hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
d7c4301e9525afa3df161c4bb149791dda0f63f5
7,781
py
Python
flask_app/helpers/preprocess_text.py
julien-bonnefoy/website
a00d70697cc3a367dcdb32ca62ed29493029cf91
[ "Apache-2.0" ]
null
null
null
flask_app/helpers/preprocess_text.py
julien-bonnefoy/website
a00d70697cc3a367dcdb32ca62ed29493029cf91
[ "Apache-2.0" ]
null
null
null
flask_app/helpers/preprocess_text.py
julien-bonnefoy/website
a00d70697cc3a367dcdb32ca62ed29493029cf91
[ "Apache-2.0" ]
null
null
null
import pandas as pd from tqdm import trange from IPython.display import display, HTML from sklearn.feature_extraction.text import CountVectorizer from tqdm.notebook import tqdm def drop_na_values(df, subset=None): n_rows_before = df.shape[0] for column in subset: if column is None: print(f'no column specified...drop NA global') df.dropna(inplace=True) else: print(f'dropping NA in “{column}“') df.dropna(subset=[column], inplace=True) print('\tInitial number of rows: {}'.format(n_rows_before)) n_rows_after = df.shape[0] print('\tnumber of NA rows removed: {}'.format(n_rows_before - n_rows_after)) print('\tnumber of rows after drop NA : {}'.format(n_rows_after)) df.reset_index(drop=True, inplace=True) print('\tindex reset\n') return df def drop_duplicate_values(df, subset=None, printme=False): n_rows_before = df.shape[0] if subset is None: if printme: print(f'no column specified...drop duplicates') df.drop_duplicates(inplace=True) else: if printme: print(f'dropping duplicates in “{subset}“') df.drop_duplicates(subset=subset, inplace=True) if printme: print('\tInitial number of rows: {}'.format(n_rows_before)) n_rows_after = df.shape[0] if printme: print('\tnumber of duplicates NA rows removed: {}'.format(n_rows_before - n_rows_after)) print('\tnumber of rows after drop duplicates : {}'.format(n_rows_after)) df.reset_index(drop=True, inplace=True) if printme: print('\tindex reset\n') return df def detect_language(df, column): import langid df['detected_lang'] = pd.Series(dtype=str) for i in trange(len(df)): text = df[column][i] detected_lang = langid.classify(text)[0] df['detected_lang'][i] = detected_lang return df[f'{column}'] def remove_not_description(df, column): import re exp_5 = re.compile("[Dd]emande de formation n°") exp_5_list = [] for index, text in enumerate(df[column]): if exp_5.search(text): exp_5_list.append(index) print(f'Number of rows "Demande de formation n°" : {len(exp_5_list)}') df = df.iloc[[index for index in range(df.shape[0]) if index not in exp_5_list]] df.reset_index(drop=True, inplace=True) exp_6 = re.compile("[Rr][ée]gularisation\s+[cfC]") exp_6_list = [] for index, text in enumerate(df[column]): if exp_6.search(text): exp_6_list.append(index) print(f'Number of rows "Régularisation CPF" : {len(exp_6_list)}') df = df.iloc[[index for index in range(df.shape[0]) if index not in exp_6_list]] df.reset_index(drop=True, inplace=True) return df def remove_accents(text): import re # remove accents text = re.sub(r'[àâ]', r'a', str(text)) text = re.sub(r'[ÀÂ]', r'A', str(text)) text = re.sub(r'[éèêë]', r'e', str(text)) text = re.sub(r'[ÉÈÊ]', r'E', str(text)) text = re.sub(r'[îï]', r'i', str(text)) text = re.sub(r'[Ï]', r'I', str(text)) text = re.sub(r'[ô]', r'o', str(text)) text = re.sub(r'[Ô]', r'O', str(text)) text = re.sub(r'[ûùü]', r'u', str(text)) text = re.sub(r'[œ]', r'oe', str(text)) text = re.sub(r'[ç]', r'c', str(text)) return text def space_lower_upper(df, column): import re df[column] = [re.sub(r'([a-z])([A-Z])', r'\g<1> \g<2>', text) for text in df[column]] return df def space_symbol_letter(df, column): import re df[column] = [re.sub(r'([a-zA-Zœç0-9])([^a-zA-Z\s0-9])', r'\g<1> \g<2>', text) for text in df[column]] df[column] = [re.sub(r'([^a-zA-Z\s0-9])([a-zA-Zœç0-9])', r'\g<1> \g<2>', text) for text in df[column]] return df def space_digit_letter(df, column): import re df[column] = [re.sub(r'([a-zA-Z])([0-9])', r'\g<1> \g<2>', text) for text in df[column]] df[column] = [re.sub(r'([0-9])([a-zA-Z])', r'\g<1> \g<2>', text) for text in df[column]] return df def get_top_n_words(corpus, stopwords = [], n=15): vec = CountVectorizer(lowercase=False, ngram_range=(1, 1), stop_words=stopwords).fit(corpus) bag_of_words = vec.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] def get_top_n2_words(corpus, stopwords = [], n=15): vec = CountVectorizer(lowercase=False, ngram_range=(2, 2), stop_words=stopwords).fit(corpus) bag_of_words = vec.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] def get_stop_words(stop_file_path, print=False): """load stop words """ with open(stop_file_path, 'r', encoding="utf-8") as f: stopwords = f.readlines() stop_set = set(m.strip() for m in stopwords) # return frozenset(stop_set) if print: display(HTML("<h5>LOADED</h5>")) display(HTML(f'<p>number of stopwords : <span style="fontSize: 18px; font-weight: bolder; display: inline; line-height: 24px; backgroundColor: #ff7900; color: #fff;">{len(stop_set)}</span></p>')) return set(stop_set) def add_stopwords(STOPWORDS, ADDITIONAL_STOPWORDS): ''' :param STOPWORDS: list of strings :param ADDITIONAL_STOPWORDS: other list of strings :return: a set of words ''' for word in ADDITIONAL_STOPWORDS: STOPWORDS.add(word) STOPWORDS = list(STOPWORDS) STOPWORDS.sort() STOPWORDS = set(STOPWORDS) return STOPWORDS def sort_coo(coo_matrix): tuples = zip(coo_matrix.col, coo_matrix.data) return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True) def extract_topn_from_vector(feature_names, sorted_items, topn=10): """get the feature names and tf-idf score of top n items""" # use only topn items from vector sorted_items = sorted_items[:topn] score_vals = [] feature_vals = [] # word index and corresponding tf-idf score for idx, score in sorted_items: # keep track of feature name and its corresponding score score_vals.append(round(score, 3)) feature_vals.append(feature_names[idx]) # create a tuples of feature,score # results = zip(feature_vals,score_vals) results = {} for idx in range(len(feature_vals)): results[feature_vals[idx]] = score_vals[idx] return results def format_topics_sentences(ldamodel, corpus, texts): # Init output sentences_topics = pd.DataFrame() # Get main topic in each documentpickle for i, row in tqdm(enumerate(ldamodel[corpus])): row = sorted(row, key=lambda x: (x[1]), reverse=True) # Get the Dominant topic, Perc Contribution and Keywords for each document for j, (topic_num, prop_topic) in enumerate(row): if j == 0: # => dominant topic wp = ldamodel.show_topic(topic_num) topic_keywords = ", ".join([word for word, prop in wp]) sentences_topics = sentences_topics.append(pd.Series([str(int(topic_num)), round(prop_topic, 4), topic_keywords]), ignore_index=True) else: break sentences_topics.columns = ['dominant_topic_id', 'topic_contribution_in_document', 'topic_keywords'] # Add original text to the end of the output contents = pd.Series(texts) sentences_topics = pd.concat([sentences_topics, contents], axis=1) return sentences_topics
32.693277
208
0.63488
f13d79ed30319f0877f9a5a62f67ce60849a359b
2,733
py
Python
test/acceptance/e2e/delete_node/features/terrain.py
jesuspg/fiware-sdc
1ceb1a4c2f9b0d9ec2c79155f960d5100a35f17d
[ "Apache-2.0" ]
null
null
null
test/acceptance/e2e/delete_node/features/terrain.py
jesuspg/fiware-sdc
1ceb1a4c2f9b0d9ec2c79155f960d5100a35f17d
[ "Apache-2.0" ]
null
null
null
test/acceptance/e2e/delete_node/features/terrain.py
jesuspg/fiware-sdc
1ceb1a4c2f9b0d9ec2c79155f960d5100a35f17d
[ "Apache-2.0" ]
1
2018-03-05T23:30:48.000Z
2018-03-05T23:30:48.000Z
# -*- coding: utf-8 -*- # Copyright 2014 Telefonica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with opensource@tid.es __author__ = 'jfernandez' from lettuce import world, before, after from commons.terrain_steps import setup_feature, setup_scenario, setup_outline, tear_down from commons.provisioning_steps import ProvisioningSteps from commons.rest_utils import RestUtils from commons.fabric_utils import execute_chef_client_stop, execute_puppet_agent_stop, \ remove_chef_client_cert_file, remove_puppet_agent_cert_file, remove_all_generated_test_files, \ remove_puppet_agent_catalog provisioning_steps = ProvisioningSteps() rest_utils = RestUtils() @before.each_feature def before_each_feature(feature): """ Hook: Will be executed before each feature. Configures global vars and gets token from keystone """ setup_feature(feature) @before.each_scenario def before_each_scenario(scenario): """ Hook: Will be executed before each Scenario. Setup Scenario and initialize World vars """ setup_scenario(scenario) world.agents_running = list() world.list_of_installed_products = list() @after.each_scenario def after_each_scenario(scenario): """ Hook: Will be executed after each Scenario. Removes Test data and cleans the system. Kills all agents running in the VM """ if world.node_name is not None: execute_chef_client_stop() execute_puppet_agent_stop() remove_chef_client_cert_file() remove_puppet_agent_cert_file() remove_all_generated_test_files() remove_puppet_agent_catalog() rest_utils.delete_node(world.headers, world.tenant_id, world.node_name) @before.outline def before_outline(param1, param2, param3, param4): """ Hook: Will be executed before each Scenario Outline. Same behaviour as 'before_each_scenario'""" setup_outline(param1, param2, param3, param4) @after.all def after_all(scenario): """ Hook: Will be executed after all Scenarios and Features. Removes Feature data and cleans the system """ tear_down(scenario)
35.493506
112
0.765459
6ed4132e5f12bdfc28f8e532278f3ee257f4c3ef
688
py
Python
Etap 3/Logia08/Zad4.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 3/Logia08/Zad4.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 3/Logia08/Zad4.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
def anagramy(lista): wynik = [] slista = set(lista) processed = [] for slowo in lista: if slowo in processed: continue slowa = an(slowo) grupa = list(slowa & slista) wynik.append(grupa) processed += grupa return wynik def an(slowo): war.clear() wariacjabezpowt(slowo, len(slowo), "") ret = war return set(ret) war = [] def wariacjabezpowt(zrodlo, n, wariacja): if n == 0: war.append(wariacja) return for litera in zrodlo: if zrodlo.count(litera) > wariacja.count(litera): wariacjabezpowt(zrodlo, n - 1, wariacja + litera) return
20.235294
61
0.556686
8b8eb4b6e39df0b1e8ba8b7ef51c9d2dc7e5212c
22,556
py
Python
catalyst/pipeline/engine.py
nongnoobjung/catalyst
94583c2684ca5e43b3a21296789dd21378be66aa
[ "Apache-2.0" ]
1
2018-01-25T23:49:06.000Z
2018-01-25T23:49:06.000Z
catalyst/pipeline/engine.py
nongnoobjung/catalyst
94583c2684ca5e43b3a21296789dd21378be66aa
[ "Apache-2.0" ]
null
null
null
catalyst/pipeline/engine.py
nongnoobjung/catalyst
94583c2684ca5e43b3a21296789dd21378be66aa
[ "Apache-2.0" ]
null
null
null
""" Compute Engine definitions for the Pipeline API. """ from abc import ( ABCMeta, abstractmethod, ) from uuid import uuid4 from six import ( iteritems, with_metaclass, ) from numpy import array from pandas import DataFrame, MultiIndex from toolz import groupby, juxt from toolz.curried.operator import getitem from catalyst.lib.adjusted_array import ensure_adjusted_array, ensure_ndarray from catalyst.errors import NoFurtherDataError from catalyst.utils.numpy_utils import ( as_column, repeat_first_axis, repeat_last_axis, ) from catalyst.utils.pandas_utils import explode from .term import AssetExists, InputDates, LoadableTerm from catalyst.utils.date_utils import compute_date_range_chunks from catalyst.utils.pandas_utils import categorical_df_concat from catalyst.utils.sharedoc import copydoc class PipelineEngine(with_metaclass(ABCMeta)): @abstractmethod def run_pipeline(self, pipeline, start_date, end_date): """ Compute values for ``pipeline`` between ``start_date`` and ``end_date``. Returns a DataFrame with a MultiIndex of (date, asset) pairs. Parameters ---------- pipeline : catalyst.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`catalyst.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. """ raise NotImplementedError("run_pipeline") @abstractmethod def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): """ Compute values for `pipeline` in number of days equal to `chunksize` and return stitched up result. Computing in chunks is useful for pipelines computed over a long period of time. Parameters ---------- pipeline : Pipeline The pipeline to run. start_date : pd.Timestamp The start date to run the pipeline for. end_date : pd.Timestamp The end date to run the pipeline for. chunksize : int or None The number of days to execute at a time. If None, then results will be calculated for entire date range at once. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`catalyst.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`catalyst.pipeline.engine.PipelineEngine.run_pipeline` """ raise NotImplementedError("run_chunked_pipeline") class NoEngineRegistered(Exception): """ Raised if a user tries to call pipeline_output in an algorithm that hasn't set up a pipeline engine. """ class ExplodingPipelineEngine(PipelineEngine): """ A PipelineEngine that doesn't do anything. """ def run_pipeline(self, pipeline, start_date, end_date): raise NoEngineRegistered( "Attempted to run a pipeline but no pipeline " "resources were registered." ) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): raise NoEngineRegistered( "Attempted to run a chunked pipeline but no pipeline " "resources were registered." ) def default_populate_initial_workspace(initial_workspace, root_mask_term, execution_plan, dates, assets): """The default implementation for ``populate_initial_workspace``. This function returns the ``initial_workspace`` argument without making any modifications. Parameters ---------- initial_workspace : dict[array-like] The initial workspace before we have populated it with any cached terms. root_mask_term : Term The root mask term, normally ``AssetExists()``. This is needed to compute the dates for individual terms. execution_plan : ExecutionPlan The execution plan for the pipeline being run. dates : pd.DatetimeIndex All of the dates being requested in this pipeline run including the extra dates for look back windows. assets : pd.Int64Index All of the assets that exist for the window being computed. Returns ------- populated_initial_workspace : dict[term, array-like] The workspace to begin computations with. """ return initial_workspace class SimplePipelineEngine(PipelineEngine): """ PipelineEngine class that computes each term independently. Parameters ---------- get_loader : callable A function that is given a loadable term and returns a PipelineLoader to use to retrieve raw data for that term. calendar : DatetimeIndex Array of dates to consider as trading days when computing a range between a fixed start and end. asset_finder : catalyst.assets.AssetFinder An AssetFinder instance. We depend on the AssetFinder to determine which assets are in the top-level universe at any point in time. populate_initial_workspace : callable, optional A function which will be used to populate the initial workspace when computing a pipeline. See :func:`catalyst.pipeline.engine.default_populate_initial_workspace` for more info. See Also -------- :func:`catalyst.pipeline.engine.default_populate_initial_workspace` """ __slots__ = ( '_get_loader', '_calendar', '_finder', '_root_mask_term', '_root_mask_dates_term', '_populate_initial_workspace', ) def __init__(self, get_loader, calendar, asset_finder, populate_initial_workspace=None): self._get_loader = get_loader self._calendar = calendar self._finder = asset_finder self._root_mask_term = AssetExists() self._root_mask_dates_term = InputDates() self._populate_initial_workspace = ( populate_initial_workspace or default_populate_initial_workspace ) def run_pipeline(self, pipeline, start_date, end_date): """ Compute a pipeline. The algorithm implemented here can be broken down into the following stages: 0. Build a dependency graph of all terms in `pipeline`. Topologically sort the graph to determine an order in which we can compute the terms. 1. Ask our AssetFinder for a "lifetimes matrix", which should contain, for each date between start_date and end_date, a boolean value for each known asset indicating whether the asset existed on that date. 2. Compute each term in the dependency order determined in (0), caching the results in a a dictionary to that they can be fed into future terms. 3. For each date, determine the number of assets passing pipeline.screen. The sum, N, of all these values is the total number of rows in our output frame, so we pre-allocate an output array of length N for each factor in `terms`. 4. Fill in the arrays allocated in (3) by copying computed values from our output cache into the corresponding rows. 5. Stick the values computed in (4) into a DataFrame and return it. Step 0 is performed by ``Pipeline.to_graph``. Step 1 is performed in ``SimplePipelineEngine._compute_root_mask``. Step 2 is performed in ``SimplePipelineEngine.compute_chunk``. Steps 3, 4, and 5 are performed in ``SimplePiplineEngine._to_narrow``. Parameters ---------- pipeline : catalyst.pipeline.Pipeline The pipeline to run. start_date : pd.Timestamp Start date of the computed matrix. end_date : pd.Timestamp End date of the computed matrix. Returns ------- result : pd.DataFrame A frame of computed results. The ``result`` columns correspond to the entries of `pipeline.columns`, which should be a dictionary mapping strings to instances of :class:`catalyst.pipeline.term.Term`. For each date between ``start_date`` and ``end_date``, ``result`` will contain a row for each asset that passed `pipeline.screen`. A screen of ``None`` indicates that a row should be returned for each asset that existed each day. See Also -------- :meth:`catalyst.pipeline.engine.PipelineEngine.run_pipeline` :meth:`catalyst.pipeline.engine.PipelineEngine.run_chunked_pipeline` """ if end_date < start_date: raise ValueError( "start_date must be before or equal to end_date \n" "start_date=%s, end_date=%s" % (start_date, end_date) ) screen_name = uuid4().hex graph = pipeline.to_execution_plan( screen_name, self._root_mask_term, self._calendar, start_date, end_date, ) extra_rows = graph.extra_rows[self._root_mask_term] root_mask = self._compute_root_mask(start_date, end_date, extra_rows) dates, assets, root_mask_values = explode(root_mask) initial_workspace = self._populate_initial_workspace( { self._root_mask_term: root_mask_values, self._root_mask_dates_term: as_column(dates.values) }, self._root_mask_term, graph, dates, assets, ) results = self.compute_chunk( graph, dates, assets, initial_workspace, ) return self._to_narrow( graph.outputs, results, results.pop(screen_name), dates[extra_rows:], assets, ) @copydoc(PipelineEngine.run_chunked_pipeline) def run_chunked_pipeline(self, pipeline, start_date, end_date, chunksize): ranges = compute_date_range_chunks( self._calendar, start_date, end_date, chunksize, ) chunks = [self.run_pipeline(pipeline, s, e) for s, e in ranges] return categorical_df_concat(chunks, inplace=True) def _compute_root_mask(self, start_date, end_date, extra_rows): """ Compute a lifetimes matrix from our AssetFinder, then drop columns that didn't exist at all during the query dates. Parameters ---------- start_date : pd.Timestamp Base start date for the matrix. end_date : pd.Timestamp End date for the matrix. extra_rows : int Number of extra rows to compute before `start_date`. Extra rows are needed by terms like moving averages that require a trailing window of data. Returns ------- lifetimes : pd.DataFrame Frame of dtype `bool` containing dates from `extra_rows` days before `start_date`, continuing through to `end_date`. The returned frame contains as columns all assets in our AssetFinder that existed for at least one day between `start_date` and `end_date`. """ calendar = self._calendar finder = self._finder start_idx, end_idx = self._calendar.slice_locs(start_date, end_date) if start_idx < extra_rows: raise NoFurtherDataError.from_lookback_window( initial_message="Insufficient data to compute Pipeline:", first_date=calendar[0], lookback_start=start_date, lookback_length=extra_rows, ) # Build lifetimes matrix reaching back to `extra_rows` days before # `start_date.` lifetimes = finder.lifetimes( calendar[start_idx - extra_rows:end_idx], include_start_date=False ) assert lifetimes.index[extra_rows] == start_date assert lifetimes.index[-1] == end_date if not lifetimes.columns.unique: columns = lifetimes.columns duplicated = columns[columns.duplicated()].unique() raise AssertionError("Duplicated sids: %d" % duplicated) # Filter out columns that didn't exist between the requested start and # end dates. existed = lifetimes.iloc[extra_rows:].any() ret = lifetimes.loc[:, existed] shape = ret.shape assert shape[0] * shape[1] != 0, 'root mask cannot be empty' return ret @staticmethod def _inputs_for_term(term, workspace, graph): """ Compute inputs for the given term. This is mostly complicated by the fact that for each input we store as many rows as will be necessary to serve **any** computation requiring that input. """ offsets = graph.offset out = [] if term.windowed: # If term is windowed, then all input data should be instances of # AdjustedArray. for input_ in term.inputs: adjusted_array = ensure_adjusted_array( workspace[input_], input_.missing_value, ) out.append( adjusted_array.traverse( window_length=term.window_length, offset=offsets[term, input_], ) ) else: # If term is not windowed, input_data may be an AdjustedArray or # np.ndarray. Coerce the former to the latter. for input_ in term.inputs: input_data = ensure_ndarray(workspace[input_]) offset = offsets[term, input_] # OPTIMIZATION: Don't make a copy by doing input_data[0:] if # offset is zero. if offset: input_data = input_data[offset:] out.append(input_data) return out def get_loader(self, term): return self._get_loader(term) def compute_chunk(self, graph, dates, assets, initial_workspace): """ Compute the Pipeline terms in the graph for the requested start and end dates. Parameters ---------- graph : catalyst.pipeline.graph.TermGraph dates : pd.DatetimeIndex Row labels for our root mask. assets : pd.Int64Index Column labels for our root mask. initial_workspace : dict Map from term -> output. Must contain at least entry for `self._root_mask_term` whose shape is `(len(dates), len(assets))`, but may contain additional pre-computed terms for testing or optimization purposes. Returns ------- results : dict Dictionary mapping requested results to outputs. """ self._validate_compute_chunk_params(dates, assets, initial_workspace) get_loader = self.get_loader # Copy the supplied initial workspace so we don't mutate it in place. workspace = initial_workspace.copy() # If loadable terms share the same loader and extra_rows, load them all # together. loader_group_key = juxt(get_loader, getitem(graph.extra_rows)) loader_groups = groupby(loader_group_key, graph.loadable_terms) refcounts = graph.initial_refcounts(workspace) for term in graph.execution_order(refcounts): # `term` may have been supplied in `initial_workspace`, and in the # future we may pre-compute loadable terms coming from the same # dataset. In either case, we will already have an entry for this # term, which we shouldn't re-compute. if term in workspace: continue # Asset labels are always the same, but date labels vary by how # many extra rows are needed. mask, mask_dates = graph.mask_and_dates_for_term( term, self._root_mask_term, workspace, dates, ) if isinstance(term, LoadableTerm): to_load = sorted( loader_groups[loader_group_key(term)], key=lambda t: t.dataset ) loader = get_loader(term) loaded = loader.load_adjusted_array( to_load, mask_dates, assets, mask, ) workspace.update(loaded) else: workspace[term] = term._compute( self._inputs_for_term(term, workspace, graph), mask_dates, assets, mask, ) if term.ndim == 2: assert workspace[term].shape == mask.shape else: assert workspace[term].shape == (mask.shape[0], 1) # Decref dependencies of ``term``, and clear any terms whose # refcounts hit 0. for garbage_term in graph.decref_dependencies(term, refcounts): del workspace[garbage_term] out = {} graph_extra_rows = graph.extra_rows for name, term in iteritems(graph.outputs): # Truncate off extra rows from outputs. out[name] = workspace[term][graph_extra_rows[term]:] return out def _to_narrow(self, terms, data, mask, dates, assets): """ Convert raw computed pipeline results into a DataFrame for public APIs. Parameters ---------- terms : dict[str -> Term] Dict mapping column names to terms. data : dict[str -> ndarray[ndim=2]] Dict mapping column names to computed results for those names. mask : ndarray[bool, ndim=2] Mask array of values to keep. dates : ndarray[datetime64, ndim=1] Row index for arrays `data` and `mask` assets : ndarray[int64, ndim=2] Column index for arrays `data` and `mask` Returns ------- results : pd.DataFrame The indices of `results` are as follows: index : two-tiered MultiIndex of (date, asset). Contains an entry for each (date, asset) pair corresponding to a `True` value in `mask`. columns : Index of str One column per entry in `data`. If mask[date, asset] is True, then result.loc[(date, asset), colname] will contain the value of data[colname][date, asset]. """ if not mask.any(): # Manually handle the empty DataFrame case. This is a workaround # to pandas failing to tz_localize an empty dataframe with a # MultiIndex. It also saves us the work of applying a known-empty # mask to each array. # # Slicing `dates` here to preserve pandas metadata. empty_dates = dates[:0] empty_assets = array([], dtype=object) return DataFrame( data={ name: array([], dtype=arr.dtype) for name, arr in iteritems(data) }, index=MultiIndex.from_arrays([empty_dates, empty_assets]), ) resolved_assets = array(self._finder.retrieve_all(assets)) dates_kept = repeat_last_axis(dates.values, len(assets))[mask] assets_kept = repeat_first_axis(resolved_assets, len(dates))[mask] final_columns = {} for name in data: # Each term that computed an output has its postprocess method # called on the filtered result. # # As of Mon May 2 15:38:47 2016, we only use this to convert # LabelArrays into categoricals. final_columns[name] = terms[name].postprocess(data[name][mask]) return DataFrame( data=final_columns, index=MultiIndex.from_arrays([dates_kept, assets_kept]), ).tz_localize('UTC', level=0) def _validate_compute_chunk_params(self, dates, assets, initial_workspace): """ Verify that the values passed to compute_chunk are well-formed. """ root = self._root_mask_term clsname = type(self).__name__ # Writing this out explicitly so this errors in testing if we change # the name without updating this line. compute_chunk_name = self.compute_chunk.__name__ if root not in initial_workspace: raise AssertionError( "root_mask values not supplied to {cls}.{method}".format( cls=clsname, method=compute_chunk_name, ) ) shape = initial_workspace[root].shape implied_shape = len(dates), len(assets) if shape != implied_shape: raise AssertionError( "root_mask shape is {shape}, but received dates/assets " "imply that shape should be {implied}".format( shape=shape, implied=implied_shape, ) )
36.736156
79
0.600949
da07e1c62cf90ec6316c5e7dc07ebe2e08a980e6
33,766
py
Python
venv/Lib/site-packages/PyInstaller/building/build_main.py
Gabs-Leo/Kay-O.Time.Limiter
5cdc6ebd0a5117478d3bc5d3883098b4a532d671
[ "MIT" ]
6
2021-07-14T03:23:17.000Z
2021-08-07T05:07:21.000Z
PyInstaller/building/build_main.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
null
null
null
PyInstaller/building/build_main.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2005-2021, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- """ Build packages using spec files. NOTE: All global variables, classes and imported modules create API for .spec files. """ import glob import os import pprint import shutil import sys import pkg_resources # Relative imports to PyInstaller modules. from PyInstaller import HOMEPATH, DEFAULT_DISTPATH, DEFAULT_WORKPATH from PyInstaller import compat from PyInstaller import log as logging from PyInstaller.utils.misc import absnormpath, compile_py_files from PyInstaller.compat import is_win, PYDYLIB_NAMES from PyInstaller.depend import bindepend from PyInstaller.depend.analysis import initialize_modgraph from PyInstaller.building.api import PYZ, EXE, COLLECT, MERGE from PyInstaller.building.datastruct import TOC, Target, Tree, _check_guts_eq from PyInstaller.building.splash import Splash from PyInstaller.building.osx import BUNDLE from PyInstaller.building.toc_conversion import DependencyProcessor from PyInstaller.building.utils import \ _check_guts_toc_mtime, format_binaries_and_datas from PyInstaller.depend.utils import \ create_py3_base_library, scan_code_for_ctypes from PyInstaller.archive import pyz_crypto from PyInstaller.utils.misc import \ get_path_to_toplevel_modules, get_unicode_modules, mtime if is_win: from PyInstaller.utils.win32 import winmanifest logger = logging.getLogger(__name__) STRINGTYPE = type('') TUPLETYPE = type((None,)) rthooks = {} # place where the loader modules and initialization scripts live _init_code_path = os.path.join(HOMEPATH, 'PyInstaller', 'loader') IMPORT_TYPES = ['top-level', 'conditional', 'delayed', 'delayed, conditional', 'optional', 'conditional, optional', 'delayed, optional', 'delayed, conditional, optional'] WARNFILE_HEADER = """\ This file lists modules PyInstaller was not able to find. This does not necessarily mean this module is required for running you program. Python and Python 3rd-party packages include a lot of conditional or optional modules. For example the module 'ntpath' only exists on Windows, whereas the module 'posixpath' only exists on Posix systems. Types if import: * top-level: imported at the top-level - look at these first * conditional: imported within an if-statement * delayed: imported from within a function * optional: imported within a try-except-statement IMPORTANT: Do NOT post this list to the issue-tracker. Use it as a basis for yourself tracking down the missing module. Thanks! """ # TODO find better place for function. def setupUPXFlags(): f = compat.getenv("UPX", "") if is_win: # Binaries built with Visual Studio 7.1 require --strip-loadconf # or they won't compress. Configure.py makes sure that UPX is new # enough to support --strip-loadconf. f = "--strip-loadconf " + f # Do not compress any icon, so that additional icons in the executable # can still be externally bound f = "--compress-icons=0 " + f f = "--best " + f compat.setenv("UPX", f) class Analysis(Target): """ Class does analysis of the user's main Python scripts. An Analysis has five outputs, all TOCs (Table of Contents) accessed as attributes of the analysis. scripts The scripts you gave Analysis as input, with any runtime hook scripts prepended. pure The pure Python modules. binaries The extensionmodules and their dependencies. The secondary dependecies are filtered. On Windows files from C:\\Windows are excluded by default. On Linux/Unix only system libraries from /lib or /usr/lib are excluded. datas Data-file dependencies. These are data-file that are found to be needed by modules. They can be anything: plugins, font files, images, translations, etc. zipfiles The zipfiles dependencies (usually .egg files). """ _old_scripts = { absnormpath(os.path.join(HOMEPATH, "support", "_mountzlib.py")), absnormpath(os.path.join(HOMEPATH, "support", "useUnicode.py")), absnormpath(os.path.join(HOMEPATH, "support", "useTK.py")), absnormpath(os.path.join(HOMEPATH, "support", "unpackTK.py")), absnormpath(os.path.join(HOMEPATH, "support", "removeTK.py")) } def __init__(self, scripts, pathex=None, binaries=None, datas=None, hiddenimports=None, hookspath=None, hooksconfig=None, excludes=None, runtime_hooks=None, cipher=None, win_no_prefer_redirects=False, win_private_assemblies=False, noarchive=False): """ scripts A list of scripts specified as file names. pathex An optional list of paths to be searched before sys.path. binaries An optional list of additional binaries (dlls, etc.) to include. datas An optional list of additional data files to include. hiddenimport An optional list of additional (hidden) modules to include. hookspath An optional list of additional paths to search for hooks. (hook-modules). hooksconfig An optional dict of config settings for hooks. (hook-modules). excludes An optional list of module or package names (their Python names, not path names) that will be ignored (as though they were not found). runtime_hooks An optional list of scripts to use as users' runtime hooks. Specified as file names. cipher Add optional instance of the pyz_crypto.PyiBlockCipher class (with a provided key). win_no_prefer_redirects If True, prefers not to follow version redirects when searching for Windows SxS Assemblies. win_private_assemblies If True, changes all bundled Windows SxS Assemblies into Private Assemblies to enforce assembly versions. noarchive If True, don't place source files in a archive, but keep them as individual files. """ super(Analysis, self).__init__() from PyInstaller.config import CONF self.inputs = [] spec_dir = os.path.dirname(CONF['spec']) for script in scripts: # If path is relative, it is relative to the location of .spec file. if not os.path.isabs(script): script = os.path.join(spec_dir, script) if absnormpath(script) in self._old_scripts: logger.warning('Ignoring obsolete auto-added script %s', script) continue # Normalize script path. script = os.path.normpath(script) if not os.path.exists(script): raise SystemExit("script '%s' not found" % script) self.inputs.append(script) # Django hook requires this variable to find the script manage.py. CONF['main_script'] = self.inputs[0] self.pathex = self._extend_pathex(pathex, self.inputs) # Set global config variable 'pathex' to make it available for # PyInstaller.utils.hooks and import hooks. Path extensions for module # search. CONF['pathex'] = self.pathex # Extend sys.path so PyInstaller could find all necessary modules. logger.info('Extending PYTHONPATH with paths\n' + pprint.pformat(self.pathex)) sys.path.extend(self.pathex) # Set global variable to hold assembly binding redirects CONF['binding_redirects'] = [] self.hiddenimports = hiddenimports or [] # Include modules detected when parsing options, like 'codecs' and encodings. self.hiddenimports.extend(CONF['hiddenimports']) self.hookspath = [] # Append directories in `hookspath` (`--additional-hooks-dir`) to # take precedence over those from the entry points. if hookspath: self.hookspath.extend(hookspath) # Add hook directories from PyInstaller entry points. for entry_point in pkg_resources.iter_entry_points( 'pyinstaller40', 'hook-dirs'): self.hookspath += list(entry_point.load()()) self.hooksconfig = {} if hooksconfig: self.hooksconfig.update(hooksconfig) # Custom runtime hook files that should be included and started before # any existing PyInstaller runtime hooks. self.custom_runtime_hooks = runtime_hooks or [] if cipher: logger.info('Will encrypt Python bytecode with key: %s', cipher.key) # Create a Python module which contains the decryption key which will # be used at runtime by pyi_crypto.PyiBlockCipher. pyi_crypto_key_path = os.path.join(CONF['workpath'], 'pyimod00_crypto_key.py') with open(pyi_crypto_key_path, 'w', encoding='utf-8') as f: f.write('# -*- coding: utf-8 -*-\n' 'key = %r\n' % cipher.key) self.hiddenimports.append('tinyaes') self.excludes = excludes or [] self.scripts = TOC() self.pure = TOC() self.binaries = TOC() self.zipfiles = TOC() self.zipped_data = TOC() self.datas = TOC() self.dependencies = TOC() self.binding_redirects = CONF['binding_redirects'] = [] self.win_no_prefer_redirects = win_no_prefer_redirects self.win_private_assemblies = win_private_assemblies self._python_version = sys.version self.noarchive = noarchive self.__postinit__() # TODO create function to convert datas/binaries from 'hook format' to TOC. # Initialise 'binaries' and 'datas' with lists specified in .spec file. if binaries: logger.info("Appending 'binaries' from .spec") for name, pth in format_binaries_and_datas(binaries, workingdir=spec_dir): self.binaries.append((name, pth, 'BINARY')) if datas: logger.info("Appending 'datas' from .spec") for name, pth in format_binaries_and_datas(datas, workingdir=spec_dir): self.datas.append((name, pth, 'DATA')) _GUTS = (# input parameters ('inputs', _check_guts_eq), # parameter `scripts` ('pathex', _check_guts_eq), ('hiddenimports', _check_guts_eq), ('hookspath', _check_guts_eq), ('hooksconfig', _check_guts_eq), ('excludes', _check_guts_eq), ('custom_runtime_hooks', _check_guts_eq), ('win_no_prefer_redirects', _check_guts_eq), ('win_private_assemblies', _check_guts_eq), ('noarchive', _check_guts_eq), #'cipher': no need to check as it is implied by an # additional hidden import #calculated/analysed values ('_python_version', _check_guts_eq), ('scripts', _check_guts_toc_mtime), ('pure', lambda *args: _check_guts_toc_mtime(*args, **{'pyc': 1})), ('binaries', _check_guts_toc_mtime), ('zipfiles', _check_guts_toc_mtime), ('zipped_data', None), # TODO check this, too ('datas', _check_guts_toc_mtime), # TODO: Need to add "dependencies"? # cached binding redirects - loaded into CONF for PYZ/COLLECT to find. ('binding_redirects', None), ) def _extend_pathex(self, spec_pathex, scripts): """ Normalize additional paths where PyInstaller will look for modules and add paths with scripts to the list of paths. :param spec_pathex: Additional paths defined defined in .spec file. :param scripts: Scripts to create executable from. :return: list of updated paths """ # Based on main supplied script - add top-level modules directory to PYTHONPATH. # Sometimes the main app script is not top-level module but submodule like 'mymodule.mainscript.py'. # In that case PyInstaller will not be able find modules in the directory containing 'mymodule'. # Add this directory to PYTHONPATH so PyInstaller could find it. pathex = [] # Add scripts paths first. for script in scripts: logger.debug('script: %s' % script) script_toplevel_dir = get_path_to_toplevel_modules(script) if script_toplevel_dir: pathex.append(script_toplevel_dir) # Append paths from .spec. if spec_pathex is not None: pathex.extend(spec_pathex) # Normalize paths in pathex and make them absolute. return [absnormpath(p) for p in pathex] def _check_guts(self, data, last_build): if Target._check_guts(self, data, last_build): return True for fnm in self.inputs: if mtime(fnm) > last_build: logger.info("Building because %s changed", fnm) return True # Now we know that none of the input parameters and none of # the input files has changed. So take the values calculated # resp. analysed in the last run and store them in `self`. self.scripts = TOC(data['scripts']) self.pure = TOC(data['pure']) self.binaries = TOC(data['binaries']) self.zipfiles = TOC(data['zipfiles']) self.zipped_data = TOC(data['zipped_data']) self.datas = TOC(data['datas']) # Store previously found binding redirects in CONF for later use by PKG/COLLECT from PyInstaller.config import CONF self.binding_redirects = CONF['binding_redirects'] = data['binding_redirects'] return False def assemble(self): """ This method is the MAIN method for finding all necessary files to be bundled. """ from PyInstaller.config import CONF for m in self.excludes: logger.debug("Excluding module '%s'" % m) self.graph = initialize_modgraph( excludes=self.excludes, user_hook_dirs=self.hookspath) # TODO Find a better place where to put 'base_library.zip' and when to created it. # For Python 3 it is necessary to create file 'base_library.zip' # containing core Python modules. In Python 3 some built-in modules # are written in pure Python. base_library.zip is a way how to have # those modules as "built-in". libzip_filename = os.path.join(CONF['workpath'], 'base_library.zip') create_py3_base_library(libzip_filename, graph=self.graph) # Bundle base_library.zip as data file. # Data format of TOC item: ('relative_path_in_dist_dir', 'absolute_path_on_disk', 'DATA') self.datas.append((os.path.basename(libzip_filename), libzip_filename, 'DATA')) # Expand sys.path of module graph. # The attribute is the set of paths to use for imports: sys.path, # plus our loader, plus other paths from e.g. --path option). self.graph.path = self.pathex + self.graph.path self.graph.set_setuptools_nspackages() logger.info("running Analysis %s", self.tocbasename) # Get paths to Python and, in Windows, the manifest. python = compat.python_executable if not is_win: # Linux/MacOS: get a real, non-link path to the running Python executable. while os.path.islink(python): python = os.path.join(os.path.dirname(python), os.readlink(python)) depmanifest = None else: # Windows: Create a manifest to embed into built .exe, containing the same # dependencies as python.exe. depmanifest = winmanifest.Manifest(type_="win32", name=CONF['specnm'], processorArchitecture=winmanifest.processor_architecture(), version=(1, 0, 0, 0)) depmanifest.filename = os.path.join(CONF['workpath'], CONF['specnm'] + ".exe.manifest") # We record "binaries" separately from the modulegraph, as there # is no way to record those dependencies in the graph. These include # the python executable and any binaries added by hooks later. # "binaries" are not the same as "extensions" which are .so or .dylib # that are found and recorded as extension nodes in the graph. # Reset seen variable before running bindepend. We use bindepend only for # the python executable. bindepend.seen.clear() # Add binary and assembly dependencies of Python.exe. # This also ensures that its assembly depencies under Windows get added to the # built .exe's manifest. Python 2.7 extension modules have no assembly # dependencies, and rely on the app-global dependencies set by the .exe. self.binaries.extend(bindepend.Dependencies([('', python, '')], manifest=depmanifest, redirects=self.binding_redirects)[1:]) if is_win: depmanifest.writeprettyxml() ### Module graph. # # Construct the module graph of import relationships between modules # required by this user's application. For each entry point (top-level # user-defined Python script), all imports originating from this entry # point are recursively parsed into a subgraph of the module graph. This # subgraph is then connected to this graph's root node, ensuring # imported module nodes will be reachable from the root node -- which is # is (arbitrarily) chosen to be the first entry point's node. # List to hold graph nodes of scripts and runtime hooks in use order. priority_scripts = [] # Assume that if the script does not exist, Modulegraph will raise error. # Save the graph nodes of each in sequence. for script in self.inputs: logger.info("Analyzing %s", script) priority_scripts.append(self.graph.add_script(script)) # Analyze the script's hidden imports (named on the command line) self.graph.add_hiddenimports(self.hiddenimports) ### Post-graph hooks. self.graph.process_post_graph_hooks(self) # Update 'binaries' TOC and 'datas' TOC. deps_proc = DependencyProcessor(self.graph, self.graph._additional_files_cache) self.binaries.extend(deps_proc.make_binaries_toc()) self.datas.extend(deps_proc.make_datas_toc()) self.zipped_data.extend(deps_proc.make_zipped_data_toc()) # Note: zipped eggs are collected below ### Look for dlls that are imported by Python 'ctypes' module. # First get code objects of all modules that import 'ctypes'. logger.info('Looking for ctypes DLLs') # dict like: {'module1': code_obj, 'module2': code_obj} ctypes_code_objs = self.graph.get_code_using("ctypes") for name, co in ctypes_code_objs.items(): # Get dlls that might be needed by ctypes. logger.debug('Scanning %s for shared libraries or dlls', name) ctypes_binaries = scan_code_for_ctypes(co) self.binaries.extend(set(ctypes_binaries)) self.datas.extend( (dest, source, "DATA") for (dest, source) in format_binaries_and_datas(self.graph.metadata_required()) ) # Analyze run-time hooks. # Run-time hooks has to be executed before user scripts. Add them # to the beginning of 'priority_scripts'. priority_scripts = self.graph.analyze_runtime_hooks(self.custom_runtime_hooks) + priority_scripts # 'priority_scripts' is now a list of the graph nodes of custom runtime # hooks, then regular runtime hooks, then the PyI loader scripts. # Further on, we will make sure they end up at the front of self.scripts ### Extract the nodes of the graph as TOCs for further processing. # Initialize the scripts list with priority scripts in the proper order. self.scripts = self.graph.nodes_to_toc(priority_scripts) # Extend the binaries list with all the Extensions modulegraph has found. self.binaries = self.graph.make_binaries_toc(self.binaries) # Fill the "pure" list with pure Python modules. assert len(self.pure) == 0 self.pure = self.graph.make_pure_toc() # And get references to module code objects constructed by ModuleGraph # to avoid writing .pyc/pyo files to hdd. self.pure._code_cache = self.graph.get_code_objects() # Add remaining binary dependencies - analyze Python C-extensions and what # DLLs they depend on. logger.info('Looking for dynamic libraries') self.binaries.extend(bindepend.Dependencies(self.binaries, redirects=self.binding_redirects)) ### Include zipped Python eggs. logger.info('Looking for eggs') self.zipfiles.extend(deps_proc.make_zipfiles_toc()) # Verify that Python dynamic library can be found. # Without dynamic Python library PyInstaller cannot continue. self._check_python_library(self.binaries) if is_win: # Remove duplicate redirects self.binding_redirects[:] = list(set(self.binding_redirects)) logger.info("Found binding redirects: \n%s", self.binding_redirects) # Filter binaries to adjust path of extensions that come from # python's lib-dynload directory. Prefix them with lib-dynload # so that we'll collect them into subdirectory instead of # directly into _MEIPASS for idx, tpl in enumerate(self.binaries): name, path, typecode = tpl if typecode == 'EXTENSION' \ and not os.path.dirname(os.path.normpath(name)) \ and os.path.basename(os.path.dirname(path)) == 'lib-dynload': name = os.path.join('lib-dynload', name) self.binaries[idx] = (name, path, typecode) # Place Python source in data files for the noarchive case. if self.noarchive: # Create a new TOC of ``(dest path for .pyc, source for .py, type)``. new_toc = TOC() for name, path, typecode in self.pure: assert typecode == 'PYMODULE' # Transform a python module name into a file name. name = name.replace('.', os.sep) # Special case: modules have an implied filename to add. if os.path.splitext(os.path.basename(path))[0] == '__init__': name += os.sep + '__init__' # Append the extension for the compiled result. # In python 3.5 (PEP-488) .pyo files were replaced by # .opt-1.pyc and .opt-2.pyc. However, it seems that for # bytecode-only module distribution, we always need to # use the .pyc extension. name += '.pyc' new_toc.append((name, path, typecode)) # Put the result of byte-compiling this TOC in datas. Mark all entries as data. for name, path, typecode in compile_py_files(new_toc, CONF['workpath']): self.datas.append((name, path, 'DATA')) # Store no source in the archive. self.pure = TOC() # Write warnings about missing modules. self._write_warnings() # Write debug information about hte graph self._write_graph_debug() def _write_warnings(self): """ Write warnings about missing modules. Get them from the graph and use the graph to figure out who tried to import them. """ def dependency_description(name, depInfo): if not depInfo or depInfo == 'direct': imptype = 0 else: imptype = (depInfo.conditional + 2 * depInfo.function + 4 * depInfo.tryexcept) return '%s (%s)' % (name, IMPORT_TYPES[imptype]) from PyInstaller.config import CONF miss_toc = self.graph.make_missing_toc() with open(CONF['warnfile'], 'w', encoding='utf-8') as wf: wf.write(WARNFILE_HEADER) for (n, p, status) in miss_toc: importers = self.graph.get_importers(n) print(status, 'module named', n, '- imported by', ', '.join(dependency_description(name, data) for name, data in importers), file=wf) logger.info("Warnings written to %s", CONF['warnfile']) def _write_graph_debug(self): """Write a xref (in html) and with `--log-level DEBUG` a dot-drawing of the graph. """ from PyInstaller.config import CONF with open(CONF['xref-file'], 'w', encoding='utf-8') as fh: self.graph.create_xref(fh) logger.info("Graph cross-reference written to %s", CONF['xref-file']) if logger.getEffectiveLevel() > logging.DEBUG: return # The `DOT language's <https://www.graphviz.org/doc/info/lang.html>`_ # default character encoding (see the end of the linked page) is UTF-8. with open(CONF['dot-file'], 'w', encoding='utf-8') as fh: self.graph.graphreport(fh) logger.info("Graph drawing written to %s", CONF['dot-file']) def _check_python_library(self, binaries): """ Verify presence of the Python dynamic library in the binary dependencies. Python library is an essential piece that has to be always included. """ # First check that libpython is in resolved binary dependencies. for (nm, filename, typ) in binaries: if typ == 'BINARY' and nm in PYDYLIB_NAMES: # Just print its filename and return. logger.info('Using Python library %s', filename) # Checking was successful - end of function. return # Python lib not in dependencies - try to find it. logger.info('Python library not in binary dependencies. Doing additional searching...') python_lib = bindepend.get_python_library_path() logger.debug('Adding Python library to binary dependencies') binaries.append((os.path.basename(python_lib), python_lib, 'BINARY')) logger.info('Using Python library %s', python_lib) class ExecutableBuilder(object): """ Class that constructs the executable. """ # TODO wrap the 'main' and 'build' function into this class. def build(spec, distpath, workpath, clean_build): """ Build the executable according to the created SPEC file. """ from PyInstaller.config import CONF # Ensure starting tilde and environment variables get expanded in distpath / workpath. # '~/path/abc', '${env_var_name}/path/abc/def' distpath = compat.expand_path(distpath) workpath = compat.expand_path(workpath) CONF['spec'] = compat.expand_path(spec) CONF['specpath'], CONF['specnm'] = os.path.split(spec) CONF['specnm'] = os.path.splitext(CONF['specnm'])[0] # Add 'specname' to workpath and distpath if they point to PyInstaller homepath. if os.path.dirname(distpath) == HOMEPATH: distpath = os.path.join(HOMEPATH, CONF['specnm'], os.path.basename(distpath)) CONF['distpath'] = distpath if os.path.dirname(workpath) == HOMEPATH: workpath = os.path.join(HOMEPATH, CONF['specnm'], os.path.basename(workpath), CONF['specnm']) else: workpath = os.path.join(workpath, CONF['specnm']) CONF['warnfile'] = os.path.join(workpath, 'warn-%s.txt' % CONF['specnm']) CONF['dot-file'] = os.path.join(workpath, 'graph-%s.dot' % CONF['specnm']) CONF['xref-file'] = os.path.join(workpath, 'xref-%s.html' % CONF['specnm']) # Clean PyInstaller cache (CONF['cachedir']) and temporary files (workpath) # to be able start a clean build. if clean_build: logger.info('Removing temporary files and cleaning cache in %s', CONF['cachedir']) for pth in (CONF['cachedir'], workpath): if os.path.exists(pth): # Remove all files in 'pth'. for f in glob.glob(pth + '/*'): # Remove dirs recursively. if os.path.isdir(f): shutil.rmtree(f) else: os.remove(f) # Create DISTPATH and workpath if they does not exist. for pth in (CONF['distpath'], workpath): if not os.path.exists(pth): os.makedirs(pth) # Construct NAMESPACE for running the Python code from .SPEC file. # NOTE: Passing NAMESPACE allows to avoid having global variables in this # module and makes isolated environment for running tests. # NOTE: Defining NAMESPACE allows to map any class to a apecific name for .SPEC. # FIXME: Some symbols might be missing. Add them if there are some failures. # TODO: What from this .spec API is deprecated and could be removed? spec_namespace = { # Set of global variables that can be used while processing .spec file. # Some of them act as configuration options. 'DISTPATH': CONF['distpath'], 'HOMEPATH': HOMEPATH, 'SPEC': CONF['spec'], 'specnm': CONF['specnm'], 'SPECPATH': CONF['specpath'], 'WARNFILE': CONF['warnfile'], 'workpath': workpath, # PyInstaller classes for .spec. 'TOC': TOC, 'Analysis': Analysis, 'BUNDLE': BUNDLE, 'COLLECT': COLLECT, 'EXE': EXE, 'MERGE': MERGE, 'PYZ': PYZ, 'Tree': Tree, 'Splash': Splash, # Python modules available for .spec. 'os': os, 'pyi_crypto': pyz_crypto, } # Set up module PyInstaller.config for passing some arguments to 'exec' # function. from PyInstaller.config import CONF CONF['workpath'] = workpath # Execute the specfile. Read it as a binary file... try: with open(spec, 'rb') as f: # ... then let Python determine the encoding, since ``compile`` accepts # byte strings. code = compile(f.read(), spec, 'exec') except FileNotFoundError as e: raise SystemExit('spec "{}" not found'.format(spec)) exec(code, spec_namespace) def __add_options(parser): parser.add_argument("--distpath", metavar="DIR", default=DEFAULT_DISTPATH, help=('Where to put the bundled app (default: %s)' % os.path.join(os.curdir, 'dist'))) parser.add_argument('--workpath', default=DEFAULT_WORKPATH, help=('Where to put all the temporary work files, ' '.log, .pyz and etc. (default: %s)' % os.path.join(os.curdir, 'build'))) parser.add_argument('-y', '--noconfirm', action="store_true", default=False, help='Replace output directory (default: %s) without ' 'asking for confirmation' % os.path.join('SPECPATH', 'dist', 'SPECNAME')) parser.add_argument('--upx-dir', default=None, help='Path to UPX utility (default: search the execution path)') parser.add_argument("-a", "--ascii", action="store_true", help="Do not include unicode encoding support " "(default: included if available)") parser.add_argument('--clean', dest='clean_build', action='store_true', default=False, help='Clean PyInstaller cache and remove temporary ' 'files before building.') def main(pyi_config, specfile, noconfirm, ascii=False, **kw): from PyInstaller.config import CONF CONF['noconfirm'] = noconfirm # Some modules are included if they are detected at build-time or # if a command-line argument is specified. (e.g. --ascii) if CONF.get('hiddenimports') is None: CONF['hiddenimports'] = [] # Test unicode support. if not ascii: CONF['hiddenimports'].extend(get_unicode_modules()) # FIXME: this should be a global import, but can't due to recursive imports # If configuration dict is supplied - skip configuration step. if pyi_config is None: import PyInstaller.configure as configure CONF.update(configure.get_config(kw.get('upx_dir'))) else: CONF.update(pyi_config) if CONF['hasUPX']: setupUPXFlags() CONF['ui_admin'] = kw.get('ui_admin', False) CONF['ui_access'] = kw.get('ui_uiaccess', False) build(specfile, kw.get('distpath'), kw.get('workpath'), kw.get('clean_build'))
44.487484
108
0.624326
2ce1c9641cc200b42b3792c5786ab1b371cd19ee
6,492
py
Python
plaso/output/tln.py
Defense-Cyber-Crime-Center/plaso
4f3a85fbea10637c1cdbf0cde9fc539fdcea9c47
[ "Apache-2.0" ]
2
2016-02-18T12:46:29.000Z
2022-03-13T03:04:59.000Z
plaso/output/tln.py
CNR-ITTIG/plasodfaxp
923797fc00664fa9e3277781b0334d6eed5664fd
[ "Apache-2.0" ]
null
null
null
plaso/output/tln.py
CNR-ITTIG/plasodfaxp
923797fc00664fa9e3277781b0334d6eed5664fd
[ "Apache-2.0" ]
6
2016-12-18T08:05:36.000Z
2021-04-06T14:19:11.000Z
# -*- coding: utf-8 -*- """Output module for the TLN format. For documentation on the TLN format see: http://forensicswiki.org/wiki/TLN """ from plaso.lib import errors from plaso.lib import timelib from plaso.output import interface from plaso.output import manager class TLNBaseOutputModule(interface.LinearOutputModule): """Base class for a TLN output module.""" # Stop pylint from complaining about missing WriteEventBody. # pylint: disable=abstract-method _FIELD_DELIMITER = u'|' _DESCRIPTION_FIELD_DELIMITER = u';' _HEADER = u'' def _FormatDescription(self, event_object): """Formats the description. Args: event_object: the event object (instance of EventObject). Returns: A string containing the value for the description field. """ date_time_string = timelib.Timestamp.CopyToIsoFormat( event_object.timestamp, timezone=self._output_mediator.timezone) timestamp_description = getattr(event_object, u'timestamp_desc', u'UNKNOWN') message, _ = self._output_mediator.GetFormattedMessages(event_object) if message is None: raise errors.NoFormatterFound( u'Unable to find event formatter for: {0:s}.'.format( getattr(event_object, u'data_type', u'UNKNOWN'))) description = u'{0:s}; {1:s}; {2:s}'.format( date_time_string, timestamp_description, message.replace(self._DESCRIPTION_FIELD_DELIMITER, u' ')) return self._SanitizeField(description) def _FormatHostname(self, event_object): """Formats the hostname. Args: event_object: the event object (instance of EventObject). Returns: A string containing the value for the hostname field. """ hostname = self._output_mediator.GetHostname(event_object) return self._SanitizeField(hostname) def _FormatSource(self, event_object): """Formats the source. Args: event_object: the event object (instance of EventObject). Returns: A string containing the value for the source field. """ source_short, _ = self._output_mediator.GetFormattedSources(event_object) if source_short is None: raise errors.NoFormatterFound( u'Unable to find event formatter for: {0:s}.'.format( getattr(event_object, u'data_type', u'UNKNOWN'))) return self._SanitizeField(source_short) def _FormatUsername(self, event_object): """Formats the username. Args: event_object: the event object (instance of EventObject). Returns: A string containing the value for the username field. """ username = self._output_mediator.GetUsername(event_object) return self._SanitizeField(username) def _SanitizeField(self, field): """Sanitizes a field for output. This method removes the field delimiter from the field string. Args: field: the string that makes up the field. Returns: A string containing the value for the field. """ if self._FIELD_DELIMITER: return field.replace(self._FIELD_DELIMITER, u' ') return field def WriteHeader(self): """Writes the header to the output.""" self._WriteLine(self._HEADER) class TLNOutputModule(TLNBaseOutputModule): """Output module for the TLN format. TLN defines 5 | separated fields, namely: * Time - 32-bit POSIX (or Unix) epoch timestamp. * Source - The name of the parser or plugin that produced the event. * Host - The source host system. * User - The user associated with the data. * Description - Message string describing the data. """ NAME = u'tln' DESCRIPTION = u'TLN 5 field | delimited output.' _HEADER = u'Time|Source|Host|User|Description\n' def WriteEventBody(self, event_object): """Writes the body of an event object to the output. Args: event_object: the event object (instance of EventObject). """ if not hasattr(event_object, u'timestamp'): return posix_timestamp = timelib.Timestamp.CopyToPosix(event_object.timestamp) source = self._FormatSource(event_object) hostname = self._FormatHostname(event_object) username = self._FormatUsername(event_object) description = self._FormatDescription(event_object) out_write = u'{0:d}|{1:s}|{2:s}|{3:s}|{4!s}\n'.format( posix_timestamp, source, hostname, username, description) self._WriteLine(out_write) class L2TTLNOutputModule(TLNBaseOutputModule): """Output module for the log2timeline extended variant of the TLN format. l2tTLN is an extended variant of TLN introduced log2timeline 0.65. l2tTLN extends basic TLN to 7 | separated fields, namely: * Time - 32-bit POSIX (or Unix) epoch timestamp. * Source - The name of the parser or plugin that produced the event. * Host - The source host system. * User - The user associated with the data. * Description - Message string describing the data. * TZ - L2T 0.65 field. Timezone of the event. * Notes - L2T 0.65 field. Optional notes field or filename and inode. """ NAME = u'l2ttln' DESCRIPTION = u'Extended TLN 7 field | delimited output.' _HEADER = u'Time|Source|Host|User|Description|TZ|Notes\n' def _FormatNotes(self, event_object): """Formats the notes. Args: event_object: the event object (instance of EventObject). Returns: A string containing the value for the notes field. """ notes = getattr(event_object, u'notes', u'') if not notes: notes = u'File: {0:s} inode: {1!s}'.format( getattr(event_object, u'display_name', u''), getattr(event_object, u'inode', u'')) return self._SanitizeField(notes) def WriteEventBody(self, event_object): """Writes the body of an event object to the output. Args: event_object: the event object (instance of EventObject). """ if not hasattr(event_object, u'timestamp'): return posix_timestamp = timelib.Timestamp.CopyToPosix(event_object.timestamp) source = self._FormatSource(event_object) hostname = self._FormatHostname(event_object) username = self._FormatUsername(event_object) description = self._FormatDescription(event_object) notes = self._FormatNotes(event_object) out_write = u'{0:d}|{1:s}|{2:s}|{3:s}|{4:s}|{5!s}|{6!s}\n'.format( posix_timestamp, source, hostname, username, description, self._output_mediator.timezone, notes) self._WriteLine(out_write) manager.OutputManager.RegisterOutputs([L2TTLNOutputModule, TLNOutputModule])
32.138614
80
0.702557
2f59e4b60daab186d9eefcb05aad1c483eaf084c
781
py
Python
tests/test-full/extensions/test.py
robjwells/majestic
cdfb91c595055e975be84afc6ec04fe22ebddc51
[ "MIT" ]
null
null
null
tests/test-full/extensions/test.py
robjwells/majestic
cdfb91c595055e975be84afc6ec04fe22ebddc51
[ "MIT" ]
null
null
null
tests/test-full/extensions/test.py
robjwells/majestic
cdfb91c595055e975be84afc6ec04fe22ebddc51
[ "MIT" ]
null
null
null
import majestic def process_posts_and_pages(*, posts, pages, settings): """Dummy process function that sets an attribute on each object""" for post in posts: post.test_attr = 'post' for page in pages: page.test_attr = 'page' new_page = majestic.Page(title='extension test', body='', slug='extension-test', settings=settings) new_page.test_attr = 'page' # Make it like every other page return {'posts': posts, 'pages': pages, 'new_objects': [new_page]} def process_objects_to_write(*, objects, settings): new_page = majestic.Page(title='', body='', slug='objects_to_write', settings=settings) new_page.test_attr = 'page' return {'objects': objects + [new_page]}
33.956522
72
0.629962
e6867b24584f2ae1b7b8df686629defbd2bcd6ef
8,503
py
Python
custom_components/xiaomi_cloud_map_extractor/xiaomi_vacuum_map_parser/const.py
licheng5625/Home-Assistant-custom-components-Xiaomi-Cloud-Map-Extractor
d1af6a71e8287c6f3f4002367146d42451efa1cb
[ "MIT" ]
null
null
null
custom_components/xiaomi_cloud_map_extractor/xiaomi_vacuum_map_parser/const.py
licheng5625/Home-Assistant-custom-components-Xiaomi-Cloud-Map-Extractor
d1af6a71e8287c6f3f4002367146d42451efa1cb
[ "MIT" ]
null
null
null
custom_components/xiaomi_cloud_map_extractor/xiaomi_vacuum_map_parser/const.py
licheng5625/Home-Assistant-custom-components-Xiaomi-Cloud-Map-Extractor
d1af6a71e8287c6f3f4002367146d42451efa1cb
[ "MIT" ]
null
null
null
DOMAIN = "xiaomi_cloud_map_extractor" PLATFORMS = ["camera"] CONF_ATTRIBUTES = "attributes" CONF_AUTO_UPDATE = "auto_update" CONF_AVAILABLE_API_DREAME = "dreame" CONF_AVAILABLE_API_ROIDMI = "roidmi" CONF_AVAILABLE_API_VIOMI = "viomi" CONF_AVAILABLE_API_XIAOMI = "xiaomi" CONF_AVAILABLE_COUNTRIES = ["cn", "de", "us", "ru", "tw", "sg", "in", "i2"] CONF_BOTTOM = "bottom" CONF_COLOR = "color" CONF_COLORS = "colors" CONF_COUNTRY = "country" CONF_DRAW = "draw" CONF_FORCE_API = "force_api" CONF_FONT = "font" CONF_FONT_SIZE = "font_size" CONF_LEFT = "left" CONF_MAP_TRANSFORM = "map_transformation" CONF_RIGHT = "right" CONF_ROOM_COLORS = "room_colors" CONF_ROTATE = "rotate" CONF_SCALE = "scale" CONF_SIZES = "sizes" CONF_SIZE_CHARGER_RADIUS = "charger_radius" CONF_SIZE_IGNORED_OBSTACLE_RADIUS = "ignored_obstacle_radius" CONF_SIZE_IGNORED_OBSTACLE_WITH_PHOTO_RADIUS = "ignored_obstacle_with_photo_radius" CONF_SIZE_OBSTACLE_RADIUS = "obstacle_radius" CONF_SIZE_OBSTACLE_WITH_PHOTO_RADIUS = "obstacle_with_photo_radius" CONF_SIZE_VACUUM_RADIUS = "vacuum_radius" CONF_STORE_MAP_RAW = "store_map_raw" CONF_STORE_MAP_IMAGE = "store_map_image" CONF_STORE_MAP_PATH = "store_map_path" CONF_TEXT = "text" CONF_TEXTS = "texts" CONF_TOP = "top" CONF_TRIM = "trim" CONF_X = "x" CONF_Y = "y" CONF_AVAILABLE_APIS = [CONF_AVAILABLE_API_XIAOMI, CONF_AVAILABLE_API_VIOMI, CONF_AVAILABLE_API_ROIDMI, CONF_AVAILABLE_API_DREAME] CONF_AVAILABLE_SIZES = [CONF_SIZE_VACUUM_RADIUS, CONF_SIZE_IGNORED_OBSTACLE_RADIUS, CONF_SIZE_IGNORED_OBSTACLE_WITH_PHOTO_RADIUS, CONF_SIZE_OBSTACLE_RADIUS, CONF_SIZE_OBSTACLE_WITH_PHOTO_RADIUS, CONF_SIZE_CHARGER_RADIUS] MINIMAL_IMAGE_WIDTH = 20 MINIMAL_IMAGE_HEIGHT = 20 CONTENT_TYPE = "image/png" DEFAULT_NAME = "Xiaomi Cloud Map Extractor" ATTRIBUTE_CALIBRATION = "calibration_points" ATTRIBUTE_CHARGER = "charger" ATTRIBUTE_CLEANED_ROOMS = "cleaned_rooms" ATTRIBUTE_COUNTRY = "country" ATTRIBUTE_GOTO = "goto" ATTRIBUTE_GOTO_PATH = "goto_path" ATTRIBUTE_GOTO_PREDICTED_PATH = "goto_predicted_path" ATTRIBUTE_IGNORED_OBSTACLES = "ignored_obstacles" ATTRIBUTE_IGNORED_OBSTACLES_WITH_PHOTO = "ignored_obstacles_with_photo" ATTRIBUTE_IMAGE = "image" ATTRIBUTE_IS_EMPTY = "is_empty" ATTRIBUTE_MAP_NAME = "map_name" ATTRIBUTE_MAP_SAVED = "map_saved" ATTRIBUTE_NO_GO_AREAS = "no_go_areas" ATTRIBUTE_NO_MOPPING_AREAS = "no_mopping_areas" ATTRIBUTE_OBSTACLES = "obstacles" ATTRIBUTE_OBSTACLES_WITH_PHOTO = "obstacles_with_photo" ATTRIBUTE_PATH = "path" ATTRIBUTE_ROOMS = "rooms" ATTRIBUTE_ROOM_NUMBERS = "room_numbers" ATTRIBUTE_VACUUM_POSITION = "vacuum_position" ATTRIBUTE_VACUUM_ROOM = "vacuum_room" ATTRIBUTE_VACUUM_ROOM_NAME = "vacuum_room_name" ATTRIBUTE_WALLS = "walls" ATTRIBUTE_ZONES = "zones" CONF_AVAILABLE_ATTRIBUTES = [ATTRIBUTE_CALIBRATION, ATTRIBUTE_CHARGER, ATTRIBUTE_CLEANED_ROOMS, ATTRIBUTE_COUNTRY, ATTRIBUTE_GOTO, ATTRIBUTE_GOTO_PATH, ATTRIBUTE_GOTO_PREDICTED_PATH, ATTRIBUTE_IGNORED_OBSTACLES, ATTRIBUTE_IGNORED_OBSTACLES_WITH_PHOTO, ATTRIBUTE_IMAGE, ATTRIBUTE_IS_EMPTY, ATTRIBUTE_MAP_NAME, ATTRIBUTE_NO_GO_AREAS, ATTRIBUTE_NO_MOPPING_AREAS, ATTRIBUTE_OBSTACLES, ATTRIBUTE_OBSTACLES_WITH_PHOTO, ATTRIBUTE_PATH, ATTRIBUTE_ROOMS, ATTRIBUTE_ROOM_NUMBERS, ATTRIBUTE_VACUUM_POSITION, ATTRIBUTE_VACUUM_ROOM, ATTRIBUTE_VACUUM_ROOM_NAME, ATTRIBUTE_WALLS, ATTRIBUTE_ZONES] ATTR_A = "a" ATTR_ANGLE = "angle" ATTR_CONFIDENCE_LEVEL = "confidence_level" ATTR_DESCRIPTION = "description" ATTR_HEIGHT = "height" ATTR_MODEL = "model" ATTR_NAME = "name" ATTR_OFFSET_X = "offset_x" ATTR_OFFSET_Y = "offset_y" ATTR_PATH = "path" ATTR_PHOTO_NAME = "photo_name" ATTR_POINT_LENGTH = "point_length" ATTR_POINT_SIZE = "point_size" ATTR_ROTATION = "rotation" ATTR_SCALE = "scale" ATTR_SIZE = "size" ATTR_TYPE = "type" ATTR_USED_API = "used_api" ATTR_WIDTH = "width" ATTR_X = "x" ATTR_X0 = "x0" ATTR_X1 = "x1" ATTR_X2 = "x2" ATTR_X3 = "x3" ATTR_Y = "y" ATTR_Y0 = "y0" ATTR_Y1 = "y1" ATTR_Y2 = "y2" ATTR_Y3 = "y3" DRAWABLE_ALL = "all" DRAWABLE_CHARGER = "charger" DRAWABLE_CLEANED_AREA = "cleaned_area" DRAWABLE_GOTO_PATH = "goto_path" DRAWABLE_IGNORED_OBSTACLES = "ignored_obstacles" DRAWABLE_IGNORED_OBSTACLES_WITH_PHOTO = "ignored_obstacles_with_photo" DRAWABLE_NO_GO_AREAS = "no_go_zones" DRAWABLE_NO_MOPPING_AREAS = "no_mopping_zones" DRAWABLE_OBSTACLES = "obstacles" DRAWABLE_OBSTACLES_WITH_PHOTO = "obstacles_with_photo" DRAWABLE_PATH = "path" DRAWABLE_PREDICTED_PATH = "predicted_path" DRAWABLE_ROOM_NAMES = "room_names" DRAWABLE_VACUUM_POSITION = "vacuum_position" DRAWABLE_VIRTUAL_WALLS = "virtual_walls" DRAWABLE_ZONES = "zones" CONF_AVAILABLE_DRAWABLES = [DRAWABLE_ALL, DRAWABLE_CLEANED_AREA, DRAWABLE_CHARGER, DRAWABLE_GOTO_PATH, DRAWABLE_IGNORED_OBSTACLES, DRAWABLE_IGNORED_OBSTACLES_WITH_PHOTO, DRAWABLE_NO_GO_AREAS, DRAWABLE_NO_MOPPING_AREAS, DRAWABLE_OBSTACLES, DRAWABLE_OBSTACLES_WITH_PHOTO, DRAWABLE_PATH, DRAWABLE_PREDICTED_PATH, DRAWABLE_ROOM_NAMES, DRAWABLE_VACUUM_POSITION, DRAWABLE_VIRTUAL_WALLS, DRAWABLE_ZONES] COLOR_ROOM_PREFIX = "color_room_" COLOR_CHARGER = "color_charger" COLOR_CLEANED_AREA = "color_cleaned_area" COLOR_GOTO_PATH = "color_goto_path" COLOR_GREY_WALL = "color_grey_wall" COLOR_IGNORED_OBSTACLE = "color_ignored_obstacle" COLOR_IGNORED_OBSTACLE_WITH_PHOTO = "color_ignored_obstacle_with_photo" COLOR_MAP_INSIDE = "color_map_inside" COLOR_MAP_OUTSIDE = "color_map_outside" COLOR_MAP_WALL = "color_map_wall" COLOR_MAP_WALL_V2 = "color_map_wall_v2" COLOR_NEW_DISCOVERED_AREA = "color_new_discovered_area" COLOR_NO_GO_ZONES = "color_no_go_zones" COLOR_NO_GO_ZONES_OUTLINE = "color_no_go_zones_outline" COLOR_NO_MOPPING_ZONES = "color_no_mop_zones" COLOR_NO_MOPPING_ZONES_OUTLINE = "color_no_mop_zones_outline" COLOR_OBSTACLE = "color_obstacle" COLOR_OBSTACLE_WITH_PHOTO = "color_obstacle_with_photo" COLOR_PATH = "color_path" COLOR_PREDICTED_PATH = "color_predicted_path" COLOR_ROBO = "color_robo" COLOR_ROOM_NAMES = "color_room_names" COLOR_SCAN = "color_scan" COLOR_UNKNOWN = "color_unknown" COLOR_VIRTUAL_WALLS = "color_virtual_walls" COLOR_ZONES = "color_zones" COLOR_ZONES_OUTLINE = "color_zones_outline" CONF_AVAILABLE_COLORS = [COLOR_CHARGER, COLOR_CLEANED_AREA, COLOR_GOTO_PATH, COLOR_GREY_WALL, COLOR_IGNORED_OBSTACLE, COLOR_IGNORED_OBSTACLE_WITH_PHOTO, COLOR_MAP_INSIDE, COLOR_MAP_OUTSIDE, COLOR_MAP_WALL, COLOR_MAP_WALL_V2, COLOR_NEW_DISCOVERED_AREA, COLOR_NO_GO_ZONES, COLOR_NO_GO_ZONES_OUTLINE, COLOR_NO_MOPPING_ZONES, COLOR_NO_MOPPING_ZONES_OUTLINE, COLOR_OBSTACLE, COLOR_OBSTACLE_WITH_PHOTO, COLOR_PATH, COLOR_PREDICTED_PATH, COLOR_ROBO, COLOR_ROOM_NAMES, COLOR_SCAN, COLOR_UNKNOWN, COLOR_VIRTUAL_WALLS, COLOR_ZONES, COLOR_ZONES_OUTLINE] COLOR_ROOM_1 = "color_room_1" COLOR_ROOM_2 = "color_room_2" COLOR_ROOM_3 = "color_room_3" COLOR_ROOM_4 = "color_room_4" COLOR_ROOM_5 = "color_room_5" COLOR_ROOM_6 = "color_room_6" COLOR_ROOM_7 = "color_room_7" COLOR_ROOM_8 = "color_room_8" COLOR_ROOM_9 = "color_room_9" COLOR_ROOM_10 = "color_room_10" COLOR_ROOM_11 = "color_room_11" COLOR_ROOM_12 = "color_room_12" COLOR_ROOM_13 = "color_room_13" COLOR_ROOM_14 = "color_room_14" COLOR_ROOM_15 = "color_room_15" COLOR_ROOM_16 = "color_room_16" CONF_DEFAULT_ROOM_COLORS = [COLOR_ROOM_1, COLOR_ROOM_2, COLOR_ROOM_3, COLOR_ROOM_4, COLOR_ROOM_5, COLOR_ROOM_6, COLOR_ROOM_7, COLOR_ROOM_8, COLOR_ROOM_9, COLOR_ROOM_10, COLOR_ROOM_11, COLOR_ROOM_12, COLOR_ROOM_13, COLOR_ROOM_14, COLOR_ROOM_15, COLOR_ROOM_16] AVAILABLE_APIS = { CONF_AVAILABLE_API_DREAME: ["dreame.vacuum."], CONF_AVAILABLE_API_ROIDMI: ["roidmi.vacuum."], CONF_AVAILABLE_API_VIOMI: ["viomi.vacuum."] } API_EXCEPTIONS = { "viomi.vacuum.v18": CONF_AVAILABLE_API_ROIDMI } MM = 50 DEFAULT_TRIMS = { CONF_LEFT: 0, CONF_RIGHT: 0, CONF_TOP: 0, CONF_BOTTOM: 0 } DEFAULT_SIZES = { CONF_SIZE_VACUUM_RADIUS: 4, CONF_SIZE_IGNORED_OBSTACLE_RADIUS: 3, CONF_SIZE_IGNORED_OBSTACLE_WITH_PHOTO_RADIUS: 3, CONF_SIZE_OBSTACLE_RADIUS: 3, CONF_SIZE_OBSTACLE_WITH_PHOTO_RADIUS: 3, CONF_SIZE_CHARGER_RADIUS: 4 }
37.959821
120
0.777255
c1ecd0ac58789121a022c7b0a427d59e8ff0ef16
1,374
py
Python
appengine/predator/analysis/predator.py
mcgreevy/chromium-infra
09064105713603f7bf75c772e8354800a1bfa256
[ "BSD-3-Clause" ]
1
2018-01-02T05:47:07.000Z
2018-01-02T05:47:07.000Z
appengine/predator/analysis/predator.py
mcgreevy/chromium-infra
09064105713603f7bf75c772e8354800a1bfa256
[ "BSD-3-Clause" ]
null
null
null
appengine/predator/analysis/predator.py
mcgreevy/chromium-infra
09064105713603f7bf75c772e8354800a1bfa256
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from analysis.culprit import Culprit # TODO(http://crbug.com/659346): write coverage tests. class Predator(object): # pragma: no cover """The Main entry point into the Predator library.""" def __init__(self, cl_classifier, component_classifier, project_classifier): self.cl_classifier = cl_classifier self.component_classifier = component_classifier self.project_classifier = project_classifier def FindCulprit(self, report): """Given a CrashReport, return a Culprit.""" suspected_cls = self.cl_classifier(report) assert suspected_cls is not None suspected_project = ( self.project_classifier.ClassifySuspects(suspected_cls) or self.project_classifier.ClassifyCallStack( report.stacktrace.crash_stack)) suspected_components = ( self.component_classifier.ClassifySuspects(suspected_cls) or self.component_classifier.ClassifyCallStack( report.stacktrace.crash_stack)) return Culprit(project=suspected_project, components=suspected_components, cls=suspected_cls, regression_range=report.regression_range, algorithm='core_algorithm')
37.135135
78
0.720524
fcffbeed35687c5a50c1a6954488354ef689e4b0
677
py
Python
7. Event Handling/virtual_event.py
samujjwaal/Tkinter-GUI-Course
9ed492f49507333eec54b8b9262262def03fe00f
[ "MIT" ]
null
null
null
7. Event Handling/virtual_event.py
samujjwaal/Tkinter-GUI-Course
9ed492f49507333eec54b8b9262262def03fe00f
[ "MIT" ]
null
null
null
7. Event Handling/virtual_event.py
samujjwaal/Tkinter-GUI-Course
9ed492f49507333eec54b8b9262262def03fe00f
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import ttk root = Tk() entry = ttk.Entry(root) entry.pack() # bind built in virtual events entry.bind("<<Copy>>", lambda e: print("Copy")) entry.bind("<<Paste>>", lambda e: print("Paste")) # define custom virtual event entry.event_add("<<OddNumber>>", "1", "3", "5", "7", "9") # bind custom virtual event entry.bind("<<OddNumber>>", lambda e: print("Odd Number!")) # to view details about a virtual event print(entry.event_info("<<OddNumber>>")) # programmatically invoke virtual event entry.event_generate("<<OddNumber>>") entry.event_generate("<<Paste>>") # delete virtual event entry.event_delete("<<OddNumber>>") root.mainloop()
22.566667
59
0.691285
e4f55010fa5b6db24a535d5c002d279fa530c739
3,237
py
Python
notebooks/tfx_pipelines/pipeline/solutions/pipeline/runner.py
ghostofsheep/asl-ml-immersion
4ed74c9fb67d570a498219b347b905e82f525d6e
[ "Apache-2.0" ]
null
null
null
notebooks/tfx_pipelines/pipeline/solutions/pipeline/runner.py
ghostofsheep/asl-ml-immersion
4ed74c9fb67d570a498219b347b905e82f525d6e
[ "Apache-2.0" ]
null
null
null
notebooks/tfx_pipelines/pipeline/solutions/pipeline/runner.py
ghostofsheep/asl-ml-immersion
4ed74c9fb67d570a498219b347b905e82f525d6e
[ "Apache-2.0" ]
1
2021-11-10T02:54:02.000Z
2021-11-10T02:54:02.000Z
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KFP runner configuration""" import kfp from tfx.orchestration import data_types from tfx.orchestration.kubeflow import kubeflow_dag_runner from typing import Optional, Dict, List, Text from distutils.util import strtobool from config import Config from pipeline import create_pipeline if __name__ == '__main__': # Set the values for the compile time parameters ai_platform_training_args = { 'project': Config.PROJECT_ID, 'region': Config.GCP_REGION, 'serviceAccount': Config.CUSTOM_SERVICE_ACCOUNT, 'masterConfig': { 'imageUri': Config.TFX_IMAGE, } } ai_platform_serving_args = { 'project_id': Config.PROJECT_ID, 'model_name': Config.MODEL_NAME, 'runtimeVersion': Config.RUNTIME_VERSION, 'pythonVersion': Config.PYTHON_VERSION, 'regions': [Config.GCP_REGION] } beam_tmp_folder = '{}/beam/tmp'.format(Config.ARTIFACT_STORE_URI) beam_pipeline_args = [ '--runner=DataflowRunner', '--experiments=shuffle_mode=auto', '--project=' + Config.PROJECT_ID, '--temp_location=' + beam_tmp_folder, '--region=' + Config.GCP_REGION, ] # Set the default values for the pipeline runtime parameters data_root_uri = data_types.RuntimeParameter( name='data-root-uri', default=Config.DATA_ROOT_URI, ptype=Text ) train_steps = data_types.RuntimeParameter( name='train-steps', default=5000, ptype=int ) eval_steps = data_types.RuntimeParameter( name='eval-steps', default=500, ptype=int ) pipeline_root = '{}/{}/{}'.format( Config.ARTIFACT_STORE_URI, Config.PIPELINE_NAME, kfp.dsl.RUN_ID_PLACEHOLDER) # Set KubeflowDagRunner settings. metadata_config = kubeflow_dag_runner.get_default_kubeflow_metadata_config() runner_config = kubeflow_dag_runner.KubeflowDagRunnerConfig( kubeflow_metadata_config = metadata_config, pipeline_operator_funcs = kubeflow_dag_runner.get_default_pipeline_operator_funcs( strtobool(Config.USE_KFP_SA)), tfx_image=Config.TFX_IMAGE) # Compile the pipeline. kubeflow_dag_runner.KubeflowDagRunner(config=runner_config).run( create_pipeline( pipeline_name=Config.PIPELINE_NAME, pipeline_root=pipeline_root, data_root_uri=data_root_uri, train_steps=train_steps, eval_steps=eval_steps, enable_tuning=strtobool(Config.ENABLE_TUNING), ai_platform_training_args=ai_platform_training_args, ai_platform_serving_args=ai_platform_serving_args, beam_pipeline_args=beam_pipeline_args))
31.427184
88
0.72629
7941028c41441115c5951efdd014ed949ca5c0a9
14,534
py
Python
OmniMarkupLib/Renderers/libs/pygments/lexers/idl.py
henumohe/OmniMarkupPreviewer
a15382a8309fe04f2c515151c00c074ab9c0d1ab
[ "MIT" ]
652
2015-07-26T00:00:17.000Z
2022-02-24T18:30:04.000Z
OmniMarkupLib/Renderers/libs/pygments/lexers/idl.py
henumohe/OmniMarkupPreviewer
a15382a8309fe04f2c515151c00c074ab9c0d1ab
[ "MIT" ]
82
2015-01-15T12:30:43.000Z
2022-01-06T02:56:53.000Z
OmniMarkupLib/Renderers/libs/pygments/lexers/idl.py
henumohe/OmniMarkupPreviewer
a15382a8309fe04f2c515151c00c074ab9c0d1ab
[ "MIT" ]
99
2015-01-14T19:53:45.000Z
2021-08-11T15:17:26.000Z
# -*- coding: utf-8 -*- """ pygments.lexers.idl ~~~~~~~~~~~~~~~~~~~ Lexers for IDL. :copyright: Copyright 2006-2014 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, words from pygments.token import Text, Comment, Operator, Keyword, Name, Number __all__ = ['IDLLexer'] class IDLLexer(RegexLexer): """ Pygments Lexer for IDL (Interactive Data Language). .. versionadded:: 1.6 """ name = 'IDL' aliases = ['idl'] filenames = ['*.pro'] mimetypes = ['text/idl'] flags = re.IGNORECASE | re.MULTILINE _RESERVED = ( 'and', 'begin', 'break', 'case', 'common', 'compile_opt', 'continue', 'do', 'else', 'end', 'endcase', 'elseelse', 'endfor', 'endforeach', 'endif', 'endrep', 'endswitch', 'endwhile', 'eq', 'for', 'foreach', 'forward_function', 'function', 'ge', 'goto', 'gt', 'if', 'inherits', 'le', 'lt', 'mod', 'ne', 'not', 'of', 'on_ioerror', 'or', 'pro', 'repeat', 'switch', 'then', 'until', 'while', 'xor') """Reserved words from: http://www.exelisvis.com/docs/reswords.html""" _BUILTIN_LIB = ( 'abs', 'acos', 'adapt_hist_equal', 'alog', 'alog10', 'amoeba', 'annotate', 'app_user_dir', 'app_user_dir_query', 'arg_present', 'array_equal', 'array_indices', 'arrow', 'ascii_template', 'asin', 'assoc', 'atan', 'axis', 'a_correlate', 'bandpass_filter', 'bandreject_filter', 'barplot', 'bar_plot', 'beseli', 'beselj', 'beselk', 'besely', 'beta', 'bilinear', 'binary_template', 'bindgen', 'binomial', 'bin_date', 'bit_ffs', 'bit_population', 'blas_axpy', 'blk_con', 'box_cursor', 'breakpoint', 'broyden', 'butterworth', 'bytarr', 'byte', 'byteorder', 'bytscl', 'caldat', 'calendar', 'call_external', 'call_function', 'call_method', 'call_procedure', 'canny', 'catch', 'cd', 'cdf_\w*', 'ceil', 'chebyshev', 'check_math', 'chisqr_cvf', 'chisqr_pdf', 'choldc', 'cholsol', 'cindgen', 'cir_3pnt', 'close', 'cluster', 'cluster_tree', 'clust_wts', 'cmyk_convert', 'colorbar', 'colorize_sample', 'colormap_applicable', 'colormap_gradient', 'colormap_rotation', 'colortable', 'color_convert', 'color_exchange', 'color_quan', 'color_range_map', 'comfit', 'command_line_args', 'complex', 'complexarr', 'complexround', 'compute_mesh_normals', 'cond', 'congrid', 'conj', 'constrained_min', 'contour', 'convert_coord', 'convol', 'convol_fft', 'coord2to3', 'copy_lun', 'correlate', 'cos', 'cosh', 'cpu', 'cramer', 'create_cursor', 'create_struct', 'create_view', 'crossp', 'crvlength', 'cti_test', 'ct_luminance', 'cursor', 'curvefit', 'cvttobm', 'cv_coord', 'cw_animate', 'cw_animate_getp', 'cw_animate_load', 'cw_animate_run', 'cw_arcball', 'cw_bgroup', 'cw_clr_index', 'cw_colorsel', 'cw_defroi', 'cw_field', 'cw_filesel', 'cw_form', 'cw_fslider', 'cw_light_editor', 'cw_light_editor_get', 'cw_light_editor_set', 'cw_orient', 'cw_palette_editor', 'cw_palette_editor_get', 'cw_palette_editor_set', 'cw_pdmenu', 'cw_rgbslider', 'cw_tmpl', 'cw_zoom', 'c_correlate', 'dblarr', 'db_exists', 'dcindgen', 'dcomplex', 'dcomplexarr', 'define_key', 'define_msgblk', 'define_msgblk_from_file', 'defroi', 'defsysv', 'delvar', 'dendrogram', 'dendro_plot', 'deriv', 'derivsig', 'determ', 'device', 'dfpmin', 'diag_matrix', 'dialog_dbconnect', 'dialog_message', 'dialog_pickfile', 'dialog_printersetup', 'dialog_printjob', 'dialog_read_image', 'dialog_write_image', 'digital_filter', 'dilate', 'dindgen', 'dissolve', 'dist', 'distance_measure', 'dlm_load', 'dlm_register', 'doc_library', 'double', 'draw_roi', 'edge_dog', 'efont', 'eigenql', 'eigenvec', 'ellipse', 'elmhes', 'emboss', 'empty', 'enable_sysrtn', 'eof', 'eos_\w*', 'erase', 'erf', 'erfc', 'erfcx', 'erode', 'errorplot', 'errplot', 'estimator_filter', 'execute', 'exit', 'exp', 'expand', 'expand_path', 'expint', 'extrac', 'extract_slice', 'factorial', 'fft', 'filepath', 'file_basename', 'file_chmod', 'file_copy', 'file_delete', 'file_dirname', 'file_expand_path', 'file_info', 'file_lines', 'file_link', 'file_mkdir', 'file_move', 'file_poll_input', 'file_readlink', 'file_same', 'file_search', 'file_test', 'file_which', 'findgen', 'finite', 'fix', 'flick', 'float', 'floor', 'flow3', 'fltarr', 'flush', 'format_axis_values', 'free_lun', 'fstat', 'fulstr', 'funct', 'fv_test', 'fx_root', 'fz_roots', 'f_cvf', 'f_pdf', 'gamma', 'gamma_ct', 'gauss2dfit', 'gaussfit', 'gaussian_function', 'gaussint', 'gauss_cvf', 'gauss_pdf', 'gauss_smooth', 'getenv', 'getwindows', 'get_drive_list', 'get_dxf_objects', 'get_kbrd', 'get_login_info', 'get_lun', 'get_screen_size', 'greg2jul', 'grib_\w*', 'grid3', 'griddata', 'grid_input', 'grid_tps', 'gs_iter', 'h5[adfgirst]_\w*', 'h5_browser', 'h5_close', 'h5_create', 'h5_get_libversion', 'h5_open', 'h5_parse', 'hanning', 'hash', 'hdf_\w*', 'heap_free', 'heap_gc', 'heap_nosave', 'heap_refcount', 'heap_save', 'help', 'hilbert', 'histogram', 'hist_2d', 'hist_equal', 'hls', 'hough', 'hqr', 'hsv', 'h_eq_ct', 'h_eq_int', 'i18n_multibytetoutf8', 'i18n_multibytetowidechar', 'i18n_utf8tomultibyte', 'i18n_widechartomultibyte', 'ibeta', 'icontour', 'iconvertcoord', 'idelete', 'identity', 'idlexbr_assistant', 'idlitsys_createtool', 'idl_base64', 'idl_validname', 'iellipse', 'igamma', 'igetcurrent', 'igetdata', 'igetid', 'igetproperty', 'iimage', 'image', 'image_cont', 'image_statistics', 'imaginary', 'imap', 'indgen', 'intarr', 'interpol', 'interpolate', 'interval_volume', 'int_2d', 'int_3d', 'int_tabulated', 'invert', 'ioctl', 'iopen', 'iplot', 'ipolygon', 'ipolyline', 'iputdata', 'iregister', 'ireset', 'iresolve', 'irotate', 'ir_filter', 'isa', 'isave', 'iscale', 'isetcurrent', 'isetproperty', 'ishft', 'isocontour', 'isosurface', 'isurface', 'itext', 'itranslate', 'ivector', 'ivolume', 'izoom', 'i_beta', 'journal', 'json_parse', 'json_serialize', 'jul2greg', 'julday', 'keyword_set', 'krig2d', 'kurtosis', 'kw_test', 'l64indgen', 'label_date', 'label_region', 'ladfit', 'laguerre', 'laplacian', 'la_choldc', 'la_cholmprove', 'la_cholsol', 'la_determ', 'la_eigenproblem', 'la_eigenql', 'la_eigenvec', 'la_elmhes', 'la_gm_linear_model', 'la_hqr', 'la_invert', 'la_least_squares', 'la_least_square_equality', 'la_linear_equation', 'la_ludc', 'la_lumprove', 'la_lusol', 'la_svd', 'la_tridc', 'la_trimprove', 'la_triql', 'la_trired', 'la_trisol', 'least_squares_filter', 'leefilt', 'legend', 'legendre', 'linbcg', 'lindgen', 'linfit', 'linkimage', 'list', 'll_arc_distance', 'lmfit', 'lmgr', 'lngamma', 'lnp_test', 'loadct', 'locale_get', 'logical_and', 'logical_or', 'logical_true', 'lon64arr', 'lonarr', 'long', 'long64', 'lsode', 'ludc', 'lumprove', 'lusol', 'lu_complex', 'machar', 'make_array', 'make_dll', 'make_rt', 'map', 'mapcontinents', 'mapgrid', 'map_2points', 'map_continents', 'map_grid', 'map_image', 'map_patch', 'map_proj_forward', 'map_proj_image', 'map_proj_info', 'map_proj_init', 'map_proj_inverse', 'map_set', 'matrix_multiply', 'matrix_power', 'max', 'md_test', 'mean', 'meanabsdev', 'mean_filter', 'median', 'memory', 'mesh_clip', 'mesh_decimate', 'mesh_issolid', 'mesh_merge', 'mesh_numtriangles', 'mesh_obj', 'mesh_smooth', 'mesh_surfacearea', 'mesh_validate', 'mesh_volume', 'message', 'min', 'min_curve_surf', 'mk_html_help', 'modifyct', 'moment', 'morph_close', 'morph_distance', 'morph_gradient', 'morph_hitormiss', 'morph_open', 'morph_thin', 'morph_tophat', 'multi', 'm_correlate', 'ncdf_\w*', 'newton', 'noise_hurl', 'noise_pick', 'noise_scatter', 'noise_slur', 'norm', 'n_elements', 'n_params', 'n_tags', 'objarr', 'obj_class', 'obj_destroy', 'obj_hasmethod', 'obj_isa', 'obj_new', 'obj_valid', 'online_help', 'on_error', 'open', 'oplot', 'oploterr', 'parse_url', 'particle_trace', 'path_cache', 'path_sep', 'pcomp', 'plot', 'plot3d', 'ploterr', 'plots', 'plot_3dbox', 'plot_field', 'pnt_line', 'point_lun', 'polarplot', 'polar_contour', 'polar_surface', 'poly', 'polyfill', 'polyfillv', 'polygon', 'polyline', 'polyshade', 'polywarp', 'poly_2d', 'poly_area', 'poly_fit', 'popd', 'powell', 'pref_commit', 'pref_get', 'pref_set', 'prewitt', 'primes', 'print', 'printd', 'product', 'profile', 'profiler', 'profiles', 'project_vol', 'psafm', 'pseudo', 'ps_show_fonts', 'ptrarr', 'ptr_free', 'ptr_new', 'ptr_valid', 'pushd', 'p_correlate', 'qgrid3', 'qhull', 'qromb', 'qromo', 'qsimp', 'query_ascii', 'query_bmp', 'query_csv', 'query_dicom', 'query_gif', 'query_image', 'query_jpeg', 'query_jpeg2000', 'query_mrsid', 'query_pict', 'query_png', 'query_ppm', 'query_srf', 'query_tiff', 'query_wav', 'radon', 'randomn', 'randomu', 'ranks', 'rdpix', 'read', 'reads', 'readu', 'read_ascii', 'read_binary', 'read_bmp', 'read_csv', 'read_dicom', 'read_gif', 'read_image', 'read_interfile', 'read_jpeg', 'read_jpeg2000', 'read_mrsid', 'read_pict', 'read_png', 'read_ppm', 'read_spr', 'read_srf', 'read_sylk', 'read_tiff', 'read_wav', 'read_wave', 'read_x11_bitmap', 'read_xwd', 'real_part', 'rebin', 'recall_commands', 'recon3', 'reduce_colors', 'reform', 'region_grow', 'register_cursor', 'regress', 'replicate', 'replicate_inplace', 'resolve_all', 'resolve_routine', 'restore', 'retall', 'return', 'reverse', 'rk4', 'roberts', 'rot', 'rotate', 'round', 'routine_filepath', 'routine_info', 'rs_test', 'r_correlate', 'r_test', 'save', 'savgol', 'scale3', 'scale3d', 'scope_level', 'scope_traceback', 'scope_varfetch', 'scope_varname', 'search2d', 'search3d', 'sem_create', 'sem_delete', 'sem_lock', 'sem_release', 'setenv', 'set_plot', 'set_shading', 'sfit', 'shade_surf', 'shade_surf_irr', 'shade_volume', 'shift', 'shift_diff', 'shmdebug', 'shmmap', 'shmunmap', 'shmvar', 'show3', 'showfont', 'simplex', 'sin', 'sindgen', 'sinh', 'size', 'skewness', 'skip_lun', 'slicer3', 'slide_image', 'smooth', 'sobel', 'socket', 'sort', 'spawn', 'spher_harm', 'sph_4pnt', 'sph_scat', 'spline', 'spline_p', 'spl_init', 'spl_interp', 'sprsab', 'sprsax', 'sprsin', 'sprstp', 'sqrt', 'standardize', 'stddev', 'stop', 'strarr', 'strcmp', 'strcompress', 'streamline', 'stregex', 'stretch', 'string', 'strjoin', 'strlen', 'strlowcase', 'strmatch', 'strmessage', 'strmid', 'strpos', 'strput', 'strsplit', 'strtrim', 'struct_assign', 'struct_hide', 'strupcase', 'surface', 'surfr', 'svdc', 'svdfit', 'svsol', 'swap_endian', 'swap_endian_inplace', 'symbol', 'systime', 's_test', 't3d', 'tag_names', 'tan', 'tanh', 'tek_color', 'temporary', 'tetra_clip', 'tetra_surface', 'tetra_volume', 'text', 'thin', 'threed', 'timegen', 'time_test2', 'tm_test', 'total', 'trace', 'transpose', 'triangulate', 'trigrid', 'triql', 'trired', 'trisol', 'tri_surf', 'truncate_lun', 'ts_coef', 'ts_diff', 'ts_fcast', 'ts_smooth', 'tv', 'tvcrs', 'tvlct', 'tvrd', 'tvscl', 'typename', 't_cvt', 't_pdf', 'uindgen', 'uint', 'uintarr', 'ul64indgen', 'ulindgen', 'ulon64arr', 'ulonarr', 'ulong', 'ulong64', 'uniq', 'unsharp_mask', 'usersym', 'value_locate', 'variance', 'vector', 'vector_field', 'vel', 'velovect', 'vert_t3d', 'voigt', 'voronoi', 'voxel_proj', 'wait', 'warp_tri', 'watershed', 'wdelete', 'wf_draw', 'where', 'widget_base', 'widget_button', 'widget_combobox', 'widget_control', 'widget_displaycontextmen', 'widget_draw', 'widget_droplist', 'widget_event', 'widget_info', 'widget_label', 'widget_list', 'widget_propertysheet', 'widget_slider', 'widget_tab', 'widget_table', 'widget_text', 'widget_tree', 'widget_tree_move', 'widget_window', 'wiener_filter', 'window', 'writeu', 'write_bmp', 'write_csv', 'write_gif', 'write_image', 'write_jpeg', 'write_jpeg2000', 'write_nrif', 'write_pict', 'write_png', 'write_ppm', 'write_spr', 'write_srf', 'write_sylk', 'write_tiff', 'write_wav', 'write_wave', 'wset', 'wshow', 'wtn', 'wv_applet', 'wv_cwt', 'wv_cw_wavelet', 'wv_denoise', 'wv_dwt', 'wv_fn_coiflet', 'wv_fn_daubechies', 'wv_fn_gaussian', 'wv_fn_haar', 'wv_fn_morlet', 'wv_fn_paul', 'wv_fn_symlet', 'wv_import_data', 'wv_import_wavelet', 'wv_plot3d_wps', 'wv_plot_multires', 'wv_pwt', 'wv_tool_denoise', 'xbm_edit', 'xdisplayfile', 'xdxf', 'xfont', 'xinteranimate', 'xloadct', 'xmanager', 'xmng_tmpl', 'xmtool', 'xobjview', 'xobjview_rotate', 'xobjview_write_image', 'xpalette', 'xpcolor', 'xplot3d', 'xregistered', 'xroi', 'xsq_test', 'xsurface', 'xvaredit', 'xvolume', 'xvolume_rotate', 'xvolume_write_image', 'xyouts', 'zoom', 'zoom_24') """Functions from: http://www.exelisvis.com/docs/routines-1.html""" tokens = { 'root': [ (r'^\s*;.*?\n', Comment.Singleline), (words(_RESERVED, prefix=r'\b', suffix=r'\b'), Keyword), (words(_BUILTIN_LIB, prefix=r'\b', suffix=r'\b'), Name.Builtin), (r'\+=|-=|\^=|\*=|/=|#=|##=|<=|>=|=', Operator), (r'\+\+|--|->|\+|-|##|#|\*|/|<|>|&&|\^|~|\|\|\?|:', Operator), (r'\b(mod=|lt=|le=|eq=|ne=|ge=|gt=|not=|and=|or=|xor=)', Operator), (r'\b(mod|lt|le|eq|ne|ge|gt|not|and|or|xor)\b', Operator), (r'\b[0-9](L|B|S|UL|ULL|LL)?\b', Number), (r'.', Text), ] }
55.262357
79
0.58862
d1f7706c2bdcd02b997bd03433be71eaf2145c87
13,070
py
Python
app/train_integratedml_bin.py
intersystems-community/iris-ml-suite
d82868e6d83cb7fb8da2a98dd98cf7c6d28d1210
[ "MIT" ]
null
null
null
app/train_integratedml_bin.py
intersystems-community/iris-ml-suite
d82868e6d83cb7fb8da2a98dd98cf7c6d28d1210
[ "MIT" ]
null
null
null
app/train_integratedml_bin.py
intersystems-community/iris-ml-suite
d82868e6d83cb7fb8da2a98dd98cf7c6d28d1210
[ "MIT" ]
1
2020-09-09T21:48:37.000Z
2020-09-09T21:48:37.000Z
import jaydebeapi import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split from pandas import DataFrame import re, string import pickle import json from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score from sklearn.multiclass import OneVsRestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC import nltk from nltk.corpus import stopwords nltk.download('stopwords') stop_words = set(stopwords.words('english')) import pandas as pd jdbc_server = "jdbc:IRIS://52.142.62.199:9091/PYTHON" jdbc_driver = 'com.intersystems.jdbc.IRISDriver' iris_jdbc_jar = "./intersystems-jdbc-3.1.0.jar" iris_user = "_SYSTEM" iris_password = "SYS" conn = jaydebeapi.connect(jdbc_driver, jdbc_server, [iris_user, iris_password], iris_jdbc_jar) with open('views.json') as json_file: views = set(json.load(json_file)) with open('models.json') as json_file: models = set(json.load(json_file)) with open('trains.json') as json_file: trains = set(json.load(json_file)) curs = conn.cursor() err_views = [] err_models = [] err_trains = [] for x in views: try: exec = x.split("\"")[1] curs.execute(exec) except Exception as inst: err_views.append(inst) print("erro em {}".format(exec)) curs = conn.cursor() for x in models: try: exec = x.split("\"")[1] curs.execute(exec) except Exception as inst: err_models.append(inst) print("erro em {}".format(exec)) curs = conn.cursor() for x in trains: try: exec = x.split("\"")[1] curs.execute(exec) except Exception as inst: err_trains.append(inst) print("erro em {}".format(exec)) print("") conn = jaydebeapi.connect(jdbc_driver, jdbc_server, [iris_user, iris_password], iris_jdbc_jar) curs = conn.cursor() curs.execute("SELECT " " id, Name, Tags, Text " "FROM Community.Post_Train " "Where " "not text is null " "order by id") total_cache = curs.fetchall() #getting all description of each tag to compose the vocabulary curs_vocab = conn.cursor() curs_vocab.execute("SELECT ID||' '||Description " "FROM Community.Tag " "where not id is null " "and not Description is null " "order by id") total_vocab = curs_vocab.fetchall() df_vocab = DataFrame(columns=["vocab"], data=total_vocab) df_vocab = df_vocab.applymap(lambda s: s.lower() if type(s) == str else s) curs_tags = conn.cursor() curs_tags.execute("SELECT ID " "FROM Community.Tag " "where not id is null order by id") total_tags = curs_tags.fetchall() df_tags = DataFrame(columns=["tags"], data=total_tags) df_tags = df_tags.applymap(lambda s: s.lower() if type(s) == str else s) df = DataFrame(total_cache) df.columns = [x[0].lower() for x in curs.description] def clean_text(text): text = re.sub(r"what's", "what is ", text) text = re.sub(r"c\+\+", "cplusplus ", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "can not ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"i'm", "i am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r"\'scuse", " excuse ", text) text = re.sub('\W', ' ', text) text = re.sub('\s+', ' ', text) text = text.strip(' ') return text def prepare_dataframe(_df): #converting all to lower case _df = _df.applymap(lambda s: s.lower() if type(s) == str else s) _df["tags"] = tuple(_df["tags"].str.split(",")) _df["text"] = _df["text"].map(lambda com : clean_text(com)) return _df def get_all_tags(tags_list): real_tags = df_tags["tags"].values.tolist() all_tags = [] for x in tags_list.values: all_tags += x[0] result = list(set(all_tags)) result = [x for x in result if x in real_tags] #result.remove("article") #result.remove("question") #result.remove("caché") with open('all_tags.json', 'w') as outfile: json.dump(result, outfile) return tuple(set(result)) df = prepare_dataframe(df) all_tags = get_all_tags(df[["tags"]]) mlb = MultiLabelBinarizer(classes=all_tags) y_total = mlb.fit_transform(df["tags"]) n = df.shape[0] vec = CountVectorizer(ngram_range=(1,1), strip_accents='unicode', max_features=900,stop_words=stop_words, binary=True) vec.fit(df_vocab["vocab"]) percent_training = 0.8 line = int(percent_training * n) df_x_train = df["text"][:line] df_x_test = df["text"][line:] x_train = vec.transform(df_x_train) #saving a pickle with the vectorizer model filename = 'vec_integratedml_bin.sav' pickle.dump(vec, open(filename, 'wb')) x_test = vec.transform(df_x_test) # creating data frames to create a csv to send to intersystems iris sp_matrix_x_train = pd.DataFrame.sparse.from_spmatrix(x_train) sp_matrix_x_test = pd.DataFrame.sparse.from_spmatrix(x_test) # adding a c prefix to create columns with alphanumeric names sp_matrix_x_test.columns = ["c" + str(c) for c in sp_matrix_x_test.columns] sp_matrix_x_train.columns = ["c" + str(c) for c in sp_matrix_x_train.columns] sp_matrix_x_test.to_csv("xtest_bin.csv", index=False) sp_matrix_x_train.to_csv("xtrain_bin.csv", index=False) # formating names to be usable in intersystems iris formated_columns = ["tag_" + re.subn(r"[\é\s\\\(\)\.\,\$\&\+\/\?\%\|\"\#\-]", "_", x.strip())[0] for x in mlb.classes_] with open('formated_columns_bin.json', 'w') as outfile: json.dump(formated_columns, outfile) #x_train = x_total[:line] y_train = DataFrame(y_total[:line]) #x_test = x_total[line:] y_test = DataFrame(y_total[line:]) y_test.columns = mlb.classes_ y_train.columns = mlb.classes_ csv_y_train = y_train.copy() csv_y_test = y_test.copy() csv_y_test.columns = formated_columns csv_y_train.columns = formated_columns csv_y_test.to_csv("ytest_bin.csv", index=False) csv_y_train.to_csv("ytrain_bin.csv", index=False) #creating 2 dictionaries to convert and revert the names iris_columns = {} python_columns = {} all_views = [] all_models = [] all_trains = [] curs_loop = conn.cursor() for i, x in enumerate(formated_columns): python_columns[x]=mlb.classes_[i] iris_columns[mlb.classes_[i]]=x #creating sql objects to perform the training drop_view_text = "DROP VIEW community.view_train_{}".format(x) view_text = "CREATE VIEW community.view_train_{} " \ "AS " \ "SELECT " \ "c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c46, c47, c48, c49, c50, c51, c52, c53, c54, c55, c56, c57, c58, c59, c60, c61, c62, c63, c64, c65, c66, c67, c68, c69, c70, c71, c72, c73, c74, c75, c76, c77, c78, c79, c80, c81, c82, c83, c84, c85, c86, c87, c88, c89, c90, c91, c92, c93, c94, c95, c96, c97, c98, c99, c100, c101, c102, c103, c104, c105, c106, c107, c108, c109, c110, c111, c112, c113, c114, c115, c116, c117, c118, c119, c120, c121, c122, c123, c124, c125, c126, c127, c128, c129, c130, c131, c132, c133, c134, c135, c136, c137, c138, c139, c140, c141, c142, c143, c144, c145, c146, c147, c148, c149, c150, c151, c152, c153, c154, c155, c156, c157, c158, c159, c160, c161, c162, c163, c164, c165, c166, c167, c168, c169, c170, c171, c172, c173, c174, c175, c176, c177, c178, c179, c180, c181, c182, c183, c184, c185, c186, c187, c188, c189, c190, c191, c192, c193, c194, c195, c196, c197, c198, c199, c200, c201, c202, c203, c204, c205, c206, c207, c208, c209, c210, c211, c212, c213, c214, c215, c216, c217, c218, c219, c220, c221, c222, c223, c224, c225, c226, c227, c228, c229, c230, c231, c232, c233, c234, c235, c236, c237, c238, c239, c240, c241, c242, c243, c244, c245, c246, c247, c248, c249, c250, c251, c252, c253, c254, c255, c256, c257, c258, c259, c260, c261, c262, c263, c264, c265, c266, c267, c268, c269, c270, c271, c272, c273, c274, c275, c276, c277, c278, c279, c280, c281, c282, c283, c284, c285, c286, c287, c288, c289, c290, c291, c292, c293, c294, c295, c296, c297, c298, c299, c300, c301, c302, c303, c304, c305, c306, c307, c308, c309, c310, c311, c312, c313, c314, c315, c316, c317, c318, c319, c320, c321, c322, c323, c324, c325, c326, c327, c328, c329, c330, c331, c332, c333, c334, c335, c336, c337, c338, c339, c340, c341, c342, c343, c344, c345, c346, c347, c348, c349, c350, c351, c352, c353, c354, c355, c356, c357, c358, c359, c360, c361, c362, c363, c364, c365, c366, c367, c368, c369, c370, c371, c372, c373, c374, c375, c376, c377, c378, c379, c380, c381, c382, c383, c384, c385, c386, c387, c388, c389, c390, c391, c392, c393, c394, c395, c396, c397, c398, c399, c400, c401, c402, c403, c404, c405, c406, c407, c408, c409, c410, c411, c412, c413, c414, c415, c416, c417, c418, c419, c420, c421, c422, c423, c424, c425, c426, c427, c428, c429, c430, c431, c432, c433, c434, c435, c436, c437, c438, c439, c440, c441, c442, c443, c444, c445, c446, c447, c448, c449, c450, c451, c452, c453, c454, c455, c456, c457, c458, c459, c460, c461, c462, c463, c464, c465, c466, c467, c468, c469, c470, c471, c472, c473, c474, c475, c476, c477, c478, c479, c480, c481, c482, c483, c484, c485, c486, c487, c488, c489, c490, c491, c492, c493, c494, c495, c496, c497, c498, c499, c500, c501, c502, c503, c504, c505, c506, c507, c508, c509, c510, c511, c512, c513, c514, c515, c516, c517, c518, c519, c520, c521, c522, c523, c524, c525, c526, c527, c528, c529, c530, c531, c532, c533, c534, c535, c536, c537, c538, c539, c540, c541, c542, c543, c544, c545, c546, c547, c548, c549, c550, c551, c552, c553, c554, c555, c556, c557, c558, c559, c560, c561, c562, c563, c564, c565, c566, c567, c568, c569, c570, c571, c572, c573, c574, c575, c576, c577, c578, c579, c580, c581, c582, c583, c584, c585, c586, c587, c588, c589, c590, c591, c592, c593, c594, c595, c596, c597, c598, c599, c600, c601, c602, c603, c604, c605, c606, c607, c608, c609, c610, c611, c612, c613, c614, c615, c616, c617, c618, c619, c620, c621, c622, c623, c624, c625, c626, c627, c628, c629, c630, c631, c632, c633, c634, c635, c636, c637, c638, c639, c640, c641, c642, c643, c644, c645, c646, c647, c648, c649, c650, c651, c652, c653, c654, c655, c656, c657, c658, c659, c660, c661, c662, c663, c664, c665, c666, c667, c668, c669, c670, c671, c672, c673, c674, c675, c676, c677, c678, c679, c680, c681, c682, c683, c684, c685, c686, c687, c688, c689, c690, c691, c692, c693, c694, c695, c696, c697, c698, c699, c700, c701, c702, c703, c704, c705, c706, c707, c708, c709, c710, c711, c712, c713, c714, c715, c716, c717, c718, c719, c720, c721, c722, c723, c724, c725, c726, c727, c728, c729, c730, c731, c732, c733, c734, c735, c736, c737, c738, c739, c740, c741, c742, c743, c744, c745, c746, c747, c748, c749, c750, c751, c752, c753, c754, c755, c756, c757, c758, c759, c760, c761, c762, c763, c764, c765, c766, c767, c768, c769, c770, c771, c772, c773, c774, c775, c776, c777, c778, c779, c780, c781, c782, c783, c784, c785, c786, c787, c788, c789, c790, c791, c792, c793, c794, c795, c796, c797, c798, c799, c800, c801, c802, c803, c804, c805, c806, c807, c808, c809, c810, c811, c812, c813, c814, c815, c816, c817, c818, c819, c820, c821, c822, c823, c824, c825, c826, c827, c828, c829, c830, c831, c832, c833, c834, c835, c836, c837, c838, c839, c840, c841, c842, c843, c844, c845, c846, c847, c848, c849, c850, c851, c852, c853, c854, c855, c856, c857, c858, c859, c860, c861, c862, c863, c864, c865, c866, c867, c868, c869, c870, c871, c872, c873, c874, c875, c876, c877, c878, c879, c880, c881, c882, c883, c884, c885, c886, c887, c888, c889, c890, c891, c892, c893, c894, c895, c896, c897, c898, c899, " \ "{} " \ "FROM " \ "community.xtrain as xtrain " \ "inner join " \ "community.ytrain as ytrain " \ "ON " \ "ytrain.id = xtrain.id".format(x,x) model_text = "CREATE MODEL has_{}_tag PREDICTING ({}) FROM community.view_train_{}".format(x,x,x) train_text = "TRAIN MODEL has_{}_tag FROM community.view_train_{}".format(x,x,x) print(x) try: curs_loop.execute(view_text) curs_loop.execute(model_text) curs_loop.execute(train_text) except: print(x) all_views.append("Set tSC = ##class(%SQL.Statement).%ExecDirect(, \"{}\")".format(view_text)) all_models.append("Set tSC = ##class(%SQL.Statement).%ExecDirect(, \"{}\")".format(model_text)) all_trains.append("Set tSC = ##class(%SQL.Statement).%ExecDirect(, \"{}\")".format(train_text)) predictors = {}
51.456693
5,310
0.657077
54ae8cfd9d0be07a46ac814aba753cffafd883fc
12,329
py
Python
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_gtp_ie_allow_list.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_gtp_ie_allow_list.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_gtp_ie_allow_list.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019-2020 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_gtp_ie_allow_list short_description: IE allow list in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify gtp feature and ie_allow_list category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.0 version_added: "2.10" author: - Link Zheng (@chillancezen) - Jie Xue (@JieX19) - Hongbin Lu (@fgtdev-hblu) - Frank Shen (@frankshen01) - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Legacy fortiosapi has been deprecated, httpapi is the preferred way to run playbooks requirements: - ansible>=2.9.0 options: access_token: description: - Token-based authentication. Generated from GUI of Fortigate. type: str required: false enable_log: description: - Enable/Disable logging for task. type: bool required: false default: false vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root member_path: type: str description: - Member attribute path to operate on. - Delimited by a slash character if there are more than one attribute. - Parameter marked with member_path is legitimate for doing member operation. member_state: type: str description: - Add or delete a member under specified attribute path. - When member_state is specified, the state option is ignored. choices: - present - absent state: description: - Indicates whether to create or remove the object. type: str required: true choices: - present - absent gtp_ie_allow_list: description: - IE allow list. default: null type: dict suboptions: entries: description: - Entries of allow list for unknown or out-of-state IEs. type: list suboptions: id: description: - Entry ID. required: true type: int ie: description: - IE ID (1 - 255). type: int message: description: - Message ID (1 - 255). type: int name: description: - IE allow list name. required: true type: str ''' EXAMPLES = ''' - hosts: fortigates collections: - fortinet.fortios connection: httpapi vars: vdom: "root" ansible_httpapi_use_ssl: yes ansible_httpapi_validate_certs: no ansible_httpapi_port: 443 tasks: - name: IE allow list. fortios_gtp_ie_allow_list: vdom: "{{ vdom }}" state: "present" access_token: "<your_own_value>" gtp_ie_allow_list: entries: - id: "4" ie: "5" message: "6" name: "default_name_7" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import FortiOSHandler from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import check_legacy_fortiosapi from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import schema_to_module_spec from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import check_schema_versioning from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FAIL_SOCKET_MSG def filter_gtp_ie_allow_list_data(json): option_list = ['entries', 'name'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for i, elem in enumerate(data): data[i] = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def gtp_ie_allow_list(data, fos): vdom = data['vdom'] state = data['state'] gtp_ie_allow_list_data = data['gtp_ie_allow_list'] filtered_data = underscore_to_hyphen(filter_gtp_ie_allow_list_data(gtp_ie_allow_list_data)) if state == "present" or state is True: return fos.set('gtp', 'ie-allow-list', data=filtered_data, vdom=vdom) elif state == "absent": return fos.delete('gtp', 'ie-allow-list', mkey=filtered_data['name'], vdom=vdom) else: fos._module.fail_json(msg='state must be present or absent!') def is_successful_status(resp): return 'status' in resp and resp['status'] == 'success' or \ 'http_status' in resp and resp['http_status'] == 200 or \ 'http_method' in resp and resp['http_method'] == "DELETE" and resp['http_status'] == 404 def fortios_gtp(data, fos): fos.do_member_operation('gtp_ie_allow_list') if data['gtp_ie_allow_list']: resp = gtp_ie_allow_list(data, fos) else: fos._module.fail_json(msg='missing task body: %s' % ('gtp_ie_allow_list')) return not is_successful_status(resp), \ is_successful_status(resp) and \ (resp['revision_changed'] if 'revision_changed' in resp else True), \ resp versioned_schema = { "type": "list", "children": { "name": { "type": "string", "revisions": { "v7.0.1": True, "v7.0.0": True } }, "entries": { "type": "list", "children": { "message": { "type": "integer", "revisions": { "v7.0.1": True, "v7.0.0": True } }, "ie": { "type": "integer", "revisions": { "v7.0.1": True, "v7.0.0": True } }, "id": { "type": "integer", "revisions": { "v7.0.1": True, "v7.0.0": True } } }, "revisions": { "v7.0.1": True, "v7.0.0": True } } }, "revisions": { "v7.0.1": True, "v7.0.0": True } } def main(): module_spec = schema_to_module_spec(versioned_schema) mkeyname = 'name' fields = { "access_token": {"required": False, "type": "str", "no_log": True}, "enable_log": {"required": False, "type": bool}, "vdom": {"required": False, "type": "str", "default": "root"}, "member_path": {"required": False, "type": "str"}, "member_state": { "type": "str", "required": False, "choices": ["present", "absent"] }, "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "gtp_ie_allow_list": { "required": False, "type": "dict", "default": None, "options": { } } } for attribute_name in module_spec['options']: fields["gtp_ie_allow_list"]['options'][attribute_name] = module_spec['options'][attribute_name] if mkeyname and mkeyname == attribute_name: fields["gtp_ie_allow_list"]['options'][attribute_name]['required'] = True check_legacy_fortiosapi() module = AnsibleModule(argument_spec=fields, supports_check_mode=False) versions_check_result = None if module._socket_path: connection = Connection(module._socket_path) if 'access_token' in module.params: connection.set_option('access_token', module.params['access_token']) if 'enable_log' in module.params: connection.set_option('enable_log', module.params['enable_log']) else: connection.set_option('enable_log', False) fos = FortiOSHandler(connection, module, mkeyname) versions_check_result = check_schema_versioning(fos, versioned_schema, "gtp_ie_allow_list") is_error, has_changed, result = fortios_gtp(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) if versions_check_result and versions_check_result['matched'] is False: module.warn("Ansible has detected version mismatch between FortOS system and your playbook, see more details by specifying option -vvv") if not is_error: if versions_check_result and versions_check_result['matched'] is False: module.exit_json(changed=has_changed, version_check_warning=versions_check_result, meta=result) else: module.exit_json(changed=has_changed, meta=result) else: if versions_check_result and versions_check_result['matched'] is False: module.fail_json(msg="Error in repo", version_check_warning=versions_check_result, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
31.371501
144
0.593884
97e5d354a6cc0e58440e88a7f95883c4c9f06d6d
9,020
py
Python
tests/inspectdb/tests.py
huicheese/Django-test
eb866b3c4c61eb990e68f4b6a02cb1b7d948adbd
[ "BSD-3-Clause" ]
118
2015-01-03T15:42:32.000Z
2022-02-01T02:58:38.000Z
tests/inspectdb/tests.py
huicheese/Django-test
eb866b3c4c61eb990e68f4b6a02cb1b7d948adbd
[ "BSD-3-Clause" ]
18
2015-01-14T07:51:48.000Z
2021-10-14T01:19:26.000Z
tests/inspectdb/tests.py
huicheese/Django-test
eb866b3c4c61eb990e68f4b6a02cb1b7d948adbd
[ "BSD-3-Clause" ]
70
2015-01-01T00:33:24.000Z
2021-12-10T03:43:07.000Z
# -*- encoding: utf-8 -*- from __future__ import unicode_literals import re from django.core.management import call_command from django.db import connection from django.test import TestCase, skipUnlessDBFeature from django.utils.unittest import expectedFailure from django.utils.six import PY3, StringIO if connection.vendor == 'oracle': expectedFailureOnOracle = expectedFailure else: expectedFailureOnOracle = lambda f: f class InspectDBTestCase(TestCase): def test_stealth_table_name_filter_option(self): out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn:tn.startswith('inspectdb_'), stdout=out) error_message = "inspectdb has examined a table that should have been filtered out." # contrib.contenttypes is one of the apps always installed when running # the Django test suite, check that one of its tables hasn't been # inspected self.assertNotIn("class DjangoContentType(models.Model):", out.getvalue(), msg=error_message) def make_field_type_asserter(self): """Call inspectdb and return a function to validate a field type in its output""" out = StringIO() call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_columntypes'), stdout=out) output = out.getvalue() def assertFieldType(name, definition): out_def = re.search(r'^\s*%s = (models.*)$' % name, output, re.MULTILINE).groups()[0] self.assertEqual(definition, out_def) return assertFieldType # Inspecting oracle DB doesn't produce correct results, see #19884 @expectedFailureOnOracle def test_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() assertFieldType('char_field', "models.CharField(max_length=10)") assertFieldType('comma_separated_int_field', "models.CharField(max_length=99)") assertFieldType('date_field', "models.DateField()") assertFieldType('date_time_field', "models.DateTimeField()") assertFieldType('email_field', "models.CharField(max_length=75)") assertFieldType('file_field', "models.CharField(max_length=100)") assertFieldType('file_path_field', "models.CharField(max_length=100)") if connection.vendor == 'postgresql': # Only PostgreSQL has a specific type assertFieldType('ip_address_field', "models.GenericIPAddressField()") assertFieldType('gen_ip_adress_field', "models.GenericIPAddressField()") else: assertFieldType('ip_address_field', "models.CharField(max_length=15)") assertFieldType('gen_ip_adress_field', "models.CharField(max_length=39)") assertFieldType('slug_field', "models.CharField(max_length=50)") assertFieldType('text_field', "models.TextField()") assertFieldType('time_field', "models.TimeField()") assertFieldType('url_field', "models.CharField(max_length=200)") def test_number_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() assertFieldType('id', "models.IntegerField(primary_key=True)") assertFieldType('big_int_field', "models.BigIntegerField()") if connection.vendor == 'mysql': # No native boolean type on MySQL assertFieldType('bool_field', "models.IntegerField()") assertFieldType('null_bool_field', "models.IntegerField(blank=True, null=True)") else: assertFieldType('bool_field', "models.BooleanField()") assertFieldType('null_bool_field', "models.NullBooleanField()") if connection.vendor == 'sqlite': # Guessed arguments, see #5014 assertFieldType('decimal_field', "models.DecimalField(max_digits=10, decimal_places=5) " "# max_digits and decimal_places have been guessed, as this database handles decimal fields as float") else: assertFieldType('decimal_field', "models.DecimalField(max_digits=6, decimal_places=1)") assertFieldType('float_field', "models.FloatField()") assertFieldType('int_field', "models.IntegerField()") if connection.vendor == 'sqlite': assertFieldType('pos_int_field', "models.PositiveIntegerField()") assertFieldType('pos_small_int_field', "models.PositiveSmallIntegerField()") else: # 'unsigned' property undetected on other backends assertFieldType('pos_int_field', "models.IntegerField()") if connection.vendor == 'postgresql': assertFieldType('pos_small_int_field', "models.SmallIntegerField()") else: assertFieldType('pos_small_int_field', "models.IntegerField()") if connection.vendor in ('sqlite', 'postgresql'): assertFieldType('small_int_field', "models.SmallIntegerField()") else: assertFieldType('small_int_field', "models.IntegerField()") @skipUnlessDBFeature('can_introspect_foreign_keys') def test_attribute_name_not_python_keyword(self): out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn:tn.startswith('inspectdb_'), stdout=out) output = out.getvalue() error_message = "inspectdb generated an attribute name which is a python keyword" # Recursive foreign keys should be set to 'self' self.assertIn("parent = models.ForeignKey('self')", output) self.assertNotIn("from = models.ForeignKey(InspectdbPeople)", output, msg=error_message) # As InspectdbPeople model is defined after InspectdbMessage, it should be quoted self.assertIn("from_field = models.ForeignKey('InspectdbPeople', db_column='from_id')", output) self.assertIn("people_pk = models.ForeignKey(InspectdbPeople, primary_key=True)", output) self.assertIn("people_unique = models.ForeignKey(InspectdbPeople, unique=True)", output) def test_digits_column_name_introspection(self): """Introspection of column names consist/start with digits (#16536/#17676)""" out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn:tn.startswith('inspectdb_'), stdout=out) output = out.getvalue() error_message = "inspectdb generated a model field name which is a number" self.assertNotIn(" 123 = models.CharField", output, msg=error_message) self.assertIn("number_123 = models.CharField", output) error_message = "inspectdb generated a model field name which starts with a digit" self.assertNotIn(" 4extra = models.CharField", output, msg=error_message) self.assertIn("number_4extra = models.CharField", output) self.assertNotIn(" 45extra = models.CharField", output, msg=error_message) self.assertIn("number_45extra = models.CharField", output) def test_special_column_name_introspection(self): """ Introspection of column names containing special characters, unsuitable for Python identifiers """ out = StringIO() call_command('inspectdb', stdout=out) output = out.getvalue() base_name = 'Field' if connection.vendor != 'oracle' else 'field' self.assertIn("field = models.IntegerField()", output) self.assertIn("field_field = models.IntegerField(db_column='%s_')" % base_name, output) self.assertIn("field_field_0 = models.IntegerField(db_column='%s__')" % base_name, output) self.assertIn("field_field_1 = models.IntegerField(db_column='__field')", output) self.assertIn("prc_x = models.IntegerField(db_column='prc(%) x')", output) if PY3: # Python 3 allows non-ascii identifiers self.assertIn("tamaño = models.IntegerField()", output) else: self.assertIn("tama_o = models.IntegerField(db_column='tama\\xf1o')", output) def test_managed_models(self): """Test that by default the command generates models with `Meta.managed = False` (#14305)""" out = StringIO() call_command('inspectdb', table_name_filter=lambda tn:tn.startswith('inspectdb_columntypes'), stdout=out) output = out.getvalue() self.longMessage = False self.assertIn(" managed = False", output, msg='inspectdb should generate unmanaged models.')
50.960452
118
0.667738
b775cd418d33bc5c80d9ec1581ecd24cef40cdfd
14,248
py
Python
train.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
train.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
train.py
kevinghst/UDA_sup
c970622370d5de6b8c48b458cb8b4fe59e37effb
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 SanghunYun, Korea University. # (Strongly inspired by Dong-Hyun Lee, Kakao Brain) # # Except load and save function, the whole codes of file has been modified and added by # SanghunYun, Korea University for UDA. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json from copy import deepcopy from typing import NamedTuple from tqdm import tqdm import time import shutil from logger import * import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from utils import checkpoint # from utils.logger import Logger from tensorboardX import SummaryWriter from utils.utils import output_logging, bin_accuracy, multi_accuracy, AverageMeterSet import pdb class Trainer(object): """Training Helper class""" def __init__(self, cfg, model, data_iter, optimizer, device, ema_model, ema_optimizer): self.cfg = cfg self.model = model self.optimizer = optimizer self.device = device self.ema_model = ema_model self.ema_optimizer = ema_optimizer # data iter if len(data_iter) == 1: self.sup_iter = data_iter[0] elif len(data_iter) == 2: self.sup_iter = self.repeat_dataloader(data_iter[0]) self.unsup_iter = None self.eval_iter = data_iter[1] elif len(data_iter) == 3: self.sup_iter = self.repeat_dataloader(data_iter[0]) self.unsup_iter = self.repeat_dataloader(data_iter[1]) self.eval_iter = data_iter[2] def train(self, get_loss, get_acc, model_file, pretrain_file): if self.cfg.uda_mode or self.cfg.mixmatch_mode: ssl_mode = True else: ssl_mode = False """ train uda""" # tensorboardX logging if self.cfg.results_dir: dir = os.path.join('results', self.cfg.results_dir) if os.path.exists(dir) and os.path.isdir(dir): shutil.rmtree(dir) writer = SummaryWriter(log_dir=dir) #logger_path = dir + 'log.txt' #logger = Logger(logger_path, title='uda') #if self.cfg.no_unsup_loss: # logger.set_names(['Train Loss', 'Valid Acc', 'Valid Loss', 'LR']) #else: # logger.set_names(['Train Loss', 'Train Loss X', 'Train Loss U', 'Train Loss W U', 'Valid Acc', 'Valid Loss', 'LR']) meters = AverageMeterSet() self.model.train() if self.cfg.model == "custom": self.load(model_file, pretrain_file) # between model_file and pretrain_file, only one model will be loaded model = self.model.to(self.device) ema_model = self.ema_model.to(self.device) if self.ema_model else None if self.cfg.data_parallel: # Parallel GPU mode model = nn.DataParallel(model) ema_model = nn.DataParallel(ema_model) if ema_model else None global_step = 0 loss_sum = 0. max_acc = [0., 0, 0., 0.] # acc, step, val_loss, train_loss no_improvement = 0 sup_batch_size = None unsup_batch_size = None # Progress bar is set by unsup or sup data # uda_mode == True --> sup_iter is repeated # uda_mode == False --> sup_iter is not repeated iter_bar = tqdm(self.unsup_iter, total=self.cfg.total_steps, disable=self.cfg.hide_tqdm) if ssl_mode \ else tqdm(self.sup_iter, total=self.cfg.total_steps, disable=self.cfg.hide_tqdm) start = time.time() for i, batch in enumerate(iter_bar): # Device assignment if ssl_mode: sup_batch = [t.to(self.device) for t in next(self.sup_iter)] unsup_batch = [t.to(self.device) for t in batch] unsup_batch_size = unsup_batch_size or unsup_batch[0].shape[0] if unsup_batch[0].shape[0] != unsup_batch_size: continue else: sup_batch = [t.to(self.device) for t in batch] unsup_batch = None # update self.optimizer.zero_grad() final_loss, sup_loss, unsup_loss, weighted_unsup_loss = get_loss(model, sup_batch, unsup_batch, global_step) if self.cfg.no_sup_loss: final_loss = unsup_loss elif self.cfg.no_unsup_loss: final_loss = sup_loss meters.update('train_loss', final_loss.item()) meters.update('sup_loss', sup_loss.item()) meters.update('unsup_loss', unsup_loss.item()) meters.update('w_unsup_loss', weighted_unsup_loss.item()) meters.update('lr', self.optimizer.get_lr()[0]) final_loss.backward() self.optimizer.step() if self.ema_optimizer: self.ema_optimizer.step() # print loss global_step += 1 loss_sum += final_loss.item() if not self.cfg.hide_tqdm: if ssl_mode: iter_bar.set_description('final=%5.3f unsup=%5.3f sup=%5.3f'\ % (final_loss.item(), unsup_loss.item(), sup_loss.item())) else: iter_bar.set_description('loss=%5.3f' % (final_loss.item())) if global_step % self.cfg.save_steps == 0: self.save(global_step) if get_acc and global_step % self.cfg.check_steps == 0 and global_step > self.cfg.check_after: if self.cfg.mixmatch_mode: results = self.eval(get_acc, None, ema_model) else: total_accuracy, avg_val_loss = self.validate() # logging writer.add_scalars('data/eval_acc', {'eval_acc' : total_accuracy}, global_step) writer.add_scalars('data/eval_loss', {'eval_loss': avg_val_loss}, global_step) if self.cfg.no_unsup_loss: writer.add_scalars('data/train_loss', {'train_loss': meters['train_loss'].avg}, global_step) writer.add_scalars('data/lr', {'lr': meters['lr'].avg}, global_step) else: writer.add_scalars('data/train_loss', {'train_loss': meters['train_loss'].avg}, global_step) writer.add_scalars('data/sup_loss', {'sup_loss': meters['sup_loss'].avg}, global_step) writer.add_scalars('data/unsup_loss', {'unsup_loss': meters['unsup_loss'].avg}, global_step) writer.add_scalars('data/w_unsup_loss', {'w_unsup_loss': meters['w_unsup_loss'].avg}, global_step) writer.add_scalars('data/lr', {'lr': meters['lr'].avg}, global_step) meters.reset() if max_acc[0] < total_accuracy: self.save(global_step) max_acc = total_accuracy, global_step, avg_val_loss, final_loss.item() no_improvement = 0 else: no_improvement += 1 print(" Top 1 Accuracy: {0:.4f}".format(total_accuracy)) print(" Validation Loss: {0:.4f}".format(avg_val_loss)) print(" Train Loss: {0:.4f}".format(final_loss.item())) if ssl_mode: print(" Sup Loss: {0:.4f}".format(sup_loss.item())) print(" Unsup Loss: {0:.4f}".format(unsup_loss.item())) print(" Learning rate: {0:.7f}".format(self.optimizer.get_lr()[0])) print( 'Max Accuracy : %5.3f Best Val Loss : %5.3f Best Train Loss : %5.4f Max global_steps : %d Cur global_steps : %d' %(max_acc[0], max_acc[2], max_acc[3], max_acc[1], global_step), end='\n\n' ) if no_improvement == self.cfg.early_stopping: print("Early stopped") total_time = time.time() - start print('Total Training Time: %d' %(total_time), end='\n') break if self.cfg.total_steps and self.cfg.total_steps < global_step: print('The total steps have been reached') total_time = time.time() - start print('Total Training Time: %d' %(total_time), end='\n') if get_acc: if self.cfg.mixmatch_mode: results = self.eval(get_acc, None, ema_model) else: total_accuracy, avg_val_loss = self.validate() if max_acc[0] < total_accuracy: max_acc = total_accuracy, global_step, avg_val_loss, final_loss.item() print(" Top 1 Accuracy: {0:.4f}".format(total_accuracy)) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Train Loss: {0:.2f}".format(final_loss.item())) print('Max Accuracy : %5.3f Best Val Loss : %5.3f Best Train Loss : %5.3f Max global_steps : %d Cur global_steps : %d' %(max_acc[0], max_acc[2], max_acc[3], max_acc[1], global_step), end='\n\n') self.save(global_step) return writer.close() return global_step def eval(self, evaluate, model_file, model): """ evaluation function """ if model_file: self.load(model_file, None) model = self.model.to(self.device) if self.cfg.data_parallel: model = nn.DataParallel(model) model.eval() results = [] iter_bar = tqdm(self.sup_iter) if model_file \ else tqdm(deepcopy(self.eval_iter)) for batch in iter_bar: batch = [t.to(self.device) for t in batch] with torch.no_grad(): accuracy, result = evaluate(model, batch) results.append(result) iter_bar.set_description('Eval Acc=%5.3f' % accuracy) return results def validate(self): print("Running validation") model = self.model device = self.device val_loader = self.eval_iter cfg = self.cfg # Put the model in evaluation mode--the dropout layers behave differently # during evaluation. model.eval() # Tracking variables total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 total_prec1 = 0 total_prec5 = 0 # Evaluate data for one epoch for batch in val_loader: batch = [t.to(device) for t in batch] b_input_ids, b_input_mask, b_segment_ids, b_labels = batch batch_size = b_input_ids.size(0) with torch.no_grad(): if cfg.model == "bert": logits = model( input_ids = b_input_ids, attention_mask = b_input_mask, no_pretrained_pool = cfg.no_pretrained_pool ) else: logits = model( b_input_ids, b_segment_ids, b_input_mask ) loss_fct = CrossEntropyLoss() loss = loss_fct(logits, b_labels) # Accumulate the validation loss. total_eval_loss += loss.item() # Calculate the accuracy for this batch of test sentences, and # accumulate it over all batches. if cfg.num_labels == 2: logits = logits.detach().cpu().numpy() b_labels = b_labels.to('cpu').numpy() total_prec1 += bin_accuracy(logits, b_labels) else: prec1, prec5 = multi_accuracy(logits, b_labels, topk=(1,5)) total_prec1 += prec1 total_prec5 += prec5 avg_prec1 = total_prec1 / len(val_loader) avg_prec5 = total_prec5 / len(val_loader) avg_val_loss = total_eval_loss / len(val_loader) return avg_prec1, avg_val_loss def load(self, model_file, pretrain_file): """ between model_file and pretrain_file, only one model will be loaded """ if model_file: print('Loading the model from', model_file) if torch.cuda.is_available(): self.model.load_state_dict(torch.load(model_file)) else: self.model.load_state_dict(torch.load(model_file, map_location='cpu')) elif pretrain_file: print('Loading the pretrained model from', pretrain_file) if pretrain_file.endswith('.ckpt'): # checkpoint file in tensorflow checkpoint.load_model(self.model.transformer, pretrain_file) elif pretrain_file.endswith('.pt'): # pretrain model file in pytorch self.model.transformer.load_state_dict( {key[12:]: value for key, value in torch.load(pretrain_file).items() if key.startswith('transformer')} ) # load only transformer parts def save(self, i): """ save model """ if not os.path.isdir(os.path.join('results', self.cfg.results_dir, 'save')): os.makedirs(os.path.join('results', self.cfg.results_dir, 'save')) torch.save(self.model.state_dict(), os.path.join('results', self.cfg.results_dir, 'save', 'model_steps_'+str(i)+'.pt')) def repeat_dataloader(self, iterable): """ repeat dataloader """ while True: for x in iterable: yield x
40.477273
216
0.566887
8c87775ec72d65dbc462a55041e05078cb0cdfd9
3,032
py
Python
py/qaviton/utils/databases/sqlite.py
qaviton/qaviton
112f1620af36e09031909bd36b7e388df577b75b
[ "Apache-2.0" ]
9
2018-09-06T10:27:55.000Z
2020-01-02T16:50:13.000Z
py/qaviton/utils/databases/sqlite.py
idanhakimi/qaviton
6ed17e4131c35cae902b95498e60de53e5b05a56
[ "Apache-2.0" ]
6
2019-06-05T09:44:21.000Z
2022-03-11T23:26:41.000Z
py/qaviton/utils/databases/sqlite.py
idanhakimi/qaviton
6ed17e4131c35cae902b95498e60de53e5b05a56
[ "Apache-2.0" ]
9
2018-09-21T14:47:40.000Z
2021-12-21T01:37:20.000Z
import sqlite3 class DataBase: """ a very simple implementation to create local SQLite database connection specified by db_file you can integrate your database with your custom commands class example usage: class command: get_users = '''SELECT user_id, password FROM users;''' get_user_by_user_id = '''SELECT user_id, password FROM users WHERE user_id = '{}';''' get_user_by_id = '''SELECT user_id, password FROM users WHERE id = '{}';''' get_last_user = '''SELECT user_id, password FROM users ORDER BY ID DESC LIMIT 1''' add_user = '''INSERT INTO users (user_id, password) VALUES ('{}', '{}');''' drop_table = '''DROP TABLE IF EXISTS {};''' create_users_table = '''CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, user_id text, password text);''' # preferably use 'with' to automatically commit and close the connection with DataBase('db') as db: db.command = command db.execute(db.command.drop_table.format('users')) db.execute(db.command.create_users_table) db.execute(db.command.add_user.format('id123', 'password1')) db = DataBase('db') db.command = command db.execute(db.command.add_user.format('id777', 'password1')) user1 = db.execute(db.command.get_user_by_id.format('id123')) user2 = db.execute(db.command.get_user_by_id.format('id777')) db.commit() db.close() """ def __init__(self, db_file: str, commands=None): """ create database connection :param db_file: path of db file :param commands: custom useful commands """ self.connection = sqlite3.connect(db_file) self.cursor = self.connection.cursor() self.version = sqlite3.version self.command = commands def __enter__(self): return self def __exit__(self, *tp): self.commit() self.close() def __call__(self, command): """:rtype: list""" return self.execute(command) def commit(self): self.connection.commit() def close(self): self.connection.close() def execute(self, command): """:rtype: list""" return self.cursor.execute(command).fetchall() def export_table_to_file(self, table, file, titles, permission='w'): """ export an entire table to a file :param table: table name :param file: path to export :param titles: table titles :param permission: probably write """ self.cursor.execute("select * from {}".format(table)) table_list = self.cursor.fetchall() with open(file, permission) as f: f.write(','.join(titles) + '\n') for i in table_list: s = [] for a in i: s.append(str(a)) f.write(','.join(s) + '\n')
34.850575
97
0.582784
052e420f9122cd31306e4ccc3fa0c4c9567e303b
171
py
Python
django_decadence/apps.py
ksiazkowicz/django-decadence
0a29a7c748feb0d98cb8f4783a93159fc290ea67
[ "MIT" ]
1
2019-08-26T11:30:02.000Z
2019-08-26T11:30:02.000Z
django_decadence/apps.py
ksiazkowicz/django-decadence
0a29a7c748feb0d98cb8f4783a93159fc290ea67
[ "MIT" ]
null
null
null
django_decadence/apps.py
ksiazkowicz/django-decadence
0a29a7c748feb0d98cb8f4783a93159fc290ea67
[ "MIT" ]
1
2021-02-21T13:30:16.000Z
2021-02-21T13:30:16.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class DjangoDecadenceConfig(AppConfig): name = 'django_decadence'
19
39
0.760234
5bccc1112d4e1e5f5f99d31f812d04d9445a560f
326
py
Python
Python/P1.py
tinkpo/Curso-Introducci-n-a-la-Computaci-n-para-Matem-ticos
72b5db944c759c0d977553fa1bc15a11ac110909
[ "MIT" ]
null
null
null
Python/P1.py
tinkpo/Curso-Introducci-n-a-la-Computaci-n-para-Matem-ticos
72b5db944c759c0d977553fa1bc15a11ac110909
[ "MIT" ]
null
null
null
Python/P1.py
tinkpo/Curso-Introducci-n-a-la-Computaci-n-para-Matem-ticos
72b5db944c759c0d977553fa1bc15a11ac110909
[ "MIT" ]
null
null
null
x=list(input("Ingrese la lista ")) i=0 j=1 a=[0] b=[0] while(i<=len(x)-2): if(x[i]==x[i+1]): j=j+1 b.append(x[i]) a.append(j) else: j=1 i=i+1 print('La longitud de la meseta mas larga es: ', max(a), '\n', 'Y el numero de la meseta mas larga es :', b[a.index(max(a))])
21.733333
126
0.48773
62b58b1e8ea77c8b210add38e81cda63ee33ca59
1,606
py
Python
angstrom/2019/misc/TI-1337/wrapper.py
mystickev/ctf-archives
89e99a5cd5fb6b2923cad3fe1948d3ff78649b4e
[ "MIT" ]
1
2021-11-02T20:53:58.000Z
2021-11-02T20:53:58.000Z
angstrom/2019/misc/TI-1337/wrapper.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
null
null
null
angstrom/2019/misc/TI-1337/wrapper.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
1
2021-12-19T11:06:24.000Z
2021-12-19T11:06:24.000Z
#!/usr/bin/env python3 """ Wrapper that filters all input to the calculator program to make sure it follows the blacklist. It is not necessary to fully understand this code. Just know it doesn't allow any of the characters in the following string: "()[]{}_.#\"\'\\ABCDEFGHIJKLMNOPQRSTUVWXYZ" Check ti1337.py to see what the program actually does with valid input. """ import subprocess, fcntl, os, sys, selectors os.chdir("app") p = subprocess.Popen(["python3", "ti1337.py"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # set files descriptors to nonblocking and create selectors fcntl.fcntl(p.stdout, fcntl.F_SETFL, fcntl.fcntl(p.stdout, fcntl.F_GETFL) | os.O_NONBLOCK) fcntl.fcntl(sys.stdin, fcntl.F_SETFL, fcntl.fcntl(sys.stdin, fcntl.F_GETFL) | os.O_NONBLOCK) selector = selectors.DefaultSelector() selector.register(sys.stdin, selectors.EVENT_READ, 'stdin') selector.register(p.stdout, selectors.EVENT_READ, 'stdout') blacklist = "()[]{}_.#\"\'\\ABCDEFGHIJKLMNOPQRSTUVWXYZ" # until the program has finished while p.poll() == None: events = selector.select() for key, mask in events: if key.data == 'stdin': # write input line = key.fileobj.readline() for c in line: if c in blacklist: print("That doesn't seem like math!") sys.exit() p.stdin.write(bytes(line, encoding="utf-8")) p.stdin.flush() elif key.data == 'stdout': # print output output = key.fileobj.read() sys.stdout.write(output.decode("utf-8")) sys.stdout.flush() output, error = p.communicate() if error: sys.stdout.write(error.decode("utf-8")) sys.stdout.flush()
40.15
124
0.722914
4900292d68396da77072f843b5d6304a0b873c26
8,089
py
Python
client/commands/kill.py
KevinHock/pyre-check
09b0f53e23353b16a59ef76d8e5c5b78bdf08447
[ "MIT" ]
5
2019-02-14T19:46:47.000Z
2020-01-16T05:48:45.000Z
client/commands/kill.py
KevinHock/pyre-check
09b0f53e23353b16a59ef76d8e5c5b78bdf08447
[ "MIT" ]
null
null
null
client/commands/kill.py
KevinHock/pyre-check
09b0f53e23353b16a59ef76d8e5c5b78bdf08447
[ "MIT" ]
2
2019-02-14T19:46:23.000Z
2020-07-13T03:53:04.000Z
# Copyright (c) 2016-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os import shutil import signal import subprocess import tempfile from itertools import chain from pathlib import Path from typing import Optional import psutil from .. import BINARY_NAME, CLIENT_NAME, LOG_DIRECTORY, configuration_monitor from ..analysis_directory import AnalysisDirectory from ..configuration import Configuration from ..project_files_monitor import ProjectFilesMonitor from ..watchman_subscriber import WatchmanSubscriber from .command import Command from .rage import Rage LOG: logging.Logger = logging.getLogger(__name__) PYRE_FIRE = """ . ,,, .,,,, ,,,,,,,, ,,,*/*,,,,. ,,,*///*,,,,, ,,,,*/////*,,,,, ,,,,////////*,,,,, ,,,*/////(/////*,,, , ,,,**/////(((//*/*,,.,. ,,,*/////((((((////,,,,* ,,.,,,/////((((((((//***/,,, .,,,,/*////((((((((((/////*,,. ,,,,*//////((((((((((/////*,,, ,,,,*/////((((((((((((////*,,,,, ,,,,,//////((((((((((/////,,,,,* .,,,,,*/////(((((((/////*,,,,,*. ##, *,,,,,,*//////////////,,,,,,** .,*###(/**,,,*,,,,,,,,,,,,,,,*,**/ /(##################(****///***,**,*****//*(#############// ///#####%%%%%%%%#############((####(########%%##########*// ///#%%#, /**/((#########%#######. ############%%%%##/*/ //*/*//#####%%..#((#(### *######////* //// ,/**///#%%#. ,////////* .%##/*/*//, .///* .///*////* #/*////, """ class Kill(Command): NAME = "kill" def __init__( self, arguments: argparse.Namespace, original_directory: str, configuration: Optional[Configuration] = None, analysis_directory: Optional[AnalysisDirectory] = None, ) -> None: super(Kill, self).__init__( arguments, original_directory, configuration, analysis_directory ) self._with_fire: bool = arguments.with_fire @classmethod def add_subparser(cls, parser: argparse._SubParsersAction) -> None: kill = parser.add_parser(cls.NAME) kill.set_defaults(command=cls) kill.add_argument( "--with-fire", action="store_true", help="A no-op flag that adds emphasis." ) def generate_analysis_directory(self) -> AnalysisDirectory: return AnalysisDirectory(".") @staticmethod def _delete_linked_path(link_path: Path) -> None: try: actual_path = os.readlink(link_path) os.remove(actual_path) except OSError: pass try: os.unlink(link_path) except OSError: pass def _delete_caches(self) -> None: root_log_directory = Path(self._current_directory, LOG_DIRECTORY) # If a resource cache exists, delete it to remove corrupted artifacts. try: shutil.rmtree(str(root_log_directory / "resource_cache")) except OSError: pass # If a buck builder cache exists, also remove it. scratch_path = None try: scratch_path = ( subprocess.check_output( f"mkscratch path --subdir pyre {self._current_directory}".split() ) .decode() .strip() ) except Exception as exception: LOG.debug("Could not find scratch path because of exception: %s", exception) if scratch_path is not None: buck_builder_cache_directory = str( Path(scratch_path, ".buck_builder_cache") ) try: LOG.debug( "Deleting buck builder cache at %s", buck_builder_cache_directory ) shutil.rmtree(buck_builder_cache_directory) except OSError as exception: LOG.debug( "Failed to delete buck builder cache due to exception: %s.", exception, ) def _kill_client_processes(self) -> None: for process in psutil.process_iter(attrs=["name"]): if process.info["name"] != CLIENT_NAME: continue # We need to be careful about how we kill the client here, as otherwise we # might cause a race where we attempt to kill the `pyre kill` command. pid_to_kill = process.pid if pid_to_kill == os.getpgid(os.getpid()): continue try: LOG.info( "Killing process {} with pid {}.".format( process.info["name"], pid_to_kill ) ) os.kill(pid_to_kill, signal.SIGKILL) except (ProcessLookupError, PermissionError) as exception: LOG.debug( "Failed to kill process {} with pid {} due to exception {}".format( process.info["name"], pid_to_kill, exception ) ) WatchmanSubscriber.stop_subscriber( ProjectFilesMonitor.base_path(self._configuration), ProjectFilesMonitor.NAME ) WatchmanSubscriber.stop_subscriber( configuration_monitor.ConfigurationMonitor.base_path(self._configuration), configuration_monitor.ConfigurationMonitor.NAME, ) @staticmethod def _kill_binary_processes() -> None: # Kills all processes that have the same binary as the one specified # in the configuration. binary_name = _get_process_name("PYRE_BINARY", BINARY_NAME) subprocess.run(["pkill", binary_name]) def _delete_server_files(self) -> None: root_log_directory = Path(self._current_directory, LOG_DIRECTORY) LOG.info("Deleting server files under %s", root_log_directory) socket_paths = root_log_directory.glob("**/server.sock") json_server_paths = root_log_directory.glob("**/json_server.sock") pid_paths = root_log_directory.glob("**/server.pid") for path in chain(socket_paths, json_server_paths, pid_paths): self._delete_linked_path(path) def _rage(self) -> None: with tempfile.NamedTemporaryFile( prefix="pyre-rage-", suffix=".log", delete=False ) as output: LOG.warning("Saving the output of `pyre rage` into `%s`", output.name) arguments = self._arguments arguments.output_path = output.name Rage( arguments, self._original_directory, self._configuration, self._analysis_directory, ).run() def _run(self) -> None: explicit_local = self._arguments.local_configuration if explicit_local: LOG.warning( "Pyre kill will terminate all running servers. " "Specifying local path `{}` is unnecessary.".format(explicit_local) ) self._rage() self._kill_binary_processes() self._delete_server_files() self._delete_caches() self._kill_client_processes() if self._arguments.with_fire is True: LOG.warning( "All --with-fire functionality has now been included in `pyre kill`.\n " "The flag is now a no-op, but here is a pyre for your troubles." ) LOG.info(PYRE_FIRE) def _get_process_name(environment_variable_name: str, default: str) -> str: overridden = os.getenv(environment_variable_name) if overridden is not None: return os.path.basename(overridden) else: return default
36.936073
90
0.525281
a99175618d146a1a89d3cb72ee925b6693d162b3
5,495
py
Python
infinisdk/entry_point.py
kobutton/infinisdk
4ae5c66a2d7926636a52cb0a1452f9a2809b2ec2
[ "BSD-3-Clause" ]
null
null
null
infinisdk/entry_point.py
kobutton/infinisdk
4ae5c66a2d7926636a52cb0a1452f9a2809b2ec2
[ "BSD-3-Clause" ]
null
null
null
infinisdk/entry_point.py
kobutton/infinisdk
4ae5c66a2d7926636a52cb0a1452f9a2809b2ec2
[ "BSD-3-Clause" ]
null
null
null
import sys import arrow import dateutil import pkg_resources import click import logbook from infinisdk import Q from infinisdk.infinibox import InfiniBox from infinisdk.core.config import config _logger = logbook.Logger('sdk-cli') logbook.set_datetime_format('local') _DEFAULT_CONSOLE_LEVEL = logbook.INFO CUSTOMIZE_ENTRY_POINT = 'infinisdk.cli.customize' @click.group() @click.option("-v", "--verbose", count=True) @click.option("-q", "--quiet", count=True) @click.pass_context def cli(ctx, verbose, quiet): console_handler = logbook.StderrHandler() console_handler.level = min(max(logbook.TRACE, _DEFAULT_CONSOLE_LEVEL-verbose+quiet), logbook.CRITICAL) ctx.obj['console_handler'] = console_handler console_handler.format_string = '{record.message}' console_handler.push_application() def _get_system_object(system_name, should_login=False): system = InfiniBox(system_name) has_auth = bool(system.api.get_auth()) if not has_auth: msg = "Auth (username & password) wasn't set at {!r} file".format(config.root.ini_file_path) click.echo(click.style(msg, fg='yellow')) if should_login: if not has_auth: click.echo('Please provide authentication for your system') username = click.prompt('Username') password = click.prompt('Password', hide_input=True) system.api.set_auth(username, password=password, login=False) try: system.login() except Exception: _logger.debug('Caught exception while trying to login', exc_info=True) raise click.ClickException('Failed to login to system {}'.format(system_name)) return system def _interact(**local_vars): try: from IPython import embed embed(user_ns=local_vars, display_banner=False) except ImportError: from code import interact interact(local=local_vars) @cli.command() @click.option("-s", "--system-name", required=True) def interact(system_name): system = _get_system_object(system_name) _interact(system=system) @cli.group() def events(): pass TIME_TEPMPLATE = 'YYYY-MM-DD HH:mm:ss' def _convert_time_string_to_arrow(time_string, tzinfo): datetime_obj = dateutil.parser.parse(time_string) return arrow.get(datetime_obj, tzinfo=tzinfo) @events.command(name='query') @click.option("-s", "--system-name", required=True) @click.option("--show-reporter/--hide-reporter", default=False, is_flag=True) @click.option("--show-visibility/--hide-visibility", default=False, is_flag=True) @click.option("--show-source-node-id/--hide-source-node-id", default=False, is_flag=True) @click.option("--force-color/--no-color", "enable_color", default=None, is_flag=True) @click.option("--local-time/--utc-time", "display_in_local_time", default=True, is_flag=True) @click.option("-l", "--level", "min_level", default=None) @click.option("-S", "--since", default=None) @click.option("-U", "--until", default=None) @click.option("--asc/--desc", "sorting_order", default=None, is_flag=True) def events_query(system_name, show_reporter, show_visibility, show_source_node_id, display_in_local_time, enable_color, min_level, since, until, sorting_order): tzinfo = 'local' if display_in_local_time else 'utc' if enable_color is None: enable_color = sys.stdout.isatty() if enable_color: colorize = {'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red', 'INFO': 'green'}.get else: colorize = lambda _: None system = _get_system_object(system_name, should_login=True) system.login() filters = [] if min_level: supported_levels = system.events.get_levels() try: min_index = supported_levels.index(min_level) except ValueError: raise click.ClickException('Unsupported level {!r}'.format(min_level)) filters.append(Q.level.in_(supported_levels[min_index:])) if since is not None: filters.append(Q.timestamp > _convert_time_string_to_arrow(since, tzinfo)) if until is not None: filters.append(Q.timestamp < _convert_time_string_to_arrow(until, tzinfo)) query = system.events.find(*filters) if sorting_order is not None: query = query.sort(+Q.id if sorting_order else -Q.id) for event in query: event_info = event.get_fields(from_cache=True) event_time = event_info['timestamp'] if display_in_local_time: event_time = event_time.to('local') formatted = '{} {:5}'.format(event_time.format(TIME_TEPMPLATE), event_info['id']) if show_reporter: formatted += ' {:10}'.format(event_info['reporter']) if show_visibility: formatted += ' {:9}'.format(event['visibility']) if show_source_node_id: formatted += ' node-{}'.format(event['source_node_id']) click.echo(formatted+' ', nl=False) level = event_info['level'] click.echo(click.style(level, fg=colorize(level)), nl=False) click.echo(' {code} {desc}'.format(code=event_info['code'], desc=event_info['description'].replace('\n', ' '))) def main_entry_point(): for customize_function_cli in pkg_resources.iter_entry_points(CUSTOMIZE_ENTRY_POINT): # pylint: disable=no-member func = customize_function_cli.load() func() return cli(obj={}) # pylint: disable=no-value-for-parameter,unexpected-keyword-arg if __name__ == '__main__': sys.exit(main_entry_point())
38.971631
119
0.688808
d4f82812d661a7cee86e5299a37dc1b5e2272f7f
766
py
Python
garnahata_in_ua/elastic_models.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
3
2018-06-10T21:20:56.000Z
2021-04-04T11:21:06.000Z
garnahata_in_ua/elastic_models.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
7
2018-08-14T20:54:49.000Z
2020-06-05T18:17:30.000Z
garnahata_in_ua/elastic_models.py
dchaplinsky/ragoogle
dccb3d29334c3220ea12c46c725c443c8bd725c0
[ "MIT" ]
3
2018-06-27T12:53:13.000Z
2020-09-25T19:41:46.000Z
from elasticsearch_dsl import DocType, Index from django.template.loader import render_to_string GARNAHATA_INDEX = "garnahata_ownerships" garnahata_idx = Index(GARNAHATA_INDEX) @garnahata_idx.doc_type class ElasticGarnahataModel(DocType): def render_infocard(self): from .apps import GarnahataInUaConfig as AppConfig return render_to_string( "garnahata_in_ua/infocard.html", { "res": self, "url": "https://garnahata.in.ua{}".format(self.url), "datasource_name": AppConfig.name, "datasource_verbose_name": AppConfig.verbose_name, }, ) class Meta: index = GARNAHATA_INDEX doc_type = "garnahata_ownerships_doctype"
28.37037
68
0.652742
b0796fcd875d83fe3917ce53b4923c5be0d9198b
220
py
Python
firmware/Heat controller/copy_hex.py
atoomnetmarc/IoT12
7706f69758a800da70bf8034a91a331206706824
[ "Apache-2.0" ]
1
2021-11-11T23:48:05.000Z
2021-11-11T23:48:05.000Z
firmware/Heat controller/copy_hex.py
atoomnetmarc/IoT12
7706f69758a800da70bf8034a91a331206706824
[ "Apache-2.0" ]
null
null
null
firmware/Heat controller/copy_hex.py
atoomnetmarc/IoT12
7706f69758a800da70bf8034a91a331206706824
[ "Apache-2.0" ]
1
2021-09-17T16:21:44.000Z
2021-09-17T16:21:44.000Z
Import("env", "projenv") from shutil import copyfile def copyhex(*args, **kwargs): copyfile(str(kwargs['target'][0]), 'hex/'+env['BOARD_MCU']+'.hex') env.AddPostAction("$BUILD_DIR/${PROGNAME}.hex", copyhex)
27.5
71
0.659091
87202ac59b086ceb020b206ffbef6bda08878afe
3,773
py
Python
scripts/train.py
MathieuTuli/autoHyper
d7410741b5963518d704f422c0502695885a4093
[ "MIT" ]
9
2021-11-30T18:58:05.000Z
2022-03-07T16:55:54.000Z
scripts/train.py
MathieuTuli/autoHyper
d7410741b5963518d704f422c0502695885a4093
[ "MIT" ]
null
null
null
scripts/train.py
MathieuTuli/autoHyper
d7410741b5963518d704f422c0502695885a4093
[ "MIT" ]
null
null
null
""" MIT License Copyright (c) 2020 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from pathlib import Path from typing import Dict from autohyper import optimize, LowRankMetrics, HyperParameters from torchvision import datasets, transforms from torch.optim import Adam from gutils import init_logger import torchvision.models as models import numpy as np import torch def main(): # indicate which hyper-parameters to optimize dataset = torch.utils.data.DataLoader( datasets.CIFAR10('.', download=True, transform=transforms.ToTensor()), batch_size=128) def epoch_trainer(hyper_parameters: Dict[str, float], epochs) -> LowRankMetrics: # update model/optimizer parameters based on values in @argument: # hyper_parameters print('Run epochs:', hyper_parameters) model = models.resnet18() model.train() model = model.cuda() metrics = LowRankMetrics(list(model.parameters())) optimizer = Adam(model.parameters(), lr=hyper_parameters['lr'], weight_decay=hyper_parameters['weight_decay'],) criterion = torch.nn.CrossEntropyLoss().cuda() accs = list() for epoch in epochs: for inputs, targets in dataset: inputs = inputs.cuda() targets = targets.cuda() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() accs.append(accuracy(outputs, targets)[0].item()) # run epoch training... # at every epoch, evaluate low_rank metrics print(f"Epoch {epoch} | Loss {np.mean(accs)}") metrics.evaluate() return metrics hyper_parameters = HyperParameters(lr=True, weight_decay=True) final_hp = optimize(epoch_trainer=epoch_trainer, hyper_parameters=hyper_parameters) final_hyper_parameters_dict = final_hp.final() # do your final training will optimized hyper parameters epoch_trainer(final_hyper_parameters_dict, epochs=range(250)) def accuracy(outputs, targets, topk=(1,)): with torch.no_grad(): maxk = max(topk) batch_size = targets.size(0) _, pred = outputs.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(targets.contiguous().view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous( ).view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == "__main__": logger = init_logger(Path('logs')) main()
37.356436
78
0.666578
6528b23649338721a5302ac7c4e4eac3dafd00da
2,674
py
Python
tests/pyquil_algorithms.py
myQLM/myqlm-interop
9d77cb7c719f82be05d9f88493522940b8142124
[ "Apache-2.0" ]
5
2020-09-09T09:44:31.000Z
2021-07-02T09:49:21.000Z
tests/pyquil_algorithms.py
myQLM/myqlm-interop
9d77cb7c719f82be05d9f88493522940b8142124
[ "Apache-2.0" ]
null
null
null
tests/pyquil_algorithms.py
myQLM/myqlm-interop
9d77cb7c719f82be05d9f88493522940b8142124
[ "Apache-2.0" ]
3
2020-07-10T17:51:47.000Z
2021-04-13T16:33:44.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys import pytest from collections import Counter def compare_results(expected, result, aggregate=True): if aggregate: expected_arr = [entry.state for entry in expected.raw_data] result_arr = [entry.state for entry in expected.raw_data] expected_counts = Counter(expected_arr) result_counts = Counter(result_arr) else: expected_counts = {entry.state:entry.probability for entry in expected.raw_data} result_counts = {entry.state:entry.probability for entry in result.raw_data} distance = {} for state in expected_counts.keys(): if state in result_counts.keys(): distance[state] = abs(expected_counts[state] - result_counts[state]) else: distance[state] = expected_counts[state] for state in result_counts.keys(): if state not in expected_counts.keys(): distance[state] = result_counts[state] return distance def analyze_distance(distance): import statistics return statistics.median(list(distance.values())) if __name__=="__main__": if sys.version_info < (3, 7): pytest.skip("python version < 3.7: skipping pyquil_binder tests", allow_module_level=True) from qat.interop.pyquil.algorithms import run_simon from qat.linalg import LinAlg from qat.mps import MPS from qat.interop.pyquil.providers import generate_qlm_result from pyquil.api import QVMConnection qvm = QVMConnection(endpoint="http://127.0.0.1:15011") linalg = LinAlg() mps = MPS(lnnize=True) qvm_res = run_simon(qvm, trials=10024) simon_res = {entry.state:entry.probability for entry in generate_qlm_result(qvm_res).raw_data} print(simon_res) print(max(simon_res.values()))
33.848101
98
0.698205
22e77b272f6ea6aaa771a9c4cca37612ab23834a
2,463
py
Python
ucr/core/architecture/neck/craft_fpn.py
DocYard-ai/UCR
7618aa336f56e71d9fd8cdc2d591e3d138e3dc68
[ "Apache-2.0" ]
10
2021-04-06T15:57:20.000Z
2021-11-14T23:00:13.000Z
ucr/core/architecture/neck/craft_fpn.py
felixdittrich92/UCR
7618aa336f56e71d9fd8cdc2d591e3d138e3dc68
[ "Apache-2.0" ]
5
2021-04-22T10:28:17.000Z
2022-03-02T07:47:53.000Z
ucr/core/architecture/neck/craft_fpn.py
felixdittrich92/UCR
7618aa336f56e71d9fd8cdc2d591e3d138e3dc68
[ "Apache-2.0" ]
2
2021-04-30T10:27:51.000Z
2021-08-02T15:12:10.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class CRAFTFPN(nn.Module): def __init__(self, in_channels): super(CRAFTFPN, self).__init__() """ U network """ self.upconv1 = double_conv(1024, 512, 256) self.upconv2 = double_conv(512, 256, 128) self.upconv3 = double_conv(256, 128, 64) self.upconv4 = double_conv(128, 64, 32) init_weights(self.upconv1.modules()) init_weights(self.upconv2.modules()) init_weights(self.upconv3.modules()) init_weights(self.upconv4.modules()) self.out_channels = None def forward(self, x): """ Base network """ sources = x """ U network """ y = torch.cat([sources[0], sources[1]], dim=1) y = self.upconv1(y) y = F.interpolate( y, size=sources[2].size()[2:], mode="bilinear", align_corners=False ) y = torch.cat([y, sources[2]], dim=1) y = self.upconv2(y) y = F.interpolate( y, size=sources[3].size()[2:], mode="bilinear", align_corners=False ) y = torch.cat([y, sources[3]], dim=1) y = self.upconv3(y) y = F.interpolate( y, size=sources[4].size()[2:], mode="bilinear", align_corners=False ) y = torch.cat([y, sources[4]], dim=1) feature = self.upconv4(y) return feature class double_conv(nn.Module): def __init__(self, in_ch, mid_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=True), nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), ) def forward(self, x): x = self.conv(x) return x def init_weights(modules): for m in modules: if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_()
28.976471
79
0.566788
862468a2902b8b4459a357c84fbd337084831be0
13,188
py
Python
presalytics/lib/tools/ooxml_tools.py
presalytics/python-client
5d80b78562126feeeb49af4738e2c1aed12dce3a
[ "MIT" ]
4
2020-02-21T16:30:46.000Z
2021-01-12T12:22:03.000Z
presalytics/lib/tools/ooxml_tools.py
presalytics/python-client
5d80b78562126feeeb49af4738e2c1aed12dce3a
[ "MIT" ]
4
2019-12-28T19:30:08.000Z
2020-03-31T19:27:45.000Z
presalytics/lib/tools/ooxml_tools.py
presalytics/python-client
5d80b78562126feeeb49af4738e2c1aed12dce3a
[ "MIT" ]
null
null
null
import datetime import typing import logging import presalytics import presalytics.story.outline import presalytics.client.api import presalytics.lib.widgets.ooxml import presalytics.lib.themes.ooxml if typing.TYPE_CHECKING: from presalytics.client.presalytics_story import Story from presalytics.client.presalytics_ooxml_automation import Document from presalytics.story.components import ThemeBase from presalytics.story.outline import StoryOutline logger = logging.getLogger(__name__) def add_ooxml_document_to_story(story_id, new_document_filepath, replace_id=None, username=None, password=None): """ Utility method for asscoiating a new Document in the Presalytics API Ooxml Automation service with a Story. Parameters ---------- story_id: str The Presalytics API Story service Id for for the story new_document_filepath str The local filepath to the document tha you want to associate with the story replace_id: str, option If you want to replace a document, this the documents Ooxml Automation service Id Passing this value will also update the references to Ooxml Automation service Document object in the Story Outline. This is a good option if you have not made significant changes to the new version of the document. Widgets may fail to render if more than minor changes are made to the object tree. username: str, option Presalytics API username. Defaults to workspace username. password: str, option Presalytics API password. """ client = presalytics.client.api.Client(username=username, password=password) if story_id == "empty" or not story_id: message = "The story_id must not be empty" raise presalytics.lib.exceptions.InvalidArgumentException(message) replace = True if replace_id else False story = client.story.story_id_file_post(story_id, file=new_document_filepath, replace_existing=replace, obsolete_id=replace_id) def create_story_from_ooxml_file(filename: str, client_info={}) -> 'Story': """ Utility Method for building stories into the Presalytics API directly from a Presentation or Spreadsheet file. Parameters ---------- filename : str A string contain the local path to a presenation or spreadsheet object. client_info : dict, optional A dictionary containing arguments that will be unpacked and passed to a `presalytics.client.api.Client` object on intialization. This dictionary can include the `token`, `cache_tokens`, `delegate_login` values. See `presalytics.client.api.Client` for more information. Returns: ---------- A `presalytics.client.presalytics_story.models.story.Story` containing information about the Story object in the Presalytics API """ story: 'Story' logger.info("Starting presalytics tool: create_story_from_ooxml_file") logger.info("Intializing presalytics client.") client = presalytics.Client(**client_info) logger.info("Sending file to presalytics server for document processing and base story creation") story = client.story.story_post_file(file=filename) logger.info("Creating local instances of file widgets") outline = presalytics.StoryOutline.load(story.outline) for i in range(0, len(outline.pages)): page = outline.pages[i] for j in range(0, len(page.widgets)): widget = page.widgets[j] logger.info('Creating OoxmlFileWidget with name "{}"'.format(widget.name)) inst = presalytics.OoxmlFileWidget.deserialize(widget, **client_info) presalytics.COMPONENTS.register(inst) logger.info('Rewriting outline with widget: "{}"'.format(widget.name)) outline.pages[i].widgets[j] = inst.serialize() story.outline = outline.dump() return story def create_outline_from_ooxml_document(story_api: 'Story', ooxml_document: 'Document', title: str = None, description: str = None, themes: typing.Sequence['ThemeBase'] = None, client_info={}): """ Utility Method for generating a story from a presenation or spreadsheet file This method encapsulates a standard workflow for interating the the Presalytics API into a single function. This method takes known `presalytics.client.presalytics_ooxml_automation.models.document.Document` with a known `presalytics.client.presalytics_story.models.story.Story`. This method returns a `presalytics.story.outline.StoryOutline` that can be used to replace with existing `presalytics.story.outline.StoryOutline` on the story if the user warrants it. Parameters ---------- story_api : presalytics.client.presalytics_story.models.story.Story The represenation for the Presalytics API instance that will recieve a new associate with the **ooxml_document** ooxml_document : presalytics.client.presalytics_ooxml_automation.models.document.Document the new ooxml_document will be associated with the story. The outline will be generated from this object title : str, optional If not provided, the story will take on the title of the `presalytics.client.presalytics_ooxml_automation.models.document.Document` object description : str, optional If not provided, the story description will initialize as the empty string themes : list of presalytics.story.components.ThemeBase, optional A list of the themes to added to the returned `presalytics.story.outline.StoryOutline` client_info : dict, optional A dictionary containing arguments that will be unpacked and passed to a `presalytics.client.api.Client` object on intialization. This dictionary can include the `token`, `cache_tokens`, `delegate_login` values. See `presalytics.client.api.Client` for more information. Returns ---------- A `presalytics.story.outline.StoryOutline` for the user to optionally serialize and append to the story in downstream operations """ info = presalytics.story.outline.Info( revision=0, date_created=datetime.datetime.utcnow().isoformat(), date_modified=datetime.datetime.utcnow().isoformat(), created_by=presalytics.CONFIG.get("USERNAME", ""), modified_by=presalytics.CONFIG.get("USERNAME", ""), revision_notes='Created by via "create_outline_from_ooxml_file" method' ) if description: _description = description else: _description = "" try: pages = create_pages_from_ooxml_document(story_api, ooxml_document, client_info=client_info) except Exception as ex: logger.error("Error adding pages to outline", exc_info=True) pages = [] try: if themes: _themes = themes else: ooxml_id = pages[0].widgets[0].data["document_ooxml_id"] _themes = [create_theme_from_ooxml_document(ooxml_id, client_info=client_info)] except Exception: logger.error("Unable to add theme to ooxml_story", exc_info=True) _themes = [] if title: _title = title else: _title = pages[0].widgets[0].name outline = presalytics.story.outline.StoryOutline( info=info, pages=pages, description=_description, title=_title, themes=_themes, plugins=[] ) return outline def create_pages_from_ooxml_document(story: 'Story', ooxml_document: 'Document', client_info={}): """ Utility Method for building stories into the Presalytics API directly from a Presenation or Spreadsheet file. Parameters ---------- story : presalytics.client.presalytics_story.models.story.Story Representation for Presalytics API Story object ooxml_document: presalytics.client.presalytics_ooxml_automation.models.document.Document The ooxml_document on the story that you want to create pages from client_info : dict, optional A dictionary containing arguments that will be unpacked and passed to a `presalytics.client.api.Client` object on intialization. This dictionary can include the `token`, `cache_tokens`, `delegate_login` values. See `presalytics.client.api.Client` for more information. Returns: ---------- A list of `presalytics.story.outline.Page` objects representing the slides, pages and charts in the source document """ pages = [] order = [] pages_unordered = [] client = presalytics.Client(**client_info) child_objects = client.ooxml_automation.documents_childobjects_get_id(ooxml_document.id) document_type = client.ooxml_automation.documents_documenttype_typeid_get_type_id(ooxml_document.document_type_id) if document_type.file_extension == "pptx": slides_meta = [x for x in child_objects if x.object_type == "Slide.Slides"] ep_map = presalytics.OoxmlEndpointMap.slide() for slide in slides_meta: try: widget = presalytics.OoxmlFileWidget( filename=ooxml_document.filename, name=slide.entity_name, endpoint_map=ep_map, object_name=slide.entity_name, object_ooxml_id=slide.entity_id, document_ooxml_id=ooxml_document.id, story_id=story.id, client_info=client_info ) widget_kind = "widget-page" widget_name = slide.entity_name widgets = [widget.serialize()] page = presalytics.story.outline.Page( kind=widget_kind, name=widget_name, widgets=widgets ) this_slide_meta = client.ooxml_automation.slides_slides_get_id(slide.entity_id) order.append(this_slide_meta.number -1) pages_unordered.append(page) except: logger.error("Unable to add widget {0} to outline ooxml document {1}".format(slide.entity_name, ooxml_document.id)) # TODO: insert excel chart handling here for j in range(0, len(order)): idx = order.index(j) pages.append(pages_unordered[idx]) return pages def create_theme_from_ooxml_document(document_id: str, client_info={}): """ Creates a `presalytics.story.outline.Theme` object from an Presalytics API ooxml_document object Parameters: ---------- document_id: str A string containing a uuid that corresponds to a document in the Ooxml Automation service of the Presalytics API client_info : dict, optional A dictionary containing arguments that will be unpacked and passed to a `presalytics.client.api.Client` object on intialization. This dictionary can include the `token`, `cache_tokens`, `delegate_login` values. See `presalytics.client.api.Client` for more information. Returns: ---------- A `presalytics.story.outline.Theme` object with formats extracted from the ooxml_document """ client = presalytics.Client(**client_info) child_objects = client.ooxml_automation.documents_childobjects_get_id(document_id) themes = [x for x in child_objects if x.object_type == "Theme.Themes"] if len(themes) > 1: slide_no = None for theme_data in themes: theme_info = client.ooxml_automation.theme_themes_get_id(theme_data.entity_id) parent_slide = client.ooxml_automation.slides_slides_get_id(theme_info.slide_id) if slide_no is None: slide_no = parent_slide.number theme_meta = theme_info else: if parent_slide.number < slide_no: theme_meta = theme_info if parent_slide.number == 0: break else: theme_meta = client.ooxml_automation.theme_themes_get_id(themes[0].entity_id) theme = presalytics.lib.themes.ooxml.OoxmlTheme( theme_meta.name, theme_meta.id, client_info=client_info ) return theme.serialize().to_dict() def get_mime_type_from_filename(client: presalytics.Client, filename) -> typing.Optional[str]: """ Determines the mimetype from a file's type extension Parameters: ---------- client : presalytics.client.api.Client A client object for making api calls filename : str A filename against which the method can lookup mimetypes Returns: ---------- A string containing a mimetype to attach to file uploads """ doc_types = client.ooxml_automation.documents_documenttype_get() file_extension = filename.split(".")[-1] try: return next(x.mime_type for x in doc_types if x.file_extension == file_extension) except StopIteration: return None
42.405145
148
0.676752
778e25cefe986106444c960ba91e891457ec86a5
655
py
Python
tests/node/test_softsign.py
gglin001/onnx_jax
08e2a1181250db48f4436f6430903fc895a3a1d6
[ "Apache-2.0" ]
9
2021-04-12T02:37:14.000Z
2022-03-28T23:31:40.000Z
tests/node/test_softsign.py
gglin001/onnx-jax
08e2a1181250db48f4436f6430903fc895a3a1d6
[ "Apache-2.0" ]
null
null
null
tests/node/test_softsign.py
gglin001/onnx-jax
08e2a1181250db48f4436f6430903fc895a3a1d6
[ "Apache-2.0" ]
null
null
null
import numpy as np import onnx from tests.tools import expect class Softsign: @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Softsign', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-0.5, 0, 0.5]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_softsign_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = x / (1 + np.abs(x)) expect(node, inputs=[x], outputs=[y], name='test_softsign') if __name__ == '__main__': Softsign.export()
24.259259
75
0.546565
5c04973bd78a53d1fd0b81f3c91ccb08213f3f9f
1,096
py
Python
setup.py
cscutcher/snapper_systemd_boot
0a86e6c089c2ef7f39e45a191cc91c960c6b69b5
[ "Apache-2.0", "MIT" ]
8
2019-04-25T03:01:25.000Z
2022-03-27T12:25:05.000Z
setup.py
cscutcher/snapper_systemd_boot
0a86e6c089c2ef7f39e45a191cc91c960c6b69b5
[ "Apache-2.0", "MIT" ]
null
null
null
setup.py
cscutcher/snapper_systemd_boot
0a86e6c089c2ef7f39e45a191cc91c960c6b69b5
[ "Apache-2.0", "MIT" ]
3
2021-12-06T12:54:44.000Z
2022-02-10T19:29:18.000Z
from setuptools import setup, find_packages setup( name="snapper_systemd_boot", description="Generate systemd-boot entries from snapper btrfs snapshots.", version="0.1.0-prealpha1", packages=find_packages(), install_requires=[ "reprutils", "argh", "sh", ], extras_require={ "dev": ["pytest"], }, entry_points={ "console_scripts": [ "snapper-systemd-boot = snapper_systemd_boot.cli:main", ] }, python_requires=">=3.6", license="Apache-2.0", classifiers=[ "Development Status :: 2 - Pre-Alpha", "License :: OSI Approved :: Apache Software License", "Environment :: Console", "Intended Audience :: Developers", "Natural Language :: English", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Topic :: System :: Archiving :: Backup", "Topic :: System :: Systems Administration", ], keywords="systemd-boot snapper btrfs", )
30.444444
78
0.583942
cf2fb4fd93a921bf43b393d6a5a6df5ec1343484
659
py
Python
hardware/opentrons_hardware/drivers/can_bus/__init__.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
2
2015-11-10T17:49:51.000Z
2016-01-15T04:43:37.000Z
hardware/opentrons_hardware/drivers/can_bus/__init__.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
null
null
null
hardware/opentrons_hardware/drivers/can_bus/__init__.py
anuwrag/opentrons
28c8d76a19e367c6bd38f5290faaa32abf378715
[ "Apache-2.0" ]
null
null
null
"""Can bus drivers package.""" from .driver import CanDriver from .can_messenger import CanMessenger, WaitableCallback from opentrons_hardware.firmware_bindings.message import CanMessage from opentrons_hardware.firmware_bindings.arbitration_id import ( ArbitrationId, ArbitrationIdParts, ) from opentrons_hardware.firmware_bindings.constants import ( NodeId, FunctionCode, MessageId, ) from .settings import DriverSettings __all__ = [ "CanMessage", "CanDriver", "ArbitrationId", "NodeId", "FunctionCode", "MessageId", "ArbitrationIdParts", "CanMessenger", "DriverSettings", "WaitableCallback", ]
21.966667
67
0.738998
c1472854c47858e22cd1ec64e55dbb3463499dd1
1,061
py
Python
share/lib/python/neuron/rxd/options.py
shhong/nrn
0d64e94330c6072529e31033d579b270f742454e
[ "BSD-3-Clause" ]
null
null
null
share/lib/python/neuron/rxd/options.py
shhong/nrn
0d64e94330c6072529e31033d579b270f742454e
[ "BSD-3-Clause" ]
1
2022-03-25T13:30:45.000Z
2022-03-25T13:30:45.000Z
share/lib/python/neuron/rxd/options.py
shhong/nrn
0d64e94330c6072529e31033d579b270f742454e
[ "BSD-3-Clause" ]
1
2018-12-18T13:52:16.000Z
2018-12-18T13:52:16.000Z
from .rxdException import RxDException import re #TODO: This option is not currently observed use_reaction_contribution_to_jacobian = True concentration_nodes_3d = "surface" # how far inside must a voxel be to be consider inside # the value is necessary to account for floating point precision ics_distance_threshold = -1e-12 # resolution (relative to dx) of sampling points use to determine surface # volume fractions. ics_partial_volume_resolution = 2 # resolution (relative to dx) of sampling points use to determine surface # areas of surface voxels. ics_partial_surface_resolution = 1 # the number of electrophysiology fixed steps per rxd step # WARNING: setting this to anything other than 1 is probably a very bad # idea, numerically speaking, at least for now fixed_step_factor = 1 class _OverrideLockouts: def __init__(self): self._extracellular = True @property def extracellular(self): return self._extracellular @extracellular.setter def extracellular(self, val): self._extracellular = val enable = _OverrideLockouts()
27.921053
73
0.789821
8d35cdc7cdc8a4cbe5898a04cbf45731dd5b6360
2,262
py
Python
retinopathy_test/models/run_prediction.py
vykozlov/retinopathy_test
f75491f0ebe5373f7401a83abe24abbf58c4bd64
[ "MIT" ]
null
null
null
retinopathy_test/models/run_prediction.py
vykozlov/retinopathy_test
f75491f0ebe5373f7401a83abe24abbf58c4bd64
[ "MIT" ]
null
null
null
retinopathy_test/models/run_prediction.py
vykozlov/retinopathy_test
f75491f0ebe5373f7401a83abe24abbf58c4bd64
[ "MIT" ]
null
null
null
import os, argparse, sys import tensorflow as tf import tensorflow.contrib import numpy as np import glob # The original freeze_graph function # from tensorflow.python.tools.freeze_graph import freeze_graph dir = os.path.dirname(os.path.realpath(__file__)) from tensorflow.contrib import predictor import cv2 def load_image(addr, img_size): # read an image and resize to (224, 224) # cv2 load images as BGR, convert it to RGB #record pipeline img = cv2.imread(addr) img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_CUBIC) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #COLOR_BGR2RGB img = img.astype(np.float32) #iterator pipeline img = img / 255.0 img = img - 0.5 return img.reshape([1,256,256,3]) def predict_image(model_dir, image_file): #ki: this is the main function performing prediction # f = glob.glob(model_dir + '*/')[0] #ki: get the model parameters from the first subdirectory in model_dir # f = glob.glob(model_dir + '1540408813/')[0] #ki: directory 1540408813 contains model parameters for cpu only machine f = glob.glob(os.path.join(model_dir,'1540408813'))[0] print (f) imgs = image_file.split(',') predictor_fn = tf.contrib.predictor.from_saved_model(export_dir = f, signature_def_key='predict')#ki: create predictor function using the graph and model parameters results={} for imgfile in imgs: img = load_image(imgfile, 256) output = predictor_fn({'input': img}) print(imgfile, output) results['%s'%imgfile]=output return results if __name__ == '__main__': parser = argparse.ArgumentParser() #ki: create command line parser to get model parameters and image files. parser.add_argument( '--model_dir', type=str, default='./retinopathy_serve/', # default='./', help="""\ Path to classify_image_graph_def.pb\ """ ) parser.add_argument( '--image_file', type=str, default='dr4.tiff', help='Absolute path to image file.' ) args = parser.parse_args() results = predict_image(args.model_dir, args.image_file)#ki: take the model parameter and input images and return predicted class (probabilities)
37.081967
168
0.683024
331195d8ee6fa39e2b682c860a6fe795656824e5
500
py
Python
User/migrations/0005_auto_20210705_1037.py
judeakinwale/SMS-backup
30636591b43bec94e7406f4c02fde402a5a2e38f
[ "MIT" ]
null
null
null
User/migrations/0005_auto_20210705_1037.py
judeakinwale/SMS-backup
30636591b43bec94e7406f4c02fde402a5a2e38f
[ "MIT" ]
null
null
null
User/migrations/0005_auto_20210705_1037.py
judeakinwale/SMS-backup
30636591b43bec94e7406f4c02fde402a5a2e38f
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-07-05 10:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('User', '0004_auto_20210705_1029'), ] operations = [ migrations.RemoveField( model_name='biodata', name='matric_no', ), migrations.AddField( model_name='user', name='matric_no', field=models.CharField(default='', max_length=300), ), ]
21.73913
63
0.57
8f35fb83a01a9cb9110d5d081f9d0de5da9130ff
3,489
py
Python
floris/wake.py
WISDEM/FLORIS
0df374de787e4035e7081fa2a454d0eeabded2f8
[ "Apache-2.0" ]
19
2017-11-07T11:15:47.000Z
2020-12-22T08:40:51.000Z
floris/wake.py
WISDEM/FLORIS
0df374de787e4035e7081fa2a454d0eeabded2f8
[ "Apache-2.0" ]
28
2017-11-27T17:45:41.000Z
2019-05-08T22:01:10.000Z
floris/wake.py
WISDEM/FLORIS
0df374de787e4035e7081fa2a454d0eeabded2f8
[ "Apache-2.0" ]
27
2017-11-16T19:53:20.000Z
2021-04-19T18:38:58.000Z
# Copyright 2017 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. from . import wake_deflection from . import wake_velocity from . import wake_combination class Wake(): """ Wake is a container class for the various wake model objects. In particular, Wake holds references to the velocity and deflection models as well as their parameters. inputs: instance_dictionary: dict - the input dictionary; it should have the following key-value pairs: { "description": str, "properties": dict({ velocity_model: WakeVelocity deflection_model: WakeDeflection parameters: dict({ see WakeVelocity, WakeDeflection }) }), } outputs: self: Wake - an instantiated Wake object """ def __init__(self, instance_dictionary): self.description = instance_dictionary["description"] properties = instance_dictionary["properties"] parameters = properties["parameters"] self.velocity_models = { "jensen": wake_velocity.Jensen(parameters), "floris": wake_velocity.Floris(parameters), "gauss": wake_velocity.Gauss(parameters), "curl": wake_velocity.Curl(parameters) } self._velocity_model = self.velocity_models[properties["velocity_model"]] self.deflection_models = { "jimenez": wake_deflection.Jimenez(parameters), "gauss_deflection": wake_deflection.Gauss(parameters), "curl": wake_deflection.Curl(parameters) } self._deflection_model = self.deflection_models[properties["deflection_model"]] self.combination_models = { "fls": wake_combination.FLS(), "sosfs": wake_combination.SOSFS() } self._combination_model = self.combination_models[properties["combination_model"]] # Getters & Setters @property def velocity_model(self): return self._velocity_model @velocity_model.setter def velocity_model(self, value): self._velocity_model = self.velocity_models[value] @property def deflection_model(self): return self._deflection_model @deflection_model.setter def deflection_model(self, value): self._deflection_model = self.deflection_models[value] @property def combination_model(self): return self._combination_model @combination_model.setter def combination_model(self, value): self._combination_model = self.combination_models[value] @property def deflection_function(self): return self._deflection_model.function @property def velocity_function(self): return self._velocity_model.function @property def combination_function(self): return self._combination_model.function
31.432432
90
0.656635
f79ebe83193b665d8b3e89be6a5363f09d2a83dd
904
py
Python
ACME/linear_problem/add_constraints.py
mauriziokovacic/ACME
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
3
2019-10-23T23:10:55.000Z
2021-09-01T07:30:14.000Z
ACME/linear_problem/add_constraints.py
mauriziokovacic/ACME-Python
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
null
null
null
ACME/linear_problem/add_constraints.py
mauriziokovacic/ACME-Python
2615b66dd4addfd5c03d9d91a24c7da414294308
[ "MIT" ]
1
2020-07-11T11:35:43.000Z
2020-07-11T11:35:43.000Z
from ..utility.cat import * from ..utility.issparse import * from ..math.unitvec import * def add_constraints(A, hard=None, soft=None): """ Adds hard and soft constraints to the given constraints matrix Parameters ---------- A : Tensor or SparseTensor the (N,M,) constraints matrix hard : iterable the hard constraints indices soft : LongTensor the (S,) indices tensor for the soft constraints Returns ------- Tensor the (N+S,M,) constraints matrix """ M = A.clone() if hard is not None: S = unitvec(A.size(-1), hard, sparse=False, dtype=torch.float, device=A.device) if issparse(A): M = M.to_dense() M[hard] = S if soft is not None: S = unitvec(A.size(-1), soft, sparse=True, dtype=torch.float, device=A.device) M = cat((M, S), dim=-2) return M
25.828571
87
0.581858
505753f2e1e7596e49511e02f53b2cb67aa11842
1,025
py
Python
manage.py
MahmoudRizk/twemo
51a5022c32f402a7fcc7c5a09b30f2fc5a15b60c
[ "MIT" ]
null
null
null
manage.py
MahmoudRizk/twemo
51a5022c32f402a7fcc7c5a09b30f2fc5a15b60c
[ "MIT" ]
null
null
null
manage.py
MahmoudRizk/twemo
51a5022c32f402a7fcc7c5a09b30f2fc5a15b60c
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise # This allows easy placement of apps within the interior # twemo directory. current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(current_path, "twemo")) execute_from_command_line(sys.argv)
33.064516
77
0.654634
83dc6587a25795d6879646e05cd154a428a8c31b
1,090
py
Python
examples/plotting/file/brewer.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
1
2020-05-26T15:21:22.000Z
2020-05-26T15:21:22.000Z
examples/plotting/file/brewer.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
1
2021-12-15T17:32:31.000Z
2021-12-21T18:11:05.000Z
examples/plotting/file/brewer.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
1
2021-12-20T05:50:00.000Z
2021-12-20T05:50:00.000Z
''' A plot of randomly stacked area styled using the Brewer palette from the `brewer` dictionary. .. bokeh-example-metadata:: :apis: bokeh.palettes.brewer :refs: :ref:`userguide_styling` > :ref:`userguide_styling_using_palettes` :keywords: brewer, palettes, patches ''' import numpy as np import pandas as pd from bokeh.palettes import brewer from bokeh.plotting import figure, output_file, show N = 20 cats = 10 df = pd.DataFrame(np.random.randint(10, 100, size=(N, cats))).add_prefix('y') def stacked(df): df_top = df.cumsum(axis=1) df_bottom = df_top.shift(axis=1).fillna({'y0': 0})[::-1] df_stack = pd.concat([df_bottom, df_top], ignore_index=True) return df_stack areas = stacked(df) colors = brewer['Spectral'][areas.shape[1]] x2 = np.hstack((df.index[::-1], df.index)) p = figure(x_range=(0, N-1), y_range=(0, 800)) p.grid.minor_grid_line_color = '#eeeeee' p.patches([x2] * areas.shape[1], [areas[c].values for c in areas], color=colors, alpha=0.8, line_color=None) output_file('stacked_area.html', title='brewer.py example') show(p)
27.25
77
0.695413
8ac721b06a5b2c3fb83b086c3e843a73f677ac93
6,470
py
Python
launch_BURN.py
Km3888/oyster
391ae4ba3fedc4354fa3688654211899a72465b0
[ "MIT" ]
null
null
null
launch_BURN.py
Km3888/oyster
391ae4ba3fedc4354fa3688654211899a72465b0
[ "MIT" ]
1
2020-04-01T16:35:43.000Z
2020-04-01T16:35:43.000Z
launch_BURN.py
Km3888/oyster
391ae4ba3fedc4354fa3688654211899a72465b0
[ "MIT" ]
null
null
null
""" Launcher for experiments with PEARL """ import os import pathlib import numpy as np import click import json import torch from rlkit.envs import ENVS from rlkit.envs.wrappers import NormalizedBoxEnv from rlkit.torch.sac.policies import TanhGaussianPolicy from rlkit.torch.networks import FlattenMlp, MlpEncoder, RecurrentEncoder from rlkit.torch.sac.sac import PEARLSoftActorCritic from rlkit.torch.sac.burn_sac import BURNSoftActorCritic from rlkit.torch.sac.agent import PEARLAgent from rlkit.torch.sac.BURNAgent import BURNAgent from rlkit.launchers.launcher_util import setup_logger import rlkit.torch.pytorch_util as ptu from configs.default import default_config from configs.short_burn import short_config def experiment(variant): # create multi-task environment and sample tasks env = NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params'])) tasks = env.get_all_task_idx() obs_dim = int(np.prod(env.observation_space.shape)) action_dim = int(np.prod(env.action_space.shape)) reward_dim = 1 # instantiate networks latent_dim = variant['latent_size'] context_encoder_input_dim = 2 * obs_dim + action_dim + reward_dim if variant['algo_params']['use_next_obs_in_context'] else obs_dim + action_dim + reward_dim context_encoder_output_dim = latent_dim * 2 if variant['algo_params']['use_information_bottleneck'] else latent_dim net_size = variant['net_size'] recurrent = variant['algo_params']['recurrent'] encoder_model = RecurrentEncoder if recurrent else MlpEncoder context_encoder = encoder_model( hidden_sizes=[200, 200, 200], input_size=context_encoder_input_dim, output_size=context_encoder_output_dim, ) #low Qs first and then high Qs q_list=[ [FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=2*obs_dim + action_dim, output_size=1, ), FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=2*obs_dim + action_dim, output_size=1, )] ,[FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=obs_dim + action_dim + latent_dim, output_size=1, ), FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=obs_dim + action_dim + latent_dim, output_size=1, )]] #low vf first and then high vf vf_list = [FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=2*obs_dim, output_size=1, ),FlattenMlp( hidden_sizes=[net_size, net_size, net_size], input_size=obs_dim + latent_dim, output_size=1, )] #NOTE: Reduced number of hidden layers in h_policy from 3 to 2 (idea being it's not doing as much as the whole policy in PEARL) h_policy = TanhGaussianPolicy( hidden_sizes=[net_size, net_size], obs_dim=obs_dim + latent_dim, latent_dim=latent_dim, action_dim=obs_dim, ) #NOTE: Kept the 3 layers because fuck it it'll get tons of data l_policy=TanhGaussianPolicy( hidden_sizes=[net_size,net_size,net_size,net_size], obs_dim=2*obs_dim, latent_dim=0, action_dim=action_dim, ) #TODO Implement BernAgent agent = BURNAgent( latent_dim, context_encoder, h_policy, l_policy, c=2, **variant['algo_params'] ) algorithm = BURNSoftActorCritic( env=env, train_tasks=list(tasks[:variant['n_train_tasks']]), eval_tasks=list(tasks[-variant['n_eval_tasks']:]), nets=[agent, q_list, vf_list], latent_dim=latent_dim, **variant['algo_params'] ) # optionally load pre-trained weights #TODO Make sure weights are properly saved if variant['path_to_weights'] is not None: path = variant['path_to_weights'] context_encoder.load_state_dict(torch.load(os.path.join(path, 'context_encoder.pth'))) q_list[0][0].load_state_dict(torch.load(os.path.join(path, 'l_qf1.pth'))) q_list[0][1].load_state_dict(torch.load(os.path.join(path, 'l_qf2.pth'))) q_list[1][0].load_state_dict(torch.load(os.path.join(path, 'h_qf1.pth'))) q_list[1][1].load_state_dict(torch.load(os.path.join(path, 'h_qf2.pth'))) vf_list[0].load_state_dict(torch.load(os.path.join(path, 'l_vf.pth'))) vf_list[1].load_state_dict(torch.load(os.path.join(path, 'h_vf.pth'))) # TODO hacky, revisit after model refactor algorithm.networks[-2].load_state_dict(torch.load(os.path.join(path, 'target_vf.pth'))) h_policy.load_state_dict(torch.load(os.path.join(path, 'h_policy.pth'))) l_policy.load_state_dict(torch.load(os.path.join(path, 'l_policy.pth'))) # optional GPU mode ptu.set_gpu_mode(variant['util_params']['use_gpu'], variant['util_params']['gpu_id']) if ptu.gpu_enabled(): algorithm.to() # debugging triggers a lot of printing and logs to a debug directory DEBUG = variant['util_params']['debug'] os.environ['DEBUG'] = str(int(DEBUG)) # create logging directory # TODO support Docker exp_id = 'debug' if DEBUG else None experiment_log_dir = setup_logger(variant['env_name'], variant=variant, exp_id=exp_id, base_log_dir=variant['util_params']['base_log_dir']) # optionally save eval trajectories as pkl files if variant['algo_params']['dump_eval_paths']: pickle_dir = experiment_log_dir + '/eval_trajectories' pathlib.Path(pickle_dir).mkdir(parents=True, exist_ok=True) # run the algorithm algorithm.train() def deep_update_dict(fr, to): ''' update dict of dicts with new values ''' # assume dicts have same keys for k, v in fr.items(): if type(v) is dict: deep_update_dict(v, to[k]) else: to[k] = v return to @click.command() @click.argument('config', default=None) @click.option('--gpu', default=0) @click.option('--docker', is_flag=True, default=False) @click.option('--debug', is_flag=True, default=False) def main(config, gpu, docker, debug): variant = short_config print(variant['algo_params']) if config: with open(os.path.join(config)) as f: exp_params = json.load(f) variant = deep_update_dict(exp_params, variant) variant['util_params']['gpu_id'] = gpu experiment(variant) if __name__ == "__main__": main()
35.944444
161
0.681607
be739ca5230ecfbeb3d8542ed80fb414d7a4ae49
8,655
py
Python
pygcn/ABC_gcn.py
d222nguy/project_602
0ce7a3ad0083b22977b558d4d2aceeca839df249
[ "MIT" ]
null
null
null
pygcn/ABC_gcn.py
d222nguy/project_602
0ce7a3ad0083b22977b558d4d2aceeca839df249
[ "MIT" ]
null
null
null
pygcn/ABC_gcn.py
d222nguy/project_602
0ce7a3ad0083b22977b558d4d2aceeca839df249
[ "MIT" ]
null
null
null
import numpy as np from scipy import optimize from deap.benchmarks import schwefel from abc import ABCMeta from abc import abstractmethod from six import add_metaclass import matplotlib.pyplot as plt from copy import deepcopy import config @add_metaclass(ABCMeta) class ObjectiveFunction(object): def __init__(self, name, dim, minf, maxf): self.name = name self.dim = dim self.minf = minf self.maxf = maxf def sample(self): return np.random.uniform(low = self.minf, high = self.maxf, size = self.dim) def custom_sample(self): return np.repeat(self.minf, repeats = self.dim) + np.random.uniform(low = 0, high = 1, size = self.dim) * np.repeat(self.maxf - self.minf, repeats = self.dim) @abstractmethod def evaluate(self, x): pass class Sphere(ObjectiveFunction): def __init__(self, dim): super(Sphere, self).__init__('Sphere', dim, -100.0, 100.0) def evaluate(self, x): return sum(np.power(x, 2)) @add_metaclass(ABCMeta) class ArtificialBee(object): TRIAL_INITIAL_DEFAULT_VALUE = 0 INITIAL_DEFAULT_PROBABILITY = 0.0 def __init__(self, obj_function): self.pos = obj_function.custom_sample() self.obj_function = obj_function self.minf = obj_function.minf self.maxf = obj_function.maxf self.fitness = obj_function.evaluate(self.pos) self.trial = ArtificialBee.TRIAL_INITIAL_DEFAULT_VALUE self.prob = ArtificialBee.INITIAL_DEFAULT_PROBABILITY def evaluate_boundaries(self, pos): if (pos < self.minf).any() or (pos > self.maxf).any(): pos[pos > self.maxf] = self.maxf pos[pos < self.minf] = self.minf return pos def update_bee(self, pos, fitness): if fitness <= self.fitness: print('Improved!') self.pos = pos self.fitness = fitness self.trial = 0 else: self.trial += 1 def reset_bee(self, max_trials): if self.trial >= max_trials: self.__reset_bee() def __reset_bee(self): self.pos = self.obj_function.custom_sample() self.fitness = self.obj_function.evaluate(self.pos) self.trial = ArtificialBee.TRIAL_INITIAL_DEFAULT_VALUE self.prob = ArtificialBee.INITIAL_DEFAULT_PROBABILITY class EmployeeBee(ArtificialBee): def explore(self, max_trials): #print('==========================================') if self.trial <= max_trials: component = np.random.choice(self.pos) print('component = ', component) print('self.pos = ', self.pos) phi = np.random.uniform(low=-1, high=1, size = len(self.pos)) n_pos = self.pos + (self.pos - component) * phi n_pos = self.evaluate_boundaries(n_pos) n_fitness = self.obj_function.evaluate(n_pos) self.update_bee(n_pos, n_fitness) def get_fitness(self): return 1/(1 + self.fitness) if self.fitness >= 0 else 1 + np.abs(self.fitness) def compute_prob(self, max_fitness): self.prob = self.get_fitness() / max_fitness class OnLookerBee(ArtificialBee): def onlook(self, best_food_sources, max_trials): # for source in best_food_sources: # print(source.pos) candidate = np.random.choice(best_food_sources) self.__exploit(candidate.pos, candidate.fitness, max_trials) def __exploit(self, candidate, fitness, max_trials): if self.trial <= max_trials: component = np.random.choice(candidate) phi = np.random.uniform(low=-1, high=1, size = len(candidate)) n_pos = candidate + (candidate - component) * phi n_pos = self.evaluate_boundaries(n_pos) n_fitness = self.obj_function.evaluate(n_pos) if n_fitness <= fitness: self.pos = n_pos self.fitness = n_fitness self.trial = 0 else: self.trial += 1 class ABC(object): def __init__(self, obj_function, colony_size = 30, n_iter = 50, max_trials = 10): self.colony_size = colony_size self.obj_function = obj_function self.n_iter = n_iter self.max_trials = max_trials self.optimal_solution = None self.optimality_tracking = [] def __reset_algorithm(self): self.optimal_solution = None self.optimality_tracking = [] def __update_optimality_tracking(self): self.optimality_tracking.append(self.optimal_solution.fitness) def __update_optimal_solution(self): n_optimal_solution = min(self.onlooker_bees + self.employee_bees, key = lambda bee: bee.fitness) if not self.optimal_solution: self.optimal_solution = deepcopy(n_optimal_solution) else: if n_optimal_solution.fitness < self.optimal_solution.fitness: self.optimal_solution = deepcopy(n_optimal_solution) def __initialize_employees(self): self.employee_bees = [] for itr in range(self.colony_size // 2): self.employee_bees.append(EmployeeBee(self.obj_function)) def __initialize_onlookers(self): self.onlooker_bees = [] for itr in range(self.colony_size // 2): self.onlooker_bees.append(OnLookerBee(self.obj_function)) def __employee_bees_phase(self): #print('================================') #print(len(self.employee_bees)) for bee in self.employee_bees: bee.explore(self.max_trials) # map(lambda bee: bee.explore(self.max_trials), self.employee_bees) def __calculate_probabilities(self): sum_fitness = sum(map(lambda bee: bee.get_fitness(), self.employee_bees)) for bee in self.employee_bees: bee.compute_prob(sum_fitness) #map(lambda bee: bee.compute_prob(sum_fitness), self.employee_bees) def __select_best_food_sources(self): self.best_food_sources = list(filter (lambda bee: bee.prob > np.random.uniform(low = 0, high = 1), self.employee_bees)) while not self.best_food_sources: self.best_food_sources = list(filter(lambda bee: bee.prob > np.random.uniform(low = 0, high = 1), self.employee_bees)) def __onlooker_bees_phase(self): for bee in self.onlooker_bees: bee.onlook(self.best_food_sources, self.max_trials) # map(lambda bee: bee.onlook(self.best_food_sources, self.max_trials), self.onlooker_bees) def __scout_bee_phase(self): for bee in self.employee_bees + self.onlooker_bees: bee.reset_bee(self.max_trials) # map(lambda bee: bee.reset_bee(self.max_trials), self.onlooker_bees + self.employee_bees) def optimize(self): self.__reset_algorithm() self.__initialize_employees() self.__initialize_onlookers() for itr in range(self.n_iter): self.__employee_bees_phase() self.__update_optimal_solution() self.__calculate_probabilities() self.__select_best_food_sources() self.__onlooker_bees_phase() self.__scout_bee_phase() self.__update_optimal_solution() self.__update_optimality_tracking() print('Optimal solution: ', self.optimal_solution.pos) print("iter: {} = cost: {}" .format(itr, "%04.03e" % self.optimal_solution.fitness)) def get_objective(objective, dimension=30): objectives = {'Sphere': Sphere(dimension)} # 'Rastrigin': Rastrigin(dimension), # 'Rosenbrock': Rosenbrock(dimension), # 'Schwefel': Schwefel(dimension)} return objectives[objective] def simulate(obj_function, colony_size=30, n_iter=50, max_trials=10, simulations=1): itr = range(n_iter) values = np.zeros(n_iter) box_optimal = [] for _ in range(simulations): optimizer = ABC(obj_function=get_objective(obj_function), colony_size=colony_size, n_iter=n_iter, max_trials=max_trials) optimizer.optimize() values += np.array(optimizer.optimality_tracking) box_optimal.append(optimizer.optimal_solution.fitness) print(optimizer.optimal_solution.pos) values /= simulations plt.plot(itr, values, lw=0.5, label=obj_function) plt.legend(loc='upper right') def main(): plt.figure(figsize=(10, 7)) print("Hello!") simulate('Sphere') plt.ticklabel_format(axis='y', style='sci', scilimits=(-2, 2)) plt.xticks(rotation=45) plt.show() if __name__ == '__main__': main()
41.018957
166
0.640324
82694510539a1a46ec030f7d07157bd06002c820
18,761
py
Python
simulator/models/cifar10_models_v2.py
vlad-user/parallel-tempering
42ebecdea2a597e706382462dc90aab7e7ca098f
[ "MIT" ]
null
null
null
simulator/models/cifar10_models_v2.py
vlad-user/parallel-tempering
42ebecdea2a597e706382462dc90aab7e7ca098f
[ "MIT" ]
null
null
null
simulator/models/cifar10_models_v2.py
vlad-user/parallel-tempering
42ebecdea2a597e706382462dc90aab7e7ca098f
[ "MIT" ]
null
null
null
import sys import os import tensorflow as tf from simulator.graph.device_placer import _gpu_device_name from simulator.simulator_utils import DTYPE from simulator.models.helpers import DEFAULT_INITIALIZER from simulator.models import utils def lenet5_with_dropout_original(graph, verbose=False): with graph.as_default(): with tf.device('gpu:0'): is_train = tf.placeholder_with_default(False, shape=(), name='is_train') with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3), name='x') y = tf.placeholder(tf.int32, shape=(None), name='y') keep_prob = tf.placeholder_with_default(input=1.0, shape=(), name='keep_prob') with tf.name_scope('augmentation'): augmented = utils.augment_images(x, is_train) with tf.name_scope('C1-conv'): conv1 = tf.layers.conv2d(augmented, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.tanh, kernel_initializer=DEFAULT_INITIALIZER) if verbose: print('C1-outshape:', conv1.get_shape().as_list()) with tf.variable_scope('S2-avg_pool'): conv1 = utils.average_pooling_with_weights(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', activation=tf.nn.tanh) if verbose: print('S2-outshape:', conv1.get_shape().as_list()) with tf.variable_scope('dropout1'): conv1 = tf.nn.dropout(conv1, keep_prob) with tf.variable_scope('C3-conv'): conv2 = tf.layers.conv2d(conv1, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.tanh, kernel_initializer=DEFAULT_INITIALIZER) if verbose: print('C3-outshape:', conv2.get_shape().as_list()) with tf.variable_scope('S4-avg_pool'): conv2 = utils.average_pooling_with_weights(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', activation=tf.nn.tanh) if verbose: print('S4-outshape:', conv2.get_shape().as_list()) with tf.variable_scope('dropout2'): conv2 = tf.nn.dropout(conv2, keep_prob) with tf.variable_scope('C5-conv'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.tanh, kernel_initializer=DEFAULT_INITIALIZER) if verbose: print('C5-outshape:', conv3.get_shape().as_list()) conv3 = tf.nn.dropout(conv3, keep_prob) with tf.name_scope('F6-fc'): flatten = tf.layers.Flatten()(conv3) fc1 = tf.layers.dense(inputs=flatten, units=84, activation=tf.nn.tanh, kernel_initializer=DEFAULT_INITIALIZER, name='fc2') with tf.name_scope('dropout3'): fc1 = tf.nn.dropout(fc1, keep_prob) if verbose: print('F6-outshape:', fc1.get_shape().as_list()) with tf.name_scope('logits'): ''' logits = tf.layers.dense(inputs=fc1, units=10, kernel_initializer=DEFAULT_INITIALIZER) ''' logits = utils.rbf_euclidean_layer(inputs=fc1, units=10) return x, y, is_train, keep_prob, logits def lenet5_with_dropout(graph): with graph.as_default(): istrain = tf.placeholder(tf.bool, shape=(), name='is_train') with tf.device('gpu:0'): with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3)) y = tf.placeholder(tf.int32, shape=(None)) keep_prob = tf.placeholder(tf.float32, shape=(), name='keep_prob') with tf.name_scope('conv1'): conv1 = tf.layers.conv2d(x, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool1'): conv1 = tf.nn.max_pool(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID') with tf.name_scope('dropout1'): conv1 = tf.nn.dropout(conv1, keep_prob) with tf.name_scope('conv2'): conv2 = tf.layers.conv2d(x, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool2'): conv2 = tf.nn.max_pool(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', name='max_pool2') with tf.name_scope('dropout2'): conv2 = tf.nn.dropout(conv2, keep_prob) with tf.name_scope('conv3'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('fc1'): flattened = tf.layers.Flatten()(conv3) flattened = tf.nn.dropout(flattened, keep_prob) fc1 = tf.layers.dense(flattened, 84, activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) fc1 = tf.nn.dropout(flattened, keep_prob) with tf.name_scope('logits'): logits = tf.layers.dense(inputs=fc1, units=10, activation=None, kernel_initializer=DEFAULT_INITIALIZER) return x, y, istrain, keep_prob, logits def lenet5_with_dropout(graph): with graph.as_default(): istrain = tf.placeholder(tf.bool, shape=(), name='is_train') with tf.device('gpu:0'): with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3)) y = tf.placeholder(tf.int32, shape=(None)) keep_prob = tf.placeholder_with_default(input=1.0, shape=(), name='keep_prob') with tf.name_scope('conv1'): conv1 = tf.layers.conv2d(x, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool1'): conv1 = tf.nn.max_pool(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID') with tf.name_scope('dropout1'): conv1 = tf.nn.dropout(conv1, keep_prob) with tf.name_scope('conv2'): conv2 = tf.layers.conv2d(x, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool2'): conv2 = tf.nn.max_pool(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', name='max_pool2') with tf.name_scope('dropout2'): conv2 = tf.nn.dropout(conv2, keep_prob) with tf.name_scope('conv3'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('fc1'): flattened = tf.layers.Flatten()(conv3) fc1 = tf.layers.dense(flattened, 84, activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) fc1 = tf.nn.dropout(flattened, keep_prob) with tf.name_scope('logits'): logits = tf.layers.dense(inputs=fc1, units=10, activation=None, kernel_initializer=DEFAULT_INITIALIZER) return x, y, istrain, keep_prob, logits def lenet5_lr_with_const_dropout(graph, keep_prob=0.6): with graph.as_default(): istrain = tf.placeholder(tf.bool, shape=(), name='is_train') with tf.device('gpu:0'): with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3)) y = tf.placeholder(tf.int32, shape=(None)) lr = tf.placeholder(tf.float32, shape=(), name='lr') with tf.name_scope('conv1'): conv1 = tf.layers.conv2d(x, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool1'): conv1 = tf.nn.max_pool(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID') with tf.name_scope('dropout1'): conv1 = tf.nn.dropout(conv1, keep_prob) with tf.name_scope('conv2'): conv2 = tf.layers.conv2d(x, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool2'): conv2 = tf.nn.max_pool(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', name='max_pool2') with tf.name_scope('dropout2'): conv2 = tf.nn.dropout(conv2, keep_prob) with tf.name_scope('conv3'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('fc1'): flattened = tf.layers.Flatten()(conv3) fc1 = tf.layers.dense(flattened, 84, activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) fc1 = tf.nn.dropout(flattened, keep_prob) with tf.name_scope('logits'): logits = tf.layers.dense(inputs=fc1, units=10, activation=None, kernel_initializer=DEFAULT_INITIALIZER) return x, y, istrain, lr, logits def lenet5(graph,): x, y, istrain, _, logits = lenet5_lr_with_const_dropout(graph, keep_prob=1.0) return x, y, istrain, logits def lenet5_l2_with_const_dropout(graph): x, y, istrain, _, logits = lenet5_lr_with_const_dropout(graph, keep_prob=1.0) return x, y, istrain, logits def lenet5_with_input_noise(graph, verbose=False): with graph.as_default(): with tf.device('gpu:0'): is_train = tf.placeholder_with_default(False, shape=(), name='is_train') with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3), name='x') y = tf.placeholder(tf.int32, shape=(None), name='y') stddev_ph = tf.placeholder_with_default(input=.001, shape=(), name='stddev') noisy_inputs = utils.apply_gaussian_noise(x, is_train, stddev_ph) with tf.name_scope('C1-conv'): conv1 = tf.layers.conv2d(noisy_inputs, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool1'): conv1 = tf.nn.max_pool(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID') with tf.variable_scope('C3-conv'): conv2 = tf.layers.conv2d(conv1, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool2'): conv2 = tf.nn.max_pool(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', name='max_pool2') with tf.variable_scope('C5-conv'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('F6-fc'): flatten = tf.layers.Flatten()(conv3) fc1 = tf.layers.dense(inputs=flatten, units=84, activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER, name='fc2') fc1 = tf.nn.dropout(fc1, keep_prob) with tf.name_scope('logits'): logits = tf.layers.dense(inputs=fc1, units=10, kernel_initializer=DEFAULT_INITIALIZER) return x, y, is_train, stddev_ph, logits def lenet5_with_input_noise_const_dropout(graph, keep_prob=0.7, verbose=False): with graph.as_default(): with tf.device('gpu:0'): is_train = tf.placeholder_with_default(False, shape=(), name='is_train') with tf.name_scope('inputs'): x = tf.placeholder(DTYPE, shape=(None, 32, 32, 3), name='x') y = tf.placeholder(tf.int32, shape=(None), name='y') stddev_ph = tf.placeholder_with_default(input=.001, shape=(), name='stddev') noisy_inputs = utils.apply_gaussian_noise(x, is_train, stddev_ph) with tf.name_scope('C1-conv'): conv1 = tf.layers.conv2d(noisy_inputs, filters=6, kernel_size=5, strides=(1, 1), padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool1'): conv1 = tf.nn.max_pool(value=conv1, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID') conv1 = tf.nn.dropout(conv1, keep_prob) with tf.variable_scope('C3-conv'): conv2 = tf.layers.conv2d(conv1, filters=16, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('max_pool2'): conv2 = tf.nn.max_pool(value=conv2, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='VALID', name='max_pool2') conv2 = tf.nn.dropout(conv2, keep_prob) with tf.variable_scope('C5-conv'): conv3 = tf.layers.conv2d(conv2, filters=120, kernel_size=5, padding='VALID', activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER) with tf.name_scope('F6-fc'): flatten = tf.layers.Flatten()(conv3) fc1 = tf.layers.dense(inputs=flatten, units=84, activation=tf.nn.relu, kernel_initializer=DEFAULT_INITIALIZER, name='fc2') fc1 = tf.nn.dropout(fc1, keep_prob) with tf.name_scope('logits'): logits = tf.layers.dense(inputs=fc1, units=10, kernel_initializer=DEFAULT_INITIALIZER) return x, y, is_train, stddev_ph, logits if __name__ == '__main__': os.system('clear') lenet5_with_dropout(tf.Graph(), verbose=True)
41.232967
107
0.459197
10a39aa4d9a637ca25faa9350e5ed69acf3d1425
362
py
Python
cpmd/webServer/publish.py
computePods/majorDomo
0d59f105592c375f16dcd7dcb6ec5bbbae25ce5f
[ "Apache-2.0" ]
null
null
null
cpmd/webServer/publish.py
computePods/majorDomo
0d59f105592c375f16dcd7dcb6ec5bbbae25ce5f
[ "Apache-2.0" ]
null
null
null
cpmd/webServer/publish.py
computePods/majorDomo
0d59f105592c375f16dcd7dcb6ec5bbbae25ce5f
[ "Apache-2.0" ]
null
null
null
from typing import Optional, List from fastapi import FastAPI from pydantic import BaseModel # WebServer interface definition.... class NatsMsg(BaseModel): subject: str message: List def addPublishInterface(self) : @self.app.put("/publish") async def update_item(msg: NatsMsg): await self.natsClient.sendMessage(msg) return { "done": True }
20.111111
42
0.740331
8d1a9fd570630604ecbb41e2cac21e21583c3456
30,598
py
Python
grr/client/grr_response_client/client_actions/artifact_collector_test.py
magnologan/grr
06eeb071e9a925b34f67caf776c3330b39154850
[ "Apache-2.0" ]
null
null
null
grr/client/grr_response_client/client_actions/artifact_collector_test.py
magnologan/grr
06eeb071e9a925b34f67caf776c3330b39154850
[ "Apache-2.0" ]
null
null
null
grr/client/grr_response_client/client_actions/artifact_collector_test.py
magnologan/grr
06eeb071e9a925b34f67caf776c3330b39154850
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Tests the client artifactor collection.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import glob import io import os from absl import app from future.builtins import filter import mock import psutil from grr_response_client.client_actions import artifact_collector from grr_response_core import config from grr_response_core.lib import factory from grr_response_core.lib import parser from grr_response_core.lib import parsers from grr_response_core.lib import utils from grr_response_core.lib.rdfvalues import anomaly as rdf_anomaly from grr_response_core.lib.rdfvalues import artifacts as rdf_artifact from grr_response_core.lib.rdfvalues import client as rdf_client from grr_response_core.lib.rdfvalues import client_action as rdf_client_action from grr_response_core.lib.rdfvalues import client_fs as rdf_client_fs from grr_response_core.lib.rdfvalues import client_network as rdf_client_network from grr_response_core.lib.rdfvalues import paths as rdf_paths from grr_response_core.lib.rdfvalues import protodict as rdf_protodict from grr_response_core.lib.util import compatibility from grr.test_lib import artifact_test_lib from grr.test_lib import client_test_lib from grr.test_lib import filesystem_test_lib from grr.test_lib import osx_launchd_testdata from grr.test_lib import test_lib from grr.test_lib import vfs_test_lib def GetRequest(source, artifact_name, knowledge_base=None): expanded_source = rdf_artifact.ExpandedSource(base_source=source) expanded_artifact = rdf_artifact.ExpandedArtifact( name=artifact_name, sources=[expanded_source]) return rdf_artifact.ClientArtifactCollectorArgs( artifacts=[expanded_artifact], apply_parsers=False, knowledge_base=knowledge_base) class ArtifactCollectorTest(client_test_lib.EmptyActionTest): """Test the artifact collection on the client.""" def setUp(self): super(ArtifactCollectorTest, self).setUp() self.source_type = rdf_artifact.ArtifactSource.SourceType self.test_artifacts_file = os.path.join(config.CONFIG["Test.data_dir"], "artifacts", "test_artifacts.json") def RunArtifactCollector(self, request): result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifact = result.collected_artifacts[0] return collected_artifact @artifact_test_lib.PatchCleanArtifactRegistry def testCommandArtifact(self, registry): """Test the basic ExecuteCommand action.""" filesystem_test_lib.Command( "/usr/bin/dpkg", args=["--list"], system="Linux") registry.AddFileSource(self.test_artifacts_file) artifact = registry.GetArtifact("TestCmdArtifact") request = GetRequest(artifact.sources[0], artifact.name) collected_artifact = self.RunArtifactCollector(request) execute_response = collected_artifact.action_results[0].value self.assertEqual(collected_artifact.name, "TestCmdArtifact") self.assertGreater(execute_response.time_used, 0) def testGRRClientActionGetHostname(self): """Test the GRR Client Action GetHostname.""" source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "GetHostname"}) request = GetRequest(source, "TestClientActionArtifact") collected_artifact = self.RunArtifactCollector(request) for action_result in collected_artifact.action_results: value = action_result.value self.assertTrue(value.string) def testGRRClientActionListProcesses(self): """Test the GRR Client Action ListProcesses.""" def ProcessIter(): return iter([client_test_lib.MockWindowsProcess()]) source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "ListProcesses"}) request = GetRequest(source, "TestClientActionArtifact") with utils.Stubber(psutil, "process_iter", ProcessIter): collected_artifact = self.RunArtifactCollector(request) value = collected_artifact.action_results[0].value self.assertIsInstance(value, rdf_client.Process) self.assertEqual(value.pid, 10) def testGRRClientActionEnumerateInterfaces(self): """Test the GRR Client Action EnumerateInterfaces.""" source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "EnumerateInterfaces"}) request = GetRequest(source, "TestClientActionArtifact") collected_artifact = self.RunArtifactCollector(request) self.assertNotEmpty(collected_artifact.action_results) for action_result in collected_artifact.action_results: value = action_result.value self.assertIsInstance(value, rdf_client_network.Interface) def testGRRClientActionEnumerateUsers(self): """Test the GRR Client Action EnumerateUsers.""" def MockedOpen(requested_path, mode="rb"): try: fixture_path = os.path.join(self.base_path, "VFSFixture", requested_path.lstrip("/")) return compatibility.builtins.open.old_target(fixture_path, mode) except IOError: return compatibility.builtins.open.old_target(requested_path, mode) source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "EnumerateUsers"}) request = GetRequest(source, "TestClientActionArtifact") with utils.MultiStubber((compatibility.builtins, "open", MockedOpen), (glob, "glob", lambda x: ["/var/log/wtmp"])): result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifact = result.collected_artifacts[0] self.assertLen(collected_artifact.action_results, 4) for action_result in collected_artifact.action_results: value = action_result.value self.assertIsInstance(value, rdf_client.User) if value.username not in ["user1", "user2", "user3", "utuser"]: self.fail("Unexpected user found: %s" % value.username) # Test that the users were added to the knowledge base self.assertLen(result.knowledge_base.users, 4) for user in result.knowledge_base.users: self.assertIn(user.username, ["user1", "user2", "user3", "utuser"]) def testGRRClientActionListNetworkConnections(self): """Test the GRR Client Action ListNetworkConnections.""" source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "ListNetworkConnections"}) request = GetRequest(source, "TestClientActionArtifact") collected_artifact = self.RunArtifactCollector(request) for action_result in collected_artifact.action_results: value = action_result.value self.assertIsInstance(value, rdf_client_network.NetworkConnection) def testGRRClientActionStatFS(self): """Test the GRR Client Action StatFS.""" file_path = os.path.join(self.base_path, "numbers.txt") source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={ "client_action": "StatFS", "action_args": { "path_list": [file_path] } }) request = GetRequest(source, "TestClientActionArtifact") collected_artifact = self.RunArtifactCollector(request) self.assertLen(collected_artifact.action_results, 1) action_result = collected_artifact.action_results[0].value self.assertIsInstance(action_result, rdf_client_fs.Volume) def testRegistryValueArtifact(self): """Test the basic Registry Value collection.""" source = rdf_artifact.ArtifactSource( type=self.source_type.REGISTRY_VALUE, attributes={ "key_value_pairs": [{ "key": (r"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet" r"\Control\Session Manager"), "value": "BootExecute" }] }) request = GetRequest(source, "FakeRegistryValue") with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.REGISTRY, vfs_test_lib.FakeRegistryVFSHandler): with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.OS, vfs_test_lib.FakeFullVFSHandler): collected_artifact = self.RunArtifactCollector(request) file_stat = collected_artifact.action_results[0].value self.assertIsInstance(file_stat, rdf_client_fs.StatEntry) urn = file_stat.pathspec.AFF4Path(self.SetupClient(0)) self.assertEndsWith(str(urn), "BootExecute") def testRegistryKeyArtifact(self): """Test the basic Registry Key collection.""" source = rdf_artifact.ArtifactSource( type=self.source_type.REGISTRY_KEY, attributes={ "keys": [ r"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet" r"\Control\Session Manager\*" ], }) request = GetRequest(source, "TestRegistryKey") with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.REGISTRY, vfs_test_lib.FakeRegistryVFSHandler): with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.OS, vfs_test_lib.FakeFullVFSHandler): collected_artifact = self.RunArtifactCollector(request) self.assertLen(collected_artifact.action_results, 1) file_stat = collected_artifact.action_results[0].value self.assertIsInstance(file_stat, rdf_client_fs.StatEntry) def testRegistryNoKeysArtifact(self): """Test the basic Registry Key collection.""" source = rdf_artifact.ArtifactSource( type=self.source_type.REGISTRY_KEY, attributes={ "keys": [], }) request = GetRequest(source, "TestRegistryKey") with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.REGISTRY, vfs_test_lib.FakeRegistryVFSHandler): with vfs_test_lib.VFSOverrider(rdf_paths.PathSpec.PathType.OS, vfs_test_lib.FakeFullVFSHandler): collected_artifact = self.RunArtifactCollector(request) self.assertEmpty(collected_artifact.action_results) def testDirectoryArtifact(self): """Test the source type `DIRECTORY`.""" paths = [ os.path.join(self.base_path, "%%Users.username%%*"), os.path.join(self.base_path, "VFSFixture", "var", "*", "wtmp") ] expected = [ os.path.join(self.base_path, "test.plist"), os.path.join(self.base_path, "test_img.dd"), os.path.join(self.base_path, "tests"), os.path.join(self.base_path, "tests_long"), os.path.join(self.base_path, "syslog"), os.path.join(self.base_path, "syslog_compress.gz"), os.path.join(self.base_path, "syslog_false.gz"), os.path.join(self.base_path, "VFSFixture", "var", "log", "wtmp"), ] source = rdf_artifact.ArtifactSource( type=self.source_type.DIRECTORY, attributes={"paths": paths}) knowledge_base = rdf_client.KnowledgeBase(users=[ rdf_client.User(username="test"), rdf_client.User(username="syslog") ]) request = GetRequest(source, "TestDirectory", knowledge_base) collected_artifact = self.RunArtifactCollector(request) self.assertNotEmpty(collected_artifact.action_results) for file_stat in collected_artifact.action_results: self.assertIsInstance(file_stat.value, rdf_client_fs.StatEntry) self.assertIn(file_stat.value.pathspec.path, expected) def testGrepArtifact(self): """Test the source type `GREP`.""" paths = [ os.path.join(self.base_path, "searching", "dpkg.log"), os.path.join(self.base_path, "searching", "dpkg_false.log"), os.path.join(self.base_path, "searching", "auth.log") ] content_regex_list = [br"mydo....\.com"] source = rdf_artifact.ArtifactSource( type=self.source_type.GREP, attributes={ "paths": paths, "content_regex_list": content_regex_list }) request = GetRequest(source, "TestGrep") collected_artifact = self.RunArtifactCollector(request) self.assertLen(collected_artifact.action_results, 1) result = collected_artifact.action_results[0].value self.assertIsInstance(result, rdf_client_fs.StatEntry) self.assertEndsWith(result.pathspec.path, "auth.log") @artifact_test_lib.PatchCleanArtifactRegistry def testMultipleArtifacts(self, registry): """Test collecting multiple artifacts.""" filesystem_test_lib.Command( "/usr/bin/dpkg", args=["--list"], system="Linux") registry.AddFileSource(self.test_artifacts_file) artifact = registry.GetArtifact("TestCmdArtifact") ext_src = rdf_artifact.ExpandedSource(base_source=artifact.sources[0]) ext_art = rdf_artifact.ExpandedArtifact( name=artifact.name, sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], apply_parsers=False) request.artifacts.append(ext_art) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifacts = list(result.collected_artifacts) self.assertLen(collected_artifacts, 2) self.assertEqual(collected_artifacts[0].name, "TestCmdArtifact") self.assertEqual(collected_artifacts[1].name, "TestCmdArtifact") execute_response_1 = collected_artifacts[0].action_results[0].value execute_response_2 = collected_artifacts[1].action_results[0].value self.assertGreater(execute_response_1.time_used, 0) self.assertGreater(execute_response_2.time_used, 0) @artifact_test_lib.PatchCleanArtifactRegistry def testFilterRequestedArtifactResults(self, registry): """Test that only artifacts requested by the user are sent to the server.""" filesystem_test_lib.Command( "/usr/bin/dpkg", args=["--list"], system="Linux") registry.AddFileSource(self.test_artifacts_file) artifact = registry.GetArtifact("TestCmdArtifact") ext_src = rdf_artifact.ExpandedSource(base_source=artifact.sources[0]) ext_art = rdf_artifact.ExpandedArtifact( name=artifact.name, sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], apply_parsers=False) ext_art = rdf_artifact.ExpandedArtifact( name=artifact.name, sources=[ext_src], requested_by_user=False) request.artifacts.append(ext_art) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifacts = list(result.collected_artifacts) self.assertLen(collected_artifacts, 1) self.assertEqual(collected_artifacts[0].name, "TestCmdArtifact") execute_response = collected_artifacts[0].action_results[0].value self.assertGreater(execute_response.time_used, 0) @artifact_test_lib.PatchCleanArtifactRegistry def testTSKRaiseValueError(self, registry): """Test Raise Error if path type is not OS.""" registry.AddFileSource(self.test_artifacts_file) ext_src = rdf_artifact.ExpandedSource( path_type=rdf_paths.PathSpec.PathType.TSK) ext_art = rdf_artifact.ExpandedArtifact( name="TestArtifact", sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], apply_parsers=False) artifact = registry.GetArtifact("FakeFileArtifact") ext_src.base_source = artifact.sources[0] with self.assertRaises(ValueError): self.RunAction(artifact_collector.ArtifactCollector, request) artifact = registry.GetArtifact("BadPathspecArtifact") ext_src.base_source = artifact.sources[0] with self.assertRaises(ValueError): self.RunAction(artifact_collector.ArtifactCollector, request) @artifact_test_lib.PatchCleanArtifactRegistry def testUnsupportedSourceType(self, registry): """Test that an unsupported source type raises an Error.""" registry.AddFileSource(self.test_artifacts_file) artifact = registry.GetArtifact("TestAggregationArtifact") ext_src = rdf_artifact.ExpandedSource(base_source=artifact.sources[0]) ext_art = rdf_artifact.ExpandedArtifact( name=artifact.name, sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], knowledge_base=None, ignore_interpolation_errors=True, apply_parsers=False) # The type ARTIFACT_GROUP will raise an error because the group should have # been expanded on the server. with self.assertRaises(ValueError): self.RunAction(artifact_collector.ArtifactCollector, request) class OSXArtifactCollectorTests(client_test_lib.OSSpecificClientTests): def setUp(self): super(OSXArtifactCollectorTests, self).setUp() # pylint: disable=g-import-not-at-top from grr_response_client.client_actions import operating_system from grr_response_client.client_actions.osx import osx # pylint: enable=g-import-not-at-top self.os = operating_system self.osx = osx self.source_type = rdf_artifact.ArtifactSource.SourceType def EnumerateFilesystemsStub(self, args): del args # Unused. path = os.path.join(self.base_path, "osx_fsdata") with io.open(path, "rb") as f: filesystems = self.osx.client_utils_osx.ParseFileSystemsStruct( self.osx.client_utils_osx.StatFS64Struct, 7, f.read()) for fs_struct in filesystems: yield rdf_client_fs.Filesystem( device=fs_struct.f_mntfromname, mount_point=fs_struct.f_mntonname, type=fs_struct.f_fstypename) def OSXEnumerateRunningServicesStub(self, args): del args # Unused. job = osx_launchd_testdata.JOB[0] yield rdf_client.OSXServiceInformation( label=job.get("Label"), program=job.get("Program"), sessiontype=job.get("LimitLoadToSessionType"), lastexitstatus=int(job["LastExitStatus"]), timeout=int(job["TimeOut"]), ondemand=bool(job["OnDemand"])) def testGRRClientActionEnumerateFilesystems(self): """Test the GRR Client Action EnumerateFilesystems.""" source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "EnumerateFilesystems"}) request = GetRequest(source, "TestClientActionArtifact") with utils.Stubber(self.os, "EnumerateFilesystemsFromClient", self.EnumerateFilesystemsStub): result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifact = result.collected_artifacts[0] self.assertLen(collected_artifact.action_results, 7) res = collected_artifact.action_results[0].value self.assertIsInstance(res, rdf_client_fs.Filesystem) self.assertEqual(res.type, "hfs") def testGRRClientActionOSXEnumerateRunningServices(self): """Test the GRR Client Action OSXEnumerateRunningServices.""" source = rdf_artifact.ArtifactSource( type=self.source_type.GRR_CLIENT_ACTION, attributes={"client_action": "OSXEnumerateRunningServices"}) request = GetRequest(source, "TestClientActionArtifact") with utils.Stubber(self.os, "EnumerateRunningServices", self.OSXEnumerateRunningServicesStub): result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] collected_artifact = result.collected_artifacts[0] self.assertLen(collected_artifact.action_results, 1) res = collected_artifact.action_results[0].value self.assertIsInstance(res, rdf_client.OSXServiceInformation) self.assertEqual(res.label, "com.apple.FileSyncAgent.PHD") class WindowsArtifactCollectorTests(client_test_lib.OSSpecificClientTests): def setUp(self): super(WindowsArtifactCollectorTests, self).setUp() self.test_artifacts_file = os.path.join(config.CONFIG["Test.data_dir"], "artifacts", "test_artifacts.json") windows_mock = mock.MagicMock() modules = { ("grr_response_client.client_actions" ".windows"): windows_mock } module_patcher = mock.patch.dict("sys.modules", modules) module_patcher.start() self.addCleanup(module_patcher.stop) self.windows = windows_mock.windows @artifact_test_lib.PatchCleanArtifactRegistry def testWMIArtifact(self, registry): """Test collecting a WMI artifact.""" registry.AddFileSource(self.test_artifacts_file) artifact = registry.GetArtifact("WMIActiveScriptEventConsumer") ext_src = rdf_artifact.ExpandedSource(base_source=artifact.sources[0]) ext_art = rdf_artifact.ExpandedArtifact( name=artifact.name, sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], knowledge_base=None, ignore_interpolation_errors=True, apply_parsers=False) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] self.assertIsInstance(result, rdf_artifact.ClientArtifactCollectorResult) coll = artifact_collector.ArtifactCollector() coll.knowledge_base = None coll.ignore_interpolation_errors = True expected = rdf_client_action.WMIRequest( query="SELECT * FROM ActiveScriptEventConsumer", base_object="winmgmts:\\root\\subscription") for action, request in coll._ProcessWmiSource(ext_src): self.assertEqual(request, expected) self.assertEqual(action, self.windows.WmiQueryFromClient) self.windows.WmiQueryFromClient.assert_called_with(request) class TestEchoCmdParser(parser.CommandParser): output_types = [rdf_client.SoftwarePackages] supported_artifacts = ["TestEchoCmdArtifact"] def Parse(self, cmd, args, stdout, stderr, return_val, time_taken, knowledge_base): del cmd, args, stderr, return_val, time_taken, knowledge_base # Unused installed = rdf_client.SoftwarePackage.InstallState.INSTALLED yield rdf_client.SoftwarePackages(packages=[ rdf_client.SoftwarePackage( name="Package", description=stdout, version="1", architecture="amd64", install_state=installed) ]) class FakeFileParser(parser.FileParser): output_types = [rdf_protodict.AttributedDict] supported_artifacts = ["FakeFileArtifact"] def Parse(self, stat, file_obj, knowledge_base): del knowledge_base # Unused. lines = set(l.strip() for l in file_obj.read().splitlines()) users = list(filter(None, lines)) filename = stat.pathspec.path cfg = {"filename": filename, "users": users} yield rdf_protodict.AttributedDict(**cfg) class FakeFileMultiParser(parser.FileMultiParser): output_types = [rdf_protodict.AttributedDict] supported_artifacts = ["FakeFileArtifact2"] def ParseMultiple(self, stats, file_objects, knowledge_base): del knowledge_base # Unused. lines = set() for file_obj in file_objects: lines.update(set(l.strip() for l in file_obj.read().splitlines())) users = list(filter(None, lines)) for stat in stats: filename = stat.pathspec.path cfg = {"filename": filename, "users": users} yield rdf_protodict.AttributedDict(**cfg) class ParseResponsesTest(client_test_lib.EmptyActionTest): @mock.patch.object(parsers, "SINGLE_RESPONSE_PARSER_FACTORY", factory.Factory(parsers.SingleResponseParser)) def testCmdArtifactAction(self): """Test the actual client action with parsers.""" parsers.SINGLE_RESPONSE_PARSER_FACTORY.Register("Cmd", TestEchoCmdParser) filesystem_test_lib.Command("/bin/echo", args=["1"]) source = rdf_artifact.ArtifactSource( type=rdf_artifact.ArtifactSource.SourceType.COMMAND, attributes={ "cmd": "/bin/echo", "args": ["1"] }) ext_src = rdf_artifact.ExpandedSource(base_source=source) ext_art = rdf_artifact.ExpandedArtifact( name="TestEchoCmdArtifact", sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], knowledge_base=None, ignore_interpolation_errors=True, apply_parsers=True) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] self.assertIsInstance(result, rdf_artifact.ClientArtifactCollectorResult) self.assertLen(result.collected_artifacts, 1) res = result.collected_artifacts[0].action_results[0].value self.assertIsInstance(res, rdf_client.SoftwarePackages) self.assertEqual(res.packages[0].description, "1\n") @mock.patch.object(parsers, "SINGLE_FILE_PARSER_FACTORY", factory.Factory(parsers.SingleFileParser)) def testFakeFileArtifactAction(self): """Test collecting a file artifact and parsing the response.""" parsers.SINGLE_FILE_PARSER_FACTORY.Register("Fake", FakeFileParser) file_path = os.path.join(self.base_path, "numbers.txt") source = rdf_artifact.ArtifactSource( type=rdf_artifact.ArtifactSource.SourceType.FILE, attributes={"paths": [file_path]}) ext_src = rdf_artifact.ExpandedSource(base_source=source) ext_art = rdf_artifact.ExpandedArtifact( name="FakeFileArtifact", sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], knowledge_base=None, ignore_interpolation_errors=True, apply_parsers=True) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] self.assertLen(result.collected_artifacts[0].action_results, 1) res = result.collected_artifacts[0].action_results[0].value self.assertIsInstance(res, rdf_protodict.AttributedDict) self.assertLen(res.users, 1000) self.assertEqual(res.filename, file_path) @mock.patch.object(parsers, "MULTI_FILE_PARSER_FACTORY", factory.Factory(parsers.MultiFileParser)) def testFakeFileArtifactActionProcessTogether(self): """Test collecting a file artifact and parsing the responses together.""" parsers.MULTI_FILE_PARSER_FACTORY.Register("Fake", FakeFileMultiParser) file_path = os.path.join(self.base_path, "numbers.txt") source = rdf_artifact.ArtifactSource( type=rdf_artifact.ArtifactSource.SourceType.FILE, attributes={"paths": [file_path]}) ext_src = rdf_artifact.ExpandedSource(base_source=source) ext_art = rdf_artifact.ExpandedArtifact( name="FakeFileArtifact2", sources=[ext_src]) request = rdf_artifact.ClientArtifactCollectorArgs( artifacts=[ext_art], knowledge_base=None, ignore_interpolation_errors=True, apply_parsers=True) result = self.RunAction(artifact_collector.ArtifactCollector, request)[0] self.assertLen(result.collected_artifacts[0].action_results, 1) res = result.collected_artifacts[0].action_results[0].value self.assertIsInstance(res, rdf_protodict.AttributedDict) self.assertLen(res.users, 1000) self.assertEqual(res.filename, file_path) class KnowledgeBaseUpdateTest(client_test_lib.EmptyActionTest): def InitializeRequest(self, initial_knowledge_base=None, provides=None): """Prepare ClientArtifactCollectorArgs.""" expanded_source = rdf_artifact.ExpandedSource() expanded_artifact = rdf_artifact.ExpandedArtifact( name="EmptyArtifact", sources=[expanded_source], provides=provides) return rdf_artifact.ClientArtifactCollectorArgs( artifacts=[expanded_artifact], knowledge_base=initial_knowledge_base) def GetUpdatedKnowledgeBase(self): """Runs the artifact collector with the specified client action result.""" with utils.Stubber(artifact_collector.ArtifactCollector, "_ProcessSources", self.GetActionResult): result = self.RunAction(artifact_collector.ArtifactCollector, self.request)[0] return result.knowledge_base def GetActionResult(self, *args): del args # Unused. yield [self.response] def testAnomaly(self): """Test the knowledge base stays uninitialized if an anomaly is returned.""" self.request = self.InitializeRequest() self.response = rdf_anomaly.Anomaly() knowledge_base = self.GetUpdatedKnowledgeBase() self.assertEqual(knowledge_base, rdf_client.KnowledgeBase()) def testAddUser(self): """Test a user response is added to the knowledge_base.""" self.request = self.InitializeRequest() self.response = rdf_client.User(username="user1", homedir="/home/foo") knowledge_base = self.GetUpdatedKnowledgeBase() self.assertLen(knowledge_base.users, 1) user = knowledge_base.users[0] self.assertEqual(user.username, "user1") self.assertEqual(user.homedir, "/home/foo") def testUpdateUser(self): """Test a user response is updated if present in the knowledge base.""" user = rdf_client.User(username="user1") initial_knowledge_base = rdf_client.KnowledgeBase(users=[user]) self.request = self.InitializeRequest(initial_knowledge_base) self.response = rdf_client.User(username="user1", homedir="/home/foo") knowledge_base = self.GetUpdatedKnowledgeBase() self.assertLen(knowledge_base.users, 1) user = knowledge_base.users[0] self.assertEqual(user.username, "user1") self.assertEqual(user.homedir, "/home/foo") def testProvidesMultiple(self): """Test provides values are updated from a dictionary.""" provides = ["domain", "current_control_set"] self.request = self.InitializeRequest(provides=provides) self.response = rdf_protodict.Dict( domain="MICROSOFT", current_control_set="HKEY_LOCAL_MACHINE\\SYSTEM\\ControlSet001", environ_systemdrive="C:") knowledge_base = self.GetUpdatedKnowledgeBase() self.assertEqual(knowledge_base.domain, "MICROSOFT") self.assertEqual(knowledge_base.current_control_set, "HKEY_LOCAL_MACHINE\\SYSTEM\\ControlSet001") self.assertEqual(knowledge_base.environ_systemdrive, "") def testProvidesSingleValue(self): """Test a single provides value is updated from registry data.""" provides = ["code_page"] self.request = self.InitializeRequest(provides=provides) self.response = rdf_client_fs.StatEntry( registry_data=rdf_protodict.DataBlob(string="value1")) knowledge_base = self.GetUpdatedKnowledgeBase() self.assertEqual(knowledge_base.code_page, "value1") def main(argv): test_lib.main(argv) if __name__ == "__main__": app.run(main)
40.68883
80
0.726943
5943ef5f212bc77fbfcf1eeacb37ada6136d107d
1,995
py
Python
pytests/bucket_collections/collection_ops_specs/dgm_load.py
bkumaran/TAF
27f39eb913fa89b55cdd88ee1c7ef0bb8c094407
[ "Apache-2.0" ]
9
2019-02-19T05:55:00.000Z
2022-01-20T10:37:28.000Z
pytests/bucket_collections/collection_ops_specs/dgm_load.py
bkumaran/TAF
27f39eb913fa89b55cdd88ee1c7ef0bb8c094407
[ "Apache-2.0" ]
2
2019-02-19T07:28:54.000Z
2019-06-18T11:22:29.000Z
pytests/bucket_collections/collection_ops_specs/dgm_load.py
bkumaran/TAF
27f39eb913fa89b55cdd88ee1c7ef0bb8c094407
[ "Apache-2.0" ]
155
2018-11-13T14:57:07.000Z
2022-03-28T11:53:22.000Z
from collections_helper.collections_spec_constants import MetaCrudParams spec = { # Scope/Collection ops params MetaCrudParams.COLLECTIONS_TO_FLUSH: 0, MetaCrudParams.COLLECTIONS_TO_DROP: 0, MetaCrudParams.SCOPES_TO_DROP: 0, MetaCrudParams.SCOPES_TO_ADD_PER_BUCKET: 0, MetaCrudParams.COLLECTIONS_TO_ADD_FOR_NEW_SCOPES: 0, MetaCrudParams.COLLECTIONS_TO_ADD_PER_BUCKET: 0, MetaCrudParams.BUCKET_CONSIDERED_FOR_OPS: "all", MetaCrudParams.SCOPES_CONSIDERED_FOR_OPS: "all", MetaCrudParams.COLLECTIONS_CONSIDERED_FOR_OPS: "all", # Doc loading params "doc_crud": { MetaCrudParams.DocCrud.COMMON_DOC_KEY: "test_collections", MetaCrudParams.DocCrud.CREATE_PERCENTAGE_PER_COLLECTION: 5, MetaCrudParams.DocCrud.READ_PERCENTAGE_PER_COLLECTION: 0, MetaCrudParams.DocCrud.UPDATE_PERCENTAGE_PER_COLLECTION: 0, MetaCrudParams.DocCrud.REPLACE_PERCENTAGE_PER_COLLECTION: 0, MetaCrudParams.DocCrud.DELETE_PERCENTAGE_PER_COLLECTION: 0, }, "subdoc_crud": { MetaCrudParams.SubDocCrud.XATTR_TEST: False, MetaCrudParams.SubDocCrud.INSERT_PER_COLLECTION: 0, MetaCrudParams.SubDocCrud.UPSERT_PER_COLLECTION: 0, MetaCrudParams.SubDocCrud.REMOVE_PER_COLLECTION: 0, MetaCrudParams.SubDocCrud.LOOKUP_PER_COLLECTION: 0, }, # Doc_loading task options MetaCrudParams.DOC_TTL: 0, MetaCrudParams.DURABILITY_LEVEL: "", MetaCrudParams.SDK_TIMEOUT: 120, # Default is 60 MetaCrudParams.SDK_TIMEOUT_UNIT: "seconds", MetaCrudParams.TARGET_VBUCKETS: "all", MetaCrudParams.SKIP_READ_ON_ERROR: True, MetaCrudParams.SUPPRESS_ERROR_TABLE: True, # The below is to skip populating success dictionary for reads MetaCrudParams.SKIP_READ_SUCCESS_RESULTS: True, # Default is False MetaCrudParams.COLLECTIONS_CONSIDERED_FOR_CRUD: "all", MetaCrudParams.SCOPES_CONSIDERED_FOR_CRUD: "all", MetaCrudParams.BUCKETS_CONSIDERED_FOR_CRUD: "all" }
38.365385
72
0.768421
4b1102300ca699753ab61e7fdfe78d2ecc40fa86
3,185
py
Python
env/lib/python3.7/site-packages/masonite/api/controllers/TokenController.py
Kolawole39/masonite-guides-tutorial
9a21cc635291a42f0722f69925be1809bb20e01c
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/masonite/api/controllers/TokenController.py
Kolawole39/masonite-guides-tutorial
9a21cc635291a42f0722f69925be1809bb20e01c
[ "MIT" ]
null
null
null
env/lib/python3.7/site-packages/masonite/api/controllers/TokenController.py
Kolawole39/masonite-guides-tutorial
9a21cc635291a42f0722f69925be1809bb20e01c
[ "MIT" ]
null
null
null
import jwt import pendulum from masonite.auth import Auth, Sign from masonite.helpers import password as bcrypt_password from masonite.helpers.misc import random_string from masonite.request import Request from ..exceptions import NoApiTokenFound from config.application import KEY class TokenController: """Placeholder for the authentication model. This is set via the corresponding TokenRoutes function. This will default to the auth.py authentication class. """ __auth__ = None def __init__(self): if self.__auth__ is None: from config import auth self.__auth__ = auth.AUTH['guards']['api']['model'] def token(self): return {'token': Sign().sign(random_string(10))} def jwt(self, request: Request, auth: Auth): if not request.input('username') or not request.input('password'): request.status(401) return {'error': 'missing username or password'} user = auth.once().login( request.input('username'), request.input('password'), ) if user: user.__hidden__ = ['password'] payload = { 'issued': str(pendulum.now()), 'expires': str(pendulum.now().add(minutes=5)), 'refresh': str(pendulum.now().add(days=14)), 'scopes': request.input('scopes'), 'user': user.serialize() } return { 'token': bytes(jwt.encode(payload, KEY, algorithm='HS256')).decode('utf-8'), 'expires_at': payload['expires'], 'refresh_expires_at': payload['refresh'], } return {'error': 'invalid authentication credentials'} def jwt_refresh(self, request: Request): try: token = jwt.decode(self.fetch_token(request), KEY, algorithms=['HS256']) except jwt.exceptions.DecodeError: return {'error': 'invalid JWT token'} if not pendulum.parse(token['refresh']).is_past(): payload = { 'issued': str(pendulum.now()), 'expires': str(pendulum.now().add(minutes=5)), 'refresh': str(pendulum.now().add(days=14)), 'scopes': token['scopes'], } return { 'token': bytes(jwt.encode(payload, KEY, algorithm='HS256')).decode('utf-8'), 'expires_at': payload['expires'], 'refresh_expires_at': payload['refresh'], } return {'error': 'the refresh key on the jwt token has expired'} def fetch_token(self, request): """Gets the token from the request object Raises: NoApiTokenFound -- Raised if no API token can be located Returns: string -- Returns the token as a string """ if request.input('token'): token = request.input('token') elif request.header('HTTP_AUTHORIZATION'): token = request.header( 'HTTP_AUTHORIZATION').replace('Basic ', '') else: raise NoApiTokenFound return token
32.835052
104
0.564521
2a3d709d854f76703bc896061f66a2d51a4e1f7a
277
py
Python
toontown/safezone/DistributedOZTreasureAI.py
TheFamiliarScoot/open-toontown
678313033174ea7d08e5c2823bd7b473701ff547
[ "BSD-3-Clause" ]
99
2019-11-02T22:25:00.000Z
2022-02-03T03:48:00.000Z
toontown/safezone/DistributedOZTreasureAI.py
TheFamiliarScoot/open-toontown
678313033174ea7d08e5c2823bd7b473701ff547
[ "BSD-3-Clause" ]
42
2019-11-03T05:31:08.000Z
2022-03-16T22:50:32.000Z
toontown/safezone/DistributedOZTreasureAI.py
TheFamiliarScoot/open-toontown
678313033174ea7d08e5c2823bd7b473701ff547
[ "BSD-3-Clause" ]
57
2019-11-03T07:47:37.000Z
2022-03-22T00:41:49.000Z
from . import DistributedSZTreasureAI class DistributedOZTreasureAI(DistributedSZTreasureAI.DistributedSZTreasureAI): def __init__(self, air, treasurePlanner, x, y, z): DistributedSZTreasureAI.DistributedSZTreasureAI.__init__(self, air, treasurePlanner, x, y, z)
39.571429
101
0.801444
17185ed1b6e940eb169dc89527637bd47234e51e
936
py
Python
constants.py
triplejberger/Queue
0d0a62dc8d690abe2ddadc6c425bec36108bae38
[ "MIT" ]
null
null
null
constants.py
triplejberger/Queue
0d0a62dc8d690abe2ddadc6c425bec36108bae38
[ "MIT" ]
null
null
null
constants.py
triplejberger/Queue
0d0a62dc8d690abe2ddadc6c425bec36108bae38
[ "MIT" ]
null
null
null
# General BUILDINGS = 'buildings' UNITS = 'units' RESEARCH = 'tech' AGE_UP_TIMES = 'age_up_times' CIV = 'civilization' PLAYER_ID = 'player_id' BUILDING_ID = 'building_id' TECHNOLOGY_ID = 'technology_id' UNIT_ID = 'unit_id' DEQUEUE_EVENTS_AT_INITIAL_TC = 'dequeue_event_at_initial_TC' INITIAL_TC_ID = 'initial_TC_id' # Buildings ID_HOUSE = 70 ID_BARRACKS = 12 ID_STABLE = 101 ID_RANGE = 87 ID_MILL = 68 ID_BLACKSMITH = 103 ID_MARKET = 84 ID_CASTLE = 82 ID_DOCK = 45 ID_TC = 621 ID_TOWER = 79 # Technology ID_LOOM = 22 ID_WHEELBARROW = 213 ID_TOWN_WATCH = 8 ID_DOUBLE_BIT_AXE = 202 ID_HORSE_COLLAR = 14 ID_FEUDAL_AGE = 101 ID_CASTLE_AGE = 102 ID_IMPERIAL_AGE = 103 ID_MAN_AT_ARMS_UPGRADE = 222 # Units ID_MILITA = 74 ID_ARCHER = 4 ID_SKIRMISHER = 7 ID_SCOUT = 448 ID_KNIGHT = 38 ID_EAGLE = 751 ID_BATTLE_ELEPHANT = 1132 ID_CAMEL = 329 ID_VILLAGER_MALE = 83 ID_VILLAGER_FEMALE = 293 # Special order types SPECIAL_ORDER_TYPE_DEQUEUE = 4
18.352941
60
0.775641
bd602cd1b4ed580f6e307a2ea3851d40bd3dcbb3
48,286
py
Python
tests/validation/tests/v3_api/test_workload.py
arthurh4/rancher
1e7e336de5ee546a8dd8291211af5cff8754f6f7
[ "Apache-2.0" ]
3
2021-01-19T20:20:27.000Z
2021-01-19T21:35:40.000Z
tests/validation/tests/v3_api/test_workload.py
arthurh4/rancher
1e7e336de5ee546a8dd8291211af5cff8754f6f7
[ "Apache-2.0" ]
15
2021-04-03T21:35:06.000Z
2022-01-01T00:16:14.000Z
tests/validation/tests/v3_api/test_workload.py
rcairesoliveira43/rancher
5da52c07665ac0950dc23f42227095d3ba429c74
[ "Apache-2.0" ]
1
2022-01-13T09:47:59.000Z
2022-01-13T09:47:59.000Z
import pytest from .common import * # NOQA from rancher import ApiError namespace = {"p_client": None, "ns": None, "cluster": None, "project": None} RBAC_ROLES = [CLUSTER_OWNER, PROJECT_MEMBER, PROJECT_OWNER, PROJECT_READ_ONLY, CLUSTER_MEMBER] WORKLOAD_TYPES = ["daemonSet", "statefulSet", "cronJob", "job"] if_check_lb = os.environ.get('RANCHER_CHECK_FOR_LB', "False") if_check_lb = pytest.mark.skipif( if_check_lb != "True", reason='Lb test case skipped') ENABLE_HOST_NODE_PORT_TESTS = ast.literal_eval( os.environ.get('RANCHER_ENABLE_HOST_NODE_PORT_TESTS', "True")) skip_host_node_port = pytest.mark.skipif( not ENABLE_HOST_NODE_PORT_TESTS, reason='Tests Skipped for AKS,GKE,EKS Clusters') def test_wl_sidekick(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("sidekick") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) validate_workload(p_client, workload, "deployment", ns.name) side_con = {"name": "test2", "image": TEST_IMAGE_NGINX, "stdin": True, "tty": True} con.append(side_con) workload = p_client.update(workload, containers=con) time.sleep(90) validate_workload_with_sidekicks( p_client, workload, "deployment", ns.name) def test_wl_deployment(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) validate_workload(p_client, workload, "deployment", ns.name) def test_wl_statefulset(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, statefulSetConfig={} ) validate_workload(p_client, workload, "statefulSet", ns.name) def test_wl_daemonset(): p_client = namespace["p_client"] ns = namespace["ns"] cluster = namespace["cluster"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) schedulable_node_count = len(get_schedulable_nodes(cluster)) validate_workload(p_client, workload, "daemonSet", ns.name, schedulable_node_count) def test_wl_cronjob(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, cronJobConfig={ "concurrencyPolicy": "Allow", "failedJobsHistoryLimit": 10, "schedule": "*/1 * * * *", "successfulJobsHistoryLimit": 10}) validate_workload(p_client, workload, "cronJob", ns.name) def test_wl_upgrade(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) revisions = workload.revisions() assert len(revisions) == 1 for revision in revisions: if revision["containers"][0]["image"] == TEST_IMAGE: firstrevision = revision.id con = [{"name": "test1", "image": TEST_IMAGE_NGINX}] p_client.update(workload, containers=con) wait_for_pod_images(p_client, workload, ns.name, TEST_IMAGE_NGINX, 2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, TEST_IMAGE_NGINX, ns) revisions = workload.revisions() assert len(revisions) == 2 for revision in revisions: if revision["containers"][0]["image"] == TEST_IMAGE_NGINX: secondrevision = revision.id con = [{"name": "test1", "image": TEST_IMAGE_OS_BASE, "tty": True, "stdin": True}] p_client.update(workload, containers=con) wait_for_pod_images(p_client, workload, ns.name, TEST_IMAGE_OS_BASE, 2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, TEST_IMAGE_OS_BASE, ns) revisions = workload.revisions() assert len(revisions) == 3 for revision in revisions: if revision["containers"][0]["image"] == TEST_IMAGE_OS_BASE: thirdrevision = revision.id p_client.action(workload, "rollback", replicaSetId=firstrevision) wait_for_pod_images(p_client, workload, ns.name, TEST_IMAGE, 2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, TEST_IMAGE, ns) p_client.action(workload, "rollback", replicaSetId=secondrevision) wait_for_pod_images(p_client, workload, ns.name, TEST_IMAGE_NGINX, 2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, TEST_IMAGE_NGINX, ns) p_client.action(workload, "rollback", replicaSetId=thirdrevision) wait_for_pod_images(p_client, workload, ns.name, TEST_IMAGE_OS_BASE, 2) wait_for_pods_in_workload(p_client, workload, 2) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, TEST_IMAGE_OS_BASE, ns) def test_wl_pod_scale_up(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) workload = wait_for_wl_to_active(p_client, workload) for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns.name allpods = execute_kubectl_cmd(get_pods) wait_for_pods_in_workload(p_client, workload, 1) p_client.update(workload, scale=2, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_pods_are_running_by_id(allpods, workload, ns.name) for key, value in workload.workloadLabels.items(): label = key + "=" + value allpods = execute_kubectl_cmd(get_pods) wait_for_pods_in_workload(p_client, workload, 2) p_client.update(workload, scale=3, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 3) validate_pods_are_running_by_id(allpods, workload, ns.name) def test_wl_pod_scale_down(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=3) wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 3) p_client.update(workload, scale=2, containers=con) wait_for_pods_in_workload(p_client, workload, 2) for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns.name allpods = execute_kubectl_cmd(get_pods) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_pods_are_running_by_id(allpods, workload, ns.name) p_client.update(workload, scale=1, containers=con) wait_for_pods_in_workload(p_client, workload, 1) for key, value in workload.workloadLabels.items(): label = key + "=" + value allpods = execute_kubectl_cmd(get_pods) validate_workload(p_client, workload, "deployment", ns.name) validate_pods_are_running_by_id(allpods, workload, ns.name) def test_wl_pause_orchestration(): p_client = namespace["p_client"] ns = namespace["ns"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=2) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) p_client.action(workload, "pause") validate_workload_paused(p_client, workload, True) con = [{"name": "test1", "image": TEST_IMAGE_NGINX}] p_client.update(workload, containers=con) validate_pod_images(TEST_IMAGE, workload, ns.name) p_client.action(workload, "resume") workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_workload_paused(p_client, workload, False) validate_pod_images(TEST_IMAGE_NGINX, workload, ns.name) # Windows could not support host port for now. @skip_test_windows_os @skip_host_node_port def test_wl_with_hostPort(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 9999 port = {"containerPort": 80, "type": "containerPort", "kind": "HostPort", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) workload = wait_for_wl_to_active(p_client, workload) validate_hostPort(p_client, workload, source_port, namespace["cluster"]) @skip_host_node_port def test_wl_with_nodePort(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 30456 port = {"containerPort": 80, "type": "containerPort", "kind": "NodePort", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) workload = wait_for_wl_to_active(p_client, workload) validate_nodePort(p_client, workload, namespace["cluster"], source_port) def test_wl_with_clusterIp(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 30458 port = {"containerPort": "80", "type": "containerPort", "kind": "ClusterIP", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) workload = wait_for_wl_to_active(p_client, workload) # Get cluster Ip sd_records = p_client.list_dns_record(name=name).data assert len(sd_records) == 1 cluster_ip = sd_records[0].clusterIp # Deploy test pods used for clusteIp resolution check wlname = random_test_name("testclusterip-client") con = [{"name": "test1", "image": TEST_IMAGE}] workload_for_test = p_client.create_workload(name=wlname, containers=con, namespaceId=ns.id, scale=2) wait_for_wl_to_active(p_client, workload_for_test) test_pods = wait_for_pods_in_workload(p_client, workload_for_test, 2) validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port) @if_check_lb def test_wl_with_lb(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 9001 port = {"containerPort": 80, "type": "containerPort", "kind": "LoadBalancer", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) workload = wait_for_wl_to_active(p_client, workload) validate_lb(p_client, workload, source_port) def test_wl_with_clusterIp_scale_and_upgrade(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 30459 port = {"containerPort": "80", "type": "containerPort", "kind": "ClusterIP", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test-cluster-ip", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("cluster-ip-scale-upgrade") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=1) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) sd_records = p_client.list_dns_record(name=name).data assert len(sd_records) == 1 cluster_ip = sd_records[0].clusterIp # get test pods wlname = random_test_name("testclusterip-client") wl_con = [{"name": "test1", "image": TEST_IMAGE}] workload_for_test = p_client.create_workload(name=wlname, containers=wl_con, namespaceId=ns.id, scale=2) wait_for_wl_to_active(p_client, workload_for_test) test_pods = wait_for_pods_in_workload(p_client, workload_for_test, 2) validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port) # scale up p_client.update(workload, scale=3, caontainers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 3) validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port) # scale down p_client.update(workload, scale=2, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port) # upgrade con = [{"name": "test-cluster-ip-upgrade-new", "image": TEST_IMAGE, "ports": [port]}] p_client.update(workload, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port) @skip_host_node_port def test_wl_with_nodePort_scale_and_upgrade(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 30457 port = {"containerPort": 80, "type": "containerPort", "kind": "NodePort", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("test-node-port-scale-upgrade") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=1) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) validate_nodePort(p_client, workload, namespace["cluster"], source_port) # scale up p_client.update(workload, scale=3, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 3) validate_nodePort(p_client, workload, namespace["cluster"], source_port) # scale down p_client.update(workload, scale=2, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_nodePort(p_client, workload, namespace["cluster"], source_port) # upgrade con = [{"name": "test-node-port-scale-upgrade-new", "image": TEST_IMAGE, "ports": [port]}] p_client.update(workload, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_nodePort(p_client, workload, namespace["cluster"], source_port) # Windows could not support host port for now. @skip_test_windows_os @skip_host_node_port def test_wl_with_hostPort_scale_and_upgrade(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 8888 port = {"containerPort": 80, "type": "containerPort", "kind": "HostPort", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test-host-port-upgrade", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("hostport-scale") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=1) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) validate_hostPort(p_client, workload, source_port, namespace["cluster"]) # scale up p_client.update(workload, scale=2, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_hostPort(p_client, workload, source_port, namespace["cluster"]) # scale down p_client.update(workload, scale=1, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) validate_hostPort(p_client, workload, source_port, namespace["cluster"]) # From my observation, it is necessary to wait until # the number of pod equals to the expected number, # since the workload's state is 'active' but pods # are not ready yet especially after scaling down and upgrading. # upgrade con = [{"name": "test-host-port-upgrade-new", "image": TEST_IMAGE, "ports": [port]}] p_client.update(workload, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) validate_hostPort(p_client, workload, source_port, namespace["cluster"]) @if_check_lb def test_wl_with_lb_scale_and_upgrade(): p_client = namespace["p_client"] ns = namespace["ns"] source_port = 9001 port = {"containerPort": 80, "type": "containerPort", "kind": "LoadBalancer", "protocol": "TCP", "sourcePort": source_port} con = [{"name": "test1", "image": TEST_IMAGE, "ports": [port]}] name = random_test_name("lb-scale-upgrade") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, scale=1) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 1) validate_lb(p_client, workload, source_port) # scale up p_client.update(workload, scale=3, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 3) validate_lb(p_client, workload, source_port) # scale down p_client.update(workload, scale=2, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_lb(p_client, workload, source_port) # upgrade con = [{"name": "test-load-balance-upgrade-new", "image": TEST_IMAGE, "ports": [port]}] p_client.update(workload, containers=con) workload = wait_for_wl_to_active(p_client, workload) wait_for_pods_in_workload(p_client, workload, 2) validate_lb(p_client, workload, source_port) # --------------------- rbac tests for cluster owner ----------------------- @if_test_rbac def test_rbac_cluster_owner_wl_create(remove_resource): # cluster owner can create project and deploy workload in it p_client, project, ns, workload = setup_project_by_role(CLUSTER_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) @if_test_rbac def test_rbac_cluster_owner_wl_create_2(remove_resource): # cluster owner can deploy workload in any project in the cluster user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p2 = rbac_get_unshared_project() p_client2 = get_project_client_for_token(p2, user_token) ns2 = rbac_get_unshared_ns() name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] wl = p_client2.create_workload(name=name, containers=con, namespaceId=ns2.id) validate_workload(p_client2, wl, "deployment", ns2.name) remove_resource(wl) @if_test_rbac def test_rbac_cluster_owner_wl_edit(remove_resource): p_client, project, ns, workload = setup_project_by_role(CLUSTER_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # cluster owner can edit workload in the project p_client.update(workload, scale=2) validate_workload(p_client, workload, "deployment", ns.name, 2) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, "nginx", ns) @if_test_rbac def test_rbac_cluster_owner_wl_delete(remove_resource): p_client, project, ns, workload = setup_project_by_role(CLUSTER_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # cluster owner can delete workload in the project p_client.delete(workload) assert len(p_client.list_workload(uuid=workload.uuid).data) == 0 # --------------------- rbac tests for cluster member ----------------------- @if_test_rbac def test_rbac_cluster_member_wl_create(remove_resource): # cluster member can create project and deploy workload in it p_client, project, ns, workload = setup_project_by_role(CLUSTER_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) @if_test_rbac def test_rbac_cluster_member_wl_create_2(): user_token = rbac_get_user_token_by_role(CLUSTER_MEMBER) name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] # cluster member can NOT deploy workload in the project he can NOT access with pytest.raises(ApiError) as e: p2 = rbac_get_unshared_project() ns2 = rbac_get_unshared_ns() new_p_client = get_project_client_for_token(p2, user_token) new_p_client.create_workload(name=name, containers=con, namespaceId=ns2.id) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac def test_rbac_cluster_member_wl_edit(remove_resource): p_client, project, ns, workload = setup_project_by_role(CLUSTER_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # cluster member can edit workload in the project p_client.update(workload, scale=2) validate_workload(p_client, workload, "deployment", ns.name, 2) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, "nginx", ns) @if_test_rbac def test_rbac_cluster_member_wl_delete(remove_resource): p_client, project, ns, workload = setup_project_by_role(CLUSTER_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # cluster member can delete workload in the project p_client.delete(workload) assert len(p_client.list_workload(uuid=workload.uuid).data) == 0 # --------------------- rbac tests for project member ----------------------- @if_test_rbac def test_rbac_project_member_wl_create(remove_resource): # project member can deploy workload in his project p_client, project, ns, workload = setup_project_by_role(PROJECT_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) @if_test_rbac def test_rbac_project_member_wl_create_2(): # project member can NOT deploy workload in the project he can NOT access user_token = rbac_get_user_token_by_role(PROJECT_MEMBER) name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] with pytest.raises(ApiError) as e: p2 = rbac_get_unshared_project() ns2 = rbac_get_unshared_ns() new_p_client = get_project_client_for_token(p2, user_token) new_p_client.create_workload(name=name, containers=con, namespaceId=ns2.id) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac def test_rbac_project_member_wl_edit(remove_resource): p_client, project, ns, workload = setup_project_by_role(PROJECT_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # project member can edit workload in the project p_client.update(workload, scale=2) validate_workload(p_client, workload, "deployment", ns.name, 2) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, "nginx", ns) @if_test_rbac def test_rbac_project_member_wl_delete(remove_resource): p_client, project, ns, workload = setup_project_by_role(PROJECT_MEMBER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # project member can delete workload in the project p_client.delete(workload) assert len(p_client.list_workload(uuid=workload.uuid).data) == 0 # --------------------- rbac tests for project owner ----------------------- @if_test_rbac def test_rbac_project_owner_wl_create(remove_resource): # project owner can deploy workload in his project p_client, project, ns, workload = setup_project_by_role(PROJECT_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) @if_test_rbac def test_rbac_project_owner_wl_create_2(): # project owner can NOT deploy workload in the project he can NOT access user_token = rbac_get_user_token_by_role(PROJECT_OWNER) name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] with pytest.raises(ApiError) as e: p2 = rbac_get_unshared_project() ns2 = rbac_get_unshared_ns() new_p_client = get_project_client_for_token(p2, user_token) new_p_client.create_workload(name=name, containers=con, namespaceId=ns2.id) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac def test_rbac_project_owner_wl_edit(remove_resource): p_client, project, ns, workload = setup_project_by_role(PROJECT_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # project owner can edit workload in his project p_client.update(workload, scale=2) validate_workload(p_client, workload, "deployment", ns.name, 2) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) validate_workload(p_client, workload, "deployment", ns.name, 2) validate_workload_image(p_client, workload, "nginx", ns) @if_test_rbac def test_rbac_project_owner_wl_delete(remove_resource): p_client, project, ns, workload = setup_project_by_role(PROJECT_OWNER, remove_resource) validate_workload(p_client, workload, "deployment", ns.name) # project owner can delete workload in his project p_client.delete(workload) assert len(p_client.list_workload(uuid=workload.uuid).data) == 0 # --------------------- rbac tests for project read-only -------------------- @if_test_rbac def test_rbac_project_read_only_wl_create(): # project read-only can NOT deploy workloads in the project project = rbac_get_project() user_token = rbac_get_user_token_by_role(PROJECT_READ_ONLY) p_client = get_project_client_for_token(project, user_token) ns = rbac_get_namespace() con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") with pytest.raises(ApiError) as e: p_client.create_workload(name=name, containers=con, namespaceId=ns.id) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac def test_rbac_project_read_only_wl_edit(remove_resource): project = rbac_get_project() user_token = rbac_get_user_token_by_role(PROJECT_READ_ONLY) p_client = get_project_client_for_token(project, user_token) # deploy a workload as cluster owner cluster_owner_token = rbac_get_user_token_by_role(CLUSTER_OWNER) cluster_owner_p_client = get_project_client_for_token(project, cluster_owner_token) ns = rbac_get_namespace() con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = cluster_owner_p_client.create_workload(name=name, containers=con, namespaceId=ns.id) # project read-only can NOT edit existing workload with pytest.raises(ApiError) as e: p_client.update(workload, scale=2) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' remove_resource(workload) @if_test_rbac def test_rbac_project_read_only_wl_list(): # project read-only can NOT see workloads in the project he has no access p2 = rbac_get_unshared_project() user_token = rbac_get_user_token_by_role(PROJECT_READ_ONLY) p_client = get_project_client_for_token(p2, user_token) workloads = p_client.list_workload().data assert len(workloads) == 0 @pytest.fixture(scope='module', autouse="True") def create_project_client(request): client, cluster = get_user_client_and_cluster() create_kubeconfig(cluster) p, ns = create_project_and_ns( USER_TOKEN, cluster, random_test_name("testworkload")) p_client = get_project_client_for_token(p, USER_TOKEN) namespace["p_client"] = p_client namespace["ns"] = ns namespace["cluster"] = cluster namespace["project"] = p def fin(): client = get_user_client() client.delete(namespace["project"]) request.addfinalizer(fin) def setup_project_by_role(role, remove_resource): """ set up a project for a specific role used for rbac testing - for cluster owner or cluster member: it creates a project and namespace, then deploys a workload - for project owner or project member: it deploys a workload to the existing project and namespace """ user_token = rbac_get_user_token_by_role(role) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") if role in [CLUSTER_OWNER, CLUSTER_MEMBER]: project, ns = create_project_and_ns(user_token, namespace["cluster"], random_test_name("test-rbac")) p_client = get_project_client_for_token(project, user_token) workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) remove_resource(project) remove_resource(ns) remove_resource(workload) return p_client, project, ns, workload elif role in [PROJECT_OWNER, PROJECT_MEMBER]: project = rbac_get_project() ns = rbac_get_namespace() p_client = get_project_client_for_token(project, user_token) workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) remove_resource(workload) return p_client, project, ns, workload else: return None, None, None, None # --------------------- rbac tests by workload types ----------------------- @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametarize_create(role, config, remove_resource): p_client, project, ns = setup_wl_project_by_role(role) cluster = namespace["cluster"] con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") if role != PROJECT_READ_ONLY: workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) remove_resource(workload) if role == CLUSTER_MEMBER: remove_resource(project) return None else: with pytest.raises(ApiError) as e: workload = create_workload_by_type(p_client, name, con, ns, config) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_create_negative(role, remove_resource, config): if role == CLUSTER_OWNER: # cluster owner can deploy workloads in any project in the cluster user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p2 = rbac_get_unshared_project() p_client2 = get_project_client_for_token(p2, user_token) ns2 = rbac_get_unshared_ns() name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] wl = create_workload_by_type(p_client2, name, con, ns2, config) wait_for_wl_to_active(p_client2, wl) remove_resource(wl) else: # roles cannot deploy workloads in projects they cannot access user_token = rbac_get_user_token_by_role(role) name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] with pytest.raises(ApiError) as e: p2 = rbac_get_unshared_project() ns2 = rbac_get_unshared_ns() new_p_client = get_project_client_for_token(p2, user_token) workload = create_workload_by_type(new_p_client, name, con, ns2, config) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_list(role, remove_resource, config): if role == CLUSTER_MEMBER: p_client, project, ns = setup_wl_project_by_role(role) else: p_client, project, ns = setup_wl_project_by_role(CLUSTER_OWNER) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) # switch to rbac role user_token = rbac_get_user_token_by_role(role) p_client_rbac = get_project_client_for_token(project, user_token) assert len(p_client_rbac.list_workload(uuid=workload.uuid).data) == 1 remove_resource(workload) @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_list_negative(role, remove_resource, config): unshared_project = rbac_get_unshared_project() ns = rbac_get_unshared_ns() user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p_client = get_project_client_for_token(unshared_project, user_token) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) wait_for_wl_to_active(p_client, workload) # switch to rbac role user_token = rbac_get_user_token_by_role(role) p_client_rbac = get_project_client_for_token(unshared_project, user_token) if role != CLUSTER_OWNER: assert len(p_client_rbac.list_workload(uuid=workload.uuid).data) == 0 else: assert len(p_client_rbac.list_workload(uuid=workload.uuid).data) == 1 remove_resource(workload) @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_update(role, remove_resource, config): # workloads of type job cannot be edited if config == "job": return p_client, project, ns = setup_wl_project_by_role(role) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") if role != PROJECT_READ_ONLY: workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) con = [{"name": "test1", "image": os.environ.get('RANCHER_TEST_IMAGE', "nginx")}] p_client.update(workload, containers=con) remove_resource(workload) if role == CLUSTER_MEMBER: remove_resource(project) else: user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p_client = get_project_client_for_token(project, user_token) ns = rbac_get_namespace() workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) with pytest.raises(ApiError) as e: user_token = rbac_get_user_token_by_role(role) p_client = get_project_client_for_token(project, user_token) con = [{"name": "test1", "image": os.environ.get('RANCHER_TEST_IMAGE', "nginx")}] p_client.update(workload, containers=con) wait_for_pods_in_workload(p_client, workload) validate_workload(p_client, workload, config, ns.name) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' remove_resource(workload) @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_update_negative(role, remove_resource, config): # workloads of type job cannot be edited if config == "job": return if role == CLUSTER_OWNER: # cluster owner can edit workloads in any project in the cluster user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p_client, project, ns = setup_wl_project_by_role(role) name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) remove_resource(workload) else: project2 = rbac_get_unshared_project() user_token = rbac_get_user_token_by_role(role) # roles cannot edit workloads in projects they cannot access # deploy a workload as cluster owner cluster_owner_token = rbac_get_user_token_by_role(CLUSTER_OWNER) cluster_owner_p_client = get_project_client_for_token( project2, cluster_owner_token) ns = rbac_get_unshared_ns() con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = create_workload_by_type(cluster_owner_p_client, name, con, ns, config) with pytest.raises(ApiError) as e: p_client = get_project_client_for_token(project2, user_token) con = [{"name": "test1", "image": "nginx"}] p_client.update(workload, containers=con) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' remove_resource(workload) @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_delete(role, remove_resource, config): p_client, project, ns = setup_wl_project_by_role(role) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") if role != PROJECT_READ_ONLY: workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) p_client.delete(workload) assert len(p_client.list_workload(uuid=workload.uuid).data) == 0 remove_resource(workload) else: user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) p_client = get_project_client_for_token(project, user_token) ns = rbac_get_namespace() workload = create_workload_by_type(p_client, name, con, ns, config) wait_for_wl_to_active(p_client, workload) user_token = rbac_get_user_token_by_role(role) p_client = get_project_client_for_token(project, user_token) with pytest.raises(ApiError) as e: p_client.delete(workload) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' remove_resource(workload) if role == CLUSTER_MEMBER: remove_resource(project) @if_test_rbac @pytest.mark.parametrize("role", RBAC_ROLES) @pytest.mark.parametrize("config", WORKLOAD_TYPES) def test_rbac_wl_parametrize_delete_negative(role, remove_resource, config): if role == CLUSTER_OWNER: # cluster owner can delete workloads in any project in the cluster user_token = rbac_get_user_token_by_role(CLUSTER_OWNER) project = rbac_get_unshared_project() p_client = get_project_client_for_token(project, user_token) ns = rbac_get_namespace() name = random_test_name("default") con = [{"name": "test1", "image": TEST_IMAGE}] workload = create_workload_by_type(p_client, name, con, ns, config) p_client.delete(workload) else: project = rbac_get_unshared_project() user_token = rbac_get_user_token_by_role(role) # roles cannot delete workloads in projects they cannot access # deploy a workload as cluster owner cluster_owner_token = rbac_get_user_token_by_role(CLUSTER_OWNER) cluster_owner_p_client = get_project_client_for_token( project, cluster_owner_token) ns = rbac_get_unshared_ns() con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = create_workload_by_type(cluster_owner_p_client, name, con, ns, config) p_client = get_project_client_for_token(project, user_token) with pytest.raises(ApiError) as e: p_client.delete(workload) assert e.value.error.status == 403 assert e.value.error.code == 'Forbidden' remove_resource(workload) def setup_wl_project_by_role(role): if role == CLUSTER_MEMBER: user_token = rbac_get_user_token_by_role(role) project, ns = create_project_and_ns(user_token, namespace["cluster"], random_test_name("test-rbac")) p_client = get_project_client_for_token(project, user_token) return p_client, project, ns else: project = rbac_get_project() user_token = rbac_get_user_token_by_role(role) p_client = get_project_client_for_token(project, user_token) ns = rbac_get_namespace() return p_client, project, ns def create_workload_by_type(client, name, con, ns, config): if config == "daemonSet": return client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) elif config == "statefulSet": return client.create_workload(name=name, containers=con, namespaceId=ns.id, statefulSetConfig={}) elif config == "cronJob": return client.create_workload(name=name, containers=con, namespaceId=ns.id, cronJobConfig={ "concurrencyPolicy": "Allow", "failedJobsHistoryLimit": 10, "schedule": "*/1 * * * *", "successfulJobsHistoryLimit": 10}) elif config == "job": return client.create_workload(name=name, containers=con, namespaceId=ns.id, jobConfig={})
42.244969
84
0.633579
e527eb09a7a12e5107bf7c394f67efac898c8cce
5,260
py
Python
tests/test_imagenet_format.py
IRDonch/datumaro
d029e67549b7359c887bd15039997bd8bbae7c0c
[ "MIT" ]
237
2020-09-07T14:29:26.000Z
2022-03-31T12:53:48.000Z
tests/test_imagenet_format.py
IRDonch/datumaro
d029e67549b7359c887bd15039997bd8bbae7c0c
[ "MIT" ]
330
2020-09-09T21:27:29.000Z
2022-03-31T12:36:18.000Z
tests/test_imagenet_format.py
IRDonch/datumaro
d029e67549b7359c887bd15039997bd8bbae7c0c
[ "MIT" ]
63
2020-09-09T07:44:28.000Z
2022-03-17T16:07:26.000Z
from unittest import TestCase import os.path as osp import numpy as np from datumaro.components.annotation import ( AnnotationType, Label, LabelCategories, ) from datumaro.components.dataset import Dataset from datumaro.components.extractor import DatasetItem from datumaro.plugins.imagenet_format import ImagenetConverter, ImagenetImporter from datumaro.util.image import Image from datumaro.util.test_utils import TestDir, compare_datasets from .requirements import Requirements, mark_requirement class ImagenetFormatTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_and_load(self): source_dataset = Dataset.from_iterable([ DatasetItem(id='label_0/1', image=np.ones((8, 8, 3)), annotations=[Label(0)] ), DatasetItem(id='label_1/2', image=np.ones((10, 10, 3)), annotations=[Label(1)] ), ], categories={ AnnotationType.label: LabelCategories.from_iterable( 'label_' + str(label) for label in range(2)), }) with TestDir() as test_dir: ImagenetConverter.convert(source_dataset, test_dir, save_images=True) parsed_dataset = Dataset.import_from(test_dir, 'imagenet') compare_datasets(self, source_dataset, parsed_dataset, require_images=True) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_and_load_with_multiple_labels(self): source_dataset = Dataset.from_iterable([ DatasetItem(id='1', image=np.ones((8, 8, 3)), annotations=[Label(0), Label(1)] ), DatasetItem(id='2', image=np.ones((8, 8, 3)) ), ], categories={ AnnotationType.label: LabelCategories.from_iterable( 'label_' + str(label) for label in range(2)), }) excepted_dataset = Dataset.from_iterable([ DatasetItem(id='label_0/1', image=np.ones((8, 8, 3)), annotations=[Label(0)] ), DatasetItem(id='label_1/1', image=np.ones((8, 8, 3)), annotations=[Label(1)] ), DatasetItem(id='no_label/2', image=np.ones((8, 8, 3)) ), ], categories=['label_0', 'label_1']) with TestDir() as test_dir: ImagenetConverter.convert(source_dataset, test_dir, save_images=True) parsed_dataset = Dataset.import_from(test_dir, 'imagenet') compare_datasets(self, excepted_dataset, parsed_dataset, require_images=True) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_dataset_with_cyrillic_and_spaces_in_filename(self): source_dataset = Dataset.from_iterable([ DatasetItem(id="label_0/кириллица с пробелом", image=np.ones((8, 8, 3)), annotations=[Label(0)] ), ], categories=['label_0']) with TestDir() as test_dir: ImagenetConverter.convert(source_dataset, test_dir, save_images=True) parsed_dataset = Dataset.import_from(test_dir, 'imagenet') compare_datasets(self, source_dataset, parsed_dataset, require_images=True) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_and_load_image_with_arbitrary_extension(self): dataset = Dataset.from_iterable([ DatasetItem(id='no_label/a', image=Image(path='a.JPEG', data=np.zeros((4, 3, 3)))), DatasetItem(id='no_label/b', image=Image(path='b.bmp', data=np.zeros((3, 4, 3)))), ], categories=[]) with TestDir() as test_dir: ImagenetConverter.convert(dataset, test_dir, save_images=True) parsed_dataset = Dataset.import_from(test_dir, 'imagenet') compare_datasets(self, dataset, parsed_dataset, require_images=True) DUMMY_DATASET_DIR = osp.join(osp.dirname(__file__), 'assets', 'imagenet_dataset') class ImagenetImporterTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_import(self): expected_dataset = Dataset.from_iterable([ DatasetItem(id='label_0/label_0_1', image=np.ones((8, 8, 3)), annotations=[Label(0)] ), DatasetItem(id='label_0/label_0_2', image=np.ones((10, 10, 3)), annotations=[Label(0)] ), DatasetItem(id='label_1/label_1_1', image=np.ones((8, 8, 3)), annotations=[Label(1)] ) ], categories={ AnnotationType.label: LabelCategories.from_iterable( 'label_' + str(label) for label in range(2)), }) dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'imagenet') compare_datasets(self, expected_dataset, dataset, require_images=True) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_detect_imagenet(self): self.assertTrue(ImagenetImporter.detect(DUMMY_DATASET_DIR))
36.527778
81
0.611977
cd7bef90235e07665b34d64e798dffdb7699cc0f
22,177
py
Python
raiden/tests/conftest.py
ExchangeUnion/raiden
2217bcb698fcfce3499dc1f41ad919ed82e8e45f
[ "MIT" ]
null
null
null
raiden/tests/conftest.py
ExchangeUnion/raiden
2217bcb698fcfce3499dc1f41ad919ed82e8e45f
[ "MIT" ]
12
2019-08-09T19:12:17.000Z
2019-12-05T15:49:29.000Z
raiden/tests/conftest.py
ExchangeUnion/raiden
2217bcb698fcfce3499dc1f41ad919ed82e8e45f
[ "MIT" ]
null
null
null
# pylint: disable=wrong-import-position,redefined-outer-name,unused-wildcard-import,wildcard-import from gevent import monkey # isort:skip # noqa monkey.patch_all(subprocess=False, thread=False) # isort:skip # noqa import signal # isort:skip # noqa import pytest # isort:skip # Execute these before the other imports because rewrites can't work after the # module has been imported. pytest.register_assert_rewrite("raiden.tests.utils.eth_node") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.factories") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.messages") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.network") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.protocol") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.smartcontracts") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.smoketest") # isort:skip pytest.register_assert_rewrite("raiden.tests.utils.transfer") # isort:skip import contextlib import datetime import os import re import subprocess import sys import tempfile import time from pathlib import Path import gevent import structlog from _pytest.pathlib import LOCK_TIMEOUT, ensure_reset_dir, make_numbered_dir_with_cleanup from _pytest.tmpdir import get_user from raiden.constants import ( HIGHEST_SUPPORTED_GETH_VERSION, HIGHEST_SUPPORTED_PARITY_VERSION, LOWEST_SUPPORTED_GETH_VERSION, LOWEST_SUPPORTED_PARITY_VERSION, EthClient, ) from raiden.log_config import configure_logging from raiden.tests.fixtures.blockchain import * # noqa: F401,F403 from raiden.tests.fixtures.variables import * # noqa: F401,F403 from raiden.tests.utils.transport import make_requests_insecure from raiden.utils.cli import LogLevelConfigType from raiden.utils.debugging import enable_gevent_monitoring_signal from raiden.utils.ethereum_clients import is_supported_client log = structlog.get_logger() def pytest_addoption(parser): parser.addoption( "--blockchain-type", choices=[client.value for client in EthClient], default="geth" ) parser.addoption( "--log-config", action="store", default=None, help="Configure tests log output" ) parser.addoption( "--plain-log", action="store_true", default=False, help="Do not colorize console log output", ) parser.addoption( "--base-port", action="store", default=8500, type="int", help="Base port number to use for tests.", ) # The goal here is to ensure the test runner will print something to the # stdout, this should be done frequently enough for the runner to /not/ get # killed by the CI. The settings bellow are defined in such a way to # guarantee that the test fails before the CI kill the runner. # # When something is printed depends on the verbosity used. If the tests are # executed with verbosity zero (the default), the only phase that prints to # the stdout is pytest_runtest_call. # # Consider the following: # # 1. test1.setup # 2. test1.call # 3. test1.teardown # 4. test2.setup # 5. test2.call # 6. test2.teardown # # From the start of step 3 until the end of step 5 there will be no output, # which is a full test cycle. Because of this, the settings bellow are # define in terms of their addition being smaller than the CI settings. # # Higher verbosities change the analysis above, however this is set for the # worst case. timeout_limit_setup_and_call_help = ( "This setting defines the timeout in seconds for the setup *and* call " "phases of a test. Every test will be allowed to use at most " "`timeout_limit_setup_and_call` seconds to complete these phases. This " "setting together with the timeout_limit_teardown defines the total " "runtime for a single test. The total timeout must be lower than the no " "output timeout of the continuous integration." ) parser.addini("timeout_limit_for_setup_and_call", timeout_limit_setup_and_call_help) timeout_limit_teardown_help = ( "This setting defines the timeout in seconds for the teardown phase. It " "must be a non-zero value to allow for proper cleanup of fixtures. This " "setting together with the timeout_limit_setup_and_call defines the " "total runtime for a single test. The total timeout must be lower than " "the no output timeout of the continuous integration." ) parser.addini("timeout_limit_teardown", timeout_limit_teardown_help) @pytest.fixture(autouse=True, scope="session") def check_geth_version_for_tests(blockchain_type): if blockchain_type != "geth": return geth_version_string, _ = subprocess.Popen( ["geth", "version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() supported, _, our_version = is_supported_client(geth_version_string.decode()) if not supported: sys.exit( f"You are trying to run tests with an unsupported GETH version. " f"Your Version: {our_version} " f"Min Supported Version {LOWEST_SUPPORTED_GETH_VERSION} " f"Max Supported Version {HIGHEST_SUPPORTED_GETH_VERSION}" ) @pytest.fixture(autouse=True, scope="session") def check_parity_version_for_tests(blockchain_type): if blockchain_type != "parity": return parity_version_string, _ = subprocess.Popen( ["parity", "--version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() supported, _, our_version = is_supported_client(parity_version_string.decode()) if not supported: sys.exit( f"You are trying to run tests with an unsupported PARITY version. " f"Your Version: {our_version} " f"Min Supported Version {LOWEST_SUPPORTED_PARITY_VERSION} " f"Max Supported Version {HIGHEST_SUPPORTED_PARITY_VERSION}" ) @pytest.fixture(scope="session", autouse=True) def auto_enable_gevent_monitoring_signal(): enable_gevent_monitoring_signal() @pytest.fixture(scope="session", autouse=True) def enable_greenlet_debugger(request): """ Enable the pdb debugger for gevent's greenlets. This extends the flag `--pdb` from pytest to enable debugging of greenlets which have raised an exception to the top-level. Without this hook the exception raised in a greenlet is printed, and the thread state is discarded. Making it impossible to execute a post_mortem """ if request.config.option.usepdb: import pdb import bdb # Do not run pdb again if an exception hits top-level for a second # greenlet and the previous pdb session is still running enabled = False hub = gevent.get_hub() def debugger(context, type_, value, tb): # Always print the exception, because once the pdb REPL is started # we cannot retrieve it with `sys.exc_info()`. # # Using gevent's hub print_exception because it properly handles # corner cases. hub.print_exception(context, type_, value, tb) # Don't enter nested sessions # Ignore exceptions used to quit the debugger / interpreter nonlocal enabled if not enabled and type_ not in (bdb.BdbQuit, KeyboardInterrupt): enabled = True pdb.post_mortem() # pylint: disable=no-member enabled = False # Hooking the debugger on the hub error handler. Exceptions that are # not handled on a given greenlet are forwarded to the # parent.handle_error, until the hub is reached. # # Note: for this to work properly, it's really important to use # gevent's spawn function. hub.handle_error = debugger @pytest.fixture(autouse=True) def logging_level(request, logs_storage): """ Configure the structlog level for each test run. For integration tests this also sets the geth verbosity. """ # disable pytest's built in log capture, otherwise logs are printed twice request.config.option.showcapture = "stdout" if request.config.option.log_cli_level: level = request.config.option.log_cli_level elif request.config.option.verbose > 3: level = "DEBUG" elif request.config.option.verbose > 1: level = "INFO" else: level = "WARNING" if request.config.option.log_config: config_converter = LogLevelConfigType() logging_levels = config_converter.convert( value=request.config.option.log_config, param=None, ctx=None ) else: logging_levels = {"": level} # configure_logging requires the path to exist os.makedirs(logs_storage, exist_ok=True) time = datetime.datetime.utcnow().isoformat() debug_path = os.path.join(logs_storage, f"raiden-debug_{time}.log") configure_logging( logging_levels, colorize=not request.config.option.plain_log, log_file=request.config.option.log_file, cache_logger_on_first_use=False, debug_log_file_name=debug_path, ) log.info("Running test", nodeid=request.node.nodeid) @pytest.fixture(scope="session", autouse=True) def dont_exit_pytest(): """ Raiden will quit on any unhandled exception. This allows the test suite to finish in case an exception is unhandled. """ gevent.get_hub().NOT_ERROR = (gevent.GreenletExit, SystemExit) @pytest.fixture(scope="session", autouse=True) def insecure_tls(): make_requests_insecure() @contextlib.contextmanager def timeout_for_setup_and_call(item): """Sets a timeout up to `item.remaining_timeout`, if the timeout is reached an exception is raised, otherwise the amount of time used by the run is deducted from the `item.remaining_timeout`. This function is only used for setup and call, which share the same timeout. The teardown must have a separate timeout, because even if either the setup or the call timedout the teardown must still be called to do fixture clean up. """ def report(): gevent.util.print_run_info() pytest.fail(f"Setup and Call timeout >{item.timeout_setup_and_call}s") def handler(signum, frame): # pylint: disable=unused-argument report() # The handler must be installed before the timer is set, otherwise it is # possible for the default handler to be used, which would not raise our # exception. This can happen if the setup phase uses most of the available # time, leaving just enough for the call to install the new timer and get # the event. signal.signal(signal.SIGALRM, handler) # Negative values are invalid and will raise an exception. # # This is not a problem because: # - pytest_runtest_setup is the first called, it follows the call to # pytest_runtest_protocol, which validates and sets the timeout values. # - pytest_runtest_call is the second call, and it will only run if the # setup was succesfull, i.e. a timeout did not happen. This implies that # the remaining_timeout is positive. remaining_timeout = item.remaining_timeout started_at = time.time() signal.setitimer(signal.ITIMER_REAL, remaining_timeout) yield # The timer must be disabled *before* the handler is unset, otherwise it is # possible for a timeout event to be handled by the default handler. signal.setitimer(signal.ITIMER_REAL, 0) signal.signal(signal.SIGALRM, signal.SIG_DFL) elapsed = time.time() - started_at # It is possible for elapsed to be negative, this can happen if the # time.time clock and the clock used by the signal are different. To # guarantee the next iteration will only have positive values, raise an # exception, failling the setup and skiping the call. item.remaining_timeout -= elapsed if item.remaining_timeout < 0: report() def timeout_from_marker(marker): """Return None or the value of the timeout.""" timeout = None if marker is not None: if len(marker.args) == 1 and len(marker.kwargs) == 0: timeout = marker.args[0] elif len(marker.args) == 0 and len(marker.kwargs) == 1 and "timeout" in marker.kwargs: timeout = marker.kwargs["timeout"] else: raise Exception( "Invalid marker. It must have only one argument for the " "timeout, which may be named or not." ) return timeout def set_item_timeouts(item): """Limit the tests runtime The timeout is read from the following places (last one takes precedence): * setup.cfg (ini). * pytest timeout marker at the specific test. """ timeout_limit_setup_and_call = item.config.getini("timeout_limit_for_setup_and_call") if timeout_limit_setup_and_call == "": raise Exception("timeout_limit_for_setup_and_call must be set in setup.cfg") timeout_limit_setup_and_call = float(timeout_limit_setup_and_call) timeout_limit_teardown = item.config.getini("timeout_limit_teardown") if timeout_limit_teardown == "": raise Exception("timeout_limit_teardown must be set in setup.cfg") timeout_limit_teardown = float(timeout_limit_teardown) timeout_teardown = timeout_limit_teardown # There is no marker to configure the teardown timeout marker = item.get_closest_marker("timeout") timeout_setup_and_call = timeout_from_marker(marker) or timeout_limit_setup_and_call if timeout_setup_and_call > timeout_limit_setup_and_call: raise Exception( f"Invalid value for the timeout marker {timeout_setup_and_call}. This " f"value must be smaller than {timeout_limit_setup_and_call}. This is " f"necessary because the runtime of a test has to be synchronized with " f"the continuous integration output timeout, e.g. no_output_timeout " f"in CircleCI. If the timeout is larger than that value the whole " f"build will be killed because of the lack of output, this will not " f"produce a failure report nor log files, which makes the build run " f"useless." ) if timeout_setup_and_call <= 0: raise Exception("timeout must not be negative") if timeout_teardown <= 0: raise Exception("timeout_limit_teardown must not be negative") item.timeout_setup_and_call = timeout_setup_and_call item.remaining_timeout = timeout_setup_and_call item.timeout_teardown = timeout_teardown @pytest.hookimpl() def pytest_runtest_protocol(item, nextitem): # pylint:disable=unused-argument # The timeouts cannot be configured in the pytest_runtest_setup, because if # the required value is not set, an exception is raised, but then it is # swallowed by the `CallInfo.from_call` set_item_timeouts(item) # Pytest's test protocol is defined by `pytest.runner:pytest_runtest_protocol`, # it has three steps where exceptions can safely be raised at: # # - setup # - call # - teardown # # Below one hook for each of the steps is used. This is necessary to guarantee # that a Timeout exception will be raised only inside these steps that handle # exceptions, otherwise the test executor could be killed by the timeout # exception. @pytest.hookimpl(hookwrapper=True, trylast=True) def pytest_runtest_setup(item): with timeout_for_setup_and_call(item): yield @pytest.hookimpl(hookwrapper=True, trylast=True) def pytest_runtest_call(item): """ More feedback for flaky tests. In verbose mode this outputs 'FLAKY' every time a test marked as flaky fails. This doesn't happen when: - Tests are executed under xdist. - The fixture setup fails. """ # pytest_runtest_call is only called if the test setup finished # succesfully, this means the code below may not be executed if the fixture # setup has timedout already. with timeout_for_setup_and_call(item): outcome = yield did_fail = isinstance(outcome._excinfo, tuple) and isinstance( outcome._excinfo[1], BaseException ) is_xdist = "PYTEST_XDIST_WORKER" in os.environ is_flaky_test = item.get_closest_marker("flaky") is not None should_print = ( did_fail and item.config.option.verbose > 0 and is_flaky_test and not is_xdist ) if should_print: capmanager = item.config.pluginmanager.getplugin("capturemanager") with capmanager.global_and_fixture_disabled(): item.config.pluginmanager.get_plugin("terminalreporter")._tw.write( "FLAKY ", yellow=True ) @pytest.hookimpl(hookwrapper=True, trylast=True) def pytest_runtest_teardown(item): # The teardown must be executed to clear up the fixtures, even if the # fixture setup itself failed. Because of this the timeout for the teardown # is different than the timeout for the setup and call. def report(): gevent.util.print_run_info() pytest.fail( f"Teardown timeout >{item.timeout_setup_and_call}s. This must not happen, when " f"the teardown times out not all finalizers got a chance to run. This " f"means not all fixtures are cleaned up, which can make subsequent " f"tests flaky. This would be the case for pending greenlets which are " f"not cleared by previous run." ) def handler(signum, frame): # pylint: disable=unused-argument report() # The order of the signal setup/teardown is important, check # timeout_for_setup_and_call for details signal.signal(signal.SIGALRM, handler) signal.setitimer(signal.ITIMER_REAL, item.timeout_teardown) yield signal.setitimer(signal.ITIMER_REAL, 0) signal.signal(signal.SIGALRM, signal.SIG_DFL) def pytest_generate_tests(metafunc): fixtures = metafunc.fixturenames if "transport" in fixtures: parmeterize_private_rooms = True transport_and_privacy = list() number_of_transports = list() # Filter existing parametrization which is already done in the test for mark in metafunc.definition.own_markers: if mark.name == "parametrize": # Check if 'private_rooms' gets parameterized if "private_rooms" in mark.args[0]: parmeterize_private_rooms = False # Check if more than one transport is used if "number_of_transports" == mark.args[0]: number_of_transports = mark.args[1] if "public_and_private_rooms" in fixtures: if number_of_transports: transport_and_privacy.extend( [ ("matrix", [False for _ in range(number_of_transports[0])]), ("matrix", [True for _ in range(number_of_transports[0])]), ] ) else: transport_and_privacy.extend([("matrix", False), ("matrix", True)]) else: if number_of_transports: transport_and_privacy.extend( [("matrix", [False for _ in range(number_of_transports[0])])] ) else: transport_and_privacy.append(("matrix", False)) if not parmeterize_private_rooms or "private_rooms" not in fixtures: # If the test does not expect the private_rooms parameter or parametrizes # `private_rooms` itself, only give he transport values metafunc.parametrize( "transport", list(set(transport_type for transport_type, _ in transport_and_privacy)), ) else: metafunc.parametrize("transport,private_rooms", transport_and_privacy) if sys.platform == "darwin": # On macOS the temp directory base path is already very long. # To avoid failures on ipc tests (ipc path length is limited to 104/108 chars on macOS/linux) # we override the pytest tmpdir machinery to produce shorter paths. @pytest.fixture(scope="session", autouse=True) def _tmpdir_short(): """Shorten tmpdir paths""" from _pytest.tmpdir import TempPathFactory def getbasetemp(self): """ return base temporary directory. """ if self._basetemp is None: if self._given_basetemp is not None: basetemp = Path(self._given_basetemp) ensure_reset_dir(basetemp) else: from_env = os.environ.get("PYTEST_DEBUG_TEMPROOT") temproot = Path(from_env or tempfile.gettempdir()) user = get_user() or "unknown" # use a sub-directory in the temproot to speed-up # make_numbered_dir() call rootdir = temproot.joinpath(f"pyt-{user}") rootdir.mkdir(exist_ok=True) basetemp = make_numbered_dir_with_cleanup( prefix="", root=rootdir, keep=3, lock_timeout=LOCK_TIMEOUT ) assert basetemp is not None self._basetemp = t = basetemp self._trace("new basetemp", t) return t else: return self._basetemp TempPathFactory.getbasetemp = getbasetemp @pytest.fixture def tmpdir(request, tmpdir_factory): """Return a temporary directory path object which is unique to each test function invocation, created as a sub directory of the base temporary directory. The returned object is a `py.path.local`_ path object. """ name = request.node.name name = re.sub(r"[\W]", "_", name) MAXVAL = 15 if len(name) > MAXVAL: name = name[:MAXVAL] tdir = tmpdir_factory.mktemp(name, numbered=True) return tdir
38.236207
99
0.678947
daac9dae8067d03f06d44a328d731533d307dac0
288
py
Python
CVContent.py
alpaylan/cvdl
bb4981af134770074460e620c2c65054d62cf32b
[ "MIT" ]
33
2021-12-19T16:51:26.000Z
2022-03-10T12:07:20.000Z
CVContent.py
onuratakan/cvdl
bb4981af134770074460e620c2c65054d62cf32b
[ "MIT" ]
null
null
null
CVContent.py
onuratakan/cvdl
bb4981af134770074460e620c2c65054d62cf32b
[ "MIT" ]
4
2021-12-19T18:26:12.000Z
2022-01-11T15:46:29.000Z
class CVContent: """ CV Content is defined as a set of sections, including "Header" as a special section type. Each section conforms a Schema defined in the CV Schema Document(CVSD) using a set of pre-defined data types. """ def __init__(self): pass
24
61
0.663194
232bed1d48af38703954fb1a4e79fd4294e2b7be
14,715
py
Python
from_3b1b/old/counting_in_binary.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
from_3b1b/old/counting_in_binary.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
from_3b1b/old/counting_in_binary.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
#!/usr/bin/env python import numpy as np import itertools as it from copy import deepcopy import sys from manim2.imports import * from script_wrapper import command_line_create_scene MOVIE_PREFIX = "counting_in_binary/" BASE_HAND_FILE = os.path.join(VIDEO_DIR, MOVIE_PREFIX, "Base.mp4") FORCED_FRAME_DURATION = 0.02 TIME_RANGE = (0, 42) INITIAL_PADDING = 27 NUM_GOOD_FRAMES = 1223 ALGORITHM_TEXT = [ """ \\begin{flushleft} Turn up the rightmost finger that is down. """, """ Turn down all fingers to its right. \\end{flushleft} """ ] FINGER_WORDS = [ "Thumb", "Index Finger", "Middle Finger", "Ring Finger", "Pinky", ] COUNT_TO_FRAME_NUM = { 0 : 0, 1 : 27, 2 : 76, 3 : 110, 4 : 163, 5 : 189, 6 : 226, 7 : 264, 8 : 318, 9 : 356, 10 : 384, 11 : 423, 12 : 457, 13 : 513, 14 : 528, 15 : 590, 16 : 620, 17 : 671, 18 : 691, 19 : 740, 20 : 781, 21 : 810, 22 : 855, 23 : 881, 24 : 940, 25 : 970, 26 : 1014, 27 : 1055, 28 : 1092, 29 : 1143, 30 : 1184, 31 : 1219, } COUNT_TO_TIP_POS = { 0 : [5.0, 0.5, 0.0], 1 : [3.1, 2.5, 0.0], 2 : [1.5, 2.3, 0.0], 3 : [0.7, 2.0, 0.0], 4 : [0.0, 1.0, 0.0], } def finger_tip_power_of_2(finger_no): return TexMobject(str(2**finger_no)).shift(COUNT_TO_TIP_POS[finger_no]) class Hand(ImageMobject): STARTING_BOTTOM_RIGHT = [4.61111111e+00, -3.98888889e+00, 9.80454690e-16] def __init__(self, num, small = False, **kwargs): Mobject2D.__init__(self, **kwargs) path = os.path.join( VIDEO_DIR, MOVIE_PREFIX, "images", "Hand%d.png"%num ) invert = False if not self.read_in_cached_attrs(path, invert): ImageMobject.__init__(self, path, invert = invert) center = self.get_center() self.center() self.rotate(np.pi, axis = RIGHT+UP) self.sort_points(lambda p : np.log(complex(*p[:2])).imag) self.rotate(np.pi, axis = RIGHT+UP) self.shift(center) self.cache_attrs(path, invert = False) self.shift(self.STARTING_BOTTOM_RIGHT-self.get_boundary_point(DOWN+RIGHT)) if small: self.shrink() def shrink(self): self.scale_in_place(0.8).to_edge(DOWN, buff = 0.0) # def set_color_thumb(self, color = "yellow"): # self.set_color( # color = color, # condition = lambda p : p[0] > 4.5 and p[1] > -1.5 # ) def get_algorithm(): return TextMobject(ALGORITHM_TEXT) def get_finger_colors(): return list(Color("yellow").range_to("red", 5)) def five_char_binary(num): result = bin(num)[2:] return (5-len(result))*"0" + result def read_reversed_binary(string): return sum([ 2**count if char == '1' else 0 for count, char in zip(it.count(), string) ]) class LeftHand(Hand): def __init__(self, num, **kwargs): Hand.__init__( self, read_reversed_binary(five_char_binary(num)), **kwargs ) self.rotate(np.pi, UP) self.shift(LEFT) def get_hand_map(which_hand = "right"): if which_hand == "right": Class = Hand elif which_hand == "left": Class = LeftHand else: print("Bad arg, bro") return return dict([ (num, Class(num, small=True)) for num in range(32) ]) class OverHand(SceneFromVideo): def construct(self): SceneFromVideo.construct(self, BASE_HAND_FILE) self.frame_duration = FORCED_FRAME_DURATION self.frames = self.frames[:NUM_GOOD_FRAMES] class SaveEachNumber(OverHand): def construct(self): OverHand.construct(self) for count in COUNT_TO_FRAME_NUM: path = os.path.join( VIDEO_DIR, MOVIE_PREFIX, "images", "Hand%d.png"%count ) Image.fromarray(self.frames[COUNT_TO_FRAME_NUM[count]]).save(path) def write_to_movie(self, name = None): print("Why bother writing to movie...") class ShowCounting(OverHand): def construct(self): OverHand.construct(self) self.frames = INITIAL_PADDING*[self.frames[0]] + self.frames num_frames = len(self.frames) self.frames = [ disp.paint_mobject( self.get_counting_mob(32*count // num_frames), frame ) for frame, count in zip(self.frames, it.count()) ] def get_counting_mob(self, count): mob = TexMobject(str(count)) mob.scale(2) mob.shift(LEFT) mob.to_edge(UP, buff = 0.1) return mob class ShowFrameNum(OverHand): def construct(self): OverHand.construct(self) for frame, count in zip(self.frames, it.count()): print(count + "of" + len(self.frames)) mob = Mobject(*[ TexMobject(char).shift(0.3*x*RIGHT) for char, x, in zip(str(count), it.count()) ]) self.frames[count] = disp.paint_mobject( mob.to_corner(UP+LEFT), frame ) class CountTo1023(Scene): def construct(self): rh_map = get_hand_map("right") lh_map = get_hand_map("left") def get_num(count): return Mobject(*[ TexMobject(char).shift(0.35*x*RIGHT) for char, x, in zip(str(count), it.count()) ]).center().to_edge(UP) self.frames = [ disp.paint_mobject(Mobject( rh_map[count%32], lh_map[count//32], get_num(count) )) for count in range(2**10) ] class Introduction(Scene): def construct(self): words = TextMobject(""" First, let's see how to count to 31 on just one hand... """) hand = Hand(0) for mob in words, hand: mob.sort_points(lambda p : p[0]) self.add(words) self.wait() self.play(DelayByOrder(Transform(words, hand))) self.wait() class ShowReadingRule(Scene): def construct(self): sample_counts = [6, 17, 27, 31] question = TextMobject(""" How do you recognize what number a given configuration represents? """, size = "\\Huge").scale(0.75).to_corner(UP+LEFT) answer = TextMobject([ "Think of each finger as representing a power of 2, ", "then add up the numbers represented by the standing fingers." ], size = "\\Huge").scale(0.75).to_corner(UP+LEFT).split() self.add(question) for count in sample_counts: hand = Hand(count, small = True) self.add(hand) self.wait() self.remove(hand) self.add(hand) self.wait() self.remove(question) self.add(answer[0]) counts = list(map(finger_tip_power_of_2, list(range(5)))) for count in counts: self.play(SpinInFromNothing(count, run_time = 0.3)) self.wait() self.play(ShimmerIn(answer[1])) for count in sample_counts: self.clear() self.add(*answer) self.read_sample(count) def read_sample(self, num): hand = Hand(num, small = True) bool_arr = [c == '1' for c in five_char_binary(num)] counts = [4-count for count in range(5) if bool_arr[count]] count_mobs = list(map(finger_tip_power_of_2, counts)) if num in [6, 27]: count_mobs[1].shift(0.2*DOWN + 0.2*LEFT) if num in [6, 17]: hand.shift(0.8*LEFT) sum_mobs = TexMobject( " + ".join([str(2**c) for c in counts]).split(" ") + ["=%d"%num] ).to_corner(UP+RIGHT).split() self.add(hand, *count_mobs) self.wait() self.play(*[ Transform(count_mobs[n/2], sum_mobs[n]) if n%2 == 0 and n/2 < len(counts) else FadeIn(sum_mobs[n]) for n in range(len(sum_mobs)) ]) self.wait(2.0) class ShowIncrementRule(Scene): def construct(self): #First count from 18 to 22 def to_left(words): return "\\begin{flushleft}" + words + "\\end{flushleft}" phrases = [ TextMobject(to_left(words), size = "\\Huge").scale(0.75).to_corner(UP+LEFT) for words in [ "But while you're counting, you don't need to think about powers of 2.", "Can you see the pattern for incrementing?", "If the thumb is down, turn it up.", "If the thumb is up, but the forefinger is down, flip them both.", "If the thumb and forefinger are up, but the middle finger is down, flip all three.", "In general, flip all of the fingers up to the rightmost one which is down.", "After practicing for a minute or two, you're mind starts doing it automatically.", "Question: Why does this rule for incrementation work?", ] ] ranges = [ (0, 14, False), (14, 28, False), (12, 13, True), (29, 31, True), (27, 29, True), (23, 24, True), (14, 20, False), (20, 26, False) ] oh = OverHand() for phrase, (start, end, pause) in zip(phrases, ranges): if pause: self.background = oh.frames[COUNT_TO_FRAME_NUM[start]] self.add(phrase) self.play(ShimmerIn(self.get_arrow_set(start))) self.wait() self.clear() self.reset_background() self.frames += [ disp.paint_mobject(phrase, frame) for frame in oh.frames[COUNT_TO_FRAME_NUM[start]:COUNT_TO_FRAME_NUM[end]] ] if pause: self.frames += [self.frames[-1]]*int(1.0/self.frame_duration) def get_arrow_set(self, num): arrow = TexMobject("\\downarrow", size = "\\Huge") arrow.set_color("green") arrow.shift(-arrow.get_bottom()) if num == 12: tips = [(4, 1, 0)] elif num == 29: tips = [ (6, 1.5, 0), (3, 1.5, 0), ] elif num == 27: tips = [ (5.5, 1.5, 0), (2.75, 3.5, 0), (2, 1.0, 0), ] elif num == 23: tips = [ (6, 1, 0), (3.25, 3.5, 0), (2.25, 3.5, 0), (1.5, 0.75, 0), ] return Mobject(*[ deepcopy(arrow).shift(tip) for tip in tips ]) class MindFindsShortcuts(Scene): def construct(self): words1 = TextMobject(""" Before long, your mind starts to recognize certain patterns without needing to perform the addition. """, size = "\\Huge").scale(0.75).to_corner(LEFT+UP) words2 = TextMobject(""" Which makes it faster to recognize other patterns... """, size = "\\Huge").scale(0.75).to_corner(LEFT+UP) hand = Hand(7).scale(0.5).center().shift(DOWN+2*LEFT) sum421 = TexMobject("4+2+1").shift(DOWN+2*RIGHT) seven = TexMobject("7").shift(DOWN+6*RIGHT) compound = Mobject( Arrow(hand, sum421), sum421, Arrow(sum421, seven) ) self.add( words1, hand, compound, seven ) self.wait() self.play( Transform(compound, Arrow(hand, seven).set_color("yellow")), ShimmerIn(TextMobject("Directly recognize").shift(1.5*DOWN+2*RIGHT)) ) self.wait() self.clear() hands = dict([ (num, Hand(num).center().scale(0.5).shift(DOWN)) for num in [23, 16, 7] ]) hands[23].shift(5*LEFT) hands[16].shift(LEFT) hands[7].shift(3*RIGHT) for num in 7, 16: hands[num].add(TexMobject(str(num)).shift(hands[num].get_top()+0.5*UP)) plus = TexMobject("+").shift(DOWN + RIGHT) equals = TexMobject("=").shift(DOWN + 2.5*LEFT) equals23 = TexMobject("=23").shift(DOWN + 5.5*RIGHT) self.add(words2, hands[23]) self.wait() self.play( Transform( deepcopy(hands[16]).set_color("black").center().shift(hands[23].get_center()), hands[16] ), Transform( deepcopy(hands[7]).set_color("black").center().shift(hands[23].get_center()), hands[7] ), Animation(hands[23]), FadeIn(equals), FadeIn(plus) ) self.wait() self.play(ShimmerIn(equals23)) self.wait() class CountingExampleSentence(ShowCounting): def construct(self): words = "As an example, this is me counting the number of words in this sentence on just one hand!" self.words = TextMobject(words.split(), size = "\\Huge").scale(0.7).to_corner(UP+LEFT, buff = 0.25).split() ShowCounting.construct(self) def get_counting_mob(self, num): return Mobject(*self.words[:num]) class FinishCountingExampleSentence(Scene): def construct(self): words = "As an example, this is me counting the number of words in this sentence on just one hand!" words = TextMobject(words, size = "\\Huge").scale(0.7).to_corner(UP+LEFT, buff = 0.25) hand = Hand(18) sixteen = TexMobject("16").shift([0, 2.25, 0]) two = TexMobject("2").shift([3, 3.65, 0]) eightteen = TexMobject("18").shift([1.5, 2.5, 0]) eightteen.sort_points() comp = Mobject(sixteen, two) self.add(hand, comp, words) self.wait() self.play(Transform(comp, eightteen)) self.wait() class Question(Scene): def construct(self): self.add(TextMobject("Left to ponder: Why does this rule for incrementing work?")) class TwoHandStatement(Scene): def construct(self): self.add(TextMobject( "With 10 fingers, you can count up to $2^{10} - 1 = 1023$..." )) class WithToes(Scene): def construct(self): words = TextMobject([ "If you were dexterous enough to use your toes as well,", "you could count to 1,048,575" ]).split() self.add(words[0]) self.wait() self.play(ShimmerIn(words[1])) self.wait() if __name__ == "__main__": command_line_create_scene(MOVIE_PREFIX)
30.720251
115
0.539925
263ba45d23a8bbff839009a8420cac0bdeaf378f
1,373
py
Python
create_connect.py
christophschubert/ccloud-python-api
077e58f60a05b5df6cfbda700a3fb05dcaa10ec6
[ "Apache-2.0" ]
null
null
null
create_connect.py
christophschubert/ccloud-python-api
077e58f60a05b5df6cfbda700a3fb05dcaa10ec6
[ "Apache-2.0" ]
null
null
null
create_connect.py
christophschubert/ccloud-python-api
077e58f60a05b5df6cfbda700a3fb05dcaa10ec6
[ "Apache-2.0" ]
null
null
null
import argparse import ccloud parser = argparse.ArgumentParser(description='Set up local connect cluster.') parser.add_argument('--kafka-cluster', dest='kafka', metavar'lkc-xxxx', required=True, help='logical Kafka cluster to connect to') parser.add_argument('--connect-group-id', dest='group_id', metavar='id', required=True, help='group.id of the Connect cluster') parser.add_argument('--schema-cluster', dest='sr', metavar='lsrc-xxxx', help='schema registry resouce to connect to') args = parser.parse_args() topic_config = { 'connect_status': { 'partitions': 2, } #connect command and other topics as well } configs = [] #accumulator for the various configs kafka_cluster = args.kafka group_id = args.group_id # create service account for connect cluster_sa = ccloud.create_service_account('Connect {}'.format(group_id), 'Service account for Connect cluster {}'.format(group_id)) cluster_api_key = ccloud.create_api_key(kafka_cluster, cluster_sa.id, 'Key for Connect cluster {} (Kafka)'.format(group_id)) # create topics for name, config in topic_config.items(): ccloud.create_topic(name, cluster=args.kafka, config=config) # set ACLs for topic if args.sr: # configure schema-registry connection schema_cluster = args.sr #create schema registry for connect #create API key for line in configs: print(line)
30.511111
132
0.737072
8649de3e2a37c3bcec04cdb9e198446597691c78
13,053
py
Python
duo_auth/vendor/duo_client_python/tests/test_admin.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
1
2020-03-18T09:14:55.000Z
2020-03-18T09:14:55.000Z
duo_auth/vendor/duo_client_python/tests/test_admin.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
1
2021-02-23T23:57:37.000Z
2021-02-23T23:57:37.000Z
duo_auth/vendor/duo_client_python/tests/test_admin.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
null
null
null
from __future__ import absolute_import import unittest import warnings from . import util import duo_client.admin class TestAdmin(unittest.TestCase): def setUp(self): self.client = duo_client.admin.Admin( 'test_ikey', 'test_akey', 'example.com') self.client.account_id = 'DA012345678901234567' # monkeypatch client's _connect() self.client._connect = lambda: util.MockHTTPConnection() # if you are wanting to simulate getting lists of objects # rather than a single object self.client_list = duo_client.admin.Admin( 'test_ikey', 'test_akey', 'example.com') self.client_list.account_id = 'DA012345678901234567' self.client_list._connect = \ lambda: util.MockHTTPConnection(data_response_should_be_list=True) # if you are wanting to get a response from a call to get # authentication logs self.client_authlog = duo_client.admin.Admin( 'test_ikey', 'test_akey', 'example.com') self.client_authlog.account_id = 'DA012345678901234567' self.client_authlog._connect = \ lambda: util.MockHTTPConnection(data_response_from_get_authlog=True) # GET with no params def test_get_users(self): response = self.client.get_users() self.assertEqual(response['method'], 'GET') self.assertEqual( response['uri'], '/admin/v1/users?account_id=%s' % self.client.account_id) self.assertEqual(response['body'], None) # GET with params def test_get_users_by_name(self): response = self.client.get_users_by_name('foo') (uri, args) = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/users') self.assertEqual( util.params_to_dict(args), {'username':['foo'], 'account_id':[self.client.account_id]}) self.assertEqual(response['body'], None) response = self.client.get_users_by_name('foo') (uri, args) = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/users') self.assertEqual( util.params_to_dict(args), {'username':['foo'], 'account_id':[self.client.account_id]}) self.assertEqual(response['body'], None) # POST with params def test_add_user(self): # all params given response = self.client.add_user( 'foo', realname='bar', status='active', notes='notes', email='foobar@baz.com', firstname='fName', lastname='lName', alias1='alias1', alias2='alias2', alias3='alias3', alias4='alias4') self.assertEqual(response['method'], 'POST') self.assertEqual(response['uri'], '/admin/v1/users') self.assertEqual( util.params_to_dict(response['body']), { 'realname': ['bar'], 'notes': ['notes'], 'username': ['foo'], 'status': ['active'], 'email': ['foobar%40baz.com'], 'firstname': ['fName'], 'lastname': ['lName'], 'account_id': [self.client.account_id], 'alias1': ['alias1'], 'alias2': ['alias2'], 'alias3': ['alias3'], 'alias4': ['alias4'], }) # defaults response = self.client.add_user('bar') self.assertEqual(response['method'], 'POST') self.assertEqual(response['uri'], '/admin/v1/users') self.assertEqual( util.params_to_dict(response['body']), {'username':['bar'], 'account_id':[self.client.account_id]}) def test_update_user(self): response = self.client.update_user( 'DU012345678901234567', username='foo', realname='bar', status='active', notes='notes', email='foobar@baz.com', firstname='fName', lastname='lName', alias1='alias1', alias2='alias2', alias3='alias3', alias4='alias4') self.assertEqual(response['method'], 'POST') self.assertEqual( response['uri'], '/admin/v1/users/DU012345678901234567') self.assertEqual( util.params_to_dict(response['body']), { 'account_id':[self.client.account_id], 'realname': ['bar'], 'notes': ['notes'], 'username': ['foo'], 'status': ['active'], 'email': ['foobar%40baz.com'], 'firstname': ['fName'], 'lastname': ['lName'], 'account_id': [self.client.account_id], 'alias1': ['alias1'], 'alias2': ['alias2'], 'alias3': ['alias3'], 'alias4': ['alias4'], }) def test_get_endpoints(self): response = self.client.get_endpoints() self.assertEqual(response['method'], 'GET') (uri, args) = response['uri'].split('?') self.assertEqual(uri, '/admin/v1/endpoints') self.assertEqual( util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_user_u2ftokens(self): """ Test to get u2ftokens by user id. """ response = self.client.get_user_u2ftokens('DU012345678901234567') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/users/DU012345678901234567/u2ftokens') self.assertEqual(util.params_to_dict(args), {'account_id':[self.client.account_id]}) def test_get_u2ftokens_with_params(self): """ Test to get u2ftokens with params. """ response = list(self.client_list.get_u2ftokens())[0] uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/u2ftokens') self.assertEqual(util.params_to_dict(args), {'account_id':[self.client_list.account_id]}) def test_get_u2ftokens_without_params(self): """ Test to get u2ftokens without params. """ response = list(self.client_list.get_u2ftokens())[0] uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/u2ftokens') self.assertEqual(util.params_to_dict(args), {'account_id':[self.client_list.account_id]}) def test_get_u2ftoken_by_id(self): """ Test to get u2ftoken by registration id. """ response = self.client.get_u2ftoken_by_id('DU012345678901234567') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/u2ftokens/DU012345678901234567') self.assertEqual(util.params_to_dict(args), {'account_id':[self.client.account_id]}) def test_delete_u2ftoken(self): """ Test to delete u2ftoken by registration id. """ response = self.client.delete_u2ftoken('DU012345678901234567') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'DELETE') self.assertEqual(uri, '/admin/v1/u2ftokens/DU012345678901234567') self.assertEqual(util.params_to_dict(args), {'account_id':[self.client.account_id]}) def test_get_user_bypass_codes(self): """ Test to get bypass codes by user id. """ response = self.client.get_user_bypass_codes('DU012345678901234567') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual( uri, '/admin/v1/users/DU012345678901234567/bypass_codes') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_bypass_codes(self): """ Test to get bypass codes. """ response = list(self.client_list.get_bypass_codes())[0] uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/bypass_codes') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client_list.account_id]}) def test_delete_bypass_code_by_id(self): """ Test to delete a bypass code by id. """ response = self.client.delete_bypass_code_by_id('DU012345678901234567') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'DELETE') self.assertEqual(uri, '/admin/v1/bypass_codes/DU012345678901234567') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_authentication_log_v1(self): """ Test to get authentication log on version 1 api. """ response = self.client_list.get_authentication_log(api_version=1)[0] uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/logs/authentication') self.assertEqual( util.params_to_dict(args)['account_id'], [self.client_list.account_id]) def test_get_authentication_log_v2(self): """ Test to get authentication log on version 1 api. """ response = self.client_authlog.get_authentication_log(api_version=2) uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v2/logs/authentication') self.assertEqual( util.params_to_dict(args)['account_id'], [self.client_authlog.account_id]) def test_get_groups(self): """ Test for getting list of all groups """ response = self.client.get_groups() uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/groups') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_group_v1(self): """ Test for v1 API of getting specific group details """ with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") response = self.client.get_group('ABC123', api_version=1) uri, args = response['uri'].split('?') # Assert deprecation warning generated self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[0].category, DeprecationWarning)) self.assertIn('Please migrate to the v2 API', str(w[0].message)) self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v1/groups/ABC123') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_group_v2(self): """ Test for v2 API of getting specific group details """ response = self.client.get_group('ABC123', api_version=2) uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v2/groups/ABC123') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_get_group_users(self): """ Test for getting list of users associated with a group """ response = self.client.get_group_users('ABC123') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'GET') self.assertEqual(uri, '/admin/v2/groups/ABC123/users') self.assertEqual( util.params_to_dict(args), { 'account_id': [self.client.account_id], 'limit': ['100'], 'offset': ['0'], }) def test_delete_group(self): """ Test for deleting a group """ response = self.client.delete_group('ABC123') uri, args = response['uri'].split('?') self.assertEqual(response['method'], 'DELETE') self.assertEqual(uri, '/admin/v1/groups/ABC123') self.assertEqual(util.params_to_dict(args), {'account_id': [self.client.account_id]}) def test_modify_group(self): """ Test for modifying a group """ response = self.client.modify_group('ABC123') self.assertEqual(response['method'], 'POST') self.assertEqual(response['uri'], '/admin/v1/groups/ABC123') self.assertEqual(util.params_to_dict(response['body']), {'account_id': [self.client.account_id]}) if __name__ == '__main__': unittest.main()
40.039877
80
0.586532
a8adda23c6be1cbba71574297ec354a1dbe487b7
5,389
py
Python
plugins/modules/ovirt_group.py
mnecas/ansible_collections_ovirt
99d97cc72fafa580e1934d44dd751a94ba840718
[ "Apache-2.0" ]
null
null
null
plugins/modules/ovirt_group.py
mnecas/ansible_collections_ovirt
99d97cc72fafa580e1934d44dd751a94ba840718
[ "Apache-2.0" ]
null
null
null
plugins/modules/ovirt_group.py
mnecas/ansible_collections_ovirt
99d97cc72fafa580e1934d44dd751a94ba840718
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2016 Red Hat, Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ovirt_group short_description: Module to manage groups in oVirt/RHV version_added: "2.3" author: "Ondra Machacek (@machacekondra)" description: - "Module to manage groups in oVirt/RHV" options: name: description: - "Name of the group to manage." required: true state: description: - "Should the group be present/absent." choices: ['present', 'absent'] default: present authz_name: description: - "Authorization provider of the group. In previous versions of oVirt/RHV known as domain." required: true aliases: ['domain'] namespace: description: - "Namespace of the authorization provider, where group resides." required: false extends_documentation_fragment: ovirt ''' EXAMPLES = ''' # Examples don't contain auth parameter for simplicity, # look at ovirt_auth module to see how to reuse authentication: # Add group group1 from authorization provider example.com-authz - ovirt_group: name: group1 domain: example.com-authz # Add group group1 from authorization provider example.com-authz # In case of multi-domain Active Directory setup, you should pass # also namespace, so it adds correct group: - ovirt_group: name: group1 namespace: dc=ad2,dc=example,dc=com domain: example.com-authz # Remove group group1 with authorization provider example.com-authz - ovirt_group: state: absent name: group1 domain: example.com-authz ''' RETURN = ''' id: description: ID of the group which is managed returned: On success if group is found. type: str sample: 7de90f31-222c-436c-a1ca-7e655bd5b60c group: description: "Dictionary of all the group attributes. Group attributes can be found on your oVirt/RHV instance at following url: http://ovirt.github.io/ovirt-engine-api-model/master/#types/group." returned: On success if group is found. type: dict ''' import traceback try: import ovirtsdk4.types as otypes except ImportError: pass from ansible.module_utils.basic import AnsibleModule from ansible_collections.mnecas.ovirt.plugins.module_utils.ovirt import ( BaseModule, check_sdk, check_params, create_connection, equal, ovirt_full_argument_spec, ) def _group(connection, module): groups = connection.system_service().groups_service().list( search="name={name}".format( name=module.params['name'], ) ) # If found more groups, filter them by namespace and authz name: # (filtering here, as oVirt/RHV backend doesn't support it) if len(groups) > 1: groups = [ g for g in groups if ( equal(module.params['namespace'], g.namespace) and equal(module.params['authz_name'], g.domain.name) ) ] return groups[0] if groups else None class GroupsModule(BaseModule): def build_entity(self): return otypes.Group( domain=otypes.Domain( name=self._module.params['authz_name'] ), name=self._module.params['name'], namespace=self._module.params['namespace'], ) def main(): argument_spec = ovirt_full_argument_spec( state=dict( choices=['present', 'absent'], default='present', ), name=dict(required=True), authz_name=dict(required=True, aliases=['domain']), namespace=dict(default=None), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, ) check_sdk(module) check_params(module) try: auth = module.params.pop('auth') connection = create_connection(auth) groups_service = connection.system_service().groups_service() groups_module = GroupsModule( connection=connection, module=module, service=groups_service, ) group = _group(connection, module) state = module.params['state'] if state == 'present': ret = groups_module.create(entity=group) elif state == 'absent': ret = groups_module.remove(entity=group) module.exit_json(**ret) except Exception as e: module.fail_json(msg=str(e), exception=traceback.format_exc()) finally: connection.close(logout=auth.get('token') is None) if __name__ == "__main__": main()
28.973118
114
0.652997
b4668175155dbf7e60bdc884ce3307fde13019d5
4,128
py
Python
test/functional/feature_minchainwork.py
patentcoin/patentcoin
5dd4ba6cf18946be6be0f564952a55358c81fe95
[ "MIT" ]
1
2021-12-11T19:14:32.000Z
2021-12-11T19:14:32.000Z
test/functional/feature_minchainwork.py
Cryptogits/patentcoin
5dd4ba6cf18946be6be0f564952a55358c81fe95
[ "MIT" ]
null
null
null
test/functional/feature_minchainwork.py
Cryptogits/patentcoin
5dd4ba6cf18946be6be0f564952a55358c81fe95
[ "MIT" ]
2
2020-06-27T10:26:01.000Z
2021-12-11T15:33:50.000Z
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test logic for setting nMinimumChainWork on command line. Nodes don't consider themselves out of "initial block download" until their active chain has more work than nMinimumChainWork. Nodes don't download blocks from a peer unless the peer's best known block has more work than nMinimumChainWork. While in initial block download, nodes won't relay blocks to their peers, so test that this parameter functions as intended by verifying that block relay only succeeds past a given node once its nMinimumChainWork has been exceeded. """ import time from test_framework.test_framework import PatentcoinTestFramework from test_framework.util import connect_nodes, assert_equal # 2 hashes required per regtest block (with no difficulty adjustment) REGTEST_WORK_PER_BLOCK = 2 class MinimumChainWorkTest(PatentcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], ["-minimumchainwork=0x65"], ["-minimumchainwork=0x65"]] self.node_min_work = [0, 101, 101] def setup_network(self): # This test relies on the chain setup being: # node0 <- node1 <- node2 # Before leaving IBD, nodes prefer to download blocks from outbound # peers, so ensure that we're mining on an outbound peer and testing # block relay to inbound peers. self.setup_nodes() for i in range(self.num_nodes-1): connect_nodes(self.nodes[i+1], i) def run_test(self): # Start building a chain on node0. node2 shouldn't be able to sync until node1's # minchainwork is exceeded starting_chain_work = REGTEST_WORK_PER_BLOCK # Genesis block's work self.log.info("Testing relay across node %d (minChainWork = %d)", 1, self.node_min_work[1]) starting_blockcount = self.nodes[2].getblockcount() num_blocks_to_generate = int((self.node_min_work[1] - starting_chain_work) / REGTEST_WORK_PER_BLOCK) self.log.info("Generating %d blocks on node0", num_blocks_to_generate) hashes = self.nodes[0].generatetoaddress(num_blocks_to_generate, self.nodes[0].get_deterministic_priv_key().address) self.log.info("Node0 current chain work: %s", self.nodes[0].getblockheader(hashes[-1])['chainwork']) # Sleep a few seconds and verify that node2 didn't get any new blocks # or headers. We sleep, rather than sync_blocks(node0, node1) because # it's reasonable either way for node1 to get the blocks, or not get # them (since they're below node1's minchainwork). time.sleep(3) self.log.info("Verifying node 2 has no more blocks than before") self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) # Node2 shouldn't have any new headers yet, because node1 should not # have relayed anything. assert_equal(len(self.nodes[2].getchaintips()), 1) assert_equal(self.nodes[2].getchaintips()[0]['height'], 0) assert self.nodes[1].getbestblockhash() != self.nodes[0].getbestblockhash() assert_equal(self.nodes[2].getblockcount(), starting_blockcount) self.log.info("Generating one more block") self.nodes[0].generatetoaddress(1, self.nodes[0].get_deterministic_priv_key().address) self.log.info("Verifying nodes are all synced") # Because nodes in regtest are all manual connections (eg using # addnode), node1 should not have disconnected node0. If not for that, # we'd expect node1 to have disconnected node0 for serving an # insufficient work chain, in which case we'd need to reconnect them to # continue the test. self.sync_all() self.log.info("Blockcounts: %s", [n.getblockcount() for n in self.nodes]) if __name__ == '__main__': MinimumChainWorkTest().main()
45.362637
108
0.698643
ea944c82bb12f999c40cd26c90c2a596a58bd720
1,020
py
Python
src/crypt1.py
xiaonanln/python-usaco
8f0fef19cb5f89232d985f79d955f0de5ef4e10d
[ "MIT" ]
null
null
null
src/crypt1.py
xiaonanln/python-usaco
8f0fef19cb5f89232d985f79d955f0de5ef4e10d
[ "MIT" ]
null
null
null
src/crypt1.py
xiaonanln/python-usaco
8f0fef19cb5f89232d985f79d955f0de5ef4e10d
[ "MIT" ]
null
null
null
""" ID: isaiahl1 LANG: PYTHON2 TASK: crypt1 """ TASK = 'crypt1' def readints(fin): return tuple(int(x) for x in fin.readline().split()) def readint(fin): return int(fin.readline()) def main(fin, fout): N = readint(fin) digits = readints(fin) count = 0 print 'digits', digits for a in digits: if a == 0: continue for b in digits: for c in digits: for d in digits: if d == 0: continue for e in digits: # abc * de x = (a*100+b*10+c) * e y = (a*100+b*10+c) * d if x >= 1000 or y >= 1000: continue if not fit(x, digits) or not fit(y, digits): continue s = y*10 + x if fit(s, digits): print a,b,c,d,e, x, y, s count += 1 print 'result', count print >>fout, count def fit(n, digits): d = n % 10 n //= 10 if d not in digits: return False while n: d = n % 10 n //= 10 if d not in digits: return False return True fin = open (TASK + '.in', 'r') fout = open (TASK + '.out', 'w') with fin: with fout: main(fin, fout)
17
59
0.562745
a3f8ffe9c342d0388cb2c63ce70edfa290ec2731
3,795
py
Python
alexber/rpsgame/app.py
alex-ber/RocketPaperScissorsGame
c38c82a17d508c892c686454864ee2356f441d1a
[ "BSD-2-Clause" ]
null
null
null
alexber/rpsgame/app.py
alex-ber/RocketPaperScissorsGame
c38c82a17d508c892c686454864ee2356f441d1a
[ "BSD-2-Clause" ]
1
2019-03-20T10:35:36.000Z
2019-03-21T12:46:44.000Z
alexber/rpsgame/app.py
alex-ber/RocketPaperScissorsGame
c38c82a17d508c892c686454864ee2356f441d1a
[ "BSD-2-Clause" ]
null
null
null
import logging.config from collections import OrderedDict from alexber.rpsgame import app_conf as conf from alexber.rpsgame.app_create_instance import importer, create_instance def _create_player_factory(player_d): assert player_d is not None def factory_player(): name_player = player_d.get(conf.NAME_PLAYER_KEY, None) player = create_instance(**player_d) return name_player, player return factory_player def _mask_engine_params(engine_d): d = OrderedDict() for name, value in engine_d.items(): if not name.startswith("init."): logger.debug(f"Skipping {name}, doesn't have prefix 'init'") continue real_name = name[len("init."):] d[real_name] = value return d def run(**kwargs): """ This method recieved all conf params in kwargs. All unexpected values will be ignored. It is expected that value type is correct. No conversion on the value of the dict kwargs will be applied. This method will built playerA, playerB, engine, and run engine with these players. Please, consult alexber.rpsgame.app_conf in order to construct kwargs. Command-line argument and ini-file are suppored out of the box. JSON/YML, etc. can be easiliy handled also. """ #filter out unrelated params without implicit_convert #if you want to convert values do it explictely kwargs = conf.parse_dict(kwargs, implicit_convert=False) engine_d = kwargs.pop(conf.ENGINE_KEY, {}) engine_str = engine_d.pop(conf.CLS_KEY, None) if engine_str is None: engine_str = conf.DEFAULT_ENGINE_CLS engine_cls = importer(engine_str) p_engine_d = _mask_engine_params(engine_d) kwargs.update(p_engine_d) playera_d = kwargs.pop(conf.PLAYER_A_KEY, {}) playerb_d = kwargs.pop(conf.PLAYER_B_KEY, {}) the_engine = engine_cls.from_configuration(playera_factory=_create_player_factory(playera_d), playerb_factory=_create_player_factory(playerb_d), **kwargs) the_engine.play() def main(args=None): """ main method :param args: if not None, suppresses sys.args """ dd = conf.parse_config(args) run(**dd) #see https://terryoy.github.io/2016/05/short-ref-python-logging.html _config = { "log_config": { "version": 1, "formatters": { "brief": { "format": "%(message)s", }, "detail": { "format": "%(asctime)-15s %(levelname)s [%(name)s.%(funcName)s] %(message)s", "datefmt": '%Y-%m-%d %H:%M:%S', }, }, "handlers": { "console": { "class": "logging.StreamHandler", "level": "DEBUG", "formatter": "brief", }, # "file": { # "class": "logging.handlers.RotatingFileHandler", # "filename": "dev.log", # "level": "DEBUG", # "formatter": "detail", # }, }, "root": { # "handlers": ["console", "file"], "handlers": ["console"], "level": "DEBUG", }, "loggers": { "requests": { # "handlers": ["file"], "handlers": ["console"], "level": "DEBUG", "propagate": False, } }, }, } if __name__ == '__main__': logging.config.dictConfig(_config["log_config"]) del _config logger = logging.getLogger(__name__) main()
29.648438
97
0.549671
e643ad353a143ce04f071646c88bd4d22490f221
1,544
py
Python
python/books/hard_way/p32/ex39.py
ShenJinXiang/example
9d3bdf73079092791d3f96d73573ee51d66774ab
[ "MIT" ]
null
null
null
python/books/hard_way/p32/ex39.py
ShenJinXiang/example
9d3bdf73079092791d3f96d73573ee51d66774ab
[ "MIT" ]
null
null
null
python/books/hard_way/p32/ex39.py
ShenJinXiang/example
9d3bdf73079092791d3f96d73573ee51d66774ab
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # create a mapping of state to abbreviation states = { 'Oregon': 'OR', 'Florida': 'FL', 'California': 'CA', 'New York': 'NY', 'Michigan': 'MI' } # create a basic set of states and some cities in them cities = {'CA': 'San Francisco', 'MI': 'Detroit', 'FL': 'Jacksonville', 'NY': 'New York', 'OR': 'Portland'} # add some more cities # print out some cities print('-' * 10) print("NY State has: ", cities['NY']); print("OR State has: ", cities['OR']); # print some states print('-' * 10) print("Michigan's abbreviation is: ", states['Michigan']) print("Florida's abbreviation is: ", states['Florida']) # do it by using the state then cities dict print('-' * 10) print("Michigan has: ", cities[states['Michigan']]) print("Florida has: ", cities[states['Florida']]) # print every state abbreviation print('-' * 10) for state, abbrev in list(states.items()): print(f"{state} is abbreviated {abbrev}") # print every city in state print('-' * 10) for abbrev, city in list(cities.items()): print(f"{abbrev} has the city {city}") # now do both at the same time print('-' * 10) for state, abbrev in list(states.items()): print(f"{state} state is abbreviated {abbrev}") print(f"and has city {cities[abbrev]}") print('-' * 10) # safely get a abbreviation by state that might not be there state = states.get('Texas') if not state: print("Sorry, no Texas.") # get a city with a default value city = cities.get('TX', 'Does Not Exist') print(f"The city for the state 'TX' is: {city}")
26.62069
107
0.646373
187f7cef9029e014e09c9e1979a02437efc73876
5,069
py
Python
tests/gateways/disk/test_delete.py
richmoore1962/conda
ef36713bfeca5b9a8505ff8ae6d7899c2d7c6306
[ "BSD-3-Clause" ]
1
2017-06-11T01:32:33.000Z
2017-06-11T01:32:33.000Z
tests/gateways/disk/test_delete.py
richmoore1962/conda
ef36713bfeca5b9a8505ff8ae6d7899c2d7c6306
[ "BSD-3-Clause" ]
1
2019-04-02T23:35:13.000Z
2019-04-02T23:35:13.000Z
tests/gateways/disk/test_delete.py
richmoore1962/conda
ef36713bfeca5b9a8505ff8ae6d7899c2d7c6306
[ "BSD-3-Clause" ]
1
2020-12-31T08:15:39.000Z
2020-12-31T08:15:39.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from errno import ENOENT import os from os.path import isdir, isfile, islink, join, lexists import pytest from conda.compat import TemporaryDirectory from conda.gateways.disk.create import create_link from conda.gateways.disk.delete import move_to_trash, rm_rf from conda.gateways.disk.link import islink, symlink from conda.gateways.disk.update import touch from conda.models.enums import LinkType from .test_permissions import _make_read_only, _try_open, tempdir def _write_file(path, content): with open(path, "a") as fh: fh.write(content) fh.close() def test_remove_file(): with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) assert isfile(test_path) _try_open(test_path) _make_read_only(test_path) pytest.raises((IOError, OSError), _try_open, test_path) assert rm_rf(test_path) assert not isfile(test_path) def test_remove_file_to_trash(): with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) assert isfile(test_path) _try_open(test_path) _make_read_only(test_path) pytest.raises((IOError, OSError), _try_open, test_path) assert rm_rf(test_path) assert not isfile(test_path) def test_remove_dir(): with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) _try_open(test_path) assert isfile(test_path) assert isdir(td) assert not islink(test_path) assert rm_rf(td) assert rm_rf(test_path) assert not isdir(td) assert not isfile(test_path) assert not lexists(test_path) def test_remove_link_to_file(): with tempdir() as td: dst_link = join(td, "test_link") src_file = join(td, "test_file") _write_file(src_file, "welcome to the ministry of silly walks") symlink(src_file, dst_link) assert isfile(src_file) assert not islink(src_file) assert islink(dst_link) assert rm_rf(dst_link) assert isfile(src_file) assert rm_rf(src_file) assert not isfile(src_file) assert not islink(dst_link) assert not lexists(dst_link) def test_remove_link_to_dir(): with tempdir() as td: dst_link = join(td, "test_link") src_dir = join(td, "test_dir") _write_file(src_dir, "welcome to the ministry of silly walks") symlink(src_dir, dst_link) assert not islink(src_dir) assert islink(dst_link) assert rm_rf(dst_link) assert not isdir(dst_link) assert not islink(dst_link) assert rm_rf(src_dir) assert not isdir(src_dir) assert not islink(src_dir) assert not lexists(dst_link) def test_rm_rf_does_not_follow_symlinks(): with TemporaryDirectory() as tmp: # make a file in some temp folder real_file = os.path.join(tmp, 'testfile') with open(real_file, 'w') as f: f.write('weee') # make a subfolder subdir = os.path.join(tmp, 'subfolder') os.makedirs(subdir) # link to the file in the subfolder link_path = join(subdir, 'file_link') create_link(real_file, link_path, link_type=LinkType.softlink) assert islink(link_path) # rm_rf the subfolder rm_rf(subdir) # assert that the file still exists in the root folder assert os.path.isfile(real_file) def test_move_to_trash(): with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) _try_open(test_path) assert isdir(td) assert isfile(test_path) move_to_trash(td, test_path) assert not isfile(test_path) def test_move_path_to_trash_couldnt(): from conda.gateways.disk.delete import move_path_to_trash with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) _try_open(test_path) assert isdir(td) assert isfile(test_path) assert move_path_to_trash(test_path) def test_backoff_unlink(): from conda.gateways.disk.delete import backoff_rmdir with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) _try_open(test_path) assert isdir(td) backoff_rmdir(td) assert not isdir(td) def test_backoff_unlink_doesnt_exist(): from conda.gateways.disk.delete import backoff_rmdir with tempdir() as td: test_path = join(td, 'test_path') touch(test_path) try: backoff_rmdir(join(test_path, 'some', 'path', 'in', 'utopia')) except Exception as e: assert e.value.errno == ENOENT def test_try_rmdir_all_empty_doesnt_exist(): from conda.gateways.disk.delete import try_rmdir_all_empty with tempdir() as td: assert isdir(td) try_rmdir_all_empty(td) assert not isdir(td)
30.353293
82
0.657526
8f800cd19c6adff568a5298e5cc74bbe6dc6cc9c
2,112
py
Python
pyoutline/outline/executor.py
srbhss/OpenCue
c0b8aeab0ea324c3c46541d98b4a968230c668eb
[ "Apache-2.0" ]
null
null
null
pyoutline/outline/executor.py
srbhss/OpenCue
c0b8aeab0ea324c3c46541d98b4a968230c668eb
[ "Apache-2.0" ]
2
2019-10-02T23:58:20.000Z
2020-03-30T19:18:48.000Z
pyoutline/outline/executor.py
srbhss/OpenCue
c0b8aeab0ea324c3c46541d98b4a968230c668eb
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 Sony Pictures Imageworks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple python thread pool.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from builtins import range from builtins import object import queue import threading import logging __all__ = ["TaskExecutor"] logger = logging.getLogger("outline.executor") class TaskExecutor(object): def __init__(self, threads): self.__queue = queue.Queue() for i in range(0, threads): logger.debug("executor creating thread #%d" % i) t = threading.Thread(target=self.worker) t.setDaemon(True) t.start() def execute(self, callable_, *args): """ Queue up a function for execution by the thread pool. """ self.__queue.put((callable_, args)) def wait(self): """ Wait until all work in the pool is complete and then return. Optionally stop the thread pool. """ self.__queue.join() def worker(self): """ Code that gets executed by the worker thread run() function. """ while True: item = self.__queue.get() try: if item[1]: item[0](*item[1]) else: item[0]() except Exception as e: logger.warn("Worker thread exception: %s" % e) self.__queue.task_done()
28.16
75
0.633523
8006931c21ea8c3f27c4af3630c7fc44db363826
1,311
py
Python
swtstore/classes/views/app.py
janastu/swtstore
7326138bf2fbf2a4ed8c7300c68092f91709dfc2
[ "BSD-2-Clause" ]
2
2015-04-28T00:35:21.000Z
2016-02-11T19:31:15.000Z
swtstore/classes/views/app.py
janastu/swtstore
7326138bf2fbf2a4ed8c7300c68092f91709dfc2
[ "BSD-2-Clause" ]
9
2015-02-02T11:24:23.000Z
2017-12-29T07:49:07.000Z
swtstore/classes/views/app.py
janastu/swtstore
7326138bf2fbf2a4ed8c7300c68092f91709dfc2
[ "BSD-2-Clause" ]
null
null
null
# -*- coding utf-8 -*- # classes/views/apps.py from flask import Module, request, render_template, redirect,\ url_for, abort from werkzeug.security import gen_salt from swtstore.classes.models import Client, User from swtstore.classes.utils import urlnorm app = Module(__name__) @app.route('/register', methods=['GET', 'POST']) def register(): current_user = User.getCurrentUser() if current_user is None: return redirect(url_for('frontend.index')) if request.method == 'GET': return render_template('app/register.html') elif request.method == 'POST': req_fields = ['name', 'host_url', 'redirect_uris', 'scopes'] for field in req_fields: if not request.form.get(field): abort(404) new_app = Client( id=gen_salt(40), client_secret=gen_salt(50), name=request.form.get('name'), description=request.form.get('desc'), user_id=current_user.id, _host_url=request.form.get('host_url'), _redirect_uris=urlnorm(request.form.get('redirect_uris')), _default_scopes=' '.join(request.form.get('scopes').split(',')), _is_private=False ) new_app.persist() return redirect(url_for('user.myApps'))
29.133333
76
0.623188
856327a242acb8b83b1abe381a66212bee36dc9c
71,690
py
Python
core/controllers/suggestion_test.py
EishaMazhar/oppia
ab4f3cf20764b27f567798e4b1184471aaf7f73b
[ "Apache-2.0" ]
1
2020-09-30T17:55:05.000Z
2020-09-30T17:55:05.000Z
core/controllers/suggestion_test.py
gitter-badger/oppia
7d8e659264582d7ce74bc6c139e597b82bca0e04
[ "Apache-2.0" ]
1
2020-05-27T06:08:17.000Z
2020-05-27T06:08:17.000Z
core/controllers/suggestion_test.py
gitter-badger/oppia
7d8e659264582d7ce74bc6c139e597b82bca0e04
[ "Apache-2.0" ]
1
2018-03-20T14:12:31.000Z
2018-03-20T14:12:31.000Z
# coding: utf-8 # # Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for suggestion controllers.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import os from constants import constants from core.domain import exp_domain from core.domain import exp_fetchers from core.domain import exp_services from core.domain import feedback_services from core.domain import fs_domain from core.domain import question_domain from core.domain import question_services from core.domain import rights_domain from core.domain import rights_manager from core.domain import skill_services from core.domain import state_domain from core.domain import story_domain from core.domain import story_services from core.domain import suggestion_services from core.domain import topic_domain from core.domain import topic_services from core.domain import user_services from core.platform import models from core.tests import test_utils import feconf import python_utils (suggestion_models, feedback_models) = models.Registry.import_models([ models.NAMES.suggestion, models.NAMES.feedback]) class SuggestionUnitTests(test_utils.GenericTestBase): IMAGE_UPLOAD_URL_PREFIX = '/createhandler/imageupload' ASSET_HANDLER_URL_PREFIX = '/assetsdevhandler' EXP_ID = 'exp1' TRANSLATION_LANGUAGE_CODE = 'en' AUTHOR_EMAIL = 'author@example.com' AUTHOR_EMAIL_2 = 'author2@example.com' REVIEWER_EMAIL = 'reviewer@example.com' TRANSLATOR_EMAIL = 'translator@example.com' NORMAL_USER_EMAIL = 'user@example.com' def setUp(self): super(SuggestionUnitTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.AUTHOR_EMAIL, 'author') self.signup(self.AUTHOR_EMAIL_2, 'author2') self.signup(self.NORMAL_USER_EMAIL, 'normalUser') self.signup(self.REVIEWER_EMAIL, 'reviewer') self.signup(self.TRANSLATOR_EMAIL, 'translator') self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.author_id_2 = self.get_user_id_from_email(self.AUTHOR_EMAIL_2) self.reviewer_id = self.get_user_id_from_email(self.REVIEWER_EMAIL) self.translator_id = self.get_user_id_from_email(self.TRANSLATOR_EMAIL) self.set_admins([self.ADMIN_USERNAME]) user_services.allow_user_to_review_translation_in_language( self.reviewer_id, 'hi') self.editor = user_services.UserActionsInfo(self.editor_id) # Login and create exploration and suggestions. self.login(self.EDITOR_EMAIL) exploration = ( self.save_new_linear_exp_with_state_names_and_interactions( self.EXP_ID, self.editor_id, ['State 1', 'State 2', 'State 3'], ['TextInput'], category='Algebra')) self.old_content = state_domain.SubtitledHtml( 'content', '<p>old content html</p>').to_dict() exploration.states['State 1'].update_content( state_domain.SubtitledHtml.from_dict(self.old_content)) exploration.states['State 2'].update_content( state_domain.SubtitledHtml.from_dict(self.old_content)) exploration.states['State 3'].update_content( state_domain.SubtitledHtml.from_dict(self.old_content)) exp_services._save_exploration(self.editor_id, exploration, '', []) # pylint: disable=protected-access rights_manager.publish_exploration(self.editor, self.EXP_ID) rights_manager.assign_role_for_exploration( self.editor, self.EXP_ID, self.owner_id, rights_domain.ROLE_EDITOR) self.new_content = state_domain.SubtitledHtml( 'content', '<p>new content html</p>').to_dict() self.resubmit_change_content = state_domain.SubtitledHtml( 'content', '<p>resubmit change content html</p>').to_dict() self.logout() self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models .SUGGESTION_TYPE_EDIT_STATE_CONTENT), 'target_type': ( suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': 'exp1', 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 1', 'old_value': self.old_content, 'new_value': self.new_content }, 'description': 'change to state 1', }, csrf_token=csrf_token) self.logout() self.login(self.AUTHOR_EMAIL_2) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models .SUGGESTION_TYPE_EDIT_STATE_CONTENT), 'target_type': ( suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': 'exp1', 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 2', 'old_value': self.old_content, 'new_value': self.new_content }, 'description': 'change to state 2', }, csrf_token=csrf_token) self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models .SUGGESTION_TYPE_EDIT_STATE_CONTENT), 'target_type': ( suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': 'exp1', 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 3', 'old_value': self.old_content, 'new_value': self.new_content }, 'description': 'change to state 3', }, csrf_token=csrf_token) self.logout() self.login(self.TRANSLATOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT), 'target_type': suggestion_models.TARGET_TYPE_EXPLORATION, 'target_id': 'exp1', 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_ADD_TRANSLATION, 'state_name': 'State 3', 'content_id': 'content', 'language_code': 'hi', 'content_html': '<p>old content html</p>', 'translation_html': '<p>In Hindi</p>' }, 'description': 'change to state 3', }, csrf_token=csrf_token) self.logout() def test_create_suggestion(self): self.login(self.AUTHOR_EMAIL_2) csrf_token = self.get_new_csrf_token() exploration = exp_fetchers.get_exploration_by_id(self.EXP_ID) self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models .SUGGESTION_TYPE_EDIT_STATE_CONTENT), 'target_type': ( suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': 'exp1', 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 3', 'new_value': self.new_content }, 'description': 'change again to state 3', }, csrf_token=csrf_token) suggestions = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'] self.assertEqual(len(suggestions), 3) self.logout() def test_create_suggestion_invalid_target_version_input(self): self.login(self.AUTHOR_EMAIL_2) csrf_token = self.get_new_csrf_token() response = self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models .SUGGESTION_TYPE_EDIT_STATE_CONTENT), 'target_type': ( suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': 'exp1', 'target_version_at_submission': 'invalid target version', 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 3', 'new_value': self.new_content }, 'description': 'change again to state 3', }, csrf_token=csrf_token, expected_status_int=400) suggestions = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'] self.assertEqual( response['error'], 'Expected target_version_at_submission to be an int, received <type' ' \'unicode\'>') self.assertEqual(len(suggestions), 2) self.logout() def test_suggestion_to_exploration_handler_with_invalid_suggestion_id(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() # Invalid format of suggestion id. response = self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], 'invalid_suggestion_id'), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'Invalid format for suggestion_id. It must contain 3 parts ' 'separated by \'.\'') csrf_token = self.get_new_csrf_token() # Suggestion does not exist. self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], 'exploration.target_id.id'), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=404) self.logout() def test_suggestion_to_exploration_handler_with_invalid_target_type(self): self.login(self.EDITOR_EMAIL) question_dict = { 'question_state_data': self._create_valid_question_data( 'default_state').to_dict(), 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': ['skill_id'], 'inapplicable_skill_misconception_ids': ['skillid12345-1'] } exp_id = 'new_exp_id' self.save_new_default_exploration(exp_id, self.editor_id) suggestion_services.create_suggestion( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION, suggestion_models.TARGET_TYPE_TOPIC, exp_id, 1, self.author_id, { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': question_dict, 'skill_id': None, 'skill_difficulty': 0.3 }, None) suggestion_id = suggestion_services.query_suggestions( [('author_id', self.author_id), ( 'target_id', exp_id)])[0].suggestion_id csrf_token = self.get_new_csrf_token() response = self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, exp_id, suggestion_id), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'This handler allows actions only on suggestions to explorations.') self.logout() def test_suggestion_to_exploration_handler_with_invalid_target_id(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] self.save_new_default_exploration('exp_id', self.editor_id) csrf_token = self.get_new_csrf_token() response = self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, 'exp_id', suggestion_to_accept['suggestion_id']), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'The exploration id provided does not match the exploration id ' 'present as part of the suggestion_id') self.logout() def test_owner_of_exploration_cannot_repond_to_own_suggestion(self): self.login(self.EDITOR_EMAIL) exp_id = 'new_exp_id' self.save_new_default_exploration(exp_id, self.editor_id) new_content = state_domain.SubtitledHtml( 'content', '<p>new content html</p>').to_dict() change_cmd = { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 1', 'new_value': new_content } suggestion_services.create_suggestion( suggestion_models.SUGGESTION_TYPE_EDIT_STATE_CONTENT, suggestion_models.TARGET_TYPE_EXPLORATION, exp_id, 1, self.editor_id, change_cmd, 'sample description') suggestion_id = suggestion_services.query_suggestions( [('author_id', self.editor_id), ( 'target_id', exp_id)])[0].suggestion_id csrf_token = self.get_new_csrf_token() response = self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, exp_id, suggestion_id), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=401) self.assertEqual( response['error'], 'You cannot accept/reject your own suggestion.') self.logout() def test_suggestion_to_exploration_handler_with_invalid_action(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() response = self.put_json( '%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), {'action': 'invalid_action'}, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'Invalid action.') self.logout() def test_reject_suggestion_to_exploration(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_reject = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_reject['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_IN_REVIEW) csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_reject['target_id'], suggestion_to_reject['suggestion_id']), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token) suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_reject['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_REJECTED) self.logout() def test_suggestion_to_exploration_handler_with_long_commit_mesage(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() response = self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'a' * (feconf.MAX_COMMIT_MESSAGE_LENGTH + 1), 'review_message': u'Accepted' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'Commit messages must be at most 1000 characters long.' ) def test_accept_suggestion(self): exploration = exp_fetchers.get_exploration_by_id(self.EXP_ID) # Test editor can accept successfully. self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] # By default, when a suggestion is accepted and the recording of scores # is enabled, the score of the author of that suggestion is increased # by 1. Therefore, by setting that increment to the minimum score # required to review, we can ensure that the author of this suggestion # has a high enough score to review suggestions in this category. This # will be used to test whether the author can review a suggestion in # the same category because of the author's high score in a later test. enable_recording_of_scores_swap = self.swap( feconf, 'ENABLE_RECORDING_OF_SCORES', True) increment_score_of_author_swap = self.swap( suggestion_models, 'INCREMENT_SCORE_OF_AUTHOR_BY', feconf.MINIMUM_SCORE_REQUIRED_TO_REVIEW) with enable_recording_of_scores_swap, increment_score_of_author_swap: csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token) suggestion_post_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] self.assertEqual( suggestion_post_accept['status'], suggestion_models.STATUS_ACCEPTED) exploration = exp_fetchers.get_exploration_by_id(self.EXP_ID) self.assertEqual( exploration.states[suggestion_to_accept[ 'change']['state_name']].content.html, suggestion_to_accept['change']['new_value']['html']) self.logout() # Testing user without permissions cannot accept. self.login(self.NORMAL_USER_EMAIL) suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'][0] csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token, expected_status_int=401) self.logout() # Testing that author cannot accept own suggestion. self.login(self.AUTHOR_EMAIL_2) suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'][0] csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token, expected_status_int=401) # Testing users with scores above threshold can accept. # The score of this author was increased to the review threshold amount # when the editor accepted a suggestion that was authored by this user. self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token) suggestion_post_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'][0] self.assertEqual( suggestion_post_accept['status'], suggestion_models.STATUS_ACCEPTED) self.logout() # Testing admins can accept suggestions. self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'][1] self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token) suggestion_post_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2))['suggestions'][1] self.assertEqual( suggestion_post_accept['status'], suggestion_models.STATUS_ACCEPTED) self.logout() def test_suggestion_list_handler_with_invalid_query_field(self): response = self.get_json( '%s?invalid_query_field=value' % ( feconf.SUGGESTION_LIST_URL_PREFIX), expected_status_int=400) self.assertEqual( response['error'], 'Not allowed to query on field invalid_query_field') def test_suggestion_list_handler(self): suggestions = self.get_json( '%s?author_id=%s&target_type=%s&target_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id_2, suggestion_models.TARGET_TYPE_EXPLORATION, self.EXP_ID) )['suggestions'] self.assertEqual(len(suggestions), 2) def test_cannot_resubmit_suggestion_with_invalid_suggestion_id(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() response = self.put_json( '%s/resubmit/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, 'invalid_suggestion_id'), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'No suggestion found with given suggestion id') def test_resubmit_rejected_suggestion(self): self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() suggestion = suggestion_services.query_suggestions( [('author_id', self.author_id), ('target_id', self.EXP_ID)])[0] suggestion_services.reject_suggestion( suggestion.suggestion_id, self.reviewer_id, 'reject message') self.logout() self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.put_json('%s/resubmit/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion.suggestion_id), { 'summary_message': 'summary message', 'action': u'resubmit', 'change': { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 1', 'new_value': self.resubmit_change_content, 'old_value': self.old_content } }, csrf_token=csrf_token) suggestion = suggestion_services.query_suggestions( [('author_id', self.author_id), ('target_id', self.EXP_ID)])[0] self.assertEqual( suggestion.status, suggestion_models.STATUS_IN_REVIEW) self.assertEqual( suggestion.change.new_value['html'], self.resubmit_change_content['html']) self.assertEqual( suggestion.change.cmd, exp_domain.CMD_EDIT_STATE_PROPERTY) self.assertEqual( suggestion.change.property_name, exp_domain.STATE_PROPERTY_CONTENT) self.assertEqual( suggestion.change.state_name, 'State 1') self.logout() def test_translation_accept_suggestion_by_reviewer(self): # Test reviewer can accept successfully. self.login(self.REVIEWER_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.translator_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted' }, csrf_token=csrf_token) suggestion_post_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.translator_id))['suggestions'][0] self.assertEqual( suggestion_post_accept['status'], suggestion_models.STATUS_ACCEPTED) self.logout() def test_translation_suggestion_creation_with_new_images(self): exp_id = '12345678exp1' exploration = ( self.save_new_linear_exp_with_state_names_and_interactions( exp_id, self.editor_id, ['State 1'], ['EndExploration'], category='Algebra')) state_content_dict = { 'content_id': 'content', 'html': ( '<oppia-noninteractive-image filepath-with-value=' '"&quot;img.png&quot;" caption-with-value="&quot;&quot;" ' 'alt-with-value="&quot;Image&quot;">' '</oppia-noninteractive-image>') } self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() with python_utils.open_file( os.path.join(feconf.TESTS_DATA_DIR, 'img.png'), 'rb', encoding=None) as f: raw_image = f.read() self.post_json( '%s/exploration/%s' % (self.IMAGE_UPLOAD_URL_PREFIX, exp_id), {'filename': 'img.png'}, csrf_token=csrf_token, upload_files=(('image', 'unused_filename', raw_image),)) exp_services.update_exploration( self.editor_id, exp_id, [exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 1', 'new_value': state_content_dict })], 'Changes content.') rights_manager.publish_exploration(self.editor, exp_id) exploration = exp_fetchers.get_exploration_by_id(exp_id) text_to_translate = exploration.states['State 1'].content.html self.logout() fs = fs_domain.AbstractFileSystem( fs_domain.GcsFileSystem(feconf.ENTITY_TYPE_EXPLORATION, exp_id)) self.assertTrue(fs.isfile('image/img.png')) self.login(self.TRANSLATOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT), 'target_type': suggestion_models.TARGET_TYPE_EXPLORATION, 'target_id': exp_id, 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_ADD_TRANSLATION, 'state_name': 'State 1', 'content_id': 'content', 'language_code': 'hi', 'content_html': text_to_translate, 'translation_html': ( '<oppia-noninteractive-image filepath-with-value=' '"&quot;translation_image.png&quot;" ' 'caption-with-value="&quot;&quot;" ' 'alt-with-value="&quot;Image&quot;">' '</oppia-noninteractive-image>') }, }, csrf_token=csrf_token, upload_files=( ('translation_image.png', 'translation_image.png', raw_image), ) ) fs = fs_domain.AbstractFileSystem( fs_domain.GcsFileSystem( feconf.IMAGE_CONTEXT_EXPLORATION_SUGGESTIONS, exp_id)) self.assertTrue(fs.isfile('image/img.png')) self.assertTrue(fs.isfile('image/img_compressed.png')) self.assertTrue(fs.isfile('image/translation_image.png')) self.assertTrue(fs.isfile('image/img_compressed.png')) suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.translator_id))['suggestions'][0] self.logout() self.login(self.EDITOR_EMAIL) csrf_token = self.get_new_csrf_token() self.put_json('%s/exploration/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'Translated content of State 1', 'review_message': u'This looks good!', }, csrf_token=csrf_token) fs = fs_domain.AbstractFileSystem( fs_domain.GcsFileSystem(feconf.ENTITY_TYPE_EXPLORATION, exp_id)) self.assertTrue(fs.isfile('image/img.png')) self.assertTrue(fs.isfile('image/translation_image.png')) self.assertTrue(fs.isfile('image/img_compressed.png')) class QuestionSuggestionTests(test_utils.GenericTestBase): AUTHOR_EMAIL = 'author@example.com' AUTHOR_EMAIL_2 = 'author2@example.com' # Needs to be 12 characters long. SKILL_ID = 'skill1234567' SKILL_DESCRIPTION = 'skill to link question to' def setUp(self): super(QuestionSuggestionTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.AUTHOR_EMAIL, 'author') self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.save_new_skill( self.SKILL_ID, self.admin_id, description=self.SKILL_DESCRIPTION) self.question_dict = { 'question_state_data': self._create_valid_question_data( 'default_state').to_dict(), 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': [self.SKILL_ID], 'inapplicable_skill_misconception_ids': ['skillid12345-1'] } self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': self.SKILL_ID, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token) self.logout() def test_query_question_suggestions(self): suggestions = self.get_json( '%s?suggestion_type=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, suggestion_models.SUGGESTION_TYPE_ADD_QUESTION) )['suggestions'] self.assertEqual(len(suggestions), 1) suggestion = suggestions[0] self.assertEqual( suggestion['suggestion_type'], suggestion_models.SUGGESTION_TYPE_ADD_QUESTION) self.assertEqual(suggestion['target_id'], self.SKILL_ID) self.assertEqual( suggestion['target_type'], suggestion_models.TARGET_TYPE_SKILL) self.assertEqual( suggestion['change']['cmd'], question_domain.CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION) def test_accept_question_suggestion(self): suggestion_to_accept = self.get_json( '%s?suggestion_type=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, suggestion_models.SUGGESTION_TYPE_ADD_QUESTION) )['suggestions'][0] self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): self.put_json('%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'This looks good!', 'skill_id': self.SKILL_ID }, csrf_token=csrf_token) suggestion_post_accept = self.get_json( '%s?suggestion_type=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, suggestion_models.SUGGESTION_TYPE_ADD_QUESTION) )['suggestions'][0] self.assertEqual( suggestion_post_accept['status'], suggestion_models.STATUS_ACCEPTED) ( questions, merged_question_skill_links, _) = ( question_services.get_displayable_question_skill_link_details( 1, [self.SKILL_ID], '')) self.assertEqual(len(questions), 1) self.assertEqual( merged_question_skill_links[0].skill_descriptions, [self.SKILL_DESCRIPTION]) self.assertEqual( merged_question_skill_links[0].skill_difficulties, [0.3]) self.assertEqual( questions[0].question_content, self.question_dict['question_state_data']['content']['html'] ) thread_messages = feedback_services.get_messages( suggestion_to_accept['suggestion_id']) last_message = thread_messages[len(thread_messages) - 1] self.assertEqual(last_message.text, 'This looks good!') def test_suggestion_creation_with_valid_images(self): self.save_new_skill( 'skill_id2', self.admin_id, description='description') question_state_data_dict = self._create_valid_question_data( 'default_state').to_dict() valid_html = ( '<oppia-noninteractive-math math_content-with-value="{&amp;q' 'uot;raw_latex&amp;quot;: &amp;quot;(x - a_1)(x - a_2)(x - a' '_3)...(x - a_n-1)(x - a_n)&amp;quot;, &amp;quot;svg_filenam' 'e&amp;quot;: &amp;quot;file.svg&amp;quot;}"></oppia-noninte' 'ractive-math>' ) question_state_data_dict['content']['html'] = valid_html self.question_dict = { 'question_state_data': question_state_data_dict, 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': ['skill_id2'], 'inapplicable_skill_misconception_ids': [] } self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() with python_utils.open_file( os.path.join(feconf.TESTS_DATA_DIR, 'test_svg.svg'), 'rb', encoding=None) as f: raw_image = f.read() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': self.SKILL_ID, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token, upload_files=( ('file.svg', 'file.svg', raw_image), )) self.logout() def test_suggestion_creation_when_images_are_not_provided(self): self.save_new_skill( 'skill_id2', self.admin_id, description='description') question_state_data_dict = self._create_valid_question_data( 'default_state').to_dict() valid_html = ( '<oppia-noninteractive-math math_content-with-value="{&amp;q' 'uot;raw_latex&amp;quot;: &amp;quot;(x - a_1)(x - a_2)(x - a' '_3)...(x - a_n-1)(x - a_n)&amp;quot;, &amp;quot;svg_filenam' 'e&amp;quot;: &amp;quot;file.svg&amp;quot;}"></oppia-noninte' 'ractive-math>' ) question_state_data_dict['content']['html'] = valid_html self.question_dict = { 'question_state_data': question_state_data_dict, 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': ['skill_id2'], 'inapplicable_skill_misconception_ids': [] } self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() response_dict = self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': self.SKILL_ID, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token, expected_status_int=400) self.assertIn( 'No image data provided for file with name file.svg.', response_dict['error']) self.logout() def test_suggestion_creation_when_images_are_not_valid(self): self.save_new_skill( 'skill_id2', self.admin_id, description='description') question_state_data_dict = self._create_valid_question_data( 'default_state').to_dict() valid_html = ( '<oppia-noninteractive-math math_content-with-value="{&amp;q' 'uot;raw_latex&amp;quot;: &amp;quot;(x - a_1)(x - a_2)(x - a' '_3)...(x - a_n-1)(x - a_n)&amp;quot;, &amp;quot;svg_filenam' 'e&amp;quot;: &amp;quot;file.svg&amp;quot;}"></oppia-noninte' 'ractive-math>' ) question_state_data_dict['content']['html'] = valid_html self.question_dict = { 'question_state_data': question_state_data_dict, 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': ['skill_id2'], 'inapplicable_skill_misconception_ids': [] } self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() large_image = '<svg><path d="%s" /></svg>' % ( 'M150 0 L75 200 L225 200 Z ' * 4000) response_dict = self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': self.SKILL_ID, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token, upload_files=( ('file.svg', 'file.svg', large_image),), expected_status_int=400) self.assertIn( 'Image exceeds file size limit of 100 KB.', response_dict['error']) self.logout() class SkillSuggestionTests(test_utils.GenericTestBase): AUTHOR_EMAIL = 'author@example.com' REVIEWER_EMAIL = 'reviewer@example.com' def setUp(self): super(SkillSuggestionTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.AUTHOR_EMAIL, 'author') self.signup(self.REVIEWER_EMAIL, 'reviewer') self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.reviewer_id = self.get_user_id_from_email(self.REVIEWER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) user_services.allow_user_to_review_question(self.reviewer_id) self.skill_id = skill_services.get_new_skill_id() self.save_new_skill( self.skill_id, self.admin_id, description='Description') self.question_dict = { 'question_state_data': self._create_valid_question_data( 'default_state').to_dict(), 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': [self.skill_id], 'inapplicable_skill_misconception_ids': ['skillid12345-1'] } self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.skill_id, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': self.skill_id, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token) self.logout() def test_cannot_access_suggestion_to_skill_handler(self): self.login(self.ADMIN_EMAIL) thread_id = feedback_services.create_thread( suggestion_models.TARGET_TYPE_QUESTION, self.skill_id, self.author_id, 'description', '', has_suggestion=True) csrf_token = self.get_new_csrf_token() self.put_json( '%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, self.skill_id, thread_id), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.logout() def test_suggestion_to_skill_handler_with_invalid_target_type(self): self.login(self.ADMIN_EMAIL) exp_id = 'new_exp_id' self.save_new_default_exploration(exp_id, self.admin_id) new_content = state_domain.SubtitledHtml( 'content', '<p>new content html</p>').to_dict() change_cmd = { 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'State 1', 'new_value': new_content } suggestion_services.create_suggestion( suggestion_models.SUGGESTION_TYPE_EDIT_STATE_CONTENT, suggestion_models.TARGET_TYPE_EXPLORATION, exp_id, 1, self.author_id, change_cmd, 'sample description') suggestion_id = suggestion_services.query_suggestions( [('author_id', self.author_id), ( 'target_id', exp_id)])[0].suggestion_id csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): response = self.put_json( '%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, self.skill_id, suggestion_id), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'This handler allows actions only on suggestions to skills.') self.logout() def test_suggestion_to_skill_handler_with_invalid_target_id(self): self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): response = self.put_json( '%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, 'skill_id', suggestion_to_accept['suggestion_id']), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'The skill id provided does not match the skill id ' 'present as part of the suggestion_id') self.logout() def test_suggestion_to_skill_handler_with_invalid_action(self): self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): response = self.put_json( '%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), {'action': 'invalid_action'}, csrf_token=csrf_token, expected_status_int=400) self.assertEqual( response['error'], 'Invalid action.') self.logout() def test_reject_suggestion_to_skill(self): self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_reject = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_reject['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_IN_REVIEW) csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): self.put_json('%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_reject['target_id'], suggestion_to_reject['suggestion_id']), { 'action': u'reject', 'review_message': u'Rejected!' }, csrf_token=csrf_token) suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_reject['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_REJECTED) self.logout() def test_accept_suggestion_to_skill(self): self.login(self.ADMIN_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_accept['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_IN_REVIEW) csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): self.put_json('%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted!', 'skill_id': self.skill_id }, csrf_token=csrf_token) suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_accept['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_ACCEPTED) self.logout() def test_reviewer_accept_suggestion_to_skill(self): self.login(self.REVIEWER_EMAIL) csrf_token = self.get_new_csrf_token() suggestion_to_accept = self.get_json( '%s?author_id=%s' % ( feconf.SUGGESTION_LIST_URL_PREFIX, self.author_id))['suggestions'][0] suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_accept['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_IN_REVIEW) csrf_token = self.get_new_csrf_token() with self.swap(constants, 'ENABLE_NEW_STRUCTURE_VIEWER_UPDATES', True): self.put_json('%s/skill/%s/%s' % ( feconf.SUGGESTION_ACTION_URL_PREFIX, suggestion_to_accept['target_id'], suggestion_to_accept['suggestion_id']), { 'action': u'accept', 'commit_message': u'commit message', 'review_message': u'Accepted!', 'skill_id': self.skill_id }, csrf_token=csrf_token) suggestion = suggestion_services.get_suggestion_by_id( suggestion_to_accept['suggestion_id']) self.assertEqual( suggestion.status, suggestion_models.STATUS_ACCEPTED) self.logout() class UserSubmittedSuggestionsHandlerTest(test_utils.GenericTestBase): """Unit test for the UserSubmittedSuggestionsHandler.""" AUTHOR_EMAIL = 'author@example.com' def setUp(self): super(UserSubmittedSuggestionsHandlerTest, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.AUTHOR_EMAIL, 'author') self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.TOPIC_ID = 'topic' self.STORY_ID = 'story' self.EXP_ID = 'exp1' # Needs to be 12 characters long. self.SKILL_ID = 'skill1234567' self.SKILL_DESCRIPTION = 'skill to link question to' exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id, title='Exploration title', category='Algebra', end_state_name='End State') self.publish_exploration(self.owner_id, self.EXP_ID) topic = topic_domain.Topic.create_default_topic( self.TOPIC_ID, 'topic', 'abbrev', 'description') topic.thumbnail_filename = 'thumbnail.svg' topic.thumbnail_bg_color = '#C6DCDA' topic.subtopics = [ topic_domain.Subtopic( 1, 'Title', ['skill_id_333'], 'image.svg', constants.ALLOWED_THUMBNAIL_BG_COLORS['subtopic'][0], 'dummy-subtopic-three')] topic.next_subtopic_id = 2 topic_services.save_new_topic(self.owner_id, topic) topic_services.publish_topic(self.TOPIC_ID, self.admin_id) story = story_domain.Story.create_default_story( self.STORY_ID, 'A story', 'Description', self.TOPIC_ID, 'story-a') story_services.save_new_story(self.owner_id, story) topic_services.add_canonical_story( self.owner_id, self.TOPIC_ID, self.STORY_ID) topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.admin_id) story_services.update_story( self.owner_id, self.STORY_ID, [story_domain.StoryChange({ 'cmd': 'add_story_node', 'node_id': 'node_1', 'title': 'Node1', }), story_domain.StoryChange({ 'cmd': 'update_story_node_property', 'property_name': 'exploration_id', 'node_id': 'node_1', 'old_value': None, 'new_value': self.EXP_ID })], 'Changes.') self.save_new_skill( self.SKILL_ID, self.owner_id, description=self.SKILL_DESCRIPTION) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.reviewer_id = self.editor_id self.set_admins([self.ADMIN_USERNAME]) self.editor = user_services.UserActionsInfo(self.editor_id) # Login and create exploration and suggestions. self.login(self.EDITOR_EMAIL) exp_services.update_exploration( self.owner_id, self.EXP_ID, [ exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'Introduction', 'new_value': { 'content_id': 'content', 'html': '<p>new content html</p>' } })], 'Add content') self.logout() self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT), 'target_type': (suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': self.EXP_ID, 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_ADD_TRANSLATION, 'state_name': 'Introduction', 'content_id': 'content', 'language_code': 'hi', 'content_html': '<p>new content html</p>', 'translation_html': '<p>new content html in Hindi</p>' }, 'description': 'Adds translation', }, csrf_token=csrf_token) self.question_dict = { 'question_state_data': self._create_valid_question_data( 'default_state').to_dict(), 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': [self.SKILL_ID], 'inapplicable_skill_misconception_ids': ['skillid12345-1'] } self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': None, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token) self.logout() def test_exploration_handler_returns_data(self): self.login(self.AUTHOR_EMAIL) response = self.get_json( '/getsubmittedsuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.assertEqual(len(response['target_id_to_opportunity_dict']), 1) response = self.get_json( '/getsubmittedsuggestions/topic/translate_content') self.assertEqual(response, {}) def test_skill_handler_returns_data(self): self.login(self.AUTHOR_EMAIL) response = self.get_json( '/getsubmittedsuggestions/skill/add_question') self.assertEqual(len(response['suggestions']), 1) self.assertEqual(len(response['target_id_to_opportunity_dict']), 1) response = self.get_json( '/getsubmittedsuggestions/topic/add_question') self.assertEqual(response, {}) def test_handler_with_invalid_suggestion_type_raise_error(self): self.login(self.AUTHOR_EMAIL) response = self.get_json( '/getsubmittedsuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.get_json( '/getsubmittedsuggestions/exploration/invalid_suggestion_type', expected_status_int=400) def test_handler_with_invalid_target_type_raise_error(self): self.login(self.AUTHOR_EMAIL) response = self.get_json( '/getsubmittedsuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.get_json( '/getsubmittedsuggestions/invalid_target_type' '/translate_content', expected_status_int=400) class ReviewableSuggestionsHandlerTest(test_utils.GenericTestBase): """Unit test for the ReviewableSuggestionsHandler.""" def setUp(self): super(ReviewableSuggestionsHandlerTest, self).setUp() self.AUTHOR_EMAIL = 'author@example.com' self.REVIEWER_EMAIL = 'reviewer@example.com' self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.signup(self.AUTHOR_EMAIL, 'author') self.signup(self.REVIEWER_EMAIL, 'reviewer') self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.author_id = self.get_user_id_from_email(self.AUTHOR_EMAIL) self.reviewer_id = self.get_user_id_from_email(self.REVIEWER_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.editor = user_services.UserActionsInfo(self.editor_id) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.TOPIC_ID = 'topic' self.STORY_ID = 'story' self.EXP_ID = 'exp1' # Needs to be 12 characters long. self.SKILL_ID = 'skill1234567' self.SKILL_DESCRIPTION = 'skill to link question to' exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id, title='Exploration title', category='Algebra', end_state_name='End State') self.publish_exploration(self.owner_id, self.EXP_ID) topic = topic_domain.Topic.create_default_topic( self.TOPIC_ID, 'topic', 'abbrev', 'description') topic.thumbnail_filename = 'thumbnail.svg' topic.thumbnail_bg_color = '#C6DCDA' topic.subtopics = [ topic_domain.Subtopic( 1, 'Title', ['skill_id_333'], 'image.svg', constants.ALLOWED_THUMBNAIL_BG_COLORS['subtopic'][0], 'dummy-subtopic-three')] topic.next_subtopic_id = 2 topic_services.save_new_topic(self.owner_id, topic) topic_services.publish_topic(self.TOPIC_ID, self.admin_id) story = story_domain.Story.create_default_story( self.STORY_ID, 'A story', 'Description', self.TOPIC_ID, 'story-b') story_services.save_new_story(self.owner_id, story) topic_services.add_canonical_story( self.owner_id, self.TOPIC_ID, self.STORY_ID) topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.admin_id) story_services.update_story( self.owner_id, self.STORY_ID, [story_domain.StoryChange({ 'cmd': 'add_story_node', 'node_id': 'node_1', 'title': 'Node1', }), story_domain.StoryChange({ 'cmd': 'update_story_node_property', 'property_name': 'exploration_id', 'node_id': 'node_1', 'old_value': None, 'new_value': self.EXP_ID })], 'Changes.') self.save_new_skill( self.SKILL_ID, self.owner_id, description=self.SKILL_DESCRIPTION) user_services.allow_user_to_review_question(self.reviewer_id) user_services.allow_user_to_review_translation_in_language( self.reviewer_id, 'hi') # Login and update exploration and suggestions. self.login(self.EDITOR_EMAIL) exp_services.update_exploration( self.owner_id, self.EXP_ID, [ exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'Introduction', 'new_value': { 'content_id': 'content', 'html': '<p>new content html</p>' } })], 'Add content') self.logout() self.login(self.AUTHOR_EMAIL) csrf_token = self.get_new_csrf_token() self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT), 'target_type': (suggestion_models.TARGET_TYPE_EXPLORATION), 'target_id': self.EXP_ID, 'target_version_at_submission': exploration.version, 'change': { 'cmd': exp_domain.CMD_ADD_TRANSLATION, 'state_name': 'Introduction', 'content_id': 'content', 'language_code': 'hi', 'content_html': '<p>new content html</p>', 'translation_html': '<p>new content html in Hindi</p>' }, 'description': 'Adds translation', }, csrf_token=csrf_token) self.question_dict = { 'question_state_data': self._create_valid_question_data( 'default_state').to_dict(), 'language_code': 'en', 'question_state_data_schema_version': ( feconf.CURRENT_STATE_SCHEMA_VERSION), 'linked_skill_ids': [self.SKILL_ID], 'inapplicable_skill_misconception_ids': ['skillid12345-1'] } self.post_json( '%s/' % feconf.SUGGESTION_URL_PREFIX, { 'suggestion_type': ( suggestion_models.SUGGESTION_TYPE_ADD_QUESTION), 'target_type': suggestion_models.TARGET_TYPE_SKILL, 'target_id': self.SKILL_ID, 'target_version_at_submission': 1, 'change': { 'cmd': ( question_domain .CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION), 'question_dict': self.question_dict, 'skill_id': None, 'skill_difficulty': 0.3 }, 'description': 'Add new question to skill' }, csrf_token=csrf_token) self.logout() def test_exploration_handler_returns_data(self): self.login(self.REVIEWER_EMAIL) response = self.get_json( '/getreviewablesuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.assertEqual(len(response['target_id_to_opportunity_dict']), 1) response = self.get_json( '/getreviewablesuggestions/topic/translate_content') self.assertEqual(response, {}) def test_skill_handler_returns_data(self): self.login(self.REVIEWER_EMAIL) response = self.get_json( '/getreviewablesuggestions/skill/add_question') self.assertEqual(len(response['suggestions']), 1) self.assertEqual(len(response['target_id_to_opportunity_dict']), 1) response = self.get_json( '/getreviewablesuggestions/topic/add_question') self.assertEqual(response, {}) def test_handler_with_invalid_suggestion_type_raise_error(self): self.login(self.REVIEWER_EMAIL) response = self.get_json( '/getreviewablesuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.get_json( '/getreviewablesuggestions/exploration/invalid_suggestion_type', expected_status_int=404) def test_handler_with_invalid_target_type_raise_error(self): self.login(self.REVIEWER_EMAIL) response = self.get_json( '/getreviewablesuggestions/exploration/translate_content') self.assertEqual(len(response['suggestions']), 1) self.get_json( '/getreviewablesuggestions/invalid_target_type' '/translate_content', expected_status_int=400)
41.391455
111
0.60205
db2b70ef1b086a4f2912233a9df83803b5a5843a
6,528
py
Python
bpy_lambda/2.78/scripts/addons_contrib/cmu_mocap_browser/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
null
null
null
bpy_lambda/2.78/scripts/addons_contrib/cmu_mocap_browser/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
null
null
null
bpy_lambda/2.78/scripts/addons_contrib/cmu_mocap_browser/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
1
2019-11-24T18:43:42.000Z
2019-11-24T18:43:42.000Z
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> # This script was developed with financial support from the Foundation for # Science and Technology of Portugal, under the grant SFRH/BD/66452/2009. bl_info = { "name": "Carnegie Mellon University Mocap Library Browser", "author": "Daniel Monteiro Basso <daniel@basso.inf.br>", "version": (2015, 3, 20), "blender": (2, 66, 6), "location": "View3D > Tools", "description": "Assistant for using CMU Motion Capture data", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/3D_interaction/CMU_Mocap_Library_Browser", "tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/", "category": "Animation"} if 'bpy' in locals(): import importlib library = importlib.reload(library) download = importlib.reload(download) makehuman = importlib.reload(makehuman) data = importlib.reload(data) else: from . import library from . import download from . import makehuman from . import data import os import bpy class CMUMocapSubjectBrowser(bpy.types.Panel): bl_idname = "object.cmu_mocap_subject_browser" bl_label = "CMU Mocap Subject Browser" bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_category = 'Animation' bl_options = {'DEFAULT_CLOSED'} def draw(self, context): data.initialize_subjects(context) layout = self.layout cml = context.user_preferences.addons['cmu_mocap_browser'].preferences layout.template_list("UI_UL_list", "SB", cml, "subject_list", cml, "subject_active") layout.prop(cml, "subject_import_name") if cml.subject_active != -1: sidx = cml.subject_list[cml.subject_active].idx remote_fname = library.skeleton_url.format(sidx) tid = "{0:02d}".format(sidx) local_path = os.path.expanduser(cml.local_storage) if cml.follow_structure: local_path = os.path.join(local_path, tid) local_fname = os.path.join(local_path, tid + ".asf") do_import = False if os.path.exists(local_fname): label = "Import Selected" do_import = True elif cml.automatically_import: label = "Download and Import Selected" else: label = "Download Selected" props = layout.operator("mocap.download_import", text=label, icon='ARMATURE_DATA') props.remote_file = remote_fname props.local_file = local_fname props.do_import = do_import class CMUMocapMotionBrowser(bpy.types.Panel): bl_idname = "object.cmu_mocap_motion_browser" bl_label = "CMU Mocap Motion Browser" bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_category = 'Animation' bl_options = {'DEFAULT_CLOSED'} def draw(self, context): layout = self.layout cml = context.user_preferences.addons['cmu_mocap_browser'].preferences layout.template_list("UI_UL_list", "MB", cml, "motion_list", cml, "motion_active") if cml.motion_active == -1: return sidx = cml.subject_list[cml.subject_active].idx midx = cml.motion_list[cml.motion_active].idx motion = library.subjects[sidx]['motions'][midx] fps = motion['fps'] ifps = fps // cml.frame_skip row = layout.row() row.column().label("Original: {0:d} fps.".format(fps)) row.column().label("Importing: {0:d} fps.".format(ifps)) layout.prop(cml, "frame_skip") layout.prop(cml, "cloud_scale") remote_fname = library.motion_url.format(sidx, midx) tid = "{0:02d}".format(sidx) local_path = os.path.expanduser(cml.local_storage) if cml.follow_structure: local_path = os.path.join(local_path, tid) for target, icon, ext in ( ('Motion Data', 'POSE_DATA', 'amc'), ('Marker Cloud', 'EMPTY_DATA', 'c3d'), ('Movie', 'FILE_MOVIE', 'mpg')): action = "Import" if ext != 'mpg' else "Open" fname = "{0:02d}_{1:02d}.{2}".format(sidx, midx, ext) local_fname = os.path.join(local_path, fname) do_import = False if os.path.exists(local_fname): label = "{0} {1}".format(action, target) do_import = True elif cml.automatically_import: label = "Download and {0} {1}".format(action, target) else: label = "Download {0}".format(target) row = layout.row() props = row.operator("mocap.download_import", text=label, icon=icon) props.remote_file = remote_fname + ext props.local_file = local_fname props.do_import = do_import row.active = ext in motion['files'] class CMUMocapToMakeHuman(bpy.types.Panel): bl_idname = "object.cmu_mocap_makehuman" bl_label = "CMU Mocap to MakeHuman" bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_category = 'Animation' bl_options = {'DEFAULT_CLOSED'} def draw(self, context): layout = self.layout cml = context.user_preferences.addons['cmu_mocap_browser'].preferences layout.prop_search(cml, "floor", context.scene, "objects") layout.prop(cml, "feet_angle") layout.operator("object.cmu_align", text='Align armatures') layout.operator("object.cmu_transfer", text='Transfer animation') def register(): bpy.utils.register_module(__name__) def unregister(): bpy.utils.unregister_module(__name__) if __name__ == "__main__": register()
37.734104
80
0.633885
3524ddca590cbb63983c3249f1b5ccf01c782510
6,894
py
Python
this is crazy airline 6 upgraded.py
Abhay-Sastha-S/twitter-sentiment-analysis-cbse
4bb39ef645cc00df332d33f56adc214ce81b2397
[ "MIT" ]
null
null
null
this is crazy airline 6 upgraded.py
Abhay-Sastha-S/twitter-sentiment-analysis-cbse
4bb39ef645cc00df332d33f56adc214ce81b2397
[ "MIT" ]
null
null
null
this is crazy airline 6 upgraded.py
Abhay-Sastha-S/twitter-sentiment-analysis-cbse
4bb39ef645cc00df332d33f56adc214ce81b2397
[ "MIT" ]
null
null
null
import pandas as pd project_data_file_raw = open("C:/Users/MSI/Desktop/project_twitter_data updated.csv") results_data_file = open("C:/Users/MSI/Desktop/resulting_data.csv", "w+") project_data_file = open("C:/Users/MSI/Desktop/project_twitter_data_filtered.csv", 'r+') project_data_file.truncate(0) results_data_file.truncate(0) #csv1 = pd.read_csv("C:/Users/MSI/Desktop/project_twitter_data updated.csv") #print(csv1.head()) punctuation_chars = ["'", '"', ",", ".", "!", ":", ";", '#', '@'] # lists of words to use positive_words = [] with open("C:/Users/MSI/Desktop/positive_words.txt") as pos_words_list: for lin in pos_words_list: if lin[0] != ';' and lin[0] != '\n': positive_words.append(lin.strip()) def get_pos(str_sentences): str_sentences = remove_punctuation(str_sentences) list_str_sentences = str_sentences.split() count = 0 for word in list_str_sentences: for positiveWord in positive_words: if word == positiveWord: count += 1 return count negative_words = [] with open("C:/Users/MSI/Desktop/negative_words.txt") as neg_words_list: for lin in neg_words_list: if lin[0] != ';' and lin[0] != '\n': negative_words.append(lin.strip()) def get_neg(str_sentences): str_sentences = remove_punctuation(str_sentences) list_str_sentences = str_sentences.split() count = 0 for word in list_str_sentences: for negativeWord in negative_words: if word == negativeWord: count += 1 return count def remove_punctuation(str_word): for charPunct in punctuation_chars: str_word = str_word.replace(charPunct, "") return str_word def write_in_data_file(resultingdatafile, pos_count=0, neg_count=0, neut_count=0, tweet_count=0): search_in_data_file(project_data_file) resultingdatafile.write( "Tweet ID, Tweet Text, Number of Retweets, Number of Replies, Positive Score, Negative Score, Net Score, " "Sentiment, Created On, Location Coord") resultingdatafile.write("\n") lines_project_data_file = project_data_file.readlines() #header_dont_used = lines_project_data_file.pop(0) #print(header_dont_used) #print("\n", "Sample Data of Tweets", '\n', lines_project_data_file, "\n") for lines_tweet_data in lines_project_data_file: list_tweet_data = lines_tweet_data.strip().split(',') #print("TWEET TEXT--", list_tweet_data[0], "\n", "-- Retweet Count", list_tweet_data[1], "-- Reply Count", # list_tweet_data[2]) # create a variable to store the tweet text, list_tweet_data[0] is the tweet text tweettext = list_tweet_data[0] tweetlocation = list_tweet_data[4] tweetcreated = list_tweet_data[5] tweetid = list_tweet_data[3] net_score = get_pos(list_tweet_data[0]) - get_neg(list_tweet_data[0]) x = 0 tweet_count += 1 print(tweet_count) if net_score > 0: x = "positive" pos_count += 1 elif net_score < 0: x = "negative" neg_count += 1 elif net_score == 0: x = "neutral" neut_count += 1 resultingdatafile.write( f"{tweetid}, {tweettext}, {list_tweet_data[1]}, {list_tweet_data[2]}, {get_pos(list_tweet_data[0])}, {get_neg(list_tweet_data[0])}, {(get_pos(list_tweet_data[0]) - get_neg(list_tweet_data[0]))}, {x}, {tweetcreated}, {tweetlocation} ") resultingdatafile.write("\n") if tweet_count > 0: print("\n", "total no of tweets -", tweet_count, "\n", "no of positive tweets -", pos_count, "\n", "no of negative counts -", neg_count, "\n", "no of neutral tweets -", neut_count, "\n") print("\n", "Percentage of postive tweets -", ((pos_count / tweet_count) * 100), "%", "\n", "Percentage of negative tweets -", ((neg_count / tweet_count) * 100), "%", "\n", "Percentage of neutral tweets -", ((neut_count / tweet_count) * 100), "%", "\n") elif tweet_count == 0 or tweet_count < 0: print("\n", "NO RESULTS FOR CHOSEN SEARCH, CHOOSE ANOTHER SEARCH TERM ", "\n") ##graphing def search_in_data_file(searchdatafile, search_word= input('enter search term --')): searchdatafile.write( "Tweet Text, Number of Retweets, Number of Replies, Tweet ID, Location Coord, Created On") searchdatafile.write("\n") lines_project_data_file_search = project_data_file_raw.readlines() #header_dont_used_search = lines_project_data_file_search.pop(0) #print(header_dont_used_search) #print("\n", "Sample Data of Tweets", '\n', lines_project_data_file_search, "\n") list_tweet_data_search = [] tweet_text_words = [] data_line_current = [] search_condition = 0 for lines_tweet_data_search in lines_project_data_file_search: count = 0 list_tweet_data_temp = lines_tweet_data_search.strip().split(',') list_tweet_data_search.append(lines_tweet_data_search.strip().split(',')) #print(list_tweet_data_search) #print('\n') # create a variable to store the tweet text, list_tweet_data[0] is the tweet text data_line_current = list_tweet_data_search[count] #print(data_line_current) tweet_text = 0 tweet_text = data_line_current[0] #print(tweet_text) tweet_text_words = tweet_text.split() #print("here is the one -", "\n", tweet_text_words) #search_condition = 0 for tweettext_search in tweet_text_words: if tweettext_search == search_word: searchdatafile.write( f"{list_tweet_data_temp[0]}, {list_tweet_data_temp[1]}, {list_tweet_data_temp[2]}, {list_tweet_data_temp[3]}, {list_tweet_data_temp[4]}, {list_tweet_data_temp[5]}") searchdatafile.write("\n") search_condition = 1 if search_condition == 0: print("\n", "NO SEARCH TERM SPOTTED", "\n") elif search_condition == 1: print("\n", "SEARCH TERM SPOTTED", "\n") list_tweet_data_search.pop(0) write_in_data_file(results_data_file) project_data_file.close() results_data_file.close() project_data_file_raw.close() #csv2 = pd.read_csv("C:/Users/MSI/Desktop/resulting_data.csv") #print("\n", "Sample Result Data of Tweets-- ", '\n', csv2.head(), "\n") if search_print_count != 1 and search_print_count > 1: pass # print(search_condition) # if print_count else: if search_condition == 0: print("\n", "NO SEARCH TERM SPOTTED", "\n") elif search_condition >= 1: print("\n", "SEARCH TERM SPOTTED", "\n") pass
39.170455
247
0.632289
e97c7053b712437ddd9adb3801c6bf654177920e
2,717
py
Python
PersonManage/role/views.py
ahriknow/ahriknow
817b5670c964e01ffe19ed182ce0a7b42e17ce09
[ "MIT" ]
null
null
null
PersonManage/role/views.py
ahriknow/ahriknow
817b5670c964e01ffe19ed182ce0a7b42e17ce09
[ "MIT" ]
3
2021-03-19T01:28:43.000Z
2021-04-08T19:57:19.000Z
PersonManage/role/views.py
ahriknow/ahriknow
817b5670c964e01ffe19ed182ce0a7b42e17ce09
[ "MIT" ]
null
null
null
from django.conf import settings from redis import StrictRedis from rest_framework.response import Response from rest_framework.views import APIView from PersonManage.role.models import Role from PersonManage.role.serializer import OneRole, ManyRole from PersonManage.jurisdiction.models import Jurisdiction class RoleView(APIView): def get(self, request, id=None): if id: if role := Role.objects.filter(pk=id).first(): data = OneRole(instance=role, many=False).data return Response({'code': 200, 'msg': 'Query was successful!', 'data': data}) return Response({'code': 400, 'msg': 'Data does not exist!', 'data': None}) else: roles = Role.objects.all() data = ManyRole(instance=roles, many=True).data return Response({'code': 200, 'msg': 'Query was successful!', 'data': data}) def post(self, request): try: role = Role(name=request.data['name'], describe=request.data['describe']) role.save() return Response({'code': 200, 'msg': 'Create successful!', 'data': None}) except Exception as ex: if 'UNIQUE' in str(ex): return Response({'code': 400, 'msg': 'Data duplication!', 'data': None}) return Response({'code': 500, 'msg': str(ex), 'data': None}) def put(self, request, id=None): if role := Role.objects.filter(pk=id).first(): data = request.data if name := data.get('name'): role.name = name if describe := data.get('describe'): role.describe = describe if 'jurisdictions' in data: redis = StrictRedis(host=settings.DATABASES['redis']['HOST'], port=settings.DATABASES['redis']['PORT'], db=settings.DATABASES['redis']['NAME_2'], password=settings.DATABASES['redis']['PASS']) redis.flushdb() role.jurisdictions.clear() for i in data['jurisdictions']: jur = Jurisdiction.objects.filter(pk=i).first() role.jurisdictions.add(jur) role.save() return Response({'code': 200, 'msg': 'Update successful!', 'data': None}) return Response({'code': 400, 'msg': 'Data does not exist!', 'data': None}) def delete(self, request, id=None): if role := Role.objects.filter(pk=id).first(): role.delete() return Response({'code': 200, 'msg': 'Delete successful!'}) return Response({'code': 400, 'msg': 'Data does not exist!', 'data': None})
46.844828
92
0.560177
d280ab15421e54a7b67d4fd6e756157f8cd08783
1,315
py
Python
qiskit/utils/units.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
11
2019-06-27T09:53:29.000Z
2021-03-02T04:40:30.000Z
qiskit/utils/units.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
24
2021-01-27T08:20:27.000Z
2021-07-06T09:42:28.000Z
qiskit/utils/units.py
ajavadia/qiskit-sdk-py
a59e8e6be1793197e19998c1f7dcfc45e6f2f3af
[ "Apache-2.0" ]
4
2019-08-05T15:35:33.000Z
2020-09-18T18:55:02.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """SI unit utilities""" def apply_prefix(value: float, unit: str) -> float: """ Given a SI unit prefix and value, apply the prefix to convert to standard SI unit. Args: value: The number to apply prefix to. unit: String prefix. Returns: Converted value. Raises: Exception: If the units aren't recognized. """ downfactors = { 'p': 1e12, 'n': 1e9, 'u': 1e6, 'µ': 1e6, 'm': 1e3 } upfactors = { 'k': 1e3, 'M': 1e6, 'G': 1e9 } if not unit: return value if unit[0] in downfactors: return value / downfactors[unit[0]] elif unit[0] in upfactors: return value * upfactors[unit[0]] else: raise Exception("Could not understand units: {u}".format(u=unit))
25.784314
77
0.613688
42395a5378bd8c6f7ab333908bac7a974d27cf53
2,750
py
Python
tensorlayer/layers/extend.py
Windaway/tensorlayer
7afd8f0a39a4f1864a82e508f7a326fc998dc033
[ "Apache-2.0" ]
1
2019-05-16T13:27:57.000Z
2019-05-16T13:27:57.000Z
tensorlayer/layers/extend.py
Helilysyt/tensorlayer
2dc4482a13aff3833a246b4d85b69a5d9079f01d
[ "Apache-2.0" ]
null
null
null
tensorlayer/layers/extend.py
Helilysyt/tensorlayer
2dc4482a13aff3833a246b4d85b69a5d9079f01d
[ "Apache-2.0" ]
1
2021-04-13T06:34:48.000Z
2021-04-13T06:34:48.000Z
#! /usr/bin/python # -*- coding: utf-8 -*- import tensorflow as tf from tensorlayer import logging from tensorlayer.decorators import deprecated_alias from tensorlayer.layers.core import Layer __all__ = [ 'ExpandDims', 'Tile', ] class ExpandDims(Layer): """ The :class:`ExpandDims` class inserts a dimension of 1 into a tensor's shape, see `tf.expand_dims() <https://www.tensorflow.org/api_docs/python/tf/expand_dims>`__ . Parameters ---------- axis : int The dimension index at which to expand the shape of input. name : str A unique layer name. If None, a unique name will be automatically assigned. Examples -------- >>> x = tl.layers.Input([10, 3], name='in') >>> y = tl.layers.ExpandDims(axis=-1)(x) [10, 3, 1] """ def __init__( self, axis, name=None # 'expand_dims', ): super(ExpandDims, self).__init__(name) self.axis = axis self.build((None, )) self._built = True logging.info("ExpandDims %s: axis: %d" % (self.name, self.axis)) def __repr__(self): s = '{classname}(' s += 'axis={axis},' s += 'name={name}' s += ")" return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs_shape): pass # @tf.function def forward(self, inputs): outputs = tf.expand_dims(inputs, axis=self.axis, name=self.name) return outputs class Tile(Layer): """ The :class:`Tile` class constructs a tensor by tiling a given tensor, see `tf.tile() <https://www.tensorflow.org/api_docs/python/tf/tile>`__ . Parameters ---------- multiples: tensor Must be one of the following types: int32, int64. 1-D Length must be the same as the number of dimensions in input. name : None or str A unique layer name. Examples -------- >>> x = tl.layers.Input([10, 3], name='in') >>> y = tl.layers.Tile(multiples=[2, 3])(x) [20, 9] """ def __init__(self, multiples=None, name=None): #'tile'): super(Tile, self).__init__(name) self.multiples = multiples self.build((None, )) self._built = True logging.info("Tile %s: multiples: %s" % (self.name, self.multiples)) def __repr__(self): s = '{classname}(' s += 'multiples={multiples},' s += 'name={name}' s += ")" return s.format(classname=self.__class__.__name__, **self.__dict__) def build(self, inputs_shape): pass # @tf.function def forward(self, inputs): outputs = tf.tile(inputs, multiples=self.multiples, name=self.name) return outputs
25.462963
90
0.581091
bc2d148f4d4666dafb99a6f4e156fae150b8487b
243
py
Python
01_basic/exercise_068.py
sideroff/python-exercises
6a9cc55735d977a71697204c734b3ade84a0c4fd
[ "MIT" ]
null
null
null
01_basic/exercise_068.py
sideroff/python-exercises
6a9cc55735d977a71697204c734b3ade84a0c4fd
[ "MIT" ]
4
2020-03-24T18:00:07.000Z
2021-06-02T00:51:22.000Z
01_basic/exercise_068.py
sideroff/python-exercises
6a9cc55735d977a71697204c734b3ade84a0c4fd
[ "MIT" ]
null
null
null
from math import sqrt def main(): digit = int(input("Choose an int: ")) sum_of_digits = sum(list(map(int, list(str(digit))))) print("The sum of the digits in %i is %i" % (digit, sum_of_digits)) if __name__ == '__main__': main()
24.3
71
0.63786
7179969513adacbfeb949c1c273d73332aca36a1
42,217
py
Python
src/azure-cli-core/azure/cli/core/__init__.py
akashsinghal/azure-cli
8ab2f7604a834de790bdea849b3e83f2466428b9
[ "MIT" ]
1
2016-09-15T23:10:48.000Z
2016-09-15T23:10:48.000Z
src/azure-cli-core/azure/cli/core/__init__.py
akashsinghal/azure-cli
8ab2f7604a834de790bdea849b3e83f2466428b9
[ "MIT" ]
null
null
null
src/azure-cli-core/azure/cli/core/__init__.py
akashsinghal/azure-cli
8ab2f7604a834de790bdea849b3e83f2466428b9
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from __future__ import print_function __version__ = "2.9.1" import os import sys import timeit import six from knack.cli import CLI from knack.commands import CLICommandsLoader from knack.completion import ARGCOMPLETE_ENV_NAME from knack.introspection import extract_args_from_signature, extract_full_summary_from_signature from knack.log import get_logger from knack.preview import PreviewItem from knack.experimental import ExperimentalItem from knack.util import CLIError from knack.arguments import ArgumentsContext, CaseInsensitiveList # pylint: disable=unused-import from .local_context import AzCLILocalContext, LocalContextAction logger = get_logger(__name__) EXCLUDED_PARAMS = ['self', 'raw', 'polling', 'custom_headers', 'operation_config', 'content_version', 'kwargs', 'client', 'no_wait'] EVENT_FAILED_EXTENSION_LOAD = 'MainLoader.OnFailedExtensionLoad' # [Reserved, in case of future usage] # Modules that will always be loaded. They don't expose commands but hook into CLI core. ALWAYS_LOADED_MODULES = [] # Extensions that will always be loaded if installed. They don't expose commands but hook into CLI core. ALWAYS_LOADED_EXTENSIONS = ['azext_ai_examples', 'azext_ai_did_you_mean_this'] class AzCli(CLI): def __init__(self, **kwargs): super(AzCli, self).__init__(**kwargs) from azure.cli.core.commands import register_cache_arguments from azure.cli.core.commands.arm import ( register_ids_argument, register_global_subscription_argument) from azure.cli.core.cloud import get_active_cloud from azure.cli.core.commands.transform import register_global_transforms from azure.cli.core._session import ACCOUNT, CONFIG, SESSION, INDEX from knack.util import ensure_dir self.data['headers'] = {} self.data['command'] = 'unknown' self.data['command_extension_name'] = None self.data['completer_active'] = ARGCOMPLETE_ENV_NAME in os.environ self.data['query_active'] = False azure_folder = self.config.config_dir ensure_dir(azure_folder) ACCOUNT.load(os.path.join(azure_folder, 'azureProfile.json')) CONFIG.load(os.path.join(azure_folder, 'az.json')) SESSION.load(os.path.join(azure_folder, 'az.sess'), max_age=3600) INDEX.load(os.path.join(azure_folder, 'commandIndex.json')) self.cloud = get_active_cloud(self) logger.debug('Current cloud config:\n%s', str(self.cloud.name)) self.local_context = AzCLILocalContext(self) register_global_transforms(self) register_global_subscription_argument(self) register_ids_argument(self) # global subscription must be registered first! register_cache_arguments(self) self.progress_controller = None def refresh_request_id(self): """Assign a new random GUID as x-ms-client-request-id The method must be invoked before each command execution in order to ensure unique client-side request ID is generated. """ import uuid self.data['headers']['x-ms-client-request-id'] = str(uuid.uuid1()) def get_progress_controller(self, det=False): import azure.cli.core.commands.progress as progress if not self.progress_controller: self.progress_controller = progress.ProgressHook() self.progress_controller.init_progress(progress.get_progress_view(det)) return self.progress_controller def get_cli_version(self): return __version__ def show_version(self): from azure.cli.core.util import get_az_version_string, show_updates from azure.cli.core.commands.constants import (SURVEY_PROMPT, SURVEY_PROMPT_COLOR, UX_SURVEY_PROMPT, UX_SURVEY_PROMPT_COLOR) ver_string, updates_available = get_az_version_string() print(ver_string) show_updates(updates_available) show_link = self.config.getboolean('output', 'show_survey_link', True) if show_link: print('\n' + (SURVEY_PROMPT_COLOR if self.enable_color else SURVEY_PROMPT)) print(UX_SURVEY_PROMPT_COLOR if self.enable_color else UX_SURVEY_PROMPT) def exception_handler(self, ex): # pylint: disable=no-self-use from azure.cli.core.util import handle_exception return handle_exception(ex) def save_local_context(self, parsed_args, argument_definitions, specified_arguments): """ Local Context Attribute arguments Save argument value to local context if it is defined as SET and user specify a value for it. :param parsed_args: Parsed args which return by AzCliCommandParser parse_args :type parsed_args: Namespace :param argument_definitions: All available argument definitions :type argument_definitions: dict :param specified_arguments: Arguments which user specify in this command :type specified_arguments: list """ local_context_args = [] for argument_name in specified_arguments: # make sure SET is defined if argument_name not in argument_definitions: continue argtype = argument_definitions[argument_name].type lca = argtype.settings.get('local_context_attribute', None) if not lca or not lca.actions or LocalContextAction.SET not in lca.actions: continue # get the specified value value = getattr(parsed_args, argument_name) # save when name and scopes have value if lca.name and lca.scopes: self.local_context.set(lca.scopes, lca.name, value) options = argtype.settings.get('options_list', None) if options: local_context_args.append((options[0], value)) # print warning if there are values saved to local context if local_context_args: logger.warning('Local context is turned on. Its information is saved in working directory %s. You can ' 'run `az local-context off` to turn it off.', self.local_context.effective_working_directory()) args_str = [] for name, value in local_context_args: args_str.append('{}: {}'.format(name, value)) logger.warning('Your preference of %s now saved to local context. To learn more, type in `az ' 'local-context --help`', ', '.join(args_str) + ' is' if len(args_str) == 1 else ' are') class MainCommandsLoader(CLICommandsLoader): # Format string for pretty-print the command module table header_mod = "%-20s %10s %9s %9s" % ("Name", "Load Time", "Groups", "Commands") item_format_string = "%-20s %10.3f %9d %9d" header_ext = header_mod + " Directory" item_ext_format_string = item_format_string + " %s" def __init__(self, cli_ctx=None): super(MainCommandsLoader, self).__init__(cli_ctx) self.cmd_to_loader_map = {} self.loaders = [] def _update_command_definitions(self): for cmd_name in self.command_table: loaders = self.cmd_to_loader_map[cmd_name] for loader in loaders: loader.command_table = self.command_table loader._update_command_definitions() # pylint: disable=protected-access # pylint: disable=too-many-statements, too-many-locals def load_command_table(self, args): from importlib import import_module import pkgutil import traceback from azure.cli.core.commands import ( _load_module_command_loader, _load_extension_command_loader, BLOCKED_MODS, ExtensionCommandSource) from azure.cli.core.extension import ( get_extensions, get_extension_path, get_extension_modname) def _update_command_table_from_modules(args, command_modules=None): """Loads command tables from modules and merge into the main command table. :param args: Arguments of the command. :param list command_modules: Command modules to load, in the format like ['resource', 'profile']. If None, will do module discovery and load all modules. If [], only ALWAYS_LOADED_MODULES will be loaded. Otherwise, the list will be extended using ALWAYS_LOADED_MODULES. """ # As command modules are built-in, the existence of modules in ALWAYS_LOADED_MODULES is NOT checked if command_modules is not None: command_modules.extend(ALWAYS_LOADED_MODULES) else: # Perform module discovery command_modules = [] try: mods_ns_pkg = import_module('azure.cli.command_modules') command_modules = [modname for _, modname, _ in pkgutil.iter_modules(mods_ns_pkg.__path__)] logger.debug('Discovered command modules: %s', command_modules) except ImportError as e: logger.warning(e) count = 0 cumulative_elapsed_time = 0 cumulative_group_count = 0 cumulative_command_count = 0 logger.debug("Loading command modules:") logger.debug(self.header_mod) for mod in [m for m in command_modules if m not in BLOCKED_MODS]: try: start_time = timeit.default_timer() module_command_table, module_group_table = _load_module_command_loader(self, args, mod) for cmd in module_command_table.values(): cmd.command_source = mod self.command_table.update(module_command_table) self.command_group_table.update(module_group_table) elapsed_time = timeit.default_timer() - start_time logger.debug(self.item_format_string, mod, elapsed_time, len(module_group_table), len(module_command_table)) count += 1 cumulative_elapsed_time += elapsed_time cumulative_group_count += len(module_group_table) cumulative_command_count += len(module_command_table) except Exception as ex: # pylint: disable=broad-except # Changing this error message requires updating CI script that checks for failed # module loading. import azure.cli.core.telemetry as telemetry logger.error("Error loading command module '%s': %s", mod, ex) telemetry.set_exception(exception=ex, fault_type='module-load-error-' + mod, summary='Error loading module: {}'.format(mod)) logger.debug(traceback.format_exc()) # Summary line logger.debug(self.item_format_string, "Total ({})".format(count), cumulative_elapsed_time, cumulative_group_count, cumulative_command_count) def _update_command_table_from_extensions(ext_suppressions, extension_modname=None): """Loads command tables from extensions and merge into the main command table. :param ext_suppressions: Extension suppression information. :param extension_modname: Command modules to load, in the format like ['azext_timeseriesinsights']. If None, will do extension discovery and load all extensions. If [], only ALWAYS_LOADED_EXTENSIONS will be loaded. Otherwise, the list will be extended using ALWAYS_LOADED_EXTENSIONS. If the extensions in the list are not installed, it will be skipped. """ def _handle_extension_suppressions(extensions): filtered_extensions = [] for ext in extensions: should_include = True for suppression in ext_suppressions: if should_include and suppression.handle_suppress(ext): should_include = False if should_include: filtered_extensions.append(ext) return filtered_extensions def _filter_modname(extensions): # Extension's name may not be the same as its modname. eg. name: virtual-wan, modname: azext_vwan filtered_extensions = [] for ext in extensions: ext_mod = get_extension_modname(ext.name, ext.path) # Filter the extensions according to the index if ext_mod in extension_modname: filtered_extensions.append(ext) extension_modname.remove(ext_mod) if extension_modname: logger.debug("These extensions are not installed and will be skipped: %s", extension_modname) return filtered_extensions extensions = get_extensions() if extensions: if extension_modname is not None: extension_modname.extend(ALWAYS_LOADED_EXTENSIONS) extensions = _filter_modname(extensions) allowed_extensions = _handle_extension_suppressions(extensions) module_commands = set(self.command_table.keys()) count = 0 cumulative_elapsed_time = 0 cumulative_group_count = 0 cumulative_command_count = 0 logger.debug("Loading extensions:") logger.debug(self.header_ext) for ext in allowed_extensions: try: # Import in the `for` loop because `allowed_extensions` can be []. In such case we # don't need to import `check_version_compatibility` at all. from azure.cli.core.extension.operations import check_version_compatibility check_version_compatibility(ext.get_metadata()) except CLIError as ex: # issue warning and skip loading extensions that aren't compatible with the CLI core logger.warning(ex) continue ext_name = ext.name ext_dir = ext.path or get_extension_path(ext_name) sys.path.append(ext_dir) try: ext_mod = get_extension_modname(ext_name, ext_dir=ext_dir) # Add to the map. This needs to happen before we load commands as registering a command # from an extension requires this map to be up-to-date. # self._mod_to_ext_map[ext_mod] = ext_name start_time = timeit.default_timer() extension_command_table, extension_group_table = \ _load_extension_command_loader(self, args, ext_mod) for cmd_name, cmd in extension_command_table.items(): cmd.command_source = ExtensionCommandSource( extension_name=ext_name, overrides_command=cmd_name in module_commands, preview=ext.preview, experimental=ext.experimental) self.command_table.update(extension_command_table) self.command_group_table.update(extension_group_table) elapsed_time = timeit.default_timer() - start_time logger.debug(self.item_ext_format_string, ext_name, elapsed_time, len(extension_group_table), len(extension_command_table), ext_dir) count += 1 cumulative_elapsed_time += elapsed_time cumulative_group_count += len(extension_group_table) cumulative_command_count += len(extension_command_table) except Exception as ex: # pylint: disable=broad-except self.cli_ctx.raise_event(EVENT_FAILED_EXTENSION_LOAD, extension_name=ext_name) logger.warning("Unable to load extension '%s: %s'. Use --debug for more information.", ext_name, ex) logger.debug(traceback.format_exc()) # Summary line logger.debug(self.item_ext_format_string, "Total ({})".format(count), cumulative_elapsed_time, cumulative_group_count, cumulative_command_count, "") def _wrap_suppress_extension_func(func, ext): """ Wrapper method to handle centralization of log messages for extension filters """ res = func(ext) should_suppress = res reason = "Use --debug for more information." if isinstance(res, tuple): should_suppress, reason = res suppress_types = (bool, type(None)) if not isinstance(should_suppress, suppress_types): raise ValueError("Command module authoring error: " "Valid extension suppression values are {} in {}".format(suppress_types, func)) if should_suppress: logger.warning("Extension %s (%s) has been suppressed. %s", ext.name, ext.version, reason) logger.debug("Extension %s (%s) suppressed from being loaded due " "to %s", ext.name, ext.version, func) return should_suppress def _get_extension_suppressions(mod_loaders): res = [] for m in mod_loaders: suppressions = getattr(m, 'suppress_extension', None) if suppressions: suppressions = suppressions if isinstance(suppressions, list) else [suppressions] for sup in suppressions: if isinstance(sup, ModExtensionSuppress): res.append(sup) return res def _roughly_parse_command(args): # Roughly parse the command part: <az vm create> --name vm1 # Similar to knack.invocation.CommandInvoker._rudimentary_get_command, but we don't need to bother with # positional args nouns = [] for arg in args: if arg and arg[0] != '-': nouns.append(arg) else: break return ' '.join(nouns).lower() # Clear the tables to make this method idempotent self.command_group_table.clear() self.command_table.clear() command_index = None # Set fallback=False to turn off command index in case of regression use_command_index = self.cli_ctx.config.getboolean('core', 'use_command_index', fallback=True) if use_command_index: command_index = CommandIndex(self.cli_ctx) index_result = command_index.get(args) if index_result: index_modules, index_extensions = index_result # Always load modules and extensions, because some of them (like those in # ALWAYS_LOADED_EXTENSIONS) don't expose a command, but hooks into handlers in CLI core _update_command_table_from_modules(args, index_modules) # The index won't contain suppressed extensions _update_command_table_from_extensions([], index_extensions) logger.debug("Loaded %d groups, %d commands.", len(self.command_group_table), len(self.command_table)) # The index may be outdated. Make sure the command appears in the loaded command table command_str = _roughly_parse_command(args) if command_str in self.command_table: logger.debug("Found a match in the command table for '%s'", command_str) return self.command_table if command_str in self.command_group_table: logger.debug("Found a match in the command group table for '%s'", command_str) return self.command_table logger.debug("Could not find a match in the command table for '%s'. The index may be outdated", command_str) else: logger.debug("No module found from index for '%s'", args) # No module found from the index. Load all command modules and extensions logger.debug("Loading all modules and extensions") _update_command_table_from_modules(args) ext_suppressions = _get_extension_suppressions(self.loaders) # We always load extensions even if the appropriate module has been loaded # as an extension could override the commands already loaded. _update_command_table_from_extensions(ext_suppressions) logger.debug("Loaded %d groups, %d commands.", len(self.command_group_table), len(self.command_table)) if use_command_index: command_index.update(self.command_table) return self.command_table def load_arguments(self, command=None): from azure.cli.core.commands.parameters import ( resource_group_name_type, get_location_type, deployment_name_type, vnet_name_type, subnet_name_type) from knack.arguments import ignore_type # omit specific command to load everything if command is None: command_loaders = set() for loaders in self.cmd_to_loader_map.values(): command_loaders = command_loaders.union(set(loaders)) logger.info('Applying %s command loaders...', len(command_loaders)) else: command_loaders = self.cmd_to_loader_map.get(command, None) if command_loaders: for loader in command_loaders: # register global args with loader.argument_context('') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('location', get_location_type(self.cli_ctx)) c.argument('vnet_name', vnet_name_type) c.argument('subnet', subnet_name_type) c.argument('deployment_name', deployment_name_type) c.argument('cmd', ignore_type) if command is None: # load all arguments via reflection for cmd in loader.command_table.values(): cmd.load_arguments() # this loads the arguments via reflection loader.skip_applicability = True loader.load_arguments('') # this adds entries to the argument registries else: loader.command_name = command self.command_table[command].load_arguments() # this loads the arguments via reflection loader.load_arguments(command) # this adds entries to the argument registries self.argument_registry.arguments.update(loader.argument_registry.arguments) self.extra_argument_registry.update(loader.extra_argument_registry) loader._update_command_definitions() # pylint: disable=protected-access class CommandIndex: _COMMAND_INDEX = 'commandIndex' _COMMAND_INDEX_VERSION = 'version' _COMMAND_INDEX_CLOUD_PROFILE = 'cloudProfile' def __init__(self, cli_ctx=None): """Class to manage command index. :param cli_ctx: Only needed when `get` or `update` is called. """ from azure.cli.core._session import INDEX self.INDEX = INDEX if cli_ctx: self.version = __version__ self.cloud_profile = cli_ctx.cloud.profile def get(self, args): """Get the corresponding module and extension list of a command. :param args: command arguments, like ['network', 'vnet', 'create', '-h'] :return: a tuple containing a list of modules and a list of extensions. """ # If the command index version or cloud profile doesn't match those of the current command, # invalidate the command index. index_version = self.INDEX[self._COMMAND_INDEX_VERSION] cloud_profile = self.INDEX[self._COMMAND_INDEX_CLOUD_PROFILE] if not (index_version and index_version == self.version and cloud_profile and cloud_profile == self.cloud_profile): logger.debug("Command index version or cloud profile is invalid or doesn't match the current command.") self.invalidate() return None # Make sure the top-level command is provided, like `az version`. # Skip command index for `az` or `az --help`. if not args or args[0].startswith('-'): return None # Get the top-level command, like `network` in `network vnet create -h` top_command = args[0] index = self.INDEX[self._COMMAND_INDEX] # Check the command index for (command: [module]) mapping, like # "network": ["azure.cli.command_modules.natgateway", "azure.cli.command_modules.network", "azext_firewall"] index_modules_extensions = index.get(top_command) if index_modules_extensions: # This list contains both built-in modules and extensions index_builtin_modules = [] index_extensions = [] # Found modules from index logger.debug("Modules found from index for '%s': %s", top_command, index_modules_extensions) command_module_prefix = 'azure.cli.command_modules.' for m in index_modules_extensions: if m.startswith(command_module_prefix): # The top-level command is from a command module index_builtin_modules.append(m[len(command_module_prefix):]) elif m.startswith('azext_'): # The top-level command is from an extension index_extensions.append(m) else: logger.warning("Unrecognized module: %s", m) return index_builtin_modules, index_extensions return None def update(self, command_table): """Update the command index according to the given command table. :param command_table: The command table built by azure.cli.core.MainCommandsLoader.load_command_table """ start_time = timeit.default_timer() self.INDEX[self._COMMAND_INDEX_VERSION] = __version__ self.INDEX[self._COMMAND_INDEX_CLOUD_PROFILE] = self.cloud_profile from collections import defaultdict index = defaultdict(list) # self.cli_ctx.invocation.commands_loader.command_table doesn't exist in DummyCli due to the lack of invocation for command_name, command in command_table.items(): # Get the top-level name: <vm> create top_command = command_name.split()[0] # Get module name, like azure.cli.command_modules.vm, azext_webapp module_name = command.loader.__module__ if module_name not in index[top_command]: index[top_command].append(module_name) elapsed_time = timeit.default_timer() - start_time self.INDEX[self._COMMAND_INDEX] = index logger.debug("Updated command index in %.3f seconds.", elapsed_time) def invalidate(self): """Invalidate the command index. This function MUST be called when installing or updating extensions. Otherwise, when an extension 1. overrides a built-in command, or 2. extends an existing command group, the command or command group will only be loaded from the command modules as per the stale command index, making the newly installed extension be ignored. This function can be called when removing extensions. """ self.INDEX[self._COMMAND_INDEX_VERSION] = "" self.INDEX[self._COMMAND_INDEX_CLOUD_PROFILE] = "" self.INDEX[self._COMMAND_INDEX] = {} logger.debug("Command index has been invalidated.") class ModExtensionSuppress: # pylint: disable=too-few-public-methods def __init__(self, mod_name, suppress_extension_name, suppress_up_to_version, reason=None, recommend_remove=False, recommend_update=False): self.mod_name = mod_name self.suppress_extension_name = suppress_extension_name self.suppress_up_to_version = suppress_up_to_version self.reason = reason self.recommend_remove = recommend_remove self.recommend_update = recommend_update def handle_suppress(self, ext): from pkg_resources import parse_version should_suppress = ext.name == self.suppress_extension_name and ext.version and \ parse_version(ext.version) <= parse_version(self.suppress_up_to_version) if should_suppress: reason = self.reason or "Use --debug for more information." logger.warning("Extension %s (%s) has been suppressed. %s", ext.name, ext.version, reason) logger.debug("Extension %s (%s) suppressed from being loaded due " "to %s", ext.name, ext.version, self.mod_name) if self.recommend_remove: logger.warning("Remove this extension with 'az extension remove --name %s'", ext.name) if self.recommend_update: logger.warning("Update this extension with 'az extension update --name %s'", ext.name) return should_suppress class AzCommandsLoader(CLICommandsLoader): # pylint: disable=too-many-instance-attributes def __init__(self, cli_ctx=None, command_group_cls=None, argument_context_cls=None, suppress_extension=None, **kwargs): from azure.cli.core.commands import AzCliCommand, AzCommandGroup, AzArgumentContext super(AzCommandsLoader, self).__init__(cli_ctx=cli_ctx, command_cls=AzCliCommand, excluded_command_handler_args=EXCLUDED_PARAMS) self.suppress_extension = suppress_extension self.module_kwargs = kwargs self.command_name = None self.skip_applicability = False self._command_group_cls = command_group_cls or AzCommandGroup self._argument_context_cls = argument_context_cls or AzArgumentContext def _update_command_definitions(self): master_arg_registry = self.cli_ctx.invocation.commands_loader.argument_registry master_extra_arg_registry = self.cli_ctx.invocation.commands_loader.extra_argument_registry for command_name, command in self.command_table.items(): # Add any arguments explicitly registered for this command for argument_name, argument_definition in master_extra_arg_registry[command_name].items(): command.arguments[argument_name] = argument_definition for argument_name in command.arguments: overrides = master_arg_registry.get_cli_argument(command_name, argument_name) command.update_argument(argument_name, overrides) def _apply_doc_string(self, dest, command_kwargs): from azure.cli.core.profiles._shared import APIVersionException doc_string_source = command_kwargs.get('doc_string_source', None) if not doc_string_source: return if not isinstance(doc_string_source, str): raise CLIError("command authoring error: applying doc_string_source '{}' directly will cause slowdown. " 'Import by string name instead.'.format(doc_string_source.__name__)) model = doc_string_source try: model = self.get_models(doc_string_source) except APIVersionException: model = None if not model: from importlib import import_module (path, model_name) = doc_string_source.split('#', 1) method_name = None if '.' in model_name: (model_name, method_name) = model_name.split('.', 1) module = import_module(path) model = getattr(module, model_name) if method_name: model = getattr(model, method_name, None) if not model: raise CLIError("command authoring error: source '{}' not found.".format(doc_string_source)) dest.__doc__ = model.__doc__ def _get_resource_type(self): resource_type = self.module_kwargs.get('resource_type', None) if not resource_type: command_type = self.module_kwargs.get('command_type', None) resource_type = command_type.settings.get('resource_type', None) if command_type else None return resource_type def get_api_version(self, resource_type=None, operation_group=None): from azure.cli.core.profiles import get_api_version resource_type = resource_type or self._get_resource_type() version = get_api_version(self.cli_ctx, resource_type) if isinstance(version, str): return version version = getattr(version, operation_group, None) if version: return version from azure.cli.core.profiles._shared import APIVersionException raise APIVersionException(operation_group, self.cli_ctx.cloud.profile) def supported_api_version(self, resource_type=None, min_api=None, max_api=None, operation_group=None): from azure.cli.core.profiles import supported_api_version if not min_api and not max_api: # optimistically assume that fully supported if no api restriction listed return True api_support = supported_api_version( cli_ctx=self.cli_ctx, resource_type=resource_type or self._get_resource_type(), min_api=min_api, max_api=max_api, operation_group=operation_group) if isinstance(api_support, bool): return api_support if operation_group: return getattr(api_support, operation_group) return api_support def supported_resource_type(self, resource_type=None): from azure.cli.core.profiles import supported_resource_type return supported_resource_type( cli_ctx=self.cli_ctx, resource_type=resource_type or self._get_resource_type()) def get_sdk(self, *attr_args, **kwargs): from azure.cli.core.profiles import get_sdk return get_sdk(self.cli_ctx, kwargs.pop('resource_type', self._get_resource_type()), *attr_args, **kwargs) def get_models(self, *attr_args, **kwargs): from azure.cli.core.profiles import get_sdk resource_type = kwargs.get('resource_type', self._get_resource_type()) operation_group = kwargs.get('operation_group', self.module_kwargs.get('operation_group', None)) return get_sdk(self.cli_ctx, resource_type, *attr_args, mod='models', operation_group=operation_group) def command_group(self, group_name, command_type=None, **kwargs): if command_type: kwargs['command_type'] = command_type if 'deprecate_info' in kwargs: kwargs['deprecate_info'].target = group_name if kwargs.get('is_preview', False): kwargs['preview_info'] = PreviewItem( cli_ctx=self.cli_ctx, target=group_name, object_type='command group' ) if kwargs.get('is_experimental', False): kwargs['experimental_info'] = ExperimentalItem( cli_ctx=self.cli_ctx, target=group_name, object_type='command group' ) return self._command_group_cls(self, group_name, **kwargs) def argument_context(self, scope, **kwargs): return self._argument_context_cls(self, scope, **kwargs) def _cli_command(self, name, operation=None, handler=None, argument_loader=None, description_loader=None, **kwargs): from knack.deprecation import Deprecated kwargs['deprecate_info'] = Deprecated.ensure_new_style_deprecation(self.cli_ctx, kwargs, 'command') if operation and not isinstance(operation, six.string_types): raise TypeError("Operation must be a string. Got '{}'".format(operation)) if handler and not callable(handler): raise TypeError("Handler must be a callable. Got '{}'".format(operation)) if bool(operation) == bool(handler): raise TypeError("Must specify exactly one of either 'operation' or 'handler'") name = ' '.join(name.split()) client_factory = kwargs.get('client_factory', None) def default_command_handler(command_args): from azure.cli.core.util import get_arg_list, augment_no_wait_handler_args from azure.cli.core.commands.client_factory import resolve_client_arg_name op = handler or self.get_op_handler(operation, operation_group=kwargs.get('operation_group')) op_args = get_arg_list(op) cmd = command_args.get('cmd') if 'cmd' in op_args else command_args.pop('cmd') client = client_factory(cmd.cli_ctx, command_args) if client_factory else None supports_no_wait = kwargs.get('supports_no_wait', None) if supports_no_wait: no_wait_enabled = command_args.pop('no_wait', False) augment_no_wait_handler_args(no_wait_enabled, op, command_args) if client: client_arg_name = resolve_client_arg_name(operation, kwargs) if client_arg_name in op_args: command_args[client_arg_name] = client return op(**command_args) def default_arguments_loader(): op = handler or self.get_op_handler(operation, operation_group=kwargs.get('operation_group')) self._apply_doc_string(op, kwargs) cmd_args = list(extract_args_from_signature(op, excluded_params=self.excluded_command_handler_args)) return cmd_args def default_description_loader(): op = handler or self.get_op_handler(operation, operation_group=kwargs.get('operation_group')) self._apply_doc_string(op, kwargs) return extract_full_summary_from_signature(op) kwargs['arguments_loader'] = argument_loader or default_arguments_loader kwargs['description_loader'] = description_loader or default_description_loader if self.supported_api_version(resource_type=kwargs.get('resource_type'), min_api=kwargs.get('min_api'), max_api=kwargs.get('max_api'), operation_group=kwargs.get('operation_group')): self._populate_command_group_table_with_subgroups(' '.join(name.split()[:-1])) self.command_table[name] = self.command_cls(self, name, handler or default_command_handler, **kwargs) def get_op_handler(self, operation, operation_group=None): """ Import and load the operation handler """ # Patch the unversioned sdk path to include the appropriate API version for the # resource type in question. from importlib import import_module import types from azure.cli.core.profiles import AZURE_API_PROFILES from azure.cli.core.profiles._shared import get_versioned_sdk_path for rt in AZURE_API_PROFILES[self.cli_ctx.cloud.profile]: if operation.startswith(rt.import_prefix + '.'): operation = operation.replace(rt.import_prefix, get_versioned_sdk_path(self.cli_ctx.cloud.profile, rt, operation_group=operation_group)) try: mod_to_import, attr_path = operation.split('#') op = import_module(mod_to_import) for part in attr_path.split('.'): op = getattr(op, part) if isinstance(op, types.FunctionType): return op return six.get_method_function(op) except (ValueError, AttributeError): raise ValueError("The operation '{}' is invalid.".format(operation)) def get_default_cli(): from azure.cli.core.azlogging import AzCliLogging from azure.cli.core.commands import AzCliCommandInvoker from azure.cli.core.parser import AzCliCommandParser from azure.cli.core._config import GLOBAL_CONFIG_DIR, ENV_VAR_PREFIX from azure.cli.core._help import AzCliHelp from azure.cli.core._output import AzOutputProducer return AzCli(cli_name='az', config_dir=GLOBAL_CONFIG_DIR, config_env_var_prefix=ENV_VAR_PREFIX, commands_loader_cls=MainCommandsLoader, invocation_cls=AzCliCommandInvoker, parser_cls=AzCliCommandParser, logging_cls=AzCliLogging, output_cls=AzOutputProducer, help_cls=AzCliHelp)
49.901891
120
0.63112
79974320f4093fec90a2f9bff2924fdcaaa3d6db
101
py
Python
python/y2019/d24/__main__.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
1
2021-01-12T20:04:01.000Z
2021-01-12T20:04:01.000Z
python/y2019/d24/__main__.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
null
null
null
python/y2019/d24/__main__.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
null
null
null
import sys from .day24 import Day24 if __name__ == '__main__': Day24(args=sys.argv[1:]).main()
14.428571
35
0.673267
3f8e6cab1d9cd448331778dafe73793da7999b2d
5,328
py
Python
model/optimizers_lib/bgd_optimizer.py
ksasi/La-MAML
05fff370282312e87eceda51dbe8c1678e2ac1e2
[ "Apache-2.0" ]
51
2020-10-24T16:11:58.000Z
2022-03-10T06:39:04.000Z
model/optimizers_lib/bgd_optimizer.py
Johswald/La-MAML
cff3524b0f23b932d574931c3a7495c42cbd8d9d
[ "Apache-2.0" ]
2
2020-12-09T06:42:45.000Z
2021-04-24T05:52:52.000Z
model/optimizers_lib/bgd_optimizer.py
Johswald/La-MAML
cff3524b0f23b932d574931c3a7495c42cbd8d9d
[ "Apache-2.0" ]
17
2020-11-24T20:21:18.000Z
2022-01-20T19:45:57.000Z
import torch from torch.optim.optimizer import Optimizer class BGD(Optimizer): """Implements BGD. A simple usage of BGD would be: for samples, labels in batches: for mc_iter in range(mc_iters): optimizer.randomize_weights() output = model.forward(samples) loss = cirterion(output, labels) optimizer.zero_grad() loss.backward() optimizer.aggregate_grads() optimizer.step() """ def __init__(self, params, std_init, mean_eta=1, mc_iters=10): """ Initialization of BGD optimizer group["mean_param"] is the learned mean. group["std_param"] is the learned STD. :param params: List of model parameters :param std_init: Initialization value for STD parameter :param mean_eta: Eta value :param mc_iters: Number of Monte Carlo iteration. Used for correctness check. Use None to disable the check. """ super(BGD, self).__init__(params, defaults={}) assert mc_iters is None or (type(mc_iters) == int and mc_iters > 0), "mc_iters should be positive int or None." self.std_init = std_init self.mean_eta = mean_eta self.mc_iters = mc_iters # Initialize mu (mean_param) and sigma (std_param) for group in self.param_groups: assert len(group["params"]) == 1, "BGD optimizer does not support multiple params in a group" # group['params'][0] is the weights assert isinstance(group["params"][0], torch.Tensor), "BGD expect param to be a tensor" # We use the initialization of weights to initialize the mean. group["mean_param"] = group["params"][0].data.clone() group["std_param"] = torch.zeros_like(group["params"][0].data).add_(self.std_init) self._init_accumulators() def get_mc_iters(self): return self.mc_iters def _init_accumulators(self): self.mc_iters_taken = 0 for group in self.param_groups: group["eps"] = None group["grad_mul_eps_sum"] = torch.zeros_like(group["params"][0].data).cuda() group["grad_sum"] = torch.zeros_like(group["params"][0].data).cuda() def randomize_weights(self, force_std=-1): """ Randomize the weights according to N(mean, std). :param force_std: If force_std>=0 then force_std is used for STD instead of the learned STD. :return: None """ for group in self.param_groups: mean = group["mean_param"] std = group["std_param"] if force_std >= 0: std = std.mul(0).add(force_std) group["eps"] = torch.normal(torch.zeros_like(mean), 1).cuda() # Reparameterization trick (here we set the weights to their randomized value): group["params"][0].data.copy_(mean.add(std.mul(group["eps"]))) def aggregate_grads(self, batch_size): """ Aggregates a single Monte Carlo iteration gradients. Used in step() for the expectations calculations. optimizer.zero_grad() should be used before calling .backward() once again. :param batch_size: BGD is using non-normalized gradients, but PyTorch gives normalized gradients. Therefore, we multiply the gradients by the batch size. :return: None """ self.mc_iters_taken += 1 groups_cnt = 0 for group in self.param_groups: if group["params"][0].grad is None: continue assert group["eps"] is not None, "Must randomize weights before using aggregate_grads" groups_cnt += 1 grad = group["params"][0].grad.data.mul(batch_size) group["grad_sum"].add_(grad) group["grad_mul_eps_sum"].add_(grad.mul(group["eps"])) group["eps"] = None assert groups_cnt > 0, "Called aggregate_grads, but all gradients were None. Make sure you called .backward()" def step(self, closure=None, print_std = False): """ Updates the learned mean and STD. :return: """ # Makes sure that self.mc_iters had been taken. assert self.mc_iters is None or self.mc_iters == self.mc_iters_taken, "MC iters is set to " \ + str(self.mc_iters) \ + ", but took " + \ str(self.mc_iters_taken) + " MC iters" for group in self.param_groups: mean = group["mean_param"] std = group["std_param"] # Divide gradients by MC iters to get expectation e_grad = group["grad_sum"].div(self.mc_iters_taken) e_grad_eps = group["grad_mul_eps_sum"].div(self.mc_iters_taken) # Update mean and STD params mean.add_(-std.pow(2).mul(e_grad).mul(self.mean_eta)) sqrt_term = torch.sqrt(e_grad_eps.mul(std).div(2).pow(2).add(1)).mul(std) std.copy_(sqrt_term.add(-e_grad_eps.mul(std.pow(2)).div(2))) self.randomize_weights(force_std=0) self._init_accumulators()
47.571429
119
0.584835
cec3047405310e1e8c50a96dac4d084ca7db5a1e
28,556
py
Python
python-siren/siren/interface/classGridTable.py
zliobaite/redescription-China
cab8ee08f21a0207bed5b48fd3493a3909d2a5ad
[ "MIT" ]
null
null
null
python-siren/siren/interface/classGridTable.py
zliobaite/redescription-China
cab8ee08f21a0207bed5b48fd3493a3909d2a5ad
[ "MIT" ]
null
null
null
python-siren/siren/interface/classGridTable.py
zliobaite/redescription-China
cab8ee08f21a0207bed5b48fd3493a3909d2a5ad
[ "MIT" ]
null
null
null
import wx import wx.grid ### from wx import grid ### from wx import Size, Brush, Colour, NullBrush, NullPen ### from wx import DC, EVT_KEY_UP, NORMAL_FONT, SOLID, TRANSPARENT_PEN import re, colorsys, random, datetime, math from ..reremi.toolICList import ICList from ..reremi.classData import ColM, NA_str_def from ..reremi.classQuery import SYM, Query, Literal from ..reremi.classRedescription import Redescription import pdb def getRGB(h,l, s): Brgb = map(int, [255*v for v in colorsys.hls_to_rgb(h, l, s)]) if l > 0.5: Frgb = map(int, [255*v for v in colorsys.hls_to_rgb(h, 0, s)]) else: Frgb = map(int, [255*v for v in colorsys.hls_to_rgb(h, 1, s)]) return Brgb, Frgb class CustRenderer(wx.grid.PyGridCellRenderer): BACKGROUND = wx.Colour(255, 255, 255, 255) # wx.Colour(100,100,100) TEXT = wx.Colour(76, 76, 76, 255) #wx.Colour(100,100,100) SBRUSH = wx.SOLID BACKGROUND_SELECTED = wx.Colour(240, 119, 70, 255) # wx.Colour(100,100,100) TEXT_SELECTED = wx.Colour(255, 255, 255, 255) # wx.Colour(100,100,100) SBRUSH_SELECTED = wx.SOLID BACKGROUND_GREY = wx.Colour(240,255,240) TEXT_GREY = wx.Colour(131,139,131) SBRUSH_GREY = wx.SOLID MAP_SORT_NAN = {float('Nan'): None} """Base class for editors""" ### Customisation points def Draw(self, grid, attr, dc, rect, row, col, isSelected): """Customisation Point: Draw the data from grid in the rectangle with attributes using the dc""" dc.SetClippingRegion( rect.x, rect.y, rect.width, rect.height ) back, fore, bstyle = self.BACKGROUND, self.TEXT, self.SBRUSH value = grid.GetCellValue( row, col ) if row in grid.GetSelectedRows(): back, fore, bstyle = self.BACKGROUND_SELECTED, self.TEXT_SELECTED, self.SBRUSH_SELECTED elif grid.GetTable().getEnabled(row) == 0: back, fore, bstyle = self.BACKGROUND_GREY, self.TEXT_GREY, self.SBRUSH_GREY try: dc.SetTextForeground( fore ) dc.SetTextBackground( back) dc.SetBrush( wx.Brush( back, bstyle) ) dc.SetPen(wx.TRANSPARENT_PEN) dc.DrawRectangle( rect.x, rect.y, rect.width, rect.height ) dc.SetFont( wx.NORMAL_FONT ) dc.DrawText( value, rect.x+2,rect.y+2 ) finally: dc.SetTextForeground( self.TEXT) dc.SetTextBackground( self.BACKGROUND) dc.SetPen( wx.NullPen ) dc.SetBrush( wx.NullBrush ) dc.DestroyClippingRegion( ) # def GetBestSize(self, grid, attr, dc, row, col): # """Customisation Point: Determine the appropriate (best) size for the control, return as wxSize # Note: You _must_ return a wxSize object. Returning a two-value-tuple # won't raise an error, but the value won't be respected by wxPython. # """ # x,y = dc.GetTextExtent( "%s" % grid.GetCellValue( row, col ) ) # # note that the two-tuple returned by GetTextExtent won't work, # # need to give a wxSize object back! # return wx.Size( min(x, 10), min(y, 10)) class ColorRenderer(CustRenderer): ### Customisation points def Draw(self, grid, attr, dc, rect, row, col, isSelected): """Customisation Point: Draw the data from grid in the rectangle with attributes using the dc""" dc.SetClippingRegion( rect.x, rect.y, rect.width, rect.height ) back, fore, bstyle = self.BACKGROUND, self.TEXT, self.SBRUSH value = grid.GetCellValue( row, col ) tmp = re.match("^#h(?P<h>[0-9]*)l(?P<l>[0-9]*)#(?P<val>.*)$", value) if tmp is not None: s = 1 if row in grid.GetSelectedRows(): s=0.5 elif grid.GetTable().getEnabled(row) == 0: s= 0.2 rgb_back, rgb_fore = getRGB(int(tmp.group("h"))/255.0, int(tmp.group("l"))/255.0, s) back, fore, bstyle = wx.Colour(*rgb_back), wx.Colour(*rgb_fore), self.SBRUSH value = tmp.group("val") elif row in grid.GetSelectedRows(): back, fore, bstyle = self.BACKGROUND_SELECTED, self.TEXT_SELECTED, self.SBRUSH_SELECTED elif grid.GetTable().getEnabled(row) == 0: back, fore, bstyle = self.BACKGROUND_GREY, self.TEXT_GREY, self.SBRUSH_GREY try: dc.SetTextForeground( fore ) dc.SetTextBackground( back) dc.SetBrush( wx.Brush( back, bstyle) ) dc.SetPen(wx.TRANSPARENT_PEN) dc.DrawRectangle( rect.x, rect.y, rect.width, rect.height ) dc.SetFont( wx.NORMAL_FONT ) dc.DrawText( value, rect.x+2,rect.y+2 ) finally: dc.SetTextForeground( self.TEXT) dc.SetTextBackground( self.BACKGROUND) dc.SetPen( wx.NullPen ) dc.SetBrush( wx.NullBrush ) dc.DestroyClippingRegion( ) # def GetBestSize(self, grid, attr, dc, row, col): # """Customisation Point: Determine the appropriate (best) size for the control, return as wxSize # Note: You _must_ return a wxSize object. Returning a two-value-tuple # won't raise an error, but the value won't be respected by wxPython. # """ # x,y = dc.GetTextExtent( "%s" % grid.GetCellValue( row, col ) ) # # note that the two-tuple returned by GetTextExtent won't work, # # need to give a wxSize object back! # return wx.Size( min(x, 10), min(y, 10)) class GridTable(wx.grid.PyGridTableBase): fields_def = [] renderer = CustRenderer name_m = None #### COLUMN WIDTHS width_colcheck = 25 width_colid = 50 width_colname = 150 width_colnamew = 300 width_colinfo = 80 width_colinfow = 100 width_colinfon = 8 def __init__(self, parent, tabId, frame, short=None): wx.grid.PyGridTableBase.__init__(self) self.details = {} self.short = short self.sc = set() # show column (for collapsed/expanded columns) self.parent = parent self.tabId = tabId self.fields = self.fields_def self.data = ICList() self.sortids = ICList() self.sortP = (None, False) self.currentRows = self.nbItems() self.currentColumns = len(self.fields) self.matching = [] ### for find function #### GRID self.grid = wx.grid.Grid(frame) self.grid.SetTable(self) self.setSelectedRow(0) self.grid.EnableEditing(False) #self.grid.AutoSizeColumns(True) self.grid.RegisterDataType(wx.grid.GRID_VALUE_STRING, self.renderer(), wx.grid.GridCellAutoWrapStringEditor()) self.grid.RegisterDataType(wx.grid.GRID_VALUE_BOOL, wx.grid.GridCellBoolRenderer(), wx.grid.GridCellBoolEditor()) # attr = wx.grid.GridCellAttr() # attr.SetEditor(wx.grid.GridCellBoolEditor()) # attr.SetRenderer(wx.grid.GridCellBoolRenderer()) # self.grid.SetColAttr(0,attr) self.grid.Bind(wx.EVT_KEY_UP, self.OnKU) self.grid.Bind(wx.grid.EVT_GRID_LABEL_LEFT_CLICK, self.setSort) self.grid.Bind(wx.grid.EVT_GRID_LABEL_RIGHT_CLICK, self.setFocus) self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_DCLICK, self.OnViewData) self.grid.Bind(wx.grid.EVT_GRID_CELL_RIGHT_CLICK, self.OnRightClick) self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, self.OnMouse) # def showPopupMenu(self, event): # self.table.highlightRow(event.GetRow()) # parent.currentList = self def GetCellBackgroundColor(self, row, col): """Return the value of a cell""" return wx.Colour(100,100,100) def Hide(self): self.grid.Hide() def Show(self): self.grid.Show() ### GRID METHOD def GetNumberRows(self): """Return the number of rows in the grid""" return self.nbItems() ### GRID METHOD def GetColLabelValue(self, col): """Return the number of rows in the grid""" direct = ' ' if col == self.sortP[0]: if self.sortP[1]: direct = SYM.SYM_ARRTOP else: direct = SYM.SYM_ARRBOT return " %s %s" % (self.fields[col][0], direct) ### GRID METHOD def GetNumberCols(self): """Return the number of columns in the grid""" return len(self.fields) ### GRID METHOD def IsEmptyCell(self, row, col): """Return True if the cell is empty""" return self.GetValue(row, col) is None ### GRID METHOD def GetTypeName(self, row, col): """Return the name of the data type of the value in the cell""" if (col == 0): return wx.grid.GRID_VALUE_BOOL else: return wx.grid.GRID_VALUE_STRING # if row < len(self.sortids) and col < len(self.fields): # return self.getFieldV(self.sortids[row], self.fields[col], dict(self.details)) # else: # return None def getFieldV(self, x, field, details): methode = eval(field[1]) if callable(methode): if len(field) > 2 and field[2] is not None: details.update(field[2]) try: return methode(details) except IndexError: methode(details) else: return methode ### GRID METHOD def GetValue(self, row, col): """Return the value of a cell""" if row >= 0 and row < self.nbItems() and col >= 0 and col < len(self.fields): details = {"aim": "list"} details.update(self.details) # print "Here!", self.tabId, self.parent.selectedTab['id']#, self.sortids, row, self.fields, col #pdb.set_trace() return "%s" % self.getFieldV(self.sortids[row], self.fields[col], details) else: return None ### GRID METHOD def SetValue(self, row, col, value): pass def getNamesList(self): """Return the value of a cell""" names_list = [] details = {"aim": "list"} details.update(self.details) if self.name_m is not None: for x in self.sortids: v = "%s" % self.getFieldV(x, (0, self.name_m), details) names_list.append((x,v)) return names_list def nbItems(self): return len(self.sortids) def getItemAtRow(self, row): """Return the data of a row""" if row < self.nbItems() and self.sortids[row] < len(self.data): return self.data[self.sortids[row]] else: return None def getRowForItem(self, rid): """Return the row of an entry""" try: return self.sortids.index(rid) except: return None def getPositionFromRow(self, row): if row is not None and row < self.nbItems() and self.sortids[row] < len(self.data): return self.sortids[row] else: return None def getRowFromPosition(self, pos): try: return self.sortids.index(pos) except: return None def resetSizes(self): self.GetView().AutoSize() for coli, f in enumerate(self.fields): if len(f) > 3: self.GetView().SetColSize(coli, f[3]) def resetDetails(self, details={}, review=True): self.sortP = (None, False) self.details = details if review: self.ResetView() self.resetSizes() def resetData(self, data=None, srids=None): if data is not None: self.data = data else: self.data = ICList() if srids is not None: self.sortids = srids else: self.sortids = ICList([idi for idi in range(len(self.data))], True) self.resetFields() self.updateSort() self.ResetView() self.resetSizes() def resetFields(self, dw=None, review=True): self.sortP = (None, False) def getEnabled(self, row): return self.getItemAtRow(row).getEnabled() def notify_change(self): if type(self.data) == ICList: self.data.isChanged = True def flipEnabled(self, row): self.data[self.sortids[row]].flipEnabled() self.notify_change() self.ResetView() def flipAllEnabled(self, dids=None): if dids is None: dids = range(len(self.data)) for did in dids: self.data[did].flipEnabled() self.notify_change() self.ResetView() def setAllDisabled(self, dids=None): if dids is None: dids = range(len(self.data)) for did in dids: self.data[did].setDisabled() self.notify_change() self.ResetView() def setAllEnabled(self, dids=None): if dids is None: dids = range(len(self.data)) for did in dids: self.data[did].setEnabled() self.notify_change() self.ResetView() def OnMouse(self,event): if event.GetRow() < self.nbItems(): self.setSelectedRow(event.GetRow(), event.GetCol()) if event.Col == 0: self.flipEnabled(event.GetRow()) def ResetView(self): """Trim/extend the control's rows and update all values""" self.GetView().BeginBatch() for current, new, delmsg, addmsg in [ (self.currentRows, self.GetNumberRows(), wx.grid.GRIDTABLE_NOTIFY_ROWS_DELETED, wx.grid.GRIDTABLE_NOTIFY_ROWS_APPENDED), (self.currentColumns, self.GetNumberCols(), wx.grid.GRIDTABLE_NOTIFY_COLS_DELETED, wx.grid.GRIDTABLE_NOTIFY_COLS_APPENDED), ]: if new < current: msg = wx.grid.GridTableMessage( self, delmsg, new, # position current-new, ) self.GetView().ProcessTableMessage(msg) elif new > current: msg = wx.grid.GridTableMessage( self, addmsg, new-current ) self.GetView().ProcessTableMessage(msg) self.GetView().EndBatch() self.currentRows = self.nbItems() self.currentColumns = len(self.fields) if self.getSelectedRow() is not None and not self.grid.IsVisible(self.getSelectedRow(), 0): self.grid.MakeCellVisible(self.getSelectedRow(), 0) def deleteDisabled(self): pass def getSelectedItem(self): if self.getSelectedRow() is not None: return self.getItemAtRow(self.getSelectedRow()) return def getSelectedPos(self): if self.getSelectedRow() is not None: return self.getPositionFromRow(self.getSelectedRow()) return def getSelectedRow(self): if len(self.GetView().GetSelectedRows()) > 0: return self.GetView().GetSelectedRows()[0] else: return None def getSelectedCol(self): return max(0,self.GetView().GetGridCursorCol()) def setSelectedRow(self, row, col=0): if row is None: row = 0 if col is None: col = 0 self.GetView().SetGridCursor(row,col) self.GetView().SelectRow(row) def neutraliseSort(self): self.sortP = (None, False) def setSort(self, event): colS = event.GetCol() if colS == -1: pass ### TODO select all else: old = self.sortP[0] if self.sortP[0] == colS: self.sortP = (self.sortP[0], not self.sortP[1]) else: self.sortP = (colS, True) self.updateSort() self.ResetView() def setFocus(self, event): pass def updateSort(self): selected_row = self.getSelectedRow() selected_col = self.getSelectedCol() selected_id = None if selected_row is not None: selected_id = self.getPositionFromRow(selected_row) if self.sortP[0] is not None: details = {"aim": "sort"} details.update(self.details) self.sortids.sort(key= lambda x: self.getFieldV(x, self.fields[self.sortP[0]], details), reverse=self.sortP[1]) if selected_id is not None: self.setSelectedRow(self.getRowFromPosition(selected_id), selected_col) def quitFind(self): pass def updateFindO(self, matching, non_matching, cid=None): if len(matching) > 0: self.sortP = (None, False) selected_col = self.getSelectedCol() self.sortids = matching+non_matching self.matching = matching self.setSelectedRow(len(matching)-1, selected_col) self.ResetView() def updateFind(self, matching=None, non_matching=None, cid=None): if matching is not None: self.matching = matching if matching is None or len(matching) > 0: self.setSelectedRow(self.getNextMatch(cid), self.getSelectedCol()) self.ResetView() def getNextMatch(self, n=None): if n is None: n = self.getSelectedRow() if len(self.matching) > 0: if n >= self.getRowForItem(self.matching[-1]): return self.getRowForItem(self.matching[0]) else: for si in range(len(self.matching)): if self.getRowForItem(self.matching[si]) > n: return self.getRowForItem(self.matching[si]) else: n += 1 if n == self.nbItems(): n = 0 return n def OnRightClick(self, event): if event.GetRow() < self.nbItems(): self.setSelectedRow(event.GetRow(), event.GetCol()) self.parent.makePopupMenu(self.parent.toolFrame) def OnKU(self, event): if self.grid.GetGridCursorRow() < self.nbItems(): self.setSelectedRow(self.grid.GetGridCursorRow(), self.grid.GetGridCursorCol()) event.Skip() def OnViewData(self, event): if event.GetRow() < self.nbItems(): self.setSelectedRow(event.GetRow(), event.GetCol()) self.viewData() class VarTable(GridTable): fields_def = [('','self.data[x].getEnabled', None, GridTable.width_colcheck), ('id', 'self.data[x].getId', None, GridTable.width_colid), ('name', 'self.data[x].getName', None, GridTable.width_colnamew), ('type', 'self.data[x].getType', None, GridTable.width_colinfow)] fields_miss = [('missing', 'self.data[x].getMissInfo', None, GridTable.width_colinfo)] fields_var = {1: [('density', 'self.data[x].getDensity', None, GridTable.width_colinfo)], 2:[('categories', 'self.data[x].getCategories', None, GridTable.width_colinfo)], 3:[('min', 'self.data[x].getMin', None, GridTable.width_colinfo), ('max', 'self.data[x].getMax', None, GridTable.width_colinfo)]} name_m = 'self.data[x].getName' def notify_change(self): self.parent.updateDataInfo() if type(self.data) == ICList: self.data.isChanged = True def viewData(self, pos=None, viewT=None): if viewT is None: viewT = self.parent.viewsm.getDefaultViewT("R", self.parent.tabs[self.tabId]["type"]) if pos is None: datVar = self.getSelectedItem() else: datVar = self.getItemAtRow(pos) queries = [Query(), Query()] queries[datVar.side].extend(-1, Literal(False, datVar.getTerm())) self.parent.viewsm.newRedVHist(queries, viewT) def resetFields(self, dw=None, review=True): self.sortP = (None, False) self.fields = [] self.fields.extend(self.fields_def) if len([r for r in self.data if r.hasMissing()]) > 0: self.fields.extend(self.fields_miss) for tyid in set([r.typeId() for r in self.data]): self.fields.extend(self.fields_var[tyid]) class RowTable(GridTable): ## (#NBROWS) fields_def = [('','self.data[x].getEnabled'), ('id', 'self.data[x].getId')] name_m = 'self.data[x].getRName' renderer = ColorRenderer def __init__(self, parent, tabId, frame, short=None): GridTable.__init__(self, parent, tabId, frame, short) self.fix_col = 0 def viewData(self, pos=None, viewT=None): if viewT is None: viewT = self.parent.viewsm.getDefaultViewT("R", self.parent.tabs[self.tabId]["type"]) queries = [Query(), Query()] self.parent.viewsm.newRedVHist(queries, viewT) def resetFields(self, dw=None, review=True): self.sortP = (None, False) self.sc = set() # show column (for collapsed/expanded columns) self.fix_col = 2 if dw is not None: self.cols_map = {} self.fields = [] for f in self.fields_def: f = (re.sub("NBROWS", "%d" % dw.getData().nbRows(), f[0]), f[1]) self.fields.append(f) ## self.fields.extend(self.fields_def) if dw.getData().hasRNames(): self.fields.append(('name', 'self.data[x].getRName')) name_m = 'self.data[x].getRName' self.fix_col += 1 for side, sideS in [(0, "LHS"),(1, "RHS")]: nb = max(1,len(dw.getDataCols(side))-1.0) for ci, col in enumerate(dw.getDataCols(side)): self.cols_map[(side, col.getId())] = len(self.fields) self.fields.append(("%s:%s" % (sideS, col.getName()), 'self.data[x].getValue', {"side":side, "col": col.getId(), "range": col.getRange(), "NA": col.NA, "r":ci/nb})) if len(self.cols_map) <= 20: self.sc = set(self.cols_map.values()) if review: self.ResetView() ### GRID METHOD def GetValue(self, row, col): """Return the value of a cell""" if row >= 0 and row < self.nbItems() and col >= 0 and col < len(self.fields): details = {"aim": "row"} details.update(self.details) tmp = self.getFieldV(self.sortids[row], self.fields[col], details) details = {"aim": "list"} details.update(self.details) labl = self.getFieldV(self.sortids[row], self.fields[col], details) if col >= self.fix_col: h = 125*self.fields[col][2]["side"] + int(100*self.fields[col][2]["r"]) if tmp == "-" or (math.isnan(tmp) and math.isnan(self.fields[col][2]["NA"])) \ or (tmp == self.fields[col][2]["NA"]): l = 255 labl = NA_str_def else: rangeV = self.fields[col][2]["range"] lr = row/(1.0*self.nbItems()) if type(rangeV) is dict: if len(rangeV) > 1: lr = rangeV.get(tmp, 0)/(len(rangeV)-1.0) else: lr = 1 elif type(rangeV) is tuple: if rangeV[0] != rangeV[1]: lr = (rangeV[1]-tmp)/(rangeV[1]-rangeV[0]) else: lr = 1 l = 125*lr+100 # sc = 1.0*self.fields[col][2]["max"] - self.fields[col][2]["min"] # if sc == 0: # lr = 0.5 # else: # lr = (tmp - self.fields[col][2]["min"])/sc if col in self.sc: return "#h%dl%d#%s" % (h,l,labl) else: try: return "#h%dl%d#%s" % (h,l,"") except TypeError: print h,l, tmp, self.fields[col][2]["range"], self.fields[col][2]["NA"] else: return tmp else: # print "Get Value RowTable", row, col return None ### GRID METHOD def GetColLabelValue(self, col): """Return the column label""" if col >= self.fix_col and col not in self.sc: name = "" else: name = " %s " % self.fields[col][0] direct = ' ' if col == self.sortP[0]: if self.sortP[1]: direct = SYM.SYM_ARRTOP else: direct = SYM.SYM_ARRBOT return name + direct def notify_change(self): self.parent.updateDataInfo() self.parent.recomputeAll() def resetData(self, data=None, srids=None): if data is not None: self.data = data else: self.data = ICList() if srids is not None: self.sortids = srids else: self.sortids = ICList([idi for idi in range(len(self.data))], True) self.sortP = (None, False) self.redraw() def resetDetails(self, details={}, review=True): self.sortP = (None, False) self.details = details if review: self.redraw() def redraw(self, details={}, review=True): crow, ccol = self.GetView().GetGridCursorRow(), self.GetView().GetGridCursorCol() self.ResetView() self.GetView().SetColMinimalAcceptableWidth(8) #self.GetView().SetRowMinimalAcceptableHeight(5) self.GetView().SetDefaultColSize(8, True) #self.GetView().SetDefaultRowSize(1, True) self.GetView().SetColSize(0, self.width_colcheck) self.GetView().SetColSize(1, self.width_colid) for i in range(2, self.fix_col): # details = {"aim": "list"} # details.update(self.details) # sz = max([len("%s" % self.getFieldV(sid, self.fields[i], details)) for sid in self.sortids]) self.GetView().SetColSize(i, self.width_colname) #10*(sz+2)) for cid in self.sc: pls = 2 if cid == self.sortP[0]: pls = 4 self.GetView().SetColSize(cid, 10*(len(self.fields[cid][0])+pls)) # self.GetView().SetRowSize(self.getSelectedRow(), 10) # # self.GetView().SetColSize(cid, wx.DC().GetTextExtent(self.fields[cid][0])) # self.GetView().DisableDragColSize() self.GetView().DisableDragRowSize() self.GetView().SetGridCursor(crow,ccol) def setFocus(self, event): self.flipFocusCol(event.GetCol()) def flipFocusCol(self, cid): if cid >= self.fix_col: if cid in self.sc: self.sc.remove(cid) else: self.sc.add(cid) self.redraw() if self.getSelectedRow() is not None: row = self.getSelectedRow() else: row = 0 if not self.grid.IsVisible(row, cid): self.grid.MakeCellVisible(row, cid) def setFocusCol(self, cid): if cid >= self.fix_col: if cid not in self.sc: self.sc.add(cid) self.redraw() def delFocusCol(self, cid): if cid >= self.fix_col: if cid in self.sc: self.sc.remove(cid) self.redraw() def showCol(self, side, col): if (side, col) in self.cols_map and self.cols_map[(side, col)] not in self.sc: self.sc.add(self.cols_map[(side, col)]) self.redraw() self.grid.MakeCellVisible(self.getSelectedRow(), self.cols_map[(side, col)]) def showRidRed(self, rid, red=None): row = self.getRowForItem(rid) if row is not None: self.setSelectedRow(row) if isinstance(red, Redescription): for side in [0,1]: for l in red.queries[side].listLiterals(): self.sc.add(self.cols_map[(side, l.colId())]) elif isinstance(red, ColM): self.sc.add(self.cols_map[(red.getSide(), red.getId())]) self.redraw() return row def setSort(self, event): self.setFocusCol(event.GetCol()) GridTable.setSort(self, event) def resetSizes(self): pass
37.085714
184
0.557291
c0e096adbfefa21d8ff915e8ac347b9cec7d82a3
2,494
py
Python
twitch.py
mtejada/twitchplayscoffeeedition
a66b7070b28181851e0750506cbcfa04d23e0728
[ "MIT" ]
null
null
null
twitch.py
mtejada/twitchplayscoffeeedition
a66b7070b28181851e0750506cbcfa04d23e0728
[ "MIT" ]
null
null
null
twitch.py
mtejada/twitchplayscoffeeedition
a66b7070b28181851e0750506cbcfa04d23e0728
[ "MIT" ]
null
null
null
import socket import sys import re class Twitch: user = "" oauth = "" s = None def twitch_login_status(self, data): if not re.match(r'^:(testserver\.local|tmi\.twitch\.tv) NOTICE \* :Login unsuccessful\r\n$', data.decode()): return True else: return False def twitch_connect(self, user, key): self.user = user self.oauth = key print("Connecting to twitch.tv") s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(0.6) connect_host = "irc.twitch.tv" connect_port = 6667 try: s.connect((connect_host, connect_port)) except: print("Failed to connect to twitch") sys.exit() print("Connected to twitch") print("Sending our details to twitch...") s.send(('USER %s\r\n' % user).encode()) s.send(('PASS %s\r\n' % key).encode()) s.send(('NICK %s\r\n' % user).encode()) if not self.twitch_login_status(s.recv(1024)): print("... and they didn't accept our details") sys.exit() else: print("... they accepted our details") print("Connected to twitch.tv!") self.s = s s.send(('JOIN #%s\r\n' % user).encode()) s.recv(1024) def check_has_message(self, data): return re.match( r'^:[a-zA-Z0-9_]+\![a-zA-Z0-9_]+@[a-zA-Z0-9_]+(\.tmi\.twitch\.tv|\.testserver\.local) PRIVMSG #[a-zA-Z0-9_]+ :.+$', data.decode()) def parse_message(self, data): return { 'channel': re.findall(r'^:.+\![a-zA-Z0-9_]+@[a-zA-Z0-9_]+.+ PRIVMSG (.*?) :', data)[0], 'username': re.findall(r'^:([a-zA-Z0-9_]+)\!', data)[0], 'message': re.findall(r'PRIVMSG #[a-zA-Z0-9_]+ :(.+)', data)[0] } def twitch_recieve_messages(self, amount=1024): data = None try: data = self.s.recv(1024) except: return False if not data: print("Lost connection to Twitch, attempting to reconnect...") self.twitch_connect(self.user, self.oauth) return None if data.decode().startswith("PING"): self.s.send(("PONG " + data.split(" ", 3)[1] + "\r\n").encode()) return None if self.check_has_message(data): return [self.parse_message(line) for line in filter(None, data.decode() .split('\r\n'))]
32.38961
127
0.526864
f79235052c732b4573c21ea4fe42b9568ef62eaf
1,370
py
Python
Chapter_3/Chapter_3_1_4_2.py
flytian/python_machinelearning
004707c3e66429f102272a7da97e532255cca293
[ "Apache-2.0" ]
null
null
null
Chapter_3/Chapter_3_1_4_2.py
flytian/python_machinelearning
004707c3e66429f102272a7da97e532255cca293
[ "Apache-2.0" ]
null
null
null
Chapter_3/Chapter_3_1_4_2.py
flytian/python_machinelearning
004707c3e66429f102272a7da97e532255cca293
[ "Apache-2.0" ]
null
null
null
# coding = utf-8 # 从sklearn.datasets中导入20类新闻文本抓取器。 from sklearn.datasets import fetch_20newsgroups # 导入numpy,并且重命名为np。 import numpy as np # 使用新闻抓取器从互联网上下载所有数据,并且存储在变量news中。 news = fetch_20newsgroups(subset='all') # 从sklearn.cross_validation导入train_test_split用来分割数据。 from sklearn.cross_validation import train_test_split # 对前3000条新闻文本进行数据分割,25%文本用于未来测试。 X_train, X_test, y_train, y_test = train_test_split(news.data[:3000], news.target[:3000], test_size=0.25, random_state=33) # 导入支持向量机(分类)模型。 from sklearn.svm import SVC # 导入TfidfVectorizer文本抽取器。 from sklearn.feature_extraction.text import TfidfVectorizer # 导入Pipeline。 from sklearn.pipeline import Pipeline # 使用Pipeline 简化系统搭建流程,将文本抽取与分类器模型串联起来。 clf = Pipeline([('vect', TfidfVectorizer(stop_words='english', analyzer='word')), ('svc', SVC())]) # 这里需要试验的2个超参数的的个数分别是4、3, svc__gamma的参数共有10^-2, 10^-1... 。这样我们一共有12种的超参数组合,12个不同参数下的模型。 parameters = {'svc__gamma': np.logspace(-2, 1, 4), 'svc__C': np.logspace(-1, 1, 3)} # 从sklearn.grid_search中导入网格搜索模块GridSearchCV。 from sklearn.grid_search import GridSearchCV # 初始化配置并行网格搜索,n_jobs=-1代表使用该计算机全部的CPU。 gs = GridSearchCV(clf, parameters, verbose=2, refit=True, cv=3, n_jobs=-1) # 执行多线程并行网格搜索。 % time _ = gs.fit(X_train, y_train) gs.best_params_, gs.best_score_ # 输出最佳模型在测试集上的准确性。 print gs.score(X_test, y_test)
31.136364
105
0.751825
107fd7d2b07a1de86d9a61186f1e8a09a7d173bb
6,607
py
Python
tests/pytests/integration/reactor/test_reactor.py
WeDoSoftware/salt
cfd83e7cd63636f1f23230b9ebf5db496e93fd95
[ "Apache-2.0" ]
null
null
null
tests/pytests/integration/reactor/test_reactor.py
WeDoSoftware/salt
cfd83e7cd63636f1f23230b9ebf5db496e93fd95
[ "Apache-2.0" ]
null
null
null
tests/pytests/integration/reactor/test_reactor.py
WeDoSoftware/salt
cfd83e7cd63636f1f23230b9ebf5db496e93fd95
[ "Apache-2.0" ]
null
null
null
""" tests.pytests.integration.reactor.test_reactor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Test Salt's reactor system """ import logging import pathlib import time import pytest import salt.utils.event import salt.utils.reactor from salt.serializers import yaml from tests.support.helpers import PRE_PYTEST_SKIP_REASON pytestmark = [ pytest.mark.slow_test, pytest.mark.windows_whitelisted, ] log = logging.getLogger(__name__) @pytest.fixture(scope="module") def event_listener(salt_factories): return salt_factories.event_listener @pytest.fixture def master_event_bus(salt_master): with salt.utils.event.get_master_event( salt_master.config.copy(), salt_master.config["sock_dir"], listen=True, raise_errors=True, ) as event: yield event def test_ping_reaction(event_listener, salt_minion): """ Fire an event on the master and ensure that it pings the minion """ event_tag = "/test_event" start_time = time.time() # Create event bus connection with salt.utils.event.get_event( "minion", sock_dir=salt_minion.config["sock_dir"], opts=salt_minion.config.copy(), ) as event: event.fire_event({"a": "b"}, event_tag) event_pattern = (salt_minion.id, event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=90 ) assert matched_events.found_all_events for event in matched_events: assert event.data == {"a": "b"} @pytest.mark.skip_on_windows(reason=PRE_PYTEST_SKIP_REASON) def test_reactor_reaction( event_listener, salt_master, salt_minion, master_event_bus, reactor_event ): """ Fire an event on the master and ensure the reactor event responds """ start_time = time.time() master_event_bus.fire_event({"id": salt_minion.id}, reactor_event.tag) event_pattern = (salt_master.id, reactor_event.event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=90 ) assert matched_events.found_all_events for event in matched_events: assert event.data["test_reaction"] is True @pytest.mark.skip_on_windows(reason=PRE_PYTEST_SKIP_REASON) def test_reactor_is_leader( event_listener, salt_master, salt_run_cli, master_event_bus, reactor_event, salt_minion, ): """ If reactor system is unavailable, an exception is thrown. When leader is true (the default), the reacion event should return. When leader is set to false reactor should timeout/not do anything. """ ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ( "salt.exceptions.CommandExecutionError: Reactor system is not running." in ret.stdout ) ret = salt_run_cli.run("reactor.set_leader", value=True) assert ret.exitcode == 0 assert ( "salt.exceptions.CommandExecutionError: Reactor system is not running." in ret.stdout ) ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ( "salt.exceptions.CommandExecutionError: Reactor system is not running." in ret.stdout ) # make reactor not the leader; ensure reactor engine is available engines_config = salt_master.config.get("engines").copy() for idx, engine in enumerate(list(engines_config)): if "reactor" in engine: engines_config.pop(idx) engines_config.append( { "reactor": { "refresh_interval": 60, "worker_threads": 10, "worker_hwm": 10000, } } ) config_overrides = yaml.serialize({"engines": engines_config}) confd_dir = ( pathlib.Path(salt_master.config_dir) / pathlib.Path(salt_master.config["default_include"]).parent ) confd_dir.mkdir(exist_ok=True) # Now, with the temp config in place, ensure the reactor engine is running with pytest.helpers.temp_file("reactor-test.conf", config_overrides, confd_dir): ret = salt_run_cli.run("reactor.set_leader", value=True) assert ret.exitcode == 0 assert ( "CommandExecutionError" not in ret.stdout ), "reactor engine is not running" ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ret.stdout.endswith("\ntrue\n") ret = salt_run_cli.run("reactor.set_leader", value=False) assert ret.exitcode == 0 ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ret.stdout.endswith("\nfalse\n") start_time = time.time() log.warning("START\n\n\n") master_event_bus.fire_event({"id": salt_minion.id}, reactor_event.tag) # Since leader is false, let's try and get the fire event to ensure it was triggered event_pattern = (salt_master.id, reactor_event.tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=90 ) assert matched_events.found_all_events # Now that we matched the trigger event, let's confirm we don't get the reaction event event_pattern = (salt_master.id, reactor_event.event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=30 ) assert matched_events.found_all_events is not True # make reactor the leader again; ensure reactor engine is available ret = salt_run_cli.run("reactor.set_leader", value=True) assert ret.exitcode == 0 ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ret.stdout.endswith("\ntrue\n") # trigger a reaction start_time = time.time() master_event_bus.fire_event({"id": salt_minion.id}, reactor_event.tag) event_pattern = (salt_master.id, reactor_event.event_tag) matched_events = event_listener.wait_for_events( [event_pattern], after_time=start_time, timeout=90 ) assert matched_events.found_all_events for event in matched_events: assert event.data["test_reaction"] is True # Let's just confirm the engine is not running once again(because the config file is deleted by now) ret = salt_run_cli.run("reactor.is_leader") assert ret.exitcode == 0 assert ( "salt.exceptions.CommandExecutionError: Reactor system is not running." in ret.stdout )
32.707921
104
0.67262
843497db467876b9471930678ffb35592f59fec2
1,548
py
Python
examples/AdCreativePreviewsEdge.py
pasha-r/facebook-python-ads-sdk
76feadd77baed839516b53297628e7a254c8c3c0
[ "CNRI-Python" ]
null
null
null
examples/AdCreativePreviewsEdge.py
pasha-r/facebook-python-ads-sdk
76feadd77baed839516b53297628e7a254c8c3c0
[ "CNRI-Python" ]
null
null
null
examples/AdCreativePreviewsEdge.py
pasha-r/facebook-python-ads-sdk
76feadd77baed839516b53297628e7a254c8c3c0
[ "CNRI-Python" ]
1
2018-09-24T14:04:48.000Z
2018-09-24T14:04:48.000Z
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.adcreative import AdCreative from facebook_business.adobjects.adpreview import AdPreview from facebook_business.api import FacebookAdsApi access_token = '<ACCESS_TOKEN>' app_secret = '<APP_SECRET>' app_id = '<APP_ID>' id = '<AD_CREATIVE_ID>' FacebookAdsApi.init(access_token=access_token) fields = [ ] params = { 'ad_format': 'DESKTOP_FEED_STANDARD', 'product_item_ids': ['<productItemID>'], } print(AdCreative(id).get_previews( fields=fields, params=params, ))
38.7
76
0.781008
95cce9d0961eb918b9549b1815f3e7049d43f2d1
4,627
py
Python
src/backend/build_models/build_emnist_balanced_model.py
Nauheimer/swtp-ocr
5590a510bfee81f2ac48ea4b56ea6c6bd48607be
[ "Apache-2.0" ]
null
null
null
src/backend/build_models/build_emnist_balanced_model.py
Nauheimer/swtp-ocr
5590a510bfee81f2ac48ea4b56ea6c6bd48607be
[ "Apache-2.0" ]
null
null
null
src/backend/build_models/build_emnist_balanced_model.py
Nauheimer/swtp-ocr
5590a510bfee81f2ac48ea4b56ea6c6bd48607be
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np import pandas as pd from random import randint import matplotlib.pyplot as plt from tensorflow.python.keras.layers.core import Dropout keras = tf.keras """ loads each data from emnist dataset. The csv mapp file for future predictions is also read. """ def load_emnist(): mapp = pd.read_csv("docs/emnist-balanced-mapping.txt", delimiter= ',', header=None, squeeze=True) test = pd.read_csv("docs/emnist-balanced-test.csv", delimiter= ',') train = pd.read_csv("docs/emnist-balanced-train.csv", delimiter= ',') return test, train, mapp """ extracts respectively the test and the train datas from the emnist csv file. The Labels of both sets are extracted from the first column of the emnist csv file. The proper datas of the both sets are extracted from the first to the last column of the emnist csv file. both sets are transformed as arrays to make future datas reshaping possible. returns extracted datas and labels of the train and test set respectively. """ def extract_datas(test, train): test_data = test.iloc[:, 1:] test_label = np.array(test.iloc[:, 0].values) train_data = train.iloc[:, 1:] train_label = np.array(train.iloc[:, 0].values) print(train_data.shape,train_label.shape,test_data.shape,test_label.shape) print('\n') train_data = np.array(train_data) test_data = np.array(test_data) return (train_data, train_label), (test_data, test_label) """ reshapes each data array and downscales the images pixels for a better training with CNN. """ def image_preprocessing(train_data, test_data): #reshape each image of train and test set train_data = [data.reshape(28, 28) for data in train_data] train_data = [np.fliplr(image) for image in train_data] train_data = [np.rot90(image) for image in train_data] train_data = np.asarray(train_data) test_data = [data.reshape(28, 28) for data in test_data] test_data = [np.fliplr(data) for data in test_data] test_data = [np.rot90(data) for data in test_data] test_data = np.asarray(test_data) train_data = train_data.astype('float32') test_data = test_data.astype('float32') # downscale image pixels from [0, 255] to [0, 1] train_data /= 255.0 test_data /= 255.0 print(train_data.shape, test_data.shape) return train_data, test_data """ plots some sample images. """ def plot_sample_images(data, label, mapp): plt.figure(figsize = (10,10)) row, colums = 4, 4 for i in range(16): plt.subplot(colums, row, i+1) index = randint(0, len(data)) plt.savefig("plot_pics/emnist_plot") print(data[index].shape) plt.imshow(tf.squeeze(data[index]), cmap='gray_r') print(label[index]) num = int(label[index]) print(num) plt.title(chr(mapp[num])) plt.show() """ builds and train the CNN Network to get a performant model for future predictions. """ def train_emnist(): train, test, mapp = load_emnist() (train_data, train_label), (test_data, test_label) = extract_datas(train, test) train_data, test_data = image_preprocessing(train_data, test_data) plot_sample_images(train_data, train_label, mapp) model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28, 1)), # input layer (1) keras.layers.Dense(128, activation='relu'), # hidden layer (2) keras.layers.Dense(512, activation='relu'), # hidden layer (2) keras.layers.Dense(47, activation='softmax') # output layer (3) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_data, train_label, epochs=10) test_loss, test_acc = model.evaluate(test_data, test_label) print('Test accuracy:', test_acc) #saving the model save_dir = "results" model_name = "trained_emnist" model_path = os.path.join(save_dir, model_name) model.save(model_path) print('saved trained model at %s ', model_path) prediction = model.predict(test_data) plt.figure(figsize = (10,10)) row, colums = 4, 4 for i in range(16): plt.subplot(colums, row, i + 1) index = randint(0, len(test_data)) plt.imshow(tf.squeeze(test_data[index]), cmap='Greys') plt.title(f"pre={chr(mapp[np.argmax(prediction[index])])} real={chr(mapp[test_label[index]])}") plt.axis('off') plt.savefig("demo_emnist.png", bbox_inches='tight') plt.show() train_emnist()
35.868217
109
0.681219
bda521c2b8ae22ba551f8aeee907bb169f966f42
502
py
Python
app.py
piian/bilibili_video
4740653aab2b8255e325716e1ca3c6b62723b2c3
[ "MIT" ]
null
null
null
app.py
piian/bilibili_video
4740653aab2b8255e325716e1ca3c6b62723b2c3
[ "MIT" ]
2
2021-04-06T18:11:25.000Z
2021-06-02T02:41:51.000Z
app.py
piian/bilibili_video
4740653aab2b8255e325716e1ca3c6b62723b2c3
[ "MIT" ]
null
null
null
import os import time from flask import Flask import api import video app = Flask(__name__, instance_relative_config=True) app.config.from_mapping( SECRET_KEY='dev', DATABASE=os.path.join(app.instance_path, 'video.db'), ) app.debug = True @app.template_filter('datetime') def filter_datetime(s): return time.strftime('%Y-%m-%d %H:%M', time.localtime(s)) app.register_blueprint(video.bp) app.register_blueprint(api.api_bp, url_prefix='/api') if __name__ == '__main__': app.run()
18.592593
61
0.729084
cf2bd6096db6f39f066ffef15b070cf86aef00f0
5,008
py
Python
users/views.py
Yuri-Lima/SharePay
18547053f7e86571366abf4ec4310bf1553395c5
[ "MIT" ]
1
2021-06-14T00:42:52.000Z
2021-06-14T00:42:52.000Z
users/views.py
Yuri-Lima/SharePay
18547053f7e86571366abf4ec4310bf1553395c5
[ "MIT" ]
72
2021-06-08T14:18:23.000Z
2021-07-19T05:33:40.000Z
users/views.py
Yuri-Lima/SharePay
18547053f7e86571366abf4ec4310bf1553395c5
[ "MIT" ]
null
null
null
from django.contrib.auth.models import UserManager from users.models import CustomUser from django.urls import reverse_lazy from django.views.generic.edit import DeleteView, UpdateView from django.shortcuts import render from django.http.response import HttpResponseRedirect from allauth.account import signals from allauth.account.views import( LoginView, SignupView, LogoutView, PasswordSetView, PasswordChangeView, PasswordResetView, EmailView, PasswordResetFromKeyView, PasswordResetFromKeyDoneView, ConfirmEmailView, ) from allauth.socialaccount.views import( ConnectionsView, ) from .forms import ( CustomLoginAccount, CustomSignupAccount, SetPasswordFormAccount, ChangePasswordFormAccount, ResetPasswordFormAccount, CustomAddEmailAccount, SignupFormSocialAccount, DisconnectFormAccount, CustomUserChangeForm ) from django.contrib.auth.models import AnonymousUser """ [Source] https://docs.djangoproject.com/en/3.1/topics/auth/default/#django.contrib.auth.views.PasswordChangeView """ class ProfileUserView(UpdateView): model = CustomUser template_name = 'account/profile.html' form_class = CustomUserChangeForm success_url = reverse_lazy('share:index') def get(self, request, *args, **kwargs): self.object = self.get_object(queryset=CustomUser.objects.all()) return super(ProfileUserView, self).get(request, *args, **kwargs) def post(self, request, *args, **kwargs): super(ProfileUserView, self).post(request, *args, **kwargs) self.object = self.get_object(queryset=CustomUser.objects.all()) form = self.get_form() if form.is_valid(): # print(form) return self.form_valid(form) else: # print(form.errors) return self.form_invalid(form) # return super(ProfileUserView, self).post(request, *args, **kwargs) class LoginUserView(LoginView): template_name = 'account/login.html' success_url = reverse_lazy('share:index') # form_class = CustomLoginAccount def get_context_data(self, **kwargs): ctx = { 'AnonymousUser': AnonymousUser.id } return super(LoginUserView, self).get_context_data(**kwargs) class SignUpUserView(SignupView): template_name = 'account/signup.html' form_class = CustomSignupAccount class LogoutUserView(LogoutView): pass # template_name = 'account/signup.html' # form_class = CustomLoginAccount # success_url = reverse_lazy('users:account_login') class PasswordSetUserView(PasswordSetView): form_class = SetPasswordFormAccount class PasswordChangeUserView(PasswordChangeView): form_class = ChangePasswordFormAccount class PasswordResetUserView(PasswordResetView): template_name = 'account/password_reset.html' form_class = ResetPasswordFormAccount # success_url= reverse_lazy('users:password_reset_done') # email_template_name = 'account/resets_template/password_reset_email.html' # extra_context = 'Dict' class PasswordResetFromKeyUserView(PasswordResetFromKeyView): template_name = 'account/password_reset.html' form_class = ResetPasswordFormAccount class PasswordResetFromKeyDoneUserView(PasswordResetFromKeyDoneView): template_name = 'account/password_reset_from_key_done.html' class EmailUserView(EmailView): template_name= 'account/email.html' form_class = CustomAddEmailAccount class ConnectionsUserView(ConnectionsView): # template_name = 'account/password_reset_confirm_new.html' form_class = DisconnectFormAccount # success_url = reverse_lazy('users:password_reset_complete') post_reset_login = True #A boolean indicating if the user should be automatically authenticated after a successful password reset # extra_context = 'Dict' class ExcludeUserData(DeleteView): queryset = CustomUser.objects.all() template_name = 'account/delete_user_data.html' success_url = reverse_lazy('share:index') def delete(self, request, *args, **kwargs): """ Call the delete() method on the fetched object and then redirect to the success URL. """ self.object = self.get_object() success_url = self.get_success_url() self.object.delete() return HttpResponseRedirect(success_url) # Add support for browsers which only accept GET and POST for now. def post(self, request, *args, **kwargs): return self.delete(request, *args, **kwargs) def privacy_policy(request): template_name = 'account/privacy_policy.html' content_type = 'text/html' return render(request, template_name) def service_term(request): template_name = 'account/service_term.html' content_type = 'text/html' return render(request, template_name)
33.610738
134
0.708267
4b7bdb993b1001e68db11274ee1b9e24ed7f7fc8
1,190
py
Python
fostool/task/logger.py
meng-zha/FOST
2fc32ded470cc465a64f46a2c06c2a081e02f3e5
[ "MIT" ]
181
2021-11-12T09:17:54.000Z
2022-03-22T05:53:35.000Z
fostool/task/logger.py
meng-zha/FOST
2fc32ded470cc465a64f46a2c06c2a081e02f3e5
[ "MIT" ]
12
2021-11-12T16:50:47.000Z
2022-03-07T09:22:16.000Z
fostool/task/logger.py
meng-zha/FOST
2fc32ded470cc465a64f46a2c06c2a081e02f3e5
[ "MIT" ]
41
2021-11-13T14:33:49.000Z
2022-03-11T04:19:58.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # coding:utf-8 from __future__ import absolute_import, division, print_function import logging import os,sys class PackagePathFilter(logging.Filter): def filter(self, record): """add relative path to record """ pathname = record.pathname record.relativepath = None abs_sys_paths = map(os.path.abspath, sys.path) for path in sorted(abs_sys_paths, key=len, reverse=True): # longer paths first if not path.endswith(os.sep): path += os.sep if pathname.startswith(path): record.relativepath = os.path.relpath(pathname, path) break return True def setLogger(): """set logger formatter and level """ LOG_FORMAT = "%(asctime)s %(relativepath)s %(lineno)s \ - %(levelname)s - %(message)s" DATE_FORMAT = "%Y-%m-%d %H:%M:%S" logger=logging.StreamHandler() logger.setLevel(logging.INFO) logger.addFilter(PackagePathFilter()) formatter=logging.Formatter(LOG_FORMAT,DATE_FORMAT) logger.setFormatter(formatter) logging.getLogger().addHandler(logger)
32.162162
90
0.652941
331a0fcd42f72cce35cf4aa601c6be78b75eab21
7,139
py
Python
qiskit/transpiler/passes/scheduling/asap.py
QAMP-Spring-2022-Transpiler-Hackathon/qiskit-terra
aee0dc4d538991560f212411db92cde5f511f65b
[ "Apache-2.0" ]
1,456
2017-08-05T16:33:05.000Z
2018-06-05T04:15:35.000Z
qiskit/transpiler/passes/scheduling/asap.py
QAMP-Spring-2022-Transpiler-Hackathon/qiskit-terra
aee0dc4d538991560f212411db92cde5f511f65b
[ "Apache-2.0" ]
365
2017-08-04T06:09:16.000Z
2018-06-05T08:33:37.000Z
qiskit/transpiler/passes/scheduling/asap.py
QAMP-Spring-2022-Transpiler-Hackathon/qiskit-terra
aee0dc4d538991560f212411db92cde5f511f65b
[ "Apache-2.0" ]
463
2017-08-05T04:10:01.000Z
2018-06-05T06:43:21.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ASAP Scheduling.""" import warnings from qiskit.circuit import Delay, Qubit, Measure from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.exceptions import TranspilerError from .base_scheduler import BaseSchedulerTransform class ASAPSchedule(BaseSchedulerTransform): """ASAP Scheduling pass, which schedules the start time of instructions as early as possible.. See :class:`~qiskit.transpiler.passes.scheduling.base_scheduler.BaseSchedulerTransform` for the detailed behavior of the control flow operation, i.e. ``c_if``. .. note:: This base class has been superseded by :class:`~.ASAPScheduleAnalysis` and the new scheduling workflow. It will be deprecated and subsequently removed in a future release. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) warnings.warn( "The ASAPSchedule class has been supersceded by the ASAPScheduleAnalysis class " "which performs the as analysis pass that requires a padding pass to later modify " "the circuit. This class will be deprecated in a future release and subsequently " "removed after that.", PendingDeprecationWarning, ) def run(self, dag): """Run the ASAPSchedule pass on `dag`. Args: dag (DAGCircuit): DAG to schedule. Returns: DAGCircuit: A scheduled DAG. Raises: TranspilerError: if the circuit is not mapped on physical qubits. TranspilerError: if conditional bit is added to non-supported instruction. """ if len(dag.qregs) != 1 or dag.qregs.get("q", None) is None: raise TranspilerError("ASAP schedule runs on physical circuits only") time_unit = self.property_set["time_unit"] new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) idle_after = {q: 0 for q in dag.qubits + dag.clbits} bit_indices = {q: index for index, q in enumerate(dag.qubits)} for node in dag.topological_op_nodes(): op_duration = self._get_node_duration(node, bit_indices, dag) # compute t0, t1: instruction interval, note that # t0: start time of instruction # t1: end time of instruction if isinstance(node.op, self.CONDITIONAL_SUPPORTED): t0q = max(idle_after[q] for q in node.qargs) if node.op.condition_bits: # conditional is bit tricky due to conditional_latency t0c = max(idle_after[bit] for bit in node.op.condition_bits) if t0q > t0c: # This is situation something like below # # |t0q # Q ▒▒▒▒▒▒▒▒▒░░ # C ▒▒▒░░░░░░░░ # |t0c # # In this case, you can insert readout access before tq0 # # |t0q # Q ▒▒▒▒▒▒▒▒▒▒▒ # C ▒▒▒░░░▒▒░░░ # |t0q - conditional_latency # t0c = max(t0q - self.conditional_latency, t0c) t1c = t0c + self.conditional_latency for bit in node.op.condition_bits: # Lock clbit until state is read idle_after[bit] = t1c # It starts after register read access t0 = max(t0q, t1c) else: t0 = t0q t1 = t0 + op_duration else: if node.op.condition_bits: raise TranspilerError( f"Conditional instruction {node.op.name} is not supported in ASAP scheduler." ) if isinstance(node.op, Measure): # measure instruction handling is bit tricky due to clbit_write_latency t0q = max(idle_after[q] for q in node.qargs) t0c = max(idle_after[c] for c in node.cargs) # Assume following case (t0c > t0q) # # |t0q # Q ▒▒▒▒░░░░░░░░░░░░ # C ▒▒▒▒▒▒▒▒░░░░░░░░ # |t0c # # In this case, there is no actual clbit access until clbit_write_latency. # The node t0 can be push backward by this amount. # # |t0q' = t0c - clbit_write_latency # Q ▒▒▒▒░░▒▒▒▒▒▒▒▒▒▒ # C ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ # |t0c' = t0c # # rather than naively doing # # |t0q' = t0c # Q ▒▒▒▒░░░░▒▒▒▒▒▒▒▒ # C ▒▒▒▒▒▒▒▒░░░▒▒▒▒▒ # |t0c' = t0c + clbit_write_latency # t0 = max(t0q, t0c - self.clbit_write_latency) t1 = t0 + op_duration for clbit in node.cargs: idle_after[clbit] = t1 else: # It happens to be directives such as barrier t0 = max(idle_after[bit] for bit in node.qargs + node.cargs) t1 = t0 + op_duration # Add delay to qubit wire for bit in node.qargs: delta = t0 - idle_after[bit] if delta > 0 and isinstance(bit, Qubit): new_dag.apply_operation_back(Delay(delta, time_unit), [bit], []) idle_after[bit] = t1 new_dag.apply_operation_back(node.op, node.qargs, node.cargs) circuit_duration = max(idle_after.values()) for bit, after in idle_after.items(): delta = circuit_duration - after if not (delta > 0 and isinstance(bit, Qubit)): continue new_dag.apply_operation_back(Delay(delta, time_unit), [bit], []) new_dag.name = dag.name new_dag.metadata = dag.metadata new_dag.calibrations = dag.calibrations # set circuit duration and unit to indicate it is scheduled new_dag.duration = circuit_duration new_dag.unit = time_unit return new_dag
41.028736
101
0.517299
c6e3f20dfa7543bdfb515a1f84daaa3d41f2ed6c
276
py
Python
BIT MANIPULATION/Missing Number/Code.py
HassanRahim26/LEETCODE
c0ec81b037ff7b2d6e6030ac9835c21ed825100f
[ "MIT" ]
3
2021-08-31T11:02:28.000Z
2022-01-17T08:07:00.000Z
BIT MANIPULATION/Missing Number/Code.py
HassanRahim26/LEETCODE
c0ec81b037ff7b2d6e6030ac9835c21ed825100f
[ "MIT" ]
null
null
null
BIT MANIPULATION/Missing Number/Code.py
HassanRahim26/LEETCODE
c0ec81b037ff7b2d6e6030ac9835c21ed825100f
[ "MIT" ]
null
null
null
# PROBLEM LINK:- https://leetcode.com/problems/missing-number/ class Solution: def missingNumber(self, nums: List[int]) -> int: n = len(nums) i = 0 for x in nums: n ^= x; n ^= i i += 1 return n
21.230769
62
0.463768
04ed2808c5626e82429bc6009be797ff87908cfa
52,833
py
Python
lbry/wallet/ledger.py
freakypie/lbry-sdk
2cc7e5dfdcc3ba2dfbdf165c5aaf1569795aa920
[ "MIT" ]
null
null
null
lbry/wallet/ledger.py
freakypie/lbry-sdk
2cc7e5dfdcc3ba2dfbdf165c5aaf1569795aa920
[ "MIT" ]
null
null
null
lbry/wallet/ledger.py
freakypie/lbry-sdk
2cc7e5dfdcc3ba2dfbdf165c5aaf1569795aa920
[ "MIT" ]
null
null
null
import os import copy import time import asyncio import logging from datetime import datetime from functools import partial from operator import itemgetter from collections import defaultdict from binascii import hexlify, unhexlify from typing import Dict, Tuple, Type, Iterable, List, Optional, DefaultDict, NamedTuple from lbry.schema.result import Outputs, INVALID, NOT_FOUND from lbry.schema.url import URL from lbry.crypto.hash import hash160, double_sha256, sha256 from lbry.crypto.base58 import Base58 from lbry.utils import LRUCacheWithMetrics from .tasks import TaskGroup from .database import Database from .stream import StreamController from .dewies import dewies_to_lbc from .account import Account, AddressManager, SingleKey from .network import Network from .transaction import Transaction, Output from .header import Headers, UnvalidatedHeaders from .checkpoints import HASHES from .constants import TXO_TYPES, CLAIM_TYPES, COIN, NULL_HASH32 from .bip32 import PubKey, PrivateKey from .coinselection import CoinSelector log = logging.getLogger(__name__) LedgerType = Type['BaseLedger'] class LedgerRegistry(type): ledgers: Dict[str, LedgerType] = {} def __new__(mcs, name, bases, attrs): cls: LedgerType = super().__new__(mcs, name, bases, attrs) if not (name == 'BaseLedger' and not bases): ledger_id = cls.get_id() assert ledger_id not in mcs.ledgers, \ f'Ledger with id "{ledger_id}" already registered.' mcs.ledgers[ledger_id] = cls return cls @classmethod def get_ledger_class(mcs, ledger_id: str) -> LedgerType: return mcs.ledgers[ledger_id] class TransactionEvent(NamedTuple): address: str tx: Transaction class AddressesGeneratedEvent(NamedTuple): address_manager: AddressManager addresses: List[str] class BlockHeightEvent(NamedTuple): height: int change: int class TransactionCacheItem: __slots__ = '_tx', 'lock', 'has_tx', 'pending_verifications' def __init__(self, tx: Optional[Transaction] = None, lock: Optional[asyncio.Lock] = None): self.has_tx = asyncio.Event() self.lock = lock or asyncio.Lock() self._tx = self.tx = tx self.pending_verifications = 0 @property def tx(self) -> Optional[Transaction]: return self._tx @tx.setter def tx(self, tx: Transaction): self._tx = tx if tx is not None: self.has_tx.set() class Ledger(metaclass=LedgerRegistry): name = 'LBRY Credits' symbol = 'LBC' network_name = 'mainnet' headers_class = Headers secret_prefix = bytes((0x1c,)) pubkey_address_prefix = bytes((0x55,)) script_address_prefix = bytes((0x7a,)) extended_public_key_prefix = unhexlify('0488b21e') extended_private_key_prefix = unhexlify('0488ade4') max_target = 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff genesis_hash = '9c89283ba0f3227f6c03b70216b9f665f0118d5e0fa729cedf4fb34d6a34f463' genesis_bits = 0x1f00ffff target_timespan = 150 default_fee_per_byte = 50 default_fee_per_name_char = 200000 checkpoints = HASHES def __init__(self, config=None): self.config = config or {} self.db: Database = self.config.get('db') or Database( os.path.join(self.path, "blockchain.db") ) self.db.ledger = self self.headers: Headers = self.config.get('headers') or self.headers_class( os.path.join(self.path, "headers") ) self.headers.checkpoints = self.checkpoints self.network: Network = self.config.get('network') or Network(self) self.network.on_header.listen(self.receive_header) self.network.on_status.listen(self.process_status_update) self.accounts = [] self.fee_per_byte: int = self.config.get('fee_per_byte', self.default_fee_per_byte) self._on_transaction_controller = StreamController() self.on_transaction = self._on_transaction_controller.stream self.on_transaction.listen( lambda e: log.info( '(%s) on_transaction: address=%s, height=%s, is_verified=%s, tx.id=%s', self.get_id(), e.address, e.tx.height, e.tx.is_verified, e.tx.id ) ) self._on_address_controller = StreamController() self.on_address = self._on_address_controller.stream self.on_address.listen( lambda e: log.info('(%s) on_address: %s', self.get_id(), e.addresses) ) self._on_header_controller = StreamController() self.on_header = self._on_header_controller.stream self.on_header.listen( lambda change: log.info( '%s: added %s header blocks, final height %s', self.get_id(), change, self.headers.height ) ) self._download_height = 0 self._on_ready_controller = StreamController() self.on_ready = self._on_ready_controller.stream self._tx_cache = LRUCacheWithMetrics(self.config.get("tx_cache_size", 1024), metric_name='tx') self._update_tasks = TaskGroup() self._other_tasks = TaskGroup() # that we dont need to start self._utxo_reservation_lock = asyncio.Lock() self._header_processing_lock = asyncio.Lock() self._address_update_locks: DefaultDict[str, asyncio.Lock] = defaultdict(asyncio.Lock) self._history_lock = asyncio.Lock() self.coin_selection_strategy = None self._known_addresses_out_of_sync = set() self.fee_per_name_char = self.config.get('fee_per_name_char', self.default_fee_per_name_char) self._balance_cache = LRUCacheWithMetrics(2 ** 15) @classmethod def get_id(cls): return '{}_{}'.format(cls.symbol.lower(), cls.network_name.lower()) @classmethod def hash160_to_address(cls, h160): raw_address = cls.pubkey_address_prefix + h160 return Base58.encode(bytearray(raw_address + double_sha256(raw_address)[0:4])) @staticmethod def address_to_hash160(address): return Base58.decode(address)[1:21] @classmethod def is_valid_address(cls, address): decoded = Base58.decode_check(address) return decoded[0] == cls.pubkey_address_prefix[0] @classmethod def public_key_to_address(cls, public_key): return cls.hash160_to_address(hash160(public_key)) @staticmethod def private_key_to_wif(private_key): return b'\x1c' + private_key + b'\x01' @property def path(self): return os.path.join(self.config['data_path'], self.get_id()) def add_account(self, account: Account): self.accounts.append(account) async def _get_account_and_address_info_for_address(self, wallet, address): match = await self.db.get_address(accounts=wallet.accounts, address=address) if match: for account in wallet.accounts: if match['account'] == account.public_key.address: return account, match async def get_private_key_for_address(self, wallet, address) -> Optional[PrivateKey]: match = await self._get_account_and_address_info_for_address(wallet, address) if match: account, address_info = match return account.get_private_key(address_info['chain'], address_info['pubkey'].n) return None async def get_public_key_for_address(self, wallet, address) -> Optional[PubKey]: match = await self._get_account_and_address_info_for_address(wallet, address) if match: _, address_info = match return address_info['pubkey'] return None async def get_account_for_address(self, wallet, address): match = await self._get_account_and_address_info_for_address(wallet, address) if match: return match[0] async def get_effective_amount_estimators(self, funding_accounts: Iterable[Account]): estimators = [] for account in funding_accounts: utxos = await account.get_utxos(no_tx=True, no_channel_info=True) for utxo in utxos: estimators.append(utxo.get_estimator(self)) return estimators async def get_addresses(self, **constraints): return await self.db.get_addresses(**constraints) def get_address_count(self, **constraints): return self.db.get_address_count(**constraints) async def get_spendable_utxos(self, amount: int, funding_accounts: Optional[Iterable['Account']], min_amount=1): min_amount = min(amount // 10, min_amount) fee = Output.pay_pubkey_hash(COIN, NULL_HASH32).get_fee(self) selector = CoinSelector(amount, fee) async with self._utxo_reservation_lock: if self.coin_selection_strategy == 'sqlite': return await self.db.get_spendable_utxos(self, amount + fee, funding_accounts, min_amount=min_amount, fee_per_byte=self.fee_per_byte) txos = await self.get_effective_amount_estimators(funding_accounts) spendables = selector.select(txos, self.coin_selection_strategy) if spendables: await self.reserve_outputs(s.txo for s in spendables) return spendables def reserve_outputs(self, txos): return self.db.reserve_outputs(txos) def release_outputs(self, txos): return self.db.release_outputs(txos) def release_tx(self, tx): return self.release_outputs([txi.txo_ref.txo for txi in tx.inputs]) def get_utxos(self, **constraints): self.constraint_spending_utxos(constraints) return self.db.get_utxos(**constraints) def get_utxo_count(self, **constraints): self.constraint_spending_utxos(constraints) return self.db.get_utxo_count(**constraints) async def get_txos(self, resolve=False, **constraints) -> List[Output]: txos = await self.db.get_txos(**constraints) if resolve: return await self._resolve_for_local_results(constraints.get('accounts', []), txos) return txos def get_txo_count(self, **constraints): return self.db.get_txo_count(**constraints) def get_txo_sum(self, **constraints): return self.db.get_txo_sum(**constraints) def get_txo_plot(self, **constraints): return self.db.get_txo_plot(**constraints) def get_transactions(self, **constraints): return self.db.get_transactions(**constraints) def get_transaction_count(self, **constraints): return self.db.get_transaction_count(**constraints) async def get_local_status_and_history(self, address, history=None): if not history: address_details = await self.db.get_address(address=address) history = (address_details['history'] if address_details else '') or '' parts = history.split(':')[:-1] return ( hexlify(sha256(history.encode())).decode() if history else None, list(zip(parts[0::2], map(int, parts[1::2]))) ) @staticmethod def get_root_of_merkle_tree(branches, branch_positions, working_branch): for i, branch in enumerate(branches): other_branch = unhexlify(branch)[::-1] other_branch_on_left = bool((branch_positions >> i) & 1) if other_branch_on_left: combined = other_branch + working_branch else: combined = working_branch + other_branch working_branch = double_sha256(combined) return hexlify(working_branch[::-1]) async def start(self): if not os.path.exists(self.path): os.mkdir(self.path) await asyncio.wait([ self.db.open(), self.headers.open() ]) fully_synced = self.on_ready.first asyncio.create_task(self.network.start()) await self.network.on_connected.first async with self._header_processing_lock: await self._update_tasks.add(self.initial_headers_sync()) self.network.on_connected.listen(self.join_network) asyncio.ensure_future(self.join_network()) await fully_synced await self.db.release_all_outputs() await asyncio.gather(*(a.maybe_migrate_certificates() for a in self.accounts)) await asyncio.gather(*(a.save_max_gap() for a in self.accounts)) if len(self.accounts) > 10: log.info("Loaded %i accounts", len(self.accounts)) else: await self._report_state() self.on_transaction.listen(self._reset_balance_cache) async def join_network(self, *_): log.info("Subscribing and updating accounts.") await self._update_tasks.add(self.subscribe_accounts()) await self._update_tasks.done.wait() self._on_ready_controller.add(True) async def stop(self): self._update_tasks.cancel() self._other_tasks.cancel() await self._update_tasks.done.wait() await self._other_tasks.done.wait() await self.network.stop() await self.db.close() await self.headers.close() @property def local_height_including_downloaded_height(self): return max(self.headers.height, self._download_height) async def initial_headers_sync(self): get_chunk = partial(self.network.retriable_call, self.network.get_headers, count=1000, b64=True) self.headers.chunk_getter = get_chunk async def doit(): for height in reversed(sorted(self.headers.known_missing_checkpointed_chunks)): async with self._header_processing_lock: await self.headers.ensure_chunk_at(height) self._other_tasks.add(doit()) await self.update_headers() async def update_headers(self, height=None, headers=None, subscription_update=False): rewound = 0 while True: if height is None or height > len(self.headers): # sometimes header subscription updates are for a header in the future # which can't be connected, so we do a normal header sync instead height = len(self.headers) headers = None subscription_update = False if not headers: header_response = await self.network.retriable_call(self.network.get_headers, height, 2001) headers = header_response['hex'] if not headers: # Nothing to do, network thinks we're already at the latest height. return added = await self.headers.connect(height, unhexlify(headers)) if added > 0: height += added self._on_header_controller.add( BlockHeightEvent(self.headers.height, added)) if rewound > 0: # we started rewinding blocks and apparently found # a new chain rewound = 0 await self.db.rewind_blockchain(height) if subscription_update: # subscription updates are for latest header already # so we don't need to check if there are newer / more # on another loop of update_headers(), just return instead return elif added == 0: # we had headers to connect but none got connected, probably a reorganization height -= 1 rewound += 1 log.warning( "Blockchain Reorganization: attempting rewind to height %s from starting height %s", height, height+rewound ) self._tx_cache.clear() else: raise IndexError(f"headers.connect() returned negative number ({added})") if height < 0: raise IndexError( "Blockchain reorganization rewound all the way back to genesis hash. " "Something is very wrong. Maybe you are on the wrong blockchain?" ) if rewound >= 100: raise IndexError( "Blockchain reorganization dropped {} headers. This is highly unusual. " "Will not continue to attempt reorganizing. Please, delete the ledger " "synchronization directory inside your wallet directory (folder: '{}') and " "restart the program to synchronize from scratch." .format(rewound, self.get_id()) ) headers = None # ready to download some more headers # if we made it this far and this was a subscription_update # it means something went wrong and now we're doing a more # robust sync, turn off subscription update shortcut subscription_update = False async def receive_header(self, response): async with self._header_processing_lock: header = response[0] await self.update_headers( height=header['height'], headers=header['hex'], subscription_update=True ) async def subscribe_accounts(self): if self.network.is_connected and self.accounts: log.info("Subscribe to %i accounts", len(self.accounts)) await asyncio.wait([ self.subscribe_account(a) for a in self.accounts ]) async def subscribe_account(self, account: Account): for address_manager in account.address_managers.values(): await self.subscribe_addresses(address_manager, await address_manager.get_addresses()) await account.ensure_address_gap() async def unsubscribe_account(self, account: Account): for address in await account.get_addresses(): await self.network.unsubscribe_address(address) async def announce_addresses(self, address_manager: AddressManager, addresses: List[str]): await self.subscribe_addresses(address_manager, addresses) await self._on_address_controller.add( AddressesGeneratedEvent(address_manager, addresses) ) async def subscribe_addresses(self, address_manager: AddressManager, addresses: List[str], batch_size: int = 1000): if self.network.is_connected and addresses: addresses_remaining = list(addresses) while addresses_remaining: batch = addresses_remaining[:batch_size] results = await self.network.subscribe_address(*batch) for address, remote_status in zip(batch, results): self._update_tasks.add(self.update_history(address, remote_status, address_manager)) addresses_remaining = addresses_remaining[batch_size:] if self.network.client and self.network.client.server_address_and_port: log.info("subscribed to %i/%i addresses on %s:%i", len(addresses) - len(addresses_remaining), len(addresses), *self.network.client.server_address_and_port) if self.network.client and self.network.client.server_address_and_port: log.info( "finished subscribing to %i addresses on %s:%i", len(addresses), *self.network.client.server_address_and_port ) def process_status_update(self, update): address, remote_status = update self._update_tasks.add(self.update_history(address, remote_status)) async def update_history(self, address, remote_status, address_manager: AddressManager = None, reattempt_update: bool = True): async with self._address_update_locks[address]: self._known_addresses_out_of_sync.discard(address) local_status, local_history = await self.get_local_status_and_history(address) if local_status == remote_status: return True remote_history = await self.network.retriable_call(self.network.get_history, address) remote_history = list(map(itemgetter('tx_hash', 'height'), remote_history)) we_need = set(remote_history) - set(local_history) if not we_need: remote_missing = set(local_history) - set(remote_history) if remote_missing: log.warning( "%i transactions we have for %s are not in the remote address history", len(remote_missing), address ) return True to_request = {} pending_synced_history = {} already_synced = set() already_synced_offset = 0 for i, (txid, remote_height) in enumerate(remote_history): if i == already_synced_offset and i < len(local_history) and local_history[i] == (txid, remote_height): pending_synced_history[i] = f'{txid}:{remote_height}:' already_synced.add((txid, remote_height)) already_synced_offset += 1 continue tx_indexes = {} for i, (txid, remote_height) in enumerate(remote_history): tx_indexes[txid] = i if (txid, remote_height) in already_synced: continue to_request[i] = (txid, remote_height) log.debug( "request %i transactions, %i/%i for %s are already synced", len(to_request), len(already_synced), len(remote_history), address ) remote_history_txids = set(txid for txid, _ in remote_history) async for tx in self.request_synced_transactions(to_request, remote_history_txids, address): pending_synced_history[tx_indexes[tx.id]] = f"{tx.id}:{tx.height}:" if len(pending_synced_history) % 100 == 0: log.info("Syncing address %s: %d/%d", address, len(pending_synced_history), len(to_request)) log.info("Sync finished for address %s: %d/%d", address, len(pending_synced_history), len(to_request)) assert len(pending_synced_history) == len(remote_history), \ f"{len(pending_synced_history)} vs {len(remote_history)}" synced_history = "" for remote_i, i in zip(range(len(remote_history)), sorted(pending_synced_history.keys())): assert i == remote_i, f"{i} vs {remote_i}" txid, height = remote_history[remote_i] if f"{txid}:{height}:" != pending_synced_history[i]: log.warning("history mismatch: %s vs %s", remote_history[remote_i], pending_synced_history[i]) synced_history += pending_synced_history[i] await self.db.set_address_history(address, synced_history) if address_manager is None: address_manager = await self.get_address_manager_for_address(address) if address_manager is not None: await address_manager.ensure_address_gap() local_status, local_history = \ await self.get_local_status_and_history(address, synced_history) if local_status != remote_status: if local_history == remote_history: log.warning( "%s has a synced history but a mismatched status", address ) return True remote_set = set(remote_history) local_set = set(local_history) log.warning( "%s is out of sync after syncing.\n" "Remote: %s with %d items (%i unique), local: %s with %d items (%i unique).\n" "Histories are mismatched on %i items.\n" "Local is missing\n" "%s\n" "Remote is missing\n" "%s\n" "******", address, remote_status, len(remote_history), len(remote_set), local_status, len(local_history), len(local_set), len(remote_set.symmetric_difference(local_set)), "\n".join([f"{txid} - {height}" for txid, height in local_set.difference(remote_set)]), "\n".join([f"{txid} - {height}" for txid, height in remote_set.difference(local_set)]) ) self._known_addresses_out_of_sync.add(address) return False else: log.debug("finished syncing transaction history for %s, %i known txs", address, len(local_history)) return True async def maybe_verify_transaction(self, tx, remote_height, merkle=None): tx.height = remote_height if 0 < remote_height < len(self.headers): # can't be tx.pending_verifications == 1 because we have to handle the transaction_show case if not merkle: merkle = await self.network.retriable_call(self.network.get_merkle, tx.id, remote_height) if 'merkle' not in merkle: return merkle_root = self.get_root_of_merkle_tree(merkle['merkle'], merkle['pos'], tx.hash) header = await self.headers.get(remote_height) tx.position = merkle['pos'] tx.is_verified = merkle_root == header['merkle_root'] return tx async def request_transactions(self, to_request: Tuple[Tuple[str, int], ...], cached=False): batches = [[]] remote_heights = {} cache_hits = set() for txid, height in sorted(to_request, key=lambda x: x[1]): if cached: cached_tx = self._tx_cache.get(txid) if cached_tx is not None: if cached_tx.tx is not None and cached_tx.tx.is_verified: cache_hits.add(txid) continue else: self._tx_cache[txid] = TransactionCacheItem() remote_heights[txid] = height if len(batches[-1]) == 100: batches.append([]) batches[-1].append(txid) if not batches[-1]: batches.pop() if cached and cache_hits: yield {txid: self._tx_cache[txid].tx for txid in cache_hits} for batch in batches: txs = await self._single_batch(batch, remote_heights) if cached: for txid, tx in txs.items(): self._tx_cache[txid].tx = tx yield txs async def request_synced_transactions(self, to_request, remote_history, address): async for txs in self.request_transactions(((txid, height) for txid, height in to_request.values())): for tx in txs.values(): yield tx await self._sync_and_save_batch(address, remote_history, txs) async def _single_batch(self, batch, remote_heights): heights = {remote_heights[txid] for txid in batch} unrestriced = 0 < min(heights) < max(heights) < max(self.headers.checkpoints or [0]) batch_result = await self.network.retriable_call(self.network.get_transaction_batch, batch, not unrestriced) txs = {} for txid, (raw, merkle) in batch_result.items(): remote_height = remote_heights[txid] tx = Transaction(unhexlify(raw), height=remote_height) txs[tx.id] = tx await self.maybe_verify_transaction(tx, remote_height, merkle) return txs async def _sync_and_save_batch(self, address, remote_history, pending_txs): await asyncio.gather(*(self._sync(tx, remote_history, pending_txs) for tx in pending_txs.values())) await self.db.save_transaction_io_batch( pending_txs.values(), address, self.address_to_hash160(address), "" ) while pending_txs: self._on_transaction_controller.add(TransactionEvent(address, pending_txs.popitem()[1])) async def _sync(self, tx, remote_history, pending_txs): check_db_for_txos = {} for txi in tx.inputs: if txi.txo_ref.txo is not None: continue wanted_txid = txi.txo_ref.tx_ref.id if wanted_txid not in remote_history: continue if wanted_txid in pending_txs: txi.txo_ref = pending_txs[wanted_txid].outputs[txi.txo_ref.position].ref else: check_db_for_txos[txi] = txi.txo_ref.id referenced_txos = {} if not check_db_for_txos else { txo.id: txo for txo in await self.db.get_txos( txoid__in=list(check_db_for_txos.values()), order_by='txo.txoid', no_tx=True ) } for txi in check_db_for_txos: if txi.txo_ref.id in referenced_txos: txi.txo_ref = referenced_txos[txi.txo_ref.id].ref else: tx_from_db = await self.db.get_transaction(txid=txi.txo_ref.tx_ref.id) if tx_from_db is None: log.warning("%s not on db, not on cache, but on remote history!", txi.txo_ref.id) else: txi.txo_ref = tx_from_db.outputs[txi.txo_ref.position].ref return tx async def get_address_manager_for_address(self, address) -> Optional[AddressManager]: details = await self.db.get_address(address=address) for account in self.accounts: if account.id == details['account']: return account.address_managers[details['chain']] return None def broadcast(self, tx): # broadcast can't be a retriable call yet return self.network.broadcast(hexlify(tx.raw).decode()) async def wait(self, tx: Transaction, height=-1, timeout=1): timeout = timeout or 600 # after 10 minutes there is almost 0 hope addresses = set() for txi in tx.inputs: if txi.txo_ref.txo is not None: addresses.add( self.hash160_to_address(txi.txo_ref.txo.pubkey_hash) ) for txo in tx.outputs: if txo.has_address: addresses.add(self.hash160_to_address(txo.pubkey_hash)) start = int(time.perf_counter()) while timeout and (int(time.perf_counter()) - start) <= timeout: if await self._wait_round(tx, height, addresses): return raise asyncio.TimeoutError('Timed out waiting for transaction.') async def _wait_round(self, tx: Transaction, height: int, addresses: Iterable[str]): records = await self.db.get_addresses(address__in=addresses) _, pending = await asyncio.wait([ self.on_transaction.where(partial( lambda a, e: a == e.address and e.tx.height >= height and e.tx.id == tx.id, address_record['address'] )) for address_record in records ], timeout=1) if not pending: return True records = await self.db.get_addresses(address__in=addresses) for record in records: local_history = (await self.get_local_status_and_history( record['address'], history=record['history'] ))[1] if record['history'] else [] for txid, local_height in local_history: if txid == tx.id: if local_height >= height: return True log.warning( "local history has higher height than remote for %s (%i vs %i)", txid, local_height, height ) return False log.warning( "local history does not contain %s, requested height %i", tx.id, height ) return False async def _inflate_outputs( self, query, accounts, include_purchase_receipt=False, include_is_my_output=False, include_sent_supports=False, include_sent_tips=False, include_received_tips=False) -> Tuple[List[Output], dict, int, int]: encoded_outputs = await query outputs = Outputs.from_base64(encoded_outputs or b'') # TODO: why is the server returning None? txs: List[Transaction] = [] if len(outputs.txs) > 0: async for tx in self.request_transactions(tuple(outputs.txs), cached=True): txs.extend(tx.values()) _txos, blocked = outputs.inflate(txs) txos = [] for txo in _txos: if isinstance(txo, Output): # transactions and outputs are cached and shared between wallets # we don't want to leak informaion between wallet so we add the # wallet specific metadata on throw away copies of the txos txo = copy.copy(txo) channel = txo.channel txo.purchase_receipt = None txo.update_annotations(None) txo.channel = channel txos.append(txo) includes = ( include_purchase_receipt, include_is_my_output, include_sent_supports, include_sent_tips ) if accounts and any(includes): receipts = {} if include_purchase_receipt: priced_claims = [] for txo in txos: if isinstance(txo, Output) and txo.has_price: priced_claims.append(txo) if priced_claims: receipts = { txo.purchased_claim_id: txo for txo in await self.db.get_purchases( accounts=accounts, purchased_claim_id__in=[c.claim_id for c in priced_claims] ) } for txo in txos: if isinstance(txo, Output) and txo.can_decode_claim: if include_purchase_receipt: txo.purchase_receipt = receipts.get(txo.claim_id) if include_is_my_output: mine = await self.db.get_txo_count( claim_id=txo.claim_id, txo_type__in=CLAIM_TYPES, is_my_output=True, is_spent=False, accounts=accounts ) if mine: txo.is_my_output = True else: txo.is_my_output = False if include_sent_supports: supports = await self.db.get_txo_sum( claim_id=txo.claim_id, txo_type=TXO_TYPES['support'], is_my_input=True, is_my_output=True, is_spent=False, accounts=accounts ) txo.sent_supports = supports if include_sent_tips: tips = await self.db.get_txo_sum( claim_id=txo.claim_id, txo_type=TXO_TYPES['support'], is_my_input=True, is_my_output=False, accounts=accounts ) txo.sent_tips = tips if include_received_tips: tips = await self.db.get_txo_sum( claim_id=txo.claim_id, txo_type=TXO_TYPES['support'], is_my_input=False, is_my_output=True, accounts=accounts ) txo.received_tips = tips return txos, blocked, outputs.offset, outputs.total async def resolve(self, accounts, urls, new_sdk_server=None, **kwargs): txos = [] urls_copy = list(urls) if new_sdk_server: resolve = partial(self.network.new_resolve, new_sdk_server) else: resolve = partial(self.network.retriable_call, self.network.resolve) while urls_copy: batch, urls_copy = urls_copy[:100], urls_copy[100:] txos.extend( (await self._inflate_outputs( resolve(batch), accounts, **kwargs ))[0] ) assert len(urls) == len(txos), "Mismatch between urls requested for resolve and responses received." result = {} for url, txo in zip(urls, txos): if txo: if isinstance(txo, Output) and URL.parse(url).has_stream_in_channel: if not txo.channel or not txo.is_signed_by(txo.channel, self): txo = {'error': {'name': INVALID, 'text': f'{url} has invalid channel signature'}} else: txo = {'error': {'name': NOT_FOUND, 'text': f'{url} did not resolve to a claim'}} result[url] = txo return result async def sum_supports(self, new_sdk_server, **kwargs) -> List[Dict]: return await self.network.sum_supports(new_sdk_server, **kwargs) async def claim_search( self, accounts, include_purchase_receipt=False, include_is_my_output=False, new_sdk_server=None, **kwargs) -> Tuple[List[Output], dict, int, int]: if new_sdk_server: claim_search = partial(self.network.new_claim_search, new_sdk_server) else: claim_search = self.network.claim_search return await self._inflate_outputs( claim_search(**kwargs), accounts, include_purchase_receipt=include_purchase_receipt, include_is_my_output=include_is_my_output, ) async def get_claim_by_claim_id(self, accounts, claim_id, **kwargs) -> Output: for claim in (await self.claim_search(accounts, claim_id=claim_id, **kwargs))[0]: return claim async def _report_state(self): try: for account in self.accounts: balance = dewies_to_lbc(await account.get_balance(include_claims=True)) channel_count = await account.get_channel_count() claim_count = await account.get_claim_count() if isinstance(account.receiving, SingleKey): log.info("Loaded single key account %s with %s LBC. " "%d channels, %d certificates and %d claims", account.id, balance, channel_count, len(account.channel_keys), claim_count) else: total_receiving = len(await account.receiving.get_addresses()) total_change = len(await account.change.get_addresses()) log.info("Loaded account %s with %s LBC, %d receiving addresses (gap: %d), " "%d change addresses (gap: %d), %d channels, %d certificates and %d claims. ", account.id, balance, total_receiving, account.receiving.gap, total_change, account.change.gap, channel_count, len(account.channel_keys), claim_count) except Exception as err: if isinstance(err, asyncio.CancelledError): # TODO: remove when updated to 3.8 raise log.exception( 'Failed to display wallet state, please file issue ' 'for this bug along with the traceback you see below:') async def _reset_balance_cache(self, e: TransactionEvent): account_ids = [ r['account'] for r in await self.db.get_addresses(('account',), address=e.address) ] for account_id in account_ids: if account_id in self._balance_cache: del self._balance_cache[account_id] @staticmethod def constraint_spending_utxos(constraints): constraints['txo_type__in'] = (0, TXO_TYPES['purchase']) async def get_purchases(self, resolve=False, **constraints): purchases = await self.db.get_purchases(**constraints) if resolve: claim_ids = [p.purchased_claim_id for p in purchases] try: resolved, _, _, _ = await self.claim_search([], claim_ids=claim_ids) except Exception as err: if isinstance(err, asyncio.CancelledError): # TODO: remove when updated to 3.8 raise log.exception("Resolve failed while looking up purchased claim ids:") resolved = [] lookup = {claim.claim_id: claim for claim in resolved} for purchase in purchases: purchase.purchased_claim = lookup.get(purchase.purchased_claim_id) return purchases def get_purchase_count(self, resolve=False, **constraints): return self.db.get_purchase_count(**constraints) async def _resolve_for_local_results(self, accounts, txos): txos = await self._resolve_for_local_claim_results(accounts, txos) txos = await self._resolve_for_local_support_results(accounts, txos) return txos async def _resolve_for_local_claim_results(self, accounts, txos): results = [] response = await self.resolve( accounts, [txo.permanent_url for txo in txos if txo.can_decode_claim] ) for txo in txos: resolved = response.get(txo.permanent_url) if txo.can_decode_claim else None if isinstance(resolved, Output): resolved.update_annotations(txo) results.append(resolved) else: if isinstance(resolved, dict) and 'error' in resolved: txo.meta['error'] = resolved['error'] results.append(txo) return results async def _resolve_for_local_support_results(self, accounts, txos): channel_ids = set() signed_support_txos = [] for txo in txos: support = txo.can_decode_support if support and support.signing_channel_id: channel_ids.add(support.signing_channel_id) signed_support_txos.append(txo) if channel_ids: channels = { channel.claim_id: channel for channel in (await self.claim_search(accounts, claim_ids=list(channel_ids)))[0] } for txo in signed_support_txos: txo.channel = channels.get(txo.support.signing_channel_id) return txos async def get_claims(self, resolve=False, **constraints): claims = await self.db.get_claims(**constraints) if resolve: return await self._resolve_for_local_results(constraints.get('accounts', []), claims) return claims def get_claim_count(self, **constraints): return self.db.get_claim_count(**constraints) async def get_streams(self, resolve=False, **constraints): streams = await self.db.get_streams(**constraints) if resolve: return await self._resolve_for_local_results(constraints.get('accounts', []), streams) return streams def get_stream_count(self, **constraints): return self.db.get_stream_count(**constraints) async def get_channels(self, resolve=False, **constraints): channels = await self.db.get_channels(**constraints) if resolve: return await self._resolve_for_local_results(constraints.get('accounts', []), channels) return channels def get_channel_count(self, **constraints): return self.db.get_channel_count(**constraints) async def resolve_collection(self, collection, offset=0, page_size=1): claim_ids = collection.claim.collection.claims.ids[offset:page_size + offset] try: resolve_results, _, _, _ = await self.claim_search([], claim_ids=claim_ids) except Exception as err: if isinstance(err, asyncio.CancelledError): # TODO: remove when updated to 3.8 raise log.exception("Resolve failed while looking up collection claim ids:") return [] claims = [] for claim_id in claim_ids: found = False for txo in resolve_results: if txo.claim_id == claim_id: claims.append(txo) found = True break if not found: claims.append(None) return claims async def get_collections(self, resolve_claims=0, resolve=False, **constraints): collections = await self.db.get_collections(**constraints) if resolve: collections = await self._resolve_for_local_results(constraints.get('accounts', []), collections) if resolve_claims > 0: for collection in collections: collection.claims = await self.resolve_collection(collection, page_size=resolve_claims) return collections def get_collection_count(self, resolve_claims=0, **constraints): return self.db.get_collection_count(**constraints) def get_supports(self, **constraints): return self.db.get_supports(**constraints) def get_support_count(self, **constraints): return self.db.get_support_count(**constraints) async def get_transaction_history(self, read_only=False, **constraints): txs: List[Transaction] = await self.db.get_transactions( include_is_my_output=True, include_is_spent=True, read_only=read_only, **constraints ) headers = self.headers history = [] for tx in txs: # pylint: disable=too-many-nested-blocks ts = headers.estimated_timestamp(tx.height) item = { 'txid': tx.id, 'timestamp': ts, 'date': datetime.fromtimestamp(ts).isoformat(' ')[:-3] if tx.height > 0 else None, 'confirmations': (headers.height + 1) - tx.height if tx.height > 0 else 0, 'claim_info': [], 'update_info': [], 'support_info': [], 'abandon_info': [], 'purchase_info': [] } is_my_inputs = all([txi.is_my_input for txi in tx.inputs]) if is_my_inputs: # fees only matter if we are the ones paying them item['value'] = dewies_to_lbc(tx.net_account_balance + tx.fee) item['fee'] = dewies_to_lbc(-tx.fee) else: # someone else paid the fees item['value'] = dewies_to_lbc(tx.net_account_balance) item['fee'] = '0.0' for txo in tx.my_claim_outputs: item['claim_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(-txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'nout': txo.position, 'is_spent': txo.is_spent, }) for txo in tx.my_update_outputs: if is_my_inputs: # updating my own claim previous = None for txi in tx.inputs: if txi.txo_ref.txo is not None: other_txo = txi.txo_ref.txo if (other_txo.is_claim or other_txo.script.is_support_claim) \ and other_txo.claim_id == txo.claim_id: previous = other_txo break if previous is not None: item['update_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(previous.amount - txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'nout': txo.position, 'is_spent': txo.is_spent, }) else: # someone sent us their claim item['update_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(0), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'nout': txo.position, 'is_spent': txo.is_spent, }) for txo in tx.my_support_outputs: item['support_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(txo.amount if not is_my_inputs else -txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'is_tip': not is_my_inputs, 'nout': txo.position, 'is_spent': txo.is_spent, }) if is_my_inputs: for txo in tx.other_support_outputs: item['support_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(-txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'is_tip': is_my_inputs, 'nout': txo.position, 'is_spent': txo.is_spent, }) for txo in tx.my_abandon_outputs: item['abandon_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.claim_id, 'claim_name': txo.claim_name, 'nout': txo.position }) for txo in tx.any_purchase_outputs: item['purchase_info'].append({ 'address': txo.get_address(self), 'balance_delta': dewies_to_lbc(txo.amount if not is_my_inputs else -txo.amount), 'amount': dewies_to_lbc(txo.amount), 'claim_id': txo.purchased_claim_id, 'nout': txo.position, 'is_spent': txo.is_spent, }) history.append(item) return history def get_transaction_history_count(self, read_only=False, **constraints): return self.db.get_transaction_count(read_only=read_only, **constraints) async def get_detailed_balance(self, accounts, confirmations=0): result = { 'total': 0, 'available': 0, 'reserved': 0, 'reserved_subtotals': { 'claims': 0, 'supports': 0, 'tips': 0 } } for account in accounts: balance = self._balance_cache.get(account.id) if not balance: balance = self._balance_cache[account.id] = \ await account.get_detailed_balance(confirmations, reserved_subtotals=True) for key, value in balance.items(): if key == 'reserved_subtotals': for subkey, subvalue in value.items(): result['reserved_subtotals'][subkey] += subvalue else: result[key] += value return result class TestNetLedger(Ledger): network_name = 'testnet' pubkey_address_prefix = bytes((111,)) script_address_prefix = bytes((196,)) extended_public_key_prefix = unhexlify('043587cf') extended_private_key_prefix = unhexlify('04358394') checkpoints = {} class RegTestLedger(Ledger): network_name = 'regtest' headers_class = UnvalidatedHeaders pubkey_address_prefix = bytes((111,)) script_address_prefix = bytes((196,)) extended_public_key_prefix = unhexlify('043587cf') extended_private_key_prefix = unhexlify('04358394') max_target = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff genesis_hash = '6e3fcf1299d4ec5d79c3a4c91d624a4acf9e2e173d95a1a0504f677669687556' genesis_bits = 0x207fffff target_timespan = 1 checkpoints = {}
43.881229
119
0.596597
d85eacb006b6ff34ec06ca166b36599b314cde19
987
py
Python
app/core/admin.py
krismwas/ingredients
33c5718117c0bc2fd65d16fd1fdfbfae69840d62
[ "MIT" ]
null
null
null
app/core/admin.py
krismwas/ingredients
33c5718117c0bc2fd65d16fd1fdfbfae69840d62
[ "MIT" ]
null
null
null
app/core/admin.py
krismwas/ingredients
33c5718117c0bc2fd65d16fd1fdfbfae69840d62
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.utils.translation import ugettext as _ from core.models import User, Ingredient, Tag, Recipe class UserAdmin(BaseUserAdmin): ordering = ['id'] list_display = ['email', 'name'] fieldsets = ( (None, {'fields': ('email', 'password')}), (_('Personal Info'), {'fields': ('name',)}), ( _('Permissions'), { 'fields': ( 'is_active', 'is_staff', 'is_superuser', ) } ), (_('Important dates'), {'fields': ('last_login',)}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2') }), ) admin.site.register(User, UserAdmin) admin.site.register(Tag) admin.site.register(Ingredient) admin.site.register(Recipe)
24.675
64
0.524823
ff6cdf74e5bcaf7a4e87069779bea66494b9b37d
2,316
py
Python
compiler_gym/util/timer.py
thecoblack/CompilerGym
ade54e2f1829cf41722decb0942a4d6fd3102c2c
[ "MIT" ]
null
null
null
compiler_gym/util/timer.py
thecoblack/CompilerGym
ade54e2f1829cf41722decb0942a4d6fd3102c2c
[ "MIT" ]
null
null
null
compiler_gym/util/timer.py
thecoblack/CompilerGym
ade54e2f1829cf41722decb0942a4d6fd3102c2c
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from time import time from typing import Callable, Optional from absl.logging import skip_log_prefix def humanize_duration(seconds: float) -> str: """Format a time for humans.""" value = abs(seconds) sign = "-" if seconds < 0 else "" if value < 1e-6: return f"{sign}{value*1e9:.1f}ns" elif value < 1e-3: return f"{sign}{value*1e6:.1f}us" if value < 1: return f"{sign}{value*1e3:.1f}ms" elif value < 60: return f"{sign}{value:.3f}s" else: return f"{sign}{value:.1f}s" def humanize_duration_hms(seconds: float) -> str: """Format a time in to :code:`hours:minutes:seconds` format.""" seconds = int(seconds) return f"{seconds // 3600}:{(seconds % 3600) // 60:02d}:{seconds % 60:02d}" class Timer: """A very simple scoped timer. Example: >>> with Timer() as timer: time.sleep(10) print(f"That took {timer}") That took 10.0s If you're feeling even more terse: >>> with Timer("Did stuff"): # do stuff ... Did stuff in 5.6ms You can control where the print out should be logged to: >>> with Timer("Did stuff", logging.getLogger().info) # do stuff ... [log] Did stuff in 11us """ def __init__( self, label: Optional[str] = None, print_fn: Callable[[str], None] = print ): self._start_time = None self._elapsed = None self.label = label self.print_fn = print_fn def reset(self) -> "Timer": self._start_time = time() return self def __enter__(self) -> "Timer": return self.reset() @property def time(self) -> float: if self._elapsed: return self._elapsed elif self._start_time: return time() - self._start_time else: return 0 @skip_log_prefix def __exit__(self, *args): self._elapsed = time() - self._start_time if self.label: self.print_fn(f"{self.label} in {self}") def __str__(self): return humanize_duration(self.time)
26.318182
82
0.582038
4b2441c71feef22adf22f4e5e44d413c9b118abe
616
py
Python
src/appstore/views.py
revanth-reddy/ns-3-Appstore
32ac93acf1c9a721adf9f43c0799d6daff9beb7f
[ "MIT" ]
null
null
null
src/appstore/views.py
revanth-reddy/ns-3-Appstore
32ac93acf1c9a721adf9f43c0799d6daff9beb7f
[ "MIT" ]
null
null
null
src/appstore/views.py
revanth-reddy/ns-3-Appstore
32ac93acf1c9a721adf9f43c0799d6daff9beb7f
[ "MIT" ]
null
null
null
from django.views import generic from django.shortcuts import render from apps.models import App, Tag from apps.views import findTags def homePage(request): new_releases = App.objects.all().filter(active=True).order_by('-latest_release_date')[:4] top_tags, not_top_tags = findTags() context = { 'new_releases':new_releases, 'top_tags':top_tags, 'not_top_tags':not_top_tags, } return render(request, 'home.html', context) class AboutPage(generic.TemplateView): template_name = "about.html" def handler404(request): return render(request, '404.html', status=404)
29.333333
93
0.717532
7c20fda064db53476d100b8b6a3bc454a07fca32
19,661
py
Python
pyracmon/graph/graph.py
sozu/py-pyracmon
4a7789ae5432a3197c58ae194de4b8065bbc2846
[ "MIT" ]
null
null
null
pyracmon/graph/graph.py
sozu/py-pyracmon
4a7789ae5432a3197c58ae194de4b8065bbc2846
[ "MIT" ]
null
null
null
pyracmon/graph/graph.py
sozu/py-pyracmon
4a7789ae5432a3197c58ae194de4b8065bbc2846
[ "MIT" ]
null
null
null
from typing import * from .identify import neverPolicy from .template import GraphTemplate def new_graph(template: GraphTemplate, *bases: GraphTemplate): """ Create a graph from a template. Use this function instead of invoking constructor directly. :param template: A template of a graph. :param bases: Other graphs whose nodes are appended to created graph. :returns: Created graph. """ graph = Graph(template) for b in bases: graph += b return graph class Graph: """ This class represents a graph composed of tree-structured node containers. The structure is determined by `GraphTemplate`. Use `new_graph` Instead of constructor to create new graph instance. >>> template = GraphSpac().new_template( >>> a = (int, lambda x:x), >>> b = (str, lambda x:x), >>> c = (str, lambda x:x), >>> ) >>> template.a << template.b << template.c >>> graph = new_graph(template) `append` ( `replace` ) is a method to store entities in the graph with tying them each other according to the structure. Entites are encapsulated by `Node` which can have an edge to parent node. >>> graph.append(a=1, b="a", c="x").append(a=2, b="b", c="y") In `append`, entities are first sorted in descending order, and then: - Search a node whose entity is *identical* to the first entity from the corresponding node container. - If found, new node is not created and the *identical* node is set to next parent. - Otherwise, new node is appended and it is set to next parent. - Repeat above to following entities. A difference is that *identical* node is searched from the parent set in previous operation. In example here, the identification is done by entity value itself. Next code is the example where *identical* nodes are found. >>> graph.append(a=1, b="a", c="z").append(a=2, b="c", c="y") In the first `append`, ``a`` and ``b`` has its *identical* node and ``a`` is *identical* in the second. ``c`` in the second one is not *identical* to any node because parent node ``b="c"`` is added as new node. Due to the identification mechanism, repeatin `append` is sufficient to reconstruct entity relationships in the graph. :param template: Graph template. :param Dict[str, NodeContainer] containers: Node containers mapped by their names. """ def __init__(self, template: GraphTemplate): self.template = template self.containers = {p.name:self._to_container(p) for p in template._properties} self._view = None def _to_container(self, prop): if isinstance(prop.kind, GraphTemplate): return GraphNodeContainer(prop) else: return NodeContainer(prop) def _container_of(self, prop): cands = [c for c in self.containers.values() if c.prop.is_compatible(prop)] if len(cands) > 1: raise ValueError(f"Container can't be determined from property '{prop.name}'.") return cands[0] if cands else None def __add__(self, another): """ Create new graph by adding this graph and another graph. New graph has the same template as this graph'S. On the other hand, because this method depends on `__iadd__()`, another graph must not have the same template. Parameters ---------- another: Graph | GraphView Graph or its view. Returns ------- Graph Created graph. """ graph = Graph(self.template) graph += self graph += another return graph def __iadd__(self, another): """ Append nodes from another graph. Templates of this graph and another graph must not be the same. Nodes of another graph are traversed from its root and appended to compatible containers each other. Parameters ---------- another: Graph | GraphView Graph or its view. Returns ------- Graph This graph. """ another = another if isinstance(another, Graph) else another() roots_ = filter(lambda c: c.prop.parent is None, another.containers.values()) def add(n, anc): c = self._container_of(n.prop) if c: c.append(n.entity, anc) for ch_ in n.children.values(): for m in ch_.nodes: add(m, anc.copy()) for c_ in roots_: for n_ in c_.nodes: add(n_, {}) return self @property def view(self) -> 'GraphView': """ Returns an unmodifiable view of this graph. The view object works as the accessor to graph components. - Returns a graph instance when invoked as callable object. - The attribute of a container name returns the container view. - In iteration context, it iterates views of root containers. - Root container is the container which has no parent. >>> template = GraphSpac().new_template(a=int, b=str, c=str) >>> template.a << template.b >>> graph = new_graph(template) >>> view = graph.view >>> assert view() is graph # invocation >>> assert view.a is graph.containers["a"].view # attribute >>> assert [c().name for c in view] == ["a", "c"] # iteration :getter: The view of this graph. """ if self._view is None: graph = self class GraphView: def __call__(self): """Returns the greph of this view.""" return graph def __iter__(self): """Iterates views of root containers.""" return map(lambda c: (c.name, c.view), filter(lambda c: c.prop.parent is None, graph.containers.values())) def __getattr__(self, name): """Returns a view of a container of the name.""" return graph.containers[name].view self._view = GraphView() return self._view def _append(self, to_replace, entities): props = [p for p in self.template if p.name in entities] filtered = set() for p in props: if (p.parent is None) or (p.parent.name not in entities) or (p.parent.name in filtered): if p.entity_filter is None or p.entity_filter(entities[p.name]): filtered.add(p.name) ancestors = {} for k in [p.name for p in props if p.name in filtered]: self.containers[k].append(entities[k], ancestors, to_replace) return self def append(self, **entities: Any) -> 'Graph': """ Append entities with associated property names. :param entities: Entities keyed with associated property names. :returns: This graph. """ return self._append(False, entities) def replace(self, **entities: Any) -> 'Graph': """ Works similarly to `append` , but entities of identical nodes are replaced with given entities. :param entities: Entities keyed with associated property names. :returns: This graph. """ return self._append(True, entities) class _EmptyNodeView: """ :meta private: """ def __init__(self, prop, result): self.prop = prop self.result = result def __call__(self, alt=None): return self.result def __iter__(self): return iter([]) def __getattr__(self, key): child = next(filter(lambda c: c.name == key, self.prop.children), None) if child: return _EmptyContainerView(child) else: raise KeyError(f"Graph property '{self.prop.name}' does not have a child property '{key}'.") class _EmptyContainerView: """ :meta private: """ def __init__(self, prop): self.prop = prop def __bool__(self): return False def __call__(self): return [] def __iter__(self): return iter([]) def __len__(self): return 0 def __getitem__(self, index): if isinstance(index, slice): return [] else: raise IndexError(f"Index for container '{self.prop.name}' is out of range.") def __getattr__(self, key): child = next(filter(lambda c: c.name == key, self.prop.children), None) if child: return _EmptyContainerView(child) else: raise KeyError(f"Graph property '{self.prop.name}' does not have a child property '{key}'.") class NodeContainer: """ This class represents a node container of a template property. :param prop: Template property. """ def __init__(self, prop: GraphTemplate.Property): self.nodes = [] self.keys = {} self.prop = prop self._view = None @property def name(self) -> str: """ Returns the container name, which is same as the name of template property. :getter: Container name. """ return self.prop.name @property def view(self) -> 'ContainerView': """ Returns an unmodifiable view of this container. The view object works as the accessor to container components. - Returns a container instance when invoked as callable object. - The attribute of a child name returns the child container view of the first node in this container. - Index access returns the view of node at the index. - In iteration context, it iterates views of nodes. - The number of nodes is returned by being applied to `len` . >>> template = GraphSpac().new_template(a=int, b=str, c=str) >>> template.a << template.b >>> graph = new_graph(template).append(a=1, b="a").append(a=1, b="b").append(a=2, b="c") >>> container = graph.containers["a"] >>> view = graph.view.a >>> assert view() is container # invocation >>> assert view.b is container.nodes[0].children["b"].view # attribute >>> assert view[1] is container.nodes[1].view # index >>> assert [n() for n in view] == [1, 2] # iteration >>> assert len(view) == 2 # length :getter: The view of this container. """ if self._view is None: container = self class ContainerView: def __bool__(self): """Returns whether this container is not empty.""" return len(container.nodes) != 0 def __call__(self): """Returns a base container.""" return container def __len__(self): """Returns the number of nodes.""" return len(container.nodes) def __iter__(self): """Iterates views of nodes.""" return map(lambda n: n.view, container.nodes) def __getitem__(self, index): """Returns a view of a node at the index.""" if isinstance(index, slice): return [n.view for n in container.nodes[index]] else: return container.nodes[index].view def __getattr__(self, key): """Returns a view of the first node or empty container view if it does not exist.""" child = next(filter(lambda c: c.name == key, container.prop.children), None) if child: return container.nodes[0].children[key].view if len(container.nodes) > 0 else _EmptyContainerView(child) else: raise KeyError(f"Graph property '{container.prop.name}' does not have a child property '{key}'.") self._view = ContainerView() return self._view def append(self, entity: Any, ancestors: Dict[str, List['Node']], to_replace: bool = False): """ Add an entity to this container. Identical node is searched by examining whether this container already contains a node of the identical entity and its parent is found in `anscestors` . :param entity: An entity to be stored in the node. :param ancestors: Parent nodes mapped by property names. :param to_replace: If ``True`` , the entity of identical node is replaced. Otherwise, it is not changed. """ def get_nodes(k): return [self.nodes[i] for i in self.keys.get(k, [])] policy = self.prop.policy or neverPolicy() key = policy.get_identifier(entity) parents, identicals = policy.identify(self.prop, [self.nodes[i] for i in self.keys.get(key, [])], ancestors) new_nodes = identicals.copy() for p in parents: index = len(self.nodes) node = Node(self.prop, entity, key, index) self.nodes.append(node) if key is not None: self.keys.setdefault(key, []).append(index) new_nodes.append(node) if p is not None: p.add_child(node) if to_replace: for n in identicals: n.entity = entity ancestors[self.prop.name] = new_nodes class GraphNodeContainer(NodeContainer): """ :meta private: """ def append(self, entity, ancestors, to_replace): if not isinstance(entity, (dict, Graph)): raise ValueError(f"Node of graph only accepts dict or Graph object.") policy = self.prop.policy or neverPolicy() parents, _ = policy.identify(self.prop, [], ancestors) for p in parents: index = len(self.nodes) graphs = [] if p is None or len(p.children[self.name].nodes) == 0: g = Graph(self.prop.kind) node = GraphNode(self.prop, g, None, index) self.nodes.append(node) if p is not None: p.add_child(node) graphs.append(g) else: graphs.extend([n.entity for n in p.children[self.name].nodes]) for g in graphs: if isinstance(entity, dict): g.append(**entity) else: g += entity class Node: """ This class represents a node which contains an entity. :param prop: Template property. :param entity: Entity. """ class Children: def __init__(self, prop: GraphTemplate.Property): self.nodes = [] self.keys = set() self.prop = prop self._view = None @property def view(self): if self._view is None: base = self class ChildrenView: def __bool__(self): """Returns whether this container is not empty.""" return len(base.nodes) != 0 def __call__(self): """Returns children container.""" return base def __iter__(self): """Iterates views of child nodes.""" return map(lambda n: n.view, base.nodes) def __len__(self): """Returns the number of child nodes.""" return len(base.nodes) def __getitem__(self, index): """Returns a view of child node at the index.""" if isinstance(index, slice): return [n.view for n in base.nodes[index]] else: return base.nodes[index].view def __getattr__(self, key): """Returns a view of the first node or empty container view if it does not exist.""" child = next(filter(lambda c: c.name == key, base.prop.children), None) if child: return base.nodes[0].children[key].view if len(base.nodes) > 0 else _EmptyContainerView(child) else: raise KeyError(f"Graph property '{base.prop.name}' does not have a child property '{key}'.") self._view = ChildrenView() return self._view def has(self, node): return node in self.keys def append(self, node): if node not in self.keys: self.keys.add(node) self.nodes.append(node) def __init__(self, prop: GraphTemplate.Property, entity: Any, key: Optional[Any], index: int): self.prop = prop self.entity = entity self.key = key self.parents = set() self.children = {c.name: Node.Children(c) for c in prop.children} self._index = index self._view = None @property def name(self) -> str: """ Returns the container name, which is same as the name of template property. :getter: Container name. """ return self.prop.name @property def view(self) -> 'NodeView': """ Returns an unmodifiable view of this node. The view object works as the accessor to container components. - Returns a node instance when invoked as callable object. - The attribute of a child name returns the child container view. - In iteration context, it iterates pairs of child conainter name and its view. :returns: The view of this node. """ if self._view is None: node = self class NodeView: def __call__(self, alt=None): """Returns an entity of this node.""" return node.entity def __getattr__(self, name): """Returns a view of child nodes by its name.""" return node.children[name].view def __iter__(self): """Iterate key-value pairs of child nodes.""" return map(lambda nc: (nc[0], nc[1].view), node.children.items()) self._view = NodeView() return self._view def add_child(self, child: 'Node') -> 'Node': """ Adds a child node. :param child: Child node. :returns: This instance. """ if child.prop.template != self.prop.template: raise ValueError(f"Nodes from difference graph template can't be associated.") self.children[child.prop.name].append(child) child.parents.add(self) return self def has_child(self, child: 'Node') -> bool: """ Checks this node contains the node identical to given node. :param child: Node to search. :returns: ``True`` if exists. """ if child.prop.template != self.prop.template: return False elif child.prop.name in self.children: return child in self.children[child.prop.name].keys else: return False class GraphNode(Node): """ :meta private: """ @property def view(self): return self.entity.view def add_child(self, child): raise TypeError(f"GraphNode does not have child.") def has_child(self, child): return False
35.108929
134
0.560602
abf145709e7fb615ea54f862b9b790f0474bbd58
1,176
py
Python
migrations/versions/e42c76e8aa8e_local_path_and_yd_path_removed_from_db.py
ShiawasenaHoshi/telegram_photo_saver_bot
7b9b20ed89268da9c64f94958bdf935c18cc85f8
[ "MIT" ]
null
null
null
migrations/versions/e42c76e8aa8e_local_path_and_yd_path_removed_from_db.py
ShiawasenaHoshi/telegram_photo_saver_bot
7b9b20ed89268da9c64f94958bdf935c18cc85f8
[ "MIT" ]
1
2021-06-02T02:33:29.000Z
2021-06-02T02:33:29.000Z
migrations/versions/e42c76e8aa8e_local_path_and_yd_path_removed_from_db.py
ShiawasenaHoshi/telegram_photo_saver_bot
7b9b20ed89268da9c64f94958bdf935c18cc85f8
[ "MIT" ]
null
null
null
"""local_path and yd_path removed from db Revision ID: e42c76e8aa8e Revises: a336639792e2 Create Date: 2019-11-15 18:27:45.236183 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e42c76e8aa8e' down_revision = 'a336639792e2' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### # op.drop_column('chat', 'local_folder') with op.batch_alter_table("chat") as batch_op: batch_op.drop_column('local_folder') # op.add_column('chat', sa.Column('local_folder', sa.Boolean(), default=1)) # op.drop_column('chat', 'yd_folder') with op.batch_alter_table("chat") as batch_op: batch_op.drop_column('yd_folder') # op.add_column('chat', sa.Column('yd_folder', sa.Boolean(), default=1)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('chat', sa.Column('yd_folder', sa.VARCHAR(length=240), nullable=False)) op.add_column('chat', sa.Column('local_folder', sa.VARCHAR(length=240), nullable=False)) # ### end Alembic commands ###
31.783784
92
0.693027
b0bbf51fabf126f2ff5b4d5d947c9b52cdc725c2
549
py
Python
namingalgorithm/urls.py
Amrithasuresh/BPPRC
6ee01914a612d65f7084db7ce377da3bab682e66
[ "BSD-3-Clause" ]
2
2020-01-10T18:36:37.000Z
2020-01-10T18:42:41.000Z
namingalgorithm/urls.py
Amrithasuresh/BPPRC
6ee01914a612d65f7084db7ce377da3bab682e66
[ "BSD-3-Clause" ]
12
2020-06-05T23:39:18.000Z
2022-03-12T00:48:18.000Z
namingalgorithm/urls.py
Amrithasuresh/BPPRC_v1
6ee01914a612d65f7084db7ce377da3bab682e66
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from django.urls import path, include from namingalgorithm import views urlpatterns = [ path('submit_home/', views.submit_home, name='submit_home'), path('submit/', views.submit, name='submit'), path('naming_algorithm/', views.naming_algorithm, name='naming_algorithm'), path('run_naming_algorithm/', views.run_naming_algorithm, name='run_naming_algorithm'), path('run_align/', views.run_align, name='run_align'), path('align_results/', views.align_results, name='align_results') ]
39.214286
79
0.734062
4716ea102ac70ac4793728bb7ff886169c472113
49,485
py
Python
src/marshmallow/schema.py
theirix/marshmallow
43db1072f94ae6af40cbedc058f1c02f3cedb379
[ "MIT" ]
null
null
null
src/marshmallow/schema.py
theirix/marshmallow
43db1072f94ae6af40cbedc058f1c02f3cedb379
[ "MIT" ]
null
null
null
src/marshmallow/schema.py
theirix/marshmallow
43db1072f94ae6af40cbedc058f1c02f3cedb379
[ "MIT" ]
null
null
null
"""The :class:`Schema` class, including its metaclass and options (class Meta).""" from collections import defaultdict, OrderedDict from collections.abc import Mapping from functools import lru_cache import datetime as dt import uuid import decimal import copy import inspect import json import typing import warnings from marshmallow import base, fields as ma_fields, class_registry, types from marshmallow.error_store import ErrorStore from marshmallow.exceptions import ValidationError, StringNotCollectionError from marshmallow.orderedset import OrderedSet from marshmallow.decorators import ( POST_DUMP, POST_LOAD, PRE_DUMP, PRE_LOAD, VALIDATES, VALIDATES_SCHEMA, ) from marshmallow.utils import ( RAISE, EXCLUDE, INCLUDE, missing, set_value, get_value, is_collection, is_instance_or_subclass, is_iterable_but_not_string, ) from marshmallow.warnings import RemovedInMarshmallow4Warning _T = typing.TypeVar("_T") def _get_fields(attrs, field_class, pop=False, ordered=False): """Get fields from a class. If ordered=True, fields will sorted by creation index. :param attrs: Mapping of class attributes :param type field_class: Base field class :param bool pop: Remove matching fields """ fields = [ (field_name, field_value) for field_name, field_value in attrs.items() if is_instance_or_subclass(field_value, field_class) ] if pop: for field_name, _ in fields: del attrs[field_name] if ordered: fields.sort(key=lambda pair: pair[1]._creation_index) return fields # This function allows Schemas to inherit from non-Schema classes and ensures # inheritance according to the MRO def _get_fields_by_mro(klass, field_class, ordered=False): """Collect fields from a class, following its method resolution order. The class itself is excluded from the search; only its parents are checked. Get fields from ``_declared_fields`` if available, else use ``__dict__``. :param type klass: Class whose fields to retrieve :param type field_class: Base field class """ mro = inspect.getmro(klass) # Loop over mro in reverse to maintain correct order of fields return sum( ( _get_fields( getattr(base, "_declared_fields", base.__dict__), field_class, ordered=ordered, ) for base in mro[:0:-1] ), [], ) class SchemaMeta(type): """Metaclass for the Schema class. Binds the declared fields to a ``_declared_fields`` attribute, which is a dictionary mapping attribute names to field objects. Also sets the ``opts`` class attribute, which is the Schema class's ``class Meta`` options. """ def __new__(mcs, name, bases, attrs): meta = attrs.get("Meta") ordered = getattr(meta, "ordered", False) if not ordered: # Inherit 'ordered' option # Warning: We loop through bases instead of MRO because we don't # yet have access to the class object # (i.e. can't call super before we have fields) for base_ in bases: if hasattr(base_, "Meta") and hasattr(base_.Meta, "ordered"): ordered = base_.Meta.ordered break else: ordered = False cls_fields = _get_fields(attrs, base.FieldABC, pop=True, ordered=ordered) klass = super().__new__(mcs, name, bases, attrs) inherited_fields = _get_fields_by_mro(klass, base.FieldABC, ordered=ordered) meta = klass.Meta # Set klass.opts in __new__ rather than __init__ so that it is accessible in # get_declared_fields klass.opts = klass.OPTIONS_CLASS(meta, ordered=ordered) # Add fields specified in the `include` class Meta option cls_fields += list(klass.opts.include.items()) dict_cls = OrderedDict if ordered else dict # Assign _declared_fields on class klass._declared_fields = mcs.get_declared_fields( klass=klass, cls_fields=cls_fields, inherited_fields=inherited_fields, dict_cls=dict_cls, ) return klass @classmethod def get_declared_fields( mcs, klass: type, cls_fields: typing.List, inherited_fields: typing.List, dict_cls: type, ): """Returns a dictionary of field_name => `Field` pairs declared on the class. This is exposed mainly so that plugins can add additional fields, e.g. fields computed from class Meta options. :param klass: The class object. :param cls_fields: The fields declared on the class, including those added by the ``include`` class Meta option. :param inherited_fields: Inherited fields. :param dict_class: Either `dict` or `OrderedDict`, depending on the whether the user specified `ordered=True`. """ return dict_cls(inherited_fields + cls_fields) def __init__(cls, name, bases, attrs): super().__init__(name, bases, attrs) if name and cls.opts.register: class_registry.register(name, cls) cls._hooks = cls.resolve_hooks() def resolve_hooks(cls) -> typing.Dict[types.Tag, typing.List[str]]: """Add in the decorated processors By doing this after constructing the class, we let standard inheritance do all the hard work. """ mro = inspect.getmro(cls) hooks = defaultdict(list) # type: typing.Dict[types.Tag, typing.List[str]] for attr_name in dir(cls): # Need to look up the actual descriptor, not whatever might be # bound to the class. This needs to come from the __dict__ of the # declaring class. for parent in mro: try: attr = parent.__dict__[attr_name] except KeyError: continue else: break else: # In case we didn't find the attribute and didn't break above. # We should never hit this - it's just here for completeness # to exclude the possibility of attr being undefined. continue try: hook_config = attr.__marshmallow_hook__ except AttributeError: pass else: for key in hook_config.keys(): # Use name here so we can get the bound method later, in # case the processor was a descriptor or something. hooks[key].append(attr_name) return hooks class SchemaOpts: """class Meta options for the :class:`Schema`. Defines defaults.""" def __init__(self, meta, ordered: bool = False): self.fields = getattr(meta, "fields", ()) if not isinstance(self.fields, (list, tuple)): raise ValueError("`fields` option must be a list or tuple.") self.additional = getattr(meta, "additional", ()) if not isinstance(self.additional, (list, tuple)): raise ValueError("`additional` option must be a list or tuple.") if self.fields and self.additional: raise ValueError( "Cannot set both `fields` and `additional` options" " for the same Schema." ) self.exclude = getattr(meta, "exclude", ()) if not isinstance(self.exclude, (list, tuple)): raise ValueError("`exclude` must be a list or tuple.") self.dateformat = getattr(meta, "dateformat", None) self.datetimeformat = getattr(meta, "datetimeformat", None) if hasattr(meta, "json_module"): warnings.warn( "The json_module class Meta option is deprecated. Use render_module instead.", RemovedInMarshmallow4Warning, ) render_module = getattr(meta, "json_module", json) else: render_module = json self.render_module = getattr(meta, "render_module", render_module) self.ordered = getattr(meta, "ordered", ordered) self.index_errors = getattr(meta, "index_errors", True) self.include = getattr(meta, "include", {}) self.load_only = getattr(meta, "load_only", ()) self.dump_only = getattr(meta, "dump_only", ()) self.unknown = getattr(meta, "unknown", RAISE) self.register = getattr(meta, "register", True) class Schema(base.SchemaABC, metaclass=SchemaMeta): """Base schema class with which to define custom schemas. Example usage: .. code-block:: python import datetime as dt from dataclasses import dataclass from marshmallow import Schema, fields @dataclass class Album: title: str release_date: dt.date class AlbumSchema(Schema): title = fields.Str() release_date = fields.Date() album = Album("Beggars Banquet", dt.date(1968, 12, 6)) schema = AlbumSchema() data = schema.dump(album) data # {'release_date': '1968-12-06', 'title': 'Beggars Banquet'} :param only: Whitelist of the declared fields to select when instantiating the Schema. If None, all fields are used. Nested fields can be represented with dot delimiters. :param exclude: Blacklist of the declared fields to exclude when instantiating the Schema. If a field appears in both `only` and `exclude`, it is not used. Nested fields can be represented with dot delimiters. :param many: Should be set to `True` if ``obj`` is a collection so that the object will be serialized to a list. :param context: Optional context passed to :class:`fields.Method` and :class:`fields.Function` fields. :param load_only: Fields to skip during serialization (write-only fields) :param dump_only: Fields to skip during deserialization (read-only fields) :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. .. versionchanged:: 3.0.0 `prefix` parameter removed. .. versionchanged:: 2.0.0 `__validators__`, `__preprocessors__`, and `__data_handlers__` are removed in favor of `marshmallow.decorators.validates_schema`, `marshmallow.decorators.pre_load` and `marshmallow.decorators.post_dump`. `__accessor__` and `__error_handler__` are deprecated. Implement the `handle_error` and `get_attribute` methods instead. """ TYPE_MAPPING = { str: ma_fields.String, bytes: ma_fields.String, dt.datetime: ma_fields.DateTime, float: ma_fields.Float, bool: ma_fields.Boolean, tuple: ma_fields.Raw, list: ma_fields.Raw, set: ma_fields.Raw, int: ma_fields.Integer, uuid.UUID: ma_fields.UUID, dt.time: ma_fields.Time, dt.date: ma_fields.Date, dt.timedelta: ma_fields.TimeDelta, decimal.Decimal: ma_fields.Decimal, } # type: typing.Dict[type, typing.Type[ma_fields.Field]] #: Overrides for default schema-level error messages error_messages = {} # type: typing.Dict[str, str] _default_error_messages = { "type": "Invalid input type.", "unknown": "Unknown field.", } # type: typing.Dict[str, str] OPTIONS_CLASS = SchemaOpts # type: type # These get set by SchemaMeta opts = None # type: SchemaOpts _declared_fields = {} # type: typing.Dict[str, ma_fields.Field] _hooks = {} # type: typing.Dict[types.Tag, typing.List[str]] class Meta: """Options object for a Schema. Example usage: :: class Meta: fields = ("id", "email", "date_created") exclude = ("password", "secret_attribute") Available options: - ``fields``: Tuple or list of fields to include in the serialized result. - ``additional``: Tuple or list of fields to include *in addition* to the explicitly declared fields. ``additional`` and ``fields`` are mutually-exclusive options. - ``include``: Dictionary of additional fields to include in the schema. It is usually better to define fields as class variables, but you may need to use this option, e.g., if your fields are Python keywords. May be an `OrderedDict`. - ``exclude``: Tuple or list of fields to exclude in the serialized result. Nested fields can be represented with dot delimiters. - ``dateformat``: Default format for `Date <fields.Date>` fields. - ``datetimeformat``: Default format for `DateTime <fields.DateTime>` fields. - ``render_module``: Module to use for `loads <Schema.loads>` and `dumps <Schema.dumps>`. Defaults to `json` from the standard library. - ``ordered``: If `True`, order serialization output according to the order in which fields were declared. Output of `Schema.dump` will be a `collections.OrderedDict`. - ``index_errors``: If `True`, errors dictionaries will include the index of invalid items in a collection. - ``load_only``: Tuple or list of fields to exclude from serialized results. - ``dump_only``: Tuple or list of fields to exclude from deserialization - ``unknown``: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. - ``register``: Whether to register the `Schema` with marshmallow's internal class registry. Must be `True` if you intend to refer to this `Schema` by class name in `Nested` fields. Only set this to `False` when memory usage is critical. Defaults to `True`. """ def __init__( self, *, only: typing.Optional[types.StrSequenceOrSet] = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: typing.Optional[typing.Dict] = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: typing.Union[bool, types.StrSequenceOrSet] = False, unknown: typing.Optional[str] = None ): # Raise error if only or exclude is passed as string, not list of strings if only is not None and not is_collection(only): raise StringNotCollectionError('"only" should be a list of strings') if not is_collection(exclude): raise StringNotCollectionError('"exclude" should be a list of strings') # copy declared fields from metaclass self.declared_fields = copy.deepcopy(self._declared_fields) self.many = many self.only = only self.exclude = set(self.opts.exclude) | set(exclude) self.ordered = self.opts.ordered self.load_only = set(load_only) or set(self.opts.load_only) self.dump_only = set(dump_only) or set(self.opts.dump_only) self.partial = partial self.unknown = unknown or self.opts.unknown self.context = context or {} self._normalize_nested_options() #: Dictionary mapping field_names -> :class:`Field` objects self.fields = {} # type: typing.Dict[str, ma_fields.Field] self.load_fields = {} # type: typing.Dict[str, ma_fields.Field] self.dump_fields = {} # type: typing.Dict[str, ma_fields.Field] self._init_fields() messages = {} messages.update(self._default_error_messages) for cls in reversed(self.__class__.__mro__): messages.update(getattr(cls, "error_messages", {})) messages.update(self.error_messages or {}) self.error_messages = messages def __repr__(self) -> str: return "<{ClassName}(many={self.many})>".format( ClassName=self.__class__.__name__, self=self ) @property def dict_class(self) -> type: return OrderedDict if self.ordered else dict @property def set_class(self) -> type: return OrderedSet if self.ordered else set @classmethod def from_dict( cls, fields: typing.Dict[str, typing.Union[ma_fields.Field, type]], *, name: str = "GeneratedSchema" ) -> type: """Generate a `Schema` class given a dictionary of fields. .. code-block:: python from marshmallow import Schema, fields PersonSchema = Schema.from_dict({"name": fields.Str()}) print(PersonSchema().load({"name": "David"})) # => {'name': 'David'} Generated schemas are not added to the class registry and therefore cannot be referred to by name in `Nested` fields. :param dict fields: Dictionary mapping field names to field instances. :param str name: Optional name for the class, which will appear in the ``repr`` for the class. .. versionadded:: 3.0.0 """ attrs = fields.copy() attrs["Meta"] = type( "GeneratedMeta", (getattr(cls, "Meta", object),), {"register": False} ) schema_cls = type(name, (cls,), attrs) return schema_cls ##### Override-able methods ##### def handle_error( self, error: ValidationError, data: typing.Any, *, many: bool, **kwargs ): """Custom error handler function for the schema. :param error: The `ValidationError` raised during (de)serialization. :param data: The original input data. :param many: Value of ``many`` on dump or load. :param partial: Value of ``partial`` on load. .. versionadded:: 2.0.0 .. versionchanged:: 3.0.0rc9 Receives `many` and `partial` (on deserialization) as keyword arguments. """ pass def get_attribute(self, obj: typing.Any, attr: str, default: typing.Any): """Defines how to pull values from an object to serialize. .. versionadded:: 2.0.0 .. versionchanged:: 3.0.0a1 Changed position of ``obj`` and ``attr``. """ return get_value(obj, attr, default) ##### Serialization/Deserialization API ##### @staticmethod def _call_and_store(getter_func, data, *, field_name, error_store, index=None): """Call ``getter_func`` with ``data`` as its argument, and store any `ValidationErrors`. :param callable getter_func: Function for getting the serialized/deserialized value from ``data``. :param data: The data passed to ``getter_func``. :param str field_name: Field name. :param int index: Index of the item being validated, if validating a collection, otherwise `None`. """ try: value = getter_func(data) except ValidationError as error: error_store.store_error(error.messages, field_name, index=index) # When a Nested field fails validation, the marshalled data is stored # on the ValidationError's valid_data attribute return error.valid_data or missing return value def _serialize( self, obj: typing.Union[_T, typing.Iterable[_T]], *, many: bool = False ): """Serialize ``obj``. :param obj: The object(s) to serialize. :param bool many: `True` if ``data`` should be serialized as a collection. :return: A dictionary of the serialized data .. versionchanged:: 1.0.0 Renamed from ``marshal``. """ if many and obj is not None: return [ self._serialize(d, many=False) for d in typing.cast(typing.Iterable[_T], obj) ] ret = self.dict_class() for attr_name, field_obj in self.dump_fields.items(): value = field_obj.serialize(attr_name, obj, accessor=self.get_attribute) if value is missing: continue key = field_obj.data_key if field_obj.data_key is not None else attr_name ret[key] = value return ret def dump(self, obj: typing.Any, *, many: typing.Optional[bool] = None): """Serialize an object to native Python data types according to this Schema's fields. :param obj: The object to serialize. :param many: Whether to serialize `obj` as a collection. If `None`, the value for `self.many` is used. :return: A dict of serialized data :rtype: dict .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the serialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if ``obj`` is invalid. .. versionchanged:: 3.0.0rc9 Validation no longer occurs upon serialization. """ many = self.many if many is None else bool(many) if many and is_iterable_but_not_string(obj): obj = list(obj) if self._has_processors(PRE_DUMP): processed_obj = self._invoke_dump_processors( PRE_DUMP, obj, many=many, original_data=obj ) else: processed_obj = obj result = self._serialize(processed_obj, many=many) if self._has_processors(POST_DUMP): result = self._invoke_dump_processors( POST_DUMP, result, many=many, original_data=obj ) return result def dumps( self, obj: typing.Any, *args, many: typing.Optional[bool] = None, **kwargs ): """Same as :meth:`dump`, except return a JSON-encoded string. :param obj: The object to serialize. :param many: Whether to serialize `obj` as a collection. If `None`, the value for `self.many` is used. :return: A ``json`` string :rtype: str .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the serialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if ``obj`` is invalid. """ serialized = self.dump(obj, many=many) return self.opts.render_module.dumps(serialized, *args, **kwargs) def _deserialize( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, error_store: ErrorStore, many: bool = False, partial=False, unknown=RAISE, index=None ) -> typing.Union[_T, typing.List[_T]]: """Deserialize ``data``. :param dict data: The data to deserialize. :param ErrorStore error_store: Structure to store errors. :param bool many: `True` if ``data`` should be deserialized as a collection. :param bool|tuple partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. :param int index: Index of the item being serialized (for storing errors) if serializing a collection, otherwise `None`. :return: A dictionary of the deserialized data. """ index_errors = self.opts.index_errors index = index if index_errors else None if many: if not is_collection(data): error_store.store_error([self.error_messages["type"]], index=index) ret = [] # type: typing.List[_T] else: ret = [ typing.cast( _T, self._deserialize( typing.cast(typing.Mapping[str, typing.Any], d), error_store=error_store, many=False, partial=partial, unknown=unknown, index=idx, ), ) for idx, d in enumerate(data) ] return ret ret = self.dict_class() # Check data is a dict if not isinstance(data, Mapping): error_store.store_error([self.error_messages["type"]], index=index) else: partial_is_collection = is_collection(partial) for attr_name, field_obj in self.load_fields.items(): field_name = ( field_obj.data_key if field_obj.data_key is not None else attr_name ) raw_value = data.get(field_name, missing) if raw_value is missing: # Ignore missing field if we're allowed to. if partial is True or ( partial_is_collection and attr_name in partial ): continue d_kwargs = {} # Allow partial loading of nested schemas. if partial_is_collection: prefix = field_name + "." len_prefix = len(prefix) sub_partial = [ f[len_prefix:] for f in partial if f.startswith(prefix) ] d_kwargs["partial"] = sub_partial else: d_kwargs["partial"] = partial getter = lambda val: field_obj.deserialize( val, field_name, data, **d_kwargs ) value = self._call_and_store( getter_func=getter, data=raw_value, field_name=field_name, error_store=error_store, index=index, ) if value is not missing: key = field_obj.attribute or attr_name set_value(typing.cast(typing.Dict, ret), key, value) if unknown != EXCLUDE: fields = { field_obj.data_key if field_obj.data_key is not None else field_name for field_name, field_obj in self.load_fields.items() } for key in set(data) - fields: value = data[key] if unknown == INCLUDE: set_value(typing.cast(typing.Dict, ret), key, value) elif unknown == RAISE: error_store.store_error( [self.error_messages["unknown"]], key, (index if index_errors else None), ) return ret def load( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, many: typing.Optional[bool] = None, partial: typing.Optional[typing.Union[bool, types.StrSequenceOrSet]] = None, unknown: typing.Optional[str] = None ): """Deserialize a data structure to an object defined by this Schema's fields. :param data: The data to deserialize. :param many: Whether to deserialize `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :return: Deserialized data .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the deserialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if invalid data are passed. """ return self._do_load( data, many=many, partial=partial, unknown=unknown, postprocess=True ) def loads( self, json_data: str, *, many: typing.Optional[bool] = None, partial: typing.Optional[typing.Union[bool, types.StrSequenceOrSet]] = None, unknown: typing.Optional[str] = None, **kwargs ): """Same as :meth:`load`, except it takes a JSON string as input. :param json_data: A JSON string of the data to deserialize. :param many: Whether to deserialize `obj` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :return: Deserialized data .. versionadded:: 1.0.0 .. versionchanged:: 3.0.0b7 This method returns the deserialized data rather than a ``(data, errors)`` duple. A :exc:`ValidationError <marshmallow.exceptions.ValidationError>` is raised if invalid data are passed. """ data = self.opts.render_module.loads(json_data, **kwargs) return self.load(data, many=many, partial=partial, unknown=unknown) def _run_validator( self, validator_func, output, *, original_data, error_store, many, partial, pass_original, index=None ): try: if pass_original: # Pass original, raw data (before unmarshalling) validator_func(output, original_data, partial=partial, many=many) else: validator_func(output, partial=partial, many=many) except ValidationError as err: error_store.store_error(err.messages, err.field_name, index=index) def validate( self, data: typing.Mapping, *, many: typing.Optional[bool] = None, partial: typing.Optional[typing.Union[bool, types.StrSequenceOrSet]] = None ) -> typing.Dict[str, typing.List[str]]: """Validate `data` against the schema, returning a dictionary of validation errors. :param data: The data to validate. :param many: Whether to validate `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to ignore missing fields and not require any fields declared. Propagates down to ``Nested`` fields as well. If its value is an iterable, only missing fields listed in that iterable will be ignored. Use dot delimiters to specify nested fields. :return: A dictionary of validation errors. .. versionadded:: 1.1.0 """ try: self._do_load(data, many=many, partial=partial, postprocess=False) except ValidationError as exc: return typing.cast(typing.Dict[str, typing.List[str]], exc.messages) return {} ##### Private Helpers ##### def _do_load( self, data: typing.Union[ typing.Mapping[str, typing.Any], typing.Iterable[typing.Mapping[str, typing.Any]], ], *, many: typing.Optional[bool] = None, partial: typing.Optional[typing.Union[bool, types.StrSequenceOrSet]] = None, unknown: typing.Optional[str] = None, postprocess: bool = True ): """Deserialize `data`, returning the deserialized result. This method is private API. :param data: The data to deserialize. :param many: Whether to deserialize `data` as a collection. If `None`, the value for `self.many` is used. :param partial: Whether to validate required fields. If its value is an iterable, only fields listed in that iterable will be ignored will be allowed missing. If `True`, all fields will be allowed missing. If `None`, the value for `self.partial` is used. :param unknown: Whether to exclude, include, or raise an error for unknown fields in the data. Use `EXCLUDE`, `INCLUDE` or `RAISE`. If `None`, the value for `self.unknown` is used. :param postprocess: Whether to run post_load methods.. :return: Deserialized data """ error_store = ErrorStore() errors = {} # type: typing.Dict[str, typing.List[str]] many = self.many if many is None else bool(many) unknown = unknown or self.unknown if partial is None: partial = self.partial # Run preprocessors if self._has_processors(PRE_LOAD): try: processed_data = self._invoke_load_processors( PRE_LOAD, data, many=many, original_data=data, partial=partial ) except ValidationError as err: errors = err.normalized_messages() result = ( None ) # type: typing.Optional[typing.Union[typing.List, typing.Dict]] else: processed_data = data if not errors: # Deserialize data result = self._deserialize( processed_data, error_store=error_store, many=many, partial=partial, unknown=unknown, ) # Run field-level validation self._invoke_field_validators( error_store=error_store, data=result, many=many ) # Run schema-level validation if self._has_processors(VALIDATES_SCHEMA): field_errors = bool(error_store.errors) self._invoke_schema_validators( error_store=error_store, pass_many=True, data=result, original_data=data, many=many, partial=partial, field_errors=field_errors, ) self._invoke_schema_validators( error_store=error_store, pass_many=False, data=result, original_data=data, many=many, partial=partial, field_errors=field_errors, ) errors = error_store.errors # Run post processors if not errors and postprocess and self._has_processors(POST_LOAD): try: result = self._invoke_load_processors( POST_LOAD, result, many=many, original_data=data, partial=partial, ) except ValidationError as err: errors = err.normalized_messages() if errors: exc = ValidationError(errors, data=data, valid_data=result) self.handle_error(exc, data, many=many, partial=partial) raise exc return result def _normalize_nested_options(self) -> None: """Apply then flatten nested schema options. This method is private API. """ if self.only is not None: # Apply the only option to nested fields. self.__apply_nested_option("only", self.only, "intersection") # Remove the child field names from the only option. self.only = self.set_class([field.split(".", 1)[0] for field in self.only]) if self.exclude: # Apply the exclude option to nested fields. self.__apply_nested_option("exclude", self.exclude, "union") # Remove the parent field names from the exclude option. self.exclude = self.set_class( [field for field in self.exclude if "." not in field] ) def __apply_nested_option(self, option_name, field_names, set_operation) -> None: """Apply nested options to nested fields""" # Split nested field names on the first dot. nested_fields = [name.split(".", 1) for name in field_names if "." in name] # Partition the nested field names by parent field. nested_options = defaultdict(list) # type: defaultdict for parent, nested_names in nested_fields: nested_options[parent].append(nested_names) # Apply the nested field options. for key, options in iter(nested_options.items()): new_options = self.set_class(options) original_options = getattr(self.declared_fields[key], option_name, ()) if original_options: if set_operation == "union": new_options |= self.set_class(original_options) if set_operation == "intersection": new_options &= self.set_class(original_options) setattr(self.declared_fields[key], option_name, new_options) def _init_fields(self) -> None: """Update self.fields, self.load_fields, and self.dump_fields based on schema options. This method is private API. """ if self.opts.fields: available_field_names = self.set_class(self.opts.fields) else: available_field_names = self.set_class(self.declared_fields.keys()) if self.opts.additional: available_field_names |= self.set_class(self.opts.additional) invalid_fields = self.set_class() if self.only is not None: # Return only fields specified in only option field_names = self.set_class(self.only) invalid_fields |= field_names - available_field_names else: field_names = available_field_names # If "exclude" option or param is specified, remove those fields. if self.exclude: # Note that this isn't available_field_names, since we want to # apply "only" for the actual calculation. field_names = field_names - self.exclude invalid_fields |= self.exclude - available_field_names if invalid_fields: message = "Invalid fields for {}: {}.".format(self, invalid_fields) raise ValueError(message) fields_dict = self.dict_class() for field_name in field_names: field_obj = self.declared_fields.get(field_name, ma_fields.Inferred()) self._bind_field(field_name, field_obj) fields_dict[field_name] = field_obj load_fields, dump_fields = self.dict_class(), self.dict_class() for field_name, field_obj in fields_dict.items(): if not field_obj.dump_only: load_fields[field_name] = field_obj if not field_obj.load_only: dump_fields[field_name] = field_obj dump_data_keys = [ field_obj.data_key if field_obj.data_key is not None else name for name, field_obj in dump_fields.items() ] if len(dump_data_keys) != len(set(dump_data_keys)): data_keys_duplicates = { x for x in dump_data_keys if dump_data_keys.count(x) > 1 } raise ValueError( "The data_key argument for one or more fields collides " "with another field's name or data_key argument. " "Check the following field names and " "data_key arguments: {}".format(list(data_keys_duplicates)) ) load_attributes = [obj.attribute or name for name, obj in load_fields.items()] if len(load_attributes) != len(set(load_attributes)): attributes_duplicates = { x for x in load_attributes if load_attributes.count(x) > 1 } raise ValueError( "The attribute argument for one or more fields collides " "with another field's name or attribute argument. " "Check the following field names and " "attribute arguments: {}".format(list(attributes_duplicates)) ) self.fields = fields_dict self.dump_fields = dump_fields self.load_fields = load_fields def on_bind_field(self, field_name: str, field_obj: ma_fields.Field) -> None: """Hook to modify a field when it is bound to the `Schema`. No-op by default. """ return None def _bind_field(self, field_name: str, field_obj: ma_fields.Field) -> None: """Bind field to the schema, setting any necessary attributes on the field (e.g. parent and name). Also set field load_only and dump_only values if field_name was specified in ``class Meta``. """ if field_name in self.load_only: field_obj.load_only = True if field_name in self.dump_only: field_obj.dump_only = True try: field_obj._bind_to_schema(field_name, self) except TypeError as error: # Field declared as a class, not an instance. Ignore type checking because # we handle unsupported arg types, i.e. this is dead code from # the type checker's perspective. if isinstance(field_obj, type) and issubclass(field_obj, base.FieldABC): msg = ( 'Field for "{}" must be declared as a ' "Field instance, not a class. " 'Did you mean "fields.{}()"?'.format(field_name, field_obj.__name__) ) raise TypeError(msg) from error raise error self.on_bind_field(field_name, field_obj) @lru_cache(maxsize=8) def _has_processors(self, tag) -> bool: return bool(self._hooks[(tag, True)] or self._hooks[(tag, False)]) def _invoke_dump_processors( self, tag: str, data, *, many: bool, original_data=None ): # The pass_many post-dump processors may do things like add an envelope, so # invoke those after invoking the non-pass_many processors which will expect # to get a list of items. data = self._invoke_processors( tag, pass_many=False, data=data, many=many, original_data=original_data ) data = self._invoke_processors( tag, pass_many=True, data=data, many=many, original_data=original_data ) return data def _invoke_load_processors( self, tag: str, data, *, many: bool, original_data, partial: typing.Union[bool, types.StrSequenceOrSet] ): # This has to invert the order of the dump processors, so run the pass_many # processors first. data = self._invoke_processors( tag, pass_many=True, data=data, many=many, original_data=original_data, partial=partial, ) data = self._invoke_processors( tag, pass_many=False, data=data, many=many, original_data=original_data, partial=partial, ) return data def _invoke_field_validators(self, *, error_store: ErrorStore, data, many: bool): for attr_name in self._hooks[VALIDATES]: validator = getattr(self, attr_name) validator_kwargs = validator.__marshmallow_hook__[VALIDATES] field_name = validator_kwargs["field_name"] try: field_obj = self.fields[field_name] except KeyError as error: if field_name in self.declared_fields: continue raise ValueError( '"{}" field does not exist.'.format(field_name) ) from error data_key = ( field_obj.data_key if field_obj.data_key is not None else field_name ) if many: for idx, item in enumerate(data): try: value = item[field_obj.attribute or field_name] except KeyError: pass else: validated_value = self._call_and_store( getter_func=validator, data=value, field_name=data_key, error_store=error_store, index=(idx if self.opts.index_errors else None), ) if validated_value is missing: data[idx].pop(field_name, None) else: try: value = data[field_obj.attribute or field_name] except KeyError: pass else: validated_value = self._call_and_store( getter_func=validator, data=value, field_name=data_key, error_store=error_store, ) if validated_value is missing: data.pop(field_name, None) def _invoke_schema_validators( self, *, error_store: ErrorStore, pass_many: bool, data, original_data, many: bool, partial: typing.Union[bool, types.StrSequenceOrSet], field_errors: bool = False ): for attr_name in self._hooks[(VALIDATES_SCHEMA, pass_many)]: validator = getattr(self, attr_name) validator_kwargs = validator.__marshmallow_hook__[ (VALIDATES_SCHEMA, pass_many) ] if field_errors and validator_kwargs["skip_on_field_errors"]: continue pass_original = validator_kwargs.get("pass_original", False) if many and not pass_many: for idx, (item, orig) in enumerate(zip(data, original_data)): self._run_validator( validator, item, original_data=orig, error_store=error_store, many=many, partial=partial, index=idx, pass_original=pass_original, ) else: self._run_validator( validator, data, original_data=original_data, error_store=error_store, many=many, pass_original=pass_original, partial=partial, ) def _invoke_processors( self, tag: str, *, pass_many: bool, data, many: bool, original_data=None, **kwargs ): key = (tag, pass_many) for attr_name in self._hooks[key]: # This will be a bound method. processor = getattr(self, attr_name) processor_kwargs = processor.__marshmallow_hook__[key] pass_original = processor_kwargs.get("pass_original", False) if many and not pass_many: if pass_original: data = [ processor(item, original, many=many, **kwargs) for item, original in zip(data, original_data) ] else: data = [processor(item, many=many, **kwargs) for item in data] else: if pass_original: data = processor(data, original_data, many=many, **kwargs) else: data = processor(data, many=many, **kwargs) return data BaseSchema = Schema # for backwards compatibility
40.231707
97
0.584339
628a5bf65aee34084af7ff08939f96a0ae9dd24d
166
py
Python
accounting/calculations/admin.py
m-molecula741/web-accounting-service-for-enterprises
6d60abf4f7d95b2b02c40979bfe253e8f311b8b5
[ "Apache-2.0" ]
null
null
null
accounting/calculations/admin.py
m-molecula741/web-accounting-service-for-enterprises
6d60abf4f7d95b2b02c40979bfe253e8f311b8b5
[ "Apache-2.0" ]
null
null
null
accounting/calculations/admin.py
m-molecula741/web-accounting-service-for-enterprises
6d60abf4f7d95b2b02c40979bfe253e8f311b8b5
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import AccInfo, Income, Expenses admin.site.register(AccInfo) admin.site.register(Income) admin.site.register(Expenses)
27.666667
45
0.825301
b70cf7ce6eedaef70d468a807c678dbced03bd99
3,709
py
Python
utils/multithreadeddownloader.py
kaustubhhiware/swift
7089c4e05fd831b864de46ee37b681a6249909e3
[ "MIT" ]
null
null
null
utils/multithreadeddownloader.py
kaustubhhiware/swift
7089c4e05fd831b864de46ee37b681a6249909e3
[ "MIT" ]
null
null
null
utils/multithreadeddownloader.py
kaustubhhiware/swift
7089c4e05fd831b864de46ee37b681a6249909e3
[ "MIT" ]
null
null
null
""" Performs Multithreaded download """ import urllib3 import logging import os import sys import shutil import threading import pathlib from utils import misc from utils import request from utils import constants from utils import calculation class MultithreadedDownloader: """ Main class providing interface for download """ def __init__(self): self.url = None self.range_left = None self.range_right = None self.threads = None self.filepath = None logging.getLogger("urllib3").setLevel(logging.WARNING) def range_download_support(self, resp): """ returns boolean value indicating support for range downloading """ try: supported = (resp.headers['Accept-Ranges'] == 'bytes') except KeyError: supported = False return supported def multithreaded_download(self, ranges_list): """ function to perform multithreaded download """ # downloading each segment for f in range(self.threads): # calling download_range() for each thread t = threading.Thread(target=request.download_range, kwargs={ 'url': self.url, 'filepath': constants.SERVER_TEMP_DIR + "/temp" + str(f), 'range_left': ranges_list[f][0], 'range_right': ranges_list[f][1], }) t.setDaemon(True) t.start() # except main_thread, calling join() for each thread # it ensures that merging of parts occur only after each thread has completed downloading main_thread = threading.current_thread() for t in threading.enumerate(): if t is main_thread: continue t.join() def merge_multithreaded_download_parts(self): """ function to perform merging of parts performed by multiple threads on single system """ # merging parts with open(self.filepath,'wb') as wfd: for f in range(self.threads): tempfilepath = constants.SERVER_TEMP_DIR + "/temp" + str(f) with open(tempfilepath, "rb") as fd: shutil.copyfileobj(fd, wfd) # delete copied segment misc.delete_file(tempfilepath) def download(self, url, range_left, range_right, filepath, response, threads): """ function to perform file download """ self.url = url self.range_right = range_right self.range_left = range_left self.filepath = filepath self.threads = threads # if server supports segmented download if self.range_download_support(response): # get ranges for download for each thread ranges_list = calculation.get_download_ranges_list( self.range_left, self.range_right, self.threads) # perform multithreaded download on single system self.multithreaded_download(ranges_list) # merge multithreaded download parts self.merge_multithreaded_download_parts() else: misc.print_log ('''[i] Server doesn't support multithreaded downloads! Download will be performed using single thread, on master system.''') request.download_range( self.url, self.filepath, self.range_left, self.range_right)
36.009709
99
0.571852
fc7752c444843770bea7d4787963de010a58d57d
58,557
py
Python
python/paddle/optimizer/lr.py
ikingye/Paddle
766b35152713d4410d4c5b05a3fa5e5a64a6fa60
[ "Apache-2.0" ]
null
null
null
python/paddle/optimizer/lr.py
ikingye/Paddle
766b35152713d4410d4c5b05a3fa5e5a64a6fa60
[ "Apache-2.0" ]
null
null
null
python/paddle/optimizer/lr.py
ikingye/Paddle
766b35152713d4410d4c5b05a3fa5e5a64a6fa60
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy import warnings from paddle import Tensor __all__ = [ 'LRScheduler', 'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'InverseTimeDecay', 'PolynomialDecay', 'LinearWarmup', 'ExponentialDecay', 'MultiStepDecay', 'StepDecay', 'LambdaDecay', 'ReduceOnPlateau', 'CosineAnnealingDecay' ] class LRScheduler(object): """ LRScheduler Base class. Define the common interface of a learning rate scheduler. User can import it by ``form paddle.optimizer.lr import LRScheduler`` , then overload it for your subclass and have a custom implementation of ``get_lr()`` . Otherwise, an ``NotImplementedError`` exception will be thrown. Args: learning_rate (float): The initial learning rate. It is a python float number. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: instance to schedule learning rate. Examples: Here is an example of a simple ``StepDecay`` implementation. .. code-block:: python import paddle form paddle.optimizer.lr import LRScheduler class StepDecay(LRScheduler): def __init__(self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False): if not isinstance(step_size, int): raise TypeError( "The type of 'step_size' must be 'int', but received %s." % type(step_size)) if gamma >= 1.0: raise ValueError('gamma should be < 1.0.') self.step_size = step_size self.gamma = gamma super(StepDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): i = self.last_epoch // self.step_size return self.base_lr * (self.gamma**i) """ def __init__(self, learning_rate=0.1, last_epoch=-1, verbose=False): if not isinstance(learning_rate, (float, int)): raise TypeError( "The type of learning rate must be float, but received {}". format(type(learning_rate))) self.base_lr = float(learning_rate) self.last_lr = float(learning_rate) self.last_epoch = last_epoch self.verbose = verbose self._var_name = None self.step() def __call__(self): """ Return lastest computed learning rate on current epoch. """ return self.last_lr def step(self, epoch=None): """ ``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` . The new learning rate will take effect on next ``optimizer.step`` . Args: epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1. Returns: None """ if epoch is None: self.last_epoch += 1 self.last_lr = self.get_lr() else: self.last_epoch = epoch if hasattr(self, "_get_closed_form_lr"): self.last_lr = self._get_closed_form_lr() else: self.last_lr = self.get_lr() if self.verbose: print('Epoch {}: {} set learning rate to {}.'.format( self.last_epoch, self.__class__.__name__, self.last_lr)) def state_dict(self): """ Returns the state of the scheduler as a :class:`dict`. It is a subset of ``self.__dict__`` . """ self.state_keys() state_dict = {} for key in self.keys: if key not in self.__dict__: continue value = self.__dict__[key] if isinstance(value, Tensor): assert value.shape == [ 1 ], "shape of Tensor in state_dict must be [1] {}".format( value.shape) value = value.numpy()[0] state_dict[key] = value return state_dict # For those subclass who overload LRScheduler, "last_epoch, last_lr" will be saved by default. # (Note): you can change it for your subclass. def state_keys(self): """ For those subclass who overload ``LRScheduler`` (Base Class). Acquiescently, "last_epoch, last_lr" will be saved by ``self.keys = ['last_epoch', 'last_lr']`` . ``last_epoch`` is the current epoch num, and ``last_lr`` is the current learning rate. If you want to change the default behavior, you should have a custom implementation of ``_state_keys()`` to redefine ``self.keys`` . """ self.keys = ['last_epoch', 'last_lr'] def set_state_dict(self, state_dict): """ Loads the schedulers state. """ self.state_keys() for key in self.keys: if key in state_dict: self.__dict__[key] = state_dict[key] else: raise RuntimeError( "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict". format(key)) if len(state_dict) > len(self.keys): warnings.warn( "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict" ) # alias for set_state_dict set_dict = set_state_dict def get_lr(self): """ For those subclass who overload ``LRScheduler`` (Base Class), User should have a custom implementation of ``get_lr()`` . Otherwise, an ``NotImplementedError`` exception will be thrown. """ # calculate by python float raise NotImplementedError class NoamDecay(LRScheduler): """ Applies Noam Decay to the initial learning rate. The algorithm can be described as following. .. math:: new\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(epoch^{-0.5}, epoch * warmup\_steps^{-1.5}) Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_ Args: d$_{model}$(int): The dimensionality of input and output feature vector of model. It is a python int number. warmup_steps(int): The number of warmup steps. A super parameter. It is a python int number learning_rate (float): The initial learning rate. It is a python float number. Default: 1.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``NoamDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, d_model, warmup_steps, learning_rate=1.0, last_epoch=-1, verbose=False): self.d_model = d_model self.warmup_steps = warmup_steps super(NoamDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): if self.last_epoch == 0: a = 1 else: a = self.last_epoch**-0.5 b = self.warmup_steps**-1.5 * self.last_epoch return self.base_lr * (self.d_model**-0.5) * min(a, b) class PiecewiseDecay(LRScheduler): """ Piecewise learning rate scheduler. The algorithm can be described as the code below: .. code-block:: text boundaries = [100, 200] values = [1.0, 0.5, 0.1] if epoch < 100: learning_rate = 1.0 elif 100 <= global_step < 200: learning_rate = 0.5 else: learning_rate = 0.1 Args: boundaries(list): A list of steps numbers. The type of element in the list is python int. values(list): A list of learning rate values that will be picked during different epoch boundaries. The type of element in the list is python float. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``PiecewiseDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, boundaries, values, last_epoch=-1, verbose=False): self.boundaries = boundaries self.values = values super(PiecewiseDecay, self).__init__( last_epoch=last_epoch, verbose=verbose) def get_lr(self): for i in range(len(self.boundaries)): if self.last_epoch < self.boundaries[i]: return self.values[i] return self.values[len(self.values) - 1] class NaturalExpDecay(LRScheduler): """ Applies natural exponential decay to the initial learning rate. The algorithm can be described as following: .. math:: new\_learning\_rate = learning\_rate * e^{- gamma * epoch} Args: learning_rate (float): The initial learning rate. It is a python float number. gamma (float, optional): A Ratio to update the learning rate. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``NaturalExpDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False): self.gamma = gamma super(NaturalExpDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): return self.base_lr * math.exp(-1 * self.gamma * self.last_epoch) class InverseTimeDecay(LRScheduler): """ Applies inverse time decay to the initial learning rate. The algorithm can be described as following: .. math:: new\_learning\_rate = \\frac{learning\_rate}{1 + gamma * epoch} Args: learning_rate (float): The initial learning rate. It is a python float number. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``InverseTimeDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False): self.gamma = gamma super(InverseTimeDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): return self.base_lr / (1 + self.gamma * self.last_epoch) class PolynomialDecay(LRScheduler): """ Applies polynomial decay to the initial learning rate. The algorithm can be described as following. If cycle is set to True, then: .. math:: decay\_steps & = decay\_steps * math.ceil(\\frac{epoch}{decay\_steps}) new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\\frac{epoch}{decay\_steps})^{power}+end\_lr If cycle is set to False, then: .. math:: epoch & = min(epoch, decay\_steps) new\_learning\_rate & = (learning\_rate-end\_lr)*(1-\\frac{epoch}{decay\_steps})^{power}+end\_lr Args: learning_rate (float): The initial learning rate. It is a python float number. decay_steps(int): The decay step size. It determines the decay cycle. end_lr(float, optional): The minimum final learning rate. Default: 0.0001. power(float, optional): Power of polynomial. Default: 1.0. cycle(bool, optional): Whether the learning rate rises again. If True, then the learning rate will rise when it decrease to ``end_lr`` . If False, the learning rate is monotone decreasing. Default: False. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``PolynomialDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, decay_steps, end_lr=0.0001, power=1.0, cycle=False, last_epoch=-1, verbose=False): self.decay_steps = decay_steps self.end_lr = end_lr self.power = power self.cycle = cycle super(PolynomialDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): tmp_epoch_num = self.last_epoch tmp_decay_steps = self.decay_steps if self.cycle: div_res = math.ceil( float(self.last_epoch) / float(self.decay_steps)) if self.last_epoch == 0: div_res = 1 tmp_decay_steps = self.decay_steps * div_res else: tmp_epoch_num = min(self.last_epoch, self.decay_steps) return (self.base_lr - self.end_lr) * ( (1 - float(tmp_epoch_num) / float(tmp_decay_steps) )**self.power) + self.end_lr class LinearWarmup(LRScheduler): """ Linear learning rate warm up strategy. Update the learning rate preliminarily before the normal learning rate scheduler. For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_ When epoch < warmup_steps, learning rate is updated as: .. math:: lr = start\_lr + (end\_lr - start\_lr) * \\frac{epoch}{warmup\_steps} where start_lr is the initial learning rate, and end_lr is the final learning rate; When epoch >= warmup_steps, learning rate is updated as: .. math:: lr = learning_rate where ``learning_rate`` is float or any subclass of ``LRScheduler`` . Args: learning_rate (float|LRScheduler): The learning rate after warm-up. It is a python float number or any subclass of ``LRScheduler`` . warmup_steps (int): total steps of warm up. start_lr (float): Initial learning rate of warm up. end_lr (float): Final learning rate of warm up. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``LinearWarmup`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.LinearWarmup( learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.LinearWarmup( learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, warmup_steps, start_lr, end_lr, last_epoch=-1, verbose=False): type_check = isinstance(learning_rate, float) or isinstance( learning_rate, int) or isinstance(learning_rate, LRScheduler) if not type_check: raise TypeError( "the type of learning_rate should be [int, float or LRScheduler], the current type is {}". format(learning_rate)) self.learning_rate = learning_rate self.warmup_steps = warmup_steps self.start_lr = start_lr self.end_lr = end_lr assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format( end_lr, start_lr) super(LinearWarmup, self).__init__(start_lr, last_epoch, verbose) def get_lr(self): if self.last_epoch < self.warmup_steps: return (self.end_lr - self.start_lr) * float( self.last_epoch) / float(self.warmup_steps) + self.start_lr else: if isinstance(self.learning_rate, LRScheduler): self.learning_rate.step() return self.learning_rate() return self.learning_rate class ExponentialDecay(LRScheduler): """ Update learning rate by `gamma` each epoch. The algorithm can be described as following. .. math:: new\_learning\_rate = last\_learning\_rate * gamma Args: learning_rate (float): The initial learning rate. It is a python float number. gamma (float): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``ExponentialDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, gamma, last_epoch=-1, verbose=False): self.gamma = gamma super(ExponentialDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): return self.base_lr * (self.gamma**self.last_epoch) class MultiStepDecay(LRScheduler): """ Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones. The algorithm can be described as the code below. .. code-block:: text learning_rate = 0.5 milestones = [30, 50] gamma = 0.1 if epoch < 30: learning_rate = 0.5 elif epoch < 50: learning_rate = 0.05 else: learning_rate = 0.005 Args: learning_rate (float): The initial learning rate. It is a python float number. milestones (tuple|list): List or tuple of each boundaries. Must be increasing. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``MultiStepDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, milestones, gamma=0.1, last_epoch=-1, verbose=False): if not isinstance(milestones, (tuple, list)): raise TypeError( "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s." % type(milestones)) if not all([ milestones[i] < milestones[i + 1] for i in range(len(milestones) - 1) ]): raise ValueError('The elements of milestones must be incremented') if gamma >= 1.0: raise ValueError('gamma should be < 1.0.') self.milestones = milestones self.gamma = gamma super(MultiStepDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): for i in range(len(self.milestones)): if self.last_epoch < self.milestones[i]: return self.base_lr * (self.gamma**i) return self.base_lr * (self.gamma**len(self.milestones)) class StepDecay(LRScheduler): """ Update the learning rate of ``optimizer`` by ``gamma`` every ``step_size`` number of epoch. The algorithm can be described as the code below. .. code-block:: text learning_rate = 0.5 step_size = 30 gamma = 0.1 learning_rate = 0.5 if epoch < 30 learning_rate = 0.05 if 30 <= epoch < 60 learning_rate = 0.005 if 60 <= epoch < 90 ... Args: learning_rate (float): The initial learning rate. It is a python float number. step_size (int): the interval to update. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``StepDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, step_size, gamma=0.1, last_epoch=-1, verbose=False): if not isinstance(step_size, int): raise TypeError( "The type of 'step_size' must be 'int', but received %s." % type(step_size)) if gamma >= 1.0: raise ValueError('gamma should be < 1.0.') self.step_size = step_size self.gamma = gamma super(StepDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): i = self.last_epoch // self.step_size return self.base_lr * (self.gamma**i) class LambdaDecay(LRScheduler): """ Sets the learning rate of ``optimizer`` by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` . The algorithm can be described as the code below. .. code-block:: text learning_rate = 0.5 # init learning_rate lr_lambda = lambda epoch: 0.95 ** epoch learning_rate = 0.5 # epoch 0, 0.5*0.95**0 learning_rate = 0.475 # epoch 1, 0.5*0.95**1 learning_rate = 0.45125 # epoch 2, 0.5*0.95**2 Args: learning_rate (float): The initial learning rate. It is a python float number. lr_lambda (function): A function which computes a factor by ``epoch`` , and then multiply the initial learning rate by this factor. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``LambdaDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, lr_lambda, last_epoch=-1, verbose=False): if not callable(lr_lambda): raise TypeError( "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s." % type(lr_lambda)) self.lr_lambda = lr_lambda super(LambdaDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): return self.base_lr * self.lr_lambda(self.last_epoch) class ReduceOnPlateau(LRScheduler): """ Reduce learning rate when ``metrics`` has stopped descending. Models often benefit from reducing the learning rate by 2 to 10 times once model performance has no longer improvement. The ``metrics`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``metrics`` stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * factor`` . (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``metrics`` stop ascending for a ``patience`` number of epochs, the learning rate will be reduced.) In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming above operation. Args: learning_rate (float): The initial learning rate. It is a python float number. mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` , the learning rate will reduce when ``loss`` stops ascending. Default: ``'min'`` . factor (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * factor`` . It should be less than 1.0. Default: 0.1. patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced. Default: 10. threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` . This make tiny changes of ``loss`` will be ignored. Default: 1e-4. threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss`` is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum change of ``loss`` is ``threshold`` . Default: ``'rel'`` . cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0. min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0. epsilon (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon, the update is ignored. Default: 1e-8. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``. Returns: ``ReduceOnPlateau`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step(loss) # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step(out[0]) """ def __init__(self, learning_rate, mode='min', factor=0.1, patience=10, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-8, verbose=False): mode = mode.lower() if mode not in ['min', 'max']: raise ValueError('mode: ' + mode + ' is unknown!') self.mode = mode if factor >= 1.0: raise ValueError( 'new_lr = origin_lr * gamma and gamma should be < 1.0.') self.factor = factor threshold_mode = threshold_mode.lower() if threshold_mode not in ['rel', 'abs']: raise ValueError('threshold mode: ' + threshold_mode + ' is unknown!') self.threshold_mode = threshold_mode if not isinstance(learning_rate, (float, int)): raise TypeError( "The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s." % type(learning_rate)) self.verbose = verbose self.patience = patience self.threshold = threshold self.threshold_mode = threshold_mode self.cooldown = cooldown self.min_lr = min_lr self.epsilon = epsilon self.cooldown_counter = 0 self.best = None self.num_bad_epochs = 0 # Can not call Parent __init__, so implement here. self.base_lr = float(learning_rate) self.last_lr = float(learning_rate) self.last_epoch = 0 self.verbose = verbose self._var_name = None # "cooldown_counter / best / num_bad_epochs / last_epoch / last_lr" will be stored. def state_keys(self): self.keys = [ 'cooldown_counter', 'best', 'num_bad_epochs', 'last_epoch', 'last_lr' ] def step(self, metrics, epoch=None): """ step should be called after `optimizer.step()` . It will update the learning rate in optimizer according to ``metrics`` . The new learning rate will take effect on next epoch. Args: metrics (Tensor|numpy.ndarray|float): Which will be monitored to determine whether the learning rate will reduce. If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. If it's 'Tensor' or 'numpy.ndarray', its shape must be [1]. epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1. Returns: None Examples: Please refer to the example of current LRScheduler. """ if epoch is None: self.last_epoch = self.last_epoch + 1 else: self.last_epoch = epoch # loss must be float, numpy.ndarray or 1-D Tensor with shape [1] if isinstance(metrics, (Tensor, numpy.ndarray)): assert len(metrics.shape) == 1 and metrics.shape[0] == 1, "the metrics.shape " \ "should be (1L,), but the current metrics.shape is {}. Maybe that " \ "you should call paddle.mean to process it first.".format(loss.shape) elif not isinstance(metrics, (int, float, numpy.float32, numpy.float64)): raise TypeError( "metrics must be 'int', 'float', 'np.float', 'numpy.ndarray' or 'paddle.Tensor', but receive {}". format(type(metrics))) if self.cooldown_counter > 0: self.cooldown_counter -= 1 else: if self.best is None or self._is_better(metrics, self.best): self.best = metrics self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self.num_bad_epochs > self.patience: self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 new_lr = max(self.last_lr * self.factor, self.min_lr) if self.last_lr - new_lr > self.epsilon: self.last_lr = new_lr if self.verbose: print('Epoch {}: {} set learning rate to {}.'.format( self.last_epoch, self.__class__.__name__, self.last_lr)) def _is_better(self, current, best): if self.mode == 'min' and self.threshold_mode == 'rel': return current < best - best * self.threshold elif self.mode == 'min' and self.threshold_mode == 'abs': return current < best - self.threshold elif self.mode == 'max' and self.threshold_mode == 'rel': return current > best + best * self.threshold else: return current > best + self.threshold class CosineAnnealingDecay(LRScheduler): """ Set the learning rate using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial learning_rate. :math:`T_{cur}` is the number of epochs since the last restart in SGDR. The algorithm can be described as following. .. math:: \\begin{aligned} \eta_t & = \eta_{min} + \\frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\\frac{T_{cur}}{T_{max}}\pi\\right)\\right), & T_{cur} \\neq (2k+1)T_{max}; \\ \eta_{t+1} & = \eta_{t} + \\frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 - \cos\left(\\frac{1}{T_{max}}\pi\\right)\\right), & T_{cur} = (2k+1)T_{max}. \end{aligned} It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_. Note that this only implements the cosine annealing part of SGDR, and not the restarts. Args: learning_rate (float): The initial learning rate, that is :math:`\eta_{max}` . It can be set to python float or int number. T_max (int): Maximum number of iterations. It is half of the decay cycle of learning rate. eta_min (float|int, optional): Minimum learning rate, that is :math:`\eta_{min}` . Default: 0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``CosineAnnealingDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(2): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.reduce_mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(2): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() """ def __init__(self, learning_rate, T_max, eta_min=0, last_epoch=-1, verbose=False): if not isinstance(T_max, int): raise TypeError( "The type of 'T_max' in 'CosineAnnealingDecay' must be 'int', but received %s." % type(T_max)) if not isinstance(eta_min, (float, int)): raise TypeError( "The type of 'eta_min' in 'CosineAnnealingDecay' must be 'float, int', but received %s." % type(eta_min)) self.T_max = T_max self.eta_min = float(eta_min) super(CosineAnnealingDecay, self).__init__(learning_rate, last_epoch, verbose) def get_lr(self): if self.last_epoch == 0: return self.base_lr elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0: return self.last_lr + (self.base_lr - self.eta_min) * (1 - math.cos( math.pi / self.T_max)) / 2 return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / ( 1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * ( self.last_lr - self.eta_min) + self.eta_min def _get_closed_form_lr(self): return self.eta_min + (self.base_lr - self.eta_min) * (1 + math.cos( math.pi * self.last_epoch / self.T_max)) / 2
40.135024
167
0.552846
39d69130f273553e775f424452d4442ac16da4e4
5,445
py
Python
office365/graph_client.py
andreas-j-hauser/Office365-REST-Python-Client
4bf8ee0b65985980b50fc3b74b32fd2db34561ba
[ "MIT" ]
null
null
null
office365/graph_client.py
andreas-j-hauser/Office365-REST-Python-Client
4bf8ee0b65985980b50fc3b74b32fd2db34561ba
[ "MIT" ]
null
null
null
office365/graph_client.py
andreas-j-hauser/Office365-REST-Python-Client
4bf8ee0b65985980b50fc3b74b32fd2db34561ba
[ "MIT" ]
null
null
null
from office365.actions.download_content_query import DownloadContentQuery from office365.actions.search_query import SearchQuery from office365.actions.upload_content_query import UploadContentQuery from office365.directory.directory import Directory from office365.directory.directoryObjectCollection import DirectoryObjectCollection from office365.directory.group_collection import GroupCollection from office365.directory.groupSettingTemplateCollection import GroupSettingTemplateCollection from office365.directory.user import User from office365.directory.userCollection import UserCollection from office365.onedrive.driveCollection import DriveCollection from office365.onedrive.sharedDriveItemCollection import SharedDriveItemCollection from office365.onedrive.siteCollection import SiteCollection from office365.outlook.contact_collection import ContactCollection from office365.runtime.auth.token_response import TokenResponse from office365.runtime.client_runtime_context import ClientRuntimeContext from office365.runtime.http.http_method import HttpMethod from office365.runtime.http.request_options import RequestOptions from office365.runtime.odata.odata_request import ODataRequest from office365.runtime.odata.odata_v4_batch_request import ODataV4BatchRequest from office365.runtime.odata.v4_json_format import V4JsonFormat from office365.runtime.queries.delete_entity_query import DeleteEntityQuery from office365.runtime.queries.update_entity_query import UpdateEntityQuery from office365.runtime.resource_path import ResourcePath from office365.teams.team_collection import TeamCollection class GraphClient(ClientRuntimeContext): """Graph client""" def __init__(self, acquire_token_callback): """ :param () -> dict acquire_token_callback: Acquire token function """ super(GraphClient, self).__init__() self._pending_request = ODataRequest(self, V4JsonFormat("minimal")) self._pending_request.beforeExecute += self._build_specific_query self._resource = "https://graph.microsoft.com" self._authority_host_url = "https://login.microsoftonline.com" self._acquire_token_callback = acquire_token_callback def execute_batch(self): """Construct and submit a batch request""" batch_request = ODataV4BatchRequest(self) batch_request.execute_query() def pending_request(self): return self._pending_request def service_root_url(self): return "https://graph.microsoft.com/v1.0/" def _build_specific_query(self, request): """ Builds Graph specific request :type request: RequestOptions """ query = self.pending_request().current_query if isinstance(query, UpdateEntityQuery): request.method = HttpMethod.Patch elif isinstance(query, DeleteEntityQuery): request.method = HttpMethod.Delete if isinstance(query, DownloadContentQuery): request.method = HttpMethod.Get elif isinstance(query, UploadContentQuery): request.method = HttpMethod.Put elif isinstance(query, SearchQuery): request.method = HttpMethod.Get def authenticate_request(self, request): """ :type request: RequestOptions """ token_json = self._acquire_token_callback() token = TokenResponse.from_json(token_json) request.set_header('Authorization', 'Bearer {0}'.format(token.accessToken)) def execute_request(self, url_or_options): """ Constructs and submits request directly :type url_or_options: str or RequestOptions """ if not isinstance(url_or_options, RequestOptions): url_or_options = RequestOptions("{0}/{1}".format(self.service_root_url(), url_or_options)) return self.execute_request_direct(url_or_options) @property def me(self): """The Me endpoint is provided as a shortcut for specifying the current user""" return User(self, ResourcePath("me")) @property def drives(self): """Get one drives""" return DriveCollection(self, ResourcePath("drives")) @property def users(self): """Get users""" return UserCollection(self, ResourcePath("users")) @property def groups(self): """Get groups""" return GroupCollection(self, ResourcePath("groups")) @property def sites(self): """Get sites""" return SiteCollection(self, ResourcePath("sites")) @property def shares(self): """Get shares""" return SharedDriveItemCollection(self, ResourcePath("shares")) @property def directoryObjects(self): """Get Directory Objects""" return DirectoryObjectCollection(self, ResourcePath("directoryObjects")) @property def teams(self): """Get teams""" return TeamCollection(self, ResourcePath("teams")) @property def groupSettingTemplates(self): """Get teams""" return GroupSettingTemplateCollection(self, ResourcePath("groupSettingTemplates")) @property def contacts(self): """o get all the contacts in a user's mailbox""" return ContactCollection(self, ResourcePath("contacts")) @property def directory(self): """Represents a deleted item in the directory""" return Directory(self, ResourcePath("directory"))
37.8125
102
0.72562
6c828d7b0ceacb1400a52a0c44d6d5e12702c982
10,914
py
Python
xlmhg/mhg.py
flo-compbio/xlmhg
c29d913386443396254774b8cff5cff2b5731323
[ "BSD-3-Clause" ]
15
2015-05-22T23:58:25.000Z
2021-12-31T03:01:54.000Z
xlmhg/mhg.py
flo-compbio/xlmhg
c29d913386443396254774b8cff5cff2b5731323
[ "BSD-3-Clause" ]
6
2016-07-18T05:02:04.000Z
2021-08-04T09:53:35.000Z
xlmhg/mhg.py
flo-compbio/xlmhg
c29d913386443396254774b8cff5cff2b5731323
[ "BSD-3-Clause" ]
1
2015-05-24T13:10:10.000Z
2015-05-24T13:10:10.000Z
# Copyright (c) 2016-2019 Florian Wagner # # This file is part of XL-mHG. """XL-mHG Python implementation.""" import numpy as np DEFAULT_TOL = 1e-12 def is_equal(a, b, tol): """Ratio test to check if two floating point numbers are equal. Parameters ---------- a: float The first floating point number. b: float The second floating point number. tol: float The tolerance used. Returns ------- bool Whether or not the two numbers are deemed equal. """ if a == b or abs(a-b) <= tol * max(abs(a), abs(b)): return True else: return False def get_hgp(p, k, N, K, n): """Calculate the hypergeometric p-value when p = f(k; N,K,n) is already known. """ pval = p while k < min(K, n): p *= (float((n-k)*(K-k) / float((k+1)*(N-K-n+k+1)))) pval += p k += 1 return pval def get_xlmhg_stat(v, X, L, tol=DEFAULT_TOL): """Calculate the XL-mHG test statistic using recurrence relations. Parameters ---------- v: np.ndarray with dtype=np.uint8 The ranked list. X: int The XL-mHG ``X`` parameter. L: int The XL-mHG ``L`` parameter. tol: float, optional The tolerance used for comparing floats. [1e-12] Returns ------- s: float The XL-mHG test statistic. n_star: int The (first) cutoff at which s was attained. """ assert isinstance(v, np.ndarray) and v.ndim == 1 and \ np.issubdtype(v.dtype, np.integer) assert isinstance(X, int) assert isinstance(L, int) assert isinstance(tol, float) N = v.size if not N > 0: raise ValueError('List is empty!') if not (1 <= X <= N): raise ValueError( 'Invalid value X=%d; should be >= 1 and <= %d.' % (X, N) ) if not (1 <= L <= N): raise ValueError( 'Invalid value L=%d; should be >= 1 and <= %d.' % (L, N) ) if not (0.0 <= tol < 1.0): raise ValueError('Invalid value tol=%.1e; should be in [0,1)' % (tol)) K = int(np.sum(v != 0)) if K == 0: return 1.0, 0 p = 1.0 stat = 1.1 n_star = 0 k = 0 for n in range(L): if v[n] == 0: # calculate f(k; N,K,n+1) from f(k; N,K,n) p *= (float((n+1)*(N-K-n+k)) / float((N-n)*(n-k+1))) else: # we hit a 1 # calculate f(k+1; N,K,n+1) from f(k; N,K,n) p *= (float((n+1)*(K-k)) / float((N-n)*(k+1))) k += 1 # calculate hypergeometric p-value only if enough elements have # been seen if k >= X: hgp = get_hgp(p, k, N, K, n+1) if hgp < stat and not is_equal(hgp, stat, tol): stat = hgp n_star = n+1 stat = min(stat, 1.0) return stat, n_star def get_xlmhg_pval1(N, K, X, L, stat, tol=DEFAULT_TOL): """Calculate the XL-mHG p-value using "Algorithm 1". Parameters ---------- N: int The length of the list. K: int The number of 1's in the list. X: int The XL-mHG ``X`` parameter. L: int The XL-mHG ``L`` parameter. stat: float The XL-mHG test statistic. tol: float, optional The tolerance used for comparing floats. [1e-12] Returns ------- float The XL-mHG p-value. NaN if floating point precision was insufficient for calculating the p-value. """ # type checking assert isinstance(N, int) assert isinstance(X, int) assert isinstance(L, int) assert isinstance(stat, float) assert isinstance(tol, float) # raise exceptions for invalid parameters if not (N >= 1): raise ValueError('Invalid value N=%d; should be >= 1.' % (N)) if not (1 <= X <= N): raise ValueError( 'Invalid value X=%d; should be >= 1 and <= %d.' % (X, N) ) if not (1 <= L <= N): raise ValueError( 'Invalid value L=%d; should be >= 1 and <= %d.' % (L, N) ) if not (0 < stat <= 1.0): raise ValueError( 'Invalid value stat=%.1e; should be in (0;1].' % (stat,) ) if not (0.0 <= tol < 1.0): raise ValueError('Invalid value tol=%.1e; should be in [0,1)' % (tol)) # special case: stat = 1.0 => pval = 1.0 if stat == 1.0: return 1.0 found_R = False p_start = 1.0 p = None hgp = None # fill dynamic programming table by going over all cutoffs n W = N-K table = np.empty((K+1, W+1), dtype=np.float64) table[0,0] = 1.0 for n in range(1, N+1): if K >= n: k = n p_start *= (float(K-n+1) / float(N-n+1)) else: k = K p_start *= (float(n) / float(n-K)) if p_start == 0.0: # not enough floating point accuracy to calculate the # hypergeometric p-value return float('nan') p = p_start hgp = p w = n - k # no configuration with n > L or n < X can be in R if n <= L and n >= X: while k >= X and w < W and \ (hgp < stat or is_equal(hgp, stat, tol)): # we're still in R found_R = True table[k, w] = 0.0 # ! p *= (float(k*(N-K-n+k)) / float((n-k+1)*(K-k+1))) hgp += p w += 1 k -= 1 # fill in rest of the table based on entries for cutoff n-1 while k >= 0 and w <= W: if k > 0 and w > 0: table[k, w] = table[k, w-1] * (float(W-w+1)/float(N-n+1)) + \ table[k-1, w] * (float(K-k+1)/float(N-n+1)) elif k > 0: table[k, w] = table[k-1, w] * (float(K-k+1)/float(N-n+1)) elif w > 0: table[k, w] = table[k, w-1] * (float(W-w+1)/float(N-n+1)) w += 1 k -= 1 if found_R: pval = 1.0 - table[K, W] if pval < 0.0: # insufficient floating point accuracy, set p-value to NaN pval = float('nan') else: # we've never encountered R => set p-value to 0 pval = 0.0 return pval def get_xlmhg_pval2(N, K, X, L, stat, tol=DEFAULT_TOL): """Calculate the XL-mHG p-value using "Algorithm 2". Parameters ---------- N: int The length of the list. K: int The number of 1's in the list. X: int The XL-mHG ``X`` parameter. L: int The XL-mHG ``L`` parameter. stat: float The XL-mHG test statistic. tol: float, optional The tolerance used for comparing floats. [1e-12] Returns ------- float The XL-mHG p-value. NaN if floating point precision was insufficient for calculating the p-value. """ # type checking assert isinstance(N, int) assert isinstance(X, int) assert isinstance(L, int) assert isinstance(stat, float) assert isinstance(tol, float) # raise exceptions for invalid parameters if not (N >= 1): raise ValueError('Invalid value N=%d; must be >= 1.' %(N)) if not (1 <= X <= N): raise ValueError( 'Invalid value X=%d; must be >= 1 and <= %d.' %(X, N) ) if not (1 <= L <= N): raise ValueError( 'Invalid value L=%d; must be >= 1 and <= %d.' %(L, N) ) if not (0 < stat <= 1.0): raise ValueError( 'Invalid value s=%.1e; must be in (0,1].' %(stat) ) if not (0.0 <= tol < 1.0): raise ValueError('Invalid value tol=%.1e; must be in [0,1)' %(tol)) # special case: stat = 1.0 => pval = 1.0 if stat == 1.0: return 1.0 W = N-K table = np.empty((K+1, L+1), dtype=np.float64) table[0,0] = 1.0 # initially, *all* paths have never entered R before pval = 0.0 p_start = 1.0 p = None hgp = None k = None w = None # fill dynamic programming table and calculate XL-mHG p-value # note: we only need to go over the first L cutoffs, since lower cutoffs # cannot be in R (by definition) for n in range(1, L+1): if K >= n: k = n p_start *= (float(K-n+1) / float(N-n+1)) else: k = K p_start *= (float(n) / float(n-K)) if p_start == 0.0: # not enough floating point precision to calculate # the hypergeometric p-value return float('nan') p = p_start hgp = p w = n - k if k == K and (hgp > stat and not is_equal(hgp, stat, tol)): # We've exited R (or we were never in it). # That means we're done here! break # Check if we've reached R. If so, "go down the diagonal" until we exit R. # Three conditions: # 1. k >= X // No configuration with k < X can be in R. # 2. w < W // No configuration with w = W can be in R. # 3. pval <= s // The basic criterion for being in R. while k >= X and w < W and (hgp < stat or is_equal(hgp, stat, tol)): # We're in R! # Note: # For w = W, we always have hgp = 1.0. Since stat < 1.0, # we could just assume that w < W. But this assumption might fail # due to limited floating point accuracy. # First things first: set table[k, w] to 0 to indicate that this is # R territory. table[k, w] = 0 # check if we've "just entered" R (this is only possible "from below") if table[k-1, w] > 0: # calculate the fraction of "fresh" paths (paths which have never entered R before) # that enter here, and add that number to r pval += (table[k-1, w] * (float(K-k+1)/float(N-n+1))) p *= (float(k*(N-K-n+k)) / float((n-k+1)*(K-k+1))) hgp += p w += 1 k -= 1 # now we're no longer in R while k >= 0 and w <= W: if k == 0: # paths only come in "from the left" table[k, w] = table[k, w-1] * (float(W-w+1)/float(N-n+1)) elif w == 0: # paths only come in "from below" table[k, w] = table[k-1, w] * (float(K-k+1)/float(N-n+1)) else: # paths come in "from the left" and "from below" table[k, w] = table[k, w-1] * (float(W-w+1)/float(N-n+1)) + \ table[k-1, w] * (float(K-k+1)/float(N-n+1)) w += 1 k -= 1 return pval
30.066116
99
0.48195
b7f4039a92939c501636083557c32e37d82c9539
1,349
py
Python
helpers/volatilityCube.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
1
2021-10-04T03:15:50.000Z
2021-10-04T03:15:50.000Z
helpers/volatilityCube.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
null
null
null
helpers/volatilityCube.py
neoyung/IrLib
942793c49a477c9f5747410be74daf868391f289
[ "MIT" ]
null
null
null
from irLib.mathTools.estimationEngine import linearInterpolatorND import numpy as np class volatilityCube: def __init__(self, tenorIndex, strikeIndex, time2MaturityIndex, volatilityValues): self.tenorIndex = tenorIndex self.strikeIndex = strikeIndex self.time2MaturityIndex = time2MaturityIndex assert len(volatilityValues) == len(tenorIndex) * len(strikeIndex) * \ len(time2MaturityIndex), 'no of vol. values doesnt match dimensions' self.values = volatilityValues self.linearInterpolator = None def getVol(self, tenor, strike, time2Maturity): assert tenor >= min(self.tenorIndex) and tenor <= max(self.tenorIndex)\ and strike >= min(self.strikeIndex) and strike <= max(self.strikeIndex)\ and time2Maturity >= min(self.time2MaturityIndex) and time2Maturity <= max(self.time2MaturityIndex), 'no extrapolation allowed' if self.linearInterpolator is None: xv, yv, zv = np.meshgrid( self.tenorIndex, self.strikeIndex, self.time2MaturityIndex) self.points = np.vstack([xv.ravel(), yv.ravel(), zv.ravel()]).T self.linearInterpolator = linearInterpolatorND( self.points, self.values) return self.linearInterpolator.getValues([tenor, strike, time2Maturity])
46.517241
139
0.682728
3f59e0d26f10064566eda8e33975ec03537292b7
4,942
py
Python
tools/cygprofile/patch_orderfile_unittest.py
zipated/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
tools/cygprofile/patch_orderfile_unittest.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
tools/cygprofile/patch_orderfile_unittest.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env vpython # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest import patch_orderfile import symbol_extractor class TestPatchOrderFile(unittest.TestCase): def testRemoveSuffixes(self): no_clone = 'this.does.not.contain.clone' self.assertEquals(no_clone, patch_orderfile.RemoveSuffixes(no_clone)) with_clone = 'this.does.contain.clone.' self.assertEquals( 'this.does.contain', patch_orderfile.RemoveSuffixes(with_clone)) with_part = 'this.is.a.part.42' self.assertEquals( 'this.is.a', patch_orderfile.RemoveSuffixes(with_part)) def testSymbolsWithSameOffset(self): symbol_name = "dummySymbol" symbol_name2 = "other" name_to_symbol_infos = {symbol_name: [ symbol_extractor.SymbolInfo(symbol_name, 0x42, 0x12, section='.text')]} offset_to_symbol_infos = { 0x42: [symbol_extractor.SymbolInfo(symbol_name, 0x42, 0x12, section='.text'), symbol_extractor.SymbolInfo(symbol_name2, 0x42, 0x12, section='.text')]} symbol_names = patch_orderfile._SymbolsWithSameOffset( symbol_name, name_to_symbol_infos, offset_to_symbol_infos) self.assertEquals(len(symbol_names), 2) self.assertEquals(symbol_names[0], symbol_name) self.assertEquals(symbol_names[1], symbol_name2) self.assertEquals([], patch_orderfile._SymbolsWithSameOffset( "symbolThatShouldntMatch", name_to_symbol_infos, offset_to_symbol_infos)) def testSectionNameToSymbols(self): mapping = {'.text.foo': ['foo'], '.text.hot.bar': ['bar', 'bar1']} self.assertEquals(list(patch_orderfile._SectionNameToSymbols( '.text.foo', mapping)), ['foo']) self.assertEquals(list(patch_orderfile._SectionNameToSymbols( '.text.hot.bar', mapping)), ['bar', 'bar1']) self.assertEquals(list(patch_orderfile._SectionNameToSymbols( '.text.hot.bar', mapping)), ['bar', 'bar1']) self.assertEquals(list(patch_orderfile._SectionNameToSymbols( '.text.hot.foobar', mapping)), ['foobar']) self.assertEquals(list(patch_orderfile._SectionNameToSymbols( '.text.unlikely.*', mapping)), []) def testSectionMatchingRules(self): symbol_name1 = 'symbol1' symbol_name2 = 'symbol2' symbol_name3 = 'symbol3' section_name1 = '.text.' + symbol_name1 section_name3 = '.text.foo' suffixed = set([section_name3]) name_to_symbol_infos = {symbol_name1: [ symbol_extractor.SymbolInfo(symbol_name1, 0x42, 0x12, section='.text')]} offset_to_symbol_infos = { 0x42: [symbol_extractor.SymbolInfo(symbol_name1, 0x42, 0x12, section='.text'), symbol_extractor.SymbolInfo(symbol_name2, 0x42, 0x12, section='.text')]} section_to_symbols_map = {section_name1: [symbol_name1], section_name3: [symbol_name1, symbol_name3]} symbol_to_sections_map = {symbol_name1: [section_name1, section_name3], symbol_name3: [section_name3]} expected = [ section_name1, section_name3, section_name3 + '.*', '.text.hot.' + symbol_name1, '.text.unlikely.' + symbol_name1, symbol_name1, '.text.hot.symbol2', '.text.unlikely.symbol2', '.text.symbol2', 'symbol2'] self.assertEqual(expected, list(patch_orderfile._SectionMatchingRules( section_name1, name_to_symbol_infos, offset_to_symbol_infos, section_to_symbols_map, symbol_to_sections_map, suffixed))) def testUniqueGenerator(self): @patch_orderfile._UniqueGenerator def TestIterator(): yield 1 yield 2 yield 1 yield 3 self.assertEqual(list(TestIterator()), [1,2,3]) def testCombineSectionListsByPrimaryName(self): self.assertEqual(patch_orderfile._CombineSectionListsByPrimaryName( {'foo': ['.text.foo', '.text.bar.constprop.1'], 'foo.part.1': ['.text.baz'], 'foobar': ['.text.foobar']}), {'foo': ['.text.foo', '.text.bar', '.text.baz'], 'foobar': ['.text.foobar']}) def testSectionsWithSuffixes(self): self.assertEqual(patch_orderfile._SectionsWithSuffixes( {'foo': ['.text.foo', '.text.bar.constprop.1'], 'foo.part.1': ['.text.baz'], 'foobar': ['.text.foobar']}), set(['.text.bar'])) if __name__ == "__main__": unittest.main()
39.536
74
0.610684
d25a0d6b387da86a9c67ea6317bbb7f33a9cffe2
632
py
Python
anyfunction.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
1
2021-06-07T07:55:28.000Z
2021-06-07T07:55:28.000Z
anyfunction.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
null
null
null
anyfunction.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
null
null
null
# python program to know the effect of any() and all() function ''' Function Name : Use Of Any And All Functions. Function Date : 28 Aug 2020 Function Author : Prasad Dangare Input : String Output : String ''' from numpy import* a = array([1, 2, 3, 0]) b = array([0, 2, 3, 1]) c = a > b print('\n Result Of a > b : ', c) print("\n") print('Check If Any One Elements Is True : ', any(c)) print("\n") print('Check If All Elements Are True : ', all(c)) print("\n") if(any(a > b)): print('a Contains Atleast One Elements Greater Than Those Of b') print("\n")
21.793103
69
0.56962
e5e86327b95e2e7ea18208fcc0d7e9173f249363
32,126
py
Python
test/functional/fundrawtransaction.py
andyfreer/dash
351fbf65efc9459cb69a3c843cc205a8b94c95b3
[ "MIT" ]
20
2019-07-24T07:07:49.000Z
2021-09-06T15:25:55.000Z
test/functional/fundrawtransaction.py
andyfreer/dash
351fbf65efc9459cb69a3c843cc205a8b94c95b3
[ "MIT" ]
13
2019-10-15T13:32:33.000Z
2021-12-03T14:48:49.000Z
test/functional/fundrawtransaction.py
andyfreer/dash
351fbf65efc9459cb69a3c843cc205a8b94c95b3
[ "MIT" ]
35
2019-07-17T22:36:45.000Z
2021-06-02T15:36:46.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the fundrawtransaction RPC.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError('Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True self.extra_args = [['-usehd=0']] * self.num_nodes def setup_network(self, split=False): self.setup_nodes() connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction([], {self.nodes[2].getnewaddress():500}) rawmatch = self.nodes[2].fundrawtransaction(rawmatch, {"changePosition":1, "subtractFeeFromOutputs":[0]}) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(2000) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 15) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 50) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 22 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26, self.nodes[1].getnewaddress() : 25 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(50) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(40) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-3, "Unexpected key foo", self.nodes[2].fundrawtransaction, rawtx, {'foo':'bar'}) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(40) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-5, "changeAddress must be a valid dash address", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':'foobar'}) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(40) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_rpc_error(-8, "changePosition out of bounds", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':change, 'changePosition':2}) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 10) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 10) utx2 = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 10) utx2 = get_unspent(self.nodes[2].listunspent(), 50) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60, self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 10} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawtx) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():11,self.nodes[1].getnewaddress():12,self.nodes[1].getnewaddress():1,self.nodes[1].getnewaddress():13,self.nodes[1].getnewaddress():2,self.nodes[1].getnewaddress():3} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 12 DASH to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 12) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawtx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('11.0000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.stop_node(0) self.nodes[1].node_encrypt_wallet("test") self.stop_node(2) self.stop_node(3) self.start_nodes() # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_rpc_error(-4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawtx) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].walletlock() assert_raises_rpc_error(-13, "walletpassphrase", self.nodes[1].sendtoaddress, self.nodes[0].getnewaddress(), 12) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():11} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('511.0000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('500.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True }) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress() : 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 10*min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) ################################ # Test no address reuse occurs # ################################ result3 = self.nodes[3].fundrawtransaction(rawtx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert(changeaddress != nextaddr) ###################################### # Test subtractFeeFromOutputs option # ###################################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0]}), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee, "subtractFeeFromOutputs": [0]})] dec_tx = [self.nodes[3].decoderawtransaction(tx['hex']) for tx in result] output = [d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result)] change = [d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result)] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = {self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3)} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Add changePosition=4 to circumvent BIP69 input/output sorting result = [self.nodes[3].fundrawtransaction(rawtx, {"changePosition": 4}), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0, 2, 3], "changePosition": 4})] dec_tx = [self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex'])] # Nested list of non-change output amounts for each transaction output = [[out['value'] for i, out in enumerate(d['vout']) if i != r['changepos']] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee']) if __name__ == '__main__': RawTransactionsTest().main()
44.619444
214
0.570286