hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
6e2838b7143da4e35710c9f9719c3e36ad5f0449
1,299
py
Python
chainer_wing/gui_main/main.py
fukatani/ChainerWing
37a1435635cbc610dc86d15c8baca67622355757
[ "MIT", "BSD-3-Clause" ]
26
2017-07-03T13:50:28.000Z
2021-02-06T08:43:42.000Z
chainer_wing/gui_main/main.py
fukatani/CW_gui
37a1435635cbc610dc86d15c8baca67622355757
[ "MIT", "BSD-3-Clause" ]
10
2017-07-03T14:30:00.000Z
2017-12-21T13:26:43.000Z
chainer_wing/gui_main/main.py
fukatani/CW_gui
37a1435635cbc610dc86d15c8baca67622355757
[ "MIT", "BSD-3-Clause" ]
6
2017-03-15T13:48:09.000Z
2019-04-15T19:28:02.000Z
import argparse import logging import os import sys from PyQt5 import QtWidgets from chainer_wing.gui_main.graph import Graph from chainer_wing.gui_main.painter import Painter2D, MainWindow logger = logging.getLogger('Chainer-Wing') logger.setLevel(logging.DEBUG) if os.path.isfile('cw_debug.log'): os.remove('cw_debug.log') fh = logging.FileHandler('cw_debug.log') fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) def run(): logger.info('Starting ChainerWing Application with '+' '.join(sys.argv)) app = QtWidgets.QApplication(sys.argv) painter = initialize_painter() startUI(app, painter) def initialize_painter(): painter = Painter2D() Graph(painter=painter) return painter def startUI(app, painter): win = MainWindow(painter=painter) win.setArgs(parse_argv()) win.show() logger.debug('Startup successful. Handing main thread control to Qt main loop.') sys.exit(app.exec_()) def parse_argv(): parser = argparse.ArgumentParser() parser.add_argument('-i', action='store_true', required=False) parser.add_argument('--test', nargs=1, required=False, default=False) args = parser.parse_args() return args
26.510204
85
0.727483
07b4ee43dae15e9e2f6e154b4a2d99c6afc1e4c6
599
py
Python
python/hetu/gpu_ops/Scatter.py
codecaution/Hetu
e278732c2fe3554c8d576585f5bcbf79ade31b68
[ "Apache-2.0" ]
null
null
null
python/hetu/gpu_ops/Scatter.py
codecaution/Hetu
e278732c2fe3554c8d576585f5bcbf79ade31b68
[ "Apache-2.0" ]
null
null
null
python/hetu/gpu_ops/Scatter.py
codecaution/Hetu
e278732c2fe3554c8d576585f5bcbf79ade31b68
[ "Apache-2.0" ]
3
2021-11-29T13:47:48.000Z
2022-03-03T02:00:43.000Z
from __future__ import absolute_import from .Node import Op from .. import ndarray from ..gpu_links import scatter class ScatterOp(Op): def __init__(self, node_target, node_index, node_src, ctx=None): super().__init__(ScatterOp, [node_target, node_index, node_src], ctx) def compute(self, target, dim, index, src, stream_handle=None): scatter(target, dim, index, src) def gradient(self, output_grad): pass def infer_shape(self, input_shapes): pass def scatter_op(node1, node2, node3, ctx=None): return ScatterOp(node1, node2, node3, ctx=ctx)
28.52381
77
0.704508
d9d77eff8c636ae550cc825ee5cff054aee1ff67
706
py
Python
tests/models/util.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
tests/models/util.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
tests/models/util.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# ---------------------------------------------------------------------- # Various utilities # ---------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from noc.models import get_model, iter_model_id, is_document def get_models(): for model_id in iter_model_id(): model = get_model(model_id) if model and not is_document(model): yield model def get_documents(): for model_id in iter_model_id(): model = get_model(model_id) if model and is_document(model): yield model
29.416667
72
0.466006
1c3828893b4eae531bd9c2811241ec3653b28a34
4,349
tac
Python
mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/doc/core/howto/tutorial/listings/finger/finger18.tac
SPIN-UMass/SWEET
1b0f39222e7064f70812e3293ca023619295741d
[ "MIT" ]
3
2020-04-02T06:23:44.000Z
2020-08-13T20:32:31.000Z
mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/doc/core/howto/tutorial/listings/finger/finger18.tac
SPIN-UMass/SWEET
1b0f39222e7064f70812e3293ca023619295741d
[ "MIT" ]
null
null
null
mailmynet/Maildir/proxy_postfix/Twisted-11.0.0/doc/core/howto/tutorial/listings/finger/finger18.tac
SPIN-UMass/SWEET
1b0f39222e7064f70812e3293ca023619295741d
[ "MIT" ]
1
2020-04-02T06:26:10.000Z
2020-04-02T06:26:10.000Z
# Do everything properly from twisted.application import internet, service from twisted.internet import protocol, reactor, defer from twisted.words.protocols import irc from twisted.protocols import basic from twisted.web import resource, server, static, xmlrpc import cgi def catchError(err): return "Internal error in server" class FingerProtocol(basic.LineReceiver): def lineReceived(self, user): d = self.factory.getUser(user) d.addErrback(catchError) def writeValue(value): self.transport.write(value+'\r\n') self.transport.loseConnection() d.addCallback(writeValue) class IRCReplyBot(irc.IRCClient): def connectionMade(self): self.nickname = self.factory.nickname irc.IRCClient.connectionMade(self) def privmsg(self, user, channel, msg): user = user.split('!')[0] if self.nickname.lower() == channel.lower(): d = self.factory.getUser(msg) d.addErrback(catchError) d.addCallback(lambda m: "Status of %s: %s" % (msg, m)) d.addCallback(lambda m: self.msg(user, m)) class UserStatusTree(resource.Resource): def __init__(self, service): resource.Resource.__init__(self) self.service = service def render_GET(self, request): d = self.service.getUsers() def formatUsers(users): l = ['<li><a href="%s">%s</a></li>' % (user, user) for user in users] return '<ul>'+''.join(l)+'</ul>' d.addCallback(formatUsers) d.addCallback(request.write) d.addCallback(lambda _: request.finish()) return server.NOT_DONE_YET def getChild(self, path, request): if path=="": return UserStatusTree(self.service) else: return UserStatus(path, self.service) class UserStatus(resource.Resource): def __init__(self, user, service): resource.Resource.__init__(self) self.user = user self.service = service def render_GET(self, request): d = self.service.getUser(self.user) d.addCallback(cgi.escape) d.addCallback(lambda m: '<h1>%s</h1>'%self.user+'<p>%s</p>'%m) d.addCallback(request.write) d.addCallback(lambda _: request.finish()) return server.NOT_DONE_YET class UserStatusXR(xmlrpc.XMLRPC): def __init__(self, service): xmlrpc.XMLRPC.__init__(self) self.service = service def xmlrpc_getUser(self, user): return self.service.getUser(user) class FingerService(service.Service): def __init__(self, filename): self.filename = filename self.users = {} def _read(self): self.users.clear() for line in file(self.filename): user, status = line.split(':', 1) user = user.strip() status = status.strip() self.users[user] = status self.call = reactor.callLater(30, self._read) def getUser(self, user): return defer.succeed(self.users.get(user, "No such user")) def getUsers(self): return defer.succeed(self.users.keys()) def getFingerFactory(self): f = protocol.ServerFactory() f.protocol = FingerProtocol f.getUser = self.getUser return f def getResource(self): r = UserStatusTree(self) x = UserStatusXR(self) r.putChild('RPC2', x) return r def getIRCBot(self, nickname): f = protocol.ReconnectingClientFactory() f.protocol = IRCReplyBot f.nickname = nickname f.getUser = self.getUser return f def startService(self): self._read() service.Service.startService(self) def stopService(self): service.Service.stopService(self) self.call.cancel() application = service.Application('finger', uid=1, gid=1) f = FingerService('/etc/users') serviceCollection = service.IServiceCollection(application) internet.TCPServer(79, f.getFingerFactory() ).setServiceParent(serviceCollection) internet.TCPServer(8000, server.Site(f.getResource()) ).setServiceParent(serviceCollection) internet.TCPClient('irc.freenode.org', 6667, f.getIRCBot('fingerbot') ).setServiceParent(serviceCollection)
29.585034
69
0.627271
85ecf4afc7bbf9612fe3d68efa7a8e58acfb9bd8
395
py
Python
algoritmo-Fabiano/17-05-exe1.py
Chris-gde/exercicios
a448ce837c99fb8043b9060ac1fe14f9b00033a5
[ "Apache-2.0" ]
null
null
null
algoritmo-Fabiano/17-05-exe1.py
Chris-gde/exercicios
a448ce837c99fb8043b9060ac1fe14f9b00033a5
[ "Apache-2.0" ]
null
null
null
algoritmo-Fabiano/17-05-exe1.py
Chris-gde/exercicios
a448ce837c99fb8043b9060ac1fe14f9b00033a5
[ "Apache-2.0" ]
null
null
null
''' 1) Faça um algoritmo para ler a idade de 5 pessoas e informar qual foi a maior idade informada. ''' m=0 i1=int(input("Informe a idade ")) if(i1>m): m=i1 i2=int(input("Informe a idade ")) if(i2>m): m=i2 i3=int(input("Informe a idade ")) if(i3>m): m=i3 i4=int(input("Informe a idade ")) if(i4>m): m=i4 i5=int(input("Informe a idade ")) if(i5>m): m=i5 print(m)
18.809524
96
0.602532
27385b79600f0fb722efaf970b57fd324774ff82
605
py
Python
Python/gradecurving.py
JaredLGillespie/OpenKattis
71d26883cb5b8a4a1d63a072587de5575d7c29af
[ "MIT" ]
null
null
null
Python/gradecurving.py
JaredLGillespie/OpenKattis
71d26883cb5b8a4a1d63a072587de5575d7c29af
[ "MIT" ]
null
null
null
Python/gradecurving.py
JaredLGillespie/OpenKattis
71d26883cb5b8a4a1d63a072587de5575d7c29af
[ "MIT" ]
null
null
null
# https://open.kattis.com/problems/gradecurving import math def curve_func(x): return 10 * math.sqrt(x) x, ylow, yhigh = map(int, input().split()) ylowi, yhighi = -1, -1 i = 0 while i <= 100000: if math.ceil(x) <= yhigh: yhighi = i if math.ceil(x) >= ylow and ylowi == -1: ylowi = i if math.ceil(x) > yhigh: break x = curve_func(x) i += 1 if ylowi == -1: print('impossible') elif yhighi == 100000: if ylowi == 100000: print('inf inf') else: print('%s inf' % ylowi) else: print('%s %s' % (ylowi, yhighi))
15.512821
48
0.533884
976a037b28ab892c7642ad838881f31864cd0f41
178
py
Python
lib/EGG_research/egg/nest/__init__.py
Slowika/GameBias-EmeCom2020
5b94c47559f8202bca99c26fc1bcb078dd0509a6
[ "MIT" ]
15
2020-09-23T08:24:33.000Z
2022-02-09T14:32:49.000Z
lib/EGG_research/egg/nest/__init__.py
Slowika/GameBias-EmeCom2020
5b94c47559f8202bca99c26fc1bcb078dd0509a6
[ "MIT" ]
null
null
null
lib/EGG_research/egg/nest/__init__.py
Slowika/GameBias-EmeCom2020
5b94c47559f8202bca99c26fc1bcb078dd0509a6
[ "MIT" ]
5
2021-03-05T16:54:45.000Z
2022-03-31T13:33:58.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
25.428571
65
0.752809
a8de0b9ee5bfb9fd04d2508c09c73e52ebd9cc50
2,298
py
Python
localflavor/ru/forms.py
infoxchange/django-localflavor
d3bc070319519b6572e2b6d3d54a4e96bee1ff78
[ "BSD-3-Clause" ]
null
null
null
localflavor/ru/forms.py
infoxchange/django-localflavor
d3bc070319519b6572e2b6d3d54a4e96bee1ff78
[ "BSD-3-Clause" ]
null
null
null
localflavor/ru/forms.py
infoxchange/django-localflavor
d3bc070319519b6572e2b6d3d54a4e96bee1ff78
[ "BSD-3-Clause" ]
null
null
null
""" Russian-specific forms helpers """ from __future__ import unicode_literals import re from django.forms.fields import RegexField, Select from django.utils.translation import ugettext_lazy as _ from .ru_regions import RU_COUNTY_CHOICES, RU_REGIONS_CHOICES phone_digits_re = re.compile(r'^(?:[78]-?)?(\d{3})[-\.]?(\d{3})[-\.]?(\d{4})$') class RUCountySelect(Select): """ A Select widget that uses a list of Russian Counties as its choices. """ def __init__(self, attrs=None): super(RUCountySelect, self).__init__(attrs, choices=RU_COUNTY_CHOICES) class RURegionSelect(Select): """ A Select widget that uses a list of Russian Regions as its choices. """ def __init__(self, attrs=None): super(RURegionSelect, self).__init__(attrs, choices=RU_REGIONS_CHOICES) class RUPostalCodeField(RegexField): """ Russian Postal code field. Format: XXXXXX, where X is any digit, and first digit is not zero. """ default_error_messages = { 'invalid': _('Enter a postal code in the format XXXXXX.'), } def __init__(self, max_length=None, min_length=None, *args, **kwargs): super(RUPostalCodeField, self).__init__(r'^\d{6}$', max_length, min_length, *args, **kwargs) class RUPassportNumberField(RegexField): """ Russian internal passport number format: XXXX XXXXXX where X - any digit. """ default_error_messages = { 'invalid': _('Enter a passport number in the format XXXX XXXXXX.'), } def __init__(self, max_length=None, min_length=None, *args, **kwargs): super(RUPassportNumberField, self).__init__(r'^\d{4} \d{6}$', max_length, min_length, *args, **kwargs) class RUAlienPassportNumberField(RegexField): """ Russian alien's passport number format: XX XXXXXXX where X - any digit. """ default_error_messages = { 'invalid': _('Enter a passport number in the format XX XXXXXXX.'), } def __init__(self, max_length=None, min_length=None, *args, **kwargs): super(RUAlienPassportNumberField, self).__init__(r'^\d{2} \d{7}$', max_length, min_length, *args, **kwargs)
31.916667
97
0.633159
6ebe97836ce8da758909601b639bd2ba30cb478e
4,798
py
Python
zentral/contrib/inventory/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
634
2015-10-30T00:55:40.000Z
2022-03-31T02:59:00.000Z
zentral/contrib/inventory/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
145
2015-11-06T00:17:33.000Z
2022-03-16T13:30:31.000Z
zentral/contrib/inventory/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
103
2015-11-07T07:08:49.000Z
2022-03-18T17:34:36.000Z
from django.conf.urls import url from . import views app_name = "inventory" urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), url(r'^groups/$', views.GroupsView.as_view(), name='groups'), url(r'^groups/(?P<group_id>\d+)/machines/$', views.GroupMachinesView.as_view(), name='group_machines'), url(r'^business_units/$', views.MBUView.as_view(), name='mbu'), url(r'^business_units/review_merge/$', views.ReviewMBUMergeView.as_view(), name='review_mbu_merge'), url(r'^business_units/merge/$', views.MergeMBUView.as_view(), name='merge_mbu'), url(r'^business_units/create/$', views.CreateMBUView.as_view(), name='create_mbu'), url(r'^business_units/(?P<pk>\d+)/update/$', views.UpdateMBUView.as_view(), name='update_mbu'), url(r'^business_units/(?P<pk>\d+)/delete/$', views.DeleteMBUView.as_view(), name='delete_mbu'), url(r'^business_units/(?P<pk>\d+)/tags/$', views.MBUTagsView.as_view(), name='mbu_tags'), url(r'^business_units/(?P<pk>\d+)/tags/(?P<tag_id>\d+)/remove/$', views.RemoveMBUTagView.as_view(), name='remove_mbu_tag'), url(r'^business_units/(?P<pk>\d+)/machines/$', views.MBUMachinesView.as_view(), name='mbu_machines'), url(r'^business_units/(?P<pk>\d+)/detach_bu/(?P<bu_id>\d+)/$', views.DetachBUView.as_view(), name='detach_bu'), url(r'^business_units/(?P<pk>\d+)/api_enrollment/$', views.MBUAPIEnrollmentView.as_view(), name='mbu_api_enrollment'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/events/$', views.MachineEventsView.as_view(), name='machine_events'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/events/fetch/$', views.FetchMachineEventsView.as_view(), name='fetch_machine_events'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/events/store_redirect/$', views.MachineEventsStoreRedirectView.as_view(), name='machine_events_store_redirect'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/macos_app_instances/$', views.MachineMacOSAppInstancesView.as_view(), name='machine_macos_app_instances'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/program_instances/$', views.MachineProgramInstancesView.as_view(), name='machine_program_instances'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/deb_packages/$', views.MachineDebPackagesView.as_view(), name='machine_deb_packages'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/incidents/$', views.MachineIncidentsView.as_view(), name='machine_incidents'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/tags/$', views.MachineTagsView.as_view(), name='machine_tags'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/tags/(?P<tag_id>\d+)/remove/$', views.RemoveMachineTagView.as_view(), name='remove_machine_tag'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/archive/$', views.ArchiveMachineView.as_view(), name='archive_machine'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/heartbeats/$', views.MachineHeartbeatsView.as_view(), name='machine_heartbeats'), url(r'^machine/(?P<urlsafe_serial_number>\S+)/$', views.MachineView.as_view(), name='machine'), url(r'^tags/$', views.TagsView.as_view(), name='tags'), url(r'^tags/create/$', views.CreateTagView.as_view(), name='create_tag'), url(r'^tags/(?P<pk>\d+)/update/$', views.UpdateTagView.as_view(), name='update_tag'), url(r'^tags/(?P<pk>\d+)/delete/$', views.DeleteTagView.as_view(), name='delete_tag'), url(r'^taxonomies/create/$', views.CreateTaxonomyView.as_view(), name='create_taxonomy'), url(r'^taxonomies/(?P<pk>\d+)/update/$', views.UpdateTaxonomyView.as_view(), name='update_taxonomy'), url(r'^taxonomies/(?P<pk>\d+)/delete/$', views.DeleteTaxonomyView.as_view(), name='delete_taxonomy'), url(r'^macos_apps/$', views.MacOSAppsView.as_view(), name='macos_apps'), url(r'^macos_apps/(?P<pk>\d+)/$', views.MacOSAppView.as_view(), name='macos_app'), url(r'^macos_apps/(?P<pk>\d+)/instance/(?P<osx_app_instance_id>\d+)/machines/$', views.OSXAppInstanceMachinesView.as_view(), name='macos_app_instance_machines'), # API url(r'^prometheus_metrics/$', views.PrometheusMetricsView.as_view(), name='prometheus_metrics'), ] main_menu_cfg = { 'weight': 0, 'items': ( ('index', 'Machines', False, ("inventory.view_machinesnapshot",)), ('groups', 'Groups', False, ("inventory.view_machinegroup",)), ('mbu', 'Business units', False, ("inventory.view_metabusinessunit",)), ('macos_apps', 'macOS applications', False, ("inventory.view_osxapp", "inventory.view_osxappinstance")), ('tags', 'Tags', False, ("inventory.view_tag",)), ) }
55.790698
115
0.666736
141886650083c4cd29be0c488a4877051b190a0c
5,956
py
Python
ChernMachine/kernel/VJob.py
hepChern/ChernMachine
174f0d6958427bb8ba9c0538f0cf3597702cfe16
[ "MIT" ]
null
null
null
ChernMachine/kernel/VJob.py
hepChern/ChernMachine
174f0d6958427bb8ba9c0538f0cf3597702cfe16
[ "MIT" ]
null
null
null
ChernMachine/kernel/VJob.py
hepChern/ChernMachine
174f0d6958427bb8ba9c0538f0cf3597702cfe16
[ "MIT" ]
null
null
null
import os from Chern.utils import utils from Chern.utils import csys from Chern.utils import metadata class VJob(object): """ Virtual class of the objects, including VVolume, VImage, VContainer """ def __init__(self, path): """ Initialize the project the only **information** of a object instance """ self.path = csys.strip_path_string(path) self.config_file = metadata.ConfigFile(self.path+"/config.json") def __str__(self): """ Define the behavior of print(vobject) """ return self.path def __repr__(self): """ Define the behavior of print(vobject) """ return self.path def relative_path(self, path): """ Return a path relative to the path of this object """ return os.path.relpath(path, self.path) def job_type(self): """ Return the type of the object under a specific path. If path is left blank, return the type of the object itself. """ return self.config_file.read_variable("object_type", "") def is_zombie(self): return self.job_type() == "" def error(self): if os.path.exists(self.path+"/error"): f = open(self.path+"/error") error = f.read() f.close() return error else: return "" def append_error(self, message): with open(self.path+"/error", "w") as f: f.write(message) f.write("\n") def add_arc_from(self, path): """ Add an link from the path object to this object """ config_file = metadata.ConfigFile(path+"/.chern/config.json") succ_str = config_file.read_variable("successors") if succ_str is None: succ_str = [] succ_str.append(self.path) config_file.write_variable("successors", succ_str) pred_str = self.config_file.read_variable("predecessors") if pred_str is None: pred_str = [] pred_str.append(path) self.config_file.write_variable("predecessors", pred_str) def remove_arc_from(self, path): """ FIXME Remove link from the path Just copied from "remove_arc_from" """ config_file = metadata.ConfigFile(path+"/.chern/config.json") succ_str = config_file.read_variable("successors") succ_str.remove(self.path) config_file.write_variable("successors", succ_str) config_file = metadata.ConfigFile(self.path+"/.chern/config.json") pred_str = config_file.read_variable("predecessors") pred_str.remove(path) config_file.write_variable("predecessors", pred_str) def add_arc_to(self, path): """ FIXME: Add a link from this object to the path object """ config_file = metadata.ConfigFile(path+"/.chern/config.json") pred_str = config_file.read_variable("predecessors") if pred_str is None: pred_str = [] pred_str.append(self.path) config_file.write_variable("predecessors", pred_str) config_file = metadata.ConfigFile(self.path+"/.chern/config.json") succ_str = config_file.read_variable("successors") if succ_str is None: succ_str = [] succ_str.append(path) config_file.write_variable("successors", succ_str) def remove_arc_to(self, path): """ FIXME remove the path to the path """ config_file = metadata.ConfigFile(path+"/.chern/config.json") pred_str = config_file.read_variable("predecessors") pred_str.remove(self.path) config_file.write_variable("predecessors", pred_str) config_file = metadata.ConfigFile(self.path+"/.chern/config.json") succ_str = config_file.read_variable("successors") succ_str.remove(path) config_file.write_variable("successors", succ_str) def successors(self): """ The successors of the current object """ succ_str = self.config_file.read_variable("successors") if succ_str is None: return [] successors = [] for path in succ_str: successors.append(VJob(path)) return successors def predecessors(self): """ Predecessors """ pred_str = self.config_file.read_variable("dependencies", []) predecessors = [] for path in pred_str: predecessors.append(VJob(os.path.join(os.environ["HOME"], ".ChernMachine/Storage", path))) return predecessors def impression_to_alias(self, path): """ """ impression_to_alias = self.config_file.read_variable("impression_to_alias", {}) return impression_to_alias.get(path, "") def alias_to_path(self, alias): alias_to_path = self.config_file.read_variable("alias_to_path") return alias_to_path[alias] def remove_alias(self, alias): if alias == "": return alias_to_path = self.config_file.read_variable("alias_to_path") path_to_alias = self.config_file.read_variable("path_to_alias") path = alias_to_path[alias] path_to_alias.pop(path) alias_to_path.pop(alias) self.config_file.write_variable("alias_to_path", alias_to_path) self.config_file.write_variable("path_to_alias", path_to_alias) def set_alias(self, alias, path): if alias == "": return path_to_alias = self.config_file.read_variable("path_to_alias") alias_to_path = self.config_file.read_variable("alias_to_path") if path_to_alias is None: path_to_alias = {} if alias_to_path is None: alias_to_path = {} path_to_alias[path] = alias alias_to_path[alias] = path self.config_file.write_variable("path_to_alias", path_to_alias) self.config_file.write_variable("alias_to_path", alias_to_path)
35.242604
102
0.626931
6fcddedbe44529064dd6a729977a896dfe3f1093
1,283
py
Python
topi/python/topi/tensor.py
titikid/tvm
0cf3765b28d457d2503ec20b551e9a8eadb1491d
[ "Apache-2.0" ]
6
2019-08-29T19:00:57.000Z
2020-06-15T14:55:16.000Z
topi/python/topi/tensor.py
clhne/tvm
d59320c764bd09474775e1b292f3c05c27743d24
[ "Apache-2.0" ]
2
2018-06-19T10:11:42.000Z
2018-06-21T08:49:05.000Z
topi/python/topi/tensor.py
clhne/tvm
d59320c764bd09474775e1b292f3c05c27743d24
[ "Apache-2.0" ]
3
2018-05-29T05:54:15.000Z
2018-06-11T09:51:51.000Z
# pylint: disable=invalid-name,consider-using-enumerate,unused-argument,len-as-condition """Elementwise operators""" from __future__ import absolute_import as _abs import tvm from . import cpp from . import tag @tvm.tag_scope(tag=tag.ELEMWISE) def elemwise_sum(xs): """Perform element-wise sum on inputs Parameters ---------- xs : list of tvm.Tensor Input arguments. Returns ------- y : tvm.Tensor The result. """ return cpp.elemwise_sum(xs) @tvm.tag_scope(tag=tag.ELEMWISE) def full(shape, dtype, fill_value): """Fill tensor with fill_value Parameters ---------- shape : tuple Input tensor shape. dtype : str Data type fill_value : float Value to be filled Returns ------- y : tvm.Tensor The result. """ return cpp.full(shape, dtype, fill_value) @tvm.tag_scope(tag=tag.ELEMWISE) def full_like(x, fill_value): """Construct a tensor with same shape as input tensor, then fill tensor with fill_value. Parameters ---------- x : tvm.Tensor Input argument. fill_value : float Value to be filled Returns ------- y : tvm.Tensor The result. """ return cpp.full_like(x, fill_value)
20.046875
88
0.613406
e6cc651e0b3c89b99fd7cad95bd041e47975b9fb
1,140
py
Python
output/models/ms_data/datatypes/date_xsd/date.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/ms_data/datatypes/date_xsd/date.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/ms_data/datatypes/date_xsd/date.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import Optional from xsdata.models.datatype import XmlDate @dataclass class ComplexfooType: class Meta: name = "complexfooType" comp_foo: Optional[XmlDate] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, } ) @dataclass class SimpleTest: class Meta: name = "simpleTest" value: Optional[XmlDate] = field( default=None, metadata={ "required": True, } ) @dataclass class ComplexTest(ComplexfooType): class Meta: name = "complexTest" @dataclass class Root: class Meta: name = "root" complex_test: Optional[ComplexTest] = field( default=None, metadata={ "name": "complexTest", "type": "Element", "required": True, } ) simple_test: Optional[XmlDate] = field( default=None, metadata={ "name": "simpleTest", "type": "Element", "required": True, } )
18.688525
48
0.535965
f9a6012d6cd0429c0dfd5422623a9e32d43ef0bf
11,812
py
Python
resotocore/core/query/query_parser.py
someengineering/cloudkeeper
b5fcb30bf4e727eabe93e536d925d0f76926630d
[ "Apache-2.0" ]
316
2021-07-08T12:54:19.000Z
2022-01-12T18:50:17.000Z
resotocore/core/query/query_parser.py
someengineering/cloudkeeper
b5fcb30bf4e727eabe93e536d925d0f76926630d
[ "Apache-2.0" ]
80
2021-07-30T23:55:50.000Z
2022-01-12T15:39:31.000Z
resotocore/core/query/query_parser.py
someengineering/cloudkeeper
b5fcb30bf4e727eabe93e536d925d0f76926630d
[ "Apache-2.0" ]
14
2021-08-23T08:29:29.000Z
2022-01-08T04:42:28.000Z
from dataclasses import replace from functools import reduce import parsy from parsy import string, Parser, regex from core.error import ParseError from core.model.graph_access import EdgeType, Direction from core.parse_util import ( lparen_p, lexeme, rparen_p, l_bracket_p, r_bracket_p, colon_p, comma_p, equals_p, true_p, false_p, dot_dot_p, float_p, integer_dp, variable_dp, literal_p, make_parser, whitespace, quoted_string_p, space_dp, json_value_p, variable_p, variable_no_array_p, integer_p, double_quote_dp, l_curly_dp, r_curly_dp, l_curly_p, r_curly_p, ) from core.query.model import ( Predicate, CombinedTerm, IsTerm, Part, Navigation, Query, FunctionTerm, IdTerm, AggregateVariable, AggregateFunction, Aggregate, AllTerm, Sort, SortOrder, WithClauseFilter, WithClause, AggregateVariableName, AggregateVariableCombined, NotTerm, MergeTerm, MergeQuery, ) operation_p = ( reduce( lambda x, y: x | y, [lexeme(string(a)) for a in ["<=", ">=", ">", "<", "==", "!=", "=~", "!~", "in", "not in"]] ) | lexeme(string("=")).result("==") | lexeme(string("~")).result("=~") ) array_modifier_p = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in ["all", "any", "none"]]) function_p = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in ["in_subnet", "has_desired_change", "has_key"]]) preamble_prop_p = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in ["edge_type", "merge_with_ancestors"]]) @make_parser def predicate_term() -> Parser: name = yield variable_p modifier = yield array_modifier_p.optional() opts = {"filter": modifier} if modifier else {} op = yield operation_p value = yield json_value_p return Predicate(name, op, value, opts) @make_parser def function_term() -> Parser: fn = yield function_p yield lparen_p name = yield variable_p args = yield (comma_p >> json_value_p).many() yield rparen_p return FunctionTerm(fn, name, args) @make_parser def not_term() -> Parser: yield not_p yield lparen_p term = yield simple_term_p yield rparen_p return NotTerm(term) literal_list_comma_separated_p = (quoted_string_p | literal_p).sep_by(comma_p, min=1) literal_list_in_square_brackets = l_bracket_p >> literal_list_comma_separated_p << r_bracket_p literal_list_optional_brackets = literal_list_in_square_brackets | literal_list_comma_separated_p is_term = lexeme(string("is") >> lparen_p >> literal_list_optional_brackets << rparen_p).map(IsTerm) id_term = lexeme(string("id") >> lparen_p >> (quoted_string_p | literal_p) << rparen_p).map(IdTerm) match_all_term = lexeme(string("all")).map(lambda _: AllTerm()) leaf_term_p = is_term | id_term | match_all_term | function_term | predicate_term | not_term bool_op_p = lexeme(string("and") | string("or")) not_p = lexeme(string("not")) @make_parser def combined_term() -> Parser: left = yield simple_term_p result = left while True: op = yield bool_op_p.optional() if op is None: break right = yield simple_term_p result = CombinedTerm(result, op, right) return result simple_term_p = (lparen_p >> combined_term << rparen_p) | leaf_term_p # This can parse a complete term filter_term_parser = combined_term | simple_term_p square_brackets_p = lexeme(string("[]")) @make_parser def merge_query_parser() -> Parser: name = yield variable_no_array_p is_array = yield square_brackets_p.optional() yield colon_p query = yield query_parser return MergeQuery(name, query, not (query.aggregate or is_array)) @make_parser def merge_parser() -> Parser: yield l_curly_p queries = yield merge_query_parser.sep_by(comma_p, min=1) yield r_curly_p return queries @make_parser def term_parser() -> Parser: filter_term = yield filter_term_parser merge = yield merge_parser.optional() if merge: post_filter = yield filter_term_parser.optional() return MergeTerm(filter_term, merge, post_filter) else: return filter_term @make_parser def range_parser() -> Parser: yield l_bracket_p start = yield integer_p has_end = yield (colon_p | comma_p | dot_dot_p).optional() maybe_end = yield integer_p.optional() yield r_bracket_p end = start if has_end is None else maybe_end if maybe_end is not None else Navigation.Max return start, end edge_type_p = lexeme(regex("[A-Za-z][A-Za-z0-9_]*")) @make_parser def edge_definition() -> Parser: maybe_edge_type = yield edge_type_p.optional() maybe_range = yield range_parser.optional() parsed_range = maybe_range if maybe_range else (1, 1) return parsed_range[0], parsed_range[1], maybe_edge_type out_p = lexeme(string("-") >> edge_definition << string("->")).map( lambda nav: Navigation(nav[0], nav[1], nav[2], Direction.outbound) ) in_p = lexeme(string("<-") >> edge_definition << string("-")).map( lambda nav: Navigation(nav[0], nav[1], nav[2], Direction.inbound) ) in_out_p = lexeme(string("<-") >> edge_definition << string("->")).map( lambda nav: Navigation(nav[0], nav[1], nav[2], Direction.any) ) navigation_parser = in_out_p | out_p | in_p tag_parser = lexeme(string("#") >> literal_p).optional() with_p = lexeme(string("with")) count_p = lexeme(string("count")) len_empty = lexeme(string("empty")).result(WithClauseFilter("==", 0)) len_any = lexeme(string("any")).result(WithClauseFilter(">", 0)) @make_parser def with_count_parser() -> Parser: yield count_p op = yield operation_p num = yield integer_p return WithClauseFilter(op, num) @make_parser def with_clause_parser() -> Parser: yield with_p yield lparen_p with_filter = yield len_empty | len_any | with_count_parser yield comma_p nav = yield navigation_parser term = yield filter_term_parser.optional() with_clause = yield with_clause_parser.optional() yield rparen_p assert 0 <= nav.start <= 1, "with traversal need to start from 0 or 1" return WithClause(with_filter, nav, term, with_clause) sort_order_p = string("asc") | string("desc") sort_dp = string("sort") @make_parser def single_sort_arg_parser() -> Parser: name = yield variable_dp order = yield (space_dp >> sort_order_p).optional() return Sort(name, order if order else SortOrder.Asc) @make_parser def sort_parser() -> Parser: yield sort_dp yield space_dp attributes = yield single_sort_arg_parser.sep_by(comma_p, min=1) yield whitespace return attributes limit_p = string("limit") limit_parser = limit_p + space_dp >> integer_dp @make_parser def part_parser() -> Parser: term = yield term_parser.optional() yield whitespace with_clause = yield with_clause_parser.optional() tag = yield tag_parser sort = yield sort_parser.optional() limit = yield limit_parser.optional() nav = yield navigation_parser.optional() if term or sort or limit else navigation_parser term = term if term else AllTerm() return Part(term, tag, with_clause, sort if sort else [], limit, nav) @make_parser def key_value_preamble_parser() -> Parser: key = yield preamble_prop_p yield equals_p value = yield quoted_string_p | true_p | false_p | float_p | integer_p | literal_p return key, value @make_parser def preamble_tags_parser() -> Parser: yield lparen_p key_values = yield key_value_preamble_parser.sep_by(comma_p) yield rparen_p return dict(key_values) as_p = lexeme(string("as")) aggregate_p = lexeme(string("aggregate")) aggregate_func_p = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in ["sum", "count", "min", "max", "avg"]]) match_p = lexeme(string("match")) aggregate_variable_name_p = variable_p.map(AggregateVariableName) no_curly_dp = regex(r'[^{"]+') var_in_curly = (l_curly_dp >> variable_p << r_curly_dp).map(AggregateVariableName) aggregate_group_variable_name_combined_p = ( double_quote_dp >> (no_curly_dp | var_in_curly).at_least(1).map(AggregateVariableCombined) << double_quote_dp ) @make_parser def aggregate_group_variable_parser() -> Parser: name = yield aggregate_variable_name_p | aggregate_group_variable_name_combined_p as_name = yield (as_p >> literal_p).optional() return AggregateVariable(name, as_name) @make_parser def merge_ancestors_parser() -> Parser: # parses foo as bla -> "foo", "bla" # parses foo -> "foo", "foo" name = yield variable_p as_name = yield (as_p >> literal_p).optional() return name, as_name if as_name else name math_op_p = reduce(lambda x, y: x | y, [lexeme(string(a)) for a in ["+", "-", "*", "/", "%"]]) @make_parser def op_with_val_parser() -> Parser: op = yield math_op_p value = yield float_p | integer_p return op, value @make_parser def aggregate_group_function_parser() -> Parser: func = yield aggregate_func_p yield lparen_p term_or_int = yield variable_p | integer_p ops_list = yield op_with_val_parser.many() yield rparen_p with_as = yield as_p.optional() as_name = None if with_as: as_name = yield literal_p return AggregateFunction(func, term_or_int, ops_list, as_name) @make_parser def aggregate_parameter_parser() -> Parser: group_vars = yield (aggregate_group_variable_parser.sep_by(comma_p, min=1) << colon_p).optional() group_function_vars = yield aggregate_group_function_parser.sep_by(comma_p, min=1) return group_vars if group_vars else [], group_function_vars @make_parser def aggregate_parser() -> Parser: yield aggregate_p yield lparen_p group_vars, group_function_vars = yield aggregate_parameter_parser yield rparen_p return Aggregate(group_vars, group_function_vars) @make_parser def preamble_parser() -> Parser: maybe_aggregate = yield aggregate_parser.optional() maybe_preamble = yield preamble_tags_parser.optional() preamble = maybe_preamble if maybe_preamble else {} yield colon_p if maybe_aggregate or maybe_preamble else colon_p.optional() return maybe_aggregate, preamble @make_parser def query_parser() -> Parser: maybe_aggregate, preamble = yield preamble_parser parts = yield part_parser.at_least(1) edge_type = preamble.get("edge_type", EdgeType.default) if edge_type not in EdgeType.all: raise AttributeError(f"Given edge_type {edge_type} is not available. Use one of {EdgeType.all}") def set_edge_type_if_not_set(part: Part) -> Part: def set_in_with_clause(wc: WithClause) -> WithClause: nav = wc.navigation if wc.navigation and not wc.navigation.edge_type: nav = replace(nav, edge_type=edge_type) inner = set_in_with_clause(wc.with_clause) if wc.with_clause else wc.with_clause return replace(wc, navigation=nav, with_clause=inner) nav = part.navigation if part.navigation and not part.navigation.edge_type: nav = replace(nav, edge_type=edge_type) adapted_wc = set_in_with_clause(part.with_clause) if part.with_clause else part.with_clause return replace(part, navigation=nav, with_clause=adapted_wc) adapted = [set_edge_type_if_not_set(part).rewrite_for_ancestors_descendants() for part in parts] # remove values from preamble, that are only used at parsing time resulting_preamble = preamble.copy() return Query(adapted[::-1], resulting_preamble, maybe_aggregate) def parse_query(query: str) -> Query: try: return query_parser.parse(query.strip()) # type: ignore except parsy.ParseError as ex: raise ParseError(f"Can not parse query: {query}\n" + str(ex)) from ex
29.828283
119
0.703353
a55e062f02fed89f050da05ba6f1f9b5d63cc685
172
py
Python
lab4/src/combinatoric/modules/recurrent_variant5.py
Pavel-Innokentevich-Galanin/5-sem_DM
d2c2d4bcd89fbd4cbf8b8518173f5661924be1d5
[ "Unlicense" ]
null
null
null
lab4/src/combinatoric/modules/recurrent_variant5.py
Pavel-Innokentevich-Galanin/5-sem_DM
d2c2d4bcd89fbd4cbf8b8518173f5661924be1d5
[ "Unlicense" ]
null
null
null
lab4/src/combinatoric/modules/recurrent_variant5.py
Pavel-Innokentevich-Galanin/5-sem_DM
d2c2d4bcd89fbd4cbf8b8518173f5661924be1d5
[ "Unlicense" ]
null
null
null
def recurrent_variant5(n): if n == 0: return 2 elif n == 1: return 6 else: return -2 * recurrent_variant5(n-1) - recurrent_variant5(n-2)
24.571429
69
0.563953
84ac0abc76ebea1d957a07605101c64c9319b93a
4,645
py
Python
nikola/plugins/task_create_bundles.py
servalproject/nikola
4d78504d93597894f3da4a434dfafdec907601a7
[ "MIT" ]
1
2015-12-14T21:38:33.000Z
2015-12-14T21:38:33.000Z
nikola/plugins/task_create_bundles.py
servalproject/nikola
4d78504d93597894f3da4a434dfafdec907601a7
[ "MIT" ]
null
null
null
nikola/plugins/task_create_bundles.py
servalproject/nikola
4d78504d93597894f3da4a434dfafdec907601a7
[ "MIT" ]
null
null
null
# Copyright (c) 2012 Roberto Alsina y otros. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import unicode_literals import os try: import webassets except ImportError: webassets = None # NOQA from nikola.plugin_categories import LateTask from nikola import utils class BuildBundles(LateTask): """Bundle assets using WebAssets.""" name = "build_bundles" def set_site(self, site): super(BuildBundles, self).set_site(site) if webassets is None: self.site.config['USE_BUNDLES'] = False def gen_tasks(self): """Bundle assets using WebAssets.""" kw = { 'filters': self.site.config['FILTERS'], 'output_folder': self.site.config['OUTPUT_FOLDER'], 'cache_folder': self.site.config['CACHE_FOLDER'], 'theme_bundles': get_theme_bundles(self.site.THEMES), 'themes': self.site.THEMES, 'files_folders': self.site.config['FILES_FOLDERS'], 'code_color_scheme': self.site.config['CODE_COLOR_SCHEME'], } def build_bundle(output, inputs): out_dir = os.path.join(kw['output_folder'], os.path.dirname(output)) inputs = [i for i in inputs if os.path.isfile( os.path.join(out_dir, i))] cache_dir = os.path.join(kw['cache_folder'], 'webassets') if not os.path.isdir(cache_dir): os.makedirs(cache_dir) env = webassets.Environment(out_dir, os.path.dirname(output), cache=cache_dir) bundle = webassets.Bundle(*inputs, output=os.path.basename(output)) env.register(output, bundle) # This generates the file env[output].urls() flag = False if (webassets is not None and self.site.config['USE_BUNDLES'] is not False): for name, files in kw['theme_bundles'].items(): output_path = os.path.join(kw['output_folder'], name) dname = os.path.dirname(name) file_dep = [utils.get_asset_path( os.path.join(dname, fname), kw['themes'], kw['files_folders']) for fname in files ] file_dep = filter(None, file_dep) # removes missing files task = { 'file_dep': file_dep, 'basename': str(self.name), 'name': str(output_path), 'actions': [(build_bundle, (name, files))], 'targets': [output_path], 'uptodate': [utils.config_changed(kw)] } flag = True yield utils.apply_filters(task, kw['filters']) if flag is False: # No page rendered, yield a dummy task yield { 'basename': self.name, 'uptodate': [True], 'name': 'None', 'actions': [], } def get_theme_bundles(themes): """Given a theme chain, return the bundle definitions.""" bundles = {} for theme_name in themes: bundles_path = os.path.join( utils.get_theme_path(theme_name), 'bundles') if os.path.isfile(bundles_path): with open(bundles_path) as fd: for line in fd: name, files = line.split('=') files = [f.strip() for f in files.split(',')] bundles[name.strip()] = files break return bundles
38.38843
79
0.587944
1983ce97c3e6559de18de68790299c3039146c23
6,296
py
Python
test/test_auth_api.py
lanxinplus/lanxinplus-python-sdk
39ea9cb66a087df06e61ed4a2b473fb170a47f99
[ "MIT" ]
null
null
null
test/test_auth_api.py
lanxinplus/lanxinplus-python-sdk
39ea9cb66a087df06e61ed4a2b473fb170a47f99
[ "MIT" ]
null
null
null
test/test_auth_api.py
lanxinplus/lanxinplus-python-sdk
39ea9cb66a087df06e61ed4a2b473fb170a47f99
[ "MIT" ]
null
null
null
""" LanXin+ OpenAPI LanXin+ OpenAPI Platform # noqa: E501 Generated by: https://openapi.lanxin.cn """ import unittest from pprint import pprint try: import lanxinplus_openapi except ImportError: import sys sys.path.append(sys.argv[0].replace("\\test\\test_auth_api.py", "\\")) # noqa: E501 import lanxinplus_openapi from lanxinplus_openapi.api.auth_api import AuthApi # noqa: E501 from lanxinplus_openapi import Configuration from lanxinplus_openapi.model.v1_app_token_create_response import V1AppTokenCreateResponse from lanxinplus_openapi.model.v1_js_api_token_create_response import V1JsApiTokenCreateResponse from lanxinplus_openapi.model.v1_user_token_create_response import V1UserTokenCreateResponse from lanxinplus_openapi.model.v1_users_fetch_response import V1UsersFetchResponse class TestAuthApi(unittest.TestCase): """AuthApi unit test stubs""" @classmethod def setUpClass(cls): # 蓝信开放平台网关地址, e.g.: https://example.com/open/apigw host = "host" # 应用ID, e.g.: 1234567-7654321 app_id = "app_id" # 应用密钥, e.g.: D25F65E65D887AEFD9C92B00310286FA app_secret = "app_secret" cls.config = Configuration(host, app_id, app_secret) # Configuration.set_default(cls.config) cls.client = lanxinplus_openapi.ApiClient(configuration=cls.config) cls.api = AuthApi(api_client=cls.client) # noqa: E501 # get app_token try: api = AuthApi(api_client=cls.client) resp = api.v1_app_token_create("client_credential", cls.config.app_id, cls.config.app_secret) if resp.errCode == 0: cls.config.set_app_token(resp.data.appToken, resp.data.expiresIn) else: raise lanxinplus_openapi.ApiException(reason=resp.errMsg) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_apptoken_create: %s\n" % e) @classmethod def tearDownClass(cls): pass def setUp(self): pass def tearDown(self): pass def test_v1_app_token_create(self): """Test case for v1_app_token_create 获取应用访问TOKEN # noqa: E501 """ grant_type = "grant_type_example" # str | client_credential appid = self.config.app_id # str | 应用ID secret = self.config.app_secret # str | 应用密钥 # example passing only required values which don't have defaults set try: # 获取应用访问TOKEN resp = self.api.v1_app_token_create(grant_type, appid, secret) print("TestCase AuthApi->v1_app_token_create: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_app_token_create: %s\n" % e) def test_v1_js_api_token_create(self): """Test case for v1_js_api_token_create 获取jsapi访问TOKEN # noqa: E501 """ app_token = self.config.app_token # str | app_token user_token = self.config.user_token # str | user_token (optional) # example passing only required values which don't have defaults set try: # 获取jsapi访问TOKEN resp = self.api.v1_js_api_token_create(app_token) print("TestCase AuthApi->v1_js_api_token_create: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_js_api_token_create: %s\n" % e) ''' # example passing only required values which don't have defaults set # and optional values try: # 获取jsapi访问TOKEN resp = self.api.v1_js_api_token_create(app_token, user_token=user_token) print("TestCase AuthApi->v1_js_api_token_create: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_js_api_token_create: %s\n" % e) ''' def test_v1_user_token_create(self): """Test case for v1_user_token_create 获取人员访问TOKEN # noqa: E501 """ app_token = self.config.app_token # str | app_token grant_type = "grant_type_example" # str | 使用固定值 'authorization_code' code = "code_example" # str | 人员免登录授权码 redirect_uri = "redirect_uri_example" # str | redirect_uri (optional) # example passing only required values which don't have defaults set try: # 获取人员访问TOKEN resp = self.api.v1_user_token_create(app_token, grant_type, code) print("TestCase AuthApi->v1_user_token_create: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_user_token_create: %s\n" % e) ''' # example passing only required values which don't have defaults set # and optional values try: # 获取人员访问TOKEN resp = self.api.v1_user_token_create(app_token, grant_type, code, redirect_uri=redirect_uri) print("TestCase AuthApi->v1_user_token_create: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_user_token_create: %s\n" % e) ''' def test_v1_users_fetch(self): """Test case for v1_users_fetch 获取人员基本信息 # noqa: E501 """ app_token = self.config.app_token # str | app_token user_token = self.config.user_token # str | user_token # example passing only required values which don't have defaults set try: # 获取人员基本信息 resp = self.api.v1_users_fetch(app_token, user_token) print("TestCase AuthApi->v1_users_fetch: ") pprint(resp) self.assertEqual(resp.errCode, 0) except lanxinplus_openapi.ApiException as e: print("Exception when calling AuthApi->v1_users_fetch: %s\n" % e) if __name__ == '__main__': unittest.main()
35.772727
105
0.648189
09322a123cb65562bdadaebcc0f728a3ba47cb8a
3,668
py
Python
intersight/models/iam_end_point_user_policy_ref.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
intersight/models/iam_end_point_user_policy_ref.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
intersight/models/iam_end_point_user_policy_ref.py
gumpcraca/intersight-python
780e6703c739f329084beacbbf2ad7a6a2e59b2b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Intersight REST API This is Intersight REST API OpenAPI spec version: 1.0.9-255 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class IamEndPointUserPolicyRef(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'moid': 'str', 'object_type': 'str' } attribute_map = { 'moid': 'Moid', 'object_type': 'ObjectType' } def __init__(self, moid=None, object_type=None): """ IamEndPointUserPolicyRef - a model defined in Swagger """ self._moid = None self._object_type = None if moid is not None: self.moid = moid if object_type is not None: self.object_type = object_type @property def moid(self): """ Gets the moid of this IamEndPointUserPolicyRef. :return: The moid of this IamEndPointUserPolicyRef. :rtype: str """ return self._moid @moid.setter def moid(self, moid): """ Sets the moid of this IamEndPointUserPolicyRef. :param moid: The moid of this IamEndPointUserPolicyRef. :type: str """ self._moid = moid @property def object_type(self): """ Gets the object_type of this IamEndPointUserPolicyRef. :return: The object_type of this IamEndPointUserPolicyRef. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """ Sets the object_type of this IamEndPointUserPolicyRef. :param object_type: The object_type of this IamEndPointUserPolicyRef. :type: str """ self._object_type = object_type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, IamEndPointUserPolicyRef): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
24.453333
77
0.5488
776cc1c84f6fe027cef9b10a88ee2ec48221b64e
2,812
py
Python
pull_new_data.py
raphaelflash/covid19
afa7fe3efc9e836dab52171e30eb3fcdf20f4b30
[ "MIT" ]
24
2020-03-18T10:37:08.000Z
2020-05-05T01:12:18.000Z
pull_new_data.py
raphaelflash/covid19
afa7fe3efc9e836dab52171e30eb3fcdf20f4b30
[ "MIT" ]
18
2020-03-14T04:25:32.000Z
2020-07-05T20:47:58.000Z
pull_new_data.py
raphaelflash/covid19
afa7fe3efc9e836dab52171e30eb3fcdf20f4b30
[ "MIT" ]
9
2020-03-18T12:13:20.000Z
2021-05-17T14:04:57.000Z
from collections import defaultdict import datetime from pprint import pprint import json import csv from io import StringIO import requests from algoliasearch.search_client import SearchClient client = SearchClient.create('ZOOMT5L4JY', '7157187130f0c6d53989725670982875') index = client.init_index('covid') total_deaths = { 'in': 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/ecdc/total_deaths.csv', 'out': 'src/data/total-deaths.json' } daily_deaths = { 'in': 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/ecdc/new_deaths.csv', 'out': 'src/data/daily-deaths.json' } total_cases = { 'in': 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/ecdc/total_cases.csv', 'out': 'src/data/total-cases.json' } daily_cases = { 'in': 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/ecdc/new_cases.csv', 'out': 'src/data/daily-cases.json' } infos = [total_deaths, daily_deaths, total_cases, daily_cases] def fetch_csv(url: str): resp = requests.get(url) string_io = StringIO(resp.text) reader = csv.DictReader(string_io) countries = [field for field in reader.fieldnames if field not in ['date']] country_to_values = defaultdict(list) for line in reader: date = datetime.date.fromisoformat(line['date']) for country in countries: country_to_values[country].append({'date': date, 'value': int(float(line[country] or 0))}) return country_to_values start_date = datetime.date(year=2020, month=1, day=21) def output_json(country_to_values, output_dest: str): output_array = [] for country, values in country_to_values.items(): if country == 'World': country = 'Worldwide' for value in values: days = (value['date'] - start_date).days output_array.append({ 'country': country, 'code': '', 'year': days, 'cases': value['value'], }) with open(output_dest, 'w') as f_: json.dump(output_array, f_) def update_index(url: str): resp = requests.get(url) string_io = StringIO(resp.text) reader = csv.DictReader(string_io) countries = [field for field in reader.fieldnames if field not in ['date']] index_objects = [{'name': country, 'objectID': country} for country in countries if country != 'World'] index_objects.append({'name': 'Worldwide', 'objectID': 'World'}) index.replace_all_objects(index_objects) update_index(daily_cases['in']) for info in infos: github_url = info['in'] output_path = info['out'] print('Processing', github_url) country_to_values = fetch_csv(github_url) output_json(country_to_values, output_path)
29.6
107
0.676031
2f2d2a5fd9d64db114fd0dc686c97ad38b8ad9b3
43,356
py
Python
capa/ida/plugin/view.py
evandowning/capa
03b15ce28977ffcc617d3c67c9dff20de7ee6196
[ "Apache-2.0" ]
1
2020-07-16T20:04:55.000Z
2020-07-16T20:04:55.000Z
capa/ida/plugin/view.py
evandowning/capa
03b15ce28977ffcc617d3c67c9dff20de7ee6196
[ "Apache-2.0" ]
47
2021-03-17T10:41:44.000Z
2022-03-28T04:03:01.000Z
capa/ida/plugin/view.py
CrackerCat/capa
b84cc3128d2d54a4b5550bfc3fd05c09e338c2b1
[ "Apache-2.0" ]
3
2021-05-19T20:18:35.000Z
2021-05-19T21:02:18.000Z
# Copyright (C) 2020 FireEye, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: [package root]/LICENSE.txt # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and limitations under the License. import re from collections import Counter import idc from PyQt5 import QtGui, QtCore, QtWidgets import capa.rules import capa.engine import capa.ida.helpers import capa.features.common import capa.features.basicblock from capa.ida.plugin.item import CapaExplorerFunctionItem from capa.ida.plugin.model import CapaExplorerDataModel MAX_SECTION_SIZE = 750 # default colors used in views COLOR_GREEN_RGB = (79, 121, 66) COLOR_BLUE_RGB = (37, 147, 215) def calc_level_by_indent(line, prev_level=0): """ """ if not len(line.strip()): # blank line, which may occur for comments so we simply use the last level return prev_level stripped = line.lstrip() if stripped.startswith("description"): # need to adjust two spaces when encountering string description line = line[2:] # calc line level based on preceding whitespace return len(line) - len(stripped) def parse_feature_for_node(feature): """ """ description = "" comment = "" if feature.startswith("- count"): # count is weird, we need to handle special # first, we need to grab the comment, if exists # next, we need to check for an embedded description feature, _, comment = feature.partition("#") m = re.search(r"- count\(([a-zA-Z]+)\((.+)\s+=\s+(.+)\)\):\s*(.+)", feature) if m: # reconstruct count without description feature, value, description, count = m.groups() feature = "- count(%s(%s)): %s" % (feature, value, count) elif not feature.startswith("#"): feature, _, comment = feature.partition("#") feature, _, description = feature.partition("=") return map(lambda o: o.strip(), (feature, description, comment)) def parse_node_for_feature(feature, description, comment, depth): """ """ depth = (depth * 2) + 4 display = "" if feature.startswith("#"): display += "%s%s\n" % (" " * depth, feature) elif description: if feature.startswith(("- and", "- or", "- optional", "- basic block", "- not")): display += "%s%s" % (" " * depth, feature) if comment: display += " # %s" % comment display += "\n%s- description: %s\n" % (" " * (depth + 2), description) elif feature.startswith("- string"): display += "%s%s" % (" " * depth, feature) if comment: display += " # %s" % comment display += "\n%sdescription: %s\n" % (" " * (depth + 2), description) elif feature.startswith("- count"): # count is weird, we need to format description based on feature type, so we parse with regex # assume format - count(<feature_name>(<feature_value>)): <count> m = re.search(r"- count\(([a-zA-Z]+)\((.+)\)\): (.+)", feature) if m: name, value, count = m.groups() if name in ("string",): display += "%s%s" % (" " * depth, feature) if comment: display += " # %s" % comment display += "\n%sdescription: %s\n" % (" " * (depth + 2), description) else: display += "%s- count(%s(%s = %s)): %s" % ( " " * depth, name, value, description, count, ) if comment: display += " # %s\n" % comment else: display += "%s%s = %s" % (" " * depth, feature, description) if comment: display += " # %s\n" % comment else: display += "%s%s" % (" " * depth, feature) if comment: display += " # %s\n" % comment return display if display.endswith("\n") else display + "\n" def yaml_to_nodes(s): level = 0 for line in s.splitlines(): feature, description, comment = parse_feature_for_node(line.strip()) o = QtWidgets.QTreeWidgetItem(None) # set node attributes setattr(o, "capa_level", calc_level_by_indent(line, level)) if feature.startswith(("- and:", "- or:", "- not:", "- basic block:", "- optional:")): setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_expression()) elif feature.startswith("#"): setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_comment()) else: setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_feature()) # set node text for (i, v) in enumerate((feature, description, comment)): o.setText(i, v) yield o def iterate_tree(o): """ """ itr = QtWidgets.QTreeWidgetItemIterator(o) while itr.value(): yield itr.value() itr += 1 def calc_item_depth(o): """ """ depth = 0 while True: if not o.parent(): break depth += 1 o = o.parent() return depth def build_action(o, display, data, slot): """ """ action = QtWidgets.QAction(display, o) action.setData(data) action.triggered.connect(lambda checked: slot(action)) return action def build_context_menu(o, actions): """ """ menu = QtWidgets.QMenu() for action in actions: if isinstance(action, QtWidgets.QMenu): menu.addMenu(action) else: menu.addAction(build_action(o, *action)) return menu class CapaExplorerRulgenPreview(QtWidgets.QTextEdit): INDENT = " " * 2 def __init__(self, parent=None): """ """ super(CapaExplorerRulgenPreview, self).__init__(parent) self.setFont(QtGui.QFont("Courier", weight=QtGui.QFont.Bold)) self.setLineWrapMode(QtWidgets.QTextEdit.NoWrap) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAsNeeded) def reset_view(self): """ """ self.clear() def load_preview_meta(self, ea, author, scope): """ """ metadata_default = [ "# generated using capa explorer for IDA Pro", "rule:", " meta:", " name: <insert_name>", " namespace: <insert_namespace>", " author: %s" % author, " scope: %s" % scope, " references: <insert_references>", " examples:", " - %s:0x%X" % (capa.ida.helpers.get_file_md5().upper(), ea) if ea else " - %s" % (capa.ida.helpers.get_file_md5().upper()), " features:", ] self.setText("\n".join(metadata_default)) def keyPressEvent(self, e): """intercept key press events""" if e.key() in (QtCore.Qt.Key_Tab, QtCore.Qt.Key_Backtab): # apparently it's not easy to implement tabs as spaces, or multi-line tab or SHIFT + Tab # so we need to implement it ourselves so we can retain properly formatted capa rules # when a user uses the Tab key if self.textCursor().selection().isEmpty(): # single line, only worry about Tab if e.key() == QtCore.Qt.Key_Tab: self.insertPlainText(self.INDENT) else: # multi-line tab or SHIFT + Tab cur = self.textCursor() select_start_ppos = cur.selectionStart() select_end_ppos = cur.selectionEnd() scroll_ppos = self.verticalScrollBar().sliderPosition() # determine lineno for first selected line, and column cur.setPosition(select_start_ppos) start_lineno = self.count_previous_lines_from_block(cur.block()) start_lineco = cur.columnNumber() # determine lineno for last selected line cur.setPosition(select_end_ppos) end_lineno = self.count_previous_lines_from_block(cur.block()) # now we need to indent or dedent the selected lines. for now, we read the text, modify # the lines between start_lineno and end_lineno accordingly, and then reset the view # this might not be the best solution, but it avoids messing around with cursor positions # to determine the beginning of lines plain = self.toPlainText().splitlines() if e.key() == QtCore.Qt.Key_Tab: # user Tab, indent selected lines lines_modified = end_lineno - start_lineno first_modified = True change = [self.INDENT + line for line in plain[start_lineno : end_lineno + 1]] else: # user SHIFT + Tab, dedent selected lines lines_modified = 0 first_modified = False change = [] for (lineno, line) in enumerate(plain[start_lineno : end_lineno + 1]): if line.startswith(self.INDENT): if lineno == 0: # keep track if first line is modified, so we can properly display # the text selection later first_modified = True lines_modified += 1 line = line[len(self.INDENT) :] change.append(line) # apply modifications, and reset view plain[start_lineno : end_lineno + 1] = change self.setPlainText("\n".join(plain) + "\n") # now we need to properly adjust the selection positions, so users don't have to # re-select when indenting or dedenting the same lines repeatedly if e.key() == QtCore.Qt.Key_Tab: # user Tab, increase increment selection positions select_start_ppos += len(self.INDENT) select_end_ppos += (lines_modified * len(self.INDENT)) + len(self.INDENT) elif lines_modified: # user SHIFT + Tab, decrease selection positions if start_lineco not in (0, 1) and first_modified: # only decrease start position if not in first column select_start_ppos -= len(self.INDENT) select_end_ppos -= lines_modified * len(self.INDENT) # apply updated selection and restore previous scroll position self.set_selection(select_start_ppos, select_end_ppos, len(self.toPlainText())) self.verticalScrollBar().setSliderPosition(scroll_ppos) else: super(CapaExplorerRulgenPreview, self).keyPressEvent(e) def count_previous_lines_from_block(self, block): """calculate number of lines preceding block""" count = 0 while True: block = block.previous() if not block.isValid(): break count += block.lineCount() return count def set_selection(self, start, end, max): """set text selection""" cursor = self.textCursor() cursor.setPosition(start) cursor.setPosition(end if end < max else max, QtGui.QTextCursor.KeepAnchor) self.setTextCursor(cursor) class CapaExplorerRulgenEditor(QtWidgets.QTreeWidget): updated = QtCore.pyqtSignal() def __init__(self, preview, parent=None): """ """ super(CapaExplorerRulgenEditor, self).__init__(parent) self.preview = preview self.setHeaderLabels(["Feature", "Description", "Comment"]) self.header().setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents) self.header().setStretchLastSection(False) self.setExpandsOnDoubleClick(False) self.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.setStyleSheet("QTreeView::item {padding-right: 15 px;padding-bottom: 2 px;}") # enable drag and drop self.setDragEnabled(True) self.setAcceptDrops(True) self.setDragDropMode(QtWidgets.QAbstractItemView.InternalMove) # connect slots self.itemChanged.connect(self.slot_item_changed) self.customContextMenuRequested.connect(self.slot_custom_context_menu_requested) self.itemDoubleClicked.connect(self.slot_item_double_clicked) self.root = None self.reset_view() self.is_editing = False @staticmethod def get_column_feature_index(): """ """ return 0 @staticmethod def get_column_description_index(): """ """ return 1 @staticmethod def get_column_comment_index(): """ """ return 2 @staticmethod def get_node_type_expression(): """ """ return 0 @staticmethod def get_node_type_feature(): """ """ return 1 @staticmethod def get_node_type_comment(): """ """ return 2 def dragMoveEvent(self, e): """ """ super(CapaExplorerRulgenEditor, self).dragMoveEvent(e) def dragEventEnter(self, e): """ """ super(CapaExplorerRulgenEditor, self).dragEventEnter(e) def dropEvent(self, e): """ """ if not self.indexAt(e.pos()).isValid(): return super(CapaExplorerRulgenEditor, self).dropEvent(e) # self.prune_expressions() self.update_preview() self.expandAll() def reset_view(self): """ """ self.root = None self.clear() def slot_item_changed(self, item, column): """ """ if self.is_editing: self.update_preview() self.is_editing = False def slot_remove_selected(self, action): """ """ for o in self.selectedItems(): if o == self.root: self.takeTopLevelItem(self.indexOfTopLevelItem(o)) self.root = None continue o.parent().removeChild(o) def slot_nest_features(self, action): """ """ # create a new parent under root node, by default; new node added last position in tree new_parent = self.new_expression_node(self.root, (action.data()[0], "")) if "basic block" in action.data()[0]: # add default child expression when nesting under basic block new_parent.setExpanded(True) new_parent = self.new_expression_node(new_parent, ("- or:", "")) for o in self.get_features(selected=True): # take child from its parent by index, add to new parent new_parent.addChild(o.parent().takeChild(o.parent().indexOfChild(o))) # ensure new parent expanded new_parent.setExpanded(True) def slot_edit_expression(self, action): """ """ expression, o = action.data() if "basic block" in expression and "basic block" not in o.text( CapaExplorerRulgenEditor.get_column_feature_index() ): # current expression is "basic block", and not changing to "basic block" expression children = o.takeChildren() new_parent = self.new_expression_node(o, ("- or:", "")) for child in children: new_parent.addChild(child) new_parent.setExpanded(True) o.setText(CapaExplorerRulgenEditor.get_column_feature_index(), expression) def slot_clear_all(self, action): """ """ self.reset_view() def slot_custom_context_menu_requested(self, pos): """ """ if not self.indexAt(pos).isValid(): # user selected invalid index self.load_custom_context_menu_invalid_index(pos) elif self.itemAt(pos).capa_type == CapaExplorerRulgenEditor.get_node_type_expression(): # user selected expression node self.load_custom_context_menu_expression(pos) else: # user selected feature node self.load_custom_context_menu_feature(pos) self.update_preview() def slot_item_double_clicked(self, o, column): """ """ if column in ( CapaExplorerRulgenEditor.get_column_comment_index(), CapaExplorerRulgenEditor.get_column_description_index(), ): o.setFlags(o.flags() | QtCore.Qt.ItemIsEditable) self.editItem(o, column) o.setFlags(o.flags() & ~QtCore.Qt.ItemIsEditable) self.is_editing = True def update_preview(self): """ """ rule_text = self.preview.toPlainText() if -1 != rule_text.find("features:"): rule_text = rule_text[: rule_text.find("features:") + len("features:")] rule_text += "\n" else: rule_text = rule_text.rstrip() rule_text += "\n features:\n" for o in iterate_tree(self): feature, description, comment = map(lambda o: o.strip(), tuple(o.text(i) for i in range(3))) rule_text += parse_node_for_feature(feature, description, comment, calc_item_depth(o)) # FIXME we avoid circular update by disabling signals when updating # the preview. Preferably we would refactor the code to avoid this # in the first place self.preview.blockSignals(True) self.preview.setPlainText(rule_text) self.preview.blockSignals(False) # emit signal so views can update self.updated.emit() def load_custom_context_menu_invalid_index(self, pos): """ """ actions = (("Remove all", (), self.slot_clear_all),) menu = build_context_menu(self.parent(), actions) menu.exec_(self.viewport().mapToGlobal(pos)) def load_custom_context_menu_feature(self, pos): """ """ actions = (("Remove selection", (), self.slot_remove_selected),) sub_actions = ( ("and", ("- and:",), self.slot_nest_features), ("or", ("- or:",), self.slot_nest_features), ("not", ("- not:",), self.slot_nest_features), ("optional", ("- optional:",), self.slot_nest_features), ("basic block", ("- basic block:",), self.slot_nest_features), ) # build submenu with modify actions sub_menu = build_context_menu(self.parent(), sub_actions) sub_menu.setTitle("Nest feature%s" % ("" if len(tuple(self.get_features(selected=True))) == 1 else "s")) # build main menu with submenu + main actions menu = build_context_menu(self.parent(), (sub_menu,) + actions) menu.exec_(self.viewport().mapToGlobal(pos)) def load_custom_context_menu_expression(self, pos): """ """ actions = (("Remove expression", (), self.slot_remove_selected),) sub_actions = ( ("and", ("- and:", self.itemAt(pos)), self.slot_edit_expression), ("or", ("- or:", self.itemAt(pos)), self.slot_edit_expression), ("not", ("- not:", self.itemAt(pos)), self.slot_edit_expression), ("optional", ("- optional:", self.itemAt(pos)), self.slot_edit_expression), ("basic block", ("- basic block:", self.itemAt(pos)), self.slot_edit_expression), ) # build submenu with modify actions sub_menu = build_context_menu(self.parent(), sub_actions) sub_menu.setTitle("Modify") # build main menu with submenu + main actions menu = build_context_menu(self.parent(), (sub_menu,) + actions) menu.exec_(self.viewport().mapToGlobal(pos)) def style_expression_node(self, o): """ """ font = QtGui.QFont() font.setBold(True) o.setFont(CapaExplorerRulgenEditor.get_column_feature_index(), font) def style_feature_node(self, o): """ """ font = QtGui.QFont() brush = QtGui.QBrush() font.setFamily("Courier") font.setWeight(QtGui.QFont.Medium) brush.setColor(QtGui.QColor(*COLOR_GREEN_RGB)) o.setFont(CapaExplorerRulgenEditor.get_column_feature_index(), font) o.setForeground(CapaExplorerRulgenEditor.get_column_feature_index(), brush) def style_comment_node(self, o): """ """ font = QtGui.QFont() font.setBold(True) font.setFamily("Courier") o.setFont(CapaExplorerRulgenEditor.get_column_feature_index(), font) def set_expression_node(self, o): """ """ setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_expression()) self.style_expression_node(o) def set_feature_node(self, o): """ """ setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_feature()) o.setFlags(o.flags() & ~QtCore.Qt.ItemIsDropEnabled) self.style_feature_node(o) def set_comment_node(self, o): """ """ setattr(o, "capa_type", CapaExplorerRulgenEditor.get_node_type_comment()) o.setFlags(o.flags() & ~QtCore.Qt.ItemIsDropEnabled) self.style_comment_node(o) def new_expression_node(self, parent, values=()): """ """ o = QtWidgets.QTreeWidgetItem(parent) self.set_expression_node(o) for (i, v) in enumerate(values): o.setText(i, v) return o def new_feature_node(self, parent, values=()): """ """ o = QtWidgets.QTreeWidgetItem(parent) self.set_feature_node(o) for (i, v) in enumerate(values): o.setText(i, v) return o def new_comment_node(self, parent, values=()): """ """ o = QtWidgets.QTreeWidgetItem(parent) self.set_comment_node(o) for (i, v) in enumerate(values): o.setText(i, v) return o def update_features(self, features): """ """ if not self.root: # root node does not exist, create default node, set expanded self.root = self.new_expression_node(self, ("- or:", "")) # build feature counts counted = list(zip(Counter(features).keys(), Counter(features).values())) # single features for (k, v) in filter(lambda t: t[1] == 1, counted): if isinstance(k, (capa.features.common.String,)): value = '"%s"' % capa.features.common.escape_string(k.get_value_str()) else: value = k.get_value_str() self.new_feature_node(self.root, ("- %s: %s" % (k.name.lower(), value), "")) # n > 1 features for (k, v) in filter(lambda t: t[1] > 1, counted): if k.value: if isinstance(k, (capa.features.common.String,)): value = '"%s"' % capa.features.common.escape_string(k.get_value_str()) else: value = k.get_value_str() display = "- count(%s(%s)): %d" % (k.name.lower(), value, v) else: display = "- count(%s): %d" % (k.name.lower(), v) self.new_feature_node(self.root, (display, "")) self.expandAll() self.update_preview() def load_features_from_yaml(self, rule_text, update_preview=False): """ """ def add_node(parent, node): if node.text(0).startswith("description:"): if parent.childCount(): parent.child(parent.childCount() - 1).setText(1, node.text(0).lstrip("description:").lstrip()) else: parent.setText(1, node.text(0).lstrip("description:").lstrip()) elif node.text(0).startswith("- description:"): parent.setText(1, node.text(0).lstrip("- description:").lstrip()) else: parent.addChild(node) def build(parent, nodes): if nodes: child_lvl = nodes[0].capa_level while nodes: node = nodes.pop(0) if node.capa_level == child_lvl: add_node(parent, node) elif node.capa_level > child_lvl: nodes.insert(0, node) build(parent.child(parent.childCount() - 1), nodes) else: parent = parent.parent() if parent.parent() else parent add_node(parent, node) self.reset_view() # check for lack of features block if -1 == rule_text.find("features:"): return rule_features = rule_text[rule_text.find("features:") + len("features:") :].strip() rule_nodes = list(yaml_to_nodes(rule_features)) # check for lack of nodes if not rule_nodes: return for o in rule_nodes: (self.set_expression_node, self.set_feature_node, self.set_comment_node)[o.capa_type](o) self.root = rule_nodes.pop(0) self.addTopLevelItem(self.root) if update_preview: self.preview.blockSignals(True) self.preview.setPlainText(rule_text) self.preview.blockSignals(False) build(self.root, rule_nodes) self.expandAll() def get_features(self, selected=False, ignore=()): """ """ for feature in filter( lambda o: o.capa_type in (CapaExplorerRulgenEditor.get_node_type_feature(), CapaExplorerRulgenEditor.get_node_type_comment()), tuple(iterate_tree(self)), ): if feature in ignore: continue if selected and not feature.isSelected(): continue yield feature def get_expressions(self, selected=False, ignore=()): """ """ for expression in filter( lambda o: o.capa_type == CapaExplorerRulgenEditor.get_node_type_expression(), tuple(iterate_tree(self)) ): if expression in ignore: continue if selected and not expression.isSelected(): continue yield expression class CapaExplorerRulegenFeatures(QtWidgets.QTreeWidget): def __init__(self, editor, parent=None): """ """ super(CapaExplorerRulegenFeatures, self).__init__(parent) self.parent_items = {} self.editor = editor self.setHeaderLabels(["Feature", "Virtual Address"]) self.header().setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents) self.setStyleSheet("QTreeView::item {padding-right: 15 px;padding-bottom: 2 px;}") self.setExpandsOnDoubleClick(False) self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) # connect slots self.itemDoubleClicked.connect(self.slot_item_double_clicked) self.customContextMenuRequested.connect(self.slot_custom_context_menu_requested) self.reset_view() @staticmethod def get_column_feature_index(): """ """ return 0 @staticmethod def get_column_address_index(): """ """ return 1 @staticmethod def get_node_type_parent(): """ """ return 0 @staticmethod def get_node_type_leaf(): """ """ return 1 def reset_view(self): """ """ self.clear() def slot_add_selected_features(self, action): """ """ selected = [item.data(0, 0x100) for item in self.selectedItems()] if selected: self.editor.update_features(selected) def slot_custom_context_menu_requested(self, pos): """ """ actions = [] action_add_features_fmt = "" selected_items_count = len(self.selectedItems()) if selected_items_count == 0: return if selected_items_count == 1: action_add_features_fmt = "Add feature" else: action_add_features_fmt = "Add %d features" % selected_items_count actions.append((action_add_features_fmt, (), self.slot_add_selected_features)) menu = build_context_menu(self.parent(), actions) menu.exec_(self.viewport().mapToGlobal(pos)) def slot_item_double_clicked(self, o, column): """ """ if column == CapaExplorerRulegenFeatures.get_column_address_index() and o.text(column): idc.jumpto(int(o.text(column), 0x10)) elif o.capa_type == CapaExplorerRulegenFeatures.get_node_type_leaf(): self.editor.update_features([o.data(0, 0x100)]) def show_all_items(self): """ """ for o in iterate_tree(self): o.setHidden(False) o.setExpanded(False) def filter_items_by_text(self, text): """ """ if text: for o in iterate_tree(self): data = o.data(0, 0x100) if data: to_match = data.get_value_str() if not to_match or text.lower() not in to_match.lower(): o.setHidden(True) continue o.setHidden(False) o.setExpanded(True) else: self.show_all_items() def style_parent_node(self, o): """ """ font = QtGui.QFont() font.setBold(True) o.setFont(CapaExplorerRulegenFeatures.get_column_feature_index(), font) def style_leaf_node(self, o): """ """ font = QtGui.QFont("Courier", weight=QtGui.QFont.Bold) brush = QtGui.QBrush() o.setFont(CapaExplorerRulegenFeatures.get_column_feature_index(), font) o.setFont(CapaExplorerRulegenFeatures.get_column_address_index(), font) brush.setColor(QtGui.QColor(*COLOR_GREEN_RGB)) o.setForeground(CapaExplorerRulegenFeatures.get_column_feature_index(), brush) brush.setColor(QtGui.QColor(*COLOR_BLUE_RGB)) o.setForeground(CapaExplorerRulegenFeatures.get_column_address_index(), brush) def set_parent_node(self, o): """ """ o.setFlags(o.flags() & ~QtCore.Qt.ItemIsSelectable) setattr(o, "capa_type", CapaExplorerRulegenFeatures.get_node_type_parent()) self.style_parent_node(o) def set_leaf_node(self, o): """ """ setattr(o, "capa_type", CapaExplorerRulegenFeatures.get_node_type_leaf()) self.style_leaf_node(o) def new_parent_node(self, parent, data, feature=None): """ """ o = QtWidgets.QTreeWidgetItem(parent) self.set_parent_node(o) for (i, v) in enumerate(data): o.setText(i, v) if feature: o.setData(0, 0x100, feature) return o def new_leaf_node(self, parent, data, feature=None): """ """ o = QtWidgets.QTreeWidgetItem(parent) self.set_leaf_node(o) for (i, v) in enumerate(data): o.setText(i, v) if feature: o.setData(0, 0x100, feature) return o def load_features(self, file_features, func_features={}): """ """ self.parse_features_for_tree(self.new_parent_node(self, ("File Scope",)), file_features) if func_features: self.parse_features_for_tree(self.new_parent_node(self, ("Function/Basic Block Scope",)), func_features) def parse_features_for_tree(self, parent, features): """ """ self.parent_items = {} def format_address(e): return "%X" % e if e else "" def format_feature(feature): """ """ name = feature.name.lower() value = feature.get_value_str() if isinstance(feature, (capa.features.common.String,)): value = '"%s"' % capa.features.common.escape_string(value) return "%s(%s)" % (name, value) for (feature, eas) in sorted(features.items(), key=lambda k: sorted(k[1])): if isinstance(feature, capa.features.basicblock.BasicBlock): # filter basic blocks for now, we may want to add these back in some time # in the future continue # level 0 if type(feature) not in self.parent_items: self.parent_items[type(feature)] = self.new_parent_node(parent, (feature.name.lower(),)) # level 1 if feature not in self.parent_items: if len(eas) > 1: self.parent_items[feature] = self.new_parent_node( self.parent_items[type(feature)], (format_feature(feature),), feature=feature ) else: self.parent_items[feature] = self.new_leaf_node( self.parent_items[type(feature)], (format_feature(feature),), feature=feature ) # level n > 1 if len(eas) > 1: for ea in sorted(eas): self.new_leaf_node( self.parent_items[feature], (format_feature(feature), format_address(ea)), feature=feature ) else: ea = eas.pop() for (i, v) in enumerate((format_feature(feature), format_address(ea))): self.parent_items[feature].setText(i, v) self.parent_items[feature].setData(0, 0x100, feature) class CapaExplorerQtreeView(QtWidgets.QTreeView): """tree view used to display hierarchical capa results view controls UI action responses and displays data from CapaExplorerDataModel view does not modify CapaExplorerDataModel directly - data modifications should be implemented in CapaExplorerDataModel """ def __init__(self, model, parent=None): """initialize view""" super(CapaExplorerQtreeView, self).__init__(parent) self.setModel(model) self.model = model self.parent = parent # control when we resize columns self.should_resize_columns = True # configure custom UI controls self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.setExpandsOnDoubleClick(False) self.setSortingEnabled(True) self.model.setDynamicSortFilter(False) # configure view columns to auto-resize for idx in range(CapaExplorerDataModel.COLUMN_COUNT): self.header().setSectionResizeMode(idx, QtWidgets.QHeaderView.Interactive) # disable stretch to enable horizontal scroll for last column, when needed self.header().setStretchLastSection(False) # connect slots to resize columns when expanded or collapsed self.expanded.connect(self.slot_resize_columns_to_content) self.collapsed.connect(self.slot_resize_columns_to_content) # connect slots self.customContextMenuRequested.connect(self.slot_custom_context_menu_requested) self.doubleClicked.connect(self.slot_double_click) self.setStyleSheet("QTreeView::item {padding-right: 15 px;padding-bottom: 2 px;}") def reset_ui(self, should_sort=True): """reset user interface changes called when view should reset UI display e.g. expand items, resize columns @param should_sort: True, sort results after reset, False don't sort results after reset """ if should_sort: self.sortByColumn(CapaExplorerDataModel.COLUMN_INDEX_RULE_INFORMATION, QtCore.Qt.AscendingOrder) self.should_resize_columns = False self.expandToDepth(0) self.should_resize_columns = True self.slot_resize_columns_to_content() def slot_resize_columns_to_content(self): """reset view columns to contents""" if self.should_resize_columns: self.header().resizeSections(QtWidgets.QHeaderView.ResizeToContents) # limit size of first section if self.header().sectionSize(0) > MAX_SECTION_SIZE: self.header().resizeSection(0, MAX_SECTION_SIZE) def map_index_to_source_item(self, model_index): """map proxy model index to source model item @param model_index: QModelIndex @retval QObject """ # assume that self.model here is either: # - CapaExplorerDataModel, or # - QSortFilterProxyModel subclass # # The ProxyModels may be chained, # so keep resolving the index the CapaExplorerDataModel. model = self.model while not isinstance(model, CapaExplorerDataModel): if not model_index.isValid(): raise ValueError("invalid index") model_index = model.mapToSource(model_index) model = model.sourceModel() if not model_index.isValid(): raise ValueError("invalid index") return model_index.internalPointer() def send_data_to_clipboard(self, data): """copy data to the clipboard @param data: data to be copied """ clip = QtWidgets.QApplication.clipboard() clip.clear(mode=clip.Clipboard) clip.setText(data, mode=clip.Clipboard) def new_action(self, display, data, slot): """create action for context menu @param display: text displayed to user in context menu @param data: data passed to slot @param slot: slot to connect @retval QAction """ action = QtWidgets.QAction(display, self.parent) action.setData(data) action.triggered.connect(lambda checked: slot(action)) return action def load_default_context_menu_actions(self, data): """yield actions specific to function custom context menu @param data: tuple @yield QAction """ default_actions = ( ("Copy column", data, self.slot_copy_column), ("Copy row", data, self.slot_copy_row), ) # add default actions for action in default_actions: yield self.new_action(*action) def load_function_context_menu_actions(self, data): """yield actions specific to function custom context menu @param data: tuple @yield QAction """ function_actions = (("Rename function", data, self.slot_rename_function),) # add function actions for action in function_actions: yield self.new_action(*action) # add default actions for action in self.load_default_context_menu_actions(data): yield action def load_default_context_menu(self, pos, item, model_index): """create default custom context menu creates custom context menu containing default actions @param pos: cursor position @param item: CapaExplorerDataItem @param model_index: QModelIndex @retval QMenu """ menu = QtWidgets.QMenu() for action in self.load_default_context_menu_actions((pos, item, model_index)): menu.addAction(action) return menu def load_function_item_context_menu(self, pos, item, model_index): """create function custom context menu creates custom context menu with both default actions and function actions @param pos: cursor position @param item: CapaExplorerDataItem @param model_index: QModelIndex @retval QMenu """ menu = QtWidgets.QMenu() for action in self.load_function_context_menu_actions((pos, item, model_index)): menu.addAction(action) return menu def show_custom_context_menu(self, menu, pos): """display custom context menu in view @param menu: QMenu to display @param pos: cursor position """ if menu: menu.exec_(self.viewport().mapToGlobal(pos)) def slot_copy_column(self, action): """slot connected to custom context menu allows user to select a column and copy the data to clipboard @param action: QAction """ _, item, model_index = action.data() self.send_data_to_clipboard(item.data(model_index.column())) def slot_copy_row(self, action): """slot connected to custom context menu allows user to select a row and copy the space-delimited data to clipboard @param action: QAction """ _, item, _ = action.data() self.send_data_to_clipboard(str(item)) def slot_rename_function(self, action): """slot connected to custom context menu allows user to select a edit a function name and push changes to IDA @param action: QAction """ _, item, model_index = action.data() # make item temporary edit, reset after user is finished item.setIsEditable(True) self.edit(model_index) item.setIsEditable(False) def slot_custom_context_menu_requested(self, pos): """slot connected to custom context menu request displays custom context menu to user containing action relevant to the item selected @param pos: cursor position """ model_index = self.indexAt(pos) if not model_index.isValid(): return item = self.map_index_to_source_item(model_index) column = model_index.column() menu = None if CapaExplorerDataModel.COLUMN_INDEX_RULE_INFORMATION == column and isinstance(item, CapaExplorerFunctionItem): # user hovered function item menu = self.load_function_item_context_menu(pos, item, model_index) else: # user hovered default item menu = self.load_default_context_menu(pos, item, model_index) # show custom context menu at view position self.show_custom_context_menu(menu, pos) def slot_double_click(self, model_index): """slot connected to double-click event if address column clicked, navigate IDA to address, else un/expand item clicked @param model_index: QModelIndex """ if not model_index.isValid(): return item = self.map_index_to_source_item(model_index) column = model_index.column() if CapaExplorerDataModel.COLUMN_INDEX_VIRTUAL_ADDRESS == column and item.location: # user double-clicked virtual address column - navigate IDA to address idc.jumpto(item.location) if CapaExplorerDataModel.COLUMN_INDEX_RULE_INFORMATION == column: # user double-clicked information column - un/expand self.collapse(model_index) if self.isExpanded(model_index) else self.expand(model_index)
35.566858
120
0.596688
ff71b7c5d9327ff29b90fa58d83ad8add73693d9
20,306
py
Python
venv/Lib/site-packages/scipy/sparse/linalg/tests/test_matfuncs.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
366
2019-04-07T20:34:48.000Z
2022-03-29T07:35:38.000Z
venv/Lib/site-packages/scipy/sparse/linalg/tests/test_matfuncs.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
26
2020-03-24T18:07:06.000Z
2022-03-12T00:12:27.000Z
venv/Lib/site-packages/scipy/sparse/linalg/tests/test_matfuncs.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
61
2019-04-08T00:58:14.000Z
2022-03-20T23:04:28.000Z
# # Created by: Pearu Peterson, March 2002 # """ Test functions for scipy.linalg.matfuncs module """ from __future__ import division, print_function, absolute_import import math import numpy as np from numpy import array, eye, exp, random from numpy.linalg import matrix_power from numpy.testing import ( assert_allclose, assert_, assert_array_almost_equal, assert_equal, assert_array_almost_equal_nulp) from scipy._lib._numpy_compat import suppress_warnings from scipy.sparse import csc_matrix, SparseEfficiencyWarning from scipy.sparse.construct import eye as speye from scipy.sparse.linalg.matfuncs import (expm, _expm, ProductOperator, MatrixPowerOperator, _onenorm_matrix_power_nnm) from scipy.sparse.sputils import matrix from scipy.linalg import logm from scipy.special import factorial, binom import scipy.sparse import scipy.sparse.linalg def _burkardt_13_power(n, p): """ A helper function for testing matrix functions. Parameters ---------- n : integer greater than 1 Order of the square matrix to be returned. p : non-negative integer Power of the matrix. Returns ------- out : ndarray representing a square matrix A Forsythe matrix of order n, raised to the power p. """ # Input validation. if n != int(n) or n < 2: raise ValueError('n must be an integer greater than 1') n = int(n) if p != int(p) or p < 0: raise ValueError('p must be a non-negative integer') p = int(p) # Construct the matrix explicitly. a, b = divmod(p, n) large = np.power(10.0, -n*a) small = large * np.power(10.0, -n) return np.diag([large]*(n-b), b) + np.diag([small]*b, b-n) def test_onenorm_matrix_power_nnm(): np.random.seed(1234) for n in range(1, 5): for p in range(5): M = np.random.random((n, n)) Mp = np.linalg.matrix_power(M, p) observed = _onenorm_matrix_power_nnm(M, p) expected = np.linalg.norm(Mp, 1) assert_allclose(observed, expected) class TestExpM(object): def test_zero_ndarray(self): a = array([[0.,0],[0,0]]) assert_array_almost_equal(expm(a),[[1,0],[0,1]]) def test_zero_sparse(self): a = csc_matrix([[0.,0],[0,0]]) assert_array_almost_equal(expm(a).toarray(),[[1,0],[0,1]]) def test_zero_matrix(self): a = matrix([[0.,0],[0,0]]) assert_array_almost_equal(expm(a),[[1,0],[0,1]]) def test_misc_types(self): A = expm(np.array([[1]])) assert_allclose(expm(((1,),)), A) assert_allclose(expm([[1]]), A) assert_allclose(expm(matrix([[1]])), A) assert_allclose(expm(np.array([[1]])), A) assert_allclose(expm(csc_matrix([[1]])).A, A) B = expm(np.array([[1j]])) assert_allclose(expm(((1j,),)), B) assert_allclose(expm([[1j]]), B) assert_allclose(expm(matrix([[1j]])), B) assert_allclose(expm(csc_matrix([[1j]])).A, B) def test_bidiagonal_sparse(self): A = csc_matrix([ [1, 3, 0], [0, 1, 5], [0, 0, 2]], dtype=float) e1 = math.exp(1) e2 = math.exp(2) expected = np.array([ [e1, 3*e1, 15*(e2 - 2*e1)], [0, e1, 5*(e2 - e1)], [0, 0, e2]], dtype=float) observed = expm(A).toarray() assert_array_almost_equal(observed, expected) def test_padecases_dtype_float(self): for dtype in [np.float32, np.float64]: for scale in [1e-2, 1e-1, 5e-1, 1, 10]: A = scale * eye(3, dtype=dtype) observed = expm(A) expected = exp(scale) * eye(3, dtype=dtype) assert_array_almost_equal_nulp(observed, expected, nulp=100) def test_padecases_dtype_complex(self): for dtype in [np.complex64, np.complex128]: for scale in [1e-2, 1e-1, 5e-1, 1, 10]: A = scale * eye(3, dtype=dtype) observed = expm(A) expected = exp(scale) * eye(3, dtype=dtype) assert_array_almost_equal_nulp(observed, expected, nulp=100) def test_padecases_dtype_sparse_float(self): # float32 and complex64 lead to errors in spsolve/UMFpack dtype = np.float64 for scale in [1e-2, 1e-1, 5e-1, 1, 10]: a = scale * speye(3, 3, dtype=dtype, format='csc') e = exp(scale) * eye(3, dtype=dtype) with suppress_warnings() as sup: sup.filter(SparseEfficiencyWarning, "Changing the sparsity structure of a csc_matrix is expensive.") exact_onenorm = _expm(a, use_exact_onenorm=True).toarray() inexact_onenorm = _expm(a, use_exact_onenorm=False).toarray() assert_array_almost_equal_nulp(exact_onenorm, e, nulp=100) assert_array_almost_equal_nulp(inexact_onenorm, e, nulp=100) def test_padecases_dtype_sparse_complex(self): # float32 and complex64 lead to errors in spsolve/UMFpack dtype = np.complex128 for scale in [1e-2, 1e-1, 5e-1, 1, 10]: a = scale * speye(3, 3, dtype=dtype, format='csc') e = exp(scale) * eye(3, dtype=dtype) with suppress_warnings() as sup: sup.filter(SparseEfficiencyWarning, "Changing the sparsity structure of a csc_matrix is expensive.") assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100) def test_logm_consistency(self): random.seed(1234) for dtype in [np.float64, np.complex128]: for n in range(1, 10): for scale in [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]: # make logm(A) be of a given scale A = (eye(n) + random.rand(n, n) * scale).astype(dtype) if np.iscomplexobj(A): A = A + 1j * random.rand(n, n) * scale assert_array_almost_equal(expm(logm(A)), A) def test_integer_matrix(self): Q = np.array([ [-3, 1, 1, 1], [1, -3, 1, 1], [1, 1, -3, 1], [1, 1, 1, -3]]) assert_allclose(expm(Q), expm(1.0 * Q)) def test_integer_matrix_2(self): # Check for integer overflows Q = np.array([[-500, 500, 0, 0], [0, -550, 360, 190], [0, 630, -630, 0], [0, 0, 0, 0]], dtype=np.int16) assert_allclose(expm(Q), expm(1.0 * Q)) Q = csc_matrix(Q) assert_allclose(expm(Q).A, expm(1.0 * Q).A) def test_triangularity_perturbation(self): # Experiment (1) of # Awad H. Al-Mohy and Nicholas J. Higham (2012) # Improved Inverse Scaling and Squaring Algorithms # for the Matrix Logarithm. A = np.array([ [3.2346e-1, 3e4, 3e4, 3e4], [0, 3.0089e-1, 3e4, 3e4], [0, 0, 3.221e-1, 3e4], [0, 0, 0, 3.0744e-1]], dtype=float) A_logm = np.array([ [-1.12867982029050462e+00, 9.61418377142025565e+04, -4.52485573953179264e+09, 2.92496941103871812e+14], [0.00000000000000000e+00, -1.20101052953082288e+00, 9.63469687211303099e+04, -4.68104828911105442e+09], [0.00000000000000000e+00, 0.00000000000000000e+00, -1.13289322264498393e+00, 9.53249183094775653e+04], [0.00000000000000000e+00, 0.00000000000000000e+00, 0.00000000000000000e+00, -1.17947533272554850e+00]], dtype=float) assert_allclose(expm(A_logm), A, rtol=1e-4) # Perturb the upper triangular matrix by tiny amounts, # so that it becomes technically not upper triangular. random.seed(1234) tiny = 1e-17 A_logm_perturbed = A_logm.copy() A_logm_perturbed[1, 0] = tiny with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Ill-conditioned.*") A_expm_logm_perturbed = expm(A_logm_perturbed) rtol = 1e-4 atol = 100 * tiny assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol)) def test_burkardt_1(self): # This matrix is diagonal. # The calculation of the matrix exponential is simple. # # This is the first of a series of matrix exponential tests # collected by John Burkardt from the following sources. # # Alan Laub, # Review of "Linear System Theory" by Joao Hespanha, # SIAM Review, # Volume 52, Number 4, December 2010, pages 779--781. # # Cleve Moler and Charles Van Loan, # Nineteen Dubious Ways to Compute the Exponential of a Matrix, # Twenty-Five Years Later, # SIAM Review, # Volume 45, Number 1, March 2003, pages 3--49. # # Cleve Moler, # Cleve's Corner: A Balancing Act for the Matrix Exponential, # 23 July 2012. # # Robert Ward, # Numerical computation of the matrix exponential # with accuracy estimate, # SIAM Journal on Numerical Analysis, # Volume 14, Number 4, September 1977, pages 600--610. exp1 = np.exp(1) exp2 = np.exp(2) A = np.array([ [1, 0], [0, 2], ], dtype=float) desired = np.array([ [exp1, 0], [0, exp2], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_2(self): # This matrix is symmetric. # The calculation of the matrix exponential is straightforward. A = np.array([ [1, 3], [3, 2], ], dtype=float) desired = np.array([ [39.322809708033859, 46.166301438885753], [46.166301438885768, 54.711576854329110], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_3(self): # This example is due to Laub. # This matrix is ill-suited for the Taylor series approach. # As powers of A are computed, the entries blow up too quickly. exp1 = np.exp(1) exp39 = np.exp(39) A = np.array([ [0, 1], [-39, -40], ], dtype=float) desired = np.array([ [ 39/(38*exp1) - 1/(38*exp39), -np.expm1(-38) / (38*exp1)], [ 39*np.expm1(-38) / (38*exp1), -1/(38*exp1) + 39/(38*exp39)], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_4(self): # This example is due to Moler and Van Loan. # The example will cause problems for the series summation approach, # as well as for diagonal Pade approximations. A = np.array([ [-49, 24], [-64, 31], ], dtype=float) U = np.array([[3, 1], [4, 2]], dtype=float) V = np.array([[1, -1/2], [-2, 3/2]], dtype=float) w = np.array([-17, -1], dtype=float) desired = np.dot(U * np.exp(w), V) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_5(self): # This example is due to Moler and Van Loan. # This matrix is strictly upper triangular # All powers of A are zero beyond some (low) limit. # This example will cause problems for Pade approximations. A = np.array([ [0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6], [0, 0, 0, 0], ], dtype=float) desired = np.array([ [1, 6, 18, 36], [0, 1, 6, 18], [0, 0, 1, 6], [0, 0, 0, 1], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_6(self): # This example is due to Moler and Van Loan. # This matrix does not have a complete set of eigenvectors. # That means the eigenvector approach will fail. exp1 = np.exp(1) A = np.array([ [1, 1], [0, 1], ], dtype=float) desired = np.array([ [exp1, exp1], [0, exp1], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_7(self): # This example is due to Moler and Van Loan. # This matrix is very close to example 5. # Mathematically, it has a complete set of eigenvectors. # Numerically, however, the calculation will be suspect. exp1 = np.exp(1) eps = np.spacing(1) A = np.array([ [1 + eps, 1], [0, 1 - eps], ], dtype=float) desired = np.array([ [exp1, exp1], [0, exp1], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_8(self): # This matrix was an example in Wikipedia. exp4 = np.exp(4) exp16 = np.exp(16) A = np.array([ [21, 17, 6], [-5, -1, -6], [4, 4, 16], ], dtype=float) desired = np.array([ [13*exp16 - exp4, 13*exp16 - 5*exp4, 2*exp16 - 2*exp4], [-9*exp16 + exp4, -9*exp16 + 5*exp4, -2*exp16 + 2*exp4], [16*exp16, 16*exp16, 4*exp16], ], dtype=float) * 0.25 actual = expm(A) assert_allclose(actual, desired) def test_burkardt_9(self): # This matrix is due to the NAG Library. # It is an example for function F01ECF. A = np.array([ [1, 2, 2, 2], [3, 1, 1, 2], [3, 2, 1, 2], [3, 3, 3, 1], ], dtype=float) desired = np.array([ [740.7038, 610.8500, 542.2743, 549.1753], [731.2510, 603.5524, 535.0884, 542.2743], [823.7630, 679.4257, 603.5524, 610.8500], [998.4355, 823.7630, 731.2510, 740.7038], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_10(self): # This is Ward's example #1. # It is defective and nonderogatory. A = np.array([ [4, 2, 0], [1, 4, 1], [1, 1, 4], ], dtype=float) assert_allclose(sorted(scipy.linalg.eigvals(A)), (3, 3, 6)) desired = np.array([ [147.8666224463699, 183.7651386463682, 71.79703239999647], [127.7810855231823, 183.7651386463682, 91.88256932318415], [127.7810855231824, 163.6796017231806, 111.9681062463718], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_11(self): # This is Ward's example #2. # It is a symmetric matrix. A = np.array([ [29.87942128909879, 0.7815750847907159, -2.289519314033932], [0.7815750847907159, 25.72656945571064, 8.680737820540137], [-2.289519314033932, 8.680737820540137, 34.39400925519054], ], dtype=float) assert_allclose(scipy.linalg.eigvalsh(A), (20, 30, 40)) desired = np.array([ [ 5.496313853692378E+15, -1.823188097200898E+16, -3.047577080858001E+16], [ -1.823188097200899E+16, 6.060522870222108E+16, 1.012918429302482E+17], [ -3.047577080858001E+16, 1.012918429302482E+17, 1.692944112408493E+17], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_12(self): # This is Ward's example #3. # Ward's algorithm has difficulty estimating the accuracy # of its results. A = np.array([ [-131, 19, 18], [-390, 56, 54], [-387, 57, 52], ], dtype=float) assert_allclose(sorted(scipy.linalg.eigvals(A)), (-20, -2, -1)) desired = np.array([ [-1.509644158793135, 0.3678794391096522, 0.1353352811751005], [-5.632570799891469, 1.471517758499875, 0.4060058435250609], [-4.934938326088363, 1.103638317328798, 0.5413411267617766], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_burkardt_13(self): # This is Ward's example #4. # This is a version of the Forsythe matrix. # The eigenvector problem is badly conditioned. # Ward's algorithm has difficulty esimating the accuracy # of its results for this problem. # # Check the construction of one instance of this family of matrices. A4_actual = _burkardt_13_power(4, 1) A4_desired = [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1e-4, 0, 0, 0]] assert_allclose(A4_actual, A4_desired) # Check the expm for a few instances. for n in (2, 3, 4, 10): # Approximate expm using Taylor series. # This works well for this matrix family # because each matrix in the summation, # even before dividing by the factorial, # is entrywise positive with max entry 10**(-floor(p/n)*n). k = max(1, int(np.ceil(16/n))) desired = np.zeros((n, n), dtype=float) for p in range(n*k): Ap = _burkardt_13_power(n, p) assert_equal(np.min(Ap), 0) assert_allclose(np.max(Ap), np.power(10, -np.floor(p/n)*n)) desired += Ap / factorial(p) actual = expm(_burkardt_13_power(n, 1)) assert_allclose(actual, desired) def test_burkardt_14(self): # This is Moler's example. # This badly scaled matrix caused problems for MATLAB's expm(). A = np.array([ [0, 1e-8, 0], [-(2e10 + 4e8/6.), -3, 2e10], [200./3., 0, -200./3.], ], dtype=float) desired = np.array([ [0.446849468283175, 1.54044157383952e-09, 0.462811453558774], [-5743067.77947947, -0.0152830038686819, -4526542.71278401], [0.447722977849494, 1.54270484519591e-09, 0.463480648837651], ], dtype=float) actual = expm(A) assert_allclose(actual, desired) def test_pascal(self): # Test pascal triangle. # Nilpotent exponential, used to trigger a failure (gh-8029) for scale in [1.0, 1e-3, 1e-6]: for n in range(120): A = np.diag(np.arange(1, n + 1), -1) * scale B = expm(A) sc = scale**np.arange(n, -1, -1) if np.any(sc < 1e-300): continue got = B expected = binom(np.arange(n + 1)[:,None], np.arange(n + 1)[None,:]) * sc[None,:] / sc[:,None] err = abs(expected - got).max() atol = 1e-13 * abs(expected).max() assert_allclose(got, expected, atol=atol) class TestOperators(object): def test_product_operator(self): random.seed(1234) n = 5 k = 2 nsamples = 10 for i in range(nsamples): A = np.random.randn(n, n) B = np.random.randn(n, n) C = np.random.randn(n, n) D = np.random.randn(n, k) op = ProductOperator(A, B, C) assert_allclose(op.matmat(D), A.dot(B).dot(C).dot(D)) assert_allclose(op.T.matmat(D), (A.dot(B).dot(C)).T.dot(D)) def test_matrix_power_operator(self): random.seed(1234) n = 5 k = 2 p = 3 nsamples = 10 for i in range(nsamples): A = np.random.randn(n, n) B = np.random.randn(n, k) op = MatrixPowerOperator(A, p) assert_allclose(op.matmat(B), matrix_power(A, p).dot(B)) assert_allclose(op.T.matmat(B), matrix_power(A, p).T.dot(B))
36.390681
91
0.53792
3cf632a1343ff2abd90523065a8afd423d2c463d
14,114
py
Python
built-in/TensorFlow/Official/nlp/Textcnn_ID0123_For_Tensorflow/run_cnn.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
12
2020-12-13T08:34:24.000Z
2022-03-20T15:17:17.000Z
built-in/TensorFlow/Official/nlp/Textcnn_ID0123_For_Tensorflow/run_cnn.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
1
2022-01-20T03:11:05.000Z
2022-01-20T06:53:39.000Z
built-in/TensorFlow/Official/nlp/Textcnn_ID0123_For_Tensorflow/run_cnn.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
2
2021-07-10T12:40:46.000Z
2021-12-17T07:55:15.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from npu_bridge.npu_init import * #from npu_bridge import * import os import sys import time from datetime import timedelta import pickle import numpy as np import tensorflow as tf from sklearn import metrics from cnn_model import TCNNConfig, TextCNN from data.cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab import argparse parser = argparse.ArgumentParser() parser.add_argument('--save_dir', dest='save_dir', default='checkpoints/textcnn') parser.add_argument('--data_path', dest='data_path', default='./data/cnews', help='path of the dataset') parser.add_argument('--precision_mode', dest='precision_mode', default='allow_fp32_to_fp16', help='precision mode') parser.add_argument('--over_dump', dest='over_dump', default='False', help='if or not over detection') parser.add_argument('--over_dump_path', dest='over_dump_path', default='./overdump', help='over dump path') parser.add_argument('--data_dump_flag', dest='data_dump_flag', default='False', help='data dump flag') parser.add_argument('--data_dump_step', dest='data_dump_step', default='10', help='data dump step') parser.add_argument('--data_dump_path', dest='data_dump_path', default='./datadump', help='data dump path') parser.add_argument('--profiling', dest='profiling', default='False', help='if or not profiling for performance debug') parser.add_argument('--profiling_dump_path', dest='profiling_dump_path', default='./profiling', help='profiling path') parser.add_argument('--autotune', dest='autotune', default='False', help='whether to enable autotune, default is False') parser.add_argument('--npu_loss_scale', dest='npu_loss_scale', type=int, default=1) parser.add_argument('--mode', dest='mode', default='train', choices=('train', 'test', 'train_and_eval')) parser.add_argument('--batch_size', dest='batch_size', type=int, default=64) parser.add_argument('--learning_rate', dest='learning_rate', type=float, default=0.001) parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=10) args = parser.parse_args() base_dir = args.data_path train_dir = os.path.join(base_dir, 'cnews.train.txt') test_dir = os.path.join(base_dir, 'cnews.test.txt') val_dir = os.path.join(base_dir, 'cnews.val.txt') vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt') save_dir = args.save_dir save_path = os.path.join(save_dir, 'best_validation') def get_time_dif(start_time): '获取已使用时间' end_time = time.time() time_dif = (end_time - start_time) return timedelta(seconds=int(round(time_dif))), time_dif def feed_data(x_batch, y_batch, keep_prob): feed_dict = { model.input_x: x_batch, model.input_y: y_batch, model.keep_prob: keep_prob } return feed_dict def evaluate(sess, x,y): """评估在某一数据上的准确率和损失""" total_loss = 0.0 total_acc = 0.0 data_len = len(x) batch_train = batch_iter_(x, y,256) for x_batch, y_batch in batch_train: batch_len = len(x_batch) feed_dict = feed_data(x_batch, y_batch, 1.0) (loss, acc) = sess.run([model.loss, model.acc], feed_dict=feed_dict) total_loss += (loss * batch_len) total_acc += (acc * batch_len) return ((total_loss / data_len), (total_acc / data_len)) class data_load(object): def __init__(self, sess,x,y,is_train=True): with tf.device('/cpu:0'): self.x = x self.y = y self.x_ = tf.placeholder(self.x.dtype, self.x.shape) self.y_ = tf.placeholder(self.y.dtype, self.y.shape) self.sess = sess dataset = tf.data.Dataset.from_tensor_slices((self.x_, self.y_)) if is_train: dataset = dataset.shuffle(len(self.x)) dataset = dataset.repeat() dataset = dataset.batch(len(self.x)) else: dataset = dataset.batch(len(self.x)) dataset = dataset.prefetch(2) self.iterator = dataset.make_initializable_iterator() self.next = self.iterator.get_next() self.sess.run(self.iterator.initializer, feed_dict={self.x_: self.x,self.y_: self.y}) def replay(self): self.sess.run(self.iterator.initializer, feed_dict={self.x_: self.x,self.y_: self.y}) def batch_iter_(x, y, batch_size=64): data_len = len(x) num_batch = int((data_len - 1) / batch_size) + 1 for i in range(num_batch): start_id = i * batch_size end_id = min((i + 1) * batch_size, data_len) yield x[start_id:end_id], y[start_id:end_id] def train(): print('Configuring TensorBoard and Saver...') tensorboard_dir = 'tensorboard/textcnn' if (not os.path.exists(tensorboard_dir)): os.makedirs(tensorboard_dir) tf.summary.scalar('loss', model.loss) tf.summary.scalar('accuracy', model.acc) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(tensorboard_dir) saver = tf.train.Saver() if (not os.path.exists(save_dir)): os.makedirs(save_dir) print('Loading training and validation data...') start_time = time.time() (x_train, y_train) = process_file(train_dir, word_to_id, cat_to_id, config.seq_length) (x_val, y_val) = process_file(val_dir, word_to_id, cat_to_id, config.seq_length) time_dif = get_time_dif(start_time) print('Time usage:', time_dif) ############################ modify for run on npu ############################### from npu_bridge.estimator import npu_ops from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig sess_config = tf.ConfigProto() custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True # 必须显示开启,在昇腾AI处理器执行训练 sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显示关闭remap custom_op.parameter_map["dynamic_input"].b = True custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") custom_op.parameter_map["dynamic_graph_execute_mode"].s = tf.compat.as_bytes("lazy_recompile") #custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) if args.data_dump_flag.strip() == "True": custom_op.parameter_map["enable_dump"].b = True custom_op.parameter_map["dump_path"].s = tf.compat.as_bytes(args.data_dump_path) custom_op.parameter_map["dump_step"].s = tf.compat.as_bytes(args.data_dump_step) custom_op.parameter_map["dump_mode"].s = tf.compat.as_bytes("all") if args.over_dump.strip() == "True": # dump_path:dump数据存放路径,该参数指定的目录需要在启动训练的环境上(容器或Host侧)提前创建且确保安装时配置的运行用户具有读写权限 custom_op.parameter_map["dump_path"].s = tf.compat.as_bytes(args.over_dump_path) # enable_dump_debug:是否开启溢出检测功能 custom_op.parameter_map["enable_dump_debug"].b = True # dump_debug_mode:溢出检测模式,取值:all/aicore_overflow/atomic_overflow custom_op.parameter_map["dump_debug_mode"].s = tf.compat.as_bytes("all") if args.profiling.strip() == "True": custom_op.parameter_map["profiling_mode"].b = False profilingvalue = ( '{"output":"%s","training_trace":"on","task_trace":"on","aicpu":"on","fp_point":"","bp_point":""}' % ( args.profiling_dump_path)) custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes(profilingvalue) ############################ modify for run on npu ############################### print("CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC Finish") session = tf.Session(config=sess_config) session.run(tf.global_variables_initializer()) writer.add_graph(session.graph) train_len = len(x_train) val_len = len(x_val) train_data = data_load(session,x_train,y_train) val = data_load(session,x_val,y_val,False) x_v, y_v = session.run(val.next) tf.io.write_graph(session.graph_def, 'checkpoints', 'train.pbtxt') print('Training and evaluating...') start_time = time.time() data_time = 0 total_batch = 0 best_acc_val = 0.0 last_improved = 0 require_improvement = 10000 total_feed = 0 total_summary = 0 total_val = 0 total_save = 0 total_train = 0 flag = False for epoch in range(config.num_epochs): print('Epoch:', (epoch + 1)) x, y = session.run(train_data.next) batch_train = batch_iter_(x, y, config.batch_size) for (x_batch, y_batch) in batch_train: feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob) #if total_batch % config.save_per_batch == 0: # 每多少轮次将训练结果写入tensorboard scalar #s = session.run(merged_summary, feed_dict=feed_dict) #writer.add_summary(s, total_batch) if ((total_batch % config.print_per_batch) == 0): feed_dict[model.keep_prob] = 1.0 (loss_train, acc_train) = session.run([model.loss, model.acc], feed_dict=feed_dict) (loss_val, acc_val) = evaluate(session, x_v, y_v) if (acc_val > best_acc_val): best_acc_val = acc_val last_improved = total_batch saver.save(sess=session, save_path=save_path) improved_str = '*' else: improved_str = '' time_dif, time_sec = get_time_dif(start_time) msg = ('Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6} ({7})') print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str, time_sec)) feed_dict[model.keep_prob] = config.dropout_keep_prob session.run(model.optim, feed_dict=feed_dict) #time_dif = get_time_dif(start_time) #print("step:%d, time:%s"%(total_batch, time_dif)) total_batch += 1 if ((total_batch - last_improved) > require_improvement): # 验证集正确率长期不提升,提前结束训练 print('No optimization for a long time, auto-stopping...') flag = True break # 跳出循环 if flag: break def test(): print('Loading test data...') x_test, y_test = process_file(test_dir, word_to_id, cat_to_id, config.seq_length) sess_config = tf.ConfigProto() custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显示关闭remap custom_op.parameter_map["dynamic_input"].b = True custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") custom_op.parameter_map["dynamic_graph_execute_mode"].s = tf.compat.as_bytes("lazy_recompile") session = tf.Session(config=sess_config) session.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess=session, save_path=save_path) start_time = time.time() print('Testing...') (loss_test, acc_test) = evaluate(session, x_test, y_test) msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}' print(msg.format(loss_test, acc_test)) batch_size = 256 data_len = len(x_test) num_batch = (int(((data_len - 1) / batch_size)) + 1) y_test_cls = np.argmax(y_test, 1) y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32) for i in range(num_batch): start_id = (i * batch_size) end_id = min(((i + 1) * batch_size), data_len) feed_dict = {model.input_x: x_test[start_id:end_id], model.keep_prob: 1.0} y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict) print('Precision, Recall and F1-Score...') print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories)) print('Confusion Matrix...') cm = metrics.confusion_matrix(y_test_cls, y_pred_cls) print(cm) time_dif = get_time_dif(start_time) print('Time usage:', time_dif) if (__name__ == '__main__'): print('Configuring CNN model...') config = TCNNConfig() config.learning_rate = args.learning_rate config.batch_size = args.batch_size config.num_epochs = args.num_epochs config.npu_loss_scale = args.npu_loss_scale if (not os.path.exists(vocab_dir)): build_vocab(train_dir, vocab_dir, config.vocab_size) (categories, cat_to_id) = read_category() (words, word_to_id) = read_vocab(vocab_dir) config.vocab_size = len(words) model = TextCNN(config) if (args.mode == 'train'): train() elif (args.mode == 'test'): test() else: train() test()
47.046667
148
0.669335
3f5fed290bca2ecf56896248ebe20b810ccd9aa9
5,983
py
Python
test/integration/test_waf_rules_api_v1.py
KumarGanesanIBM/networking-python-sdk
c00801b8cb908496bb1b8635ee0a53513af57639
[ "Apache-2.0" ]
null
null
null
test/integration/test_waf_rules_api_v1.py
KumarGanesanIBM/networking-python-sdk
c00801b8cb908496bb1b8635ee0a53513af57639
[ "Apache-2.0" ]
null
null
null
test/integration/test_waf_rules_api_v1.py
KumarGanesanIBM/networking-python-sdk
c00801b8cb908496bb1b8635ee0a53513af57639
[ "Apache-2.0" ]
1
2020-07-30T10:39:28.000Z
2020-07-30T10:39:28.000Z
# -*- coding: utf-8 -*- # (C) Copyright IBM Corp. 2020. """ Integration test code to execute waf rules api functions """ import os import unittest from ibm_cloud_networking_services.waf_rules_api_v1 import WafRulesApiV1 from ibm_cloud_networking_services.waf_rule_packages_api_v1 import WafRulePackagesApiV1 class TestWafRulesApiV1 (unittest.TestCase): def setUp(self): """ test case setup """ self.endpoint = os.getenv("API_ENDPOINT") self.crn = os.getenv("CRN") self.zone_id = os.getenv("ZONE_ID") # create waf rules api record class object self.wafRulesApi = WafRulesApiV1.new_instance( crn=self.crn, zone_id=self.zone_id, service_name="cis_services") self.wafRulesApi.set_service_url(self.endpoint) self.wafRulePackagesApi = WafRulePackagesApiV1.new_instance( crn=self.crn, zone_id=self.zone_id, service_name="cis_services") self.wafRulePackagesApi.set_service_url(self.endpoint) def tearDown(self): """ tear down """ # Delete the resources print("Clean up complete") ################## list_waf_rules ################### def test_1_waf_rules(self): """ test for success """ response = self.wafRulePackagesApi.list_waf_packages() assert response is not None and response.result.get("success") is True results = response.result.get("result") all_waf_pkg_ids = [] # extract all package ids for i in results: all_waf_pkg_ids.append(str(i.get("id"))) check = True # list waf rule for each package id for i in all_waf_pkg_ids: self.package_id = str(i) response = self.wafRulesApi.list_waf_rules( package_id=self.package_id).get_result() assert response is not None and response.get('success') is True if len(response.get("result")) != 0 and check is True: # store a single rule id details, to be used in later test cases rule_res = response.get("result") self.identifier = rule_res[0].get("id") self.mode = rule_res[0].get("mode") self.priority = rule_res[0].get("priority") self.group_id = rule_res[0].get("group").get("id") self.description = rule_res[0].get("description") self.pkg_id = self.package_id check = False """list particular waf rules on the basis of mode, priority and other params""" self.match = "all" self.order = "status" self.direction = "asc" self.page = 1 self.per_page = 10 response = self.wafRulesApi.list_waf_rules(package_id=self.pkg_id, mode=self.mode, priority=self.priority, match=self.match, order=self.order, group_id=self.group_id, description=self.description, direction=self.direction, page=self.page, per_page=self.per_page).get_result() assert response is not None and response.get("success") is True """get waf rule""" response = self.wafRulesApi.get_waf_rule( package_id=self.pkg_id, identifier=self.identifier).get_result() assert response is not None and response.get('success') is True """update waf rule""" cis_modes = ['default', 'disable', 'simulate', 'block', 'challenge'] owasp_modes = ['on', 'off'] if self.mode in owasp_modes: mode_list = owasp_modes mode_name = "owasp" else: mode_list = cis_modes mode_name = "cis" for m in mode_list: if m != self.mode: new_mode = m break if mode_name == "cis": self.cis = {"mode": new_mode} self.owasp = None else: self.owasp = {"mode": new_mode} self.cis = None response = self.wafRulesApi.update_waf_rule( package_id=self.pkg_id, identifier=self.identifier, cis=self.cis, owasp=self.owasp).get_result() assert response is not None and response.get('success') is True ################## Negative test cases ################### def test_2_waf_rules(self): self.identifier = "" self.package_id = "" self.cis = "" self.owasp = "" """ list waf rule method without package_id """ with self.assertRaises(ValueError) as val: self.wafRulesApi.list_waf_rules(package_id=None).get_result() self.assertEqual(val.exception.msg, 'package_id must be provided') """ get waf rule method without package_id """ with self.assertRaises(ValueError) as val: self.wafRulesApi.get_waf_rule( package_id=None, identifier=self.identifier).get_result() self.assertEqual(val.exception.msg, 'package_id must be provided') """ get waf rule method without identifier """ with self.assertRaises(ValueError) as val: self.wafRulesApi.get_waf_rule( package_id=self.package_id, identifier=None).get_result() self.assertEqual(val.exception.msg, 'identifier must be provided') """ update waf rule method without package_id """ with self.assertRaises(ValueError) as val: self.wafRulesApi.update_waf_rule( package_id=None, identifier=self.identifier, cis=self.cis, owasp=self.owasp).get_result() self.assertEqual(val.exception.msg, 'package_id must be provided') """ update waf rule method without identifier """ with self.assertRaises(ValueError) as val: self.wafRulesApi.update_waf_rule( package_id=self.package_id, identifier=None, cis=self.cis, owasp=self.owasp).get_result() self.assertEqual(val.exception.msg, 'identifier must be provided') if __name__ == '__main__': unittest.main()
42.133803
183
0.614575
ffdd01c1f9190954f5f7560fd730a1205892407b
4,460
py
Python
Share/models.py
PPPokerFace/PokerFace
4d28a3bb093200669f2f7b337a907f035b650032
[ "MIT" ]
1
2019-01-06T08:33:24.000Z
2019-01-06T08:33:24.000Z
Share/models.py
PPPokerFace/PokerFace
4d28a3bb093200669f2f7b337a907f035b650032
[ "MIT" ]
null
null
null
Share/models.py
PPPokerFace/PokerFace
4d28a3bb093200669f2f7b337a907f035b650032
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Test(models.Model): """测试类""" class Meta: verbose_name_plural = '测试' name = models.CharField(max_length=16) age = models.IntegerField() class Student(models.Model): """学生类""" class Meta: verbose_name_plural = '学生管理' verbose_name = '学生' stu_number = models.CharField(max_length=10, verbose_name='学号', primary_key=True) province = models.CharField(max_length=10, verbose_name='省份') class_stu = models.ForeignKey('Class', on_delete=models.CASCADE, verbose_name='班级') college = models.ForeignKey('College', on_delete=models.CASCADE, verbose_name='学院') name = models.CharField(max_length=16, verbose_name='姓名') GENGER_CHOLICE = ( ('男', '男'), ('女', '女'), ) gender = models.CharField(max_length=2, choices=GENGER_CHOLICE, verbose_name='性别') id_number = models.CharField(max_length=18, verbose_name='身份证') dormitory = models.ForeignKey('Dormitory', on_delete=models.CASCADE, verbose_name='宿舍') def __str__(self): return str(self.stu_number) class Dormitory(models.Model): """宿舍楼""" class Meta: verbose_name_plural = '宿舍管理' verbose_name = '宿舍' name = models.CharField(max_length=20, primary_key=True) def __str__(self): return str(self.name) # class DormitoryNumber(models.Model): # """宿舍号""" # number = models.IntegerField() # dormitory = models.ForeignKey('Dormitory', on_delete=models.CASCADE) # def __str__(self): # return str(self.dormitory.number)+"-"+str(self.number) class Class(models.Model): """班级""" class Meta: verbose_name_plural = '班级管理' verbose_name = '班级' name = models.CharField(max_length=16, primary_key=True) college = models.ForeignKey('College', on_delete=models.CASCADE) # master = models.CharField(max_length=16, null=True) # 班主任 # instructor = models.CharField(max_length=16, null=True) # 辅导员 def __str__(self): return self.name class College(models.Model): """学院""" class Meta: verbose_name_plural = '学院管理' verbose_name = '学院' name = models.CharField(max_length=16, primary_key=True) # president = models.CharField(max_length=16, null=True) def __str__(self): return self.name class YearCheckInEvent(models.Model): """每年的签到事件""" class Meta: verbose_name_plural = '签到事件管理' verbose_name = '签到事件' year = models.IntegerField(unique=True,verbose_name='年份') start_time = models.DateTimeField(verbose_name='开始时间') end_time = models.DateTimeField(verbose_name='结束时间') student = models.ManyToManyField(Student, through='YearCheckInData', verbose_name='学生') def __str__(self): return str(self.year) class YearCheckInData(models.Model): """每年的签到事件数据""" class Meta: verbose_name_plural = '签到数据管理' verbose_name = '签到数据' year_check_in_event = models.ForeignKey('YearCheckInEvent', on_delete=models.CASCADE, blank=True, null=True,verbose_name='年份') student = models.ForeignKey('Student', on_delete=models.CASCADE, blank=True, null=True,verbose_name='学生') time = models.DateTimeField(blank=True, null=True,verbose_name='签到时间') checked = models.BooleanField(default=False,verbose_name='是否签到') def __str__(self): return str(self.student) class PublicInfo(models.Model): """信息公示""" class Meta: verbose_name_plural = '信息公示管理' verbose_name = '公告' title = models.CharField(max_length=50) text = models.CharField(max_length=100) class PostCard(models.Model): """帖子""" class Meta: verbose_name_plural = '帖子管理' verbose_name = '帖子' student = models.ForeignKey('Student', on_delete=models.CASCADE) title = models.CharField(max_length=20) text = models.CharField(max_length=100) time = models.DateTimeField() class Comment(models.Model): """评论""" class Meta: verbose_name_plural = '评论管理' verbose_name = '评论' student = models.ForeignKey('Student', on_delete=models.CASCADE) post_card = models.ForeignKey('PostCard', on_delete=models.CASCADE) text = models.CharField(max_length=100) time = models.DateTimeField()
28.407643
131
0.646413
a10648b3cfb9609f773302d36e8f5fe6ab423b61
436
py
Python
HER2/Practice Testing/Epoch Experiment/Run_10_4.py
raktim-mondol/DeepLearningCamelyon
443fc5d17f577b99fc3b17cc1adc7000ccab642e
[ "CC0-1.0" ]
70
2018-12-14T07:16:41.000Z
2022-02-03T07:40:23.000Z
HER2/Practice Testing/Epoch Experiment/Run_10_4.py
raktim-mondol/DeepLearningCamelyon
443fc5d17f577b99fc3b17cc1adc7000ccab642e
[ "CC0-1.0" ]
null
null
null
HER2/Practice Testing/Epoch Experiment/Run_10_4.py
raktim-mondol/DeepLearningCamelyon
443fc5d17f577b99fc3b17cc1adc7000ccab642e
[ "CC0-1.0" ]
24
2019-02-18T16:21:25.000Z
2022-03-06T15:39:45.000Z
execfile('1_import_pkgs.py') execfile('2_epochs_10.py') execfile('3_get_model.py') execfile('4_get_data.py') execfile('5_divide_data.py') execfile('6_fit_model.py') execfile('7_learning_curve.py') execfile('8_accuracy_10_4.py') execfile('9_confusion_matrix_10_4.py') #execfile('10_images_misclassified.py') #execfile('11_mono_correct.py') #execfile('12_poly_correct.py') #print(model.layers) #print(model.inputs) #print(model.outputs)
25.647059
39
0.791284
9d4f204354c9c89689a04ba927381246e4f76728
265
py
Python
2923.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
1
2022-01-14T08:45:32.000Z
2022-01-14T08:45:32.000Z
2923.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
2923.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
while True: try: t, a, w, c = map(int, input().split()) if (a*100)/t >= c: print("critical") elif (a*100)/t >= w: print("warning") else: print("OK") except EOFError: break
24.090909
47
0.396226
57871e72ca122d2fb64b261ae1008c66f96d8c27
1,087
py
Python
scout/build/hpo.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
111
2015-01-15T11:53:20.000Z
2022-03-26T19:55:24.000Z
scout/build/hpo.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
2,995
2015-01-15T16:14:20.000Z
2022-03-31T13:36:32.000Z
scout/build/hpo.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
55
2015-05-31T19:09:49.000Z
2021-11-01T10:50:31.000Z
import logging from scout.models.phenotype_term import HpoTerm LOG = logging.getLogger(__name__) def build_hpo_term(hpo_info): """Build a hpo_term object Check that the information is correct and add the correct hgnc ids to the array of genes. Args: hpo_info(dict) Returns: hpo_obj(scout.models.HpoTerm): A dictionary with hpo information """ try: hpo_id = hpo_info["hpo_id"] except KeyError: raise KeyError("Hpo terms has to have a hpo_id") LOG.debug("Building hpo term %s", hpo_id) # Add description to HPO term try: description = hpo_info["description"] except KeyError: raise KeyError("Hpo terms has to have a description") hpo_obj = HpoTerm( hpo_id=hpo_id, description=description, genes=list(hpo_info.get("genes", set())), ancestors=list(hpo_info.get("ancestors", set())), all_ancestors=list(hpo_info.get("all_ancestors", set())), children=list(hpo_info.get("children", set())), ) return hpo_obj
24.155556
77
0.639374
486ffd9d69e25c95f4f39c30a8fc771ecddaa615
13,308
py
Python
market/backtest.py
adammorley/ib
a4c985d5a57628c253e4d8a422d03b110ebc23ec
[ "Apache-2.0" ]
1
2020-10-03T15:03:57.000Z
2020-10-03T15:03:57.000Z
market/backtest.py
adammorley/ib
a4c985d5a57628c253e4d8a422d03b110ebc23ec
[ "Apache-2.0" ]
null
null
null
market/backtest.py
adammorley/ib
a4c985d5a57628c253e4d8a422d03b110ebc23ec
[ "Apache-2.0" ]
1
2020-06-10T02:51:07.000Z
2020-06-10T02:51:07.000Z
import logging import re from market import bars from market import order def anotateBars(histBars): newBars = [] for i in range(0, len(histBars)): newBars.append(makeBar(histBars[i])) newBars[i].anotate() logging.info('got %d bars', len(newBars)) return newBars def makeBar(histBar): bar = bars.Bar(0) bar.open = histBar.open bar.close = histBar.close bar.high = histBar.high bar.low = histBar.low return bar def getNextBar(dataStream, index): return dataStream[index] def setupThreeBar(dataStream, period): index = len(dataStream)-1 - period *24*60 dataStore = bars.BarSet() dataStore.first = getNextBar(dataStream, index) dataStore.second = getNextBar(dataStream, index+1) dataStore.third = getNextBar(dataStream, index+2) return index+3, dataStore def backtest(wc, dataStream, dataStore, conf, period): totals = {'gl': 0, 'tf': 0, 'mf': 0, 'op': 0, 'lo': 0} positions = [] startIndex = None # which data point in the dataStream/bar set to evaluate on this round about enter or not if conf.detector == 'threeBarPattern': startIndex, dataStore = setupThreeBar(dataStream, period) elif conf.detector == 'Crossover': # FIXME: might be a bug here # we just stored (at init) the last EMA calculated, eg we are examining curClosePriceIndex startIndex = dataStore.curEmaIndex + 1 for i in range(startIndex, len(dataStream)-1): # first, see if any positions changed logging.info('number of positions open: {}'.format(len(positions))) positions, totals = checkPositions(wc, positions, conf, dataStore, dataStream, i, totals) # see if we calculated an entryPrice entryAction, entryPrice = None, None if conf.detector == 'threeBarPattern': entryPrice = dataStore.analyze() elif conf.detector == 'Crossover': entryAction, entryPrice = dataStore.checkForEntry(dataStream) if entryPrice is not None: od = order.OrderDetails(entryPrice, conf, wc, entryAction) od.config.qty = order.calculateQty(od) logging.warn('found an order: %s %s', od, dataStore) if len(positions) < od.config.openPositions: # checking whether the position opened and closed in the same bar amount = None orders = order.CreateBracketOrder(od) # need to use real values (not offsets) for position checker if orders.stopOrder.orderType == 'TRAIL': # have to store for position tracking if od.config.stopPercent is not None: if orders.entryOrder.action == 'BUY': orders.stopOrder.auxPrice = order.Round( orders.entryOrder.lmtPrice *(100.0 - orders.stopOrder.trailingPercent)/100.0, od.wContract.priceIncrement) else: orders.stopOrder.auxPrice = order.Round( orders.entryOrder.lmtPrice *(100.0 + orders.stopOrder.trailingPercent)/100.0, od.wContract.priceIncrement) elif od.config.stopTarget: if orders.entryOrder.action == 'BUY': orders.stopOrder.auxPrice = orders.entryOrder.lmtPrice - od.config.stopTarget else: orders.stopOrder.auxPrice = orders.entryOrder.lmtPrice + od.config.stopTarget if conf.detector == 'threeBarPattern': orders, amount = checkTradeExecution(dataStore.third, orders) elif conf.detector == 'Crossover': orders, amount = checkTradeExecution(dataStream[dataStore.curEmaIndex+1], orders) logging.warn('position config %s', od.config) # check if the trade executed if orders is not None: logging.warn('opened a position: %s', orders) positions.append(orders) totals['tf'] += orders.entryOrder.lmtPrice * orders.entryOrder.totalQuantity totals['op'] += orders.entryOrder.totalQuantity elif orders is None and amount is not None: logging.warn('opened and closed a position in third bar') totals['gl'] += amount logging.debug('totalFundsInPlay: %.2f', totals['tf']) if conf.detector == 'threeBarPattern': dataStore.first = dataStore.second dataStore.second = dataStore.third dataStore.third = getNextBar(dataStream, i) if len(positions) != 0: positions, totals = checkPositions(wc, positions, conf, dataStore, dataStream, i, totals) for p in positions: if p.entryOrder.action == 'BUY': totals['lo'] = (dataStream[len(dataStream)-1].close - p.entryOrder.lmtPrice) *p.entryOrder.totalQuantity else: totals['lo'] = (p.entryOrder.lmtPrice - dataStream[len(dataStream)-1].close) *p.entryOrder.totalQuantity return totals # only used to check the third bar for if the order bought/sold in the third bar during "blur" # eg this is an unknown because we aren't analyzing by-second data def checkTradeExecution(bar, orders): if orders.entryOrder.lmtPrice <= bar.high and orders.stopOrder.auxPrice >= bar.low: amount = None if orders.entryOrder.action == 'BUY': amount = (orders.stopOrder.auxPrice - orders.entryOrder.lmtPrice) *orders.entryOrder.totalQuantity else: amount = (orders.entryOrder.lmtPrice - orders.stopOrder.auxPrice) *orders.entryOrder.totalQuantity return None, amount else: return orders, None # check all the open positions def checkPositions(wc, positions, conf, dataStore, dataStream, index, totals): for position in positions: closed, amount = None, None if conf.detector == 'threeBarPattern': closed, amount = checkPosition(dataStore.third, position) elif conf.detector == 'Crossover': closed, amount = checkPosition(dataStream[index], position) if closed: logging.warn('closed a position: {} {} {} {} {}'.format(amount, closed, position, dataStore, dataStream[index])) totals['gl'] += amount if totals['tf'] > totals['mf']: totals['mf'] = totals['tf'] totals['tf'] -= position.entryOrder.lmtPrice * position.entryOrder.totalQuantity positions.remove(position) elif not closed and position.stopOrder.orderType == 'TRAIL': closePrice = dataStream[index].close if closePrice > position.entryOrder.lmtPrice: if conf.stopPercent is not None: if position.entryOrder.action == 'BUY': position.stopOrder.auxPrice = order.Round( closePrice * (100.0 - position.stopOrder.trailingPercent)/100.0, wc.priceIncrement) else: position.stopOrder.auxPrice = order.Round( closePrice * (100.0 + position.stopOrder.trailingPercent)/100.0, wc.priceIncrement) elif conf.stopTarget: if position.entryOrder.action == 'BUY': position.stopOrder.auxPrice = order.Round( closePrice - conf.stopTarget, wc.priceIncrement) else: position.stopOrder.auxPrice = order.Round( closePrice + conf.stopTarget, wc.priceIncrement) #else position stays, no changes return positions, totals # check if a "position" (represented by a fictitious order) changed in the bar # returns orderDetails and amount def checkPosition(bar, position): amount, executed = checkStopProfit(position, bar) if executed == False: # order became a position, say so return False, None elif executed == True or executed == None: # position closed, return amount return True, amount else: logging.error('problem with position checking %s %s', position, bar) return None, None # orderDetails represents a ficitious order which: # fails to execute # opens and closes really fast (inside the next bar) # becomes a "position" representing shares held # returns amount or None (error condition) # need another value which is "continue" # returns # True|False as to whether the trade executed # amount neg or pos (loss/gain) or None if unknown def checkStopProfit(position, bar): amount = None executed = None # executed at stop price if position.stopOrder.auxPrice >= bar.low and position.exitOrder.lmtPrice > bar.high: if position.entryOrder.action == 'BUY': amount = position.stopOrder.auxPrice - position.entryOrder.lmtPrice else: amount = position.entryOrder.lmtPrice - position.stopOrder.auxPrice logging.info('closing position at a loss: {} {} {}'.format(amount, position, bar)) executed = True # executed at profit price elif position.stopOrder.auxPrice < bar.low and position.exitOrder.lmtPrice <= bar.high: if position.entryOrder.action == 'BUY': amount = position.exitOrder.lmtPrice - position.entryOrder.lmtPrice else: amount = position.entryOrder.lmtPrice - position.exitOrder.lmtPrice logging.info('closing position at a gain: {} {} {}'.format(amount, position, bar)) executed = True # did not execute, no delta, stays as a position elif position.stopOrder.auxPrice < bar.low and position.exitOrder.lmtPrice > bar.high: logging.info('not closing a position {} {}'.format(position, bar)) executed = False amount = None # unknown execution, assume loss elif position.stopOrder.auxPrice >= bar.low and position.exitOrder.lmtPrice <= bar.high: logging.info('wonky: closing position: {}'.format(position)) executed = None if position.entryOrder.action == 'BUY': amount = position.stopOrder.auxPrice - position.entryOrder.lmtPrice else: amount = position.entryOrder.lmtPrice - position.stopOrder.auxPrice else: logging.fatal('unhandled {} {}'.format(position, bar)) if amount is not None: amount = amount * position.entryOrder.totalQuantity return amount, executed ########################DRAGONS! def processScriptOutput(): ds = {} with open('../esData', 'r') as f: while True: s = f.readline() if not s: break kv = s.split() vh = kv[1].split(':') try: ds[kv[0]][vh[0]] = vh[1] except KeyError: ds[kv[0]] = {} ds[kv[0]][vh[0]] = vh[1] one={} five={} ten={} fourteen={} thirty={} sixty={} total = {} for k, v in ds.items(): for d, gl in v.items(): d = int(d) gl = float(gl) if d == 1: one[k] = gl elif d == 5: five[k] = gl elif d == 10: ten[k] = gl elif d == 14: fourteen[k] = gl elif d == 30: thirty[k] = gl elif d == 60: sixty[k] = gl return one, five, ten, fourteen, thirty, sixty # send output of processscriptoutput # inFromOut is output of script outputthing above def findUnion(inFromOut): best = set() for arr in inFromOut: i = 0 for k in sorted(arr, key=arr.get, reverse=True): i += 1 if i > 30: break best.add(k) return best # regex is like 'lI:40,sI:15,w:15,sT:5,pT:7' def filterBest(regex, inFromOut): #r = re.compile('lI:40,sI:15,w:(5|15),sT.*') r = re.compile(regex) for arr in inFromOut: print('mark') for k in sorted(arr, key=arr.get, reverse=True): m = r.match(k) if m: print(k, arr[k]) def feedFromUnionToPositiveKeyFinder(best, mult, inFromOut): d = {} for k in best: r = getFromIn(k, mult, inFromOut) if r: # FIXME: make -1 for i in range(len(inFromOut)-1, 0, -1): try: t = None t = inFromOut[i][k] if t is not None: d[k] = t break except KeyError: zz =5 return d def getBestValue(inFromOut): best = findUnion(inFromOut) ds = [] for i in [1.5, 2, 2.5, 3]: print('at multiplier ', i) d = feedFromUnionToPositiveKeyFinder(best, i, inFromOut) for k, v in d.items(): if v > 20000: print(k, v) print('') def getFromIn(key, mult, inFromOut): v = [] for i in inFromOut: try: v.append(i[key]) except KeyError: zzz = 5 p = v[0] f = False for j in v: if j < 1: f = False break elif j > mult * p: f = True else: f = False p = j if f: return key return None
39.963964
175
0.586865
5ba78c115ad3e810bbe1374a224fe105cf01ca7d
1,308
py
Python
setup.py
tupian-language-resources/pytular
5eaedcd824af06b32d6bb2b8fdebffda7180bc1e
[ "Apache-2.0" ]
null
null
null
setup.py
tupian-language-resources/pytular
5eaedcd824af06b32d6bb2b8fdebffda7180bc1e
[ "Apache-2.0" ]
1
2021-03-23T13:02:43.000Z
2021-03-25T13:32:53.000Z
setup.py
tupian-language-resources/pytular
5eaedcd824af06b32d6bb2b8fdebffda7180bc1e
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages setup( name='pytular', version='0.1.1.dev0', license='Apache 2.0', description='TuLaR curation library', long_description=open('README.md').read(), long_description_content_type='text/markdown', classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], author='Robert Forkel', author_email='forkel@shh.mpg.de', url='', keywords='data', packages=find_packages(where='src'), package_dir={'': 'src'}, include_package_data=True, zip_safe=False, platforms='any', python_requires='>=3.6', install_requires=[ 'attrs>=19.3', 'clldutils>=3.5', 'csvw', 'gspread', 'oauth2client', ], extras_require={ 'dev': ['flake8', 'wheel', 'twine'], 'test': [ 'pytest>=4.3', 'pytest-mock', 'pytest-cov', 'coverage>=4.2', ], }, entry_points={ #'console_scripts': [ # 'tular=pytular.__main__:main', #] }, )
25.153846
50
0.541284
66faa747e967ad20958b2f608c76eeb8f9c225f2
392
py
Python
cajas/investments/admin.py
dmontoya1/cajas
5eb3d5835250d5dafae398082200b79c1ca8063b
[ "MIT" ]
null
null
null
cajas/investments/admin.py
dmontoya1/cajas
5eb3d5835250d5dafae398082200b79c1ca8063b
[ "MIT" ]
null
null
null
cajas/investments/admin.py
dmontoya1/cajas
5eb3d5835250d5dafae398082200b79c1ca8063b
[ "MIT" ]
null
null
null
from django.contrib import admin from .models.investment import Investment from .models.investment_pay import InvestmentPay class InvestmentPayStacked(admin.StackedInline): model = InvestmentPay extra = 0 @admin.register(Investment) class InvestmentAdmin(admin.ModelAdmin): list_display = ('partner', 'date', 'element', 'total_value') inlines = [InvestmentPayStacked]
20.631579
64
0.765306
4c9ea2da23d032469327a9f39b809d37f2a71b58
11,491
py
Python
forecast/migrations/0002_data_20200522.py
uktrade/fadmin2
0f774400fb816c9ca30e30b25ae542135966e185
[ "MIT" ]
3
2020-01-05T16:46:42.000Z
2021-08-02T08:08:39.000Z
forecast/migrations/0002_data_20200522.py
uktrade/fadmin2
0f774400fb816c9ca30e30b25ae542135966e185
[ "MIT" ]
30
2019-11-28T15:16:35.000Z
2021-08-16T14:49:58.000Z
forecast/migrations/0002_data_20200522.py
uktrade/fadmin2
0f774400fb816c9ca30e30b25ae542135966e185
[ "MIT" ]
null
null
null
from django.db import migrations fields = [ "financial_period_code", "period_long_name", "period_short_name", "period_calendar_code", ] periods = [ [1, "April", "Apr", 4], [2, "May", "May", 5], [3, "June", "Jun", 6], [4, "July", "Jul", 7], [5, "August", "Aug", 8], [6, "September", "Sep", 9], [7, "October", "Oct", 10], [8, "November", "Nov", 11], [9, "December", "Dec", 12], [10, "January", "Jan", 1], [11, "February", "Feb", 2], [12, "March", "Mar", 3], [13, "Adjustment 1", "Adj1", 0], [14, "Adjustment 2", "Adj2", 0], [15, "Adjustment 3", "Adj3", 0], ] def populate_period(apps, schema_editor): PeriodModel = apps.get_model("forecast", "FinancialPeriod") for l in periods: d = dict(zip(fields, l)) obj, created = PeriodModel.objects.get_or_create(**d) def create_forecast_expenditure_types(apps, schema_editor): ForecastExpenditureType = apps.get_model("forecast", "ForecastExpenditureType") BudgetType = apps.get_model("chartofaccountDIT", "BudgetType") del_type = BudgetType.objects.get(budget_type_key="DEL") ame_type = BudgetType.objects.get(budget_type_key="AME") admin_type = BudgetType.objects.get(budget_type_key="ADMIN") ForecastExpenditureType.objects.create( forecast_expenditure_type_name="Capital", forecast_expenditure_type_description="Capital", forecast_expenditure_type_display_order=3, nac_economic_budget_code="CAPITAL", programme_budget_type=del_type, ).save() ForecastExpenditureType.objects.create( forecast_expenditure_type_name="Capital", forecast_expenditure_type_description="Capital", forecast_expenditure_type_display_order=3, nac_economic_budget_code="CAPITAL", programme_budget_type=ame_type, ).save() ForecastExpenditureType.objects.create( forecast_expenditure_type_name="Capital", forecast_expenditure_type_description="Capital", forecast_expenditure_type_display_order=3, nac_economic_budget_code="CAPITAL", programme_budget_type=admin_type, ).save() ForecastExpenditureType.objects.create( nac_economic_budget_code="RESOURCE", programme_budget_type=del_type, forecast_expenditure_type_name='Programme', forecast_expenditure_type_description='Programme Resource', forecast_expenditure_type_display_order=2 ).save() ForecastExpenditureType.objects.create( nac_economic_budget_code="RESOURCE", programme_budget_type=ame_type, forecast_expenditure_type_name='Programme', forecast_expenditure_type_description='Programme Resource', forecast_expenditure_type_display_order=2 ).save() ForecastExpenditureType.objects.create( nac_economic_budget_code="RESOURCE", programme_budget_type=admin_type, forecast_expenditure_type_name='Admin', forecast_expenditure_type_description='Admin Resource', forecast_expenditure_type_display_order=1 ).save() def create_forecast_lock(apps, schema_editor): ForecastEditState = apps.get_model('forecast', 'ForecastEditState') ForecastEditState.objects.create() class Migration(migrations.Migration): dependencies = [("forecast", "0001_initial")] operations = [ migrations.RunPython(populate_period), migrations.RunPython(create_forecast_expenditure_types), migrations.RunPython(create_forecast_lock), # 0050_auto_20200116_1204 migrations.RunSQL("""UPDATE public."chartofaccountDIT_budgettype" SET budget_type_display_order=1 WHERE budget_type_key = 'DEL'; UPDATE public."chartofaccountDIT_budgettype" SET budget_type_display_order=1 WHERE budget_type_key = 'ADMIN'; UPDATE public."chartofaccountDIT_budgettype" SET budget_type_display_order=2 WHERE budget_type_key = 'AME'; """), # 0051_create_budget_forecast_view migrations.RunSQL( """ DROP VIEW if exists forecast_forecast_budget_view ; DROP VIEW if exists yearly_budget; DROP VIEW if exists annual_forecast; CREATE VIEW annual_forecast as SELECT financial_code_id, financial_year_id, SUM(CASE WHEN financial_period_id = 1 THEN amount ELSE NULL END) AS apr, SUM(CASE WHEN financial_period_id = 2 THEN amount ELSE NULL END) AS may, SUM(CASE WHEN financial_period_id = 3 THEN amount ELSE NULL END) AS jun, SUM(CASE WHEN financial_period_id = 4 THEN amount ELSE NULL END) AS jul, SUM(CASE WHEN financial_period_id = 5 THEN amount ELSE NULL END) AS aug, SUM(CASE WHEN financial_period_id = 6 THEN amount ELSE NULL END) AS sep, SUM(CASE WHEN financial_period_id = 7 THEN amount ELSE NULL END) AS oct, SUM(CASE WHEN financial_period_id = 8 THEN amount ELSE NULL END) AS nov, SUM(CASE WHEN financial_period_id = 9 THEN amount ELSE NULL END) AS "dec", SUM(CASE WHEN financial_period_id = 10 THEN amount ELSE NULL END) AS jan, SUM(CASE WHEN financial_period_id = 11 THEN amount ELSE NULL END) AS feb, SUM(CASE WHEN financial_period_id = 12 THEN amount ELSE NULL END) AS mar, SUM(CASE WHEN financial_period_id = 13 THEN amount ELSE NULL END) AS adj1 , SUM(CASE WHEN financial_period_id = 14 THEN amount ELSE NULL END) AS adj2 , SUM(CASE WHEN financial_period_id = 15 THEN amount ELSE NULL END) AS adj3 FROM forecast_forecastmonthlyfigure GROUP BY financial_code_id, financial_year_id; CREATE VIEW yearly_budget as SELECT financial_code_id, financial_year_id, SUM(amount) AS budget FROM forecast_budgetmonthlyfigure GROUP BY financial_code_id, financial_year_id; CREATE VIEW public.forecast_forecast_budget_view as SELECT coalesce(b.financial_code_id, f.financial_code_id) as financial_code_id, coalesce(b.financial_year_id, f.financial_year_id) as financial_year, coalesce(budget, 0) as budget, coalesce(apr, 0) as apr, coalesce(may, 0) as may, coalesce(jun, 0) as jun, coalesce(jul, 0) as jul, coalesce(aug, 0) as aug, coalesce(sep, 0) as sep, coalesce(oct, 0) as oct, coalesce(nov, 0) as nov, coalesce("dec", 0) as "dec", coalesce(jan, 0) as jan, coalesce(feb, 0) as feb, coalesce(mar, 0) as mar, coalesce(adj1, 0) as adj1, coalesce(adj2, 0) as adj2, coalesce(adj3, 0) as adj3 FROM annual_forecast f FULL OUTER JOIN yearly_budget b on b.financial_code_id = f.financial_code_id and b.financial_year_id = f.financial_year_id; """, """ DROP VIEW if exists forecast_forecast_budget_view; DROP VIEW if exists yearly_budget; DROP VIEW if exists annual_forecast; """, ), migrations.RunSQL( """ DROP VIEW if exists forecast_forecast_budget_view CASCADE; DROP VIEW if exists yearly_budget CASCADE; DROP VIEW if exists annual_forecast CASCADE; CREATE VIEW annual_forecast as SELECT financial_code_id, financial_year_id, SUM(CASE WHEN financial_period_id = 1 THEN amount ELSE NULL END) AS apr, SUM(CASE WHEN financial_period_id = 2 THEN amount ELSE NULL END) AS may, SUM(CASE WHEN financial_period_id = 3 THEN amount ELSE NULL END) AS jun, SUM(CASE WHEN financial_period_id = 4 THEN amount ELSE NULL END) AS jul, SUM(CASE WHEN financial_period_id = 5 THEN amount ELSE NULL END) AS aug, SUM(CASE WHEN financial_period_id = 6 THEN amount ELSE NULL END) AS sep, SUM(CASE WHEN financial_period_id = 7 THEN amount ELSE NULL END) AS oct, SUM(CASE WHEN financial_period_id = 8 THEN amount ELSE NULL END) AS nov, SUM(CASE WHEN financial_period_id = 9 THEN amount ELSE NULL END) AS "dec", SUM(CASE WHEN financial_period_id = 10 THEN amount ELSE NULL END) AS jan, SUM(CASE WHEN financial_period_id = 11 THEN amount ELSE NULL END) AS feb, SUM(CASE WHEN financial_period_id = 12 THEN amount ELSE NULL END) AS mar, SUM(CASE WHEN financial_period_id = 13 THEN amount ELSE NULL END) AS adj1 , SUM(CASE WHEN financial_period_id = 14 THEN amount ELSE NULL END) AS adj2 , SUM(CASE WHEN financial_period_id = 15 THEN amount ELSE NULL END) AS adj3 FROM forecast_forecastmonthlyfigure WHERE forecast_forecastmonthlyfigure.archived_status_id is NULL GROUP BY financial_code_id, financial_year_id; CREATE VIEW yearly_budget as SELECT financial_code_id, financial_year_id, archived_status_id, SUM(amount) AS budget FROM forecast_budgetmonthlyfigure WHERE forecast_budgetmonthlyfigure.archived_status_id is NULL GROUP BY financial_code_id, financial_year_id, archived_status_id; CREATE VIEW public.forecast_forecast_budget_view as SELECT coalesce(b.financial_code_id, f.financial_code_id) as financial_code_id, coalesce(b.financial_year_id, f.financial_year_id) as financial_year, coalesce(budget, 0) as budget, coalesce(apr, 0) as apr, coalesce(may, 0) as may, coalesce(jun, 0) as jun, coalesce(jul, 0) as jul, coalesce(aug, 0) as aug, coalesce(sep, 0) as sep, coalesce(oct, 0) as oct, coalesce(nov, 0) as nov, coalesce("dec", 0) as "dec", coalesce(jan, 0) as jan, coalesce(feb, 0) as feb, coalesce(mar, 0) as mar, coalesce(adj1, 0) as adj1, coalesce(adj2, 0) as adj2, coalesce(adj3, 0) as adj3 FROM annual_forecast f FULL OUTER JOIN yearly_budget b on b.financial_code_id = f.financial_code_id and b.financial_year_id = f.financial_year_id; """, ), ]
48.281513
131
0.593334
bcdc2311f31ad93c801c92cea9f7ed8a0d42e7a3
753
py
Python
duckdown/tool/secure.py
blueshed/duckdown
e6d0e62d378bd2d9ed0cd5ce4bc7ab3476b86020
[ "MIT" ]
null
null
null
duckdown/tool/secure.py
blueshed/duckdown
e6d0e62d378bd2d9ed0cd5ce4bc7ab3476b86020
[ "MIT" ]
null
null
null
duckdown/tool/secure.py
blueshed/duckdown
e6d0e62d378bd2d9ed0cd5ce4bc7ab3476b86020
[ "MIT" ]
null
null
null
""" secure a users file """ from invoke import task from dotenv import load_dotenv from cryptography.fernet import Fernet from duckdown.utils.encrypt import encrypt, decrypt from duckdown.utils import json_utils @task def secure(_, path): """ encrypt the passwords in a users.json file """ load_dotenv(verbose=True) with open(path) as file: users = json_utils.load(file) new_values = {} for user in users: new_values[user] = encrypt(user) print(json_utils.dumps(new_values)) @task def unsecure(_, data): """ return to normal """ load_dotenv(verbose=True) print(decrypt(data)) @task def gen_key(_): """ generates a secret key for use as DKDN_KEY envar""" return Fernet.generate_key()
21.514286
60
0.690571
223781115de394c66850498ffc12d01bb9f1ef7d
728
py
Python
django_project/urls.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
1
2016-10-26T23:10:57.000Z
2016-10-26T23:10:57.000Z
django_project/urls.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
null
null
null
django_project/urls.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from iot import v1_views from django.views.generic import TemplateView # from django.contrib import admin # admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'django_project.views.home', name='home'), # url(r'^blog/', include('blog.urls')), # url(r'^admin/', include(admin.site.urls)), url(r'^v1/schemas$', v1_views.schemas, name='schemas'), url(r'^v1/schemas/(?P<schema_id>[-\w]+)$', v1_views.schema_by_id, name='schema_by_id'), url(r'^v1/schemas/(?P<schema_id>[-\w]+)/data$', v1_views.data, name='data'), url(r'^v1/schemas/(?P<schema_id>[-\w]+)/data/(?P<data_id>[-\w]+)$', v1_views.data_by_id, name='data_by_id'), )
38.315789
112
0.656593
3a4649dd21dcbd5f9e9a9821c3e9b2096f16a7a2
38,075
py
Python
rplugin/python3/denite/ui/default.py
mkinoshi/new-denite
5889dc4acfd11c881a3d54bea4023df09561aff5
[ "MIT" ]
null
null
null
rplugin/python3/denite/ui/default.py
mkinoshi/new-denite
5889dc4acfd11c881a3d54bea4023df09561aff5
[ "MIT" ]
null
null
null
rplugin/python3/denite/ui/default.py
mkinoshi/new-denite
5889dc4acfd11c881a3d54bea4023df09561aff5
[ "MIT" ]
null
null
null
# ============================================================================ # FILE: default.py # AUTHOR: Shougo Matsushita <Shougo.Matsu at gmail.com> # License: MIT license # ============================================================================ import copy import re import weakref from itertools import groupby, takewhile from denite.util import ( clear_cmdline, echo, error, regex_convert_py_vim, clearmatch) from .action import DEFAULT_ACTION_KEYMAP from .prompt import DenitePrompt from denite.parent import SyncParent from ..prompt.prompt import STATUS_ACCEPT, STATUS_INTERRUPT class Default(object): @property def is_async(self): return self._denite.is_async() @property def current_mode(self): return self._current_mode def __init__(self, vim): self._vim = vim self._denite = None self._cursor = 0 self._win_cursor = 2 self._selected_candidates = [] self._candidates = [] self._candidates_len = 0 self._result = [] self._context = {} self._current_mode = '' self._mode_stack = [] self._current_mappings = {} self._bufnr = -1 self._winid = -1 self._winrestcmd = '' self._initialized = False self._winheight = 0 self._winwidth = 0 self._winminheight = -1 self._scroll = 0 self._is_multi = False self._matched_pattern = '' self._displayed_texts = [] self._statusline_sources = '' self._prompt = DenitePrompt( self._vim, self._context, weakref.proxy(self) ) self._guicursor = '' self._titlestring = '' self._ruler = False self._prev_action = '' self._prev_status = {} self._prev_curpos = [] self._is_suspend = False self._save_window_options = {} self._sources_history = [] def start(self, sources, context): if not self._denite: self._denite = SyncParent(self._vim) self._result = [] context['sources_queue'] = [sources] self._sources_history = [] try: while context['sources_queue']: prev_history = copy.copy(self._sources_history) prev_path = context['path'] self._start(context['sources_queue'][0], context) if prev_history == self._sources_history: self._sources_history.append({ 'sources': context['sources_queue'][0], 'path': prev_path, }) context['sources_queue'].pop(0) context['path'] = self._context['path'] finally: self.cleanup() return self._result def _start(self, sources, context): self._vim.command('silent! autocmd! denite') if re.search(r'\[Command Line\]$', self._vim.current.buffer.name): # Ignore command line window. return if self._initialized and context['resume']: # Skip the initialization if not self._is_suspend: if context['mode']: self._current_mode = context['mode'] update = ('immediately', 'immediately_1', 'cursor_wrap', 'cursor_pos', 'prev_winid', 'quick_move') for key in update: self._context[key] = context[key] if self.check_option(): return self.init_buffer() if context['refresh']: self.redraw() else: if not context['mode']: # Default mode context['mode'] = 'insert' self._context.clear() self._context.update(context) self._context['sources'] = sources self._context['is_redraw'] = False self._current_mode = context['mode'] self._is_multi = len(sources) > 1 if not sources: # Ignore empty sources. error(self._vim, 'Empty sources') return self.init_denite() self.gather_candidates() self.update_candidates() self.init_cursor() if self.check_option(): return self.init_buffer() self._is_suspend = False self.update_displayed_texts() self.change_mode(self._current_mode) self.update_buffer() if self._context['quick_move'] and self.quick_move(): return # Make sure that the caret position is ok self._prompt.caret.locus = self._prompt.caret.tail status = self._prompt.start() if status == STATUS_INTERRUPT: # STATUS_INTERRUPT is returned when user hit <C-c> and the loop has # interrupted. # In this case, denite cancel any operation and close its window. self.quit() return def init_buffer(self): self._prev_status = dict() self._displayed_texts = [] if not self._is_suspend: self._prev_bufnr = self._vim.current.buffer.number self._prev_curpos = self._vim.call('getcurpos') self._prev_wininfo = self._get_wininfo() self._prev_winid = int(self._context['prev_winid']) self._winrestcmd = self._vim.call('winrestcmd') self._scroll = int(self._context['scroll']) if self._scroll == 0: self._scroll = round(self._winheight / 2) if self._context['cursor_shape']: self._guicursor = self._vim.options['guicursor'] self._vim.options['guicursor'] = 'a:None' self._titlestring = self._vim.options['titlestring'] self._ruler = self._vim.options['ruler'] self._switch_buffer() self.resize_buffer() self._winheight = self._vim.current.window.height self._winwidth = self._vim.current.window.width self._options = self._vim.current.buffer.options self._options['buftype'] = 'nofile' self._options['bufhidden'] = 'delete' self._options['swapfile'] = False self._options['buflisted'] = False self._options['modeline'] = False self._options['filetype'] = 'denite' self._options['modifiable'] = True if self._context['split'] == 'floating': # Disable ruler self._vim.options['ruler'] = False self._window_options = self._vim.current.window.options window_options = { 'colorcolumn': '', 'conceallevel': 3, 'concealcursor': 'n', 'cursorcolumn': False, 'foldenable': False, 'foldcolumn': 0, 'list': False, 'number': False, 'relativenumber': False, 'spell': False, 'winfixheight': True, 'wrap': False, } if self._context['cursorline']: window_options['cursorline'] = True self._save_window_options = {} for k, v in window_options.items(): self._save_window_options[k] = self._window_options[k] self._window_options[k] = v self._bufvars = self._vim.current.buffer.vars self._bufnr = self._vim.current.buffer.number self._winid = self._vim.call('win_getid') self._bufvars['denite_statusline'] = {} self._vim.vars['denite#_previewed_buffers'] = {} self._vim.command('silent doautocmd WinEnter') self._vim.command('silent doautocmd BufWinEnter') self._vim.command('doautocmd FileType denite') self.init_syntax() def _switch_buffer(self): split = self._context['split'] if (split != 'no' and self._winid > 0 and self._vim.call('win_gotoid', self._winid)): if (not self._is_suspend and split != 'vertical' and split != 'floating'): # Move the window to bottom self._vim.command('wincmd J') self._winrestcmd = '' else: command = 'edit' if split == 'tab': self._vim.command('tabnew') elif (split == 'floating' and self._vim.call('exists', '*nvim_open_win')): # Use floating window self._vim.call( 'nvim_open_win', self._vim.call('bufnr', '%'), True, { 'relative': 'editor', 'row': int(self._context['winrow']), 'col': int(self._context['wincol']), 'width': int(self._context['winwidth']), 'height': int(self._context['winheight']), }) self._vim.current.window.options['winhighlight'] = ( 'Normal:' + self._context['highlight_window_background'] ) elif split != 'no': command = self._get_direction() command += ' vsplit' if split == 'vertical' else ' split' self._vim.call( 'denite#util#execute_path', f'silent keepalt {command}', '[denite]') def _get_direction(self): direction = self._context['direction'] if direction == 'dynamictop' or direction == 'dynamicbottom': self.update_displayed_texts() winwidth = self._vim.call('winwidth', 0) is_fit = not [x for x in self._displayed_texts if self._vim.call('strwidth', x) > winwidth] if direction == 'dynamictop': direction = 'aboveleft' if is_fit else 'topleft' else: direction = 'belowright' if is_fit else 'botright' return direction def _get_wininfo(self): return [ self._vim.options['columns'], self._vim.options['lines'], self._vim.call('win_getid'), ] def _switch_prev_buffer(self): if (self._prev_bufnr == self._bufnr or self._vim.buffers[self._prev_bufnr].name == ''): self._vim.command('enew') else: self._vim.command('buffer ' + str(self._prev_bufnr)) def init_syntax(self): self._vim.command('syntax case ignore') self._vim.command('highlight default link deniteMode ModeMsg') self._vim.command('highlight link deniteMatchedRange ' + self._context['highlight_matched_range']) self._vim.command('highlight link deniteMatchedChar ' + self._context['highlight_matched_char']) self._vim.command('highlight default link ' + 'deniteStatusLinePath Comment') self._vim.command('highlight default link ' + 'deniteStatusLineNumber LineNR') self._vim.command('highlight default link ' + 'deniteSelectedLine Statement') self._vim.command(('syntax match deniteSelectedLine /^[%s].*/' + ' contains=deniteConcealedMark') % ( self._context['selected_icon'])) self._vim.command(('syntax match deniteConcealedMark /^[ %s]/' + ' conceal contained') % ( self._context['selected_icon'])) self._denite.init_syntax(self._context, self._is_multi) def init_cursor(self): self._win_cursor = 2 self._cursor = 0 if self._context['reversed']: self.move_to_last_line() def update_candidates(self): (pattern, statuses, self._candidates) = self._denite.filter_candidates(self._context) self._candidates = self.get_current_path() + self._candidates prev_matched_pattern = self._matched_pattern self._matched_pattern = pattern self._candidates_len = len(self._candidates) self._statusline_sources = ' '.join(statuses) prev_displayed_texts = self._displayed_texts self.update_displayed_texts() updated = (self._displayed_texts != prev_displayed_texts or self._matched_pattern != prev_matched_pattern) if updated and self._denite.is_async() and self._context['reversed']: self.init_cursor() return updated def update_displayed_texts(self): if self._context['auto_resize']: winminheight = int(self._context['winminheight']) if (winminheight is not -1 and self._candidates_len < winminheight): self._winheight = winminheight elif self._candidates_len > int(self._context['winheight']): self._winheight = int(self._context['winheight']) elif self._candidates_len != self._winheight: self._winheight = self._candidates_len self._displayed_texts = [ self.get_candidate_display_text(i) for i in range(self._cursor, min(self._candidates_len, self._cursor + self._winheight)) ] def get_current_path(self): return [self._context['path']] def update_buffer(self): if self._bufnr != self._vim.current.buffer.number: return self.update_status() if self._vim.call('hlexists', 'deniteMatchedRange'): self._vim.command('silent! syntax clear deniteMatchedRange') if self._vim.call('hlexists', 'deniteMatchedChar'): self._vim.command('silent! syntax clear deniteMatchedChar') if self._matched_pattern != '': self._vim.command( r'silent! syntax match deniteMatchedRange /\c%s/ contained' % (regex_convert_py_vim(self._matched_pattern)) ) self._vim.command(( 'silent! syntax match deniteMatchedChar /[%s]/ ' 'containedin=deniteMatchedRange contained' ) % re.sub( r'([\[\]\\^-])', r'\\\1', self._context['input'].replace(' ', '') )) self._vim.current.buffer[:] = self._displayed_texts self.resize_buffer() self.move_cursor() def update_status(self): raw_mode = self._current_mode.upper() cursor_location = self._cursor + self._win_cursor max_len = len(str(self._candidates_len)) linenr = ('{:'+str(max_len)+'}/{:'+str(max_len)+'}').format( cursor_location, self._candidates_len) mode = '-- ' + raw_mode + ' -- ' if self._context['error_messages']: mode = '[ERROR] ' + mode path = '[' + self._context['path'] + ']' status = { 'mode': mode, 'sources': self._statusline_sources, 'path': path, 'linenr': linenr, # Extra 'raw_mode': raw_mode, 'buffer_name': self._context['buffer_name'], 'line_cursor': cursor_location, 'line_total': self._candidates_len, } if status != self._prev_status: self._bufvars['denite_statusline'] = status self._vim.command('redrawstatus') self._prev_status = status if self._context['statusline']: status = ( "%#deniteMode#%{denite#get_status('mode')}%* " + "%{denite#get_status('sources')} %=" + "%#deniteStatusLinePath# %{denite#get_status('path')} %*" + "%#deniteStatusLineNumber#%{denite#get_status('linenr')}%*") if self._context['split'] == 'floating': self._vim.options['titlestring'] = status else: self._window_options['statusline'] = status def update_cursor(self): self.update_displayed_texts() self.update_buffer() def get_display_source_name(self, name): source_names = self._context['source_names'] if not self._is_multi or source_names == 'hide': source_name = '' else: short_name = (re.sub(r'([a-zA-Z])[a-zA-Z]+', r'\1', name) if re.search(r'[^a-zA-Z]', name) else name[:2]) source_name = short_name if source_names == 'short' else name return source_name def get_current_path_display_text(self, candidate): return candidate def get_candidate_display_text(self, index): if index == 0: return self.get_current_path_display_text(self._candidates[index]) else: source_names = self._context['source_names'] candidate = self._candidates[index] terms = [] if self._is_multi and source_names != 'hide': terms.append(self.get_display_source_name( candidate['source_name'])) encoding = self._context['encoding'] abbr = candidate.get('abbr', candidate['word']).encode( encoding, errors='replace').decode(encoding, errors='replace') terms.append(abbr[:int(self._context['max_candidate_width'])]) return (self._context['selected_icon'] if index in self._selected_candidates else ' ') + ' '.join(terms).replace('\n', '') def resize_buffer(self): split = self._context['split'] if split == 'no' or split == 'tab': return winheight = self._winheight winwidth = self._winwidth is_vertical = split == 'vertical' if not is_vertical and self._vim.current.window.height != winheight: self._vim.command('resize ' + str(winheight)) if self._context['reversed']: self._vim.command('normal! zb') elif is_vertical and self._vim.current.window.width != winwidth: self._vim.command('vertical resize ' + str(winwidth)) def check_option(self): if self._context['cursor_pos'].isnumeric(): self.init_cursor() self.move_to_pos(int(self._context['cursor_pos'])) elif re.match(r'\+\d+', self._context['cursor_pos']): for _ in range(int(self._context['cursor_pos'][1:])): self.move_to_next_line() elif re.match(r'-\d+', self._context['cursor_pos']): for _ in range(int(self._context['cursor_pos'][1:])): self.move_to_prev_line() elif self._context['cursor_pos'] == '$': self.move_to_last_line() elif self._context['do'] != '': self.do_command(self._context['do']) return True if (self._candidates and self._context['immediately'] or len(self._candidates) == 1 and self._context['immediately_1']): self.do_immediately() return True return not (self._context['empty'] or self._denite.is_async() or self._candidates) def do_immediately(self): goto = self._winid > 0 and self._vim.call( 'win_gotoid', self._winid) if goto: # Jump to denite window self.init_buffer() self.update_cursor() self.do_action('default') candidate = self.get_cursor_candidate() echo(self._vim, 'Normal', '[{}/{}] {}'.format( self._cursor + self._win_cursor, self._candidates_len, candidate.get('abbr', candidate['word']))) if goto: # Move to the previous window self.suspend() self._vim.command('wincmd p') def do_command(self, command): self.init_cursor() self._context['post_action'] = 'suspend' while self._cursor + self._win_cursor < self._candidates_len: self.do_action('default', command) self.move_to_next_line() self.quit_buffer() def move_cursor(self): if self._win_cursor > self._vim.call('line', '$'): self._win_cursor = self._vim.call('line', '$') if self._win_cursor != self._vim.call('line', '.'): self._vim.call('cursor', [self._win_cursor, 1]) if self._context['auto_action']: self.do_action(self._context['auto_action']) def change_mode(self, mode): self._current_mode = mode custom = self._context['custom']['map'] use_default_mappings = self._context['use_default_mappings'] highlight = 'highlight_mode_' + mode if highlight in self._context: self._vim.command('highlight! link CursorLine ' + self._context[highlight]) # Clear current keymap self._prompt.keymap.registry.clear() # Apply mode independent mappings if use_default_mappings: self._prompt.keymap.register_from_rules( self._vim, DEFAULT_ACTION_KEYMAP.get('_', []) ) self._prompt.keymap.register_from_rules( self._vim, custom.get('_', []) ) # Apply mode depend mappings mode = self._current_mode if use_default_mappings: self._prompt.keymap.register_from_rules( self._vim, DEFAULT_ACTION_KEYMAP.get(mode, []) ) self._prompt.keymap.register_from_rules( self._vim, custom.get(mode, []) ) # Update mode context self._context['mode'] = mode # Update mode indicator self.update_status() def cleanup(self): # Clear previewed buffers if not self._is_suspend and not self._context['has_preview_window']: self._vim.command('pclose!') for bufnr in self._vim.vars['denite#_previewed_buffers'].keys(): if not self._vim.call('win_findbuf', bufnr): self._vim.command('silent bdelete ' + str(bufnr)) self._vim.vars['denite#_previewed_buffers'] = {} clearmatch(self._vim) if not self._context['immediately']: # Redraw to clear prompt self._vim.command('redraw | echo ""') self._vim.command('highlight! link CursorLine CursorLine') if self._context['cursor_shape']: self._vim.command('set guicursor&') self._vim.options['guicursor'] = self._guicursor if self._context['split'] == 'floating': self._vim.options['titlestring'] = self._titlestring self._vim.options['ruler'] = self._ruler def quit_buffer(self): self.cleanup() if self._vim.call('bufwinnr', self._bufnr) < 0: # Denite buffer is already closed return # Restore the window if self._context['split'] == 'no': self._window_options['cursorline'] = False self._switch_prev_buffer() for k, v in self._save_window_options.items(): self._vim.current.window.options[k] = v else: if self._context['split'] == 'tab': self._vim.command('tabclose!') if self._context['split'] != 'tab': self._vim.command('close!') self._vim.call('win_gotoid', self._prev_winid) # Restore the position self._vim.call('setpos', '.', self._prev_curpos) if self._get_wininfo() and self._get_wininfo() == self._prev_wininfo: self._vim.command(self._winrestcmd) def get_cursor_candidate(self): if self._cursor + self._win_cursor > self._candidates_len: return {} return self._candidates[self._cursor + self._win_cursor - 1] def get_selected_candidates(self): if not self._selected_candidates: return [self.get_cursor_candidate() ] if self.get_cursor_candidate() else [] return [self._candidates[x] for x in self._selected_candidates] def redraw(self, is_force=True): self._context['is_redraw'] = is_force if is_force: self.gather_candidates() if self.update_candidates(): self.update_buffer() else: self.update_status() self._context['is_redraw'] = False def quit(self): self._denite.on_close(self._context) self.quit_buffer() self._result = [] return STATUS_ACCEPT def restart(self): self.quit_buffer() self.init_denite() self.gather_candidates() self.init_buffer() self.update_candidates() self.change_mode(self._current_mode) self.update_buffer() def restore_sources(self, context): if not self._sources_history: return history = self._sources_history[-1] context['sources_queue'].append(history['sources']) context['path'] = history['path'] self._sources_history.pop() return STATUS_ACCEPT def init_denite(self): self._mode_stack = [] self._prompt.history.reset() self._denite.start(self._context) self._denite.on_init(self._context) self._initialized = True self._winheight = int(self._context['winheight']) self._winwidth = int(self._context['winwidth']) def gather_candidates(self): self._selected_candidates = [] self._denite.gather_candidates(self._context) def do_action(self, action_name, command=''): candidates = self.get_selected_candidates() if not candidates or not action_name: return self._prev_action = action_name action = self._denite.get_action( self._context, action_name, candidates) if not action: return post_action = self._context['post_action'] is_quit = action['is_quit'] or post_action == 'quit' if is_quit: self.quit() self._denite.do_action(self._context, action_name, candidates) self._result = candidates if command != '': self._vim.command(command) if is_quit and (post_action == 'open' or post_action == 'suspend'): # Re-open denite buffer self.init_buffer() self.change_mode(self._current_mode) self.redraw(False) # Disable quit flag is_quit = False if not is_quit: self._selected_candidates = [] self.redraw(action['is_redraw']) if post_action == 'suspend': self.suspend() self._vim.command('wincmd p') return STATUS_ACCEPT return STATUS_ACCEPT if is_quit else None def choose_action(self): candidates = self.get_selected_candidates() if not candidates: return self._vim.vars['denite#_actions'] = self._denite.get_action_names( self._context, candidates) clear_cmdline(self._vim) action = self._vim.call('input', 'Action: ', '', 'customlist,denite#helper#complete_actions') if action == '': return return self.do_action(action) def move_to_pos(self, pos): self._cursor = int(pos / self._winheight) * self._winheight self._win_cursor = (pos % self._winheight) + 1 self.update_cursor() def move_to_next_line(self): if self._win_cursor + self._cursor < self._candidates_len: if self._win_cursor < self._winheight: self._win_cursor += 1 else: self._cursor += 1 elif self._context['cursor_wrap']: self.move_to_first_line() else: return self.update_cursor() def move_to_prev_line(self): if self._win_cursor > 1: self._win_cursor -= 1 elif self._cursor >= 1: self._cursor -= 1 elif self._context['cursor_wrap']: self.move_to_last_line() else: return self.update_cursor() def move_to_first_line(self): if self._win_cursor > 1 or self._cursor > 0: self._win_cursor = 1 self._cursor = 0 self.update_cursor() def move_to_last_line(self): win_max = min(self._candidates_len, self._winheight) cur_max = self._candidates_len - win_max if self._win_cursor < win_max or self._cursor < cur_max: self._win_cursor = win_max self._cursor = cur_max self.update_cursor() def move_to_top(self): self._win_cursor = 1 self.update_cursor() def move_to_middle(self): self._win_cursor = self._winheight // 2 self.update_cursor() def move_to_bottom(self): self._win_cursor = self._winheight self.update_cursor() def scroll_window_upwards(self): self.scroll_up(self._scroll) def scroll_window_downwards(self): self.scroll_down(self._scroll) def scroll_page_backwards(self): self.scroll_up(self._winheight - 1) def scroll_page_forwards(self): self.scroll_down(self._winheight - 1) def scroll_down(self, scroll): if self._win_cursor + self._cursor < self._candidates_len: if self._win_cursor <= 1: self._win_cursor = 1 self._cursor = min(self._cursor + scroll, self._candidates_len) elif self._win_cursor < self._winheight: self._win_cursor = min( self._win_cursor + scroll, self._candidates_len, self._winheight) else: self._cursor = min( self._cursor + scroll, self._candidates_len - self._win_cursor) else: return self.update_cursor() def scroll_up(self, scroll): if self._win_cursor > 1: self._win_cursor = max(self._win_cursor - scroll, 1) elif self._cursor > 0: self._cursor = max(self._cursor - scroll, 0) else: return self.update_cursor() def scroll_window_up_one_line(self): if self._cursor < 1: return self.scroll_up(1) self._cursor -= 1 self._win_cursor += 1 self.update_cursor() def scroll_window_down_one_line(self): if self._win_cursor <= 1 and self._cursor > 0: return self.scroll_down(1) self._cursor += 1 self._win_cursor -= 1 self.update_cursor() def scroll_cursor_to_top(self): self._cursor += self._win_cursor - 1 self._win_cursor = 1 self.update_cursor() def scroll_cursor_to_middle(self): self.scroll_cursor_to_top() while self._cursor >= 1 and self._win_cursor < self._winheight // 2: self.scroll_window_up_one_line() def scroll_cursor_to_bottom(self): self.scroll_cursor_to_top() while self._cursor >= 1 and self._win_cursor < self._winheight: self.scroll_window_up_one_line() # def jump_to_next_by(self, key): # keyfunc = self._keyfunc(key) # keys = [keyfunc(candidate) for candidate in self._candidates] # if not keys or len(set(keys)) == 1: # return # current_index = self._cursor + self._win_cursor - 1 # forward_candidates = self._candidates[current_index:] # forward_sources = groupby(forward_candidates, keyfunc) # forward_times = len(list(next(forward_sources)[1])) # if not forward_times: # return # remaining_candidates = (self._candidates_len - current_index # - forward_times) # if next(forward_sources, None) is None: # # If the cursor is on the last source # self._cursor = 0 # self._win_cursor = 1 # elif self._candidates_len < self._winheight: # # If there is a space under the candidates # self._cursor = 0 # self._win_cursor += forward_times # elif remaining_candidates < self._winheight: # self._cursor = self._candidates_len - self._winheight + 1 # self._win_cursor = self._winheight - remaining_candidates # else: # self._cursor += forward_times + self._win_cursor - 1 # self._win_cursor = 1 # self.update_cursor() # def jump_to_prev_by(self, key): # keyfunc = self._keyfunc(key) # keys = [keyfunc(candidate) for candidate in self._candidates] # if not keys or len(set(keys)) == 1: # return # current_index = self._cursor + self._win_cursor - 1 # backward_candidates = reversed(self._candidates[:current_index + 1]) # backward_sources = groupby(backward_candidates, keyfunc) # current_source = list(next(backward_sources)[1]) # try: # prev_source = list(next(backward_sources)[1]) # except StopIteration: # If the cursor is on the first source # last_source = takewhile( # lambda candidate: # keyfunc(candidate) == keyfunc(self._candidates[-1]), # reversed(self._candidates) # ) # len_last_source = len(list(last_source)) # if self._candidates_len < self._winheight: # self._cursor = 0 # self._win_cursor = self._candidates_len - len_last_source + 1 # elif len_last_source < self._winheight: # self._cursor = self._candidates_len - self._winheight + 1 # self._win_cursor = self._winheight - len_last_source # else: # self._cursor = self._candidates_len - len_last_source # self._win_cursor = 1 # else: # back_times = len(current_source) - 1 + len(prev_source) # remaining_candidates = (self._candidates_len - current_index # + back_times) # if self._candidates_len < self._winheight: # self._cursor = 0 # self._win_cursor -= back_times # elif remaining_candidates < self._winheight: # self._cursor = self._candidates_len - self._winheight + 1 # self._win_cursor = self._winheight - remaining_candidates # else: # self._cursor -= back_times - self._win_cursor + 1 # self._win_cursor = 1 # self.update_cursor() def quick_move(self): def get_quick_move_table(): table = {} context = self._context base = self._win_cursor for [key, number] in context['quick_move_table'].items(): number = int(number) pos = ((base - number) if context['reversed'] else (number + base)) if pos > 0: table[key] = pos return table def quick_move_redraw(table, is_define): bufnr = self._vim.current.buffer.number for [key, number] in table.items(): signid = 2000 + number name = 'denite_quick_move_' + str(number) if is_define: self._vim.command( f'sign define {name} text={key} texthl=Special') self._vim.command( f'sign place {signid} name={name} ' f'line={number} buffer={bufnr}') else: self._vim.command( f'silent! sign unplace {signid} buffer={bufnr}') self._vim.command('silent! sign undefine ' + name) quick_move_table = get_quick_move_table() self._vim.command('echo "Input quick match key: "') quick_move_redraw(quick_move_table, True) self._vim.command('redraw') char = '' while char == '': char = self._vim.call('nr2char', self._vim.call('denite#util#getchar')) quick_move_redraw(quick_move_table, False) if (char not in quick_move_table or quick_move_table[char] > self._winheight): return self._win_cursor = quick_move_table[char] self.update_cursor() if self._context['quick_move'] == 'immediately': self.do_action('default') return True def _keyfunc(self, key): def wrapped(candidate): for k in key, 'action__' + key: try: return str(candidate[k]) except Exception: pass return '' return wrapped def enter_mode(self, mode): if mode == self._current_mode: return self._mode_stack.append(self._current_mode) self.change_mode(mode) def leave_mode(self): if not self._mode_stack: return self.quit() self._current_mode = self._mode_stack[-1] self._mode_stack = self._mode_stack[:-1] self.change_mode(self._current_mode) def suspend(self): if self._bufnr == self._vim.current.buffer.number: if self._context['auto_resume']: self._vim.command('autocmd denite WinEnter <buffer> ' + 'Denite -resume -buffer_name=' + self._context['buffer_name']) for mapping in ['i', 'a', '<CR>']: self._vim.command(f'nnoremap <silent><buffer> {mapping} ' + ':<C-u>Denite -resume -buffer_name=' + f"{self._context['buffer_name']}<CR>") self._is_suspend = True self._options['modifiable'] = False return STATUS_ACCEPT
36.365807
79
0.560762
6bd719864180b59c3d21d158c7f7b73ceb5e6694
1,040
py
Python
tests/unit/chroma_core/lib/storage_plugin/subscription_plugin.py
beevans/integrated-manager-for-lustre
6b7e49b8a58058e6139ad815a4388f21a581dfa0
[ "MIT" ]
52
2018-09-13T03:26:23.000Z
2022-03-25T16:51:37.000Z
tests/unit/chroma_core/lib/storage_plugin/subscription_plugin.py
beevans/integrated-manager-for-lustre
6b7e49b8a58058e6139ad815a4388f21a581dfa0
[ "MIT" ]
1,264
2018-06-15T19:50:57.000Z
2022-03-28T08:19:04.000Z
tests/unit/chroma_core/lib/storage_plugin/subscription_plugin.py
beevans/integrated-manager-for-lustre
6b7e49b8a58058e6139ad815a4388f21a581dfa0
[ "MIT" ]
27
2018-06-18T08:51:59.000Z
2022-03-16T15:35:34.000Z
from chroma_core.lib.storage_plugin.api import attributes from chroma_core.lib.storage_plugin.api.identifiers import GlobalId, ScopedId from chroma_core.lib.storage_plugin.api.plugin import Plugin from chroma_core.lib.storage_plugin.api import resources from chroma_core.lib.storage_plugin.api import relations version = 1 class Controller(resources.ScannableResource): class Meta: identifier = GlobalId("address") address = attributes.String() class Lun(resources.LogicalDrive): class Meta: identifier = ScopedId("lun_id") lun_id = attributes.String() class Presentation(resources.Resource): lun_id = attributes.String() path = attributes.String() host_id = attributes.Integer() class Meta: identifier = ScopedId("lun_id", "host_id") relations = [ relations.Provide(provide_to=resources.DeviceNode, attributes=["host_id", "path"]), relations.Subscribe(subscribe_to=Lun, attributes=["lun_id"]), ] class TestPlugin(Plugin): pass
26.666667
95
0.722115
b922aa64f421a6b224dbf8ab570f0bec98346ef3
1,527
py
Python
lib/spack/spack/build_systems/octave.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
lib/spack/spack/build_systems/octave.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
lib/spack/spack/build_systems/octave.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import inspect from spack.directives import extends from spack.package import PackageBase, run_after class OctavePackage(PackageBase): """Specialized class for Octave packages. See https://www.gnu.org/software/octave/doc/v4.2.0/Installing-and-Removing-Packages.html for more information. This class provides the following phases that can be overridden: 1. :py:meth:`~.OctavePackage.install` """ # Default phases phases = ['install'] # To be used in UI queries that require to know which # build-system class we are using build_system_class = 'OctavePackage' extends('octave') def setup_build_environment(self, env): # octave does not like those environment variables to be set: env.unset('CC') env.unset('CXX') env.unset('FC') def install(self, spec, prefix): """Install the package from the archive file""" inspect.getmodule(self).octave( '--quiet', '--norc', '--built-in-docstrings-file=/dev/null', '--texi-macros-file=/dev/null', '--eval', 'pkg prefix %s; pkg install %s' % (prefix, self.stage.archive_file)) # Testing # Check that self.prefix is there after installation run_after('install')(PackageBase.sanity_check_prefix)
29.941176
88
0.664047
be035b6bb59219f1135476c3b79cd3e2653d2c4b
3,776
py
Python
tests/gui/run_analysis_test.py
sumau/PredictCode
e2a2d5a8fa5d83f011c33e18d4ce6ac7e1429aa8
[ "Artistic-2.0" ]
18
2017-04-19T09:17:19.000Z
2021-05-24T08:53:28.000Z
tests/gui/run_analysis_test.py
sumau/PredictCode
e2a2d5a8fa5d83f011c33e18d4ce6ac7e1429aa8
[ "Artistic-2.0" ]
8
2017-06-11T17:46:35.000Z
2021-06-07T10:49:10.000Z
tests/gui/run_analysis_test.py
sumau/PredictCode
e2a2d5a8fa5d83f011c33e18d4ce6ac7e1429aa8
[ "Artistic-2.0" ]
10
2017-07-19T18:29:37.000Z
2020-11-12T22:06:45.000Z
import pytest import unittest.mock as mock import open_cp.gui.run_analysis as run_analysis import open_cp.gui.predictors as predictors from open_cp.gui.common import CoordType import open_cp.gui.analysis as analysis import open_cp.predictors import datetime @pytest.fixture def log_queue(): import queue return queue.Queue() @pytest.fixture def runAnalysis(log_queue): predictors.set_queue_logging(log_queue) class Model(): def selected_by_crime_type_data(self): return self.times, self.xcoords, self.ycoords def clone(self): return self model = Model() model.analysis_tools_model = analysis.AnalysisToolsModel(model) model.comparison_model = analysis.ComparisonModel(model) model.coord_type = CoordType.XY model.times = [datetime.datetime(2017,5,10,12,30)] model.xcoords = [3] model.ycoords = [17] model.time_range = (datetime.datetime(2017,5,4,0,0), None, datetime.datetime(2017,5,10,11,30), datetime.datetime(2017,5,11,13,30)) model.analysis_tools_model.add(predictors.grid.GridProvider) model.comparison_model.add(predictors.pred_type.PredType) model.analysis_tools_model.add(predictors.naive.CountingGrid) controller = mock.MagicMock() controller.model = model with mock.patch("open_cp.gui.tk.run_analysis_view.RunAnalysisView") as mock_view: yield run_analysis.RunAnalysis(None, controller) @pytest.fixture def locator_mock(): with mock.patch("open_cp.gui.run_analysis.locator") as locator_mock: yield locator_mock def print_log(queue): if not queue.empty(): import logging formatter = logging.Formatter("{asctime} {levelname} : {message}", style="{") while not queue.empty(): record = queue.get() print(formatter.format(record)) def get_thread(locator_mock): pool = locator_mock.get("pool") assert len(pool.method_calls) == 1 name, args, kwargs = pool.method_calls[0] assert name == "submit" off_thread = args[0] return off_thread def test_controller_runs(runAnalysis, log_queue, locator_mock): runAnalysis.run() get_thread(locator_mock) print_log(log_queue) def test_model(runAnalysis): model = run_analysis.RunAnalysisModel(runAnalysis, runAnalysis.main_model) assert len(model.projectors) == 1 assert len(model.projectors['Coordinates already projected']) == 1 import open_cp.gui.predictors.lonlat assert isinstance(model.projectors['Coordinates already projected'][0], open_cp.gui.predictors.lonlat.PassThrough.Task) assert len(model.grids) == 1 assert len(model.grids['Grid 100x100m @ (0m, 0m)']) == 1 import open_cp.gui.predictors.grid assert isinstance(model.grids['Grid 100x100m @ (0m, 0m)'][0], open_cp.gui.predictors.grid.GridProvider.Task) assert len(model.grid_prediction_tasks) == 1 assert len(model.grid_prediction_tasks['Counting Grid naive predictor']) == 1 import open_cp.gui.predictors.naive assert isinstance(model.grid_prediction_tasks['Counting Grid naive predictor'][0], open_cp.gui.predictors.naive.CountingGrid.Task) @pytest.fixture def pool(): with mock.patch("open_cp.gui.run_analysis.pool") as pool_mock: yield pool_mock def test_controller_tasks(runAnalysis, log_queue, locator_mock): runAnalysis.run() off_thread = get_thread(locator_mock) off_thread() assert str(off_thread.results[0][0]) == "projection: Coordinates already projected, grid: Grid 100x100m @ (0m, 0m), prediction_type: Counting Grid naive predictor, prediction_date: 2017-05-10 00:00:00, prediction_length: 1 day, 0:00:00" assert isinstance(off_thread.results[0][1], open_cp.predictors.GridPredictionArray)
37.386139
240
0.724576
cf5a1a86e8f8a65b87b8f5ec5394f6261c05b150
1,820
py
Python
vendor/munin/gearman.py
Paul3MK/NewsBlur
f912d100c2867e5366fca92abadc50d4253a41d8
[ "MIT" ]
3,073
2015-01-01T07:20:18.000Z
2022-03-31T20:33:41.000Z
vendor/munin/gearman.py
Paul3MK/NewsBlur
f912d100c2867e5366fca92abadc50d4253a41d8
[ "MIT" ]
1,054
2015-01-02T13:32:35.000Z
2022-03-30T04:21:21.000Z
vendor/munin/gearman.py
Paul3MK/NewsBlur
f912d100c2867e5366fca92abadc50d4253a41d8
[ "MIT" ]
676
2015-01-03T16:40:29.000Z
2022-03-30T14:00:40.000Z
#!/usr/bin/env python import os import re import socket from vendor.munin import MuninPlugin worker_re = re.compile(r'^(?P<fd>\d+) (?P<ip>[\d\.]+) (?P<client_id>[^\s]+) :\s?(?P<abilities>.*)$') class MuninGearmanPlugin(MuninPlugin): category = "Gearman" def __init__(self): super(MuninGearmanPlugin, self).__init__() addr = os.environ.get('GM_SERVER') or "127.0.0.1" port = int(addr.split(':')[-1]) if ':' in addr else 4730 host = addr.split(':')[0] self.addr = (host, port) self._sock = None def connect(self): if not self._sock: self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.connect(self.addr) return self._sock def disconnect(self): if self._sock: self._sock.close() def get_workers(self): sock = self.connect() sock.send("workers\n") buf = "" while ".\n" not in buf: buf += sock.recv(8192) info = [] for l in buf.split('\n'): if l.strip() == '.': break m = worker_re.match(l) i = m.groupdict() i['abilities'] = [x for x in i['abilities'].split(' ') if x] info.append(i) return info def get_status(self): sock = self.connect() sock.send("status\n") buf = "" while ".\n" not in buf: buf += sock.recv(8192) info = {} for l in buf.split('\n'): l = l.strip() if l == '.': break counts = l.split('\t') info[counts[0]] = dict( total = int(counts[1]), running = int(counts[2]), workers = int(counts[3]), ) return info
27.164179
100
0.487912
4da35b601a682f0b7a6379fe5e1963ca0fe22dd4
8,133
py
Python
views.py
WPRDC/property-api
980f541b07bef3c8842994cfb903b42cc2c25064
[ "MIT" ]
1
2021-10-01T18:35:46.000Z
2021-10-01T18:35:46.000Z
views.py
WPRDC/property-api
980f541b07bef3c8842994cfb903b42cc2c25064
[ "MIT" ]
null
null
null
views.py
WPRDC/property-api
980f541b07bef3c8842994cfb903b42cc2c25064
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt import time import json import csv from collections import OrderedDict as OD, defaultdict from .models import CKANResource from .utils import get_data, get_batch_data, carto_intersect, to_geojson, to_csv, data_in_shape, get_parcels, \ get_owner_name from .tasks import async_data_in_shape DATATYPES = ['json', 'geojson', 'csv', 'carto'] def index(request): return render(request, 'index.html') def single(request): try: pin = request.GET['parcel_id'] except KeyError: return JsonResponse({'success': False, 'help': 'parcel_id required'}, status=400) resources = CKANResource.objects.all() failed_searches = [] data = {} geo = {} for resource in resources: success, data[resource.slug] = get_data(pin, resource) if not success: failed_searches.append(resource.name) if success and resource.has_geo: try: geo = {'latitude': data[resource.slug][0][resource.lat_field], 'longitude': data[resource.slug][0][resource.lon_field]} except: geo = {'latitude': '', 'longitude': ''} response = OD( [('success', True), ('help', 'Data for parcel {}.'.format(pin)), ('geo', geo), ('owner', get_owner_name(pin)), ('results', data), ('failed_searches', failed_searches), ] ) return JsonResponse(response) def single_parcel(request, pin=""): if not pin: return JsonResponse({'success': False, 'help': 'parcel_id required'}, status=400) resources = CKANResource.objects.all() failed_searches = [] data = {} geo = {} for resource in resources: success, data[resource.slug] = get_data(pin, resource) if not success: failed_searches.append(resource.name) if success and resource.has_geo: geo = { 'centroid': { 'type': 'Point', 'coordinates': [data[resource.slug][0][resource.lon_field], data[resource.slug][0][resource.lat_field]] }, 'boundary': {} } response = OD( [('success', True), ('help', 'Data for parcel {}.'.format(pin)), ('geo', geo), ('owner', get_owner_name(pin)), ('data', data), ('failed_searches', failed_searches), ] ) return JsonResponse(response) def batch(request): try: pins = request.GET['parcel_ids'] except KeyError: return JsonResponse({'success': False, 'help': 'parcel_ids required'}, status=400) resources = CKANResource.objects.all() failed_searches, data, geo = [], {}, {} pins = pins.split(',') for resource in resources: success, data[resource.slug] = get_batch_data(pins, resource) if not success: failed_searches.append(resource.name) response = OD( [('success', True), ('help', 'Data for parcel {}.'.format(pins)), ('geo', geo), ('results', data), ('failed_searches', failed_searches), ] ) return JsonResponse(response) def within(request): try: shape = request.GET['shape'] except KeyError: return JsonResponse({'success': False, 'help': 'must shape of region you want to search in'}) status, pins = carto_intersect(shape) response = {'success': True, 'help': '', 'pins': pins} if response != 200: response['success'] = False response['help'] = 'call to carto failed' return JsonResponse(response, status=status) def address_search(request): try: num = request.GET['number'] street = request.GET['street'] city = request.GET['city'] zip = request.GET['zip'] except KeyError: return JsonResponse({'success': False, 'help': 'must submit street number, street name, city and zip code'}, status=400) @csrf_exempt def data_within(request): # Get shape from request, if not present return error try: shape = request.POST['shape'] except KeyError: return JsonResponse({'success': False, 'help': 'must shape of region you want to search in'}, status=400) # Get fields from request and convert to dict keyed by resource fields = {} if 'fields' in request.POST: fs = json.loads(request.POST['fields']) for f in fs: if f['r'] in fields: fields[f['r']].append(f['f']) else: fields[f['r']] = [f['f']] # data, fields_set = async_data_in_shape(shape, fields) getter = async_data_in_shape.delay(shape, fields) # data, fields_set = getter.get() return JsonResponse({'job_id': getter.id}) def get_collected_data(request): if 'job' in request.GET: job_id = request.GET['job'] else: return HttpResponse('No job id given.', status=400) # Get data type if 'type' not in request.GET: datatype = 'json' else: datatype = request.GET['type'] if datatype not in DATATYPES: return JsonResponse({'success': False, 'help': datatype + ' is not a valid datatype'}, status=400) job = async_data_in_shape.AsyncResult(job_id) if job.ready(): data, fields_set = job.get() else: return HttpResponse('Job not ready.', status=400) if datatype == 'json': response = {'success': True, 'help': '', 'data': data} return JsonResponse(response, status=200) elif datatype == 'geojson': data = to_geojson(data, fields_set) response = HttpResponse(content_type='text/json') response['Content-Disposition'] = 'attachment; filename="parcel_data.geojson"' json.dump(data, response) return response elif datatype == 'csv': print('making csv', time.clock()) data, new_fields = to_csv(data, fields_set) print('made csv', time.clock()) fields_set = ['PIN', 'geom'] + new_fields response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="parcel_data.csv"' dwriter = csv.DictWriter(response, fieldnames=fields_set) dwriter.writeheader() dwriter.writerows(data) print('done', time.clock()) return response def get_progress(request): """ A view to report the progress to the user """ if 'job' in request.GET: job_id = request.GET['job'] else: return HttpResponse('No job id given.') job = async_data_in_shape.AsyncResult(job_id) if job.state == "PROGRESS": data = job.result elif job.state == "SUCCESS": data = {'task': 'Complete', 'percent': 100} else: data = {'task': 'Starting', 'percent': 0} return JsonResponse(data) ################# ## BETA ## ############################################################################### def beta_parcels(request, parcel_ids=None): resources = CKANResource.objects.all() failed_searches, data, geo = [], {}, {} print("IDs: " + parcel_ids) response = OD( [('success', False), ('help', 'Data for parcels'), ('results', []), ('failed_searches', failed_searches), ] ) if parcel_ids: pins = parcel_ids.split(',') print("PINs: " + str(pins)) results, failed_searches = get_parcels(pins, resources) response['success'] = True response['results'] = results response['failed_searches'] = failed_searches return JsonResponse(response) else: response['help'] = 'No parcel IDs Provided' pass
31.041985
117
0.567441
7c75a03a1d2f6777905ce47f27715bd3855a8d75
18,758
py
Python
scipy/interpolate/tests/test_polyint.py
frewsxcv/scipy
b8b612c54c60e22e2a186dde6264de046ab1fe2b
[ "BSD-3-Clause" ]
1
2019-04-27T16:04:14.000Z
2019-04-27T16:04:14.000Z
scipy/interpolate/tests/test_polyint.py
joferkington/scipy
6a7327e8bb8248b2ea165180bc602edf1ab33dda
[ "BSD-3-Clause" ]
5
2021-03-19T08:36:48.000Z
2022-01-13T01:52:34.000Z
scipy/interpolate/tests/test_polyint.py
joferkington/scipy
6a7327e8bb8248b2ea165180bc602edf1ab33dda
[ "BSD-3-Clause" ]
1
2019-08-13T21:23:57.000Z
2019-08-13T21:23:57.000Z
from __future__ import division, print_function, absolute_import import warnings from numpy.testing import (assert_almost_equal, assert_array_equal, TestCase, run_module_suite, assert_allclose, assert_equal, assert_) from scipy.interpolate import (KroghInterpolator, krogh_interpolate, BarycentricInterpolator, barycentric_interpolate, PiecewisePolynomial, piecewise_polynomial_interpolate, approximate_taylor_polynomial, pchip, PchipInterpolator) from scipy.lib.six import xrange import scipy import numpy as np from scipy.interpolate import splrep, splev def check_shape(interpolator_cls, x_shape, y_shape, deriv_shape=None, axis=0): np.random.seed(1234) x = [-1, 0, 1] s = list(range(1, len(y_shape)+1)) s.insert(axis % (len(y_shape)+1), 0) y = np.random.rand(*((3,) + y_shape)).transpose(s) # Cython code chokes on y.shape = (0, 3) etc, skip them if y.size == 0: return xi = np.zeros(x_shape) yi = interpolator_cls(x, y, axis=axis)(xi) target_shape = ((deriv_shape or ()) + y.shape[:axis] + x_shape + y.shape[axis:][1:]) assert_equal(yi.shape, target_shape) # check it works also with lists if x_shape and y.size > 0: interpolator_cls(list(x), list(y), axis=axis)(list(xi)) # check also values if xi.size > 0 and deriv_shape is None: bs_shape = (y.shape[:axis] + ((1,)*len(x_shape)) + y.shape[axis:][1:]) yv = y[((slice(None,None,None),)*(axis % y.ndim))+(1,)].reshape(bs_shape) yi, y = np.broadcast_arrays(yi, yv) assert_allclose(yi, y) SHAPES = [(), (0,), (1,), (3,2,5)] def test_shapes(): for ip in [KroghInterpolator, BarycentricInterpolator, pchip]: for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): yield check_shape, ip, s1, s2, None, axis def test_derivs_shapes(): def krogh_derivs(x, y, axis=0): return KroghInterpolator(x, y, axis).derivatives for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): yield check_shape, krogh_derivs, s1, s2, (3,), axis def test_deriv_shapes(): def krogh_deriv(x, y, axis=0): return KroghInterpolator(x, y, axis).derivative def pchip_deriv(x, y, axis=0): return pchip(x, y, axis).derivative() def pchip_deriv2(x, y, axis=0): return pchip(x, y, axis).derivative(2) def pchip_deriv_inplace(x, y, axis=0): class P(PchipInterpolator): def __call__(self, x): return PchipInterpolator.__call__(self, x, 1) pass return P(x, y, axis) for ip in [krogh_deriv, pchip_deriv, pchip_deriv2, pchip_deriv_inplace]: for s1 in SHAPES: for s2 in SHAPES: for axis in range(-len(s2), len(s2)): yield check_shape, ip, s1, s2, (), axis def _check_complex(ip): x = [1, 2, 3, 4] y = [1, 2, 1j, 3] p = ip(x, y) assert_allclose(y, p(x)) def test_complex(): for ip in [KroghInterpolator, BarycentricInterpolator, pchip]: yield _check_complex, ip class CheckKrogh(TestCase): def setUp(self): self.true_poly = scipy.poly1d([-2,3,1,5,-4]) self.test_xs = np.linspace(-1,1,100) self.xs = np.linspace(-1,1,5) self.ys = self.true_poly(self.xs) def test_lagrange(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_scalar(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(7),P(7)) assert_almost_equal(self.true_poly(np.array(7)), P(np.array(7))) def test_derivatives(self): P = KroghInterpolator(self.xs,self.ys) D = P.derivatives(self.test_xs) for i in xrange(D.shape[0]): assert_almost_equal(self.true_poly.deriv(i)(self.test_xs), D[i]) def test_low_derivatives(self): P = KroghInterpolator(self.xs,self.ys) D = P.derivatives(self.test_xs,len(self.xs)+2) for i in xrange(D.shape[0]): assert_almost_equal(self.true_poly.deriv(i)(self.test_xs), D[i]) def test_derivative(self): P = KroghInterpolator(self.xs,self.ys) m = 10 r = P.derivatives(self.test_xs,m) for i in xrange(m): assert_almost_equal(P.derivative(self.test_xs,i),r[i]) def test_high_derivative(self): P = KroghInterpolator(self.xs,self.ys) for i in xrange(len(self.xs),2*len(self.xs)): assert_almost_equal(P.derivative(self.test_xs,i), np.zeros(len(self.test_xs))) def test_hermite(self): xs = [0,0,0,1,1,1,2] ys = [self.true_poly(0), self.true_poly.deriv(1)(0), self.true_poly.deriv(2)(0), self.true_poly(1), self.true_poly.deriv(1)(1), self.true_poly.deriv(2)(1), self.true_poly(2)] P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_vector(self): xs = [0, 1, 2] ys = np.array([[0,1],[1,0],[2,1]]) P = KroghInterpolator(xs,ys) Pi = [KroghInterpolator(xs,ys[:,i]) for i in xrange(ys.shape[1])] test_xs = np.linspace(-1,3,100) assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]),-1)) assert_almost_equal(P.derivatives(test_xs), np.transpose(np.asarray([p.derivatives(test_xs) for p in Pi]), (1,2,0))) def test_empty(self): P = KroghInterpolator(self.xs,self.ys) assert_array_equal(P([]), []) def test_shapes_scalarvalue(self): P = KroghInterpolator(self.xs,self.ys) assert_array_equal(np.shape(P(0)), ()) assert_array_equal(np.shape(P(np.array(0))), ()) assert_array_equal(np.shape(P([0])), (1,)) assert_array_equal(np.shape(P([0,1])), (2,)) def test_shapes_scalarvalue_derivative(self): P = KroghInterpolator(self.xs,self.ys) n = P.n assert_array_equal(np.shape(P.derivatives(0)), (n,)) assert_array_equal(np.shape(P.derivatives(np.array(0))), (n,)) assert_array_equal(np.shape(P.derivatives([0])), (n,1)) assert_array_equal(np.shape(P.derivatives([0,1])), (n,2)) def test_shapes_vectorvalue(self): P = KroghInterpolator(self.xs,np.outer(self.ys,np.arange(3))) assert_array_equal(np.shape(P(0)), (3,)) assert_array_equal(np.shape(P([0])), (1,3)) assert_array_equal(np.shape(P([0,1])), (2,3)) def test_shapes_1d_vectorvalue(self): P = KroghInterpolator(self.xs,np.outer(self.ys,[1])) assert_array_equal(np.shape(P(0)), (1,)) assert_array_equal(np.shape(P([0])), (1,1)) assert_array_equal(np.shape(P([0,1])), (2,1)) def test_shapes_vectorvalue_derivative(self): P = KroghInterpolator(self.xs,np.outer(self.ys,np.arange(3))) n = P.n assert_array_equal(np.shape(P.derivatives(0)), (n,3)) assert_array_equal(np.shape(P.derivatives([0])), (n,1,3)) assert_array_equal(np.shape(P.derivatives([0,1])), (n,2,3)) def test_wrapper(self): P = KroghInterpolator(self.xs,self.ys) assert_almost_equal(P(self.test_xs),krogh_interpolate(self.xs,self.ys,self.test_xs)) assert_almost_equal(P.derivative(self.test_xs,2),krogh_interpolate(self.xs,self.ys,self.test_xs,der=2)) assert_almost_equal(P.derivatives(self.test_xs,2),krogh_interpolate(self.xs,self.ys,self.test_xs,der=[0,1])) def test_int_inputs(self): # Check input args are cast correctly to floats, gh-3669 x = [0, 234,468,702,936,1170,1404,2340,3744,6084,8424,13104,60000] offset_cdf = np.array([-0.95, -0.86114777, -0.8147762, -0.64072425, -0.48002351, -0.34925329, -0.26503107, -0.13148093, -0.12988833, -0.12979296, -0.12973574, -0.08582937, 0.05]) f = KroghInterpolator(x, offset_cdf) assert_allclose(abs((f(x) - offset_cdf) / f.derivative(x, 1)), 0, atol=1e-10) class CheckTaylor(TestCase): def test_exponential(self): degree = 5 p = approximate_taylor_polynomial(np.exp, 0, degree, 1, 15) for i in xrange(degree+1): assert_almost_equal(p(0),1) p = p.deriv() assert_almost_equal(p(0),0) class CheckBarycentric(TestCase): def setUp(self): self.true_poly = scipy.poly1d([-2,3,1,5,-4]) self.test_xs = np.linspace(-1,1,100) self.xs = np.linspace(-1,1,5) self.ys = self.true_poly(self.xs) def test_lagrange(self): P = BarycentricInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_scalar(self): P = BarycentricInterpolator(self.xs,self.ys) assert_almost_equal(self.true_poly(7),P(7)) assert_almost_equal(self.true_poly(np.array(7)),P(np.array(7))) def test_delayed(self): P = BarycentricInterpolator(self.xs) P.set_yi(self.ys) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_append(self): P = BarycentricInterpolator(self.xs[:3],self.ys[:3]) P.add_xi(self.xs[3:],self.ys[3:]) assert_almost_equal(self.true_poly(self.test_xs),P(self.test_xs)) def test_vector(self): xs = [0, 1, 2] ys = np.array([[0,1],[1,0],[2,1]]) P = BarycentricInterpolator(xs,ys) Pi = [BarycentricInterpolator(xs,ys[:,i]) for i in xrange(ys.shape[1])] test_xs = np.linspace(-1,3,100) assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]),-1)) def test_shapes_scalarvalue(self): P = BarycentricInterpolator(self.xs,self.ys) assert_array_equal(np.shape(P(0)), ()) assert_array_equal(np.shape(P(np.array(0))), ()) assert_array_equal(np.shape(P([0])), (1,)) assert_array_equal(np.shape(P([0,1])), (2,)) def test_shapes_vectorvalue(self): P = BarycentricInterpolator(self.xs,np.outer(self.ys,np.arange(3))) assert_array_equal(np.shape(P(0)), (3,)) assert_array_equal(np.shape(P([0])), (1,3)) assert_array_equal(np.shape(P([0,1])), (2,3)) def test_shapes_1d_vectorvalue(self): P = BarycentricInterpolator(self.xs,np.outer(self.ys,[1])) assert_array_equal(np.shape(P(0)), (1,)) assert_array_equal(np.shape(P([0])), (1,1)) assert_array_equal(np.shape(P([0,1])), (2,1)) def test_wrapper(self): P = BarycentricInterpolator(self.xs,self.ys) assert_almost_equal(P(self.test_xs),barycentric_interpolate(self.xs,self.ys,self.test_xs)) class CheckPiecewise(TestCase): def setUp(self): self.tck = splrep([0,1,2,3,4,5], [0,10,-1,3,7,2], s=0) self.test_xs = np.linspace(-1,6,100) self.spline_ys = splev(self.test_xs, self.tck) self.spline_yps = splev(self.test_xs, self.tck, der=1) self.xi = np.unique(self.tck[0]) self.yi = [[splev(x, self.tck, der=j) for j in xrange(3)] for x in self.xi] def test_construction(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi, self.yi, 3) assert_almost_equal(P(self.test_xs), self.spline_ys) def test_scalar(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi,3) assert_almost_equal(P(self.test_xs[0]),self.spline_ys[0]) assert_almost_equal(P.derivative(self.test_xs[0],1),self.spline_yps[0]) assert_almost_equal(P(np.array(self.test_xs[0])),self.spline_ys[0]) assert_almost_equal(P.derivative(np.array(self.test_xs[0]),1), self.spline_yps[0]) def test_derivative(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi,3) assert_almost_equal(P.derivative(self.test_xs,1),self.spline_yps) def test_derivatives(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi,3) m = 4 r = P.derivatives(self.test_xs,m) #print r.shape, r for i in xrange(m): assert_almost_equal(P.derivative(self.test_xs,i),r[i]) def test_vector(self): xs = [0, 1, 2] ys = [[[0,1]],[[1,0],[-1,-1]],[[2,1]]] with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(xs,ys) Pi = [PiecewisePolynomial(xs,[[yd[i] for yd in y] for y in ys]) for i in xrange(len(ys[0][0]))] test_xs = np.linspace(-1,3,100) assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]),-1)) assert_almost_equal(P.derivative(test_xs,1), np.transpose(np.asarray([p.derivative(test_xs,1) for p in Pi]), (1,0))) def test_incremental(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial([self.xi[0]], [self.yi[0]], 3) for i in xrange(1,len(self.xi)): P.append(self.xi[i],self.yi[i],3) assert_almost_equal(P(self.test_xs),self.spline_ys) def test_shapes_scalarvalue(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi,4) assert_array_equal(np.shape(P(0)), ()) assert_array_equal(np.shape(P(np.array(0))), ()) assert_array_equal(np.shape(P([0])), (1,)) assert_array_equal(np.shape(P([0,1])), (2,)) def test_shapes_scalarvalue_derivative(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi,4) n = 4 assert_array_equal(np.shape(P.derivative(0,1)), ()) assert_array_equal(np.shape(P.derivative(np.array(0),1)), ()) assert_array_equal(np.shape(P.derivative([0],1)), (1,)) assert_array_equal(np.shape(P.derivative([0,1],1)), (2,)) def test_shapes_vectorvalue(self): yi = np.multiply.outer(np.asarray(self.yi),np.arange(3)) with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,yi,4) assert_array_equal(np.shape(P(0)), (3,)) assert_array_equal(np.shape(P([0])), (1,3)) assert_array_equal(np.shape(P([0,1])), (2,3)) def test_shapes_vectorvalue_1d(self): yi = np.multiply.outer(np.asarray(self.yi),np.arange(1)) with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,yi,4) assert_array_equal(np.shape(P(0)), (1,)) assert_array_equal(np.shape(P([0])), (1,1)) assert_array_equal(np.shape(P([0,1])), (2,1)) def test_shapes_vectorvalue_derivative(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi, np.multiply.outer(self.yi, np.arange(3)),4) n = 4 assert_array_equal(np.shape(P.derivative(0,1)), (3,)) assert_array_equal(np.shape(P.derivative([0],1)), (1,3)) assert_array_equal(np.shape(P.derivative([0,1],1)), (2,3)) def test_wrapper(self): with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) P = PiecewisePolynomial(self.xi,self.yi) assert_almost_equal(P(self.test_xs), piecewise_polynomial_interpolate(self.xi, self.yi, self.test_xs)) assert_almost_equal(P.derivative(self.test_xs,2), piecewise_polynomial_interpolate(self.xi, self.yi, self.test_xs, der=2)) assert_almost_equal(P.derivatives(self.test_xs,2), piecewise_polynomial_interpolate(self.xi, self.yi, self.test_xs, der=[0,1])) class TestPCHIP(TestCase): def _make_random(self, npts=20): np.random.seed(1234) xi = np.sort(np.random.random(npts)) yi = np.random.random(npts) return pchip(xi, yi), xi, yi def test_overshoot(self): # PCHIP should not overshoot p, xi, yi = self._make_random() for i in range(len(xi)-1): x1, x2 = xi[i], xi[i+1] y1, y2 = yi[i], yi[i+1] if y1 > y2: y1, y2 = y2, y1 xp = np.linspace(x1, x2, 10) yp = p(xp) assert_(((y1 <= yp) & (yp <= y2)).all()) def test_monotone(self): # PCHIP should preserve monotonicty p, xi, yi = self._make_random() for i in range(len(xi)-1): x1, x2 = xi[i], xi[i+1] y1, y2 = yi[i], yi[i+1] xp = np.linspace(x1, x2, 10) yp = p(xp) assert_(((y2-y1) * (yp[1:] - yp[:1]) > 0).all()) def test_cast(self): # regression test for integer input data, see gh-3453 data = np.array([[0, 4, 12, 27, 47, 60, 79, 87, 99, 100], [-33, -33, -19, -2, 12, 26, 38, 45, 53, 55]]) xx = np.arange(100) curve = pchip(data[0], data[1])(xx) data1 = data * 1.0 curve1 = pchip(data1[0], data1[1])(xx) assert_allclose(curve, curve1, atol=1e-14, rtol=1e-14) if __name__ == '__main__': run_module_suite()
38.997921
116
0.590521
4bed5f6a1adaacbf3883edf68cc1d1aede9766b7
5,713
py
Python
blesuite/replay/btsnoop/btsnoop/btsnoop.py
dbisu/BLESuite
37dccb23e14661bef148790a4e7c44e664fc528f
[ "MIT" ]
null
null
null
blesuite/replay/btsnoop/btsnoop/btsnoop.py
dbisu/BLESuite
37dccb23e14661bef148790a4e7c44e664fc528f
[ "MIT" ]
null
null
null
blesuite/replay/btsnoop/btsnoop/btsnoop.py
dbisu/BLESuite
37dccb23e14661bef148790a4e7c44e664fc528f
[ "MIT" ]
null
null
null
""" Parse btsnoop_hci.log binary data (similar to wireshark) usage: ./parse.py <filename> """ import datetime import sys import struct """ Record flags conform to: - bit 0 0 = sent, 1 = received - bit 1 0 = data, 1 = command/event - bit 2-31 reserved Direction is relative to host / DTE. i.e. for Bluetooth controllers, Send is Host->Controller, Receive is Controller->Host """ BTSNOOP_FLAGS = { 0 : ("host", "controller", "data"), 1 : ("controller", "host", "data"), 2 : ("host", "controller", "command"), 3 : ("controller", "host", "event") } def parse(filename): """ Parse a Btsnoop packet capture file. Btsnoop packet capture file is structured as: ----------------------- | header | ----------------------- | packet record nbr 1 | ----------------------- | packet record nbr 2 | ----------------------- | ... | ----------------------- | packet record nbr n | ----------------------- References can be found here: * http://tools.ietf.org/html/rfc1761 * http://www.fte.com/webhelp/NFC/Content/Technical_Information/BT_Snoop_File_Format.htm Return a list of records, each holding a tuple of: * sequence nbr * record length (in bytes) * flags * timestamp * data """ with open(filename, "rb") as f: # Validate file header (identification, version, type) = _read_file_header(f) _validate_file_header(identification, version, type) # Not using the following data: # record[1] - original length # record[4] - cumulative drops return map(lambda record: (record[0], record[2], record[3], _parse_time(record[5]), record[6]), _read_packet_records(f)) def _read_file_header(f): """ Header should conform to the following format ---------------------------------------- | identification pattern| | 8 bytes | ---------------------------------------- | version number | | 4 bytes | ---------------------------------------- | data link type = HCI UART (H4) | | 4 bytes | ---------------------------------------- All integer values are stored in "big-endian" order, with the high-order bits first. """ ident = f.read(8) version, data_link_type = struct.unpack( ">II", f.read(4 + 4) ) return (ident, version, data_link_type) def _validate_file_header(identification, version, data_link_type): """ The identification pattern should be: 'btsnoop\0' The version number should be: 1 The data link type can be: - Reserved 0 - 1000 - Un-encapsulated HCI (H1) 1001 - HCI UART (H4) 1002 - HCI BSCP 1003 - HCI Serial (H5) 1004 - Unassigned 1005 - 4294967295 For SWAP, data link type should be: HCI UART (H4) 1002 """ assert identification == "btsnoop\0" assert version == 1 assert data_link_type == 1002 print ("Btsnoop capture file version {0}, type {1}".format(version, data_link_type)) def _read_packet_records(f): """ A record should confirm to the following format -------------------------- | original length | | 4 bytes -------------------------- | included length | | 4 bytes -------------------------- | packet flags | | 4 bytes -------------------------- | cumulative drops | | 4 bytes -------------------------- | timestamp microseconds | | 8 bytes -------------------------- | packet data | -------------------------- All integer values are stored in "big-endian" order, with the high-order bits first. """ seq_nbr = 1 while True: pkt_hdr = f.read(4 + 4 + 4 + 4 + 8) if not pkt_hdr or len(pkt_hdr) != 24: # EOF break orig_len, inc_len, flags, drops, time64 = struct.unpack( ">IIIIq", pkt_hdr) assert orig_len == inc_len data = f.read(inc_len) assert len(data) == inc_len yield ( seq_nbr, orig_len, inc_len, flags, drops, time64, data ) seq_nbr += 1 def _parse_time(time): """ Record time is a 64-bit signed integer representing the time of packet arrival, in microseconds since midnight, January 1st, 0 AD nominal Gregorian. In order to avoid leap-day ambiguity in calculations, note that an equivalent epoch may be used of midnight, January 1st 2000 AD, which is represented in this field as 0x00E03AB44A676000. """ time_betw_0_and_2000_ad = int("0x00E03AB44A676000", 16) time_since_2000_epoch = datetime.timedelta(microseconds=time) - datetime.timedelta(microseconds=time_betw_0_and_2000_ad) return datetime.datetime(2000, 1, 1) + time_since_2000_epoch def flags_to_str(flags): """ Returns a tuple of (src, dst, type) """ assert flags in [0,1,2,3] return BTSNOOP_FLAGS[flags] def print_hdr(): """ Print the script header """ print ("") print ("##############################") print ("# #") print ("# btsnoop parser v0.1 #") print ("# #") print ("##############################") print ("") def main(filename): records = parse(filename) print (records) return 0 if __name__ == "__main__": if len(sys.argv) < 2: print (__doc__) sys.exit(1) print_hdr() sys.exit(main(sys.argv[1]))
27.466346
124
0.519692
7e2b189c5a5c71e6b671e735ed4c65b38bebd870
2,034
py
Python
alf/examples/ddpg_pendulum_conf.py
breakds/alf
b3d60048daee2c9625ba44f778e49570d0d029a7
[ "Apache-2.0" ]
1
2021-11-17T17:08:04.000Z
2021-11-17T17:08:04.000Z
alf/examples/ddpg_pendulum_conf.py
ipsec/alf
15fd71896eac5ad0987dbe14a9f630b32e0e131f
[ "Apache-2.0" ]
null
null
null
alf/examples/ddpg_pendulum_conf.py
ipsec/alf
15fd71896eac5ad0987dbe14a9f630b32e0e131f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2022 Horizon Robotics and ALF Contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import alf from alf.algorithms.ddpg_algorithm import DdpgAlgorithm from alf.algorithms.one_step_loss import OneStepTDLoss from alf.networks import ActorNetwork, CriticNetwork from alf.optimizers import Adam from alf.utils.losses import element_wise_huber_loss # include default ddpg config from alf.examples import ddpg_conf # environment config alf.config( 'create_environment', env_name='Pendulum-v0', num_parallel_environments=1) hidden_layers = (100, 100) actor_network_cls = functools.partial( ActorNetwork, fc_layer_params=hidden_layers) critic_network_cls = functools.partial( CriticNetwork, joint_fc_layer_params=hidden_layers) critic_optimizer = Adam(lr=1e-3) actor_optimizer = Adam(lr=1e-4) alf.config( 'DdpgAlgorithm', actor_network_ctor=actor_network_cls, critic_network_ctor=critic_network_cls, actor_optimizer=actor_optimizer, critic_optimizer=critic_optimizer, target_update_period=5) alf.config('OneStepTDLoss', td_error_loss_fn=element_wise_huber_loss) # training config alf.config( 'TrainerConfig', initial_collect_steps=1000, mini_batch_length=2, mini_batch_size=64, unroll_length=1, num_updates_per_train_iter=1, num_iterations=10000, num_checkpoints=5, evaluate=False, debug_summaries=True, summarize_grads_and_vars=1, summary_interval=100, replay_buffer_length=100000)
30.818182
80
0.786136
4af750c9deaf440e8d6cc03561588f2a23891e59
826
py
Python
tests/test_epithet.py
phildini/epithet
82bb3f1e1d81329ac9e35b4c4efc38947340ea19
[ "MIT" ]
6
2017-05-25T18:30:44.000Z
2019-08-13T20:39:34.000Z
tests/test_epithet.py
phildini/epithet
82bb3f1e1d81329ac9e35b4c4efc38947340ea19
[ "MIT" ]
2
2021-03-25T21:39:52.000Z
2021-11-15T17:46:46.000Z
tests/test_epithet.py
phildini/epithet
82bb3f1e1d81329ac9e35b4c4efc38947340ea19
[ "MIT" ]
1
2019-08-13T20:39:39.000Z
2019-08-13T20:39:39.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_epithet ---------------------------------- Tests for `epithet` module. """ import sys import unittest from contextlib import contextmanager from click.testing import CliRunner from epithet import epithet from epithet import cli class TestEpithet(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_000_something(self): pass def test_command_line_interface(self): runner = CliRunner() result = runner.invoke(cli.main) assert result.exit_code == 0 assert 'epithet.cli.main' in result.output help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output
20.65
74
0.639225
4e0cf37083c4473f77542d37b92d7f36b6faa8d2
20,240
py
Python
python/ccxt/async_support/coinone.py
pkaske/ccxt
19821cfe0b6899d42b714757137dce9f00c406a0
[ "MIT" ]
3
2020-06-02T10:48:48.000Z
2022-03-12T20:46:01.000Z
python/ccxt/async_support/coinone.py
pkaske/ccxt
19821cfe0b6899d42b714757137dce9f00c406a0
[ "MIT" ]
3
2020-09-08T00:13:39.000Z
2021-05-08T20:05:48.000Z
python/ccxt/async_support/coinone.py
pkaske/ccxt
19821cfe0b6899d42b714757137dce9f00c406a0
[ "MIT" ]
1
2020-03-16T03:22:17.000Z
2020-03-16T03:22:17.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import base64 import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import ExchangeNotAvailable class coinone(Exchange): def describe(self): return self.deep_extend(super(coinone, self).describe(), { 'id': 'coinone', 'name': 'CoinOne', 'countries': ['KR'], # Korea 'rateLimit': 667, 'version': 'v2', 'has': { 'CORS': False, 'createMarketOrder': False, 'fetchTickers': True, 'fetchOrder': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/38003300-adc12fba-323f-11e8-8525-725f53c4a659.jpg', 'api': 'https://api.coinone.co.kr', 'www': 'https://coinone.co.kr', 'doc': 'https://doc.coinone.co.kr', }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'api': { 'public': { 'get': [ 'orderbook/', 'trades/', 'ticker/', ], }, 'private': { 'post': [ 'account/btc_deposit_address/', 'account/balance/', 'account/daily_balance/', 'account/user_info/', 'account/virtual_account/', 'order/cancel_all/', 'order/cancel/', 'order/limit_buy/', 'order/limit_sell/', 'order/complete_orders/', 'order/limit_orders/', 'order/order_info/', 'transaction/auth_number/', 'transaction/history/', 'transaction/krw/history/', 'transaction/btc/', 'transaction/coin/', ], }, }, 'markets': { 'BCH/KRW': {'id': 'bch', 'symbol': 'BCH/KRW', 'base': 'BCH', 'quote': 'KRW', 'baseId': 'bch', 'quoteId': 'krw'}, 'BTC/KRW': {'id': 'btc', 'symbol': 'BTC/KRW', 'base': 'BTC', 'quote': 'KRW', 'baseId': 'btc', 'quoteId': 'krw'}, 'BTG/KRW': {'id': 'btg', 'symbol': 'BTG/KRW', 'base': 'BTG', 'quote': 'KRW', 'baseId': 'btg', 'quoteId': 'krw'}, 'ETC/KRW': {'id': 'etc', 'symbol': 'ETC/KRW', 'base': 'ETC', 'quote': 'KRW', 'baseId': 'etc', 'quoteId': 'krw'}, 'ETH/KRW': {'id': 'eth', 'symbol': 'ETH/KRW', 'base': 'ETH', 'quote': 'KRW', 'baseId': 'eth', 'quoteId': 'krw'}, 'IOTA/KRW': {'id': 'iota', 'symbol': 'IOTA/KRW', 'base': 'IOTA', 'quote': 'KRW', 'baseId': 'iota', 'quoteId': 'krw'}, 'LTC/KRW': {'id': 'ltc', 'symbol': 'LTC/KRW', 'base': 'LTC', 'quote': 'KRW', 'baseId': 'ltc', 'quoteId': 'krw'}, 'OMG/KRW': {'id': 'omg', 'symbol': 'OMG/KRW', 'base': 'OMG', 'quote': 'KRW', 'baseId': 'omg', 'quoteId': 'krw'}, 'QTUM/KRW': {'id': 'qtum', 'symbol': 'QTUM/KRW', 'base': 'QTUM', 'quote': 'KRW', 'baseId': 'qtum', 'quoteId': 'krw'}, 'XRP/KRW': {'id': 'xrp', 'symbol': 'XRP/KRW', 'base': 'XRP', 'quote': 'KRW', 'baseId': 'xrp', 'quoteId': 'krw'}, 'EOS/KRW': {'id': 'eos', 'symbol': 'EOS/KRW', 'base': 'EOS', 'quote': 'KRW', 'baseId': 'eos', 'quoteId': 'krw'}, 'DATA/KRW': {'id': 'data', 'symbol': 'DATA/KRW', 'base': 'DATA', 'quote': 'KRW', 'baseId': 'data', 'quoteId': 'krw'}, 'ZIL/KRW': {'id': 'zil', 'symbol': 'ZIL/KRW', 'base': 'ZIL', 'quote': 'KRW', 'baseId': 'zil', 'quoteId': 'krw'}, 'KNC/KRW': {'id': 'knc', 'symbol': 'KNC/KRW', 'base': 'KNC', 'quote': 'KRW', 'baseId': 'knc', 'quoteId': 'krw'}, 'ZRX/KRW': {'id': 'zrx', 'symbol': 'ZRX/KRW', 'base': 'ZRX', 'quote': 'KRW', 'baseId': 'zrx', 'quoteId': 'krw'}, 'LUNA/KRW': {'id': 'luna', 'symbol': 'LUNA/KRW', 'base': 'LUNA', 'quote': 'KRW', 'baseId': 'luna', 'quoteId': 'krw'}, 'ATOM/KRW': {'id': 'atom', 'symbol': 'ATOM/KRW', 'base': 'ATOM', 'quote': 'KRW', 'baseId': 'atom', 'quoteId': 'krw'}, 'VNT/KRW': {'id': 'vnt', 'symbol': 'VNT/KRW', 'base': 'VNT', 'quote': 'KRW', 'baseId': 'vnt', 'quoteId': 'krw'}, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': 0.001, 'maker': 0.001, 'tiers': { 'taker': [ [0, 0.001], [100000000, 0.0009], [1000000000, 0.0008], [5000000000, 0.0007], [10000000000, 0.0006], [20000000000, 0.0005], [30000000000, 0.0004], [40000000000, 0.0003], [50000000000, 0.0002], ], 'maker': [ [0, 0.001], [100000000, 0.0008], [1000000000, 0.0006], [5000000000, 0.0004], [10000000000, 0.0002], [20000000000, 0], [30000000000, 0], [40000000000, 0], [50000000000, 0], ], }, }, }, 'exceptions': { '405': ExchangeNotAvailable, '104': OrderNotFound, }, }) async def fetch_balance(self, params={}): await self.load_markets() response = await self.privatePostAccountBalance(params) result = {'info': response} balances = self.omit(response, [ 'errorCode', 'result', 'normalWallets', ]) currencyIds = list(balances.keys()) for i in range(0, len(currencyIds)): currencyId = currencyIds[i] balance = balances[currencyId] code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_float(balance, 'avail') account['total'] = self.safe_float(balance, 'balance') result[code] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'currency': market['id'], 'format': 'json', } response = await self.publicGetOrderbook(self.extend(request, params)) return self.parse_order_book(response, None, 'bid', 'ask', 'price', 'qty') async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() request = { 'currency': 'all', 'format': 'json', } response = await self.publicGetTicker(self.extend(request, params)) result = {} ids = list(response.keys()) for i in range(0, len(ids)): id = ids[i] symbol = id market = None if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] ticker = response[id] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'currency': market['id'], 'format': 'json', } response = await self.publicGetTicker(self.extend(request, params)) return self.parse_ticker(response, market) def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() last = self.safe_float(ticker, 'last') previousClose = self.safe_float(ticker, 'yesterday_last') change = None if last is not None and previousClose is not None: change = previousClose - last symbol = market['symbol'] if (market is not None) else None return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': None, 'open': self.safe_float(ticker, 'first'), 'close': last, 'last': last, 'previousClose': previousClose, 'change': change, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'volume'), 'quoteVolume': None, 'info': ticker, } def parse_trade(self, trade, market=None): timestamp = self.safe_timestamp(trade, 'timestamp') symbol = market['symbol'] if (market is not None) else None is_ask = self.safe_string(trade, 'is_ask') side = None if is_ask == '1': side = 'sell' elif is_ask == '0': side = 'buy' price = self.safe_float(trade, 'price') amount = self.safe_float(trade, 'qty') cost = None if price is not None: if amount is not None: cost = price * amount return { 'id': None, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'order': None, 'symbol': symbol, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': None, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'currency': market['id'], 'period': 'hour', 'format': 'json', } response = await self.publicGetTrades(self.extend(request, params)) return self.parse_trades(response['completeOrders'], market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() if type != 'limit': raise ExchangeError(self.id + ' allows limit orders only') await self.load_markets() request = { 'price': price, 'currency': self.market_id(symbol), 'qty': amount, } method = 'privatePostOrder' + self.capitalize(type) + self.capitalize(side) response = await getattr(self, method)(self.extend(request, params)) id = self.safe_string(response, 'orderId') if id is not None: id = id.upper() timestamp = self.milliseconds() cost = price * amount order = { 'info': response, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': cost, 'average': None, 'amount': amount, 'filled': None, 'remaining': amount, 'status': 'open', 'fee': None, } self.orders[id] = order return order async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() result = None market = None if symbol is None: if id in self.orders: market = self.market(self.orders[id]['symbol']) else: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument for order ids missing in the .orders cache(the order was created with a different instance of self class or within a different run of self code).') else: market = self.market(symbol) try: request = { 'order_id': id, 'currency': market['id'], } response = await self.privatePostOrderOrderInfo(self.extend(request, params)) result = self.parse_order(response) self.orders[id] = result except Exception as e: if isinstance(e, OrderNotFound): if id in self.orders: self.orders[id]['status'] = 'canceled' result = self.orders[id] else: raise e else: raise e return result def parse_order_status(self, status): statuses = { 'live': 'open', 'partially_filled': 'open', 'filled': 'closed', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): info = self.safe_value(order, 'info') id = self.safe_string_upper(info, 'orderId') timestamp = self.safe_timestamp(info, 'timestamp') status = self.parse_order_status(self.safe_string(order, 'status')) cost = None side = self.safe_string(info, 'type') if side.find('ask') >= 0: side = 'sell' else: side = 'buy' price = self.safe_float(info, 'price') amount = self.safe_float(info, 'qty') remaining = self.safe_float(info, 'remainQty') filled = None if amount is not None: if remaining is not None: filled = amount - remaining if price is not None: cost = price * amount currency = self.safe_string(info, 'currency') fee = { 'currency': currency, 'cost': self.safe_float(info, 'fee'), 'rate': self.safe_float(info, 'feeRate'), } symbol = None if market is None: marketId = currency.lower() if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] return { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': 'limit', 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, } async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() order = self.safe_value(self.orders, id) amount = None price = None side = None if order is None: if symbol is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `symbol` argument is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") price = self.safe_float(params, 'price') if price is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `price` parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") amount = self.safe_float(params, 'qty') if amount is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `qty`(amount) parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") side = self.safe_float(params, 'is_ask') if side is None: # eslint-disable-next-line quotes raise InvalidOrder(self.id + " cancelOrder could not find the order id " + id + " in orders cache. The order was probably created with a different instance of self class earlier. The `is_ask`(side) parameter is missing. To cancel the order, pass a symbol argument and {'price': 12345, 'qty': 1.2345, 'is_ask': 0} in the params argument of cancelOrder.") else: price = order['price'] amount = order['amount'] side = 0 if (order['side'] == 'buy') else 1 symbol = order['symbol'] request = { 'order_id': id, 'price': price, 'qty': amount, 'is_ask': side, 'currency': self.market_id(symbol), } self.orders[id]['status'] = 'canceled' return await self.privatePostOrderCancel(self.extend(request, params)) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) url = self.urls['api'] + '/' if api == 'public': url += request if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() url += self.version + '/' + request nonce = str(self.nonce()) json = self.json(self.extend({ 'access_token': self.apiKey, 'nonce': nonce, }, params)) payload = base64.b64encode(self.encode(json)) body = self.decode(payload) secret = self.secret.upper() signature = self.hmac(payload, self.encode(secret), hashlib.sha512) headers = { 'content-type': 'application/json', 'X-COINONE-PAYLOAD': payload, 'X-COINONE-SIGNATURE': signature, } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return if 'result' in response: result = response['result'] if result != 'success': # # { "errorCode": "405", "status": "maintenance", "result": "error"} # code = self.safe_string(response, 'errorCode') feedback = self.id + ' ' + self.json(response) exceptions = self.exceptions if code in exceptions: raise exceptions[code](feedback) else: raise ExchangeError(feedback) else: raise ExchangeError(self.id + ' ' + body)
42.972399
369
0.495059
977f9fb0a9f09b38acb87a7cae1d7be8d27c5ba2
2,666
py
Python
test/integration/ggrc/services/test_assessments.py
Killswitchz/ggrc-core
2460df94daf66727af248ad821462692917c97a9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc/services/test_assessments.py
Killswitchz/ggrc-core
2460df94daf66727af248ad821462692917c97a9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/integration/ggrc/services/test_assessments.py
Killswitchz/ggrc-core
2460df94daf66727af248ad821462692917c97a9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Tests for assessment service handle.""" import random from ddt import data, ddt from ggrc.models import all_models from integration.ggrc import TestCase from integration.ggrc.query_helper import WithQueryApi from integration.ggrc.models import factories from integration.ggrc.api_helper import Api from integration.ggrc.generator import ObjectGenerator @ddt class TestCollection(TestCase, WithQueryApi): """Test for collection assessment objects.""" def setUp(self): super(TestCollection, self).setUp() self.client.get("/login") self.clear_data() self.expected_ids = [] self.api = Api() self.generator = ObjectGenerator() assessments = [factories.AssessmentFactory() for _ in range(10)] random.shuffle(assessments) for idx, assessment in enumerate(assessments): comment = factories.CommentFactory(description=str(idx)) factories.RelationshipFactory(source=assessment, destination=comment) self.expected_ids.append(assessment.id) @data(True, False) def test_order_by_test(self, desc): """Order by fultext attr""" query = self._make_query_dict( "Assessment", order_by=[{"name": "comment", "desc": desc}] ) expected_ids = self.expected_ids if desc: expected_ids = expected_ids[::-1] results = self._get_first_result_set(query, "Assessment", "values") self.assertEqual(expected_ids, [i['id'] for i in results]) @data("Assessor", "Creator", "Verifier") def test_delete_assessment_by_role(self, role_name): """Delete assessment not allowed for based on Assignee Type.""" with factories.single_commit(): assessment = factories.AssessmentFactory() context = factories.ContextFactory(related_object=assessment) assessment.context = context person = factories.PersonFactory() object_person_rel = factories.RelationshipFactory( source=assessment, destination=person) factories.RelationshipAttrFactory( relationship_id=object_person_rel.id, attr_name="AssigneeType", attr_value=role_name, ) assessment_id = assessment.id role = all_models.Role.query.filter( all_models.Role.name == "Creator" ).first() self.generator.generate_user_role(person, role, context) self.api.set_user(person) assessment = all_models.Assessment.query.get(assessment_id) resp = self.api.delete(assessment) self.assert403(resp) self.assertTrue(all_models.Assessment.query.filter( all_models.Assessment.id == assessment_id).one())
35.546667
78
0.721305
8591dbe0080d4af0c0401f868169f9966e6d2c80
10,169
py
Python
src/python/openbarcode/linear.py
Floms/Open-Barcode
f721bfeecd682a683e80d7b9c6987ffda3dc9213
[ "Apache-2.0" ]
9
2015-09-23T18:38:58.000Z
2018-10-16T06:33:17.000Z
src/python/openbarcode/linear.py
Floms/Open-Barcode
f721bfeecd682a683e80d7b9c6987ffda3dc9213
[ "Apache-2.0" ]
null
null
null
src/python/openbarcode/linear.py
Floms/Open-Barcode
f721bfeecd682a683e80d7b9c6987ffda3dc9213
[ "Apache-2.0" ]
11
2015-05-05T10:26:46.000Z
2017-12-07T15:02:57.000Z
# # Copyright 2013 Floms, LLC (Yoel Nunez <y.nunez@developers.floms.com>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # __author__ = 'Yoel Nunez <y.nunez@developers.floms.com>' from abc import ABCMeta, abstractmethod class LinearBarcode: __metaclass__ = ABCMeta code = None bars = [] @abstractmethod def build_sequence(self): pass @abstractmethod def barcode(self): pass @abstractmethod def calculate_check_digit(self): pass @abstractmethod def map_sequence(self, char, pos): pass class UPC(LinearBarcode): def __init__(self, code): if len(code) != 11 and len(code) != 12: raise Exception("Invalid UPC code length") self.code = code[:11] self.build_sequence() def build_sequence(self): self.code += str(self.calculate_check_digit()) code = "*" + self.code[0:6] + "#" + self.code[6:12] + "*" for p in range(len(code)): self.bars[len(self.bars):] = self.map_sequence(code[p:p + 1], p) def barcode(self): return self.bars def map_sequence(self, char, pos): sequence = { "0": [0, 0, 0, 1, 1, 0, 1], "1": [0, 0, 1, 1, 0, 0, 1], "2": [0, 0, 1, 0, 0, 1, 1], "3": [0, 1, 1, 1, 1, 0, 1], "4": [0, 1, 0, 0, 0, 1, 1], "5": [0, 1, 1, 0, 0, 0, 1], "6": [0, 1, 0, 1, 1, 1, 1], "7": [0, 1, 1, 1, 0, 1, 1], "8": [0, 1, 1, 0, 1, 1, 1], "9": [0, 0, 0, 1, 0, 1, 1], "#": [0, 1, 0, 1, 0], "*": [1, 0, 1] } if pos >= 7: sequence["0"] = [1, 1, 1, 0, 0, 1, 0] sequence["1"] = [1, 1, 0, 0, 1, 1, 0] sequence["2"] = [1, 1, 0, 1, 1, 0, 0] sequence["3"] = [1, 0, 0, 0, 0, 1, 0] sequence["4"] = [1, 0, 1, 1, 1, 0, 0] sequence["5"] = [1, 0, 0, 1, 1, 1, 0] sequence["6"] = [1, 0, 1, 0, 0, 0, 0] sequence["7"] = [1, 0, 0, 0, 1, 0, 0] sequence["8"] = [1, 0, 0, 1, 0, 0, 0] sequence["9"] = [1, 1, 1, 0, 1, 0, 0] return sequence[char] def calculate_check_digit(self): check_sum = 0 for i in range(11): digit = int(self.code[i:i + 1]) if i % 2 == 0: check_sum += digit * 3 else: check_sum += digit check_sum %= 10 if check_sum != 0: return 10 - check_sum else: return check_sum class EAN(LinearBarcode): base = 0 def __init__(self, code): if len(code) != 12 and len(code) != 13: raise Exception("Invalid UPC code length") self.code = code[:12] self.base = int(code[:1]) self.build_sequence() def build_sequence(self): self.code += str(self.calculate_check_digit()) code = "*" + self.code[1:7] + "#" + self.code[7:13] + "*" for p in range(len(code)): self.bars[len(self.bars):] = self.map_sequence(code[p:p + 1], p) def barcode(self): return self.bars def code_l(self): return { "0": [0, 0, 0, 1, 1, 0, 1], "1": [0, 0, 1, 1, 0, 0, 1], "2": [0, 0, 1, 0, 0, 1, 1], "3": [0, 1, 1, 1, 1, 0, 1], "4": [0, 1, 0, 0, 0, 1, 1], "5": [0, 1, 1, 0, 0, 0, 1], "6": [0, 1, 0, 1, 1, 1, 1], "7": [0, 1, 1, 1, 0, 1, 1], "8": [0, 1, 1, 0, 1, 1, 1], "9": [0, 0, 0, 1, 0, 1, 1], "#": [0, 1, 0, 1, 0], "*": [1, 0, 1] } def code_g(self): base = self.code_l() base["0"] = [0, 1, 0, 0, 1, 1, 1] base["1"] = [0, 1, 1, 0, 0, 1, 1] base["2"] = [0, 0, 1, 1, 0, 1, 1] base["3"] = [0, 1, 0, 0, 0, 0, 1] base["4"] = [0, 0, 1, 1, 1, 0, 1] base["5"] = [0, 1, 1, 1, 0, 0, 1] base["6"] = [0, 0, 0, 0, 1, 0, 1] base["7"] = [0, 0, 1, 0, 0, 0, 1] base["8"] = [0, 0, 0, 1, 0, 0, 1] base["9"] = [0, 0, 1, 0, 1, 1, 1] return base def code_r(self): base = self.code_l() base["0"] = [1, 1, 1, 0, 0, 1, 0] base["1"] = [1, 1, 0, 0, 1, 1, 0] base["2"] = [1, 1, 0, 1, 1, 0, 0] base["3"] = [1, 0, 0, 0, 0, 1, 0] base["4"] = [1, 0, 1, 1, 1, 0, 0] base["5"] = [1, 0, 0, 1, 1, 1, 0] base["6"] = [1, 0, 1, 0, 0, 0, 0] base["7"] = [1, 0, 0, 0, 1, 0, 0] base["8"] = [1, 0, 0, 1, 0, 0, 0] base["9"] = [1, 1, 1, 0, 1, 0, 0] return base def map_sequence(self, char, pos): sequence = {} b = self.base if pos > 6: sequence = self.code_r() elif b == 0: sequence = self.code_l() elif b == 1: if pos == 1 or pos == 2 or pos == 4: sequence = self.code_l() else: sequence = self.code_g() elif b == 2: if pos == 1 or pos == 2 or pos == 5: sequence = self.code_l() else: sequence = self.code_g() elif b == 3: if pos == 1 or pos == 2 or pos == 6: sequence = self.code_l() else: sequence = self.code_g() elif b == 4: if pos == 1 or pos == 3 or pos == 4: sequence = self.code_l() else: sequence = self.code_g() elif b == 5: if pos == 1 or pos == 4 or pos == 5: sequence = self.code_l() else: sequence = self.code_g() elif b == 6: if pos == 1 or pos == 5 or pos == 6: sequence = self.code_l() else: sequence = self.code_g() elif b == 7: if pos == 1 or pos == 3 or pos == 5: sequence = self.code_l() else: sequence = self.code_g() elif b == 8: if pos == 1 or pos == 3 or pos == 6: sequence = self.code_l() else: sequence = self.code_g() else: if pos == 1 or pos == 4 or pos == 6: sequence = self.code_l() else: sequence = self.code_g() return sequence[char] def calculate_check_digit(self): check_sum = 0 for i in range(12): digit = int(self.code[i:i + 1]) if i % 2 == 1: check_sum += digit * 3 else: check_sum += digit check_sum %= 10 if check_sum != 0: return 10 - check_sum else: return check_sum class Code39(LinearBarcode): def __init__(self, code): self.code = str(code).upper() self.build_sequence() def build_sequence(self): code = "*" + self.code + "*" for p in range(len(code)): self.bars[len(self.bars):] = self.map_sequence(code[p:p + 1], p) self.bars.append(0) def barcode(self): return self.bars def map_sequence(self, char, pos): sequence = { "0": [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1], "1": [1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1], "2": [1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1], "3": [1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1], "4": [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1], "5": [1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1], "6": [1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1], "7": [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1], "8": [1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1], "9": [1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1], "A": [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1], "B": [1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1], "C": [1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1], "D": [1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1], "E": [1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1], "F": [1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1], "G": [1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1], "H": [1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1], "I": [1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1], "J": [1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1], "K": [1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1], "L": [1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1], "M": [1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1], "N": [1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1], "O": [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1], "P": [1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1], "Q": [1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1], "R": [1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1], "S": [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1], "T": [1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1], "U": [1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1], "V": [1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1], "W": [1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1], "X": [1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1], "Y": [1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1], "Z": [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1], "-": [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1], ".": [1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1], " ": [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1], "$": [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1], "/": [1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1], "+": [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1], "%": [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1], "*": [1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1], } return sequence[char] def calculate_check_digit(self): return 0
31.482972
95
0.392566
f177b2515d6a1013c043cf6f6e4a2f7db8bac784
1,823
py
Python
machineLearning/206/extract-colors.py
WebClub-NITK/Hacktoberfest-2k19
69fafb354f0da58220a7ba68696b4d7fde0a3d5c
[ "MIT" ]
28
2019-10-01T09:13:50.000Z
2021-04-18T18:15:34.000Z
machineLearning/206/extract-colors.py
arpita221b/Hacktoberfest-2k19-1
6f682ea2226a8ce6f5a913da9ecdafff7a9fa5bd
[ "MIT" ]
236
2019-09-30T16:06:09.000Z
2022-02-26T18:37:03.000Z
machineLearning/206/extract-colors.py
arpita221b/Hacktoberfest-2k19-1
6f682ea2226a8ce6f5a913da9ecdafff7a9fa5bd
[ "MIT" ]
184
2019-09-30T16:08:04.000Z
2022-03-09T05:00:29.000Z
import numpy as np import cv2 import argparse parser =argparse.ArgumentParser() parser.add_argument("--color",type=str,default='R',help="insert uppercase first letter in color you want to see its output") parser.add_argument("--image",type=str,default="colors.png",help="Specify the image location") arg = parser.parse_args() colors = ['R','G','B','Y','M','C'] image = arg.image color = arg.color img = cv2.imread(image) R_channel = img[:,:,2] G_channel = img[:,:,1] B_channel = img[:,:,0] #Red colors imageR = img.copy() imageR[R_channel < 128 ] = 0 imageR[G_channel > 51] = 0 imageR[B_channel > 51] = 0 imageR = cv2.resize(imageR,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) #Green Colors imageG = img.copy() imageG[G_channel <100] = 0 imageG[R_channel > 173 ]=0 imageG[B_channel > 102]=0 imageG = cv2.resize(imageG,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) #Blue color imageB = img.copy() imageB[B_channel < 205] = 0 imageB[(G_channel > 153)]=0 imageB[R_channel > 51]=0 imageB = cv2.resize(imageB,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) #Yellow color imageY = img.copy() imageY[(B_channel < 51) & (B_channel > 153)] = 0 imageY[(G_channel < 200)]=0 imageY[R_channel < 200]=0 imageY = cv2.resize(imageY,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) #Yellow color imageM = img.copy() imageM[B_channel < 153]=0 imageM[(R_channel < 76)] = 0 imageM[(G_channel >51)]=0 imageM = cv2.resize(imageM,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) #Cyan color imageC = img.copy() imageC[B_channel < 153]=0 imageC[(G_channel < 153)] = 0 imageC[(R_channel >51)]=0 imageC = cv2.resize(imageC,(int(img.shape[1]*0.5),int(img.shape[0]*0.5))) images = [imageR,imageG,imageB,imageY,imageM,imageC] image_sel = images[colors.index(color)] cv2.imshow("image",image_sel) cv2.waitKey(0) cv2.destroyAllWindows()
25.319444
124
0.687877
fbada46f71a0743bfd2e8e71cf918e8535daf59c
216
wsgi
Python
flaskapp.wsgi
pedroalvesfilho/catalog_bikes
dacabec1c0f4efea3a14d4fc9086ff1a8550396b
[ "MIT" ]
null
null
null
flaskapp.wsgi
pedroalvesfilho/catalog_bikes
dacabec1c0f4efea3a14d4fc9086ff1a8550396b
[ "MIT" ]
null
null
null
flaskapp.wsgi
pedroalvesfilho/catalog_bikes
dacabec1c0f4efea3a14d4fc9086ff1a8550396b
[ "MIT" ]
null
null
null
#!/usr/bin/python</h1> import sys import logging logging.basicConfig(stream=sys.stderr) sys.path.insert(0,"/var/www/FlaskApp") from FlaskApp import app as application application.secret_key = 'Add your secret key'
21.6
46
0.777778
61ffc43c4662e1ac3e1e206a7a5120adad3bda35
6,844
py
Python
datasets/preprocess/SyRIP.py
ostadabbas/HW-HuP
0a7b4263f72e7ff7f9bc4c81366569822c3ee248
[ "MIT" ]
null
null
null
datasets/preprocess/SyRIP.py
ostadabbas/HW-HuP
0a7b4263f72e7ff7f9bc4c81366569822c3ee248
[ "MIT" ]
null
null
null
datasets/preprocess/SyRIP.py
ostadabbas/HW-HuP
0a7b4263f72e7ff7f9bc4c81366569822c3ee248
[ "MIT" ]
null
null
null
import os from os.path import join import sys import json import numpy as np from tqdm import tqdm # from .read_openpose import read_openpose def coco_extract(dataset_path, out_path): ''' no open pose data, SyRIP version :param dataset_path: :param out_path: :return: ''' # convert joints to global order joints_idx = [19, 20, 21, 22, 23, 9, 8, 10, 7, 11, 6, 3, 2, 4, 1, 5, 0] # convert to 17 joints # joints_idx = [19, 20, 21, 22, 23, 9, 8, 10, 7, 11, 6, 3, 2, 4, 1, 5, 0] # convert to 17 joints # right left hip 2, 3 , visible to 0 for # bbox expansion factor scaleFactor = 1.2 # structs we need imgnames_, scales_, centers_, parts_, openposes_ = [], [], [], [], [] # json annotation file json_path = os.path.join(dataset_path, 'annotations/200R_1000S/', 'person_keypoints_train_infant.json') json_data = json.load(open(json_path, 'r')) imgs = {} for img in json_data['images']: imgs[img['id']] = img # {0: {'file_name':xx, 'RGB':....} n_chk = -1 for i, annot in tqdm(enumerate(json_data['annotations']), desc='gen SyRIP db for SPIN...'): # keypoints processing if n_chk>0 and i>=n_chk: break keypoints = annot['keypoints'] keypoints = np.reshape(keypoints, (17,3)) keypoints[keypoints[:,2]>0,2] = 1 # check if all major body joints are annotated if sum(keypoints[5:,2]>0) < 12: continue # image name image_id = annot['image_id'] img_name = str(imgs[image_id]['file_name']) img_name_full = join('images/1200/', img_name) # relative from ds folder to images # keypoints part = np.zeros([24,3]) part[joints_idx] = keypoints # 24 joints, put the gt 17 in, 2, 3 vis to 0 , add openpose jt # scale and center bbox = annot['bbox'] center = [bbox[0] + bbox[2]/2, bbox[1] + bbox[3]/2] scale = scaleFactor*max(bbox[2], bbox[3])/200 # read openpose detections, no read openpose # json_file = os.path.join(openpose_path, 'coco', # img_name.replace('.jpg', '_keypoints.json')) # openpose = read_openpose(json_file, part, 'coco') # update only the hip to openpose , then clean the part vis openpose = np.zeros([25, 3]) # r,l hip op 9, 12 , part 2, 3 openpose[9] = part[2] openpose[12] = part[3] part[[2,3], 2] = 0 # clean up the vis for hip # debug show if not n_chk<0: print('id {} op and part'.format(i)) print(openpose) print(part) # store data imgnames_.append(img_name_full) centers_.append(center) scales_.append(scale) parts_.append(part) # gt 17 openposes_.append(openpose) # openpose 25 correct detection # store the data struct print('valid data length', len(imgnames_)) if n_chk<0: if not os.path.isdir(out_path): os.makedirs(out_path) out_file = os.path.join(out_path, 'SyRIP_train.npz') print("file saved to {}".format(out_file)) np.savez(out_file, imgname=imgnames_, center=centers_, scale=scales_, part=parts_, openpose=openposes_) def SyRIPv2_extract(dataset_path, out_path, is_train=False): ''' coco format, SyRIP version :param dataset_path: :param out_path: :return: ''' # convert joints to global order joints_idx = [19, 20, 21, 22, 23, 9, 8, 10, 7, 11, 6, 3, 2, 4, 1, 5, 0] # convert to 17 joints # joints_idx = [19, 20, 21, 22, 23, 9, 8, 10, 7, 11, 6, 3, 2, 4, 1, 5, 0] # convert to 17 joints # right left hip 2, 3 , visible to 0 for # bbox expansion factor scaleFactor = 1.2 # json annotation file if is_train: split = 'train' else: split = 'valid' # structs we need imgnames_, scales_, centers_, parts_, openposes_ = [], [], [], [], [] # json annotation file json_path = os.path.join(dataset_path, 'anno_{}.json'.format(split)) json_data = json.load(open(json_path, 'r')) imgs = {} for img in json_data['images']: imgs[img['id']] = img # {0: {'file_name':xx, 'RGB':....} n_chk = -1 N= len(imgs) for i, annot in tqdm(enumerate(json_data['annotations']), desc='gen SyRIP db for SPIN...', total=N): # keypoints processing if n_chk > 0 and i >= n_chk: break keypoints = annot['keypoints'] keypoints = np.reshape(keypoints, (17, 3)) keypoints[keypoints[:, 2] > 0, 2] = 1 # check if all major body joints are annotated if sum(keypoints[5:, 2] > 0) < 12: # if not all joints visible. continue # image name # image_id = annot['image_id'] image_id = annot['id'] img_name = str(imgs[image_id]['file_name']) img_name_full = join('RGB', img_name) # relative from ds folder to images # keypoints part = np.zeros([24, 3]) part[joints_idx] = keypoints # 24 joints, put the gt 17 in, 2, 3 vis to 0 , add openpose jt # scale and center bbox = annot['bbox'] center = [bbox[0] + bbox[2] / 2, bbox[1] + bbox[3] / 2] scale = scaleFactor * max(bbox[2], bbox[3]) / 200 openpose = np.zeros([25, 3]) # r,l hip op 9, 12 , part 2, 3 openpose[9] = part[2] openpose[12] = part[3] part[[2, 3], 2] = 0 # clean up the vis for hip # debug show if not n_chk < 0: print('id {} op and part'.format(i)) print(openpose) print(part) # store data imgnames_.append(img_name_full) centers_.append(center) scales_.append(scale) parts_.append(part) # gt 17 openposes_.append(openpose) # openpose 25 correct detection # store the data struct print('valid data length', len(imgnames_)) if n_chk < 0: if not os.path.isdir(out_path): os.makedirs(out_path) out_file = os.path.join(out_path, 'SyRIP_{}.npz'.format(split)) print("file saved to {}".format(out_file)) np.savez(out_file, imgname=imgnames_, center=centers_, scale=scales_, part=parts_, openpose=openposes_) if __name__ == '__main__': # coco_extract('/scratch/liu.shu/datasets/SyRIP', '/scratch/liu.shu/codesPool/SPIN/data/dataset_extras') SyRIPv2_extract('/scratch/liu.shu/datasets/SyRIPv2', '/scratch/liu.shu/codesPool/SPIN/data/dataset_extras', is_train=True)
37.604396
126
0.561222
2b6e4baaba8ee6948dedbf331378aa600cd96fa7
10,604
py
Python
tensorflow_probability/python/sts/fitting_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/sts/fitting_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/sts/fitting_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for STS fitting methods.""" # Dependency imports from absl.testing import parameterized import numpy as np import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top tfl = tf.linalg class VariationalInferenceTests(tf.test.TestCase): def _build_model(self, observed_time_series): day_of_week = tfp.sts.Seasonal( num_seasons=7, observed_time_series=observed_time_series, name='day_of_week') local_linear_trend = tfp.sts.LocalLinearTrend( observed_time_series=observed_time_series, name='local_linear_trend') return tfp.sts.Sum(components=[day_of_week, local_linear_trend], observed_time_series=observed_time_series) def test_multiple_inits_example(self): batch_shape = [2, 3] num_timesteps = 5 num_inits = 10 observed_time_series = np.random.randn( *(batch_shape + [num_timesteps])).astype(np.float32) model = self._build_model(observed_time_series) def build_variational_loss(): (variational_loss, _) = tfp.sts.build_factored_variational_loss( model=model, observed_time_series=observed_time_series, init_batch_shape=num_inits) return variational_loss # We provide graph- and eager-mode optimization for TF 2.0 compatibility. optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=0.1) if tf.executing_eagerly(): for _ in range(5): # don't actually run to completion optimizer.minimize(build_variational_loss) # Draw multiple samples to reduce Monte Carlo error in the optimized # variational bounds. avg_loss = np.mean( [self.evaluate(build_variational_loss()) for _ in range(25)], axis=0) else: variational_loss = build_variational_loss() train_op = optimizer.minimize(variational_loss) self.evaluate(tf.compat.v1.global_variables_initializer()) for _ in range(5): # don't actually run to completion _ = self.evaluate(train_op) # Draw multiple samples to reduce Monte Carlo error in the optimized # variational bounds. avg_loss = np.mean( [self.evaluate(variational_loss) for _ in range(25)], axis=0) self.assertAllEqual(avg_loss.shape, [num_inits] + batch_shape) def test_init_is_valid_for_large_observations(self): num_timesteps = 20 observed_time_series = ( -1e8 + 1e6 * np.random.randn(num_timesteps)).astype(np.float32) model = self._build_model(observed_time_series) variational_loss, _ = tfp.sts.build_factored_variational_loss( model=model, observed_time_series=observed_time_series) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(variational_loss) self.assertTrue(np.isfinite(loss_)) # When this test was written, the variational loss with default # initialization and seed was 431.5 nats. Larger finite initial losses are # not 'incorrect' as such, but if your change makes the next line fail, # you have probably done something questionable. self.assertLessEqual(loss_, 10000) class _HMCTests(object): def _build_model(self, observed_time_series): day_of_week = tfp.sts.Seasonal( num_seasons=7, observed_time_series=observed_time_series, name='day_of_week') local_linear_trend = tfp.sts.LocalLinearTrend( observed_time_series=observed_time_series, name='local_linear_trend') return tfp.sts.Sum(components=[day_of_week, local_linear_trend], observed_time_series=observed_time_series) def test_basic_hmc_example(self): batch_shape = [2, 3] num_timesteps = 5 observed_time_series = self._build_tensor(np.random.randn( *(batch_shape + [num_timesteps]))) model = self._build_model(observed_time_series) samples, kernel_results = tfp.sts.fit_with_hmc( model, observed_time_series, num_results=4, num_warmup_steps=2, num_variational_steps=2) self.evaluate(tf.compat.v1.global_variables_initializer()) samples_, kernel_results_ = self.evaluate((samples, kernel_results)) acceptance_rate = np.mean( kernel_results_.inner_results.inner_results.is_accepted, axis=0) posterior_means = { param.name: np.mean(param_draws, axis=0) for (param, param_draws) in zip(model.parameters, samples_)} # Perfunctory checks to ensure the code executed and we got results # of the expected shape. self.assertAllEqual(acceptance_rate.shape, batch_shape) for parameter in model.parameters: self.assertAllEqual(posterior_means[parameter.name].shape, self._batch_shape_as_list(parameter.prior) + self._event_shape_as_list(parameter.prior)) def test_multiple_chains_example(self): batch_shape = [2, 3] num_timesteps = 5 num_results = 6 num_chains = 4 # Use an observation mask to additionally test that masks are # threaded through the HMC (and VI) APIs. observed_time_series_ = np.random.randn( *(batch_shape + [num_timesteps])) observed_time_series = tfp.sts.MaskedTimeSeries( self._build_tensor(observed_time_series_), is_missing=self._build_tensor([False, True, False, False, True], dtype=np.bool)) model = self._build_model(observed_time_series) samples, kernel_results = tfp.sts.fit_with_hmc( model, observed_time_series, num_results=num_results, chain_batch_shape=num_chains, num_warmup_steps=2, num_variational_steps=2) self.evaluate(tf.compat.v1.global_variables_initializer()) samples_, kernel_results_ = self.evaluate((samples, kernel_results)) acceptance_rate = np.mean( kernel_results_.inner_results.inner_results.is_accepted, axis=0) # Combining the samples from multiple chains into a single dimension allows # us to easily pass sampled parameters to downstream forecasting methods. combined_samples_ = [np.reshape(param_draws, [-1] + list(param_draws.shape[2:])) for param_draws in samples_] self.assertAllEqual(acceptance_rate.shape, [num_chains] + batch_shape) for parameter, samples_ in zip(model.parameters, combined_samples_): self.assertAllEqual(samples_.shape, [num_results * num_chains] + self._batch_shape_as_list(parameter.prior) + self._event_shape_as_list(parameter.prior)) def _shape_as_list(self, tensor): if self.use_static_shape: return tensor.shape.as_list() else: return list(self.evaluate(tf.shape(input=tensor))) def _batch_shape_as_list(self, distribution): if self.use_static_shape: return distribution.batch_shape.as_list() else: return list(self.evaluate(distribution.batch_shape_tensor())) def _event_shape_as_list(self, distribution): if self.use_static_shape: return distribution.event_shape.as_list() else: return list(self.evaluate(distribution.event_shape_tensor())) def _build_tensor(self, ndarray, dtype=None): """Convert a numpy array to a TF placeholder. Args: ndarray: any object convertible to a numpy array via `np.asarray()`. dtype: optional `dtype`. Returns: placeholder: a TensorFlow `placeholder` with default value given by the provided `ndarray`, dtype given by `self.dtype` (if not specified), and shape specified statically only if `self.use_static_shape` is `True`. """ ndarray = np.asarray(ndarray).astype(self.dtype if dtype is None else dtype) return tf.compat.v1.placeholder_with_default( input=ndarray, shape=ndarray.shape if self.use_static_shape else None) @test_util.run_all_in_graph_and_eager_modes class HMCTestsStatic32(tf.test.TestCase, parameterized.TestCase, _HMCTests): dtype = np.float32 use_static_shape = True # Parameterized tests appear to require that their direct containing class # inherits from `parameterized.TestCase`, so we have to put this test here # rather than the base class. As a bonus, running this test only in the # Static32 case reduces overall test weight. @parameterized.parameters(([], []), (3, [3]), ([3], [3]), ([5, 2], [5, 2])) def test_chain_batch_shape(self, shape_in, expected_batch_shape_out): batch_shape = [2, 3] num_results = 1 num_timesteps = 5 observed_time_series = self._build_tensor(np.random.randn( *(batch_shape + [num_timesteps]))) model = self._build_model(observed_time_series) samples, _ = tfp.sts.fit_with_hmc( model, observed_time_series, num_results=num_results, chain_batch_shape=shape_in, num_warmup_steps=1, num_variational_steps=1) self.evaluate(tf.compat.v1.global_variables_initializer()) for parameter, parameter_samples in zip(model.parameters, samples): self.assertAllEqual(self._shape_as_list(parameter_samples), [num_results] + expected_batch_shape_out + self._batch_shape_as_list(parameter.prior) + self._event_shape_as_list(parameter.prior)) # This test runs in graph mode only to reduce test weight. class HMCTestsDynamic32(tf.test.TestCase, _HMCTests): dtype = np.float32 use_static_shape = False # This test runs in graph mode only to reduce test weight. class HMCTestsStatic64(tf.test.TestCase, _HMCTests): dtype = np.float64 use_static_shape = True if __name__ == '__main__': tf.test.main()
39.274074
115
0.694738
22fc4a0f6aa9341cbd2260d964f0896bef96f783
823
py
Python
bin/dump_all_tables.py
johned0/EdwardsLab
ae0d8b51a579cd009b414d11224b4110ba13af66
[ "MIT" ]
30
2015-01-25T16:22:51.000Z
2022-01-20T15:56:47.000Z
bin/dump_all_tables.py
johned0/EdwardsLab
ae0d8b51a579cd009b414d11224b4110ba13af66
[ "MIT" ]
2
2020-04-13T15:00:37.000Z
2020-09-23T12:35:59.000Z
bin/dump_all_tables.py
johned0/EdwardsLab
ae0d8b51a579cd009b414d11224b4110ba13af66
[ "MIT" ]
24
2015-04-17T00:52:05.000Z
2021-11-26T17:50:01.000Z
import argparse import sqlite3 import pandas as pd def to_csv(filename): db = sqlite3.connect(filename) cursor = db.cursor() cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") tables = cursor.fetchall() for table_name in tables: table_name = table_name[0] table = pd.read_sql_query("SELECT * from %s" % table_name, db) table.to_csv(table_name + '.csv', index_label='index', encoding='utf-8') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Dump the contents of an SQL file to CSV. This was taken from http://stackoverflow.com/questions/305378/get-list-of-tables-db-schema-dump-etc-in-sqlite-databases') parser.add_argument('-d', help='SQLlite database file', required=True) args = parser.parse_args() to_csv(args.d)
37.409091
212
0.705954
68a1a8915af6634664f6c1d0c315180aa253a17a
229
py
Python
examples/test/__main__.py
Cjreynol/pygame-boilerplate
a43ac4fa2eec6ba5fde422a57dd4f4e0aa1f23ff
[ "MIT" ]
null
null
null
examples/test/__main__.py
Cjreynol/pygame-boilerplate
a43ac4fa2eec6ba5fde422a57dd4f4e0aa1f23ff
[ "MIT" ]
null
null
null
examples/test/__main__.py
Cjreynol/pygame-boilerplate
a43ac4fa2eec6ba5fde422a57dd4f4e0aa1f23ff
[ "MIT" ]
null
null
null
from boilerplate.game import Game from examples.test.game_state import GameState def main(): game = Game("Example") state = GameState() game.dirty_rect_run(state) if __name__ == "__main__": main()
17.615385
48
0.659389
b39698c66f68dd4618a58dc6ece6f420e4e5b8f7
53
py
Python
components/__init__.py
YetAnotherTimeTracker/yatt
5cd75da60aecd51ee6dc67bb8dc3662b50a3b4a3
[ "MIT" ]
1
2017-12-04T22:45:54.000Z
2017-12-04T22:45:54.000Z
components/__init__.py
avbelyaev/yatt
5cd75da60aecd51ee6dc67bb8dc3662b50a3b4a3
[ "MIT" ]
17
2017-10-15T01:38:39.000Z
2017-12-18T22:00:32.000Z
components/__init__.py
avbelyaev/yatt
5cd75da60aecd51ee6dc67bb8dc3662b50a3b4a3
[ "MIT" ]
12
2017-11-02T19:51:54.000Z
2020-11-29T17:35:53.000Z
""" Created by anthony on 21.11.2017 __init__.py """
10.6
32
0.679245
4dfddf8506ed5480e100f275770b354b1e5327cf
746
py
Python
backend/webserver/sockets/projects.py
jsbroks/lista
4bf06f3a243c7c59632ce2348d1a9f6917878906
[ "MIT" ]
null
null
null
backend/webserver/sockets/projects.py
jsbroks/lista
4bf06f3a243c7c59632ce2348d1a9f6917878906
[ "MIT" ]
null
null
null
backend/webserver/sockets/projects.py
jsbroks/lista
4bf06f3a243c7c59632ce2348d1a9f6917878906
[ "MIT" ]
null
null
null
from webserver.extensions import db, socketio from flask_login import current_user from flask_socketio import emit from webserver.config import logger from .utils import authenticated_only, commit_or_null @socketio.on('join project') @authenticated_only def join_project(id): """ Join a project (if user has access). Joining a projects room allows for user to get realtime updates """ project_id = int(id) project = current_user.projects.filter_by(id=project_id).first() if project: logger.debug( f'{current_user.username} has joined room {project.name} ({project.id})') project.join_room() return project is not None @socketio.on('leave project') def leave_prject(): pass
23.3125
85
0.717158
936ffa01dc67032419dae484f9ac633b8a37c20e
12,001
py
Python
bungieapi/generated/components/schemas/destiny/components/profiles.py
itemmanager/bungieapi
0c4326f88ea0f28a1dcab683dc08c8d21c940fc1
[ "MIT" ]
5
2022-01-06T21:05:53.000Z
2022-02-12T19:58:11.000Z
bungieapi/generated/components/schemas/destiny/components/profiles.py
itemmanager/bungieapi
0c4326f88ea0f28a1dcab683dc08c8d21c940fc1
[ "MIT" ]
8
2021-12-25T02:40:56.000Z
2022-03-28T03:31:41.000Z
bungieapi/generated/components/schemas/destiny/components/profiles.py
itemmanager/bungieapi
0c4326f88ea0f28a1dcab683dc08c8d21c940fc1
[ "MIT" ]
1
2022-01-30T23:53:25.000Z
2022-01-30T23:53:25.000Z
# generated by update to not change manually import dataclasses as dt import typing as t from bungieapi.json import to_json from bungieapi.types import ManifestReference @dt.dataclass(frozen=True) class DestinyProfileProgressionComponent: """The set of progression-related information that applies at a Profile- wide level for your Destiny experience. This differs from the Jimi Hendrix Experience because there's less guitars on fire. Yet. #spoileralert? This will include information such as Checklist info. """ checklists: t.Mapping[str, t.Mapping[str, bool]] = dt.field( metadata={ "description": """The set of checklists that can be examined on a profile-wide basis, keyed by the hash identifier of the Checklist (DestinyChecklistDefinition) For each checklist returned, its value is itself a Dictionary keyed by the checklist's hash identifier with the value being a boolean indicating if it's been discovered yet.""" } ) seasonal_artifact: "DestinyArtifactProfileScoped" = dt.field( metadata={ "description": "Data related to your progress on the current season's artifact that is the same across characters." } ) def to_json(self) -> t.Mapping[str, t.Any]: return { "checklists": to_json(self.checklists), "seasonalArtifact": to_json(self.seasonal_artifact), } @dt.dataclass(frozen=True) class DestinyProfileTransitoryComponent: """This is an experimental set of data that Bungie considers to be "transitory" - information that may be useful for API users, but that is coming from a non-authoritative data source about information that could potentially change at a more frequent pace than Bungie.net will receive updates about it. This information is provided exclusively for convenience should any of it be useful to users: we provide no guarantees to the accuracy or timeliness of data that comes from this source. Know that this data can potentially be out-of-date or even wrong entirely if the user disconnected from the game or suddenly changed their status before we can receive refreshed data.""" current_activity: "DestinyProfileTransitoryCurrentActivity" = dt.field( metadata={ "description": "If you are in an activity, this is some transitory info about the activity currently being played." } ) joinability: "DestinyProfileTransitoryJoinability" = dt.field( metadata={ "description": "Information about whether and what might prevent you from joining this person on a fireteam." } ) party_members: t.Sequence["DestinyProfileTransitoryPartyMember"] = dt.field( metadata={ "description": "If you have any members currently in your party, this is some (very) bare-bones information about those members." } ) tracking: t.Sequence["DestinyProfileTransitoryTrackingEntry"] = dt.field( metadata={"description": "Information about tracked entities."} ) last_orbited_destination_hash: t.Optional[ ManifestReference["DestinyDestinationDefinition"] ] = dt.field( default=None, metadata={ "description": "The hash identifier for the DestinyDestinationDefinition of the last location you were orbiting when in orbit." }, ) def to_json(self) -> t.Mapping[str, t.Any]: return { "partyMembers": to_json(self.party_members), "currentActivity": to_json(self.current_activity), "joinability": to_json(self.joinability), "tracking": to_json(self.tracking), "lastOrbitedDestinationHash": to_json(self.last_orbited_destination_hash), } @dt.dataclass(frozen=True) class DestinyProfileTransitoryPartyMember: """This is some bare minimum information about a party member in a Fireteam. Unfortunately, without great computational expense on our side we can only get at the data contained here. I'd like to give you a character ID for example, but we don't have it. But we do have these three pieces of information. May they help you on your quest to show meaningful data about current Fireteams. Notably, we don't and can't feasibly return info on characters. If you can, try to use just the data below for your UI and purposes. Only hit us with further queries if you absolutely must know the character ID of the currently playing character. Pretty please with sugar on top. """ display_name: str = dt.field( metadata={"description": "The player's last known display name."} ) emblem_hash: ManifestReference["DestinyInventoryItemDefinition"] = dt.field( metadata={ "description": "The identifier for the DestinyInventoryItemDefinition of the player's emblem." } ) membership_id: int = dt.field( metadata={"description": "The Membership ID that matches the party member."} ) status: "DestinyPartyMemberStates" = dt.field( metadata={ "description": "A Flags Enumeration value indicating the states that the player is in relevant to being on a fireteam." } ) def to_json(self) -> t.Mapping[str, t.Any]: return { "membershipId": to_json(self.membership_id), "emblemHash": to_json(self.emblem_hash), "displayName": to_json(self.display_name), "status": to_json(self.status), } @dt.dataclass(frozen=True) class DestinyProfileTransitoryCurrentActivity: """If you are playing in an activity, this is some information about it. Note that we cannot guarantee any of this resembles what ends up in the PGCR in any way. They are sourced by two entirely separate systems with their own logic, and the one we source this data from should be considered non-authoritative in comparison. """ highest_opposing_faction_score: float = dt.field( metadata={ "description": "If you have human opponents, this is the highest opposing team's score." } ) number_of_opponents: int = dt.field( metadata={ "description": "This is how many human or poorly crafted aimbot opponents you have." } ) number_of_players: int = dt.field( metadata={ "description": "This is how many human or poorly crafted aimbots are on your team." } ) score: float = dt.field( metadata={ "description": "This is what our non-authoritative source thought the score was." } ) end_time: t.Optional[str] = dt.field( default=None, metadata={ "description": 'If you\'re still in it but it "ended" (like when folks are dancing around the loot after they beat a boss), this is when the activity ended.' }, ) start_time: t.Optional[str] = dt.field( default=None, metadata={"description": "When the activity started."} ) def to_json(self) -> t.Mapping[str, t.Any]: return { "startTime": to_json(self.start_time), "endTime": to_json(self.end_time), "score": to_json(self.score), "highestOpposingFactionScore": to_json(self.highest_opposing_faction_score), "numberOfOpponents": to_json(self.number_of_opponents), "numberOfPlayers": to_json(self.number_of_players), } @dt.dataclass(frozen=True) class DestinyProfileTransitoryJoinability: """Some basic information about whether you can be joined, how many slots are left etc. Note that this can change quickly, so it may not actually be useful. But perhaps it will be in some use cases? """ closed_reasons: "DestinyJoinClosedReasons" = dt.field( metadata={ "description": "Reasons why a person can't join this person's fireteam." } ) open_slots: int = dt.field( metadata={ "description": "The number of slots still available on this person's fireteam." } ) privacy_setting: "DestinyGamePrivacySetting" = dt.field( metadata={"description": "Who the person is currently allowing invites from."} ) def to_json(self) -> t.Mapping[str, t.Any]: return { "openSlots": to_json(self.open_slots), "privacySetting": to_json(self.privacy_setting), "closedReasons": to_json(self.closed_reasons), } @dt.dataclass(frozen=True) class DestinyProfileTransitoryTrackingEntry: """This represents a single "thing" being tracked by the player. This can point to many types of entities, but only a subset of them will actually have a valid hash identifier for whatever it is being pointed to. It's up to you to interpret what it means when various combinations of these entries have values being tracked. """ activity_hash: t.Optional[ ManifestReference["DestinyActivityDefinition"] ] = dt.field( default=None, metadata={ "description": "OPTIONAL - If this is tracking the status of a DestinyActivityDefinition, this is the identifier for that activity." }, ) item_hash: t.Optional[ ManifestReference["DestinyInventoryItemDefinition"] ] = dt.field( default=None, metadata={ "description": "OPTIONAL - If this is tracking the status of a DestinyInventoryItemDefinition, this is the identifier for that item." }, ) location_hash: t.Optional[ ManifestReference["DestinyLocationDefinition"] ] = dt.field( default=None, metadata={ "description": "OPTIONAL - If this is tracking a DestinyLocationDefinition, this is the identifier for that location." }, ) objective_hash: t.Optional[ ManifestReference["DestinyObjectiveDefinition"] ] = dt.field( default=None, metadata={ "description": "OPTIONAL - If this is tracking the status of a DestinyObjectiveDefinition, this is the identifier for that objective." }, ) questline_item_hash: t.Optional[ ManifestReference["DestinyInventoryItemDefinition"] ] = dt.field( default=None, metadata={ "description": "OPTIONAL - If this is tracking the status of a quest, this is the identifier for the DestinyInventoryItemDefinition that containst that questline data." }, ) tracked_date: t.Optional[str] = dt.field( default=None, metadata={ "description": """OPTIONAL - I've got to level with you, I don't really know what this is. Is it when you started tracking it? Is it only populated for tracked items that have time limits? I don't know, but we can get at it - when I get time to actually test what it is, I'll update this. In the meantime, bask in the mysterious data.""" }, ) def to_json(self) -> t.Mapping[str, t.Any]: return { "locationHash": to_json(self.location_hash), "itemHash": to_json(self.item_hash), "objectiveHash": to_json(self.objective_hash), "activityHash": to_json(self.activity_hash), "questlineItemHash": to_json(self.questline_item_hash), "trackedDate": to_json(self.tracked_date), } from bungieapi.generated.components.schemas.destiny import ( # noqa: E402 DestinyGamePrivacySetting, DestinyJoinClosedReasons, DestinyPartyMemberStates, ) # imported at the end to do not case circular imports for type annotations from bungieapi.generated.components.schemas.destiny.artifacts import ( # noqa: E402 DestinyArtifactProfileScoped, ) from bungieapi.generated.components.schemas.destiny.definitions import ( # noqa: E402 DestinyActivityDefinition, DestinyDestinationDefinition, DestinyInventoryItemDefinition, DestinyLocationDefinition, DestinyObjectiveDefinition, )
41.382759
376
0.679193
c289ae806ce6d05882b663db1d969ae8579a3d89
455
py
Python
week07/lecture/examples/src7/favorites/favorites2.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
week07/lecture/examples/src7/favorites/favorites2.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
week07/lecture/examples/src7/favorites/favorites2.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
# Prints unique titles in CSV, case sensitively import csv # For accumulating (and later sorting) titles titles = set() # Open CSV file with open("Favorite TV Shows - Form Responses 1.csv", "r") as file: # Create DictReader reader = csv.DictReader(file) # Iterate over CSV file, adding each title to set for row in reader: titles.add(row["title"]) # Print titles in sorted order for title in sorted(titles): print(title)
21.666667
67
0.69011
91696720a13382b530938fbb55848318bdb4006d
448
py
Python
023_lambda.py
MikePolyakov/python_book
497681e8a167918a19ae737960c9c86ebffa9e91
[ "MIT" ]
null
null
null
023_lambda.py
MikePolyakov/python_book
497681e8a167918a19ae737960c9c86ebffa9e91
[ "MIT" ]
null
null
null
023_lambda.py
MikePolyakov/python_book
497681e8a167918a19ae737960c9c86ebffa9e91
[ "MIT" ]
null
null
null
lambda x: x**2 def sqr(x): return x**2 print(' '.join(map(lambda x: str(x**2), range(1, 101)))) n = int(input()) points = [] for i in range(n): point = tuple(map(int, input().split())) points.append(point) points.sort(key=lambda point: point[0]**2 + point[1]**2) for point in points: print(' '.join(map(str, point))) def traditionalSqr(x): return x**2 lambdaSqr = lambda x: x**2 print(traditionalSqr(3)) print(lambdaSqr(3))
20.363636
56
0.625
e4102bfc2adbe15366829d477debcbad01e76f75
39,011
py
Python
unittests/test_peer_channels.py
electrumsv/electrumsv-reference-server
b8fb0773f304e7930f0be867ef7b4bf9e5b95cab
[ "OML" ]
null
null
null
unittests/test_peer_channels.py
electrumsv/electrumsv-reference-server
b8fb0773f304e7930f0be867ef7b4bf9e5b95cab
[ "OML" ]
2
2021-11-24T01:22:55.000Z
2021-12-02T13:47:12.000Z
unittests/test_peer_channels.py
electrumsv/electrumsv-reference-server
b8fb0773f304e7930f0be867ef7b4bf9e5b95cab
[ "OML" ]
1
2021-11-23T01:00:38.000Z
2021-11-23T01:00:38.000Z
from __future__ import annotations import asyncio import base64 import datetime from http import HTTPStatus import json import logging import os from pathlib import Path try: # Linux expects the latest package version of 3.35.4 (as of pysqlite-binary 0.4.6) import pysqlite3 as sqlite3 except ModuleNotFoundError: # MacOS has latest brew version of 3.35.5 (as of 2021-06-20). # Windows builds use the official Python 3.10.0 builds and bundled version of 3.35.5. import sqlite3 # type: ignore import aiohttp from aiohttp import web, WSServerHandshakeError from bitcoinx import PrivateKey, PublicKey from electrumsv_database.sqlite import replace_db_context_with_connection import pytest import requests from esv_reference_server.application_state import ApplicationState from esv_reference_server.errors import WebsocketUnauthorizedException from esv_reference_server import sqlite_db from .conftest import _wrong_auth_type, _bad_token, _successful_call, _no_auth, \ _subscribe_to_general_notifications_peer_channels, TEST_EXTERNAL_HOST, TEST_EXTERNAL_PORT, \ WS_URL_GENERAL WS_URL_TEMPLATE_MSG_BOX = "ws://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/{channelid}/notify" PRIVATE_KEY_1 = PrivateKey.from_hex( "720f1987db69efa562b3dabd78e51f19bd8da76c70ad839b72b939f4071b144b") PUBLIC_KEY_1: PublicKey = PRIVATE_KEY_1.public_key REF_TYPE_OUTPUT = 0 REF_TYPE_INPUT = 1 STREAM_TERMINATION_BYTE = b"\x00" MODULE_DIR = Path(os.path.dirname(os.path.abspath(__file__))) CHANNEL_ID: str = "" CHANNEL_BEARER_TOKEN: str = "" CHANNEL_BEARER_TOKEN_ID: int = 0 CHANNEL_READ_ONLY_TOKEN: str = "" CHANNEL_READ_ONLY_TOKEN_ID: int = 0 class TestAiohttpRESTAPI: logger = logging.getLogger("test-aiohttp-rest-api") _account_id: int _api_key: str @classmethod def setup_class(cls) -> None: assert ApplicationState.singleton_reference is not None application_state = ApplicationState.singleton_reference() assert application_state is not None cls._account_id, cls._api_key = application_state.database_context.run_in_thread( sqlite_db.create_account, PUBLIC_KEY_1.to_bytes(compressed=True)) def setup_method(self) -> None: pass def teardown_method(self) -> None: pass @classmethod def teardown_class(cls) -> None: pass async def _create_new_channel(self) -> tuple[str, str, str]: URL = "http://{host}:{port}/api/v1/channel/manage".format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT) request_body = { "public_read": True, "public_write": True, "sequenced": True, "retention": { "min_age_days": 0, "max_age_days": 0, "auto_prune": True } } self.logger.debug("test_create_new_channel url: %s", URL) async with aiohttp.ClientSession() as session: headers = {"Authorization": f"Bearer {self._api_key}"} async with session.post(URL, headers=headers, json=request_body) as resp: self.logger.debug("resp.content = %s", resp.content) assert resp.status == 200, resp.reason single_channel_data = await resp.json() CHANNEL_ID = single_channel_data['id'] CHANNEL_BEARER_TOKEN = single_channel_data['access_tokens'][0]['token'] CHANNEL_BEARER_TOKEN_ID = single_channel_data['access_tokens'][0]['id'] return CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID async def _create_read_only_token(self, CHANNEL_ID: str) -> tuple[str, str]: URL = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/{channelid}/api-token" request_body = { "description": "websocket read only token", "can_read": True, "can_write": False } url = URL.format(channelid=CHANNEL_ID) self.logger.debug("test_create_new_token_for_channel url: %s", url) async with aiohttp.ClientSession() as session: headers = {"Authorization": f"Bearer {self._api_key}"} async with session.post(url, headers=headers, json=request_body) as resp: self.logger.debug("resp.content = %s", resp.content) assert resp.status == 200, resp.reason response_body = await resp.json() CHANNEL_READ_ONLY_TOKEN_ID = response_body['id'] CHANNEL_READ_ONLY_TOKEN = response_body['token'] return CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN @pytest.mark.asyncio def test_ping(self) -> None: URL = "http://{host}:{port}/".format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT) result = requests.get(URL) assert result.text is not None @pytest.mark.asyncio def test_create_new_channel(self) -> None: URL = 'http://{host}:{port}/api/v1/channel/manage'.format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT) HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = { "public_read": True, "public_write": True, "sequenced": True, "retention": { "min_age_days": 0, "max_age_days": 0, "auto_prune": True } } self.logger.debug("test_create_new_channel url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() # self.logger.debug(json.dumps(response_body, indent=4)) single_channel_data = response_body CHANNEL_ID = single_channel_data['id'] assert single_channel_data['href'] == \ f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" assert single_channel_data['public_read'] is True assert single_channel_data['public_write'] is True assert single_channel_data['sequenced'] is True assert single_channel_data['retention'] == {"min_age_days": 0, "max_age_days": 0, \ "auto_prune": True} assert isinstance(single_channel_data['access_tokens'], list) assert single_channel_data['access_tokens'][0]['id'] == 1 issued_token_bytes = \ base64.urlsafe_b64decode(single_channel_data['access_tokens'][0]['token']) assert len(issued_token_bytes) == 64 assert single_channel_data['access_tokens'][0]['description'] == "Owner" assert single_channel_data['access_tokens'][0]['can_read'] is True assert single_channel_data['access_tokens'][0]['can_write'] is True @pytest.mark.asyncio async def test_create_new_token_for_channel(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() # handler: create_new_token_for_channel URL = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/{channelid}/api-token" HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = { "description": "some description", "can_read": True, "can_write": False } url = URL.format(channelid=CHANNEL_ID) self.logger.debug("test_create_new_token_for_channel url: %s", url) result = _successful_call(url, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() assert len(base64.urlsafe_b64decode(response_body['token'])) == 64 expected_response_body = { "id": 3, "token": response_body['token'], "description": "some description", "can_read": True, "can_write": False } assert response_body == expected_response_body @pytest.mark.asyncio def test_list_channels(self) -> None: # handler: list_channels URL = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/list" HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = None self.logger.debug("test_list_channels url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() # self.logger.debug(json.dumps(response_body, indent=4)) assert isinstance(response_body, list) assert len(response_body) == 2 for single_channel_data in response_body: # assert single_channel_data['href'] == \ # f"http://{TEST_HOST}:{TEST_PORT}/api/v1/channel/{CHANNEL_ID}" assert single_channel_data['public_read'] is True assert single_channel_data['public_write'] is True assert single_channel_data['sequenced'] is True assert single_channel_data['retention'] == {"min_age_days": 0, "max_age_days": 0, "auto_prune": True} assert isinstance(single_channel_data['access_tokens'], list) assert isinstance(single_channel_data['access_tokens'][0]['id'], int) issued_token_bytes = base64.urlsafe_b64decode( single_channel_data['access_tokens'][0]['token']) assert len(issued_token_bytes) == 64 # assert single_channel_data['access_tokens'][0]['token'] == CHANNEL_BEARER_TOKEN assert single_channel_data['access_tokens'][0]['description'] == "Owner" assert single_channel_data['access_tokens'][0]['can_read'] is True assert single_channel_data['access_tokens'][0]['can_write'] is True @pytest.mark.asyncio async def test_get_single_channel_details(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() # handler: get_single_channel_details URL = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/{channelid}" HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = None url = URL.format(channelid=CHANNEL_ID) self.logger.debug("test_get_single_channel_details url: %s", url) result = _successful_call(url, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() # self.logger.debug(json.dumps(response_body, indent=4)) single_channel_data = response_body assert single_channel_data['href'] == \ f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" assert single_channel_data['public_read'] is True assert single_channel_data['public_write'] is True assert single_channel_data['sequenced'] is True assert single_channel_data['retention'] == {"min_age_days": 0, "max_age_days": 0, "auto_prune": True} assert isinstance(single_channel_data['access_tokens'], list) assert isinstance(single_channel_data['access_tokens'][0]['id'], int) issued_token_bytes = \ base64.urlsafe_b64decode(single_channel_data['access_tokens'][0]['token']) assert len(issued_token_bytes) == 64 assert single_channel_data['access_tokens'][0]['description'] == "Owner" assert single_channel_data['access_tokens'][0]['can_read'] is True assert single_channel_data['access_tokens'][0]['can_write'] is True @pytest.mark.asyncio async def test_update_single_channel_properties(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() # handler: update_single_channel_properties URL = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/{channelid}" HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = { "public_read": True, "public_write": True, "locked": False } url = URL.format(channelid=CHANNEL_ID) self.logger.debug("test_update_single_channel_properties url: %s", url) result = _successful_call(url, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() # self.logger.debug(json.dumps(response_body, indent=4)) assert response_body == request_body @pytest.mark.asyncio async def test_get_token_details(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) expected_response_body = { "id": CHANNEL_READ_ONLY_TOKEN_ID, "token": CHANNEL_READ_ONLY_TOKEN, "description": "websocket read only token", "can_read": True, "can_write": False } # handler: get_token_details URL = 'http://{host}:{port}/api/v1/channel/manage/{channelid}/api-token/{tokenid}'\ .format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID, tokenid=CHANNEL_READ_ONLY_TOKEN_ID) HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = None self.logger.debug("test_get_token_details url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() self.logger.debug(json.dumps(response_body, indent=4)) assert response_body == expected_response_body @pytest.mark.asyncio async def test_get_list_of_tokens(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) expected_response_body = [ { "id": CHANNEL_BEARER_TOKEN_ID, "token": CHANNEL_BEARER_TOKEN, "description": "Owner", "can_read": True, "can_write": True }, { "id": CHANNEL_READ_ONLY_TOKEN_ID, "token": CHANNEL_READ_ONLY_TOKEN, "description": "websocket read only token", "can_read": True, "can_write": False } ] # handler: get_list_of_tokens URL = 'http://{host}:{port}/api/v1/channel/manage/{channelid}/api-token'\ .format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID) HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) request_body = None self.logger.debug("test_get_list_of_tokens url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, self._api_key) assert result.status_code == 200, result.reason response_body = result.json() self.logger.debug(json.dumps(response_body, indent=4)) assert response_body == expected_response_body # MESSAGE MANAGEMENT APIS - USE CHANNEL-SPECIFIC BEARER TOKEN NOW @pytest.mark.asyncio async def test_write_message_no_content_type_should_raise_400(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() # handler: write_message URL = 'http://{host}:{port}/api/v1/channel/{channelid}'.format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID) HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD, headers={'Content-Type': 'application/json'}) request_body = {"key": "value"} self.logger.debug("test_write_message_no_content_type_should_raise_400 url: %s", URL) headers = { "Content-Type": "", } result = _successful_call(URL, HTTP_METHOD, headers, request_body, CHANNEL_BEARER_TOKEN) assert result.status_code == HTTPStatus.BAD_REQUEST, result.reason assert result.reason is not None @pytest.mark.asyncio async def test_write_message_read_only_token_should_fail(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) headers = {} headers["Content-Type"] = "application/json" request_body = { "key": "value" } # handler: write_message URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD, headers={'Content-Type': 'application/json'}) self.logger.debug("test_write_message_read_only_token_should_fail url: %s", URL) result = _successful_call(URL, HTTP_METHOD, headers, request_body, CHANNEL_READ_ONLY_TOKEN) assert result.status_code == 401, result.reason def _write_message(self, CHANNEL_ID: str, CHANNEL_BEARER_TOKEN: str) -> requests.Response: headers = {} headers["Content-Type"] = "application/json" request_body = { "key": "value" } # handler: write_message URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD, headers={'Content-Type': 'application/json'}) self.logger.debug("test_write_message url: %s", URL) result = _successful_call(URL, HTTP_METHOD, headers, request_body, CHANNEL_BEARER_TOKEN) assert result.status_code == 200, result.reason return result @pytest.mark.asyncio async def test_write_message(self) -> None: """Uses CHANNEL_BEARER_TOKEN to write messages for the CHANNEL_READ_ONLY_TOKEN to read.""" CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() headers = {} headers["Content-Type"] = "application/json" request_body = { "key": "value" } # handler: write_message URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD, headers={'Content-Type': 'application/json'}) self.logger.debug("test_write_message url: %s", URL) result = _successful_call(URL, HTTP_METHOD, headers, request_body, CHANNEL_BEARER_TOKEN) assert result.status_code == 200, result.reason response_body = result.json() assert isinstance(response_body['sequence'], int) assert isinstance(datetime.datetime.fromisoformat(response_body['received']), datetime.datetime) assert response_body['content_type'] == 'application/json' assert response_body['payload'] == {'key': 'value'} @pytest.mark.asyncio async def test_get_messages_head(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) self._write_message(CHANNEL_ID, CHANNEL_BEARER_TOKEN) # handler: get_messages URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" HTTP_METHOD = 'head' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) self.logger.debug("test_get_messages_head url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, None, CHANNEL_READ_ONLY_TOKEN) assert result.headers['ETag'] == "1" assert result.content == b'' @pytest.mark.asyncio async def test_get_messages_unread_should_get_one(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) _response = self._write_message(CHANNEL_ID, CHANNEL_BEARER_TOKEN) # handler: get_messages query_params = "?unread=true" URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}/api/v1/channel/{CHANNEL_ID}" + \ query_params HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) self.logger.debug("test_get_messages_head url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, None, CHANNEL_READ_ONLY_TOKEN) assert result.headers['ETag'] == "1" response_body = result.json() assert isinstance(response_body, list) assert response_body[0]['sequence'] == 1 assert isinstance(datetime.datetime.fromisoformat(response_body[0]['received']), datetime.datetime) assert response_body[0]['content_type'] == 'application/json' assert response_body[0]['payload'] == {'key': 'value'} @pytest.mark.asyncio async def test_mark_message_read_or_unread(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) _response = self._write_message(CHANNEL_ID, CHANNEL_BEARER_TOKEN) # handler: mark_message_read_or_unread sequence = 1 query_params = "?older=true" URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}"+ \ f"/api/v1/channel/{CHANNEL_ID}/{sequence}" + query_params HTTP_METHOD = 'post' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) body = {"read": True} result = _successful_call(URL, HTTP_METHOD, None, body, CHANNEL_READ_ONLY_TOKEN) assert result.status_code == 200, result.reason sequence = 2 query_params = "?older=true" URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}"+ \ f"/api/v1/channel/{CHANNEL_ID}/{sequence}" + query_params result = _successful_call(URL, HTTP_METHOD, None, body, CHANNEL_READ_ONLY_TOKEN) assert result.status_code == 404, result.reason assert result.reason is not None @pytest.mark.asyncio async def test_delete_message_read_only_token_should_fail(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) _response = self._write_message(CHANNEL_ID, CHANNEL_BEARER_TOKEN) # handler: delete_message sequence = 1 URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}"+ \ f"/api/v1/channel/{CHANNEL_ID}/{sequence}" HTTP_METHOD = 'delete' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) sequence = 1 url = URL.format(channelid=CHANNEL_ID, sequence=sequence) result = _successful_call(url, HTTP_METHOD, None, None, CHANNEL_READ_ONLY_TOKEN) assert result.status_code == 401, result.reason sequence = 2 url = URL.format(channelid=CHANNEL_ID, sequence=sequence) result = _successful_call(url, HTTP_METHOD, None, None, CHANNEL_READ_ONLY_TOKEN) assert result.status_code == 401, result.reason assert result.reason is not None @pytest.mark.asyncio async def test_delete_message_should_succeed(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() _response = self._write_message(CHANNEL_ID, CHANNEL_BEARER_TOKEN) sequence = 1 URL = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}"+ \ f"/api/v1/channel/{CHANNEL_ID}/{sequence}" HTTP_METHOD = 'delete' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) result = _successful_call(URL, HTTP_METHOD, None, None, CHANNEL_BEARER_TOKEN) assert result.status_code == 200, result.reason sequence = 2 url = URL.format(channelid=CHANNEL_ID, sequence=sequence) result = _successful_call(url, HTTP_METHOD, None, None, CHANNEL_BEARER_TOKEN) assert result.status_code == 404, result.reason assert result.reason is not None async def _subscribe_to_msg_box_notifications(self, url: str, msg_box_api_token: str, expected_count: int, completion_event: asyncio.Event) -> None: count = 0 async with aiohttp.ClientSession() as session: try: async with session.ws_connect(url + f"?token={msg_box_api_token}", timeout=5.0) \ as ws: self.logger.info('Connected to %s', url) async for msg in ws: if msg.type == aiohttp.WSMsgType.TEXT: content = json.loads(msg.data) self.logger.info('New message from msg box: %s', content) count += 1 if expected_count == count: self.logger.debug("Received all %s messages", expected_count) await session.close() completion_event.set() return if msg.type in (aiohttp.WSMsgType.CLOSE, aiohttp.WSMsgType.ERROR, aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.CLOSING): self.logger.info("CLOSED") break except WSServerHandshakeError as e: if e.status == 401: raise WebsocketUnauthorizedException() @pytest.mark.asyncio def test_channels_websocket_bad_auth_should_fail(self) -> None: async def wait_on_sub(url: str, msg_box_api_token: str, expected_count: int, completion_event: asyncio.Event) -> None: try: await self._subscribe_to_msg_box_notifications(url, msg_box_api_token, expected_count, completion_event) except WebsocketUnauthorizedException: self.logger.debug("Websocket unauthorized - bad token") assert True # Auth should failed completion_event = asyncio.Event() url = WS_URL_TEMPLATE_MSG_BOX.format(channelid=CHANNEL_ID) asyncio.run(wait_on_sub(url, "BAD_BEARER_TOKEN", 0, completion_event)) @pytest.mark.asyncio def test_channels_websocket(self) -> None: logger = logging.getLogger("websocket-test") async def wait_on_sub(url: str, msg_box_api_token: str, expected_count: int, completion_event: asyncio.Event) -> None: try: await self._subscribe_to_msg_box_notifications(url, msg_box_api_token, expected_count, completion_event) except WebsocketUnauthorizedException: self.logger.debug("Auth failed") assert False # Auth should have passed async def push_messages(CHANNEL_ID: str, CHANNEL_BEARER_TOKEN: str, expected_msg_count: int) -> None: for i in range(expected_msg_count): headers = {} headers["Content-Type"] = "application/json" headers["Authorization"] = f"Bearer {CHANNEL_BEARER_TOKEN}" request_body = {"key": "value"} url = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}" + \ f"/api/v1/channel/{CHANNEL_ID}" async with aiohttp.ClientSession() as session: headers = {"Authorization": f"Bearer {CHANNEL_BEARER_TOKEN}"} async with session.post(url, headers=headers, json=request_body) as resp: self.logger.debug("push_messages = %s", await resp.json()) assert resp.status == 200, resp.reason async def main() -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = \ await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) EXPECTED_MSG_COUNT = 10 logger.debug("CHANNEL_ID: %s", CHANNEL_ID) logger.debug("CHANNEL_BEARER_TOKEN: %s", CHANNEL_BEARER_TOKEN) logger.debug("CHANNEL_READ_ONLY_TOKEN: %s", CHANNEL_READ_ONLY_TOKEN) completion_event = asyncio.Event() url = WS_URL_TEMPLATE_MSG_BOX.format(channelid=CHANNEL_ID) task1 = asyncio.create_task(wait_on_sub(url, CHANNEL_BEARER_TOKEN, EXPECTED_MSG_COUNT, completion_event)) await asyncio.sleep(3) task2 = asyncio.create_task(push_messages(CHANNEL_ID, CHANNEL_BEARER_TOKEN, EXPECTED_MSG_COUNT)) await asyncio.gather(task1, task2) await completion_event.wait() asyncio.run(main()) @pytest.mark.asyncio def test_general_purpose_websocket_bad_auth_should_fail(self) -> None: async def wait_on_sub(url: str, api_token: str, expected_count: int, completion_event: asyncio.Event) -> None: try: await _subscribe_to_general_notifications_peer_channels(url, api_token, expected_count, completion_event) except WebsocketUnauthorizedException: self.logger.debug("Websocket unauthorized - bad token") assert True # Auth should failed completion_event = asyncio.Event() url = WS_URL_GENERAL asyncio.run(wait_on_sub(url, "BAD_BEARER_TOKEN", 0, completion_event)) @pytest.mark.asyncio def test_general_purpose_websocket_peer_channel_notifications(self) -> None: logger = logging.getLogger("websocket-test") async def manage_general_websocket_connection(url: str, api_token: str, expected_count: int, completion_event: asyncio.Event) -> None: try: await _subscribe_to_general_notifications_peer_channels( url, api_token, expected_count, completion_event) except WebsocketUnauthorizedException: self.logger.debug("Auth failed") assert False # Auth should have passed async def push_messages(CHANNEL_ID: str, CHANNEL_BEARER_TOKEN: str, expected_msg_count: int) -> None: for i in range(expected_msg_count): headers = {} headers["Content-Type"] = "application/json" headers["Authorization"] = f"Bearer {CHANNEL_BEARER_TOKEN}" request_body = {"key": "value"} url = f"http://{TEST_EXTERNAL_HOST}:{TEST_EXTERNAL_PORT}"+ \ f"/api/v1/channel/{CHANNEL_ID}" async with aiohttp.ClientSession() as session: headers = {"Authorization": f"Bearer {CHANNEL_BEARER_TOKEN}"} async with session.post(url, headers=headers, json=request_body) as resp: self.logger.debug("push_messages = %s", await resp.json()) assert resp.status == 200, resp.reason async def main() -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = \ await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) EXPECTED_MSG_COUNT = 10 logger.debug("CHANNEL_ID: %s", CHANNEL_ID) logger.debug("CHANNEL_BEARER_TOKEN: %s", CHANNEL_BEARER_TOKEN) logger.debug("CHANNEL_READ_ONLY_TOKEN: %s", CHANNEL_READ_ONLY_TOKEN) completion_event = asyncio.Event() url = WS_URL_GENERAL task1 = asyncio.create_task( manage_general_websocket_connection(url, self._api_key, EXPECTED_MSG_COUNT, completion_event)) await asyncio.sleep(3) task2 = asyncio.create_task(push_messages(CHANNEL_ID, CHANNEL_BEARER_TOKEN, EXPECTED_MSG_COUNT)) await asyncio.gather(task1, task2) await completion_event.wait() asyncio.run(main()) @pytest.mark.asyncio async def test_revoke_selected_token(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) # handler: revoke_selected_token URL = 'http://{host}:{port}/api/v1/channel/manage/{channelid}/api-token/{tokenid}'\ .format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID, tokenid=CHANNEL_READ_ONLY_TOKEN_ID) HTTP_METHOD = 'delete' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) good_bearer_token = self._api_key request_body = None self.logger.debug("test_revoke_selected_token url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, good_bearer_token) assert result.status_code == web.HTTPNoContent.status_code def _revoke_token(self, CHANNEL_ID: str, CHANNEL_READ_ONLY_TOKEN_ID: str) -> requests.Response: # handler: revoke_selected_token URL = 'http://{host}:{port}/api/v1/channel/manage/{channelid}/api-token/{tokenid}'\ .format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID, tokenid=CHANNEL_READ_ONLY_TOKEN_ID) HTTP_METHOD = 'delete' good_bearer_token = self._api_key request_body = None self.logger.debug("test_revoke_selected_token url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, good_bearer_token) return result @pytest.mark.asyncio async def test_expired_token_should_fail(self) -> None: CHANNEL_ID, CHANNEL_BEARER_TOKEN, CHANNEL_BEARER_TOKEN_ID = await self._create_new_channel() CHANNEL_READ_ONLY_TOKEN_ID, CHANNEL_READ_ONLY_TOKEN = \ await self._create_read_only_token(CHANNEL_ID) self._revoke_token(CHANNEL_ID, CHANNEL_READ_ONLY_TOKEN_ID) # handler: get_token_details URL = 'http://{host}:{port}/api/v1/channel/manage/{channelid}/api-token/{tokenid}'\ .format(host=TEST_EXTERNAL_HOST, port=TEST_EXTERNAL_PORT, channelid=CHANNEL_ID, tokenid=CHANNEL_READ_ONLY_TOKEN_ID) HTTP_METHOD = 'get' _no_auth(URL, HTTP_METHOD) _wrong_auth_type(URL, HTTP_METHOD) _bad_token(URL, HTTP_METHOD) expired_bearer_token = CHANNEL_READ_ONLY_TOKEN request_body = None self.logger.debug("test_revoke_selected_token url: %s", URL) result = _successful_call(URL, HTTP_METHOD, None, request_body, expired_bearer_token) assert result.status_code == 401 @pytest.mark.asyncio async def test_delete_channel(self) -> None: assert ApplicationState.singleton_reference is not None application_state = ApplicationState.singleton_reference() assert application_state is not None await self._create_new_channel() @replace_db_context_with_connection def read(db: sqlite3.Connection) -> list[str]: rows = db.execute("SELECT externalid FROM msg_box").fetchall() assert len(rows) > 0 return [ row[0] for row in rows ] channel_ids_for_deletion = read(application_state.database_context) URL_TEMPLATE = "http://"+ TEST_EXTERNAL_HOST +":"+ str(TEST_EXTERNAL_PORT) + \ "/api/v1/channel/manage/{channelid}" HTTP_METHOD = 'delete' _no_auth(URL_TEMPLATE, HTTP_METHOD) _wrong_auth_type(URL_TEMPLATE, HTTP_METHOD) _bad_token(URL_TEMPLATE, HTTP_METHOD) good_bearer_token = self._api_key for channel_id in channel_ids_for_deletion: url = URL_TEMPLATE.format(channelid=channel_id) self.logger.debug("test_delete_channel url: %s", url) result = _successful_call(url, HTTP_METHOD, None, None, good_bearer_token) assert result.status_code == web.HTTPNoContent.status_code @replace_db_context_with_connection def read2(db: sqlite3.Connection) -> None: rows = db.execute("SELECT * FROM msg_box").fetchall() assert len(rows) == 0 read2(application_state.database_context) @replace_db_context_with_connection def read3(db: sqlite3.Connection) -> None: rows = db.execute("SELECT * FROM msg_box_api_token").fetchall() assert len(rows) == 0 read3(application_state.database_context)
43.783389
100
0.64833
b6148920c6c6c91fa5a789653480d5bb1c97be4b
524
py
Python
setup.py
Zedd1558/keras
01db9f0d7270735f7951602dac2b89e08b7785bf
[ "MIT" ]
33
2015-11-25T23:11:02.000Z
2022-03-10T10:36:37.000Z
setup.py
RamsteinWR/keras-1
a37fb96cea857c0a2d4032cc40c01cfccd40e8b8
[ "MIT" ]
null
null
null
setup.py
RamsteinWR/keras-1
a37fb96cea857c0a2d4032cc40c01cfccd40e8b8
[ "MIT" ]
31
2016-01-26T16:08:28.000Z
2021-11-29T00:24:10.000Z
from setuptools import setup from setuptools import find_packages setup(name='Keras', version='0.2.0', description='Theano-based Deep Learning library', author='Francois Chollet', author_email='francois.chollet@gmail.com', url='https://github.com/fchollet/keras', download_url='https://github.com/fchollet/keras/tarball/0.2.0', license='MIT', install_requires=['theano', 'pyyaml'], extras_require={ 'h5py': ['h5py'], }, packages=find_packages())
29.111111
69
0.646947
187fd5db85d576dba297b31e02a1cd950a4decdd
40,078
py
Python
assets/source/zhihu.py
liticer/liticer.github.io
0e76a570e0ee8aa560b8719f5b564a116bcc5593
[ "MIT" ]
null
null
null
assets/source/zhihu.py
liticer/liticer.github.io
0e76a570e0ee8aa560b8719f5b564a116bcc5593
[ "MIT" ]
null
null
null
assets/source/zhihu.py
liticer/liticer.github.io
0e76a570e0ee8aa560b8719f5b564a116bcc5593
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' ;$$; ############# #############;#####o ## o######################### ##### $############################### ## ###$ ######! ########################## ## ### $### ################### ###### ### ### ##o####################### ###### ;### #### ##################### ## ### ###### ######&&################ ## ### ###### ## ############ ####### o## ######## ## ################## ##o ### #### #######o####### ## ###### ###########&##### ## #### #############! ### ######### #####& ## o#### ###### ## ####* ## !## ##### ## ##* ####; ## ##### #####o ##### #### ### ### $###o ### ## ####! $### ## ##### ## ## ;## ### ; ##$ ## ####### ## ##### &## ## ### ### ### ### ### ## ## ;## ## ## ### ## ### ### ## #### ## ### ## ##; ## ##$ ##& ## ## ##; ## ## ##; ### ### ##$ ### ### ## ###################### #####&&&&&&&&&&&&### ### $#####$ ############&$o$&################################ # $&########&o ''' # Build-in / Std import os, sys, time, platform, random, functools import re, json, cookielib # Requirements import requests, termcolor, html2text try: from bs4 import BeautifulSoup except: import BeautifulSoup # Some modules written by us from auth import islogin from auth import Logging """ Note: 1. 身份验证由 `auth.py` 完成。 2. 身份信息保存在当前目录的 `cookies` 文件中。 3. `requests` 对象可以直接使用,身份信息已经自动加载。 By Luozijun (https://github.com/LuoZijun), 09/09 2015 """ # 指示是否运行调试 DEBUG = True # 加载Cookies requests = requests.Session() requests.cookies = cookielib.LWPCookieJar('cookies') # 检查是否已经登陆成功 try: requests.cookies.load(ignore_discard=True) except: Logging.error(u"你还没有登录知乎哦 ...") Logging.info(u"执行 `python auth.py` 即可以完成登录。") raise Exception("无权限(403)") if islogin() != True: Logging.error(u"你的身份信息已经失效,请重新生成身份信息( `python auth.py` )。") raise Exception("无权限(403)") # 设置文本默认编码为utf8 reload(sys) sys.setdefaultencoding('utf8') # 抽象一个问题类 class Question: url = None soup = None # 初始化该问题的url、title def __init__(self, url, title=None): # 所有问题的url前面都相同,后8位是问题的编号 if url[0:len(url) - 8] != "http://www.zhihu.com/question/": raise ValueError("\"" + url + "\"" + " : it isn't a question url.") else: self.url = url if title != None: self.title = title # 获取网页并解析 def parser(self): # 获取该问题的网页 r = requests.get(self.url) # 对问题网页进行解析 self.soup = BeautifulSoup(r.content) # 调试-->将soup结果输出到文件 if DEBUG: f = open('log/question_soup.txt', 'w') f.writelines(self.soup.prettify()) f.close() # 装饰器处理Windows下默认的字符编码问题 def encode_on_windows(func): ''' Decorator for encode result of func on Windows. @encode_on_windows def func: ... ''' @functools.wraps(func) def _wrapper(*args, **kw): result = func(*args, **kw) if platform.system() == 'Windows': return result.decode('utf-8').encode('gbk') return result return _wrapper # 获取网页的标题 @encode_on_windows def get_title(self): if hasattr(self, "title"): return self.title if self.soup == None: self.parser() soup = self.soup title = soup.find("h2", class_="zm-item-title")\ .string.encode("utf-8").replace("\n", "") self.title = title return self.title # 获取问题的详细描述 @encode_on_windows def get_detail(self): if self.soup == None: self.parser() soup = self.soup detail = soup.find("div", id="zh-question-detail")\ .div.get_text().encode("utf-8") return detail # 获取答案的数目 def get_answers_num(self): if self.soup == None: self.parser() soup = self.soup answers_num = 0 answers_num_label = soup.find("h3", id="zh-question-answer-num") if answers_num_label != None: answers_num = int(answers_num_label["data-num"]) else: raise ValueError('Unexcepted label when get_answer_num') return answers_num # 获取问题的关注者数目 def get_followers_num(self): if self.soup == None: self.parser() soup = self.soup followers_num = 0 followers_num_label = soup.find("div", class_="zg-gray-normal") if followers_num_label != None: followers_num = int(followers_num_label.a.strong.string) else: raise ValueError('Unexcepted label when get_followers_num') return followers_num # 获取问题所属的话题 def get_topics(self): if self.soup == None: self.parser() soup = self.soup topic_list = soup.find_all("a", class_="zm-item-tag") topics = [] for i in topic_list: topic = i.contents[0].encode("utf-8").replace("\n", "") if platform.system() == 'Windows': topic = topic.decode('utf-8').encode('gbk') topics.append(topic) return topics # 获取该问题对应的所有答案 def get_all_answers(self): answers_num = self.get_answers_num() if answers_num == 0: # print "No answer." return error_answer_count = 0 my_answer_count = 0 # 每一次请求会返回50个答案 # 前50个答案,只要抓取对应的URL就可以获得答案 for j in xrange(min(answers_num, 50)): if DEBUG: print j if self.soup == None: self.parser() soup = BeautifulSoup(self.soup.encode("utf-8")) # DEBUG,输出中间结果 if DEBUG: f = open('log/question_soup_x.txt', 'w') f.writelines(soup.prettify()) f.close() # raw_input("Pause, press <Enter> to continue...") # 这个答案是自己写的 is_my_answer = False item_answer = soup.find_all("div", class_="zm-item-answer")[j] if not item_answer.find("span", class_="count"): my_answer_count += 1 is_my_answer = True # 这个答案有问题 if not item_answer.find("div", class_="zm-editable-content clearfix"): error_answer_count += 1 continue author = None # 这个答案是匿名用户写的 author_class = "zm-item-answer-author-info" author_info = soup.find_all("div", class_=author_class)[j] anoy_name = author_info.find("span", class_="name") if anoy_name and anoy_name.string == u"匿名用户": author_url = None author = User(author_url) # 这个答案是非匿名用户写的 else: author_tag = author_info.find_all("a")[1] author_id = author_tag.string.encode("utf-8") author_url = "http://www.zhihu.com" + author_tag["href"] author = User(author_url, author_id) # 这个答案有多少赞 count = "" if is_my_answer == True: count = item_answer.find("a", class_="zm-item-vote-count").string else: count = soup.find_all("span", class_="count")\ [j - my_answer_count].string if count[-1] == "K": upvote = int(count[0:(len(count) - 1)]) * 1000 elif count[-1] == "W": upvote = int(count[0:(len(count) - 1)]) * 10000 else: upvote = int(count) # 这个答案的URL和内容 answer_id = soup.find_all("a", class_="answer-date-link")[j]["href"] answer_url = "http://www.zhihu.com" + answer_id answer = soup.find_all("div", class_=\ "zm-editable-content clearfix")[j - error_answer_count] soup.body.extract() # 删除soup中网页的body部分并加入一个新的body soup.head.insert_after(soup.new_tag("body", **{'class': 'zhi'})) soup.body.append(answer) # 添加Answer的内容到body部分 # 这个答案中的图片,修改每张图片的URL,并删除一些不必要的代码 img_list = soup.find_all("img", class_="content_image lazy") for img in img_list: img["src"] = img["data-actualsrc"] img_list = soup.find_all("img", \ class_="origin_image zh-lightbox-thumb lazy") for img in img_list: img["src"] = img["data-actualsrc"] noscript_list = soup.find_all("noscript") for noscript in noscript_list: noscript.extract() content = soup # 用生成器返回一个Answer,这样避免了一次生成耗时间耗内存的问题 answer = Answer(answer_url, self, author, upvote, content) yield answer # 超过50个答案,需要点击“加载更多”的情况 for i in xrange((answers_num-51)/50 + 1): # 下标应该从1开始记起 i += 1 # 从浏览器中按F12,可以看到是一个post请求,对应的URL如下: post_url = "http://www.zhihu.com/node/QuestionAnswerListV2" # 从该问题的URL中可以找到_xsrf的值 _xsrf = self.soup.find("input", attrs={'name': '_xsrf'})["value"] # 这是一个偏移量,指示这次请求需要跳过前面多少个答案 offset = i * 50 # 发送post请求参数的一部分 params = json.dumps({"url_token": int(self.url[-8:]),\ "pagesize": 50,\ "offset": offset}) # 发送post请求的表单数据 data = { '_xsrf': _xsrf, 'method': "next", 'params': params } # 发送post请求的消息头 header = { 'User-Agent': "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:34.0)"\ + " Gecko/20100101 Firefox/34.0", 'Host': "www.zhihu.com", 'Referer': self.url } # 发送post请求 r = requests.post(post_url, data=data, headers=header) # 对这次请求得到的答案进行解析,并返回 answer_list = r.json()["msg"] for j in xrange(min(answers_num-i*50, 50)): if DEBUG: print i*50+j # 该问题URL的soup解析 soup = BeautifulSoup(self.soup.encode("utf-8")) # 这次请求中的一个答案的soup解析 answer_soup = BeautifulSoup(answer_list[j]) # DEBUG,输出中间结果 if DEBUG: f = open('log/question_soup_x.txt', 'w') f.writelines(answer_soup.prettify()) f.close() # raw_input("Pause, press <Enter> to continue...") # 这个答案有问题,直接跳过 if answer_soup.find("div",\ class_="zm-editable-content clearfix") == None: continue # 这个答案的作者 author = None author_class = "zm-item-answer-author-info" author_info = answer_soup.find("div", class_=author_class) anoy_name = author_info.find("span", class_="name") if anoy_name and anoy_name.string == u"匿名用户": author_url = None author = User(author_url) else: author_tag = author_info.find_all("a")[1] author_id = author_tag.string.encode("utf-8") author_url = "http://www.zhihu.com" + author_tag["href"] author = User(author_url, author_id) # 这个答案的赞数 count = answer_soup.find("span", class_="count") if count == None: count = answer_soup.find("a", \ class_="zm-item-vote-count").string else: count = count.string if count[-1] == "K": upvote = int(count[0:(len(count) - 1)]) * 1000 elif count[-1] == "W": upvote = int(count[0:(len(count) - 1)]) * 10000 else: upvote = int(count) # 这个答案的URL和内容 answer_id = answer_soup.find("a", class_="answer-date-link")["href"] answer_url = "http://www.zhihu.com" + answer_id answer = answer_soup.find("div", \ class_="zm-editable-content clearfix") soup.body.extract() # 删除soup中网页的body部分并加入一个新的body soup.head.insert_after(soup.new_tag("body", **{'class': 'zhi'})) soup.body.append(answer) # 添加Answer的内容到body部分 # 这个答案中的图片,修改每张图片的URL,并删除一些不必要的代码 img_list = soup.find_all("img", class_="content_image lazy") for img in img_list: img["src"] = img["data-actualsrc"] img_list = soup.find_all("img", \ class_="origin_image zh-lightbox-thumb lazy") for img in img_list: img["src"] = img["data-actualsrc"] noscript_list = soup.find_all("noscript") for noscript in noscript_list: noscript.extract() content = soup # 用生成器返回一个Answer,这样避免了一次生成耗时间耗内存的问题 answer = Answer(answer_url, self, author, upvote, content) yield answer # 获取前i个答案 def get_top_i_answers(self, n): j = 0 answers = self.get_all_answers() for answer in answers: j = j + 1 if j > n: break yield answer # 获取第1个答案 def get_top_answer(self): for answer in self.get_top_i_answers(1): return answer # 获取该问题被浏览的次数 def get_visit_times(self): if self.soup == None: self.parser() soup = self.soup return int(soup.find("meta", itemprop="visitsCount")["content"]) # 抽象一个用户类 class User: user_url = None soup = None # 初始化该用户的url、user_id def __init__(self, user_url, user_id=None): if user_url == None: self.user_id = "匿名用户" elif user_url[0:28] != "http://www.zhihu.com/people/": raise ValueError('"'+user_url+'": it isn\'t a user url.') else: self.user_url = user_url if user_id != None: self.user_id = user_id # 获取用户主页并解析 def parser(self): r = requests.get(self.user_url) soup = BeautifulSoup(r.content) self.soup = soup # 装饰器处理Windows下默认的字符编码问题 def encode_on_windows(func): ''' Decorator for encode result of func on Windows. @encode_on_windows def func: ... ''' @functools.wraps(func) def _wrapper(*args, **kw): result = func(*args, **kw) if platform.system() == 'Windows': return result.decode('utf-8').encode('gbk') return result return _wrapper # 获取用户名 @encode_on_windows def get_user_id(self): if self.user_url == None: return "匿名用户" if hasattr(self, "user_id"): return self.user_id if self.soup == None: self.parser() user_l = self.soup.find("div", class_="title-section ellipsis") user_id = user_lb.find("span", class_="name").string.encode("utf-8") self.user_id = user_id return user_id # 获取关注该用户的人总数 def get_followees_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() followees_c = "zm-profile-side-following zg-clear" followees_l = self.soup.find("div", class_=followees_c) followees_num = int(followees_l.find("a").strong.string) return followees_num # 获取该用户关注的人总数 def get_followers_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() followers_c = "zm-profile-side-following zg-clear" followers_l = self.soup.find("div", class_=followers_c) followers_num = int(followers_l.find_all("a")[1].strong.string) return followers_num # 获取该用户获得赞数 def get_agree_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() agree_c = "zm-profile-header-user-agree" agree_l = self.soup.find("span", class_=agree_c) agree_num = int(agree_l.find("span",).strong.string) return agree_num # 获取该用户获得的感谢数 def get_thanks_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() thanks_c = "zm-profile-header-user-thanks" thanks_l = self.soup.find("span", class_= thanks_c) thanks_num = int(thanks_l.strong.string) return thanks_num # 获取该用户提问的问题数 def get_asks_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() asks_l = self.soup.find_all("span", class_="num") asks_num = int(asks_l[0].string) return asks_num # 获取该用户回答的问题数 def get_answers_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() answers_l = self.soup.find_all("span", class_="num") answers_num = int(answers_l[1].string) return answers_num # 获取该用户收藏夹数 def get_collections_num(self): if self.user_url == None: return 0 if self.soup == None: self.parser() collections_l = self.soup.find_all("span", class_="num") collections_num = int(collections_l[3].string) return collections_num # 获取关注该用户的人 def get_followees(self): if self.user_url == None: return followees_num = self.get_followees_num() if followees_num == 0: return # 获取关注该用户的用户页页面并解析 followee_url = self.user_url + "/followees" r = requests.get(followee_url) soup = BeautifulSoup(r.content) # 对于每20个用户发送一次请求 # 首次不用发送请求,因为已经获取到页面了 user_url_list = soup.find_all("h2", class_="zm-list-content-title") for j in xrange(min(followees_num, 20)): user_url = user_url_list[j].a["href"], user_id = user_url_list[j].a.string.encode("utf-8") yield User(user_url, user_id) # 处理剩下的关注该用户的人 for i in xrange((followees_num - 21) / 20 + 1): # 发送post请求,再获取20个关注者 i += 1 # 将要发送post请求的URL post_url = "http://www.zhihu.com/node/ProfileFolloweesListV2" # 准备发送该post请求的参数 _xsrf = soup.find("input", attrs={'name': '_xsrf'})["value"] offset = i * 20 hash_id = re.findall("hash_id&quot;: &quot;(.*)&quot;},", r.text)[0] dumps_p = { "offset": offset, "order_by": "created", "hash_id": hash_id } params = json.dumps(dumps_p) data = { '_xsrf': _xsrf, 'method': "next", 'params': params } # 准备发送该post请求的消息头 header = { 'User-Agent': "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:34.0)"\ + " Gecko/20100101 Firefox/34.0", 'Host': "www.zhihu.com", 'Referer': followee_url } # 发送post请求 r_post = requests.post(post_url, data=data, headers=header) # 获取关注者列表 followee_list = r_post.json()["msg"] for j in xrange(min(followees_num - i * 20, 20)): soup_f = BeautifulSoup(followee_list[j]) user_l = soup_f.find("h2", class_="zm-list-content-title").a yield User(user_l["href"], user_l.string.encode("utf-8")) # 获取该用户关注的用户列表 def get_followers(self): if self.user_url == None: return followers_num = self.get_followers_num() if followers_num == 0: return # 获取关注者页面并解析 follower_url = self.user_url + "/followers" r = requests.get(follower_url) soup = BeautifulSoup(r.content) # 首次不用再get,因为前面已经获取过了 user_ul = soup.find_all("h2", class_="zm-list-content-title") for j in xrange(min(followers_num, 20)): user_url = user_ul[j].a["href"] user_id = user_ul[j].a.string.encode("utf-8") yield User(user_url, user_id) for i in xrange((followers_num - 21) / 20 + 1): # 发送post请求,再获取20个关注者 i += 1 # 发送post请求的地址 post_url = "http://www.zhihu.com/node/ProfileFollowersListV2" # 发送post请求的参数 _xsrf = soup.find("input", attrs={'name': '_xsrf'})["value"] offset = i * 20 hash_id = re.findall("hash_id&quot;: &quot;(.*)&quot;},", r.text)[0] dumps_p = { "offset": offset, "order_by": "created", "hash_id": hash_id } params = json.dumps(dumps_p) data = { '_xsrf': _xsrf, 'method': "next", 'params': params } # 发送post请求的消息头 header = { 'User-Agent': "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:34.0)"\ + "Gecko/20100101 Firefox/34.0", 'Host': "www.zhihu.com", 'Referer': follower_url } # 发送post请求 r_post = requests.post(post_url, data=data, headers=header) # 解析请求的结果,得到关注者列表 follower_list = r_post.json()["msg"] for j in xrange(min(followers_num - i * 20, 20)): soup_f = BeautifulSoup(follower_list[j]) user_l = soup_f.find("h2", class_="zm-list-content-title").a yield User(user_l["href"], user_l.string.encode("utf-8")) # 获取该用户提问的问题 def get_asks(self): if self.user_url == None: return asks_num = self.get_asks_num() if asks_num == 0: return for i in xrange((asks_num - 1) / 20 + 1): # 每20个问题发送一次get请求,得到请求结果并解析 ask_url = self.user_url + "/asks?page=" + str(i + 1) r = requests.get(ask_url) soup = BeautifulSoup(r.content) for question in soup.find_all("a", class_="question_link"): url = "http://www.zhihu.com" + question["href"] title = question.string.encode("utf-8") yield Question(url, title) # 获取该用户写过的答案 def get_answers(self): if self.user_url == None: return answers_num = self.get_answers_num() if answers_num == 0: return for i in xrange((answers_num - 1) / 20 + 1): # 每20个答案发送一次get请求,获得结果并解析 answer_url = self.user_url + "/answers?page=" + str(i + 1) r = requests.get(answer_url) soup = BeautifulSoup(r.content) for answer in soup.find_all("a", class_="question_link"): question_url = "http://www.zhihu.com" + answer["href"][0:18] question_title = answer.string.encode("utf-8") question = Question(question_url, question_title) answer_url = "http://www.zhihu.com" + answer["href"] yield Answer(answer_url, question, self) # 获取该用户的收藏夹 def get_collections(self): if self.user_url == None: return collections_num = self.get_collections_num() if collections_num == 0: return for i in xrange((collections_num - 1) / 20 + 1): # 每20个收藏夹发送一次post请求,获取结果并解析 collection_url = self.user_url + "/collections?page=" + str(i + 1) r = requests.get(collection_url) soup = BeautifulSoup(r.content) collection_c = "zm-profile-section-item zg-clear" collection_l = soup.find_all("div", class_=collection_c) for collection in collection_l: label = collection.find("a", class_="zm-profile-fav-item-title") url = "http://www.zhihu.com" + label["href"] name = label.string.encode("utf-8") yield Collection(url, name, self) # 抽象一个答案类 class Answer: answer_url = None soup = None # 初始化该答案的url、question、author、upvote、content def __init__(self, answer_url, question=None,\ author=None, upvote=None, content=None): self.answer_url = answer_url if question != None: self.question = question if author != None: self.author = author if upvote != None: self.upvote = upvote if content != None: self.content = content # 获取答案页面并解析 def parser(self): r = requests.get(self.answer_url) soup = BeautifulSoup(r.content) self.soup = soup # 获取答案对应的问题 def get_question(self): if hasattr(self, "question"): return self.question if self.soup == None: self.parser() soup = self.soup question_c = "zm-item-title zm-editable-content" question_l = soup.find("h2", class_= question_c).a url = "http://www.zhihu.com" + question_l["href"] title = question_l.string.encode("utf-8") question = Question(url, title) return question # 获取答案的作者 def get_author(self): if hasattr(self, "author"): return self.author if self.soup == None: self.parser() soup = self.soup author_c = "zm-item-answer-author-wrap" author_l = soup.find("h3", class_=author_c) if author_l.string == u"匿名用户": author_url = None author = User(author_url) else: author_tag = author_l.find_all("a")[1] author_id = author_tag.string.encode("utf-8") author_url = "http://www.zhihu.com" + author_tag["href"] author = User(author_url, author_id) return author # 获取该答案所获得的赞数 def get_upvote(self): if hasattr(self, "upvote"): return self.upvote if self.soup == None: self.parser() soup = self.soup count = soup.find("span", class_="count").string if count[-1] == "K": upvote = int(count[0:(len(count) - 1)]) * 1000 elif count[-1] == "W": upvote = int(count[0:(len(count) - 1)]) * 10000 else: upvote = int(count) return upvote # 获取该答案的内容 def get_content(self): if hasattr(self, "content"): return self.content if self.soup == None: self.parser() soup = BeautifulSoup(self.soup.encode("utf-8")) # 为Answer查找并构建一个新的html answer = soup.find("div", class_="zm-editable-content clearfix") soup.body.extract() soup.head.insert_after(soup.new_tag("body", **{'class': 'zhi'})) soup.body.append(answer) # 改变其中image的src属性,并去掉一些不执行的代码 img_list = soup.find_all("img", class_="content_image lazy") for img in img_list: img["src"] = img["data-actualsrc"] img_c = "origin_image zh-lightbox-thumb lazy" img_list = soup.find_all("img", class_=img_list) for img in img_list: img["src"] = img["data-actualsrc"] noscript_list = soup.find_all("noscript") for noscript in noscript_list: noscript.extract() content = soup self.content = content return content # 将答案保存成TXT格式 def to_txt(self): content = self.get_content() body = content.find("body") # 分别在br和li后面插入换行符 br_list = body.find_all("br") for br in br_list: br.insert_after(content.new_string("\n")) li_list = body.find_all("li") for li in li_list: li.insert_before(content.new_string("\n")) # 获取答案被保存的路径和文件名 file_path = os.path.join(os.path.join(os.getcwd(), "text")) file_name = self.get_question().get_title() + "--"\ + self.get_author().get_user_id() + "的回答.txt" # 创建路径,处理文件名编码 if not os.path.isdir(file_path): os.makedirs(file_path) if platform.system() == 'Windows': file_name = file_name.decode('utf-8').encode('gbk') print file_name # 先处理匿名用户的情况 if self.get_author().user_url == None: if os.path.exists(os.path.join(file_path, file_name)): f = open(os.path.join(file_path, file_name), "a") f.write("\n\n") else: f = open(os.path.join(file_path, file_name), "a") f.write(self.get_question().get_title() + "\n\n") # 处理非匿名用户的情况 else: f = open(os.path.join(file_path, file_name), "wt") f.write(self.get_question().get_title() + "\n\n") # 按照平台不同,使用不同编码格式开始写文件 file_header = "作者: " + self.get_author().get_user_id()\ + " 赞同: " + str(self.get_upvote()) + "\n\n" file_ender = "\n" + "原链接: " + self.answer_url if platform.system() == 'Windows': f.write(file_header.decode('utf-8').encode('gbk')) f.write(body.get_text().encode("gbk")) f.write(file_ender.decode('utf-8').encode('gbk')) else: f.write(file_header) f.write(body.get_text().encode("utf-8")) f.write(file_ender) f.close() # 将该答案保存成md格式 def to_md(self): content = self.get_content() # 获取答案被保存的路径和文件名 file_path = os.path.join(os.path.join(os.getcwd(), "markdown")) file_name = self.get_question().get_title() + "--"\ + self.get_author().get_user_id() + "的回答.md" # 创建路径,处理文件名编码 if not os.path.isdir(file_path): os.makedirs(file_path) if platform.system() == 'Windows': file_name = file_name.decode('utf-8').encode('gbk') print file_name # 先处理匿名用户的情况 if self.get_author().user_url == None: if os.path.exists(os.path.join(file_path, file_name)): f = open(os.path.join(file_path, file_name), "a") f.write("\n") else: f = open(os.path.join(file_path, file_name), "a") f.write("# " + self.get_question().get_title() + "\n") # 再处理非匿名用户的情况 else: f = open(os.path.join(file_path, file_name), "wt") f.write("# " + self.get_question().get_title() + "\n") # 对Anwser的html文件内容进行处理 text = html2text.html2text(content.decode('utf-8')).encode("utf-8") # 处理步骤1 r = re.findall(r'\*\*(.*?)\*\*', text) for i in r: if i != " ": text = text.replace(i, i.strip()) # 处理步骤2 r = re.findall(r'_(.*)_', text) for i in r: if i != " ": text = text.replace(i, i.strip()) # 处理步骤3 r = re.findall(r'!\[\]\((?:.*?)\)', text) for i in r: text = text.replace(i, i + "\n\n") # 按照平台不同,使用不同编码格式开始写文件 file_header = "## 作者: " + self.get_author().get_user_id()\ + " 赞同: " + str(self.get_upvote()) + "\n" file_ender = "#### 原链接: " + self.answer_url if platform.system() == 'Windows': f.write(file_header.decode('utf-8').encode('gbk')) f.write(text.decode('utf-8').encode('gbk')) f.write(file_ender.decode('utf-8').encode('gbk')) else: f.write(file_header) f.write(text) f.write(file_ender) f.close() # 获取该答案被访问的次数 def get_visit_times(self): if self.soup == None: self.parser() soup = self.soup for tag_p in soup.find_all("p"): if "所属问题被浏览" in tag_p.contents[0].encode('utf-8'): return int(tag_p.contents[1].contents[0]) # 获取该答案的支持者 def get_voters(self): if self.soup == None: self.parser() soup = self.soup data_aid = soup.find("div", class_="zm-item-answer ")["data-aid"] request_url = 'http://www.zhihu.com/node/AnswerFullVoteInfoV2' params={"params": "{\"answer_id\":\"%d\"}" % int(data_aid)} r = requests.get(request_url, params=params) soup = BeautifulSoup(r.content) voters_info = soup.find_all("span")[1:-1] if len(voters_info) == 0: return for voter_info in voters_info: if voter_info.string == ( u"匿名用户、" or u"匿名用户"): voter_url = None yield User(voter_url) else: voter_url = "http://www.zhihu.com" + str(voter_info.a["href"]) voter_id = voter_info.a["title"].encode("utf-8") yield User(voter_url, voter_id) # 抽象一个收藏夹类 class Collection: url = None soup = None # 初始化url、name、creator变量 def __init__(self, url, name=None, creator=None): if url[0:len(url) - 8] != "http://www.zhihu.com/collection/": raise ValueError("\""+url+"\""+" : it isn't a collection url.") else: self.url = url if name != None: self.name = name if creator != None: self.creator = creator # 获取该收藏夹对应的网页并解析 def parser(self): r = requests.get(self.url) soup = BeautifulSoup(r.content) self.soup = soup # 获取该收藏夹的名字 def get_name(self): if not hasattr(self, 'name'): if self.soup == None: self.parser() soup = self.soup name_l = self.soup.find("h2", id="zh-fav-head-title") self.name = name_l.string.encode("utf-8").strip() if platform.system() == 'Windows': return self.name.decode('utf-8').encode('gbk') return self.name # 获取该收藏夹的创建者 def get_creator(self): if not hasattr(self, 'creator'): if self.soup == None: self.parser() creator_l = self.soup.find("h2", class_="zm-list-content-title") creator_id = creator_l.a.string.encode("utf-8") creator_url = "http://www.zhihu.com" + creator_l.a["href"] creator = User(creator_url, creator_id) self.creator = creator return creator # 获取该收藏夹下的所有答案 def get_all_answers(self): i = 1 while True: r = requests.get(self.url + "?page=" + str(i)) answer_soup = BeautifulSoup(r.content) answer_list = answer_soup.find_all("div", class_="zm-item") if len(answer_list) == 0: break for answer in answer_list: if answer.find("p", class_="note"): continue question_link = answer.find("h2") if question_link != None: question_url = "http://www.zhihu.com" + question_link.a["href"] question_title = question_link.a.string.encode("utf-8") question = Question(question_url, question_title) answer_l = answer.find("span", class_="answer-date-link-wrap") answer_url = "http://www.zhihu.com" + answer_l.a["href"] author = None amswer_l = answer.find("h3", class_="zm-item-answer-author-wrap") if answer_l.string == u"匿名用户": author_url = None author = User(author_url) else: author_tag = answer_l.find_all("a")[0] author_id = author_tag.string.encode("utf-8") author_url = "http://www.zhihu.com" + author_tag["href"] author = User(author_url, author_id) yield Answer(answer_url, question, author) i = i + 1 # 获取该收藏夹下前n个答案 def get_top_i_answers(self, n): j = 0 answers = self.get_all_answers() for answer in answers: j = j + 1 if j > n: break yield answer
39.138672
100
0.464744
ff260f9fab80ac0549f254ecd752c0af3de2073d
17,275
py
Python
ingestion/src/metadata/ingestion/sink/elasticsearch.py
avignd/OpenMetadata
f81fb3d5e8ec391928afba57868cf0f9d7dc0f74
[ "Apache-2.0" ]
null
null
null
ingestion/src/metadata/ingestion/sink/elasticsearch.py
avignd/OpenMetadata
f81fb3d5e8ec391928afba57868cf0f9d7dc0f74
[ "Apache-2.0" ]
null
null
null
ingestion/src/metadata/ingestion/sink/elasticsearch.py
avignd/OpenMetadata
f81fb3d5e8ec391928afba57868cf0f9d7dc0f74
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import time from typing import List, Optional from elasticsearch import Elasticsearch from metadata.config.common import ConfigModel from metadata.generated.schema.entity.data.chart import Chart from metadata.generated.schema.entity.data.dashboard import Dashboard from metadata.generated.schema.entity.data.database import Database from metadata.generated.schema.entity.data.pipeline import Pipeline, Task from metadata.generated.schema.entity.data.table import Column, Table from metadata.generated.schema.entity.data.topic import Topic from metadata.generated.schema.entity.services.dashboardService import DashboardService from metadata.generated.schema.entity.services.databaseService import DatabaseService from metadata.generated.schema.entity.services.messagingService import MessagingService from metadata.generated.schema.entity.services.pipelineService import PipelineService from metadata.generated.schema.type import entityReference from metadata.ingestion.api.common import Record, WorkflowContext from metadata.ingestion.api.sink import Sink, SinkStatus from metadata.ingestion.models.table_metadata import ( DashboardESDocument, PipelineESDocument, TableESDocument, TopicESDocument, ) from metadata.ingestion.ometa.ometa_api import OpenMetadata from metadata.ingestion.ometa.openmetadata_rest import MetadataServerConfig from metadata.ingestion.sink.elasticsearch_constants import ( DASHBOARD_ELASTICSEARCH_INDEX_MAPPING, PIPELINE_ELASTICSEARCH_INDEX_MAPPING, TABLE_ELASTICSEARCH_INDEX_MAPPING, TOPIC_ELASTICSEARCH_INDEX_MAPPING, ) logger = logging.getLogger(__name__) class ElasticSearchConfig(ConfigModel): es_host: str es_port: int = 9200 es_username: Optional[str] = None es_password: Optional[str] = None index_tables: Optional[bool] = True index_topics: Optional[bool] = True index_dashboards: Optional[bool] = True index_pipelines: Optional[bool] = True table_index_name: str = "table_search_index" topic_index_name: str = "topic_search_index" dashboard_index_name: str = "dashboard_search_index" pipeline_index_name: str = "pipeline_search_index" class ElasticsearchSink(Sink): """ """ DEFAULT_ELASTICSEARCH_INDEX_MAPPING = TABLE_ELASTICSEARCH_INDEX_MAPPING @classmethod def create( cls, config_dict: dict, metadata_config_dict: dict, ctx: WorkflowContext ): config = ElasticSearchConfig.parse_obj(config_dict) metadata_config = MetadataServerConfig.parse_obj(metadata_config_dict) return cls(ctx, config, metadata_config) def __init__( self, ctx: WorkflowContext, config: ElasticSearchConfig, metadata_config: MetadataServerConfig, ) -> None: self.config = config self.metadata_config = metadata_config self.ctx = ctx self.status = SinkStatus() self.metadata = OpenMetadata(self.metadata_config) self.elasticsearch_doc_type = "_doc" http_auth = None if self.config.es_username: http_auth = (self.config.es_username, self.config.es_password) self.elasticsearch_client = Elasticsearch( [ {"host": self.config.es_host, "port": self.config.es_port}, ], http_auth=http_auth, ) if self.config.index_tables: self._check_or_create_index( self.config.table_index_name, TABLE_ELASTICSEARCH_INDEX_MAPPING ) if self.config.index_topics: self._check_or_create_index( self.config.topic_index_name, TOPIC_ELASTICSEARCH_INDEX_MAPPING ) if self.config.index_dashboards: self._check_or_create_index( self.config.dashboard_index_name, DASHBOARD_ELASTICSEARCH_INDEX_MAPPING ) if self.config.index_pipelines: self._check_or_create_index( self.config.pipeline_index_name, PIPELINE_ELASTICSEARCH_INDEX_MAPPING ) def _check_or_create_index(self, index_name: str, es_mapping: str): """ Retrieve all indices that currently have {elasticsearch_alias} alias :return: list of elasticsearch indices """ if self.elasticsearch_client.indices.exists(index_name): mapping = self.elasticsearch_client.indices.get_mapping() if not mapping[index_name]["mappings"]: logger.debug( f"There are no mappings for index {index_name}. Updating the mapping" ) es_mapping_dict = json.loads(es_mapping) es_mapping_update_dict = { "properties": es_mapping_dict["mappings"]["properties"] } self.elasticsearch_client.indices.put_mapping( index=index_name, body=json.dumps(es_mapping_update_dict) ) else: logger.warning( "Received index not found error from Elasticsearch. " + "The index doesn't exist for a newly created ES. It's OK on first run." ) # create new index with mapping self.elasticsearch_client.indices.create(index=index_name, body=es_mapping) def write_record(self, record: Record) -> None: if isinstance(record, Table): table_doc = self._create_table_es_doc(record) self.elasticsearch_client.index( index=self.config.table_index_name, id=str(table_doc.table_id), body=table_doc.json(), ) if isinstance(record, Topic): topic_doc = self._create_topic_es_doc(record) self.elasticsearch_client.index( index=self.config.topic_index_name, id=str(topic_doc.topic_id), body=topic_doc.json(), ) if isinstance(record, Dashboard): dashboard_doc = self._create_dashboard_es_doc(record) self.elasticsearch_client.index( index=self.config.dashboard_index_name, id=str(dashboard_doc.dashboard_id), body=dashboard_doc.json(), ) if isinstance(record, Pipeline): pipeline_doc = self._create_pipeline_es_doc(record) self.elasticsearch_client.index( index=self.config.pipeline_index_name, id=str(pipeline_doc.pipeline_id), body=pipeline_doc.json(), ) if hasattr(record.name, "__root__"): self.status.records_written(record.name.__root__) else: self.status.records_written(record.name) def _create_table_es_doc(self, table: Table): fqdn = table.fullyQualifiedName database = table.database.name table_name = table.name suggest = [ {"input": [fqdn], "weight": 5}, {"input": [table_name], "weight": 10}, ] column_names = [] column_descriptions = [] tags = set() timestamp = time.time() tier = None for table_tag in table.tags: if "Tier" in table_tag.tagFQN: tier = table_tag.tagFQN else: tags.add(table_tag.tagFQN) self._parse_columns( table.columns, None, column_names, column_descriptions, tags ) database_entity = self.metadata.get_by_id( entity=Database, entity_id=str(table.database.id.__root__) ) service_entity = self.metadata.get_by_id( entity=DatabaseService, entity_id=str(database_entity.service.id.__root__) ) table_owner = str(table.owner.id.__root__) if table.owner is not None else "" table_followers = [] if table.followers: for follower in table.followers.__root__: table_followers.append(str(follower.id.__root__)) table_doc = TableESDocument( table_id=str(table.id.__root__), database=str(database_entity.name.__root__), service=service_entity.name, service_type=service_entity.serviceType.name, table_name=table.name.__root__, suggest=suggest, description=table.description, table_type=table.tableType.name, last_updated_timestamp=timestamp, column_names=column_names, column_descriptions=column_descriptions, monthly_stats=table.usageSummary.monthlyStats.count, monthly_percentile_rank=table.usageSummary.monthlyStats.percentileRank, weekly_stats=table.usageSummary.weeklyStats.count, weekly_percentile_rank=table.usageSummary.weeklyStats.percentileRank, daily_stats=table.usageSummary.dailyStats.count, daily_percentile_rank=table.usageSummary.dailyStats.percentileRank, tier=tier, tags=list(tags), fqdn=fqdn, schema_description=None, owner=table_owner, followers=table_followers, ) return table_doc def _create_topic_es_doc(self, topic: Topic): fqdn = topic.fullyQualifiedName topic_name = topic.name suggest = [ {"input": [fqdn], "weight": 5}, {"input": [topic_name], "weight": 10}, ] tags = set() timestamp = time.time() service_entity = self.metadata.get_by_id( entity=MessagingService, entity_id=str(topic.service.id.__root__) ) topic_owner = str(topic.owner.id.__root__) if topic.owner is not None else "" topic_followers = [] if topic.followers: for follower in topic.followers.__root__: topic_followers.append(str(follower.id.__root__)) tier = None for topic_tag in topic.tags: if "Tier" in topic_tag.tagFQN: tier = topic_tag.tagFQN else: tags.add(topic_tag.tagFQN) topic_doc = TopicESDocument( topic_id=str(topic.id.__root__), service=service_entity.name, service_type=service_entity.serviceType.name, topic_name=topic.name.__root__, suggest=suggest, description=topic.description, last_updated_timestamp=timestamp, tier=tier, tags=list(tags), fqdn=fqdn, owner=topic_owner, followers=topic_followers, ) return topic_doc def _create_dashboard_es_doc(self, dashboard: Dashboard): fqdn = dashboard.fullyQualifiedName dashboard_name = dashboard.name suggest = [{"input": [dashboard.displayName], "weight": 10}] tags = set() timestamp = time.time() service_entity = self.metadata.get_by_id( entity=DashboardService, entity_id=str(dashboard.service.id.__root__) ) dashboard_owner = ( str(dashboard.owner.id.__root__) if dashboard.owner is not None else "" ) dashboard_followers = [] if dashboard.followers: for follower in dashboard.followers.__root__: dashboard_followers.append(str(follower.id.__root__)) tier = None for dashboard_tag in dashboard.tags: if "Tier" in dashboard_tag.tagFQN: tier = dashboard_tag.tagFQN else: tags.add(dashboard_tag.tagFQN) charts: List[Chart] = self._get_charts(dashboard.charts) chart_names = [] chart_descriptions = [] for chart in charts: chart_names.append(chart.displayName) if chart.description is not None: chart_descriptions.append(chart.description) if len(chart.tags) > 0: for col_tag in chart.tags: tags.add(col_tag.tagFQN) dashboard_doc = DashboardESDocument( dashboard_id=str(dashboard.id.__root__), service=service_entity.name, service_type=service_entity.serviceType.name, dashboard_name=dashboard.displayName, chart_names=chart_names, chart_descriptions=chart_descriptions, suggest=suggest, description=dashboard.description, last_updated_timestamp=timestamp, tier=tier, tags=list(tags), fqdn=fqdn, owner=dashboard_owner, followers=dashboard_followers, monthly_stats=dashboard.usageSummary.monthlyStats.count, monthly_percentile_rank=dashboard.usageSummary.monthlyStats.percentileRank, weekly_stats=dashboard.usageSummary.weeklyStats.count, weekly_percentile_rank=dashboard.usageSummary.weeklyStats.percentileRank, daily_stats=dashboard.usageSummary.dailyStats.count, daily_percentile_rank=dashboard.usageSummary.dailyStats.percentileRank, ) return dashboard_doc def _create_pipeline_es_doc(self, pipeline: Pipeline): fqdn = pipeline.fullyQualifiedName suggest = [{"input": [pipeline.displayName], "weight": 10}] tags = set() timestamp = time.time() service_entity = self.metadata.get_by_id( entity=PipelineService, entity_id=str(pipeline.service.id.__root__) ) pipeline_owner = ( str(pipeline.owner.id.__root__) if pipeline.owner is not None else "" ) pipeline_followers = [] if pipeline.followers: for follower in pipeline.followers.__root__: pipeline_followers.append(str(follower.id.__root__)) tier = None for pipeline_tag in pipeline.tags: if "Tier" in pipeline_tag.tagFQN: tier = pipeline_tag.tagFQN else: tags.add(pipeline_tag.tagFQN) tasks: List[Task] = pipeline.tasks task_names = [] task_descriptions = [] for task in tasks: task_names.append(task.displayName) if task.description is not None: task_descriptions.append(task.description) if tags in task and len(task.tags) > 0: for col_tag in task.tags: tags.add(col_tag.tagFQN) pipeline_doc = PipelineESDocument( pipeline_id=str(pipeline.id.__root__), service=service_entity.name, service_type=service_entity.serviceType.name, pipeline_name=pipeline.displayName, task_names=task_names, task_descriptions=task_descriptions, suggest=suggest, description=pipeline.description, last_updated_timestamp=timestamp, tier=tier, tags=list(tags), fqdn=fqdn, owner=pipeline_owner, followers=pipeline_followers, ) return pipeline_doc def _get_charts(self, chart_refs: Optional[List[entityReference.EntityReference]]): charts = [] if chart_refs: for chart_ref in chart_refs: chart = self.metadata.get_by_id( entity=Chart, entity_id=str(chart_ref.id.__root__), fields=["tags"] ) charts.append(chart) return charts def _parse_columns( self, columns: List[Column], parent_column, column_names, column_descriptions, tags, ): for column in columns: col_name = ( parent_column + "." + column.name.__root__ if parent_column is not None else column.name.__root__ ) column_names.append(col_name) if column.description is not None: column_descriptions.append(column.description) if len(column.tags) > 0: for col_tag in column.tags: tags.add(col_tag.tagFQN) if column.children is not None: self._parse_columns( column.children, column.name.__root__, column_names, column_descriptions, tags, ) def get_status(self): return self.status def close(self): self.elasticsearch_client.close()
39.712644
89
0.634732
ec4d101da11a11151e7178d45cd0d6faae08184e
1,496
py
Python
app/modules/products/schemas.py
ezequiaspedro/SBF-Api
547322505ed4f50bdf7dc86a341eee0a667f0a4c
[ "MIT" ]
null
null
null
app/modules/products/schemas.py
ezequiaspedro/SBF-Api
547322505ed4f50bdf7dc86a341eee0a667f0a4c
[ "MIT" ]
null
null
null
app/modules/products/schemas.py
ezequiaspedro/SBF-Api
547322505ed4f50bdf7dc86a341eee0a667f0a4c
[ "MIT" ]
1
2021-06-12T01:36:17.000Z
2021-06-12T01:36:17.000Z
from typing import List, Optional from ...utils.helpers import BaseSchema, MetaDatetimeSchema from ...utils.pagination import PaginationMetadataSchema class ProductCreate(BaseSchema): name: str size: str inventory: int weight: float class Config: schema_extra = { "example": { "name": "Camisa Azul", "size": "P", "inventory": 10, "weight": 10.5 } } class ProductUpdate(BaseSchema): name: Optional[str] size: Optional[str] weight: Optional[float] class Config: schema_extra = { "example": { "name": "Camisa Azul", "size": "P", "weight": 10.5 } } class ProductResponse(BaseSchema): id: int name: str size: str inventory: int weight: float metadatetime: MetaDatetimeSchema class Config: schema_extra = { "example": { "id": 1, "name": "Camisa Amarela", "size": "P", "inventory": 10, "weight": 10.5, "metadatetime": { "created_on": "2020-01-01T00:00:00.000001", "updated_on": "2020-01-01T00:00:00.000001" } } } class ProductsResponse(BaseSchema): pagination_metadata: Optional[PaginationMetadataSchema] records: List[ProductResponse]
24.52459
63
0.504679
9a4e41fd2908c9013dea3076dbc1a090ef5bc1f8
3,883
py
Python
cirq-google/cirq_google/engine/engine_result.py
alexandrebouayad/Cirq
4ba730b17b6af6265ee6458eb40172b847bd5684
[ "Apache-2.0" ]
1
2022-02-05T22:17:39.000Z
2022-02-05T22:17:39.000Z
cirq-google/cirq_google/engine/engine_result.py
pavoljuhas/Cirq
b6d6577be61d216ce2f29f8c64ae5879cf3087d5
[ "Apache-2.0" ]
4
2022-01-16T14:12:15.000Z
2022-02-24T03:58:46.000Z
cirq-google/cirq_google/engine/engine_result.py
Nexuscompute/Cirq
640ef8f82d6a56ec95361388ce7976e096cca906
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from typing import Optional, Mapping, TYPE_CHECKING, Any, Dict import numpy as np from cirq import study if TYPE_CHECKING: import cirq class EngineResult(study.ResultDict): """A ResultDict with additional job metadata. Please see the documentation for `cirq.ResultDict` for more information. Additional Attributes: job_id: A string job identifier. job_finished_time: A timestamp for when the job finished. """ def __init__( self, *, # Forces keyword args. job_id: str, job_finished_time: datetime.datetime, params: Optional[study.ParamResolver] = None, measurements: Optional[Mapping[str, np.ndarray]] = None, records: Optional[Mapping[str, np.ndarray]] = None, ): """Initialize the result. Args: job_id: A string job identifier. job_finished_time: A timestamp for when the job finished; will be converted to UTC. params: A ParamResolver of settings used for this result. measurements: A dictionary from measurement gate key to measurement results. See `cirq.ResultDict`. records: A dictionary from measurement gate key to measurement results. See `cirq.ResultDict`. """ super().__init__(params=params, measurements=measurements, records=records) self.job_id = job_id self.job_finished_time = job_finished_time @classmethod def from_result( cls, result: 'cirq.Result', *, job_id: str, job_finished_time: datetime.datetime ): if isinstance(result, study.ResultDict): # optimize by using private methods return cls( params=result._params, measurements=result._measurements, records=result._records, job_id=job_id, job_finished_time=job_finished_time, ) else: return cls( params=result.params, measurements=result.measurements, records=result.records, job_id=job_id, job_finished_time=job_finished_time, ) def __eq__(self, other): if not isinstance(other, EngineResult): return False return ( super().__eq__(other) and self.job_id == other.job_id and self.job_finished_time == other.job_finished_time ) def __repr__(self) -> str: return ( f'cirq_google.EngineResult(params={self.params!r}, ' f'records={self._record_dict_repr()}, ' f'job_id={self.job_id!r}, ' f'job_finished_time={self.job_finished_time!r})' ) @classmethod def _json_namespace_(cls) -> str: return 'cirq.google' def _json_dict_(self) -> Dict[str, Any]: d = super()._json_dict_() d['job_id'] = self.job_id d['job_finished_time'] = self.job_finished_time return d @classmethod def _from_json_dict_(cls, params, records, job_id, job_finished_time, **kwargs): return cls._from_packed_records( params=params, records=records, job_id=job_id, job_finished_time=job_finished_time )
34.061404
95
0.635076
04beea8218df6237c4582186ac25337e9a55d6bb
3,095
py
Python
app/app/settings.py
leeway00/recipie-app-api
d1c5c0855986254fa94dcd3ad836c89d83060722
[ "MIT" ]
null
null
null
app/app/settings.py
leeway00/recipie-app-api
d1c5c0855986254fa94dcd3ad836c89d83060722
[ "MIT" ]
null
null
null
app/app/settings.py
leeway00/recipie-app-api
d1c5c0855986254fa94dcd3ad836c89d83060722
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.1.5. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5873&ctyy$=uy#vuy2tt693e7p1f5c+_*j=h3@_!ayx^eh*n5v' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User'
25.162602
91
0.694992
69743e103cfab7bb79236becc0bdfee8a2f7f29c
959
py
Python
data/dbase/check_tables_complete.py
FedeClaudi/LocomotionControl
1281f7894825096ad212407351463a2105c5152a
[ "MIT" ]
null
null
null
data/dbase/check_tables_complete.py
FedeClaudi/LocomotionControl
1281f7894825096ad212407351463a2105c5152a
[ "MIT" ]
2
2020-11-23T16:32:11.000Z
2020-11-23T16:32:11.000Z
data/dbase/check_tables_complete.py
FedeClaudi/LocomotionControl
1281f7894825096ad212407351463a2105c5152a
[ "MIT" ]
null
null
null
from loguru import logger import sys from tpd import recorder sys.path.append("./") from data import dbase def get_sessions_to_track(recordings_only: bool = True): """ It gets a list of sessions left to track """ logger.info("Getting sessions that need to be tracked with DLC still") sessions_in_table = dbase.db_tables.Session.fetch("name") if recordings_only: sessions_in_table = [ s for s in sessions_in_table if dbase.db_tables.Session.has_recording(s) ] need_tracking = [] for session in sessions_in_table: if not dbase.db_tables.Session.was_tracked(session): need_tracking.append(session) logger.info( f"Found {len(need_tracking)}/{len(sessions_in_table)} sessions that still need to be tracked" ) recorder.add_text(", ".join(need_tracking), name="__to_track") if __name__ == "__main__": get_sessions_to_track()
25.918919
101
0.67049
5b54ad71f0baf104129882681e6304fc8fbdeb45
448
py
Python
misc/setup.py
PoRiLo/arcgis-python-api
af89fd64db4ae57d100f3216a0a4f731c8bd0e68
[ "Apache-2.0" ]
1,299
2016-06-12T15:58:47.000Z
2022-03-29T08:09:49.000Z
misc/setup.py
PoRiLo/arcgis-python-api
af89fd64db4ae57d100f3216a0a4f731c8bd0e68
[ "Apache-2.0" ]
999
2016-08-10T13:46:15.000Z
2022-03-31T23:29:53.000Z
misc/setup.py
PoRiLo/arcgis-python-api
af89fd64db4ae57d100f3216a0a4f731c8bd0e68
[ "Apache-2.0" ]
967
2016-06-12T06:03:41.000Z
2022-03-29T12:50:48.000Z
from _common import * print("-*-*-*-*-*-*-*-*-*-*-*Setup begins*-*-*-*-*-*-*-*-*-*-*-*-*-") clean_up_location_tracking(gis_playground) delete_for_users(gis_online, ignore_accounts_online, target_accounts_online) delete_for_users(gis_playground, ignore_accounts_playground, target_accounts_playground) setup_tracker_user(gis_playground) # publish_data(gis_online, data_paths) print("-*-*-*-*-*-*-*-*-*-*-*Setup ends*-*-*-*-*-*-*-*-*-*-*-*-*-*-")
37.333333
88
0.676339
a225e2ea78c7b29e00376d661d289030ff053762
6,530
py
Python
rvranking/sampling/tests.py
hodeld/rbs-ranking
3c102e4442eb51dd33d8c06a303032ff18426ad4
[ "MIT" ]
null
null
null
rvranking/sampling/tests.py
hodeld/rbs-ranking
3c102e4442eb51dd33d8c06a303032ff18426ad4
[ "MIT" ]
2
2021-08-25T16:16:03.000Z
2022-02-10T04:57:01.000Z
rvranking/sampling/tests.py
hodeld/rbs-ranking
3c102e4442eb51dd33d8c06a303032ff18426ad4
[ "MIT" ]
null
null
null
import random import unittest import numpy as np from rvranking.rankingComponents import input_fn from rvranking.sampling.elwcWrite import write_elwc from rvranking.sampling.main import prep_samples_list from rvranking.sampling.samplingClasses import Sample, RVList, RV from rvranking.globalVars import _TRAIN_DATA_PATH, _RV_FEATURE, _EVENT_FEATURE, _EVENT_FEATURES, _RV_FEATURES from rvranking.dataPrep import samples, timelines, allevents, prep_samples, get_timelines_raw, \ prep_timelines, prep_allevents, TD_PERWK, WEEKS_B, WEEKS_A, KMAX, rvs, rvfirstev, get_test_files, PPH, RV_TLINE_LEN import tensorflow as tf from rvranking.sampling.scikitDataGet import x_y_data def sample_test(cls, s, tlines, allevs): rv = s.rv tline = tlines.loc[str(rv)] ev_tline_val = tline.loc[str(s.start):str(s.end)].values ev = allevs.loc[s.id] if s.teams: pass else: cls.assertEqual(ev['End'], s.end) cls.assertEqual(ev['Start'], s.start) cls.assertEqual(ev['Rv'], s.rv) cls.assertEqual(ev['Type'], s.evtype) cls.assertEqual(ev['Rv added'], s.rv_added) evtype = s.evtype cls.assertEqual((evtype == ev_tline_val).all(), True) def sampling_test(cls, s, allevs_all=None): if allevs_all is not None: oneday = PPH * 24 range_start = int(s.rangestart - oneday) if range_start < 0: range_start = 0 range_end = int(s.rangeend + oneday) if range_end > KMAX: range_end = KMAX idx = np.where((allevs_all['Start'] >= range_start) & (allevs_all['End'] <= range_end)) evs_range = allevs_all.iloc[idx] for r in s.rvli: cls.assertEqual(r.tline.size, RV_TLINE_LEN) cls.assertEqual(r.tline.iloc[WEEKS_B * TD_PERWK], 0) # WEEKS_B * TD_PERWK cls.assertEqual(r.tline.loc[str(s.start):str(s.end)].any(), False) # all zero if allevs_all is not None: index_vals = r.tline.index.values min_t = int(index_vals[0]) max_t = int(index_vals[-1]) rv_added = s.rv_added allevs = evs_range[evs_range['Rv'] == r.id] allevs = allevs[allevs['Rv added'] >= rv_added] for eid, row in allevs.iterrows(): if eid == s.id: continue st = row['Start'] et = row['End'] if st < min_t or et > max_t: continue cls.assertEqual(st, s.start) r_tline_ev = r.tline.loc[str(st):str(et)].values cls.assertEqual((0 == r_tline_ev).all(), True) if 'rv_ff' in _EVENT_FEATURES or 'rv_ff' in _RV_FEATURES: if s.rv_ff == r.id: cls.assertEqual(r.rv_ff, 1) class TestSampling(unittest.TestCase): def test_samples(self): sample_list_all = [Sample(s) for i, s in samples.iterrows()] random.shuffle(sample_list_all) tlines = timelines allevs = allevents for s in sample_list_all: sample_test(self, s, tlines, allevs) def test_prediction_samples(self): samples_pred, tlines, allevs, rvs, rvfirstev = get_test_files() sample_list_all = [Sample(s) for i, s in samples_pred.iterrows()] s = sample_list_all[0] ist = int(s.start - (TD_PERWK * WEEKS_B)) iet = int(s.start + TD_PERWK * WEEKS_A) self.assertGreaterEqual(ist, 0) # ist >= 0 self.assertLessEqual(iet, KMAX) for s in sample_list_all: sample_test(self, s, tlines, allevs) def test_sampling(self): less_samples = samples.sample(n=50) # random rows sample_list_all = [Sample(s) for i, s in less_samples.iterrows()] rvlist_all = RVList([RV(r) for i, r in rvs.iterrows()]) train_ratio = 0.7 sample_list_train, sample_list_test = prep_samples_list(sample_list_all, rvlist_all, train_ratio=train_ratio, timelines_spec=timelines, rvfirstev_spec=rvfirstev, allevents_spec=allevents ) s_list_tot = sample_list_train + sample_list_test assert len(s_list_tot) > 0 for s in s_list_tot: sampling_test(self, s) x_train, y_train, xy_train = x_y_data(s_list_tot) def test_prediction_sampling(self): samples_pred, tlines_pred, allevs_pred, rvs_pred, rvfirstev_pred = get_test_files() sample_list_all = [Sample(s) for i, s in samples_pred.iterrows()] rvlist_all = RVList([RV(r) for i, r in rvs_pred.iterrows()]) train_ratio = 0.7 sample_list_train, sample_list_test = prep_samples_list(sample_list_all, rvlist_all, train_ratio=train_ratio, timelines_spec=tlines_pred, rvfirstev_spec=rvfirstev_pred, allevents_spec=allevs_pred ) s_list_tot = sample_list_train + sample_list_test for s in s_list_tot: sampling_test(self, s, allevs_pred) self.assertEqual(len(s.rvli), 5) x_train, y_train, xy_train = x_y_data(s_list_tot) def _test_write_and_input(self): # _sampling write_elwc() feat, labs = input_fn(_TRAIN_DATA_PATH) print('label', labs.shape) for k, item in feat.items(): print('feat', k, item.shape) print('first 5 labels', labs[0, :5].numpy()) # [0. 0. 0. 0. 1.] event_t = tf.sparse.to_dense(feat[_EVENT_FEATURE]) # spare tensor to dense rv_t = tf.sparse.to_dense(feat[_RV_FEATURE]) # print ('indices', query_st.indices[0][0]) #which indix has first value print('event values', event_t[0]) # check slicing notification! print('rv values', rv_t[0, :5, :10].numpy()) # sample 1, first 5 rvs, first 10 features if __name__ == '__main__': unittest.main() print('sampling tests finished')
42.679739
119
0.565697
ef680b68a29e2fb55cc7fb5d45ed5cbda69d286f
44,201
py
Python
torch/nn/modules/activation.py
vuanvin/pytorch
9267fd8d7395074001ad7cf2a8f28082dbff6b0b
[ "Intel" ]
1
2022-03-29T19:42:16.000Z
2022-03-29T19:42:16.000Z
torch/nn/modules/activation.py
vuanvin/pytorch
9267fd8d7395074001ad7cf2a8f28082dbff6b0b
[ "Intel" ]
14
2021-10-14T06:58:50.000Z
2021-12-17T11:51:07.000Z
torch/nn/modules/activation.py
vuanvin/pytorch
9267fd8d7395074001ad7cf2a8f28082dbff6b0b
[ "Intel" ]
null
null
null
import warnings from typing import Optional, Tuple import torch from torch import Tensor from .linear import NonDynamicallyQuantizableLinear from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ from torch.nn.parameter import Parameter from .module import Module from .. import functional as F class Threshold(Module): r"""Thresholds each element of the input Tensor. Threshold is defined as: .. math:: y = \begin{cases} x, &\text{ if } x > \text{threshold} \\ \text{value}, &\text{ otherwise } \end{cases} Args: threshold: The value to threshold at value: The value to replace with inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Threshold(0.1, 20) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['threshold', 'value', 'inplace'] threshold: float value: float inplace: bool def __init__(self, threshold: float, value: float, inplace: bool = False) -> None: super(Threshold, self).__init__() self.threshold = threshold self.value = value self.inplace = inplace # TODO: check in THNN (if inplace == True, then assert value <= threshold) def forward(self, input: Tensor) -> Tensor: return F.threshold(input, self.threshold, self.value, self.inplace) def extra_repr(self): inplace_str = ', inplace=True' if self.inplace else '' return 'threshold={}, value={}{}'.format( self.threshold, self.value, inplace_str ) class ReLU(Module): r"""Applies the rectified linear unit function element-wise: :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)` Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ReLU.png Examples:: >>> m = nn.ReLU() >>> input = torch.randn(2) >>> output = m(input) An implementation of CReLU - https://arxiv.org/abs/1603.05201 >>> m = nn.ReLU() >>> input = torch.randn(2).unsqueeze(0) >>> output = torch.cat((m(input),m(-input))) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(ReLU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.relu(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str class RReLU(Module): r"""Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper: `Empirical Evaluation of Rectified Activations in Convolutional Network`_. The function is defined as: .. math:: \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} where :math:`a` is randomly sampled from uniform distribution :math:`\mathcal{U}(\text{lower}, \text{upper})`. See: https://arxiv.org/pdf/1505.00853.pdf Args: lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/RReLU.png Examples:: >>> m = nn.RReLU(0.1, 0.3) >>> input = torch.randn(2) >>> output = m(input) .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: https://arxiv.org/abs/1505.00853 """ __constants__ = ['lower', 'upper', 'inplace'] lower: float upper: float inplace: bool def __init__( self, lower: float = 1. / 8, upper: float = 1. / 3, inplace: bool = False ): super(RReLU, self).__init__() self.lower = lower self.upper = upper self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) def extra_repr(self): inplace_str = ', inplace=True' if self.inplace else '' return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str) class Hardtanh(Module): r"""Applies the HardTanh function element-wise. HardTanh is defined as: .. math:: \text{HardTanh}(x) = \begin{cases} 1 & \text{ if } x > 1 \\ -1 & \text{ if } x < -1 \\ x & \text{ otherwise } \\ \end{cases} The range of the linear region :math:`[-1, 1]` can be adjusted using :attr:`min_val` and :attr:`max_val`. Args: min_val: minimum value of the linear region range. Default: -1 max_val: maximum value of the linear region range. Default: 1 inplace: can optionally do the operation in-place. Default: ``False`` Keyword arguments :attr:`min_value` and :attr:`max_value` have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardtanh.png Examples:: >>> m = nn.Hardtanh(-2, 2) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['min_val', 'max_val', 'inplace'] min_val: float max_val: float inplace: bool def __init__( self, min_val: float = -1., max_val: float = 1., inplace: bool = False, min_value: Optional[float] = None, max_value: Optional[float] = None ) -> None: super(Hardtanh, self).__init__() if min_value is not None: warnings.warn("keyword argument min_value is deprecated and rename to min_val") min_val = min_value if max_value is not None: warnings.warn("keyword argument max_value is deprecated and rename to max_val") max_val = max_value self.min_val = min_val self.max_val = max_val self.inplace = inplace assert self.max_val > self.min_val def forward(self, input: Tensor) -> Tensor: return F.hardtanh(input, self.min_val, self.max_val, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'min_val={}, max_val={}{}'.format( self.min_val, self.max_val, inplace_str ) class ReLU6(Hardtanh): r"""Applies the element-wise function: .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ReLU6.png Examples:: >>> m = nn.ReLU6() >>> input = torch.randn(2) >>> output = m(input) """ def __init__(self, inplace: bool = False): super(ReLU6, self).__init__(0., 6., inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str class Sigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Sigmoid.png Examples:: >>> m = nn.Sigmoid() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return torch.sigmoid(input) class Hardsigmoid(Module): r"""Applies the Hardsigmoid function element-wise. Hardsigmoid is defined as: .. math:: \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge +3, \\ x / 6 + 1 / 2 & \text{otherwise} \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardsigmoid.png Examples:: >>> m = nn.Hardsigmoid() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace : bool = False) -> None: super(Hardsigmoid, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.hardsigmoid(input, self.inplace) class Tanh(Module): r"""Applies the Hyperbolic Tangent (Tanh) function element-wise. Tanh is defined as: .. math:: \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Tanh.png Examples:: >>> m = nn.Tanh() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return torch.tanh(input) class SiLU(Module): r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function. .. math:: \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} .. note:: See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ where the SiLU (Sigmoid Linear Unit) was originally coined, and see `Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ where the SiLU was experimented with later. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/SiLU.png Examples:: >>> m = nn.SiLU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(SiLU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.silu(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str class Mish(Module): r"""Applies the Mish function, element-wise. Mish: A Self Regularized Non-Monotonic Neural Activation Function. .. math:: \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) .. note:: See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Mish.png Examples:: >>> m = nn.Mish() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False): super(Mish, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.mish(input, inplace=self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str class Hardswish(Module): r"""Applies the hardswish function, element-wise, as described in the paper: `Searching for MobileNetV3`_. .. math:: \text{Hardswish}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ x & \text{if~} x \ge +3, \\ x \cdot (x + 3) /6 & \text{otherwise} \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardswish.png Examples:: >>> m = nn.Hardswish() >>> input = torch.randn(2) >>> output = m(input) .. _`Searching for MobileNetV3`: https://arxiv.org/abs/1905.02244 """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace : bool = False) -> None: super(Hardswish, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.hardswish(input, self.inplace) class ELU(Module): r"""Applies the Exponential Linear Unit (ELU) function, element-wise, as described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) <https://arxiv.org/abs/1511.07289>`__. ELU is defined as: .. math:: \text{ELU}(x) = \begin{cases} x, & \text{ if } x > 0\\ \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 \end{cases} Args: alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/ELU.png Examples:: >>> m = nn.ELU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['alpha', 'inplace'] alpha: float inplace: bool def __init__(self, alpha: float = 1., inplace: bool = False) -> None: super(ELU, self).__init__() self.alpha = alpha self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.elu(input, self.alpha, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str) class CELU(Module): r"""Applies the element-wise function: .. math:: \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . Args: alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/CELU.png Examples:: >>> m = nn.CELU() >>> input = torch.randn(2) >>> output = m(input) .. _`Continuously Differentiable Exponential Linear Units`: https://arxiv.org/abs/1704.07483 """ __constants__ = ['alpha', 'inplace'] alpha: float inplace: bool def __init__(self, alpha: float = 1., inplace: bool = False) -> None: super(CELU, self).__init__() self.alpha = alpha self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.celu(input, self.alpha, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'alpha={}{}'.format(self.alpha, inplace_str) class SELU(Module): r"""Applied element-wise, as: .. math:: \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) with :math:`\alpha = 1.6732632423543772848170429916717` and :math:`\text{scale} = 1.0507009873554804934193349852946`. .. warning:: When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation, ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'`` in order to get `Self-Normalizing Neural Networks`_. See :func:`torch.nn.init.calculate_gain` for more information. More details can be found in the paper `Self-Normalizing Neural Networks`_ . Args: inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/SELU.png Examples:: >>> m = nn.SELU() >>> input = torch.randn(2) >>> output = m(input) .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 """ __constants__ = ['inplace'] inplace: bool def __init__(self, inplace: bool = False) -> None: super(SELU, self).__init__() self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.selu(input, self.inplace) def extra_repr(self) -> str: inplace_str = 'inplace=True' if self.inplace else '' return inplace_str class GLU(Module): r"""Applies the gated linear unit function :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half of the input matrices and :math:`b` is the second half. Args: dim (int): the dimension on which to split the input. Default: -1 Shape: - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` Examples:: >>> m = nn.GLU() >>> input = torch.randn(4, 2) >>> output = m(input) """ __constants__ = ['dim'] dim: int def __init__(self, dim: int = -1) -> None: super(GLU, self).__init__() self.dim = dim def forward(self, input: Tensor) -> Tensor: return F.glu(input, self.dim) def extra_repr(self) -> str: return 'dim={}'.format(self.dim) class GELU(Module): r"""Applies the Gaussian Error Linear Units function: .. math:: \text{GELU}(x) = x * \Phi(x) where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/GELU.png Examples:: >>> m = nn.GELU() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.gelu(input) class Hardshrink(Module): r"""Applies the Hard Shrinkage (Hardshrink) function element-wise. Hardshrink is defined as: .. math:: \text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Hardshrink.png Examples:: >>> m = nn.Hardshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] lambd: float def __init__(self, lambd: float = 0.5) -> None: super(Hardshrink, self).__init__() self.lambd = lambd def forward(self, input: Tensor) -> Tensor: return F.hardshrink(input, self.lambd) def extra_repr(self) -> str: return '{}'.format(self.lambd) class LeakyReLU(Module): r"""Applies the element-wise function: .. math:: \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) or .. math:: \text{LeakyRELU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} Args: negative_slope: Controls the angle of the negative slope. Default: 1e-2 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input .. image:: ../scripts/activation_images/LeakyReLU.png Examples:: >>> m = nn.LeakyReLU(0.1) >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['inplace', 'negative_slope'] inplace: bool negative_slope: float def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None: super(LeakyReLU, self).__init__() self.negative_slope = negative_slope self.inplace = inplace def forward(self, input: Tensor) -> Tensor: return F.leaky_relu(input, self.negative_slope, self.inplace) def extra_repr(self) -> str: inplace_str = ', inplace=True' if self.inplace else '' return 'negative_slope={}{}'.format(self.negative_slope, inplace_str) class LogSigmoid(Module): r"""Applies the element-wise function: .. math:: \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/LogSigmoid.png Examples:: >>> m = nn.LogSigmoid() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.logsigmoid(input) class Softplus(Module): r"""Applies the Softplus function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))` element-wise. SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function when :math:`input \times \beta > threshold`. Args: beta: the :math:`\beta` value for the Softplus formulation. Default: 1 threshold: values above this revert to a linear function. Default: 20 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softplus.png Examples:: >>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['beta', 'threshold'] beta: int threshold: int def __init__(self, beta: int = 1, threshold: int = 20) -> None: super(Softplus, self).__init__() self.beta = beta self.threshold = threshold def forward(self, input: Tensor) -> Tensor: return F.softplus(input, self.beta, self.threshold) def extra_repr(self) -> str: return 'beta={}, threshold={}'.format(self.beta, self.threshold) class Softshrink(Module): r"""Applies the soft shrinkage function elementwise: .. math:: \text{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{ if } x > \lambda \\ x + \lambda, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Args: lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5 Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softshrink.png Examples:: >>> m = nn.Softshrink() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['lambd'] lambd: float def __init__(self, lambd: float = 0.5) -> None: super(Softshrink, self).__init__() self.lambd = lambd def forward(self, input: Tensor) -> Tensor: return F.softshrink(input, self.lambd) def extra_repr(self) -> str: return str(self.lambd) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: Total dimension of the model. num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). bias: If specified, adds bias to input / output projection layers. Default: ``True``. add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: ``False``. kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ __constants__ = ['batch_first'] bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs)) self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs)) self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs)) else: self.register_parameter('in_proj_bias', None) self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs) if add_bias_kv: self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, average_attn_weights: bool = True) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against key-value pairs to produce the output. See "Attention Is All You Need" for more details. key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details. value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details. key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. Binary and byte masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key`` value will be ignored. need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. Default: ``True``. attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the corresponding position is not allowed to attend. For a float mask, the mask values will be added to the attention weight. average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect when ``need_weights=True.``. Default: True (i.e. average weights across heads) Outputs: - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the embedding dimension ``embed_dim``. - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. If ``average_weights=False``, returns attention weights per head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`. .. note:: `batch_first` argument is ignored for unbatched inputs. """ is_batched = query.dim() == 3 if self.batch_first and is_batched: query, key, value = [x.transpose(1, 0) for x in (query, key, value)] if not self._qkv_same_embed_dim: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, average_attn_weights=average_attn_weights) else: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, average_attn_weights=average_attn_weights) if self.batch_first and is_batched: return attn_output.transpose(1, 0), attn_output_weights else: return attn_output, attn_output_weights class PReLU(Module): r"""Applies the element-wise function: .. math:: \text{PReLU}(x) = \max(0,x) + a * \min(0,x) or .. math:: \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, a separate :math:`a` is used for each input channel. .. note:: weight decay should not be used when learning :math:`a` for good performance. .. note:: Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1. Args: num_parameters (int): number of :math:`a` to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1 init (float): the initial value of :math:`a`. Default: 0.25 Shape: - Input: :math:`( *)` where `*` means, any number of additional dimensions. - Output: :math:`(*)`, same shape as the input. Attributes: weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). .. image:: ../scripts/activation_images/PReLU.png Examples:: >>> m = nn.PReLU() >>> input = torch.randn(2) >>> output = m(input) """ __constants__ = ['num_parameters'] num_parameters: int def __init__(self, num_parameters: int = 1, init: float = 0.25, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} self.num_parameters = num_parameters super(PReLU, self).__init__() self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init)) def forward(self, input: Tensor) -> Tensor: return F.prelu(input, self.weight) def extra_repr(self) -> str: return 'num_parameters={}'.format(self.num_parameters) class Softsign(Module): r"""Applies the element-wise function: .. math:: \text{SoftSign}(x) = \frac{x}{ 1 + |x|} Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Softsign.png Examples:: >>> m = nn.Softsign() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.softsign(input) class Tanhshrink(Module): r"""Applies the element-wise function: .. math:: \text{Tanhshrink}(x) = x - \tanh(x) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. .. image:: ../scripts/activation_images/Tanhshrink.png Examples:: >>> m = nn.Tanhshrink() >>> input = torch.randn(2) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: return F.tanhshrink(input) class Softmin(Module): r"""Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range `[0, 1]` and sum to 1. Softmin is defined as: .. math:: \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Args: dim (int): A dimension along which Softmin will be computed (so every slice along dim will sum to 1). Returns: a Tensor of the same dimension and shape as the input, with values in the range [0, 1] Examples:: >>> m = nn.Softmin() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(Softmin, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.softmin(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim) class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} When the input Tensor is a sparse tensor then the unspecifed values are treated as ``-inf``. Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Args: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). .. note:: This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use `LogSoftmax` instead (it's faster and has better numerical properties). Examples:: >>> m = nn.Softmax(dim=1) >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(Softmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.softmax(input, self.dim, _stacklevel=5) def extra_repr(self) -> str: return 'dim={dim}'.format(dim=self.dim) class Softmax2d(Module): r"""Applies SoftMax over features to each spatial location. When given an image of ``Channels x Height x Width``, it will apply `Softmax` to each location :math:`(Channels, h_i, w_j)` Shape: - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`. - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input) Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Examples:: >>> m = nn.Softmax2d() >>> # you softmax over the 2nd dimension >>> input = torch.randn(2, 3, 12, 13) >>> output = m(input) """ def forward(self, input: Tensor) -> Tensor: assert input.dim() == 4 or input.dim() == 3, 'Softmax2d requires a 3D or 4D tensor as input' return F.softmax(input, -3, _stacklevel=5) class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Args: dim (int): A dimension along which LogSoftmax will be computed. Returns: a Tensor of the same dimension and shape as the input with values in the range [-inf, 0) Examples:: >>> m = nn.LogSoftmax() >>> input = torch.randn(2, 3) >>> output = m(input) """ __constants__ = ['dim'] dim: Optional[int] def __init__(self, dim: Optional[int] = None) -> None: super(LogSoftmax, self).__init__() self.dim = dim def __setstate__(self, state): self.__dict__.update(state) if not hasattr(self, 'dim'): self.dim = None def forward(self, input: Tensor) -> Tensor: return F.log_softmax(input, self.dim, _stacklevel=5) def extra_repr(self): return 'dim={dim}'.format(dim=self.dim)
33.134183
129
0.600778
e7d1952af5e3755f91ab6bfcd478698966766722
724
py
Python
text/symbols.py
MikhailSukhovei/tacotron2_original
39fd0b825b27d54a75770b004ee2801a8364ec73
[ "BSD-3-Clause" ]
null
null
null
text/symbols.py
MikhailSukhovei/tacotron2_original
39fd0b825b27d54a75770b004ee2801a8364ec73
[ "BSD-3-Clause" ]
null
null
null
text/symbols.py
MikhailSukhovei/tacotron2_original
39fd0b825b27d54a75770b004ee2801a8364ec73
[ "BSD-3-Clause" ]
null
null
null
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from text import cmudict _pad = '' _punctuation = '!,-.:?… ' _special = '~' _letters = 'АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдеёжзийклмнопрстуфхцчшщъыьэюя' # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in cmudict.valid_symbols] # Export all symbols: symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet
38.105263
195
0.743094
9b50d1bb9c21ff46a006fb14f7157f5053bdc0c7
5,237
py
Python
mindware/components/models/regression/liblinear_svr.py
aman-gupta-1995/Machine-Learning-Mindware
8b3050720711730520683c89949e3dbdfb168961
[ "MIT" ]
27
2021-07-19T09:03:34.000Z
2022-03-31T06:19:23.000Z
mindware/components/models/regression/liblinear_svr.py
aman-gupta-1995/Machine-Learning-Mindware
8b3050720711730520683c89949e3dbdfb168961
[ "MIT" ]
4
2021-07-15T12:17:10.000Z
2022-01-26T17:16:58.000Z
mindware/components/models/regression/liblinear_svr.py
aman-gupta-1995/Machine-Learning-Mindware
8b3050720711730520683c89949e3dbdfb168961
[ "MIT" ]
17
2020-05-12T20:24:50.000Z
2021-07-11T03:31:38.000Z
from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ CategoricalHyperparameter, Constant from ConfigSpace.forbidden import ForbiddenEqualsClause, \ ForbiddenAndConjunction import numpy as np from mindware.components.utils.constants import * from mindware.components.utils.configspace_utils import check_for_bool from mindware.components.models.base_model import BaseRegressionModel class LibLinear_SVR(BaseRegressionModel): # Liblinear is not deterministic as it uses a RNG inside def __init__(self, epsilon, loss, dual, tol, C, fit_intercept, intercept_scaling, random_state=None): self.epsilon = epsilon self.loss = loss self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.random_state = random_state self.estimator = None def fit(self, X, Y): from sklearn.svm import LinearSVR # In case of nested loss if isinstance(self.loss, dict): combination = self.loss self.loss = combination['loss'] self.dual = combination['dual'] self.epsilon = float(self.epsilon) self.C = float(self.C) self.tol = float(self.tol) self.dual = check_for_bool(self.dual) self.fit_intercept = check_for_bool(self.fit_intercept) self.intercept_scaling = float(self.intercept_scaling) self.estimator = LinearSVR(epsilon=self.epsilon, loss=self.loss, dual=self.dual, tol=self.tol, C=self.C, fit_intercept=self.fit_intercept, intercept_scaling=self.intercept_scaling, random_state=self.random_state) self.estimator.fit(X, Y) return self def predict(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict(X) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'Liblinear-SVR', 'name': 'Liblinear Support Vector Regression', 'handles_regression': True, 'handles_classification': False, 'handles_multiclass': False, 'handles_multilabel': False, 'is_deterministic': False, 'input': (SPARSE, DENSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None, optimizer='smac'): if optimizer == 'smac': cs = ConfigurationSpace() epsilon = CategoricalHyperparameter("epsilon", [1e-4, 1e-3, 1e-2, 1e-1, 1], default_value=1e-4) loss = CategoricalHyperparameter( "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"], default_value="epsilon_insensitive") dual = CategoricalHyperparameter("dual", ['True', 'False'], default_value='True') tol = UniformFloatHyperparameter( "tol", 1e-5, 1e-1, default_value=1e-4, log=True) C = UniformFloatHyperparameter( "C", 0.03125, 32768, log=True, default_value=1.0) fit_intercept = Constant("fit_intercept", "True") intercept_scaling = Constant("intercept_scaling", 1) cs.add_hyperparameters([epsilon, loss, dual, tol, C, fit_intercept, intercept_scaling]) dual_and_loss = ForbiddenAndConjunction( ForbiddenEqualsClause(dual, "False"), ForbiddenEqualsClause(loss, "epsilon_insensitive") ) cs.add_forbidden_clause(dual_and_loss) return cs elif optimizer == 'tpe': from hyperopt import hp space = {'loss': hp.choice('liblinear_combination', [{'loss': "epsilon_insensitive", 'dual': "True"}, {'loss': "squared_epsilon_insensitive", 'dual': "True"}, {'loss': "squared_epsilon_insensitive", 'dual': "False"}]), 'dual': None, 'tol': hp.loguniform('liblinear_tol', np.log(1e-5), np.log(1e-1)), 'C': hp.loguniform('liblinear_C', np.log(0.03125), np.log(32768)), 'fit_intercept': hp.choice('liblinear_fit_intercept', ["True"]), 'intercept_scaling': hp.choice('liblinear_intercept_scaling', [1])} init_trial = {'loss': {'loss': "epsilon_insensitive", 'dual': "True"}, 'tol': 1e-4, 'C': 1, 'fit_intercept': "True", 'intercept_scaling': 1} return space
44.381356
116
0.554898
b1f689a2ad2c7d4ca28c6d1e837457c3c824cc82
1,095
py
Python
common/migrations/0037_inkinddonation.py
baylee-d/cos.io
3f88acb0feb7a167bf9e81c42e28f9d2d38bbd43
[ "Apache-2.0" ]
null
null
null
common/migrations/0037_inkinddonation.py
baylee-d/cos.io
3f88acb0feb7a167bf9e81c42e28f9d2d38bbd43
[ "Apache-2.0" ]
null
null
null
common/migrations/0037_inkinddonation.py
baylee-d/cos.io
3f88acb0feb7a167bf9e81c42e28f9d2d38bbd43
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-11-02 13:44 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import modelcluster.fields import wagtail.wagtailsearch.index class Migration(migrations.Migration): dependencies = [ ('common', '0036_auto_20161101_1847'), ] operations = [ migrations.CreateModel( name='InkindDonation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateField()), ('thank_you_message', models.TextField()), ('organization', modelcluster.fields.ParentalKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='inkind_donations', to='common.Organization', verbose_name='Organization')), ], options={ 'ordering': ['date'], }, bases=(models.Model, wagtail.wagtailsearch.index.Indexed), ), ]
34.21875
222
0.629224
b51245d6fcd79004212670109d8ce6400a10d406
495
py
Python
53/53.py
bobismijnnaam/bobe-euler
111abdf37256d19c4a8c4e1a071db52929acf9d9
[ "MIT" ]
null
null
null
53/53.py
bobismijnnaam/bobe-euler
111abdf37256d19c4a8c4e1a071db52929acf9d9
[ "MIT" ]
null
null
null
53/53.py
bobismijnnaam/bobe-euler
111abdf37256d19c4a8c4e1a071db52929acf9d9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from Utils import * def factorial(n): if n == 0: return 1 return n * factorial(n - 1) def nCr(n, r): assert(r <= n) return factorial(n) / (factorial(r) * factorial(n - r)) if __name__ == "__main__": # Your code here! count = 0 for n in range(1, 100 + 1): print("Checking", n) print("Progress", count) for r in range(1, n + 1): if nCr(n, r) > 1000000: count += 1 print("Count", count)
21.521739
59
0.523232
e7af09a76cbca0325b408647b37f4dad45789e2b
519
py
Python
backend/run.py
Fungramming/fonters
7d2f024dbb8c996e529b9189afd542780d3d0b67
[ "MIT" ]
2
2019-07-10T00:36:54.000Z
2019-07-10T00:36:57.000Z
backend/run.py
Fungramming/fonters
7d2f024dbb8c996e529b9189afd542780d3d0b67
[ "MIT" ]
null
null
null
backend/run.py
Fungramming/fonters
7d2f024dbb8c996e529b9189afd542780d3d0b67
[ "MIT" ]
1
2019-07-10T00:37:03.000Z
2019-07-10T00:37:03.000Z
from flask import Flask, request, jsonify from flask_cors import CORS from tinydb import TinyDB, Query application = Flask(__name__) app = application cors = CORS(app, resources={"*": {"origins":"*"}}) @app.route('/', methods=['PUT']) def save_email(): try: name, email = request.get_json().get('name'), request.get_json().get('email') db = TinyDB('db.json') db.insert({'name': name, 'email': email}) return jsonify({'result': 'success'}), 201 except: return jsonify({'result': 'error'}), 401
28.833333
81
0.655106
11af4932e9d2acbc94ed2be7ddcbe8b75256a292
695
py
Python
cinder/image/__init__.py
alexpilotti/cinder
df2f070604dad61738ccd3113016f76f2af20cae
[ "Apache-2.0" ]
null
null
null
cinder/image/__init__.py
alexpilotti/cinder
df2f070604dad61738ccd3113016f76f2af20cae
[ "Apache-2.0" ]
null
null
null
cinder/image/__init__.py
alexpilotti/cinder
df2f070604dad61738ccd3113016f76f2af20cae
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2012 OpenStack, LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.
40.882353
79
0.709353
a59f3b12efee1adf5dd3e0f25beab6410ae72e91
31,373
py
Python
stix_shifter_modules/guardium/stix_translation/query_constructor.py
nkhetia31/stix-shifter
ace07581cb227fd35e450b2f8871475227a041d0
[ "Apache-2.0" ]
null
null
null
stix_shifter_modules/guardium/stix_translation/query_constructor.py
nkhetia31/stix-shifter
ace07581cb227fd35e450b2f8871475227a041d0
[ "Apache-2.0" ]
42
2022-01-28T04:35:38.000Z
2022-03-31T04:31:04.000Z
stix_shifter_modules/guardium/stix_translation/query_constructor.py
subbyte/stix-shifter
36d71c172a5fc5b97d872e623753b0dd1bf4fe6c
[ "Apache-2.0" ]
null
null
null
import re import json import datetime import copy from stix_shifter_utils.stix_translation.src.patterns.pattern_objects import ObservationExpression, ComparisonExpression, \ ComparisonExpressionOperators, ComparisonComparators, Pattern, \ CombinedComparisonExpression, CombinedObservationExpression, ObservationOperators from stix_shifter_modules.guardium.stix_translation.transformers import TimestampToGuardium from stix_shifter_utils.stix_translation.src.json_to_stix import observable from stix_shifter_utils.utils.file_helper import read_json from stix_shifter_utils.utils import logger DEFAULT_DAYS_BACK = 2 class QueryStringPatternTranslator: def __init__(self, pattern: Pattern, data_model_mapper, options, transformers): self.dmm = data_model_mapper self.comparator_lookup = self.dmm.map_comparator() self.pattern = pattern self.logger = logger.set_logger(__name__) # Now report_params_passed is a JSON object which is pointing to an array of JSON Objects (report_params_array) self.report_params_passed = {} self.report_params_array = [] self.report_params_array_size = 0 # Now qsearch_params_passed is a JSON object which is pointing to an array of JSON Objects (qsearch_params_array) self.qsearch_params_passed = {} self.qsearch_params_array = [] self.qsearch_params_array_size = 0 self.translated = self.parse_expression(pattern) self.transformers = transformers # Read report definition data self.REPORT_DEF = read_json('guardium_reports_def', options) # Read report definition data self.REPORT_PARAMS_MAP = read_json('guardium_report_params_map', options) # Read qsearch definition data self.QSEARCH_DEF = read_json('guardium_qsearch_def', options) # Read qsearch definition data self.QSEARCH_PARAMS_MAP = read_json('guardium_qsearch_params_map', options) def set_report_params_passed(self, params_array): self.report_params_array = params_array self.report_params_array_size = len(params_array) return def set_qsearch_params_passed(self, params_array): self.qsearch_params_array = params_array self.qsearch_params_array_size = len(params_array) return def transform_report_call_to_json(self, report_call): # Convert the report call (string) into an array of JSON. Note, inside each json obj multiple key/value parmeter are "OR" # Where as each key/value parameter from two json objects are "AND" # Put quote around key # print(report_call) regex = r"([a-zA-Z_]+)(\s=)" out_str = re.sub(regex, r"'\1' :", report_call, 0) # Create the Json structure regex1 = r"\(|\)" out_str = re.sub(regex1, "", out_str, 0) regex2 = r"\sAND\s" out_str = "{" + re.sub(regex2, "} AND {", out_str, 0) + "}" regex3 = r"START" out_str = re.sub(regex3, "} AND {START ", out_str, 0) # treat START and STOP parameters too regex4 = r"(START|STOP)" out_str = re.sub(regex4, r"'\1' : ", out_str, 0) regex5 = r"([Z\'\s]+STOP)" out_str = re.sub(regex5, r"'} AND {'STOP", out_str, 0) regex6 = r"(START|STOP)\'[\s\:t\']+" out_str = re.sub(regex6, r"\1' : '", out_str, 0) # Finalize the structure -- replace by comma and then it becomes string containing # an array of Json objects regex7 = r"\sOR|\sAND" out_str = re.sub(regex7, r",", out_str, 0) # Single quotes have to be replaced by double quotes in order to make it as an Json obj regex8 = r"'" out_str = "[" + re.sub(regex8, '"', out_str, 0) + "]" return json.loads(out_str) def transform_qsearch_call_to_json(self, qsearch_call): # Convert the report call (string) into an array of JSON. Note, inside each json obj multiple key/value parmeter are "OR" # Where as each key/value parameter from two json objects are "AND" # Put quote around key # print(report_call) regex = r"(^|\(|OR |AND )([a-zA-Z_ ]+)(\s=)" out_str = re.sub(regex, r"\1'\2' :", qsearch_call, 0) # Create the Json structure regex1 = r"\(|\)" out_str = re.sub(regex1, "", out_str, 0) regex2 = r"\sAND\s" out_str = "{" + re.sub(regex2, "} AND {", out_str, 0) + "}" regex3 = r"START" out_str = re.sub(regex3, "} AND {START ", out_str, 0) # treat START and STOP parameters too regex4 = r"(START|STOP)" out_str = re.sub(regex4, r"'\1' : ", out_str, 0) regex5 = r"([Z\'\s]+STOP)" out_str = re.sub(regex5, r"'} AND {'STOP", out_str, 0) regex6 = r"(START|STOP)\'[\s\:t\']+" out_str = re.sub(regex6, r"\1' : '", out_str, 0) # Finalize the structure -- replace by comma and then it becomes string containing # an array of Json objects regex7 = r"\sOR|\sAND" out_str = re.sub(regex7, r",", out_str, 0) # Single quotes have to be replaced by double quotes in order to make it as an Json obj regex8 = r"'" out_str = "[" + re.sub(regex8, '"', out_str, 0) + "]" return json.loads(out_str) # Guardium report parameters are "AND"ed in a Gaurdium query. # Our Json object array contains multiple json objects. Each object may have one or many key/value pairs -- these are report params # Problem statement: get an array of json objects containing parameters which support a guardium report call def build_array_of_guardium_report_params(self, result_array, result_position, current_result_object, params_array, current_position): param_list_size = len(params_array) if current_result_object is None: current_result_object = {} if current_position is None: current_position = 0 else: current_position = current_position + 1 if current_position < param_list_size: param_json_object = params_array[current_position] for param in param_json_object: # Keep a copy of current_result_object before any modification from this invocation cp_current_result_object = copy.deepcopy(current_result_object) # Insert the param in the current_result_object if param not in cp_current_result_object: cp_current_result_object[param] = param_json_object[param] if (current_position + 1) < param_list_size: result_array = self.build_array_of_guardium_report_params(result_array, result_position, cp_current_result_object, params_array, current_position) else: result_array.append(cp_current_result_object) result_position = result_position + 1 return result_array def build_array_of_guardium_qsearch_params(self, result_array, result_position, current_result_object, params_array, current_position): param_list_size = len(params_array) if current_result_object is None: current_result_object = {} if current_position is None: current_position = 0 else: current_position = current_position + 1 if current_position < param_list_size: param_json_object = params_array[current_position] for param in param_json_object: # Keep a copy of current_result_object before any modification from this invocation cp_current_result_object = copy.deepcopy(current_result_object) # Insert the param in the current_result_object if param not in cp_current_result_object: cp_current_result_object[param] = param_json_object[param] if (current_position + 1) < param_list_size: result_array = self.build_array_of_guardium_qsearch_params(result_array, result_position, cp_current_result_object, params_array, current_position) else: result_array.append(cp_current_result_object) result_position = result_position + 1 return result_array def substitute_params_passed(self, report_definitions, reports_in_query): # for Each report in report_definitions substitute params for report Params Passed # generate all reports for the query # In the event START and STOP is missing, Generate the default From and To Dates # TO_DATE IS SET TO NOW # FROM_DATE IS SET TO DAYS FROM NOW current_date = datetime.datetime.now() default_to_date = current_date.strftime(('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z') default_from_date = (current_date - datetime.timedelta(days=DEFAULT_DAYS_BACK)).strftime(('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z') for report_name in report_definitions: report = report_definitions[report_name] for param in report["reportParameter"]: # either the value will be default or passed in (report parameter passed) if param not in self.report_params_passed: value = report["reportParameter"][param]["default"] else: value = self.report_params_passed[param] # Use START and STOP instead of default to time parameter if report["reportParameter"][param]["info"] == "START": value = self.report_params_passed.get("START", default_from_date) if report["reportParameter"][param]["info"] == "STOP": value = self.report_params_passed.get("STOP", default_to_date) # Transform the value or use it as-is if "transformer" in report["reportParameter"][param]: transformer = self.transformers[report["reportParameter"][param]["transformer"]] report["reportParameter"][param] = transformer.transform(value) else: report["reportParameter"][param] = value reports_in_query.append(json.dumps(report)) return reports_in_query def substitute_qsearch_params_passed(self, qsearch_definitions, qsearch_in_query): # for Each report in report_definitions substitute params for report Params Passed # generate all reports for the query # In the event START and STOP is missing, Generate the default From and To Dates # TO_DATE IS SET TO NOW # FROM_DATE IS SET TO DAYS FROM NOW current_date = datetime.datetime.now() default_to_date = current_date.strftime(('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z') default_from_date = (current_date - datetime.timedelta(days=DEFAULT_DAYS_BACK)).strftime(('%Y-%m-%dT%H:%M:%S.%f')[:-3] + 'Z') for qsearch_name in qsearch_definitions: qsearch = qsearch_definitions[qsearch_name] sta = self.qsearch_params_passed.get("START", default_from_date) sto = self.qsearch_params_passed.get("STOP", default_to_date) qsearch["startTime"] = self.transformers[qsearch["startTime"]["transformer"]].transform(sta) qsearch["endTime"] = self.transformers[qsearch["endTime"]["transformer"]].transform(sto) for param in qsearch["filters"]: # either the value will be default or passed in (report parameter passed) if param not in self.qsearch_params_passed: value = qsearch["filters"][param]["default"] else: value = self.qsearch_params_passed[param] # Transform the value or use it as-is if "transformer" in qsearch["filters"][param]: transformer = self.transformers[qsearch["filters"][param]["transformer"]] qsearch["filters"][param] = transformer.transform(value) else: qsearch["filters"][param] = value for param in qsearch["query"]: if param in self.qsearch_params_passed: value = self.qsearch_params_passed[param] if "transformer" in qsearch["query"][param]: transformer = self.transformers[qsearch["query"][param]["transformer"]] qsearch["query"][param]["value"] = transformer.transform(value) qsearch["query"][param]["operation"] = qsearch["query"][param]["default_operator"] qsearch_in_query.append(json.dumps(qsearch)) return qsearch_in_query def get_report_params(self): reports_in_query = [] for report_param_index in range(self.report_params_array_size): self.report_params_passed = self.report_params_array[report_param_index] data_category = (self.report_params_passed).get("datacategory", None) if(data_category is not None): if data_category not in self.REPORT_DEF: report_definitions = None else: report_definitions = copy.deepcopy(self.REPORT_DEF[data_category]) else: report_definitions = self.generate_report_definitions() # substitute Params if report_definitions: reports_in_query = self.substitute_params_passed(report_definitions, reports_in_query) return reports_in_query def get_qsearch_params(self): qsearch_in_query = [] for qsearch_param_index in range(self.qsearch_params_array_size): self.qsearch_params_passed = self.qsearch_params_array[qsearch_param_index] #clientip = self.qsearch_params_passed.get("Client", None) #if clientip is not None: # continue data_category = self.qsearch_params_passed.get("datacategory", None) if data_category is not None: if data_category not in self.QSEARCH_DEF: qsearch_definitions = None else: qsearch_definitions = copy.deepcopy(self.QSEARCH_DEF[data_category]) else: qsearch_definitions = self.generate_qsearch_definitions() # substitute Params if qsearch_definitions: qsearch_in_query = self.substitute_qsearch_params_passed(qsearch_definitions, qsearch_in_query) self.set_filters_format(qsearch_in_query) self.set_query_format(qsearch_in_query) return qsearch_in_query def set_filters_format(self, qse): for i in range(len(qse)): filters = json.loads(qse[i])["filters"] qse_prefix = qse[i][0:str.find(qse[i], "filters") - 1:1] qse_suffix = qse[i][str.find(qse[i], ", \"query")::1] str_filters = '' first = True for key in filters: if filters[key] == '*': continue if first: first = False else: str_filters = str_filters + "&" str_filters = str_filters + "name=" + key + "&" + "value=" + filters[key] + "&isGroup=false" if str_filters.__len__() > 0: str_filters = "\"filters\":\"" + str_filters + "\"" qse[i] = qse_prefix + str_filters + qse_suffix else: qse[i] = qse_prefix + qse_suffix[2::1] def set_query_format(self, qse): for i in range(len(qse)): query = json.loads(qse[i])["query"] qse_prefix = qse[i][0:str.find(qse[i], "query") - 1:1] qse_suffix = qse[i][str.find(qse[i], ", \"fetchSize")::1] str_query = '' first = True for key in query: if "value" not in query[key]: continue if first: first = False else: str_query = str_query + " AND " str_query = str_query + key + query[key]["operation"] +query[key]["value"] if str_query.__len__() > 0: str_query = "\"query\":\"" + str_query + "\"" qse[i] = qse_prefix + str_query + qse_suffix else: qse[i] = qse_prefix + qse_suffix[2::1] def generate_report_definitions(self): # for Each param passed get all reports pertaining to that params -- this is a set of param reports # then take intersection of each set # if the intersection is null use the default Category report_set = None param_map = self.REPORT_PARAMS_MAP["maps"] param_cmn = self.REPORT_PARAMS_MAP["common"] for param in self.report_params_passed: if param in param_map: param_set = set(param_map[param]) elif param in param_cmn: param_set = set(self.REPORT_PARAMS_MAP["defaultReports"]) else: param_set = None # find interaction # param_set if param_set is not None: if report_set is None: report_set = set(param_set) else: report_set = report_set.intersection(param_set) # Check if report_set is null if (not bool(report_set)): report_set = self.REPORT_PARAMS_MAP["defaultReports"] # Now we have to create report_definitions from this report_set # Report set --> data_category:report_name # Iterate through report_definitions and pick the reports and place them in the report Defs # report_definitions = {} for key in report_set: data_category, report = key.split(":") '''if data_category not in self.REPORT_DEF: raise RuntimeError( "Error in parameter mapping file (data category): " + str(data_category) + " not there. Ingored.") else:''' data_category_reports = copy.deepcopy(self.REPORT_DEF[data_category]) '''if report not in data_category_reports: raise RuntimeError( "Error in parameter mapping file (report name): " + str(report) + " not there. Ingored.") else:''' report_definitions[report] = data_category_reports[report] return report_definitions def generate_qsearch_definitions(self): # for Each param passed get all qsearchs pertaining to that params -- this is a set of param qsearchs # then take intersection of each set # if the intersection is null use the default Category qsearch_set = None param_map = self.QSEARCH_PARAMS_MAP["maps"] param_cmn = self.QSEARCH_PARAMS_MAP["common"] for param in self.qsearch_params_passed: if param in param_map: param_set = set(param_map[param]) elif param in param_cmn: param_set = set(self.QSEARCH_PARAMS_MAP["defaultQsearch"]) else: param_set = None # find interaction # param_set if param_set is not None: if qsearch_set is None: qsearch_set = set(param_set) else: qsearch_set = qsearch_set.intersection(param_set) # Check if qsearch_set is null if (not bool(qsearch_set)): qsearch_set = self.QSEARCH_PARAMS_MAP["defaultQsearch"] # Now we have to create qsearch_definitions from this qsearch_set # Qsearch set --> data_category:qsearch_name # Iterate through qsearch_definitions and pick the qsearchs and place them in the qsearch Defs # qsearch_definitions = {} for key in qsearch_set: data_category, qsearch = key.split(":") ''' if data_category not in self.QSEARCH_DEF: raise RuntimeError( "Error in parameter mapping file (data category): " + str( data_category) + " not there. Ingored.") else:''' data_category_qsearch = copy.deepcopy(self.QSEARCH_DEF[data_category]) '''if qsearch not in data_category_qsearch: raise RuntimeError( "Error in parameter mapping file (qsearch name): " + str(qsearch) + " not there. Ingored.") else: ''' qsearch_definitions[qsearch] = data_category_qsearch[qsearch] return qsearch_definitions @staticmethod def _format_set(values) -> str: gen = values.element_iterator() return "({})".format(' OR '.join([QueryStringPatternTranslator._escape_value(value) for value in gen])) @staticmethod def _format_match(value) -> str: raw = QueryStringPatternTranslator._escape_value(value) if raw[0] == "^": raw = raw[1:] else: raw = ".*" + raw if raw[-1] == "$": raw = raw[0:-1] else: raw = raw + ".*" return "\'{}\'".format(raw) @staticmethod def _format_equality(value) -> str: return '\'{}\''.format(value) @staticmethod def _format_like(value) -> str: value = "'%{value}%'".format(value=value) return QueryStringPatternTranslator._escape_value(value) @staticmethod def _escape_value(value, comparator=None) -> str: if isinstance(value, str): return '{}'.format(value.replace('\\', '\\\\').replace('\"', '\\"').replace('(', '\\(').replace(')', '\\)')) else: return value @staticmethod def _negate_comparison(comparison_string): return "NOT({})".format(comparison_string) @staticmethod def _check_value_type(value): value = str(value) for key, pattern in observable.REGEX.items(): if key != 'date' and bool(re.search(pattern, value)): return key return None @staticmethod def _parse_mapped_fields(self, expression, value, comparator, stix_field, mapped_fields_array): comparison_string = "" is_reference_value = self._is_reference_value(stix_field) # Need to use expression.value to match against regex since the passed-in value has already been formated. value_type = self._check_value_type(expression.value) if is_reference_value else None mapped_fields_count = 1 if is_reference_value else len(mapped_fields_array) for mapped_field in mapped_fields_array: if is_reference_value: parsed_reference = "{mapped_field} {comparator} {value}".format(mapped_field=mapped_field, comparator=comparator, value=value) if not parsed_reference: continue comparison_string += parsed_reference else: comparison_string += "{mapped_field} {comparator} {value}".format(mapped_field=mapped_field, comparator=comparator, value=value) #self.report_params_passed[mapped_field] = str(value).replace("'","",10) if (mapped_fields_count > 1): comparison_string += " OR " mapped_fields_count -= 1 return comparison_string @staticmethod def _is_reference_value(stix_field): return stix_field == 'src_ref.value' or stix_field == 'dst_ref.value' def _parse_expression(self, expression, qualifier=None) -> str: if isinstance(expression, ComparisonExpression): # Base Case # Resolve STIX Object Path to a field in the target Data Model stix_object, stix_field = expression.object_path.split(':') # Multiple data source fields may map to the same STIX Object mapped_fields_array = self.dmm.map_field(stix_object, stix_field) # Resolve the comparison symbol to use in the query string (usually just ':') comparator = self.comparator_lookup[str(expression.comparator)] if stix_field == 'start' or stix_field == 'end': transformer = TimestampToGuardium() expression.value = transformer.transform(expression.value) # Some values are formatted differently based on how they're being compared if expression.comparator == ComparisonComparators.Matches: # needs forward slashes value = self._format_match(expression.value) # should be (x, y, z, ...) elif expression.comparator == ComparisonComparators.In: value = self._format_set(expression.value) elif expression.comparator == ComparisonComparators.Equal or expression.comparator == ComparisonComparators.NotEqual: # Should be in single-quotes value = self._format_equality(expression.value) # '%' -> '*' wildcard, '_' -> '?' single wildcard elif expression.comparator == ComparisonComparators.Like: value = self._format_like(expression.value) else: value = self._escape_value(expression.value) comparison_string = self._parse_mapped_fields(self, expression, value, comparator, stix_field, mapped_fields_array) if(len(mapped_fields_array) > 1 and not self._is_reference_value(stix_field)): # More than one data source field maps to the STIX attribute, so group comparisons together. grouped_comparison_string = "(" + comparison_string + ")" comparison_string = grouped_comparison_string if expression.comparator == ComparisonComparators.NotEqual: comparison_string = self._negate_comparison(comparison_string) if expression.negated: comparison_string = self._negate_comparison(comparison_string) if qualifier is not None: return "{} {}".format(comparison_string, qualifier) else: return "{}".format(comparison_string) elif isinstance(expression, CombinedComparisonExpression): operator = self.comparator_lookup[str(expression.operator)] expression_01 = self._parse_expression(expression.expr1) expression_02 = self._parse_expression(expression.expr2) if not expression_01 or not expression_02: return '' if isinstance(expression.expr1, CombinedComparisonExpression): expression_01 = "({})".format(expression_01) if isinstance(expression.expr2, CombinedComparisonExpression): expression_02 = "({})".format(expression_02) query_string = "{} {} {}".format(expression_01, operator, expression_02) if qualifier is not None: return "{} {}".format(query_string, qualifier) else: return "{}".format(query_string) elif isinstance(expression, ObservationExpression): return self._parse_expression(expression.comparison_expression, qualifier) elif hasattr(expression, 'qualifier') and hasattr(expression, 'observation_expression'): if isinstance(expression.observation_expression, CombinedObservationExpression): operator = self.comparator_lookup[str(expression.observation_expression.operator)] # qualifier only needs to be passed into the parse expression once since it will be the same for both expressions return "{expr1} {operator} {expr2}".format(expr1=self._parse_expression(expression.observation_expression.expr1), operator=operator, expr2=self._parse_expression(expression.observation_expression.expr2, expression.qualifier)) else: return self._parse_expression(expression.observation_expression.comparison_expression, expression.qualifier) elif isinstance(expression, CombinedObservationExpression): operator = self.comparator_lookup[str(expression.operator)] expression_01 = self._parse_expression(expression.expr1) expression_02 = self._parse_expression(expression.expr2) if expression_01 and expression_02: return "({}) {} ({})".format(expression_01, operator, expression_02) elif expression_01: return "{}".format(expression_01) elif expression_02: return "{}".format(expression_02) else: return '' elif isinstance(expression, Pattern): return "{expr}".format(expr=self._parse_expression(expression.expression)) else: raise RuntimeError("Unknown Recursion Case for expression={}, type(expression)={}".format( expression, type(expression))) def parse_expression(self, pattern: Pattern): return self._parse_expression(pattern) def translate_pattern(pattern: Pattern, data_model_mapping, options, transformers): # Converting query object to datasource query # timerange set to 24 hours for Guardium; timerange is provided in minutes (as delta) guardium_query_translator = QueryStringPatternTranslator(pattern, data_model_mapping, options, transformers) report_call = guardium_query_translator.translated # Add space around START STOP qualifiers report_call = re.sub("START", "START ", report_call) report_call = re.sub("STOP", " STOP ", report_call) # Subroto: I did not change the code much just adapted to get the report parameters # Subroto: added code to support report search parameters are "and" when sent to Guardium # translate the structure of report_call if data_model_mapping.dialect == 'report': json_report_call = guardium_query_translator.transform_report_call_to_json(report_call) else: json_qsearch_call = guardium_query_translator.transform_qsearch_call_to_json(report_call) result_array = [] result_position = 0 if data_model_mapping.dialect == 'report': output_array = guardium_query_translator.build_array_of_guardium_report_params(result_array, result_position, None, json_report_call, None) guardium_query_translator.set_report_params_passed(output_array) report_header = guardium_query_translator.get_report_params() else: output_array = guardium_query_translator.build_array_of_guardium_qsearch_params(result_array, result_position, None, json_qsearch_call, None) guardium_query_translator.set_qsearch_params_passed(output_array) report_header = guardium_query_translator.get_qsearch_params() if report_header: # Change return statement as required to fit with data source query language. # If supported by the language, a limit on the number of results may be desired. # A single query string, or an array of query strings may be returned return report_header else: # report_header = {"ID": 2000, "message": "Could not generate query -- issue with data_category."} return report_header
48.943838
171
0.629076
5b76d9b962462d851e44afa840cefa5e34788c7e
2,595
py
Python
redleader/managers/codedeploy.py
mmcdermo/RedLeader
13c5261e839fc3373a8de00d49187220778091a4
[ "Apache-2.0" ]
null
null
null
redleader/managers/codedeploy.py
mmcdermo/RedLeader
13c5261e839fc3373a8de00d49187220778091a4
[ "Apache-2.0" ]
null
null
null
redleader/managers/codedeploy.py
mmcdermo/RedLeader
13c5261e839fc3373a8de00d49187220778091a4
[ "Apache-2.0" ]
null
null
null
import os.path import os import time import tarfile import random import redleader.util as util class CodeDeployManager(object): def __init__(self, context): self._context = context def create_code_deploy_package(self, path): n = "code_deploy_package%s.tgz" % random.randrange(0, 10000000) self.make_tarfile("./%s" % n, path) return n @staticmethod def make_tarfile(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: files = os.listdir(source_dir) for f in files: tar.add(os.path.join(source_dir, f), arcname=f) def upload_package(self, bucket_name, path, name): print("Uploading %s to bucket %s/%s" % (path, bucket_name, name)) client = self._context.get_client('s3') f = client.upload_file(path, bucket_name, name) # TODO. Configure bucket permissions so that an # IAM policy with s3::GetObject is sufficient. # Then we can remove setting ACL to authenticated-read client.put_object_acl(Bucket=bucket_name, Key=name, ACL='authenticated-read') return f def create_deployment(self, application_name, deployment_group_name, path, bucket_name, version="0", blocking=True, verbose=True): package = self.create_code_deploy_package(path) x = self.upload_package(bucket_name, "./%s" % package, package) client = self._context.get_client('codedeploy') res = client.create_deployment( applicationName=application_name, deploymentGroupName=deployment_group_name, revision={ 'revisionType': 'S3', 's3Location': { 'bucket': bucket_name, 'key': package, 'bundleType': 'tgz', } }) os.remove(package) deploymentId = res['deploymentId'] if not blocking: return deploymentId i = 0 if verbose: print("Deploying..") while client.get_deployment(deploymentId=deploymentId)['deploymentInfo']['status'] in ["Created", "InProgress"]: i += 1 if verbose: util.print_progress(i) time.sleep(2) if verbose: print("Deployment Status: %s" % client.get_deployment(deploymentId=deploymentId)['deploymentInfo']['status']) return (deploymentId, client.get_deployment(deploymentId=deploymentId)['deploymentInfo']['status'])
38.731343
121
0.603468
4a472726180cd7f56cfc984d3ea57f4391b97996
2,923
py
Python
helpme.py
buckbaskin/paPYrus
815858715beb74814699277ae0377894d4f54f5b
[ "MIT" ]
null
null
null
helpme.py
buckbaskin/paPYrus
815858715beb74814699277ae0377894d4f54f5b
[ "MIT" ]
null
null
null
helpme.py
buckbaskin/paPYrus
815858715beb74814699277ae0377894d4f54f5b
[ "MIT" ]
null
null
null
from pylatex import Document, Section, Subsection, Subsubsection, Command, UnsafeCommand from pylatex.utils import italic, NoEscape default_package_list = [ 'parskip', # \usepackage[utf8]{inputenc} # \usepackage[english]{babel} 'listings', 'color', 'verbatim', 'soul', # \usepackage[margin=0.69in]{geometry} 'amsmath', 'amssymb', 'amsthm', 'gensymb', 'graphicx', ] def stuff(doc, content): doc.append(NoEscape(content)) def myusual(doc): stuff(doc.preamble, NoEscape(r'\usepackage[english]{babel}')) stuff(doc.preamble, NoEscape(r'\usepackage[margin=0.69in]{geometry}')) for package in default_package_list: doc.preamble.append(Command('usepackage', package)) stuff(doc.preamble, NoEscape(r'\definecolor{dkgreen}{rgb}{0, 0.6, 0}')) stuff(doc.preamble, NoEscape(r'\definecolor{gray}{rgb}{0.5, 0.5, 0.5}')) stuff(doc.preamble, NoEscape(r'\definecolor{mauve}{rgb}{0.58, 0, 0.82}')) stuff(doc.preamble, NoEscape( '''\\lstset{frame=tb, language=Matlab, aboveskip=3mm, belowskip=3mm, showstringspaces=false, columns=flexible, basicstyle={\\small\\ttfamily}, numbers=none, numberstyle=\\tiny\\color{gray}, keywordstyle=\\color{blue}, commentstyle=\\color{dkgreen}, stringstyle=\\color{mauve}, breaklines=true, breakatwhitespace=true, tabsize=3 }''')) ''' UnsafeCommand('newcommand', '\exampleCommand', options=3, extra_arguments=r'\color{#1} #2 #3 \color{black}') >>> \newcommand{\exampleCommand}[3]{\color{#1} #2 #3 \color{black}}% ''' ''' \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} ''' doc.preamble.append(UnsafeCommand('DeclareMathOperator*', arguments=(r'\argmax', r'arg\,max'))) doc.preamble.append(UnsafeCommand('DeclareMathOperator*', arguments=(r'\argmin', r'arg\,min'))) doc.preamble.append(UnsafeCommand('newcommand', '\subsubsubsection', extra_arguments=('\paragraph',))) doc.preamble.append(UnsafeCommand('newcommand', r'\bbs', options=1, extra_arguments=('\section{#1}',))) doc.preamble.append(UnsafeCommand('newcommand', r'\bbbs', options=1, extra_arguments=('\subsection{#1}',))) doc.preamble.append(UnsafeCommand('newcommand', r'\bbbbs', options=1, extra_arguments=('\subsubsection{#1}',))) doc.preamble.append(UnsafeCommand('newcommand', r'\bbbbbs', options=1, extra_arguments=('\subsubsubsection{#1}',))) doc.preamble.append(UnsafeCommand('newcommand', r'\norm', options=1, extra_arguments=(r'\left\lVert#1\right\rVert',))) def build(doc, filename): doc.generate_pdf(filename, clean_tex=False) def section(doc, title): return doc.create(Section(NoEscape(title))) def subsection(doc, title): return doc.create(Subsection(NoEscape(title))) def subsubsection(doc, title): return doc.create(Subsubsection(NoEscape(title)))
34.797619
122
0.67807
f512272a00402a48af85bb7c1c37824364385541
1,387
py
Python
xawscf/commands/invoke.py
DmitryBogomolov/aws-cloudformation-sample
f0454b203973e07027a4cdf5f36468d137d310fd
[ "MIT" ]
null
null
null
xawscf/commands/invoke.py
DmitryBogomolov/aws-cloudformation-sample
f0454b203973e07027a4cdf5f36468d137d310fd
[ "MIT" ]
36
2018-04-20T06:11:41.000Z
2018-07-07T21:55:55.000Z
xawscf/commands/invoke.py
DmitryBogomolov/aws-cloudformation-sample
f0454b203973e07027a4cdf5f36468d137d310fd
[ "MIT" ]
null
null
null
''' Invokes lambda function. ''' from logging import getLogger import json from ..utils.client import get_client logger = getLogger(__name__) def run(pattern, name, payload=None): lambda_client = get_client(pattern, 'lambda') function = pattern.get_function(name) if not function: logger.info('Function *{}* is unknown.'.format(name)) return 1 kwargs = {'FunctionName': function.full_name} if payload: kwargs['Payload'] = payload try: response = lambda_client.invoke(**kwargs) except lambda_client.exceptions.ResourceNotFoundException: logger.info('Function *{}* is not found.'.format(function.full_name)) return 1 except Exception as err: # pylint: disable=broad-except logger.exception(err) return 1 payload = json.loads(response['Payload'].read().decode('utf-8')) if response.get('FunctionError'): error_type = payload.get('errorType') logger.info((error_type + ': ' if error_type else '') + payload.get('errorMessage')) stack_trace = payload.get('stackTrace') if stack_trace: for file_name, line, func, code in stack_trace: logger.info(' {}, {}, in {}'.format(file_name, line, func)) logger.info(' {}'.format(code)) return 1 logger.info(json.dumps(payload, indent=2)) return 0
34.675
92
0.638068
055954a1aaa853cd9b659db8af90d7191a3b212e
3,728
py
Python
scripts/run_ycsb.py
byrantwithyou/YCSB
622bdd11a4c46fbd85600d27b2b1358d74939549
[ "Apache-2.0" ]
null
null
null
scripts/run_ycsb.py
byrantwithyou/YCSB
622bdd11a4c46fbd85600d27b2b1358d74939549
[ "Apache-2.0" ]
null
null
null
scripts/run_ycsb.py
byrantwithyou/YCSB
622bdd11a4c46fbd85600d27b2b1358d74939549
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import os import signal import argparse import subprocess def exec_cmd(cmd, out=None, cwd=None): p = subprocess.Popen(cmd, shell=True, stdout=out, stderr=out, cwd=cwd) p.wait() if p.returncode != 0: print("command %s is not successful!" % cmd) exit(1) return p def recompile(): global SRC_PATH exec_cmd("mvn -pl site.ycsb:rocksdb-binding -am clean package", cwd=SRC_PATH) def run_ycsb(): global SRC_PATH global args global DBDIR exec_cmd("sudo -v") trace_cmd = "sudo bpftrace -o %s" % args.f + \ " -e ' tracepoint:syscalls:sys_exit_write /strncmp(" + \ '"rocksdb", comm, 7) == 0/ {@ = hist(args->ret) } interval:s:1 { print(@); }' + r"'" p = subprocess.Popen(trace_cmd, shell=True) ycsb_cmd = "./bin/ycsb {rl} rocksdb -s -p recordcount={rc} -p operationcount={oc} -P workloads/workload{workload} -p rocksdb.dir={DIR} -threads {C} -p rocksdb.optionsfile=option.ini".format( rl=args.type, rc=args.r, oc=args.o, workload=args.workload, DIR=DBDIR, C=args.c) exec_cmd(ycsb_cmd, cwd=SRC_PATH) exec_cmd("sleep 10") os.kill(p.pid, signal.SIGINT) def handle_err(): print("argument invalid!") exit(1) def pre_work(): global SRC_PATH exec_cmd("rm -f option.ini", cwd=SRC_PATH) def generate_option_file(): global SRC_PATH global args exec_cmd("cp defaultoption.ini option.ini", cwd=SRC_PATH) sstablesize = int(args.sstsize * 1024 * 1024) cmd = 'sed -i "s/target_file_size_base=.*/target_file_size_base={sstsize}/g" option.ini'.format( sstsize=sstablesize) exec_cmd(cmd, cwd=SRC_PATH) def deal_with_zipfian(): global SRC_PATH global args cmd = "sed -i " + \ r"'s/\(.*\)ZIPFIAN_CONSTANT\ .*/\1ZIPFIAN_CONSTANT\ = " + \ "{zip};/g'".format(zip=args.z) + " ZipfianGenerator.java" ZIP_PATH = os.path.normpath(os.path.join( SRC_PATH, "core", "src", "main", "java", "site", "ycsb", "generator")) exec_cmd(cmd, cwd=ZIP_PATH) if __name__ == "__main__": FILE_PATH = os.path.abspath(os.path.dirname(__file__)) SRC_PATH = os.path.normpath(os.path.join(FILE_PATH, "..")) parser = argparse.ArgumentParser() parser.add_argument("-c", default=1, type=int, help="the number of client thread") parser.add_argument( "workload", help="the workload from YCSB workload, can be one of a,b,c,d,e") parser.add_argument("type", help="workload type, can be `load` or `run`") parser.add_argument("-sstsize", default=64, type=int, help="the size of the sstable in MB") parser.add_argument("-z", default=0.99, type=float, help="zipfian distribution value(0.5-0.99)") parser.add_argument("-o", default=5000000, type=int, help="operation count") parser.add_argument("-r", default=5000000, type=int, help="record count") parser.add_argument("-d", default="/tmp/ycsb-rocksdb-data", help="directory to hold the database file, default is /tmp/ycsb-rocksdb-data") parser.add_argument("-f", default="result", help="filename to hold the workload profiling result") args = parser.parse_args() pre_work() if args.r <= 0 or args.o <= 0 or args.c <= 0 or args.sstsize <= 0: handle_err() if not args.z in [0.99, 0.5, 0.6, 0.7, 0.8, 0.9]: handle_err() if "abcde".find(args.workload) == -1 or "runload".find(args.type) == -1: handle_err() DBDIR = os.path.abspath(args.d) exec_cmd("mkdir -p {DIR}".format(DIR=DBDIR)) generate_option_file() deal_with_zipfian() recompile() run_ycsb()
35.846154
194
0.624732
dc895ee15d93c64bbf3f5a26b820a0ef7a04ba3c
28,664
py
Python
lib/sqlalchemy/engine/create.py
eddebc/sqlalchemy
180ae7c1a53385f72b0047496ac001ec5099cc3e
[ "MIT" ]
null
null
null
lib/sqlalchemy/engine/create.py
eddebc/sqlalchemy
180ae7c1a53385f72b0047496ac001ec5099cc3e
[ "MIT" ]
null
null
null
lib/sqlalchemy/engine/create.py
eddebc/sqlalchemy
180ae7c1a53385f72b0047496ac001ec5099cc3e
[ "MIT" ]
null
null
null
# engine/create.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from . import base from . import url as _url from .mock import create_mock_engine from .. import event from .. import exc from .. import pool as poollib from .. import util from ..sql import compiler @util.deprecated_params( strategy=( "1.4", "The :paramref:`_sa.create_engine.strategy` keyword is deprecated, " "and the only argument accepted is 'mock'; please use " ":func:`.create_mock_engine` going forward. For general " "customization of create_engine which may have been accomplished " "using strategies, see :class:`.CreateEnginePlugin`.", ), empty_in_strategy=( "1.4", "The :paramref:`_sa.create_engine.empty_in_strategy` keyword is " "deprecated, and no longer has any effect. All IN expressions " "are now rendered using " 'the "expanding parameter" strategy which renders a set of bound' 'expressions, or an "empty set" SELECT, at statement execution' "time.", ), case_sensitive=( "1.4", "The :paramref:`_sa.create_engine.case_sensitive` parameter " "is deprecated and will be removed in a future release. " "Applications should work with result column names in a case " "sensitive fashion.", ), ) def create_engine(url, **kwargs): """Create a new :class:`_engine.Engine` instance. The standard calling form is to send the URL as the first positional argument, usually a string that indicates database dialect and connection arguments:: engine = create_engine("postgresql://scott:tiger@localhost/test") Additional keyword arguments may then follow it which establish various options on the resulting :class:`_engine.Engine` and its underlying :class:`.Dialect` and :class:`_pool.Pool` constructs:: engine = create_engine("mysql://scott:tiger@hostname/dbname", encoding='latin1', echo=True) The string form of the URL is ``dialect[+driver]://user:password@host/dbname[?key=value..]``, where ``dialect`` is a database name such as ``mysql``, ``oracle``, ``postgresql``, etc., and ``driver`` the name of a DBAPI, such as ``psycopg2``, ``pyodbc``, ``cx_oracle``, etc. Alternatively, the URL can be an instance of :class:`~sqlalchemy.engine.url.URL`. ``**kwargs`` takes a wide variety of options which are routed towards their appropriate components. Arguments may be specific to the :class:`_engine.Engine`, the underlying :class:`.Dialect`, as well as the :class:`_pool.Pool`. Specific dialects also accept keyword arguments that are unique to that dialect. Here, we describe the parameters that are common to most :func:`_sa.create_engine()` usage. Once established, the newly resulting :class:`_engine.Engine` will request a connection from the underlying :class:`_pool.Pool` once :meth:`_engine.Engine.connect` is called, or a method which depends on it such as :meth:`_engine.Engine.execute` is invoked. The :class:`_pool.Pool` in turn will establish the first actual DBAPI connection when this request is received. The :func:`_sa.create_engine` call itself does **not** establish any actual DBAPI connections directly. .. seealso:: :doc:`/core/engines` :doc:`/dialects/index` :ref:`connections_toplevel` :param case_sensitive=True: if False, result column names will match in a case-insensitive fashion, that is, ``row['SomeColumn']``. :param connect_args: a dictionary of options which will be passed directly to the DBAPI's ``connect()`` method as additional keyword arguments. See the example at :ref:`custom_dbapi_args`. :param convert_unicode=False: if set to True, causes all :class:`.String` datatypes to act as though the :paramref:`.String.convert_unicode` flag has been set to ``True``, regardless of a setting of ``False`` on an individual :class:`.String` type. This has the effect of causing all :class:`.String` -based columns to accommodate Python Unicode objects directly as though the datatype were the :class:`.Unicode` type. .. deprecated:: 1.3 The :paramref:`_sa.create_engine.convert_unicode` parameter is deprecated and will be removed in a future release. All modern DBAPIs now support Python Unicode directly and this parameter is unnecessary. :param creator: a callable which returns a DBAPI connection. This creation function will be passed to the underlying connection pool and will be used to create all new database connections. Usage of this function causes connection parameters specified in the URL argument to be bypassed. This hook is not as flexible as the newer :meth:`_events.DialectEvents.do_connect` hook which allows complete control over how a connection is made to the database, given the full set of URL arguments and state beforehand. .. seealso:: :meth:`_events.DialectEvents.do_connect` - event hook that allows full control over DBAPI connection mechanics. :ref:`custom_dbapi_args` :param echo=False: if True, the Engine will log all statements as well as a ``repr()`` of their parameter lists to the default log handler, which defaults to ``sys.stdout`` for output. If set to the string ``"debug"``, result rows will be printed to the standard output as well. The ``echo`` attribute of ``Engine`` can be modified at any time to turn logging on and off; direct control of logging is also available using the standard Python ``logging`` module. .. seealso:: :ref:`dbengine_logging` - further detail on how to configure logging. :param echo_pool=False: if True, the connection pool will log informational output such as when connections are invalidated as well as when connections are recycled to the default log handler, which defaults to ``sys.stdout`` for output. If set to the string ``"debug"``, the logging will include pool checkouts and checkins. Direct control of logging is also available using the standard Python ``logging`` module. .. seealso:: :ref:`dbengine_logging` - further detail on how to configure logging. :param empty_in_strategy: No longer used; SQLAlchemy now uses "empty set" behavior for IN in all cases. :param enable_from_linting: defaults to True. Will emit a warning if a given SELECT statement is found to have un-linked FROM elements which would cause a cartesian product. .. versionadded:: 1.4 .. seealso:: :ref:`change_4737` :param encoding: Defaults to ``utf-8``. This is the string encoding used by SQLAlchemy for string encode/decode operations which occur within SQLAlchemy, **outside of the DBAPIs own encoding facilities.** .. note:: The ``encoding`` parameter deals only with in-Python encoding issues that were prevalent with many DBAPIs under Python 2. Under Python 3 it is mostly unused. For DBAPIs that require client encoding configurations, such as those of MySQL and Oracle, please consult specific :ref:`dialect documentation <dialect_toplevel>` for details. All modern DBAPIs that work in Python 3 necessarily feature direct support for Python unicode strings. Under Python 2, this was not always the case. For those scenarios where the DBAPI is detected as not supporting a Python ``unicode`` object under Python 2, this encoding is used to determine the source/destination encoding. It is **not used** for those cases where the DBAPI handles unicode directly. To properly configure a system to accommodate Python ``unicode`` objects, the DBAPI should be configured to handle unicode to the greatest degree as is appropriate - see the notes on unicode pertaining to the specific target database in use at :ref:`dialect_toplevel`. Areas where string encoding may need to be accommodated outside of the DBAPI, nearly always under **Python 2 only**, include zero or more of: * the values passed to bound parameters, corresponding to the :class:`.Unicode` type or the :class:`.String` type when ``convert_unicode`` is ``True``; * the values returned in result set columns corresponding to the :class:`.Unicode` type or the :class:`.String` type when ``convert_unicode`` is ``True``; * the string SQL statement passed to the DBAPI's ``cursor.execute()`` method; * the string names of the keys in the bound parameter dictionary passed to the DBAPI's ``cursor.execute()`` as well as ``cursor.setinputsizes()`` methods; * the string column names retrieved from the DBAPI's ``cursor.description`` attribute. When using Python 3, the DBAPI is required to support all of the above values as Python ``unicode`` objects, which in Python 3 are just known as ``str``. In Python 2, the DBAPI does not specify unicode behavior at all, so SQLAlchemy must make decisions for each of the above values on a per-DBAPI basis - implementations are completely inconsistent in their behavior. :param execution_options: Dictionary execution options which will be applied to all connections. See :meth:`~sqlalchemy.engine.Connection.execution_options` :param future: Use the 2.0 style :class:`_future.Engine` and :class:`_future.Connection` API. .. versionadded:: 1.4 .. seealso:: :ref:`migration_20_toplevel` :param hide_parameters: Boolean, when set to True, SQL statement parameters will not be displayed in INFO logging nor will they be formatted into the string representation of :class:`.StatementError` objects. .. versionadded:: 1.3.8 :param implicit_returning=True: When ``True``, a RETURNING- compatible construct, if available, will be used to fetch newly generated primary key values when a single row INSERT statement is emitted with no existing returning() clause. This applies to those backends which support RETURNING or a compatible construct, including PostgreSQL, Firebird, Oracle, Microsoft SQL Server. Set this to ``False`` to disable the automatic usage of RETURNING. :param isolation_level: this string parameter is interpreted by various dialects in order to affect the transaction isolation level of the database connection. The parameter essentially accepts some subset of these string arguments: ``"SERIALIZABLE"``, ``"REPEATABLE_READ"``, ``"READ_COMMITTED"``, ``"READ_UNCOMMITTED"`` and ``"AUTOCOMMIT"``. Behavior here varies per backend, and individual dialects should be consulted directly. Note that the isolation level can also be set on a per-:class:`_engine.Connection` basis as well, using the :paramref:`.Connection.execution_options.isolation_level` feature. .. seealso:: :attr:`_engine.Connection.default_isolation_level` - view default level :paramref:`.Connection.execution_options.isolation_level` - set per :class:`_engine.Connection` isolation level :ref:`SQLite Transaction Isolation <sqlite_isolation_level>` :ref:`PostgreSQL Transaction Isolation <postgresql_isolation_level>` :ref:`MySQL Transaction Isolation <mysql_isolation_level>` :ref:`session_transaction_isolation` - for the ORM :param json_deserializer: for dialects that support the :class:`_types.JSON` datatype, this is a Python callable that will convert a JSON string to a Python object. By default, the Python ``json.loads`` function is used. .. versionchanged:: 1.3.7 The SQLite dialect renamed this from ``_json_deserializer``. :param json_serializer: for dialects that support the :class:`_types.JSON` datatype, this is a Python callable that will render a given object as JSON. By default, the Python ``json.dumps`` function is used. .. versionchanged:: 1.3.7 The SQLite dialect renamed this from ``_json_serializer``. :param label_length=None: optional integer value which limits the size of dynamically generated column labels to that many characters. If less than 6, labels are generated as "_(counter)". If ``None``, the value of ``dialect.max_identifier_length``, which may be affected via the :paramref:`_sa.create_engine.max_identifier_length` parameter, is used instead. The value of :paramref:`_sa.create_engine.label_length` may not be larger than that of :paramref:`_sa.create_engine.max_identfier_length`. .. seealso:: :paramref:`_sa.create_engine.max_identifier_length` :param listeners: A list of one or more :class:`~sqlalchemy.interfaces.PoolListener` objects which will receive connection pool events. :param logging_name: String identifier which will be used within the "name" field of logging records generated within the "sqlalchemy.engine" logger. Defaults to a hexstring of the object's id. :param max_identifier_length: integer; override the max_identifier_length determined by the dialect. if ``None`` or zero, has no effect. This is the database's configured maximum number of characters that may be used in a SQL identifier such as a table name, column name, or label name. All dialects determine this value automatically, however in the case of a new database version for which this value has changed but SQLAlchemy's dialect has not been adjusted, the value may be passed here. .. versionadded:: 1.3.9 .. seealso:: :paramref:`_sa.create_engine.label_length` :param max_overflow=10: the number of connections to allow in connection pool "overflow", that is connections that can be opened above and beyond the pool_size setting, which defaults to five. this is only used with :class:`~sqlalchemy.pool.QueuePool`. :param module=None: reference to a Python module object (the module itself, not its string name). Specifies an alternate DBAPI module to be used by the engine's dialect. Each sub-dialect references a specific DBAPI which will be imported before first connect. This parameter causes the import to be bypassed, and the given module to be used instead. Can be used for testing of DBAPIs as well as to inject "mock" DBAPI implementations into the :class:`_engine.Engine`. :param paramstyle=None: The `paramstyle <http://legacy.python.org/dev/peps/pep-0249/#paramstyle>`_ to use when rendering bound parameters. This style defaults to the one recommended by the DBAPI itself, which is retrieved from the ``.paramstyle`` attribute of the DBAPI. However, most DBAPIs accept more than one paramstyle, and in particular it may be desirable to change a "named" paramstyle into a "positional" one, or vice versa. When this attribute is passed, it should be one of the values ``"qmark"``, ``"numeric"``, ``"named"``, ``"format"`` or ``"pyformat"``, and should correspond to a parameter style known to be supported by the DBAPI in use. :param pool=None: an already-constructed instance of :class:`~sqlalchemy.pool.Pool`, such as a :class:`~sqlalchemy.pool.QueuePool` instance. If non-None, this pool will be used directly as the underlying connection pool for the engine, bypassing whatever connection parameters are present in the URL argument. For information on constructing connection pools manually, see :ref:`pooling_toplevel`. :param poolclass=None: a :class:`~sqlalchemy.pool.Pool` subclass, which will be used to create a connection pool instance using the connection parameters given in the URL. Note this differs from ``pool`` in that you don't actually instantiate the pool in this case, you just indicate what type of pool to be used. :param pool_logging_name: String identifier which will be used within the "name" field of logging records generated within the "sqlalchemy.pool" logger. Defaults to a hexstring of the object's id. :param pool_pre_ping: boolean, if True will enable the connection pool "pre-ping" feature that tests connections for liveness upon each checkout. .. versionadded:: 1.2 .. seealso:: :ref:`pool_disconnects_pessimistic` :param pool_size=5: the number of connections to keep open inside the connection pool. This used with :class:`~sqlalchemy.pool.QueuePool` as well as :class:`~sqlalchemy.pool.SingletonThreadPool`. With :class:`~sqlalchemy.pool.QueuePool`, a ``pool_size`` setting of 0 indicates no limit; to disable pooling, set ``poolclass`` to :class:`~sqlalchemy.pool.NullPool` instead. :param pool_recycle=-1: this setting causes the pool to recycle connections after the given number of seconds has passed. It defaults to -1, or no timeout. For example, setting to 3600 means connections will be recycled after one hour. Note that MySQL in particular will disconnect automatically if no activity is detected on a connection for eight hours (although this is configurable with the MySQLDB connection itself and the server configuration as well). .. seealso:: :ref:`pool_setting_recycle` :param pool_reset_on_return='rollback': set the :paramref:`_pool.Pool.reset_on_return` parameter of the underlying :class:`_pool.Pool` object, which can be set to the values ``"rollback"``, ``"commit"``, or ``None``. .. seealso:: :paramref:`_pool.Pool.reset_on_return` :param pool_timeout=30: number of seconds to wait before giving up on getting a connection from the pool. This is only used with :class:`~sqlalchemy.pool.QueuePool`. :param pool_use_lifo=False: use LIFO (last-in-first-out) when retrieving connections from :class:`.QueuePool` instead of FIFO (first-in-first-out). Using LIFO, a server-side timeout scheme can reduce the number of connections used during non- peak periods of use. When planning for server-side timeouts, ensure that a recycle or pre-ping strategy is in use to gracefully handle stale connections. .. versionadded:: 1.3 .. seealso:: :ref:`pool_use_lifo` :ref:`pool_disconnects` :param plugins: string list of plugin names to load. See :class:`.CreateEnginePlugin` for background. .. versionadded:: 1.2.3 :param query_cache_size: size of the cache used to cache the SQL string form of queries. Set to zero to disable caching. The cache is pruned of its least recently used items when its size reaches N * 1.5. Defaults to 500, meaning the cache will always store at least 500 SQL statements when filled, and will grow up to 750 items at which point it is pruned back down to 500 by removing the 250 least recently used items. Caching is accomplished on a per-statement basis by generating a cache key that represents the statement's structure, then generating string SQL for the current dialect only if that key is not present in the cache. All statements support caching, however some features such as an INSERT with a large set of parameters will intentionally bypass the cache. SQL logging will indicate statistics for each statement whether or not it were pull from the cache. .. note:: some ORM functions related to unit-of-work persistence as well as some attribute loading strategies will make use of individual per-mapper caches outside of the main cache. .. seealso:: :ref:`sql_caching` .. versionadded:: 1.4 """ # noqa if "strategy" in kwargs: strat = kwargs.pop("strategy") if strat == "mock": return create_mock_engine(url, **kwargs) else: raise exc.ArgumentError("unknown strategy: %r" % strat) kwargs.pop("empty_in_strategy", None) # create url.URL object u = _url.make_url(url) plugins = u._instantiate_plugins(kwargs) u.query.pop("plugin", None) kwargs.pop("plugins", None) entrypoint = u._get_entrypoint() dialect_cls = entrypoint.get_dialect_cls(u) if kwargs.pop("_coerce_config", False): def pop_kwarg(key, default=None): value = kwargs.pop(key, default) if key in dialect_cls.engine_config_types: value = dialect_cls.engine_config_types[key](value) return value else: pop_kwarg = kwargs.pop dialect_args = {} # consume dialect arguments from kwargs for k in util.get_cls_kwargs(dialect_cls): if k in kwargs: dialect_args[k] = pop_kwarg(k) dbapi = kwargs.pop("module", None) if dbapi is None: dbapi_args = {} for k in util.get_func_kwargs(dialect_cls.dbapi): if k in kwargs: dbapi_args[k] = pop_kwarg(k) dbapi = dialect_cls.dbapi(**dbapi_args) dialect_args["dbapi"] = dbapi dialect_args.setdefault("compiler_linting", compiler.NO_LINTING) enable_from_linting = kwargs.pop("enable_from_linting", True) if enable_from_linting: dialect_args["compiler_linting"] ^= compiler.COLLECT_CARTESIAN_PRODUCTS for plugin in plugins: plugin.handle_dialect_kwargs(dialect_cls, dialect_args) # create dialect dialect = dialect_cls(**dialect_args) # assemble connection arguments (cargs, cparams) = dialect.create_connect_args(u) cparams.update(pop_kwarg("connect_args", {})) cargs = list(cargs) # allow mutability # look for existing pool or create pool = pop_kwarg("pool", None) if pool is None: def connect(connection_record=None): if dialect._has_events: for fn in dialect.dispatch.do_connect: connection = fn(dialect, connection_record, cargs, cparams) if connection is not None: return connection return dialect.connect(*cargs, **cparams) creator = pop_kwarg("creator", connect) poolclass = pop_kwarg("poolclass", None) if poolclass is None: poolclass = dialect_cls.get_pool_class(u) pool_args = {"dialect": dialect} # consume pool arguments from kwargs, translating a few of # the arguments translate = { "logging_name": "pool_logging_name", "echo": "echo_pool", "timeout": "pool_timeout", "recycle": "pool_recycle", "events": "pool_events", "reset_on_return": "pool_reset_on_return", "pre_ping": "pool_pre_ping", "use_lifo": "pool_use_lifo", } for k in util.get_cls_kwargs(poolclass): tk = translate.get(k, k) if tk in kwargs: pool_args[k] = pop_kwarg(tk) for plugin in plugins: plugin.handle_pool_kwargs(poolclass, pool_args) pool = poolclass(creator, **pool_args) else: if isinstance(pool, poollib.dbapi_proxy._DBProxy): pool = pool.get_pool(*cargs, **cparams) pool._dialect = dialect # create engine. if kwargs.pop("future", False): from sqlalchemy import future default_engine_class = future.Engine else: default_engine_class = base.Engine engineclass = kwargs.pop("_future_engine_class", default_engine_class) engine_args = {} for k in util.get_cls_kwargs(engineclass): if k in kwargs: engine_args[k] = pop_kwarg(k) _initialize = kwargs.pop("_initialize", True) # all kwargs should be consumed if kwargs: raise TypeError( "Invalid argument(s) %s sent to create_engine(), " "using configuration %s/%s/%s. Please check that the " "keyword arguments are appropriate for this combination " "of components." % ( ",".join("'%s'" % k for k in kwargs), dialect.__class__.__name__, pool.__class__.__name__, engineclass.__name__, ) ) engine = engineclass(pool, dialect, u, **engine_args) if _initialize: do_on_connect = dialect.on_connect() if do_on_connect: def on_connect(dbapi_connection, connection_record): conn = getattr( dbapi_connection, "_sqla_unwrap", dbapi_connection ) if conn is None: return do_on_connect(conn) event.listen(pool, "connect", on_connect) def first_connect(dbapi_connection, connection_record): c = base.Connection( engine, connection=dbapi_connection, _has_events=False ) c._execution_options = util.immutabledict() dialect.initialize(c) dialect.do_rollback(c.connection) if do_on_connect: event.listen( pool, "connect", first_connect, _once_unless_exception=True ) else: event.listen( pool, "first_connect", first_connect, _once_unless_exception=True, ) dialect_cls.engine_created(engine) if entrypoint is not dialect_cls: entrypoint.engine_created(engine) for plugin in plugins: plugin.engine_created(engine) return engine def engine_from_config(configuration, prefix="sqlalchemy.", **kwargs): """Create a new Engine instance using a configuration dictionary. The dictionary is typically produced from a config file. The keys of interest to ``engine_from_config()`` should be prefixed, e.g. ``sqlalchemy.url``, ``sqlalchemy.echo``, etc. The 'prefix' argument indicates the prefix to be searched for. Each matching key (after the prefix is stripped) is treated as though it were the corresponding keyword argument to a :func:`_sa.create_engine` call. The only required key is (assuming the default prefix) ``sqlalchemy.url``, which provides the :ref:`database URL <database_urls>`. A select set of keyword arguments will be "coerced" to their expected type based on string values. The set of arguments is extensible per-dialect using the ``engine_config_types`` accessor. :param configuration: A dictionary (typically produced from a config file, but this is not a requirement). Items whose keys start with the value of 'prefix' will have that prefix stripped, and will then be passed to :func:`_sa.create_engine`. :param prefix: Prefix to match and then strip from keys in 'configuration'. :param kwargs: Each keyword argument to ``engine_from_config()`` itself overrides the corresponding item taken from the 'configuration' dictionary. Keyword arguments should *not* be prefixed. """ options = dict( (key[len(prefix) :], configuration[key]) for key in configuration if key.startswith(prefix) ) options["_coerce_config"] = True options.update(kwargs) url = options.pop("url") return create_engine(url, **options)
40.600567
102
0.662329
ab86cf81844cc8647f9e5c5f4d60b1e4358eda0e
2,391
py
Python
examples/nanosleep_watcher.py
facebookresearch/py2bpf
e1721ef129cf2ac838db00f2c1be0bcd19b30665
[ "BSD-3-Clause" ]
171
2018-01-03T20:16:46.000Z
2022-03-28T10:34:22.000Z
examples/nanosleep_watcher.py
facebookresearch/py2bpf
e1721ef129cf2ac838db00f2c1be0bcd19b30665
[ "BSD-3-Clause" ]
2
2018-07-02T22:09:22.000Z
2019-07-22T13:33:01.000Z
examples/nanosleep_watcher.py
facebookresearch/py2bpf
e1721ef129cf2ac838db00f2c1be0bcd19b30665
[ "BSD-3-Clause" ]
25
2018-01-09T10:39:08.000Z
2021-11-06T16:29:30.000Z
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import ctypes import py2bpf.datastructures import py2bpf.funcs import py2bpf.kprobe import py2bpf.util def run_probe(): # Ensure that we don't run into any pesky ulimits py2bpf.util.ensure_resources() # This is a totally vanilla ctypes struct. It'll be auto-translated in # the context of the bpf-converted python function, so it'll look # pretty normal in use. class TimeSpec(ctypes.Structure): _fields_ = [ ('tv_sec', ctypes.c_int64), ('tv_nsec', ctypes.c_int64), ] # This is our output type class NanoSleepEvent(ctypes.Structure): _fields_ = [ ('comm', ctypes.c_char * 16), ('ts', TimeSpec), ] # Create a queue to exfiltrate the comms to us q = py2bpf.datastructures.BpfQueue(NanoSleepEvent) # Write our probing function. The probe decorator turns it into a # function that returns a BpfProbe. @py2bpf.kprobe.probe('sys_nanosleep') def watch_nanosleep(pt_regs): nse = NanoSleepEvent() # Read the "comm" or short description of the running process py2bpf.funcs.get_current_comm(nse.comm) # Read the time spec argument. It's a pointer to arbitrary memory, # so we'll have to use probe_read to read it safely. This could # fail and return a non-zero code, but I'm being lazy and assuming # success here. py2bpf.funcs.probe_read(nse.ts, pt_regs.rdi) # Send the NanoSleepEvent back to userspace through the BpfQueue py2bpf.funcs.perf_event_output( pt_regs, q, py2bpf.funcs.get_smp_processor_id(), nse) return 0 # We use the `with` syntax to insert it with watch_nanosleep(): # We iterate over all items returned from the queue. When there # are no more objects in the queue, we simply block. for nse in q: print('comm={} tv_sec={} tv_nsec={}'.format( nse.comm.decode(), nse.ts.tv_sec, nse.ts.tv_nsec)) def main(): try: run_probe() except KeyboardInterrupt: pass if __name__ == '__main__': main()
29.518519
74
0.642409
e98e75020a931aa10e309dd306fe0558492d3f57
3,265
py
Python
PaddleCV/yolov3/infer.py
XiaoguangHu01/models
a95d49323ed504e5a9164586f171f408954fd43a
[ "Apache-2.0" ]
4
2020-01-04T13:15:02.000Z
2021-07-21T07:50:02.000Z
PaddleCV/yolov3/infer.py
XiaoguangHu01/models
a95d49323ed504e5a9164586f171f408954fd43a
[ "Apache-2.0" ]
null
null
null
PaddleCV/yolov3/infer.py
XiaoguangHu01/models
a95d49323ed504e5a9164586f171f408954fd43a
[ "Apache-2.0" ]
3
2019-10-31T07:18:49.000Z
2020-01-13T03:18:39.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np import paddle import paddle.fluid as fluid import box_utils import reader from utility import print_arguments, parse_args, check_gpu from models.yolov3 import YOLOv3 from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval, Params from config import cfg def infer(): # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if not os.path.exists('output'): os.mkdir('output') model = YOLOv3(is_train=False) model.build_model() outputs = model.get_pred() input_size = cfg.input_size place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if cfg.weights: def if_exist(var): return os.path.exists(os.path.join(cfg.weights, var.name)) fluid.io.load_vars(exe, cfg.weights, predicate=if_exist) # yapf: enable # you can save inference model by following code # fluid.io.save_inference_model("./output/yolov3", # feeded_var_names=['image', 'im_shape'], # target_vars=outputs, # executor=exe) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) fetch_list = [outputs] image_names = [] if cfg.image_name is not None: image_names.append(cfg.image_name) else: for image_name in os.listdir(cfg.image_path): if image_name.split('.')[-1] in ['jpg', 'png']: image_names.append(image_name) for image_name in image_names: infer_reader = reader.infer(input_size, os.path.join(cfg.image_path, image_name)) label_names, _ = reader.get_label_infos() data = next(infer_reader()) im_shape = data[0][2] outputs = exe.run(fetch_list=[v.name for v in fetch_list], feed=feeder.feed(data), return_numpy=False, use_program_cache=True) bboxes = np.array(outputs[0]) if bboxes.shape[1] != 6: print("No object found in {}".format(image_name)) continue labels = bboxes[:, 0].astype('int32') scores = bboxes[:, 1].astype('float32') boxes = bboxes[:, 2:].astype('float32') path = os.path.join(cfg.image_path, image_name) box_utils.draw_boxes_on_image(path, boxes, scores, labels, label_names, cfg.draw_thresh) if __name__ == '__main__': args = parse_args() print_arguments(args) infer()
35.48913
79
0.635222
33ab2c1e646e05ea207357e9d80ca43fa67bf1b5
8,100
py
Python
test/MongoUtil_test.py
Tianhao-Gu/handle_service2
6cb9b4f43925f64aed96779ce408d56bfe7ec185
[ "MIT" ]
null
null
null
test/MongoUtil_test.py
Tianhao-Gu/handle_service2
6cb9b4f43925f64aed96779ce408d56bfe7ec185
[ "MIT" ]
15
2019-05-22T05:26:46.000Z
2021-07-12T02:09:55.000Z
test/MongoUtil_test.py
Tianhao-Gu/handle_service2
6cb9b4f43925f64aed96779ce408d56bfe7ec185
[ "MIT" ]
6
2019-03-11T20:20:37.000Z
2021-01-08T21:41:36.000Z
# -*- coding: utf-8 -*- import os import unittest from configparser import ConfigParser import inspect import copy import threading import queue from random import randrange from mongo_util import MongoHelper from AbstractHandle.Utils.MongoUtil import MongoUtil class MongoUtilTest(unittest.TestCase): @classmethod def setUpClass(cls): config_file = os.environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('AbstractHandle'): cls.cfg[nameval[0]] = nameval[1] cls.cfg['mongo-collection'] = 'handle' cls.cfg['mongo-hid-counter-collection'] = 'handle_id_counter' cls.cfg['mongo-authmechanism'] = 'DEFAULT' cls.mongo_helper = MongoHelper() cls.my_client = cls.mongo_helper.create_test_db(db=cls.cfg['mongo-database'], col=cls.cfg['mongo-collection']) cls.mongo_util = MongoUtil(cls.cfg) @classmethod def tearDownClass(cls): print('Finished testing MongoUtil') def getMongoUtil(self): return self.__class__.mongo_util def start_test(self): testname = inspect.stack()[1][3] print('\n*** starting test: ' + testname + ' **') def test_get_collection(self): self.start_test() mongo_util = self.getMongoUtil() with self.assertRaises(ValueError) as context: mongo_util._get_collection('fake_mongo_host', 1234, 'mongo_database', 'mongo_collection') self.assertIn('Connot connect to Mongo server', str(context.exception.args)) def test_init_ok(self): self.start_test() class_attri = ['mongo_host', 'mongo_port', 'mongo_database', 'mongo_collection', 'handle_collection', 'hid_counter_collection'] mongo_util = self.getMongoUtil() self.assertTrue(set(class_attri) <= set(mongo_util.__dict__.keys())) handle_collection = mongo_util.handle_collection self.assertEqual(handle_collection.name, 'handle') self.assertEqual(handle_collection.count_documents({}), 10) handle_col_info = handle_collection.index_information() handle_col_idx = handle_col_info.keys() expected_idx = ['_id_', 'hid_1'] self.assertEqual(list(handle_col_idx), expected_idx) self.assertTrue(handle_col_info['hid_1']['unique']) hid_counter_collection = mongo_util.hid_counter_collection self.assertEqual(hid_counter_collection.name, 'handle_id_counter') def test_find_in_ok(self): self.start_test() mongo_util = self.getMongoUtil() # test query 'hid' field elements = [68020, 68022, 0] docs = mongo_util.find_in(elements, 'hid') self.assertEqual(docs.count(), 2) # test query 'hid' field with empty data elements = [0] docs = mongo_util.find_in(elements, 'hid') self.assertEqual(docs.count(), 0) # test query 'id' field elements = ['b753774f-0bbd-4b96-9202-89b0c70bf31c'] docs = mongo_util.find_in(elements, 'id') self.assertEqual(docs.count(), 1) doc = docs.next() self.assertFalse('_id' in doc.keys()) self.assertEqual(doc.get('hid'), 68020) # test null projection elements = ['b753774f-0bbd-4b96-9202-89b0c70bf31c'] docs = mongo_util.find_in(elements, 'id', projection=None) self.assertEqual(docs.count(), 1) doc = docs.next() self.assertEqual(doc.get('_id'), 68020) self.assertEqual(doc.get('hid'), 68020) def test_update_one_ok(self): self.start_test() mongo_util = self.getMongoUtil() elements = ['b753774f-0bbd-4b96-9202-89b0c70bf31c'] docs = mongo_util.find_in(elements, 'id', projection=None) self.assertEqual(docs.count(), 1) doc = docs.next() self.assertEqual(doc.get('created_by'), 'tgu2') update_doc = copy.deepcopy(doc) new_user = 'test_user' update_doc['created_by'] = new_user mongo_util.update_one(update_doc) docs = mongo_util.find_in(elements, 'id', projection=None) new_doc = docs.next() self.assertEqual(new_doc.get('created_by'), new_user) mongo_util.update_one(doc) def test_insert_one_ok(self): self.start_test() mongo_util = self.getMongoUtil() self.assertEqual(mongo_util.handle_collection.find().count(), 10) doc = {'_id': 9999, 'hid': 9999, 'file_name': 'fake_file'} counter = mongo_util.get_hid_counter() mongo_util.insert_one(doc) new_counter = mongo_util.get_hid_counter() self.assertEqual(new_counter, counter) self.assertEqual(mongo_util.handle_collection.find().count(), 11) elements = [9999] docs = mongo_util.find_in(elements, 'hid', projection=None) self.assertEqual(docs.count(), 1) doc = docs.next() self.assertEqual(doc.get('hid'), 9999) self.assertEqual(doc.get('file_name'), 'fake_file') mongo_util.delete_one(doc) self.assertEqual(mongo_util.handle_collection.find().count(), 10) def test_increase_counter_with_multi_threads(self): mongo_util = self.getMongoUtil() counter = mongo_util.get_hid_counter() thread_count = 329 threads = list() hids = list() que = queue.Queue() for index in range(thread_count): x = threading.Thread(target=que.put(mongo_util.increase_counter())) threads.append(x) x.start() for index, thread in enumerate(threads): thread.join() while not que.empty(): hids.append(que.get()) new_counter = mongo_util.get_hid_counter() self.assertEqual(counter + thread_count, new_counter) self.assertEqual(len(set(hids)), thread_count) self.assertEqual(len(hids), len(set(hids))) hids.sort() self.assertEqual(hids[0], counter + 1) self.assertEqual(hids[-1], new_counter) rand_pos = randrange(thread_count) self.assertEqual(hids[rand_pos], counter + 1 + rand_pos) rand_pos = randrange(thread_count) self.assertEqual(hids[-rand_pos], new_counter + 1 - rand_pos) def test_delete_one_ok(self): self.start_test() mongo_util = self.getMongoUtil() docs = mongo_util.handle_collection.find() self.assertEqual(docs.count(), 10) doc = docs.next() hid = doc.get('hid') mongo_util.delete_one(doc) self.assertEqual(mongo_util.handle_collection.find().count(), 9) docs = mongo_util.find_in([hid], 'hid', projection=None) self.assertEqual(docs.count(), 0) mongo_util.insert_one(doc) self.assertEqual(mongo_util.handle_collection.find().count(), 10) docs = mongo_util.find_in([hid], 'hid', projection=None) self.assertEqual(docs.count(), 1) def test_delete_many_ok(self): self.start_test() mongo_util = self.getMongoUtil() docs = mongo_util.handle_collection.find() self.assertEqual(docs.count(), 10) docs_to_delete = list() docs_to_delete.append(docs.next()) docs_to_delete.append(docs.next()) docs_to_delete = docs_to_delete * 2 # test delete duplicate items deleted_count = mongo_util.delete_many(docs_to_delete) self.assertEqual(deleted_count, 2) self.assertEqual(mongo_util.handle_collection.find().count(), 8) docs = mongo_util.find_in([doc.get('hid') for doc in docs_to_delete], 'hid') self.assertEqual(docs.count(), 0) for doc in docs_to_delete: try: mongo_util.insert_one(doc) except Exception: pass self.assertEqual(mongo_util.handle_collection.find().count(), 10) docs = mongo_util.find_in([doc.get('hid') for doc in docs_to_delete], 'hid') self.assertEqual(docs.count(), 2)
35.526316
101
0.637407
6e0cd9dfee0e93820dc1270f387ff8de023c2de2
9,079
py
Python
WassersteinGAN/src/model/models_WGAN.py
voletiv/DeepLearningImplementations
22ec85cdc7daa308ff2bec81962ca77e5959a70b
[ "MIT" ]
null
null
null
WassersteinGAN/src/model/models_WGAN.py
voletiv/DeepLearningImplementations
22ec85cdc7daa308ff2bec81962ca77e5959a70b
[ "MIT" ]
null
null
null
WassersteinGAN/src/model/models_WGAN.py
voletiv/DeepLearningImplementations
22ec85cdc7daa308ff2bec81962ca77e5959a70b
[ "MIT" ]
1
2018-03-23T15:52:11.000Z
2018-03-23T15:52:11.000Z
import numpy as np import keras.backend as K from keras.models import Model from keras.layers import Input from keras.initializers import RandomNormal from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.layers.core import Dense, Activation, Reshape from keras.layers.convolutional import Conv2D, Deconv2D, UpSampling2D from keras.layers.pooling import GlobalAveragePooling2D def wasserstein(y_true, y_pred): # return K.mean(y_true * y_pred) / K.mean(y_true) return K.mean(y_true * y_pred) def visualize_model(model): model.summary() from keras.utils import plot_model plot_model(model, to_file='../../figures/%s.png' % model.name, show_shapes=True, show_layer_names=True) def generator_toy(noise_dim, model_name="generator_toy"): """ Simple MLP generator for the MoG unrolled GAN toy experiment """ gen_input = Input(shape=noise_dim, name="generator_input") x = Dense(128)(gen_input) x = Activation("tanh")(x) x = Dense(128)(x) x = Activation("tanh")(x) x = Dense(2)(x) generator_model = Model(inputs=[gen_input], outputs=[x], name=model_name) visualize_model(generator_model) return generator_model def discriminator_toy(model_name="discriminator_toy"): """ Simple MLP discriminator for the MoG unrolled GAN toy experiment """ disc_input = Input(shape=(2,), name="discriminator_input") x = Dense(128)(disc_input) x = Activation("tanh")(x) x = Dense(128)(x) x = Activation("tanh")(x) x = Dense(1)(x) discriminator_model = Model(inputs=[disc_input], outputs=[x], name=model_name) visualize_model(discriminator_model) return discriminator_model def GAN_toy(generator, discriminator, noise_dim): """ Simple GAN genrator + discriminator for the MoG unrolled GAN toy experiment """ gen_input = Input(shape=noise_dim, name="noise_input") generated_sample = generator(gen_input) GAN_output = discriminator(generated_sample) GAN_toy = Model(inputs=[gen_input], outputs=[GAN_output], name="GAN_toy") visualize_model(GAN_toy) return GAN_toy def generator_upsampling(noise_dim, img_dim, model_name="generator_upsampling", dset="mnist"): """DCGAN generator based on Upsampling and Conv2D Args: noise_dim: Dimension of the noise input img_dim: dimension of the image output model_name: model name (default: {"generator_upsampling"}) dset: dataset (default: {"mnist"}) Returns: keras model """ s = img_dim[1] f = 512 if dset == "mnist": start_dim = int(s / 4) nb_upconv = 2 elif dset == "celebA": start_dim = int(s / 16) nb_upconv = 4 else: o = s nb_upconv = 0 while o > 7: o = o/2 nb_upconv += 1 start_dim = int(o) if K.image_dim_ordering() == "th": bn_axis = 1 reshape_shape = (f, start_dim, start_dim) output_channels = img_dim[0] else: reshape_shape = (start_dim, start_dim, f) bn_axis = -1 output_channels = img_dim[-1] gen_input = Input(shape=noise_dim, name="generator_input") # Noise input and reshaping x = Dense(f * start_dim * start_dim, input_dim=noise_dim)(gen_input) x = Reshape(reshape_shape)(x) x = BatchNormalization(axis=bn_axis)(x) x = Activation("relu")(x) # Upscaling blocks: Upsampling2D->Conv2D->ReLU->BN->Conv2D->ReLU for i in range(nb_upconv): x = UpSampling2D(size=(2, 2))(x) nb_filters = int(f / (2 ** (i + 1))) x = Conv2D(nb_filters, (3, 3), padding="same", kernel_initializer=RandomNormal(stddev=0.02))(x) x = BatchNormalization(axis=1)(x) x = Activation("relu")(x) x = Conv2D(nb_filters, (3, 3), padding="same", kernel_initializer=RandomNormal(stddev=0.02))(x) x = Activation("relu")(x) # Last Conv to get the output image x = Conv2D(output_channels, (3, 3), name="gen_conv2d_final", padding="same", activation='tanh', kernel_initializer=RandomNormal(stddev=0.02))(x) generator_model = Model(inputs=[gen_input], outputs=[x], name=model_name) visualize_model(generator_model) return generator_model def generator_deconv(noise_dim, img_dim, batch_size, model_name="generator_deconv", dset="mnist"): """DCGAN generator based on Deconv2D Args: noise_dim: Dimension of the noise input img_dim: dimension of the image output batch_size: needed to reshape after the deconv2D model_name: model name (default: {"generator_deconv"}) dset: dataset (default: {"mnist"}) Returns: keras model """ assert K.backend() == "tensorflow", "Deconv not implemented with theano" s = img_dim[1] f = 512 if dset == "mnist": start_dim = int(s / 4) nb_upconv = 2 elif dset == "celebA": start_dim = int(s / 16) nb_upconv = 4 else: o = s nb_upconv = 0 while o > 7: o = o/2 nb_upconv += 1 start_dim = int(o) reshape_shape = (start_dim, start_dim, f) bn_axis = -1 output_channels = img_dim[-1] gen_input = Input(shape=noise_dim, name="generator_input") # Noise input and reshaping x = Dense(f * start_dim * start_dim, input_dim=noise_dim, use_bias=False)(gen_input) x = Reshape(reshape_shape)(x) x = BatchNormalization(axis=bn_axis)(x) x = Activation("relu")(x) # Transposed conv blocks: Deconv2D->BN->ReLU for i in range(nb_upconv - 1): nb_filters = int(f / (2 ** (i + 1))) s = start_dim * (2 ** (i + 1)) o_shape = (batch_size, s, s, nb_filters) x = Deconv2D(nb_filters, (3, 3), output_shape=o_shape, strides=(2, 2), padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) x = BatchNormalization(axis=-1)(x) x = Activation("relu")(x) # Last block s = start_dim * (2 ** (nb_upconv)) o_shape = (batch_size, s, s, output_channels) x = Deconv2D(output_channels, (3, 3), output_shape=o_shape, strides=(2, 2), padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) x = Activation("tanh")(x) generator_model = Model(inputs=[gen_input], outputs=[x], name=model_name) visualize_model(generator_model) return generator_model def discriminator(img_dim, model_name="discriminator"): """DCGAN discriminator Args: img_dim: dimension of the image output model_name: model name (default: {"generator_deconv"}) Returns: keras model """ if K.image_dim_ordering() == "th": bn_axis = 1 min_s = min(img_dim[1:]) else: bn_axis = -1 min_s = min(img_dim[:-1]) disc_input = Input(shape=img_dim, name="discriminator_input") # Get the list of number of conv filters # (first layer starts with 64), filters are subsequently doubled nb_conv = int(np.floor(np.log(min_s // 4) / np.log(2))) list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv)] # First conv with 2x2 strides x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(disc_input) x = BatchNormalization(axis=bn_axis)(x) x = LeakyReLU(0.2)(x) # Conv blocks: Conv2D(2x2 strides)->BN->LReLU for i, f in enumerate(list_f[1:]): name = "disc_conv2d_%s" % (i + 2) x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) x = BatchNormalization(axis=bn_axis)(x) x = LeakyReLU(0.2)(x) # Last convolution x = Conv2D(1, (3, 3), name="last_conv", padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) # Average pooling x = GlobalAveragePooling2D()(x) discriminator_model = Model(inputs=[disc_input], outputs=[x], name=model_name) visualize_model(discriminator_model) return discriminator_model def DCGAN(generator, discriminator, noise_dim, img_dim): """DCGAN generator + discriminator model Args: generator: keras generator model discriminator: keras discriminator model noise_dim: generator input noise dimension img_dim: real image data dimension Returns: keras model """ noise_input = Input(shape=noise_dim, name="noise_input") generated_image = generator(noise_input) DCGAN_output = discriminator(generated_image) DCGAN = Model(inputs=[noise_input], outputs=[DCGAN_output], name="DCGAN") visualize_model(DCGAN) return DCGAN
30.466443
103
0.630906
ffa60d3358afb8eed5d37cb348ec4f1a68e6d5d2
2,715
py
Python
data/cirq_new/cirq_program/startCirq_pragma307.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/cirq_new/cirq_program/startCirq_pragma307.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/cirq_new/cirq_program/startCirq_pragma307.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=16 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.rx(1.6147786239451536).on(input_qubit[3])) # number=5 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=8 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[0])) # number=10 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=7 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=11 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=12 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[1])) # number=13 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=14 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=15 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma307.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
33.109756
92
0.648619
7eca569d6a711c315551ea89258f34213fa431d1
893
py
Python
src/gocept/autocomplete/tests/test_selenium.py
gocept/gocept.autocomplete
0a48cdfe5af2a913e36f1a4734319e145001694b
[ "ZPL-2.1" ]
null
null
null
src/gocept/autocomplete/tests/test_selenium.py
gocept/gocept.autocomplete
0a48cdfe5af2a913e36f1a4734319e145001694b
[ "ZPL-2.1" ]
null
null
null
src/gocept/autocomplete/tests/test_selenium.py
gocept/gocept.autocomplete
0a48cdfe5af2a913e36f1a4734319e145001694b
[ "ZPL-2.1" ]
1
2021-03-01T03:24:42.000Z
2021-03-01T03:24:42.000Z
# Copyright (c) 2010 gocept gmbh & co. kg # See also LICENSE.txt import gocept.autocomplete.testing import unittest @unittest.skip('foo') class AutocompleteTest(gocept.autocomplete.testing.SeleniumTestCase): def test_autocomplete(self): s = self.selenium # XXX: logging in this way on /demo directly (which does not *require* # login) does not work s.open('http://mgr:mgrpw@%s/manage' % self.selenium.server) s.open('/demo') # XXX: this *looks* like we're entering 'rr' (when one observes the # browser), but it does the right thing -- and all other combination # of calls I tried didn't work at all. :-( s.type('id=form-widgets-color', 'r') s.typeKeys('id=form-widgets-color', 'r') s.waitForValue('id=form-widgets-color', 'red') s.verifyText('id=form-widgets-color-container', '*red*')
34.346154
78
0.645017
6076939dbcf4291c3b38cc823363c7a06980bc16
55
py
Python
accencis/settings/__init__.py
majestylink/majestyAccencis
41bdde6f9982980609f93a8b44bcaf06cc5f6ea6
[ "MIT" ]
null
null
null
accencis/settings/__init__.py
majestylink/majestyAccencis
41bdde6f9982980609f93a8b44bcaf06cc5f6ea6
[ "MIT" ]
null
null
null
accencis/settings/__init__.py
majestylink/majestyAccencis
41bdde6f9982980609f93a8b44bcaf06cc5f6ea6
[ "MIT" ]
null
null
null
#from .development import * # from .production import *
27.5
27
0.745455
0d3014eba7c49d344407cd11b757aa956e72b76e
1,409
py
Python
cursoPython1/s10l23.py
sistemasmarcelocastro/pruebas-python
d5fa7e67fa49c0ab120ab26abf0a41baad4ce5bb
[ "MIT" ]
null
null
null
cursoPython1/s10l23.py
sistemasmarcelocastro/pruebas-python
d5fa7e67fa49c0ab120ab26abf0a41baad4ce5bb
[ "MIT" ]
null
null
null
cursoPython1/s10l23.py
sistemasmarcelocastro/pruebas-python
d5fa7e67fa49c0ab120ab26abf0a41baad4ce5bb
[ "MIT" ]
null
null
null
#Encontrar patrones en un texto #sin RegEx: """ Sin RegEx def estel(entrada): if len(entrada) != 12: return False # longitud incorrecta for i in range(0, 3): if not entrada[i].isdecimal(): return False # no hay prefijo if entrada[3] != '-': return False # no tiene guión for i in range(4, 7): if not entrada[i].isdecimal(): return False # no hay primeros 3 digitos if entrada[7] != '-': return False # no hay segundo guion for i in range(8, 12): if not entrada[i].isdecimal(): return False # no hay últimos 4 digitos return True def enctel(entrada): seEncontro = False for i in range(len(entrada)): pedazo = entrada[i:i + 12] if estel(pedazo): print('se encontró el tel: ' + pedazo) seEncontro = True if not seEncontro: print('No hay teléfonos en el texto') entrada = 'asdlkasdjf 123-456-7890 skskdowo d wd dw ñ...c 789-456-1235.dwwd wd w wd wd444-555-6666...' enctel(entrada) # print(entrada) # print(estel('123-456-7890')) """ # Con RegEx: import re entrada = 'asdlkasdjf 123-456-7890 skskdowo d wd dw ñ...c 789-456-1235.dwwd wd w wd wd444-555-6666...' numtelRe = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # crea un objeto "re" con el patrón print(numtelRe.findall(entrada))# encuentra todas las coincidencias con el patrón.
29.354167
102
0.61462
0e8e0bc459d47923c37fdaeea7d28b7998f1afe6
4,507
py
Python
pylib/Tools/Fetch/FetchRPM.py
naughtont3/mtt
508761ca498dfd9902e508f87568d98eb0177903
[ "BSD-3-Clause-Open-MPI" ]
58
2015-04-07T01:46:21.000Z
2022-01-29T02:56:32.000Z
pylib/Tools/Fetch/FetchRPM.py
naughtont3/mtt
508761ca498dfd9902e508f87568d98eb0177903
[ "BSD-3-Clause-Open-MPI" ]
347
2015-01-06T12:53:27.000Z
2022-01-31T20:40:44.000Z
pylib/Tools/Fetch/FetchRPM.py
naughtont3/mtt
508761ca498dfd9902e508f87568d98eb0177903
[ "BSD-3-Clause-Open-MPI" ]
46
2015-03-04T20:56:20.000Z
2022-03-18T18:28:47.000Z
# -*- coding: utf-8; tab-width: 4; indent-tabs-mode: f; python-indent: 4 -*- # # Copyright (c) 2015-2019 Intel, Inc. All rights reserved. # Copyright (c) 2017-2018 Los Alamos National Security, LLC. All rights # reserved. # $COPYRIGHT$ # # Additional copyrights may follow # # $HEADER$ # import os from urllib.parse import urlparse from FetchMTTTool import * from distutils.spawn import find_executable import sys import shutil ## @addtogroup Tools # @{ # @addtogroup Fetch # @section FetchRPM # Plugin for fetching and locally installing rpms from the Web # @param rpm rpm name (can be local file) # @param url URL to where the rpm can be found if other than repository # @param query Command to use to query pre-existing installation # @param install Command to use to install the package # @param sudo Superuser authority required # @} class FetchRPM(FetchMTTTool): def __init__(self): # initialise parent class FetchMTTTool.__init__(self) self.activated = False # track the repos we have processed so we # don't do them multiple times self.done = {} self.options = {} self.options['rpm'] = (None, "rpm name - can be local file") self.options['query'] = ("rpm -q", "Command to use to query pre-existing installation") self.options['install'] = ("rpm -i", "Command to use to install the package") self.options['sudo'] = (False, "Superuser authority required") return def activate(self): if not self.activated: # use the automatic procedure from IPlugin IPlugin.activate(self) return def deactivate(self): IPlugin.deactivate(self) return def print_name(self): return "FetchRPM" def print_options(self, testDef, prefix): lines = testDef.printOptions(self.options) for line in lines: print(prefix + line) return def execute(self, log, keyvals, testDef): testDef.logger.verbose_print("FetchRPM Execute") # parse any provided options - these will override the defaults cmds = {} testDef.parseOptions(log, self.options, keyvals, cmds) # check that they gave us an rpm namne try: if cmds['rpm'] is not None: rpm = cmds['rpm'] except KeyError: log['status'] = 1 log['stderr'] = "No RPM was provided" return testDef.logger.verbose_print("Download rpm " + rpm) # check to see if we have already processed this rpm try: if self.done[rpm] is not None: log['status'] = self.done[rpm] log['stdout'] = "RPM " + rpm + " has already been processed" return except KeyError: pass # look for the executable in our path - this is # a standard system executable so we don't use # environmental modules here basecmd = cmds['query'].split(' ',1)[0] if not find_executable(basecmd): log['status'] = 1 log['stderr'] = "Executable " + basecmd + " not found" return # see if the rpm has already been installed on the system testDef.logger.verbose_print("checking system for rpm: " + rpm) qcmd = [] if cmds['sudo']: qcmd.append("sudo") tmp = cmds['query'].split() for t in tmp: qcmd.append(t) qcmd.append(rpm) results = testDef.execmd.execute(None, qcmd, testDef) if 0 == results['status']: log['status'] = 0 log['stdout'] = "RPM " + rpm + " already exists on system" return # setup to install icmd = [] if cmds['sudo']: icmd.append("sudo") tmp = cmds['install'].split() for t in tmp: icmd.append(t) icmd.append(rpm) testDef.logger.verbose_print("installing package " + rpm) results = testDef.execmd.execute(None, icmd, testDef) if 0 != results['status']: log['status'] = 1 log['stderr'] = "install of " + rpm + " FAILED" return # record the result log['status'] = results['status'] log['stdout'] = results['stdout'] log['stderr'] = results['stderr'] # track that we serviced this one self.done[rpm] = results['status'] return
32.89781
95
0.578877
29b57839cb0b1273cca31450ecc2823ab3916327
1,098
py
Python
setup.py
softfire-eu/physical-device-manager
737e857e1b47b46f35bf1c47117e1251341619d8
[ "Apache-2.0" ]
null
null
null
setup.py
softfire-eu/physical-device-manager
737e857e1b47b46f35bf1c47117e1251341619d8
[ "Apache-2.0" ]
1
2018-01-17T10:37:20.000Z
2018-01-17T10:37:20.000Z
setup.py
softfire-eu/physical-device-manager
737e857e1b47b46f35bf1c47117e1251341619d8
[ "Apache-2.0" ]
null
null
null
import os from setuptools import setup, find_packages def read(fname): readme_file_path = os.path.join(os.path.dirname(__file__), fname) if os.path.exists(readme_file_path) and os.path.isfile(readme_file_path): readme_file = open(readme_file_path) return readme_file.read() else: return "The SoftFIRE Physical Device Manager" setup( name="physical-device-manager", version="1.0.6", author="SoftFIRE", author_email="softfire@softfire.eu", description="The SoftFIRE Physical Device Manager", license="Apache 2", keywords="python vnfm nfvo open baton openbaton sdk experiment manager softfire tosca openstack rest", url="http://softfire.eu/", packages=find_packages(), scripts=["physical-device-manager"], install_requires=[ 'softfire-sdk==1.1.4', 'requests', 'PyYAML' ], long_description=read('README.rst'), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", ], )
28.153846
106
0.663934
ae74f8a8fff1160482aa5d20216355a9ab8b5003
14,092
py
Python
testscripts/RDKB/component/WIFIAgent/TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/WIFIAgent/TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/WIFIAgent/TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2020 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version='1.0' encoding='utf-8'?> <xml> <id></id> <!-- Do not edit id. This will be auto filled while exporting. If you are adding a new script keep the id empty --> <version>4</version> <!-- Do not edit version. This will be auto incremented while updating. If you are adding a new script you can keep the vresion as 1 --> <name>TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams</name> <!-- If you are adding a new script you can specify the script name. Script Name should be unique same as this file name with out .py extension --> <primitive_test_id></primitive_test_id> <!-- Do not change primitive_test_id if you are editing an existing script. --> <primitive_test_name>WIFIAgent_Get</primitive_test_name> <!-- --> <primitive_test_version>1</primitive_test_version> <!-- --> <status>FREE</status> <!-- --> <synopsis>To check if VAP 1-6 SSID's are not writable when WiFi Force Disable is enabled</synopsis> <!-- --> <groups_id /> <!-- --> <execution_time>10</execution_time> <!-- --> <long_duration>false</long_duration> <!-- --> <advanced_script>false</advanced_script> <!-- execution_time is the time out time for test execution --> <remarks></remarks> <!-- Reason for skipping the tests if marked to skip --> <skip>false</skip> <!-- --> <box_types> <box_type>Broadband</box_type> <!-- --> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> <!-- --> </rdk_versions> <test_cases> <test_case_id>TC_WIFIAGENT_131</test_case_id> <test_objective>This test case is to check if VAP 1-6 SSID's are not writable when WiFi Force Disable is enabled</test_objective> <test_type>Positive</test_type> <test_setup>Broadband</test_setup> <pre_requisite>1.Ccsp Components in DUT should be in a running state that includes component under test Cable Modem 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>WIFIAgent_Get WIFIAgent_Set </api_or_interface_used> <input_parameters>Device.WiFi.SSID.1.SSID Device.WiFi.SSID.2.SSID Device.WiFi.SSID.3.SSID Device.WiFi.SSID.4.SSID Device.WiFi.SSID.5.SSID Device.WiFi.SSID.6.SSID Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable</input_parameters> <automation_approch>1.Load the module 2.Get the current value for Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable 3.Enable Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable 4.Do a write operation on the following parameters "Device.WiFi.SSID.1.SSID","Device.WiFi.SSID.2.SSID","Device.WiFi.SSID.3.SSID","Device.WiFi.SSID.4.SSID","Device.WiFi.SSID.5.SSID","Device.WiFi.SSID.6.SSID" ,and this write operation is expected to fail 5.Check if log message WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED" is present in WiFilog.txt.0 each time write operation is done 6.Unload the module</automation_approch> <expected_output>Write operation on the listed wifi parameters should fail and "WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED " message should be present in WiFilog.txt.0 each time a set operation is done when WiFi Force Disable is enabled</expected_output> <priority>High</priority> <test_stub_interface>WIFIAGENT</test_stub_interface> <test_script>TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams</test_script> <skipped>No</skipped> <release_version>M84</release_version> <remarks>None</remarks> </test_cases> <script_tags /> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from time import sleep; from tdkbVariables import *; #Test component to be tested obj = tdklib.TDKScriptingLibrary("wifiagent","1"); obj1= tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with corresponding DUT Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams'); obj1.configureTestCase(ip,port,'TS_WIFIAGENT_ForceDisable_SetWiFiSSIDParams'); #result of connection with test component and DUT loadmodulestatus=obj.getLoadModuleResult(); loadmodulestatus1=obj1.getLoadModuleResult(); def getTelLogFileTotalLinesCount(tdkTestObj): expectedresult="SUCCESS"; linecount =0; RPCCmd = "sh %s/tdk_utility.sh parseConfigFile RPC_CMD" %TDK_PATH; tdkTestObj.addParameter("command", RPCCmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); RPC_CMD = tdkTestObj.getResultDetails().strip() RPC_CMD = RPC_CMD.replace("\\n", ""); if RPC_CMD: print "The device needs rpc command"; cmd = RPC_CMD + " \"cat /rdklogs/logs/WiFilog.txt.0 | wc -l \" | grep -v \"*\" | sed -r \"/^\s*$/d\" "; else: cmd = "cat /rdklogs/logs/WiFilog.txt.0| wc -l"; tdkTestObj.addParameter("command",cmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails().strip().replace("\\n", ""); if expectedresult in actualresult: print "current WiFilog.txt.0 line count:",details; if details.isdigit(): linecount = int(details); return actualresult,linecount; def SetOperation(tdkTestObj,parameter): expectedresult="FAILURE"; tdkTestObj.addParameter("paramName",parameter) tdkTestObj.addParameter("paramValue", "tdkbtestcase"); tdkTestObj.addParameter("paramType","string") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); return actualresult,expectedresult; if "SUCCESS" in loadmodulestatus.upper() and "SUCCESS" in loadmodulestatus1.upper(): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS") obj1.setLoadModuleStatus("SUCCESS") expectedresult="SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); default = tdkTestObj.getResultDetails(); if expectedresult in actualresult: default = default.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the current WiFi Force Disable state"; print "EXPECTED RESULT 1: Should get current WiFi Force Disable state"; print "ACTUAL RESULT 1: current WiFi Force Disable state is %s" %default; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.addParameter("paramValue", "true"); tdkTestObj.addParameter("paramType","boolean") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Enable the WiFi Force Disable"; print "EXPECTED RESULT 2: Should enable Force Disable state"; print "ACTUAL RESULT 2: %s" %details; print "[TEST EXECUTION RESULT] : SUCCESS"; params = ["Device.WiFi.SSID.1.SSID","Device.WiFi.SSID.2.SSID","Device.WiFi.SSID.3.SSID","Device.WiFi.SSID.4.SSID","Device.WiFi.SSID.5.SSID","Device.WiFi.SSID.6.SSID"] for parameter in params: tdkTestObj = obj1.createTestStep('ExecuteCmd'); lineCountResult, initialLinesCount = getTelLogFileTotalLinesCount(tdkTestObj); if expectedresult in lineCountResult: tdkTestObj.setResultStatus("SUCCESS"); tdkTestObj = obj.createTestStep('WIFIAgent_Set'); print "***performing write operation on %s ****" %parameter; actualresult,expectedResult= SetOperation(tdkTestObj,parameter); if expectedResult in actualresult: sleep(10); tdkTestObj = obj1.createTestStep('ExecuteCmd'); lineCountResult1, lineCountAfterSimu = getTelLogFileTotalLinesCount(tdkTestObj); if expectedresult in lineCountResult1: tdkTestObj = obj1.createTestStep('ExecuteCmd'); RPCCmd = "sh %s/tdk_utility.sh parseConfigFile RPC_CMD" %TDK_PATH; tdkTestObj.addParameter("command", RPCCmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); RPC_CMD = tdkTestObj.getResultDetails().strip(); RPC_CMD = RPC_CMD.replace("\\n", ""); if RPC_CMD: print "The device needs rpc command"; cmd = RPC_CMD + " 'sed -n -e %s,%sp /rdklogs/logs/WiFilog.txt.0 | grep -i \"WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED\" ' "%(initialLinesCount,lineCountAfterSimu); else: cmd = "sed -n -e %s,%sp /rdklogs/logs/WiFilog.txt.0 | grep -i \"WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED\"" %(initialLinesCount,lineCountAfterSimu) ; print "cmd:",cmd; print "WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED log message should be present in WiFilog.txt.0"; tdkTestObj.addParameter("command", cmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails().strip().replace("\\n", ""); if expectedresult in actualresult and "WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED" in details: tdkTestObj.setResultStatus("SUCCESS"); print details; print "[TEST EXECUTION RESULT] :SUCCESS"; print "********************************************"; else: tdkTestObj.setResultStatus("FAILURE"); print "WIFI_ATTEMPT_TO_CHANGE_CONFIG_WHEN_FORCE_DISABLED didnot populate when trying to set %s in WiFilog.txt.0" %parameter; print "[TEST EXECUTION RESULT] :FAILURE"; print "*****************************************"; else: tdkTestObj.setResultStatus("FAILURE"); print "*******Failed get the line count of the log file*****"; else: tdkTestObj.setResultStatus("FAILURE"); print "%s set was success even with Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable being enabled"; print "*********************************************" else: tdkTestObj.setResultStatus("FAILURE"); print "*******Failed get the line count of the log file*****"; #Revertion tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.addParameter("paramValue", default); tdkTestObj.addParameter("paramType","boolean") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP : Revert the WiFi Force Disable to previous"; print "EXPECTED RESULT : Should revert Force Disable state to %s" %default; print "ACTUAL RESULT : %s" %details; print "[TEST EXECUTION RESULT] : SUCCESS"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP : Revert the WiFi Force Disable to previous"; print "EXPECTED RESULT : Should revert Force Disable state to %s" %default; print "ACTUAL RESULT : %s" %details; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Disable the WiFi Force Disable"; print "EXPECTED RESULT 2: Should Disable Force Disable state"; print "ACTUAL RESULT 2: %s" %details; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1: Get the current WiFi Force Disable state"; print "EXPECTED RESULT 1: Should get current WiFi Force Disable state"; print "ACTUAL RESULT 1: current WiFi Force Disable state is %s" %default; print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("wifiagent") obj1.unloadModule("sysutil"); else: print "Failed to load wifiagent/sysutil module"; obj.setLoadModuleStatus("FAILURE"); obj1.setLoadModuleStatus("FAILURE");
52.192593
201
0.650653
8535ec085c4d4f7ac531c84a3ed1a2d750de8cb2
844
py
Python
sphinxcontrib_django_urls/__init__.py
mkalioby/sphinxcontrib-django-urls
89cd2ec41b7e685fbb810f43740e55c7212d4c0b
[ "MIT" ]
null
null
null
sphinxcontrib_django_urls/__init__.py
mkalioby/sphinxcontrib-django-urls
89cd2ec41b7e685fbb810f43740e55c7212d4c0b
[ "MIT" ]
null
null
null
sphinxcontrib_django_urls/__init__.py
mkalioby/sphinxcontrib-django-urls
89cd2ec41b7e685fbb810f43740e55c7212d4c0b
[ "MIT" ]
null
null
null
try: from django.urls import get_resolver except: try: from django.core.urlresolvers import get_resolver except: raise Exception("Can't find Django") __version__ = "0.1" def setup(app): app.connect('autodoc-process-docstring', add_django_url) def add_django_url(app, what, name, obj, options, lines): if what == 'function': res = get_resolver() if obj in res.reverse_dict: url_struct = res.reverse_dict[obj] if len(url_struct) > 0: lines.append("URL path(s):") for url in url_struct[:-2]: if type(url) == type([]): continue lines.append(" * %s\n" % url) else: lines.insert(0,"| has NO URL mapping\n") else: lines.append("URL path(s): NONE")
28.133333
60
0.550948
f3e8568e248bac08e9664765966779b1bbcaeeb9
5,292
py
Python
people_counter.py
Walabot-Projects/PeopleCounter
5674a0ee979eb069032a17c645c4da29d9a53412
[ "MIT" ]
15
2016-08-03T15:10:54.000Z
2022-03-30T21:22:06.000Z
people_counter.py
Walabot-Projects/PeopleCounter
5674a0ee979eb069032a17c645c4da29d9a53412
[ "MIT" ]
null
null
null
people_counter.py
Walabot-Projects/PeopleCounter
5674a0ee979eb069032a17c645c4da29d9a53412
[ "MIT" ]
2
2017-01-11T04:08:03.000Z
2021-11-16T03:54:08.000Z
from __future__ import print_function # WalabotAPI works on both Python 2 an 3. from sys import platform from os import system from imp import load_source from enum import Enum import WalabotAPI as walabotAPI walabotAPI.Init() def PrintTrackerTargets(targets): system('cls' if platform == 'win32' else 'clear') if targets: for i, target in enumerate(targets): print(('y: {}'.format(target.yPosCm))) else: print('No Target Detected') ################################################## ####### People Counter Class and Logic ####### ################################################## # ---------------------------- # Outside | | | Inside # The | Back | Front | the # Room | | | Room # ---------------------------- class Placement(Enum): Empty = 0 # Target not in the arena Back = 1 # Target in the back of the arena Front = 2 # Target in the front of the arena class State(Enum): Idle = 0 # Nobody in the arena Bi = 1 # In the back - coming in Fi = 2 # In the front - coming in Bo = 3 # In the back - coming out Fo = 4 # In the front - coming out def _get_placement(targets): if len(targets) is 0: return Placement.Empty if targets[0].yPosCm > 0: return Placement.Front if targets[0].yPosCm <= 0: return Placement.Back class PeopleCounter: def __init__(self): self.placement = Placement.Empty self.state = State.Idle self.count = 0 self.state_machine = { State.Idle: {Placement.Empty: State.Idle, Placement.Back: State.Bi, Placement.Front: State.Fo}, State.Bi: {Placement.Empty: State.Idle, Placement.Back: State.Bi, Placement.Front: State.Fi}, State.Fi: {Placement.Empty: State.Idle, # increment Placement.Back: State.Bi, Placement.Front: State.Fi}, State.Fo: {Placement.Empty: State.Idle, Placement.Back: State.Bo, Placement.Front: State.Fo}, State.Bo: {Placement.Empty: State.Idle, # increment Placement.Back: State.Bo, Placement.Front: State.Fo}, } def update_state_get_count(self, targets): self.placement = _get_placement(targets) prev_state = self.state self.state = self.state_machine[self.state][self.placement] if prev_state == State.Bo and self.state == State.Idle: self._decrement() elif prev_state == State.Fi and self.state == State.Idle: self._increment() return self.count def _increment(self): self.count += 1 return State.Idle def _decrement(self): self.count = max(self.count - 1, 0) return State.Idle def PeopleCounterApp(): # PeopleCounter object people_counter = PeopleCounter() # walabotAPI.SetArenaR - input parameters rArenaMin, rArenaMax, rArenaRes = 5, 120, 5 # walabotAPI.SetArenaPhi - input parameters phiArenaMin, phiArenaMax, phiArenaRes = -60, 60, 3 # walabotAPI.SetArenaTheta - input parameters thetaArenaMin, thetaArenaMax, thetaArenaRes = -20, 20, 10 # Configure Walabot database install location (for windows) walabotAPI.SetSettingsFolder() # 1) Connect: Establish communication with walabot. walabotAPI.ConnectAny() # 2) Configure: Set scan profile and arena # Set Profile - to Tracker. walabotAPI.SetProfile(walabotAPI.PROF_TRACKER) # Set arena by Polar coordinates, with arena resolution walabotAPI.SetArenaR(rArenaMin, rArenaMax, rArenaRes) walabotAPI.SetArenaPhi(phiArenaMin, phiArenaMax, phiArenaRes) walabotAPI.SetArenaTheta(thetaArenaMin, thetaArenaMax, thetaArenaRes) # Walabot filtering MTI walabotAPI.SetDynamicImageFilter(walabotAPI.FILTER_TYPE_MTI) # 3) Start: Start the system in preparation for scanning. walabotAPI.Start() try: num_of_people = 0 while True: # 4) Trigger: Scan (sense) according to profile and record signals # to be available for processing and retrieval. walabotAPI.Trigger() # 5) Get action: retrieve the last completed triggered recording targets = walabotAPI.GetTrackerTargets() # 6) Sort targets by amplitude targets = sorted(targets, key=lambda x: x.zPosCm, reverse=True) # 7) Update state and get people count prev_num_of_people = num_of_people num_of_people = people_counter.update_state_get_count(targets) if prev_num_of_people != num_of_people: print('# {} #\n'.format(num_of_people)) # print y-axis of target found # PrintTrackerTargets(targets) except KeyboardInterrupt: pass finally: # 7) Stop and Disconnect. walabotAPI.Stop() walabotAPI.Disconnect() walabotAPI.Clean() print('Terminated successfully!') if __name__ == '__main__': PeopleCounterApp()
34.141935
79
0.590703
8e439b42dd91ef8113e0e7ced9212d5eb94f1d1b
30,433
py
Python
evennia/server/sessionhandler.py
zeitkunst/evennia
1f254b2542fbefe400c114b3d7029522cdcb37b7
[ "BSD-3-Clause" ]
3
2019-08-08T16:58:25.000Z
2019-10-12T07:31:36.000Z
evennia/server/sessionhandler.py
zeitkunst/evennia
1f254b2542fbefe400c114b3d7029522cdcb37b7
[ "BSD-3-Clause" ]
9
2019-09-06T18:21:59.000Z
2022-01-13T03:04:11.000Z
evennia/server/sessionhandler.py
zeitkunst/evennia
1f254b2542fbefe400c114b3d7029522cdcb37b7
[ "BSD-3-Clause" ]
2
2019-09-02T08:39:24.000Z
2019-09-02T18:39:32.000Z
""" This module defines handlers for storing sessions when handles sessions of users connecting to the server. There are two similar but separate stores of sessions: - ServerSessionHandler - this stores generic game sessions for the game. These sessions has no knowledge about how they are connected to the world. - PortalSessionHandler - this stores sessions created by twisted protocols. These are dumb connectors that handle network communication but holds no game info. """ import time from builtins import object from future.utils import listvalues from django.conf import settings from evennia.commands.cmdhandler import CMD_LOGINSTART from evennia.utils.logger import log_trace from evennia.utils.utils import (variable_from_module, is_iter, to_str, to_unicode, make_iter, delay, callables_from_module) from evennia.utils.inlinefuncs import parse_inlinefunc try: import cPickle as pickle except ImportError: import pickle _INLINEFUNC_ENABLED = settings.INLINEFUNC_ENABLED # delayed imports _AccountDB = None _ServerSession = None _ServerConfig = None _ScriptDB = None _OOB_HANDLER = None class DummySession(object): sessid = 0 DUMMYSESSION = DummySession() # AMP signals PCONN = chr(1) # portal session connect PDISCONN = chr(2) # portal session disconnect PSYNC = chr(3) # portal session sync SLOGIN = chr(4) # server session login SDISCONN = chr(5) # server session disconnect SDISCONNALL = chr(6) # server session disconnect all SSHUTD = chr(7) # server shutdown SSYNC = chr(8) # server session sync SCONN = chr(11) # server portal connection (for bots) PCONNSYNC = chr(12) # portal post-syncing session PDISCONNALL = chr(13) # portal session discnnect all SRELOAD = chr(14) # server reloading (have portal start a new server) SSTART = chr(15) # server start (portal must already be running anyway) PSHUTD = chr(16) # portal (+server) shutdown SSHUTD = chr(17) # server shutdown PSTATUS = chr(18) # ping server or portal status SRESET = chr(19) # server shutdown in reset mode # i18n from django.utils.translation import ugettext as _ _SERVERNAME = settings.SERVERNAME _MULTISESSION_MODE = settings.MULTISESSION_MODE _IDLE_TIMEOUT = settings.IDLE_TIMEOUT _DELAY_CMD_LOGINSTART = settings.DELAY_CMD_LOGINSTART _MAX_SERVER_COMMANDS_PER_SECOND = 100.0 _MAX_SESSION_COMMANDS_PER_SECOND = 5.0 _MODEL_MAP = None # input handlers _INPUT_FUNCS = {} for modname in make_iter(settings.INPUT_FUNC_MODULES): _INPUT_FUNCS.update(callables_from_module(modname)) def delayed_import(): """ Helper method for delayed import of all needed entities. """ global _ServerSession, _AccountDB, _ServerConfig, _ScriptDB if not _ServerSession: # we allow optional arbitrary serversession class for overloading modulename, classname = settings.SERVER_SESSION_CLASS.rsplit(".", 1) _ServerSession = variable_from_module(modulename, classname) if not _AccountDB: from evennia.accounts.models import AccountDB as _AccountDB if not _ServerConfig: from evennia.server.models import ServerConfig as _ServerConfig if not _ScriptDB: from evennia.scripts.models import ScriptDB as _ScriptDB # including once to avoid warnings in Python syntax checkers assert(_ServerSession) assert(_AccountDB) assert(_ServerConfig) assert(_ScriptDB) #----------------------------------------------------------- # SessionHandler base class #------------------------------------------------------------ class SessionHandler(dict): """ This handler holds a stack of sessions. """ def __getitem__(self, key): "Clean out None-sessions automatically." if None in self: del self[None] return super(SessionHandler, self).__getitem__(key) def get(self, key, default=None): "Clean out None-sessions automatically." if None in self: del self[None] return super(SessionHandler, self).get(key, default) def __setitem__(self, key, value): "Don't assign None sessions" if key is not None: super(SessionHandler, self).__setitem__(key, value) def __contains__(self, key): "None-keys are not accepted." return False if key is None else super(SessionHandler, self).__contains__(key) def get_sessions(self, include_unloggedin=False): """ Returns the connected session objects. Args: include_unloggedin (bool, optional): Also list Sessions that have not yet authenticated. Returns: sessions (list): A list of `Session` objects. """ if include_unloggedin: return listvalues(self) else: return [session for session in self.values() if session.logged_in] def get_all_sync_data(self): """ Create a dictionary of sessdata dicts representing all sessions in store. Returns: syncdata (dict): A dict of sync data. """ return dict((sessid, sess.get_sync_data()) for sessid, sess in self.items()) def clean_senddata(self, session, kwargs): """ Clean up data for sending across the AMP wire. Also apply INLINEFUNCS. Args: session (Session): The relevant session instance. kwargs (dict) Each keyword represents a send-instruction, with the keyword itself being the name of the instruction (like "text"). Suitable values for each keyword are: - arg -> [[arg], {}] - [args] -> [[args], {}] - {kwargs} -> [[], {kwargs}] - [args, {kwargs}] -> [[arg], {kwargs}] - [[args], {kwargs}] -> [[args], {kwargs}] Returns: kwargs (dict): A cleaned dictionary of cmdname:[[args],{kwargs}] pairs, where the keys, args and kwargs have all been converted to send-safe entities (strings or numbers), and inlinefuncs have been applied. """ options = kwargs.pop("options", None) or {} raw = options.get("raw", False) strip_inlinefunc = options.get("strip_inlinefunc", False) def _validate(data): "Helper function to convert data to AMP-safe (picketable) values" if isinstance(data, dict): newdict = {} for key, part in data.items(): newdict[key] = _validate(part) return newdict elif hasattr(data, "__iter__"): return [_validate(part) for part in data] elif isinstance(data, basestring): # make sure strings are in a valid encoding try: data = data and to_str(to_unicode(data), encoding=session.protocol_flags["ENCODING"]) except LookupError: # wrong encoding set on the session. Set it to a safe one session.protocol_flags["ENCODING"] = "utf-8" data = to_str(to_unicode(data), encoding=session.protocol_flags["ENCODING"]) if _INLINEFUNC_ENABLED and not raw and isinstance(self, ServerSessionHandler): # only parse inlinefuncs on the outgoing path (sessionhandler->) data = parse_inlinefunc(data, strip=strip_inlinefunc, session=session) # At this point the object is certainly the right encoding, but may still be a unicode object-- # to_str does not actually force objects to become bytestrings. # If the unicode object is a subclass of unicode, such as ANSIString, this can cause a problem, # as special behavior for that class will still be in play. Since we're now transferring raw data, # we must now force this to be a proper bytestring. return str(data) elif hasattr(data, "id") and hasattr(data, "db_date_created") \ and hasattr(data, '__dbclass__'): # convert database-object to their string representation. return _validate(unicode(data)) else: return data rkwargs = {} for key, data in kwargs.iteritems(): key = _validate(key) if not data: if key == "text": # we don't allow sending text = None, this must mean # that the text command is not to be used. continue rkwargs[key] = [[], {}] elif isinstance(data, dict): rkwargs[key] = [[], _validate(data)] elif hasattr(data, "__iter__"): if isinstance(data[-1], dict): if len(data) == 2: if hasattr(data[0], "__iter__"): rkwargs[key] = [_validate(data[0]), _validate(data[1])] else: rkwargs[key] = [[_validate(data[0])], _validate(data[1])] else: rkwargs[key] = [_validate(data[:-1]), _validate(data[-1])] else: rkwargs[key] = [_validate(data), {}] else: rkwargs[key] = [[_validate(data)], {}] rkwargs[key][1]["options"] = options return rkwargs #------------------------------------------------------------ # Server-SessionHandler class #------------------------------------------------------------ class ServerSessionHandler(SessionHandler): """ This object holds the stack of sessions active in the game at any time. A session register with the handler in two steps, first by registering itself with the connect() method. This indicates an non-authenticated session. Whenever the session is authenticated the session together with the related account is sent to the login() method. """ # AMP communication methods def __init__(self, *args, **kwargs): """ Init the handler. """ super(ServerSessionHandler, self).__init__(*args, **kwargs) self.server = None # set at server initialization self.server_data = {"servername": _SERVERNAME} def _run_cmd_login(self, session): """ Launch the CMD_LOGINSTART command. This is wrapped for delays. """ if not session.logged_in: self.data_in(session, text=[[CMD_LOGINSTART], {}]) def portal_connect(self, portalsessiondata): """ Called by Portal when a new session has connected. Creates a new, unlogged-in game session. Args: portalsessiondata (dict): a dictionary of all property:value keys defining the session and which is marked to be synced. """ delayed_import() global _ServerSession, _AccountDB, _ScriptDB sess = _ServerSession() sess.sessionhandler = self sess.load_sync_data(portalsessiondata) sess.at_sync() # validate all scripts _ScriptDB.objects.validate() self[sess.sessid] = sess if sess.logged_in and sess.uid: # Session is already logged in. This can happen in the # case of auto-authenticating protocols like SSH or # webclient's session sharing account = _AccountDB.objects.get_account_from_uid(sess.uid) if account: # this will set account.is_connected too self.login(sess, account, force=True) return else: sess.logged_in = False sess.uid = None # show the first login command, may delay slightly to allow # the handshakes to finish. delay(_DELAY_CMD_LOGINSTART, self._run_cmd_login, sess) def portal_session_sync(self, portalsessiondata): """ Called by Portal when it wants to update a single session (e.g. because of all negotiation protocols have finally replied) Args: portalsessiondata (dict): a dictionary of all property:value keys defining the session and which is marked to be synced. """ sessid = portalsessiondata.get("sessid") session = self.get(sessid) if session: # since some of the session properties may have had # a chance to change already before the portal gets here # the portal doesn't send all sessiondata but only # ones which should only be changed from portal (like # protocol_flags etc) session.load_sync_data(portalsessiondata) def portal_sessions_sync(self, portalsessionsdata): """ Syncing all session ids of the portal with the ones of the server. This is instantiated by the portal when reconnecting. Args: portalsessionsdata (dict): A dictionary `{sessid: {property:value},...}` defining each session and the properties in it which should be synced. """ delayed_import() global _ServerSession, _AccountDB, _ServerConfig, _ScriptDB for sess in self.values(): # we delete the old session to make sure to catch eventual # lingering references. del sess for sessid, sessdict in portalsessionsdata.items(): sess = _ServerSession() sess.sessionhandler = self sess.load_sync_data(sessdict) if sess.uid: sess.account = _AccountDB.objects.get_account_from_uid(sess.uid) self[sessid] = sess sess.at_sync() mode = 'reload' # tell the server hook we synced self.server.at_post_portal_sync(mode) # announce the reconnection self.announce_all(_(" ... Server restarted.")) def portal_disconnect(self, session): """ Called from Portal when Portal session closed from the portal side. There is no message to report in this case. Args: session (Session): The Session to disconnect """ # disconnect us without calling Portal since # Portal already knows. self.disconnect(session, reason="", sync_portal=False) def portal_disconnect_all(self): """ Called from Portal when Portal is closing down. All Sessions should die. The Portal should not be informed. """ # set a watchdog to avoid self.disconnect from deleting # the session while we are looping over them self._disconnect_all = True for session in self.values: session.disconnect() del self._disconnect_all # server-side access methods def start_bot_session(self, protocol_path, configdict): """ This method allows the server-side to force the Portal to create a new bot session. Args: protocol_path (str): The full python path to the bot's class. configdict (dict): This dict will be used to configure the bot (this depends on the bot protocol). Examples: start_bot_session("evennia.server.portal.irc.IRCClient", {"uid":1, "botname":"evbot", "channel":"#evennia", "network:"irc.freenode.net", "port": 6667}) Notes: The new session will use the supplied account-bot uid to initiate an already logged-in connection. The Portal will treat this as a normal connection and henceforth so will the Server. """ self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SCONN, protocol_path=protocol_path, config=configdict) def portal_restart_server(self): """ Called by server when reloading. We tell the portal to start a new server instance. """ self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SRELOAD) def portal_reset_server(self): """ Called by server when reloading. We tell the portal to start a new server instance. """ self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SRESET) def portal_shutdown(self): """ Called by server when it's time to shut down (the portal will shut us down and then shut itself down) """ self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=PSHUTD) def login(self, session, account, force=False, testmode=False): """ Log in the previously unloggedin session and the account we by now should know is connected to it. After this point we assume the session to be logged in one way or another. Args: session (Session): The Session to authenticate. account (Account): The Account identified as associated with this Session. force (bool): Login also if the session thinks it's already logged in (this can happen for auto-authenticating protocols) testmode (bool, optional): This is used by unittesting for faking login without any AMP being actually active. """ if session.logged_in and not force: # don't log in a session that is already logged in. return account.is_connected = True # sets up and assigns all properties on the session session.at_login(account) # account init account.at_init() # Check if this is the first time the *account* logs in if account.db.FIRST_LOGIN: account.at_first_login() del account.db.FIRST_LOGIN account.at_pre_login() if _MULTISESSION_MODE == 0: # disconnect all previous sessions. self.disconnect_duplicate_sessions(session) nsess = len(self.sessions_from_account(account)) string = "Logged in: {account} {address} ({nsessions} session(s) total)" string = string.format(account=account, address=session.address, nsessions=nsess) session.log(string) session.logged_in = True # sync the portal to the session if not testmode: self.server.amp_protocol.send_AdminServer2Portal(session, operation=SLOGIN, sessiondata={"logged_in": True, "uid": session.uid}) account.at_post_login(session=session) def disconnect(self, session, reason="", sync_portal=True): """ Called from server side to remove session and inform portal of this fact. Args: session (Session): The Session to disconnect. reason (str, optional): A motivation for the disconnect. sync_portal (bool, optional): Sync the disconnect to Portal side. This should be done unless this was called by self.portal_disconnect(). """ session = self.get(session.sessid) if not session: return if hasattr(session, "account") and session.account: # only log accounts logging off nsess = len(self.sessions_from_account(session.account)) - 1 sreason = " ({})".format(reason) if reason else "" string = "Logged out: {account} {address} ({nsessions} sessions(s) remaining){reason}" string = string.format(reason=sreason, account=session.account, address=session.address, nsessions=nsess) session.log(string) session.at_disconnect(reason) sessid = session.sessid if sessid in self and not hasattr(self, "_disconnect_all"): del self[sessid] if sync_portal: # inform portal that session should be closed. self.server.amp_protocol.send_AdminServer2Portal(session, operation=SDISCONN, reason=reason) def all_sessions_portal_sync(self): """ This is called by the server when it reboots. It syncs all session data to the portal. Returns a deferred! """ sessdata = self.get_all_sync_data() return self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SSYNC, sessiondata=sessdata) def session_portal_sync(self, session): """ This is called by the server when it wants to sync a single session with the Portal for whatever reason. Returns a deferred! """ sessdata = {session.sessid: session.get_sync_data()} return self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SSYNC, sessiondata=sessdata, clean=False) def session_portal_partial_sync(self, session_data): """ Call to make a partial update of the session, such as only a particular property. Args: session_data (dict): Store `{sessid: {property:value}, ...}` defining one or more sessions in detail. """ return self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SSYNC, sessiondata=session_data, clean=False) def disconnect_all_sessions(self, reason="You have been disconnected."): """ Cleanly disconnect all of the connected sessions. Args: reason (str, optional): The reason for the disconnection. """ for session in self: del session # tell portal to disconnect all sessions self.server.amp_protocol.send_AdminServer2Portal(DUMMYSESSION, operation=SDISCONNALL, reason=reason) def disconnect_duplicate_sessions(self, curr_session, reason=_("Logged in from elsewhere. Disconnecting.")): """ Disconnects any existing sessions with the same user. args: curr_session (Session): Disconnect all Sessions matching this one. reason (str, optional): A motivation for disconnecting. """ uid = curr_session.uid # we can't compare sessions directly since this will compare addresses and # mean connecting from the same host would not catch duplicates sid = id(curr_session) doublet_sessions = [sess for sess in self.values() if sess.logged_in and sess.uid == uid and id(sess) != sid] for session in doublet_sessions: self.disconnect(session, reason) def validate_sessions(self): """ Check all currently connected sessions (logged in and not) and see if any are dead or idle. """ tcurr = time.time() reason = _("Idle timeout exceeded, disconnecting.") for session in (session for session in self.values() if session.logged_in and _IDLE_TIMEOUT > 0 and (tcurr - session.cmd_last) > _IDLE_TIMEOUT): self.disconnect(session, reason=reason) def account_count(self): """ Get the number of connected accounts (not sessions since a account may have more than one session depending on settings). Only logged-in accounts are counted here. Returns: naccount (int): Number of connected accounts """ return len(set(session.uid for session in self.values() if session.logged_in)) def all_connected_accounts(self): """ Get a unique list of connected and logged-in Accounts. Returns: accounts (list): All conected Accounts (which may be fewer than the amount of Sessions due to multi-playing). """ return list(set(session.account for session in self.values() if session.logged_in and session.account)) def session_from_sessid(self, sessid): """ Get session based on sessid, or None if not found Args: sessid (int or list): Session id(s). Return: sessions (Session or list): Session(s) found. This is a list if input was a list. """ if is_iter(sessid): return [self.get(sid) for sid in sessid if sid in self] return self.get(sessid) def session_from_account(self, account, sessid): """ Given an account and a session id, return the actual session object. Args: account (Account): The Account to get the Session from. sessid (int or list): Session id(s). Returns: sessions (Session or list): Session(s) found. """ sessions = [self[sid] for sid in make_iter(sessid) if sid in self and self[sid].logged_in and account.uid == self[sid].uid] return sessions[0] if len(sessions) == 1 else sessions def sessions_from_account(self, account): """ Given an account, return all matching sessions. Args: account (Account): Account to get sessions from. Returns: sessions (list): All Sessions associated with this account. """ uid = account.uid return [session for session in self.values() if session.logged_in and session.uid == uid] def sessions_from_puppet(self, puppet): """ Given a puppeted object, return all controlling sessions. Args: puppet (Object): Object puppeted Returns. sessions (Session or list): Can be more than one of Object is controlled by more than one Session (MULTISESSION_MODE > 1). """ sessions = puppet.sessid.get() return sessions[0] if len(sessions) == 1 else sessions sessions_from_character = sessions_from_puppet def sessions_from_csessid(self, csessid): """ Given a cliend identification hash (for session types that offer them) return all sessions with a matching hash. Args csessid (str): The session hash """ return [session for session in self.values() if session.csessid and session.csessid == csessid] def announce_all(self, message): """ Send message to all connected sessions Args: message (str): Message to send. """ for session in self.values(): self.data_out(session, text=message) def data_out(self, session, **kwargs): """ Sending data Server -> Portal Args: session (Session): Session to relay to. text (str, optional): text data to return Notes: The outdata will be scrubbed for sending across the wire here. """ # clean output for sending kwargs = self.clean_senddata(session, kwargs) # send across AMP self.server.amp_protocol.send_MsgServer2Portal(session, **kwargs) def get_inputfuncs(self): """ Get all registered inputfuncs (access function) Returns: inputfuncs (dict): A dict of {key:inputfunc,...} """ return _INPUT_FUNCS def data_in(self, session, **kwargs): """ We let the data take a "detour" to session.data_in so the user can override and see it all in one place. That method is responsible to in turn always call this class' `sessionhandler.call_inputfunc` with the (possibly processed) data. """ if session: session.data_in(**kwargs) def call_inputfuncs(self, session, **kwargs): """ Split incoming data into its inputfunc counterparts. This should be called by the serversession.data_in as sessionhandler.call_inputfunc(self, **kwargs). We also intercept OOB communication here. Args: sessions (Session): Session. Kwargs: kwargs (any): Incoming data from protocol on the form `{"commandname": ((args), {kwargs}),...}` """ # distribute incoming data to the correct receiving methods. if session: input_debug = session.protocol_flags.get("INPUTDEBUG", False) for cmdname, (cmdargs, cmdkwargs) in kwargs.iteritems(): cname = cmdname.strip().lower() try: cmdkwargs.pop("options", None) if cname in _INPUT_FUNCS: _INPUT_FUNCS[cname](session, *cmdargs, **cmdkwargs) else: _INPUT_FUNCS["default"](session, cname, *cmdargs, **cmdkwargs) except Exception as err: if input_debug: session.msg(err) log_trace() SESSION_HANDLER = ServerSessionHandler() SESSIONS = SESSION_HANDLER # legacy
36.888485
117
0.583183
dbc145cf8d94f0762e4ac540b0c2ee96816aaac4
3,946
py
Python
apps/Graph4Rec/env_run/src/datasets/node.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
1
2022-03-25T12:04:51.000Z
2022-03-25T12:04:51.000Z
apps/Graph4Rec/env_run/src/datasets/node.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
null
null
null
apps/Graph4Rec/env_run/src/datasets/node.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.append("../") import time import warnings import numpy as np from collections import defaultdict from pgl.utils.logger import log from pgl.distributed import DistGraphClient, DistGraphServer from utils.config import prepare_config class NodeGenerator(object): def __init__(self, config, graph, **kwargs): self.config = config self.graph = graph self.rank = kwargs.get("rank", 0) self.nrank = kwargs.get("nrank", 1) self.gen_mode = kwargs.get("gen_mode", "base_node_generator") self.batch_node_size = self.config.batch_node_size self.first_ntype_list = [] for mp in self.config.meta_path.split(";"): self.first_ntype_list.append(mp.split("2")[0]) def __call__(self, generator=None): """ Args: generator: fake generator, ignore it """ node_generator = getattr(self, self.gen_mode) nodes_count = 0 for nodes in node_generator(): nodes_count += len(nodes[0]) yield nodes log.info("total [%s] number nodes have been processed in rank [%s]" \ % (nodes_count, self.rank)) def infer_node_generator(self): ntype_list = self.graph.get_node_types() node_generators = {} for ntype in ntype_list: for batch_nodes in self.graph.node_batch_iter( batch_size=self.batch_node_size, shuffle=False, node_type=ntype, rank=self.rank, nrank=self.nrank): yield (batch_nodes, 0) def base_node_generator(self): ntype_list = self.graph.get_node_types() node_generators = {} for ntype in ntype_list: node_generators[ntype] = self.graph.node_batch_iter( batch_size=self.batch_node_size, shuffle=True, node_type=ntype, rank=self.rank, nrank=self.nrank) num_ntype = len(self.first_ntype_list) finished_node_types_set = set() cc = 0 batch_count = defaultdict(lambda: 0) epoch_flag = False while True: idx = cc % num_ntype if idx not in finished_node_types_set: ntype = self.first_ntype_list[idx] try: batch_nodes = next(node_generators[ntype]) batch_count[ntype] += 1 yield (batch_nodes, idx) except StopIteration as e: log.info(e) msg = "nodes of type [%s] finished with [%s] batch iteration in rank [%s]" \ % (ntype, batch_count[ntype], self.rank) log.info(msg) finished_node_types_set.add(idx) msg = "" for x in list(finished_node_types_set): msg += " [%s]" % self.first_ntype_list[x] log.info("%s node types have been finished in rank [%s]." \ % (msg, self.rank)) if len(finished_node_types_set) == num_ntype: epoch_flag = True if epoch_flag: break cc += 1
34.614035
96
0.575013
a5e08450a3f10d84440b33b93134d43f65902dbd
1,312
py
Python
neo-collector/delete/deleteTxUpdateSQL.py
i25959341/Happynodes
ef6825d17b181c451476d4ef722f2bcfa52e0161
[ "MIT" ]
null
null
null
neo-collector/delete/deleteTxUpdateSQL.py
i25959341/Happynodes
ef6825d17b181c451476d4ef722f2bcfa52e0161
[ "MIT" ]
null
null
null
neo-collector/delete/deleteTxUpdateSQL.py
i25959341/Happynodes
ef6825d17b181c451476d4ef722f2bcfa52e0161
[ "MIT" ]
null
null
null
import psycopg2 import time import os PGHOST = str(os.environ['PGHOST']) PGDATABASE = str(os.environ['PGDATABASE']) PGUSER = str(os.environ['PGUSER']) PGPASSWORD = str(os.environ['PGPASSWORD']) CONNECTION_STR = "dbname='{}' user='{}' host='{}' password='{}'".format(PGDATABASE, PGUSER, PGHOST, PGPASSWORD) DELETE_SCRIPT = """DELETE FROM unconfirmed_tx WHERE last_blockheight+10 < (SELECT max(blockheight) FROM blockheight_history WHERE blockheight IS NOT NULL)""" SLEEP_TIME = 60*60 class DeleteTxUpdateSQL: def __init__(self, connect_str, sql_query, sleeptime): self.connect_str=connect_str self.sql_query = sql_query self.sleeptime = sleeptime def run(self): while True: self.update() print("Sleeping") # Run hourly time.sleep(self.sleeptime) def update(self): self.conn = psycopg2.connect(self.connect_str) self.cursor = self.conn.cursor() self.cursor.execute(self.sql_query) self.conn.commit() self.cursor.close() self.conn.close() if __name__ == "__main__": deleteTxUpdate = DeleteTxUpdateSQL(CONNECTION_STR, DELETE_SCRIPT, SLEEP_TIME) deleteTxUpdate.run()
26.77551
111
0.624238
c860efe1a3155bbb8553cd22208e8ac22d4beb94
1,738
py
Python
tools/nonhinting/setprep-fontforge.py
graffitiMSX/msxpower-googlefontdirectory
1e201a68c8181698c143279734c4677f194855d8
[ "Apache-2.0" ]
1
2016-06-05T07:51:16.000Z
2016-06-05T07:51:16.000Z
tools/nonhinting/setprep-fontforge.py
graffitiMSX/msxpower-googlefontdirectory
1e201a68c8181698c143279734c4677f194855d8
[ "Apache-2.0" ]
null
null
null
tools/nonhinting/setprep-fontforge.py
graffitiMSX/msxpower-googlefontdirectory
1e201a68c8181698c143279734c4677f194855d8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # setprep-fontforge.py # # Copyright (c) 2011 Dave Crossland <dave@understandinglimited.com> # # This program takes a TTF font with no hinting and sets # its PREP hinting table with magic values that turn on # 'drop out control' - the magic comes from Raph Levien # <firstname.lastname@gmail.com> and is: # # PUSHW_1 # 511 # SCANCTRL # PUSHB_1 # 4 # SCANTYPE # # This script depends on the FontForge Python library, available # in most packaging systems and sf.net/projects/fontforge/ # # Usage: # # $ ./setprep-fontforge.py FontIn.ttf [FontOut.ttf] # Import our system library and fontTools ttLib import sys, fontforge def getprep(font): prepAsm = font.getTableData("prep") prepText = fontforge.unParseTTInstrs(prepAsm) return prepText def main(argv): # Open the font file supplied as the first argument on the command line font_in = argv[1] font = fontforge.open(font_in) # If there is a second font file specified on the command line, output to that if argv[2]: font_out = argv[2] # Else, update the file else: font_out = font_in # Print the existing PREP table print "The PREP table is:" print getprep(font) # Set PREP to magic prep prepTextMagic = """PUSHW_1 511 SCANCTRL PUSHB_1 4 SCANTYPE""" prepAsmMagic = fontforge.parseTTInstrs(prepTextMagic) font.setTableData("prep",prepAsmMagic) # Print the existing PREP table print "The PREP table is now:" print getprep(font) # Generate the new font with no hinting instructions flags = ('omit-instructions',) font.generate(font_out, flags = flags) print "in file", font_out, " - done!" if __name__ == '__main__': main(sys.argv)
25.188406
80
0.694476
b3dae082194c9b0acea148e3bd7d54549ace5b22
649
py
Python
tests/unit/test_common_util.py
LeonDLotter/findpapers
8346c14eb2eceb4e8216d768bb65bb9b025dea45
[ "MIT" ]
56
2020-12-18T19:38:29.000Z
2022-03-13T20:48:01.000Z
tests/unit/test_common_util.py
LeonDLotter/findpapers
8346c14eb2eceb4e8216d768bb65bb9b025dea45
[ "MIT" ]
19
2021-08-19T13:47:33.000Z
2021-12-13T11:49:10.000Z
tests/unit/test_common_util.py
LeonDLotter/findpapers
8346c14eb2eceb4e8216d768bb65bb9b025dea45
[ "MIT" ]
11
2020-12-28T10:22:26.000Z
2022-03-27T16:26:30.000Z
import pytest from typing import Callable, Any import findpapers.utils.common_util as util @pytest.mark.parametrize('string_format, numeric_format', [ ('december', '12'), ('jan', '01'), ('February', '02'), ]) def test_get_numeric_month_by_string(string_format: str, numeric_format: str): assert util.get_numeric_month_by_string(string_format) == numeric_format @pytest.mark.parametrize('func, result', [ (lambda: None, None), (lambda: ':)', ':)'), (lambda: 10/0, None), # forcing a ZeroDivisionError exception ]) def test_try_success(func: Callable, result: Any): assert util.try_success(func, 2, 1) == result
27.041667
78
0.697997
48553176437d8d202c9e4fde4c89cfe7235cd554
420
py
Python
core/lib/middleware.py
jiangxuewen16/hq-crawler
f03ec1e454513307e335943f224f4d927eaf2bbf
[ "MIT" ]
1
2021-02-25T08:33:40.000Z
2021-02-25T08:33:40.000Z
core/lib/middleware.py
jiangxuewen16/hq-crawler
f03ec1e454513307e335943f224f4d927eaf2bbf
[ "MIT" ]
null
null
null
core/lib/middleware.py
jiangxuewen16/hq-crawler
f03ec1e454513307e335943f224f4d927eaf2bbf
[ "MIT" ]
2
2021-03-08T07:25:16.000Z
2021-12-07T15:28:02.000Z
from django.utils.deprecation import MiddlewareMixin from core.lib.view import BaseView class MiddleSetMethod(MiddlewareMixin): def process_request(self, request): BaseView.method = request.method def process_response(self, request, response): return response # 执行完了这个中间件一定要 传递给下一个中间件 def process_exception(self, request, exception): print('MiddleSetMethod的process_exception')
26.25
52
0.757143
bae423031203ee5bac47917da82f87f8611acd98
1,544
py
Python
var/spack/repos/builtin/packages/libcumlprims/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/libcumlprims/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
8
2021-11-09T20:28:40.000Z
2022-03-15T03:26:33.000Z
var/spack/repos/builtin/packages/libcumlprims/package.py
jeanbez/spack
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2019-02-08T20:37:20.000Z
2019-03-31T15:19:26.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Libcumlprims(Package): """libcuMLPrims library""" homepage = "https://rapids.ai" url = "https://anaconda.org/nvidia/libcumlprims/0.15.0/download/linux-64/libcumlprims-0.15.0-cuda11.0_gdbd0d39_0.tar.bz2" version('0.15.0-cuda11.0_gdbd0d39_0', sha256='0edc55767f06f533fbff7a0fecaf6e6d4f82eec39604b3874a07b5609f79ece8') version('0.15.0-cuda10.2_gdbd0d39_0', sha256='b7a8740de0d15380829f42fcb078567e73ab7d29b14be073376153bf2d8ec945') version('0.15.0-cuda10.1_gdbd0d39_0', sha256='f055f904b5ef67995869b0bc648d9fe30839b08e77cb335573bf9f1c816d4d9b') depends_on('cuda@11.0.0:11.0', when='@0.15.0-cuda11.0_gdbd0d39_0') depends_on('cuda@10.2.0:10.2', when='@0.15.0-cuda10.2_gdbd0d39_0') depends_on('cuda@10.1.0:10.1', when='@0.15.0-cuda10.1_gdbd0d39_0') @property def headers(self): headers = find_headers('*', self.prefix.include, recursive=True) headers.directories = [self.prefix.include, self.prefix.include.cumlprims] return headers def url_for_version(self, version): url = "https://anaconda.org/nvidia/libcumlprims/{0}/download/linux-64/libcumlprims-{1}.tar.bz2" return url.format(version.up_to(3), version) def install(self, spec, prefix): install_tree('.', self.prefix)
42.888889
130
0.713083
76bc0a93e139075ac0059a7845cf1c2d41c3f741
6,705
py
Python
news_crawler/spiders/cicero.py
andreeaiana/renewrs_corpus_extraction
b077f94ea80eb2c3aa25477f2ef48f2d6e8825e7
[ "MIT" ]
2
2020-11-19T19:14:57.000Z
2020-11-24T23:33:08.000Z
news_crawler/spiders/cicero.py
andreeaiana/renewrs_corpus_extraction
b077f94ea80eb2c3aa25477f2ef48f2d6e8825e7
[ "MIT" ]
null
null
null
news_crawler/spiders/cicero.py
andreeaiana/renewrs_corpus_extraction
b077f94ea80eb2c3aa25477f2ef48f2d6e8825e7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import sys import dateparser from news_crawler.spiders import BaseSpider from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor from datetime import datetime sys.path.insert(0, os.path.join(os.getcwd(), "..",)) from news_crawler.items import NewsCrawlerItem from news_crawler.utils import remove_empty_paragraphs class CiceroSpider(BaseSpider): """Spider for Cicero""" name = 'cicero' rotate_user_agent = True allowed_domains = ['www.cicero.de'] start_urls = ['https://www.cicero.de/'] # Exclude paid and English articles and pages without relevant articles rules = ( Rule( LinkExtractor( allow=(r'www\.cicero\.de\/\w.*'), deny=(r'www\.cicero\.de\/cicero\-plus', r'www\.cicero\.de\/newsletter\-anmeldung', r'www\.cicero\.de\/rss\.xml$', r'www\.cicero\.de\/comment\/\w.*' ) ), callback='parse_item', follow=True ), ) def parse_item(self, response): """ Checks article validity. If valid, it parses it. """ # Exclude paid articles if response.xpath('//div[@class="paywall-text"]').get(): return # Check date validity metadata = response.xpath('//div[@class="teaser-small__metadata"]/p/text()').getall() if not metadata: return creation_date = metadata[-1].strip() if not creation_date: return creation_date = creation_date.split('am ')[-1] creation_date = dateparser.parse(creation_date) if self.is_out_of_date(creation_date): return # Extract the article's paragraphs paragraphs = [node.xpath('string()').get().strip() for node in response.xpath('//div[@class="field field-name-field-cc-body"]/p')] paragraphs = remove_empty_paragraphs(paragraphs) text = ' '.join([para for para in paragraphs]) # Check article's length validity if not self.has_min_length(text): return # Check keywords validity if not self.has_valid_keywords(text): return # Parse the valid article item = NewsCrawlerItem() item['news_outlet'] = 'cicero' item['provenance'] = response.url item['query_keywords'] = self.get_query_keywords() # Get creation, modification, and crawling dates item['creation_date'] = creation_date.strftime('%d.%m.%Y') item['last_modified'] = creation_date.strftime('%d.%m.%Y') item['crawl_date'] = datetime.now().strftime('%d.%m.%Y') # Get authors metadata = response.xpath('//div[@class="teaser-small__metadata"]/p//text()').getall() if not metadata: item['author_person'] = list() item['author_organization'] = list() else: metadata = [s.strip() for s in metadata] if len(metadata) > 1 : authors = metadata[1] # Check if the authors are persons if len(authors.split()) == 1 or 'CICERO' in authors: # Check if the author is an organization author_person = list() author_organization = [authors] elif ',' in authors: # There are more than two persons listed as author authors = authors.split(', ') author_person = authors[:-1] if 'UND' in authors[-1]: author_person.extend(authors[-1].split(' UND ')) else: author_person.extend(authors[-1]) author_organization = list() elif 'UND' in authors: # There are just two persons listed as authors author_person = authors.split(' UND ') author_organization = list() else: author_person = [authors] author_organization = list() else: authors = metadata[0] author_person = [authors.split('VON ')[-1].split(', ')[0].split('am')[0]] author_organization = list() # All words are uppercased, capitalize them instead item['author_person'] = [author.title() for author in author_person] item['author_organization'] = [author.title() for author in author_organization] # Extract keywords news_keywords = response.xpath('//meta[@name="keywords"]/@content').get() item['news_keywords'] = news_keywords.split(', ') if news_keywords else list() # Get title, description, and body of article title = response.xpath('//meta[@property="og:title"]/@content').get() description = response.xpath('//meta[@property="og:description"]/@content').get() # Body as dictionary: key = headline (if available, otherwise empty string), values = list of corresponding paragraphs body = dict() if response.xpath('//h3[not(contains(text(), "Kommentare"))]'): # Extract headlines headlines = [h3.xpath('string()').get().strip() for h3 in response.xpath('//h3[not(contains(text(), "Kommentare"))]')] # Extract paragraphs with headlines text = [node.xpath('string()').get().strip() for node in response.xpath('//div[@class="field field-name-field-cc-body"]/p | //h3[not(contains(text(), "Kommentare"))]')] # Extract paragraphs between the abstract and the first headline body[''] = remove_empty_paragraphs(text[:text.index(headlines[0])]) # Extract paragraphs corresponding to each headline, except the last one for i in range(len(headlines)-1): body[headlines[i]] = remove_empty_paragraphs(text[text.index(headlines[i])+1:text.index(headlines[i+1])]) # Extract the paragraphs belonging to the last headline body[headlines[-1]] = remove_empty_paragraphs(text[text.index(headlines[-1])+1:]) else: # The article has no headlines, just paragraphs body[''] = paragraphs item['content'] = {'title': title, 'description': description, 'body':body} # No recommendations related to the article are available item['recommendations'] = list() item['response_body'] = response.body yield item
41.388889
180
0.564504