to 1 if we saw compile unit and 2 if we only saw modules. If the search depth is module, you get passed just the modules with no comp_unit. If the depth is comp_unit you get comp_units. So we can use this to test that our callback gets called at the right depth.""" target = self.make_target_and_import() extra_args = self.make_extra_args() file_list = lldb.SBFileSpecList() module_list = lldb.SBFileSpecList() module_list.Append(lldb.SBFileSpec("a.out")) # Make a breakpoint that has no __get_depth__, check that that is converted to eSearchDepthModule: bkpt = target.BreakpointCreateFromScript("resolver.Resolver", extra_args, module_list, file_list) self.assertTrue(bkpt.GetNumLocations() > 0, "Resolver got no locations.") self.expect("script print(resolver.Resolver.got_files)", substrs=["2"], msg="Was only passed modules") # Make a breakpoint that asks for modules, check that we didn't get any files: bkpt = target.BreakpointCreateFromScript("resolver.ResolverModuleDepth", extra_args, module_list, file_list) self.assertTrue(bkpt.GetNumLocations() > 0, "ResolverModuleDepth got no locations.") self.expect("script print(resolver.Resolver.got_files)", substrs=["2"], msg="Was only passed modules") # Make a breakpoint that asks for compile units, check that we didn't get any files: bkpt = target.BreakpointCreateFromScript("resolver.ResolverCUDepth", extra_args, module_list, file_list) self.assertTrue(bkpt.GetNumLocations() > 0, "ResolverCUDepth got no locations.") self.expect("script print(resolver.Resolver.got_files)", substrs=["1"], msg="Was passed compile units") # Make a breakpoint that returns a bad value - we should convert that to "modules" so check that: bkpt = target.BreakpointCreateFromScript("resolver.ResolverBadDepth", extra_args, module_list, file_list) self.assertTrue(bkpt.GetNumLocations() > 0, "ResolverBadDepth got no locations.") self.expect("script print(resolver.Resolver.got_files)", substrs=["2"], msg="Was only passed modules") # Make a breakpoint that searches at function depth: bkpt = target.BreakpointCreateFromScript("resolver.ResolverFuncDepth", extra_args, module_list, file_list) self.assertTrue(bkpt.GetNumLocations() > 0, "ResolverFuncDepth got no locations.") self.expect("script print(resolver.Resolver.got_files)", substrs=["3"], msg="Was only passed modules") self.expect("script print(resolver.Resolver.func_list)", substrs=["break_on_me", "main", "test_func"], msg="Saw all the functions") def do_test_cli(self): target = self.make_target_and_import() lldbutil.run_break_set_by_script(self, "resolver.Resolver", extra_options="-k symbol -v break_on_me") def do_test_bad_options(self): target = self.make_target_and_import() self.expect("break set -P resolver.Resolver -k a_key", error = True, msg="Missing value at end", substrs=['Key: "a_key" missing value']) self.expect("break set -P resolver.Resolver -v a_value", error = True, msg="Missing key at end", substrs=['Value: "a_value" missing matching key']) self.expect("break set -P resolver.Resolver -v a_value -k a_key -v another_value", error = True, msg="Missing key among args", substrs=['Value: "a_value" missing matching key']) self.expect("break set -P resolver.Resolver -k a_key -k a_key -v another_value", error = True, msg="Missing value among args", substrs=['Key: "a_key" missing value'])
47.787037
139
0.68136
68a85e2eba55eb07f89edbfc4a16fc364bff03be
8,537
py
Python
negspacy/negation.py
arianpasquali/negspacy
da9c43f4fc46c2a18076846ac660642167c547c3
[ "MIT" ]
null
null
null
negspacy/negation.py
arianpasquali/negspacy
da9c43f4fc46c2a18076846ac660642167c547c3
[ "MIT" ]
null
null
null
negspacy/negation.py
arianpasquali/negspacy
da9c43f4fc46c2a18076846ac660642167c547c3
[ "MIT" ]
null
null
null
from spacy.tokens import Token, Doc, Span from spacy.matcher import PhraseMatcher import logging from negspacy.termsets_pt import LANGUAGES class Negex: """ A spaCy pipeline component which identifies negated tokens in text. Based on: NegEx - A Simple Algorithm for Identifying Negated Findings and Diseasesin Discharge Summaries Chapman, Bridewell, Hanbury, Cooper, Buchanan Parameters ---------- nlp: object spaCy language object ent_types: list list of entity types to negate language: str language code, if using default termsets (e.g. "en" for english) pseudo_negations: list list of phrases that cancel out a negation, if empty, defaults are used preceding_negations: list negations that appear before an entity, if empty, defaults are used following_negations: list negations that appear after an entity, if empty, defaults are used termination: list phrases that "terminate" a sentence for processing purposes such as "but". If empty, defaults are used """ def __init__( self, nlp, language="pt_clinical", ent_types=list(), pseudo_negations=list(), preceding_negations=list(), following_negations=list(), termination=list(), chunk_prefix=list(), ): if not language in LANGUAGES: raise KeyError( f"{language} not found in languages termset. " "Ensure this is a supported language or specify " "your own termsets when initializing Negex." ) termsets = LANGUAGES[language] if not Span.has_extension("negex"): Span.set_extension("negex", default=False, force=True) if not pseudo_negations: if not "pseudo_negations" in termsets: raise KeyError("pseudo_negations not specified for this language.") pseudo_negations = termsets["pseudo_negations"] if not preceding_negations: if not "preceding_negations" in termsets: raise KeyError("preceding_negations not specified for this language.") preceding_negations = termsets["preceding_negations"] if not following_negations: if not "following_negations" in termsets: raise KeyError("following_negations not specified for this language.") following_negations = termsets["following_negations"] if not termination: if not "termination" in termsets: raise KeyError("termination not specified for this language.") termination = termsets["termination"] # efficiently build spaCy matcher patterns self.pseudo_patterns = list(nlp.tokenizer.pipe(pseudo_negations)) self.preceding_patterns = list(nlp.tokenizer.pipe(preceding_negations)) self.following_patterns = list(nlp.tokenizer.pipe(following_negations)) self.termination_patterns = list(nlp.tokenizer.pipe(termination)) self.matcher = PhraseMatcher(nlp.vocab, attr="LOWER") self.matcher.add("pseudo", None, *self.pseudo_patterns) self.matcher.add("Preceding", None, *self.preceding_patterns) self.matcher.add("Following", None, *self.following_patterns) self.matcher.add("Termination", None, *self.termination_patterns) self.nlp = nlp self.ent_types = ent_types self.chunk_prefix = list(nlp.tokenizer.pipe(chunk_prefix)) def get_patterns(self): """ returns phrase patterns used for various negation dictionaries Returns ------- patterns: dict pattern_type: [patterns] """ patterns = { "pseudo_patterns": self.pseudo_patterns, "preceding_patterns": self.preceding_patterns, "following_patterns": self.following_patterns, "termination_patterns": self.termination_patterns, } for pattern in patterns: logging.info(pattern) return patterns def process_negations(self, doc): """ Find negations in doc and clean candidate negations to remove pseudo negations Parameters ---------- doc: object spaCy Doc object Returns ------- preceding: list list of tuples for preceding negations following: list list of tuples for following negations terminating: list list of tuples of terminating phrases """ ### # does not work properly in spacy 2.1.8. Will incorporate after 2.2. # Relying on user to use NER in meantime # see https://github.com/jenojp/negspacy/issues/7 ### # if not doc.is_nered: # raise ValueError( # "Negations are evaluated for Named Entities found in text. " # "Your SpaCy pipeline does not included Named Entity resolution. " # "Please ensure it is enabled or choose a different language model that includes it." # ) preceding = list() following = list() terminating = list() matches = self.matcher(doc) pseudo = [ (match_id, start, end) for match_id, start, end in matches if self.nlp.vocab.strings[match_id] == "pseudo" ] for match_id, start, end in matches: if self.nlp.vocab.strings[match_id] == "pseudo": continue pseudo_flag = False for p in pseudo: if start >= p[1] and start <= p[2]: pseudo_flag = True continue if not pseudo_flag: if self.nlp.vocab.strings[match_id] == "Preceding": preceding.append((match_id, start, end)) elif self.nlp.vocab.strings[match_id] == "Following": following.append((match_id, start, end)) elif self.nlp.vocab.strings[match_id] == "Termination": terminating.append((match_id, start, end)) else: logging.warnings( f"phrase {doc[start:end].text} not in one of the expected matcher types." ) return preceding, following, terminating def termination_boundaries(self, doc, terminating): """ Create sub sentences based on terminations found in text. Parameters ---------- doc: object spaCy Doc object terminating: list list of tuples with (match_id, start, end) returns ------- boundaries: list list of tuples with (start, end) of spans """ sent_starts = [sent.start for sent in doc.sents] terminating_starts = [t[1] for t in terminating] starts = sent_starts + terminating_starts + [len(doc)] starts.sort() boundaries = list() index = 0 for i, start in enumerate(starts): if not i == 0: boundaries.append((index, start)) index = start return boundaries def negex(self, doc): """ Negates entities of interest Parameters ---------- doc: object spaCy Doc object """ preceding, following, terminating = self.process_negations(doc) boundaries = self.termination_boundaries(doc, terminating) for b in boundaries: sub_preceding = [i for i in preceding if b[0] <= i[1] < b[1]] sub_following = [i for i in following if b[0] <= i[1] < b[1]] for e in doc[b[0] : b[1]].ents: if self.ent_types: if e.label_ not in self.ent_types: continue if any(pre < e.start for pre in [i[1] for i in sub_preceding]): e._.negex = True continue if any(fol > e.end for fol in [i[2] for i in sub_following]): e._.negex = True continue if self.chunk_prefix: if any( c.text.lower() == doc[e.start].text.lower() for c in self.chunk_prefix ): e._.negex = True return doc def __call__(self, doc): return self.negex(doc)
35.869748
110
0.577721
f8c8d25cf9699c94619fffb859093aa25e6a3720
718
py
Python
exercicios/ex088.py
DeyvisonR/curso_python
983b634d39f542369628ae48c7449ea75fd1ebbd
[ "MIT" ]
null
null
null
exercicios/ex088.py
DeyvisonR/curso_python
983b634d39f542369628ae48c7449ea75fd1ebbd
[ "MIT" ]
null
null
null
exercicios/ex088.py
DeyvisonR/curso_python
983b634d39f542369628ae48c7449ea75fd1ebbd
[ "MIT" ]
null
null
null
from time import sleep from random import randint print('=' * 50) print(f'{"JOGUE NA MEGA SENA":^50}') print('=' * 50) jogos = [] jogosqt = int(input('quantos jogos você quer que eu sorteie: ')) print(f'{f" sorteando {jogosqt} jogos ":=^50}') cont = 0 cont2 = 0 sorteados = [] while cont2 < jogosqt: while cont < 6: num = randint(1, 60) if num not in sorteados: sorteados.append(num) cont = cont + 1 if cont == 6: jogos.append(sorteados[:]) sorteados.clear() cont = 0 cont2 = cont2 + 1 for c in range(0, len(jogos)): jogos[c].sort() print(f'jogo {c + 1}: {jogos[c]}') sleep(1) print('=' * 10, 'FIM DO PROGRAMA', '=' * 10)
25.642857
64
0.557103
c94a079f9a4ce4081c478bc373d381070ddfaf96
11,423
py
Python
official/vision/detection/modeling/architecture/nn_blocks.py
gujralsanyam22/models
d96f8f043dbe2b5ca8ea1785f57df8faf68d8875
[ "Apache-2.0" ]
15
2018-08-15T19:29:39.000Z
2021-11-05T02:14:59.000Z
official/vision/detection/modeling/architecture/nn_blocks.py
yangxl-2014-fe/models
11ea5237818e791a5717716d5413977f4c4db1e3
[ "Apache-2.0" ]
5
2020-10-01T09:02:34.000Z
2021-02-21T12:50:11.000Z
official/vision/detection/modeling/architecture/nn_blocks.py
yangxl-2014-fe/models
11ea5237818e791a5717716d5413977f4c4db1e3
[ "Apache-2.0" ]
8
2020-09-17T13:09:11.000Z
2021-12-17T09:58:43.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains common building blocks for neural networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from official.modeling import tf_utils @tf.keras.utils.register_keras_serializable(package='Vision') class ResidualBlock(tf.keras.layers.Layer): """A residual block.""" def __init__(self, filters, strides, use_projection=False, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, activation='relu', use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, **kwargs): """A residual block with BN after convolutions. Args: filters: `int` number of filters for the first two convolutions. Note that the third and final convolution will use 4 times as many filters. strides: `int` block stride. If greater than 1, this block will ultimately downsample the input. use_projection: `bool` for whether this block should use a projection shortcut (versus the default identity shortcut). This is usually `True` for the first block of a block group, which may change the number of filters and the resolution. kernel_initializer: kernel_initializer for convolutional layers. kernel_regularizer: tf.keras.regularizers.Regularizer object for Conv2D. Default to None. bias_regularizer: tf.keras.regularizers.Regularizer object for Conv2d. Default to None. activation: `str` name of the activation function. use_sync_bn: if True, use synchronized batch normalization. norm_momentum: `float` normalization omentum for the moving average. norm_epsilon: `float` small float added to variance to avoid dividing by zero. **kwargs: keyword arguments to be passed. """ super(ResidualBlock, self).__init__(**kwargs) self._filters = filters self._strides = strides self._use_projection = use_projection self._use_sync_bn = use_sync_bn self._activation = activation self._kernel_initializer = kernel_initializer self._norm_momentum = norm_momentum self._norm_epsilon = norm_epsilon self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer if use_sync_bn: self._norm = tf.keras.layers.experimental.SyncBatchNormalization else: self._norm = tf.keras.layers.BatchNormalization if tf.keras.backend.image_data_format() == 'channels_last': self._bn_axis = -1 else: self._bn_axis = 1 self._activation_fn = tf_utils.get_activation(activation) def build(self, input_shape): if self._use_projection: self._shortcut = tf.keras.layers.Conv2D( filters=self._filters, kernel_size=1, strides=self._strides, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm0 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) self._conv1 = tf.keras.layers.Conv2D( filters=self._filters, kernel_size=3, strides=self._strides, padding='same', use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm1 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) self._conv2 = tf.keras.layers.Conv2D( filters=self._filters, kernel_size=3, strides=1, padding='same', use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm2 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) super(ResidualBlock, self).build(input_shape) def get_config(self): config = { 'filters': self._filters, 'strides': self._strides, 'use_projection': self._use_projection, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, 'activation': self._activation, 'use_sync_bn': self._use_sync_bn, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epsilon } base_config = super(ResidualBlock, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs): shortcut = inputs if self._use_projection: shortcut = self._shortcut(shortcut) shortcut = self._norm0(shortcut) x = self._conv1(inputs) x = self._norm1(x) x = self._activation_fn(x) x = self._conv2(x) x = self._norm2(x) return self._activation_fn(x + shortcut) @tf.keras.utils.register_keras_serializable(package='Vision') class BottleneckBlock(tf.keras.layers.Layer): """A standard bottleneck block.""" def __init__(self, filters, strides, use_projection=False, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, activation='relu', use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, **kwargs): """A standard bottleneck block with BN after convolutions. Args: filters: `int` number of filters for the first two convolutions. Note that the third and final convolution will use 4 times as many filters. strides: `int` block stride. If greater than 1, this block will ultimately downsample the input. use_projection: `bool` for whether this block should use a projection shortcut (versus the default identity shortcut). This is usually `True` for the first block of a block group, which may change the number of filters and the resolution. kernel_initializer: kernel_initializer for convolutional layers. kernel_regularizer: tf.keras.regularizers.Regularizer object for Conv2D. Default to None. bias_regularizer: tf.keras.regularizers.Regularizer object for Conv2d. Default to None. activation: `str` name of the activation function. use_sync_bn: if True, use synchronized batch normalization. norm_momentum: `float` normalization omentum for the moving average. norm_epsilon: `float` small float added to variance to avoid dividing by zero. **kwargs: keyword arguments to be passed. """ super(BottleneckBlock, self).__init__(**kwargs) self._filters = filters self._strides = strides self._use_projection = use_projection self._use_sync_bn = use_sync_bn self._activation = activation self._kernel_initializer = kernel_initializer self._norm_momentum = norm_momentum self._norm_epsilon = norm_epsilon self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer if use_sync_bn: self._norm = tf.keras.layers.experimental.SyncBatchNormalization else: self._norm = tf.keras.layers.BatchNormalization if tf.keras.backend.image_data_format() == 'channels_last': self._bn_axis = -1 else: self._bn_axis = 1 self._activation_fn = tf_utils.get_activation(activation) def build(self, input_shape): if self._use_projection: self._shortcut = tf.keras.layers.Conv2D( filters=self._filters * 4, kernel_size=1, strides=self._strides, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm0 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) self._conv1 = tf.keras.layers.Conv2D( filters=self._filters, kernel_size=1, strides=1, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm1 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) self._conv2 = tf.keras.layers.Conv2D( filters=self._filters, kernel_size=3, strides=self._strides, padding='same', use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm2 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) self._conv3 = tf.keras.layers.Conv2D( filters=self._filters * 4, kernel_size=1, strides=1, use_bias=False, kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer) self._norm3 = self._norm( axis=self._bn_axis, momentum=self._norm_momentum, epsilon=self._norm_epsilon) super(BottleneckBlock, self).build(input_shape) def get_config(self): config = { 'filters': self._filters, 'strides': self._strides, 'use_projection': self._use_projection, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, 'activation': self._activation, 'use_sync_bn': self._use_sync_bn, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epsilon } base_config = super(BottleneckBlock, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs): shortcut = inputs if self._use_projection: shortcut = self._shortcut(shortcut) shortcut = self._norm0(shortcut) x = self._conv1(inputs) x = self._norm1(x) x = self._activation_fn(x) x = self._conv2(x) x = self._norm2(x) x = self._activation_fn(x) x = self._conv3(x) x = self._norm3(x) return self._activation_fn(x + shortcut)
35.808777
80
0.674954
b8c028c1c6f4f26dd578eaa9b75c31c072305c33
12,114
py
Python
sdk/python/pulumi_azure_native/containerservice/v20201201/maintenance_configuration.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/containerservice/v20201201/maintenance_configuration.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/containerservice/v20201201/maintenance_configuration.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['MaintenanceConfigurationArgs', 'MaintenanceConfiguration'] @pulumi.input_type class MaintenanceConfigurationArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], resource_name: pulumi.Input[str], config_name: Optional[pulumi.Input[str]] = None, not_allowed_time: Optional[pulumi.Input[Sequence[pulumi.Input['TimeSpanArgs']]]] = None, time_in_week: Optional[pulumi.Input[Sequence[pulumi.Input['TimeInWeekArgs']]]] = None): """ The set of arguments for constructing a MaintenanceConfiguration resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] resource_name: The name of the managed cluster resource. :param pulumi.Input[str] config_name: The name of the maintenance configuration. :param pulumi.Input[Sequence[pulumi.Input['TimeSpanArgs']]] not_allowed_time: Time slots on which upgrade is not allowed. :param pulumi.Input[Sequence[pulumi.Input['TimeInWeekArgs']]] time_in_week: Weekday time slots allowed to upgrade. """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "resource_name", resource_name) if config_name is not None: pulumi.set(__self__, "config_name", config_name) if not_allowed_time is not None: pulumi.set(__self__, "not_allowed_time", not_allowed_time) if time_in_week is not None: pulumi.set(__self__, "time_in_week", time_in_week) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="resourceName") def resource_name(self) -> pulumi.Input[str]: """ The name of the managed cluster resource. """ return pulumi.get(self, "resource_name") @resource_name.setter def resource_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_name", value) @property @pulumi.getter(name="configName") def config_name(self) -> Optional[pulumi.Input[str]]: """ The name of the maintenance configuration. """ return pulumi.get(self, "config_name") @config_name.setter def config_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "config_name", value) @property @pulumi.getter(name="notAllowedTime") def not_allowed_time(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['TimeSpanArgs']]]]: """ Time slots on which upgrade is not allowed. """ return pulumi.get(self, "not_allowed_time") @not_allowed_time.setter def not_allowed_time(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['TimeSpanArgs']]]]): pulumi.set(self, "not_allowed_time", value) @property @pulumi.getter(name="timeInWeek") def time_in_week(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['TimeInWeekArgs']]]]: """ Weekday time slots allowed to upgrade. """ return pulumi.get(self, "time_in_week") @time_in_week.setter def time_in_week(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['TimeInWeekArgs']]]]): pulumi.set(self, "time_in_week", value) class MaintenanceConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config_name: Optional[pulumi.Input[str]] = None, not_allowed_time: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeSpanArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, time_in_week: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeInWeekArgs']]]]] = None, __props__=None): """ maintenance configuration. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] config_name: The name of the maintenance configuration. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeSpanArgs']]]] not_allowed_time: Time slots on which upgrade is not allowed. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] resource_name_: The name of the managed cluster resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeInWeekArgs']]]] time_in_week: Weekday time slots allowed to upgrade. """ ... @overload def __init__(__self__, resource_name: str, args: MaintenanceConfigurationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ maintenance configuration. :param str resource_name: The name of the resource. :param MaintenanceConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(MaintenanceConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config_name: Optional[pulumi.Input[str]] = None, not_allowed_time: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeSpanArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, time_in_week: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['TimeInWeekArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = MaintenanceConfigurationArgs.__new__(MaintenanceConfigurationArgs) __props__.__dict__["config_name"] = config_name __props__.__dict__["not_allowed_time"] = not_allowed_time if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name if resource_name_ is None and not opts.urn: raise TypeError("Missing required property 'resource_name_'") __props__.__dict__["resource_name"] = resource_name_ __props__.__dict__["time_in_week"] = time_in_week __props__.__dict__["name"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:containerservice/v20201201:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice/v20210201:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice/v20210201:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice/v20210301:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice/v20210301:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice/v20210501:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice/v20210501:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice/v20210701:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice/v20210701:MaintenanceConfiguration"), pulumi.Alias(type_="azure-native:containerservice/v20210801:MaintenanceConfiguration"), pulumi.Alias(type_="azure-nextgen:containerservice/v20210801:MaintenanceConfiguration")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(MaintenanceConfiguration, __self__).__init__( 'azure-native:containerservice/v20201201:MaintenanceConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'MaintenanceConfiguration': """ Get an existing MaintenanceConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = MaintenanceConfigurationArgs.__new__(MaintenanceConfigurationArgs) __props__.__dict__["name"] = None __props__.__dict__["not_allowed_time"] = None __props__.__dict__["system_data"] = None __props__.__dict__["time_in_week"] = None __props__.__dict__["type"] = None return MaintenanceConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="notAllowedTime") def not_allowed_time(self) -> pulumi.Output[Optional[Sequence['outputs.TimeSpanResponse']]]: """ Time slots on which upgrade is not allowed. """ return pulumi.get(self, "not_allowed_time") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ The system meta data relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter(name="timeInWeek") def time_in_week(self) -> pulumi.Output[Optional[Sequence['outputs.TimeInWeekResponse']]]: """ Weekday time slots allowed to upgrade. """ return pulumi.get(self, "time_in_week") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type")
48.846774
1,184
0.679379
9cbc1ce37e4c5bf9afa3c0243903ceed0b83109b
330
py
Python
fabdeploy/api.py
kolia1985/fabdeploy
fa746d94fde058ab86aadbc5d4a391dfcbfd983a
[ "BSD-3-Clause" ]
null
null
null
fabdeploy/api.py
kolia1985/fabdeploy
fa746d94fde058ab86aadbc5d4a391dfcbfd983a
[ "BSD-3-Clause" ]
null
null
null
fabdeploy/api.py
kolia1985/fabdeploy
fa746d94fde058ab86aadbc5d4a391dfcbfd983a
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from . import fabd, system, git, release, virtualenv, nginx, django, pip, \ postgres, mysql, supervisor, users, ssh, tar, gunicorn, uwsgi, rabbitmq, \ apache, redis, flask, angularjs from .base import setup_fabdeploy from .containers import conf, DefaultConf from .task import Task
36.666667
78
0.760606
0673e7d1d0a5c5a54a0632f428aa39364457ad4a
5,839
py
Python
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/lldbplatformutil.py
Polidea/SiriusObfuscator
b0e590d8130e97856afe578869b83a209e2b19be
[ "Apache-2.0" ]
427
2018-05-29T14:21:02.000Z
2022-03-16T03:17:54.000Z
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/lldbplatformutil.py
PolideaPlayground/SiriusObfuscator
b0e590d8130e97856afe578869b83a209e2b19be
[ "Apache-2.0" ]
25
2018-07-23T08:34:15.000Z
2021-11-05T07:13:36.000Z
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/lldbplatformutil.py
PolideaPlayground/SiriusObfuscator
b0e590d8130e97856afe578869b83a209e2b19be
[ "Apache-2.0" ]
52
2018-07-19T19:57:32.000Z
2022-03-11T16:05:38.000Z
""" This module contains functions used by the test cases to hide the architecture and/or the platform dependent nature of the tests. """ from __future__ import absolute_import # System modules import itertools import re import subprocess import sys import os # Third-party modules import six from six.moves.urllib import parse as urlparse # LLDB modules from . import configuration import use_lldb_suite import lldb def check_first_register_readable(test_case): arch = test_case.getArchitecture() if arch in ['x86_64', 'i386']: test_case.expect("register read eax", substrs=['eax = 0x']) elif arch in ['arm']: test_case.expect("register read r0", substrs=['r0 = 0x']) elif arch in ['aarch64']: test_case.expect("register read x0", substrs=['x0 = 0x']) elif re.match("mips", arch): test_case.expect("register read zero", substrs=['zero = 0x']) elif arch in ['s390x']: test_case.expect("register read r0", substrs=['r0 = 0x']) else: # TODO: Add check for other architectures test_case.fail( "Unsupported architecture for test case (arch: %s)" % test_case.getArchitecture()) def _run_adb_command(cmd, device_id): device_id_args = [] if device_id: device_id_args = ["-s", device_id] full_cmd = ["adb"] + device_id_args + cmd p = subprocess.Popen( full_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() return p.returncode, stdout, stderr def _target_is_android(): if not hasattr(_target_is_android, 'result'): triple = lldb.DBG.GetSelectedPlatform().GetTriple() match = re.match(".*-.*-.*-android", triple) _target_is_android.result = match is not None return _target_is_android.result def android_device_api(): if not hasattr(android_device_api, 'result'): assert configuration.lldb_platform_url is not None device_id = None parsed_url = urlparse.urlparse(configuration.lldb_platform_url) host_name = parsed_url.netloc.split(":")[0] if host_name != 'localhost': device_id = host_name if device_id.startswith('[') and device_id.endswith(']'): device_id = device_id[1:-1] retcode, stdout, stderr = _run_adb_command( ["shell", "getprop", "ro.build.version.sdk"], device_id) if retcode == 0: android_device_api.result = int(stdout) else: raise LookupError( ">>> Unable to determine the API level of the Android device.\n" ">>> stdout:\n%s\n" ">>> stderr:\n%s\n" % (stdout, stderr)) return android_device_api.result def match_android_device(device_arch, valid_archs=None, valid_api_levels=None): if not _target_is_android(): return False if valid_archs is not None and device_arch not in valid_archs: return False if valid_api_levels is not None and android_device_api() not in valid_api_levels: return False return True def finalize_build_dictionary(dictionary): if _target_is_android(): if dictionary is None: dictionary = {} dictionary["OS"] = "Android" if android_device_api() >= 16: dictionary["PIE"] = 1 return dictionary def getHostPlatform(): """Returns the host platform running the test suite.""" # Attempts to return a platform name matching a target Triple platform. if sys.platform.startswith('linux'): return 'linux' elif sys.platform.startswith('win32'): return 'windows' elif sys.platform.startswith('darwin'): return 'darwin' elif sys.platform.startswith('freebsd'): return 'freebsd' elif sys.platform.startswith('netbsd'): return 'netbsd' else: return sys.platform def getDarwinOSTriples(): return ['darwin', 'macosx', 'ios'] def getPlatform(): """Returns the target platform which the tests are running on.""" platform = lldb.DBG.GetSelectedPlatform().GetTriple().split('-')[2] if platform.startswith('freebsd'): platform = 'freebsd' elif platform.startswith('netbsd'): platform = 'netbsd' return platform def platformIsDarwin(): """Returns true if the OS triple for the selected platform is any valid apple OS""" return getPlatform() in getDarwinOSTriples() def findMainThreadCheckerDylib(): if not platformIsDarwin(): return "" with os.popen('xcode-select -p') as output: xcode_developer_path = output.read().strip() mtc_dylib_path = '%s/usr/lib/libMainThreadChecker.dylib' % xcode_developer_path if os.path.isfile(mtc_dylib_path): return mtc_dylib_path return "" class _PlatformContext(object): """Value object class which contains platform-specific options.""" def __init__(self, shlib_environment_var, shlib_prefix, shlib_extension): self.shlib_environment_var = shlib_environment_var self.shlib_prefix = shlib_prefix self.shlib_extension = shlib_extension def createPlatformContext(): if platformIsDarwin(): return _PlatformContext('DYLD_LIBRARY_PATH', 'lib', 'dylib') elif getPlatform() in ("freebsd", "linux", "netbsd"): return _PlatformContext('LD_LIBRARY_PATH', 'lib', 'so') else: return None def hasChattyStderr(test_case): """Some targets produce garbage on the standard error output. This utility function determines whether the tests can be strict about the expected stderr contents.""" if match_android_device(test_case.getArchitecture(), ['aarch64'], [22]): return True # The dynamic linker on the device will complain about unknown DT entries return False
32.259669
94
0.66347
30541c8137a89dd3d950e95bc0d3ea2cfb4b6a34
5,897
py
Python
tests/components/datadog/test_init.py
Hypfer/home-assistant
204ca3f3a6e24ef11ece2e2ee490a8d77553c147
[ "Apache-2.0" ]
1
2019-12-06T08:49:19.000Z
2019-12-06T08:49:19.000Z
tests/components/datadog/test_init.py
FuqiangSong/home-assistant
d5419b77f9c245e5af006143eb55ae4dda3f174e
[ "Apache-2.0" ]
2
2021-02-08T20:39:43.000Z
2021-09-08T01:36:57.000Z
tests/components/datadog/test_init.py
FuqiangSong/home-assistant
d5419b77f9c245e5af006143eb55ae4dda3f174e
[ "Apache-2.0" ]
null
null
null
"""The tests for the Datadog component.""" from unittest import mock import unittest from homeassistant.const import ( EVENT_LOGBOOK_ENTRY, EVENT_STATE_CHANGED, STATE_OFF, STATE_ON, ) from homeassistant.setup import setup_component import homeassistant.components.datadog as datadog import homeassistant.core as ha from tests.common import assert_setup_component, get_test_home_assistant class TestDatadog(unittest.TestCase): """Test the Datadog component.""" def setUp(self): # pylint: disable=invalid-name """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() def tearDown(self): # pylint: disable=invalid-name """Stop everything that was started.""" self.hass.stop() def test_invalid_config(self): """Test invalid configuration.""" with assert_setup_component(0): assert not setup_component( self.hass, datadog.DOMAIN, {datadog.DOMAIN: {"host1": "host1"}} ) @mock.patch("homeassistant.components.datadog.statsd") @mock.patch("homeassistant.components.datadog.initialize") def test_datadog_setup_full(self, mock_connection, mock_client): """Test setup with all data.""" self.hass.bus.listen = mock.MagicMock() assert setup_component( self.hass, datadog.DOMAIN, {datadog.DOMAIN: {"host": "host", "port": 123, "rate": 1, "prefix": "foo"}}, ) assert mock_connection.call_count == 1 assert mock_connection.call_args == mock.call( statsd_host="host", statsd_port=123 ) assert self.hass.bus.listen.called assert EVENT_LOGBOOK_ENTRY == self.hass.bus.listen.call_args_list[0][0][0] assert EVENT_STATE_CHANGED == self.hass.bus.listen.call_args_list[1][0][0] @mock.patch("homeassistant.components.datadog.statsd") @mock.patch("homeassistant.components.datadog.initialize") def test_datadog_setup_defaults(self, mock_connection, mock_client): """Test setup with defaults.""" self.hass.bus.listen = mock.MagicMock() assert setup_component( self.hass, datadog.DOMAIN, { datadog.DOMAIN: { "host": "host", "port": datadog.DEFAULT_PORT, "prefix": datadog.DEFAULT_PREFIX, } }, ) assert mock_connection.call_count == 1 assert mock_connection.call_args == mock.call( statsd_host="host", statsd_port=8125 ) assert self.hass.bus.listen.called @mock.patch("homeassistant.components.datadog.statsd") @mock.patch("homeassistant.components.datadog.initialize") def test_logbook_entry(self, mock_connection, mock_client): """Test event listener.""" self.hass.bus.listen = mock.MagicMock() assert setup_component( self.hass, datadog.DOMAIN, {datadog.DOMAIN: {"host": "host", "rate": datadog.DEFAULT_RATE}}, ) assert self.hass.bus.listen.called handler_method = self.hass.bus.listen.call_args_list[0][0][1] event = { "domain": "automation", "entity_id": "sensor.foo.bar", "message": "foo bar biz", "name": "triggered something", } handler_method(mock.MagicMock(data=event)) assert mock_client.event.call_count == 1 assert mock_client.event.call_args == mock.call( title="Home Assistant", text="%%% \n **{}** {} \n %%%".format(event["name"], event["message"]), tags=["entity:sensor.foo.bar", "domain:automation"], ) mock_client.event.reset_mock() @mock.patch("homeassistant.components.datadog.statsd") @mock.patch("homeassistant.components.datadog.initialize") def test_state_changed(self, mock_connection, mock_client): """Test event listener.""" self.hass.bus.listen = mock.MagicMock() assert setup_component( self.hass, datadog.DOMAIN, { datadog.DOMAIN: { "host": "host", "prefix": "ha", "rate": datadog.DEFAULT_RATE, } }, ) assert self.hass.bus.listen.called handler_method = self.hass.bus.listen.call_args_list[1][0][1] valid = {"1": 1, "1.0": 1.0, STATE_ON: 1, STATE_OFF: 0} attributes = {"elevation": 3.2, "temperature": 5.0} for in_, out in valid.items(): state = mock.MagicMock( domain="sensor", entity_id="sensor.foo.bar", state=in_, attributes=attributes, ) handler_method(mock.MagicMock(data={"new_state": state})) assert mock_client.gauge.call_count == 3 for attribute, value in attributes.items(): mock_client.gauge.assert_has_calls( [ mock.call( "ha.sensor.{}".format(attribute), value, sample_rate=1, tags=["entity:{}".format(state.entity_id)], ) ] ) assert mock_client.gauge.call_args == mock.call( "ha.sensor", out, sample_rate=1, tags=["entity:{}".format(state.entity_id)], ) mock_client.gauge.reset_mock() for invalid in ("foo", "", object): handler_method( mock.MagicMock(data={"new_state": ha.State("domain.test", invalid, {})}) ) assert not mock_client.gauge.called
33.697143
88
0.564863
62b8063ef72c212839ab87a26d25a4b059fa0ebf
4,741
py
Python
Experimentation/pygen/generated.py
svenssonjoel/COPPE
8a2a0b3ee09ba70fa59b85dfaffe510b1882209b
[ "BSD-3-Clause" ]
null
null
null
Experimentation/pygen/generated.py
svenssonjoel/COPPE
8a2a0b3ee09ba70fa59b85dfaffe510b1882209b
[ "BSD-3-Clause" ]
null
null
null
Experimentation/pygen/generated.py
svenssonjoel/COPPE
8a2a0b3ee09ba70fa59b85dfaffe510b1882209b
[ "BSD-3-Clause" ]
null
null
null
import checkpoint as checkpoint import tensorflow.compat.v1 as tf import json as json import numpy as np import os as os with open("checkpoint/code_gen_test.json") as f: network = json.load(f) def model(input_data, network): conv_filters = tf.keras.initializers.glorot_uniform(seed=None)(shape=(3, 3, input_data.get_shape().as_list()[3], 16)) conv_filters = checkpoint.setup_variable(network['layers'][1]['value'], init=tf.Variable, init_value=conv_filters, var_name='conv/filters') conv = tf.nn.conv2d(input=input_data, filters=conv_filters, padding='SAME', strides=[1, 1], name='conv') network['layers'][1]['value']['var']['conv/filters'] = conv_filters network['layers'][1]['value']['tensor'] = conv another_conv_0_filters = tf.keras.initializers.glorot_uniform(seed=None)(shape=(3, 3, conv.get_shape().as_list()[3], 16)) another_conv_0_filters = checkpoint.setup_variable(network['layers'][2]['value'], init=tf.Variable, init_value=another_conv_0_filters, var_name='another_conv_0/filters') another_conv_0 = tf.nn.conv2d(input=conv, filters=another_conv_0_filters, padding='SAME', strides=[1, 1], name='another_conv_0') network['layers'][2]['value']['var']['another_conv_0/filters'] = another_conv_0_filters network['layers'][2]['value']['tensor'] = another_conv_0 another_conv_1_filters = tf.keras.initializers.glorot_uniform(seed=None)(shape=(3, 3, another_conv_0.get_shape().as_list()[3], 16)) another_conv_1_filters = checkpoint.setup_variable(network['layers'][3]['value'], init=tf.Variable, init_value=another_conv_1_filters, var_name='another_conv_1/filters') another_conv_1 = tf.nn.conv2d(input=another_conv_0, filters=another_conv_1_filters, padding='SAME', strides=[1, 1], name='another_conv_1') network['layers'][3]['value']['var']['another_conv_1/filters'] = another_conv_1_filters network['layers'][3]['value']['tensor'] = another_conv_1 another_conv_2_filters = tf.keras.initializers.glorot_uniform(seed=None)(shape=(3, 3, another_conv_1.get_shape().as_list()[3], 16)) another_conv_2_filters = checkpoint.setup_variable(network['layers'][4]['value'], init=tf.Variable, init_value=another_conv_2_filters, var_name='another_conv_2/filters') another_conv_2 = tf.nn.conv2d(input=another_conv_1, filters=another_conv_2_filters, padding='SAME', strides=[1, 1], name='another_conv_2') network['layers'][4]['value']['var']['another_conv_2/filters'] = another_conv_2_filters network['layers'][4]['value']['tensor'] = another_conv_2 another_conv_filters = tf.keras.initializers.glorot_uniform(seed=None)(shape=(3, 3, another_conv_2.get_shape().as_list()[3], 16)) another_conv_filters = checkpoint.setup_variable(network['layers'][5]['value'], init=tf.Variable, init_value=another_conv_filters, var_name='another_conv/filters') another_conv = tf.nn.conv2d(input=another_conv_2, filters=another_conv_filters, padding='SAME', strides=[1, 1], name='another_conv') network['layers'][5]['value']['var']['another_conv/filters'] = another_conv_filters network['layers'][5]['value']['tensor'] = another_conv dense_10kc_weights = tf.keras.initializers.glorot_uniform(seed=None)(shape=(np.prod(another_conv.get_shape().as_list()[1:]), 10)) dense_10kc_weights = checkpoint.setup_variable(network['layers'][6]['value'], init=tf.Variable, init_value=dense_10kc_weights, var_name='dense_10kc/weights') dense_10kc_bias = tf.zeros(shape=(10,)) dense_10kc_bias = checkpoint.setup_variable(network['layers'][6]['value'], init=tf.Variable, init_value=dense_10kc_bias, var_name='dense_10kc/bias') another_conv = tf.reshape(another_conv, [-1, np.prod(another_conv.get_shape().as_list()[1:])]) dense_10kc = tf.nn.xw_plus_b(x=another_conv, biases=dense_10kc_bias, weights=dense_10kc_weights, name='dense_10kc') network['layers'][6]['value']['var']['dense_10kc/bias'] = dense_10kc_bias network['layers'][6]['value']['var']['dense_10kc/weights'] = dense_10kc_weights network['layers'][6]['value']['tensor'] = dense_10kc d_1 = tf.nn.dropout(x=dense_10kc, rate=0.4, name='d_1') network['layers'][7]['value']['tensor'] = d_1 regularizer = 0.002000 * (tf.nn.l2_loss(t=conv_filters, name='regularizer/conv') + tf.nn.l2_loss(t=another_conv_0_filters, name='regularizer/another_conv_0') + tf.nn.l2_loss(t=another_conv_1_filters, name='regularizer/another_conv_1') + tf.nn.l2_loss(t=another_conv_2_filters, name='regularizer/another_conv_2') + tf.nn.l2_loss(t=another_conv_filters, name='regularizer/another_conv')) return regularizer data = np.random.rand(32, 32, 3) input_tensor = tf.placeholder(dtype=tf.float32, shape=(None, 32, 32, 3), name='input_data') output = model(input_tensor, network)
75.253968
389
0.74035
121ecdcea7a2359a904c565fee78b0c9ecf587a3
7,661
py
Python
contrib/devtools/update-translations.py
niocutl/ltucoin
ce1d3edd6d165a551b4467a015fa4ad028f38100
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
niocutl/ltucoin
ce1d3edd6d165a551b4467a015fa4ad028f38100
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
niocutl/ltucoin
ce1d3edd6d165a551b4467a015fa4ad028f38100
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'ltucoin_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
37.553922
124
0.629422
b98e1cd7dbd9f6c3c2671c1304f60e1ea6db10e6
1,541
py
Python
src/data/importer/base_loader.py
shivamraval98/T5_AE
75c2e55c9adced49f670063e649499911b95158e
[ "MIT" ]
5
2021-11-09T19:02:02.000Z
2022-03-29T01:32:31.000Z
src/data/importer/base_loader.py
shivamraval98/T5_AE
75c2e55c9adced49f670063e649499911b95158e
[ "MIT" ]
null
null
null
src/data/importer/base_loader.py
shivamraval98/T5_AE
75c2e55c9adced49f670063e649499911b95158e
[ "MIT" ]
1
2021-12-05T11:38:01.000Z
2021-12-05T11:38:01.000Z
import pandas as pd import os from sklearn.model_selection import train_test_split import preprocessor as p ''' BaseLoader class which is extended by other Data Loaders ''' class BaseLoader(object): def __init__(self): self.split_path = os.getcwd() + "/data/splits/" self.dataset_path = os.getcwd() + "/data/datasets/" ''' Function to lowercase all the strings in the list Parameters -------------- samp_list (list): input list on which the lowercases operation needs to be performed Returns -------------- lowercase_str (list): return list of the strings after performing lowercase operation ''' def str_lower_helper(self, samp_list): lowercase_str = [] for samp in samp_list: if type(samp) == type("str"): lowercase_str.append(samp.lower()) else: lowercase_str.append(samp) return lowercase_str ''' Function to preprocess the given tweet sentence to remove URL, EMOJI and SMILEY Parameters --------------- raw_str (str): the input string which needs to be pre-processed Returns ------------- clean_str (str): returns the processed string ''' def twitter_preprocess(self, raw_str): p.set_options(p.OPT.URL, p.OPT.EMOJI, p.OPT.SMILEY) clean_str = "" try: clean_str = p.clean(raw_str) except: clean_str = raw_str return clean_str
28.537037
89
0.589877
e2a573db4410f533350107de0a9779da235b7537
13,572
py
Python
samples/fpga/matrix_multiplication_systolic.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-07-26T07:58:06.000Z
2021-07-26T07:58:06.000Z
samples/fpga/matrix_multiplication_systolic.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
null
null
null
samples/fpga/matrix_multiplication_systolic.py
xiacijie/dace
2d942440b1d7b139ba112434bfa78f754e10bfe5
[ "BSD-3-Clause" ]
1
2021-03-04T13:01:48.000Z
2021-03-04T13:01:48.000Z
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import argparse import dace import numpy as np import pdb import select import sys N = dace.symbol("N") K = dace.symbol("K") M = dace.symbol("M") P = dace.symbol("P") def make_copy_to_fpga_state(sdfg): ########################################################################### # Copy data to FPGA state = sdfg.add_state("copy_to_device") sdfg.add_array("A", [N, K], dtype=dace.float32) sdfg.add_array("B", [K, M], dtype=dace.float32) sdfg.add_array("C", [N, M], dtype=dace.float32) A_host = state.add_read("A") B_host = state.add_read("B") C_host = state.add_read("C") sdfg.add_array("A_device", [N, K], dtype=dace.float32, transient=True, storage=dace.dtypes.StorageType.FPGA_Global) sdfg.add_array("B_device", [K, M], dtype=dace.float32, transient=True, storage=dace.dtypes.StorageType.FPGA_Global) sdfg.add_array("C_device", [N, M], dtype=dace.float32, transient=True, storage=dace.dtypes.StorageType.FPGA_Global) A_device = state.add_write("A_device") B_device = state.add_write("B_device") C_device = state.add_write("C_device") state.add_memlet_path(A_host, A_device, memlet=dace.Memlet("A_device[0:N, 0:K]")) state.add_memlet_path(B_host, B_device, memlet=dace.Memlet("B_device[0:K, 0:M]")) state.add_memlet_path(C_host, C_device, memlet=dace.Memlet("C_device[0:N, 0:M]")) return state def make_copy_to_host_state(sdfg): ########################################################################### # Copy data to FPGA state = sdfg.add_state("copy_to_host") C_device = state.add_read("C_device") C_host = state.add_write("C") state.add_memlet_path(C_device, C_host, memlet=dace.Memlet("C[0:N, 0:M]")) return state def make_read_A(state): entry, exit = state.add_map("read_A", { "n0": "0:N/P", "k": "0:K", "n1": "0:P" }, schedule=dace.ScheduleType.FPGA_Device) mem = state.add_read("A_device") pipe = state.add_write("A_pipe") tasklet = state.add_tasklet("read_A", {"from_memory"}, {"to_kernel"}, "to_kernel = from_memory") state.add_memlet_path(mem, entry, tasklet, dst_conn="from_memory", memlet=dace.Memlet("A_device[n0 * P + n1, k]")) state.add_memlet_path(tasklet, exit, pipe, src_conn="to_kernel", memlet=dace.Memlet("A_pipe[0]")) def make_read_B(state): entry, exit = state.add_map("read_B", { "n": "0:N/P", "k": "0:K", "m": "0:M" }, schedule=dace.ScheduleType.FPGA_Device) mem = state.add_read("B_device") pipe = state.add_write("B_pipe") tasklet = state.add_tasklet("read_B", {"from_memory"}, {"to_kernel"}, "to_kernel = from_memory") state.add_memlet_path(mem, entry, tasklet, dst_conn="from_memory", memlet=dace.Memlet("B_device[k, m]")) state.add_memlet_path(tasklet, exit, pipe, src_conn="to_kernel", memlet=dace.Memlet("B_pipe[0]")) def make_write_C(state): pipe = state.add_read("C_pipe") mem = state.add_write("C_device") state.add_memlet_path(pipe, mem, memlet=dace.Memlet("C_device[0:N, 0:M]", other_subset="P - 1")) def make_compute(sdfg, state): A_pipe_in = state.add_read("A_pipe") A_pipe_out = state.add_write("A_pipe") B_pipe_in = state.add_read("B_pipe") B_pipe_out = state.add_write("B_pipe") C_pipe_in = state.add_read("C_pipe") C_pipe_out = state.add_write("C_pipe") entry_n0, exit_n0 = state.add_map("n0", { "n0": "0:N/P", }, schedule=dace.ScheduleType.FPGA_Device) entry_k, exit_k = state.add_map("k", {"k": "0:K"}, schedule=dace.ScheduleType.FPGA_Device) entry_a, exit_a = state.add_map("buffer_A", {"n1": "0:P"}, schedule=dace.ScheduleType.FPGA_Device) entry_m, exit_m = state.add_map("m", {"m": "0:M"}, schedule=dace.ScheduleType.FPGA_Device) entry_c, exit_c = state.add_map("write_C", { "n1": "0:P", "m": "0:M" }, schedule=dace.ScheduleType.FPGA_Device) # Instantiate buffers sdfg.add_scalar("A_reg", dtype=dace.float32, transient=True, storage=dace.dtypes.StorageType.FPGA_Registers) A_reg = state.add_write("A_reg") sdfg.add_array("C_buffer", [M], dtype=dace.float32, transient=True, storage=dace.dtypes.StorageType.FPGA_Local) C_buffer_in = state.add_read("C_buffer") C_buffer_out = state.add_write("C_buffer") buffer_a_tasklet = state.add_tasklet( "buffer_a", {"a_in"}, {"a_reg", "a_out"}, """\ if n1 == P - p - 1: a_reg = a_in if p < P - 1: a_out = a_in""") state.add_memlet_path(A_pipe_in, entry_n0, entry_k, entry_a, buffer_a_tasklet, memlet=dace.Memlet("A_pipe[p]", dynamic=False), dst_conn="a_in") state.add_memlet_path(buffer_a_tasklet, exit_a, A_reg, memlet=dace.Memlet("A_reg[0]", dynamic=True), src_conn="a_reg") state.add_memlet_path(buffer_a_tasklet, exit_a, exit_k, exit_n0, A_pipe_out, memlet=dace.Memlet("A_pipe[p + 1]", dynamic=True), src_conn="a_out") compute_tasklet = state.add_tasklet( "multiply_add", {"a_in", "b_in", "c_in"}, {"b_out", "c_out"}, """\ c_prev = 0 if k == 0 else c_in c_out = c_prev + a_in * b_in if p < P - 1: b_out = b_in""") state.add_memlet_path(A_reg, entry_m, compute_tasklet, dst_conn="a_in", memlet=dace.Memlet("A_reg[0]")) state.add_memlet_path(B_pipe_in, entry_n0, entry_k, entry_m, compute_tasklet, memlet=dace.Memlet("B_pipe[p]", dynamic=False), dst_conn="b_in") state.add_memlet_path(compute_tasklet, exit_m, exit_k, exit_n0, B_pipe_out, memlet=dace.Memlet("B_pipe[p + 1]", dynamic=True), src_conn="b_out") state.add_memlet_path(C_buffer_in, entry_k, entry_m, compute_tasklet, dst_conn="c_in", memlet=dace.Memlet("C_buffer[m]")) state.add_memlet_path(entry_n0, C_buffer_in, memlet=dace.Memlet()) state.add_memlet_path(compute_tasklet, exit_m, exit_k, C_buffer_out, memlet=dace.Memlet("C_buffer[m]"), src_conn="c_out") state.add_memlet_path(C_buffer_out, exit_n0, memlet=dace.Memlet()) # Write back write_c_tasklet = state.add_tasklet( "write_c", {"buffer_in", "forward_in"}, {"c_out"}, """\ if n1 <= p: c_out = forward_in if p > 0 and n1 > 0 else buffer_in""") state.add_memlet_path(C_buffer_out, entry_c, write_c_tasklet, memlet=dace.Memlet("C_buffer[m]", dynamic=True), dst_conn="buffer_in") state.add_memlet_path(C_pipe_in, entry_n0, entry_c, write_c_tasklet, memlet=dace.Memlet("C_pipe[p-1]", dynamic=True), dst_conn="forward_in") state.add_memlet_path(write_c_tasklet, exit_c, exit_n0, C_pipe_out, memlet=dace.Memlet("C_pipe[p]", dynamic=True), src_conn="c_out") # Unroll processing elements compute_entry, compute_exit = state.add_map( "unroll_compute", {"p": "0:P"}, schedule=dace.ScheduleType.FPGA_Device, unroll=True) # Bring data nodes into scope state.add_memlet_path(compute_entry, A_pipe_in, memlet=dace.memlet.Memlet()) state.add_memlet_path(compute_entry, B_pipe_in, memlet=dace.memlet.Memlet()) state.add_memlet_path(compute_entry, C_pipe_in, memlet=dace.memlet.Memlet()) state.add_memlet_path(A_pipe_out, compute_exit, memlet=dace.memlet.Memlet()) state.add_memlet_path(B_pipe_out, compute_exit, memlet=dace.memlet.Memlet()) state.add_memlet_path(C_pipe_out, compute_exit, memlet=dace.memlet.Memlet()) def make_fpga_state(sdfg): state = sdfg.add_state("mm") sdfg.add_stream("A_pipe", dace.float32, transient=True, shape=(P + 1, ), storage=dace.dtypes.StorageType.FPGA_Local, buffer_size="P") sdfg.add_stream("B_pipe", dace.float32, transient=True, shape=(P + 1, ), storage=dace.dtypes.StorageType.FPGA_Local) sdfg.add_stream("C_pipe", dace.float32, transient=True, shape=(P, ), storage=dace.dtypes.StorageType.FPGA_Local) make_read_A(state) make_read_B(state) make_compute(sdfg, state) make_write_C(state) return state def make_sdfg(specialized): if specialized: sdfg = dace.SDFG("mm_fpga_systolic_{}_{}x{}x{}".format( P.get(), N.get(), K.get(), M.get())) else: sdfg = dace.SDFG("mm_fpga_systolic_{}_NxKx{}".format(P.get(), M.get())) pre_state = make_copy_to_fpga_state(sdfg) compute_state = make_fpga_state(sdfg) post_state = make_copy_to_host_state(sdfg) sdfg.add_edge(pre_state, compute_state, dace.sdfg.InterstateEdge()) sdfg.add_edge(compute_state, post_state, dace.sdfg.InterstateEdge()) return sdfg if __name__ == "__main__": print("==== Program start ====") parser = argparse.ArgumentParser() parser.add_argument("M", type=int) parser.add_argument("N", type=int) parser.add_argument("K", type=int) parser.add_argument("P", type=int) parser.add_argument("-specialize", default=False, action="store_true", help="Fix all loop bounds at compile time/in hardware") args = vars(parser.parse_args()) if not args["specialize"]: P.set(args["P"]) M.set(args["M"]) # M must always be specialized, as it's used for the static buffer size sdfg = make_sdfg(False) sdfg.specialize(dict(P=P, M=M)) N.set(args["N"]) K.set(args["K"]) else: P.set(args["P"]) M.set(args["M"]) N.set(args["N"]) K.set(args["K"]) sdfg = make_sdfg(True) sdfg.specialize(dict(P=P, M=M, N=N, K=K)) print("Matrix multiplication {}x{}x{} with {} PEs ({}specialized)".format( M.get(), N.get(), K.get(), P.get(), "" if args["specialize"] else "not ")) # Initialize arrays: Randomize A and B, zero C A = np.ndarray([N.get(), K.get()], dtype=dace.float32.type) B = np.ndarray([K.get(), M.get()], dtype=dace.float32.type) C = np.ndarray([N.get(), M.get()], dtype=dace.float32.type) A[:] = np.random.rand(N.get(), K.get()).astype(dace.float32.type) B[:] = np.random.rand(K.get(), M.get()).astype(dace.float32.type) C[:] = dace.float32(0) A_regression = np.ndarray([N.get(), K.get()], dtype=np.float32) B_regression = np.ndarray([K.get(), M.get()], dtype=np.float32) C_regression = np.ndarray([N.get(), M.get()], dtype=np.float32) A_regression[:] = A[:] B_regression[:] = B[:] C_regression[:] = C[:] if args["specialize"]: sdfg(A=A, B=B, C=C) else: sdfg(A=A, B=B, C=C, N=N, K=K) diff = np.linalg.norm((A @ B) - C) / float(M.get() * K.get()) if diff > 1e-6: raise ValueError(f"Verification failed, difference: {diff}") else: print("Results successfully verified.")
35.251948
80
0.510021
e4457699bfaa5fe0156d64a22304952821c0a088
984
py
Python
paddlehub/finetune/task/__init__.py
HawChang/PaddleHub
7faf09eb423b7c844392e6fa19b9b8db49928835
[ "Apache-2.0" ]
2
2020-11-30T08:54:01.000Z
2021-04-07T10:11:36.000Z
paddlehub/finetune/task/__init__.py
haoyuying/PaddleHub
9894fbb1dc8575ae1fa74f32a23cc1363467461b
[ "Apache-2.0" ]
null
null
null
paddlehub/finetune/task/__init__.py
haoyuying/PaddleHub
9894fbb1dc8575ae1fa74f32a23cc1363467461b
[ "Apache-2.0" ]
null
null
null
#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base_task import BaseTask, RunEnv, RunState from .classifier_task import ClassifierTask, ImageClassifierTask, TextClassifierTask, MultiLabelClassifierTask from .detection_task import DetectionTask from .reading_comprehension_task import ReadingComprehensionTask from .regression_task import RegressionTask from .sequence_task import SequenceLabelTask
44.727273
110
0.805894
014533f23b9746874a3b3476a9825bbb2e0f6cbb
18,000
py
Python
pytorch/pytorchcv/models/pyramidnet_cifar.py
raijinspecial/imgclsmob
c5d3ab207a6304f1343e4394f0467bdc7403a72a
[ "MIT" ]
null
null
null
pytorch/pytorchcv/models/pyramidnet_cifar.py
raijinspecial/imgclsmob
c5d3ab207a6304f1343e4394f0467bdc7403a72a
[ "MIT" ]
null
null
null
pytorch/pytorchcv/models/pyramidnet_cifar.py
raijinspecial/imgclsmob
c5d3ab207a6304f1343e4394f0467bdc7403a72a
[ "MIT" ]
null
null
null
""" PyramidNet for CIFAR, implemented in PyTorch. Original paper: 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. """ __all__ = ['CIFARPyramidNet', 'pyramidnet110_a48_cifar10', 'pyramidnet110_a48_cifar100', 'pyramidnet110_a84_cifar10', 'pyramidnet110_a84_cifar100', 'pyramidnet110_a270_cifar10', 'pyramidnet110_a270_cifar100', 'pyramidnet164_a270_bn_cifar10', 'pyramidnet164_a270_bn_cifar100', 'pyramidnet200_a240_bn_cifar10', 'pyramidnet200_a240_bn_cifar100', 'pyramidnet236_a220_bn_cifar10', 'pyramidnet236_a220_bn_cifar100', 'pyramidnet272_a200_bn_cifar10', 'pyramidnet272_a200_bn_cifar100'] import os import torch.nn as nn import torch.nn.init as init from .common import conv3x3_block from .preresnet import PreResActivation from .pyramidnet import PyrUnit class CIFARPyramidNet(nn.Module): """ PyramidNet model for CIFAR from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (32, 32) Spatial size of the expected input image. num_classes : int, default 10 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck, in_channels=3, in_size=(32, 32), num_classes=10): super(CIFARPyramidNet, self).__init__() self.in_size = in_size self.num_classes = num_classes self.features = nn.Sequential() self.features.add_module("init_block", conv3x3_block( in_channels=in_channels, out_channels=init_block_channels, activation=None, activate=False)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = nn.Sequential() for j, out_channels in enumerate(channels_per_stage): stride = 1 if (i == 0) or (j != 0) else 2 stage.add_module("unit{}".format(j + 1), PyrUnit( in_channels=in_channels, out_channels=out_channels, stride=stride, bottleneck=bottleneck)) in_channels = out_channels self.features.add_module("stage{}".format(i + 1), stage) self.features.add_module('post_activ', PreResActivation(in_channels=in_channels)) self.features.add_module('final_pool', nn.AvgPool2d( kernel_size=8, stride=1)) self.output = nn.Linear( in_features=in_channels, out_features=num_classes) self._init_params() def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.output(x) return x def get_pyramidnet_cifar(num_classes, blocks, alpha, bottleneck, model_name=None, pretrained=False, root=os.path.join('~', '.torch', 'models'), **kwargs): """ Create PyramidNet for CIFAR model with specific parameters. Parameters: ---------- num_classes : int Number of classification classes. blocks : int Number of blocks. alpha : int PyramidNet's alpha value. bottleneck : bool Whether to use a bottleneck or simple block in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ assert (num_classes in [10, 100]) if bottleneck: assert ((blocks - 2) % 9 == 0) layers = [(blocks - 2) // 9] * 3 else: assert ((blocks - 2) % 6 == 0) layers = [(blocks - 2) // 6] * 3 init_block_channels = 16 growth_add = float(alpha) / float(sum(layers)) from functools import reduce channels = reduce( lambda xi, yi: xi + [[(i + 1) * growth_add + xi[-1][-1] for i in list(range(yi))]], layers, [[init_block_channels]])[1:] channels = [[int(round(cij)) for cij in ci] for ci in channels] if bottleneck: channels = [[cij * 4 for cij in ci] for ci in channels] net = CIFARPyramidNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, num_classes=num_classes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def pyramidnet110_a48_cifar10(num_classes=10, **kwargs): """ PyramidNet-110 (a=48) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=48, bottleneck=False, model_name="pyramidnet110_a48_cifar10", **kwargs) def pyramidnet110_a48_cifar100(num_classes=100, **kwargs): """ PyramidNet-110 (a=48) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=48, bottleneck=False, model_name="pyramidnet110_a48_cifar100", **kwargs) def pyramidnet110_a84_cifar10(num_classes=10, **kwargs): """ PyramidNet-110 (a=84) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=84, bottleneck=False, model_name="pyramidnet110_a84_cifar10", **kwargs) def pyramidnet110_a84_cifar100(num_classes=100, **kwargs): """ PyramidNet-110 (a=84) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=84, bottleneck=False, model_name="pyramidnet110_a84_cifar100", **kwargs) def pyramidnet110_a270_cifar10(num_classes=10, **kwargs): """ PyramidNet-110 (a=270) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=270, bottleneck=False, model_name="pyramidnet110_a270_cifar10", **kwargs) def pyramidnet110_a270_cifar100(num_classes=100, **kwargs): """ PyramidNet-110 (a=270) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=110, alpha=270, bottleneck=False, model_name="pyramidnet110_a270_cifar100", **kwargs) def pyramidnet164_a270_bn_cifar10(num_classes=10, **kwargs): """ PyramidNet-164 (a=270, bn) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=164, alpha=270, bottleneck=True, model_name="pyramidnet164_a270_bn_cifar10", **kwargs) def pyramidnet164_a270_bn_cifar100(num_classes=100, **kwargs): """ PyramidNet-164 (a=270, bn) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=164, alpha=270, bottleneck=True, model_name="pyramidnet164_a270_bn_cifar100", **kwargs) def pyramidnet200_a240_bn_cifar10(num_classes=10, **kwargs): """ PyramidNet-200 (a=240, bn) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=200, alpha=240, bottleneck=True, model_name="pyramidnet200_a240_bn_cifar10", **kwargs) def pyramidnet200_a240_bn_cifar100(num_classes=100, **kwargs): """ PyramidNet-200 (a=240, bn) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=200, alpha=240, bottleneck=True, model_name="pyramidnet200_a240_bn_cifar100", **kwargs) def pyramidnet236_a220_bn_cifar10(num_classes=10, **kwargs): """ PyramidNet-236 (a=220, bn) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=236, alpha=220, bottleneck=True, model_name="pyramidnet236_a220_bn_cifar10", **kwargs) def pyramidnet236_a220_bn_cifar100(num_classes=100, **kwargs): """ PyramidNet-236 (a=220, bn) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=236, alpha=220, bottleneck=True, model_name="pyramidnet236_a220_bn_cifar100", **kwargs) def pyramidnet272_a200_bn_cifar10(num_classes=10, **kwargs): """ PyramidNet-272 (a=200, bn) model for CIFAR-10 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=272, alpha=200, bottleneck=True, model_name="pyramidnet272_a200_bn_cifar10", **kwargs) def pyramidnet272_a200_bn_cifar100(num_classes=100, **kwargs): """ PyramidNet-272 (a=200, bn) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- num_classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( num_classes=num_classes, blocks=272, alpha=200, bottleneck=True, model_name="pyramidnet272_a200_bn_cifar100", **kwargs) def _calc_width(net): import numpy as np net_params = filter(lambda p: p.requires_grad, net.parameters()) weight_count = 0 for param in net_params: weight_count += np.prod(param.size()) return weight_count def _test(): import torch from torch.autograd import Variable pretrained = False models = [ (pyramidnet110_a48_cifar10, 10), (pyramidnet110_a48_cifar100, 100), (pyramidnet110_a84_cifar10, 10), (pyramidnet110_a84_cifar100, 100), (pyramidnet110_a270_cifar10, 10), (pyramidnet110_a270_cifar100, 100), (pyramidnet164_a270_bn_cifar10, 10), (pyramidnet164_a270_bn_cifar100, 100), (pyramidnet200_a240_bn_cifar10, 10), (pyramidnet200_a240_bn_cifar100, 100), (pyramidnet236_a220_bn_cifar10, 10), (pyramidnet236_a220_bn_cifar100, 100), (pyramidnet272_a200_bn_cifar10, 10), (pyramidnet272_a200_bn_cifar100, 100), ] for model, num_classes in models: net = model(pretrained=pretrained, num_classes=num_classes) # net.train() net.eval() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != pyramidnet110_a48_cifar10 or weight_count == 1772706) assert (model != pyramidnet110_a48_cifar100 or weight_count == 1778556) assert (model != pyramidnet110_a84_cifar10 or weight_count == 3904446) assert (model != pyramidnet110_a84_cifar100 or weight_count == 3913536) assert (model != pyramidnet110_a270_cifar10 or weight_count == 28485477) assert (model != pyramidnet110_a270_cifar100 or weight_count == 28511307) assert (model != pyramidnet164_a270_bn_cifar10 or weight_count == 27216021) assert (model != pyramidnet164_a270_bn_cifar100 or weight_count == 27319071) assert (model != pyramidnet200_a240_bn_cifar10 or weight_count == 26752702) assert (model != pyramidnet200_a240_bn_cifar100 or weight_count == 26844952) assert (model != pyramidnet236_a220_bn_cifar10 or weight_count == 26969046) assert (model != pyramidnet236_a220_bn_cifar100 or weight_count == 27054096) assert (model != pyramidnet272_a200_bn_cifar10 or weight_count == 26210842) assert (model != pyramidnet272_a200_bn_cifar100 or weight_count == 26288692) x = Variable(torch.randn(1, 3, 32, 32)) y = net(x) assert (tuple(y.size()) == (1, num_classes)) if __name__ == "__main__": _test()
33.333333
120
0.641
915c69b11ec1626176128d0d9628e6a8b119f1bc
387
py
Python
test/sample_test.py
murphyGo/MurphyML
a079d3418464ad9183a3292688b4f4476526db36
[ "MIT" ]
null
null
null
test/sample_test.py
murphyGo/MurphyML
a079d3418464ad9183a3292688b4f4476526db36
[ "MIT" ]
null
null
null
test/sample_test.py
murphyGo/MurphyML
a079d3418464ad9183a3292688b4f4476526db36
[ "MIT" ]
null
null
null
import unittest # unittest sample class SampleTest(unittest.TestCase): def test_sample(self): self.assertTrue(True, "always pass") def test_str(self): subStr = 'hihi' fullStr = f"\u0394\u2341{subStr}" self.assertEqual(type(fullStr), str) # pytest sample def test_sample2(): assert 1 < 2 if __name__ == '__main__': unittest.main()
16.125
44
0.640827
bac24e328d9e0f914dfc3ee2b07df6c2cdc59a93
3,177
py
Python
python/docs/source/conf.py
fvaleye/metadata-guardian
ab5d6cada67785c3cfd98112f68e8fdb193d1617
[ "Apache-2.0" ]
9
2021-12-31T20:32:35.000Z
2022-02-18T17:51:49.000Z
python/docs/source/conf.py
fvaleye/metadata-guardian
ab5d6cada67785c3cfd98112f68e8fdb193d1617
[ "Apache-2.0" ]
1
2022-02-25T16:35:04.000Z
2022-02-28T21:08:53.000Z
python/docs/source/conf.py
fvaleye/metadata-guardian
ab5d6cada67785c3cfd98112f68e8fdb193d1617
[ "Apache-2.0" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import toml sys.path.insert(0, os.path.abspath("../metadata_guardian/")) sys.path.insert(0, os.path.abspath("./_ext")) def get_release_version() -> str: """ Get the release version from the Cargo.toml file :return: """ cargo_content = toml.load("../../Cargo.toml") return cargo_content["package"]["version"] # -- Project information ----------------------------------------------------- project = "metadata-guardian" copyright = "2021 Metadata Guardian contributors" author = "Florian Valeye" version = get_release_version() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "edit_on_github"] autodoc_typehints = "description" nitpicky = True nitpick_ignore = [ ("py:class", "RawDataRules"), ("py:class", "pyarrow._fs.FileSystem"), ("py:class", "pyarrow._dataset.Dataset"), ("py:class", "pyarrow.lib.Schema"), ("py:class", "avro.datafile.DataFileReader"), ("py:class", "mypy_boto3_athena.client.AthenaClient"), ("py:class", "mypy_boto3_glue.client.GlueClient"), ("py:class", "snowflake.connector.connection.SnowflakeConnection"), ("py:class", "deltalake.data_catalog.DataCatalog"), ( "py:class", "confluent_kafka.schema_registry.schema_registry_client.SchemaRegistryClient", ), ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "pydata_sphinx_theme" html_logo = "../../../logo.png" html_favicon = "../../../logo.png" html_theme_options = { "external_links": [], "github_url": "https://github.com/fvaleye/MetadataGuardian", } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] edit_on_github_project = "fvaleye/MetadataGuardian" edit_on_github_branch = "main" page_source_prefix = "python/docs/source"
33.797872
86
0.67548
bd0eb9086498ec7c3d75e8e3ae937d856aca3b38
9,001
py
Python
pyqtgraph/widgets/ScatterPlotWidget.py
feketeimre/pyqtgraph
b421cc27905338438e99cf19d4962c51e64079bd
[ "MIT" ]
null
null
null
pyqtgraph/widgets/ScatterPlotWidget.py
feketeimre/pyqtgraph
b421cc27905338438e99cf19d4962c51e64079bd
[ "MIT" ]
null
null
null
pyqtgraph/widgets/ScatterPlotWidget.py
feketeimre/pyqtgraph
b421cc27905338438e99cf19d4962c51e64079bd
[ "MIT" ]
1
2019-07-15T19:35:15.000Z
2019-07-15T19:35:15.000Z
from ..Qt import QtGui, QtCore from .PlotWidget import PlotWidget from .DataFilterWidget import DataFilterParameter from .ColorMapWidget import ColorMapParameter from .. import parametertree as ptree from .. import functions as fn from .. import getConfigOption from ..graphicsItems.TextItem import TextItem import numpy as np from ..pgcollections import OrderedDict __all__ = ['ScatterPlotWidget'] class ScatterPlotWidget(QtGui.QSplitter): """ This is a high-level widget for exploring relationships in tabular data. Given a multi-column record array, the widget displays a scatter plot of a specific subset of the data. Includes controls for selecting the columns to plot, filtering data, and determining symbol color and shape. The widget consists of four components: 1) A list of column names from which the user may select 1 or 2 columns to plot. If one column is selected, the data for that column will be plotted in a histogram-like manner by using :func:`pseudoScatter() <pyqtgraph.pseudoScatter>`. If two columns are selected, then the scatter plot will be generated with x determined by the first column that was selected and y by the second. 2) A DataFilter that allows the user to select a subset of the data by specifying multiple selection criteria. 3) A ColorMap that allows the user to determine how points are colored by specifying multiple criteria. 4) A PlotWidget for displaying the data. """ sigScatterPlotClicked = QtCore.Signal(object, object) def __init__(self, parent=None): QtGui.QSplitter.__init__(self, QtCore.Qt.Horizontal) self.ctrlPanel = QtGui.QSplitter(QtCore.Qt.Vertical) self.addWidget(self.ctrlPanel) self.fieldList = QtGui.QListWidget() self.fieldList.setSelectionMode(self.fieldList.ExtendedSelection) self.ptree = ptree.ParameterTree(showHeader=False) self.filter = DataFilterParameter() self.colorMap = ColorMapParameter() self.params = ptree.Parameter.create(name='params', type='group', children=[self.filter, self.colorMap]) self.ptree.setParameters(self.params, showTop=False) self.plot = PlotWidget() self.ctrlPanel.addWidget(self.fieldList) self.ctrlPanel.addWidget(self.ptree) self.addWidget(self.plot) bg = fn.mkColor(getConfigOption('background')) bg.setAlpha(150) self.filterText = TextItem(border=getConfigOption('foreground'), color=bg) self.filterText.setPos(60,20) self.filterText.setParentItem(self.plot.plotItem) self.data = None self.mouseOverField = None self.scatterPlot = None self.style = dict(pen=None, symbol='o') self.fieldList.itemSelectionChanged.connect(self.fieldSelectionChanged) self.filter.sigFilterChanged.connect(self.filterChanged) self.colorMap.sigColorMapChanged.connect(self.updatePlot) def setFields(self, fields, mouseOverField=None): """ Set the list of field names/units to be processed. The format of *fields* is the same as used by :func:`ColorMapWidget.setFields <pyqtgraph.widgets.ColorMapWidget.ColorMapParameter.setFields>` """ self.fields = OrderedDict(fields) self.mouseOverField = mouseOverField self.fieldList.clear() for f,opts in fields: item = QtGui.QListWidgetItem(f) item.opts = opts item = self.fieldList.addItem(item) self.filter.setFields(fields) self.colorMap.setFields(fields) def setSelectedFields(self, *fields): self.fieldList.itemSelectionChanged.disconnect(self.fieldSelectionChanged) try: self.fieldList.clearSelection() for f in fields: i = self.fields.keys().index(f) item = self.fieldList.item(i) item.setSelected(True) finally: self.fieldList.itemSelectionChanged.connect(self.fieldSelectionChanged) self.fieldSelectionChanged() def setData(self, data): """ Set the data to be processed and displayed. Argument must be a numpy record array. """ self.data = data self.filtered = None self.updatePlot() def fieldSelectionChanged(self): sel = self.fieldList.selectedItems() if len(sel) > 2: self.fieldList.blockSignals(True) try: for item in sel[1:-1]: item.setSelected(False) finally: self.fieldList.blockSignals(False) self.updatePlot() def filterChanged(self, f): self.filtered = None self.updatePlot() desc = self.filter.describe() if len(desc) == 0: self.filterText.setVisible(False) else: self.filterText.setText('\n'.join(desc)) self.filterText.setVisible(True) def updatePlot(self): self.plot.clear() if self.data is None: return if self.filtered is None: self.filtered = self.filter.filterData(self.data) data = self.filtered if len(data) == 0: return colors = np.array([fn.mkBrush(*x) for x in self.colorMap.map(data)]) style = self.style.copy() ## Look up selected columns and units sel = list([str(item.text()) for item in self.fieldList.selectedItems()]) units = list([item.opts.get('units', '') for item in self.fieldList.selectedItems()]) if len(sel) == 0: self.plot.setTitle('') return if len(sel) == 1: self.plot.setLabels(left=('N', ''), bottom=(sel[0], units[0]), title='') if len(data) == 0: return #x = data[sel[0]] #y = None xy = [data[sel[0]], None] elif len(sel) == 2: self.plot.setLabels(left=(sel[1],units[1]), bottom=(sel[0],units[0])) if len(data) == 0: return xy = [data[sel[0]], data[sel[1]]] #xydata = [] #for ax in [0,1]: #d = data[sel[ax]] ### scatter catecorical values just a bit so they show up better in the scatter plot. ##if sel[ax] in ['MorphologyBSMean', 'MorphologyTDMean', 'FIType']: ##d += np.random.normal(size=len(cells), scale=0.1) #xydata.append(d) #x,y = xydata ## convert enum-type fields to float, set axis labels enum = [False, False] for i in [0,1]: axis = self.plot.getAxis(['bottom', 'left'][i]) if xy[i] is not None and (self.fields[sel[i]].get('mode', None) == 'enum' or xy[i].dtype.kind in ('S', 'O')): vals = self.fields[sel[i]].get('values', list(set(xy[i]))) xy[i] = np.array([vals.index(x) if x in vals else len(vals) for x in xy[i]], dtype=float) axis.setTicks([list(enumerate(vals))]) enum[i] = True else: axis.setTicks(None) # reset to automatic ticking ## mask out any nan values mask = np.ones(len(xy[0]), dtype=bool) if xy[0].dtype.kind == 'f': mask &= np.isfinite(xy[0]) if xy[1] is not None and xy[1].dtype.kind == 'f': mask &= np.isfinite(xy[1]) xy[0] = xy[0][mask] style['symbolBrush'] = colors[mask] ## Scatter y-values for a histogram-like appearance if xy[1] is None: ## column scatter plot xy[1] = fn.pseudoScatter(xy[0]) else: ## beeswarm plots xy[1] = xy[1][mask] for ax in [0,1]: if not enum[ax]: continue imax = int(xy[ax].max()) if len(xy[ax]) > 0 else 0 for i in range(imax+1): keymask = xy[ax] == i scatter = fn.pseudoScatter(xy[1-ax][keymask], bidir=True) if len(scatter) == 0: continue smax = np.abs(scatter).max() if smax != 0: scatter *= 0.2 / smax xy[ax][keymask] += scatter if self.scatterPlot is not None: try: self.scatterPlot.sigPointsClicked.disconnect(self.plotClicked) except: pass self.scatterPlot = self.plot.plot(xy[0], xy[1], data=data[mask], **style) self.scatterPlot.sigPointsClicked.connect(self.plotClicked) def plotClicked(self, plot, points): self.sigScatterPlotClicked.emit(self, points)
38.965368
121
0.576936
ad6d8b82a642d86349b749e9de501a814a68bf2f
18,162
py
Python
spherov2/controls/v2.py
Cole1220/spherov2.py
8981cee23055bf36bafc75c4355a8930a00eb6bd
[ "MIT" ]
23
2020-06-22T16:17:21.000Z
2022-03-15T15:53:39.000Z
spherov2/controls/v2.py
Cole1220/spherov2.py
8981cee23055bf36bafc75c4355a8930a00eb6bd
[ "MIT" ]
16
2020-06-11T12:52:26.000Z
2021-12-11T02:38:23.000Z
spherov2/controls/v2.py
Cole1220/spherov2.py
8981cee23055bf36bafc75c4355a8930a00eb6bd
[ "MIT" ]
5
2021-01-14T17:39:27.000Z
2021-07-30T19:09:07.000Z
import threading from collections import OrderedDict, defaultdict from enum import IntEnum, Enum, auto, IntFlag from typing import Dict, List, Callable, NamedTuple, Tuple from spherov2.commands.drive import DriveFlags from spherov2.commands.drive import RawMotorModes as DriveRawMotorModes from spherov2.commands.io import IO from spherov2.controls import RawMotorModes, PacketDecodingException, CommandExecuteError from spherov2.helper import to_bytes, to_int, packet_chk from spherov2.listeners.sensor import StreamingServiceData class Packet(NamedTuple): """Packet protocol v2, from https://sdk.sphero.com/docs/api_spec/general_api [SOP, FLAGS, TID (optional), SID (optional), DID, CID, SEQ, ERR (at response), DATA..., CHK, EOP]""" flags: 'Packet.Flags' did: int cid: int seq: int tid: int sid: int data: bytearray err: 'Packet.Error' = None class Flags(IntFlag): is_response = 0b1 requests_response = 0b10 requests_only_error_response = 0b100 is_activity = 0b1000 has_target_id = 0b10000 has_source_id = 0b100000 unused = 0b1000000 extended_flags = 0b10000000 class Encoding(IntEnum): escape = 0xAB start = 0x8D end = 0xD8 escaped_escape = 0x23 escaped_start = 0x05 escaped_end = 0x50 class Error(IntEnum): success = 0x00 bad_device_id = 0x01 bad_command_id = 0x02 not_yet_implemented = 0x03 command_is_restricted = 0x04 bad_data_length = 0x05 command_failed = 0x06 bad_parameter_value = 0x07 busy = 0x08 bad_target_id = 0x09 target_unavailable = 0x0a @staticmethod def parse_response(data) -> 'Packet': sop, *data, eop = data if sop != Packet.Encoding.start: raise PacketDecodingException('Unexpected start of packet') if eop != Packet.Encoding.end: raise PacketDecodingException('Unexpected end of packet') *data, chk = Packet.__unescape_data(data) if packet_chk(data) != chk: raise PacketDecodingException('Bad response checksum') flags = data.pop(0) tid = None if flags & Packet.Flags.has_target_id: tid = data.pop(0) sid = None if flags & Packet.Flags.has_source_id: sid = data.pop(0) did, cid, seq, *data = data err = Packet.Error.success if flags & Packet.Flags.is_response: err = Packet.Error(data.pop(0)) return Packet(flags, did, cid, seq, tid, sid, bytearray(data), err) @staticmethod def __unescape_data(response_data) -> List[int]: raw_data = [] iter_response_data = iter(response_data) for b in iter_response_data: if b == Packet.Encoding.escape: b = next(iter_response_data, None) if b == Packet.Encoding.escaped_escape: b = Packet.Encoding.escape elif b == Packet.Encoding.escaped_start: b = Packet.Encoding.start elif b == Packet.Encoding.escaped_end: b = Packet.Encoding.end else: raise PacketDecodingException('Unexpected escaping byte') raw_data.append(b) return raw_data @property def id(self) -> Tuple: return self.did, self.cid, self.seq def build(self) -> bytearray: packet = bytearray([self.flags]) if self.flags & Packet.Flags.has_target_id: packet.append(self.tid) if self.flags & Packet.Flags.has_source_id: packet.append(self.sid) packet.extend(self.id) if self.flags & Packet.Flags.is_response: packet.append(self.err) packet.extend(self.data) packet.append(packet_chk(packet)) escaped_packet = bytearray([Packet.Encoding.start]) for c in packet: if c == Packet.Encoding.escape: escaped_packet.extend((Packet.Encoding.escape, Packet.Encoding.escaped_escape)) elif c == Packet.Encoding.start: escaped_packet.extend((Packet.Encoding.escape, Packet.Encoding.escaped_start)) elif c == Packet.Encoding.end: escaped_packet.extend((Packet.Encoding.escape, Packet.Encoding.escaped_end)) else: escaped_packet.append(c) escaped_packet.append(Packet.Encoding.end) return escaped_packet def check_error(self): if self.err != Packet.Error.success: raise CommandExecuteError(self.err) class Manager: def __init__(self): self.__seq = 0 def new_packet(self, did, cid, tid=None, data=None): flags = Packet.Flags.requests_response | Packet.Flags.is_activity sid = None if tid is not None: flags |= Packet.Flags.has_source_id | Packet.Flags.has_target_id sid = 0x1 packet = Packet(flags, did, cid, self.__seq, tid, sid, bytearray(data or [])) self.__seq = (self.__seq + 1) % 0xff return packet class Collector: def __init__(self, callback): self.__callback = callback self.__data = [] def add(self, data): for b in data: self.__data.append(b) if b == Packet.Encoding.end: pkt = self.__data self.__data = [] if len(pkt) < 6: raise PacketDecodingException(f'Very small packet {[hex(x) for x in pkt]}') self.__callback(Packet.parse_response(pkt)) class AnimationControl: def __init__(self, toy): self.__toy = toy class DriveControl: def __init__(self, toy): self.__toy = toy self.__is_boosting = False def roll_start(self, heading, speed): flag = DriveFlags.FORWARD if speed < 0: flag = DriveFlags.BACKWARD heading = (heading + 180) % 360 if self.__is_boosting: flag |= DriveFlags.TURBO speed = min(255, abs(speed)) self.__toy.drive_with_heading(speed, heading, flag) def roll_stop(self, heading): self.roll_start(heading, 0) set_heading = roll_stop def set_stabilization(self, stabilize): self.__toy.set_stabilization(stabilize) def set_raw_motors(self, left_mode, left_speed, right_mode, right_speed): if left_mode == RawMotorModes.FORWARD: left_drive_mode = DriveRawMotorModes.FORWARD elif left_mode == RawMotorModes.REVERSE: left_drive_mode = DriveRawMotorModes.REVERSE else: left_drive_mode = DriveRawMotorModes.OFF if right_mode == RawMotorModes.FORWARD: right_drive_mode = DriveRawMotorModes.FORWARD elif right_mode == RawMotorModes.REVERSE: right_drive_mode = DriveRawMotorModes.REVERSE else: right_drive_mode = DriveRawMotorModes.OFF self.__toy.set_raw_motors(left_drive_mode, left_speed, right_drive_mode, right_speed) def reset_heading(self): self.__toy.reset_yaw() class FirmwareUpdateControl: def __init__(self, toy): self.__toy = toy class LedControl: def __init__(self, toy): self.__toy = toy def set_leds(self, mapping: Dict[IntEnum, int]): mask = 0 led_values = [] for e in self.__toy.LEDs: if e in mapping: mask |= 1 << e led_values.append(mapping[e]) if mask: if self.__toy.implements(IO.set_all_leds_with_32_bit_mask): self.__toy.set_all_leds_with_32_bit_mask(mask, led_values) elif self.__toy.implements(IO.set_all_leds_with_16_bit_mask): self.__toy.set_all_leds_with_16_bit_mask(mask, led_values) elif hasattr(self.__toy, 'set_all_leds_with_8_bit_mask'): self.__toy.set_all_leds_with_8_bit_mask(mask, led_values) class SensorControl: def __init__(self, toy): toy.add_sensor_streaming_data_notify_listener(self.__process_sensor_stream_data) self.__toy = toy self.__count = 0 self.__interval = 250 self.__enabled = {} self.__enabled_extended = {} self.__listeners = set() def __process_sensor_stream_data(self, sensor_data: List[float]): data = {} def __new_data(): n = {} for name, component in components.items(): d = sensor_data.pop(0) if component.modifier: d = component.modifier(d) n[name] = d data[sensor] = n for sensor, components in self.__toy.sensors.items(): if sensor in self.__enabled: __new_data() for sensor, components in self.__toy.extended_sensors.items(): if sensor in self.__enabled_extended: __new_data() for f in self.__listeners: threading.Thread(target=f, args=(data,)).start() def add_sensor_data_listener(self, listener: Callable[[Dict[str, Dict[str, float]]], None]): self.__listeners.add(listener) def remove_sensor_data_listener(self, listener: Callable[[Dict[str, Dict[str, float]]], None]): self.__listeners.remove(listener) def set_count(self, count: int): if count >= 0 and count != self.__count: self.__count = count self.__update() def set_interval(self, interval: int): if interval >= 0 and interval != self.__interval: self.__interval = interval self.__update() def __update(self): sensors_mask = extended_sensors_mask = 0 for sensor in self.__enabled.values(): for component in sensor.values(): sensors_mask |= component.bit for sensor in self.__enabled_extended.values(): for component in sensor.values(): extended_sensors_mask |= component.bit self.__toy.set_sensor_streaming_mask(0, self.__count, sensors_mask) self.__toy.set_extended_sensor_streaming_mask(extended_sensors_mask) self.__toy.set_sensor_streaming_mask(self.__interval, self.__count, sensors_mask) def enable(self, *sensors): for sensor in sensors: if sensor in self.__toy.sensors: self.__enabled[sensor] = self.__toy.sensors[sensor] elif sensor in self.__toy.extended_sensors: self.__enabled_extended[sensor] = self.__toy.extended_sensors[sensor] self.__update() def disable(self, *sensors): for sensor in sensors: self.__enabled.pop(sensor, None) self.__enabled_extended.pop(sensor, None) self.__update() def disable_all(self): self.__enabled.clear() self.__enabled_extended.clear() self.__update() class StatsControl: def __init__(self, toy): self.__toy = toy class Processors(IntEnum): UNKNOWN = 0 PRIMARY = 1 SECONDARY = 2 class StreamingServiceAttribute(NamedTuple): min_value: int max_value: int modifier: Callable[[float], float] = None class StreamingDataSizes(IntEnum): EightBit = 0 SixteenBit = 1 ThirtyTwoBit = 2 class StreamingService(NamedTuple): attributes: OrderedDict slot: int processor: Processors = Processors.SECONDARY data_size: StreamingDataSizes = StreamingDataSizes.ThirtyTwoBit class StreamingServiceState(Enum): Unknown = auto() Stop = auto() Start = auto() Restart = auto() class StreamingControl: __streaming_services = { 'quaternion': StreamingService(OrderedDict( w=StreamingServiceAttribute(-1, 1), x=StreamingServiceAttribute(-1, 1), y=StreamingServiceAttribute(-1, 1), z=StreamingServiceAttribute(-1, 1) ), 1), 'imu': StreamingService(OrderedDict( pitch=StreamingServiceAttribute(-180, 180), roll=StreamingServiceAttribute(-90, 90), yaw=StreamingServiceAttribute(-180, 180) ), 1), 'accelerometer': StreamingService(OrderedDict( x=StreamingServiceAttribute(-16, 16), y=StreamingServiceAttribute(-16, 16), z=StreamingServiceAttribute(-16, 16) ), 1), 'color_detection': StreamingService(OrderedDict( r=StreamingServiceAttribute(0, 255), g=StreamingServiceAttribute(0, 255), b=StreamingServiceAttribute(0, 255), index=StreamingServiceAttribute(0, 255), confidence=StreamingServiceAttribute(0, 1) ), 1, Processors.PRIMARY, StreamingDataSizes.EightBit), 'gyroscope': StreamingService(OrderedDict( x=StreamingServiceAttribute(-2000, 2000), y=StreamingServiceAttribute(-2000, 2000), z=StreamingServiceAttribute(-2000, 2000) ), 1), 'core_time_lower': StreamingService(OrderedDict(time_lower=StreamingServiceAttribute(0, 1 << 63)), 3), 'locator': StreamingService(OrderedDict( x=StreamingServiceAttribute(-16000, 16000, lambda x: x * 100.), y=StreamingServiceAttribute(-16000, 16000, lambda x: x * 100.), ), 2), 'velocity': StreamingService(OrderedDict( x=StreamingServiceAttribute(-5, 5, lambda x: x * 100.), y=StreamingServiceAttribute(-5, 5, lambda x: x * 100.), ), 2), 'speed': StreamingService(OrderedDict(speed=StreamingServiceAttribute(0, 5, lambda x: x * 100.)), 2), 'core_time_upper': StreamingService(OrderedDict(time_upper=StreamingServiceAttribute(0, 1 << 63)), 3), 'ambient_light': StreamingService( OrderedDict(light=StreamingServiceAttribute(0, 120000)), 2, Processors.PRIMARY ), } def __init__(self, toy): toy.add_streaming_service_data_notify_listener(self.__streaming_service_data) self.__toy = toy self.__slots = { Processors.PRIMARY: defaultdict(list), Processors.SECONDARY: defaultdict(list) } self.__enabled = set() self.__listeners = set() self.__interval = 500 def add_sensor_data_listener(self, listener: Callable[[Dict[str, Dict[str, float]]], None]): self.__listeners.add(listener) def remove_sensor_data_listener(self, listener: Callable[[Dict[str, Dict[str, float]]], None]): self.__listeners.remove(listener) def enable(self, *sensors): changed = False for sensor in sensors: if sensor not in self.__enabled and sensor in self.__streaming_services: self.__enabled.add(sensor) changed = True if changed: self.__configure(StreamingServiceState.Start) def disable(self, *sensors): changed = False for sensor in sensors: if sensor in self.__enabled: self.__enabled.remove(sensor) changed = True if changed: self.__configure(StreamingServiceState.Start if self.__enabled else StreamingServiceState.Stop) def disable_all(self): if not self.__enabled: return self.__enabled.clear() self.__configure(StreamingServiceState.Stop) def set_count(self, count: int): pass def set_interval(self, interval: int): if interval < 0: raise ValueError('Interval attempted to be set with negative value') self.__interval = interval if self.__enabled: self.__configure(StreamingServiceState.Restart) def __configure(self, state: StreamingServiceState): for target in [Processors.PRIMARY, Processors.SECONDARY]: self.__toy.stop_streaming_service(target) if state == StreamingServiceState.Stop: self.__toy.clear_streaming_service(target) elif state == StreamingServiceState.Start: self.__toy.clear_streaming_service(target) slots = self.__slots[target] slots.clear() for index, (s, sensor) in enumerate(self.__streaming_services.items()): if s in self.__enabled and sensor.processor == target: slots[sensor.slot].append((index, s, sensor)) if slots: for slot, services in slots.items(): data = [] for index, _, sensor in services: data.extend(to_bytes(index, 2)) data.append(sensor.data_size) self.__toy.configure_streaming_service(slot, data, target) self.__toy.start_streaming_service(self.__interval, target) elif state == StreamingServiceState.Restart: self.__toy.start_streaming_service(self.__interval, target) def __streaming_service_data(self, source_id, data: StreamingServiceData): node = data.token & 0xf processor = source_id & 0xf sensor_data = data.sensor_data services = self.__slots[processor][node] data = {} for _, sensor_name, sensor in services: n = {} for name, component in sensor.attributes.items(): data_size = 1 << sensor.data_size value, sensor_data = to_int(sensor_data[:data_size]), sensor_data[data_size:] value = value / ((1 << data_size * 8) - 1) * ( component.max_value - component.min_value) + component.min_value if component.modifier is not None: value = component.modifier(value) n[name] = value if sensor_name == 'color_detection' and node != 0: continue data[sensor_name] = n for f in self.__listeners: threading.Thread(target=f, args=(data,)).start()
35.611765
110
0.613864
8ce6ea873c70fec92b504405bfc134392dc9a19d
1,169
py
Python
pythonlearn/Third-Module/Tornado/TEST_DEMOS/Form/server.py
yc19890920/Learn
3990e75b469225ba7b430539ef9a16abe89eb863
[ "Apache-2.0" ]
1
2021-01-11T06:30:44.000Z
2021-01-11T06:30:44.000Z
pythonlearn/Third-Module/Tornado/TEST_DEMOS/Form/server.py
yc19890920/Learn
3990e75b469225ba7b430539ef9a16abe89eb863
[ "Apache-2.0" ]
23
2020-02-12T02:35:49.000Z
2022-02-11T03:45:40.000Z
pythonlearn/Third-Module/Tornado/TEST_DEMOS/Form/server.py
yc19890920/Learn
3990e75b469225ba7b430539ef9a16abe89eb863
[ "Apache-2.0" ]
2
2020-04-08T15:39:46.000Z
2020-10-10T10:13:09.000Z
# -*- coding: utf-8 -*- # import os import tornado.web import tornado.ioloop import tornado.options import tornado.httpserver from tornado import locale from tornado.options import define, options define("port", default=8000, help="run on the given port", type=int) class IndexHandler(tornado.web.RequestHandler): def get(self): self.render('index.html') class PoemPageHandle(tornado.web.RequestHandler): def post(self): noun1 = self.get_argument('noun1') noun2 = self.get_argument('noun2') verb = self.get_argument('verb') noun3 = self.get_argument('noun3') self.render('poem.html', roads=noun1, wood=noun2, made=verb, difference=noun3) if __name__ == "__main__": tornado.options.parse_command_line() app = tornado.web.Application( handlers=[ (r'/', IndexHandler), (r'/poem', PoemPageHandle) ], template_path=os.path.join(os.path.dirname(__file__), "templates") ) server = tornado.httpserver.HTTPServer(app) server.listen(options.port) tornado.ioloop.IOLoop.instance().start()
28.512195
75
0.640719
ba627fcb347a4e424105628be406de1ede07998c
3,283
py
Python
pomdp_py/utils/interfaces/simple_rl.py
beckymathew/pomdp-py
4864514277e49dee4b7c3fb303970de7b6a888ea
[ "MIT" ]
87
2020-02-16T03:12:10.000Z
2022-03-31T08:38:10.000Z
pomdp_py/utils/interfaces/simple_rl.py
beckymathew/pomdp-py
4864514277e49dee4b7c3fb303970de7b6a888ea
[ "MIT" ]
15
2020-08-01T00:25:33.000Z
2022-02-19T22:37:11.000Z
pomdp_py/utils/interfaces/simple_rl.py
beckymathew/pomdp-py
4864514277e49dee4b7c3fb303970de7b6a888ea
[ "MIT" ]
26
2020-02-20T01:15:33.000Z
2022-03-30T16:21:37.000Z
""" Provides utility functions that interfaces with `simple_rl <https://github.com/david-abel/simple_rl>`_. Essentially, this will convert an agent in pomdp_py into a simple_rl.MDPClass or POMDPClass. Note that since creating these classes require enumerable aciton and observation spaces, this conversion is only feasible for agents whose ObservationModel and PolicyModel can return a list of all observations / actions. Note: simple_rl is a library for Reinforcement Learning developed and maintained by David Abel. It is also an early-stage library. Warning: simple_rl is simple_rl's POMDP functionality is currently relatively lacking. Providing this inteface is mostly to potentially leverage the MDP algorithms in simple_rl. """ import simple_rl def convert_to_MDPClass(pomdp, discount_factor=0.99, step_cost=0): """Converts the pomdp to the building block MDPClass of simple_rl. There are a lot of variants of MDPClass in simple_rl. It is up to the user to then convert this MDPClass into those variants, if necessary. Clearly, if this agent is partially observable, this conversion will change the problem and make it no longer a POMDP.""" agent = pomdp.agent env = pomdp.env try: all_actions = agent.policy_model.get_all_actions() except NotImplementedError: raise ValueError("This agent does not have enumerable action space.") # Since we do not know how env.state is represented, we # cannot turn it into a simple_rl State with "features", # since the features must be represented as a list; In # any case, the user, with knowledge of the state # representaion, could later convert it into the format # that simple_rl is supposed to work with. state = simple_rl.State(data=env.state) return simple_rl.MDP(all_actions, agent.transition_model.sample, agent.reward_model.sample, gamma=discount_factor, step_cost=step_cost) def convert_to_POMDPClass(pomdp, discount_factor=0.99, step_cost=0, belief_updater_type="discrete"): agent = pomdp.agent env = pomdp.env try: all_actions = agent.policy_model.get_all_actions() except NotImplementedError: raise ValueError("This agent does not have enumerable action space.") try: all_observations = agent.observation_model.get_all_observations() except NotImplementedError: raise ValueError("This agent does not have enumerable observation space.") try: belief_hist = agent.belief.get_histogram() except Exception: raise ValueError("Agent belief cannot be converted into a histogram;\n" "thus cannot create POMDPClass.") return simple_rl.POMDP(all_actions, all_observations, agent.transition_model.sample, agent.reward_model.sample, agent.observation_model.sample, belief_hist, belief_updater_type=belief_updater_type, gamma=discount_factor, step_cost=step_cost)
42.089744
103
0.673469
f149870ce5099dc14c5ea591f5e0b61107cd647f
276
py
Python
demo.py
re-treat/DialoFlow
b7b729ddf5d146ee201c987f3a44894ad24938ce
[ "MIT" ]
null
null
null
demo.py
re-treat/DialoFlow
b7b729ddf5d146ee201c987f3a44894ad24938ce
[ "MIT" ]
null
null
null
demo.py
re-treat/DialoFlow
b7b729ddf5d146ee201c987f3a44894ad24938ce
[ "MIT" ]
null
null
null
from generate import * history = [] while True: new_sentence = input('>> User: ').replace('\n','') history.append(new_sentence) resps = get_responses(history[-5:],mode='sample') best_resp = resps[0] print(">> Bot:",best_resp) history.append(best_resp)
27.6
54
0.644928
279e060f2fe087b6cc2ad799fcd36463630e1c95
9,021
py
Python
.ycm_extra_conf.py
WenDaTesi/pdc-graph
1565c01258a05e2949d86f2fa4fc8423d79c0f58
[ "MIT" ]
null
null
null
.ycm_extra_conf.py
WenDaTesi/pdc-graph
1565c01258a05e2949d86f2fa4fc8423d79c0f58
[ "MIT" ]
null
null
null
.ycm_extra_conf.py
WenDaTesi/pdc-graph
1565c01258a05e2949d86f2fa4fc8423d79c0f58
[ "MIT" ]
null
null
null
# This file is NOT licensed under the GPLv3, which is the license for the rest # of YouCompleteMe. # # Here's the license text for this file: # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> from distutils.sysconfig import get_python_inc import os import platform import os.path as p import subprocess DIR_OF_THIS_SCRIPT = p.abspath( p.dirname( __file__ ) ) DIR_OF_THIRD_PARTY = p.join( DIR_OF_THIS_SCRIPT, 'third_party' ) DIR_OF_WATCHDOG_DEPS = p.join( DIR_OF_THIRD_PARTY, 'watchdog_deps' ) SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ] database = None # These are the compilation flags that will be used in case there's no # compilation database set (by default, one is not set). # CHANGE THIS LIST OF FLAGS. YES, THIS IS THE DROID YOU HAVE BEEN LOOKING FOR. flags = [ '-Wall', '-Wextra', '-Werror', '-Wno-long-long', '-Wno-variadic-macros', '-fexceptions', '-DNDEBUG', # You 100% do NOT need -DUSE_CLANG_COMPLETER and/or -DYCM_EXPORT in your flags; # only the YCM source code needs it. '-DUSE_CLANG_COMPLETER', '-DYCM_EXPORT=', # THIS IS IMPORTANT! Without the '-x' flag, Clang won't know which language to # use when compiling headers. So it will guess. Badly. So C++ headers will be # compiled as C headers. You don't want that so ALWAYS specify the '-x' flag. # For a C project, you would set this to 'c' instead of 'c++'. '-x', 'c++', '-isystem', '/usr/include/*', '-isystem', '/usr/lib/*', '-isystem', './include', '-isystem', './test/include', '-isystem', '/usr/include/gtkmm-3.0', '-isystem', '/usr/include/gtk-3.0', '-isystem', '/usr/include/cairomm-1.0/', '-isystem', '/usr/include/cairo/' '-I', '/usr/include/gtkmm-3.0', '-I', '/usr/lib/gtkmm-3.0/include', '-I', '/usr/include/atkmm-1.6', '-I', '/usr/include/atk-1.0', '-I', '/usr/include/glib-2.0', '-I', '/usr/lib/glib-2.0/include', '-I', '/usr/include/glibmm-2.4', '-I', '/usr/lib/glibmm-2.4/include', '-I', '/usr/include/sigc++-2.0', '-I', '/usr/lib/sigc++-2.0/include', '-I', '/usr/include/giomm-2.4', '-I', '/usr/lib/giomm-2.4/include', '-I', '/usr/include/libmount', '-I', '/usr/include/blkid', '-I', '/usr/include/pangomm-1.4', '-I', '/usr/lib/pangomm-1.4/include', '-I', '/usr/include/cairomm-1.0', '-I', '/usr/lib/cairomm-1.0/include', '-I', '/usr/include/cairo', '-I', '/usr/include/pixman-1', '-I', '/usr/include/freetype2', '-I', '/usr/include/libpng16', '-I', '/usr/include/harfbuzz', '-I', '/usr/include/pango-1.0', '-I', '/usr/include/fribidi', '-I', '/usr/include/gtk-3.0', '-I', '/usr/include/gdk-pixbuf-2.0', '-I', '/usr/include/gio-unix-2.0', '-I', '/usr/include/at-spi2-atk/2.0', '-I', '/usr/include/dbus-1.0', '-I', '/usr/lib/dbus-1.0/include', '-I', '/usr/include/at-spi-2.0', '-I', '/usr/include/gtk-3.0/unix-print', '-I', '/usr/include/gdkmm-3.0', '-I', '/usr/lib/gdkmm-3.0/include', '-pthread' ] # Clang automatically sets the '-std=' flag to 'c++14' for MSVC 2015 or later, # which is required for compiling the standard library, and to 'c++11' for older # versions. if platform.system() != 'Windows': flags.append( '-std=c++11' ) # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # You can get CMake to generate this file for you by adding: # set( CMAKE_EXPORT_COMPILE_COMMANDS 1 ) # to your CMakeLists.txt file. # # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = '' def IsHeaderFile( filename ): extension = p.splitext( filename )[ 1 ] return extension in [ '.h', '.hxx', '.hpp', '.hh' ] def FindCorrespondingSourceFile( filename ): if IsHeaderFile( filename ): basename = p.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if p.exists( replacement_file ): return replacement_file return filename def PathToPythonUsedDuringBuild(): try: filepath = p.join( DIR_OF_THIS_SCRIPT, 'PYTHON_USED_DURING_BUILDING' ) with open( filepath ) as f: return f.read().strip() except OSError: return None def Settings( **kwargs ): # Do NOT import ycm_core at module scope. import ycm_core global database if database is None and p.exists( compilation_database_folder ): database = ycm_core.CompilationDatabase( compilation_database_folder ) language = kwargs[ 'language' ] if language == 'cfamily': # If the file is a header, try to find the corresponding source file and # retrieve its flags from the compilation database if using one. This is # necessary since compilation databases don't have entries for header files. # In addition, use this source file as the translation unit. This makes it # possible to jump from a declaration in the header file to its definition # in the corresponding source file. filename = FindCorrespondingSourceFile( kwargs[ 'filename' ] ) if not database: return { 'flags': flags, 'include_paths_relative_to_dir': DIR_OF_THIS_SCRIPT, 'override_filename': filename } compilation_info = database.GetCompilationInfoForFile( filename ) if not compilation_info.compiler_flags_: return {} # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object. final_flags = list( compilation_info.compiler_flags_ ) # NOTE: This is just for YouCompleteMe; it's highly likely that your project # does NOT need to remove the stdlib flag. DO NOT USE THIS IN YOUR # ycm_extra_conf IF YOU'RE NOT 100% SURE YOU NEED IT. try: final_flags.remove( '-stdlib=libc++' ) except ValueError: pass return { 'flags': final_flags, 'include_paths_relative_to_dir': compilation_info.compiler_working_dir_, 'override_filename': filename } if language == 'python': return { 'interpreter_path': PathToPythonUsedDuringBuild() } return {} def PythonSysPath( **kwargs ): sys_path = kwargs[ 'sys_path' ] interpreter_path = kwargs[ 'interpreter_path' ] major_version = subprocess.check_output( [ interpreter_path, '-c', 'import sys; print( sys.version_info[ 0 ] )' ] ).rstrip().decode( 'utf8' ) sys_path[ 0:0 ] = [ p.join( DIR_OF_THIS_SCRIPT ), p.join( DIR_OF_THIRD_PARTY, 'bottle' ), p.join( DIR_OF_THIRD_PARTY, 'cregex', 'regex_{}'.format( major_version ) ), p.join( DIR_OF_THIRD_PARTY, 'frozendict' ), p.join( DIR_OF_THIRD_PARTY, 'jedi_deps', 'jedi' ), p.join( DIR_OF_THIRD_PARTY, 'jedi_deps', 'parso' ), p.join( DIR_OF_THIRD_PARTY, 'requests_deps', 'requests' ), p.join( DIR_OF_THIRD_PARTY, 'requests_deps', 'urllib3', 'src' ), p.join( DIR_OF_THIRD_PARTY, 'requests_deps', 'chardet' ), p.join( DIR_OF_THIRD_PARTY, 'requests_deps', 'certifi' ), p.join( DIR_OF_THIRD_PARTY, 'requests_deps', 'idna' ), p.join( DIR_OF_WATCHDOG_DEPS, 'watchdog', 'build', 'lib3' ), p.join( DIR_OF_WATCHDOG_DEPS, 'pathtools' ), p.join( DIR_OF_THIRD_PARTY, 'waitress' ) ] sys_path.append( p.join( DIR_OF_THIRD_PARTY, 'jedi_deps', 'numpydoc' ) ) return sys_path
31.652632
82
0.654584
425184f4b8ad2a123e9ff9653be3018f77cdee1c
322
py
Python
demo.py
billyblu2000/Chorderator
6e5e077da649966e872dbd1494f3606a23937e8b
[ "MIT" ]
7
2021-04-12T08:17:10.000Z
2022-01-30T05:55:25.000Z
demo.py
billyblu2000/Chorderator
6e5e077da649966e872dbd1494f3606a23937e8b
[ "MIT" ]
null
null
null
demo.py
billyblu2000/Chorderator
6e5e077da649966e872dbd1494f3606a23937e8b
[ "MIT" ]
null
null
null
import chorderator as cdt cdt.set_melody('MIDI demos/inputs/10.mid') cdt.set_phrase([1]) cdt.set_meta(tonic=cdt.Key.C, mode=cdt.Mode.MAJOR, meter=cdt.Meter.FOUR_FOUR, tempo=120) cdt.set_output_chord_style(cdt.ChordStyle.EMOTIONAL) cdt.set_output_progression_style(cdt.ProgressionStyle.POP) cdt.generate_save('generated')
35.777778
88
0.81677
49baa866fd39ed4eb27d113495060f760a0ba625
1,356
py
Python
users/migrations/0001_initial.py
Dopaman/xcurator_backend
1d8253c8bcea9d37e48f745df63c63f122f13db0
[ "MIT" ]
null
null
null
users/migrations/0001_initial.py
Dopaman/xcurator_backend
1d8253c8bcea9d37e48f745df63c63f122f13db0
[ "MIT" ]
1
2021-10-06T13:22:45.000Z
2021-10-06T13:22:45.000Z
users/migrations/0001_initial.py
Dopaman/xcurator_backend
1d8253c8bcea9d37e48f745df63c63f122f13db0
[ "MIT" ]
2
2021-10-01T13:58:34.000Z
2021-10-02T14:52:34.000Z
# Generated by Django 3.2.5 on 2021-08-27 19:28 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('email', models.EmailField(max_length=100, unique=True, verbose_name='email')), ('username', models.CharField(max_length=30, unique=True)), ('date_joined', models.DateTimeField(auto_now_add=True, verbose_name='date joined')), ('last_login', models.DateTimeField(auto_now=True, verbose_name='last login')), ('is_admin', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('is_superuser', models.BooleanField(default=False)), ('first_name', models.CharField(max_length=64)), ('last_name', models.CharField(max_length=64)), ], options={ 'abstract': False, }, ), ]
38.742857
117
0.581858
6c5f15c10afba95b4860c9f85890b0227228fd3e
7,761
py
Python
background_file_handler/backgroundProcess.py
MarcoMuellner/APOLLO
0011702f93bbf12367fcc30970ba9af25be00a8f
[ "MIT" ]
null
null
null
background_file_handler/backgroundProcess.py
MarcoMuellner/APOLLO
0011702f93bbf12367fcc30970ba9af25be00a8f
[ "MIT" ]
null
null
null
background_file_handler/backgroundProcess.py
MarcoMuellner/APOLLO
0011702f93bbf12367fcc30970ba9af25be00a8f
[ "MIT" ]
null
null
null
import re import subprocess from res.strings import * from support.directoryManager import cd import time from res.conf_file_str import general_background_result_path,general_binary_path,general_kic\ ,internal_noise_value,internal_mag_value,internal_multiple_mag,general_use_pcb,internal_path\ ,analysis_folder_prefix from support.printer import print_int class BackgroundProcess: """ Background Process allows for concurrent runs of diamonds for both modes. Use run() to get it started """ def __init__(self,kwargs): #set up naming convention for noise if internal_noise_value in kwargs.keys(): self.star_id = str(kwargs[general_kic]) + f"_n_{kwargs[internal_noise_value]}" elif internal_multiple_mag in kwargs.keys() and kwargs[internal_multiple_mag]: self.star_id = str(kwargs[general_kic]) + f"_m_{kwargs[internal_mag_value]}" else: self.star_id = str(kwargs[general_kic]) #point to used Background binary if general_binary_path in kwargs.keys(): self.binaryPath = kwargs[general_binary_path] else: self.binaryPath = kwargs[internal_path] + "/Background/build/" self.model = strRunIDBoth self.kwargs = kwargs #point to used Background results path if general_background_result_path in kwargs.keys(): self.resultsPath = kwargs[general_background_result_path] else: self.resultsPath = kwargs[internal_path] + "/Background/results/" self.modes = {strDiModeFull: strDiIntModeFull ,strDiModeNoise : strDiIntModeNoise} self.status = {} self.priorChanges = {} self.run_count = {} def _getFullPath(self,path): ''' This method will create an absolute path if the path it inputs wasn't that already :param path: The path you want to have the absolute of :type path: str :return: Absolute path :rtype: str ''' if path[0] not in ["~", "/", "\\"]: path = os.getcwd() + "/" + path return path def _getCommandStrings(self): cmdStrings = {} self.check_paths = {} #pcb: If setting is set and false, disable use_pcb = 0 if general_use_pcb in self.kwargs.keys() and not self.kwargs[general_use_pcb] else 1 binary = self._getFullPath(self.binaryPath + strDiBinary) for run_id, model in [("Oscillation","ThreeHarvey"), ("Noise","ThreeHarveyNoGaussian")]: self.check_paths[run_id] = f"{self.resultsPath}{self.kwargs[analysis_folder_prefix]}{self.star_id}/{run_id}/" if not os.path.exists(self.check_paths[run_id]): os.makedirs(self.check_paths[run_id]) cmdStrings[run_id] = [binary, self.kwargs[analysis_folder_prefix], self.star_id,run_id,model,str(use_pcb)] return cmdStrings def run(self): cmdStrings = self._getCommandStrings() for key,value in cmdStrings.items(): self._runCmd(key,value) def _runBinary(self,cmd): p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return p def _runCmd(self,runID, cmd): for runCounter in range(1,11): self.run_count[runID] = runCounter print_int(f"Starting {runID} model: run {runCounter}",self.kwargs) with cd(self.binaryPath): self.status[runID] = strDiStatRunning p = self._runBinary(cmd) logCounter = 0 r = re.compile(r"(Nit:\s\d+).+(Ratio: [\w\d\.\+]+)") time.sleep(5) total="" while p.poll() is None: line = p.stderr.readline().decode("utf-8") total += line logCounter = self._logRatio(runID,line,logCounter,r,runCounter) self.status[runID] = self._checkDiamondsStdOut(self.status[runID], line) logCounter +=1 line = p.stderr.read().decode("utf-8") total += line self._logRatio(runID,line,10,r,runCounter) self.status[runID] = self._checkDiamondsStdOut(self.status[runID], line) time.sleep(1) self.status[runID] = self._checkIfAllFilesExist(runID,self.status[runID]) if self.status[runID] == strDiStatRunning: self.status[runID] = strDiamondsStatusGood print_int(f"{runID} model: Finished!",self.kwargs) return else: print_int(f"{runID} model: Run {runCounter} --> Repeating run, due to failure due to {self.status[runID]}",self.kwargs) raise ValueError(f"{runID} model: FAILED! Tried 10 runs, failed to find result",self.kwargs) def _logRatio(self,runID,line,counter,r,runCounter): match = r.findall(line) if len(match) > 0 and counter >= 5: for it,ratio in match: print_int(f"{runID} model: run {runCounter} --> {it},{ratio}",self.kwargs) counter = 0 elif len(match) == 0 and counter >= 5: print_int(f"{runID} model: run {runCounter} --> {line}",self.kwargs) counter = 0 return counter def _checkDiamondsStdOut(self,oldStatus,text): """ Checks the stdout of DIAMONDS and returns the status, that DIAMONDS has. :param text: stderr/stdout of diamonds that is analyzed. :type text: str :return: Statusflag :rtype: str """ status = oldStatus if strDiamondsErrBetterLikelihood in str(text): print_int("Diamonds cannot find point with better likelihood. Repeat!",self.kwargs) status = strDiamondsStatusLikelihood elif strDiamondsErrCovarianceFailed in str(text): print_int("Diamonds cannot decompose covariance. Repeat!",self.kwargs) status = strDiamondsStatusCovariance elif strDiamondsErrAssertionFailed in str(text): print_int("Diamonds assertion failed. Repeat!",self.kwargs) status = strDiamondsStatusAssertion elif strDiamondsErrMatrixCompositionFailed in str(text): print_int("Diamonds matrix decomposition failed. Repeat!",self.kwargs) status = strDiamondsStatusMatrixDecomp elif strDiamondsErrCoreDumped in str(text): print_int("Diamonds matrix decomposition failed. Repeat!",self.kwargs) status = strDiamondsStatusMatrixDecomp elif strDiamondsErrAborted in str(text): print_int("Diamonds matrix decomposition failed. Repeat!",self.kwargs) status = strDiamondsStatusMatrixDecomp elif strDiamondsErrQuitting in str(text): print_int("Diamonds matrix decomposition failed. Repeat!",self.kwargs) status = strDiamondsStatusMatrixDecomp elif strDiamondsErrSegmentation in str(text): print_int("Diamonds matrix decomposition failed. Repeat!",self.kwargs) status = strDiamondsStatusMatrixDecomp return status def _checkIfAllFilesExist(self,runID,oldStatus): content = os.listdir(self.check_paths[runID]) if "background_evidenceInformation.txt" not in content: print_int(f"Cant fine evidence in {self.check_paths[runID]}. Repeat!",self.kwargs) return strDiamondsStatusAssertion elif "background_parameterSummary.txt" not in content: print_int(f"Cant fine summary in {self.check_paths[runID]}. Repeat!",self.kwargs) return strDiamondsStatusAssertion return oldStatus
40.847368
139
0.630589
7ab0c8acbe3294ba46f21a5c37fd62582bc15b35
28,348
py
Python
pytorch_lightning/core/hooks.py
jbuckman/pytorch-lightning
cc74fb717a7127fecd4dbb9c743ba28b40de7f64
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/core/hooks.py
jbuckman/pytorch-lightning
cc74fb717a7127fecd4dbb9c743ba28b40de7f64
[ "Apache-2.0" ]
1
2021-03-26T02:16:20.000Z
2021-03-26T02:16:20.000Z
pytorch_lightning/core/hooks.py
jbuckman/pytorch-lightning
cc74fb717a7127fecd4dbb9c743ba28b40de7f64
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Various hooks to be used in the Lightning code.""" from typing import Any, Dict, List, Optional, Union import torch from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from pytorch_lightning.utilities import move_data_to_device, rank_zero_warn from pytorch_lightning.utilities.types import STEP_OUTPUT class ModelHooks: """Hooks to be used in LightningModule.""" def on_fit_start(self) -> None: """ Called at the very beginning of fit. If on DDP it is called on every process """ def on_fit_end(self) -> None: """ Called at the very end of fit. If on DDP it is called on every process """ def on_train_start(self) -> None: """ Called at the beginning of training after sanity check. """ def on_train_end(self) -> None: """ Called at the end of training before logger experiment is closed. """ def on_validation_start(self) -> None: """ Called at the beginning of validation. """ def on_validation_end(self) -> None: """ Called at the end of validation. """ def on_test_start(self) -> None: """ Called at the beginning of testing. """ def on_test_end(self) -> None: """ Called at the end of testing. """ def on_predict_start(self) -> None: """ Called at the beginning of predicting. """ def on_predict_end(self) -> None: """ Called at the end of predicting. """ def on_pretrain_routine_start(self) -> None: """ Called at the beginning of the pretrain routine (between fit and train start). - fit - pretrain_routine start - pretrain_routine end - training_start """ def on_pretrain_routine_end(self) -> None: """ Called at the end of the pretrain routine (between fit and train start). - fit - pretrain_routine start - pretrain_routine end - training_start """ def on_train_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the training loop before anything happens for that batch. If you return -1 here, you will skip training for the rest of the current epoch. Args: batch: The batched data as it is returned by the training DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_train_batch_end(self, outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the training loop after the batch. Args: outputs: The outputs of training_step_end(training_step(x)) batch: The batched data as it is returned by the training DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_validation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the validation loop before anything happens for that batch. Args: batch: The batched data as it is returned by the validation DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_validation_batch_end( self, outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int ) -> None: """ Called in the validation loop after the batch. Args: outputs: The outputs of validation_step_end(validation_step(x)) batch: The batched data as it is returned by the validation DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_test_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the test loop before anything happens for that batch. Args: batch: The batched data as it is returned by the test DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_test_batch_end( self, outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int ) -> None: """ Called in the test loop after the batch. Args: outputs: The outputs of test_step_end(test_step(x)) batch: The batched data as it is returned by the test DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_predict_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the predict loop before anything happens for that batch. Args: batch: The batched data as it is returned by the test DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_predict_batch_end(self, outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) -> None: """ Called in the predict loop after the batch. Args: outputs: The outputs of predict_step_end(test_step(x)) batch: The batched data as it is returned by the test DataLoader. batch_idx: the index of the batch dataloader_idx: the index of the dataloader """ def on_validation_model_eval(self) -> None: """ Sets the model to eval during the val loop """ self.trainer.model.eval() def on_validation_model_train(self) -> None: """ Sets the model to train during the val loop """ self.trainer.model.train() def on_test_model_train(self) -> None: """ Sets the model to train during the test loop """ self.trainer.model.train() def on_test_model_eval(self) -> None: """ Sets the model to eval during the test loop """ self.trainer.model.eval() def on_predict_model_eval(self) -> None: """ Sets the model to eval during the predict loop """ self.trainer.model.eval() def on_epoch_start(self) -> None: """ Called when either of train/val/test epoch begins. """ def on_epoch_end(self) -> None: """ Called when either of train/val/test epoch ends. """ def on_train_epoch_start(self) -> None: """ Called in the training loop at the very beginning of the epoch. """ def on_train_epoch_end(self, unused: Optional = None) -> None: """ Called in the training loop at the very end of the epoch. To access all batch outputs at the end of the epoch, either: 1. Implement `training_epoch_end` in the LightningModule OR 2. Cache data across steps on the attribute(s) of the `LightningModule` and access them in this hook """ def on_validation_epoch_start(self) -> None: """ Called in the validation loop at the very beginning of the epoch. """ def on_validation_epoch_end(self) -> None: """ Called in the validation loop at the very end of the epoch. """ def on_test_epoch_start(self) -> None: """ Called in the test loop at the very beginning of the epoch. """ def on_test_epoch_end(self) -> None: """ Called in the test loop at the very end of the epoch. """ def on_predict_epoch_start(self) -> None: """ Called at the beginning of predicting. """ def on_predict_epoch_end(self, results: List[Any]) -> None: """ Called at the end of predicting. """ def on_before_zero_grad(self, optimizer: Optimizer) -> None: """ Called after ``training_step()`` and before ``optimizer.zero_grad()``. Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated. This is where it is called:: for optimizer in optimizers: out = training_step(...) model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad() backward() Args: optimizer: The optimizer for which grads should be zeroed. """ def on_after_backward(self) -> None: """ Called in the training loop after loss.backward() and before optimizers do anything. This is the ideal place to inspect or log gradient information. Example:: def on_after_backward(self): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge for k, v in self.named_parameters(): self.logger.experiment.add_histogram( tag=k, values=v.grad, global_step=self.trainer.global_step ) """ def on_post_move_to_device(self) -> None: """ Called in the ``parameter_validation`` decorator after :meth:`~pytorch_lightning.core.LightningModule.to` is called. This is a good place to tie weights between modules after moving them to a device. Can be used when training models with weight sharing properties on TPU. Addresses the handling of shared weights on TPU: https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks Example:: def on_post_move_to_device(self): self.decoder.weight = self.encoder.weight """ def configure_sharded_model(self) -> None: """ Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we'd like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time. The accelerator manages whether to call this hook at every given stage. For sharded plugins where model parallelism is required, the hook is usually on called once to initialize the sharded parameters, and not called again in the same process. By default for accelerators/plugins that do not use model sharding techniques, this hook is called during each fit/val/test/predict stages. """ class DataHooks: """Hooks to be used for data related stuff.""" def prepare_data(self) -> None: """ Use this to download and prepare data. .. warning:: DO NOT set state to the model (use `setup` instead) since this is NOT called on every GPU in DDP/TPU Example:: def prepare_data(self): # good download_data() tokenize() etc() # bad self.split = data_split self.some_state = some_other_state() In DDP prepare_data can be called in two ways (using Trainer(prepare_data_per_node)): 1. Once per node. This is the default and is only called on LOCAL_RANK=0. 2. Once in total. Only called on GLOBAL_RANK=0. Example:: # DEFAULT # called once per node on LOCAL_RANK=0 of that node Trainer(prepare_data_per_node=True) # call on GLOBAL_RANK=0 (great for shared file systems) Trainer(prepare_data_per_node=False) This is called before requesting the dataloaders: .. code-block:: python model.prepare_data() if ddp/tpu: init() model.setup(stage) model.train_dataloader() model.val_dataloader() model.test_dataloader() """ def setup(self, stage: Optional[str] = None) -> None: """ Called at the beginning of fit (train + validate), validate, test, predict, or tune. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP. Args: stage: either ``'fit'``, ``'validate'``, ``'test'``, or ``'predict'`` Example:: class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(stage): data = Load_data(...) self.l1 = nn.Linear(28, data.num_classes) """ def teardown(self, stage: Optional[str] = None) -> None: """ Called at the end of fit (train + validate), validate, test, predict, or tune. Args: stage: either ``'fit'``, ``'validate'``, ``'test'``, or ``'predict'`` """ def train_dataloader(self) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]: """ Implement one or more PyTorch DataLoaders for training. Return: Either a single PyTorch :class:`~torch.utils.data.DataLoader` or a collection of these (list, dict, nested lists and dicts). In the case of multiple dataloaders, please see this :ref:`page <multiple-training-dataloaders>` The dataloader you return will not be called every epoch unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_epoch` to ``True``. For data processing use the following pattern: - download in :meth:`prepare_data` - process and split in :meth:`setup` However, the above are only necessary for distributed processing. .. warning:: do not assign state in prepare_data - :meth:`~pytorch_lightning.trainer.Trainer.fit` - ... - :meth:`prepare_data` - :meth:`setup` - :meth:`train_dataloader` Note: Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself. Example:: # single dataloader def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=True ) return loader # multiple dataloaders, return as list def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a list of tensors: [batch_mnist, batch_cifar] return [mnist_loader, cifar_loader] # multiple dataloader, return as dict def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar} return {'mnist': mnist_loader, 'cifar': cifar_loader} """ rank_zero_warn("`train_dataloader` must be implemented to be used with the Lightning Trainer") def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]: r""" Implement one or multiple PyTorch DataLoaders for testing. The dataloader you return will not be called every epoch unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_epoch` to ``True``. For data processing use the following pattern: - download in :meth:`prepare_data` - process and split in :meth:`setup` However, the above are only necessary for distributed processing. .. warning:: do not assign state in prepare_data - :meth:`~pytorch_lightning.trainer.Trainer.fit` - ... - :meth:`prepare_data` - :meth:`setup` - :meth:`train_dataloader` - :meth:`val_dataloader` - :meth:`test_dataloader` Note: Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself. Return: Single or multiple PyTorch DataLoaders. Example:: def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def test_dataloader(self): return [loader_a, loader_b, ..., loader_n] Note: If you don't need a test dataset and a :meth:`test_step`, you don't need to implement this method. Note: In the case where you return multiple test dataloaders, the :meth:`test_step` will have an argument ``dataloader_idx`` which matches the order here. """ def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]: r""" Implement one or multiple PyTorch DataLoaders for validation. The dataloader you return will not be called every epoch unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_epoch` to ``True``. It's recommended that all data downloads and preparation happen in :meth:`prepare_data`. - :meth:`~pytorch_lightning.trainer.Trainer.fit` - ... - :meth:`prepare_data` - :meth:`train_dataloader` - :meth:`val_dataloader` - :meth:`test_dataloader` Note: Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself. Return: Single or multiple PyTorch DataLoaders. Examples:: def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n] Note: If you don't need a validation dataset and a :meth:`validation_step`, you don't need to implement this method. Note: In the case where you return multiple validation dataloaders, the :meth:`validation_step` will have an argument ``dataloader_idx`` which matches the order here. """ def predict_dataloader(self) -> Union[DataLoader, List[DataLoader]]: r""" Implement one or multiple PyTorch DataLoaders for prediction. It's recommended that all data downloads and preparation happen in :meth:`prepare_data`. - :meth:`~pytorch_lightning.trainer.Trainer.fit` - ... - :meth:`prepare_data` - :meth:`train_dataloader` - :meth:`val_dataloader` - :meth:`test_dataloader` Note: Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself. Return: Single or multiple PyTorch DataLoaders. Note: In the case where you return multiple prediction dataloaders, the :meth:`predict` will have an argument ``dataloader_idx`` which matches the order here. """ def on_train_dataloader(self) -> None: """Called before requesting the train dataloader.""" def on_val_dataloader(self) -> None: """Called before requesting the val dataloader.""" def on_test_dataloader(self) -> None: """Called before requesting the test dataloader.""" def on_predict_dataloader(self) -> None: """Called before requesting the predict dataloader.""" def transfer_batch_to_device(self, batch: Any, device: Optional[torch.device] = None) -> Any: """ Override this hook if your :class:`~torch.utils.data.DataLoader` returns tensors wrapped in a custom data structure. The data types listed below (and any arbitrary nesting of them) are supported out of the box: - :class:`torch.Tensor` or anything that implements `.to(...)` - :class:`list` - :class:`dict` - :class:`tuple` - :class:`torchtext.data.batch.Batch` For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...). Note: This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). Note: This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future. Args: batch: A batch of data that needs to be transferred to a new device. device: The target device as defined in PyTorch. Returns: A reference to the data on the new device. Example:: def transfer_batch_to_device(self, batch, device): if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) else: batch = super().transfer_batch_to_device(data, device) return batch Raises: MisconfigurationException: If using data-parallel, ``Trainer(accelerator='dp')``. See Also: - :meth:`move_data_to_device` - :meth:`apply_to_collection` """ device = device or self.device return move_data_to_device(batch, device) def on_before_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any: """ Override to alter or apply batch augmentations to your batch before it is transferred to the device. .. warning:: ``dataloader_idx`` always returns 0, and will be updated to support the true index in the future. Note: This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future. Args: batch: A batch of data that needs to be altered or augmented. dataloader_idx: DataLoader idx for batch Returns: A batch of data Example:: def on_before_batch_transfer(self, batch, dataloader_idx): batch['x'] = transforms(batch['x']) return batch Raises: MisconfigurationException: If using data-parallel, ``Trainer(accelerator='dp')``. See Also: - :meth:`on_after_batch_transfer` - :meth:`transfer_batch_to_device` """ return batch def on_after_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any: """ Override to alter or apply batch augmentations to your batch after it is transferred to the device. .. warning:: ``dataloader_idx`` always returns 0, and will be updated to support the true ``idx`` in the future. Note: This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future. Args: batch: A batch of data that needs to be altered or augmented. dataloader_idx: DataLoader idx for batch (Default: 0) Returns: A batch of data Example:: def on_after_batch_transfer(self, batch, dataloader_idx): batch['x'] = gpu_transforms(batch['x']) return batch Raises: MisconfigurationException: If using data-parallel, ``Trainer(accelerator='dp')``. See Also: - :meth:`on_before_batch_transfer` - :meth:`transfer_batch_to_device` """ return batch class CheckpointHooks: """Hooks to be used with Checkpointing.""" def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: r""" Called by Lightning to restore your model. If you saved something with :meth:`on_save_checkpoint` this is your chance to restore this. Args: checkpoint: Loaded checkpoint Example:: def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save'] Note: Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training. """ def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: r""" Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save. Args: checkpoint: Checkpoint to be saved Example:: def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object Note: Lightning saves all aspects of training (epoch, global step, etc...) including amp scaling. There is no need for you to store anything about training. """
34.782822
120
0.595774
d5163c84bf22b6c35391f74a0eb64536a55c3d09
3,496
py
Python
testing/test_rnn_layer.py
Elisa-Raspanti/NumPyNet
4e8d0d415275088f485457cdcf251d28a6826b0f
[ "MIT" ]
null
null
null
testing/test_rnn_layer.py
Elisa-Raspanti/NumPyNet
4e8d0d415275088f485457cdcf251d28a6826b0f
[ "MIT" ]
null
null
null
testing/test_rnn_layer.py
Elisa-Raspanti/NumPyNet
4e8d0d415275088f485457cdcf251d28a6826b0f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from random import choice import numpy as np import pytest from hypothesis import given from hypothesis import settings from hypothesis import strategies as st from NumPyNet.layers import RNN_layer __author__ = ['Mattia Ceccarelli', 'Nico Curti'] __email__ = ['mattia.ceccarelli3@studio.unibo.it', 'nico.curti2@unibo.it'] class TestRNNLayer: ''' Tests: - costructor of RNN_layer object - print function to be: forward function against tf.keras update function backward function against tf.keras ''' @given(outputs=st.integers(min_value=-3, max_value=10), steps=st.integers(min_value=1, max_value=4), b=st.integers(min_value=5, max_value=15), w=st.integers(min_value=15, max_value=100), h=st.integers(min_value=15, max_value=100), c=st.integers(min_value=1, max_value=10)) @settings(max_examples=10, deadline=None) def test_constructor(self, outputs, steps, b, w, h, c): numpynet_activ = ['relu', 'logistic', 'tanh', 'linear'] if outputs > 0: weights_choice = [np.random.uniform(low=-1, high=1., size=(w * h * c, outputs)), None] bias_choice = [np.random.uniform(low=-1, high=1., size=(outputs,)), None] else: with pytest.raises(ValueError): RNN_layer(outputs=outputs, steps=steps) outputs += 10 weights_choice = [[np.random.uniform(low=-1, high=1., size=(w * h * c, outputs))] * 3, None] bias_choice = [[np.random.uniform(low=-1, high=1., size=(outputs,))] * 3, None] weights = choice(weights_choice) bias = choice(bias_choice) for numpynet_act in numpynet_activ: layer = RNN_layer(outputs=outputs, steps=steps, activation=numpynet_act, input_shape=(b, w, h, c), weights=weights, bias=bias) if weights is not None: np.testing.assert_allclose(layer.input_layer.weights, weights[0], rtol=1e-5, atol=1e-8) np.testing.assert_allclose(layer.self_layer.weights, weights[1], rtol=1e-5, atol=1e-8) np.testing.assert_allclose(layer.output_layer.weights, weights[2], rtol=1e-5, atol=1e-8) if bias is not None: np.testing.assert_allclose(layer.input_layer.bias, bias[0], rtol=1e-5, atol=1e-8) np.testing.assert_allclose(layer.self_layer.bias, bias[1], rtol=1e-5, atol=1e-8) np.testing.assert_allclose(layer.output_layer.bias, bias[2], rtol=1e-5, atol=1e-8) assert layer.output is None @given(outputs=st.integers(min_value=3, max_value=10), steps=st.integers(min_value=1, max_value=4), b=st.integers(min_value=5, max_value=15), w=st.integers(min_value=15, max_value=100), h=st.integers(min_value=15, max_value=100), c=st.integers(min_value=1, max_value=10)) @settings(max_examples=10, deadline=None) def test_printer(self, outputs, steps, b, w, h, c): layer = RNN_layer(outputs=outputs, steps=steps, activation='linear') with pytest.raises(TypeError): print(layer) layer = RNN_layer(outputs=outputs, steps=steps, activation='linear', input_shape=(b, w, h, c)) print(layer)
36.8
104
0.622712
55a5cfbf8b41c716275973acf1add2b793097f4e
19,552
py
Python
keras/applications/mobilenet.py
websterkovacek/keras
631102a7c9efb57a351355090796d5850285663c
[ "Apache-2.0" ]
1
2021-01-01T00:16:04.000Z
2021-01-01T00:16:04.000Z
keras/applications/mobilenet.py
websterkovacek/keras
631102a7c9efb57a351355090796d5850285663c
[ "Apache-2.0" ]
1
2021-01-10T15:10:05.000Z
2021-01-25T09:19:15.000Z
keras/applications/mobilenet.py
websterkovacek/keras
631102a7c9efb57a351355090796d5850285663c
[ "Apache-2.0" ]
1
2021-01-10T09:06:39.000Z
2021-01-10T09:06:39.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """MobileNet v1 models for Keras. MobileNet is a general architecture and can be used for multiple use cases. Depending on the use case, it can use different input layer size and different width factors. This allows different width models to reduce the number of multiply-adds and thereby reduce inference cost on mobile devices. MobileNets support any input size greater than 32 x 32, with larger image sizes offering better performance. The number of parameters and number of multiply-adds can be modified by using the `alpha` parameter, which increases/decreases the number of filters in each layer. By altering the image size and `alpha` parameter, all 16 models from the paper can be built, with ImageNet weights provided. The paper demonstrates the performance of MobileNets using `alpha` values of 1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25. For each of these `alpha` values, weights for 4 different input image sizes are provided (224, 192, 160, 128). The following table describes the size and accuracy of the 100% MobileNet on size 224 x 224: ---------------------------------------------------------------------------- Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M) ---------------------------------------------------------------------------- | 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 | | 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 | | 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 | | 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 | ---------------------------------------------------------------------------- The following table describes the performance of the 100 % MobileNet on various input sizes: ------------------------------------------------------------------------ Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M) ------------------------------------------------------------------------ | 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 | | 1.0 MobileNet-192 | 69.1 % | 529 | 4.2 | | 1.0 MobileNet-160 | 67.2 % | 529 | 4.2 | | 1.0 MobileNet-128 | 64.4 % | 529 | 4.2 | ------------------------------------------------------------------------ Reference: - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]( https://arxiv.org/abs/1704.04861) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from keras import backend from keras.applications import imagenet_utils from keras.engine import training from keras.layers import VersionAwareLayers from keras.utils import data_utils from keras.utils import layer_utils from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export BASE_WEIGHT_PATH = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/mobilenet/') layers = None @keras_export('keras.applications.mobilenet.MobileNet', 'keras.applications.MobileNet') def MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): """Instantiates the MobileNet architecture. Reference: - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]( https://arxiv.org/abs/1704.04861) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in the `tf.keras.backend.image_data_format()`. Note: each Keras Application expects a specific kind of input preprocessing. For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input` on your inputs before passing them to the model. Args: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or (3, 224, 224) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. Default to `None`. `input_shape` will be ignored if the `input_tensor` is provided. alpha: Controls the width of the network. This is known as the width multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. Default to 1.0. depth_multiplier: Depth multiplier for depthwise convolution. This is called the resolution multiplier in the MobileNet paper. Default to 1.0. dropout: Dropout rate. Default to 0.001. include_top: Boolean, whether to include the fully-connected layer at the top of the network. Default to `True`. weights: One of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. Default to `imagenet`. input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. `input_tensor` is useful for sharing inputs between multiple different networks. Default to None. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` (default) means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Defaults to 1000. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs,)) if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top` ' 'as true, `classes` should be 1000') # Determine proper input shape and default size. if input_shape is None: default_size = 224 else: if backend.image_data_format() == 'channels_first': rows = input_shape[1] cols = input_shape[2] else: rows = input_shape[0] cols = input_shape[1] if rows == cols and rows in [128, 160, 192, 224]: default_size = rows else: default_size = 224 input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if backend.image_data_format() == 'channels_last': row_axis, col_axis = (0, 1) else: row_axis, col_axis = (1, 2) rows = input_shape[row_axis] cols = input_shape[col_axis] if weights == 'imagenet': if depth_multiplier != 1: raise ValueError('If imagenet weights are being loaded, ' 'depth multiplier must be 1') if alpha not in [0.25, 0.50, 0.75, 1.0]: raise ValueError('If imagenet weights are being loaded, ' 'alpha can be one of' '`0.25`, `0.50`, `0.75` or `1.0` only.') if rows != cols or rows not in [128, 160, 192, 224]: rows = 224 logging.warning('`input_shape` is undefined or non-square, ' 'or `rows` is not in [128, 160, 192, 224]. ' 'Weights for input shape (224, 224) will be' ' loaded as the default.') if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = _conv_block(img_input, 32, alpha, strides=(2, 2)) x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) x = _depthwise_conv_block( x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) x = _depthwise_conv_block( x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) x = _depthwise_conv_block( x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) x = _depthwise_conv_block( x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) if include_top: if backend.image_data_format() == 'channels_first': shape = (int(1024 * alpha), 1, 1) else: shape = (1, 1, int(1024 * alpha)) x = layers.GlobalAveragePooling2D()(x) x = layers.Reshape(shape, name='reshape_1')(x) x = layers.Dropout(dropout, name='dropout')(x) x = layers.Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x) x = layers.Reshape((classes,), name='reshape_2')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Activation(activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows)) # Load weights. if weights == 'imagenet': if alpha == 1.0: alpha_text = '1_0' elif alpha == 0.75: alpha_text = '7_5' elif alpha == 0.50: alpha_text = '5_0' else: alpha_text = '2_5' if include_top: model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = data_utils.get_file( model_name, weight_path, cache_subdir='models') else: model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = data_utils.get_file( model_name, weight_path, cache_subdir='models') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): """Adds an initial convolution layer (with batch normalization and relu6). Args: inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 filters = int(filters * alpha) x = layers.Conv2D( filters, kernel, padding='same', use_bias=False, strides=strides, name='conv1')(inputs) x = layers.BatchNormalization(axis=channel_axis, name='conv1_bn')(x) return layers.ReLU(6., name='conv1_relu')(x) def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1): """Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, relu6, pointwise convolution, batch normalization and relu6 activation. Args: inputs: Input tensor of shape `(rows, cols, channels)` (with `channels_last` data format) or (channels, rows, cols) (with `channels_first` data format). pointwise_conv_filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the pointwise convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. block_id: Integer, a unique identification designating the block number. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 pointwise_conv_filters = int(pointwise_conv_filters * alpha) if strides == (1, 1): x = inputs else: x = layers.ZeroPadding2D(((0, 1), (0, 1)), name='conv_pad_%d' % block_id)( inputs) x = layers.DepthwiseConv2D((3, 3), padding='same' if strides == (1, 1) else 'valid', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)( x) x = layers.BatchNormalization( axis=channel_axis, name='conv_dw_%d_bn' % block_id)( x) x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x) x = layers.Conv2D( pointwise_conv_filters, (1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)( x) x = layers.BatchNormalization( axis=channel_axis, name='conv_pw_%d_bn' % block_id)( x) return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x) @keras_export('keras.applications.mobilenet.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf') @keras_export('keras.applications.mobilenet.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
42.59695
80
0.652721
09904dd97d03cda66177c6197ef0d588d318b6ed
6,983
py
Python
tests/core/test_jose/test_jwe.py
johnjdailey/authlib
de4e4ec735e0a9a57906129f16df2addc6a4c908
[ "BSD-3-Clause" ]
1
2020-08-04T08:29:39.000Z
2020-08-04T08:29:39.000Z
tests/core/test_jose/test_jwe.py
johnjdailey/authlib
de4e4ec735e0a9a57906129f16df2addc6a4c908
[ "BSD-3-Clause" ]
null
null
null
tests/core/test_jose/test_jwe.py
johnjdailey/authlib
de4e4ec735e0a9a57906129f16df2addc6a4c908
[ "BSD-3-Clause" ]
null
null
null
import os import unittest from authlib.jose import errors from authlib.jose import JsonWebEncryption, JWE_ALGORITHMS, JWS_ALGORITHMS from tests.util import read_file_path class JWETest(unittest.TestCase): def test_register_invalid_algorithms(self): self.assertRaises( ValueError, JsonWebEncryption, ['INVALID'] ) jwe = JsonWebEncryption(algorithms=[]) self.assertRaises( ValueError, jwe.register_algorithm, JWS_ALGORITHMS[0] ) def test_not_enough_segments(self): s = 'a.b.c' jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) self.assertRaises( errors.DecodeError, jwe.deserialize_compact, s, None ) def test_invalid_header(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) public_key = read_file_path('rsa_public.pem') self.assertRaises( errors.MissingAlgorithmError, jwe.serialize_compact, {}, 'a', public_key ) self.assertRaises( errors.UnsupportedAlgorithmError, jwe.serialize_compact, {'alg': 'invalid'}, 'a', public_key ) self.assertRaises( errors.MissingEncryptionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP'}, 'a', public_key ) self.assertRaises( errors.UnsupportedEncryptionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP', 'enc': 'invalid'}, 'a', public_key ) self.assertRaises( errors.UnsupportedCompressionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP', 'enc': 'A256GCM', 'zip': 'invalid'}, 'a', public_key ) def test_not_supported_alg(self): public_key = read_file_path('rsa_public.pem') private_key = read_file_path('rsa_private.pem') jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) s = jwe.serialize_compact( {'alg': 'RSA-OAEP', 'enc': 'A256GCM'}, 'hello', public_key ) jwe = JsonWebEncryption(algorithms=['RSA1_5', 'A256GCM']) self.assertRaises( errors.UnsupportedAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP', 'enc': 'A256GCM'}, 'hello', public_key ) self.assertRaises( errors.UnsupportedCompressionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA1_5', 'enc': 'A256GCM', 'zip': 'DEF'}, 'hello', public_key ) self.assertRaises( errors.UnsupportedAlgorithmError, jwe.deserialize_compact, s, private_key, ) jwe = JsonWebEncryption(algorithms=['RSA-OAEP', 'A192GCM']) self.assertRaises( errors.UnsupportedEncryptionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP', 'enc': 'A256GCM'}, 'hello', public_key ) self.assertRaises( errors.UnsupportedCompressionAlgorithmError, jwe.serialize_compact, {'alg': 'RSA-OAEP', 'enc': 'A192GCM', 'zip': 'DEF'}, 'hello', public_key ) self.assertRaises( errors.UnsupportedEncryptionAlgorithmError, jwe.deserialize_compact, s, private_key, ) def test_compact_rsa(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) s = jwe.serialize_compact( {'alg': 'RSA-OAEP', 'enc': 'A256GCM'}, 'hello', read_file_path('rsa_public.pem') ) data = jwe.deserialize_compact(s, read_file_path('rsa_private.pem')) header, payload = data['header'], data['payload'] self.assertEqual(payload, b'hello') self.assertEqual(header['alg'], 'RSA-OAEP') def test_with_zip_header(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) s = jwe.serialize_compact( {'alg': 'RSA-OAEP', 'enc': 'A128CBC-HS256', 'zip': 'DEF'}, 'hello', read_file_path('rsa_public.pem') ) data = jwe.deserialize_compact(s, read_file_path('rsa_private.pem')) header, payload = data['header'], data['payload'] self.assertEqual(payload, b'hello') self.assertEqual(header['alg'], 'RSA-OAEP') def test_aes_JsonWebEncryption(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) sizes = [128, 192, 256] _enc_choices = [ 'A128CBC-HS256', 'A192CBC-HS384', 'A256CBC-HS512', 'A128GCM', 'A192GCM', 'A256GCM' ] for s in sizes: alg = 'A{}KW'.format(s) key = os.urandom(s // 8) for enc in _enc_choices: protected = {'alg': alg, 'enc': enc} data = jwe.serialize_compact(protected, b'hello', key) rv = jwe.deserialize_compact(data, key) self.assertEqual(rv['payload'], b'hello') def test_ase_jwe_invalid_key(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) protected = {'alg': 'A128KW', 'enc': 'A128GCM'} self.assertRaises( ValueError, jwe.serialize_compact, protected, b'hello', b'invalid-key' ) def test_rsa_alg(self): alg = JsonWebEncryption.JWE_AVAILABLE_ALGORITHMS['RSA-OAEP'] pub_key = alg.prepare_key( read_file_path('rsa_public.pem')) private_key = alg.prepare_key( read_file_path('rsa_private.pem')) cek = ( b'\xb1\xa1\xf4\x80T\x8f\xe1s?\xb4\x03\xffk\x9a\xd4\xf6\x8a\x07' b'n[p."i/\x82\xcb.z\xea@\xfc' ) ek = alg.wrap(cek, {}, pub_key) self.assertEqual(alg.unwrap(ek, {}, private_key), cek) invalid_ek = b'a' + ek[1:] self.assertRaises(ValueError, alg.unwrap, invalid_ek, {}, private_key) def test_aes_gcm_JsonWebEncryption(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) sizes = [128, 192, 256] _enc_choices = [ 'A128CBC-HS256', 'A192CBC-HS384', 'A256CBC-HS512', 'A128GCM', 'A192GCM', 'A256GCM' ] for s in sizes: alg = 'A{}GCMKW'.format(s) key = os.urandom(s // 8) for enc in _enc_choices: protected = {'alg': alg, 'enc': enc} data = jwe.serialize_compact(protected, b'hello', key) rv = jwe.deserialize_compact(data, key) self.assertEqual(rv['payload'], b'hello') def test_ase_gcm_jwe_invalid_key(self): jwe = JsonWebEncryption(algorithms=JWE_ALGORITHMS) protected = {'alg': 'A128GCMKW', 'enc': 'A128GCM'} self.assertRaises( ValueError, jwe.serialize_compact, protected, b'hello', b'invalid-key' )
35.627551
78
0.573822
dd649a4eb9a77d5dac8882593ded91f58fbc0e67
1,856
py
Python
test/programytest/dialog/storage/test_file.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
2
2018-06-16T09:32:22.000Z
2019-07-21T13:16:00.000Z
test/programytest/dialog/storage/test_file.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
3
2020-07-16T04:00:42.000Z
2021-03-31T18:52:22.000Z
test/programytest/dialog/storage/test_file.py
whackur/chatbot
bb4b4dace89f1f8aae2b6377bf7d2601e66af7a7
[ "MIT" ]
4
2018-06-29T23:50:44.000Z
2020-11-05T08:13:47.000Z
import unittest import os from programy.dialog.dialog import Sentence, Question, Conversation from programy.bot import Bot from programy.brain import Brain from programy.config.brain.brain import BrainConfiguration from programy.config.bot.bot import BotConfiguration from programy.config.bot.filestorage import BotConversationsFileStorageConfiguration from programy.context import ClientContext from programytest.aiml_tests.client import TestClient class ConversationFileStorageTests(unittest.TestCase): def test_persistence(self): client = TestClient() client_context = client.create_client_context("testid") bot_config = BotConfiguration() bot_config.conversations._type = "file" bot_config.conversations._storage = BotConversationsFileStorageConfiguration("test") bot_config.conversations._storage._dir = os.path.dirname(__file__) bot_config.conversations._max_histories = 3 client_context.bot = Bot(bot_config) filename = bot_config.conversations._storage._dir + os.sep + client_context.userid + ".convo" if os.path.exists(filename): os.remove(filename) self.assertFalse(os.path.exists(filename)) conversation = client_context.bot.get_conversation(client_context) conversation.properties['name'] = "fred" client_context.bot.save_conversation(client_context.userid) self.assertTrue(os.path.exists(filename)) test_bot2 = Bot(bot_config) conversation2 = test_bot2.get_conversation(client_context) self.assertIsNotNone(conversation2.property('name')) self.assertEqual('fred', conversation2.property('name')) self.assertTrue(os.path.exists(filename)) if os.path.exists(filename): os.remove(filename) self.assertFalse(os.path.exists(filename))
40.347826
101
0.742457
2ab5b656be7a7728dab97a14cf9706c1dcfa22f8
2,491
py
Python
dell_projector/main.py
Abhiseshan/dell-projector
ef869afc9c33a6907160948c6548cad2d96e7341
[ "MIT" ]
null
null
null
dell_projector/main.py
Abhiseshan/dell-projector
ef869afc9c33a6907160948c6548cad2d96e7341
[ "MIT" ]
null
null
null
dell_projector/main.py
Abhiseshan/dell-projector
ef869afc9c33a6907160948c6548cad2d96e7341
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests import socket import logging logger = logging.getLogger(__name__) HOME_PAGE = "/home.htm" PROTOCOL = "http://" TIMEOUT = 5 CONTROL_PORT = 41794 ATTRIBUTES = { "Status:": "STATUS", "Lamp Hours:": "LAMP_HOURS" } COMANDS = { "on": [0x05, 0x00, 0x06, 0x00, 0x00, 0x03, 0x00, 0x04, 0x00], "off": [0x05, 0x00, 0x06, 0x00, 0x00, 0x03, 0x00, 0x05, 0x00] } class Projector: def __init__(self, host): self._host = host def __callProjectorRest(self): base_url = PROTOCOL + self._host request_url = base_url + HOME_PAGE # use requests.session since we have to get the ATOP cookie to authenticate the calls session = requests.Session() try: # Gets the session cookie session.get(base_url, timeout=TIMEOUT) # call the api logger.debug("Calling home page") response = session.get(request_url, timeout=TIMEOUT) return response except Exception: logger.error("Failed to connect to projector '%s'", self._host) return None def __callProjectorSocket(self, data): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((self._host, CONTROL_PORT)) s.send(bytes(data)) finally: s.close() def __parseResponse(self, response): parsedAttributes = {} soup = BeautifulSoup(response.text, 'html.parser') table = soup.find_all('table')[0] for row in table.find_all('tr'): columns = row.find_all('td') attr = columns[0].text if attr in ATTRIBUTES: value = columns[1].text parsedAttributes[ATTRIBUTES[attr]] = value.strip() return parsedAttributes def getStatus(self): statusResponse = self.__callProjectorRest() if (statusResponse == None): return None attributes = self.__parseResponse(statusResponse) return { "state": attributes["STATUS"] != "Standby", "attributes": attributes } def turnOn(self): logger.debug("Turning on projector") self.__callProjectorSocket(COMANDS["on"]) def turnOff(self): logger.debug("Turning off projector") self.__callProjectorSocket(COMANDS["off"])
29.654762
94
0.578884
fe25062db91ad6bf05dbb4b4a7fc5f1b08ac7f8d
11,998
py
Python
kombu/tests/test_entities.py
jheld/kombu
5ade56f2d52deee2f9ecea0180c2ea56400345be
[ "BSD-3-Clause" ]
1
2019-06-22T23:30:30.000Z
2019-06-22T23:30:30.000Z
kombu/tests/test_entities.py
rectalogic/kombu
82dc37b4c151a2d4e7eec1f96ada5babc8749e8e
[ "BSD-3-Clause" ]
null
null
null
kombu/tests/test_entities.py
rectalogic/kombu
82dc37b4c151a2d4e7eec1f96ada5babc8749e8e
[ "BSD-3-Clause" ]
1
2019-01-29T00:47:41.000Z
2019-01-29T00:47:41.000Z
from __future__ import absolute_import import pickle from kombu import Connection, Exchange, Producer, Queue, binding from kombu.exceptions import NotBoundError from .case import Case, Mock, call from .mocks import Transport def get_conn(): return Connection(transport=Transport) class test_binding(Case): def test_constructor(self): x = binding( Exchange('foo'), 'rkey', arguments={'barg': 'bval'}, unbind_arguments={'uarg': 'uval'}, ) self.assertEqual(x.exchange, Exchange('foo')) self.assertEqual(x.routing_key, 'rkey') self.assertDictEqual(x.arguments, {'barg': 'bval'}) self.assertDictEqual(x.unbind_arguments, {'uarg': 'uval'}) def test_declare(self): chan = get_conn().channel() x = binding(Exchange('foo'), 'rkey') x.declare(chan) self.assertIn('exchange_declare', chan) def test_declare_no_exchange(self): chan = get_conn().channel() x = binding() x.declare(chan) self.assertNotIn('exchange_declare', chan) def test_bind(self): chan = get_conn().channel() x = binding(Exchange('foo')) x.bind(Exchange('bar')(chan)) self.assertIn('exchange_bind', chan) def test_unbind(self): chan = get_conn().channel() x = binding(Exchange('foo')) x.unbind(Exchange('bar')(chan)) self.assertIn('exchange_unbind', chan) def test_repr(self): b = binding(Exchange('foo'), 'rkey') self.assertIn('foo', repr(b)) self.assertIn('rkey', repr(b)) class test_Exchange(Case): def test_bound(self): exchange = Exchange('foo', 'direct') self.assertFalse(exchange.is_bound) self.assertIn('<unbound', repr(exchange)) chan = get_conn().channel() bound = exchange.bind(chan) self.assertTrue(bound.is_bound) self.assertIs(bound.channel, chan) self.assertIn('bound to chan:%r' % (chan.channel_id, ), repr(bound)) def test_hash(self): self.assertEqual(hash(Exchange('a')), hash(Exchange('a'))) self.assertNotEqual(hash(Exchange('a')), hash(Exchange('b'))) def test_can_cache_declaration(self): self.assertTrue(Exchange('a', durable=True).can_cache_declaration) self.assertTrue(Exchange('a', durable=False).can_cache_declaration) self.assertFalse(Exchange('a', auto_delete=True).can_cache_declaration) self.assertFalse( Exchange('a', durable=True, auto_delete=True ).can_cache_declaration, ) def test_pickle(self): e1 = Exchange('foo', 'direct') e2 = pickle.loads(pickle.dumps(e1)) self.assertEqual(e1, e2) def test_eq(self): e1 = Exchange('foo', 'direct') e2 = Exchange('foo', 'direct') self.assertEqual(e1, e2) e3 = Exchange('foo', 'topic') self.assertNotEqual(e1, e3) self.assertEqual(e1.__eq__(True), NotImplemented) def test_revive(self): exchange = Exchange('foo', 'direct') conn = get_conn() chan = conn.channel() # reviving unbound channel is a noop. exchange.revive(chan) self.assertFalse(exchange.is_bound) self.assertIsNone(exchange._channel) bound = exchange.bind(chan) self.assertTrue(bound.is_bound) self.assertIs(bound.channel, chan) chan2 = conn.channel() bound.revive(chan2) self.assertTrue(bound.is_bound) self.assertIs(bound._channel, chan2) def test_assert_is_bound(self): exchange = Exchange('foo', 'direct') with self.assertRaises(NotBoundError): exchange.declare() conn = get_conn() chan = conn.channel() exchange.bind(chan).declare() self.assertIn('exchange_declare', chan) def test_set_transient_delivery_mode(self): exc = Exchange('foo', 'direct', delivery_mode='transient') self.assertEqual(exc.delivery_mode, Exchange.TRANSIENT_DELIVERY_MODE) def test_set_passive_mode(self): exc = Exchange('foo', 'direct', passive=True) self.assertTrue(exc.passive) def test_set_persistent_delivery_mode(self): exc = Exchange('foo', 'direct', delivery_mode='persistent') self.assertEqual(exc.delivery_mode, Exchange.PERSISTENT_DELIVERY_MODE) def test_bind_at_instantiation(self): self.assertTrue(Exchange('foo', channel=get_conn().channel()).is_bound) def test_create_message(self): chan = get_conn().channel() Exchange('foo', channel=chan).Message({'foo': 'bar'}) self.assertIn('prepare_message', chan) def test_publish(self): chan = get_conn().channel() Exchange('foo', channel=chan).publish('the quick brown fox') self.assertIn('basic_publish', chan) def test_delete(self): chan = get_conn().channel() Exchange('foo', channel=chan).delete() self.assertIn('exchange_delete', chan) def test__repr__(self): b = Exchange('foo', 'topic') self.assertIn('foo(topic)', repr(b)) self.assertIn('Exchange', repr(b)) def test_bind_to(self): chan = get_conn().channel() foo = Exchange('foo', 'topic') bar = Exchange('bar', 'topic') foo(chan).bind_to(bar) self.assertIn('exchange_bind', chan) def test_bind_to_by_name(self): chan = get_conn().channel() foo = Exchange('foo', 'topic') foo(chan).bind_to('bar') self.assertIn('exchange_bind', chan) def test_unbind_from(self): chan = get_conn().channel() foo = Exchange('foo', 'topic') bar = Exchange('bar', 'topic') foo(chan).unbind_from(bar) self.assertIn('exchange_unbind', chan) def test_unbind_from_by_name(self): chan = get_conn().channel() foo = Exchange('foo', 'topic') foo(chan).unbind_from('bar') self.assertIn('exchange_unbind', chan) class test_Queue(Case): def setup(self): self.exchange = Exchange('foo', 'direct') def test_hash(self): self.assertEqual(hash(Queue('a')), hash(Queue('a'))) self.assertNotEqual(hash(Queue('a')), hash(Queue('b'))) def test_repr_with_bindings(self): ex = Exchange('foo') x = Queue('foo', bindings=[ex.binding('A'), ex.binding('B')]) self.assertTrue(repr(x)) def test_anonymous(self): chan = Mock() x = Queue(bindings=[binding(Exchange('foo'), 'rkey')]) chan.queue_declare.return_value = 'generated', 0, 0 xx = x(chan) xx.declare() self.assertEqual(xx.name, 'generated') def test_basic_get__accept_disallowed(self): conn = Connection('memory://') q = Queue('foo', exchange=self.exchange) p = Producer(conn) p.publish( {'complex': object()}, declare=[q], exchange=self.exchange, serializer='pickle', ) message = q(conn).get(no_ack=True) self.assertIsNotNone(message) with self.assertRaises(q.ContentDisallowed): message.decode() def test_basic_get__accept_allowed(self): conn = Connection('memory://') q = Queue('foo', exchange=self.exchange) p = Producer(conn) p.publish( {'complex': object()}, declare=[q], exchange=self.exchange, serializer='pickle', ) message = q(conn).get(accept=['pickle'], no_ack=True) self.assertIsNotNone(message) payload = message.decode() self.assertTrue(payload['complex']) def test_when_bound_but_no_exchange(self): q = Queue('a') q.exchange = None self.assertIsNone(q.when_bound()) def test_declare_but_no_exchange(self): q = Queue('a') q.queue_declare = Mock() q.queue_bind = Mock() q.exchange = None q.declare() q.queue_declare.assert_called_with(False, passive=False) def test_bind_to_when_name(self): chan = Mock() q = Queue('a') q(chan).bind_to('ex') self.assertTrue(chan.queue_bind.called) def test_get_when_no_m2p(self): chan = Mock() q = Queue('a')(chan) chan.message_to_python = None self.assertTrue(q.get()) def test_multiple_bindings(self): chan = Mock() q = Queue('mul', [ binding(Exchange('mul1'), 'rkey1'), binding(Exchange('mul2'), 'rkey2'), binding(Exchange('mul3'), 'rkey3'), ]) q(chan).declare() self.assertIn( call( nowait=False, exchange='mul1', auto_delete=False, passive=False, arguments=None, type='direct', durable=True, ), chan.exchange_declare.call_args_list, ) def test_can_cache_declaration(self): self.assertTrue(Queue('a', durable=True).can_cache_declaration) self.assertTrue(Queue('a', durable=False).can_cache_declaration) def test_eq(self): q1 = Queue('xxx', Exchange('xxx', 'direct'), 'xxx') q2 = Queue('xxx', Exchange('xxx', 'direct'), 'xxx') self.assertEqual(q1, q2) self.assertEqual(q1.__eq__(True), NotImplemented) q3 = Queue('yyy', Exchange('xxx', 'direct'), 'xxx') self.assertNotEqual(q1, q3) def test_exclusive_implies_auto_delete(self): self.assertTrue( Queue('foo', self.exchange, exclusive=True).auto_delete, ) def test_binds_at_instantiation(self): self.assertTrue(Queue('foo', self.exchange, channel=get_conn().channel()).is_bound) def test_also_binds_exchange(self): chan = get_conn().channel() b = Queue('foo', self.exchange) self.assertFalse(b.is_bound) self.assertFalse(b.exchange.is_bound) b = b.bind(chan) self.assertTrue(b.is_bound) self.assertTrue(b.exchange.is_bound) self.assertIs(b.channel, b.exchange.channel) self.assertIsNot(b.exchange, self.exchange) def test_declare(self): chan = get_conn().channel() b = Queue('foo', self.exchange, 'foo', channel=chan) self.assertTrue(b.is_bound) b.declare() self.assertIn('exchange_declare', chan) self.assertIn('queue_declare', chan) self.assertIn('queue_bind', chan) def test_get(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.get() self.assertIn('basic_get', b.channel) def test_purge(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.purge() self.assertIn('queue_purge', b.channel) def test_consume(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.consume('fifafo', None) self.assertIn('basic_consume', b.channel) def test_cancel(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.cancel('fifafo') self.assertIn('basic_cancel', b.channel) def test_delete(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.delete() self.assertIn('queue_delete', b.channel) def test_queue_unbind(self): b = Queue('foo', self.exchange, 'foo', channel=get_conn().channel()) b.queue_unbind() self.assertIn('queue_unbind', b.channel) def test_as_dict(self): q = Queue('foo', self.exchange, 'rk') d = q.as_dict(recurse=True) self.assertEqual(d['exchange']['name'], self.exchange.name) def test__repr__(self): b = Queue('foo', self.exchange, 'foo') self.assertIn('foo', repr(b)) self.assertIn('Queue', repr(b))
32.080214
79
0.597433
3fbaff2c4928d0324eaa61312102075823f7dd96
627
py
Python
ros/src/twist_controller/lowpass.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
9
2018-03-07T01:38:31.000Z
2020-05-14T14:22:52.000Z
ros/src/twist_controller/lowpass.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
95
2018-02-27T11:37:30.000Z
2019-02-09T20:37:03.000Z
ros/src/twist_controller/lowpass.py
edufford/CarND-Capstone
dd466a3e9e1eeb3c3f4b37175b9694600d8cc8c8
[ "MIT" ]
4
2018-02-26T21:20:17.000Z
2019-08-09T15:50:53.000Z
class LowPassFilter(object): def __init__(self, tau, ts): self.a = 1. / (tau / ts + 1.) self.b = tau / ts / (tau / ts + 1.) self.last_val = 0. # Initialize from last_val = 0 instead of allowing an initial step # change on activation when dbw_enabled turns ON self.ready = True def get(self): return self.last_val def filt(self, val): if self.ready: val = self.a * val + self.b * self.last_val else: self.ready = True self.last_val = val return val def reset(self): self.ready = False
23.222222
74
0.54067
10c634c1a0d842d616a780fae1e7ea6edafe0b34
27,598
py
Python
sdk/python/pulumi_azure_native/network/v20210201/get_application_gateway.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20210201/get_application_gateway.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20210201/get_application_gateway.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetApplicationGatewayResult', 'AwaitableGetApplicationGatewayResult', 'get_application_gateway', ] @pulumi.output_type class GetApplicationGatewayResult: """ Application gateway resource. """ def __init__(__self__, authentication_certificates=None, autoscale_configuration=None, backend_address_pools=None, backend_http_settings_collection=None, custom_error_configurations=None, enable_fips=None, enable_http2=None, etag=None, firewall_policy=None, force_firewall_policy_association=None, frontend_ip_configurations=None, frontend_ports=None, gateway_ip_configurations=None, http_listeners=None, id=None, identity=None, location=None, name=None, operational_state=None, private_endpoint_connections=None, private_link_configurations=None, probes=None, provisioning_state=None, redirect_configurations=None, request_routing_rules=None, resource_guid=None, rewrite_rule_sets=None, sku=None, ssl_certificates=None, ssl_policy=None, ssl_profiles=None, tags=None, trusted_client_certificates=None, trusted_root_certificates=None, type=None, url_path_maps=None, web_application_firewall_configuration=None, zones=None): if authentication_certificates and not isinstance(authentication_certificates, list): raise TypeError("Expected argument 'authentication_certificates' to be a list") pulumi.set(__self__, "authentication_certificates", authentication_certificates) if autoscale_configuration and not isinstance(autoscale_configuration, dict): raise TypeError("Expected argument 'autoscale_configuration' to be a dict") pulumi.set(__self__, "autoscale_configuration", autoscale_configuration) if backend_address_pools and not isinstance(backend_address_pools, list): raise TypeError("Expected argument 'backend_address_pools' to be a list") pulumi.set(__self__, "backend_address_pools", backend_address_pools) if backend_http_settings_collection and not isinstance(backend_http_settings_collection, list): raise TypeError("Expected argument 'backend_http_settings_collection' to be a list") pulumi.set(__self__, "backend_http_settings_collection", backend_http_settings_collection) if custom_error_configurations and not isinstance(custom_error_configurations, list): raise TypeError("Expected argument 'custom_error_configurations' to be a list") pulumi.set(__self__, "custom_error_configurations", custom_error_configurations) if enable_fips and not isinstance(enable_fips, bool): raise TypeError("Expected argument 'enable_fips' to be a bool") pulumi.set(__self__, "enable_fips", enable_fips) if enable_http2 and not isinstance(enable_http2, bool): raise TypeError("Expected argument 'enable_http2' to be a bool") pulumi.set(__self__, "enable_http2", enable_http2) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if firewall_policy and not isinstance(firewall_policy, dict): raise TypeError("Expected argument 'firewall_policy' to be a dict") pulumi.set(__self__, "firewall_policy", firewall_policy) if force_firewall_policy_association and not isinstance(force_firewall_policy_association, bool): raise TypeError("Expected argument 'force_firewall_policy_association' to be a bool") pulumi.set(__self__, "force_firewall_policy_association", force_firewall_policy_association) if frontend_ip_configurations and not isinstance(frontend_ip_configurations, list): raise TypeError("Expected argument 'frontend_ip_configurations' to be a list") pulumi.set(__self__, "frontend_ip_configurations", frontend_ip_configurations) if frontend_ports and not isinstance(frontend_ports, list): raise TypeError("Expected argument 'frontend_ports' to be a list") pulumi.set(__self__, "frontend_ports", frontend_ports) if gateway_ip_configurations and not isinstance(gateway_ip_configurations, list): raise TypeError("Expected argument 'gateway_ip_configurations' to be a list") pulumi.set(__self__, "gateway_ip_configurations", gateway_ip_configurations) if http_listeners and not isinstance(http_listeners, list): raise TypeError("Expected argument 'http_listeners' to be a list") pulumi.set(__self__, "http_listeners", http_listeners) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if operational_state and not isinstance(operational_state, str): raise TypeError("Expected argument 'operational_state' to be a str") pulumi.set(__self__, "operational_state", operational_state) if private_endpoint_connections and not isinstance(private_endpoint_connections, list): raise TypeError("Expected argument 'private_endpoint_connections' to be a list") pulumi.set(__self__, "private_endpoint_connections", private_endpoint_connections) if private_link_configurations and not isinstance(private_link_configurations, list): raise TypeError("Expected argument 'private_link_configurations' to be a list") pulumi.set(__self__, "private_link_configurations", private_link_configurations) if probes and not isinstance(probes, list): raise TypeError("Expected argument 'probes' to be a list") pulumi.set(__self__, "probes", probes) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if redirect_configurations and not isinstance(redirect_configurations, list): raise TypeError("Expected argument 'redirect_configurations' to be a list") pulumi.set(__self__, "redirect_configurations", redirect_configurations) if request_routing_rules and not isinstance(request_routing_rules, list): raise TypeError("Expected argument 'request_routing_rules' to be a list") pulumi.set(__self__, "request_routing_rules", request_routing_rules) if resource_guid and not isinstance(resource_guid, str): raise TypeError("Expected argument 'resource_guid' to be a str") pulumi.set(__self__, "resource_guid", resource_guid) if rewrite_rule_sets and not isinstance(rewrite_rule_sets, list): raise TypeError("Expected argument 'rewrite_rule_sets' to be a list") pulumi.set(__self__, "rewrite_rule_sets", rewrite_rule_sets) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if ssl_certificates and not isinstance(ssl_certificates, list): raise TypeError("Expected argument 'ssl_certificates' to be a list") pulumi.set(__self__, "ssl_certificates", ssl_certificates) if ssl_policy and not isinstance(ssl_policy, dict): raise TypeError("Expected argument 'ssl_policy' to be a dict") pulumi.set(__self__, "ssl_policy", ssl_policy) if ssl_profiles and not isinstance(ssl_profiles, list): raise TypeError("Expected argument 'ssl_profiles' to be a list") pulumi.set(__self__, "ssl_profiles", ssl_profiles) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if trusted_client_certificates and not isinstance(trusted_client_certificates, list): raise TypeError("Expected argument 'trusted_client_certificates' to be a list") pulumi.set(__self__, "trusted_client_certificates", trusted_client_certificates) if trusted_root_certificates and not isinstance(trusted_root_certificates, list): raise TypeError("Expected argument 'trusted_root_certificates' to be a list") pulumi.set(__self__, "trusted_root_certificates", trusted_root_certificates) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if url_path_maps and not isinstance(url_path_maps, list): raise TypeError("Expected argument 'url_path_maps' to be a list") pulumi.set(__self__, "url_path_maps", url_path_maps) if web_application_firewall_configuration and not isinstance(web_application_firewall_configuration, dict): raise TypeError("Expected argument 'web_application_firewall_configuration' to be a dict") pulumi.set(__self__, "web_application_firewall_configuration", web_application_firewall_configuration) if zones and not isinstance(zones, list): raise TypeError("Expected argument 'zones' to be a list") pulumi.set(__self__, "zones", zones) @property @pulumi.getter(name="authenticationCertificates") def authentication_certificates(self) -> Optional[Sequence['outputs.ApplicationGatewayAuthenticationCertificateResponse']]: """ Authentication certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "authentication_certificates") @property @pulumi.getter(name="autoscaleConfiguration") def autoscale_configuration(self) -> Optional['outputs.ApplicationGatewayAutoscaleConfigurationResponse']: """ Autoscale Configuration. """ return pulumi.get(self, "autoscale_configuration") @property @pulumi.getter(name="backendAddressPools") def backend_address_pools(self) -> Optional[Sequence['outputs.ApplicationGatewayBackendAddressPoolResponse']]: """ Backend address pool of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "backend_address_pools") @property @pulumi.getter(name="backendHttpSettingsCollection") def backend_http_settings_collection(self) -> Optional[Sequence['outputs.ApplicationGatewayBackendHttpSettingsResponse']]: """ Backend http settings of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "backend_http_settings_collection") @property @pulumi.getter(name="customErrorConfigurations") def custom_error_configurations(self) -> Optional[Sequence['outputs.ApplicationGatewayCustomErrorResponse']]: """ Custom error configurations of the application gateway resource. """ return pulumi.get(self, "custom_error_configurations") @property @pulumi.getter(name="enableFips") def enable_fips(self) -> Optional[bool]: """ Whether FIPS is enabled on the application gateway resource. """ return pulumi.get(self, "enable_fips") @property @pulumi.getter(name="enableHttp2") def enable_http2(self) -> Optional[bool]: """ Whether HTTP2 is enabled on the application gateway resource. """ return pulumi.get(self, "enable_http2") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="firewallPolicy") def firewall_policy(self) -> Optional['outputs.SubResourceResponse']: """ Reference to the FirewallPolicy resource. """ return pulumi.get(self, "firewall_policy") @property @pulumi.getter(name="forceFirewallPolicyAssociation") def force_firewall_policy_association(self) -> Optional[bool]: """ If true, associates a firewall policy with an application gateway regardless whether the policy differs from the WAF Config. """ return pulumi.get(self, "force_firewall_policy_association") @property @pulumi.getter(name="frontendIPConfigurations") def frontend_ip_configurations(self) -> Optional[Sequence['outputs.ApplicationGatewayFrontendIPConfigurationResponse']]: """ Frontend IP addresses of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter(name="frontendPorts") def frontend_ports(self) -> Optional[Sequence['outputs.ApplicationGatewayFrontendPortResponse']]: """ Frontend ports of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "frontend_ports") @property @pulumi.getter(name="gatewayIPConfigurations") def gateway_ip_configurations(self) -> Optional[Sequence['outputs.ApplicationGatewayIPConfigurationResponse']]: """ Subnets of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "gateway_ip_configurations") @property @pulumi.getter(name="httpListeners") def http_listeners(self) -> Optional[Sequence['outputs.ApplicationGatewayHttpListenerResponse']]: """ Http listeners of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "http_listeners") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ManagedServiceIdentityResponse']: """ The identity of the application gateway, if configured. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="operationalState") def operational_state(self) -> str: """ Operational state of the application gateway resource. """ return pulumi.get(self, "operational_state") @property @pulumi.getter(name="privateEndpointConnections") def private_endpoint_connections(self) -> Sequence['outputs.ApplicationGatewayPrivateEndpointConnectionResponse']: """ Private Endpoint connections on application gateway. """ return pulumi.get(self, "private_endpoint_connections") @property @pulumi.getter(name="privateLinkConfigurations") def private_link_configurations(self) -> Optional[Sequence['outputs.ApplicationGatewayPrivateLinkConfigurationResponse']]: """ PrivateLink configurations on application gateway. """ return pulumi.get(self, "private_link_configurations") @property @pulumi.getter def probes(self) -> Optional[Sequence['outputs.ApplicationGatewayProbeResponse']]: """ Probes of the application gateway resource. """ return pulumi.get(self, "probes") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the application gateway resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="redirectConfigurations") def redirect_configurations(self) -> Optional[Sequence['outputs.ApplicationGatewayRedirectConfigurationResponse']]: """ Redirect configurations of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "redirect_configurations") @property @pulumi.getter(name="requestRoutingRules") def request_routing_rules(self) -> Optional[Sequence['outputs.ApplicationGatewayRequestRoutingRuleResponse']]: """ Request routing rules of the application gateway resource. """ return pulumi.get(self, "request_routing_rules") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> str: """ The resource GUID property of the application gateway resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter(name="rewriteRuleSets") def rewrite_rule_sets(self) -> Optional[Sequence['outputs.ApplicationGatewayRewriteRuleSetResponse']]: """ Rewrite rules for the application gateway resource. """ return pulumi.get(self, "rewrite_rule_sets") @property @pulumi.getter def sku(self) -> Optional['outputs.ApplicationGatewaySkuResponse']: """ SKU of the application gateway resource. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="sslCertificates") def ssl_certificates(self) -> Optional[Sequence['outputs.ApplicationGatewaySslCertificateResponse']]: """ SSL certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "ssl_certificates") @property @pulumi.getter(name="sslPolicy") def ssl_policy(self) -> Optional['outputs.ApplicationGatewaySslPolicyResponse']: """ SSL policy of the application gateway resource. """ return pulumi.get(self, "ssl_policy") @property @pulumi.getter(name="sslProfiles") def ssl_profiles(self) -> Optional[Sequence['outputs.ApplicationGatewaySslProfileResponse']]: """ SSL profiles of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "ssl_profiles") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="trustedClientCertificates") def trusted_client_certificates(self) -> Optional[Sequence['outputs.ApplicationGatewayTrustedClientCertificateResponse']]: """ Trusted client certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "trusted_client_certificates") @property @pulumi.getter(name="trustedRootCertificates") def trusted_root_certificates(self) -> Optional[Sequence['outputs.ApplicationGatewayTrustedRootCertificateResponse']]: """ Trusted Root certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "trusted_root_certificates") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="urlPathMaps") def url_path_maps(self) -> Optional[Sequence['outputs.ApplicationGatewayUrlPathMapResponse']]: """ URL path map of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "url_path_maps") @property @pulumi.getter(name="webApplicationFirewallConfiguration") def web_application_firewall_configuration(self) -> Optional['outputs.ApplicationGatewayWebApplicationFirewallConfigurationResponse']: """ Web application firewall configuration. """ return pulumi.get(self, "web_application_firewall_configuration") @property @pulumi.getter def zones(self) -> Optional[Sequence[str]]: """ A list of availability zones denoting where the resource needs to come from. """ return pulumi.get(self, "zones") class AwaitableGetApplicationGatewayResult(GetApplicationGatewayResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetApplicationGatewayResult( authentication_certificates=self.authentication_certificates, autoscale_configuration=self.autoscale_configuration, backend_address_pools=self.backend_address_pools, backend_http_settings_collection=self.backend_http_settings_collection, custom_error_configurations=self.custom_error_configurations, enable_fips=self.enable_fips, enable_http2=self.enable_http2, etag=self.etag, firewall_policy=self.firewall_policy, force_firewall_policy_association=self.force_firewall_policy_association, frontend_ip_configurations=self.frontend_ip_configurations, frontend_ports=self.frontend_ports, gateway_ip_configurations=self.gateway_ip_configurations, http_listeners=self.http_listeners, id=self.id, identity=self.identity, location=self.location, name=self.name, operational_state=self.operational_state, private_endpoint_connections=self.private_endpoint_connections, private_link_configurations=self.private_link_configurations, probes=self.probes, provisioning_state=self.provisioning_state, redirect_configurations=self.redirect_configurations, request_routing_rules=self.request_routing_rules, resource_guid=self.resource_guid, rewrite_rule_sets=self.rewrite_rule_sets, sku=self.sku, ssl_certificates=self.ssl_certificates, ssl_policy=self.ssl_policy, ssl_profiles=self.ssl_profiles, tags=self.tags, trusted_client_certificates=self.trusted_client_certificates, trusted_root_certificates=self.trusted_root_certificates, type=self.type, url_path_maps=self.url_path_maps, web_application_firewall_configuration=self.web_application_firewall_configuration, zones=self.zones) def get_application_gateway(application_gateway_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetApplicationGatewayResult: """ Application gateway resource. :param str application_gateway_name: The name of the application gateway. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['applicationGatewayName'] = application_gateway_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20210201:getApplicationGateway', __args__, opts=opts, typ=GetApplicationGatewayResult).value return AwaitableGetApplicationGatewayResult( authentication_certificates=__ret__.authentication_certificates, autoscale_configuration=__ret__.autoscale_configuration, backend_address_pools=__ret__.backend_address_pools, backend_http_settings_collection=__ret__.backend_http_settings_collection, custom_error_configurations=__ret__.custom_error_configurations, enable_fips=__ret__.enable_fips, enable_http2=__ret__.enable_http2, etag=__ret__.etag, firewall_policy=__ret__.firewall_policy, force_firewall_policy_association=__ret__.force_firewall_policy_association, frontend_ip_configurations=__ret__.frontend_ip_configurations, frontend_ports=__ret__.frontend_ports, gateway_ip_configurations=__ret__.gateway_ip_configurations, http_listeners=__ret__.http_listeners, id=__ret__.id, identity=__ret__.identity, location=__ret__.location, name=__ret__.name, operational_state=__ret__.operational_state, private_endpoint_connections=__ret__.private_endpoint_connections, private_link_configurations=__ret__.private_link_configurations, probes=__ret__.probes, provisioning_state=__ret__.provisioning_state, redirect_configurations=__ret__.redirect_configurations, request_routing_rules=__ret__.request_routing_rules, resource_guid=__ret__.resource_guid, rewrite_rule_sets=__ret__.rewrite_rule_sets, sku=__ret__.sku, ssl_certificates=__ret__.ssl_certificates, ssl_policy=__ret__.ssl_policy, ssl_profiles=__ret__.ssl_profiles, tags=__ret__.tags, trusted_client_certificates=__ret__.trusted_client_certificates, trusted_root_certificates=__ret__.trusted_root_certificates, type=__ret__.type, url_path_maps=__ret__.url_path_maps, web_application_firewall_configuration=__ret__.web_application_firewall_configuration, zones=__ret__.zones)
50.361314
926
0.714545
fe1cdcd1f163c4b090e05f89313e48818b2fd276
4,963
py
Python
tests/parse_shebang_test.py
mmabey/pre-commit
7728162d7a47f387187e379b8011b224b168555d
[ "MIT" ]
1
2022-03-17T22:18:16.000Z
2022-03-17T22:18:16.000Z
tests/parse_shebang_test.py
mmabey/pre-commit
7728162d7a47f387187e379b8011b224b168555d
[ "MIT" ]
null
null
null
tests/parse_shebang_test.py
mmabey/pre-commit
7728162d7a47f387187e379b8011b224b168555d
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import unicode_literals import contextlib import distutils.spawn import io import os import sys import pytest from pre_commit import parse_shebang from pre_commit.envcontext import envcontext from pre_commit.envcontext import Var from pre_commit.util import make_executable def test_file_doesnt_exist(): assert parse_shebang.parse_filename('herp derp derp') == () def test_simple_case(tmpdir): x = tmpdir.join('f') x.write_text('#!/usr/bin/env python', encoding='UTF-8') make_executable(x.strpath) assert parse_shebang.parse_filename(x.strpath) == ('python',) def test_find_executable_full_path(): assert parse_shebang.find_executable(sys.executable) == sys.executable def test_find_executable_on_path(): expected = distutils.spawn.find_executable('echo') assert parse_shebang.find_executable('echo') == expected def test_find_executable_not_found_none(): assert parse_shebang.find_executable('not-a-real-executable') is None def write_executable(shebang, filename='run'): os.mkdir('bin') path = os.path.join('bin', filename) with io.open(path, 'w') as f: f.write('#!{}'.format(shebang)) make_executable(path) return path @contextlib.contextmanager def bin_on_path(): bindir = os.path.join(os.getcwd(), 'bin') with envcontext((('PATH', (bindir, os.pathsep, Var('PATH'))),)): yield def test_find_executable_path_added(in_tmpdir): path = os.path.abspath(write_executable('/usr/bin/env sh')) assert parse_shebang.find_executable('run') is None with bin_on_path(): assert parse_shebang.find_executable('run') == path def test_find_executable_path_ext(in_tmpdir): """Windows exports PATHEXT as a list of extensions to automatically add to executables when doing PATH searching. """ exe_path = os.path.abspath( write_executable('/usr/bin/env sh', filename='run.myext'), ) env_path = {'PATH': os.path.dirname(exe_path)} env_path_ext = dict(env_path, PATHEXT=os.pathsep.join(('.exe', '.myext'))) assert parse_shebang.find_executable('run') is None assert parse_shebang.find_executable('run', _environ=env_path) is None ret = parse_shebang.find_executable('run.myext', _environ=env_path) assert ret == exe_path ret = parse_shebang.find_executable('run', _environ=env_path_ext) assert ret == exe_path def test_normexe_does_not_exist(): with pytest.raises(OSError) as excinfo: parse_shebang.normexe('i-dont-exist-lol') assert excinfo.value.args == ('Executable `i-dont-exist-lol` not found',) def test_normexe_does_not_exist_sep(): with pytest.raises(OSError) as excinfo: parse_shebang.normexe('./i-dont-exist-lol') assert excinfo.value.args == ('Executable `./i-dont-exist-lol` not found',) @pytest.mark.xfail(os.name == 'nt', reason='posix only') def test_normexe_not_executable(tmpdir): # pragma: windows no cover tmpdir.join('exe').ensure() with tmpdir.as_cwd(), pytest.raises(OSError) as excinfo: parse_shebang.normexe('./exe') assert excinfo.value.args == ('Executable `./exe` is not executable',) def test_normexe_is_a_directory(tmpdir): with tmpdir.as_cwd(): tmpdir.join('exe').ensure_dir() exe = os.path.join('.', 'exe') with pytest.raises(OSError) as excinfo: parse_shebang.normexe(exe) msg, = excinfo.value.args assert msg == 'Executable `{}` is a directory'.format(exe) def test_normexe_already_full_path(): assert parse_shebang.normexe(sys.executable) == sys.executable def test_normexe_gives_full_path(): expected = distutils.spawn.find_executable('echo') assert parse_shebang.normexe('echo') == expected assert os.sep in expected def test_normalize_cmd_trivial(): cmd = (distutils.spawn.find_executable('echo'), 'hi') assert parse_shebang.normalize_cmd(cmd) == cmd def test_normalize_cmd_PATH(): cmd = ('python', '--version') expected = (distutils.spawn.find_executable('python'), '--version') assert parse_shebang.normalize_cmd(cmd) == expected def test_normalize_cmd_shebang(in_tmpdir): python = distutils.spawn.find_executable('python').replace(os.sep, '/') path = write_executable(python) assert parse_shebang.normalize_cmd((path,)) == (python, path) def test_normalize_cmd_PATH_shebang_full_path(in_tmpdir): python = distutils.spawn.find_executable('python').replace(os.sep, '/') path = write_executable(python) with bin_on_path(): ret = parse_shebang.normalize_cmd(('run',)) assert ret == (python, os.path.abspath(path)) def test_normalize_cmd_PATH_shebang_PATH(in_tmpdir): python = distutils.spawn.find_executable('python') path = write_executable('/usr/bin/env python') with bin_on_path(): ret = parse_shebang.normalize_cmd(('run',)) assert ret == (python, os.path.abspath(path))
32.437908
79
0.71348
9874adf2d9213b130e6dd06336a13134fbad3466
859
py
Python
lib/dataset/preprocess_utils/lane_utils.py
decisionforce/mmTransformer
be25d26118d2dfdac72b1d1e0cf6cbf14f7f4a0b
[ "Apache-2.0" ]
199
2021-03-23T06:10:50.000Z
2022-03-31T08:23:00.000Z
lib/dataset/preprocess_utils/lane_utils.py
yuzhouxianzhi/mmTransformer
be25d26118d2dfdac72b1d1e0cf6cbf14f7f4a0b
[ "Apache-2.0" ]
16
2021-04-12T12:48:46.000Z
2022-03-10T14:11:26.000Z
lib/dataset/preprocess_utils/lane_utils.py
yuzhouxianzhi/mmTransformer
be25d26118d2dfdac72b1d1e0cf6cbf14f7f4a0b
[ "Apache-2.0" ]
23
2021-03-29T01:37:56.000Z
2022-03-30T01:48:41.000Z
import os import numpy as np # Only support nearby in our implementation def get_nearby_lane_feature_ls(am, agent_df, obs_len, city_name, lane_radius, norm_center, has_attr=False, mode='nearby', query_bbox=None): ''' compute lane features args: norm_center: np.ndarray mode: 'nearby' return nearby lanes within the radius; 'rect' return lanes within the query bbox **kwargs: query_bbox= List[int, int, int, int] returns: list of list of lane a segment feature, formatted in [centerline, is_intersection, turn_direction, is_traffic_control, lane_id, predecessor_lanes, successor_lanes, adjacent_lanes] ''' query_x, query_y = agent_df[['X', 'Y']].values[obs_len-1] nearby_lane_ids = am.get_lane_ids_in_xy_bbox( query_x, query_y, city_name, lane_radius) return nearby_lane_ids
37.347826
139
0.715949
eb7ec3447ebf724a3f7d1580af6d37a9a8ebaf62
17,522
py
Python
planar_mpc/main.py
enhatem/quadrotor_mpc_acados
9ca50ecc0a852ba5f9464df0ccd5d40e3ebfc295
[ "Apache-2.0" ]
null
null
null
planar_mpc/main.py
enhatem/quadrotor_mpc_acados
9ca50ecc0a852ba5f9464df0ccd5d40e3ebfc295
[ "Apache-2.0" ]
null
null
null
planar_mpc/main.py
enhatem/quadrotor_mpc_acados
9ca50ecc0a852ba5f9464df0ccd5d40e3ebfc295
[ "Apache-2.0" ]
1
2021-12-29T03:37:01.000Z
2021-12-29T03:37:01.000Z
from extended_kalman_filter.setup_ekf import setup_ekf import sys import time import numpy as np import matplotlib.pyplot as plt from acados_settings import acados_settings from extended_kalman_filter.ekf import * from extended_kalman_filter.jacobians import * from plotFnc import * from utils import * from trajectory import * # mpc and simulation parameters Tf = 1 # prediction horizon N = 100 # number of discretization steps Ts = Tf / N # sampling time[s] T_hover = 2 # hovering time[s] T_traj = 20.00 # trajectory time[s] T = T_hover + T_traj # total simulation time # constants g = 9.81 # m/s^2 # bounds on phi bound_on_phi = False # bounds on y and z bound_on_y_z = False # measurement noise bool (If True, make sure to set the extended_kalman_filter variable to True as well) noisy_measurement = False # input noise bool noisy_input = False # extended kalman filter bool extended_kalman_filter = False # generate circulare trajectory with velocties traj_with_vel = False # single reference point with phi = 2 * pi ref_point = False # import trajectory with positions and velocities and inputs import_trajectory = True # use acados integrator (if False, numerical integration is used instead): use_acados_integrator = True # bool to save measurements and inputs as .csv files save_data = True # load model and acados_solver model, acados_solver, acados_integrator = acados_settings( Ts, Tf, N, bound_on_phi, bound_on_y_z) # quadrotor parameters m = model.params.m Ixx = model.params.J[0] # dimensions nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu N_hover = int (T_hover * N / Tf) N_traj = int (T_traj * N / Tf) Nsim = int(T * N / Tf) # initialize data structs predX = np.ndarray((Nsim+1, nx)) simX = np.ndarray((Nsim+1, nx)) simU = np.ndarray((Nsim, nu)) tot_comp_sum = 0 tcomp_max = 0 # set initial condition for acados integrator xcurrent = model.x0.reshape((nx,)) simX[0, :] = xcurrent # creating or extracting trajectory if ref_point == False and import_trajectory == False: # creating a reference trajectory show_ref_traj = False radius = 1 # m freq = 6 * np.pi/10 # frequency if traj_with_vel == False: y, z = trajectory_generator2D(xcurrent, N_hover, N_traj, N, radius, show_ref_traj) ref_traj = np.stack((y, z), 1) else: y, z, vy, vz = trajectory_generotaor2D_with_vel( xcurrent, N_hover, model, radius, freq, T_traj, Tf, Ts) ref_traj = np.stack((y, z, vy, vz), 1) elif ref_point == False and import_trajectory == True: T, ref_traj, ref_U = readTrajectory(T_hover, N) Nsim = int((T-Tf) * N / Tf) predX = np.ndarray((Nsim+1, nx)) simX = np.ndarray((Nsim+1, nx)) simU = np.ndarray((Nsim, nu)) simX[0, :] = xcurrent # setup the extended kalman filter if extended_kalman_filter == True: ekf, C, D, Q_alpha, Q_beta, Q_gamma = setup_ekf( Ts, m, Ixx, xcurrent, nx, nu) MEAS_EVERY_STEPS = 1 # number of steps until a new measurement is taken states = [] pred = [] covs = [] meas_xs = [] # elif extended_kalman_filter == True and noisy_measurement == False: # sys.exit("The extended Kalman filter must run with a noisy input") # set the seed for the random variables ( only relevant if noisy measurement and noisy input are applied) np.random.seed(20) # closed loop for i in range(Nsim): # updating references if ref_point == False and import_trajectory == False: if traj_with_vel == False: for j in range(N): yref = np.array([y[i+j], z[i+j], 0.0, 0.0, 0.0, 0.0, model.params.m * g, 0.0]) acados_solver.set(j, "yref", yref) yref_N = np.array([y[i+N], z[i+N], 0.0, 0.0, 0.0, 0.0]) acados_solver.set(N, "yref", yref_N) else: for j in range(N): yref = np.array([y[i+j], z[i+j], 0.0, vy[i+j], vz[i+j], 0.0, model.params.m * g, 0.0]) acados_solver.set(j, "yref", yref) yref_N = np.array([y[i+N], z[i+N], 0.0, vy[i+j], vz[i+j], 0.0]) acados_solver.set(N, "yref", yref_N) elif ref_point == True and import_trajectory == False: for j in range(N): yref = np.array([2.0, 2.0, 0.0 * np.pi, 0.0, 0.0, 0.0, model.params.m * g, 0.0]) acados_solver.set(j, "yref", yref) yref_N = np.array([2.0, 2.0, 0.0 * np.pi, 0.0, 0.0, 0.0]) acados_solver.set(N, "yref", yref_N) elif ref_point == False and import_trajectory == True: # if i == Nsim-5: # print(f'i={i}') for j in range(N): y = ref_traj[i+j, 0] z = ref_traj[i+j, 1] phi = ref_traj[i+j, 2] vy = ref_traj[i+j, 3] vz = ref_traj[i+j, 4] phiDot = ref_traj[i+j, 5] u1 = ref_U[i+j, 0] # Thrust u2 = ref_U[i+j, 1] # Torque yref = np.array([y, z, phi, vy, vz, phiDot, u1, u2]) acados_solver.set(j, "yref", yref) y_e = ref_traj[i+N, 0] z_e = ref_traj[i+N, 1] phi_e = ref_traj[i+N, 2] vy_e = ref_traj[i+N, 3] vz_e = ref_traj[i+N, 4] phiDot_e = ref_traj[i+N, 5] yref_N = np.array([y_e, z_e, phi_e, vy_e, vz_e, phiDot_e]) acados_solver.set(N, "yref", yref_N) # solve ocp for a fixed reference acados_solver.set(0, "lbx", xcurrent) acados_solver.set(0, "ubx", xcurrent) comp_time = time.time() status = acados_solver.solve() if status != 0: print("acados returned status {} in closed loop iteration {}.".format(status, i)) # manage timings elapsed = time.time() - comp_time tot_comp_sum += elapsed if elapsed > tcomp_max: tcomp_max = elapsed # get solution from acados_solver u0 = acados_solver.get(0, "u") if noisy_input == True: magnitude_u1 = np.sqrt(Q_beta[0][0]) # magnitude of the input noise on thrust magnitude_u2 = np.sqrt(Q_beta[1][1]) # magnitude of the input noise on torque # adding noise to the inputs T_noisy = u0[0] + np.array(np.random.normal(0, magnitude_u1)) Tau_noisy = u0[1] + np.array(np.random.normal(0, magnitude_u2)) # making sure that inputs are within bounds T_noisy = max(min(T_noisy, model.thrust_max), model.thrust_min) Tau_noisy = max(min(Tau_noisy, model.torque_max), model.torque_min) u0 = np.array([T_noisy, Tau_noisy]) # storing results from acados solver simU[i, :] = u0 # add measurement noise if noisy_measurement == True and extended_kalman_filter==False: xcurrent_sim = add_measurement_noise(xcurrent) elif noisy_measurement == True and extended_kalman_filter==True: xcurrent_sim = add_measurement_noise_with_kalman(xcurrent, Q_gamma) # xcurrent_sim = add_measurement_noise(xcurrent) else: xcurrent_sim = xcurrent if extended_kalman_filter == True: phi_k = float (ekf.state[2]) # roll at time k # stacking the covariance matrix and the state estimation at each time instant covs.append(ekf.cov) states.append(ekf.state) # The measurement vector at each time instant meas_x = xcurrent_sim # calculating the Jacobians of the evolution model with respect to the state vector and the input vector T_k = u0[0] # thrust at time step k Tau_k = u0[1] # torque at time step k A_k = getA_k(phi_k, T_k, ekf._m, ekf._dt) B_k = getB_k(phi_k, Ixx, ekf._m, ekf._dt) # prediction phase ekf.predict(A = A_k, B = B_k, u = u0, Q_alpha = Q_alpha, Q_beta = Q_beta) pred.append(ekf.state) # correction phase if i != 0 and i % MEAS_EVERY_STEPS == 0: ekf.update(C = C, meas = meas_x, meas_variance = Q_gamma) meas_xs.append(meas_x) if use_acados_integrator == True: # simulate the system acados_integrator.set("x", xcurrent_sim) acados_integrator.set("u", u0) status = acados_integrator.solve() if status != 0: raise Exception( 'acados integrator returned status {}. Exiting.'.format(status)) # get state xcurrent = acados_integrator.get("x") else: # integrate the accelerations delta_vel = integrateArray(getDynamics(m, Ixx, xcurrent_sim, u0), Ts) # integrate the velocities delta_X = integrateArray(delta_vel, Ts) # update the state xcurrent = updateState(xcurrent_sim, delta_X, delta_vel) # store state simX[i+1, :] = xcurrent # save measurements and inputs as .csv files if save_data == True and extended_kalman_filter == False: saveData(simX, simU) if extended_kalman_filter == True: # converting lists to np arrays for plotting meas_xs = np.array(meas_xs) states = np.array(states) covs = np.array(covs) pred = np.array(pred) # print the computation times100 print("Total computation time: {}".format(tot_comp_sum)) print("Average computation time: {}".format(tot_comp_sum / Nsim)) print("Maximum computation time: {}".format(tcomp_max)) if import_trajectory == False: t = np.arange(0, T, Ts) else: t = np.arange(0, T-Tf ,Ts) # plotting and RMSE if extended_kalman_filter == True: if ref_point == False and import_trajectory == False: # root mean squared error on each axis rmse_y, rmse_z = rmseX(simX, ref_traj[0:Nsim, :]) rmse_y_kalman, rmse_z_kalman = rmseX_kalman(states, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y: {}".format(rmse_y)) print("RMSE on z: {}".format(rmse_z)) print("RMSE on y with EKF measurements: {}".format(rmse_y_kalman)) print("RMSE on z with EKF measurements: {}".format(rmse_z_kalman)) # check if circular trajectory is with velocity or not if traj_with_vel == False: # circular trajectory is generated without velocities plotSim_kalman(simX, states, pred, ref_traj, Nsim, save=True) plotPos_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotVel_without_vy_vz_references_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_without_vel_kalman(t, simX, states, ref_traj, Nsim, save=True) else: # circular trajectory is generated with velocities plotSim_kalman(simX, states, pred, ref_traj, Nsim, save=True) plotPos_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotVel_with_vy_vz_references_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_with_vel_kalman(t, simX, states, ref_traj, Nsim, save=True) if ref_point == True and import_trajectory == False: # For single reference points plotSim_ref_point_kalman(simX, states, save=True) plotPos_ref_point_kalman(t, simX, states, save=True) plotVel_with_ref_pose_kalman(t,simX, states, covs, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) if ref_point == False and import_trajectory == True: # For imported trajectories with velocities and inputs plotSim_kalman(simX, states, pred, ref_traj, Nsim, save=True) plotPos_with_imported_traj_kalman(t, simX, states, covs, ref_traj, Nsim, save=True) plotVel_with_imported_traj_kalman(t, simX, states, covs, ref_traj, Nsim, save=True) plotSimU_with_ref(t, simU, ref_U, Nsim, save=True) plotErrors_with_ref_kalman(t, simX, states, ref_traj, Nsim, save=True) else: if ref_point == False and import_trajectory == False: # root mean squared error on each axis rmse_y, rmse_z = rmseX(simX, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y: {}".format(rmse_y)) print("RMSE on z: {}".format(rmse_z)) # check if circular trajectory is with velocity or not if traj_with_vel == False: # circular trajectory is generated without velocities plotSim(simX, ref_traj, Nsim, save=True) plotPos(t, simX, ref_traj, Nsim, save=True) plotVel(t, simX, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_no_vel(t, simX, ref_traj, Nsim) else: # circular trajectory is generated with velocities plotSim(simX, ref_traj, Nsim, save=True) plotPos(t, simX, ref_traj, Nsim, save=True) plotVel_with_vy_vz_references(t,simX, ref_traj, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_with_vel(t, simX, ref_traj, Nsim, save=True) if ref_point == True and import_trajectory == False: # For single reference points plotSim_ref_point(simX, save=True) plotPos_ref_point(t, simX, save=True) plotVel_with_ref_pose(t,simX, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) if ref_point == False and import_trajectory == True: # For imported trajectories with velocities and inputs plotSim(simX, ref_traj, Nsim, save=True) plotPos_with_imported_traj(t, simX, ref_traj, Nsim, save=True) plotVel_with_imported_traj(t, simX, ref_traj, Nsim, save=True) plotSimU_with_ref(t, simU, ref_U, Nsim, save=True) plotErrors_with_ref(t, simX, ref_traj, Nsim, save=True) ''' # plotting and RMSE if not ref_point and not import_trajectory: # check if circular trajectory is with velocity or not # root mean squared error on each axis rmse_y, rmse_z = rmseX(simX, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y: {}".format(rmse_y)) print("RMSE on z: {}".format(rmse_z)) if extended_kalman_filter == True: # root mean squared error on each axis rmse_y_kalman, rmse_z_kalman = rmseX_kalman(states, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y with EKF measurements: {}".format(rmse_y_kalman)) print("RMSE on z with EKF measurements: {}".format(rmse_z_kalman)) if traj_with_vel == False: # circular trajectory is generated without velocities plotSim(simX, ref_traj, Nsim, save=True) plotPos(t, simX, ref_traj, Nsim, save=True) plotVel(t, simX, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_no_vel(t, simX, ref_traj, Nsim) elif traj_with_vel == True and extended_kalman_filter == False: # ciruclar trajectory is generated with velocities plotSim(simX, ref_traj, Nsim, save=True) plotPos(t, simX, ref_traj, Nsim, save=True) plotVel_with_vy_vz_references(t, simX, ref_traj, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_with_vel(t, simX, ref_traj, Nsim) elif traj_with_vel == True and extended_kalman_filter == True: # ciruclar trajectory is generated with velocities plotSim_kalman(simX, states, pred, ref_traj, Nsim, save=True) plotPos_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotVel_with_vy_vz_references_kalman(t, simX, states, pred, covs, ref_traj, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) plotErrors_with_vel_kalman(t, simX, states, ref_traj, Nsim) if ref_point and not import_trajectory: # For single reference points plotSim_ref_point(simX, save=True) plotPos_ref_point(t, simX, save=True) plotVel(t, simX, Nsim, save=True) plotSimU(t, simU, Nsim, save=True) if extended_kalman_filter == False: if not ref_point and import_trajectory: # For imported trajectories with velocities and inputs # root mean squared error on each axis rmse_y, rmse_z = rmseX(simX, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y: {}".format(rmse_y)) print("RMSE on z: {}".format(rmse_z)) plotSim(simX, ref_traj, Nsim, save=True) plotPos_with_ref(t, simX, ref_traj, Nsim, save=True) plotVel_with_ref(t, simX, ref_traj, Nsim, save=True) plotSimU_with_ref(t, simU, ref_U, Nsim, save=True) plotErrors_with_ref(t, simX, ref_traj, Nsim) else: rmse_y_kalman, rmse_z_kalman = rmseX_kalman(states, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y with EKF measurements: {}".format(rmse_y_kalman)) print("RMSE on z with EKF measurements: {}".format(rmse_z_kalman)) if not ref_point and import_trajectory: # For imported trajectories with velocities and inputs # root mean squared error on each axis rmse_y, rmse_z = rmseX(simX, ref_traj[0:Nsim, :]) # print the RMSE on each axis print("RMSE on y: {}".format(rmse_y)) print("RMSE on z: {}".format(rmse_z)) plotSim(simX, ref_traj, Nsim, save=True) plotPos_with_ref(t, simX, ref_traj, Nsim, save=True) plotVel_with_ref(t, simX, ref_traj, Nsim, save=True) plotSimU_with_ref(t, simU, ref_U, Nsim, save=True) plotErrors_with_ref_kalman(t, simX, states, ref_traj, Nsim) ''' plt.show()
38.008677
119
0.637256
12bc8473668334ca22f49eb9f8686eab416a468a
1,141
py
Python
Lib/idlelib/idle_test/test_editor.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
854
2017-09-11T16:42:28.000Z
2022-03-27T14:17:09.000Z
Lib/idlelib/idle_test/test_editor.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
Lib/idlelib/idle_test/test_editor.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
73
2017-09-13T18:07:48.000Z
2022-03-17T13:02:29.000Z
"Test editor, coverage 35%." from idlelib import editor import unittest from test.support import requires from tkinter import Tk Editor = editor.EditorWindow class EditorWindowTest(unittest.TestCase): @classmethod def setUpClass(cls): requires('gui') cls.root = Tk() cls.root.withdraw() @classmethod def tearDownClass(cls): cls.root.update_idletasks() for id in cls.root.tk.call('after', 'info'): cls.root.after_cancel(id) cls.root.destroy() del cls.root def test_init(self): e = Editor(root=self.root) self.assertEqual(e.root, self.root) e._close() class EditorFunctionTest(unittest.TestCase): def test_filename_to_unicode(self): func = Editor._filename_to_unicode class dummy(): filesystemencoding = 'utf-8' pairs = (('abc', 'abc'), ('a\U00011111c', 'a\ufffdc'), (b'abc', 'abc'), (b'a\xf0\x91\x84\x91c', 'a\ufffdc')) for inp, out in pairs: self.assertEqual(func(dummy, inp), out) if __name__ == '__main__': unittest.main(verbosity=2)
24.276596
70
0.614373
f6282198e7ac6786f3abffd7982090e0423a6088
1,260
py
Python
701_insert_binary_tree.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
1
2020-07-15T14:16:23.000Z
2020-07-15T14:16:23.000Z
701_insert_binary_tree.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
null
null
null
701_insert_binary_tree.py
claytonjwong/leetcode-py
16bbf8ac0ba5c80fe3ef67ade0d61a12991270a7
[ "MIT" ]
null
null
null
# # 701. Insert into a Binary Search Tree # # Q: https://leetcode.com/problems/insert-into-a-binary-search-tree/ # A: https://leetcode.com/problems/insert-into-a-binary-search-tree/discuss/881995/Javascript-Python3-C%2B%2B-Recursive # class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None # concise class Solution: def insertIntoBST(self, root: TreeNode, x: int) -> TreeNode: def go(root, x): if x < root.val: root.left = go(root.left, x) if root.left else TreeNode(x) else: root.right = go(root.right, x) if root.right else TreeNode(x) return root return go(root, x) if root else TreeNode(x) # verbose class Solution: def insertIntoBST(self, root: TreeNode, x: int) -> TreeNode: def go(root, x): if x < root.val: if root.left: go(root.left, x) else: root.left = TreeNode(x) else: if root.right: go(root.right, x) else: root.right = TreeNode(x) return root return go(root, x) if root else TreeNode(x)
30.731707
119
0.538095
c4fefdc214492cea1babb4602c66150baa73caf6
1,783
py
Python
two.py
hanee211/paper14
edb0739e879284aaa2b03b41252b1d4a724bb01d
[ "MIT" ]
null
null
null
two.py
hanee211/paper14
edb0739e879284aaa2b03b41252b1d4a724bb01d
[ "MIT" ]
null
null
null
two.py
hanee211/paper14
edb0739e879284aaa2b03b41252b1d4a724bb01d
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf import helpers from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple tf.reset_default_graph() sess = tf.InteractiveSession() PAD = 0 EOS = 1 vocab_size = 10 input_embedding_size = 20 encoder_hidden_units = 20 decoder_hidden_units = encoder_hidden_units * 2 encoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs') encoder_inputs_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_inputs_length') decoder_targets = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_targets') embeddings = tf.Variable(tf.random_uniform([vocab_size, input_embedding_size], -1.0, 1.0), dtype=tf.float32) encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs) encoder_cell = LSTMCell(encoder_hidden_units) ((encoder_fw_outputs, encoder_bw_outputs), (encoder_fw_final_state, encoder_bw_final_state)) = ( tf.nn.bidirectional_dynamic_rnn(cell_fw=encoder_cell, cell_bw=encoder_cell, inputs=encoder_inputs_embedded, sequence_length=encoder_inputs_length, dtype=tf.float32, time_major=True) ) encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2) encoder_final_state_c = tf.concat((encoder_fw_final_state.c, encoder_bw_final_state.c), 1) encoder_final_state_h = tf.concat((encoder_fw_final_state.h, encoder_bw_final_state.h), 1) encoder_final_state = LSTMStateTuple(c=encoder_final_state_c, h=encoder_final_state_h) decoder_cell = LSTMCell(decoder_hidden_units) encoder_max_time, batch_size = tf.unstack(tf.shape(encoder_inputs))
36.387755
109
0.722378
1cbbbc74318e856e912b82f86d91c2557a03f4f4
1,902
py
Python
examples/ucass_test.py
JGirdwood/AeroSAM_logger
0ccd2f99be2546b7728a87fc10d4b462f04a44ed
[ "MIT" ]
1
2020-11-11T13:04:25.000Z
2020-11-11T13:04:25.000Z
examples/ucass_test.py
JGirdwood/AeroSAM_logger
0ccd2f99be2546b7728a87fc10d4b462f04a44ed
[ "MIT" ]
null
null
null
examples/ucass_test.py
JGirdwood/AeroSAM_logger
0ccd2f99be2546b7728a87fc10d4b462f04a44ed
[ "MIT" ]
null
null
null
import met import ucass import log import pix from time import sleep from gpiozero import LED if __name__ == '__main__': act_led = LED(19) resolution_ms = 500 run_forever = False run_time = 10 ss = ucass.UCASS(25) print("UCASS Connected") #mavcon = pix.MavlinkConnection('/dev/ttyS0', 57600) #print("Mavlink Connected") #mavcon.get_date_time() #name_string = "_".join(["AeroSAM-log", mavcon.start_date, mavcon.start_time]) #sd_log = log.LogFile(name_string, "/home/pi") #print("".join(["Log File: ", name_string])) #met_module = met.MetSensorModule(18, 24, 4.39) #print("MET Sensors Connected") ss.read_info_string() print "I Hate This Data Logger" print ss.info_string #print ss.bbs #ss.read_config_vars() #sd_log.make_headers(mavcon.start_date, mavcon.start_time, str(int(mavcon.epoch_time/1000)), ss.info_string, #ss.bbs, ss.gsc, ss.id) #t0 = mavcon.boot_time counter = 1 while True: act_led.off() #mavcon.get_date_time() #t1 = mavcon.boot_time #mavcon.fill_info_buffer() #ss.read_histogram_data() #met_module.read_hum() #met_module.read_temp() #sd_log.write_data_log(mavcon.boot_time, mavcon.press_hPa, mavcon.lat, mavcon.lon, mavcon.alt_m, mavcon.vz_ms, #met_module.t_deg_c, met_module.rh_true, ss.hist, ss.mtof, ss.period, ss.checksum, #ss.reject_glitch, ss.reject_ltof, ss.reject_ratio) #mavcon.get_date_time() #t2 = mavcon.boot_time #delay_ms = resolution_ms-(t2-t1) #print ss.hist act_led.on() #if delay_ms > 0: # sleep(delay_ms/1000) #else: # print("Loop Time Exceeds Resolution") if counter > run_time: print("Loop Finished") break counter += 1
33.368421
118
0.618297
fc12ec065a9bd810daaff19fb3bca4a15bb2e4ba
19,199
py
Python
homeassistant/bootstrap.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
1
2021-04-28T09:51:08.000Z
2021-04-28T09:51:08.000Z
homeassistant/bootstrap.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
60
2020-08-03T07:32:56.000Z
2022-03-31T06:02:07.000Z
homeassistant/bootstrap.py
edofullin/core
106dc4d28ad59cb192c60fc7a354cafa86899ea4
[ "Apache-2.0" ]
4
2017-01-10T04:17:33.000Z
2021-09-02T16:37:24.000Z
"""Provide methods to bootstrap a Home Assistant instance.""" from __future__ import annotations import asyncio import contextlib from datetime import datetime import logging import logging.handlers import os import sys import threading from time import monotonic from typing import TYPE_CHECKING, Any import voluptuous as vol import yarl from homeassistant import config as conf_util, config_entries, core, loader from homeassistant.components import http from homeassistant.const import REQUIRED_NEXT_PYTHON_DATE, REQUIRED_NEXT_PYTHON_VER from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import area_registry, device_registry, entity_registry from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.typing import ConfigType from homeassistant.setup import ( DATA_SETUP, DATA_SETUP_STARTED, DATA_SETUP_TIME, async_set_domains_to_be_loaded, async_setup_component, ) from homeassistant.util.async_ import gather_with_concurrency import homeassistant.util.dt as dt_util from homeassistant.util.logging import async_activate_log_queue_handler from homeassistant.util.package import async_get_user_site, is_virtual_env if TYPE_CHECKING: from .runner import RuntimeConfig _LOGGER = logging.getLogger(__name__) ERROR_LOG_FILENAME = "home-assistant.log" # hass.data key for logging information. DATA_LOGGING = "logging" LOG_SLOW_STARTUP_INTERVAL = 60 SLOW_STARTUP_CHECK_INTERVAL = 1 SIGNAL_BOOTSTRAP_INTEGRATONS = "bootstrap_integrations" STAGE_1_TIMEOUT = 120 STAGE_2_TIMEOUT = 300 WRAP_UP_TIMEOUT = 300 COOLDOWN_TIME = 60 MAX_LOAD_CONCURRENTLY = 6 DEBUGGER_INTEGRATIONS = {"debugpy"} CORE_INTEGRATIONS = ("homeassistant", "persistent_notification") LOGGING_INTEGRATIONS = { # Set log levels "logger", # Error logging "system_log", "sentry", # To record data "recorder", } STAGE_1_INTEGRATIONS = { # To make sure we forward data to other instances "mqtt_eventstream", # To provide account link implementations "cloud", # Ensure supervisor is available "hassio", # Get the frontend up and running as soon # as possible so problem integrations can # be removed "frontend", } async def async_setup_hass( runtime_config: RuntimeConfig, ) -> core.HomeAssistant | None: """Set up Home Assistant.""" hass = core.HomeAssistant() hass.config.config_dir = runtime_config.config_dir async_enable_logging( hass, runtime_config.verbose, runtime_config.log_rotate_days, runtime_config.log_file, runtime_config.log_no_color, ) hass.config.skip_pip = runtime_config.skip_pip if runtime_config.skip_pip: _LOGGER.warning( "Skipping pip installation of required modules. This may cause issues" ) if not await conf_util.async_ensure_config_exists(hass): _LOGGER.error("Error getting configuration path") return None _LOGGER.info("Config directory: %s", runtime_config.config_dir) config_dict = None basic_setup_success = False safe_mode = runtime_config.safe_mode if not safe_mode: await hass.async_add_executor_job(conf_util.process_ha_config_upgrade, hass) try: config_dict = await conf_util.async_hass_config_yaml(hass) except HomeAssistantError as err: _LOGGER.error( "Failed to parse configuration.yaml: %s. Activating safe mode", err, ) else: if not is_virtual_env(): await async_mount_local_lib_path(runtime_config.config_dir) basic_setup_success = ( await async_from_config_dict(config_dict, hass) is not None ) if config_dict is None: safe_mode = True elif not basic_setup_success: _LOGGER.warning("Unable to set up core integrations. Activating safe mode") safe_mode = True elif ( "frontend" in hass.data.get(DATA_SETUP, {}) and "frontend" not in hass.config.components ): _LOGGER.warning("Detected that frontend did not load. Activating safe mode") # Ask integrations to shut down. It's messy but we can't # do a clean stop without knowing what is broken with contextlib.suppress(asyncio.TimeoutError): async with hass.timeout.async_timeout(10): await hass.async_stop() safe_mode = True old_config = hass.config hass = core.HomeAssistant() hass.config.skip_pip = old_config.skip_pip hass.config.internal_url = old_config.internal_url hass.config.external_url = old_config.external_url hass.config.config_dir = old_config.config_dir if safe_mode: _LOGGER.info("Starting in safe mode") hass.config.safe_mode = True http_conf = (await http.async_get_last_config(hass)) or {} await async_from_config_dict( {"safe_mode": {}, "http": http_conf}, hass, ) if runtime_config.open_ui: hass.add_job(open_hass_ui, hass) return hass def open_hass_ui(hass: core.HomeAssistant) -> None: """Open the UI.""" import webbrowser # pylint: disable=import-outside-toplevel if hass.config.api is None or "frontend" not in hass.config.components: _LOGGER.warning("Cannot launch the UI because frontend not loaded") return scheme = "https" if hass.config.api.use_ssl else "http" url = str( yarl.URL.build(scheme=scheme, host="127.0.0.1", port=hass.config.api.port) ) if not webbrowser.open(url): _LOGGER.warning( "Unable to open the Home Assistant UI in a browser. Open it yourself at %s", url, ) async def async_from_config_dict( config: ConfigType, hass: core.HomeAssistant ) -> core.HomeAssistant | None: """Try to configure Home Assistant from a configuration dictionary. Dynamically loads required components and its dependencies. This method is a coroutine. """ start = monotonic() hass.config_entries = config_entries.ConfigEntries(hass, config) await hass.config_entries.async_initialize() # Set up core. _LOGGER.debug("Setting up %s", CORE_INTEGRATIONS) if not all( await asyncio.gather( *( async_setup_component(hass, domain, config) for domain in CORE_INTEGRATIONS ) ) ): _LOGGER.error("Home Assistant core failed to initialize. ") return None _LOGGER.debug("Home Assistant core initialized") core_config = config.get(core.DOMAIN, {}) try: await conf_util.async_process_ha_core_config(hass, core_config) except vol.Invalid as config_err: conf_util.async_log_exception(config_err, "homeassistant", core_config, hass) return None except HomeAssistantError: _LOGGER.error( "Home Assistant core failed to initialize. " "Further initialization aborted" ) return None await _async_set_up_integrations(hass, config) stop = monotonic() _LOGGER.info("Home Assistant initialized in %.2fs", stop - start) if REQUIRED_NEXT_PYTHON_DATE and sys.version_info[:3] < REQUIRED_NEXT_PYTHON_VER: msg = ( "Support for the running Python version " f"{'.'.join(str(x) for x in sys.version_info[:3])} is deprecated and will " f"be removed in the first release after {REQUIRED_NEXT_PYTHON_DATE}. " "Please upgrade Python to " f"{'.'.join(str(x) for x in REQUIRED_NEXT_PYTHON_VER)} or " "higher." ) _LOGGER.warning(msg) hass.components.persistent_notification.async_create( msg, "Python version", "python_version" ) return hass @core.callback def async_enable_logging( hass: core.HomeAssistant, verbose: bool = False, log_rotate_days: int | None = None, log_file: str | None = None, log_no_color: bool = False, ) -> None: """Set up the logging. This method must be run in the event loop. """ fmt = "%(asctime)s %(levelname)s (%(threadName)s) [%(name)s] %(message)s" datefmt = "%Y-%m-%d %H:%M:%S" if not log_no_color: try: # pylint: disable=import-outside-toplevel from colorlog import ColoredFormatter # basicConfig must be called after importing colorlog in order to # ensure that the handlers it sets up wraps the correct streams. logging.basicConfig(level=logging.INFO) colorfmt = f"%(log_color)s{fmt}%(reset)s" logging.getLogger().handlers[0].setFormatter( ColoredFormatter( colorfmt, datefmt=datefmt, reset=True, log_colors={ "DEBUG": "cyan", "INFO": "green", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "red", }, ) ) except ImportError: pass # If the above initialization failed for any reason, setup the default # formatting. If the above succeeds, this will result in a no-op. logging.basicConfig(format=fmt, datefmt=datefmt, level=logging.INFO) # Suppress overly verbose logs from libraries that aren't helpful logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("aiohttp.access").setLevel(logging.WARNING) sys.excepthook = lambda *args: logging.getLogger(None).exception( "Uncaught exception", exc_info=args # type: ignore ) threading.excepthook = lambda args: logging.getLogger(None).exception( "Uncaught thread exception", exc_info=(args.exc_type, args.exc_value, args.exc_traceback), # type: ignore[arg-type] ) # Log errors to a file if we have write access to file or config dir if log_file is None: err_log_path = hass.config.path(ERROR_LOG_FILENAME) else: err_log_path = os.path.abspath(log_file) err_path_exists = os.path.isfile(err_log_path) err_dir = os.path.dirname(err_log_path) # Check if we can write to the error log if it exists or that # we can create files in the containing directory if not. if (err_path_exists and os.access(err_log_path, os.W_OK)) or ( not err_path_exists and os.access(err_dir, os.W_OK) ): if log_rotate_days: err_handler: logging.FileHandler = ( logging.handlers.TimedRotatingFileHandler( err_log_path, when="midnight", backupCount=log_rotate_days ) ) else: err_handler = logging.FileHandler(err_log_path, mode="w", delay=True) err_handler.setLevel(logging.INFO if verbose else logging.WARNING) err_handler.setFormatter(logging.Formatter(fmt, datefmt=datefmt)) logger = logging.getLogger("") logger.addHandler(err_handler) logger.setLevel(logging.INFO if verbose else logging.WARNING) # Save the log file location for access by other components. hass.data[DATA_LOGGING] = err_log_path else: _LOGGER.error("Unable to set up error log %s (access denied)", err_log_path) async_activate_log_queue_handler(hass) async def async_mount_local_lib_path(config_dir: str) -> str: """Add local library to Python Path. This function is a coroutine. """ deps_dir = os.path.join(config_dir, "deps") lib_dir = await async_get_user_site(deps_dir) if lib_dir not in sys.path: sys.path.insert(0, lib_dir) return deps_dir @core.callback def _get_domains(hass: core.HomeAssistant, config: dict[str, Any]) -> set[str]: """Get domains of components to set up.""" # Filter out the repeating and common config section [homeassistant] domains = {key.split(" ")[0] for key in config if key != core.DOMAIN} # Add config entry domains if not hass.config.safe_mode: domains.update(hass.config_entries.async_domains()) # Make sure the Hass.io component is loaded if "HASSIO" in os.environ: domains.add("hassio") return domains async def _async_watch_pending_setups(hass: core.HomeAssistant) -> None: """Periodic log of setups that are pending for longer than LOG_SLOW_STARTUP_INTERVAL.""" loop_count = 0 setup_started: dict[str, datetime] = hass.data[DATA_SETUP_STARTED] while True: now = dt_util.utcnow() remaining_with_setup_started = { domain: (now - setup_started[domain]).total_seconds() for domain in setup_started } _LOGGER.debug("Integration remaining: %s", remaining_with_setup_started) async_dispatcher_send( hass, SIGNAL_BOOTSTRAP_INTEGRATONS, remaining_with_setup_started ) await asyncio.sleep(SLOW_STARTUP_CHECK_INTERVAL) loop_count += SLOW_STARTUP_CHECK_INTERVAL if loop_count >= LOG_SLOW_STARTUP_INTERVAL and setup_started: _LOGGER.warning( "Waiting on integrations to complete setup: %s", ", ".join(setup_started), ) loop_count = 0 _LOGGER.debug("Running timeout Zones: %s", hass.timeout.zones) async def async_setup_multi_components( hass: core.HomeAssistant, domains: set[str], config: dict[str, Any], ) -> None: """Set up multiple domains. Log on failure.""" futures = { domain: hass.async_create_task(async_setup_component(hass, domain, config)) for domain in domains } await asyncio.wait(futures.values()) errors = [domain for domain in domains if futures[domain].exception()] for domain in errors: exception = futures[domain].exception() assert exception is not None _LOGGER.error( "Error setting up integration %s - received exception", domain, exc_info=(type(exception), exception, exception.__traceback__), ) async def _async_set_up_integrations( hass: core.HomeAssistant, config: dict[str, Any] ) -> None: """Set up all the integrations.""" hass.data[DATA_SETUP_STARTED] = {} setup_time = hass.data[DATA_SETUP_TIME] = {} watch_task = asyncio.create_task(_async_watch_pending_setups(hass)) domains_to_setup = _get_domains(hass, config) # Resolve all dependencies so we know all integrations # that will have to be loaded and start rightaway integration_cache: dict[str, loader.Integration] = {} to_resolve = domains_to_setup while to_resolve: old_to_resolve = to_resolve to_resolve = set() integrations_to_process = [ int_or_exc for int_or_exc in await gather_with_concurrency( loader.MAX_LOAD_CONCURRENTLY, *( loader.async_get_integration(hass, domain) for domain in old_to_resolve ), return_exceptions=True, ) if isinstance(int_or_exc, loader.Integration) ] resolve_dependencies_tasks = [ itg.resolve_dependencies() for itg in integrations_to_process if not itg.all_dependencies_resolved ] if resolve_dependencies_tasks: await asyncio.gather(*resolve_dependencies_tasks) for itg in integrations_to_process: integration_cache[itg.domain] = itg for dep in itg.all_dependencies: if dep in domains_to_setup: continue domains_to_setup.add(dep) to_resolve.add(dep) _LOGGER.info("Domains to be set up: %s", domains_to_setup) logging_domains = domains_to_setup & LOGGING_INTEGRATIONS # Load logging as soon as possible if logging_domains: _LOGGER.info("Setting up logging: %s", logging_domains) await async_setup_multi_components(hass, logging_domains, config) # Start up debuggers. Start these first in case they want to wait. debuggers = domains_to_setup & DEBUGGER_INTEGRATIONS if debuggers: _LOGGER.debug("Setting up debuggers: %s", debuggers) await async_setup_multi_components(hass, debuggers, config) # calculate what components to setup in what stage stage_1_domains = set() # Find all dependencies of any dependency of any stage 1 integration that # we plan on loading and promote them to stage 1 deps_promotion = STAGE_1_INTEGRATIONS while deps_promotion: old_deps_promotion = deps_promotion deps_promotion = set() for domain in old_deps_promotion: if domain not in domains_to_setup or domain in stage_1_domains: continue stage_1_domains.add(domain) dep_itg = integration_cache.get(domain) if dep_itg is None: continue deps_promotion.update(dep_itg.all_dependencies) stage_2_domains = domains_to_setup - logging_domains - debuggers - stage_1_domains # Load the registries await asyncio.gather( device_registry.async_load(hass), entity_registry.async_load(hass), area_registry.async_load(hass), ) # Start setup if stage_1_domains: _LOGGER.info("Setting up stage 1: %s", stage_1_domains) try: async with hass.timeout.async_timeout( STAGE_1_TIMEOUT, cool_down=COOLDOWN_TIME ): await async_setup_multi_components(hass, stage_1_domains, config) except asyncio.TimeoutError: _LOGGER.warning("Setup timed out for stage 1 - moving forward") # Enables after dependencies async_set_domains_to_be_loaded(hass, stage_2_domains) if stage_2_domains: _LOGGER.info("Setting up stage 2: %s", stage_2_domains) try: async with hass.timeout.async_timeout( STAGE_2_TIMEOUT, cool_down=COOLDOWN_TIME ): await async_setup_multi_components(hass, stage_2_domains, config) except asyncio.TimeoutError: _LOGGER.warning("Setup timed out for stage 2 - moving forward") watch_task.cancel() async_dispatcher_send(hass, SIGNAL_BOOTSTRAP_INTEGRATONS, {}) _LOGGER.debug( "Integration setup times: %s", { integration: timedelta.total_seconds() for integration, timedelta in sorted( setup_time.items(), key=lambda item: item[1].total_seconds() # type: ignore ) }, ) # Wrap up startup _LOGGER.debug("Waiting for startup to wrap up") try: async with hass.timeout.async_timeout(WRAP_UP_TIMEOUT, cool_down=COOLDOWN_TIME): await hass.async_block_till_done() except asyncio.TimeoutError: _LOGGER.warning("Setup timed out for bootstrap - moving forward")
33.216263
95
0.660972
5c4e9d61d96d4d3239d3288d5bc5c3d450f820ca
4,512
py
Python
OCR_For_Car_License/chinese_recog.py
qw85639229/Car_License_SVM
c5b0062e84e5000c7940b1d90cc7c63e52afed21
[ "MIT" ]
1
2020-04-20T07:56:07.000Z
2020-04-20T07:56:07.000Z
OCR_For_Car_License/chinese_recog.py
qw85639229/Car_License_SVM
c5b0062e84e5000c7940b1d90cc7c63e52afed21
[ "MIT" ]
null
null
null
OCR_For_Car_License/chinese_recog.py
qw85639229/Car_License_SVM
c5b0062e84e5000c7940b1d90cc7c63e52afed21
[ "MIT" ]
null
null
null
import cv2 import os import numpy as np test_root = './data/test_chinese/' test_img_path = os.listdir(test_root) template_size = (100, 100) def calculate_similarity(template, image): shape1 = template.shape shape2 = image.shape if shape1 != shape2: image = cv2.resize(image, template_size) template = np.reshape(template, (-1)) / 255. image = np.reshape(image, (-1)) / 255. sim = np.sum(template * image) / (np.sqrt(np.sum(template * template)) * np.sqrt(np.sum(image * image))) return sim def calculate_similarity2(template, image): shape1 = template.shape shape2 = image.shape if shape1 != shape2: image = cv2.resize(image, template_size) template = np.reshape(template, (-1)) / 255. image = np.reshape(image, (-1)) / 255. bool_template = template.astype(np.bool) bool_image = image.astype(np.bool) imageV = np.bitwise_and(bool_template, bool_image) imageX = np.bitwise_xor(imageV, bool_image) imageW = np.bitwise_xor(imageV, bool_template) T = np.sum(template) U = np.sum(image) V = np.sum(imageV) X = np.sum(imageX) W = np.sum(imageW) TUV = (T + U + V) / 3 sim = V / (W * X * np.sqrt(((T-TUV)**2 + (U-TUV)**2 + (V-TUV)**2)/2) / T / U) return sim template_imgs = [] template_root = './data/chinese_template_process' templates = os.listdir(template_root) chinese_chars = [x.split('.')[0] for x in templates] for path in test_img_path: raw_img = cv2.imread(os.path.join(test_root, path)) grey_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2GRAY) otsu_thres, otsu_img = cv2.threshold(grey_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) black = np.sum(np.where(otsu_img == 0)) white = np.sum(np.where(otsu_img == 255)) if black < white: otsu_img = 255 - otsu_img otsu_img_array = np.array(otsu_img) h_histogram = np.sum(otsu_img_array, axis=1) his_h_thres = np.max(h_histogram) / 50 start, end = None, None for i in range(0, len(h_histogram)): if h_histogram[i] >= his_h_thres and start is None: start = i if h_histogram[i] < his_h_thres and start is not None: if i - start > len(h_histogram) / 2: end = i break else: start = None if i == len(h_histogram) - 1 and h_histogram[i] >= his_h_thres and start is not None: end = i cropped_otsu_img = otsu_img[start:end, :] v_histogram = np.sum(cropped_otsu_img, axis=0) his_v_thres = np.max(v_histogram) / 50 # index = [i for i in range(int(v_histogram.shape[0]))] # plt.bar(index, v_histogram) # plt.show() chars = list() bin_v_histogram = [1 if val > his_v_thres else 0 for val in v_histogram] tmp = 0 flag = 0 for i in range(len(bin_v_histogram) - 1): if bin_v_histogram[i + 1] > bin_v_histogram[i] and flag == 0: tmp = i flag = 1 if bin_v_histogram[i + 1] < bin_v_histogram[i] and i - tmp > (end - start) * 3 / 5: chars.append((tmp, i)) flag = 0 print('Totoal %d characters' % len(chars)) char_imgs = [] for char in chars: char_imgs.append(cropped_otsu_img[:, char[0]:char[1]]) res_chars = [] for img in char_imgs: char_h_histogram = np.sum(img, axis=1) char_his_h_thres = 1 start_ = None for i in range(0, len(char_h_histogram)): if char_h_histogram[i] >= char_his_h_thres and start_ is None: start_ = i break end_ = None for i in range(len(char_h_histogram) - 1, -1, -1): if char_h_histogram[i] >= char_his_h_thres and end_ is None: end_ = i break cropped_img = img[start_:end_, :] # cv2.imshow('img', cropped_img) # cv2.waitKey(0) similarities = [] for temp in templates: temp_img = cv2.imread(os.path.join(template_root, temp)) temp_img = cv2.cvtColor(temp_img, cv2.COLOR_BGR2GRAY) otsu_temp_thres, otsu_temp_img = cv2.threshold(temp_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) similarities.append(calculate_similarity2(otsu_temp_img, cropped_img)) similarities = np.array(similarities) index = int(np.argmax(similarities)) res_chars.append(chinese_chars[index]) print(''.join(res_chars)) cv2.imshow('raw_image', raw_img) cv2.waitKey(500)
30.693878
113
0.609043