hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
b91e43c53b9635fa2ef0dc770610e64bf82e300e
65,476
py
Python
python/paddle/fluid/tests/unittests/dist_transformer.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/fluid/tests/unittests/dist_transformer.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/dist_transformer.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-09-24T11:23:36.000Z
2021-09-24T11:23:36.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import os import sys import six import argparse import ast import multiprocessing import time from functools import partial from os.path import expanduser import glob import random import tarfile import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import core from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP import paddle.compat as cpt from paddle.compat import long_type import hashlib const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001)) const_bias_attr = const_para_attr # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 #from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list class TrainTaskConfig(object): # only support GPU currently use_gpu = True # the epoch number to train. pass_num = 1 # the number of sequences contained in a mini-batch. # deprecated, set batch_size in args. batch_size = 20 # the hyper parameters for Adam optimizer. # This static learning_rate will be multiplied to the LearningRateScheduler # derived learning rate the to get the final learning rate. learning_rate = 1 beta1 = 0.9 beta2 = 0.98 eps = 1e-9 # the parameters for learning rate scheduling. warmup_steps = 4000 # the weight used to mix up the ground-truth distribution and the fixed # uniform distribution in label smoothing when training. # Set this as zero if label smoothing is not wanted. label_smooth_eps = 0.1 # the directory for saving trained models. model_dir = "trained_models" # the directory for saving checkpoints. ckpt_dir = "trained_ckpts" # the directory for loading checkpoint. # If provided, continue training from the checkpoint. ckpt_path = None # the parameter to initialize the learning rate scheduler. # It should be provided if use checkpoints, since the checkpoint doesn't # include the training step counter currently. start_step = 0 check_acc = True data_path = expanduser("~") + ( "/.cache/paddle/dataset/test_dist_transformer/") src_vocab_fpath = data_path + "vocab.bpe.32000" trg_vocab_fpath = data_path + "vocab.bpe.32000" train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de" val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut" pool_size = 2000 sort_type = None local = True shuffle = False shuffle_batch = False special_token = ['<s>', '<e>', '<unk>'] token_delimiter = ' ' use_token_batch = False class InferTaskConfig(object): use_gpu = True # the number of examples in one run for sequence generation. batch_size = 10 # the parameters for beam search. beam_size = 5 max_out_len = 256 # the number of decoded sentences to output. n_best = 1 # the flags indicating whether to output the special tokens. output_bos = False output_eos = False output_unk = True # the directory for loading the trained model. model_path = "trained_models/pass_1.infer.model" class ModelHyperParams(object): # These following five vocabularies related configurations will be set # automatically according to the passed vocabulary path and special tokens. # size of source word dictionary. src_vocab_size = 10000 # size of target word dictionay trg_vocab_size = 10000 # index for <bos> token bos_idx = 0 # index for <eos> token eos_idx = 1 # index for <unk> token unk_idx = 2 # max length of sequences deciding the size of position encoding table. # Start from 1 and count start and end tokens in. max_length = 256 # the dimension for word embeddings, which is also the last dimension of # the input and output of multi-head attention, position-wise feed-forward # networks, encoder and decoder. d_model = 512 # size of the hidden layer in position-wise feed-forward networks. d_inner_hid = 2048 # the dimension that keys are projected to for dot-product attention. d_key = 64 # the dimension that values are projected to for dot-product attention. d_value = 64 # number of head used in multi-head attention. n_head = 8 # number of sub-layers to be stacked in the encoder and decoder. n_layer = 6 # dropout rate used by all dropout layers. dropout = 0.0 # no random # random seed used in dropout for CE. dropout_seed = None # the flag indicating whether to share embedding and softmax weights. # vocabularies in source and target should be same for weight sharing. weight_sharing = True def merge_cfg_from_list(cfg_list, g_cfgs): """ Set the above global configurations using the cfg_list. """ assert len(cfg_list) % 2 == 0 for key, value in zip(cfg_list[0::2], cfg_list[1::2]): for g_cfg in g_cfgs: if hasattr(g_cfg, key): try: value = eval(value) except Exception: # for file path pass setattr(g_cfg, key, value) break # The placeholder for batch_size in compile time. Must be -1 currently to be # consistent with some ops' infer-shape output in compile time, such as the # sequence_expand op used in beamsearch decoder. batch_size = -1 # The placeholder for squence length in compile time. seq_len = ModelHyperParams.max_length # Here list the data shapes and data types of all inputs. # The shapes here act as placeholder and are set to pass the infer-shape in # compile time. input_descs = { # The actual data shape of src_word is: # [batch_size * max_src_len_in_batch, 1] "src_word": [(batch_size, seq_len, long_type(1)), "int64", 2], # The actual data shape of src_pos is: # [batch_size * max_src_len_in_batch, 1] "src_pos": [(batch_size, seq_len, long_type(1)), "int64"], # This input is used to remove attention weights on paddings in the # encoder. # The actual data shape of src_slf_attn_bias is: # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch] "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # The actual data shape of trg_word is: # [batch_size * max_trg_len_in_batch, 1] "trg_word": [(batch_size, seq_len, long_type(1)), "int64", 2], # lod_level is only used in fast decoder. # The actual data shape of trg_pos is: # [batch_size * max_trg_len_in_batch, 1] "trg_pos": [(batch_size, seq_len, long_type(1)), "int64"], # This input is used to remove attention weights on paddings and # subsequent words in the decoder. # The actual data shape of trg_slf_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch] "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used to remove attention weights on paddings of the source # input in the encoder-decoder attention. # The actual data shape of trg_src_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch] "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used in independent decoder program for inference. # The actual data shape of enc_output is: # [batch_size, max_src_len_in_batch, d_model] "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"], # The actual data shape of label_word is: # [batch_size * max_trg_len_in_batch, 1] "lbl_word": [(batch_size * seq_len, long_type(1)), "int64"], # This input is used to mask out the loss of padding tokens. # The actual data shape of label_weight is: # [batch_size * max_trg_len_in_batch, 1] "lbl_weight": [(batch_size * seq_len, long_type(1)), "float32"], # These inputs are used to change the shape tensor in beam-search decoder. "trg_slf_attn_pre_softmax_shape_delta": [(long_type(2), ), "int32"], "trg_slf_attn_post_softmax_shape_delta": [(long_type(4), ), "int32"], "init_score": [(batch_size, long_type(1)), "float32"], } # Names of word embedding table which might be reused for weight sharing. word_emb_param_names = ( "src_word_emb_table", "trg_word_emb_table", ) # Names of position encoding table which will be initialized externally. pos_enc_param_names = ( "src_pos_enc_table", "trg_pos_enc_table", ) # separated inputs for different usages. encoder_data_input_fields = ( "src_word", "src_pos", "src_slf_attn_bias", ) decoder_data_input_fields = ( "trg_word", "trg_pos", "trg_slf_attn_bias", "trg_src_attn_bias", "enc_output", ) label_data_input_fields = ( "lbl_word", "lbl_weight", ) # In fast decoder, trg_pos (only containing the current time step) is generated # by ops and trg_slf_attn_bias is not needed. fast_decoder_data_input_fields = ( "trg_word", "init_score", "trg_src_attn_bias", ) # fast_decoder_util_input_fields = ( # "trg_slf_attn_pre_softmax_shape_delta", # "trg_slf_attn_post_softmax_shape_delta", ) #from optim import LearningRateScheduler class LearningRateScheduler(object): """ Wrapper for learning rate scheduling as described in the Transformer paper. LearningRateScheduler adapts the learning rate externally and the adapted learning rate will be fed into the main_program as input data. """ def __init__(self, d_model, warmup_steps, learning_rate=0.001, current_steps=0, name="learning_rate"): self.current_steps = current_steps self.warmup_steps = warmup_steps self.d_model = d_model self.static_lr = learning_rate self.learning_rate = layers.create_global_var( name=name, shape=[1], value=float(learning_rate), dtype="float32", persistable=True) def update_learning_rate(self): self.current_steps += 1 lr_value = np.power(self.d_model, -0.5) * np.min([ np.power(self.current_steps, -0.5), np.power(self.warmup_steps, -1.5) * self.current_steps ]) * self.static_lr return np.array([lr_value], dtype="float32") #from transformer_train import train_loop def pad_batch_data(insts, pad_idx, n_head, is_target=False, is_label=False, return_attn_bias=True, return_max_len=True, return_num_token=False): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. """ return_list = [] max_len = max(len(inst) for inst in insts) num_token = six.moves.reduce(lambda x, y: x + y, [len(inst) for inst in insts]) if return_num_token else 0 # Any token included in dict can be used to pad, since the paddings' loss # will be masked out by weights and make no effect on parameter gradients. inst_data = np.array( [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) return_list += [inst_data.astype("int64").reshape([-1, 1])] if is_label: # label weight inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts]) return_list += [inst_weight.astype("float32").reshape([-1, 1])] else: # position data inst_pos = np.array([ list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst)) for inst in insts ]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] if return_attn_bias: if is_target: # This is used to avoid attention on paddings and subsequent # words. slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len)) slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape([-1, 1, max_len, max_len]) slf_attn_bias_data = np.tile(slf_attn_bias_data, [1, n_head, 1, 1]) * [-1e9] else: # This is used to avoid attention on paddings. slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * (max_len - len(inst)) for inst in insts]) slf_attn_bias_data = np.tile( slf_attn_bias_data.reshape([-1, 1, 1, max_len]), [1, n_head, max_len, 1]) return_list += [slf_attn_bias_data.astype("float32")] if return_max_len: return_list += [max_len] if return_num_token: return_list += [num_token] return return_list if len(return_list) > 1 else return_list[0] def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx, n_head, d_model): """ Put all padded data needed by training into a dict. """ src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) src_word = src_word.reshape(-1, src_max_len, 1) src_pos = src_pos.reshape(-1, src_max_len, 1) trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data( [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True) trg_word = trg_word.reshape(-1, trg_max_len, 1) trg_pos = trg_pos.reshape(-1, trg_max_len, 1) trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]).astype("float32") lbl_word, lbl_weight, num_token = pad_batch_data( [inst[2] for inst in insts], trg_pad_idx, n_head, is_target=False, is_label=True, return_attn_bias=False, return_max_len=False, return_num_token=True) data_input_dict = dict( list( zip(data_input_names, [ src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight ]))) return data_input_dict, np.asarray([num_token], dtype="float32") def read_multiple(reader, count, clip_last=True): """ Stack data from reader for multi-devices. """ def __impl__(): res = [] for item in reader(): res.append(item) if len(res) == count: yield res res = [] if len(res) == count: yield res elif not clip_last: data = [] for item in res: data += item if len(data) > count: inst_num_per_part = len(data) // count yield [ data[inst_num_per_part * i:inst_num_per_part * (i + 1)] for i in range(count) ] return __impl__ def split_data(data, num_part): """ Split data for each device. """ if len(data) == num_part: return data data = data[0] inst_num_per_part = len(data) // num_part return [ data[inst_num_per_part * i:inst_num_per_part * (i + 1)] for i in range(num_part) ] def test_context(test_program, avg_cost, train_exe, dev_count, data_input_names, sum_cost, token_num): val_data = DataReader( src_vocab_fpath=TrainTaskConfig.src_vocab_fpath, trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath, fpattern=TrainTaskConfig.val_file_pattern, token_delimiter=TrainTaskConfig.token_delimiter, use_token_batch=TrainTaskConfig.use_token_batch, batch_size=TrainTaskConfig.batch_size * (1 if TrainTaskConfig.use_token_batch else dev_count), pool_size=TrainTaskConfig.pool_size, sort_type=TrainTaskConfig.sort_type, start_mark=TrainTaskConfig.special_token[0], end_mark=TrainTaskConfig.special_token[1], unk_mark=TrainTaskConfig.special_token[2], # count start and end tokens out max_length=ModelHyperParams.max_length - 2, clip_last_batch=False, shuffle=False, shuffle_batch=False) build_strategy = fluid.BuildStrategy() strategy = fluid.ExecutionStrategy() strategy.num_threads = 1 test_exe = fluid.ParallelExecutor(use_cuda=TrainTaskConfig.use_gpu, main_program=test_program, share_vars_from=train_exe, build_strategy=build_strategy, exec_strategy=strategy) def test(exe=test_exe): test_total_cost = 0 test_total_token = 0 test_data = read_multiple( reader=val_data.batch_generator, count=dev_count if TrainTaskConfig.use_token_batch else 1) for batch_id, data in enumerate(test_data()): feed_list = [] for place_id, data_buffer in enumerate( split_data(data, num_part=dev_count)): data_input_dict, _ = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) feed_list.append(data_input_dict) outs = exe.run(feed=feed_list, fetch_list=[sum_cost.name, token_num.name]) sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1]) test_total_cost += sum_cost_val.sum() test_total_token += token_num_val.sum() test_avg_cost = test_total_cost / test_total_token test_ppl = np.exp([min(test_avg_cost, 100)]) return test_avg_cost, test_ppl return test def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, token_num, predict, test_program): # Initialize the parameters. if TrainTaskConfig.ckpt_path: lr_scheduler.current_steps = TrainTaskConfig.start_step else: exe.run(fluid.framework.default_startup_program()) train_data = DataReader( src_vocab_fpath=TrainTaskConfig.src_vocab_fpath, trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath, fpattern=TrainTaskConfig.train_file_pattern, token_delimiter=TrainTaskConfig.token_delimiter, use_token_batch=TrainTaskConfig.use_token_batch, batch_size=TrainTaskConfig.batch_size * (1 if TrainTaskConfig.use_token_batch else dev_count), pool_size=TrainTaskConfig.pool_size, sort_type=TrainTaskConfig.sort_type, shuffle=TrainTaskConfig.shuffle, shuffle_batch=TrainTaskConfig.shuffle_batch, start_mark=TrainTaskConfig.special_token[0], end_mark=TrainTaskConfig.special_token[1], unk_mark=TrainTaskConfig.special_token[2], # count start and end tokens out max_length=ModelHyperParams.max_length - 2, clip_last_batch=False) train_data = read_multiple( reader=train_data.batch_generator, count=dev_count if TrainTaskConfig.use_token_batch else 1) build_strategy = fluid.BuildStrategy() # Since the token number differs among devices, customize gradient scale to # use token average cost among multi-devices. and the gradient scale is # `1 / token_number` for average cost. build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized strategy = fluid.ExecutionStrategy() strategy.num_threads = 1 train_exe = fluid.ParallelExecutor(use_cuda=TrainTaskConfig.use_gpu, loss_name=sum_cost.name, main_program=train_progm, build_strategy=build_strategy, exec_strategy=strategy) data_input_names = encoder_data_input_fields + decoder_data_input_fields[: -1] + label_data_input_fields if TrainTaskConfig.val_file_pattern is not None: test = test_context(test_program, avg_cost, train_exe, dev_count, data_input_names, sum_cost, token_num) # the best cross-entropy value with label smoothing loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log( (1. - TrainTaskConfig.label_smooth_eps)) + TrainTaskConfig.label_smooth_eps * np.log(TrainTaskConfig.label_smooth_eps / (ModelHyperParams.trg_vocab_size - 1) + 1e-20)) init = False for pass_id in six.moves.xrange(TrainTaskConfig.pass_num): pass_start_time = time.time() for batch_id, data in enumerate(train_data()): if batch_id >= RUN_STEP: break feed_list = [] total_num_token = 0 if TrainTaskConfig.local: lr_rate = lr_scheduler.update_learning_rate() for place_id, data_buffer in enumerate( split_data(data, num_part=dev_count)): data_input_dict, num_token = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) total_num_token += num_token feed_kv_pairs = list(data_input_dict.items()) if TrainTaskConfig.local: feed_kv_pairs += list( {lr_scheduler.learning_rate.name: lr_rate}.items()) feed_list.append(dict(feed_kv_pairs)) if not init: for pos_enc_param_name in pos_enc_param_names: pos_enc = position_encoding_init( ModelHyperParams.max_length + 1, ModelHyperParams.d_model) feed_list[place_id][pos_enc_param_name] = pos_enc if not TrainTaskConfig.check_acc: for feed_dict in feed_list: feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token else: b = 100 * TrainTaskConfig.batch_size a = np.asarray([b], dtype="float32") for feed_dict in feed_list: feed_dict[sum_cost.name + "@GRAD"] = 1. / a outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name], feed=feed_list) sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1]) total_sum_cost = sum_cost_val.sum() total_token_num = token_num_val.sum() total_avg_cost = total_sum_cost / total_token_num init = True # Validate and save the model for inference. if TrainTaskConfig.val_file_pattern is not None: val_avg_cost, val_ppl = test() print("[%f]" % val_avg_cost) else: assert (False) #import transformer_reader as reader class SortType(object): GLOBAL = 'global' POOL = 'pool' NONE = "none" class Converter(object): def __init__(self, vocab, beg, end, unk, delimiter): self._vocab = vocab self._beg = beg self._end = end self._unk = unk self._delimiter = delimiter def __call__(self, sentence): return [self._beg] + [ self._vocab.get(w, self._unk) for w in sentence.split(self._delimiter) ] + [self._end] class ComposedConverter(object): def __init__(self, converters): self._converters = converters def __call__(self, parallel_sentence): return [ self._converters[i](parallel_sentence[i]) for i in range(len(self._converters)) ] class SentenceBatchCreator(object): def __init__(self, batch_size): self.batch = [] self._batch_size = batch_size def append(self, info): self.batch.append(info) if len(self.batch) == self._batch_size: tmp = self.batch self.batch = [] return tmp class TokenBatchCreator(object): def __init__(self, batch_size): self.batch = [] self.max_len = -1 self._batch_size = batch_size def append(self, info): cur_len = info.max_len max_len = max(self.max_len, cur_len) if max_len * (len(self.batch) + 1) > self._batch_size: result = self.batch self.batch = [info] self.max_len = cur_len return result else: self.max_len = max_len self.batch.append(info) class SampleInfo(object): def __init__(self, i, max_len, min_len): self.i = i self.min_len = min_len self.max_len = max_len class MinMaxFilter(object): def __init__(self, max_len, min_len, underlying_creator): self._min_len = min_len self._max_len = max_len self._creator = underlying_creator def append(self, info): if info.max_len > self._max_len or info.min_len < self._min_len: return else: return self._creator.append(info) @property def batch(self): return self._creator.batch class DataReader(object): """ The data reader loads all data from files and produces batches of data in the way corresponding to settings. An example of returning a generator producing data batches whose data is shuffled in each pass and sorted in each pool: ``` train_data = DataReader( src_vocab_fpath='data/src_vocab_file', trg_vocab_fpath='data/trg_vocab_file', fpattern='data/part-*', use_token_batch=True, batch_size=2000, pool_size=10000, sort_type=SortType.POOL, shuffle=True, shuffle_batch=True, start_mark='<s>', end_mark='<e>', unk_mark='<unk>', clip_last_batch=False).batch_generator ``` :param src_vocab_fpath: The path of vocabulary file of source language. :type src_vocab_fpath: basestring :param trg_vocab_fpath: The path of vocabulary file of target language. :type trg_vocab_fpath: basestring :param fpattern: The pattern to match data files. :type fpattern: basestring :param batch_size: The number of sequences contained in a mini-batch. or the maximum number of tokens (include paddings) contained in a mini-batch. :type batch_size: int :param pool_size: The size of pool buffer. :type pool_size: int :param sort_type: The grain to sort by length: 'global' for all instances; 'pool' for instances in pool; 'none' for no sort. :type sort_type: basestring :param clip_last_batch: Whether to clip the last uncompleted batch. :type clip_last_batch: bool :param tar_fname: The data file in tar if fpattern matches a tar file. :type tar_fname: basestring :param min_length: The minimum length used to filt sequences. :type min_length: int :param max_length: The maximum length used to filt sequences. :type max_length: int :param shuffle: Whether to shuffle all instances. :type shuffle: bool :param shuffle_batch: Whether to shuffle the generated batches. :type shuffle_batch: bool :param use_token_batch: Whether to produce batch data according to token number. :type use_token_batch: bool :param field_delimiter: The delimiter used to split source and target in each line of data file. :type field_delimiter: basestring :param token_delimiter: The delimiter used to split tokens in source or target sentences. :type token_delimiter: basestring :param start_mark: The token representing for the beginning of sentences in dictionary. :type start_mark: basestring :param end_mark: The token representing for the end of sentences in dictionary. :type end_mark: basestring :param unk_mark: The token representing for unknown word in dictionary. :type unk_mark: basestring :param seed: The seed for random. :type seed: int """ def __init__(self, src_vocab_fpath, trg_vocab_fpath, fpattern, batch_size, pool_size, sort_type=SortType.GLOBAL, clip_last_batch=True, tar_fname=None, min_length=0, max_length=100, shuffle=True, shuffle_batch=False, use_token_batch=False, field_delimiter="\t", token_delimiter=" ", start_mark="<s>", end_mark="<e>", unk_mark="<unk>", seed=0): self._src_vocab = self.load_dict(src_vocab_fpath) self._only_src = True if trg_vocab_fpath is not None: self._trg_vocab = self.load_dict(trg_vocab_fpath) self._only_src = False self._pool_size = pool_size self._batch_size = batch_size self._use_token_batch = use_token_batch self._sort_type = sort_type self._clip_last_batch = clip_last_batch self._shuffle = shuffle self._shuffle_batch = shuffle_batch self._min_length = min_length self._max_length = max_length self._field_delimiter = field_delimiter self._token_delimiter = token_delimiter self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname, unk_mark) self._random = random.Random(x=seed) def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname, unk_mark): converters = [ Converter(vocab=self._src_vocab, beg=self._src_vocab[start_mark], end=self._src_vocab[end_mark], unk=self._src_vocab[unk_mark], delimiter=self._token_delimiter) ] if not self._only_src: converters.append( Converter(vocab=self._trg_vocab, beg=self._trg_vocab[start_mark], end=self._trg_vocab[end_mark], unk=self._trg_vocab[unk_mark], delimiter=self._token_delimiter)) converters = ComposedConverter(converters) self._src_seq_ids = [] self._trg_seq_ids = None if self._only_src else [] self._sample_infos = [] for i, line in enumerate(self._load_lines(fpattern, tar_fname)): src_trg_ids = converters(line) self._src_seq_ids.append(src_trg_ids[0]) lens = [len(src_trg_ids[0])] if not self._only_src: self._trg_seq_ids.append(src_trg_ids[1]) lens.append(len(src_trg_ids[1])) self._sample_infos.append(SampleInfo(i, max(lens), min(lens))) def _load_lines(self, fpattern, tar_fname): fpaths = glob.glob(fpattern) if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]): if tar_fname is None: raise Exception("If tar file provided, please set tar_fname.") f = tarfile.open(fpaths[0], "r") for line in f.extractfile(tar_fname): line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or (self._only_src and len(fields) == 1): yield fields else: for fpath in fpaths: if not os.path.isfile(fpath): raise IOError("Invalid file: %s" % fpath) with open(fpath, "rb") as f: for line in f: line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or (self._only_src and len(fields) == 1): yield fields @staticmethod def load_dict(dict_path, reverse=False): word_dict = {} with open(dict_path, "rb") as fdict: for idx, line in enumerate(fdict): line = cpt.to_text(line) if reverse: word_dict[idx] = line.strip("\n") else: word_dict[line.strip("\n")] = idx return word_dict def batch_generator(self): # global sort or global shuffle if self._sort_type == SortType.GLOBAL: infos = sorted(self._sample_infos, key=lambda x: x.max_len, reverse=True) else: if self._shuffle: infos = self._sample_infos self._random.shuffle(infos) else: infos = self._sample_infos if self._sort_type == SortType.POOL: for i in range(0, len(infos), self._pool_size): infos[i:i + self._pool_size] = sorted( infos[i:i + self._pool_size], key=lambda x: x.max_len) # concat batch batches = [] batch_creator = TokenBatchCreator( self._batch_size ) if self._use_token_batch else SentenceBatchCreator(self._batch_size) batch_creator = MinMaxFilter(self._max_length, self._min_length, batch_creator) for info in infos: batch = batch_creator.append(info) if batch is not None: batches.append(batch) if not self._clip_last_batch and len(batch_creator.batch) != 0: batches.append(batch_creator.batch) if self._shuffle_batch: self._random.shuffle(batches) for batch in batches: batch_ids = [info.i for info in batch] if self._only_src: yield [[self._src_seq_ids[idx]] for idx in batch_ids] else: yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1], self._trg_seq_ids[idx][1:]) for idx in batch_ids] #from transformer_model import transformer def position_encoding_init(n_position, d_pos_vec): """ Generate the initial values for the sinusoid position encoding table. """ position_enc = np.array([[ pos / np.power(10000, 2 * (j // 2) / d_pos_vec) for j in range(d_pos_vec) ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 return position_enc.astype("float32") def multi_head_attention(queries, keys, values, attn_bias, d_key, d_value, d_model, n_head=1, dropout_rate=0., cache=None): """ Multi-Head Attention. Note that attn_bias is added to the logit before computing softmax activiation to mask certain selected positions so that they will not considered in attention weights. """ if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): raise ValueError( "Inputs: queries, keys and values should all be 3-D tensors.") def __compute_qkv(queries, keys, values, n_head, d_key, d_value): """ Add linear projection to queries, keys, and values. """ q = layers.fc(input=queries, size=d_key * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) k = layers.fc(input=keys, size=d_key * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) v = layers.fc(input=values, size=d_value * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return q, k, v def __split_heads(x, n_head): """ Reshape the last dimension of input tensor x so that it becomes two dimensions and then transpose. Specifically, input a tensor with shape [bs, max_sequence_length, n_head * hidden_dim] then output a tensor with shape [bs, n_head, max_sequence_length, hidden_dim]. """ if n_head == 1: return x hidden_size = x.shape[-1] # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head]) # permute the dimensions into: # [batch_size, n_head, max_sequence_len, hidden_size_per_head] return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) def __combine_heads(x): """ Transpose and then reshape the last two dimensions of input tensor x so that it becomes one dimension, which is reverse to __split_heads. """ if len(x.shape) == 3: return x if len(x.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. return layers.reshape( x=trans_x, shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]]))) def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): """ Scaled Dot-Product Attention """ scaled_q = layers.scale(x=q, scale=d_model**-0.5) product = layers.matmul(x=scaled_q, y=k, transpose_y=True) if attn_bias: product += attn_bias weights = layers.softmax(product) if dropout_rate: weights = layers.dropout(weights, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) out = layers.matmul(weights, v) return out q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) if cache is not None: # use cache and concat time steps k = cache["k"] = layers.concat([cache["k"], k], axis=1) v = cache["v"] = layers.concat([cache["v"], v], axis=1) q = __split_heads(q, n_head) k = __split_heads(k, n_head) v = __split_heads(v, n_head) ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate) out = __combine_heads(ctx_multiheads) # Project back to the model size. proj_out = layers.fc(input=out, size=d_model, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return proj_out def positionwise_feed_forward(x, d_inner_hid, d_hid): """ Position-wise Feed-Forward Networks. This module consists of two linear transformations with a ReLU activation in between, which is applied to each position separately and identically. """ hidden = layers.fc(input=x, size=d_inner_hid, num_flatten_dims=2, act="relu", param_attr=const_para_attr, bias_attr=const_bias_attr) out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return out def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.): """ Add residual connection, layer normalization and droput to the out tensor optionally according to the value of process_cmd. This will be used before or after multi-head attention and position-wise feed-forward networks. """ for cmd in process_cmd: if cmd == "a": # add residual connection out = out + prev_out if prev_out else out elif cmd == "n": # add layer normalization out = layers.layer_norm(out, begin_norm_axis=len(out.shape) - 1, param_attr=fluid.initializer.Constant(1.), bias_attr=fluid.initializer.Constant(0.)) elif cmd == "d": # add dropout if dropout_rate: out = layers.dropout(out, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) return out pre_process_layer = partial(pre_post_process_layer, None) post_process_layer = pre_post_process_layer def prepare_encoder(src_word, src_pos, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0., word_emb_param_name=None, pos_enc_param_name=None): """Add word embeddings and position encodings. The output tensor has a shape of: [batch_size, max_src_length_in_batch, d_model]. This module is used at the bottom of the encoder stacks. """ if TrainTaskConfig.check_acc: src_word_emb = layers.embedding( src_word, size=[src_vocab_size, src_emb_dim], param_attr=fluid.ParamAttr( name=word_emb_param_name, initializer=fluid.initializer.ConstantInitializer(0.001))) else: src_word_emb = layers.embedding( src_word, size=[src_vocab_size, src_emb_dim], param_attr=fluid.ParamAttr(name=word_emb_param_name, initializer=fluid.initializer.Normal( 0., src_emb_dim**-0.5))) src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5) src_pos_enc = layers.embedding( src_pos, size=[src_max_len, src_emb_dim], param_attr=fluid.ParamAttr( name=pos_enc_param_name, trainable=False, initializer=fluid.initializer.ConstantInitializer(0.001))) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc return layers.dropout(enc_input, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) if dropout_rate else enc_input prepare_encoder = partial(prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]) prepare_decoder = partial(prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]) def encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0.): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ attn_output = multi_head_attention(enc_input, enc_input, enc_input, attn_bias, d_key, d_value, d_model, n_head, dropout_rate) attn_output = post_process_layer(enc_input, attn_output, "dan", dropout_rate) ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model) return post_process_layer(attn_output, ffd_output, "dan", dropout_rate) def encoder(enc_input, attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0.): """ The encoder is composed of a stack of identical layers returned by calling encoder_layer. """ for i in range(n_layer): enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate) enc_input = enc_output return enc_output def decoder_layer(dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0., cache=None): """ The layer to be stacked in decoder part. The structure of this module is similar to that in the encoder part except a multi-head attention is added to implement encoder-decoder attention. """ slf_attn_output = multi_head_attention( dec_input, dec_input, dec_input, slf_attn_bias, d_key, d_value, d_model, n_head, dropout_rate, cache, ) slf_attn_output = post_process_layer( dec_input, slf_attn_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) enc_attn_output = multi_head_attention( slf_attn_output, enc_output, enc_output, dec_enc_attn_bias, d_key, d_value, d_model, n_head, dropout_rate, ) enc_attn_output = post_process_layer( slf_attn_output, enc_attn_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) ffd_output = positionwise_feed_forward( enc_attn_output, d_inner_hid, d_model, ) dec_output = post_process_layer( enc_attn_output, ffd_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) return dec_output def decoder(dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0., caches=None): """ The decoder is composed of a stack of identical decoder_layer layers. """ for i in range(n_layer): cache = None if caches is not None: cache = caches[i] dec_output = decoder_layer(dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, cache=cache) dec_input = dec_output return dec_output def make_all_inputs(input_fields): """ Define the input data layers for the transformer model. """ inputs = [] for input_field in input_fields: input_var = layers.data(name=input_field, shape=input_descs[input_field][0], dtype=input_descs[input_field][1], lod_level=input_descs[input_field][2] if len(input_descs[input_field]) == 3 else 0, append_batch_size=False) inputs.append(input_var) return inputs def transformer( src_vocab_size, trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, label_smooth_eps, ): if weight_sharing: assert src_vocab_size == src_vocab_size, ( "Vocabularies in source and target should be same for weight sharing." ) enc_inputs = make_all_inputs(encoder_data_input_fields) enc_output = wrap_encoder( src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, enc_inputs, ) dec_inputs = make_all_inputs(decoder_data_input_fields[:-1]) predict = wrap_decoder( trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs, enc_output, ) # Padding index do not contribute to the total loss. The weights is used to # cancel padding index in calculating the loss. label, weights = make_all_inputs(label_data_input_fields) if label_smooth_eps: label = layers.label_smooth(label=layers.one_hot(input=label, depth=trg_vocab_size), epsilon=label_smooth_eps) cost = layers.softmax_with_cross_entropy( logits=layers.reshape(predict, shape=[-1, trg_vocab_size]), label=label, soft_label=True if label_smooth_eps else False) weighted_cost = cost * weights sum_cost = layers.reduce_sum(weighted_cost) token_num = layers.reduce_sum(weights) avg_cost = sum_cost / token_num avg_cost.stop_gradient = True return sum_cost, avg_cost, predict, token_num def wrap_encoder(src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, enc_inputs=None): """ The wrapper assembles together all needed layers for the encoder. """ if enc_inputs is None: # This is used to implement independent encoder program in inference. src_word, src_pos, src_slf_attn_bias = \ make_all_inputs(encoder_data_input_fields) else: src_word, src_pos, src_slf_attn_bias = \ enc_inputs enc_input = prepare_encoder(src_word, src_pos, src_vocab_size, d_model, max_length, dropout_rate, word_emb_param_name=word_emb_param_names[0]) enc_output = encoder(enc_input, src_slf_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate) return enc_output def wrap_decoder(trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs=None, enc_output=None, caches=None): """ The wrapper assembles together all needed layers for the decoder. """ if dec_inputs is None: # This is used to implement independent decoder program in inference. trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \ enc_output = make_all_inputs( decoder_data_input_fields) else: trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs dec_input = prepare_decoder(trg_word, trg_pos, trg_vocab_size, d_model, max_length, dropout_rate, word_emb_param_name=word_emb_param_names[0] if weight_sharing else word_emb_param_names[1]) dec_output = decoder(dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, caches=caches) # Return logits for training and probs for inference. if weight_sharing: predict = layers.matmul(x=dec_output, y=fluid.framework._get_var( word_emb_param_names[0]), transpose_y=True) else: predict = layers.fc(input=dec_output, size=trg_vocab_size, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) if dec_inputs is None: predict = layers.softmax(predict) return predict def fast_decode( src_vocab_size, trg_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, beam_size, max_out_len, eos_idx, ): """ Use beam search to decode. Caches will be used to store states of history steps which can make the decoding faster. """ enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing) start_tokens, init_scores, trg_src_attn_bias = \ make_all_inputs(fast_decoder_data_input_fields ) def beam_search(): max_len = layers.fill_constant(shape=[1], dtype=start_tokens.dtype, value=max_out_len) step_idx = layers.fill_constant(shape=[1], dtype=start_tokens.dtype, value=0) cond = layers.less_than(x=step_idx, y=max_len) while_op = layers.While(cond) # array states will be stored for each step. ids = layers.array_write(layers.reshape(start_tokens, (-1, 1)), step_idx) scores = layers.array_write(init_scores, step_idx) # cell states will be overwrited at each step. # caches contains states of history steps to reduce redundant # computation in decoder. caches = [{ "k": layers.fill_constant_batch_size_like(input=start_tokens, shape=[-1, 0, d_model], dtype=enc_output.dtype, value=0), "v": layers.fill_constant_batch_size_like(input=start_tokens, shape=[-1, 0, d_model], dtype=enc_output.dtype, value=0) } for i in range(n_layer)] with while_op.block(): pre_ids = layers.array_read(array=ids, i=step_idx) pre_ids = layers.reshape(pre_ids, (-1, 1, 1)) pre_scores = layers.array_read(array=scores, i=step_idx) # sequence_expand can gather sequences according to lod thus can be # used in beam search to sift states corresponding to selected ids. pre_src_attn_bias = layers.sequence_expand(x=trg_src_attn_bias, y=pre_scores) pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores) pre_caches = [{ "k": layers.sequence_expand(x=cache["k"], y=pre_scores), "v": layers.sequence_expand(x=cache["v"], y=pre_scores), } for cache in caches] pre_pos = layers.elementwise_mul( x=layers.fill_constant_batch_size_like( input= pre_enc_output, # can't use pre_ids here since it has lod value=1, shape=[-1, 1, 1], dtype=pre_ids.dtype), y=layers.increment(x=step_idx, value=1.0, in_place=False), axis=0) logits = wrap_decoder(trg_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias), enc_output=pre_enc_output, caches=pre_caches) logits = layers.reshape(logits, (-1, trg_vocab_size)) topk_scores, topk_indices = layers.topk( input=layers.softmax(logits), k=beam_size) accu_scores = layers.elementwise_add(x=layers.log(topk_scores), y=layers.reshape(pre_scores, shape=[-1]), axis=0) # beam_search op uses lod to distinguish branches. topk_indices = layers.lod_reset(topk_indices, pre_ids) selected_ids, selected_scores = layers.beam_search( pre_ids=pre_ids, pre_scores=pre_scores, ids=topk_indices, scores=accu_scores, beam_size=beam_size, end_id=eos_idx) layers.increment(x=step_idx, value=1.0, in_place=True) # update states layers.array_write(selected_ids, i=step_idx, array=ids) layers.array_write(selected_scores, i=step_idx, array=scores) layers.assign(pre_src_attn_bias, trg_src_attn_bias) layers.assign(pre_enc_output, enc_output) for i in range(n_layer): layers.assign(pre_caches[i]["k"], caches[i]["k"]) layers.assign(pre_caches[i]["v"], caches[i]["v"]) length_cond = layers.less_than(x=step_idx, y=max_len) finish_cond = layers.logical_not(layers.is_empty(x=selected_ids)) layers.logical_and(x=length_cond, y=finish_cond, out=cond) finished_ids, finished_scores = layers.beam_search_decode( ids, scores, beam_size=beam_size, end_id=eos_idx) return finished_ids, finished_scores finished_ids, finished_scores = beam_search() return finished_ids, finished_scores def get_model(is_dist, is_async): sum_cost, avg_cost, predict, token_num = transformer( ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.dropout, ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps) local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model, TrainTaskConfig.warmup_steps, TrainTaskConfig.learning_rate) # Context to do validation. test_program = fluid.default_main_program().clone(for_test=True) if not is_dist: optimizer = fluid.optimizer.Adam( learning_rate=local_lr_scheduler.learning_rate, beta1=TrainTaskConfig.beta1, beta2=TrainTaskConfig.beta2, epsilon=TrainTaskConfig.eps) optimizer.minimize(sum_cost) elif is_async: optimizer = fluid.optimizer.SGD(0.003) optimizer.minimize(sum_cost) else: lr_decay = fluid.layers\ .learning_rate_scheduler\ .noam_decay(ModelHyperParams.d_model, TrainTaskConfig.warmup_steps) optimizer = fluid.optimizer.Adam(learning_rate=lr_decay, beta1=TrainTaskConfig.beta1, beta2=TrainTaskConfig.beta2, epsilon=TrainTaskConfig.eps) optimizer.minimize(sum_cost) return sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program def update_args(): src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath) trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath) dict_args = [ "src_vocab_size", str(len(src_dict)), "trg_vocab_size", str(len(trg_dict)), "bos_idx", str(src_dict[TrainTaskConfig.special_token[0]]), "eos_idx", str(src_dict[TrainTaskConfig.special_token[1]]), "unk_idx", str(src_dict[TrainTaskConfig.special_token[2]]) ] merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams]) class DistTransformer2x2(TestDistRunnerBase): def run_pserver(self, args): get_model(True, not args.sync_mode) t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode) pserver_prog = t.get_pserver_program(args.current_endpoint) startup_prog = t.get_startup_program(args.current_endpoint, pserver_prog) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) exe.run(pserver_prog) def run_trainer(self, args): TrainTaskConfig.use_gpu = args.use_cuda sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program = get_model( args.is_dist, not args.sync_mode) if args.is_dist: t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode) trainer_prog = t.get_trainer_program() TrainTaskConfig.batch_size = 10 TrainTaskConfig.train_file_pattern = TrainTaskConfig.data_path + "train.tok.clean.bpe.32000.en-de.train_{}".format( args.trainer_id) else: TrainTaskConfig.batch_size = 20 trainer_prog = fluid.default_main_program() if args.use_cuda: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() startup_exe = fluid.Executor(place) TrainTaskConfig.local = not args.is_dist train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost, local_lr_scheduler, token_num, predict, test_program) if __name__ == "__main__": update_args() runtime_main(DistTransformer2x2)
37.694876
127
0.588246
225e732b84035265a317ecc34da2ac703e550fe0
1,185
py
Python
main.py
Deepanjalli/job_portal6
2869de5dca16a88f840ce0e4a26fe2edba3e9cae
[ "MIT" ]
null
null
null
main.py
Deepanjalli/job_portal6
2869de5dca16a88f840ce0e4a26fe2edba3e9cae
[ "MIT" ]
4
2020-06-06T01:42:22.000Z
2021-09-08T01:50:57.000Z
main.py
Deepanjalli/job_portal6
2869de5dca16a88f840ce0e4a26fe2edba3e9cae
[ "MIT" ]
null
null
null
import os #import magic import urllib.request from app import app from flask import Flask, flash, request, redirect, render_template from werkzeug.utils import secure_filename ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/') def upload_form(): return render_template('register.html') @app.route('/', methods=['POST']) def upload_file(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No file selected for uploading') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) flash('File successfully uploaded') return redirect('/') else: flash('Allowed file types are txt, pdf, png, jpg, jpeg, gif') return redirect(request.url) if __name__ == "__main__": app.debug = True app.run()
29.625
84
0.699578
3244dece2f3802a3633f68949939a2369ca8a76c
977
py
Python
api/medicine_api/management/commands/link_database_populator.py
maxwelld90/medicine-for-ukraine
f10152929a3827b9de055d993103b352959f3b33
[ "MIT" ]
2
2022-03-21T14:00:27.000Z
2022-03-21T17:17:51.000Z
api/medicine_api/management/commands/link_database_populator.py
maxwelld90/medicine-for-ukraine
f10152929a3827b9de055d993103b352959f3b33
[ "MIT" ]
19
2022-03-21T14:14:26.000Z
2022-03-31T07:49:40.000Z
api/medicine_api/management/commands/link_database_populator.py
maxwelld90/medicine-for-ukraine
f10152929a3827b9de055d993103b352959f3b33
[ "MIT" ]
4
2022-03-02T13:56:30.000Z
2022-03-22T10:49:00.000Z
import os import logging from medicine_api import models from medicine_api.readers.price_reader import PriceReader from django.core.management.base import BaseCommand logger = logging.getLogger('medicine_api.readers.link_database_populator') class Command(BaseCommand): """ Runs the CRON job to (re)populate the LinkMetadata model with refreshed information from the spreadsheet source. """ help = '(Re)populates the Medicine for Ukraine links database table with updated information.' def handle(self, *args, **options): logger.info('Link Database Checks Starting') price_reader = PriceReader() data = price_reader.get_link_data() for item in data: metadata_object = models.LinkMetadata() metadata_object.set_from_link_data(item) logger.info('Link Database Checks Complete') self.stdout.write(self.style.SUCCESS('Link checking successfully completed.'))
36.185185
116
0.714432
22e631daa8890fc280d5abef1e78f6c9eed5c87c
481
py
Python
src/queries/hacker_news_comments.py
llazarmk/hacker_news_comments_processing
8a3b8206e7bfaa7847a85deb05bf721f0f64772a
[ "Apache-2.0" ]
null
null
null
src/queries/hacker_news_comments.py
llazarmk/hacker_news_comments_processing
8a3b8206e7bfaa7847a85deb05bf721f0f64772a
[ "Apache-2.0" ]
null
null
null
src/queries/hacker_news_comments.py
llazarmk/hacker_news_comments_processing
8a3b8206e7bfaa7847a85deb05bf721f0f64772a
[ "Apache-2.0" ]
null
null
null
def get_hacker_news_comments_query(table): query = f"""SELECT comments.id AS comment_id, comments.parent AS comment_story_id, comments.text AS comment_text, comments.by AS comment_author, DATE(comments.timestamp) AS comment_date FROM `{table}` as comments WHERE comments.text IS NOT NULL AND RAND() <= 0.1 """ return query
40.083333
65
0.532225
22aa86c670e26451dc9ec0d740610b8bb2d5aa6b
370
py
Python
parking_lot/entities/merchant.py
kuntalchandra/parking_lot
7990162c15b7f6bd33e5c0e99544b9abe1c76940
[ "MIT" ]
null
null
null
parking_lot/entities/merchant.py
kuntalchandra/parking_lot
7990162c15b7f6bd33e5c0e99544b9abe1c76940
[ "MIT" ]
null
null
null
parking_lot/entities/merchant.py
kuntalchandra/parking_lot
7990162c15b7f6bd33e5c0e99544b9abe1c76940
[ "MIT" ]
null
null
null
from datetime import datetime class Merchant: def __init__(self, id: int, name: str, registered_at: datetime): self.id = id self.name = name self.registered_at = registered_at def get_name(self): return self.name def get_id(self): return self.id def get_registered_at(self): return self.registered_at
20.555556
68
0.643243
377d7f373cd3505587ad6b5d0f8343402185bea2
17,215
py
Python
IPython/utils/_tokenize_py2.py
pyarnold/ipython
c4797f7f069d0a974ddfa1e4251c7550c809dba0
[ "BSD-3-Clause-Clear" ]
1
2020-12-18T01:07:55.000Z
2020-12-18T01:07:55.000Z
IPython/utils/_tokenize_py2.py
pyarnold/ipython
c4797f7f069d0a974ddfa1e4251c7550c809dba0
[ "BSD-3-Clause-Clear" ]
null
null
null
IPython/utils/_tokenize_py2.py
pyarnold/ipython
c4797f7f069d0a974ddfa1e4251c7550c809dba0
[ "BSD-3-Clause-Clear" ]
null
null
null
"""Patched version of standard library tokenize, to deal with various bugs. Patches - Relevant parts of Gareth Rees' patch for Python issue #12691 (untokenizing), manually applied. - Newlines in comments and blank lines should be either NL or NEWLINE, depending on whether they are in a multi-line statement. Filed as Python issue #17061. ------------------------------------------------------------------------------- Tokenization help for Python programs. generate_tokens(readline) is a generator that breaks a stream of text into Python tokens. It accepts a readline-like method which is called repeatedly to get the next line of input (or "" for EOF). It generates 5-tuples with these members: the token type (see token.py) the token (a string) the starting (row, column) indices of the token (a 2-tuple of ints) the ending (row, column) indices of the token (a 2-tuple of ints) the original line (string) It is designed to match the working of the Python tokenizer exactly, except that it produces COMMENT tokens for comments and gives type OP for all operators Older entry points tokenize_loop(readline, tokeneater) tokenize(readline, tokeneater=printtoken) are the same, except instead of generating tokens, tokeneater is a callback function to which the 5 fields described above are passed as 5 arguments, each time a new token is found.""" from __future__ import print_function __author__ = 'Ka-Ping Yee <ping@lfw.org>' __credits__ = ('GvR, ESR, Tim Peters, Thomas Wouters, Fred Drake, ' 'Skip Montanaro, Raymond Hettinger') import string import re from token import * import token __all__ = [x for x in dir(token) if not x.startswith("_")] __all__ += ["COMMENT", "tokenize", "generate_tokens", "NL", "untokenize"] del x del token __all__ += ["TokenError"] COMMENT = N_TOKENS tok_name[COMMENT] = 'COMMENT' NL = N_TOKENS + 1 tok_name[NL] = 'NL' N_TOKENS += 2 def group(*choices): return '(' + '|'.join(choices) + ')' def any(*choices): return group(*choices) + '*' def maybe(*choices): return group(*choices) + '?' Whitespace = r'[ \f\t]*' Comment = r'#[^\r\n]*' Ignore = Whitespace + any(r'\\\r?\n' + Whitespace) + maybe(Comment) Name = r'[a-zA-Z_]\w*' Hexnumber = r'0[xX][\da-fA-F]+[lL]?' Octnumber = r'(0[oO][0-7]+)|(0[0-7]*)[lL]?' Binnumber = r'0[bB][01]+[lL]?' Decnumber = r'[1-9]\d*[lL]?' Intnumber = group(Hexnumber, Binnumber, Octnumber, Decnumber) Exponent = r'[eE][-+]?\d+' Pointfloat = group(r'\d+\.\d*', r'\.\d+') + maybe(Exponent) Expfloat = r'\d+' + Exponent Floatnumber = group(Pointfloat, Expfloat) Imagnumber = group(r'\d+[jJ]', Floatnumber + r'[jJ]') Number = group(Imagnumber, Floatnumber, Intnumber) # Tail end of ' string. Single = r"[^'\\]*(?:\\.[^'\\]*)*'" # Tail end of " string. Double = r'[^"\\]*(?:\\.[^"\\]*)*"' # Tail end of ''' string. Single3 = r"[^'\\]*(?:(?:\\.|'(?!''))[^'\\]*)*'''" # Tail end of """ string. Double3 = r'[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*"""' Triple = group("[uUbB]?[rR]?'''", '[uUbB]?[rR]?"""') # Single-line ' or " string. String = group(r"[uUbB]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*'", r'[uUbB]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*"') # Because of leftmost-then-longest match semantics, be sure to put the # longest operators first (e.g., if = came before ==, == would get # recognized as two instances of =). Operator = group(r"\*\*=?", r">>=?", r"<<=?", r"<>", r"!=", r"//=?", r"[+\-*/%&|^=<>]=?", r"~") Bracket = '[][(){}]' Special = group(r'\r?\n', r'[:;.,`@]') Funny = group(Operator, Bracket, Special) PlainToken = group(Number, Funny, String, Name) Token = Ignore + PlainToken # First (or only) line of ' or " string. ContStr = group(r"[uUbB]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*" + group("'", r'\\\r?\n'), r'[uUbB]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*' + group('"', r'\\\r?\n')) PseudoExtras = group(r'\\\r?\n', Comment, Triple) PseudoToken = Whitespace + group(PseudoExtras, Number, Funny, ContStr, Name) tokenprog, pseudoprog, single3prog, double3prog = map( re.compile, (Token, PseudoToken, Single3, Double3)) endprogs = {"'": re.compile(Single), '"': re.compile(Double), "'''": single3prog, '"""': double3prog, "r'''": single3prog, 'r"""': double3prog, "u'''": single3prog, 'u"""': double3prog, "ur'''": single3prog, 'ur"""': double3prog, "R'''": single3prog, 'R"""': double3prog, "U'''": single3prog, 'U"""': double3prog, "uR'''": single3prog, 'uR"""': double3prog, "Ur'''": single3prog, 'Ur"""': double3prog, "UR'''": single3prog, 'UR"""': double3prog, "b'''": single3prog, 'b"""': double3prog, "br'''": single3prog, 'br"""': double3prog, "B'''": single3prog, 'B"""': double3prog, "bR'''": single3prog, 'bR"""': double3prog, "Br'''": single3prog, 'Br"""': double3prog, "BR'''": single3prog, 'BR"""': double3prog, 'r': None, 'R': None, 'u': None, 'U': None, 'b': None, 'B': None} triple_quoted = {} for t in ("'''", '"""', "r'''", 'r"""', "R'''", 'R"""', "u'''", 'u"""', "U'''", 'U"""', "ur'''", 'ur"""', "Ur'''", 'Ur"""', "uR'''", 'uR"""', "UR'''", 'UR"""', "b'''", 'b"""', "B'''", 'B"""', "br'''", 'br"""', "Br'''", 'Br"""', "bR'''", 'bR"""', "BR'''", 'BR"""'): triple_quoted[t] = t single_quoted = {} for t in ("'", '"', "r'", 'r"', "R'", 'R"', "u'", 'u"', "U'", 'U"', "ur'", 'ur"', "Ur'", 'Ur"', "uR'", 'uR"', "UR'", 'UR"', "b'", 'b"', "B'", 'B"', "br'", 'br"', "Br'", 'Br"', "bR'", 'bR"', "BR'", 'BR"'): single_quoted[t] = t tabsize = 8 class TokenError(Exception): pass class StopTokenizing(Exception): pass def printtoken(type, token, srow_scol, erow_ecol, line): # for testing srow, scol = srow_scol erow, ecol = erow_ecol print("%d,%d-%d,%d:\t%s\t%s" % (srow, scol, erow, ecol, tok_name[type], repr(token))) def tokenize(readline, tokeneater=printtoken): """ The tokenize() function accepts two parameters: one representing the input stream, and one providing an output mechanism for tokenize(). The first parameter, readline, must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. The second parameter, tokeneater, must also be a callable object. It is called once for each token, with five arguments, corresponding to the tuples generated by generate_tokens(). """ try: tokenize_loop(readline, tokeneater) except StopTokenizing: pass # backwards compatible interface def tokenize_loop(readline, tokeneater): for token_info in generate_tokens(readline): tokeneater(*token_info) class Untokenizer: def __init__(self): self.tokens = [] self.prev_row = 1 self.prev_col = 0 def add_whitespace(self, start): row, col = start assert row >= self.prev_row col_offset = col - self.prev_col if col_offset > 0: self.tokens.append(" " * col_offset) elif row > self.prev_row and tok_type not in (NEWLINE, NL, ENDMARKER): # Line was backslash-continued self.tokens.append(" ") def untokenize(self, tokens): iterable = iter(tokens) for t in iterable: if len(t) == 2: self.compat(t, iterable) break tok_type, token, start, end = t[:4] self.add_whitespace(start) self.tokens.append(token) self.prev_row, self.prev_col = end if tok_type in (NEWLINE, NL): self.prev_row += 1 self.prev_col = 0 return "".join(self.tokens) def compat(self, token, iterable): # This import is here to avoid problems when the itertools # module is not built yet and tokenize is imported. from itertools import chain startline = False prevstring = False indents = [] toks_append = self.tokens.append for tok in chain([token], iterable): toknum, tokval = tok[:2] if toknum in (NAME, NUMBER): tokval += ' ' # Insert a space between two consecutive strings if toknum == STRING: if prevstring: tokval = ' ' + tokval prevstring = True else: prevstring = False if toknum == INDENT: indents.append(tokval) continue elif toknum == DEDENT: indents.pop() continue elif toknum in (NEWLINE, NL): startline = True elif startline and indents: toks_append(indents[-1]) startline = False toks_append(tokval) def untokenize(iterable): """Transform tokens back into Python source code. Each element returned by the iterable must be a token sequence with at least two elements, a token number and token value. If only two tokens are passed, the resulting output is poor. Round-trip invariant for full input: Untokenized source will match input source exactly Round-trip invariant for limited intput: # Output text will tokenize the back to the input t1 = [tok[:2] for tok in generate_tokens(f.readline)] newcode = untokenize(t1) readline = iter(newcode.splitlines(1)).next t2 = [tok[:2] for tok in generate_tokens(readline)] assert t1 == t2 """ ut = Untokenizer() return ut.untokenize(iterable) def generate_tokens(readline): """ The generate_tokens() generator requires one argment, readline, which must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. Alternately, readline can be a callable function terminating with StopIteration: readline = open(myfile).next # Example of alternate readline The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow, scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol) of ints specifying the row and column where the token ends in the source; and the line on which the token was found. The line passed is the logical line; continuation lines are included. """ lnum = parenlev = continued = 0 namechars, numchars = string.ascii_letters + '_', '0123456789' contstr, needcont = '', 0 contline = None indents = [0] while 1: # loop over lines in stream try: line = readline() except StopIteration: line = '' lnum += 1 pos, max = 0, len(line) if contstr: # continued string if not line: raise TokenError("EOF in multi-line string", strstart) endmatch = endprog.match(line) if endmatch: pos = end = endmatch.end(0) yield (STRING, contstr + line[:end], strstart, (lnum, end), contline + line) contstr, needcont = '', 0 contline = None elif needcont and line[-2:] != '\\\n' and line[-3:] != '\\\r\n': yield (ERRORTOKEN, contstr + line, strstart, (lnum, len(line)), contline) contstr = '' contline = None continue else: contstr = contstr + line contline = contline + line continue elif parenlev == 0 and not continued: # new statement if not line: break column = 0 while pos < max: # measure leading whitespace if line[pos] == ' ': column += 1 elif line[pos] == '\t': column = (column // tabsize + 1) * tabsize elif line[pos] == '\f': column = 0 else: break pos += 1 if pos == max: break if line[pos] in '#\r\n': # skip comments or blank lines if line[pos] == '#': comment_token = line[pos:].rstrip('\r\n') nl_pos = pos + len(comment_token) yield (COMMENT, comment_token, (lnum, pos), (lnum, pos + len(comment_token)), line) yield (NEWLINE, line[nl_pos:], (lnum, nl_pos), (lnum, len(line)), line) else: yield (NEWLINE, line[pos:], (lnum, pos), (lnum, len(line)), line) continue if column > indents[-1]: # count indents or dedents indents.append(column) yield (INDENT, line[:pos], (lnum, 0), (lnum, pos), line) while column < indents[-1]: if column not in indents: raise IndentationError( "unindent does not match any outer indentation level", ("<tokenize>", lnum, pos, line)) indents = indents[:-1] yield (DEDENT, '', (lnum, pos), (lnum, pos), line) else: # continued statement if not line: raise TokenError("EOF in multi-line statement", (lnum, 0)) continued = 0 while pos < max: pseudomatch = pseudoprog.match(line, pos) if pseudomatch: # scan for tokens start, end = pseudomatch.span(1) spos, epos, pos = (lnum, start), (lnum, end), end token, initial = line[start:end], line[start] if initial in numchars or \ (initial == '.' and token != '.'): # ordinary number yield (NUMBER, token, spos, epos, line) elif initial in '\r\n': yield (NL if parenlev > 0 else NEWLINE, token, spos, epos, line) elif initial == '#': assert not token.endswith("\n") yield (COMMENT, token, spos, epos, line) elif token in triple_quoted: endprog = endprogs[token] endmatch = endprog.match(line, pos) if endmatch: # all on one line pos = endmatch.end(0) token = line[start:pos] yield (STRING, token, spos, (lnum, pos), line) else: strstart = (lnum, start) # multiple lines contstr = line[start:] contline = line break elif initial in single_quoted or \ token[:2] in single_quoted or \ token[:3] in single_quoted: if token[-1] == '\n': # continued string strstart = (lnum, start) endprog = (endprogs[initial] or endprogs[token[1]] or endprogs[token[2]]) contstr, needcont = line[start:], 1 contline = line break else: # ordinary string yield (STRING, token, spos, epos, line) elif initial in namechars: # ordinary name yield (NAME, token, spos, epos, line) elif initial == '\\': # continued stmt continued = 1 else: if initial in '([{': parenlev += 1 elif initial in ')]}': parenlev -= 1 yield (OP, token, spos, epos, line) else: yield (ERRORTOKEN, line[pos], (lnum, pos), (lnum, pos + 1), line) pos += 1 for indent in indents[1:]: # pop remaining indent levels yield (DEDENT, '', (lnum, 0), (lnum, 0), '') yield (ENDMARKER, '', (lnum, 0), (lnum, 0), '') if __name__ == '__main__': # testing import sys if len(sys.argv) > 1: tokenize(open(sys.argv[1]).readline) else: tokenize(sys.stdin.readline)
37.342733
80
0.512809
a92d9dde939f0ffa8c8b7906ce4cf432a94739f7
448
py
Python
微信聊天记录/utils/string_utils.py
xingag/spider_python
80668005f1416dab04c25569b35b679a2a6b2e5d
[ "Apache-2.0" ]
762
2018-11-22T04:40:15.000Z
2022-03-31T03:53:33.000Z
微信聊天记录/utils/string_utils.py
xingag/spider_python
80668005f1416dab04c25569b35b679a2a6b2e5d
[ "Apache-2.0" ]
15
2019-07-22T17:57:58.000Z
2022-03-11T23:36:46.000Z
微信聊天记录/utils/string_utils.py
xingag/spider_python
80668005f1416dab04c25569b35b679a2a6b2e5d
[ "Apache-2.0" ]
414
2018-12-18T00:33:18.000Z
2022-03-31T15:02:04.000Z
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: xag @license: Apache Licence @contact: xinganguo@gmail.com @site: http://www.xingag.top @software: PyCharm @file: StringUtils.py @time: 2020-04-11 18:39 @description:TODO """ import re def get_ava_string(str): """ 去掉特殊符号,保留正常内容 :param str: :return: """ return re.sub(u"([^ \u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", str)
17.92
89
0.629464
bdfe54dc9eefb56d8774f768df93322b94474a77
4,714
py
Python
models/gat.py
anshu0612/acmmm21_human_attributes_prediction_in_privacy_conditions
98cfc1820952e7d65520b029a53043fdf2d6c005
[ "MIT" ]
6
2021-09-01T07:44:59.000Z
2021-12-11T11:32:59.000Z
models/gat.py
anshu0612/human_attributes_prediction_in_privacy_conditions
98cfc1820952e7d65520b029a53043fdf2d6c005
[ "MIT" ]
null
null
null
models/gat.py
anshu0612/human_attributes_prediction_in_privacy_conditions
98cfc1820952e7d65520b029a53043fdf2d6c005
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F class _GraphAttentionLayer(nn.Module): ''' Part of code borrows from https://github.com/Diego999/pyGAT/blob/master/layers.py Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 ''' def __init__(self, in_feat, out_feat, dropout, alpha, concat=True): super(_GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_feat = in_feat self.out_feat = out_feat self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_feat, out_feat))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2*out_feat, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) N = h.size()[1] batch = h.size()[0] a_input = torch.cat([h.repeat(1, 1, N).view( batch, N * N, -1), h.repeat(1, N, 1)], dim=2).view(batch, N, -1, 2 * self.out_feat) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=2) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_feat) + ' -> ' + str(self.out_feat) + ')' class _GAT(nn.Module): ''' Dense version of GAT. ''' def __init__(self, num_feat, num_hidd, num_class, dropout, alpha, num_heads): super(_GAT, self).__init__() self.dropout = dropout self.attentions = [_GraphAttentionLayer( num_feat, num_hidd, dropout=dropout, alpha=alpha, concat=True) for _ in range(num_heads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = _GraphAttentionLayer( num_hidd * num_heads, num_class, dropout=dropout, alpha=alpha, concat=False) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=2) x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) return F.log_softmax(x, dim=2) class VisualRelationshipStream(nn.Module): def __init__(self, device): super(VisualRelationshipStream, self).__init__() _context_reshape_size = 180 self.context_pool = nn.Sequential( nn.AdaptiveMaxPool2d(_context_reshape_size), nn.Conv2d(3, 1, 1, bias=False), nn.BatchNorm2d(1), nn.ReLU(inplace=True) ) self.target_feat = nn.Sequential( nn.AdaptiveMaxPool2d((60, 15)), nn.Conv2d(3, 1, 1, bias=False), nn.BatchNorm2d(1), nn.ReLU(inplace=True) ) self._patch_size = 30 _n_patches = (_context_reshape_size // self._patch_size) _nodes = (_n_patches * _n_patches) + 1 # extra node for the target _gat_in_feat = self._patch_size * self._patch_size self.gat = _GAT(num_feat=_gat_in_feat, num_hidd=128, num_class=256, dropout=0.5, num_heads=3, alpha=0.2) self.adj = torch.ones([_nodes, _nodes], dtype=torch.int32).to(device) def _generate_image_pataches(self, size, images): _channel_dim = images.size()[1] patches = images.unfold(1, _channel_dim, _channel_dim).unfold( 2, size, size).unfold(3, size, size) s_ = patches.size() # batch_size, noedes - 36, 00 patches = patches.reshape(s_[0], s_[1]*s_[2]*s_[3], s_[4]*s_[5]*s_[6]) return patches def forward(self, context, target): _batch = context.size()[0] context = self.context_pool(context) patched_context = self._generate_image_pataches( self._patch_size, context) target = self.target_feat(target) target = target.view(_batch, -1) target = target.unsqueeze(1) patched_context = torch.cat((patched_context, target), 1) patched_context = self.gat(patched_context, self.adj) patched_context = torch.mean(patched_context, 1) return patched_context
35.443609
101
0.604794
ac682a26d10895b705fcc00eb7a4ae7d356bb1dc
94
py
Python
skypy/cluster/__init__.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
1
2020-12-28T18:00:24.000Z
2020-12-28T18:00:24.000Z
skypy/cluster/__init__.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
2
2020-12-28T20:14:40.000Z
2020-12-28T21:49:27.000Z
skypy/cluster/__init__.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
null
null
null
""" This module contains methods that model the properties of galaxy cluster populations. """
18.8
72
0.776596
b0e7cff87d8a247f2001cc1033118817f6c37096
948
py
Python
rulesets/onboarding/on-gcs-csv-upload/__deploy__.py
airspot-dev/iot-demo
5f8c1877192043f4118b102ad1f71326d40de858
[ "Apache-2.0" ]
1
2021-06-22T10:26:54.000Z
2021-06-22T10:26:54.000Z
rulesets/onboarding/on-gcs-csv-upload/__deploy__.py
airspot-dev/iot-demo
5f8c1877192043f4118b102ad1f71326d40de858
[ "Apache-2.0" ]
null
null
null
rulesets/onboarding/on-gcs-csv-upload/__deploy__.py
airspot-dev/iot-demo
5f8c1877192043f4118b102ad1f71326d40de858
[ "Apache-2.0" ]
1
2021-09-20T11:56:50.000Z
2021-09-20T11:56:50.000Z
name = "on-gcs-csv-upload" add_files = ( "ruleset.py", ) add_modules = True # find modules in directory (folders having __init__.py file) and add them to container extra_commands = ( ("RUN", "pip install google-cloud-storage==1.20.0"), ("RUN", "pip install cloudstorage==0.10.0") ) labels = { "networking.knative.dev/visibility": "cluster-local", "krules.airspot.dev/type": "ruleset", "krules.airspot.dev/ruleset": name, "configs.krules.airspot.dev/google-cloud": "inject" } template_annotations = { "autoscaling.knative.dev/minScale": "1", } #service_account = "my-service-account" triggers = ( { "name": "on-gcs-csv-upload-errors", "broker": "default", "filter": { "attributes": { "type": "on-gcs-csv-upload-errors" } } }, ) triggers_default_broker = "default" ksvc_sink = "broker:default" ksvc_procevents_sink = "broker:procevents"
21.066667
107
0.627637
1fa5af8e9ca21cc243249470b10ea5d9ae849b01
4,779
py
Python
test/functional/tiertwo_masternode_ping.py
Simple-Software-Solutions/RBX-Core
8cf0dfda708233e080e8729cec0b5014218386e3
[ "MIT" ]
null
null
null
test/functional/tiertwo_masternode_ping.py
Simple-Software-Solutions/RBX-Core
8cf0dfda708233e080e8729cec0b5014218386e3
[ "MIT" ]
null
null
null
test/functional/tiertwo_masternode_ping.py
Simple-Software-Solutions/RBX-Core
8cf0dfda708233e080e8729cec0b5014218386e3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020 The PIVX Developers # Copyright (c) 2020 The Rubus Developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import RbxTestFramework from test_framework.util import ( assert_equal, assert_greater_than, Decimal, p2p_port, ) import os import time """ Test checking masternode ping thread Does not use functions of RbxTier2TestFramework as we don't want to send pings on demand. Here, instead, mocktime is disabled, and we just wait with time.sleep to verify that masternodes send pings correctly. """ class MasternodePingTest(RbxTestFramework): def set_test_params(self): self.setup_clean_chain = True # 0=miner 1=mn_owner 2=mn_remote self.num_nodes = 3 def run_test(self): miner = self.nodes[0] owner = self.nodes[1] remote = self.nodes[2] mnPrivkey = "9247iC59poZmqBYt9iDh9wDam6v9S1rW5XekjLGyPnDhrDkP4AK" self.log.info("generating 141 blocks...") miner.generate(141) self.sync_blocks() # Create collateral self.log.info("funding masternode controller...") masternodeAlias = "mnode" mnAddress = owner.getnewaddress(masternodeAlias) collateralTxId = miner.sendtoaddress(mnAddress, Decimal('10000')) miner.generate(2) self.sync_blocks() time.sleep(1) collateral_rawTx = owner.getrawtransaction(collateralTxId, 1) assert_equal(owner.getbalance(), Decimal('10000')) assert_greater_than(collateral_rawTx["confirmations"], 0) # Block time can be up to median time past +1. We might need to wait... wait_time = collateral_rawTx["time"] - int(time.time()) if wait_time > 0: self.log.info("Sleep %d seconds to catch up with the chain..." % wait_time) time.sleep(wait_time) # Setup controller self.log.info("controller setup...") o = owner.getmasternodeoutputs() assert_equal(len(o), 1) assert_equal(o[0]["txhash"], collateralTxId) vout = o[0]["outputidx"] self.log.info("collateral accepted for "+ masternodeAlias +". Updating masternode.conf...") confData = masternodeAlias + " 127.0.0.1:" + str(p2p_port(2)) + " " + \ str(mnPrivkey) + " " + str(collateralTxId) + " " + str(vout) destPath = os.path.join(self.options.tmpdir, "node1", "regtest", "masternode.conf") with open(destPath, "a+") as file_object: file_object.write("\n") file_object.write(confData) # Init remote self.log.info("initializing remote masternode...") remote.initmasternode(mnPrivkey, "127.0.0.1:" + str(p2p_port(2))) # sanity check, verify that we are not in IBD for i in range(0, len(self.nodes)): node = self.nodes[i] if (node.getblockchaininfo()['initial_block_downloading']): raise AssertionError("Error, node(%s) shouldn't be in IBD." % str(i)) # Wait until mnsync is complete (max 120 seconds) self.log.info("waiting to complete mnsync...") start_time = time.time() self.wait_until_mnsync_finished() self.log.info("MnSync completed in %d seconds" % (time.time() - start_time)) miner.generate(1) self.sync_blocks() time.sleep(1) # Send Start message self.log.info("sending masternode broadcast...") self.controller_start_masternode(owner, masternodeAlias) miner.generate(1) self.sync_blocks() time.sleep(1) # Wait until masternode is enabled everywhere (max 180 secs) self.log.info("waiting till masternode gets enabled...") start_time = time.time() time.sleep(5) self.wait_until_mn_enabled(collateralTxId, 180) self.log.info("Masternode enabled in %d seconds" % (time.time() - start_time)) self.log.info("Good. Masternode enabled") miner.generate(1) self.sync_blocks() time.sleep(1) last_seen = [self.get_mn_lastseen(node, collateralTxId) for node in self.nodes] self.log.info("Current lastseen: %s" % str(last_seen)) self.log.info("Waiting 2 * 25 seconds and check new lastseen...") time.sleep(50) new_last_seen = [self.get_mn_lastseen(node, collateralTxId) for node in self.nodes] self.log.info("New lastseen: %s" % str(new_last_seen)) for i in range(self.num_nodes): assert_greater_than(new_last_seen[i], last_seen[i]) self.log.info("All good.") if __name__ == '__main__': MasternodePingTest().main()
37.928571
99
0.644068
630ac008f07d95486834762ae3d04700f6629255
928
py
Python
listings/kafka_utils.py
fabiofumarola/scraper
d848f71c6c1b68c116fdbe63f9f9b2b3def87441
[ "Apache-2.0" ]
null
null
null
listings/kafka_utils.py
fabiofumarola/scraper
d848f71c6c1b68c116fdbe63f9f9b2b3def87441
[ "Apache-2.0" ]
3
2016-07-13T19:42:42.000Z
2016-08-17T13:15:55.000Z
listings/kafka_utils.py
fabiofumarola/scraper
d848f71c6c1b68c116fdbe63f9f9b2b3def87441
[ "Apache-2.0" ]
null
null
null
from kafka import KafkaConsumer, KafkaProducer import json class KafkaListing(object): def __init__(self, bootstrap_servers): self.bootstrap_servers = '127.0.0.1:9092' self.topic = 'raw_home_listings' def producer(self): return Producer(self.bootstrap_servers, self.topic) def consumer(self): consumer = KafkaConsumer(bootstrap_servers=self.bootstrap_servers) consumer.subscribe([self.topic]) return consumer class Producer(object): def __init__(self, bootstrap_servers, topic): self.bootstrap_servers = '127.0.0.1:9092' self.topic = 'raw_home_listings' self.producer = KafkaProducer(bootstrap_servers=bootstrap_servers) def send(self, record): key = bytes(record['src'] + ":" + record['id'], 'utf-8') value = json.dumps(record).encode('utf-8') return self.producer.send(self.topic, key=key, value=value)
32
74
0.679957
e48f21f1a166d8e46d0f930b40380f4a41595b3c
1,527
py
Python
appdev/package.py
timshannon/freehold
3d054738f9d2dcb91543ce2a369af647b910a621
[ "MIT" ]
25
2016-11-25T16:49:56.000Z
2022-02-20T20:13:31.000Z
appdev/package.py
fidget77/freehold
3d054738f9d2dcb91543ce2a369af647b910a621
[ "MIT" ]
2
2018-09-21T10:53:24.000Z
2019-11-25T14:09:43.000Z
appdev/package.py
fidget77/freehold
3d054738f9d2dcb91543ce2a369af647b910a621
[ "MIT" ]
7
2017-02-26T11:00:09.000Z
2021-01-08T10:46:19.000Z
#!/usr/bin/env python import sys import subprocess import os import shutil def package(app): if not isApp(app): return print "packaging " + app tmpDir = "."+app+"_tmp" #copy to temp folder shutil.copytree(app, tmpDir) os.chdir(tmpDir) if not makeFolder("./"): #minify minifyFolder("./") #zip subprocess.call(["zip", "-r", "../../application/available/"+app+".zip", ".", "-x", ".*"]) os.chdir("..") #cleanup temp folder shutil.rmtree(tmpDir) def isApp(folder): for path, _, files in os.walk(folder): for f in files: if f == "app.json": return True return False def makeFolder(folder): for path, _, files in os.walk(folder): for f in files: if f == "makefile": subprocess.call(["make"]) return True def minifyFolder(folder): for path, _, files in os.walk(folder): for f in files: _, ext = os.path.splitext(f) if ext == ".js": minify(os.path.join(path, f)) def minify(filename): print "minify file " + filename subprocess.call(["uglify", filename, "-c", "-o", filename]) if len(sys.argv) > 1: #package passed in app app = sys.argv[1] if app.endswith("/"): app = app.rstrip("/") package(app) else: #package all apps in appdev dir apps = [f for f in os.listdir("./") if not os.path.isfile(f)] for app in apps: package(app)
21.507042
94
0.54093
0b9b3f881fdce1c6dd12e738e0a95d2ddd264610
929
py
Python
nipype/interfaces/nipy/tests/test_auto_Trim.py
nicholsn/nipype
6601b00aac39d17bb9fb3a6801f5a740a6ebb1e3
[ "BSD-3-Clause" ]
1
2018-04-18T12:13:37.000Z
2018-04-18T12:13:37.000Z
nipype/interfaces/nipy/tests/test_auto_Trim.py
ito-takuya/nipype
9099a5809487b55868cdec82a719030419cbd6ba
[ "BSD-3-Clause" ]
null
null
null
nipype/interfaces/nipy/tests/test_auto_Trim.py
ito-takuya/nipype
9099a5809487b55868cdec82a719030419cbd6ba
[ "BSD-3-Clause" ]
1
2021-09-08T14:31:47.000Z
2021-09-08T14:31:47.000Z
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from nipype.testing import assert_equal from nipype.interfaces.nipy.preprocess import Trim def test_Trim_inputs(): input_map = dict(begin_index=dict(usedefault=True, ), end_index=dict(usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), in_file=dict(mandatory=True, ), out_file=dict(), suffix=dict(usedefault=True, ), ) inputs = Trim.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value def test_Trim_outputs(): output_map = dict(out_file=dict(), ) outputs = Trim.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
27.323529
78
0.67169
9fb3d2a9aa0ee1d4a8260205d6660497cd9a1f92
517
py
Python
Bit Manipulation/power_of_two.py
lim1202/LeetCode
931c8d5a8d80206fb329dc7792416d45804d2ba3
[ "MIT" ]
null
null
null
Bit Manipulation/power_of_two.py
lim1202/LeetCode
931c8d5a8d80206fb329dc7792416d45804d2ba3
[ "MIT" ]
null
null
null
Bit Manipulation/power_of_two.py
lim1202/LeetCode
931c8d5a8d80206fb329dc7792416d45804d2ba3
[ "MIT" ]
null
null
null
# Given an integer, write a function to determine if it is a power of two. def is_power_of_two(num): if num < 0: return False hasOne = False while num > 0: if num & 1: if hasOne: return False else: hasOne = True num >>= 1 return hasOne if __name__ == '__main__': nums = [2, 3, 4, 8, 12, 16, 24, 32] for num in nums: print('Is', num, 'a power of two?', is_power_of_two(num))
20.68
75
0.491296
8583d925794a025ba0a55447f501f935910e8319
6,484
py
Python
google/cloud/container_v1beta1/types/__init__.py
donmccasland/python-container
5053428f63792fa822ae28f34c0e35150794d153
[ "Apache-2.0" ]
null
null
null
google/cloud/container_v1beta1/types/__init__.py
donmccasland/python-container
5053428f63792fa822ae28f34c0e35150794d153
[ "Apache-2.0" ]
null
null
null
google/cloud/container_v1beta1/types/__init__.py
donmccasland/python-container
5053428f63792fa822ae28f34c0e35150794d153
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .cluster_service import ( AcceleratorConfig, AddonsConfig, AuthenticatorGroupsConfig, AutoprovisioningNodePoolDefaults, AutoUpgradeOptions, BinaryAuthorization, CancelOperationRequest, ClientCertificateConfig, CloudRunConfig, Cluster, ClusterAutoscaling, ClusterTelemetry, ClusterUpdate, CompleteIPRotationRequest, ConfidentialNodes, ConfigConnectorConfig, CreateClusterRequest, CreateNodePoolRequest, DailyMaintenanceWindow, DatabaseEncryption, DefaultSnatStatus, DeleteClusterRequest, DeleteNodePoolRequest, DnsCacheConfig, EphemeralStorageConfig, GcePersistentDiskCsiDriverConfig, GetClusterRequest, GetJSONWebKeysRequest, GetJSONWebKeysResponse, GetNodePoolRequest, GetOpenIDConfigRequest, GetOpenIDConfigResponse, GetOperationRequest, GetServerConfigRequest, HorizontalPodAutoscaling, HttpLoadBalancing, IntraNodeVisibilityConfig, IPAllocationPolicy, IstioConfig, Jwk, KalmConfig, KubernetesDashboard, LegacyAbac, LinuxNodeConfig, ListClustersRequest, ListClustersResponse, ListLocationsRequest, ListLocationsResponse, ListNodePoolsRequest, ListNodePoolsResponse, ListOperationsRequest, ListOperationsResponse, ListUsableSubnetworksRequest, ListUsableSubnetworksResponse, Location, MaintenancePolicy, MaintenanceWindow, Master, MasterAuth, MasterAuthorizedNetworksConfig, MaxPodsConstraint, NetworkConfig, NetworkPolicy, NetworkPolicyConfig, NodeConfig, NodeKubeletConfig, NodeManagement, NodePool, NodePoolAutoscaling, NodeTaint, NotificationConfig, Operation, OperationProgress, PodSecurityPolicyConfig, PrivateClusterConfig, PrivateClusterMasterGlobalAccessConfig, RecurringTimeWindow, ReleaseChannel, ReservationAffinity, ResourceLimit, ResourceUsageExportConfig, RollbackNodePoolUpgradeRequest, SandboxConfig, ServerConfig, SetAddonsConfigRequest, SetLabelsRequest, SetLegacyAbacRequest, SetLocationsRequest, SetLoggingServiceRequest, SetMaintenancePolicyRequest, SetMasterAuthRequest, SetMonitoringServiceRequest, SetNetworkPolicyRequest, SetNodePoolAutoscalingRequest, SetNodePoolManagementRequest, SetNodePoolSizeRequest, ShieldedInstanceConfig, ShieldedNodes, StartIPRotationRequest, StatusCondition, TimeWindow, TpuConfig, UpdateClusterRequest, UpdateMasterRequest, UpdateNodePoolRequest, UpgradeEvent, UsableSubnetwork, UsableSubnetworkSecondaryRange, VerticalPodAutoscaling, WorkloadIdentityConfig, WorkloadMetadataConfig, DatapathProvider, UpgradeResourceType, ) __all__ = ( "AcceleratorConfig", "AddonsConfig", "AuthenticatorGroupsConfig", "AutoprovisioningNodePoolDefaults", "AutoUpgradeOptions", "BinaryAuthorization", "CancelOperationRequest", "ClientCertificateConfig", "CloudRunConfig", "Cluster", "ClusterAutoscaling", "ClusterTelemetry", "ClusterUpdate", "CompleteIPRotationRequest", "ConfidentialNodes", "ConfigConnectorConfig", "CreateClusterRequest", "CreateNodePoolRequest", "DailyMaintenanceWindow", "DatabaseEncryption", "DefaultSnatStatus", "DeleteClusterRequest", "DeleteNodePoolRequest", "DnsCacheConfig", "EphemeralStorageConfig", "GcePersistentDiskCsiDriverConfig", "GetClusterRequest", "GetJSONWebKeysRequest", "GetJSONWebKeysResponse", "GetNodePoolRequest", "GetOpenIDConfigRequest", "GetOpenIDConfigResponse", "GetOperationRequest", "GetServerConfigRequest", "HorizontalPodAutoscaling", "HttpLoadBalancing", "IntraNodeVisibilityConfig", "IPAllocationPolicy", "IstioConfig", "Jwk", "KalmConfig", "KubernetesDashboard", "LegacyAbac", "LinuxNodeConfig", "ListClustersRequest", "ListClustersResponse", "ListLocationsRequest", "ListLocationsResponse", "ListNodePoolsRequest", "ListNodePoolsResponse", "ListOperationsRequest", "ListOperationsResponse", "ListUsableSubnetworksRequest", "ListUsableSubnetworksResponse", "Location", "MaintenancePolicy", "MaintenanceWindow", "Master", "MasterAuth", "MasterAuthorizedNetworksConfig", "MaxPodsConstraint", "NetworkConfig", "NetworkPolicy", "NetworkPolicyConfig", "NodeConfig", "NodeKubeletConfig", "NodeManagement", "NodePool", "NodePoolAutoscaling", "NodeTaint", "NotificationConfig", "Operation", "OperationProgress", "PodSecurityPolicyConfig", "PrivateClusterConfig", "PrivateClusterMasterGlobalAccessConfig", "RecurringTimeWindow", "ReleaseChannel", "ReservationAffinity", "ResourceLimit", "ResourceUsageExportConfig", "RollbackNodePoolUpgradeRequest", "SandboxConfig", "ServerConfig", "SetAddonsConfigRequest", "SetLabelsRequest", "SetLegacyAbacRequest", "SetLocationsRequest", "SetLoggingServiceRequest", "SetMaintenancePolicyRequest", "SetMasterAuthRequest", "SetMonitoringServiceRequest", "SetNetworkPolicyRequest", "SetNodePoolAutoscalingRequest", "SetNodePoolManagementRequest", "SetNodePoolSizeRequest", "ShieldedInstanceConfig", "ShieldedNodes", "StartIPRotationRequest", "StatusCondition", "TimeWindow", "TpuConfig", "UpdateClusterRequest", "UpdateMasterRequest", "UpdateNodePoolRequest", "UpgradeEvent", "UsableSubnetwork", "UsableSubnetworkSecondaryRange", "VerticalPodAutoscaling", "WorkloadIdentityConfig", "WorkloadMetadataConfig", "DatapathProvider", "UpgradeResourceType", )
26.251012
74
0.730105
4b2c09b10701679df9e5486b7df55a879935b63f
2,595
py
Python
pychron/tx/factories.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/tx/factories.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/tx/factories.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2015 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # ============= standard library imports ======================== from __future__ import absolute_import import io import os from twisted.internet.protocol import Factory from twisted.logger import Logger from twisted.logger import jsonFileLogObserver from pychron.tx.protocols.furnace import FurnaceProtocol from pychron.tx.protocols.laser import LaserProtocol from pychron.tx.protocols.valve import ValveProtocol class LaserFactory(Factory): _name = None def __init__(self, application): self._app = application def buildProtocol(self, addr): if self._name is None: raise NotImplementedError return LaserProtocol(self._app, self._name, addr, None) class FusionsCO2Factory(LaserFactory): _name = "FusionsCO2" class FusionsDiodeFactory(LaserFactory): _name = "FusionsDiode" class FusionsUVFactory(LaserFactory): _name = "FusionsUV" class OsTechDiodeFactory(LaserFactory): _name = "OsTechDiode" from pychron.paths import paths path = os.path.join(paths.log_dir, "pps.log.json") logger = Logger(observer=jsonFileLogObserver(io.open(path, "w"))) from pychron.paths import paths path = os.path.join(paths.log_dir, "pps.log.json") logger = Logger(observer=jsonFileLogObserver(io.open(path, "w"))) class BaseFactory(Factory): protocol_klass = None def __init__(self, application=None): self._app = application def buildProtocol(self, addr): if self.protocol_klass is None: raise NotImplementedError return self.protocol_klass(self._app, addr, logger) class ValveFactory(BaseFactory): protocol_klass = ValveProtocol class FurnaceFactory(BaseFactory): protocol_klass = FurnaceProtocol # ============= EOF =============================================
27.315789
81
0.663584
696e2cdc85bab58e2e82c4ea0107a83ab9a710e5
325
py
Python
sorting/selectionSort.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
4
2021-10-01T13:22:20.000Z
2021-10-04T11:39:25.000Z
sorting/selectionSort.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
2
2021-10-11T16:56:03.000Z
2021-10-30T14:25:25.000Z
sorting/selectionSort.py
MayankShrivastava17/algorithms-python-hacktoberfest-2021
bfb06448229c6a00f81f126e62f212205ce7d7e7
[ "MIT" ]
10
2021-10-11T12:28:48.000Z
2021-10-31T16:37:02.000Z
import sys n = int(input("Enter the size of array : ")) A = list(map(int, input("Enter the array elements :\n").strip().split()))[:n] for i in range(len(A)): min_idx = i for j in range(i+1, len(A)): if A[min_idx] > A[j]: min_idx = j A[i], A[min_idx] = A[min_idx], A[i] print ("Sorted array") print(A)
14.130435
77
0.578462
26e9972bb1654c6e9cbd73a776be08b3044e2b7c
5,594
py
Python
bamboo/unit_tests/test_unit_layer_softsign.py
jonesholger/lbann
3214f189a1438565d695542e076c4fa8e7332d34
[ "Apache-2.0" ]
194
2016-07-19T15:40:21.000Z
2022-03-19T08:06:10.000Z
bamboo/unit_tests/test_unit_layer_softsign.py
jonesholger/lbann
3214f189a1438565d695542e076c4fa8e7332d34
[ "Apache-2.0" ]
1,021
2016-07-19T12:56:31.000Z
2022-03-29T00:41:47.000Z
bamboo/unit_tests/test_unit_layer_softsign.py
jonesholger/lbann
3214f189a1438565d695542e076c4fa8e7332d34
[ "Apache-2.0" ]
74
2016-07-28T18:24:00.000Z
2022-01-24T19:41:04.000Z
import functools import operator import os import os.path import sys import numpy as np # Bamboo utilities current_file = os.path.realpath(__file__) current_dir = os.path.dirname(current_file) sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python')) import tools # ============================================== # Objects for Python data reader # ============================================== # Note: The Python data reader imports this file as a module and calls # the functions below to ingest data. # Data np.random.seed(2019102414) _num_samples = 11 _sample_size = 7 _samples = np.random.normal(size=(_num_samples,_sample_size)).astype(np.float32) # Sample access functions def get_sample(index): return _samples[index,:] def num_samples(): return _num_samples def sample_dims(): return (_sample_size,) # ============================================== # Setup LBANN experiment # ============================================== def setup_experiment(lbann): """Construct LBANN experiment. Args: lbann (module): Module for LBANN Python frontend """ mini_batch_size = num_samples() // 2 trainer = lbann.Trainer(mini_batch_size) model = construct_model(lbann) data_reader = construct_data_reader(lbann) optimizer = lbann.NoOptimizer() return trainer, model, data_reader, optimizer def construct_model(lbann): """Construct LBANN model. Args: lbann (module): Module for LBANN Python frontend """ # Input data # Note: Sum with a weights layer so that gradient checking will # verify that error signals are correct. x_weights = lbann.Weights(optimizer=lbann.SGD(), initializer=lbann.ConstantInitializer(value=0.0), name='input_weights') x = lbann.Sum(lbann.Reshape(lbann.Input(data_field='samples'), dims=tools.str_list(_sample_size)), lbann.WeightsLayer(weights=x_weights, dims=tools.str_list(_sample_size))) x_lbann = x # Objects for LBANN model obj = [] metrics = [] callbacks = [] # ------------------------------------------ # Data-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.Softsign(x, data_layout='data_parallel') z = lbann.L2Norm2(y) obj.append(z) metrics.append(lbann.Metric(z, name='data-parallel layout')) # NumPy implementation vals = [] for i in range(num_samples()): x = get_sample(i).astype(np.float64) y = x / (1 + np.abs(x)) z = tools.numpy_l2norm2(y) vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Model-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.Softsign(x, data_layout='model_parallel') z = lbann.L2Norm2(y) obj.append(z) metrics.append(lbann.Metric(z, name='model-parallel layout')) # NumPy implementation vals = [] for i in range(num_samples()): x = get_sample(i).astype(np.float64) y = x / (1 + np.abs(x)) z = tools.numpy_l2norm2(y) vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Gradient checking # ------------------------------------------ callbacks.append(lbann.CallbackCheckGradients(error_on_failure=True)) # ------------------------------------------ # Construct model # ------------------------------------------ num_epochs = 0 return lbann.Model(num_epochs, layers=lbann.traverse_layer_graph(x_lbann), objective_function=obj, metrics=metrics, callbacks=callbacks) def construct_data_reader(lbann): """Construct Protobuf message for Python data reader. The Python data reader will import the current Python file to access the sample access functions. Args: lbann (module): Module for LBANN Python frontend """ # Note: The training data reader should be removed when # https://github.com/LLNL/lbann/issues/1098 is resolved. message = lbann.reader_pb2.DataReader() message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'train' ) ]) message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'test' ) ]) return message # ============================================== # Setup PyTest # ============================================== # Create test functions that can interact with PyTest for _test_func in tools.create_tests(setup_experiment, __file__): globals()[_test_func.__name__] = _test_func
29.287958
80
0.555953
ffe182532e59429cdd3fa4496f6bb231ea9a05bf
18,092
py
Python
data/rainbow/script1/20210217-121832/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
1
2020-06-14T13:50:28.000Z
2020-06-14T13:50:28.000Z
data/rainbow/script1/20210217-121832/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
data/rainbow/script1/20210217-121832/script1.py
lbaiao/sys-simulator-2
94f00d43309fe7b56dac5099bd4024695ba317b6
[ "MIT" ]
null
null
null
# Similar to script . # Uses CompleteEnvironment10dB # Centralized Learning-Distributed Execution # Simulates many times, for different number of agents, and take the averages. # There are different channels to the BS and to the devices. # Multiple episodes convergence. Everything is in dB. # One NN is trained and copied to each agent. from shutil import copyfile from sys_simulator.general import make_dir_timestamp, save_with_pickle import matplotlib.pyplot as plt from sys_simulator.plots import plot_positions_actions_pie from time import time from sys_simulator.general import db_to_power, power_to_db from sys_simulator.channels import BANChannel, UrbanMacroNLOSWinnerChannel from sys_simulator import general as gen from sys_simulator.q_learning.environments.completeEnvironment10dB \ import CompleteEnvironment10dB from sys_simulator.dqn.agents.dqnAgent import ExternalDQNAgent from sys_simulator.dqn.externalDQNFramework \ import ExternalDQNFramework, RainbowFramework from sys_simulator.parameters.parameters import \ EnvironmentParameters, TrainingParameters, DQNAgentParameters from sys_simulator.q_learning.rewards import dis_reward_tensor_db from copy import deepcopy import torch import numpy as np import pickle n_mues = 1 # number of mues n_d2d = 2 # number of d2d pairs n_rb = n_mues # number of RBs carrier_frequency = 2.4 # carrier frequency in GHz bs_radius = 500 # bs radius in m rb_bandwidth = 180*1e3 # rb bandwidth in Hz d2d_pair_distance = 50 # d2d pair distance in m device_height = 1.5 # mobile devices height in m bs_height = 25 # BS antenna height in m p_max = 40 # max tx power in dBm noise_power = -116 # noise power per RB in dBm bs_gain = 17 # macro bs antenna gain in dBi user_gain = 4 # user antenna gain in dBi sinr_threshold_train = 6 # mue sinr threshold in dB for training mue_margin = 200 # mue margin in dB # conversions from dBm to dB p_max = p_max - 30 noise_power = noise_power - 30 # channel parameters CHANNEL_RND = True # q-learning parameters # training NUMBER = 1 REWARD_FUNCTION = 'classic' # exec params STEPS_PER_EPISODE = 25 TEST_STEPS_PER_EPISODE = 25 MAX_NUM_EPISODES = 1000 # medium training ITERATIONS_PER_NUM_AGENTS = 100 EVAL_EVERY = 150 EVAL_NUM_EPISODES = 100 EVAL_STEPS_PER_EPISODE = 5 # debug params # STEPS_PER_EPISODE = 2 # TEST_STEPS_PER_EPISODE = 2 # MAX_NUM_EPISODES = 10 # ITERATIONS_PER_NUM_AGENTS = 10 # EVAL_EVERY = 1000 # EVAL_NUM_EPISODES = 2 # EVAL_STEPS_PER_EPISODE = 2 # common EPSILON_INITIAL = 1 EPSILON_MIN = .05 # EPSILON_DECAY = .9*1e-4 # medium training EPSILON_DECAY = 1.3/(MAX_NUM_EPISODES*STEPS_PER_EPISODE) # medium training PRIO_BETA_ITS = int(.8*MAX_NUM_EPISODES*STEPS_PER_EPISODE) GAMMA = 0.9 # Discount factor C = 8 # C constant for the improved reward function TARGET_UPDATE = 20 REPLAY_MEMORY_SIZE = 100000 BATCH_SIZE = 512 HIDDEN_SIZE = 128 NUM_HIDDEN_LAYERS = 1 LEARNING_RATE = 1e-2 REWARD_PENALTY = 1.5 ENVIRONMENT_MEMORY = 10 MAX_NUMBER_OF_AGENTS = 5 max_d2d = MAX_NUMBER_OF_AGENTS range_n_d2d = range(1, max_d2d + 1, 1) # more parameters # linear discretization # actions = power_to_db(np.linspace( # db_to_power(p_max-20), db_to_power(p_max-10), 10 # )) # db discretization actions = power_to_db( np.linspace( 1e-6, db_to_power(p_max-10), 10 ) ) env_params = EnvironmentParameters( rb_bandwidth, d2d_pair_distance, p_max, noise_power, bs_gain, user_gain, sinr_threshold_train, n_mues, n_d2d, n_rb, bs_radius, c_param=C, mue_margin=mue_margin ) params = TrainingParameters(MAX_NUM_EPISODES, STEPS_PER_EPISODE) agent_params = DQNAgentParameters( EPSILON_MIN, EPSILON_DECAY, EPSILON_INITIAL, REPLAY_MEMORY_SIZE, BATCH_SIZE, GAMMA ) reward_function = dis_reward_tensor_db channel_to_devices = BANChannel(rnd=CHANNEL_RND) channel_to_bs = UrbanMacroNLOSWinnerChannel( rnd=CHANNEL_RND, f_c=carrier_frequency, h_bs=bs_height, h_ms=device_height ) ref_env = CompleteEnvironment10dB( env_params, channel_to_bs, channel_to_devices, reward_penalty=REWARD_PENALTY, memory=ENVIRONMENT_MEMORY, bs_height=bs_height, reward_function=REWARD_FUNCTION ) # foo env and foo agents stuff foo_env = deepcopy(ref_env) foo_agents = [ExternalDQNAgent(agent_params, [1]) for _ in range(4)] foo_env.build_scenario(foo_agents) _, _ = foo_env.step(foo_agents) env_state_size = foo_env.get_state_size(foo_agents[0]) def train(start): global actions framework = RainbowFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, PRIO_BETA_ITS, NUM_HIDDEN_LAYERS, LEARNING_RATE, ) best_reward = float('-inf') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() # aux_range = range(max_d2d+1)[1:] epsilon = agent_params.start_epsilon for episode in range(MAX_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) now = (time() - start) / 60 print( 'Training. ' + f'Number of agents: {n_agents}. ' + f'Episode: {episode}/{MAX_NUM_EPISODES-1}. ' + f'Epsilon: {epsilon}. ' + f'Prio_Beta: {framework.replay_memory._beta}. ' + f'Elapsed time: {now} minutes.' ) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx for a in agents: a.set_epsilon(epsilon) env.build_scenario(agents) obs, _ = env.step(agents) total_reward = 0.0 i = 0 bag = list() while True: if i >= params.steps_per_episode: break else: past_actions = torch.zeros([len(agents)], device=device) for j, agent in enumerate(agents): agent.get_action(framework, obs[j].float()) past_actions[j] = agent.action_index # # debugging # if len(agents) == 2: # print('debugging') # aux1 = agents[0].action_index == 9 # aux2 = agents[1].action_index == 5 # aux = [aux1, aux2] # if np.mean(aux) == 1: # print('debugging') next_obs, rewards = env.step(agents) i += 1 for j, agent in enumerate(agents): framework.replay_memory.push( obs[j].cpu(), past_actions[j].cpu(), rewards[j], next_obs[j].cpu(), 0 ) framework.learn() total_reward = np.sum(rewards) bag.append(total_reward.item()) obs = next_obs if i % TARGET_UPDATE == 0: framework.target_net.load_state_dict( framework.policy_net.state_dict() ) if total_reward > best_reward: best_reward = total_reward epsilon = agents[0].epsilon if episode % EVAL_EVERY == 0: r, d_speff, m_speff = in_training_test(framework) rewards_bag.append(r) # average d2d spectral eff d2d_spectral_eff_bag.append(d_speff) # mue spectral eff mue_spectral_eff_bag.append(m_speff) # save stuff filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' torch.save(framework.policy_net.state_dict(), data_path) # Return the trained policy return framework, rewards_bag, d2d_spectral_eff_bag, mue_spectral_eff_bag, epsilon # noqa def test(n_agents, test_env, framework): framework.policy_net.eval() mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # jain_index = [list() for _ in range(max_d2d+1)] bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.build_scenario(agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data return mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards def in_training_test(framework: ExternalDQNFramework): mue_spectral_eff_bag = list() d2d_spectral_eff_bag = list() rewards_bag = list() for _ in range(EVAL_NUM_EPISODES): env = deepcopy(ref_env) n_agents = np.random.choice(range_n_d2d) agents = [ExternalDQNAgent(agent_params, actions) for _ in range(n_agents)] # 1 agent per d2d tx env.build_scenario(agents) obs, _ = env.step(agents) for _ in range(EVAL_STEPS_PER_EPISODE): for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) next_obs, _ = env.step(agents) obs = next_obs # mue spectral eff mue_spectral_eff_bag.append(env.mue_spectral_eff) # average d2d spectral eff d2d_spectral_eff_bag.append(env.d2d_spectral_eff) rewards_bag.append(env.reward) mean_mue_speff = np.mean(mue_spectral_eff_bag) mean_d2d_speff = np.mean(d2d_spectral_eff_bag) mean_reward = np.mean(rewards_bag) return mean_reward, mean_d2d_speff, mean_mue_speff def run(framework=None): mue_sucess_rate_total = [] mue_spectral_effs_total = [] d2d_spectral_effs_total = [] rewards_total = [] start = time() r, d_speffs, m_speffs, epsilon = 0, 0, 0, 1 if framework is None: framework, r, d_speffs, m_speffs, epsilon = train(start) for n in range(1, MAX_NUMBER_OF_AGENTS+1, 1): mue_suc_rates = [] mue_speff_rates = [] d2d_speff_rates = [] rews = [] for it in range(ITERATIONS_PER_NUM_AGENTS): now = (time() - start) / 60 print( 'Testing. ' + f'Number of agents: {n}/{MAX_NUMBER_OF_AGENTS}. ' + f'Iteration: {it}/{ITERATIONS_PER_NUM_AGENTS-1}. ' + f'Elapsed time: {now} minutes.' ) test_env = deepcopy(ref_env) mue_success_rate, mue_spectral_effs, d2d_spectral_effs, rewards = \ test(n, test_env, framework) mue_suc_rates.append(mue_success_rate) mue_speff_rates.append(mue_spectral_effs) d2d_speff_rates.append(d2d_spectral_effs) rews.append(rewards) mue_sucess_rate_total.append(mue_suc_rates) mue_spectral_effs_total.append(mue_speff_rates) d2d_spectral_effs_total.append(d2d_speff_rates) rewards_total.append(rews) # save stuff now = (time() - start) / 60 filename = gen.path_leaf(__file__) filename = filename.split('.')[0] dir_path = f'data/rainbow/{filename}' data_path = make_dir_timestamp(dir_path) data_file_path = f'{data_path}/log.pickle' data = { 'mue_success_rate': mue_sucess_rate_total, 'd2d_speffs': d2d_spectral_effs_total, 'mue_speffs': mue_spectral_effs_total, 'rewards': rewards_total, 'mue_sinr_threshold': sinr_threshold_train, 'elapsed_time': now, 'training_rewards': r, 'training_d2d_speffs': d_speffs, 'training_mue_speffs': m_speffs, 'eval_every': EVAL_EVERY, 'final_epsilon': epsilon, } save_with_pickle(data, data_file_path) copyfile(__file__, f'{data_path}/{filename}.py') print(f'done. Elapsed time: {now} minutes.') def run_test(): filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' framework = torch.load(data_path) run(framework) def test_exec(): # environment test_env = deepcopy(ref_env) # load framework framework = ExternalDQNFramework( agent_params, env_state_size, len(actions), HIDDEN_SIZE, NUM_HIDDEN_LAYERS, LEARNING_RATE ) filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'models/dql/{filename}.pt' state_dict = torch.load(data_path) framework.policy_net.load_state_dict(state_dict) framework.policy_net.eval() # simulation stuff mue_spectral_effs = [] d2d_spectral_effs = [] rewards_bag = [] # devices positions pairs_positions = [ ((-400, 0, device_height), (-450, 0, device_height)), ((100, 0, device_height), (150, 0, device_height)), ((225, 225, device_height), (275, 225, device_height)), ((55, -55, device_height), (55, -5, device_height)), ] mue_position = (0, 200, device_height) # jain_index = [list() for _ in range(max_d2d+1)] n_agents = len(pairs_positions) bag = list() agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx test_env.set_scenario(pairs_positions, mue_position, agents) obs, _ = test_env.step(agents) total_reward = 0.0 i = 0 while True: actions_index = list() for j, agent in enumerate(agents): aux = agent.act(framework, obs[j].float()).max(1) agent.set_action(aux[1].long(), agent.actions[aux[1].item()]) bag.append(aux[1].item()) actions_index.append(aux[1].item()) next_obs, rewards = test_env.step(agents) obs = next_obs total_reward = sum(rewards) # saving stuff rewards_bag.append(total_reward) mue_spectral_effs.append(test_env.mue_spectral_eff.item()) d2d_spectral_effs.append(test_env.d2d_spectral_eff.item()) i += 1 if i >= TEST_STEPS_PER_EPISODE: break d2d_txs, d2d_rxs = zip(*test_env.d2d_pairs) # D2D interference on the MUE, in dB d2d_interferences = np.array([ d.caused_mue_interference for d in d2d_txs ]) d2d_interferences_mag = db_to_power(d2d_interferences) d2d_total_interference = np.sum(d2d_interferences_mag) percentage_interferences = d2d_interferences_mag / d2d_total_interference interferences, tx_labels, rx_labels = calculate_interferences(test_env) if d2d_total_interference != 0: plot_positions_actions_pie( test_env.bs, test_env.mue, d2d_txs, d2d_rxs, actions_index, percentage_interferences, test_env.mue.sinr > sinr_threshold_train, sinr_threshold_train, test_env.reward, interferences, tx_labels, rx_labels ) # jain_index[n_agents].append(gen.jain_index(test_env.sinr_d2ds)) mue_success_rate = np.mean( np.array(mue_spectral_effs) > np.log2( 1 + db_to_power(sinr_threshold_train) ) ) # jain_index_avg = list() # for i, j in enumerate(jain_index): # jain_index_avg.append(np.average(j)) # save data filename = gen.path_leaf(__file__) filename = filename.split('.')[0] data_path = f'data/rainbow/{filename}_exec.pickle' data = { 'd2d_speffs_avg_total': d2d_spectral_effs, 'mue_success_rate': mue_success_rate, 'chosen_actions': bag, 'd2d_speffs': d2d_spectral_effs, 'mue_speffs': mue_spectral_effs, 'rewards': rewards_bag, 'mue_sinr_threshold': sinr_threshold_train, } with open(data_path, 'wb') as file: pickle.dump(data, file) # plot print_stuff(actions, test_env) plt.show() def calculate_interferences(env: CompleteEnvironment10dB): bs = env.bs mue = env.mue d2d_pairs = env.d2d_pairs txs = [mue] txs += [p[0] for p in d2d_pairs] rxs = [bs] rxs += [p[1] for p in d2d_pairs] interferences = np.zeros((len(txs), len(rxs))) for i, tx in enumerate(txs): for j, (rx, interfered) in enumerate(zip(rxs, txs)): if tx == interfered: interf = tx.power_at_receiver elif tx == mue: interf = interfered.received_mue_interference elif rx == bs: interf = tx.caused_mue_interference else: interf = [ power_to_db(i[1]) for i in interfered.interferences if i[0] == tx.id ][0] interferences[i][j] = interf tx_labels = [d.id for d in txs] rx_labels = [d.id for d in rxs] return interferences, tx_labels, rx_labels def print_stuff(actions, env: CompleteEnvironment10dB): actions = [f'{i:.2f}' for i in actions] sinr_d2ds = [f'{d[0].sinr:.2f}' for d in env.d2d_pairs] print(f'MUE Tx Power [dBW]: {env.mue.tx_power:.2f}') print(f'D2D Power levels [dBW]: {actions}') print(f'D2D SINR [dB]: {sinr_d2ds}') print(f'D2D Spectral Efficiencies: {env.d2d_spectral_eff}') if __name__ == '__main__': run()
36.184
94
0.644097
f50031cd1c35db6c3a55a9851b43fb57241070cc
69,583
py
Python
tensorflow/python/keras/layers/recurrent_v2.py
where-is-brett/tensorflow
5da8599b2cf9edfb9fac4431c705501bf7ceccd8
[ "Apache-2.0" ]
50
2020-03-15T01:04:36.000Z
2021-11-21T23:25:44.000Z
tensorflow/python/keras/layers/recurrent_v2.py
where-is-brett/tensorflow
5da8599b2cf9edfb9fac4431c705501bf7ceccd8
[ "Apache-2.0" ]
47
2020-05-15T11:30:04.000Z
2021-08-11T16:51:08.000Z
tensorflow/python/keras/layers/recurrent_v2.py
where-is-brett/tensorflow
5da8599b2cf9edfb9fac4431c705501bf7ceccd8
[ "Apache-2.0" ]
66
2020-05-15T10:05:12.000Z
2022-02-14T07:28:18.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Recurrent layers for TF 2.0. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import uuid from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import device from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.keras import activations from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine.input_spec import InputSpec from tensorflow.python.keras.layers import recurrent from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_cudnn_rnn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.platform import build_info from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export # The following string constants are used by Defun approach for unified backend # of LSTM and GRU. _FUNCTION_API_NAME_ATTRIBUTE = 'api_implements' _FUNCTION_DEVICE_ATTRIBUTE = 'api_preferred_device' _CPU_DEVICE_NAME = 'CPU' _GPU_DEVICE_NAME = 'GPU' # The following number constants are used to represent the runtime of the defun # backend function. Since the CPU/GPU implementation are mathematically same, we # need some signal for the function to indicate which function is executed. This # is for testing purpose to verify the correctness of swapping backend function. _RUNTIME_UNKNOWN = 0 _RUNTIME_CPU = 1 _RUNTIME_GPU = 2 _CUDNN_AVAILABLE_MSG = 'Layer %s will use cuDNN kernel when run on GPU.' _CUDNN_NOT_AVAILABLE_MSG = ('Layer %s will not use cuDNN kernel since it ' 'doesn\'t meet the cuDNN kernel criteria. It will ' 'use generic GPU kernel as fallback when running ' 'on GPU') @keras_export('keras.layers.GRUCell', v1=[]) class GRUCell(recurrent.GRUCell): """Cell class for the GRU layer. See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) for details about the usage of RNN API. This class processes one step within the whole time sequence input, whereas `tf.keras.layer.GRU` processes the whole sequence. For example: >>> inputs = tf.random.normal([32, 10, 8]) >>> rnn = tf.keras.layers.RNN(tf.keras.layers.GRUCell(4)) >>> output = rnn(inputs) >>> print(output.shape) (32, 4) >>> rnn = tf.keras.layers.RNN( ... tf.keras.layers.GRUCell(4), ... return_sequences=True, ... return_state=True) >>> whole_sequence_output, final_state = rnn(inputs) >>> print(whole_sequence_output.shape) (32, 10, 4) >>> print(final_state.shape) (32, 4) Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`. bias_initializer: Initializer for the bias vector. Default: `zeros`. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 (default) will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Default: 2. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before", True = "after" (default and CuDNN compatible). Call arguments: inputs: A 2D tensor, with shape of `[batch, feature]`. states: A 2D tensor with shape of `[batch, units]`, which is the state from the previous time step. For timestep 0, the initial state provided by user will be feed to cell. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, reset_after=True, **kwargs): super(GRUCell, self).__init__( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, reset_after=reset_after, **kwargs) @keras_export('keras.layers.GRU', v1=[]) class GRU(recurrent.DropoutRNNCellMixin, recurrent.GRU): """Gated Recurrent Unit - Cho et al. 2014. See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) for details about the usage of RNN API. Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or pure-TensorFlow) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the CuDNN kernel (see below for details), the layer will use a fast cuDNN implementation. The requirements to use the cuDNN implementation are: 1. `activation` == `tanh` 2. `recurrent_activation` == `sigmoid` 3. `recurrent_dropout` == 0 4. `unroll` is `False` 5. `use_bias` is `True` 6. `reset_after` is `True` 7. Inputs, if use masking, are strictly right-padded. There are two variants of the GRU implementation. The default one is based on [v3](https://arxiv.org/abs/1406.1078v3) and has reset gate applied to hidden state before matrix multiplication. The other one is based on [original](https://arxiv.org/abs/1406.1078v1) and has the order reversed. The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU. Thus it has separate biases for `kernel` and `recurrent_kernel`. To use this variant, set `'reset_after'=True` and `recurrent_activation='sigmoid'`. For example: >>> inputs = tf.random.normal([32, 10, 8]) >>> gru = tf.keras.layers.GRU(4) >>> output = gru(inputs) >>> print(output.shape) (32, 4) >>> gru = tf.keras.layers.GRU(4, return_sequences=True, return_state=True) >>> whole_sequence_output, final_state = gru(inputs) >>> print(whole_sequence_output.shape) (32, 10, 4) >>> print(final_state.shape) (32, 4) Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`. bias_initializer: Initializer for the bias vector. Default: `zeros`. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Default: 2. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: `False`. return_state: Boolean. Whether to return the last state in addition to the output. Default: `False`. go_backwards: Boolean (default `False`). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `[timesteps, batch, feature]`, whereas in the False case, it will be `[batch, timesteps, feature]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before", True = "after" (default and CuDNN compatible). Call arguments: inputs: A 3D tensor, with shape `[batch, timesteps, feature]`. mask: Binary tensor of shape `[samples, timesteps]` indicating whether a given timestep should be masked (optional, defaults to `None`). training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used (optional, defaults to `None`). initial_state: List of initial state tensors to be passed to the first call of the cell (optional, defaults to `None` which causes creation of zero-filled initial state tensors). """ def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, time_major=False, reset_after=True, **kwargs): # return_runtime is a flag for testing, which shows the real backend # implementation chosen by grappler in graph mode. self._return_runtime = kwargs.pop('return_runtime', False) super(GRU, self).__init__( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, time_major=time_major, reset_after=reset_after, **kwargs) # GPU kernel uses following setting by default and not configurable. self._could_use_gpu_kernel = ( self.activation in (activations.tanh, nn.tanh) and self.recurrent_activation in (activations.sigmoid, nn.sigmoid) and recurrent_dropout == 0 and not unroll and use_bias and reset_after and ops.executing_eagerly_outside_functions()) if context.num_gpus() > 0: # Only show the message when there is GPU available, user will not care # about the cuDNN if there isn't any GPU. if self._could_use_gpu_kernel: logging.debug(_CUDNN_AVAILABLE_MSG % self.name) else: logging.warn(_CUDNN_NOT_AVAILABLE_MSG % self.name) def build(self, input_shape): super(GRU, self).build(input_shape) if not all(isinstance(v, resource_variable_ops.ResourceVariable) for v in self.weights): # Non-resource variables, such as DistributedVariables and # AutoCastVariables, do not work properly with the implementation # selector, which is used when cuDNN is used. However, by chance, such # variables happen to work in LSTM, so this check is only needed for GRU. # TODO(b/136512020): Make non-resource variables work with the # implementation selector. self._could_use_gpu_kernel = False def call(self, inputs, mask=None, training=None, initial_state=None): # The input should be dense, padded with zeros. If a ragged input is fed # into the layer, it is padded and the row lengths are used for masking. inputs, row_lengths = K.convert_inputs_if_ragged(inputs) is_ragged_input = (row_lengths is not None) self._validate_args_if_ragged(is_ragged_input, mask) # GRU does not support constants. Ignore it during process. inputs, initial_state, _ = self._process_inputs(inputs, initial_state, None) if isinstance(mask, list): mask = mask[0] input_shape = K.int_shape(inputs) timesteps = input_shape[0] if self.time_major else input_shape[1] if not self._could_use_gpu_kernel: kwargs = {'training': training} self._maybe_reset_cell_dropout_mask(self.cell) def step(cell_inputs, cell_states): return self.cell(cell_inputs, cell_states, **kwargs) last_output, outputs, states = K.rnn( step, inputs, initial_state, constants=None, go_backwards=self.go_backwards, mask=mask, unroll=self.unroll, input_length=row_lengths if row_lengths is not None else timesteps, time_major=self.time_major, zero_output_for_mask=self.zero_output_for_mask) # This is a dummy tensor for testing purpose. runtime = _runtime(_RUNTIME_UNKNOWN) else: last_output, outputs, runtime, states = self._defun_gru_call( inputs, initial_state, training, mask, row_lengths) if self.stateful: updates = [state_ops.assign(self.states[0], states[0])] self.add_update(updates) if self.return_sequences: output = K.maybe_convert_to_ragged(is_ragged_input, outputs, row_lengths) else: output = last_output if self.return_state: return [output] + list(states) elif self._return_runtime: return output, runtime else: return output def _defun_gru_call(self, inputs, initial_state, training, mask, sequence_lengths): # Use the new defun approach for backend implementation swap. # Note that different implementations need to have same function # signature, eg, the tensor parameters need to have same shape and dtypes. self.reset_dropout_mask() dropout_mask = self.get_dropout_mask_for_cell(inputs, training, count=3) if dropout_mask is not None: inputs = inputs * dropout_mask[0] gpu_gru_kwargs = { 'inputs': inputs, 'init_h': _read_variable_value(initial_state[0]), 'kernel': _read_variable_value(self.cell.kernel), 'recurrent_kernel': _read_variable_value(self.cell.recurrent_kernel), 'bias': _read_variable_value(self.cell.bias), 'mask': mask, 'time_major': self.time_major, 'go_backwards': self.go_backwards, 'sequence_lengths': sequence_lengths } normal_gru_kwargs = gpu_gru_kwargs.copy() normal_gru_kwargs.update({ 'zero_output_for_mask': self.zero_output_for_mask, }) if context.executing_eagerly(): device_type = _get_context_device_type() can_use_gpu = ( # Either user specified GPU or unspecified but GPU is available. (device_type == _GPU_DEVICE_NAME or (device_type is None and context.num_gpus() > 0)) and (mask is None or is_sequence_right_padded(mask, self.time_major))) # Under eager context, check the device placement and prefer the if can_use_gpu: last_output, outputs, new_h, runtime = gpu_gru(**gpu_gru_kwargs) else: last_output, outputs, new_h, runtime = standard_gru(**normal_gru_kwargs) else: last_output, outputs, new_h, runtime = gru_with_backend_selection( **normal_gru_kwargs) states = [new_h] return last_output, outputs, runtime, states def standard_gru(inputs, init_h, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """GRU with standard kernel implementation. This implementation can be run on all types of hardware. This implementation lifts out all the layer weights and make them function parameters. It has same number of tensor input params as the CuDNN counterpart. The RNN step logic has been simplified, eg dropout and mask is removed since CuDNN implementation does not support that. Arguments: inputs: Input tensor of GRU layer. init_h: Initial state tensor for the cell output. kernel: Weights for cell kernel. recurrent_kernel: Weights for cell recurrent kernel. bias: Weights for cell kernel bias and recurrent bias. The bias contains the combined input_bias and recurrent_bias. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked. time_major: Boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. zero_output_for_mask: Boolean, whether to output zero for masked timestep. Returns: last_output: output tensor for the last timestep, which has shape [batch, units]. outputs: output tensor for all timesteps, which has shape [batch, time, units]. state_0: the cell output, which has same shape as init_h. runtime: constant string tensor which indicate real runtime hardware. This value is for testing purpose and should be used by user. """ input_shape = K.int_shape(inputs) timesteps = input_shape[0] if time_major else input_shape[1] input_bias, recurrent_bias = array_ops.unstack(bias) def step(cell_inputs, cell_states): """Step function that will be used by Keras RNN backend.""" h_tm1 = cell_states[0] # inputs projected by all gate matrices at once matrix_x = K.dot(cell_inputs, kernel) matrix_x = K.bias_add(matrix_x, input_bias) x_z, x_r, x_h = array_ops.split(matrix_x, 3, axis=1) # hidden state projected by all gate matrices at once matrix_inner = K.dot(h_tm1, recurrent_kernel) matrix_inner = K.bias_add(matrix_inner, recurrent_bias) recurrent_z, recurrent_r, recurrent_h = array_ops.split(matrix_inner, 3, axis=1) z = nn.sigmoid(x_z + recurrent_z) r = nn.sigmoid(x_r + recurrent_r) hh = nn.tanh(x_h + r * recurrent_h) # previous and candidate state mixed by update gate h = z * h_tm1 + (1 - z) * hh return h, [h] last_output, outputs, new_states = K.rnn( step, inputs, [init_h], constants=None, unroll=False, time_major=time_major, mask=mask, go_backwards=go_backwards, input_length=sequence_lengths if sequence_lengths is not None else timesteps, zero_output_for_mask=zero_output_for_mask) return last_output, outputs, new_states[0], _runtime(_RUNTIME_CPU) def gpu_gru(inputs, init_h, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths): """GRU with CuDNN implementation which is only available for GPU.""" if not time_major and mask is None: inputs = array_ops.transpose(inputs, perm=(1, 0, 2)) seq_axis, batch_axis = (0, 1) else: seq_axis, batch_axis = (0, 1) if time_major else (1, 0) # For init_h, cuDNN expects one more dim of num_layers before or after batch # dim for time major or batch major inputs respectively init_h = array_ops.expand_dims(init_h, axis=seq_axis) weights = array_ops.split(kernel, 3, axis=1) weights += array_ops.split(recurrent_kernel, 3, axis=1) # Note that the bias was initialized as shape (2, 3 * units), flat it into # (6 * units) bias = array_ops.split(K.flatten(bias), 6) if build_info.is_cuda_build: # Note that the gate order for CuDNN is different from the canonical format. # canonical format is [z, r, h], whereas CuDNN is [r, z, h]. The swap need # to be done for kernel, recurrent_kernel, input_bias, recurrent_bias. # z is update gate weights. # r is reset gate weights. # h is output gate weights. weights[0], weights[1] = weights[1], weights[0] weights[3], weights[4] = weights[4], weights[3] bias[0], bias[1] = bias[1], bias[0] bias[3], bias[4] = bias[4], bias[3] params = _canonical_to_params( weights=weights, biases=bias, shape=constant_op.constant([-1]), transpose_weights=True) if mask is not None: sequence_lengths = calculate_sequence_by_mask(mask, time_major) if sequence_lengths is not None: if go_backwards: # Three reversals are required. E.g., # normal input = [1, 2, 3, 0, 0] # where 0 need to be masked # reversed_input_to_cudnn = [3, 2, 1, 0, 0] # output_from_cudnn = [6, 5, 4, 0, 0] # expected_output = [0, 0, 6, 5 ,4] inputs = array_ops.reverse_sequence_v2( inputs, sequence_lengths, seq_axis=seq_axis, batch_axis=batch_axis) outputs, h, _, _, _ = gen_cudnn_rnn_ops.cudnn_rnnv3( inputs, input_h=init_h, input_c=0, params=params, is_training=True, rnn_mode='gru', sequence_lengths=sequence_lengths, time_major=time_major) if go_backwards: outputs = array_ops.reverse_sequence_v2( outputs, sequence_lengths, seq_axis=seq_axis, batch_axis=batch_axis) outputs = array_ops.reverse(outputs, axis=[seq_axis]) else: if go_backwards: # Reverse axis 0 since the input is already convert to time major. inputs = array_ops.reverse(inputs, axis=[0]) outputs, h, _, _ = gen_cudnn_rnn_ops.cudnn_rnn( inputs, input_h=init_h, input_c=0, params=params, is_training=True, rnn_mode='gru') last_output = outputs[-1] if not time_major and mask is None: outputs = array_ops.transpose(outputs, perm=[1, 0, 2]) h = array_ops.squeeze(h, axis=seq_axis) # In the case of variable length input, the cudnn kernel will fill zeros for # the output, whereas the default keras behavior is to bring over the previous # output for t-1, so that in the return_sequence=False case, user can quickly # get the final effect output instead just 0s at the last timestep. # In order to mimic the default keras behavior, we copy the final h state as # the last_output, since it is numerically same as the output. if mask is not None: last_output = h return last_output, outputs, h, _runtime(_RUNTIME_GPU) def gru_with_backend_selection(inputs, init_h, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Call the GRU with optimized backend kernel selection. Under the hood, this function will create two TF function, one with the most generic kernel and can run on all device condition, and the second one with CuDNN specific kernel, which can only run on GPU. The first function will be called with normal_lstm_params, while the second function is not called, but only registered in the graph. The Grappler will do the proper graph rewrite and swap the optimized TF function based on the device placement. Args: inputs: Input tensor of GRU layer. init_h: Initial state tensor for the cell output. kernel: Weights for cell kernel. recurrent_kernel: Weights for cell recurrent kernel. bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias is used in this case. mask: Boolean tensor for mask out the steps within sequence. time_major: Boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. zero_output_for_mask: Boolean, whether to output zero for masked timestep. Returns: List of output tensors, same as standard_gru. """ params = { 'inputs': inputs, 'init_h': init_h, 'kernel': kernel, 'recurrent_kernel': recurrent_kernel, 'bias': bias, 'mask': mask, 'time_major': time_major, 'go_backwards': go_backwards, 'sequence_lengths': sequence_lengths, 'zero_output_for_mask': zero_output_for_mask, } def gpu_gru_with_fallback(inputs, init_h, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Use CuDNN kernel when mask is none or strictly right padded.""" if mask is None: return gpu_gru( inputs=inputs, init_h=init_h, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def input_right_padded(): return gpu_gru( inputs=inputs, init_h=init_h, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def input_not_right_padded(): return standard_gru( inputs=inputs, init_h=init_h, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths, zero_output_for_mask=zero_output_for_mask) return control_flow_ops.cond( is_sequence_right_padded(mask, time_major), true_fn=input_right_padded, false_fn=input_not_right_padded) # Each time a `tf.function` is called, we will give it a unique # identifiable API name, so that Grappler won't get confused when it # sees multiple GRU layers added into same graph, and it will be able # to pair up the different implementations across them. api_name = 'gru_' + str(uuid.uuid4()) supportive_attribute = { 'time_major': time_major, 'go_backwards': go_backwards, } defun_standard_gru = _generate_defun_backend( api_name, _CPU_DEVICE_NAME, standard_gru, supportive_attribute) defun_gpu_gru = _generate_defun_backend( api_name, _GPU_DEVICE_NAME, gpu_gru_with_fallback, supportive_attribute) # Call the normal GRU impl and register the CuDNN impl function. The # grappler will kick in during session execution to optimize the graph. last_output, outputs, new_h, runtime = defun_standard_gru(**params) function.register(defun_gpu_gru, **params) return last_output, outputs, new_h, runtime @keras_export('keras.layers.LSTMCell', v1=[]) class LSTMCell(recurrent.LSTMCell): """Cell class for the LSTM layer. See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) for details about the usage of RNN API. This class processes one step within the whole time sequence input, whereas `tf.keras.layer.LSTM` processes the whole sequence. For example: >>> inputs = tf.random.normal([32, 10, 8]) >>> rnn = tf.keras.layers.RNN(tf.keras.layers.LSTMCell(4)) >>> output = rnn(inputs) >>> print(output.shape) (32, 4) >>> rnn = tf.keras.layers.RNN( ... tf.keras.layers.LSTMCell(4), ... return_sequences=True, ... return_state=True) >>> whole_seq_output, final_memory_state, final_carry_state = rnn(inputs) >>> print(whole_seq_output.shape) (32, 10, 4) >>> print(final_memory_state.shape) (32, 4) >>> print(final_carry_state.shape) (32, 4) Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`. bias_initializer: Initializer for the bias vector. Default: `zeros`. unit_forget_bias: Boolean (default `True`). If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 (default) will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Default: 2. Call arguments: inputs: A 2D tensor, with shape of `[batch, feature]`. states: List of 2 tensors that corresponding to the cell's units. Both of them have shape `[batch, units]`, the first tensor is the memory state from previous time step, the second tensor is the carry state from previous time step. For timestep 0, the initial state provided by user will be feed to cell. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, **kwargs): super(LSTMCell, self).__init__( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, unit_forget_bias=unit_forget_bias, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, **kwargs) @keras_export('keras.layers.LSTM', v1=[]) class LSTM(recurrent.DropoutRNNCellMixin, recurrent.LSTM): """Long Short-Term Memory layer - Hochreiter 1997. See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) for details about the usage of RNN API. Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or pure-TensorFlow) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the CuDNN kernel (see below for details), the layer will use a fast cuDNN implementation. The requirements to use the cuDNN implementation are: 1. `activation` == `tanh` 2. `recurrent_activation` == `sigmoid` 3. `recurrent_dropout` == 0 4. `unroll` is `False` 5. `use_bias` is `True` 6. Inputs, if use masking, are strictly right-padded. For example: >>> inputs = tf.random.normal([32, 10, 8]) >>> lstm = tf.keras.layers.LSTM(4) >>> output = lstm(inputs) >>> print(output.shape) (32, 4) >>> lstm = tf.keras.layers.LSTM(4, return_sequences=True, return_state=True) >>> whole_seq_output, final_memory_state, final_carry_state = lstm(inputs) >>> print(whole_seq_output.shape) (32, 10, 4) >>> print(final_memory_state.shape) (32, 4) >>> print(final_carry_state.shape) (32, 4) Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean (default `True`), whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `glorot_uniform`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `orthogonal`. bias_initializer: Initializer for the bias vector. Default: `zeros`. unit_forget_bias: Boolean (default `True`). If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Default: 2. return_sequences: Boolean. Whether to return the last output. in the output sequence, or the full sequence. Default: `False`. return_state: Boolean. Whether to return the last state in addition to the output. Default: `False`. go_backwards: Boolean (default `False`). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default `False`). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `[timesteps, batch, feature]`, whereas in the False case, it will be `[batch, timesteps, feature]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. unroll: Boolean (default `False`). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. Call arguments: inputs: A 3D tensor with shape `[batch, timesteps, feature]`. mask: Binary tensor of shape `[batch, timesteps]` indicating whether a given timestep should be masked (optional, defaults to `None`). training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used (optional, defaults to `None`). initial_state: List of initial state tensors to be passed to the first call of the cell (optional, defaults to `None` which causes creation of zero-filled initial state tensors). """ def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=2, return_sequences=False, return_state=False, go_backwards=False, stateful=False, time_major=False, unroll=False, **kwargs): # return_runtime is a flag for testing, which shows the real backend # implementation chosen by grappler in graph mode. self.return_runtime = kwargs.pop('return_runtime', False) super(LSTM, self).__init__( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, unit_forget_bias=unit_forget_bias, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, time_major=time_major, unroll=unroll, **kwargs) self.state_spec = [ InputSpec(shape=(None, dim)) for dim in (self.units, self.units) ] self._could_use_gpu_kernel = ( self.activation in (activations.tanh, nn.tanh) and self.recurrent_activation in (activations.sigmoid, nn.sigmoid) and recurrent_dropout == 0 and not unroll and use_bias and ops.executing_eagerly_outside_functions()) if context.num_gpus() > 0: # Only show the message when there is GPU available, user will not care # about the cuDNN if there isn't any GPU. if self._could_use_gpu_kernel: logging.debug(_CUDNN_AVAILABLE_MSG % self.name) else: logging.warn(_CUDNN_NOT_AVAILABLE_MSG % self.name) def call(self, inputs, mask=None, training=None, initial_state=None): # The input should be dense, padded with zeros. If a ragged input is fed # into the layer, it is padded and the row lengths are used for masking. inputs, row_lengths = K.convert_inputs_if_ragged(inputs) is_ragged_input = (row_lengths is not None) self._validate_args_if_ragged(is_ragged_input, mask) # LSTM does not support constants. Ignore it during process. inputs, initial_state, _ = self._process_inputs(inputs, initial_state, None) if isinstance(mask, list): mask = mask[0] input_shape = K.int_shape(inputs) timesteps = input_shape[0] if self.time_major else input_shape[1] if not self._could_use_gpu_kernel: # Fall back to use the normal LSTM. kwargs = {'training': training} self._maybe_reset_cell_dropout_mask(self.cell) def step(inputs, states): return self.cell(inputs, states, **kwargs) last_output, outputs, states = K.rnn( step, inputs, initial_state, constants=None, go_backwards=self.go_backwards, mask=mask, unroll=self.unroll, input_length=row_lengths if row_lengths is not None else timesteps, time_major=self.time_major, zero_output_for_mask=self.zero_output_for_mask) runtime = _runtime(_RUNTIME_UNKNOWN) else: # Use the new defun approach for backend implementation swap. # Note that different implementations need to have same function # signature, eg, the tensor parameters need to have same shape and dtypes. # Since the CuDNN has an extra set of bias, those bias will be passed to # both normal and CuDNN implementations. self.reset_dropout_mask() dropout_mask = self.get_dropout_mask_for_cell(inputs, training, count=4) if dropout_mask is not None: inputs = inputs * dropout_mask[0] gpu_lstm_kwargs = { 'inputs': inputs, 'init_h': _read_variable_value(initial_state[0]), 'init_c': _read_variable_value(initial_state[1]), 'kernel': _read_variable_value(self.cell.kernel), 'recurrent_kernel': _read_variable_value(self.cell.recurrent_kernel), 'bias': _read_variable_value(self.cell.bias), 'mask': mask, 'time_major': self.time_major, 'go_backwards': self.go_backwards, 'sequence_lengths': row_lengths } normal_lstm_kwargs = gpu_lstm_kwargs.copy() normal_lstm_kwargs.update({ 'zero_output_for_mask': self.zero_output_for_mask, }) if context.executing_eagerly(): device_type = _get_context_device_type() can_use_gpu = ( # Either user specified GPU or unspecified but GPU is available. (device_type == _GPU_DEVICE_NAME or (device_type is None and context.num_gpus() > 0)) and (mask is None or is_sequence_right_padded(mask, self.time_major))) # Under eager context, check the device placement and prefer the # GPU implementation when GPU is available. if can_use_gpu: last_output, outputs, new_h, new_c, runtime = gpu_lstm( **gpu_lstm_kwargs) else: last_output, outputs, new_h, new_c, runtime = standard_lstm( **normal_lstm_kwargs) else: (last_output, outputs, new_h, new_c, runtime) = lstm_with_backend_selection(**normal_lstm_kwargs) states = [new_h, new_c] if self.stateful: updates = [] for i in range(len(states)): updates.append(state_ops.assign(self.states[i], states[i])) self.add_update(updates) if self.return_sequences: output = K.maybe_convert_to_ragged(is_ragged_input, outputs, row_lengths) else: output = last_output if self.return_state: return [output] + list(states) elif self.return_runtime: return output, runtime else: return output def _canonical_to_params(weights, biases, shape, transpose_weights=False): """Utility function convert variable to CuDNN compatible parameter. Note that Keras weights for kernels are different from the CuDNN format. Eg.: ``` Keras CuDNN [[0, 1, 2], <---> [[0, 2, 4], [3, 4, 5]] [1, 3, 5]] ``` If the input weights need to be in a unified format, then set `transpose_weights=True` to convert the weights. Args: weights: list of weights for the individual kernels and recurrent kernels. biases: list of biases for individual gate. shape: the shape for the converted variables that will be feed to CuDNN. transpose_weights: boolean, whether to transpose the weights. Returns: The converted weights that can be feed to CuDNN ops as param. """ def convert(w): return array_ops.transpose(w) if transpose_weights else w weights = [array_ops.reshape(convert(x), shape) for x in weights] biases = [array_ops.reshape(x, shape) for x in biases] return array_ops.concat(weights + biases, axis=0) def standard_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """LSTM with standard kernel implementation. This implementation can be run on all types for hardware. This implementation lifts out all the layer weights and make them function parameters. It has same number of tensor input params as the CuDNN counterpart. The RNN step logic has been simplified, eg dropout and mask is removed since CuDNN implementation does not support that. Note that the first half of the bias tensor should be ignored by this impl. The CuDNN impl need an extra set of input gate bias. In order to make the both function take same shape of parameter, that extra set of bias is also feed here. Args: inputs: input tensor of LSTM layer. init_h: initial state tensor for the cell output. init_c: initial state tensor for the cell hidden state. kernel: weights for cell kernel. recurrent_kernel: weights for cell recurrent kernel. bias: weights for cell kernel bias and recurrent bias. Only recurrent bias is used in this case. mask: Boolean tensor for mask out the steps within sequence. time_major: boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. zero_output_for_mask: Boolean, whether to output zero for masked timestep. Returns: last_output: output tensor for the last timestep, which has shape [batch, units]. outputs: output tensor for all timesteps, which has shape [batch, time, units]. state_0: the cell output, which has same shape as init_h. state_1: the cell hidden state, which has same shape as init_c. runtime: constant string tensor which indicate real runtime hardware. This value is for testing purpose and should be used by user. """ input_shape = K.int_shape(inputs) timesteps = input_shape[0] if time_major else input_shape[1] def step(cell_inputs, cell_states): """Step function that will be used by Keras RNN backend.""" h_tm1 = cell_states[0] # previous memory state c_tm1 = cell_states[1] # previous carry state z = K.dot(cell_inputs, kernel) z += K.dot(h_tm1, recurrent_kernel) z = K.bias_add(z, bias) z0, z1, z2, z3 = array_ops.split(z, 4, axis=1) i = nn.sigmoid(z0) f = nn.sigmoid(z1) c = f * c_tm1 + i * nn.tanh(z2) o = nn.sigmoid(z3) h = o * nn.tanh(c) return h, [h, c] last_output, outputs, new_states = K.rnn( step, inputs, [init_h, init_c], constants=None, unroll=False, time_major=time_major, mask=mask, go_backwards=go_backwards, input_length=(sequence_lengths if sequence_lengths is not None else timesteps), zero_output_for_mask=zero_output_for_mask) return (last_output, outputs, new_states[0], new_states[1], _runtime(_RUNTIME_CPU)) def gpu_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths): """LSTM with either CuDNN or ROCm implementation which is only available for GPU. Note that currently only right padded data is supported, or the result will be polluted by the unmasked data which should be filtered. Args: inputs: Input tensor of LSTM layer. init_h: Initial state tensor for the cell output. init_c: Initial state tensor for the cell hidden state. kernel: Weights for cell kernel. recurrent_kernel: Weights for cell recurrent kernel. bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias is used in this case. mask: Boolean tensor for mask out the steps within sequence. time_major: Boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. Returns: last_output: Output tensor for the last timestep, which has shape [batch, units]. outputs: Output tensor for all timesteps, which has shape [batch, time, units]. state_0: The cell output, which has same shape as init_h. state_1: The cell hidden state, which has same shape as init_c. runtime: Constant string tensor which indicate real runtime hardware. This value is for testing purpose and should not be used by user. """ if not time_major and mask is None: inputs = array_ops.transpose(inputs, perm=(1, 0, 2)) seq_axis, batch_axis = (0, 1) else: seq_axis, batch_axis = (0, 1) if time_major else (1, 0) # For init_h and init_c, cuDNN expects one more dim of num_layers before or # after batch dim for time major or batch major inputs respectively init_h = array_ops.expand_dims(init_h, axis=seq_axis) init_c = array_ops.expand_dims(init_c, axis=seq_axis) weights = array_ops.split(kernel, 4, axis=1) weights += array_ops.split(recurrent_kernel, 4, axis=1) # CuDNN has an extra set of bias for inputs, we disable them (setting to 0), # so that mathematically it is same as the canonical LSTM implementation. full_bias = array_ops.concat((array_ops.zeros_like(bias), bias), 0) if build_info.is_rocm_build: # ROCm MIOpen's weight sequence for LSTM is different from both canonical # and Cudnn format # MIOpen: [i, f, o, c] Cudnn/Canonical: [i, f, c, o] # i is input gate weights. # f is forget gate weights. # o is output gate weights. # c is cell gate weights. weights = [weights[x] for x in (0, 1, 3, 2, 4, 5, 7, 6)] # full_bias is a tensor of shape (8*n,) full_bias = array_ops.split(full_bias, 8, axis=0) full_bias = [full_bias[x] for x in (0, 1, 3, 2, 4, 5, 7, 6)] params = _canonical_to_params( weights=weights, biases=array_ops.split(full_bias, 8), shape=constant_op.constant([-1]), transpose_weights=True) if mask is not None: sequence_lengths = calculate_sequence_by_mask(mask, time_major) if sequence_lengths is not None: if go_backwards: # Three reversals are required. E.g., # normal input = [1, 2, 3, 0, 0] # where 0 need to be masked # reversed_input_to_cudnn = [3, 2, 1, 0, 0] # output_from_cudnn = [6, 5, 4, 0, 0] # expected_output = [0, 0, 6, 5 ,4] inputs = array_ops.reverse_sequence_v2( inputs, sequence_lengths, seq_axis=seq_axis, batch_axis=batch_axis) outputs, h, c, _, _ = gen_cudnn_rnn_ops.cudnn_rnnv3( inputs, input_h=init_h, input_c=init_c, params=params, is_training=True, rnn_mode='lstm', sequence_lengths=sequence_lengths, time_major=time_major) if go_backwards: outputs = array_ops.reverse_sequence_v2( outputs, sequence_lengths, seq_axis=seq_axis, batch_axis=batch_axis) outputs = array_ops.reverse(outputs, axis=[seq_axis]) else: # # Fill the array with shape [batch] with value of max timesteps. # sequence_length = array_ops.fill([array_ops.shape(inputs)[1]], # array_ops.shape(inputs)[0]) if go_backwards: # Reverse axis 0 since the input is already convert to time major. inputs = array_ops.reverse(inputs, axis=[0]) outputs, h, c, _ = gen_cudnn_rnn_ops.cudnn_rnn( inputs, input_h=init_h, input_c=init_c, params=params, is_training=True, rnn_mode='lstm') last_output = outputs[-1] if not time_major and mask is None: outputs = array_ops.transpose(outputs, perm=[1, 0, 2]) h = array_ops.squeeze(h, axis=seq_axis) c = array_ops.squeeze(c, axis=seq_axis) # In the case of variable length input, the cudnn kernel will fill zeros for # the output, whereas the default keras behavior is to bring over the previous # output for t-1, so that in the return_sequence=False case, user can quickly # get the final effect output instead just 0s at the last timestep. # In order to mimic the default keras behavior, we copy the final h state as # the last_output, since it is numerically same as the output. if mask is not None: last_output = h return last_output, outputs, h, c, _runtime(_RUNTIME_GPU) def lstm_with_backend_selection(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Call the LSTM with optimized backend kernel selection. Under the hood, this function will create two TF function, one with the most generic kernel and can run on all device condition, and the second one with CuDNN specific kernel, which can only run on GPU. The first function will be called with normal_lstm_params, while the second function is not called, but only registered in the graph. The Grappler will do the proper graph rewrite and swap the optimized TF function based on the device placement. Args: inputs: Input tensor of LSTM layer. init_h: Initial state tensor for the cell output. init_c: Initial state tensor for the cell hidden state. kernel: Weights for cell kernel. recurrent_kernel: Weights for cell recurrent kernel. bias: Weights for cell kernel bias and recurrent bias. Only recurrent bias is used in this case. mask: Boolean tensor for mask out the steps within sequence. time_major: Boolean, whether the inputs are in the format of [time, batch, feature] or [batch, time, feature]. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. sequence_lengths: The lengths of all sequences coming from a variable length input, such as ragged tensors. If the input has a fixed timestep size, this should be None. zero_output_for_mask: Boolean, whether to output zero for masked timestep. Returns: List of output tensors, same as standard_lstm. """ params = { 'inputs': inputs, 'init_h': init_h, 'init_c': init_c, 'kernel': kernel, 'recurrent_kernel': recurrent_kernel, 'bias': bias, 'mask': mask, 'time_major': time_major, 'go_backwards': go_backwards, 'sequence_lengths': sequence_lengths, 'zero_output_for_mask': zero_output_for_mask, } def gpu_lstm_with_fallback(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask): """Use CuDNN kernel when mask is none or strictly right padded.""" if mask is None: return gpu_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def input_right_padded(): return gpu_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths) def input_not_right_padded(): return standard_lstm( inputs=inputs, init_h=init_h, init_c=init_c, kernel=kernel, recurrent_kernel=recurrent_kernel, bias=bias, mask=mask, time_major=time_major, go_backwards=go_backwards, sequence_lengths=sequence_lengths, zero_output_for_mask=zero_output_for_mask) return control_flow_ops.cond( is_sequence_right_padded(mask, time_major), true_fn=input_right_padded, false_fn=input_not_right_padded) # Each time a `tf.function` is called, we will give it a unique # identifiable API name, so that Grappler won't get confused when it # sees multiple LSTM layers added into same graph, and it will be able # to pair up the different implementations across them. api_name = 'lstm_' + str(uuid.uuid4()) supportive_attribute = { 'time_major': time_major, 'go_backwards': go_backwards, } defun_standard_lstm = _generate_defun_backend( api_name, _CPU_DEVICE_NAME, standard_lstm, supportive_attribute) defun_gpu_lstm = _generate_defun_backend( api_name, _GPU_DEVICE_NAME, gpu_lstm_with_fallback, supportive_attribute) # Call the normal LSTM impl and register the CuDNN impl function. The # grappler will kick in during session execution to optimize the graph. last_output, outputs, new_h, new_c, runtime = defun_standard_lstm( **params) function.register(defun_gpu_lstm, **params) return last_output, outputs, new_h, new_c, runtime def is_sequence_right_padded(mask, time_major): """Check the mask tensor and see if it right padded. For CuDNN kernel, it uses the sequence length param to skip the tailing timestep. If the data is left padded, or not a strict right padding (has masked value in the middle of the sequence), then CuDNN kernel won't be work properly in those cases. Left padded data: [[False, False, True, True, True]]. Right padded data: [[True, True, True, False, False]]. Mixture of mask/unmasked data: [[True, False, True, False, False]]. Note that for the mixed data example above, the actually data RNN should see are those 2 Trues (index 0 and 2), the index 1 False should be ignored and not pollute the internal states. Args: mask: the Boolean tensor with shape [batch, timestep] or [timestep, batch] when time_major is True. time_major: Boolean, whether the input mask is time major or batch major. Returns: boolean scalar tensor, whether the mask is strictly right padded. """ if time_major: mask = array_ops.transpose(mask) max_seq_length = array_ops.shape(mask)[1] count_of_true = math_ops.reduce_sum(math_ops.cast(mask, dtypes.int32), axis=1) right_padded_mask = array_ops.sequence_mask( count_of_true, maxlen=max_seq_length) return math_ops.reduce_all(math_ops.equal(mask, right_padded_mask)) def calculate_sequence_by_mask(mask, time_major): """Calculate the sequence length tensor (1-D) based on the masking tensor. The masking tensor is a 2D boolean tensor with shape [batch, timestep]. For any timestep that should be masked, the corresponding field will be False. Consider the following example: a = [[True, True, False, False], [True, True, True, False]] It is a (2, 4) tensor, and the corresponding sequence length result should be 1D tensor with value [2, 3]. Note that the masking tensor must be right padded that could be checked by, e.g., `is_sequence_right_padded()`. Args: mask: Boolean tensor with shape [batch, timestep] or [timestep, batch] if time_major=True. time_major: Boolean, which indicates whether the mask is time major or batch major. Returns: sequence_length: 1D int32 tensor. """ timestep_index = 0 if time_major else 1 return math_ops.reduce_sum(math_ops.cast(mask, dtypes.int32), axis=timestep_index) def _generate_defun_backend(unique_api_name, preferred_device, func, supportive_attributes): function_attributes = { _FUNCTION_API_NAME_ATTRIBUTE: unique_api_name, _FUNCTION_DEVICE_ATTRIBUTE: preferred_device, } function_attributes.update(supportive_attributes) return function.defun_with_attributes(func=func, attributes=function_attributes, autograph=False) def _get_context_device_type(): """Parse the current context and return the device type, eg CPU/GPU.""" current_device = context.context().device_name if current_device is None: return None return device.DeviceSpec.from_string(current_device).device_type def _runtime(runtime_name): with ops.device('/cpu:0'): return constant_op.constant( runtime_name, dtype=dtypes.float32, name='runtime') def _read_variable_value(v): """Read the value of a resource variable if it is variable.""" if resource_variable_ops.is_resource_variable(v): return v.read_value() return v
42.273998
83
0.693388
275d0891a8dd15a24a11627bae5896e719816219
4,898
py
Python
ample/util/mrbump_cmd.py
fsimkovic/ample
c3c2196ca292e831e3cd8d15e3d3079bb6609848
[ "BSD-3-Clause" ]
6
2017-03-17T14:43:14.000Z
2021-08-06T07:07:14.000Z
ample/util/mrbump_cmd.py
fsimkovic/ample
c3c2196ca292e831e3cd8d15e3d3079bb6609848
[ "BSD-3-Clause" ]
47
2017-03-17T14:37:09.000Z
2021-01-28T10:22:15.000Z
ample/util/mrbump_cmd.py
fsimkovic/ample
c3c2196ca292e831e3cd8d15e3d3079bb6609848
[ "BSD-3-Clause" ]
6
2017-09-26T08:45:09.000Z
2020-03-19T14:26:49.000Z
""" Created on 28 Feb 2013 @author: jmht """ import os import sys from ample.util import ample_util def mrbump_cmd(name, mtz, mr_sequence, keyword_file): """Return the command to run mrbump""" if sys.platform.startswith("win"): mrbump = os.path.join(os.environ["CCP4"], "bin", "mrbump" + ample_util.SCRIPT_EXT) else: mrbump = os.path.join(os.environ["CCP4"], "bin", "mrbump") cmd = [ mrbump, "KEYIN", "{0}".format(keyword_file), "HKLIN", "{0}".format(mtz), "SEQIN", "{0}".format(mr_sequence), "HKLOUT", "{0}.mtz".format(name), "XYZOUT", "{0}.pdb".format(name), ] return " ".join(cmd) def keyword_dict(ensemble_pdb, name, amoptd, extra_options={}): """Extract the mrbump keywords from the main ample dictionary and add/change any from the extra_options dict""" keywords = [ 'arpwarp_cycles', 'buccaneer_cycles', 'debug', 'existing_mr_solution', 'F', 'FREE', 'mr_keys', 'mr_sg_all', 'mrbump_programs', 'native_pdb', 'nmasu', 'phaser_kill', 'phaser_rms', 'shelx_cycles', 'shelxe_exe', 'shelxe_rebuild_arpwarp', 'shelxe_rebuild_buccaneer', 'SIGF', 'refine_rebuild_arpwarp', 'refine_rebuild_buccaneer', 'use_shelxe', ] # Pull out all mrbump options from the main ample dict if sys.version_info.major == 3: key_dict = dict((k, v) for k, v in amoptd.items() if k in keywords) extra_options_d = extra_options.items() else: key_dict = dict((k, v) for k, v in amoptd.iteritems() if k in keywords) extra_options_d = extra_options.iteritems() # Change any/add options for this ensemble for k, v in extra_options_d: key_dict[k] = v # Add ensemble_pdb and name key_dict['name'] = name key_dict['ensemble_pdb'] = ensemble_pdb return key_dict def mrbump_keyword_file(odict, fixed_iden=0.6): """ Create MRBUMP keywords Args: odict -- dictionary of options jmht - check fixed_iden - 0.6 if not specified """ mrs = 'LABIN SIGF={0} F={1} FreeR_flag={2}\n'.format(odict['SIGF'], odict['F'], odict['FREE']) mrs += 'JOBID {0}_mrbump\n'.format(odict['name']) mrs += 'MRPROGRAM {0}\n'.format(" ".join(odict['mrbump_programs'])) mrs += 'LOCALFILE {0} CHAIN ALL RMS {1}'.format((odict['ensemble_pdb']), odict['phaser_rms']) if 'ncopies' in odict and odict['ncopies'] > 0: mrs += ' COPIES {0}'.format(odict['ncopies']) mrs += '\n' # Don't do any of the searches as we are providing a local file mrs += 'SCOPSEARCH False\n' mrs += 'PQSSEARCH False\n' mrs += 'SSMSEARCH False\n' mrs += 'DOFASTA False\n' mrs += 'DOPHMMER False\n' mrs += 'DOHHPRED False\n' mrs += 'FAST False\n' mrs += 'MDLD False\n' mrs += 'MDLC False\n' mrs += 'MDLM False\n' mrs += 'MDLP False\n' mrs += 'MDLS False\n' mrs += 'MDLU True\n' mrs += 'UPDATE False\n' mrs += 'BUCC {0}\n'.format(odict['refine_rebuild_buccaneer']) mrs += 'BCYCLES {0}\n'.format(odict['buccaneer_cycles']) mrs += 'ARPWARP {0}\n'.format(odict['refine_rebuild_arpwarp']) mrs += 'ACYCLES {0}\n'.format(odict['arpwarp_cycles']) mrs += 'SHELXE {0}\n'.format(odict['use_shelxe']) mrs += 'SHLXEXE {0}\n'.format(odict['shelxe_exe']) mrs += 'SCYCLES {0}\n'.format(odict['shelx_cycles']) mrs += 'FIXSG True\n' mrs += 'PJOBS 1\n' mrs += 'CHECK False\n' mrs += 'LITE True\n' mrs += 'PICKLE False\n' mrs += 'TRYALL True\n' mrs += 'USEACORN False\n' mrs += 'USEENSEM False\n' mrs += 'CLEAN False\n' mrs += 'DEBUG {0}\n'.format(odict['debug']) if odict['shelxe_rebuild_arpwarp'] or odict['shelxe_rebuild_buccaneer']: # Rebuild SHELXE trace with both Buccaneer and ArpWarp mrs += 'SXREBUILD True\n' if odict['shelxe_rebuild_buccaneer']: mrs += 'SXRBUCC True\n' if odict['shelxe_rebuild_arpwarp']: mrs += 'SXRARPW True\n' if odict['nmasu'] > 0: mrs += 'NMASU {0}\n'.format(odict['nmasu']) if odict['existing_mr_solution']: mrs += 'FIXED_XYZIN {0} IDEN {1}\n'.format(odict['existing_mr_solution'], fixed_iden) if odict['native_pdb']: mrs += 'PDBNATIVE {0}\n'.format(odict['native_pdb']) if odict['phaser_kill'] > 0: mrs += 'PKEY KILL TIME {0}\n'.format(odict['phaser_kill']) if odict['mr_sg_all']: mrs += 'PKEY SGALTERNATIVE SELECT ALL\n' # Extra keywords # This assumes everything in mr_keys is a list of [ KEYWORD, VALUE0, VALUE1, ...] if odict['mr_keys']: for l in odict['mr_keys']: mrs += " ".join(l) + "\n" mrs += 'END\n' return mrs
32.437086
98
0.584116
2edc71e479412a68160442fbace3e04789a2bd59
11,642
py
Python
fairseq/data/seq2sql_dataset.py
nikitacs16/fairseq
4db7d93e03bae242bb845dd4b6a193e999a9af99
[ "MIT" ]
null
null
null
fairseq/data/seq2sql_dataset.py
nikitacs16/fairseq
4db7d93e03bae242bb845dd4b6a193e999a9af99
[ "MIT" ]
null
null
null
fairseq/data/seq2sql_dataset.py
nikitacs16/fairseq
4db7d93e03bae242bb845dd4b6a193e999a9af99
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch import copy import torch.nn as nn from . import data_utils, FairseqDataset, dictionary from collections import Counter from fairseq import metrics, options, utils def load_random_embedding(fname): fname = open(fname,'r') embed_tokens = {} for i, line in enumerate(fname.readlines()): pieces = line.strip().split(" ") embed_tokens[i] = torch.Tensor([float(weight) for weight in pieces]) return embed_tokens def copy_prev_embedding(embed_path, dictionary, embed_dim, prev_embedded_tokens_path, prev_dict): num_embeddings = len(dictionary) padding_idx = dictionary.pad() embed_tokens = nn.Embedding(num_embeddings, embed_dim, padding_idx) prev_embedded_tokens = load_random_embedding(prev_embedded_tokens_path) for i in range(5, num_embeddings): if prev_dict.index(dictionary.symbols[i])!= prev_dict.unk() and i!=dictionary.unk(): embed_tokens.weight.data[i] = prev_embedded_tokens[prev_dict.index(dictionary.symbols[i])] #embed_tokens.weight = nn.Parameter(prev_embedded_tokens) embed_dict = utils.parse_embedding(embed_path) utils.print_embed_overlap(embed_dict, dictionary) return utils.load_embedding(embed_dict, dictionary, embed_tokens) logger = logging.getLogger(__name__) def get_valid_indices(sequence,mapping_dict,len_sql_dict,unk_idx, src_dict, sql_dict): valid_indices = list(np.arange(len_sql_dict)) valid_indices.remove(unk_idx) for i in set(sequence): valid_indices.append(mapping_dict[i]) return sorted(valid_indices) def collate( samples, src_embedding, tgt_embedding, src_dict, sql_dict, pad_idx, eos_idx, unk_idx, left_pad_source=False, left_pad_target=False, input_feeding=True, eot_symbol=4, mapping_dict=None, len_sql_dict=53 ): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, ) id = torch.LongTensor([s['id'] for s in samples]) src_tokens = merge('source', left_pad=left_pad_source) # sort by descending source length src_lengths = torch.LongTensor([s['source'].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) flatten_source = [s['source'].flatten().tolist() for s in samples] col_lengths_unordered = [s.index(eot_symbol) for s in flatten_source] col_lengths = torch.LongTensor(col_lengths_unordered).index_select(0,sort_order) valid_indices = [get_valid_indices(flatten_source[s][:col_lengths_unordered[s]],mapping_dict,len_sql_dict, unk_idx, src_dict, sql_dict) for s in sort_order.flatten().tolist()] prev_output_tokens = None target = None if samples[0].get('target', None) is not None: target = merge('target', left_pad=left_pad_target) target = target.index_select(0, sort_order) tgt_lengths = torch.LongTensor([s['target'].numel() for s in samples]).index_select(0, sort_order) ntokens = sum(len(s['target']) for s in samples) if input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( 'target', left_pad=left_pad_target, move_eos_to_beginning=True, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s['source']) for s in samples) batch = { 'id': id, 'nsentences': len(samples), 'ntokens': ntokens, 'net_input': { #'src_dict': src_dict, 'src_tokens': src_tokens, 'src_lengths': src_lengths, 'col_lengths': col_lengths, 'src_embedding': src_embedding, 'tgt_embedding': tgt_embedding, 'valid_indices': valid_indices, }, 'target': target, #'sql_dict': target_dict, } if prev_output_tokens is not None: batch['net_input']['prev_output_tokens'] = prev_output_tokens return batch class Seq2SqlPairDataSet(FairseqDataset): """ A pair of torch.utils.data.Datasets. Args: src (torch.utils.data.Dataset): source dataset to wrap src_sizes (List[int]): source sentence lengths src_dict (~fairseq.data.Dictionary): source vocabulary src_column_sizes (List[int]): column lengths sql (torch.utils.data.Dataset, optional): target dataset to wrap sql_sizes (List[int], optional): target sentence lengths sql_dict (~fairseq.data.Dictionary): sql vocabulary left_pad_source (bool, optional): pad source tensors on the left side (default: True). left_pad_target (bool, optional): pad target tensors on the left side (default: False). max_source_positions (int, optional): max number of tokens in the source sentence (default: 1024). max_target_positions (int, optional): max number of tokens in the target sentence (default: 1024). shuffle (bool, optional): shuffle dataset elements before batching (default: True). input_feeding (bool, optional): create a shifted version of the targets to be passed into the model for teacher forcing (default: True). remove_eos_from_source (bool, optional): if set, removes eos from end of source if it's present (default: False). append_eos_to_target (bool, optional): if set, appends eos to end of target if it's absent (default: False). append_bos (bool, optional): if set, appends bos to the beginning of source/target sentence. """ def __init__( self, src, src_sizes, src_dict, prev_src_dict, sql, sql_sizes, sql_dict, prev_sql_dict, encoder_embed_path, encoder_embed_dim, decoder_embed_path, decoder_embed_dim, encoder_random_embedding_path, decoder_random_embedding_path, left_pad_source=False, left_pad_target=False, max_source_positions=1500, max_target_positions=1024, shuffle=True, input_feeding=True, remove_eos_from_source=False, append_eos_to_target=False, append_bos = False ): if sql_dict is not None: assert src_dict.pad() == sql_dict.pad() assert src_dict.eos() == sql_dict.eos() assert src_dict.unk() == sql_dict.unk() self.src = src self.sql = sql self.src_dict = src_dict self.sql_dict = sql_dict self.src_sizes = np.array(src_sizes) self.eot_symbol = self.src_dict.index('<EOT>') self.eov_symbol = self.src_dict.index('<EOV>') #print() self.sql_sizes = np.array(sql_sizes) self.left_pad_source = left_pad_source self.left_pad_target = left_pad_target self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.shuffle = shuffle self.input_feeding = input_feeding self.remove_eos_from_source = remove_eos_from_source self.append_eos_to_target = append_eos_to_target self.append_bos = append_bos self.mapping_dict = None self.create_mapper(src_dict, sql_dict) self.src_embedding = copy_prev_embedding(encoder_embed_path, src_dict, encoder_embed_dim, encoder_random_embedding_path, prev_src_dict) self.tgt_embedding = copy_prev_embedding(decoder_embed_path, sql_dict, decoder_embed_dim, decoder_random_embedding_path, prev_sql_dict) #print(self.tgt_embedding) def __getitem__(self, index): sql_item = self.sql[index] src_item = self.src[index] # Append EOS to end of sql sentence if it does not have an EOS and remove # EOS from end of src sentence if it exists. This is useful when we use # use existing datasets for opposite directions i.e., when we want to # use sql_dataset as src_dataset and vice versa if self.append_eos_to_target: eos = self.sql_dict.eos() if self.sql_dict else self.src_dict.eos() if self.sql and self.sql[index][-1] != eos: sql_item = torch.cat([self.sql[index], torch.LongTensor([eos])]) if self.append_bos: bos = self.sql_dict.bos() if self.sql_dict else self.src_dict.bos() if self.sql and self.sql[index][0] != bos: sql_item = torch.cat([torch.LongTensor([bos]), self.sql[index]]) bos = self.src_dict.bos() if self.src[index][-1] != bos: src_item = torch.cat([torch.LongTensor([bos]), self.src[index]]) col_item = col_item + 1 if self.remove_eos_from_source: eos = self.src_dict.eos() if self.src[index][-1] == eos: src_item = self.src[index][:-1] #src_item = SrcObject(index, src_item, self.src_dict, col_item) #sql_item = SqlObject(index, sql_item, self.sql_dict, src_item.col_dict) example = { 'id': index, 'source': src_item, 'target': sql_item, } return example def __len__(self): return len(self.src) def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch with the following keys: - `id` (LongTensor): example IDs in the original input order - `ntokens` (int): total number of tokens in the batch - `net_input` (dict): the input to the Model, containing keys: - `src_tokens` (LongTensor): a padded 2D Tensor of tokens in the source sentence of shape `(bsz, src_len)`. Padding will appear on the left if *left_pad_source* is ``True``. - `src_lengths` (LongTensor): 1D Tensor of the unpadded lengths of each source sentence of shape `(bsz)` - `prev_output_tokens` (LongTensor): a padded 2D Tensor of tokens in the target sentence, shifted right by one position for teacher forcing, of shape `(bsz, sql_len)`. This key will not be present if *input_feeding* is ``False``. Padding will appear on the left if *left_pad_target* is ``True``. - `target` (LongTensor): a padded 2D Tensor of tokens in the target sentence of shape `(bsz, sql_len)`. Padding will appear on the left if *left_pad_target* is ``True``. """ return collate( samples, self.src_embedding, self.tgt_embedding, self.src_dict, self.sql_dict, pad_idx=self.src_dict.pad(), eos_idx=self.src_dict.eos(), unk_idx=self.src_dict.unk(), left_pad_source=self.left_pad_source, left_pad_target=self.left_pad_target, input_feeding=self.input_feeding, eot_symbol=self.eot_symbol, mapping_dict=self.mapping_dict, len_sql_dict=self.eov_symbol + 1 ) def create_mapper(self,src_dict,sql_dict): new_dict = {} src_tokens = src_dict.symbols sql_tokens = sql_dict.symbols common_symbols = set(src_tokens).intersection(sql_tokens) for c in common_symbols: new_dict[src_dict.index(c)] = sql_dict.index(c) self.mapping_dict = new_dict def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return max(self.src_sizes[index], self.sql_sizes[index]) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return (self.src_sizes[index], self.sql_sizes[index]) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) else: indices = np.arange(len(self)) if self.sql_sizes is not None: indices = indices[np.argsort(self.sql_sizes[indices], kind='mergesort')] return indices[np.argsort(self.src_sizes[indices], kind='mergesort')] @property def supports_prefetch(self): return ( getattr(self.src, 'supports_prefetch', False) and (getattr(self.sql, 'supports_prefetch', False)) ) def prefetch(self, indices): self.src.prefetch(indices) if self.sql is not None: self.sql.prefetch(indices)
37.076433
176
0.738705
1acb9f25c0c8c3713d2e173dc12825a5c32288a5
5,864
py
Python
homeassistant/components/mobile_app/notify.py
mikan-megane/core
837220cce40890e296920d33a623adbc11bd15a6
[ "Apache-2.0" ]
5
2018-10-23T14:15:05.000Z
2021-11-26T06:38:44.000Z
homeassistant/components/mobile_app/notify.py
mikan-megane/core
837220cce40890e296920d33a623adbc11bd15a6
[ "Apache-2.0" ]
79
2020-07-23T07:13:37.000Z
2022-03-22T06:02:37.000Z
homeassistant/components/mobile_app/notify.py
mikan-megane/core
837220cce40890e296920d33a623adbc11bd15a6
[ "Apache-2.0" ]
3
2022-01-17T20:10:54.000Z
2022-01-17T20:17:22.000Z
"""Support for mobile_app push notifications.""" import asyncio import logging import aiohttp import async_timeout from homeassistant.components.notify import ( ATTR_DATA, ATTR_MESSAGE, ATTR_TARGET, ATTR_TITLE, ATTR_TITLE_DEFAULT, BaseNotificationService, ) from homeassistant.const import ( HTTP_ACCEPTED, HTTP_CREATED, HTTP_OK, HTTP_TOO_MANY_REQUESTS, ) from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.util.dt as dt_util from .const import ( ATTR_APP_DATA, ATTR_APP_ID, ATTR_APP_VERSION, ATTR_DEVICE_NAME, ATTR_OS_VERSION, ATTR_PUSH_RATE_LIMITS, ATTR_PUSH_RATE_LIMITS_ERRORS, ATTR_PUSH_RATE_LIMITS_MAXIMUM, ATTR_PUSH_RATE_LIMITS_RESETS_AT, ATTR_PUSH_RATE_LIMITS_SUCCESSFUL, ATTR_PUSH_TOKEN, ATTR_PUSH_URL, DATA_CONFIG_ENTRIES, DATA_NOTIFY, DATA_PUSH_CHANNEL, DOMAIN, ) from .util import supports_push _LOGGER = logging.getLogger(__name__) def push_registrations(hass): """Return a dictionary of push enabled registrations.""" targets = {} for webhook_id, entry in hass.data[DOMAIN][DATA_CONFIG_ENTRIES].items(): if not supports_push(hass, webhook_id): continue targets[entry.data[ATTR_DEVICE_NAME]] = webhook_id return targets # pylint: disable=invalid-name def log_rate_limits(hass, device_name, resp, level=logging.INFO): """Output rate limit log line at given level.""" if ATTR_PUSH_RATE_LIMITS not in resp: return rate_limits = resp[ATTR_PUSH_RATE_LIMITS] resetsAt = rate_limits[ATTR_PUSH_RATE_LIMITS_RESETS_AT] resetsAtTime = dt_util.parse_datetime(resetsAt) - dt_util.utcnow() rate_limit_msg = ( "mobile_app push notification rate limits for %s: " "%d sent, %d allowed, %d errors, " "resets in %s" ) _LOGGER.log( level, rate_limit_msg, device_name, rate_limits[ATTR_PUSH_RATE_LIMITS_SUCCESSFUL], rate_limits[ATTR_PUSH_RATE_LIMITS_MAXIMUM], rate_limits[ATTR_PUSH_RATE_LIMITS_ERRORS], str(resetsAtTime).split(".")[0], ) async def async_get_service(hass, config, discovery_info=None): """Get the mobile_app notification service.""" service = hass.data[DOMAIN][DATA_NOTIFY] = MobileAppNotificationService(hass) return service class MobileAppNotificationService(BaseNotificationService): """Implement the notification service for mobile_app.""" def __init__(self, hass): """Initialize the service.""" self._hass = hass @property def targets(self): """Return a dictionary of registered targets.""" return push_registrations(self.hass) async def async_send_message(self, message="", **kwargs): """Send a message to the Lambda APNS gateway.""" data = {ATTR_MESSAGE: message} # Remove default title from notifications. if ( kwargs.get(ATTR_TITLE) is not None and kwargs.get(ATTR_TITLE) != ATTR_TITLE_DEFAULT ): data[ATTR_TITLE] = kwargs.get(ATTR_TITLE) targets = kwargs.get(ATTR_TARGET) if not targets: targets = push_registrations(self.hass).values() if kwargs.get(ATTR_DATA) is not None: data[ATTR_DATA] = kwargs.get(ATTR_DATA) local_push_channels = self.hass.data[DOMAIN][DATA_PUSH_CHANNEL] for target in targets: if target in local_push_channels: local_push_channels[target](data) continue entry = self.hass.data[DOMAIN][DATA_CONFIG_ENTRIES][target] entry_data = entry.data app_data = entry_data[ATTR_APP_DATA] push_token = app_data[ATTR_PUSH_TOKEN] push_url = app_data[ATTR_PUSH_URL] target_data = dict(data) target_data[ATTR_PUSH_TOKEN] = push_token reg_info = { ATTR_APP_ID: entry_data[ATTR_APP_ID], ATTR_APP_VERSION: entry_data[ATTR_APP_VERSION], } if ATTR_OS_VERSION in entry_data: reg_info[ATTR_OS_VERSION] = entry_data[ATTR_OS_VERSION] target_data["registration_info"] = reg_info try: with async_timeout.timeout(10): response = await async_get_clientsession(self._hass).post( push_url, json=target_data ) result = await response.json() if response.status in [HTTP_OK, HTTP_CREATED, HTTP_ACCEPTED]: log_rate_limits(self.hass, entry_data[ATTR_DEVICE_NAME], result) continue fallback_error = result.get("errorMessage", "Unknown error") fallback_message = ( f"Internal server error, please try again later: {fallback_error}" ) message = result.get("message", fallback_message) if "message" in result: if message[-1] not in [".", "?", "!"]: message += "." message += ( " This message is generated externally to Home Assistant." ) if response.status == HTTP_TOO_MANY_REQUESTS: _LOGGER.warning(message) log_rate_limits( self.hass, entry_data[ATTR_DEVICE_NAME], result, logging.WARNING ) else: _LOGGER.error(message) except asyncio.TimeoutError: _LOGGER.error("Timeout sending notification to %s", push_url) except aiohttp.ClientError as err: _LOGGER.error("Error sending notification to %s: %r", push_url, err)
31.697297
88
0.625853
715d5664c93f1bf62f6077e117761199b0dbf1aa
541
py
Python
launch/minimal.launch.py
mlherd/turtlebot2_ros2
0ecf31cd81bed1a269916e963b2a788221bd845e
[ "Apache-2.0" ]
null
null
null
launch/minimal.launch.py
mlherd/turtlebot2_ros2
0ecf31cd81bed1a269916e963b2a788221bd845e
[ "Apache-2.0" ]
null
null
null
launch/minimal.launch.py
mlherd/turtlebot2_ros2
0ecf31cd81bed1a269916e963b2a788221bd845e
[ "Apache-2.0" ]
null
null
null
from launch import LaunchDescription import launch.actions import launch_ros.actions def generate_launch_description(): return LaunchDescription([ launch.actions.LogInfo( msg="ROS2 start turtlebot_bringup minimal node." ), launch_ros.actions.Node( package="ydlidar", node_executable="ydlidar_node", output="screen", ), launch_ros.actions.Node( package="turtlebot_bringup", node_executable="turtlebot2", output="screen", ), ])
21.64
57
0.63586
4df6b79d25cf2380b55fe9d3c5a3b8c00d828c1d
962
py
Python
friends/migrations/0003_friendrequest.py
DK-Nguyen/Django_Social_Network
6061e28b7574a612a71ba2661eabf6d024b930cd
[ "MIT" ]
14
2020-12-05T08:20:21.000Z
2022-03-07T12:18:40.000Z
friends/migrations/0003_friendrequest.py
DK-Nguyen/Django_Social_Network
6061e28b7574a612a71ba2661eabf6d024b930cd
[ "MIT" ]
1
2021-02-22T17:48:10.000Z
2021-02-22T17:48:10.000Z
friends/migrations/0003_friendrequest.py
DK-Nguyen/Django_Social_Network
6061e28b7574a612a71ba2661eabf6d024b930cd
[ "MIT" ]
13
2020-10-20T09:32:46.000Z
2022-01-02T00:27:51.000Z
# Generated by Django 2.1.2 on 2018-11-11 12:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('friends', '0002_auto_20181111_1249'), ] operations = [ migrations.CreateModel( name='FriendRequest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('from_user', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='from_user', to=settings.AUTH_USER_MODEL)), ('to_user', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='to_user', to=settings.AUTH_USER_MODEL)), ], ), ]
37
149
0.665281
1a1e30b443a70d9c9d91e163587ba717da36c5bf
1,690
py
Python
tempest/stress/actions/server_create_destroy.py
citrix-openstack-build/tempest
385f0b116e8f02d24338e0f11f4ae3ccf2edd661
[ "Apache-2.0" ]
null
null
null
tempest/stress/actions/server_create_destroy.py
citrix-openstack-build/tempest
385f0b116e8f02d24338e0f11f4ae3ccf2edd661
[ "Apache-2.0" ]
null
null
null
tempest/stress/actions/server_create_destroy.py
citrix-openstack-build/tempest
385f0b116e8f02d24338e0f11f4ae3ccf2edd661
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Quanta Research Cambridge, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tempest.common.utils.data_utils import rand_name import tempest.stress.stressaction as stressaction class ServerCreateDestroyTest(stressaction.StressAction): def setUp(self, **kwargs): self.image = self.manager.config.compute.image_ref self.flavor = self.manager.config.compute.flavor_ref def run(self): name = rand_name("instance") self.logger.info("creating %s" % name) resp, server = self.manager.servers_client.create_server( name, self.image, self.flavor) server_id = server['id'] assert(resp.status == 202) self.manager.servers_client.wait_for_server_status(server_id, 'ACTIVE') self.logger.info("created %s" % server_id) self.logger.info("deleting %s" % name) resp, _ = self.manager.servers_client.delete_server(server_id) assert(resp.status == 204) self.manager.servers_client.wait_for_server_termination(server_id) self.logger.info("deleted %s" % server_id)
42.25
77
0.681065
798803e076d2e5ca04b9d22a04051df99ba64bc5
82
py
Python
bot/error_classes/__init__.py
NMisko/monkalot
965a16ca6a4921c8a9e6e996e9a0e3a9beb8444b
[ "MIT" ]
20
2017-09-08T21:13:38.000Z
2022-01-29T03:24:13.000Z
bot/error_classes/__init__.py
NMisko/monkalot
965a16ca6a4921c8a9e6e996e9a0e3a9beb8444b
[ "MIT" ]
32
2017-08-20T17:46:14.000Z
2021-11-18T22:54:59.000Z
bot/error_classes/__init__.py
NMisko/monkalot
965a16ca6a4921c8a9e6e996e9a0e3a9beb8444b
[ "MIT" ]
10
2017-08-19T01:13:41.000Z
2021-08-07T08:45:30.000Z
""" Package for custom classes.""" from .error_classes import UserNotFoundError
16.4
44
0.768293
381731d57d1bd9397e2803e2fa8594ea4771e1ca
1,027
py
Python
analyze.py
Term-inator/Brain-Tumor-Detection
b59715092cca7a17b589b5d906983eb42ee4ad87
[ "MIT" ]
null
null
null
analyze.py
Term-inator/Brain-Tumor-Detection
b59715092cca7a17b589b5d906983eb42ee4ad87
[ "MIT" ]
null
null
null
analyze.py
Term-inator/Brain-Tumor-Detection
b59715092cca7a17b589b5d906983eb42ee4ad87
[ "MIT" ]
null
null
null
import numpy as np seed_list = [31, 37, 41, 42, 43, 47, 53] type_list = ['tumor', 'T1SS', 'T2SS', 'T1', '2label', 'randT1', 'randTumor'] def get_test_result(test_scores): print(f'{np.round(np.mean(test_scores, axis=0), decimals=4)}') for type in type_list: for epochs in range(10, 61, 10): all_scores = [] for seed in seed_list: directory = f'../output_V100/seed{seed}/{type}/{type}_seed{seed}-ep{epochs}/' filename = 'train.log' with open(directory + filename, 'r') as f: line = f.readlines()[-3] l = line.find('[') r = line.find(']') scores = [] for score in line[l + 1: r].strip().split(' '): if score != '': scores.append(score) # print(scores) all_scores.append(np.array(scores).astype('float64')) print(f'{type} {epochs}: ', end='') get_test_result(np.array(all_scores)) print()
33.129032
89
0.508277
e5205b6f20a239e93a1300c5f360763227e6d7fe
3,883
py
Python
tests/test_extraction_synthesis.py
pwang00/PrivacyRaven
50d18f403f92c4b6ddb14be438584b9746f6bad6
[ "Apache-2.0" ]
121
2020-09-01T21:55:22.000Z
2022-03-28T11:38:43.000Z
tests/test_extraction_synthesis.py
pwang00/PrivacyRaven
50d18f403f92c4b6ddb14be438584b9746f6bad6
[ "Apache-2.0" ]
49
2020-09-08T19:02:16.000Z
2022-02-11T20:52:40.000Z
tests/test_extraction_synthesis.py
pwang00/PrivacyRaven
50d18f403f92c4b6ddb14be438584b9746f6bad6
[ "Apache-2.0" ]
16
2020-09-09T00:45:30.000Z
2022-02-25T01:53:53.000Z
# This test code was modified from code written by the `hypothesis.extra.ghostwriter` module # and is provided under the Creative Commons Zero public domain dedication. import numpy as np import pytest import torch from art.estimators.classification import BlackBoxClassifier from hypothesis import assume, given, settings from hypothesis import strategies as st from hypothesis.extra.numpy import arrays import privacyraven.extraction.synthesis import privacyraven.utils.query from privacyraven.models.victim import train_four_layer_mnist_victim from privacyraven.utils import model_creation, query from privacyraven.utils.data import get_emnist_data from privacyraven.utils.query import get_target """ The synthesis tests rely on sampling data from a model. We will be training one and returning a query function here and not inside of a separate function in order to minimize the cycles dedicated for training this model. """ device = torch.device("cpu") model = train_four_layer_mnist_victim(gpus=torch.cuda.device_count()) art_model = BlackBoxClassifier( predict=query, input_shape=(1, 28, 28, 1), nb_classes=10, clip_values=None, # (0, 255), preprocessing_defences=None, postprocessing_defences=None, preprocessing=(0, 1), # None, ) def query_mnist(input_data): return privacyraven.utils.query.get_target(model, input_data, (1, 28, 28, 1)) def valid_query(): return st.just(query_mnist) def valid_data(): return arrays(np.float64, (10, 28, 28, 1), st.floats()) @settings(deadline=None) @given( data=valid_data(), query=st.just(query_mnist), query_limit=st.integers(10, 25), art_model=st.just(art_model), victim_input_shape=st.just((1, 28, 28, 1)), substitute_input_shape=st.just((3, 1, 28, 28)), victim_output_targets=st.just(10), ) def test_copycat_preserves_shapes( data, query, query_limit, art_model, victim_input_shape, substitute_input_shape, victim_output_targets, ): # data = torch.from_numpy(data).detach().clone().float() data = privacyraven.extraction.synthesis.process_data(data, query_limit) x_data, y_data = privacyraven.extraction.synthesis.copycat( data=data, query=query, query_limit=query_limit, art_model=art_model, victim_input_shape=victim_input_shape, substitute_input_shape=substitute_input_shape, victim_output_targets=victim_output_targets, ) x_1 = x_data.size() y_1 = y_data.size() assert x_1 == torch.Size([10, 1, 28, 28]) assert y_1 == torch.Size([10]) @given(data=valid_data(), query_limit=st.integers(10, 25)) def process_data_preserves_shape_and_type(data, query_limit): processed_data = privacyraven.extraction.synthesis.process_data( data=data, query_limit=query_limit ) (x, y) = processed_data assert x.size() == torch.Size([10, 28, 28, 1]) assert x.type() == torch.FloatTensor """ This is error-prone, but should be fixed eventually @given( data=valid_data(), query=st.just(query_mnist), query_limit=st.integers(10, 25), victim_input_shape=st.just((1, 28, 28, 1)), substitute_input_shape=st.just((1, 3, 28, 28)), victim_input_targets=st.just(10), ) def test_fuzz_hopskipjump( data, query, query_limit, victim_input_shape, substitute_input_shape, victim_input_targets, ): data = torch.from_numpy(data).detach().clone().float() data = privacyraven.extraction.synthesis.process_data(data, query_limit) x_data, y_data = privacyraven.extraction.synthesis.hopskipjump( data=data, query=query, query_limit=query_limit, victim_input_shape=victim_input_shape, substitute_input_shape=substitute_input_shape, victim_input_targets=victim_input_targets, ) print(x_data.size()) print(y_data.size()) """
29.641221
92
0.726243
c2763c7a85f3334b1c58ee999328017be0957ac5
2,708
py
Python
training/dataloader_lightning.py
denix56/stylegan2-ada-pytorch
9df6a704a5dd1db779966307422b70c293b393fc
[ "BSD-Source-Code" ]
1
2021-02-24T19:24:04.000Z
2021-02-24T19:24:04.000Z
training/dataloader_lightning.py
denix56/stylegan2-ada-pytorch
9df6a704a5dd1db779966307422b70c293b393fc
[ "BSD-Source-Code" ]
null
null
null
training/dataloader_lightning.py
denix56/stylegan2-ada-pytorch
9df6a704a5dd1db779966307422b70c293b393fc
[ "BSD-Source-Code" ]
null
null
null
import torch from torch.utils.data import DataLoader import pytorch_lightning as pl import dnnlib import numpy as np from .dataset import worker_init_fn class StyleGANDataModule(pl.LightningDataModule): def __init__(self, batch_size_per_unit, training_set_kwargs, data_loader_kwargs): super().__init__() self._batch_size_per_unit = batch_size_per_unit self._data_loader_kwargs = data_loader_kwargs shuffle = training_set_kwargs.pop('shuffle', False) window_size = training_set_kwargs.pop('window_size', 0.5) self.training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) self.worker_init_fn = lambda id: worker_init_fn(id, shuffle, window_size) self.n_phases = None self.z_dim = None def setup_noise_params(self, n_phases, z_dim): self.n_phases = n_phases self.z_dim = z_dim @property def name(self): return self.training_set.name def _get_noise(self, batch: torch.Tensor) -> (torch.Tensor, torch.Tensor): assert self.n_phases assert self.z_dim imgs, _ = batch batch_size = imgs.shape[0] all_gen_z = torch.randn([self.n_phases, batch_size, self.z_dim], device=imgs.device) all_gen_c = self.training_set.get_label(np.random.randint(self.training_set.get_len(), size=self.n_phases*batch_size)) if len(all_gen_c.shape) == 1: all_gen_c = all_gen_c.reshape((self.n_phases, batch_size)) else: all_gen_c = all_gen_c.reshape((self.n_phases, batch_size) + all_gen_c.shape[1:]) all_gen_c = torch.tensor(all_gen_c, device=imgs.device) return all_gen_z, all_gen_c def train_dataloader(self): return DataLoader(dataset=self.training_set, batch_size=self._batch_size_per_unit, worker_init_fn=self.worker_init_fn, persistent_workers=True, **self._data_loader_kwargs) def val_dataloader(self): return DataLoader(dataset=self.training_set, batch_size=self._batch_size_per_unit, worker_init_fn=self.worker_init_fn, persistent_workers=True, **self._data_loader_kwargs) def test_dataloader(self): return DataLoader(dataset=self.training_set, batch_size=self._batch_size_per_unit, worker_init_fn=self.worker_init_fn, persistent_workers=True, **self._data_loader_kwargs) def on_after_batch_transfer(self, batch, dataloader_idx): batch[0] = batch[0].to(torch.float32) / 127.5 - 1 all_gen_z, all_gen_c = self._get_noise(batch) batch = tuple(batch) + (all_gen_z, all_gen_c) return batch
42.3125
126
0.688331
cf8d36174783f3deb1919c0c05c6091b6805374c
8,890
py
Python
droid_slam/visualization.py
TruongKhang/DROID-SLAM
7a2aa9a2b4b04952dd095bdb562f140c899ca8a7
[ "BSD-3-Clause" ]
null
null
null
droid_slam/visualization.py
TruongKhang/DROID-SLAM
7a2aa9a2b4b04952dd095bdb562f140c899ca8a7
[ "BSD-3-Clause" ]
null
null
null
droid_slam/visualization.py
TruongKhang/DROID-SLAM
7a2aa9a2b4b04952dd095bdb562f140c899ca8a7
[ "BSD-3-Clause" ]
null
null
null
import torch import torch.nn.functional as F import cv2 import lietorch import droid_backends import time import argparse import numpy as np import open3d as o3d from lietorch import SE3 import geom.projective_ops as pops import depth_fusion CAM_POINTS = np.array([ [ 0, 0, 0], [-1, -1, 1.5], [ 1, -1, 1.5], [ 1, 1, 1.5], [-1, 1, 1.5], [-0.5, 1, 1.5], [ 0.5, 1, 1.5], [ 0, 1.2, 1.5]]) / 3 CAM_LINES = np.array([ [1,2], [2,3], [3,4], [4,1], [1,0], [0,2], [3,0], [0,4], [5,7], [7,6]]) def white_balance(img): # from https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption result = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) avg_a = np.average(result[:, :, 1]) avg_b = np.average(result[:, :, 2]) result[:, :, 1] = result[:, :, 1] - ((avg_a - 128) * (result[:, :, 0] / 255.0) * 1.1) result[:, :, 2] = result[:, :, 2] - ((avg_b - 128) * (result[:, :, 0] / 255.0) * 1.1) result = cv2.cvtColor(result, cv2.COLOR_LAB2BGR) return result def create_camera_actor(g, scale=0.05): """ build open3d camera polydata """ camera_actor = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(scale * CAM_POINTS), lines=o3d.utility.Vector2iVector(CAM_LINES)) color = (g * 1.0, 0.5 * (1-g), 0.9 * (1-g)) camera_actor.paint_uniform_color(color) return camera_actor def create_point_actor(points, colors): """ open3d point cloud from numpy array """ point_cloud = o3d.geometry.PointCloud() point_cloud.points = o3d.utility.Vector3dVector(points) point_cloud.colors = o3d.utility.Vector3dVector(colors) return point_cloud def droid_visualization(video, device="cuda:0"): """ DROID visualization frontend """ torch.cuda.set_device(device) droid_visualization.video = video droid_visualization.cameras = {} droid_visualization.points = {} droid_visualization.warmup = 8 droid_visualization.scale = 1.0 droid_visualization.ix = 0 droid_visualization.filter_thresh = 0.01 droid_visualization.thresh_view = 3 droid_visualization.thresh_disp = 1.0 intr_params = video.intrinsics[0] * 16 fx, fy, cx, cy = intr_params.cpu().numpy() intr_mat = torch.tensor([[fx, 0, cx, 0], [0, fy, cy, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float32, device=device) def increase_filter(vis): droid_visualization.filter_thresh *= 2 with droid_visualization.video.get_lock(): droid_visualization.video.dirty[:droid_visualization.video.counter.value] = True def decrease_filter(vis): droid_visualization.filter_thresh *= 0.5 with droid_visualization.video.get_lock(): droid_visualization.video.dirty[:droid_visualization.video.counter.value] = True def animation_callback(vis): cam = vis.get_view_control().convert_to_pinhole_camera_parameters() with torch.no_grad(): with video.get_lock(): t = video.counter.value dirty_index, = torch.where(video.dirty.clone()) dirty_index = dirty_index if (len(dirty_index) == 0) or (intr_mat is None): return video.dirty[dirty_index] = False # convert poses to 4x4 matrix poses = torch.index_select(video.poses, 0, dirty_index) poses = SE3(poses).matrix() # [N, 4, 4] # disps = torch.index_select(video.disps, 0, dirty_index) """disps = torch.index_select(video.disps_up, 0, dirty_index).clone() Ps = SE3(poses).inv().matrix().cpu().numpy() images = torch.index_select(video.images, 0, dirty_index).clone() # images = images.cpu()[:,[2,1,0],3::8,3::8].permute(0,2,3,1) / 255.0 # images = F.interpolate(images, scale_factor=0.5) images = images.cpu()[:, [2, 1, 0]].permute(0, 2, 3, 1) / 255.0 points = droid_backends.iproj(SE3(poses).inv().data, disps, video.intrinsics[0]*8).cpu() thresh = droid_visualization.filter_thresh * torch.ones_like(disps.mean(dim=[1,2])) count = droid_backends.depth_filter( video.poses, video.disps_up, video.intrinsics[0]*8, dirty_index, thresh) count = count.cpu() disps = disps.cpu() masks = ((count >= 2) & (disps > .5*disps.mean(dim=[1,2], keepdim=True)))""" depths = torch.index_select(video.disps_up, 0, dirty_index).unsqueeze(1).unsqueeze(0) intr_matrices = intr_mat.unsqueeze(0).repeat(poses.size(0), 1, 1) proj_matrices = torch.stack((poses, intr_matrices), dim=1).unsqueeze(0) # [N, 2, 4, 4] ref_depth, src_depths = depths[:, -1, ...], depths[:, :-1, ...] ref_cam, src_cams = proj_matrices[:, -1, ...], proj_matrices[:, :-1, ...] reproj_xyd, in_range = depth_fusion.get_reproj(ref_depth, src_depths, ref_cam, src_cams) vis_masks, vis_mask = depth_fusion.vis_filter(ref_depth, reproj_xyd, in_range, droid_visualization.thresh_disp, droid_visualization.filter_thresh, droid_visualization.thresh_view) ref_depth_avg = depth_fusion.ave_fusion(ref_depth, reproj_xyd, vis_masks) # ref_image = video.images[dirty_index[-1]] ref_image = video.ref_image[0].permute(1, 2, 0) #/ 255.0 idx_img = depth_fusion.get_pixel_grids(*ref_depth_avg.size()[-2:]).unsqueeze(0) idx_cam = depth_fusion.idx_img2cam(idx_img, ref_depth_avg, ref_cam) points = depth_fusion.idx_cam2world(idx_cam, ref_cam)[..., :3, 0] ref_pose = torch.inverse(poses[-1]).cpu().numpy() ix = dirty_index[-1].item() if len(droid_visualization.cameras.keys()) > 1: if ix in droid_visualization.cameras: vis.remove_geometry(droid_visualization.cameras[ix]) del droid_visualization.cameras[ix] if ix in droid_visualization.points: vis.remove_geometry(droid_visualization.points[ix]) del droid_visualization.points[ix] ### add camera actor ### cam_actor = create_camera_actor(True) cam_actor.transform(ref_pose) vis.add_geometry(cam_actor) droid_visualization.cameras[ix] = cam_actor mask = vis_mask.reshape(-1) pts = points.reshape(-1, 3)[mask].cpu().numpy() clr = ref_image.reshape(-1, 3)[mask].cpu().numpy() ## add point actor ### point_actor = create_point_actor(pts, clr) vis.add_geometry(point_actor) droid_visualization.points[ix] = point_actor # for i in range(len(dirty_index)): # pose = Ps[i] # ix = dirty_index[i].item() # # if ix in droid_visualization.cameras: # vis.remove_geometry(droid_visualization.cameras[ix]) # del droid_visualization.cameras[ix] # # if ix in droid_visualization.points: # vis.remove_geometry(droid_visualization.points[ix]) # del droid_visualization.points[ix] # # ### add camera actor ### # cam_actor = create_camera_actor(True) # cam_actor.transform(pose) # vis.add_geometry(cam_actor) # droid_visualization.cameras[ix] = cam_actor # # mask = masks[i].reshape(-1) # pts = points[i].reshape(-1, 3)[mask].numpy() # clr = images[i].reshape(-1, 3)[mask].numpy() # # ## add point actor ### # point_actor = create_point_actor(pts, clr) # vis.add_geometry(point_actor) # droid_visualization.points[ix] = point_actor # hack to allow interacting with vizualization during inference if len(droid_visualization.cameras) >= droid_visualization.warmup: cam = vis.get_view_control().convert_from_pinhole_camera_parameters(cam) droid_visualization.ix += 1 vis.poll_events() vis.update_renderer() ### create Open3D visualization ### vis = o3d.visualization.VisualizerWithKeyCallback() vis.register_animation_callback(animation_callback) vis.register_key_callback(ord("S"), increase_filter) vis.register_key_callback(ord("A"), decrease_filter) vis.create_window(height=540, width=960) vis.get_render_option().load_from_json("misc/renderoption.json") vis.run() vis.destroy_window()
42.740385
125
0.593476
69b4bd44be9a0776a4d080958f11e76ebdf4f20c
42,284
py
Python
src/sentry/event_manager.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
1
2021-04-04T07:26:13.000Z
2021-04-04T07:26:13.000Z
src/sentry/event_manager.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
null
null
null
src/sentry/event_manager.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
null
null
null
""" sentry.event_manager ~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import, print_function import logging import math import six from datetime import datetime, timedelta from collections import OrderedDict from django.conf import settings from django.db import connection, IntegrityError, router, transaction from django.utils import timezone from django.utils.encoding import force_bytes, force_text from hashlib import md5 from uuid import uuid4 from sentry import eventtypes, features, buffer # we need a bunch of unexposed functions from tsdb from sentry.tsdb import backend as tsdb from sentry.constants import ( CLIENT_RESERVED_ATTRS, LOG_LEVELS, LOG_LEVELS_MAP, DEFAULT_LOG_LEVEL, DEFAULT_LOGGER_NAME, MAX_CULPRIT_LENGTH, VALID_PLATFORMS ) from sentry.interfaces.base import get_interface, InterfaceValidationError from sentry.interfaces.schemas import validate_and_default_interface from sentry.models import ( Activity, Environment, Event, EventError, EventMapping, EventUser, Group, GroupEnvironment, GroupHash, GroupRelease, GroupResolution, GroupStatus, Project, Release, ReleaseEnvironment, ReleaseProject, UserReport ) from sentry.plugins import plugins from sentry.signals import event_discarded, event_saved, first_event_received, regression_signal from sentry.tasks.merge import merge_group from sentry.tasks.post_process import post_process_group from sentry.utils import metrics from sentry.utils.cache import default_cache from sentry.utils.db import get_db_engine from sentry.utils.safe import safe_execute, trim, trim_dict, get_path from sentry.utils.strings import truncatechars from sentry.utils.validators import is_float from sentry.stacktraces import normalize_in_app DEFAULT_FINGERPRINT_VALUES = frozenset(['{{ default }}', '{{default}}']) def count_limit(count): # TODO: could we do something like num_to_store = max(math.sqrt(100*count)+59, 200) ? # ~ 150 * ((log(n) - 1.5) ^ 2 - 0.25) for amount, sample_rate in settings.SENTRY_SAMPLE_RATES: if count <= amount: return sample_rate return settings.SENTRY_MAX_SAMPLE_RATE def time_limit(silence): # ~ 3600 per hour for amount, sample_rate in settings.SENTRY_SAMPLE_TIMES: if silence >= amount: return sample_rate return settings.SENTRY_MAX_SAMPLE_TIME def md5_from_hash(hash_bits): result = md5() for bit in hash_bits: result.update(force_bytes(bit, errors='replace')) return result.hexdigest() def get_fingerprint_for_event(event): fingerprint = event.data.get('fingerprint') if fingerprint is None: return ['{{ default }}'] if isinstance(fingerprint, six.string_types): return [fingerprint] return fingerprint def get_hashes_for_event(event): return get_hashes_for_event_with_reason(event)[1] def get_hashes_for_event_with_reason(event): interfaces = event.get_interfaces() for interface in six.itervalues(interfaces): result = interface.compute_hashes(event.platform) if not result: continue return (interface.get_path(), result) return ('no_interfaces', ['']) def get_grouping_behavior(event): data = event.data if 'checksum' in data: return ('checksum', data['checksum']) fingerprint = get_fingerprint_for_event(event) return ('fingerprint', get_hashes_from_fingerprint_with_reason(event, fingerprint)) def get_hashes_from_fingerprint(event, fingerprint): if any(d in fingerprint for d in DEFAULT_FINGERPRINT_VALUES): default_hashes = get_hashes_for_event(event) hash_count = len(default_hashes) else: hash_count = 1 hashes = [] for idx in range(hash_count): result = [] for bit in fingerprint: if bit in DEFAULT_FINGERPRINT_VALUES: result.extend(default_hashes[idx]) else: result.append(bit) hashes.append(result) return hashes def get_hashes_from_fingerprint_with_reason(event, fingerprint): if any(d in fingerprint for d in DEFAULT_FINGERPRINT_VALUES): default_hashes = get_hashes_for_event_with_reason(event) hash_count = len(default_hashes[1]) else: hash_count = 1 hashes = OrderedDict((bit, []) for bit in fingerprint) for idx in range(hash_count): for bit in fingerprint: if bit in DEFAULT_FINGERPRINT_VALUES: hashes[bit].append(default_hashes) else: hashes[bit] = bit return list(hashes.items()) if not settings.SENTRY_SAMPLE_DATA: def should_sample(current_datetime, last_seen, times_seen): return False else: def should_sample(current_datetime, last_seen, times_seen): silence = current_datetime - last_seen if times_seen % count_limit(times_seen) == 0: return False if times_seen % time_limit(silence) == 0: return False return True def generate_culprit(data, platform=None): culprit = '' try: stacktraces = [ e['stacktrace'] for e in data['sentry.interfaces.Exception']['values'] if e.get('stacktrace') ] except KeyError: stacktrace = data.get('sentry.interfaces.Stacktrace') if stacktrace: stacktraces = [stacktrace] else: stacktraces = None if not stacktraces: if 'sentry.interfaces.Http' in data: culprit = data['sentry.interfaces.Http'].get('url', '') else: from sentry.interfaces.stacktrace import Stacktrace culprit = Stacktrace.to_python(stacktraces[-1]).get_culprit_string( platform=platform, ) return truncatechars(culprit, MAX_CULPRIT_LENGTH) def plugin_is_regression(group, event): project = event.project for plugin in plugins.for_project(project): result = safe_execute( plugin.is_regression, group, event, version=1, _with_transaction=False ) if result is not None: return result return True def process_timestamp(value, current_datetime=None): if is_float(value): try: value = datetime.fromtimestamp(float(value)) except Exception: raise InvalidTimestamp( 'Invalid value for timestamp: %r' % value) elif not isinstance(value, datetime): # all timestamps are in UTC, but the marker is optional if value.endswith('Z'): value = value[:-1] if '.' in value: # Python doesn't support long microsecond values # https://github.com/getsentry/sentry/issues/1610 ts_bits = value.split('.', 1) value = '%s.%s' % (ts_bits[0], ts_bits[1][:2]) fmt = '%Y-%m-%dT%H:%M:%S.%f' else: fmt = '%Y-%m-%dT%H:%M:%S' try: value = datetime.strptime(value, fmt) except Exception: raise InvalidTimestamp( 'Invalid value for timestamp: %r' % value) if current_datetime is None: current_datetime = datetime.now() if value > current_datetime + timedelta(minutes=1): raise InvalidTimestamp( 'Invalid value for timestamp (in future): %r' % value) if value < current_datetime - timedelta(days=30): raise InvalidTimestamp( 'Invalid value for timestamp (too old): %r' % value) return float(value.strftime('%s')) class HashDiscarded(Exception): pass class ScoreClause(object): def __init__(self, group): self.group = group def __int__(self): # Calculate the score manually when coercing to an int. # This is used within create_or_update and friends return self.group.get_score() def prepare_database_save(self, unused): return self def prepare(self, evaluator, query, allow_joins): return def evaluate(self, node, qn, connection): engine = get_db_engine(getattr(connection, 'alias', 'default')) if engine.startswith('postgresql'): sql = 'log(times_seen) * 600 + last_seen::abstime::int' elif engine.startswith('mysql'): sql = 'log(times_seen) * 600 + unix_timestamp(last_seen)' else: # XXX: if we cant do it atomically let's do it the best we can sql = int(self) return (sql, []) @classmethod def calculate(cls, times_seen, last_seen): return math.log(times_seen) * 600 + float(last_seen.strftime('%s')) class InvalidTimestamp(Exception): pass class EventManager(object): logger = logging.getLogger('sentry.events') def __init__(self, data, version='5'): self.data = data self.version = version def normalize(self, request_env=None): request_env = request_env or {} data = self.data errors = data['errors'] = [] # Before validating with a schema, attempt to cast values to their desired types # so that the schema doesn't have to take every type variation into account. text = six.text_type fp_types = six.string_types + six.integer_types + (float, ) def to_values(v): return {'values': v} if v and isinstance(v, (tuple, list)) else v casts = { 'environment': lambda v: text(v) if v is not None else v, 'fingerprint': lambda v: list(map(text, v)) if isinstance(v, list) and all(isinstance(f, fp_types) for f in v) else v, 'release': lambda v: text(v) if v is not None else v, 'dist': lambda v: text(v).strip() if v is not None else v, 'time_spent': lambda v: int(v) if v is not None else v, 'tags': lambda v: [(text(v_k).replace(' ', '-').strip(), text(v_v).strip()) for (v_k, v_v) in dict(v).items()], 'timestamp': lambda v: process_timestamp(v), 'platform': lambda v: v if v in VALID_PLATFORMS else 'other', 'sentry.interfaces.Message': lambda v: v if isinstance(v, dict) else {'message': v}, # These can be sent as lists and need to be converted to {'values': [...]} 'exception': to_values, 'sentry.interfaces.Exception': to_values, 'breadcrumbs': to_values, 'sentry.interfaces.Breadcrumbs': to_values, 'threads': to_values, 'sentry.interfaces.Threads': to_values, } for c in casts: if c in data: try: data[c] = casts[c](data[c]) except Exception as e: errors.append({'type': EventError.INVALID_DATA, 'name': c, 'value': data[c]}) del data[c] # raw 'message' is coerced to the Message interface, as its used for pure index of # searchable strings. If both a raw 'message' and a Message interface exist, try and # add the former as the 'formatted' attribute of the latter. # See GH-3248 msg_str = data.pop('message', None) if msg_str: msg_if = data.setdefault('sentry.interfaces.Message', {'message': msg_str}) if msg_if.get('message') != msg_str: msg_if.setdefault('formatted', msg_str) # Fill in ip addresses marked as {{auto}} client_ip = request_env.get('client_ip') if client_ip: if get_path(data, ['sentry.interfaces.Http', 'env', 'REMOTE_ADDR']) == '{{auto}}': data['sentry.interfaces.Http']['env']['REMOTE_ADDR'] = client_ip if get_path(data, ['request', 'env', 'REMOTE_ADDR']) == '{{auto}}': data['request']['env']['REMOTE_ADDR'] = client_ip if get_path(data, ['sentry.interfaces.User', 'ip_address']) == '{{auto}}': data['sentry.interfaces.User']['ip_address'] = client_ip if get_path(data, ['user', 'ip_address']) == '{{auto}}': data['user']['ip_address'] = client_ip # Validate main event body and tags against schema is_valid, event_errors = validate_and_default_interface(data, 'event') errors.extend(event_errors) if 'tags' in data: is_valid, tag_errors = validate_and_default_interface(data['tags'], 'tags', name='tags') errors.extend(tag_errors) # Validate interfaces for k in list(iter(data)): if k in CLIENT_RESERVED_ATTRS: continue value = data.pop(k) if not value: self.logger.debug('Ignored empty interface value: %s', k) continue try: interface = get_interface(k) except ValueError: self.logger.debug('Ignored unknown attribute: %s', k) errors.append({'type': EventError.INVALID_ATTRIBUTE, 'name': k}) continue try: inst = interface.to_python(value) data[inst.get_path()] = inst.to_json() except Exception as e: log = self.logger.debug if isinstance( e, InterfaceValidationError) else self.logger.error log('Discarded invalid value for interface: %s (%r)', k, value, exc_info=True) errors.append({'type': EventError.INVALID_DATA, 'name': k, 'value': value}) # Additional data coercion and defaulting level = data.get('level') or DEFAULT_LOG_LEVEL if isinstance(level, int) or (isinstance(level, six.string_types) and level.isdigit()): level = LOG_LEVELS.get(int(level), DEFAULT_LOG_LEVEL) data['level'] = LOG_LEVELS_MAP.get(level, LOG_LEVELS_MAP[DEFAULT_LOG_LEVEL]) if data.get('dist') and not data.get('release'): data['dist'] = None timestamp = data.get('timestamp') if not timestamp: timestamp = timezone.now() # TODO (alex) can this all be replaced by utcnow? # it looks like the only time that this would even be hit is when timestamp # is not defined, as the earlier process_timestamp already converts existing # timestamps to floats. if isinstance(timestamp, datetime): # We must convert date to local time so Django doesn't mess it up # based on TIME_ZONE if settings.TIME_ZONE: if not timezone.is_aware(timestamp): timestamp = timestamp.replace(tzinfo=timezone.utc) elif timezone.is_aware(timestamp): timestamp = timestamp.replace(tzinfo=None) timestamp = float(timestamp.strftime('%s')) data['timestamp'] = timestamp data['received'] = float(timezone.now().strftime('%s')) data.setdefault('checksum', None) data.setdefault('culprit', None) data.setdefault('dist', None) data.setdefault('environment', None) data.setdefault('extra', {}) data.setdefault('fingerprint', None) data.setdefault('logger', DEFAULT_LOGGER_NAME) data.setdefault('platform', None) data.setdefault('server_name', None) data.setdefault('site', None) data.setdefault('tags', []) data.setdefault('transaction', None) # Fix case where legacy apps pass 'environment' as a tag # instead of a top level key. # TODO (alex) save() just reinserts the environment into the tags if not data.get('environment'): tagsdict = dict(data['tags']) if 'environment' in tagsdict: data['environment'] = tagsdict['environment'] del tagsdict['environment'] data['tags'] = tagsdict.items() # the SDKs currently do not describe event types, and we must infer # them from available attributes data['type'] = eventtypes.infer(data).key data['version'] = self.version exception = data.get('sentry.interfaces.Exception') stacktrace = data.get('sentry.interfaces.Stacktrace') if exception and len(exception['values']) == 1 and stacktrace: exception['values'][0]['stacktrace'] = stacktrace del data['sentry.interfaces.Stacktrace'] # If there is no User ip_addres, update it either from the Http interface # or the client_ip of the request. auth = request_env.get('auth') is_public = auth and auth.is_public add_ip_platforms = ('javascript', 'cocoa', 'objc') http_ip = data.get('sentry.interfaces.Http', {}).get('env', {}).get('REMOTE_ADDR') if http_ip: data.setdefault('sentry.interfaces.User', {}).setdefault('ip_address', http_ip) elif client_ip and (is_public or data.get('platform') in add_ip_platforms): data.setdefault('sentry.interfaces.User', {}).setdefault('ip_address', client_ip) if client_ip and data.get('sdk'): data['sdk']['client_ip'] = client_ip # Trim values data['logger'] = trim(data['logger'].strip(), 64) trim_dict(data['extra'], max_size=settings.SENTRY_MAX_EXTRA_VARIABLE_SIZE) if data['culprit']: data['culprit'] = trim(data['culprit'], MAX_CULPRIT_LENGTH) if data['transaction']: data['transaction'] = trim(data['transaction'], MAX_CULPRIT_LENGTH) return data def save(self, project, raw=False): from sentry.tasks.post_process import index_event_tags project = Project.objects.get_from_cache(id=project) data = self.data.copy() # First we pull out our top-level (non-data attr) kwargs event_id = data.pop('event_id') level = data.pop('level') culprit = data.pop('transaction', None) if not culprit: culprit = data.pop('culprit', None) logger_name = data.pop('logger', None) server_name = data.pop('server_name', None) site = data.pop('site', None) checksum = data.pop('checksum', None) fingerprint = data.pop('fingerprint', None) platform = data.pop('platform', None) release = data.pop('release', None) dist = data.pop('dist', None) environment = data.pop('environment', None) # unused time_spent = data.pop('time_spent', None) message = data.pop('message', '') if not culprit: # if we generate an implicit culprit, lets not call it a # transaction transaction_name = None culprit = generate_culprit(data, platform=platform) else: transaction_name = culprit recorded_timestamp = data.pop('timestamp') date = datetime.fromtimestamp(recorded_timestamp) date = date.replace(tzinfo=timezone.utc) kwargs = { 'platform': platform, } event = Event( project_id=project.id, event_id=event_id, data=data, time_spent=time_spent, datetime=date, **kwargs ) event._project_cache = project # convert this to a dict to ensure we're only storing one value per key # as most parts of Sentry dont currently play well with multiple values tags = dict(data.get('tags') or []) tags['level'] = LOG_LEVELS[level] if logger_name: tags['logger'] = logger_name if server_name: tags['server_name'] = server_name if site: tags['site'] = site if environment: tags['environment'] = environment if transaction_name: tags['transaction'] = transaction_name if release: # dont allow a conflicting 'release' tag if 'release' in tags: del tags['release'] release = Release.get_or_create( project=project, version=release, date_added=date, ) tags['sentry:release'] = release.version if dist and release: dist = release.add_dist(dist, date) tags['sentry:dist'] = dist.name else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag if 'user' in tags: del tags['user'] tags['sentry:user'] = event_user.tag_value # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. normalize_in_app(data) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: tags.setdefault(key, value) # tags are stored as a tuple tags = tags.items() # XXX(dcramer): we're relying on mutation of the data object to ensure # this propagates into Event data['tags'] = tags data['fingerprint'] = fingerprint or ['{{ default }}'] for path, iface in six.iteritems(event.interfaces): data['tags'].extend(iface.iter_tags()) # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.get_path(), None) # prioritize fingerprint over checksum as its likely the client defaulted # a checksum whereas the fingerprint was explicit if fingerprint: hashes = [md5_from_hash(h) for h in get_hashes_from_fingerprint(event, fingerprint)] elif checksum: hashes = [checksum] data['checksum'] = checksum else: hashes = [md5_from_hash(h) for h in get_hashes_for_event(event)] # TODO(dcramer): temp workaround for complexity data['message'] = message event_type = eventtypes.get(data.get('type', 'default'))(data) event_metadata = event_type.get_metadata() # TODO(dcramer): temp workaround for complexity del data['message'] data['type'] = event_type.key data['metadata'] = event_metadata # index components into ``Event.message`` # See GH-3248 if event_type.key != 'default': if 'sentry.interfaces.Message' in data and \ data['sentry.interfaces.Message']['message'] != message: message = u'{} {}'.format( message, data['sentry.interfaces.Message']['message'], ) if not message: message = '' elif not isinstance(message, six.string_types): message = force_text(message) for value in six.itervalues(event_metadata): value_u = force_text(value, errors='replace') if value_u not in message: message = u'{} {}'.format(message, value_u) if culprit and culprit not in message: culprit_u = force_text(culprit, errors='replace') message = u'{} {}'.format(message, culprit_u) message = trim(message.strip(), settings.SENTRY_MAX_MESSAGE_LENGTH) event.message = message kwargs['message'] = message received_timestamp = event.data.get('received') or float(event.datetime.strftime('%s')) group_kwargs = kwargs.copy() group_kwargs.update( { 'culprit': culprit, 'logger': logger_name, 'level': level, 'last_seen': date, 'first_seen': date, 'active_at': date, 'data': { 'last_received': received_timestamp, 'type': event_type.key, # we cache the events metadata on the group to ensure its # accessible in the stream 'metadata': event_metadata, }, } ) if release: group_kwargs['first_release'] = release try: group, is_new, is_regression, is_sample = self._save_aggregate( event=event, hashes=hashes, release=release, **group_kwargs ) except HashDiscarded: event_discarded.send_robust( project=project, sender=EventManager, ) metrics.incr( 'events.discarded', skip_internal=True, tags={ 'organization_id': project.organization_id, 'platform': platform, }, ) raise else: event_saved.send_robust( project=project, sender=EventManager, ) event.group = group # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) # When an event was sampled, the canonical source of truth # is the EventMapping table since we aren't going to be writing out an actual # Event row. Otherwise, if the Event isn't being sampled, we can safely # rely on the Event table itself as the source of truth and ignore # EventMapping since it's redundant information. if is_sample: try: with transaction.atomic(using=router.db_for_write(EventMapping)): EventMapping.objects.create(project=project, group=group, event_id=event_id) except IntegrityError: self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': EventMapping.__name__, } ) return event # We now always need to check the Event table for dupes # since EventMapping isn't exactly the canonical source of truth. if Event.objects.filter( project_id=project.id, event_id=event_id, ).exists(): self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, } ) return event environment = Environment.get_or_create( project=project, name=environment, ) group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, ) if release: ReleaseEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date, ) counters = [ (tsdb.models.group, group.id), (tsdb.models.project, project.id), ] if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [ # (tsdb.models.frequent_projects_by_organization, { # project.organization_id: { # project.id: 1, # }, # }), # (tsdb.models.frequent_issues_by_project, { # project.id: { # group.id: 1, # }, # }) (tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1, }, }) ] if release: frequencies.append( (tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1, }, }) ) tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) UserReport.objects.filter( project=project, event_id=event_id, ).update(group=group) # save the event unless its been sampled if not is_sample: try: with transaction.atomic(using=router.db_for_write(Event)): event.save() except IntegrityError: self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, } ) return event index_event_tags.delay( organization_id=project.organization_id, project_id=project.id, group_id=group.id, environment_id=environment.id, event_id=event.id, tags=tags, ) if event_user: tsdb.record_multi( ( (tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, )), (tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, )), ), timestamp=event.datetime, environment_id=environment.id, ) if is_new and release: buffer.incr( ReleaseProject, {'new_groups': 1}, { 'release_id': release.id, 'project_id': project.id, } ) safe_execute(Group.objects.add_tags, group, environment, tags, _with_transaction=False) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send(project=project, group=group, sender=Project) post_process_group.delay( group=group, event=event, is_new=is_new, is_sample=is_sample, is_regression=is_regression, is_new_group_environment=is_new_group_environment, ) else: self.logger.info('post_process.skip.raw_event', extra={'event_id': event.id}) # TODO: move this to the queue if is_regression and not raw: regression_signal.send_robust(sender=Group, instance=group) metrics.timing( 'events.latency', received_timestamp - recorded_timestamp, tags={ 'project_id': project.id, }, ) return event def _get_event_user(self, project, data): user_data = data.get('sentry.interfaces.User') if not user_data: return euser = EventUser( project_id=project.id, ident=user_data.get('id'), email=user_data.get('email'), username=user_data.get('username'), ip_address=user_data.get('ip_address'), name=user_data.get('name'), ) euser.set_hash() if not euser.hash: return cache_key = 'euserid:1:{}:{}'.format( project.id, euser.hash, ) euser_id = default_cache.get(cache_key) if euser_id is None: try: with transaction.atomic(using=router.db_for_write(EventUser)): euser.save() except IntegrityError: try: euser = EventUser.objects.get( project_id=project.id, hash=euser.hash, ) except EventUser.DoesNotExist: # why??? e_userid = -1 else: if euser.name != (user_data.get('name') or euser.name): euser.update( name=user_data['name'], ) e_userid = euser.id default_cache.set(cache_key, e_userid, 3600) return euser def _find_hashes(self, project, hash_list): return map( lambda hash: GroupHash.objects.get_or_create( project=project, hash=hash, )[0], hash_list, ) def _ensure_hashes_merged(self, group, hash_list): # TODO(dcramer): there is a race condition with selecting/updating # in that another group could take ownership of the hash # XXX: This function is currently unused, and hasn't been updated to # take `GroupHash.state` into account. bad_hashes = GroupHash.objects.filter( id__in=[h.id for h in hash_list], ).exclude( group=group, ) if not bad_hashes: return for hash in bad_hashes: if hash.group_id: merge_group.delay( from_object_id=hash.group_id, to_object_id=group.id, transaction_id=uuid4().hex, ) return GroupHash.objects.filter( project=group.project, hash__in=[h.hash for h in bad_hashes], ).update( group=group, ) def _save_aggregate(self, event, hashes, release, **kwargs): project = event.project # attempt to find a matching hash all_hashes = self._find_hashes(project, hashes) existing_group_id = None for h in all_hashes: if h.group_id is not None: existing_group_id = h.group_id break if h.group_tombstone_id is not None: raise HashDiscarded('Matches group tombstone %s' % h.group_tombstone_id) # XXX(dcramer): this has the opportunity to create duplicate groups # it should be resolved by the hash merging function later but this # should be better tested/reviewed if existing_group_id is None: kwargs['score'] = ScoreClause.calculate(1, kwargs['last_seen']) # it's possible the release was deleted between # when we queried for the release and now, so # make sure it still exists first_release = kwargs.pop('first_release', None) with transaction.atomic(): short_id = project.next_short_id() group, group_is_new = Group.objects.create( project=project, short_id=short_id, first_release_id=Release.objects.filter( id=first_release.id, ).values_list('id', flat=True).first() if first_release else None, **kwargs ), True metrics.incr( 'group.created', skip_internal=True, tags={'platform': event.platform or 'unknown'} ) else: group = Group.objects.get(id=existing_group_id) group_is_new = False # If all hashes are brand new we treat this event as new is_new = False new_hashes = [h for h in all_hashes if h.group_id is None] if new_hashes: # XXX: There is a race condition here wherein another process could # create a new group that is associated with one of the new hashes, # add some event(s) to it, and then subsequently have the hash # "stolen" by this process. This then "orphans" those events from # their "siblings" in the group we've created here. We don't have a # way to fix this, since we can't call `_ensure_hashes_merged` # without filtering on `group_id` (which we can't do due to query # planner weirdness.) For more context, see 84c6f75a and d0e22787, # as well as GH-5085. GroupHash.objects.filter( id__in=[h.id for h in new_hashes], ).exclude( state=GroupHash.State.LOCKED_IN_MIGRATION, ).update(group=group) if group_is_new and len(new_hashes) == len(all_hashes): is_new = True # XXX(dcramer): it's important this gets called **before** the aggregate # is processed as otherwise values like last_seen will get mutated can_sample = ( features.has('projects:sample-events', project=project) and should_sample( event.data.get('received') or float(event.datetime.strftime('%s')), group.data.get('last_received') or float(group.last_seen.strftime('%s')), group.times_seen, ) ) if not is_new: is_regression = self._process_existing_aggregate( group=group, event=event, data=kwargs, release=release, ) else: is_regression = False # Determine if we've sampled enough data to store this event if is_new or is_regression: is_sample = False else: is_sample = can_sample if not is_sample: GroupHash.record_last_processed_event_id( all_hashes[0].id, event.event_id, ) return group, is_new, is_regression, is_sample def _handle_regression(self, group, event, release): if not group.is_resolved(): return # we only mark it as a regression if the event's release is newer than # the release which we originally marked this as resolved elif GroupResolution.has_resolution(group, release): return if not plugin_is_regression(group, event): return # we now think its a regression, rely on the database to validate that # no one beat us to this date = max(event.datetime, group.last_seen) is_regression = bool( Group.objects.filter( id=group.id, # ensure we cant update things if the status has been set to # ignored status__in=[GroupStatus.RESOLVED, GroupStatus.UNRESOLVED], ).exclude( # add to the regression window to account for races here active_at__gte=date - timedelta(seconds=5), ).update( active_at=date, # explicitly set last_seen here as ``is_resolved()`` looks # at the value last_seen=date, status=GroupStatus.UNRESOLVED ) ) group.active_at = date group.status = GroupStatus.UNRESOLVED if is_regression and release: # resolutions are only valid if the state of the group is still # resolved -- if it were to change the resolution should get removed try: resolution = GroupResolution.objects.get( group=group, ) except GroupResolution.DoesNotExist: affected = False else: cursor = connection.cursor() # delete() API does not return affected rows cursor.execute("DELETE FROM sentry_groupresolution WHERE id = %s", [resolution.id]) affected = cursor.rowcount > 0 if affected: # if we had to remove the GroupResolution (i.e. we beat the # the queue to handling this) then we need to also record # the corresponding event try: activity = Activity.objects.filter( group=group, type=Activity.SET_RESOLVED_IN_RELEASE, ident=resolution.id, ).order_by('-datetime')[0] except IndexError: # XXX: handle missing data, as its not overly important pass else: activity.update(data={ 'version': release.version, }) if is_regression: activity = Activity.objects.create( project=group.project, group=group, type=Activity.SET_REGRESSION, data={ 'version': release.version if release else '', } ) activity.send_notification() return is_regression def _process_existing_aggregate(self, group, event, data, release): date = max(event.datetime, group.last_seen) extra = { 'last_seen': date, 'score': ScoreClause(group), 'data': data['data'], } if event.message and event.message != group.message: extra['message'] = event.message if group.level != data['level']: extra['level'] = data['level'] if group.culprit != data['culprit']: extra['culprit'] = data['culprit'] is_regression = self._handle_regression(group, event, release) group.last_seen = extra['last_seen'] update_kwargs = { 'times_seen': 1, } buffer.incr(Group, update_kwargs, { 'id': group.id, }, extra) return is_regression
35.894737
130
0.570831
e15f588c2d1d95f5fe6f2a5b6474fe7cbba9ef85
9,902
py
Python
python/http_client/v1/polyaxon_sdk/models/v1_project_settings.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_project_settings.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_project_settings.py
mouradmourafiq/polyaxon-client
5fc32b9decc7305161561d404b0127f3e900c64a
[ "Apache-2.0" ]
1
2021-12-03T07:12:03.000Z
2021-12-03T07:12:03.000Z
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.18.2 Contact: contact@polyaxon.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1ProjectSettings(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'connections': 'list[str]', 'preset': 'str', 'presets': 'list[str]', 'queue': 'str', 'queues': 'list[str]', 'agents': 'list[str]', 'user_accesses': 'list[V1ProjectUserAccess]', 'teams': 'list[str]', 'projects': 'list[str]' } attribute_map = { 'connections': 'connections', 'preset': 'preset', 'presets': 'presets', 'queue': 'queue', 'queues': 'queues', 'agents': 'agents', 'user_accesses': 'user_accesses', 'teams': 'teams', 'projects': 'projects' } def __init__(self, connections=None, preset=None, presets=None, queue=None, queues=None, agents=None, user_accesses=None, teams=None, projects=None, local_vars_configuration=None): # noqa: E501 """V1ProjectSettings - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._connections = None self._preset = None self._presets = None self._queue = None self._queues = None self._agents = None self._user_accesses = None self._teams = None self._projects = None self.discriminator = None if connections is not None: self.connections = connections if preset is not None: self.preset = preset if presets is not None: self.presets = presets if queue is not None: self.queue = queue if queues is not None: self.queues = queues if agents is not None: self.agents = agents if user_accesses is not None: self.user_accesses = user_accesses if teams is not None: self.teams = teams if projects is not None: self.projects = projects @property def connections(self): """Gets the connections of this V1ProjectSettings. # noqa: E501 :return: The connections of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._connections @connections.setter def connections(self, connections): """Sets the connections of this V1ProjectSettings. :param connections: The connections of this V1ProjectSettings. # noqa: E501 :type connections: list[str] """ self._connections = connections @property def preset(self): """Gets the preset of this V1ProjectSettings. # noqa: E501 :return: The preset of this V1ProjectSettings. # noqa: E501 :rtype: str """ return self._preset @preset.setter def preset(self, preset): """Sets the preset of this V1ProjectSettings. :param preset: The preset of this V1ProjectSettings. # noqa: E501 :type preset: str """ self._preset = preset @property def presets(self): """Gets the presets of this V1ProjectSettings. # noqa: E501 :return: The presets of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._presets @presets.setter def presets(self, presets): """Sets the presets of this V1ProjectSettings. :param presets: The presets of this V1ProjectSettings. # noqa: E501 :type presets: list[str] """ self._presets = presets @property def queue(self): """Gets the queue of this V1ProjectSettings. # noqa: E501 :return: The queue of this V1ProjectSettings. # noqa: E501 :rtype: str """ return self._queue @queue.setter def queue(self, queue): """Sets the queue of this V1ProjectSettings. :param queue: The queue of this V1ProjectSettings. # noqa: E501 :type queue: str """ self._queue = queue @property def queues(self): """Gets the queues of this V1ProjectSettings. # noqa: E501 :return: The queues of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._queues @queues.setter def queues(self, queues): """Sets the queues of this V1ProjectSettings. :param queues: The queues of this V1ProjectSettings. # noqa: E501 :type queues: list[str] """ self._queues = queues @property def agents(self): """Gets the agents of this V1ProjectSettings. # noqa: E501 :return: The agents of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._agents @agents.setter def agents(self, agents): """Sets the agents of this V1ProjectSettings. :param agents: The agents of this V1ProjectSettings. # noqa: E501 :type agents: list[str] """ self._agents = agents @property def user_accesses(self): """Gets the user_accesses of this V1ProjectSettings. # noqa: E501 :return: The user_accesses of this V1ProjectSettings. # noqa: E501 :rtype: list[V1ProjectUserAccess] """ return self._user_accesses @user_accesses.setter def user_accesses(self, user_accesses): """Sets the user_accesses of this V1ProjectSettings. :param user_accesses: The user_accesses of this V1ProjectSettings. # noqa: E501 :type user_accesses: list[V1ProjectUserAccess] """ self._user_accesses = user_accesses @property def teams(self): """Gets the teams of this V1ProjectSettings. # noqa: E501 :return: The teams of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._teams @teams.setter def teams(self, teams): """Sets the teams of this V1ProjectSettings. :param teams: The teams of this V1ProjectSettings. # noqa: E501 :type teams: list[str] """ self._teams = teams @property def projects(self): """Gets the projects of this V1ProjectSettings. # noqa: E501 :return: The projects of this V1ProjectSettings. # noqa: E501 :rtype: list[str] """ return self._projects @projects.setter def projects(self, projects): """Sets the projects of this V1ProjectSettings. :param projects: The projects of this V1ProjectSettings. # noqa: E501 :type projects: list[str] """ self._projects = projects def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ProjectSettings): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1ProjectSettings): return True return self.to_dict() != other.to_dict()
27.736695
198
0.595738
7c3a625a990734f9f1da72b5e7ea1566d8136165
2,576
py
Python
pyquil_decomp.py
dumkar/learning-to-learn-qnn
289518ef1b04acd834055491752d4e3351ffbb53
[ "MIT" ]
37
2019-07-19T18:51:36.000Z
2021-11-03T14:58:27.000Z
pyquil_decomp.py
dumkar/learning-to-learn-qnn
289518ef1b04acd834055491752d4e3351ffbb53
[ "MIT" ]
1
2019-07-23T21:32:13.000Z
2019-07-23T21:32:13.000Z
pyquil_decomp.py
dumkar/learning-to-learn-qnn
289518ef1b04acd834055491752d4e3351ffbb53
[ "MIT" ]
4
2020-01-06T10:49:10.000Z
2021-04-21T07:24:02.000Z
import itertools import numpy as np from functools import partial from pyquil import Program, api from pyquil.paulis import PauliSum, PauliTerm, exponential_map, sZ from pyquil.gates import * from scipy.optimize import minimize import pennylane as qml from pennylane import numpy as np np.set_printoptions(precision=3, suppress=True) import re def create_circuit(beta, gamma,initial_state,exp_Hm,exp_Hc): circuit = Program() circuit += initial_state for i in range(p): for term_exp_Hc in exp_Hc: circuit += term_exp_Hc(-beta[i]) for term_exp_Hm in exp_Hm: circuit += term_exp_Hm(-gamma[i]) return circuit # set p beforehand p = 2 def QAOA_circ(parameters):# = np.random.uniform(0, np.pi*2, 2*p)): beta = parameters[:p] gamma = parameters [p:] def set_up_QAOA_in_pyquil(beta, gamma, p , n_qubits = 2, J = np.array([[0,1],[0,0]])): Hm = [PauliTerm("X", i, 1.0) for i in range(n_qubits)] Hc = [] ####################Prepare the hamiltonian for measurement Hamilton=prepare_qaoa_hamiltonian(J,n_qubits) ################### initial_state = Program() for i in range(n_qubits): initial_state += H(i) for i in range(n_qubits): for j in range(n_qubits): Hc.append(PauliTerm("Z", i, -J[i, j]) * PauliTerm("Z", j, 1.0)) exp_Hm = [] exp_Hc = [] for term in Hm: exp_Hm.append(exponential_map(term)) for term in Hc: exp_Hc.append(exponential_map(term)) qaoa_circuit = create_circuit(beta, gamma,initial_state,exp_Hm,exp_Hc) return Hamilton,qaoa_circuit Hamilton,pyquil_circ=set_up_QAOA_in_pyquil(beta, gamma, p) pyquil_circ_list=str(pyquil_circ).split('\n') for item in pyquil_circ_list: u_p_1=None q_1=None q_2=None u_p_2=None u_p_3=None if 'H' in item: q_1=item[item.find('H')+2] qml.Hadamard(wires=q_1) elif 'RZ(' in item: temp=item.replace('RZ(','') u_p_1=temp[:temp.find(')')] q_1=temp[temp.find(')')+2] qml.RZ(float(u_p_1),wires=q_1) elif 'RX' in item: pass elif 'CNOT' in item: temp=item.replace('CNOT ','') q_1=temp[0] q_2=temp[2] qml.CNOT(wires=[q_1, q_2]) wiress=[i for i in range(n_qubits)] return qml.expval.Hermitian(Hamilton,wires=wiress)
31.414634
90
0.578028
349fd91b966fb95f2ac69f5938d688922861a939
21,311
py
Python
sdk/python/pulumi_azure_nextgen/web/v20160801/web_app.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/web/v20160801/web_app.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/web/v20160801/web_app.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['WebApp'] class WebApp(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, client_affinity_enabled: Optional[pulumi.Input[bool]] = None, client_cert_enabled: Optional[pulumi.Input[bool]] = None, cloning_info: Optional[pulumi.Input[pulumi.InputType['CloningInfoArgs']]] = None, container_size: Optional[pulumi.Input[int]] = None, daily_memory_time_quota: Optional[pulumi.Input[int]] = None, enabled: Optional[pulumi.Input[bool]] = None, host_name_ssl_states: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['HostNameSslStateArgs']]]]] = None, host_names_disabled: Optional[pulumi.Input[bool]] = None, hosting_environment_profile: Optional[pulumi.Input[pulumi.InputType['HostingEnvironmentProfileArgs']]] = None, https_only: Optional[pulumi.Input[bool]] = None, identity: Optional[pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']]] = None, kind: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, reserved: Optional[pulumi.Input[bool]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, scm_site_also_stopped: Optional[pulumi.Input[bool]] = None, server_farm_id: Optional[pulumi.Input[str]] = None, site_config: Optional[pulumi.Input[pulumi.InputType['SiteConfigArgs']]] = None, snapshot_info: Optional[pulumi.Input[pulumi.InputType['SnapshotRecoveryRequestArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ A web app, a mobile app backend, or an API app. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] client_affinity_enabled: <code>true</code> to enable client affinity; <code>false</code> to stop sending session affinity cookies, which route client requests in the same session to the same instance. Default is <code>true</code>. :param pulumi.Input[bool] client_cert_enabled: <code>true</code> to enable client certificate authentication (TLS mutual authentication); otherwise, <code>false</code>. Default is <code>false</code>. :param pulumi.Input[pulumi.InputType['CloningInfoArgs']] cloning_info: If specified during app creation, the app is cloned from a source app. :param pulumi.Input[int] container_size: Size of the function container. :param pulumi.Input[int] daily_memory_time_quota: Maximum allowed daily memory-time quota (applicable on dynamic apps only). :param pulumi.Input[bool] enabled: <code>true</code> if the app is enabled; otherwise, <code>false</code>. Setting this value to false disables the app (takes the app offline). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['HostNameSslStateArgs']]]] host_name_ssl_states: Hostname SSL states are used to manage the SSL bindings for app's hostnames. :param pulumi.Input[bool] host_names_disabled: <code>true</code> to disable the public hostnames of the app; otherwise, <code>false</code>. If <code>true</code>, the app is only accessible via API management process. :param pulumi.Input[pulumi.InputType['HostingEnvironmentProfileArgs']] hosting_environment_profile: App Service Environment to use for the app. :param pulumi.Input[bool] https_only: HttpsOnly: configures a web site to accept only https requests. Issues redirect for http requests :param pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']] identity: Managed service identity. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] location: Resource Location. :param pulumi.Input[str] name: Unique name of the app to create or update. To create or update a deployment slot, use the {slot} parameter. :param pulumi.Input[bool] reserved: <code>true</code> if reserved; otherwise, <code>false</code>. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[bool] scm_site_also_stopped: <code>true</code> to stop SCM (KUDU) site when the app is stopped; otherwise, <code>false</code>. The default is <code>false</code>. :param pulumi.Input[str] server_farm_id: Resource ID of the associated App Service plan, formatted as: "/subscriptions/{subscriptionID}/resourceGroups/{groupName}/providers/Microsoft.Web/serverfarms/{appServicePlanName}". :param pulumi.Input[pulumi.InputType['SiteConfigArgs']] site_config: Configuration of the app. :param pulumi.Input[pulumi.InputType['SnapshotRecoveryRequestArgs']] snapshot_info: If specified during app creation, the app is created from a previous snapshot. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['client_affinity_enabled'] = client_affinity_enabled __props__['client_cert_enabled'] = client_cert_enabled __props__['cloning_info'] = cloning_info __props__['container_size'] = container_size __props__['daily_memory_time_quota'] = daily_memory_time_quota __props__['enabled'] = enabled __props__['host_name_ssl_states'] = host_name_ssl_states __props__['host_names_disabled'] = host_names_disabled __props__['hosting_environment_profile'] = hosting_environment_profile __props__['https_only'] = https_only __props__['identity'] = identity __props__['kind'] = kind __props__['location'] = location __props__['name'] = name if reserved is None: reserved = False __props__['reserved'] = reserved if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if scm_site_also_stopped is None: scm_site_also_stopped = False __props__['scm_site_also_stopped'] = scm_site_also_stopped __props__['server_farm_id'] = server_farm_id __props__['site_config'] = site_config __props__['snapshot_info'] = snapshot_info __props__['tags'] = tags __props__['availability_state'] = None __props__['default_host_name'] = None __props__['enabled_host_names'] = None __props__['host_names'] = None __props__['is_default_container'] = None __props__['last_modified_time_utc'] = None __props__['max_number_of_workers'] = None __props__['outbound_ip_addresses'] = None __props__['possible_outbound_ip_addresses'] = None __props__['repository_site_name'] = None __props__['resource_group'] = None __props__['slot_swap_status'] = None __props__['state'] = None __props__['suspended_till'] = None __props__['target_swap_slot'] = None __props__['traffic_manager_host_names'] = None __props__['type'] = None __props__['usage_state'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web:WebApp"), pulumi.Alias(type_="azure-nextgen:web/latest:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20150801:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20190801:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebApp"), pulumi.Alias(type_="azure-nextgen:web/v20201001:WebApp")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebApp, __self__).__init__( 'azure-nextgen:web/v20160801:WebApp', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebApp': """ Get an existing WebApp resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return WebApp(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="availabilityState") def availability_state(self) -> pulumi.Output[str]: """ Management information availability state for the app. """ return pulumi.get(self, "availability_state") @property @pulumi.getter(name="clientAffinityEnabled") def client_affinity_enabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> to enable client affinity; <code>false</code> to stop sending session affinity cookies, which route client requests in the same session to the same instance. Default is <code>true</code>. """ return pulumi.get(self, "client_affinity_enabled") @property @pulumi.getter(name="clientCertEnabled") def client_cert_enabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> to enable client certificate authentication (TLS mutual authentication); otherwise, <code>false</code>. Default is <code>false</code>. """ return pulumi.get(self, "client_cert_enabled") @property @pulumi.getter(name="cloningInfo") def cloning_info(self) -> pulumi.Output[Optional['outputs.CloningInfoResponse']]: """ If specified during app creation, the app is cloned from a source app. """ return pulumi.get(self, "cloning_info") @property @pulumi.getter(name="containerSize") def container_size(self) -> pulumi.Output[Optional[int]]: """ Size of the function container. """ return pulumi.get(self, "container_size") @property @pulumi.getter(name="dailyMemoryTimeQuota") def daily_memory_time_quota(self) -> pulumi.Output[Optional[int]]: """ Maximum allowed daily memory-time quota (applicable on dynamic apps only). """ return pulumi.get(self, "daily_memory_time_quota") @property @pulumi.getter(name="defaultHostName") def default_host_name(self) -> pulumi.Output[str]: """ Default hostname of the app. Read-only. """ return pulumi.get(self, "default_host_name") @property @pulumi.getter def enabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> if the app is enabled; otherwise, <code>false</code>. Setting this value to false disables the app (takes the app offline). """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="enabledHostNames") def enabled_host_names(self) -> pulumi.Output[Sequence[str]]: """ Enabled hostnames for the app.Hostnames need to be assigned (see HostNames) AND enabled. Otherwise, the app is not served on those hostnames. """ return pulumi.get(self, "enabled_host_names") @property @pulumi.getter(name="hostNameSslStates") def host_name_ssl_states(self) -> pulumi.Output[Optional[Sequence['outputs.HostNameSslStateResponse']]]: """ Hostname SSL states are used to manage the SSL bindings for app's hostnames. """ return pulumi.get(self, "host_name_ssl_states") @property @pulumi.getter(name="hostNames") def host_names(self) -> pulumi.Output[Sequence[str]]: """ Hostnames associated with the app. """ return pulumi.get(self, "host_names") @property @pulumi.getter(name="hostNamesDisabled") def host_names_disabled(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> to disable the public hostnames of the app; otherwise, <code>false</code>. If <code>true</code>, the app is only accessible via API management process. """ return pulumi.get(self, "host_names_disabled") @property @pulumi.getter(name="hostingEnvironmentProfile") def hosting_environment_profile(self) -> pulumi.Output[Optional['outputs.HostingEnvironmentProfileResponse']]: """ App Service Environment to use for the app. """ return pulumi.get(self, "hosting_environment_profile") @property @pulumi.getter(name="httpsOnly") def https_only(self) -> pulumi.Output[Optional[bool]]: """ HttpsOnly: configures a web site to accept only https requests. Issues redirect for http requests """ return pulumi.get(self, "https_only") @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.ManagedServiceIdentityResponse']]: """ Managed service identity. """ return pulumi.get(self, "identity") @property @pulumi.getter(name="isDefaultContainer") def is_default_container(self) -> pulumi.Output[bool]: """ <code>true</code> if the app is a default container; otherwise, <code>false</code>. """ return pulumi.get(self, "is_default_container") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter(name="lastModifiedTimeUtc") def last_modified_time_utc(self) -> pulumi.Output[str]: """ Last time the app was modified, in UTC. Read-only. """ return pulumi.get(self, "last_modified_time_utc") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource Location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="maxNumberOfWorkers") def max_number_of_workers(self) -> pulumi.Output[int]: """ Maximum number of workers. This only applies to Functions container. """ return pulumi.get(self, "max_number_of_workers") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="outboundIpAddresses") def outbound_ip_addresses(self) -> pulumi.Output[str]: """ List of IP addresses that the app uses for outbound connections (e.g. database access). Includes VIPs from tenants that site can be hosted with current settings. Read-only. """ return pulumi.get(self, "outbound_ip_addresses") @property @pulumi.getter(name="possibleOutboundIpAddresses") def possible_outbound_ip_addresses(self) -> pulumi.Output[str]: """ List of IP addresses that the app uses for outbound connections (e.g. database access). Includes VIPs from all tenants. Read-only. """ return pulumi.get(self, "possible_outbound_ip_addresses") @property @pulumi.getter(name="repositorySiteName") def repository_site_name(self) -> pulumi.Output[str]: """ Name of the repository site. """ return pulumi.get(self, "repository_site_name") @property @pulumi.getter def reserved(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> if reserved; otherwise, <code>false</code>. """ return pulumi.get(self, "reserved") @property @pulumi.getter(name="resourceGroup") def resource_group(self) -> pulumi.Output[str]: """ Name of the resource group the app belongs to. Read-only. """ return pulumi.get(self, "resource_group") @property @pulumi.getter(name="scmSiteAlsoStopped") def scm_site_also_stopped(self) -> pulumi.Output[Optional[bool]]: """ <code>true</code> to stop SCM (KUDU) site when the app is stopped; otherwise, <code>false</code>. The default is <code>false</code>. """ return pulumi.get(self, "scm_site_also_stopped") @property @pulumi.getter(name="serverFarmId") def server_farm_id(self) -> pulumi.Output[Optional[str]]: """ Resource ID of the associated App Service plan, formatted as: "/subscriptions/{subscriptionID}/resourceGroups/{groupName}/providers/Microsoft.Web/serverfarms/{appServicePlanName}". """ return pulumi.get(self, "server_farm_id") @property @pulumi.getter(name="siteConfig") def site_config(self) -> pulumi.Output[Optional['outputs.SiteConfigResponse']]: """ Configuration of the app. """ return pulumi.get(self, "site_config") @property @pulumi.getter(name="slotSwapStatus") def slot_swap_status(self) -> pulumi.Output['outputs.SlotSwapStatusResponse']: """ Status of the last deployment slot swap operation. """ return pulumi.get(self, "slot_swap_status") @property @pulumi.getter(name="snapshotInfo") def snapshot_info(self) -> pulumi.Output[Optional['outputs.SnapshotRecoveryRequestResponse']]: """ If specified during app creation, the app is created from a previous snapshot. """ return pulumi.get(self, "snapshot_info") @property @pulumi.getter def state(self) -> pulumi.Output[str]: """ Current state of the app. """ return pulumi.get(self, "state") @property @pulumi.getter(name="suspendedTill") def suspended_till(self) -> pulumi.Output[str]: """ App suspended till in case memory-time quota is exceeded. """ return pulumi.get(self, "suspended_till") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="targetSwapSlot") def target_swap_slot(self) -> pulumi.Output[str]: """ Specifies which deployment slot this app will swap into. Read-only. """ return pulumi.get(self, "target_swap_slot") @property @pulumi.getter(name="trafficManagerHostNames") def traffic_manager_host_names(self) -> pulumi.Output[Sequence[str]]: """ Azure Traffic Manager hostnames associated with the app. Read-only. """ return pulumi.get(self, "traffic_manager_host_names") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="usageState") def usage_state(self) -> pulumi.Output[str]: """ State indicating whether the app has exceeded its quota usage. Read-only. """ return pulumi.get(self, "usage_state") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
44.771008
562
0.654169
733a5d837d60f942bc4a41d728c76187694ff738
644
py
Python
GraphClient.py
MCSainz/Data_Structures_Algorithms_in_Python
c09439bdadf4c872a01e115ffb596b840bcb64c2
[ "MIT" ]
null
null
null
GraphClient.py
MCSainz/Data_Structures_Algorithms_in_Python
c09439bdadf4c872a01e115ffb596b840bcb64c2
[ "MIT" ]
null
null
null
GraphClient.py
MCSainz/Data_Structures_Algorithms_in_Python
c09439bdadf4c872a01e115ffb596b840bcb64c2
[ "MIT" ]
null
null
null
# Client test program for graphs. from argparse import ArgumentParser from Graph import Graph from DepthFirstSearch import DepthFirstSearch as DFS def main(): ap = ArgumentParser() ap.add_argument('-i', '--input-file-path', required=True, help='Input graph file path.') args = vars(ap.parse_args()) graph_file_path = args['input-file-path'] # 'Graph' class client test. graph = Graph(graph_file_path) # 'DepthFirstSearch' class client test. dfs = DFS() dfs.DepthFirstSearch(graph, '0') print(dfs.count) if __name__ == '__main__': main()
18.941176
61
0.627329
8b1f729eb34350994cd53655ce64f45feb031eeb
1,545
py
Python
__init__.py
ashelto6/unJumble
cf557668133186e7ea419f6f08ccadef4cad89a1
[ "MIT" ]
null
null
null
__init__.py
ashelto6/unJumble
cf557668133186e7ea419f6f08ccadef4cad89a1
[ "MIT" ]
7
2021-02-26T07:31:12.000Z
2021-04-25T03:21:35.000Z
__init__.py
ashelto6/unJumble
cf557668133186e7ea419f6f08ccadef4cad89a1
[ "MIT" ]
null
null
null
from flask import Flask from flask_login import LoginManager from flask_mail import Mail, Message from flask_sqlalchemy import SQLAlchemy from dotenv import load_dotenv from td.client import TDClient import os basedir = os.path.abspath(os.path.dirname(__file__)) load_dotenv(os.path.join(basedir, '.env')) TDSession = TDClient( client_id=os.environ.get('CLIENT_ID'), redirect_uri=os.environ.get('REDIRECT_URI'), credentials_path=os.environ.get('CREDENTIALS_PATH') ) TDSession.login() db = SQLAlchemy() mail = Mail() def create_app(): app = Flask(__name__) app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY') app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite' app.config['MAIL_SERVER'] = os.environ.get('MAIL_SERVER') app.config['MAIL_PORT'] = os.environ.get('MAIL_PORT') app.config['MAIL_USE_TLS'] = True app.config['MAIL_USERNAME'] = os.environ.get('MAIL_USERNAME') app.config['MAIL_DEFAULT_SENDER'] = os.environ.get('MAIL_USERNAME') app.config['MAIL_PASSWORD'] = os.environ.get('MAIL_PASSWORD') mail.init_app(app) db.init_app(app) login_manager = LoginManager() login_manager.login_view = 'auth.login' login_manager.init_app(app) from .models import User @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .dt import dt as dt_blueprint app.register_blueprint(dt_blueprint) return app
28.090909
68
0.771521
220ad6d3ef03aec2305ab6da2aab60262db98469
469
py
Python
mite/web/__init__.py
markgreene74/mite
339bdfc39be30534ea2169d8257469bd0ff535fb
[ "MIT" ]
17
2019-11-14T22:32:56.000Z
2022-02-01T15:38:03.000Z
mite/web/__init__.py
markgreene74/mite
339bdfc39be30534ea2169d8257469bd0ff535fb
[ "MIT" ]
35
2020-01-08T10:50:31.000Z
2022-02-17T17:00:34.000Z
mite/web/__init__.py
markgreene74/mite
339bdfc39be30534ea2169d8257469bd0ff535fb
[ "MIT" ]
4
2019-11-14T14:48:18.000Z
2020-05-06T22:09:25.000Z
import logging from flask import Flask, Response from .prometheus import PrometheusMetrics app = Flask(__name__) # FIXME: the goal of this line is to cut down on the once-per-second server # log line from the prometheus scrape. But I don't think it works... app.logger.setLevel(logging.WARNING) prometheus_metrics = PrometheusMetrics() @app.route('/metrics') def metrics(): text = prometheus_metrics.format() return Response(text, mimetype='text/plain')
24.684211
75
0.75693
9ce667027a207276aabb8a3cc7c62728c1dd08ef
1,128
py
Python
lib/python/plow/client/conf.py
Br3nda/plow
eea4468078df58d6798ceabe14c0d3e83f2c3a8d
[ "Apache-2.0" ]
36
2015-01-02T21:02:04.000Z
2021-09-07T12:01:06.000Z
lib/python/plow/client/conf.py
Br3nda/plow
eea4468078df58d6798ceabe14c0d3e83f2c3a8d
[ "Apache-2.0" ]
null
null
null
lib/python/plow/client/conf.py
Br3nda/plow
eea4468078df58d6798ceabe14c0d3e83f2c3a8d
[ "Apache-2.0" ]
11
2015-04-01T21:31:40.000Z
2022-03-30T17:55:27.000Z
import sys import os import ConfigParser _Config = ConfigParser.RawConfigParser() _Args = { } def _init(): """ Parse an initalize the Config object """ mod = sys.modules[__name__] if os.environ.get("PLOW_CFG"): parsed = _Config.read([os.environ["PLOW_CFG"]]) else: parsed = _Config.read([ os.path.join(os.environ.get("PLOW_ROOT", "/usr/local"), "etc/plow/plow.cfg"), os.path.expanduser("~/.plow/plow.cfg")]) # If we parsed a config file, make sure its valid if parsed: assert _Config.has_section("plow"), ("Configuration is missing a 'plow' section: %r" % parsed) host_list = [h.strip() for h in get('plow', 'hosts', '').strip(',').split(',') if h] setattr(mod, 'PLOW_HOSTS', host_list or ["localhost:11336"]) def get(section, key, default=None): """ Return the specified configuration option. """ try: return _Config.get(section, key) except (ConfigParser.NoSectionError, ConfigParser.NoOptionError): return default # run as a function to avoid polluting module with temp variables _init()
25.636364
102
0.635638
9042181927827c36d8a7a499a084ea19d4a4f228
4,434
py
Python
env/Lib/site-packages/OpenGL/GLES1/OES/texture_cube_map.py
5gconnectedbike/Navio2
8c3f2b5d8bbbcea1fc08739945183c12b206712c
[ "BSD-3-Clause" ]
210
2016-04-09T14:26:00.000Z
2022-03-25T18:36:19.000Z
env/Lib/site-packages/OpenGL/GLES1/OES/texture_cube_map.py
5gconnectedbike/Navio2
8c3f2b5d8bbbcea1fc08739945183c12b206712c
[ "BSD-3-Clause" ]
72
2016-09-04T09:30:19.000Z
2022-03-27T17:06:53.000Z
env/Lib/site-packages/OpenGL/GLES1/OES/texture_cube_map.py
5gconnectedbike/Navio2
8c3f2b5d8bbbcea1fc08739945183c12b206712c
[ "BSD-3-Clause" ]
64
2016-04-09T14:26:49.000Z
2022-03-21T11:19:47.000Z
'''OpenGL extension OES.texture_cube_map This module customises the behaviour of the OpenGL.raw.GLES1.OES.texture_cube_map to provide a more Python-friendly API Overview (from the spec) This extension provides a new texture generation scheme for cube map textures. Instead of the current texture providing a 1D, 2D, or 3D lookup into a 1D, 2D, or 3D texture image, the texture is a set of six 2D images representing the faces of a cube. The (s,t,r) texture coordinates are treated as a direction vector emanating from the center of a cube. At texture generation time, the interpolated per-fragment (s,t,r) selects one cube face 2D image based on the largest magnitude coordinate (the major axis). A new 2D (s,t) is calculated by dividing the two other coordinates (the minor axes values) by the major axis value. Then the new (s,t) is used to lookup into the selected 2D texture image face of the cube map. Unlike a standard 1D, 2D, or 3D texture that have just one target, a cube map texture has six targets, one for each of its six 2D texture image cube faces. All these targets must be consistent, complete, and have equal width and height (ie, square dimensions). This extension also provides two new texture coordinate generation modes for use in conjunction with cube map texturing. The reflection map mode generates texture coordinates (s,t,r) matching the vertex's eye-space reflection vector. The reflection map mode is useful for environment mapping without the singularity inherent in sphere mapping. The normal map mode generates texture coordinates (s,t,r) matching the vertex's transformed eye-space normal. The normal map mode is useful for sophisticated cube map texturing-based diffuse lighting models. The intent of the new texgen functionality is that an application using cube map texturing can use the new texgen modes to automatically generate the reflection or normal vectors used to look up into the cube map texture. An application note: When using cube mapping with dynamic cube maps (meaning the cube map texture is re-rendered every frame), by keeping the cube map's orientation pointing at the eye position, the texgen-computed reflection or normal vector texture coordinates can be always properly oriented for the cube map. However if the cube map is static (meaning that when view changes, the cube map texture is not updated), the texture matrix must be used to rotate the texgen-computed reflection or normal vector texture coordinates to match the orientation of the cube map. The rotation can be computed based on two vectors: 1) the direction vector from the cube map center to the eye position (both in world coordinates), and 2) the cube map orientation in world coordinates. The axis of rotation is the cross product of these two vectors; the angle of rotation is the arcsin of the dot product of these two vectors. The official definition of this extension is available here: http://www.opengl.org/registry/specs/OES/texture_cube_map.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES1 import _types, _glgets from OpenGL.raw.GLES1.OES.texture_cube_map import * from OpenGL.raw.GLES1.OES.texture_cube_map import _EXTENSION_NAME def glInitTextureCubeMapOES(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glTexGenfvOES.params size not checked against 'pname' glTexGenfvOES=wrapper.wrapper(glTexGenfvOES).setInputArraySize( 'params', None ) # INPUT glTexGenivOES.params size not checked against 'pname' glTexGenivOES=wrapper.wrapper(glTexGenivOES).setInputArraySize( 'params', None ) # INPUT glTexGenxvOES.params size not checked against 'pname' glTexGenxvOES=wrapper.wrapper(glTexGenxvOES).setInputArraySize( 'params', None ) # INPUT glGetTexGenfvOES.params size not checked against 'pname' glGetTexGenfvOES=wrapper.wrapper(glGetTexGenfvOES).setInputArraySize( 'params', None ) # INPUT glGetTexGenivOES.params size not checked against 'pname' glGetTexGenivOES=wrapper.wrapper(glGetTexGenivOES).setInputArraySize( 'params', None ) glGetTexGenxvOES=wrapper.wrapper(glGetTexGenxvOES).setOutput( 'params',size=_glgets._glget_size_mapping,pnameArg='pname',orPassIn=True ) ### END AUTOGENERATED SECTION
47.170213
76
0.792512
15c782543995d6b640c620a364a9f54dd5cc37b7
24,761
py
Python
tests/core_tests_chain_collection.py
gf712/AbPyTools
9ff0d4346ad80487d43875bc77d99fbe76170db4
[ "MIT" ]
13
2017-06-13T12:31:47.000Z
2022-03-23T02:14:01.000Z
tests/core_tests_chain_collection.py
gf712/AbPyTools
9ff0d4346ad80487d43875bc77d99fbe76170db4
[ "MIT" ]
8
2018-02-21T22:15:35.000Z
2022-02-01T12:27:58.000Z
tests/core_tests_chain_collection.py
gf712/AbPyTools
9ff0d4346ad80487d43875bc77d99fbe76170db4
[ "MIT" ]
3
2018-04-10T08:01:39.000Z
2021-10-10T14:37:43.000Z
import unittest from abpytools import ChainCollection, Chain import operator import os from glob import glob from . import read_sequence, check_connection, ABNUM_URL, IGBLAST_URL class ChainCollectionCore(unittest.TestCase): @classmethod def setUpClass(cls): cls.antibody_collection_1_name = 'test' cls.chain_test_sequence = read_sequence('./tests/Data/chain_collection_fasta_test.fasta') def test_ChainCollection_length_0(self): antibody_collection = ChainCollection() self.assertEqual(len(antibody_collection), 0) def test_ChainCollection_input_exception_1(self): # when ChainCollection.object_list is instantiated with # something other than a list it throws an error self.assertRaises(ValueError, ChainCollection, 0) def test_ChainCollection_input_exception_2(self): # when ChainCollection.object_list is instantiated with # a list with non Chain objects it throws an error self.assertRaises(ValueError, ChainCollection, [Chain(sequence=""), 0]) def test_ChainCollection_input_exception_3(self): # when ChainCollection is instantiated with static method # .load_from_fasta with an invalid file path it throws an error self.assertRaises(ValueError, ChainCollection.load_from_fasta, './tests/Data/NonExistentFile.fasta') def test_ChainCollection_input_exception_4(self): # when ChainCollection is instantiated with .load_from_file with # path to a file that does not have a .fasta or .json extension # it throws an error self.assertRaises(ValueError, ChainCollection.load_from_file, './tests/Data/__init__.py') def test_ChainCollection_input_1(self): # instantiate ChainCollection with a Chain (empty) object # this doesn't make any sense and raises an error self.assertRaises(ValueError, ChainCollection, [Chain(sequence="")]) def test_ChainCollection_input_2(self): # instantiate ChainCollection with a loaded Chain object test_chain = Chain(sequence=self.chain_test_sequence) test_collection = ChainCollection(antibody_objects=[test_chain]) self.assertIsInstance(test_collection, ChainCollection) def test_ChainCollection_load_fasta_exception(self): # throws error when reading a file with fasta extention, # but with the wrong format self.assertRaises(ValueError, ChainCollection.load_from_file, './tests/Data/NotAFASTAFile.fasta') def test_ChainCollection_chain(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json') self.assertEqual(antibody_collection_1.chain, 'heavy') @unittest.skipUnless(check_connection(URL=IGBLAST_URL), 'No internet connection, skipping test.') def test_ChainCollection_chain_2(self): # checks if the chain type is read properly from a Chain object test_chain = Chain(sequence=self.chain_test_sequence) test_chain.load() test_collection = ChainCollection(antibody_objects=[test_chain]) self.assertEqual(test_collection.chain, 'heavy') def test_ChainCollection_proto_io_1(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.save(file_format='pb2', path='./tests/chain_collection_1_heavy') self.assertTrue(os.path.isfile('./tests/chain_collection_1_heavy.pb2')) def test_ChainCollection_proto_io_2(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/chain_collection_1_heavy.pb2', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.names[0], 'test') def test_ChainCollection_n_ab(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.n_ab, 1) def test_ChainCollection_numbering_scheme(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_scheme, 'chothia') def test_ChainCollection_numbering_scheme_kabat(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.set_numbering_scheme('kabat', realign=False) self.assertEqual(antibody_collection_1.numbering_scheme, 'kabat') def test_ChainCollection_Hmatrix_shape(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) # if this fails it means that abysis has been updated self.assertEqual(antibody_collection_1.hydrophobicity_matrix().shape, (1, 158)) @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_ChainCollection_Hmatrix_calculation(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='chothia') self.assertEqual(antibody_collection_1.hydrophobicity_matrix().shape, (1, 158)) def test_ChainCollection_sequence_length(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(len(antibody_collection_1.sequences), 1) def test_ChainCollection_obj_length(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(len(antibody_collection_1), 1) def test_ChainCollection_slicing_1_obj(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) # if returning a single chain abpytools automatically creates a new Chain object self.assertIsInstance(antibody_collection_1[0], Chain) def test_ChainCollection_slicing_2_obj(self): antibody_collection_1 = ChainCollection.load_from_file( path='./tests/Data/chain_collection_heavy_2_sequences.json', show_progressbar=False, verbose=False) # slicing multiple sequences returns a ChainCollection object self.assertIsInstance(antibody_collection_1[[0, 1]], ChainCollection) def test_ChainCollection_cdr_regions_part1(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertCountEqual(antibody_collection_1.ab_region_index().keys(), [self.antibody_collection_1_name]) def test_ChainCollection_cdr_regions_part2(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertCountEqual(antibody_collection_1.ab_region_index()[self.antibody_collection_1_name], ['CDR', 'FR']) def test_ChainCollection_cdr_regions_part3_cdr(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertCountEqual(antibody_collection_1.ab_region_index()[self.antibody_collection_1_name]['CDR'], ['CDR1', 'CDR2', 'CDR3']) def test_ChainCollection_cdr_regions_part3_fr(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertCountEqual(antibody_collection_1.ab_region_index()[self.antibody_collection_1_name]['FR'], ['FR1', 'FR2', 'FR3', 'FR4']) def test_ChainCollection_total_charge(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.total_charge[self.antibody_collection_1_name], 1.3278508) def test_ChainCollection_igblast_parser_germline(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.igblast_local_query('tests/Data/chain_collection_1_igblast.html') self.assertEqual(antibody_collection_1.germline[self.antibody_collection_1_name][0], 'IGHV4-34*01') def test_ChainCollection_igblast_parser_germline_score(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.igblast_local_query('tests/Data/chain_collection_1_igblast.html') self.assertAlmostEqual(antibody_collection_1.germline[self.antibody_collection_1_name][1], 9.11e-69, delta=10e-9) @unittest.skipUnless(check_connection(URL=IGBLAST_URL), 'No internet connection, skipping test.') def test_ChainCollection_igblast_server_query_germline(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.igblast_server_query(show_progressbar=False) self.assertEqual(antibody_collection_1.germline[self.antibody_collection_1_name][0], 'IGHV4-34*01') @unittest.skipUnless(check_connection(URL=IGBLAST_URL), 'No internet connection, skipping test.') def test_ChainCollection_igblast_server_query_score(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.igblast_server_query(show_progressbar=False) self.assertAlmostEqual(antibody_collection_1.germline[self.antibody_collection_1_name][1], 9.11e-69, delta=10e-9) @unittest.skipUnless(check_connection(URL=IGBLAST_URL), 'No internet connection, skipping test.') def test_ChainCollection_igblast_server_query_identity(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.igblast_server_query(show_progressbar=False) self.assertEqual(antibody_collection_1.germline_identity[self.antibody_collection_1_name]['Total'], 96.9) def test_ChainCollection_slicing(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertIsInstance(antibody_collection_1.get_object('test'), Chain) @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_Chain_abysis_parser(self): antibody = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='chothia', verbose=False, show_progressbar=False) self.assertEqual(antibody.chain, 'heavy') @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_Chain_abysis_parser_chothia(self): antibody = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='chothia', verbose=False, show_progressbar=False) self.assertEqual(antibody.numbering_table(as_array=True)[0][-1], '-') @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_Chain_abysis_parser_kabat(self): antibody = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='kabat', verbose=False, show_progressbar=False) self.assertEqual(antibody.numbering_table(as_array=True)[0][-1], '-') def test_ChainCollection_numbering_tableDataFrame(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_table(as_array=False)['CDR1']['H32'].values[0], 'Y') def test_ChainCollection_numbering_table_shape_np(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_table(as_array=True).shape, (1, 158)) def test_ChainCollection_numbering_table_shape_pd(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_table(as_array=False).shape, (1, 158)) def test_ChainCollection_numbering_table_region_pd(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual( antibody_collection_1.numbering_table(region='CDR1').loc[self.antibody_collection_1_name].values[-1], 'Y') def test_ChainCollection_numbering_table_region_np(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_table(as_array=True, region='CDR1')[0][-1], 'Y') def test_ChainCollection_numbering_table_fr_region(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.numbering_table(region='FR1').loc['test'].values[0], 'Q') def test_ChainCollection_molecular_weight(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.molecular_weights(monoisotopic=False)[0], 20029.85217699999) def test_ChainCollection_molecular_weight_monoisotopic(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.molecular_weights(monoisotopic=True)[0], 20042.1121) def test_ChainCollection_ec(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.extinction_coefficients(reduced=False)[0], 52410.0) def test_ChainCollection_ec_reduced(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.extinction_coefficients(reduced=True)[0], 52160.0) def test_ChainCollection_charge(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertAlmostEqual(antibody_collection_1.charge.sum(), 1.7497642167513607) def test_ChainCollection_get_object_exception(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertRaises(ValueError, antibody_collection_1.get_object, 'foo') def test_ChainCollection_get_object_1(self): # check if get_object returns a Chain object antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertIsInstance(antibody_collection_1.get_object('test'), Chain) def test_ChainCollection_get_object_2(self): # check if get_object returns a Chain object and keeps the information (i.e. name) antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.get_object('test').name, 'test') def test_ChainCollection_add(self): # check if adding two ChainCollection objects with one sequence each # results in a ChainCollection object with two sequences antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_2 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_2_heavy.json', show_progressbar=False, verbose=False) antibody_collection_3 = antibody_collection_1 + antibody_collection_2 self.assertEqual(antibody_collection_3.n_ab, 2) @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_ChainCollection_add_exception_1(self): # check if adding two ChainCollection objects with one sequence each # results in a ChainCollection object with two sequences antibody_chothia = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='chothia', show_progressbar=False, verbose=False) antibody_kabat = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='kabat', show_progressbar=False, verbose=False) self.assertRaises(ValueError, operator.add, antibody_chothia, antibody_kabat) @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_ChainCollection_add_exception_2(self): antibody_chothia = ChainCollection.load_from_file(path='./tests/Data/chain_collection_fasta_test.fasta', numbering_scheme='chothia', show_progressbar=False, verbose=False) antibody_kabat = Chain(sequence=read_sequence('./tests/Data/chain_collection_fasta_test.fasta'), numbering_scheme='kabat') antibody_kabat.load() self.assertRaises(ValueError, operator.add, antibody_chothia, antibody_kabat) def test_ChainCollection_add_exception_3(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) self.assertRaises(ValueError, operator.add, antibody_collection_1, 0) @unittest.skipUnless(check_connection(URL=ABNUM_URL), 'No internet connection, skipping test.') def test_ChainCollection_fasta(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.save(file_format='fasta', path='./tests/SaveTest') antibody_collection_2 = ChainCollection.load_from_file(path='./tests/SaveTest.fasta', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.sequences[0], antibody_collection_2.sequences[0]) def test_ChainCollection_json(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.save(file_format='json', path='./tests/SaveTest') antibody_collection_2 = ChainCollection.load_from_file(path='./tests/SaveTest.json', show_progressbar=False, verbose=False) self.assertEqual(antibody_collection_1.sequences[0], antibody_collection_2.sequences[0]) def test_ChainCollection_append_1(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_2 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_2_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.append(antibody_collection_2) self.assertEqual(antibody_collection_1.n_ab, 2) def test_ChainCollection_append_2(self): antibody_collection_1 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_1_heavy.json', show_progressbar=False, verbose=False) antibody_collection_2 = ChainCollection.load_from_file(path='./tests/Data/chain_collection_2_heavy.json', show_progressbar=False, verbose=False) antibody_collection_1.append(antibody_collection_2) self.assertEqual(antibody_collection_1.hydrophobicity_matrix().shape, (2, 158)) @classmethod def tearDownClass(cls): for name in glob('./tests/*'): if name.split('.')[-1] != 'py' and os.path.isfile(name): os.remove(name)
67.838356
118
0.667259
fca40bd6afa91ed2eaf529bafdf14a7091138930
2,711
py
Python
chat_assistant/chat_assistant_api/views.py
mrhegemon/Rasa_zero_rpc_XR_bot
a468cc1f2b1a4e935ce18e97dcb7a11070bbea0b
[ "MIT" ]
1
2021-06-21T10:44:51.000Z
2021-06-21T10:44:51.000Z
chat_assistant/chat_assistant_api/views.py
mrhegemon/Rasa_zero_rpc_XR_bot
a468cc1f2b1a4e935ce18e97dcb7a11070bbea0b
[ "MIT" ]
null
null
null
chat_assistant/chat_assistant_api/views.py
mrhegemon/Rasa_zero_rpc_XR_bot
a468cc1f2b1a4e935ce18e97dcb7a11070bbea0b
[ "MIT" ]
1
2021-06-07T23:09:30.000Z
2021-06-07T23:09:30.000Z
from rest_framework import viewsets from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from rest_framework.authentication import TokenAuthentication from rest_framework.authtoken.serializers import AuthTokenSerializer from rest_framework.authtoken.models import Token from rest_framework.permissions import IsAuthenticated from rest_framework.authentication import SessionAuthentication, BasicAuthentication from rest_framework.renderers import ( HTMLFormRenderer, JSONRenderer, BrowsableAPIRenderer, ) from django.http import JsonResponse, HttpResponse from django.views.decorators.csrf import csrf_exempt from celery.result import AsyncResult from django.contrib import auth from rasa.core.agent import Agent from rasa.utils.endpoints import EndpointConfig from rasa import train from transformers import AutoModelForCausalLM, AutoTokenizer import torch import asyncio from .tasks import train_assistant_task from . import serializers from . import models import logging logging.basicConfig(level="DEBUG") class TokenViewSet(viewsets.ViewSet): """Checks username and password and returns an auth token.""" serializer_class = AuthTokenSerializer def create(self, request, *args, **kwargs): serializer = self.serializer_class(data=request.data, context={'request': request}) serializer.is_valid(raise_exception=True) user = serializer.validated_data['user'] token, created = Token.objects.get_or_create(user=user) return Response({ 'token': token.key, }) class SessionViewSet(viewsets.ViewSet): """Checks username and password and creates a user session.""" serializer_class = serializers.SessionSerializer def create(self, request): """Use the ObtainAuthToken APIView to validate and create a token.""" serializer = serializers.SessionSerializer(data=request.data) if serializer.is_valid(): user_name = serializer.data.get('username') user_password = serializer.data.get('password') user = auth.authenticate(request, username=user_name, password=user_password) if user: if user.is_active: auth.login(request, user) return Response({'response': 'Logged in'}) return Response({'response':'Not Active User'}) return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST)
39.289855
89
0.689045
73e1a6c400533ce1fbdae96317cb0299357bf67f
3,403
py
Python
brno_process_data.py
shelltitan/CardioML
50b977807e2417bd422022168e1c48f8f23491db
[ "MIT" ]
null
null
null
brno_process_data.py
shelltitan/CardioML
50b977807e2417bd422022168e1c48f8f23491db
[ "MIT" ]
null
null
null
brno_process_data.py
shelltitan/CardioML
50b977807e2417bd422022168e1c48f8f23491db
[ "MIT" ]
null
null
null
from os import listdir from os.path import isfile, join import os import wfdb import matplotlib.pyplot as plt import numpy as np import pywt from pathlib import Path target_dir = "D:/Arythmia PPG-ECG/processed_data/brno" #well brno_test is basically this just for one file def ProcessData(filenames, directory, target): target = os.path.join(target, filenames[0][:-4]) Path(target).mkdir(parents=True, exist_ok=True) ecg_record = wfdb.rdrecord(os.path.join(directory, filenames[0])) ppg_record = wfdb.rdrecord(os.path.join(directory, filenames[1])) ecg_dictionary = ecg_record.__dict__ ppg_dictionary = ppg_record.__dict__ ecg_signal = ecg_dictionary['p_signal'][0] time = np.arange(ecg_signal.size) ecg_fig, ecg_ax = plt.subplots() ecg_ax.plot(time, ecg_signal) ecg_ax.set_title("ECG Signal") ecg_ax.set_ylabel('uV') ecg_ax.set_xlabel('time (ms)') ecg_fig.savefig(os.path.join(target, filenames[0] + '.png')) ppg_signal = ppg_dictionary['p_signal'][0] time2 = np.arange(ppg_signal.size) ppg_fig, ppg_ax = plt.subplots() ppg_ax.plot(time2, ppg_signal) ppg_ax.set_title("PPG Signal") ppg_ax.set_ylabel('Amplitude') ppg_ax.set_xlabel('time (s/30)') ppg_fig.savefig(os.path.join(target, filenames[1] + '.png')) minimum = np.min(ppg_signal) maximum = np.max(ppg_signal) ppg_signal_norm = (ppg_signal - minimum) / (maximum - minimum) ppg_fig_n, ppg_ax_n = plt.subplots() ppg_ax_n.plot(time2, ppg_signal_norm) ppg_ax_n.set_title("PPG Signal Normalised") ppg_ax_n.set_ylabel('Amplitude') ppg_ax_n.set_xlabel('time (s/30)') ppg_fig_n.savefig(os.path.join(target, filenames[1] + 'normalised.png')) coeffs = pywt.wavedec(ecg_signal, 'db8', level=8) dwt_fig, dwt_axs = plt.subplots(9) dwt_fig.suptitle('ECG signal decomposition') for i in range(9): dwt_axs[i].plot(np.arange(coeffs[i].size), coeffs[i]) coeffs[0] = np.zeros_like(coeffs[0]) no_bw_signal = pywt.waverec(coeffs, 'db8') no_bw_fig, no_bw_ax = plt.subplots() no_bw_ax.plot(time, no_bw_signal) no_bw_ax.set_title("ECG Signal") no_bw_ax.set_ylabel('uV') no_bw_ax.set_xlabel('time (ms)') dwt_fig.savefig(os.path.join(target, filenames[0] + 'decomposition.png')) no_bw_fig.savefig(os.path.join(target, filenames[0] + 'corrected.png')) np.save(os.path.join(target, filenames[0]), no_bw_signal) np.save(os.path.join(target, filenames[1]), ppg_signal_norm) coeffs2 = pywt.wavedec(ppg_signal, 'db8', level=8) dwt2_fig, dwt2_axs = plt.subplots(9) dwt2_fig.suptitle('PPG signal decomposition') for i in range(9): dwt2_axs[i].plot(np.arange(coeffs2[i].size), coeffs2[i]) dwt2_fig.savefig(os.path.join(target, filenames[1] + 'decomposition.png')) brno = "D:/Arythmia PPG-ECG/brno/brno-university-of-technology-smartphone-ppg-database-but-ppg-1.0.0" directory = [x[0] for x in os.walk(brno)] directory = directory[1::] #just looping the directories and reading the files not that intresting #probably map function would be faster than the native python loop #running this can take a while for i in range(len(directory)): files = [f for f in listdir(directory[i]) if isfile(join(directory[i], f))] file_names = [files[0][:-4], files[2][:-4]] ProcessData(file_names, directory[i], target_dir)
37.811111
101
0.698795
99512f904ee4a18c8fee10464558c0aba6bf6b3a
346
py
Python
jobs/sierras_24.py
tylertucker202/tibet_project
84278a894f1853d2a560f1552e98508e7ffd1688
[ "MIT" ]
2
2018-10-05T15:40:54.000Z
2020-06-15T12:26:06.000Z
jobs/sierras_24.py
tylertucker202/tibet_project
84278a894f1853d2a560f1552e98508e7ffd1688
[ "MIT" ]
4
2021-02-02T23:01:16.000Z
2022-03-12T00:47:35.000Z
jobs/sierras_24.py
tylertucker202/tibet_project
84278a894f1853d2a560f1552e98508e7ffd1688
[ "MIT" ]
1
2018-08-28T03:12:47.000Z
2018-08-28T03:12:47.000Z
from region_parameters import get_sierras_24x24_param from job_functions import run_job if __name__ == '__main__': input_dict = get_sierras_24x24_param() make_grid = True make_hdf5 = False make_time_series_df = False make_plots = False run_job(input_dict, make_grid, make_hdf5, make_time_series_df, make_plots)
26.615385
78
0.754335
4740f107ab2f8b637fca34863642d97cd69a73cd
13,210
py
Python
tools/deployment/pytorch2onnx.py
LaudateCorpus1/edgeai-mmdetection
43914fe6bf25e7584033d784babb518b28c76b5c
[ "BSD-3-Clause" ]
9
2021-09-30T16:02:18.000Z
2022-03-09T00:42:21.000Z
tools/deployment/pytorch2onnx.py
LaudateCorpus1/edgeai-mmdetection
43914fe6bf25e7584033d784babb518b28c76b5c
[ "BSD-3-Clause" ]
10
2021-10-30T05:34:01.000Z
2022-03-09T01:41:26.000Z
tools/deployment/pytorch2onnx.py
LaudateCorpus1/edgeai-mmdetection
43914fe6bf25e7584033d784babb518b28c76b5c
[ "BSD-3-Clause" ]
8
2021-10-20T09:39:56.000Z
2022-01-28T06:33:29.000Z
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import warnings from functools import partial import numpy as np import onnx import torch from mmcv import Config, DictAction import mmdet.utils from mmdet.core.export import build_model_from_cfg, preprocess_example_input from mmdet.core.export.model_wrappers import ONNXRuntimeDetector from mmdet.utils import XMMDetQuantTestModule, save_model_proto, mmdet_load_checkpoint, is_mmdet_quant_module from .pytorch2proto import * from torchvision.edgeailite import xnn def pytorch2onnx(args, cfg, model, input_img, input_shape, normalize_cfg, opset_version=11, show=False, output_file='tmp.onnx', verify=False, test_img=None, do_simplify=False, dynamic_export=None, skip_postprocess=False): input_config = { 'input_shape': input_shape, 'input_path': input_img, 'normalize_cfg': normalize_cfg } # prepare input one_img, one_meta = preprocess_example_input(input_config) img_list, img_meta_list = [one_img], [[one_meta]] if skip_postprocess: warnings.warn('Not all models support export onnx without post ' 'process, especially two stage detectors!') model.forward = model.forward_dummy torch.onnx.export( model, one_img, output_file, input_names=['input'], export_params=True, keep_initializers_as_inputs=True, do_constant_folding=True, verbose=show, opset_version=opset_version) print(f'Successfully exported ONNX model without ' f'post process: {output_file}') return # replace original forward function origin_forward = model.forward model.forward = partial( model.forward, img_metas=img_meta_list, return_loss=False, rescale=False) output_names = ['dets', 'labels'] model_org = model.module if is_mmdet_quant_module(model) else model if model_org.with_mask: output_names.append('masks') input_name = 'input' dynamic_axes = None if dynamic_export: dynamic_axes = { input_name: { 0: 'batch', 2: 'height', 3: 'width' }, 'dets': { 0: 'batch', 1: 'num_dets', }, 'labels': { 0: 'batch', 1: 'num_dets', }, } if model_org.with_mask: dynamic_axes['masks'] = {0: 'batch', 1: 'num_dets'} torch.onnx.export( model, img_list, output_file, input_names=[input_name], output_names=output_names, export_params=True, keep_initializers_as_inputs=True, do_constant_folding=True, verbose=show, opset_version=opset_version, dynamic_axes=dynamic_axes) # shape inference is required to support onnx+proto detection models in edgeai-tidl-tools onnx.shape_inference.infer_shapes_path(output_file, output_file) output_proto_file = osp.splitext(output_file)[0] + '-proto.onnx' pytorch2proto(cfg, model, img_list, output_file, output_proto_file, output_names=output_names, opset_version=opset_version) # shape inference is required to support onnx+proto detection models in edgeai-tidl-tools onnx.shape_inference.infer_shapes_path(output_proto_file, output_proto_file) model.forward = origin_forward # get the custom op path ort_custom_op_path = '' try: from mmcv.ops import get_onnxruntime_op_path ort_custom_op_path = get_onnxruntime_op_path() except (ImportError, ModuleNotFoundError): warnings.warn('If input model has custom op from mmcv, \ you may have to build mmcv with ONNXRuntime from source.') if do_simplify: import onnxsim from mmdet import digit_version min_required_version = '0.3.0' assert digit_version(onnxsim.__version__) >= digit_version( min_required_version ), f'Requires to install onnx-simplify>={min_required_version}' input_dic = {'input': img_list[0].detach().cpu().numpy()} model_opt, check_ok = onnxsim.simplify( output_file, input_data=input_dic, custom_lib=ort_custom_op_path, dynamic_input_shape=dynamic_export) if check_ok: onnx.save(model_opt, output_file) print(f'Successfully simplified ONNX model: {output_file}') else: warnings.warn('Failed to simplify ONNX model.') print(f'Successfully exported ONNX model: {output_file}') # onnx model does not have the quant hooks, so in quant mode the outputs won't match if verify: from mmdet.core import get_classes from mmdet.apis import show_result_pyplot model.CLASSES = get_classes(dataset) num_classes = len(model.CLASSES) # check by onnx onnx_model = onnx.load(output_file) onnx.checker.check_model(onnx_model) # wrap onnx model onnx_model = ONNXRuntimeDetector(output_file, model.CLASSES, 0) if dynamic_export: # scale up to test dynamic shape h, w = [int((_ * 1.5) // 32 * 32) for _ in input_shape[2:]] h, w = min(1344, h), min(1344, w) input_config['input_shape'] = (1, 3, h, w) if test_img is None: input_config['input_path'] = input_img # prepare input once again one_img, one_meta = preprocess_example_input(input_config) img_list, img_meta_list = [one_img], [[one_meta]] # get pytorch output with torch.no_grad(): pytorch_results = model( img_list, img_metas=img_meta_list, return_loss=False, rescale=True)[0] img_list = [_.cuda().contiguous() for _ in img_list] if dynamic_export: img_list = img_list + [_.flip(-1).contiguous() for _ in img_list] img_meta_list = img_meta_list * 2 # get onnx output onnx_results = onnx_model( img_list, img_metas=img_meta_list, return_loss=False)[0] # visualize predictions score_thr = 0.3 if show: out_file_ort, out_file_pt = None, None else: out_file_ort, out_file_pt = 'show-ort.png', 'show-pt.png' show_img = one_meta['show_img'] model.show_result( show_img, pytorch_results, score_thr=score_thr, show=True, win_name='PyTorch', out_file=out_file_pt) onnx_model.show_result( show_img, onnx_results, score_thr=score_thr, show=True, win_name='ONNXRuntime', out_file=out_file_ort) # compare a part of result if model.with_mask: compare_pairs = list(zip(onnx_results, pytorch_results)) else: compare_pairs = [(onnx_results, pytorch_results)] err_msg = 'The numerical values are different between Pytorch' + \ ' and ONNX, but it does not necessarily mean the' + \ ' exported ONNX model is problematic.' # check the numerical value for onnx_res, pytorch_res in compare_pairs: for o_res, p_res in zip(onnx_res, pytorch_res): np.testing.assert_allclose( o_res, p_res, rtol=1e-03, atol=1e-05, err_msg=err_msg) print('The numerical values are the same between Pytorch and ONNX') def parse_normalize_cfg(test_pipeline): transforms = None for pipeline in test_pipeline: if 'transforms' in pipeline: transforms = pipeline['transforms'] break assert transforms is not None, 'Failed to find `transforms`' norm_config_li = [_ for _ in transforms if _['type'] == 'Normalize'] assert len(norm_config_li) == 1, '`norm_config` should only have one' norm_config = norm_config_li[0] return norm_config def parse_args(): parser = argparse.ArgumentParser( description='Convert MMDetection models to ONNX') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--input-img', type=str, help='Images for input') parser.add_argument( '--show', action='store_true', help='Show onnx graph and detection outputs') parser.add_argument('--output-file', type=str, default='tmp.onnx') parser.add_argument('--opset-version', type=int, default=11) parser.add_argument( '--test-img', type=str, default=None, help='Images for test') parser.add_argument( '--dataset', type=str, default='coco', help='Dataset name. This argument is deprecated and will be removed \ in future releases.') parser.add_argument( '--verify', action='store_true', help='verify the onnx model output against pytorch output') parser.add_argument( '--simplify', action='store_true', help='Whether to simplify onnx model.') parser.add_argument( '--shape', type=int, nargs='+', default=[800, 1216], help='input image size') parser.add_argument( '--mean', type=float, nargs='+', default=[123.675, 116.28, 103.53], help='mean value used for preprocess input data.This argument \ is deprecated and will be removed in future releases.') parser.add_argument( '--std', type=float, nargs='+', default=[58.395, 57.12, 57.375], help='variance value used for preprocess input data. ' 'This argument is deprecated and will be removed in future releases.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='Override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--dynamic-export', action='store_true', help='Whether to export onnx with dynamic axis.') parser.add_argument( '--skip-postprocess', action='store_true', help='Whether to export model without post process. Experimental ' 'option. We do not guarantee the correctness of the exported ' 'model.') args = parser.parse_args() return args def main(args): warnings.warn('Arguments like `--mean`, `--std`, `--dataset` would be \ parsed directly from config file and are deprecated and \ will be removed in future releases.') assert args.opset_version == 11, 'MMDet only support opset 11 now' try: from mmcv.onnx.symbolic import register_extra_symbolics except ModuleNotFoundError: raise NotImplementedError('please update mmcv to version>=v1.0.4') register_extra_symbolics(args.opset_version) cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) if args.shape is None: img_scale = cfg.test_pipeline[1]['img_scale'] input_shape = (1, 3, img_scale[1], img_scale[0]) elif len(args.shape) == 1: input_shape = (1, 3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (1, 3) + tuple(args.shape) else: raise ValueError('invalid input shape') if hasattr(cfg, 'resize_with_scale_factor') and cfg.resize_with_scale_factor: torch.nn.functional._interpolate_orig = torch.nn.functional.interpolate torch.nn.functional.interpolate = xnn.layers.resize_with_scale_factor # build the model and load checkpoint model = build_model_from_cfg(args.config, args.checkpoint, args.cfg_options) if not args.input_img: args.input_img = osp.join(osp.dirname(__file__), '../../demo/demo.jpg') normalize_cfg = parse_normalize_cfg(cfg.test_pipeline) # convert model to onnx file pytorch2onnx( args, cfg, model, args.input_img, input_shape, normalize_cfg, opset_version=args.opset_version, show=args.show, output_file=args.output_file, verify=args.verify, test_img=args.test_img, do_simplify=args.simplify, dynamic_export=args.dynamic_export, skip_postprocess=args.skip_postprocess) if __name__ == '__main__': args = parse_args() main(args)
35.039788
127
0.619682
abe9e7be94479eaa45c7d911cfd045fd2a2df911
1,700
py
Python
racecar_control/scripts/labo_brushfire.py
gene2302/RacecarS5
82ac296a10aeefa56bac0fa8d7ab3a725391b07a
[ "MIT" ]
null
null
null
racecar_control/scripts/labo_brushfire.py
gene2302/RacecarS5
82ac296a10aeefa56bac0fa8d7ab3a725391b07a
[ "MIT" ]
null
null
null
racecar_control/scripts/labo_brushfire.py
gene2302/RacecarS5
82ac296a10aeefa56bac0fa8d7ab3a725391b07a
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy import cv2 import numpy as np from nav_msgs.srv import GetMap from libcontrol import * def main(): rospy.init_node('brushfire') prefix = "racecar" rospy.wait_for_service(prefix + '/get_map') try: get_map = rospy.ServiceProxy(prefix + '/get_map', GetMap) response = get_map() except (rospy.ServiceException) as e: print "Service call failed: %s"%e return rospy.loginfo("Got map=%dx%d resolution=%f", response.map.info.height, response.map.info.width, response.map.info.resolution) grid = np.reshape(response.map.data, [response.map.info.height, response.map.info.width]) brushfireMap = brushfire(grid) # Export brusfire map for visualization # Adjust color: 0 (black) = obstacle, 10-255 (white) = safest cells maximum = np.amax(brushfireMap) if maximum > 0: mask = brushfireMap==1; brushfireMap = brushfireMap.astype(float) / float(maximum) *225.0 + 30.0 brushfireMap[mask] = 0 # Flip image to get x->up, y->left (like top view in RVIZ looking towards x-axis) cv2.imwrite('brushfire.bmp', cv2.transpose(cv2.flip(brushfireMap, -1))) rospy.loginfo("Exported brushfire.bmp") else: rospy.loginfo("brushfire failed! Is brusfire implemented?") # Example to show grid with same color than RVIZ grid[grid == -1] = 89 grid[grid == 0] = 178 grid[grid == 100] = 0 # Flip image to get x->up, y->left (like top view in RVIZ looking towards x-axis) cv2.imwrite('map.bmp', cv2.transpose(cv2.flip(grid, -1))) rospy.loginfo("Exported map.bmp") if __name__ == '__main__': main()
35.416667
133
0.649412
f64110d6cf37d6a167e235100293bda745b12e07
1,402
py
Python
utils/common.py
qtisan/asteria
9378b4d6b882ea15c79d6b81b601f4265e55a301
[ "MIT" ]
null
null
null
utils/common.py
qtisan/asteria
9378b4d6b882ea15c79d6b81b601f4265e55a301
[ "MIT" ]
3
2021-06-02T00:45:51.000Z
2021-09-08T01:29:09.000Z
utils/common.py
qtisan/asteria
9378b4d6b882ea15c79d6b81b601f4265e55a301
[ "MIT" ]
null
null
null
import logging from pathlib import Path root_dir = Path(__file__).parent.parent def get_logger(app_name, level=logging.DEBUG): logger = logging.getLogger(app_name) logger.setLevel(logging.DEBUG) logfile = logging.FileHandler(root_dir / 'logs/{0}'.format(app_name + '-log.txt')) logfile.setLevel(level) logfile.setFormatter( logging.Formatter( '[%(name)s][%(levelname)s]%(asctime)s: %(message)s > %(pathname)s(func: [%(funcName)s] at line %(lineno)d)' )) logger.addHandler(logfile) console = logging.StreamHandler() console.setLevel(level) console.setFormatter( logging.Formatter('[%(levelname)s] - %(message)s - %(asctime)s')) logger.addHandler(console) return logger default_logger = get_logger('default') def debug(msg): default_logger.debug(msg) def path_finder(func='apps'): proot = root_dir / func def p_path(app_name=None, sub_path=None): if app_name is None: return proot if isinstance(app_name, str): if sub_path is not None: return proot / app_name / sub_path return proot / app_name raise 'Arguments error!' return p_path data_path = path_finder('data') app_path = path_finder('apps') def add_sys_path(): import sys srd = str(root_dir) if srd not in sys.path: sys.path.append(srd)
23.366667
119
0.645506
e18d153674bc8af964e582ac7a103e51b91e20a5
21
py
Python
build/lib/subnet/__init__.py
usamaimdadsian/subnet-pkg
3d815a22cd82044cce3607e5ab16102f8897324c
[ "MIT" ]
null
null
null
build/lib/subnet/__init__.py
usamaimdadsian/subnet-pkg
3d815a22cd82044cce3607e5ab16102f8897324c
[ "MIT" ]
null
null
null
build/lib/subnet/__init__.py
usamaimdadsian/subnet-pkg
3d815a22cd82044cce3607e5ab16102f8897324c
[ "MIT" ]
null
null
null
from .subnet import *
21
21
0.761905
2da1c793fe1afa5c590b89254b77ecb813d5cea9
15,123
py
Python
commands/base_commands/exchanges.py
bopopescu/arxcode
3d279ce801e177d2f98671c438c52d39ed6edd41
[ "MIT" ]
null
null
null
commands/base_commands/exchanges.py
bopopescu/arxcode
3d279ce801e177d2f98671c438c52d39ed6edd41
[ "MIT" ]
null
null
null
commands/base_commands/exchanges.py
bopopescu/arxcode
3d279ce801e177d2f98671c438c52d39ed6edd41
[ "MIT" ]
null
null
null
from django.db import transaction from commands.base import ArxCommand from commands.base_commands.overrides import args_are_currency, check_volume from world.dominion.models import CraftingMaterials from server.utils.arx_utils import text_box class TradeError(Exception): pass class PersonalTradeInProgress: HEADER_MSG = "|w[|nPersonal Trade|w]|n " FAIL_MSG = "Could not finish the exchange." def __init__(self, caller, target): self.caller = caller self.target = target self.names = {caller: str(caller), target: str(target)} caller.ndb.personal_trade_in_progress = self target.ndb.personal_trade_in_progress = self self.items = {caller: [], target: []} self.silver = {caller: 0, target: 0} self.agreements = {caller: False, target: False} @classmethod def create_trade(cls, caller, targ_name): """ Creates instance and messages participants if it succeeds. Args: caller: character object targ_name: string """ target = caller.search(targ_name) if not target: return if target == caller or not target.player_ob: raise TradeError(f"You cannot trade with {target}.") for trader in (caller, target): if trader.ndb.personal_trade_in_progress: if trader != caller: target.msg(f"{cls.HEADER_MSG}{caller} wants to trade, but you have a trade in progress.") raise TradeError(f"{trader} has a trade already in progress.") trade = cls(caller, target) trade.message_participants( f"{caller} has initiated a trade with {target}. (See |w'help trade'|n.)" ) def cancel_trade(self): "Scrubs this instance from traders and messages them." self.clean_up() self.message_participants("|yYour trade has been cancelled.|n") def display_trade(self): "Returns a string about the overall state of the trade." msg = self.HEADER_MSG + "\n".join( (self.assemble_manifest(self.caller), self.assemble_manifest(self.target), (self.assemble_statement(self.caller) + self.assemble_statement(self.target)))) return text_box(msg) def assemble_manifest(self, trader): "Returns a string about what this trader is offering." money = f"|c{self.silver[trader]}|n silver" if self.silver[trader] else "no money" txt = f"{self.names[trader]} offers {money} and" items = [str(ob) for ob in self.items[trader]] if items: txt += ":\n + " + "\n + ".join(items) else: txt += " no items." return txt def assemble_statement(self, trader): "Returns string about whether a trader has agreed." bull = self.agreements[trader] # :3 bool luv u color = "|351" if bull else "|y" adverb = "" if bull else "not yet " return f"{self.names[trader]} has {color}{adverb}agreed|n. " def add_item(self, trader, obj): "Locates item and adds it to the trade." if not obj: raise TradeError("Trade what?") item = trader.search(obj) if not item: return if item in self.items[trader]: raise TradeError(f"{item} is already being traded.") self.items[trader].append(item) self.reset_agreements(f"{self.names[trader]} offers {item}.") def add_silver(self, trader, amount): "Verifies amount and adds silver to the trade." if self.silver[trader]: raise TradeError( f"Already offered |c{self.silver[trader]}|n silver. Cancel trade if amount is incorrect." ) try: amount = int(amount) if amount < 1: raise ValueError except (ValueError, TypeError): raise TradeError("Amount must be a positive number that you can afford.") self.silver[trader] = amount self.reset_agreements(f"{self.names[trader]} offers |c{amount}|n silver.") def finish(self): "Runs checks before performing the exchange, then scrubs this instance from traders." self.check_still_trading() self.check_trader_location() self.check_can_pay() self.check_can_move_items() for obj in self.items[self.caller]: obj.move_to(self.target) for obj in self.items[self.target]: obj.move_to(self.caller) if self.silver[self.caller]: self.caller.pay_money(self.silver[self.caller], self.target) if self.silver[self.target]: self.target.pay_money(self.silver[self.target], self.caller) self.clean_up() self.message_participants("|351Your exchange is complete!|n") def check_still_trading(self): "Ensures both traders are still using the same trade object." caller_trade = self.caller.ndb.personal_trade_in_progress target_trade = self.target.ndb.personal_trade_in_progress if caller_trade != target_trade: self.clean_up() raise TradeError("Invalid trade; cancelling it. Please restart.") def check_trader_location(self): "Ensures traders are together & using same names. Resets agreements if not." changed_names = False for trader in (self.caller, self.target): if str(trader) != self.names[trader]: changed_names = True if changed_names or self.caller.location != self.target.location: self.reset_agreements("Traders must be in the same location.") raise TradeError(self.FAIL_MSG) def check_can_pay(self): "Resets agreements if a trader cannot afford their offered silver." for trader in (self.caller, self.target): if self.silver[trader] > trader.currency: self.reset_agreements(f"{self.names[trader]} does not have enough silver to complete the trade.") raise TradeError(self.FAIL_MSG) def check_can_move_items(self): "Runs both traders through an item check." for trader in (self.caller, self.target): recipient = self.target if (trader == self.caller) else self.caller for obj in self.items[trader]: if not obj.at_before_move(recipient, caller=trader): self.reset_agreements(f"{self.names[trader]} cannot trade {obj}.") raise TradeError(self.FAIL_MSG) def mark_agreement(self, trader): "Trader's agreement becomes Truthy, then trade attempts to finish if all parties have agreed." self.agreements[trader] = True if all(self.agreements.values()): self.finish() else: self.message_participants(f"{self.names[trader]} has agreed to the trade.") def reset_agreements(self, msg=""): "Checks for trade agreements and nullifies them, giving feedback if any were reset." message = msg if any(self.agreements.values()): self.agreements = {key: False for key in self.agreements.keys()} sep = " " if message else "" message += f"{sep}|wAgreements have been reset.|n" if message: self.message_participants(message) def message_participants(self, msg): "Sends a message to traders with a small header attached." message = f"{self.HEADER_MSG}{msg}" self.caller.msg(message) self.target.msg(message) def clean_up(self): if self.caller.ndb.personal_trade_in_progress == self: self.caller.ndb.personal_trade_in_progress = None if self.target.ndb.personal_trade_in_progress == self: self.target.ndb.personal_trade_in_progress = None class CmdTrade(ArxCommand): """ Set up a trade transaction with another character. Usage: trade [<character>] trade/item <item> trade/silver <amount> trade/agree trade/cancel After offering items and silver, both characters must agree in order to complete the exchange. Display the current offer by using 'trade' command with no args or switches. """ key = "trade" locks = "cmd:all()" @transaction.atomic def func(self): try: if self.args and not self.switches: PersonalTradeInProgress.create_trade(self.caller, self.args) return trade = self.caller.ndb.personal_trade_in_progress if not trade: raise TradeError("You are not trading with anyone right now.") elif not self.switches and not self.args: self.msg(trade.display_trade()) return elif self.check_switches(("agree", "accept")): trade.mark_agreement(self.caller) return elif self.check_switches(("cancel", "stop", "quit")): trade.cancel_trade() return elif self.check_switches(("item", "items")): trade.add_item(self.caller, self.args) return elif self.check_switches(("silver", "money")): trade.add_silver(self.caller, self.args) return raise TradeError("Incorrect switch. See |w'help trade'|n.") except TradeError as err: self.msg(err) class CmdGive(ArxCommand): """ give away things Usage: give <inventory obj> = <target> give <inventory obj> to <target> give <amount> silver to <target> give/mats <type>,<amount> to <target> give/resource <type>,<amount> to <target> Gives an items from your inventory to another character, placing it in their inventory. give/resource does not require you to be in the same room. """ key = "give" locks = "cmd:all()" # noinspection PyAttributeOutsideInit def func(self): """Implement give""" caller = self.caller to_give = None if not self.args: caller.msg("Usage: give <inventory object> = <target>") return if not self.rhs: arglist = self.args.split(" to ") if len(arglist) < 2: caller.msg("Usage: give <inventory object> to <target>") return self.lhs, self.rhs = arglist[0], arglist[1] if "resource" in self.switches: player = caller.player.search(self.rhs) if not player: return target = player.char_ob else: target = caller.search(self.rhs) if not target: return if target == caller: caller.msg("You cannot give things to yourself.") return if not target.player_ob: self.msg("You cannot give anything to them. Use 'put' instead.") return if "mats" in self.switches: lhslist = self.lhs.split(",") try: mat = caller.player_ob.Dominion.assets.materials.get(type__name__iexact=lhslist[0]) amount = int(lhslist[1]) if amount < 1: raise ValueError except (IndexError, ValueError): caller.msg("Invalid syntax.") return except CraftingMaterials.DoesNotExist: caller.msg("No materials by that name.") return if mat.amount < amount: caller.msg("Not enough materials.") return try: tmat = target.player_ob.Dominion.assets.materials.get(type=mat.type) except CraftingMaterials.DoesNotExist: tmat = target.player_ob.Dominion.assets.materials.create(type=mat.type) mat.amount -= amount tmat.amount += amount mat.save() tmat.save() caller.msg("You give %s %s to %s." % (amount, mat.type, target)) target.msg("%s gives %s %s to you." % (caller, amount, mat.type)) return if "resource" in self.switches: rtypes = ("economic", "social", "military") lhslist = self.lhs.split(",") try: rtype = lhslist[0].lower() amount = int(lhslist[1]) if amount < 1: raise ValueError except (IndexError, ValueError): caller.msg("Invalid syntax.") return if rtype not in rtypes: caller.msg("Type must be in %s." % ", ".join(rtypes)) return cres = getattr(caller.player_ob.Dominion.assets, rtype) if cres < amount: caller.msg("You do not have enough %s resources." % rtype) return tres = getattr(target.player_ob.Dominion.assets, rtype) cres -= amount tres += amount setattr(target.player_ob.Dominion.assets, rtype, tres) setattr(caller.player_ob.Dominion.assets, rtype, cres) target.player_ob.Dominion.assets.save() caller.player_ob.Dominion.assets.save() caller.msg("You give %s %s resources to %s." % (amount, rtype, target)) target.player_ob.inform("%s has given %s %s resources to you." % (caller, amount, rtype), category="Resources") return if args_are_currency(self.lhs): arglist = self.lhs.split() val = round(float(arglist[0]), 2) if val <= 0: self.msg("Amount must be positive.") return currency = round(float(caller.db.currency or 0), 2) if val > currency: caller.msg("You do not have that much money to give.") return caller.pay_money(val, target) caller.msg("You give coins worth %s silver pieces to %s." % (val, target)) target.msg("%s has given you coins worth %s silver pieces." % (caller, val)) return # if we didn't find a match in currency that we're giving if not to_give: to_give = caller.search(self.lhs) if not (to_give and target): return if target == caller: caller.msg("You keep %s to yourself." % to_give.key) to_give.at_get(caller) return if not to_give.location == caller: caller.msg("You are not holding %s." % to_give.key) return if not check_volume(to_give, target, quiet=True): caller.msg("%s can't hold %s." % (target.name, to_give.name)) return if not to_give.at_before_move(target, caller=caller): return # give object to_give.move_to(target, quiet=True) caller.msg("You give %s to %s." % (to_give.key, target)) target.msg("%s gives you %s." % (caller, to_give.key)) to_give.at_get(target)
40.328
113
0.585796
b98065586c7dfce53ff9558c48c42c7023232342
29,973
py
Python
uploadr.py
baumrasen/flickr-uploader
55c73dc15a90705c17031ddaf8ac41351e8f481f
[ "MIT" ]
39
2017-11-04T10:10:59.000Z
2021-01-06T22:07:55.000Z
uploadr.py
baumrasen/flickr-uploader
55c73dc15a90705c17031ddaf8ac41351e8f481f
[ "MIT" ]
60
2017-11-01T01:28:46.000Z
2019-09-29T12:26:39.000Z
uploadr.py
baumrasen/flickr-uploader
55c73dc15a90705c17031ddaf8ac41351e8f481f
[ "MIT" ]
9
2017-11-09T20:35:12.000Z
2021-01-10T16:34:32.000Z
#!/usr/bin/env python """ by oPromessa, 2017, 2018 Published on https://github.com/oPromessa/flickr-uploader/ ## LICENSE.txt -------------- * Check usage and licensing notice on LICENSE.txt file. * PLEASE REVIEW THE SOURCE CODE TO MAKE SURE IT WILL WORK FOR YOUR NEEDS. ## CONTRIBUTIONS ARE WELCOME! ----------------------------- * Check CONTRIBUTING and TODO files * FEEDBACK ON ANY TESTING AND FEEDBACK YOU DO IS GREATLY APPRECIATED. * IF YOU FIND A BUG, PLEASE REPORT IT. ## Recognition -------------- Inspired by: * https://github.com/sybrenstuvel/flickrapi * http://micampe.it/things/flickruploadr * https://github.com/joelmx/flickrUploadr/ ## README.md ------------ * Check README.md file for information including: ### Description ### Features ### Requirements ### Setup on Synology ### Configuration ### Usage/Arguments/Options ### Task Scheduler (cron) ### Recognition ### Final remarks ### Q&A """ # ============================================================================= # Import section for Python 2 and 3 compatible code # from __future__ import absolute_import, division, print_function, # unicode_literals from __future__ import division # This way: 3 / 2 == 1.5; 3 // 2 == 1 # ============================================================================= # Import section import sys import traceback import logging import logging.handlers import argparse import os import os.path try: # Use portalocker if available. Required for Windows systems import portalocker as FileLocker # noqa FILELOCK = FileLocker.lock except ImportError: # Use fcntl import fcntl as FileLocker FILELOCK = FileLocker.lockf import errno import pprint # ----------------------------------------------------------------------------- # Helper FlickrUploadr class to upload pics/videos into Flickr. import lib.FlickrUploadr as FlickrUploadr # ----------------------------------------------------------------------------- # Helper class and functions for UPLoaDeR Global Constants. import lib.Konstants as KonstantsClass # ----------------------------------------------------------------------------- # Helper class and functions to print messages. import lib.NicePrint as NicePrint # ----------------------------------------------------------------------------- # Helper class and functions to load, process and verify INI configuration. import lib.MyConfig as MyConfig # ----------------------------------------------------------------------------- # Helper class to allow multiprocessing looging into a single file import lib.multiprocessing_logging as multiprocessing_logging # ============================================================================= # Logging init code # # Getting definitions from Konstants UPLDR_K = KonstantsClass.Konstants() # Sets LOGGING_LEVEL to allow logging even if everything else is wrong! # Parent logger is set to Maximum (DEBUG) so that suns will log as appropriate # Produces too much ouput info on MyConfig. Setting it to WARNING logging.getLogger().setLevel(logging.DEBUG) # define a Handler which writes WARNING messages or higher to the sys.stderr CONSOLE_LOGGING = logging.StreamHandler() CONSOLE_LOGGING.setLevel(logging.WARNING) CONSOLE_LOGGING.setFormatter(logging.Formatter( fmt=UPLDR_K.Pur + '[' + str(UPLDR_K.Run) + ']' + '[%(asctime)s]:[%(processName)-11s]' + UPLDR_K.Std + '[%(levelname)-8s]:[%(name)s] %(message)s', datefmt=UPLDR_K.TimeFormat)) logging.getLogger().addHandler(CONSOLE_LOGGING) # Inits with default configuration value, namely LOGGING_LEVEL MY_CFG = MyConfig.MyConfig() # Update console logging level as per LOGGING_LEVEL from default config CONSOLE_LOGGING.setLevel(int(MY_CFG.LOGGING_LEVEL)) # ----------------------------------------------------------------------------- # ============================================================================= # Init code # # Python version must be greater than 2.7 for this script to run # if sys.version_info < (2, 7): logging.critical('----------- (V%s) Error Init -----------(Log:%s)' 'This script requires Python 2.7 or newer.' 'Current Python version: [%s] ' 'Exiting...', UPLDR_K.Version, MY_CFG.LOGGING_LEVEL, sys.version) sys.exit(1) else: logging.warning('----------- (V%s) Init -----------(Log:%s)' 'Python version on this system: [%s]', UPLDR_K.Version, MY_CFG.LOGGING_LEVEL, sys.version) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def my_excepthook(exc_class, exc_value, exc_tb): """ my_excepthook Exception handler to be installed over sys.excepthook to allow traceback reporting information to be reported back to logging file """ logging.critical('Exception: %s: %s', exc_class, exc_value) logging.critical('%s', ''.join(traceback.format_tb(exc_tb))) # ----------------------------------------------------------------------------- # parse_arguments # # This is the main method # def parse_arguments(): """ parse_arguments Parse arguments and return results. """ # Parse args -------------------------------------------------------------- parser = argparse.ArgumentParser( description='Upload files to Flickr. Uses uploadr.ini as config file.', epilog='by oPromessa, 2017, 2018' ) # Configuration related options ------------------------------------------- cgrpparser = parser.add_argument_group('Configuration related options') cgrpparser.add_argument('-C', '--config-file', action='store', metavar='filename.ini', type=str, help='Optional configuration file. ' 'Default is:[{!s}]' .format(UPLDR_K.ini_file)) cgrpparser.add_argument('-a', '--authenticate', action='store_true', help='Performs/Verifies authentication with ' 'Flickr. To be run on initial setup.' 'Does not run any other option.') # Verbose related options ------------------------------------------------- vgrpparser = parser.add_argument_group('Verbose and dry-run options') vgrpparser.add_argument('-v', '--verbose', action='count', help='Verbose output. Use -vv for more verbosity. ' 'See also LOGGING_LEVEL value in INI file.') vgrpparser.add_argument('-x', '--verbose-progress', action='store_true', help='Provides progress indicator on each upload. ' 'See also LOGGING_LEVEL value in INI file.') vgrpparser.add_argument('-m', '--mask-sensitive', action='store_true', help='Masks sensitive data on log files like ' 'your pics filenames and set/albums names. ' '(Uses SHA1 hashing algorithm)') vgrpparser.add_argument('-n', '--dry-run', action='store_true', help='Dry run. No changes are actually performed.') # Information related options --------------------------------------------- igrpparser = parser.add_argument_group('Information options') igrpparser.add_argument('-i', '--title', action='store', help='Title for uploaded files. ' 'Overwrites title set in INI config file. ' 'If not specified and not set in INI file, ' 'it uses filename as title (*Recommended).') igrpparser.add_argument('-e', '--description', action='store', help='Description for uploaded files' 'Overwrites description set in INI file. ') igrpparser.add_argument('-t', '--tags', action='store', help='Space-separated tags for uploaded files. ' 'It appends to the tags defined in INI file.') # used in pics_status function igrpparser.add_argument('-l', '--list-photos-not-in-set', metavar='N', type=int, help='List as many as N photos (with tags) ' 'not in set. Maximum listed photos is 500.') # Processing related options ---------------------------------------------- pgrpparser = parser.add_argument_group('Processing related options') pgrpparser.add_argument('-r', '--drip-feed', action='store_true', help='Wait a bit between uploading individual ' 'files.') pgrpparser.add_argument('-p', '--processes', metavar='P', type=int, help='Number of photos to upload simultaneously. ' 'Number of process to assign pics to sets.') pgrpparser.add_argument('-u', '--not-is-already-uploaded', action='store_true', help='Do not check if file is already uploaded ' 'and exists on flickr prior to uploading. ' 'Use this option for faster INITIAL upload. ' 'Do not use it in subsequent uploads to ' 'prevent/recover orphan pics without a set.') pgrpparser.add_argument('--no-delete-from-flickr', metavar='nodelete', type=str, nargs='?', const=str(UPLDR_K.no_delete_tag), help='Do not actually delete pics from flicr.com &' ' mark them with tag:[{!s}]' .format(UPLDR_K.no_delete_tag)) # run in daemon mode uploading every X seconds pgrpparser.add_argument('-d', '--daemon', action='store_true', help='Run forever as a daemon.' 'Uploading every SLEEP_TIME seconds. Please ' 'note it only performs ' 'upload/raw convert/replace.') # Bad files related options ----------------------------------------------- # Cater for bad files. files in your Library that flickr does not recognize bgrpparser = parser.add_argument_group('Handling bad and excluded files') # -b add files to badfiles table bgrpparser.add_argument('-b', '--bad-files', action='store_true', help='Save on database bad files to prevent ' 'continuous uploading attempts. Bad files are ' 'files in your Library that flickr does not ' 'recognize (Error 5) or are too large (Error 8). ' 'Check also option -c.') # -c clears the badfiles table to allow a reset of the list bgrpparser.add_argument('-c', '--clean-bad-files', action='store_true', help='Resets the badfiles table/list to allow a ' 'new uploading attempt for bad files. Bad files ' 'are files in your Library that flickr does not ' 'recognize (Error 5) or are too large (Error 8). ' 'Check also option -b.') # -s list the badfiles table bgrpparser.add_argument('-s', '--list-bad-files', action='store_true', help='List the badfiles table/list.') # when you change EXCLUDED_FOLDERS setting bgrpparser.add_argument('-g', '--remove-excluded', action='store_true', help='Remove previously uploaded files, that are ' 'now being excluded due to change of the INI ' 'file configuration EXCLUDED_FOLDERS.' 'NOTE: Option --remove-ignored was ' 'dropped in favor of --remove-excluded.') # Migration related options ----------------------------------------------- # 2.7.0 Version will add album/setName as one agrpparser = parser.add_argument_group('Migrate to v2.7.0') agrpparser.add_argument('--add-albums-migrate', action='store_true', help='From v2.7.0 onwards, uploadr adds to Flickr ' 'an album tag to each pic. ' 'This option adds such tag to previously ' 'loaded pics. uploadr v2.7.0 will perform ' 'automatically such migration upon first run ' 'This option is *only* available to re-run ' 'it, should it be necessary.') return parser.parse_args() # Parse args -------------------------------------------------------------- # ----------------------------------------------------------------------------- # run_uploadr # # This is the main method # def run_uploadr(args): """ run_uploadr args = parameters """ # ------------------------------------------------------------------------- # Local Variables # # myflick = Class Uploadr (created in the Main code) def check_files_dir(): """ check_files_dir Confirms setting MYCFG.FILES_DIR is defined and a valid folder. Exits from program otherwise. """ NPR.niceprint('FILES_DIR: [{!s}]' .format(NPR.strunicodeout(MY_CFG.FILES_DIR)), verbosity=1, logalso=logging.WARNING) if MY_CFG.FILES_DIR == "": NPR.niceerror( caught=True, caughtprefix='xxx', caughtcode='630', caughtmsg='Configure in INI file [normally uploadr.ini] ' 'the folder [FILES_DIR] with media to sync with Flickr.', useniceprint=True) sys.exit(8) elif not os.path.isdir(MY_CFG.FILES_DIR): NPR.niceerror( caught=True, caughtprefix='xxx', caughtcode='631', caughtmsg='FILES_DIR: [{!s}] is not valid.' 'Use an existant folder in INI file [normally uploadr.ini] ' 'with media to sync with Flickr. ' .format(NPR.strunicodeout(MY_CFG.FILES_DIR)), useniceprint=True) sys.exit(8) def check_flickr_key_secret(): """ def check_flickr_key_secret(): Confirms the configuration for api_key and secret is defined. Exits from program otherwise. """ if MY_CFG.FLICKR["api_key"] == "" or MY_CFG.FLICKR["secret"] == "": NPR.niceerror( caught=True, caughtprefix='xxx', caughtcode='635', caughtmsg='Please enter an API key and secret in the ' 'configuration file [normaly uploadr.ini] (see README).', useniceprint=True) sys.exit(9) def check_token_authenticate(): """ check_token_authenticate Checks if token is available... if not will authenticate """ NPR.niceprint('Checking if token is available... ' 'if not will authenticate') if not myflick.check_token(): # authenticate sys.exits in case of failure myflick.authenticate() else: NPR.niceprint('Token is available.', logalso=logging.INFO) # Initial checks check_files_dir() check_flickr_key_secret() # Instantiate class Uploadr. getCachedToken is called on __init__ logging.debug('Instantiating the Main class myflick = Uploadr()') myflick = FlickrUploadr.Uploadr(MY_CFG, args) # Setup the database. Clean badfiles entries if asked myflick.setup_db() if args.clean_bad_files: myflick.clean_db_badfiles() if args.authenticate: check_token_authenticate() elif args.daemon: # Will run in daemon mode every SLEEP_TIME seconds if myflick.check_token(): NPR.niceprint('Will run in daemon mode every [{!s}] seconds' 'Make sure you have previously authenticated!' .format(MY_CFG.SLEEP_TIME), logalso=logging.WARNING) myflick.run() else: NPR.niceerror( caught=True, caughtprefix='xxx', caughtcode='641', caughtmsg='Not able to connect to Flickr.' 'Make sure you have previously authenticated!', useniceprint=True) sys.exit(8) else: check_token_authenticate() if args.add_albums_migrate: NPR.niceprint('Preparation migration to 2.7.0', fname='add_albums_tag') if myflick.add_albums_tag(): NPR.niceprint('Successfully added album tags to pics ' 'on upload.', fname='add_albums_tag') else: NPR.niceerror( caught=True, caughtprefix='xxx', caughtcode='642', caughtmsg='Failed adding album tags to pics uploaded. ' 'Please check logs, correct, and retry.', useniceprint=True) sys.exit(10) elif args.list_bad_files: myflick.list_bad_files() else: myflick.remove_useless_sets_table() myflick.get_flickr_sets() myflick.upload() myflick.remove_deleted_media() if args.remove_excluded: myflick.remove_excluded_media() myflick.create_sets() myflick.pics_status(KonstantsClass.media_count) # Run Uploadr ------------------------------------------------------------- # ----------------------------------------------------------------------------- # check_base_ini_file # # Check if base_dir folder exists and ini_file exists and is a file # def check_base_ini_file(base_dir, ini_file): """ check_base_ini_file Returns True if base_dir is a directory and ini_file is a regular file. base_dir = Folder ini_file = INI File path """ logging.info('check_base_ini_file: base_dir=[%s] ini_file=[%s]', NPR.strunicodeout(base_dir), NPR.strunicodeout(ini_file)) result_check = True try: if not (base_dir == '' or os.path.isdir(base_dir)): raise OSError('[Errno 2] No such directory:[{!s}]' .format(NPR.strunicodeout(base_dir))) elif not os.path.isfile(ini_file): raise OSError('[Errno 2] No such file:[{!s}]' .format(NPR.strunicodeout(ini_file))) else: result_check = True except OSError as err: result_check = False logging.error( 'No config folder and/or INI file found: %s', str(err)) logging.debug('check_base_ini_file: result=[%s]', result_check) return result_check # ----------------------------------------------------------------------------- # logging_close_handlers # # Close logging handlers # def logging_close_handlers(): """ logging_close_handlers Close logging handlers """ handlers = logging.getLogger().handlers[:] for handler in handlers: handler.close() logging.getLogger().removeHandler(handler) # ============================================================================= # Global Variables # # ----------------------------------------------------------------------------- # Class UPLDReConstants # # base_dir = Base configuration directory location # ini_file = Configuration file # media_count = Counter of total files to initially upload # ----------------------------------------------------------------------------- # Base_dir set to os.path.abspat(os.path.dirname(sys.argv[0])) # INI file config: # 1. Use --config-file argument option [after PARSED_ARGS] # 2. If not, os.path.dirname(sys.argv[0]) # 3. If not, os.path.dirname(sys.argv[0]), '..', 'etc', 'uploadr.ini' # Set appropriate configuration within INI file for support files UPLDR_K.base_dir = os.path.abspath(os.path.dirname(sys.argv[0])) UPLDR_K.ini_file = os.path.abspath(os.path.join(UPLDR_K.base_dir, 'uploadr.ini')) UPLDR_K.etc_ini_file = os.path.abspath( os.path.join(UPLDR_K.base_dir, os.path.pardir, 'etc', 'uploadr.ini')) UPLDR_K.media_count = 0 # ----------------------------------------------------------------------------- # Debug folder locations and INI files logging.debug(' base_dir:[%s]', UPLDR_K.base_dir) logging.debug(' cwd:[%s]', os.getcwd()) logging.debug('sys.prefix/etc:[%s]', os.path.join(sys.prefix, 'etc')) logging.debug(' abs(argv[0]):[%s]', os.path.abspath(os.path.dirname(sys.argv[0]))) logging.debug(' abs(__file__):[%s]', os.path.abspath(os.path.dirname(__file__))) logging.debug('argv[0]/../etc:[%s]', os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), os.path.pardir, 'etc', 'uploadr.ini'))) logging.debug(' ini_file:[%s]', UPLDR_K.ini_file) logging.debug(' etc_ini_file:[%s]', UPLDR_K.etc_ini_file) # ----------------------------------------------------------------------------- # ============================================================================= # Functions aliases # # NPR = NicePrint.NicePrint # ----------------------------------------------------------------------------- NPR = NicePrint.NicePrint() # ----------------------------------------------------------------------------- # ============================================================================= # Main code # NPR.niceprint('----------- (V{!s}) Start -----------(Log:{!s})' .format(UPLDR_K.Version, MY_CFG.LOGGING_LEVEL), logalso=logging.WARNING) # Install exception handler sys.excepthook = my_excepthook if __name__ == "__main__": # Parse the arguments options PARSED_ARGS = parse_arguments() if PARSED_ARGS.no_delete_from_flickr: logging.warning('Option --no-delete-from-flickr enabled=[%s]', PARSED_ARGS.no_delete_from_flickr) # Print/show arguments NPR.niceprint('Output for arguments(args):\n{!s}' .format(pprint.pformat(PARSED_ARGS)), verbosity=3, logalso=logging.INFO) # Debug: upload_sleep: Seconds to sleep prior to reattempt a failed upload logging.info('Upload sleep setting:[%s] seconds', UPLDR_K.upload_sleep) # Set verbosity level as per -v count NPR.set_verbosity(PARSED_ARGS.verbose) NPR.set_mask_sensitivity(PARSED_ARGS.mask_sensitive) # INI file config (1/3) # 1. Use --config-file argument option [after PARSED_ARGS] if PARSED_ARGS.config_file: if not check_base_ini_file(UPLDR_K.base_dir, PARSED_ARGS.config_file): NPR.niceerror(caught=True, caughtprefix='+++', caughtcode='661', caughtmsg='Invalid -C argument INI file [{!s}]. ' 'Exiting...'.format(UPLDR_K.ini_file), useniceprint=True) sys.exit(2) else: UPLDR_K.ini_file = PARSED_ARGS.config_file # INI file config (2/3) # 2. If not, os.path.dirname(sys.argv[0]) elif not check_base_ini_file(UPLDR_K.base_dir, UPLDR_K.ini_file): NPR.niceerror(caught=True, caughtprefix='+++', caughtcode='662', caughtmsg='Invalid sys.argv INI file [{!s}].' ' Continuing...'.format(UPLDR_K.ini_file), useniceprint=True) # INI file config (3/3) # 3. If not, os.path.dirname(sys.argv[0]), '../etc/uploadr.ini' if not check_base_ini_file(UPLDR_K.base_dir, UPLDR_K.etc_ini_file): NPR.niceerror(caught=True, caughtprefix='+++', caughtcode='663', caughtmsg='Invalid sys.argv/etc INI file [{!s}].' ' Exiting...'.format(UPLDR_K.etc_ini_file), useniceprint=True) sys.exit(2) else: UPLDR_K.ini_file = UPLDR_K.etc_ini_file # Source configuration from ini_file logging.warning('FINAL ini_file:[%s]', UPLDR_K.ini_file) MY_CFG.readconfig(UPLDR_K.ini_file, ['Config']) if not (MY_CFG.processconfig() and MY_CFG.verifyconfig()): NPR.niceerror(caught=True, caughtprefix='+++', caughtcode='664', caughtmsg='Incorrect config INI file [{!s}].' ' Exiting...'.format(UPLDR_K.ini_file), useniceprint=True) sys.exit(8) # Update console logging level as per LOGGING_LEVEL from INI file CONSOLE_LOGGING.setLevel(MY_CFG.LOGGING_LEVEL) logging.warning('\n\tCONSOLE_LOGGING.setLevel=[%s] ' '\n\tROTATING_LOGGING.setLevel/enabled?=[%s/%s] ' '\n\tMY_CFG.LOGGING_LEVEL=[%s]', MY_CFG.LOGGING_LEVEL, MY_CFG.ROTATING_LOGGING_LEVEL, MY_CFG.ROTATING_LOGGING, MY_CFG.LOGGING_LEVEL) # Rotating LOGGING level to err_file if MY_CFG.ROTATING_LOGGING: ROTATING_LOGGING = None if not os.path.isdir(os.path.dirname(MY_CFG.ROTATING_LOGGING_PATH)): NPR.niceerror(caught=True, caughtprefix='+++', caughtcode='665', caughtmsg='Invalid ROTATING_LOGGING_PATH config.', useniceprint=True) else: # Define a rotating file Handler which writes DEBUG messages # or higher to err_file ROTATING_LOGGING = logging.handlers.RotatingFileHandler( MY_CFG.ROTATING_LOGGING_PATH, maxBytes=MY_CFG.ROTATING_LOGGING_FILE_SIZE, backupCount=MY_CFG.ROTATING_LOGGING_FILE_COUNT) # Update rotating logging level as per LOGGING_LEVEL from INI file ROTATING_LOGGING.setLevel(MY_CFG.ROTATING_LOGGING_LEVEL) ROTATING_LOGGING.setFormatter(logging.Formatter( fmt='[' + str(UPLDR_K.Run) + ']' + '[%(asctime)s]:[%(processName)-11s]' + '[%(levelname)-8s]:[%(name)s] %(message)s', datefmt=UPLDR_K.TimeFormat)) logging.getLogger().addHandler(ROTATING_LOGGING) # Allow multiprocessing rotating logging into a single file # CODING: may not work on Windows if PARSED_ARGS.processes and PARSED_ARGS.processes > 0: logging.debug('multiprocessing logging handler: Activating...') multiprocessing_logging.install_mp_handler() logging.info('multiprocessing logging handler: Activated.') logging.warning('----------- (V%s) Init Rotating ' '-----------(Log:%s)\n' 'Python version on this system: [%s]', UPLDR_K.Version, MY_CFG.LOGGING_LEVEL, sys.version) # Enables mask sensitive data on log files. if PARSED_ARGS.mask_sensitive: NPR.niceprint('Mask-Sensitive Argument enabled!', logalso=logging.DEBUG) # Patterns to filter defined on UPLDR_K.MaskPatterns logging.debug('Setting Masking Logging Formatter') for hnd in logging.root.handlers: hnd.setFormatter(NicePrint.RedactingFormatter( hnd.formatter, UPLDR_K.MaskPatterns)) logging.debug('Masking Logging Formatter is now set!') logging.debug('Masking Patterns: %s', UPLDR_K.MaskPatterns) NPR.niceprint('Output for FLICKR Configuration:\n{!s}' .format(pprint.pformat(MY_CFG.FLICKR)), verbosity=3, logalso=logging.INFO) # Ensure that only one instance of this script is running try: # FileLocker is an alias to portalocker (if available) or fcntl FILELOCK(open(MY_CFG.LOCK_PATH, 'w'), FileLocker.LOCK_EX | FileLocker.LOCK_NB) except IOError as err: if err.errno == errno.EAGAIN: logging.critical('Script already running.') sys.exit(-1) raise finally: pass # Run uploader run_uploadr(PARSED_ARGS) NPR.niceprint('----------- (V{!s}) End -----------(Log:{!s})' .format(UPLDR_K.Version, MY_CFG.LOGGING_LEVEL), logalso=logging.WARNING) logging_close_handlers()
42.575284
79
0.519434
9230187d8ad559ff52e30856f5221d9619ae6d43
847
py
Python
platform/polycommon/polycommon/options/option_subjects.py
denisoliveirac/polyaxon
21d33e50bbbd4bfbe474683f977eecf0b741ddd4
[ "Apache-2.0" ]
null
null
null
platform/polycommon/polycommon/options/option_subjects.py
denisoliveirac/polyaxon
21d33e50bbbd4bfbe474683f977eecf0b741ddd4
[ "Apache-2.0" ]
null
null
null
platform/polycommon/polycommon/options/option_subjects.py
denisoliveirac/polyaxon
21d33e50bbbd4bfbe474683f977eecf0b741ddd4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ENABLED = "ENABLED" URL = "URL" GLOBAL_COUNTDOWN = "GLOBAL_COUNTDOWN" GLOBAL_COUNTDOWN_DELAYED = "GLOBAL_COUNTDOWN_DELAYED" RECONCILE_COUNTDOWN = "RECONCILE_COUNTDOWN" DEFAULT_PREFIX = "DEFAULT_PREFIX" TOKEN = "TOKEN" CONTAINER = "CONTAINER"
33.88
74
0.767414
fd75bfd653c61e5840c8a0871e2e840c5904b25e
462
py
Python
Aula13.py
juniorsmartins/Aulas-Python
48cf784c8856a588a4789c3206601a970206fdfe
[ "MIT" ]
null
null
null
Aula13.py
juniorsmartins/Aulas-Python
48cf784c8856a588a4789c3206601a970206fdfe
[ "MIT" ]
null
null
null
Aula13.py
juniorsmartins/Aulas-Python
48cf784c8856a588a4789c3206601a970206fdfe
[ "MIT" ]
null
null
null
print('') print('-'*20) print('Curso em Vídeo') print('Professor: Gustavo Guanabara') print('Operações Aritméticas') print('-'*20) print('') n1 = int(input('Digite o primeiro valor: ')) n2 = int(input('Digite o segundo valor: ')) s = n1 + n2 m = n1 * n2 d = n1 / n2 di = n1 // n2 e = n1 ** n2 print('A soma é {}, a multiplicação é {} e a divisão é {:.2f}'.format(s, m, d)) print('A divisão inteira é {} e a potência é {}'.format(di, e)) print('-'*40) print('')
23.1
79
0.608225
9611deb88ec4f63cd0f7d05dbe1d62cf0d1a0fb8
128
py
Python
01_Python_Basico_Intermediario/Aula029/aula29.py
Joao-Inacio/Curso-de-Python3
179d85f43f77dced640ffb143a87214538254cf3
[ "MIT" ]
1
2021-07-19T12:31:49.000Z
2021-07-19T12:31:49.000Z
01_Python_Basico_Intermediario/Aula029/aula29.py
Joao-Inacio/Curso-de-Python3
179d85f43f77dced640ffb143a87214538254cf3
[ "MIT" ]
null
null
null
01_Python_Basico_Intermediario/Aula029/aula29.py
Joao-Inacio/Curso-de-Python3
179d85f43f77dced640ffb143a87214538254cf3
[ "MIT" ]
null
null
null
""" Funções def = return """ def f(var): print(var) def dumb(): return f # var = dumb()() dumb()('Colocar valor')
8
23
0.53125
cc0e31b79b121c35f0950391a4f25518a22ca6f1
5,665
py
Python
.history/src/data/data_20191021144922.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191021144922.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191021144922.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from typing import Union from pathlib import Path from nameparser import HumanName class ExtractData: def __init__(self, filename: Union[str, Path], age_bins=None, drop_columns=None): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.filename = filename self.drop_columns = drop_columns self.all_label_columns = ["survived"] self.all_feature_columns = [ "pclass", "name", "sex", "age", "sibsp", "parch", "ticket", "fare", "cabin", "embarked", ] self.Xy_raw = None self.extract_raw() def extract_raw(self): """ Extracts data from a CSV file. Returns: pd.DataFrame -- [description] """ Xy_raw = pd.read_csv(self.filename) Xy_raw.columns = Xy_raw.columns.str.lower().str.replace(" ", "_") Xy_raw = Xy_raw.rename(columns={"age": "age_known"}) Xy_raw["pclass"] = Xy_raw["pclass"].astype("category") self.Xy_raw = Xy_raw.set_index("passengerid") class TransformData: title_translator = { "Mlle.": "Mrs.", "Mme.": "Mrs.", "Sir.": "Mr.", "Ms.": "Mrs.", "Rev.": "Mr.", "Col.": "Mr.", "Capt.": "Mr.", "Lady.": "Mrs.", "the Countess. of": "Mrs.", } def __init__( self, raw_data, adult_age_threshold_min=13, age_bins=None, fare_mode=None, embarked_mode=None, Xy_age_estimate=None, drop_columns=None, ): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if age_bins is None: age_bins = [0, 10, 20, 30, 40, 50, 60, np.inf] if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.raw = raw_data self.adult_age_threshold_min = adult_age_threshold_min self.Xy_age_estimate = Xy_age_estimate self.age_bins = age_bins self.Xy = self.raw.Xy_raw.copy() if fare_mode is None: fare_mode = self.Xy["fare"].mode()[0] if embarked_mode is None: embarked_mode = self.Xy["embarked"].mode()[0] self.fare_mode = fare_mode self.embarked_mode = embarked_mode self.impute_missing_fare() self.impute_missing_embarked() self.extract_title() # self.extract_last_name() # self.extract_cabin_number() # self.extract_cabin_prefix() # self.estimate_age() # self.calc_age_bins() # self.calc_is_child() # self.calc_is_travelling_alone() def calc_is_travelling_alone(self): self.Xy["is_travelling_alone"] = (self.Xy.sibsp == 0) & (self.Xy.parch == 0) def calc_is_child(self): self.Xy["is_child"] = self.Xy.age < self.adult_age_threshold_min def extract_cabin_number(self): self.Xy["cabin_number"] = self.Xy.ticket.str.extract("(\d+)$") def extract_cabin_prefix(self): self.Xy["cabin_prefix"] = self.Xy.ticket.str.extract("^(.+) ") def extract_title(self): """Extract title from the name using NameParser. """ title = (self.Xy.name.apply(lambda x: HumanName(x).title) .replace(self.title_translator) .replace({"\.": ""}, regex=True) .replace({"":np.nan}) .fillna(self.Xy['sex']) .replace({'female':'Mrs', 'male':'Mr'}) ) self.Xy["title"] = title def extract_last_name(self): self.Xy["last_name"] = self.Xy.name.apply(lambda x: HumanName(x).last) def calc_age_bins(self): self.Xy["age_bin"] = pd.cut( self.Xy.age, bins=[0, 10, 20, 30, 40, 50, 60, np.inf] ) def clean(self,): """Clean data to remove missing data and "unnecessary" features. Arguments: in_raw_df {pd.DataFrame} -- Dataframe containing all columns and rows Kaggle Titanic Training Data set """ self.Xy = self.Xy_raw.drop(self.drop_columns, axis=1) def estimate_age(self, groupby_columns=["sex", "title"]): """[summary] Keyword Arguments: groupby {list} -- [description] (default: {['sex','title']}) """ if self.Xy_age_estimate is None: self.Xy_age_estimate = ( self.Xy.groupby(groupby_columns).age_known.mean().to_frame().round(1) ) self.Xy_age_estimate = self.Xy_age_estimate.rename( columns={"age_known": "age_estimate"} ) out_df = ( self.Xy.reset_index() .merge(self.Xy_age_estimate, on=groupby_columns) .set_index("passengerid") ) out_df["age"] = out_df["age_known"].fillna(out_df["age_estimate"]) self.Xy = out_df def impute_missing_fare(self): self.Xy["fare"] = self.Xy["fare"].fillna(self.fare_mode) def impute_missing_embarked(self): self.Xy["embarked"] = self.Xy["embarked"].fillna(self.embarked_mode)
29.815789
114
0.556222
8eef5c280bc1135d0dab46268e49f2df628e5dd7
2,238
py
Python
squarecloud/Square.py
squarecl/square-python-status
ec29adc9a3ff6575eb2fc669111599745bbe5926
[ "Apache-2.0" ]
null
null
null
squarecloud/Square.py
squarecl/square-python-status
ec29adc9a3ff6575eb2fc669111599745bbe5926
[ "Apache-2.0" ]
2
2021-12-02T05:04:18.000Z
2021-12-02T05:15:37.000Z
squarecloud/Square.py
squarecl/square-python-status
ec29adc9a3ff6575eb2fc669111599745bbe5926
[ "Apache-2.0" ]
3
2021-11-29T19:20:50.000Z
2021-12-02T04:51:31.000Z
# This code was made for SquareCloud (https://squarecloud.app) by Mudinho and NemRela. # Imports Section import os import sys from warnings import warn # Bytes converter (RAM Function) def bytes_to(n: int, formatted: bool = False): if formatted: for i in ['B', 'KB', 'MB', 'GB']: if n < 1024.0: return f'{n:3.2f}{i}' n /= 1024.0 return n return float(f'{n / 1048576:3.2f}') # Get_bytes from a directory def get_bytes_from(path: str) -> int: try: with open(path, 'r') as b: return int(b.read()) except FileNotFoundError: return 0 class Square: if os.name != 'posix': warn('\n\nAtenção: Esta biblioteca pode não funcionar corretamente no seu sistema operacional.\n') class ram: def __new__(cls, formatted: bool = False): return f'{round(cls.used(raw=True) / 1024 ** 2)}/{cls.total(formatted)}' # Returns your used ram @staticmethod def used(formatted: bool = False, raw: bool = False): b: int = get_bytes_from('/sys/fs/cgroup/memory/memory.usage_in_bytes') return b if raw else bytes_to(b, formatted) # Returns your total ram @staticmethod def total(formatted: bool = False, raw: bool = False): b: int = get_bytes_from('/sys/fs/cgroup/memory/memory.limit_in_bytes') return b if raw else bytes_to(b, formatted) class ssd: def __new__(cls, formatted: bool = False, raw: bool = False): folder: str = sys.path[0] b: int = 0 for item in os.listdir(folder): if os.path.isdir(f'{os.path.join(folder)}/{item}'): for path, dirs, files in os.walk(f'{os.path.join(folder)}/{item}'): for f in files: fp = os.path.join(path, f) b += float(int(os.path.getsize(fp))) else: if not str(item) == 'start.sh': b += float(int(os.path.getsize(f'{os.path.join(folder)}/{item}'))) return b if raw else bytes_to(b, formatted)
36.096774
107
0.537534
375079570429dedb1d17297f30fb7b51109ef5bb
2,250
py
Python
python/paddle/fluid/entry_attr.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/fluid/entry_attr.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/entry_attr.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-12-09T08:59:17.000Z
2021-12-09T08:59:17.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function __all__ = ['ProbabilityEntry', 'CountFilterEntry'] class EntryAttr(object): """ Examples: .. code-block:: python import paddle.fluid as fluid """ def __init__(self): self._name = None def _to_attr(self): """ Returns the attributes of this parameter. Returns: Parameter attributes(map): The attributes of this parameter. """ raise NotImplementedError("EntryAttr is base class") class ProbabilityEntry(EntryAttr): def __init__(self, probability): super(ProbabilityEntry, self).__init__() if not isinstance(probability, float): raise ValueError("probability must be a float in (0,1)") if probability <= 0 or probability >= 1: raise ValueError("probability must be a float in (0,1)") self._name = "probability_entry" self._probability = probability def _to_attr(self): return ":".join([self._name, str(self._probability)]) class CountFilterEntry(EntryAttr): def __init__(self, count_filter): super(CountFilterEntry, self).__init__() if not isinstance(count_filter, int): raise ValueError( "count_filter must be a valid integer greater than 0") if count_filter < 0: raise ValueError( "count_filter must be a valid integer greater or equal than 0") self._name = "count_filter_entry" self._count_filter = count_filter def _to_attr(self): return ":".join([self._name, str(self._count_filter)])
29.220779
79
0.662667
50c293c624738998a432f6ce75b1741eaa87620e
2,062
py
Python
pinakes/main/migrations/0009_auto_20211004_2054.py
hsong-rh/pinakes
2f08cb757ca64c866af3244686b92a3074fc7571
[ "Apache-2.0" ]
2
2022-03-17T18:53:58.000Z
2022-03-17T22:04:22.000Z
pinakes/main/migrations/0009_auto_20211004_2054.py
hsong-rh/pinakes
2f08cb757ca64c866af3244686b92a3074fc7571
[ "Apache-2.0" ]
9
2022-03-18T08:22:57.000Z
2022-03-30T17:14:49.000Z
pinakes/main/migrations/0009_auto_20211004_2054.py
hsong-rh/pinakes
2f08cb757ca64c866af3244686b92a3074fc7571
[ "Apache-2.0" ]
7
2022-03-17T22:03:08.000Z
2022-03-28T21:28:34.000Z
# Generated by Django 3.2.5 on 2021-10-04 20:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("main", "0008_alter_request_parent"), ] operations = [ migrations.RemoveConstraint( model_name="catalogserviceplan", name="main_catalogserviceplan_name_empty", ), migrations.RemoveConstraint( model_name="catalogserviceplan", name="main_catalogserviceplan_name_unique", ), migrations.RenameField( model_name="catalogserviceplan", old_name="base", new_name="base_schema", ), migrations.RemoveField( model_name="catalogserviceplan", name="description", ), migrations.AddField( model_name="catalogserviceplan", name="create_json_schema", field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name="catalogserviceplan", name="imported", field=models.BooleanField(default=False), ), migrations.AddField( model_name="catalogserviceplan", name="modified_schema", field=models.JSONField(blank=True, null=True), ), migrations.AddField( model_name="catalogserviceplan", name="service_offering_ref", field=models.CharField(max_length=64, null=True), ), migrations.AddField( model_name="catalogserviceplan", name="service_plan_ref", field=models.CharField(max_length=64, null=True), ), migrations.AlterField( model_name="catalogserviceplan", name="modified", field=models.BooleanField(default=False), ), migrations.AlterField( model_name="catalogserviceplan", name="name", field=models.CharField(blank=True, max_length=255, null=True), ), ]
31.242424
74
0.580989
ff01b7de93e7b8e385f01c2f9c15f436923d70d3
1,198
py
Python
tanit/filesystem/config.py
yassineazzouz/kraken
30d536eae2583e6fff51becbff836301058b8e69
[ "MIT" ]
1
2020-09-01T15:16:11.000Z
2020-09-01T15:16:11.000Z
tanit/filesystem/config.py
yassineazzouz/kraken
30d536eae2583e6fff51becbff836301058b8e69
[ "MIT" ]
null
null
null
tanit/filesystem/config.py
yassineazzouz/kraken
30d536eae2583e6fff51becbff836301058b8e69
[ "MIT" ]
null
null
null
import json import logging as lg import os _logger = lg.getLogger(__name__) class FileSystemsConfig(object): config_file = "filesystems.json" default_conf_dir = os.path.expanduser("/etc/tanit/conf") def __init__(self, path=None): self._filesystems = {} self.conf_dir = path or os.getenv("TANIT_CONF_DIR", self.default_conf_dir) self.conf_file = os.path.join(self.conf_dir, self.config_file) if os.path.exists(self.conf_file): try: self.config = json.loads(open(self.conf_file).read()) except Exception as e: raise TanitConfigurationException( "Exception while loading configuration file %s.", self.conf_file, e ) _logger.info( "Instantiated filesystems configuration from %s.", self.conf_file ) else: _logger.warning( "Could not find filesystems configuration file, " + "instantiating empty configuration." ) self.config = None def get_config(self): return self.config class TanitConfigurationException(Exception): pass
28.52381
87
0.606845
3d7be0d21a633e4aaefba89c22cb4d2334ee4e7e
25,813
py
Python
pyrsss/mag/sm_stations.py
butala/pyrsss
3f4412cdab36ecd36de72e5607791d2633c658a9
[ "MIT" ]
7
2016-12-27T08:00:54.000Z
2021-12-16T06:55:16.000Z
pyrsss/mag/sm_stations.py
butala/pyrsss
3f4412cdab36ecd36de72e5607791d2633c658a9
[ "MIT" ]
1
2017-01-31T20:36:08.000Z
2017-01-31T20:36:08.000Z
pyrsss/mag/sm_stations.py
butala/pyrsss
3f4412cdab36ecd36de72e5607791d2633c658a9
[ "MIT" ]
6
2016-04-08T16:25:14.000Z
2021-05-02T12:05:16.000Z
from csv import reader from collections import namedtuple from cStringIO import StringIO # MLAT and MLON are from IGRF 2010 STATION_CSV = """\ IAGA,GLON,GLAT,MLON,MLAT,STATION-NAME,OPERATOR-NUM,OPERATORS SPA,0.00,-90.00,19.56,-74.19,South Pole Station,1,PENGUIN B23,316.13,-88.03,20.41,-72.34,m88-316,1,BAS B21,28.41,-87.00,29.34,-73.53,m87-028,1,BAS B22,68.17,-86.51,31.00,-75.62,m87-069,1,BAS B19,2.06,-85.36,30.41,-71.39,m85-002,1,BAS B20,95.98,-85.36,30.38,-77.78,m85-096,1,BAS PG1,77.20,-85.50,33.68,-76.55,Antartica,1,THEMIS B18,336.14,-84.35,26.33,-69.45,m84-336,1,BAS PG2,57.96,-84.42,39.07,-75.24,Antartica,1,THEMIS PG3,37.62,-84.42,37.95,-73.43,Antartica,1,THEMIS B17,347.76,-82.90,30.79,-68.84,m83-348,1,BAS B16,347.06,-82.78,30.73,-68.71,m83-347,1,BAS PG4,12.20,-83.34,36.38,-70.83,Antartica,1,THEMIS B14,337.74,-80.89,29.35,-66.70,m81-338,1,BAS B15,2.97,-81.49,37.07,-68.93,m82-003,1,BAS B27,3.00,-81.00,37.78,-68.61,m81-003,1,BAS B13,77.00,-80.00,56.17,-77.91,m80-077,1,BAS SBA,166.78,-77.85,-31.24,-79.94,Scott Base,1,INTERMAGNET VOS,106.87,-78.45,54.41,-83.54,Vostok,2,INTERMAGNET,AARI B12,335.88,-79.08,29.67,-65.15,m79-336,1,BAS MCM,166.67,-77.85,-31.25,-79.96,McMurdo Station,1,PENGUIN B11,336.58,-77.51,30.69,-63.96,m78-337,1,BAS B10,39.71,-77.32,57.15,-71.02,m77-040,1,BAS DMC,235.83,-75.25,-14.70,-65.48,Dome Concordia,1,INTERMAGNET B09,42.99,-74.01,65.58,-69.97,m74-043,1,BAS B08,159.03,-72.77,-65.20,-80.61,m73-159,1,BAS B07,44.28,-70.70,72.51,-68.45,m70-044,1,BAS B24,77.77,-71.67,90.77,-76.46,m72-078,1,BAS NVL,11.83,-70.78,53.55,-63.26,Novolazorevskaya,1,AARI VNA,351.70,-70.70,41.78,-60.63,Neumayer Station III,1,INTERMAGNET B06,39.40,-69.67,71.31,-66.95,m70-039,1,BAS DVS,77.97,-68.58,100.76,-74.97,Davis,1,INTERMAGNET PRG,76.23,-69.23,97.38,-74.88,Progress,1,AARI DRV,140.01,-66.67,-122.99,-80.60,Dumont Durville,1,INTERMAGNET MAW,62.88,-67.61,90.72,-70.67,Mawson,1,INTERMAGNET B04,41.08,-68.58,74.03,-66.63,m68-041,1,BAS B05,41.32,-69.29,73.07,-67.09,m69-041,1,BAS B03,291.88,-67.57,8.27,-53.14,m67-292,1,BAS CSY,110.53,-66.28,158.16,-80.93,Casey,1,INTERMAGNET MIR,93.02,-66.55,124.25,-77.56,Mirny,2,INTERMAGNET,AARI AIA,295.74,-65.25,9.72,-50.99,Faraday Islands,1,INTERMAGNET B02,294.00,-66.03,8.97,-51.69,m66-294,1,BAS PAL,295.95,-64.77,9.72,-50.55,Palmer,1,SAMBA B01,296.52,-64.82,10.05,-50.62,m65-297,1,BAS LIV,299.61,-62.66,11.31,-48.75,Livingston Island,1,INTERMAGNET OHI,302.10,-63.32,12.87,-49.52,OHiggins,1,SAMBA ESC,301.08,-62.18,12.07,-48.41,Escudero,1,SAMBA ORC,315.26,-60.74,20.47,-48.69,Orcadas,1,INTERMAGNET KEP,323.51,-54.28,25.94,-45.16,King Edward Point,2,INTERMAGNET,BGS MCQ,158.95,-54.50,-110.94,-64.39,Macquarie Island,2,210MM,INTERMAGNET PNT,289.10,-53.20,3.24,-39.23,Puerto Natales,1,SAMBA PST,302.11,-51.70,11.06,-38.96,Port Stanley,2,BGS,INTERMAGNET ENP,289.10,-52.13,3.05,-38.19,San Gregorio,1,SAMBA PAF,70.26,-49.35,123.64,-58.63,Port aux Francias,1,INTERMAGNET CZT,51.87,-46.43,107.41,-53.23,Port Alfred,1,INTERMAGNET EYR,172.40,-43.40,-102.74,-49.89,Eyrewell,1,INTERMAGNET TRW,294.68,-43.25,5.38,-29.98,Trelew,1,INTERMAGNET LEM,147.50,-42.30,-132.47,-52.95,Lemont,1,210MM VLD,286.86,-39.48,-0.16,-25.61,Valdivia,1,SAMBA OSO,286.91,-40.34,-0.03,-26.48,Osorno,1,SAMBA PAC,289.91,-40.34,1.97,-26.64,Punta Arenas,1,SAMBA TDC,347.69,-37.10,49.99,-39.80,Tristan de Cunha,4,DTUSpace,INTERMAGNET,TROMSOE,GFZ AMS,77.57,-37.80,140.23,-48.87,Martin de Vivias,1,INTERMAGNET CNB,149.36,-35.32,-132.34,-45.03,Canberra,1,INTERMAGNET CAN,149.00,-35.30,-132.77,-45.05,Canberra,1,210MM HER,19.23,-34.43,84.09,-42.08,Hermanus,2,INTERMAGNET,EMMA KAT,117.62,-33.68,-170.10,-45.63,Katanning,1,210MM ADL,138.65,-34.67,-145.09,-45.42,Adelaide,1,210MM CER,289.40,-33.45,1.15,-19.71,Los Cerrillos,1,SAMBA GNA,116.00,-31.80,-171.85,-43.57,Gnangara,1,INTERMAGNET SUT,20.67,-32.40,86.49,-40.66,Sutherland,1,EMMA PIL,294.47,-31.40,4.76,-18.39,Pilar,1,INTERMAGNET GNG,115.71,-31.36,-172.14,-43.08,Gingin,1,INTERMAGNET SER,288.87,-30.00,0.65,-16.22,La Serena,1,SAMBA IPM,250.58,-27.20,-32.30,-19.28,Isla de Pascua,1,INTERMAGNET KMH,18.11,-26.54,86.27,-36.25,Keetmanshoop,2,GFZ,INTERMAGNET DAL,151.20,-27.18,-132.12,-36.01,Dalby,1,210MM HBK,27.71,-25.88,96.36,-35.51,Hartebeesthoek,1,INTERMAGNET BSV,139.21,-25.54,-145.83,-35.31,Birdsville,1,210MM LMM,40.00,-25.92,108.28,-35.33,Maputo,1,INTERMAGNET ASP,133.88,-23.77,-151.93,-33.67,Alice Springs,1,INTERMAGNET VSS,316.35,-22.40,23.72,-18.53,Vassouras,2,INTERMAGNET,GFZ ANT,289.76,-23.39,1.35,-9.83,Antofagasta,1,SAMBA LRM,114.10,-22.22,-173.36,-32.83,Learmonth,1,INTERMAGNET EWA,202.00,-21.32,-81.02,-21.31,Ewa Beach,1,210MM CTA,146.30,-20.10,-138.73,-28.92,Charters Towers,1,INTERMAGNET TAN,47.55,-18.92,117.81,-28.38,Antananarivo,1,INTERMAGNET TSU,17.70,-19.22,88.13,-30.50,Tsumeb,2,INTERMAGNET,EMMA PUT,290.50,-18.33,2.23,-5.15,Putre,1,SAMBA A05,17.58,-19.20,88.00,-30.49,Namibia,1,AMBER VRE,292.38,-17.28,3.97,-4.53,Villa Remedios,1,GFZ PPT,210.42,-17.57,-73.70,-16.22,Pamatai,1,INTERMAGNET SHE,354.27,-15.95,63.70,-25.71,St. Helena,1,GFZ NMP,39.25,-15.09,110.85,-24.90,Nampula,1,INTERMAGNET API,188.22,-13.80,-96.46,-15.50,Apia,1,INTERMAGNET ASA,170.70,-14.28,-113.81,-19.02,American Samoa,1,210MM DRW,130.90,-12.40,-156.02,-21.31,Darwin,1,210MM WEP,141.88,-12.68,-144.40,-21.33,Weipa,1,210MM KDU,132.47,-12.69,-154.37,-21.59,Kakadu,1,INTERMAGNET HUA,284.67,-12.05,-2.75,1.17,Huancayo,1,INTERMAGNET CKI,96.84,-12.19,168.90,-22.26,Cocos-Keeling Islands,1,INTERMAGNET A10,319.50,-9.40,31.08,-10.00,Petrolina,1,AMBER WTK,112.63,-7.56,-174.68,-16.50,Watukosek,1,210MM ASC,345.62,-7.95,56.97,-16.34,Ascension Island,2,BGS,INTERMAGNET WEW,143.62,-3.55,-143.40,-11.75,Wewak,1,210MM BIK,136.05,-1.08,-151.37,-9.35,Biak,1,210MM A11,311.55,-1.45,26.47,0.44,Belem,1,AMBER PTN,109.25,-0.05,-178.10,-8.49,Pontianak,1,210MM KTB,100.32,-0.20,172.96,-9.01,Kototabang,1,210MM KOU,307.27,2.21,23.49,6.05,Kourou,1,INTERMAGNET TND,124.95,1.29,-162.62,-6.78,Tondano,1,INTERMAGNET GAN,73.15,0.69,145.72,-7.77,Gan,1,INTERMAGNET BNG,18.57,4.33,91.18,-9.54,Bangui,1,INTERMAGNET A03,11.52,3.87,84.18,-11.10,Cameroon,1,AMBER A06,355.87,5.33,69.02,-8.23,Abidjan,1,AMBER KOR,134.50,7.33,-153.20,-0.71,Koror,1,210MM A08,126.00,7.50,-161.63,-0.34,Davao,1,AMBER A13,98.35,7.89,171.06,-0.32,Phuket,1,AMBER AAE,38.77,9.03,111.51,-0.06,Addis Ababa,1,INTERMAGNET YAP,138.50,9.30,-149.26,1.24,Yap,1,210MM CRP,275.09,10.44,-12.58,21.63,Chiripa,1,INTERMAGNET A01,7.55,10.50,80.45,-4.68,Abuja,1,AMBER A07,346.34,9.58,60.64,-3.02,Conakry,1,AMBER DLT,108.48,11.94,-178.88,4.30,Dalat,1,INTERMAGNET GUA,144.87,13.59,-143.10,5.64,Guam,3,INTERMAGNET,USGS,210MM MBO,343.03,14.38,58.44,1.20,Mbour,1,INTERMAGNET MUT,121.02,14.37,-166.45,6.90,Muntinlupa,1,210MM A04,39.46,14.28,112.06,5.78,Ethiopia,1,AMBER A09,120.00,14.58,-167.46,7.13,Manila,1,AMBER A12,100.61,14.08,173.36,6.47,Bangkok,1,AMBER PNL,303.82,16.68,23.75,21.14,Pantanal,1,GFZ HYB,78.60,17.40,151.87,10.36,Hyderabad,2,GFZ,INTERMAGNET ABG,72.87,18.62,146.22,11.99,Alibag,2,GFZ,INTERMAGNET SJG,293.85,18.11,11.85,26.75,San Juan,2,INTERMAGNET,USGS TEO,260.82,19.75,-29.37,28.80,Teoloyucan,1,INTERMAGNET HON,202.00,21.32,-89.10,20.88,Honolulu,2,INTERMAGNET,USGS PHU,105.95,21.03,178.77,14.11,Phuthuy,1,INTERMAGNET M11,256.90,20.70,-33.86,29.01,Juriquilla,1,McMAC TAM,5.53,22.79,78.97,8.92,Tamanrasset,1,INTERMAGNET GZH,113.34,23.09,-173.79,16.29,Guangzhou,1,INTERMAGNET SON,66.44,25.12,139.81,19.36,Sonmiani,1,INTERMAGNET LNP,121.17,25.00,-165.89,18.13,Lunping,2,210MM,INTERMAGNET M10,260.40,24.80,-30.22,33.87,Linares,1,McMAC CBI,142.30,27.15,-145.40,19.58,Chichijima,1,210MM M09,262.20,26.40,-28.17,35.80,Lyford,1,McMAC JAI,75.80,26.92,149.20,21.02,Jaipur,1,INTERMAGNET GUI,343.57,28.32,60.99,16.06,Guimar,1,INTERMAGNET MID,182.62,28.21,-108.84,24.27,Midway,1,INTERMAGNET FIT,279.05,28.07,-6.42,38.57,Bullcreek,1,MEASURE CDP,256.30,31.00,-35.65,39.45,Chengdu,1,INTERMAGNET BSL,270.37,30.35,-17.88,40.69,Bay St Louis,2,INTERMAGNET,USGS DLR,259.08,29.49,-32.17,38.40,Del Rio,1,INTERMAGNET JAX,278.40,30.35,-7.11,40.78,Jacksonville,1,MEASURE ELT,34.95,29.67,107.23,22.59,Eilat,1,INTERMAGNET MLT,30.89,29.52,103.13,21.81,Misallat,1,INTERMAGNET M08,261.39,29.44,-29.35,38.74,San Antonio,1,McMAC TUC,249.27,32.17,-43.96,39.32,Tucson,2,INTERMAGNET,USGS KAG,130.72,31.48,-156.17,24.56,Kagoshima,1,210MM YMK,130.62,31.19,-156.28,24.26,Yamakawa,1,210MM KNY,130.88,31.42,-156.01,24.49,Kanoya,1,INTERMAGNET BGY,35.09,31.72,107.42,24.99,Bar Gyora,1,INTERMAGNET ONW,141.47,33.43,-145.96,26.14,Onagawa,1,210MM HTY,139.80,33.12,-147.50,25.88,Hatizyo,1,INTERMAGNET QSB,35.64,33.87,108.05,27.54,Qsaybeh,1,INTERMAGNET USC,278.54,33.34,-6.68,43.65,U of South Carolina,1,MEASURE M07,262.25,32.98,-28.49,42.44,Richardson,1,McMAC M06,262.60,35.00,-28.16,44.52,Purcell,1,McMAC T26,242.15,34.20,-52.21,40.03,San Gabriel,1,THEMIS T27,242.32,34.38,-52.06,40.25,Table Mountain,1,THEMIS LZH,103.85,36.09,177.25,30.55,Lanzhou,1,INTERMAGNET FRN,240.30,37.10,-54.87,42.65,Fresno,2,INTERMAGNET,USGS SMA,334.87,36.99,55.49,30.34,Santa Maria/Azoren,1,GFZ KAK,140.18,36.23,-147.05,29.12,Kakioka,1,INTERMAGNET TUL,264.22,35.92,-26.09,45.65,Tulsa,1,Unknown DSO,278.60,36.25,-6.39,46.47,Darsky,1,MEASURE SFS,354.06,36.67,70.52,27.11,San Fernando,1,INTERMAGNET E05,22.95,36.72,95.78,29.37,Velies,1,ENIGMA CYG,126.85,36.37,-159.65,29.94,Cheongyang,1,INTERMAGNET A02,2.93,36.85,77.88,27.49,Algeria,1,AMBER FRD,282.63,38.20,-0.64,48.05,Fredericksburg,2,INTERMAGNET,USGS ASH,58.10,37.95,131.16,33.36,Ashkabad,1,Unknown E04,23.93,38.08,96.84,31.18,Dionyssos,1,ENIGMA PEG,23.90,38.10,96.81,31.21,Pedeli,1,INTERMAGNET BOU,254.77,40.13,-38.68,48.51,Boulder,2,INTERMAGNET,USGS APL,283.12,39.17,0.12,48.95,Applied Physics Lab,1,MEASURE ESA,141.36,39.24,-145.89,32.24,Esashi,1,INTERMAGNET MIZ,141.20,39.11,-146.04,32.11,Mizusawa,1,INTERMAGNET M05,263.70,38.50,-26.91,48.18,Americus,1,McMAC T16,240.20,39.19,-55.49,44.77,Carson City,1,THEMIS BMT,116.20,40.30,-170.01,34.69,Beijing Ming Tombs,1,INTERMAGNET SPT,355.65,39.55,72.25,31.31,San Pablo Toledo,1,INTERMAGNET TOL,355.95,39.88,72.55,31.79,Toledo,1,Unknown BJI,116.18,40.06,-170.05,34.43,Beijing,1,210MM ISK,29.06,41.07,102.04,35.32,Kandilli,1,INTERMAGNET TKT,69.62,41.33,142.86,36.91,Tashkent,1,Unknown EBR,0.49,40.82,76.44,33.11,Ebro,1,INTERMAGNET T20,281.62,40.18,-1.88,50.10,Loysburg,1,THEMIS E02,21.97,39.45,95.14,32.68,Klokotos,1,ENIGMA E03,24.10,38.63,97.05,31.88,Kimi,1,ENIGMA M04,263.84,41.36,-26.89,51.07,Bennington,1,McMAC IZN,29.73,40.50,102.63,34.70,Iznik,1,INTERMAGNET E01,23.86,41.35,97.13,35.21,Nevrokopi,1,ENIGMA AQU,13.32,42.38,87.68,35.74,LAquila,3,SEGMA,INTERMAGNET,EMMA DUR,14.28,41.39,88.38,34.49,Duronia,1,INTERMAGNET C01,276.10,42.42,-9.58,52.65,Ann Arbor,1,CARISMA MMB,144.19,43.91,-143.33,37.08,Memambetsu,1,INTERMAGNET AAA,76.92,43.25,150.22,38.83,Alma Ata,1,INTERMAGNET PPI,131.73,42.98,-154.70,36.67,Popov Island,1,210MM RIK,143.76,43.48,-143.70,36.64,Rikubetsu,1,210MM MSH,288.52,42.60,7.85,51.59,Millstone Hill,1,MEASURE GTF,288.05,43.62,7.32,52.69,Grafton,1,MEASURE M03,264.40,43.60,-26.26,53.38,Worthington,1,McMAC OTT,284.45,45.40,2.52,54.98,Ottawa,2,CANMOS,INTERMAGNET SUA,26.25,45.32,99.92,40.18,Surlari,2,GFZ,INTERMAGNET MSR,142.27,44.37,-145.03,37.64,Moshiri,1,210MM CLK,285.00,44.70,3.23,54.21,Clarkson,1,MEASURE GCK,20.77,44.63,94.75,39.04,Grocka,1,INTERMAGNET SBL,299.99,43.93,22.70,50.53,Sable Carrigan,2,BGS,INTERMAGNET T21,257.41,43.08,-35.69,51.96,Pine Ridge,1,THEMIS T23,274.86,43.66,-11.31,53.91,Remus,1,THEMIS NKK,62.12,45.77,135.28,41.74,Novokazalinsk,1,Unknown ODE,30.88,46.22,104.42,41.46,Odessa,1,GFZ M02,266.75,45.56,-23.05,55.55,Cambridge,1,McMAC T24,271.40,44.78,-16.31,55.00,Shawano,1,THEMIS CNH,124.86,44.08,-161.26,38.25,Changchun,1,INTERMAGNET WMQ,87.71,43.81,161.14,39.23,Urumqi,1,INTERMAGNET RNC,12.08,43.97,86.87,37.77,Ranchio,2,SEGMA,EMMA STJ,307.32,47.60,31.64,52.60,St Johns,2,CANMOS,INTERMAGNET THY,17.54,46.90,92.25,41.72,Tihany,2,INTERMAGNET,EMMA M01,263.55,46.87,-27.71,56.59,Glyndon,1,McMAC C08,264.92,45.87,-25.69,55.72,Osakis,1,CARISMA T17,287.87,44.95,7.22,54.06,Derby,1,THEMIS T25,241.07,45.14,-56.04,51.06,Ukiah,1,THEMIS T15,275.66,46.24,-10.08,56.45,Bay Mills,1,THEMIS T18,259.32,46.09,-33.52,55.29,Fort Yates,1,THEMIS CST,11.65,46.05,86.90,40.48,Castello Tesino,2,SEGMA,EMMA P01,16.66,45.41,91.18,39.82,Lonjsko Polje,1,EMMA VIC,236.58,48.52,-62.05,53.62,Victoria,2,CANMOS,INTERMAGNET NEW,242.88,48.27,-54.82,54.65,Newport,2,INTERMAGNET,USGS CLF,2.27,48.02,79.42,43.11,Chambon la foret,1,INTERMAGNET FUR,11.28,48.17,87.05,43.20,Furstenfeldbruk,1,INTERMAGNET HRB,18.19,47.86,93.03,42.92,Hurbanovo,2,INTERMAGNET,EMMA NCK,16.72,47.63,91.68,42.60,Nagycenk,3,SEGMA,INTERMAGNET,EMMA YSS,142.72,46.95,-144.67,40.38,Yuzhno Sakhalinsk,1,AARI BDV,14.02,49.07,89.64,44.35,Budkov,1,INTERMAGNET VLO,282.24,48.19,-0.38,58.00,Val-dOr,1,AUTUMN BFO,8.33,48.33,84.57,43.41,Black Forest,1,INTERMAGNET C10,245.79,47.66,-51.20,54.60,Polson,1,CARISMA C11,263.64,48.03,-27.69,57.76,Thief River Falls,1,CARISMA T19,245.33,47.61,-51.74,54.45,Hot Springs,1,THEMIS PAG,24.18,47.49,98.37,42.66,Panagjurishte,3,GFZ,INTERMAGNET,SEGMA KHB,134.69,47.61,-151.91,41.44,Khabarovsk,1,INTERMAGNET VYH,18.84,48.49,93.75,43.71,Vyhne,1,EMMA WIC,15.52,47.55,90.60,42.48,Conrad Observatorium,1,EMMA MAB,5.68,50.30,82.86,45.98,Manhay,1,INTERMAGNET DOU,4.60,50.10,81.91,45.76,Dourbes,1,INTERMAGNET PIN,263.96,50.20,-27.43,59.96,Pinawa,3,CARISMA,THEMIS,CANOPUS MZH,117.40,49.60,-168.51,44.53,Manzaoli,1,Unknown GLN,262.88,49.65,-28.94,59.30,Glenlea,2,CANMOS,INTERMAGNET LET,247.13,49.64,-50.07,56.88,Lethbridge,1,AUTUMN T50,287.55,48.65,7.18,57.83,Saint-Fellicien,1,THEMIS T51,282.22,48.05,-0.43,57.86,Val-dOr,1,THEMIS KIV,30.30,50.72,104.63,46.56,Kiev,1,INTERMAGNET KGD,73.08,49.82,146.42,45.92,Karaganda,1,Unknown LVV,23.75,49.90,98.46,45.49,Lvov,1,INTERMAGNET VAL,349.75,51.93,70.41,49.13,Valentia,1,INTERMAGNET HAD,355.52,50.98,74.74,47.37,Hartland,3,BGS,SAMNET,INTERMAGNET BEL,20.80,51.83,96.27,47.71,Belsk,2,INTERMAGNET,EMMA ROT,245.87,51.07,-52.01,58.10,Rothney,1,AUTUMN T03,247.02,50.37,-50.40,57.60,Vulcan,1,CARISMA C04,251.74,50.06,-44.33,58.14,Gull Lake,1,CARISMA C12,256.20,49.69,-38.32,58.49,Weyburn,1,CARISMA T30,285.60,49.80,4.57,59.24,Chibougamau,1,THEMIS T32,277.70,49.40,-6.97,59.52,Kapuskasing,1,THEMIS BRD,260.03,49.87,-33.04,59.20,Brandon,1,CANMOS ZAG,20.58,50.28,95.70,45.89,Zagorzyce,1,EMMA WHS,264.75,49.80,-26.24,59.63,Whiteshell,1,CANMOS T49,293.73,50.22,15.73,58.42,Spet-lles,1,THEMIS NGK,12.68,52.07,89.28,48.03,Niemegk,2,GFZ,INTERMAGNET IRT,104.45,52.17,178.45,47.79,Irkoutsk,2,INTERMAGNET,210MM RED,246.16,52.14,-51.96,59.25,Red Deer,1,AUTUMN C13,239.97,51.88,-59.30,57.77,Wells Gray,1,CARISMA T43,245.70,50.90,-52.17,57.90,Priddis,1,THEMIS C05,264.54,52.03,-26.78,61.84,Little Grand Rapids,1,CARISMA MEA,246.65,54.62,-52.10,61.85,Meanook,2,CANMOS,INTERMAGNET WNG,9.07,53.75,86.75,50.15,Wingst,2,GFZ,INTERMAGNET ISL,265.34,53.86,-25.79,63.70,Island Lake,2,CARISMA,CANOPUS LAN,357.23,54.01,77.12,51.10,Lancaster,1,SAMNET YOR,358.95,53.95,78.49,50.90,York,1,SAMNET EDM,246.70,53.30,-51.63,60.53,Edmonton,1,AUTUMN SAS,253.60,52.80,-42.49,61.22,Saskatoon,1,AUTUMN MSK,34.52,52.69,108.92,48.82,MSK,1,INTERMAGNET C06,247.03,53.35,-51.24,60.64,Ministik Lake,1,CARISMA T28,299.50,53.30,23.61,60.49,Goose Bay,1,THEMIS PET,158.25,52.97,-132.07,46.73,Paratunka,3,INTERMAGNET,210MM,GFZ SZC,19.61,52.91,95.51,48.97,Szczechowo,1,EMMA PBQ,282.26,55.28,0.20,65.01,Poste de la Baleine,2,CANMOS,INTERMAGNET ESK,356.80,55.32,77.25,52.74,Eskdalemuir,3,BGS,SAMNET,INTERMAGNET HLP,18.82,54.61,95.32,50.93,Hel,2,INTERMAGNET,EMMA MNK,26.52,54.10,101.95,50.31,Minsk,1,Unknown BFE,11.67,55.62,89.56,52.27,Brorfelde,3,DTUSpace,INTERMAGNET,TROMSOE ROE,8.55,55.17,86.80,51.86,Roemoe,2,DTUSpace,TROMSOE NVS,82.90,55.03,156.55,51.26,Novosibirsk,1,INTERMAGNET RSV,12.45,55.85,90.29,52.51,Rude Skov,1,INTERMAGNET MOS,37.32,55.48,112.09,51.85,Moscow,1,IZMIRAN C09,264.71,54.93,-26.87,64.70,Oxford House,1,CARISMA T33,259.10,54.00,-35.04,63.21,Flin Flon/The Pas,1,THEMIS T36,246.69,54.71,-52.09,61.95,Athabasca,2,THEMIS,AUTUMN T37,237.20,53.80,-63.14,59.16,Prince George,1,THEMIS SUW,23.18,54.01,98.95,50.21,Suwalki,1,EMMA T52,282.38,53.79,0.26,63.54,Radisson,1,THEMIS T42,254.84,55.15,-41.35,63.76,La Ronge,2,THEMIS,AUTUMN T45,282.24,55.28,0.17,65.01,Kuujjuarapik,1,THEMIS T48,293.19,54.80,15.78,63.16,Schefferville,1,THEMIS SIT,224.67,57.07,-77.84,59.89,Sitka,2,INTERMAGNET,USGS GIM,265.36,56.38,-26.08,66.16,Gillam,3,CARISMA,THEMIS,CANOPUS FMC,248.79,56.66,-50.02,64.28,Fort McMurray,2,CARISMA,BGS NAN,298.30,56.40,22.81,63.90,Nain,2,MACCS,THEMIS FSJ,239.27,56.23,-61.69,62.05,Fort St. John,1,AUTUMN KNZ,48.85,55.83,122.98,52.27,Zaymishche,1,INTERMAGNET SHU,199.54,55.38,-99.74,53.29,Shumagin,2,INTERMAGNET,USGS T31,280.80,56.50,-1.92,66.31,Sanikiluaq,1,CANMOS ARS,58.57,56.43,132.43,52.90,Arti,1,INTERMAGNET BRZ,24.75,56.21,100.97,52.66,Birzai,1,EMMA BOX,38.97,58.03,114.20,54.54,Barok,2,210MM,INTERMAGNET BOR,38.33,58.03,113.62,54.54,Borok,1,SAMNET CRK,357.36,57.09,78.41,54.81,Crooktree,1,SAMNET GML,356.32,57.16,77.60,54.98,Gleenmore Lodge,1,SAMNET LOV,17.83,59.35,96.13,56.27,Lovo,1,INTERMAGNET FCC,265.92,58.76,-25.57,68.50,Fort Churchill,4,CARISMA,CANOPUS,INTERMAGNET,CANMOS RAL,256.32,58.22,-40.08,67.00,Rabbit Lake,1,CARISMA FVE,243.98,58.37,-56.85,65.11,Fort Vermilion,1,AUTUMN C02,265.79,57.71,-25.60,67.48,Back Lake,1,CARISMA T22,226.84,56.83,-75.54,60.09,Petersburg,1,THEMIS LER,358.82,60.13,80.96,58.20,Lerwick,3,BGS,SAMNET,INTERMAGNET SMI,248.05,60.02,-52.29,67.47,Fort Smith,2,CARISMA,THEMIS KAR,5.24,59.21,85.69,56.70,Karmoey ,2,TROMSOE,IMAGE TAR,26.46,58.26,103.11,54.88,Tartu,2,IMAGE,EMMA LNN,30.70,59.95,107.38,56.62,Leningrad,1,Unknown YAK,129.72,60.02,-157.40,54.88,Yakutsk,3,GFZ,210MM,INTERMAGNET MGD,150.86,59.97,-139.32,54.30,Magadan,3,GFZ,210MM,INTERMAGNET KVI,17.63,59.50,96.02,56.44,Kvistaberg,1,SAMNET HOM,209.53,59.70,-93.12,59.60,Homer,1,GIMA C03,248.89,58.77,-50.65,66.39,Fort Chipewyan,1,CARISMA T29,291.80,58.30,14.58,66.87,Kuujjuaq,1,THEMIS T44,281.95,58.47,0.01,68.14,Inukjuak,1,THEMIS AMU,210.10,61.20,-93.39,61.27,Anchorage,1,THEMIS NAQ,314.56,61.16,43.19,65.75,Narssarssuaq,2,DTUSpace,INTERMAGNET EKP,265.95,61.11,-25.96,70.73,Eskimo Point,2,CARISMA,CANOPUS NUR,24.65,60.50,102.35,57.32,Nurmajarvi,4,IMAGE,EMMA,SAMNET,INTERMAGNET UPS,17.35,59.90,95.95,56.88,Uppsala,3,IMAGE,SAMNET,INTERMAGNET T38,224.80,61.00,-79.67,63.93,White Horse,2,THEMIS,AUTUMN GRK,29.38,60.27,106.34,56.98,Gorkovskaya,1,AARI T46,282.71,60.05,1.36,69.60,Puvirnituq,1,THEMIS T53,281.85,60.82,0.08,70.39,Akulivik,1,THEMIS YKC,245.52,62.48,-56.85,69.42,Yellowknife,2,CANMOS,INTERMAGNET FSP,238.77,61.76,-64.89,67.47,Fort Simpson,2,CARISMA,THEMIS MEK,30.97,62.77,108.66,59.57,Mekrijaervi,2,IMAGE,EMMA FHB,310.32,62.00,39.05,67.41,Paamiut,1,DTUSpace RAN,267.89,62.82,-23.12,72.45,Rankine Inlet,3,CARISMA,THEMIS,CANOPUS DOB,9.11,62.07,90.19,59.64,Dombas,2,TROMSOE,IMAGE SOL,4.84,61.08,86.25,58.82,Solund,2,TROMSOE,IMAGE HAN,26.65,62.30,104.78,59.17,Hankasalmi,3,IMAGE,EMMA,SAMNET GAK,214.70,62.30,-89.95,63.27,Gakona,2,GIMA,THEMIS FAR,352.98,62.05,77.30,60.89,Faroes,1,SAMNET HLM,210.13,61.24,-93.38,61.32,HLMS,1,GIMA TLK,209.90,63.30,-94.74,63.43,Talkeetna,1,GIMA TRP,150.24,62.67,-140.57,57.23,Trapper,1,GIMA T39,209.80,62.30,-94.24,62.37,Trapper Creek,1,THEMIS T47,284.35,62.20,4.23,71.51,Salluit,1,THEMIS BLC,263.97,64.33,-30.09,73.61,Baker Lake,2,CANMOS,INTERMAGNET LRV,338.30,64.18,66.72,65.01,Leirvogur,1,INTERMAGNET GHB,308.27,64.17,37.85,69.98,Nuuk,1,DTUSpace DAW,220.89,64.05,-85.34,66.24,Dawson City,1,CARISMA IQA,291.48,63.75,15.58,72.21,Iqaluit,2,CANMOS,INTERMAGNET CHC,276.80,64.10,-8.07,73.72,Coral Harbour,1,MACCS HLL,339.44,63.77,67.40,64.41,Hella,1,SAMNET S01,13.36,64.37,94.84,61.87,Nordli,1,SAMNET T35,249.10,63.60,-52.64,71.10,Snap Lake,1,THEMIS T40,204.40,63.00,-99.16,62.16,McGrath,1,THEMIS SKT,307.10,65.42,37.22,71.43,Maniitsoq,1,DTUSpace AMK,322.37,65.60,53.57,68.99,Tasiilaq,1,DTUSpace RVK,10.99,64.94,93.27,62.61,Roervik,2,TROMSOE,IMAGE LYC,18.75,64.61,99.33,61.87,Lycksele,2,IMAGE,INTERMAGNET OUJ,27.23,64.52,106.27,61.47,Oulujarvi,2,IMAGE,SAMNET EAG,218.80,64.78,-87.80,66.59,Eagle,1,GIMA CMO,212.14,64.87,-93.82,65.45,College,3,GIMA,USGS,INTERMAGNET CGO,212.14,64.87,-93.82,65.46,College Intl Geophys Observatory,2,THEMIS,GIMA PKR,212.74,65.08,-93.44,65.78,Poker Flat,1,GIMA ARK,40.50,64.60,117.67,61.29,Arkhangelsk,1,AARI CDC,283.40,64.20,3.04,73.47,Cape Dorset,1,MACCS OUL,25.85,65.10,105.42,62.11,Oulu,1,SAMNET C07,233.31,65.26,-73.47,69.85,Norman Wells,1,CARISMA T34,249.30,64.70,-53.01,72.17,Ekati,1,THEMIS MCR,313.71,66.48,45.42,71.35,Magic2 Raven,1,DTUSpace CNL,248.75,65.75,-54.49,73.08,Contwoyto Lake,1,CARISMA JCK,16.98,66.40,98.94,63.82,Jaeckvik,2,TROMSOE,IMAGE DON,12.50,66.11,95.19,63.75,Doenna,2,TROMSOE,IMAGE ZYK,150.78,65.75,-141.24,60.54,Zyryanka,1,210MM KOT,197.40,66.88,-107.15,65.18,Kotzebue,2,GIMA,210MM BET,208.32,66.90,-98.51,66.88,Bettles,1,GIMA FYU,214.70,66.57,-92.83,67.65,Fort Yukon,2,GIMA,THEMIS CWE,190.17,66.17,-112.14,63.47,Wellen,1,AARI ZGN,123.26,66.75,-164.56,62.01,Zhigansk,1,210MM PGC,294.20,66.10,20.55,74.09,Pangnirtung,1,MACCS RPB,273.80,66.50,-13.45,75.97,Repulse Bay,1,MACCS ATU,306.43,67.93,38.19,73.99,Attu,1,DTUSpace STF,309.28,67.02,40.87,72.64,Kangerlussuaq,1,DTUSpace SOD,26.63,67.37,107.33,64.41,Sodankyla,3,IMAGE,EMMA,INTERMAGNET PEL,24.08,66.90,104.97,64.03,Pello,2,IMAGE,EMMA T41,199.60,67.00,-105.55,65.62,Kiana,1,THEMIS CBB,255.00,69.10,-47.75,77.04,Cambridge Bay,2,CANMOS,INTERMAGNET ARC,214.43,68.13,-94.37,69.18,Arctic Village,1,GIMA INK,226.70,68.25,-83.05,71.50,Inuvik,3,GIMA,AUTUMN,THEMIS GDH,306.47,69.25,39.39,75.25,Godhavn,2,DTUSpace,INTERMAGNET AND,16.03,69.30,100.22,66.86,Andenes,2,TROMSOE,IMAGE KAU,23.05,69.02,105.53,66.23,Kautokeino,1,IMAGE IVA,27.29,68.56,108.61,65.60,Ivalo,2,IMAGE,EMMA ABK,18.82,68.35,101.70,65.74,Abisko,2,IMAGE,INTERMAGNET LEK,13.54,68.13,97.39,65.79,Leknes,1,IMAGE MUO,23.53,68.02,105.23,65.19,Muonio,2,IMAGE,EMMA LOZ,35.08,67.97,114.65,64.77,Lovozero,2,IMAGE,AARI KIR,20.42,67.84,102.62,65.14,Kiruna,1,IMAGE CPS,180.55,68.88,-120.98,65.37,Cape Schmidt,2,AARI,210MM CKA,73.60,68.50,149.04,64.77,Cape Kamenniy,1,Unknown LOP,33.08,68.25,113.15,65.10,Lop,1,Unknown GHC,264.10,68.60,-31.76,77.51,Gjoa Haven,1,MACCS IGC,278.20,69.30,-5.39,78.43,Igloolik,1,MACCS PBC,270.30,68.50,-20.27,77.74,Pelly Bay,1,MACCS DED,211.21,70.36,-99.27,70.87,Deadhorse,2,INTERMAGNET,USGS NOK,88.10,69.40,162.74,65.41,NOK,2,RAPIDMAG,GIMA UMQ,307.87,70.68,42.58,76.38,Uummannaq,1,DTUSpace SCO,338.03,70.48,71.82,71.63,Ittoqqortoormiit,1,DTUSpace TAL,266.45,69.54,-27.95,78.51,Taloyoak,1,CARISMA KAV,216.63,70.07,-94.36,71.48,Kaktovik,2,GIMA,INTERMAGNET NOR,25.79,71.09,109.28,68.19,Nordkapp,2,TROMSOE,IMAGE JAN,351.30,70.90,82.78,70.47,Jan Mayen,1,TROMSOE SOR,22.22,70.54,106.04,67.80,Soeroeya,2,TROMSOE,IMAGE TRO,18.94,69.66,102.77,67.07,Tromso,2,TROMSOE,IMAGE ALT,22.96,69.86,106.08,67.08,Alta,1,IMAGE KEV,27.01,69.76,109.22,66.82,Kevo,2,IMAGE,EMMA MAS,23.70,69.46,106.36,66.65,Masi,2,IMAGE,EMMA KIL,20.79,69.02,103.74,66.33,Kilpisjarvi,3,IMAGE,EMMA,SAMNET CPY,235.30,70.20,-75.95,74.91,Cape Perry,1,GIMA AMD,61.40,69.50,138.20,65.85,Amderma,3,RAPIDMAG,GIMA,AARI BRW,203.25,71.30,-106.57,70.60,Barrow,3,GIMA,USGS,INTERMAGNET JCO,211.20,70.36,-99.27,70.86,Jim Carrigan,1,BGS TIK,129.00,71.58,-161.29,66.70,Tixie,5,RAPIDMAG,GIMA,210MM,AARI,INTERMAGNET CHD,147.89,70.62,-145.89,65.67,Chokurdakh,1,210MM PBK,170.90,70.10,-128.74,65.94,Pebek,2,AARI,GIMA CY0,291.40,70.50,18.88,78.52,Clyde River,1,MACCS UPN,303.85,72.78,40.20,78.93,Upernavik,1,DTUSpace MCE,326.10,72.40,63.93,75.20,Magic1 east,1,DTUSpace MCW,317.41,72.00,54.95,76.13,Magic1 west,1,DTUSpace MCG,321.65,72.60,60.05,76.06,Magic2 GISP,1,DTUSpace SAH,234.77,71.98,-78.98,76.44,Sachs Harbour,1,CARISMA DIK,80.57,73.55,156.64,69.36,Dixon,3,RAPIDMAG,GIMA,AARI RES,265.11,74.69,-35.54,82.93,Resolute Bay,2,CANMOS,INTERMAGNET KUV,302.82,74.57,41.92,80.69,Kullorsuaq,1,DTUSpace DNB,339.78,74.30,78.39,75.19,Daneborg,1,DTUSpace MCN,322.38,73.93,62.90,77.20,Magic1 north,1,DTUSpace BJN,19.20,74.50,107.71,71.89,Bear Island,2,TROMSOE,IMAGE TAB,291.18,76.54,27.24,83.89,Thule Air Base,1,DTUSpace SVS,294.90,76.02,32.87,83.00,Savissivik,1,DTUSpace KTN,137.71,75.94,-157.19,70.98,Kotelnyy,1,210MM MBC,240.64,76.32,-81.35,81.13,Mould Bay,2,CANMOS,INTERMAGNET THL,290.77,77.47,29.24,84.72,Qaanag,2,DTUSpace,INTERMAGNET DMH,341.37,76.77,84.38,77.34,Danmarkshavn,1,DTUSpace HOP,25.01,76.51,114.59,73.53,Hopen Island,2,TROMSOE,IMAGE HRN,15.60,77.00,108.72,74.52,Hornsund,2,IMAGE,INTERMAGNET CCS,104.28,77.72,176.59,72.77,Chelyuskin,3,RAPIDMAG,GIMA,AARI HOR,15.60,77.00,108.72,74.52,Hornsund,1,IMAGE NAL,11.95,78.92,109.96,76.57,New Aalesund,2,TROMSOE,IMAGE LYR,15.83,78.20,111.03,75.64,Longyearbyen,2,TROMSOE,IMAGE BBG,14.23,78.07,109.70,75.62,Barentsburg,1,AARI VIZ,76.98,79.48,156.12,74.70,Vieze Island,1,AARI HIS,58.05,80.62,143.72,76.10,Heiss Island,1,AARI EUA,274.10,80.00,-20.31,87.88,Eureka,1,CANMOS ALE,297.50,82.50,86.95,87.14,Alert,2,CANMOS,INTERMAGNET NRD,343.33,81.60,101.64,81.27,Nord,1,DTUSpace """ """ ??? """ class Record(namedtuple('Record', 'iaga glon glat mlon mlat name operators')): pass def parse_csv(csv_string=STATION_CSV): """ ??? """ stringio = StringIO(STATION_CSV) station_map = {} for i, cols in enumerate(reader(stringio)): if i == 0: continue station_map[cols[0]] = Record(cols[0], float(cols[1]), float(cols[2]), float(cols[3]), float(cols[4]), cols[5], cols[7:]) return station_map """ ??? """ STATION_MAP = parse_csv()
50.025194
82
0.728625
b4a1b041b1f82065670f45b047d956c15cdbd547
36,853
py
Python
synapse/storage/databases/main/deviceinbox.py
buffless-matt/synapse
dda9b7fc4d2e6ca84a1a994a7ff1943b590e71df
[ "Apache-2.0" ]
null
null
null
synapse/storage/databases/main/deviceinbox.py
buffless-matt/synapse
dda9b7fc4d2e6ca84a1a994a7ff1943b590e71df
[ "Apache-2.0" ]
1
2022-03-23T08:03:58.000Z
2022-03-23T08:03:58.000Z
synapse/storage/databases/main/deviceinbox.py
buffless-matt/synapse
dda9b7fc4d2e6ca84a1a994a7ff1943b590e71df
[ "Apache-2.0" ]
1
2022-03-31T09:03:27.000Z
2022-03-31T09:03:27.000Z
# Copyright 2016 OpenMarket Ltd # Copyright 2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, Collection, Dict, List, Optional, Set, Tuple, cast from synapse.logging import issue9533_logger from synapse.logging.opentracing import log_kv, set_tag, trace from synapse.replication.tcp.streams import ToDeviceStream from synapse.storage._base import SQLBaseStore, db_to_json from synapse.storage.database import ( DatabasePool, LoggingDatabaseConnection, LoggingTransaction, make_in_list_sql_clause, ) from synapse.storage.engines import PostgresEngine from synapse.storage.util.id_generators import ( AbstractStreamIdGenerator, MultiWriterIdGenerator, StreamIdGenerator, ) from synapse.types import JsonDict from synapse.util import json_encoder from synapse.util.caches.expiringcache import ExpiringCache from synapse.util.caches.stream_change_cache import StreamChangeCache if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class DeviceInboxWorkerStore(SQLBaseStore): def __init__( self, database: DatabasePool, db_conn: LoggingDatabaseConnection, hs: "HomeServer", ): super().__init__(database, db_conn, hs) self._instance_name = hs.get_instance_name() # Map of (user_id, device_id) to the last stream_id that has been # deleted up to. This is so that we can no op deletions. self._last_device_delete_cache: ExpiringCache[ Tuple[str, Optional[str]], int ] = ExpiringCache( cache_name="last_device_delete_cache", clock=self._clock, max_len=10000, expiry_ms=30 * 60 * 1000, ) if isinstance(database.engine, PostgresEngine): self._can_write_to_device = ( self._instance_name in hs.config.worker.writers.to_device ) self._device_inbox_id_gen: AbstractStreamIdGenerator = ( MultiWriterIdGenerator( db_conn=db_conn, db=database, stream_name="to_device", instance_name=self._instance_name, tables=[("device_inbox", "instance_name", "stream_id")], sequence_name="device_inbox_sequence", writers=hs.config.worker.writers.to_device, ) ) else: self._can_write_to_device = True self._device_inbox_id_gen = StreamIdGenerator( db_conn, "device_inbox", "stream_id" ) max_device_inbox_id = self._device_inbox_id_gen.get_current_token() device_inbox_prefill, min_device_inbox_id = self.db_pool.get_cache_dict( db_conn, "device_inbox", entity_column="user_id", stream_column="stream_id", max_value=max_device_inbox_id, limit=1000, ) self._device_inbox_stream_cache = StreamChangeCache( "DeviceInboxStreamChangeCache", min_device_inbox_id, prefilled_cache=device_inbox_prefill, ) # The federation outbox and the local device inbox uses the same # stream_id generator. device_outbox_prefill, min_device_outbox_id = self.db_pool.get_cache_dict( db_conn, "device_federation_outbox", entity_column="destination", stream_column="stream_id", max_value=max_device_inbox_id, limit=1000, ) self._device_federation_outbox_stream_cache = StreamChangeCache( "DeviceFederationOutboxStreamChangeCache", min_device_outbox_id, prefilled_cache=device_outbox_prefill, ) def process_replication_rows(self, stream_name, instance_name, token, rows): if stream_name == ToDeviceStream.NAME: # If replication is happening than postgres must be being used. assert isinstance(self._device_inbox_id_gen, MultiWriterIdGenerator) self._device_inbox_id_gen.advance(instance_name, token) for row in rows: if row.entity.startswith("@"): self._device_inbox_stream_cache.entity_has_changed( row.entity, token ) else: self._device_federation_outbox_stream_cache.entity_has_changed( row.entity, token ) return super().process_replication_rows(stream_name, instance_name, token, rows) def get_to_device_stream_token(self): return self._device_inbox_id_gen.get_current_token() async def get_messages_for_user_devices( self, user_ids: Collection[str], from_stream_id: int, to_stream_id: int, ) -> Dict[Tuple[str, str], List[JsonDict]]: """ Retrieve to-device messages for a given set of users. Only to-device messages with stream ids between the given boundaries (from < X <= to) are returned. Args: user_ids: The users to retrieve to-device messages for. from_stream_id: The lower boundary of stream id to filter with (exclusive). to_stream_id: The upper boundary of stream id to filter with (inclusive). Returns: A dictionary of (user id, device id) -> list of to-device messages. """ # We expect the stream ID returned by _get_device_messages to always # be to_stream_id. So, no need to return it from this function. ( user_id_device_id_to_messages, last_processed_stream_id, ) = await self._get_device_messages( user_ids=user_ids, from_stream_id=from_stream_id, to_stream_id=to_stream_id, ) assert ( last_processed_stream_id == to_stream_id ), "Expected _get_device_messages to process all to-device messages up to `to_stream_id`" return user_id_device_id_to_messages async def get_messages_for_device( self, user_id: str, device_id: str, from_stream_id: int, to_stream_id: int, limit: int = 100, ) -> Tuple[List[JsonDict], int]: """ Retrieve to-device messages for a single user device. Only to-device messages with stream ids between the given boundaries (from < X <= to) are returned. Args: user_id: The ID of the user to retrieve messages for. device_id: The ID of the device to retrieve to-device messages for. from_stream_id: The lower boundary of stream id to filter with (exclusive). to_stream_id: The upper boundary of stream id to filter with (inclusive). limit: A limit on the number of to-device messages returned. Returns: A tuple containing: * A list of to-device messages within the given stream id range intended for the given user / device combo. * The last-processed stream ID. Subsequent calls of this function with the same device should pass this value as 'from_stream_id'. """ ( user_id_device_id_to_messages, last_processed_stream_id, ) = await self._get_device_messages( user_ids=[user_id], device_id=device_id, from_stream_id=from_stream_id, to_stream_id=to_stream_id, limit=limit, ) if not user_id_device_id_to_messages: # There were no messages! return [], to_stream_id # Extract the messages, no need to return the user and device ID again to_device_messages = user_id_device_id_to_messages.get((user_id, device_id), []) return to_device_messages, last_processed_stream_id async def _get_device_messages( self, user_ids: Collection[str], from_stream_id: int, to_stream_id: int, device_id: Optional[str] = None, limit: Optional[int] = None, ) -> Tuple[Dict[Tuple[str, str], List[JsonDict]], int]: """ Retrieve pending to-device messages for a collection of user devices. Only to-device messages with stream ids between the given boundaries (from < X <= to) are returned. Note that a stream ID can be shared by multiple copies of the same message with different recipient devices. Stream IDs are only unique in the context of a single user ID / device ID pair. Thus, applying a limit (of messages to return) when working with a sliding window of stream IDs is only possible when querying messages of a single user device. Finally, note that device IDs are not unique across users. Args: user_ids: The user IDs to filter device messages by. from_stream_id: The lower boundary of stream id to filter with (exclusive). to_stream_id: The upper boundary of stream id to filter with (inclusive). device_id: A device ID to query to-device messages for. If not provided, to-device messages from all device IDs for the given user IDs will be queried. May not be provided if `user_ids` contains more than one entry. limit: The maximum number of to-device messages to return. Can only be used when passing a single user ID / device ID tuple. Returns: A tuple containing: * A dict of (user_id, device_id) -> list of to-device messages * The last-processed stream ID. If this is less than `to_stream_id`, then there may be more messages to retrieve. If `limit` is not set, then this is always equal to 'to_stream_id'. """ if not user_ids: logger.warning("No users provided upon querying for device IDs") return {}, to_stream_id # Prevent a query for one user's device also retrieving another user's device with # the same device ID (device IDs are not unique across users). if len(user_ids) > 1 and device_id is not None: raise AssertionError( "Programming error: 'device_id' cannot be supplied to " "_get_device_messages when >1 user_id has been provided" ) # A limit can only be applied when querying for a single user ID / device ID tuple. # See the docstring of this function for more details. if limit is not None and device_id is None: raise AssertionError( "Programming error: _get_device_messages was passed 'limit' " "without a specific user_id/device_id" ) user_ids_to_query: Set[str] = set() device_ids_to_query: Set[str] = set() # Note that a device ID could be an empty str if device_id is not None: # If a device ID was passed, use it to filter results. # Otherwise, device IDs will be derived from the given collection of user IDs. device_ids_to_query.add(device_id) # Determine which users have devices with pending messages for user_id in user_ids: if self._device_inbox_stream_cache.has_entity_changed( user_id, from_stream_id ): # This user has new messages sent to them. Query messages for them user_ids_to_query.add(user_id) if not user_ids_to_query: return {}, to_stream_id def get_device_messages_txn(txn: LoggingTransaction): # Build a query to select messages from any of the given devices that # are between the given stream id bounds. # If a list of device IDs was not provided, retrieve all devices IDs # for the given users. We explicitly do not query hidden devices, as # hidden devices should not receive to-device messages. # Note that this is more efficient than just dropping `device_id` from the query, # since device_inbox has an index on `(user_id, device_id, stream_id)` if not device_ids_to_query: user_device_dicts = self.db_pool.simple_select_many_txn( txn, table="devices", column="user_id", iterable=user_ids_to_query, keyvalues={"user_id": user_id, "hidden": False}, retcols=("device_id",), ) device_ids_to_query.update( {row["device_id"] for row in user_device_dicts} ) if not device_ids_to_query: # We've ended up with no devices to query. return {}, to_stream_id # We include both user IDs and device IDs in this query, as we have an index # (device_inbox_user_stream_id) for them. user_id_many_clause_sql, user_id_many_clause_args = make_in_list_sql_clause( self.database_engine, "user_id", user_ids_to_query ) ( device_id_many_clause_sql, device_id_many_clause_args, ) = make_in_list_sql_clause( self.database_engine, "device_id", device_ids_to_query ) sql = f""" SELECT stream_id, user_id, device_id, message_json FROM device_inbox WHERE {user_id_many_clause_sql} AND {device_id_many_clause_sql} AND ? < stream_id AND stream_id <= ? ORDER BY stream_id ASC """ sql_args = ( *user_id_many_clause_args, *device_id_many_clause_args, from_stream_id, to_stream_id, ) # If a limit was provided, limit the data retrieved from the database if limit is not None: sql += "LIMIT ?" sql_args += (limit,) txn.execute(sql, sql_args) # Create and fill a dictionary of (user ID, device ID) -> list of messages # intended for each device. last_processed_stream_pos = to_stream_id recipient_device_to_messages: Dict[Tuple[str, str], List[JsonDict]] = {} rowcount = 0 for row in txn: rowcount += 1 last_processed_stream_pos = row[0] recipient_user_id = row[1] recipient_device_id = row[2] message_dict = db_to_json(row[3]) # Store the device details recipient_device_to_messages.setdefault( (recipient_user_id, recipient_device_id), [] ).append(message_dict) if limit is not None and rowcount == limit: # We ended up bumping up against the message limit. There may be more messages # to retrieve. Return what we have, as well as the last stream position that # was processed. # # The caller is expected to set this as the lower (exclusive) bound # for the next query of this device. return recipient_device_to_messages, last_processed_stream_pos # The limit was not reached, thus we know that recipient_device_to_messages # contains all to-device messages for the given device and stream id range. # # We return to_stream_id, which the caller should then provide as the lower # (exclusive) bound on the next query of this device. return recipient_device_to_messages, to_stream_id return await self.db_pool.runInteraction( "get_device_messages", get_device_messages_txn ) @trace async def delete_messages_for_device( self, user_id: str, device_id: Optional[str], up_to_stream_id: int ) -> int: """ Args: user_id: The recipient user_id. device_id: The recipient device_id. up_to_stream_id: Where to delete messages up to. Returns: The number of messages deleted. """ # If we have cached the last stream id we've deleted up to, we can # check if there is likely to be anything that needs deleting last_deleted_stream_id = self._last_device_delete_cache.get( (user_id, device_id), None ) set_tag("last_deleted_stream_id", last_deleted_stream_id) if last_deleted_stream_id: has_changed = self._device_inbox_stream_cache.has_entity_changed( user_id, last_deleted_stream_id ) if not has_changed: log_kv({"message": "No changes in cache since last check"}) return 0 def delete_messages_for_device_txn(txn): sql = ( "DELETE FROM device_inbox" " WHERE user_id = ? AND device_id = ?" " AND stream_id <= ?" ) txn.execute(sql, (user_id, device_id, up_to_stream_id)) return txn.rowcount count = await self.db_pool.runInteraction( "delete_messages_for_device", delete_messages_for_device_txn ) log_kv({"message": f"deleted {count} messages for device", "count": count}) # Update the cache, ensuring that we only ever increase the value updated_last_deleted_stream_id = self._last_device_delete_cache.get( (user_id, device_id), 0 ) self._last_device_delete_cache[(user_id, device_id)] = max( updated_last_deleted_stream_id, up_to_stream_id ) return count @trace async def get_new_device_msgs_for_remote( self, destination, last_stream_id, current_stream_id, limit ) -> Tuple[List[dict], int]: """ Args: destination(str): The name of the remote server. last_stream_id(int|long): The last position of the device message stream that the server sent up to. current_stream_id(int|long): The current position of the device message stream. Returns: A list of messages for the device and where in the stream the messages got to. """ set_tag("destination", destination) set_tag("last_stream_id", last_stream_id) set_tag("current_stream_id", current_stream_id) set_tag("limit", limit) has_changed = self._device_federation_outbox_stream_cache.has_entity_changed( destination, last_stream_id ) if not has_changed or last_stream_id == current_stream_id: log_kv({"message": "No new messages in stream"}) return [], current_stream_id if limit <= 0: # This can happen if we run out of room for EDUs in the transaction. return [], last_stream_id @trace def get_new_messages_for_remote_destination_txn(txn): sql = ( "SELECT stream_id, messages_json FROM device_federation_outbox" " WHERE destination = ?" " AND ? < stream_id AND stream_id <= ?" " ORDER BY stream_id ASC" " LIMIT ?" ) txn.execute(sql, (destination, last_stream_id, current_stream_id, limit)) messages = [] stream_pos = current_stream_id for row in txn: stream_pos = row[0] messages.append(db_to_json(row[1])) # If the limit was not reached we know that there's no more data for this # user/device pair up to current_stream_id. if len(messages) < limit: log_kv({"message": "Set stream position to current position"}) stream_pos = current_stream_id return messages, stream_pos return await self.db_pool.runInteraction( "get_new_device_msgs_for_remote", get_new_messages_for_remote_destination_txn, ) @trace async def delete_device_msgs_for_remote( self, destination: str, up_to_stream_id: int ) -> None: """Used to delete messages when the remote destination acknowledges their receipt. Args: destination: The destination server_name up_to_stream_id: Where to delete messages up to. """ def delete_messages_for_remote_destination_txn(txn): sql = ( "DELETE FROM device_federation_outbox" " WHERE destination = ?" " AND stream_id <= ?" ) txn.execute(sql, (destination, up_to_stream_id)) await self.db_pool.runInteraction( "delete_device_msgs_for_remote", delete_messages_for_remote_destination_txn ) async def get_all_new_device_messages( self, instance_name: str, last_id: int, current_id: int, limit: int ) -> Tuple[List[Tuple[int, tuple]], int, bool]: """Get updates for to device replication stream. Args: instance_name: The writer we want to fetch updates from. Unused here since there is only ever one writer. last_id: The token to fetch updates from. Exclusive. current_id: The token to fetch updates up to. Inclusive. limit: The requested limit for the number of rows to return. The function may return more or fewer rows. Returns: A tuple consisting of: the updates, a token to use to fetch subsequent updates, and whether we returned fewer rows than exists between the requested tokens due to the limit. The token returned can be used in a subsequent call to this function to get further updatees. The updates are a list of 2-tuples of stream ID and the row data """ if last_id == current_id: return [], current_id, False def get_all_new_device_messages_txn(txn): # We limit like this as we might have multiple rows per stream_id, and # we want to make sure we always get all entries for any stream_id # we return. upper_pos = min(current_id, last_id + limit) sql = ( "SELECT max(stream_id), user_id" " FROM device_inbox" " WHERE ? < stream_id AND stream_id <= ?" " GROUP BY user_id" ) txn.execute(sql, (last_id, upper_pos)) updates = [(row[0], row[1:]) for row in txn] sql = ( "SELECT max(stream_id), destination" " FROM device_federation_outbox" " WHERE ? < stream_id AND stream_id <= ?" " GROUP BY destination" ) txn.execute(sql, (last_id, upper_pos)) updates.extend((row[0], row[1:]) for row in txn) # Order by ascending stream ordering updates.sort() limited = False upto_token = current_id if len(updates) >= limit: upto_token = updates[-1][0] limited = True return updates, upto_token, limited return await self.db_pool.runInteraction( "get_all_new_device_messages", get_all_new_device_messages_txn ) @trace async def add_messages_to_device_inbox( self, local_messages_by_user_then_device: dict, remote_messages_by_destination: dict, ) -> int: """Used to send messages from this server. Args: local_messages_by_user_then_device: Dictionary of recipient user_id to recipient device_id to message. remote_messages_by_destination: Dictionary of destination server_name to the EDU JSON to send. Returns: The new stream_id. """ assert self._can_write_to_device def add_messages_txn(txn, now_ms, stream_id): # Add the local messages directly to the local inbox. self._add_messages_to_local_device_inbox_txn( txn, stream_id, local_messages_by_user_then_device ) # Add the remote messages to the federation outbox. # We'll send them to a remote server when we next send a # federation transaction to that destination. self.db_pool.simple_insert_many_txn( txn, table="device_federation_outbox", keys=( "destination", "stream_id", "queued_ts", "messages_json", "instance_name", ), values=[ ( destination, stream_id, now_ms, json_encoder.encode(edu), self._instance_name, ) for destination, edu in remote_messages_by_destination.items() ], ) if remote_messages_by_destination: issue9533_logger.debug( "Queued outgoing to-device messages with stream_id %i for %s", stream_id, list(remote_messages_by_destination.keys()), ) async with self._device_inbox_id_gen.get_next() as stream_id: now_ms = self._clock.time_msec() await self.db_pool.runInteraction( "add_messages_to_device_inbox", add_messages_txn, now_ms, stream_id ) for user_id in local_messages_by_user_then_device.keys(): self._device_inbox_stream_cache.entity_has_changed(user_id, stream_id) for destination in remote_messages_by_destination.keys(): self._device_federation_outbox_stream_cache.entity_has_changed( destination, stream_id ) return self._device_inbox_id_gen.get_current_token() async def add_messages_from_remote_to_device_inbox( self, origin: str, message_id: str, local_messages_by_user_then_device: dict ) -> int: assert self._can_write_to_device def add_messages_txn(txn, now_ms, stream_id): # Check if we've already inserted a matching message_id for that # origin. This can happen if the origin doesn't receive our # acknowledgement from the first time we received the message. already_inserted = self.db_pool.simple_select_one_txn( txn, table="device_federation_inbox", keyvalues={"origin": origin, "message_id": message_id}, retcols=("message_id",), allow_none=True, ) if already_inserted is not None: return # Add an entry for this message_id so that we know we've processed # it. self.db_pool.simple_insert_txn( txn, table="device_federation_inbox", values={ "origin": origin, "message_id": message_id, "received_ts": now_ms, }, ) # Add the messages to the appropriate local device inboxes so that # they'll be sent to the devices when they next sync. self._add_messages_to_local_device_inbox_txn( txn, stream_id, local_messages_by_user_then_device ) async with self._device_inbox_id_gen.get_next() as stream_id: now_ms = self._clock.time_msec() await self.db_pool.runInteraction( "add_messages_from_remote_to_device_inbox", add_messages_txn, now_ms, stream_id, ) for user_id in local_messages_by_user_then_device.keys(): self._device_inbox_stream_cache.entity_has_changed(user_id, stream_id) return stream_id def _add_messages_to_local_device_inbox_txn( self, txn, stream_id, messages_by_user_then_device ): assert self._can_write_to_device local_by_user_then_device = {} for user_id, messages_by_device in messages_by_user_then_device.items(): messages_json_for_user = {} devices = list(messages_by_device.keys()) if len(devices) == 1 and devices[0] == "*": # Handle wildcard device_ids. # We exclude hidden devices (such as cross-signing keys) here as they are # not expected to receive to-device messages. devices = self.db_pool.simple_select_onecol_txn( txn, table="devices", keyvalues={"user_id": user_id, "hidden": False}, retcol="device_id", ) message_json = json_encoder.encode(messages_by_device["*"]) for device_id in devices: # Add the message for all devices for this user on this # server. messages_json_for_user[device_id] = message_json else: if not devices: continue # We exclude hidden devices (such as cross-signing keys) here as they are # not expected to receive to-device messages. rows = self.db_pool.simple_select_many_txn( txn, table="devices", keyvalues={"user_id": user_id, "hidden": False}, column="device_id", iterable=devices, retcols=("device_id",), ) for row in rows: # Only insert into the local inbox if the device exists on # this server device_id = row["device_id"] message_json = json_encoder.encode(messages_by_device[device_id]) messages_json_for_user[device_id] = message_json if messages_json_for_user: local_by_user_then_device[user_id] = messages_json_for_user if not local_by_user_then_device: return self.db_pool.simple_insert_many_txn( txn, table="device_inbox", keys=("user_id", "device_id", "stream_id", "message_json", "instance_name"), values=[ (user_id, device_id, stream_id, message_json, self._instance_name) for user_id, messages_by_device in local_by_user_then_device.items() for device_id, message_json in messages_by_device.items() ], ) issue9533_logger.debug( "Stored to-device messages with stream_id %i for %s", stream_id, [ (user_id, device_id) for (user_id, messages_by_device) in local_by_user_then_device.items() for device_id in messages_by_device.keys() ], ) class DeviceInboxBackgroundUpdateStore(SQLBaseStore): DEVICE_INBOX_STREAM_ID = "device_inbox_stream_drop" REMOVE_DELETED_DEVICES = "remove_deleted_devices_from_device_inbox" REMOVE_HIDDEN_DEVICES = "remove_hidden_devices_from_device_inbox" REMOVE_DEAD_DEVICES_FROM_INBOX = "remove_dead_devices_from_device_inbox" def __init__( self, database: DatabasePool, db_conn: LoggingDatabaseConnection, hs: "HomeServer", ): super().__init__(database, db_conn, hs) self.db_pool.updates.register_background_index_update( "device_inbox_stream_index", index_name="device_inbox_stream_id_user_id", table="device_inbox", columns=["stream_id", "user_id"], ) self.db_pool.updates.register_background_update_handler( self.DEVICE_INBOX_STREAM_ID, self._background_drop_index_device_inbox ) # Used to be a background update that deletes all device_inboxes for deleted # devices. self.db_pool.updates.register_noop_background_update( self.REMOVE_DELETED_DEVICES ) # Used to be a background update that deletes all device_inboxes for hidden # devices. self.db_pool.updates.register_noop_background_update(self.REMOVE_HIDDEN_DEVICES) self.db_pool.updates.register_background_update_handler( self.REMOVE_DEAD_DEVICES_FROM_INBOX, self._remove_dead_devices_from_device_inbox, ) async def _background_drop_index_device_inbox(self, progress, batch_size): def reindex_txn(conn): txn = conn.cursor() txn.execute("DROP INDEX IF EXISTS device_inbox_stream_id") txn.close() await self.db_pool.runWithConnection(reindex_txn) await self.db_pool.updates._end_background_update(self.DEVICE_INBOX_STREAM_ID) return 1 async def _remove_dead_devices_from_device_inbox( self, progress: JsonDict, batch_size: int, ) -> int: """A background update to remove devices that were either deleted or hidden from the device_inbox table. Args: progress: The update's progress dict. batch_size: The batch size for this update. Returns: The number of rows deleted. """ def _remove_dead_devices_from_device_inbox_txn( txn: LoggingTransaction, ) -> Tuple[int, bool]: if "max_stream_id" in progress: max_stream_id = progress["max_stream_id"] else: txn.execute("SELECT max(stream_id) FROM device_inbox") # There's a type mismatch here between how we want to type the row and # what fetchone says it returns, but we silence it because we know that # res can't be None. res = cast(Tuple[Optional[int]], txn.fetchone()) if res[0] is None: # this can only happen if the `device_inbox` table is empty, in which # case we have no work to do. return 0, True else: max_stream_id = res[0] start = progress.get("stream_id", 0) stop = start + batch_size # delete rows in `device_inbox` which do *not* correspond to a known, # unhidden device. sql = """ DELETE FROM device_inbox WHERE stream_id >= ? AND stream_id < ? AND NOT EXISTS ( SELECT * FROM devices d WHERE d.device_id=device_inbox.device_id AND d.user_id=device_inbox.user_id AND NOT hidden ) """ txn.execute(sql, (start, stop)) self.db_pool.updates._background_update_progress_txn( txn, self.REMOVE_DEAD_DEVICES_FROM_INBOX, { "stream_id": stop, "max_stream_id": max_stream_id, }, ) return stop > max_stream_id finished = await self.db_pool.runInteraction( "_remove_devices_from_device_inbox_txn", _remove_dead_devices_from_device_inbox_txn, ) if finished: await self.db_pool.updates._end_background_update( self.REMOVE_DEAD_DEVICES_FROM_INBOX, ) return batch_size class DeviceInboxStore(DeviceInboxWorkerStore, DeviceInboxBackgroundUpdateStore): pass
39.372863
97
0.597889
e6492b66ac275ce3f870b603e41e4e0e037b7589
24,515
py
Python
src/encoded/upgrade/file.py
caseylitton/encoded
ecfb135ba84ef5cad2a71638720d782cbfc4d14a
[ "MIT" ]
null
null
null
src/encoded/upgrade/file.py
caseylitton/encoded
ecfb135ba84ef5cad2a71638720d782cbfc4d14a
[ "MIT" ]
1
2018-12-14T18:00:30.000Z
2018-12-14T18:00:30.000Z
src/encoded/upgrade/file.py
caseylitton/encoded
ecfb135ba84ef5cad2a71638720d782cbfc4d14a
[ "MIT" ]
null
null
null
from snovault import upgrade_step from pyramid.traversal import find_root from datetime import datetime, time @upgrade_step('file', '', '2') def file_0_2(value, system): # http://redmine.encodedcc.org/issues/1295 # http://redmine.encodedcc.org/issues/1307 if 'status' in value: value['status'] = value['status'].lower() @upgrade_step('file', '2', '3') def file_2_3(value, system): # http://redmine.encodedcc.org/issues/1572 file_format = value.get('file_format') file_name = value['download_path'].rsplit('/', 1)[-1] file_ext = file_name[file_name.find('.'):] # REJECTIONS if file_ext in ['.gtf.bigBed', '.pdf', '.pdf.gz', '.gff.bigBed', '.spikeins']: value['status'] = 'deleted' # Find the miscatorgorized bedMethyls if file_ext == '.bed.bigBed' and 'MethylRrbs' in value.get('submitted_file_name'): value['file_format'] = 'bedMethyl' if file_ext == '.bed.gz' and 'MethylRrbs' in value.get('submitted_file_name'): value['file_format'] = 'bed_bedMethyl' unknownDict = {'.CEL.gz': 'CEL', '.bb': 'bedMethyl', '.bed': 'bed', '.bed.gz': 'bed', '.bed.bigBed': 'bigBed', '.bigBed': 'bigBed', '.bed9': 'bedMethyl', '.bed9.gz': 'bed_bedMethyl', '.bedCluster.bigBed': 'bigBed', '.bedLogR.bigBed': 'bedLogR', '.bedRnaElements.bigBed': 'bedRnaElements', '.bedRrbs.bigBed': 'bedMethyl', '.broadPeak.gz': 'bed_broadPeak', '.bigBed': 'bigBed', '.csfasta.gz': 'csfasta', '.csqual.gz': 'csqual', '.fasta.gz': 'fasta', '.gff.bigBed': 'bigBed', '.gff.gz': 'gtf', '.gp.bigBed': 'bigBed', '.matrix.gz': 'tsv', '.matrix.tgz': 'tar', '.narrowPeak': 'bed_narrowPeak', '.narrowPeak.gz': 'bed_narrowPeak', '.pdf': 'tsv', # These are going to be obsolete '.pdf.gz': 'tsv', # These are going to be obsolete '.peaks.gz': 'tsv', '.peptideMapping.bigBed': 'bigBed', '.shortFrags.bigBed': 'bigBed', '.sorted.bigBed': 'bigBed', '.tab.gz': 'tsv', '.tgz': 'tar', '.txt': 'tsv', '.xlsx': 'tsv', # These need to be converted to tsv } if file_format in ['unknown', 'customTrack']: value['file_format'] = unknownDict[file_ext] # http://redmine.encodedcc.org/issues/1429 context = system['context'] root = find_root(context) dataset = root.get_by_uuid(value['dataset']).upgrade_properties() dataset_status = dataset.get('status') status = value.get('status') if status == 'current': if dataset_status == 'released': value['status'] = 'released' else: value['status'] = 'in progress' if status == 'obsolete': if dataset_status in ['released', 'revoked']: value['status'] = 'revoked' else: value['status'] = 'deleted' # http://redmine.encodedcc.org/issues/568 output_type_dict = { '': 'raw data', 'Alignments': 'alignments', 'bigBed': 'sites', 'bigWig': 'sites', 'Clusters': 'clusters', 'Contigs': 'contigs', 'FastqRd1': 'reads', 'FastqRd2': 'reads', 'forebrain_enhancers': 'enhancers_forebrain', 'heart_enhancers': 'enhancers_heart', 'GreenIdat': 'idat green file', 'hotspot_broad_peaks': 'hotspots', 'hotspot_narrow_peaks': 'hotspots', 'hotspot_signal': 'hotspots', 'Hotspots': 'hotspots', 'Interactions': 'interactions', 'MinusRawSignal': 'raw minus signal', 'PlusRawSignal': 'raw plus signal', 'macs2_dnase_peaks': 'peaks', 'macs2_dnase_signal': 'signal', 'MinusSignal': 'minus signal', 'minusSignal': 'minus signal', 'MultiMinus': 'multi-read minus signal', 'MultiPlus': 'multi-read plus signal', 'MultiSignal': 'multi-read signal', 'MultiUnstranded': 'multi-read signal', 'RawData2': 'reads', 'RedIdat': 'idat red file', 'peak': 'peaks', 'PeakCalls': 'peaks', 'Peaks': 'peaks', 'PlusSignal': 'plus signal', 'plusSignal': 'plus signal', 'predicted_enhancers_heart': 'enhancers_heart', 'RawSignal': 'raw signal', 'RawData': 'raw data', 'rcc': 'raw data', 'Read': 'reads', 'read': 'reads', 'read1': 'reads', 'rejected_reads': 'rejected reads', 'RepPeaks': 'peaks', 'RepSignal': 'signal', 'Signal': 'signal', 'SimpleSignal': 'signal', 'Sites': 'sites', 'Spikeins': 'spike-ins', 'Spikes': 'spike-ins', 'Splices': 'splice junctions', 'uniqueReads': 'unique signal', 'UniqueSignal': 'unique signal', 'uniqueSignal': 'unique signal', 'UniqueMinus': 'unique minus signal', 'uniqueMinusSignal': 'unique minus signal', 'UniquePlus': 'unique plus signal', 'uniquePlusSignal': 'unique plus signal', 'UniqueUnstranded': 'unique signal', 'UnstrandedSignal': 'signal', 'dataset_used': 'enhancers', 'TRAINING_DATA_MOUSE_VISTA': 'enhancers', 'method_description': 'enhancers', 'unknown': 'enhancers', 'Protocol': 'raw data', } current_output_type = value['output_type'] if current_output_type in output_type_dict: value['output_type'] = output_type_dict[current_output_type] # Help the raw data problem if value['output_type'] == 'raw data' and value['file_format'] == 'fastq': value['output_type'] = 'reads' @upgrade_step('file', '3', '4') def file_3_4(value, system): # http://redmine.encodedcc.org/issues/1714 context = system['context'] root = find_root(context) dataset = root.get_by_uuid(value['dataset']).upgrade_properties() if 'download_path' in value: value.pop('download_path') value['lab'] = dataset['lab'] value['award'] = dataset['award'] # EDW User if value.get('submitted_by') == '0e04cd39-006b-4b4a-afb3-b6d76c4182ff': value['lab'] = 'fb0af3d0-3a4c-4e96-b67a-f273fe527b04' value['award'] = '8bafd685-aa17-43fe-95aa-37bc1c90074a' @upgrade_step('file', '4', '5') def file_4_5(value, system): # http://redmine.encodedcc.org/issues/2566 # http://redmine.encodedcc.org/issues/2565 # we need to remeber bedRnaElements, bed_files = { 'bed_bedLogR': 'bedLogR', 'bed_bedMethyl': 'bedMethyl', 'bed_broadPeak': 'broadPeak', 'bed_gappedPeak': 'gappedPeak', 'bed_narrowPeak': 'narrowPeak', 'bed_bedRnaElements': 'bedRnaElements' } bigBed_files = [ 'bedLogR', 'bedMethyl', 'broadPeak', 'narrowPeak', 'gappedPeak', 'bedRnaElements' ] current = value['file_format'] if current in ['bed', 'bigBed']: value['file_format_type'] = 'unknown' # we do not know what those formats were, wranglers will need to investigate elif current in bigBed_files: value['file_format_type'] = current value['file_format'] = 'bigBed' elif current in bed_files: value['file_format_type'] = bed_files[current] value['file_format'] = 'bed' elif current in ['gff']: value['file_format_type'] = 'unknown' # all gffs todate were in gff3, but we wouldn't know without wranglers checking # classify the peptide stuff if value['output_type'] in ['mPepMapGcFt', 'mPepMapGcUnFt']: value['file_format_type'] = 'modPepMap' elif value['output_type'] in ['pepMapGcFt', 'pepMapGcUnFt']: value['file_format_type'] = 'pepMap' # http://redmine.encodedcc.org/issues/2565 output_mapping = { # Category: Raw data 'idat green file': 'idat green channel', 'idat red file': 'idat red channel', 'reads': 'reads', 'rejected reads': 'rejected reads', 'rcc': 'reporter code counts', 'CEL': 'intensity values', 'raw data': 'raw data', 'alignments': 'alignments', 'transcriptome alignments': 'transcriptome alignments', 'spike-ins': 'spike-in alignments', 'multi-read minus signal': 'minus strand signal of multi-mapped reads', 'multi-read plus signal': 'plus strand signal of multi-mapped reads', 'multi-read signal': 'signal of multi-mapped reads', 'multi-read normalized signal': 'normalized signal of multi-mapped reads', 'raw minus signal': 'raw minus strand signal', 'raw plus signal': 'raw plus strand signal', 'raw signal': 'raw signal', 'raw normalized signal': 'raw normalized signal', 'unique minus signal': 'minus strand signal of unique reads', 'unique plus signal': 'plus strand signal of unique reads', 'unique signal': 'signal of unique reads', 'signal': 'signal', 'minus signal': 'minus strand signal', 'plus signal': 'plus strand signal', 'Base_Overlap_Signal': 'base overlap signal', 'PctSignal': 'percentage normalized signal', 'SumSignal': 'summed densities signal', 'WaveSignal': 'wavelet-smoothed signal', 'signal p-value': 'signal p-value', 'fold change over control': 'fold change over control', 'enrichment': 'enrichment', 'exon quantifications': 'exon quantifications', 'ExonsDeNovo': 'exon quantifications', 'ExonsEnsV65IAcuff': 'exon quantifications', 'ExonsGencV10': 'exon quantifications', 'ExonsGencV3c': 'exon quantifications', 'ExonsGencV7': 'exon quantifications', 'GeneDeNovo': 'gene quantifications', 'GeneEnsV65IAcuff': 'gene quantifications', 'GeneGencV10': 'gene quantifications', 'GeneGencV3c': 'gene quantifications', 'GeneGencV7': 'gene quantifications', 'genome quantifications': 'gene quantifications', 'library_fraction': 'library fraction', 'transcript quantifications': 'transcript quantifications', 'TranscriptDeNovo': 'transcript quantifications', 'TranscriptEnsV65IAcuff': 'transcript quantifications', 'TranscriptGencV10': 'transcript quantifications', 'TranscriptGencV3c': 'transcript quantifications', 'TranscriptGencV7': 'transcript quantifications', 'mPepMapGcFt': 'filtered modified peptide quantification', 'mPepMapGcUnFt': 'unfiltered modified peptide quantification', 'pepMapGcFt': 'filtered peptide quantification', 'pepMapGcUnFt': 'unfiltered peptide quantification', 'clusters': 'clusters', 'CNV': 'copy number variation', 'contigs': 'contigs', 'enhancer validation': 'enhancer validation', 'FiltTransfrags': 'filtered transcribed fragments', 'hotspots': 'hotspots', 'Junctions': 'splice junctions', 'interactions': 'long range chromatin interactions', 'Matrix': 'long range chromatin interactions', 'PrimerPeaks': 'long range chromatin interactions', 'sites': 'methylation state at CpG', 'methyl CG': 'methylation state at CpG', 'methyl CHG': 'methylation state at CHG', 'methyl CHH': 'methylation state at CHH', 'peaks': 'peaks', 'replicated peaks': 'replicated peaks', 'RbpAssocRna': 'RNA-binding protein associated mRNAs', 'splice junctions': 'splice junctions', 'Transfrags': 'transcribed fragments', 'TssGencV3c': 'transcription start sites', 'TssGencV7': 'transcription start sites', 'Valleys': 'valleys', 'Alignability': 'sequence alignability', 'Excludable': 'blacklisted regions', 'Uniqueness': 'sequence uniqueness', 'genome index': 'genome index', 'genome reference': 'genome reference', 'Primer': 'primer sequence', 'spike-in sequence': 'spike-in sequence', 'reference': 'reference', 'enhancers': 'predicted enhancers', 'enhancers_forebrain': 'predicted forebrain enhancers', 'enhancers_heart': 'predicted heart enhancers', 'enhancers_wholebrain': 'predicted whole brain enhancers', 'TssHmm': 'predicted transcription start sites', 'UniformlyProcessedPeakCalls': 'optimal idr thresholded peaks', 'Validation': 'validation', 'HMM': 'HMM predicted chromatin state' } old_output_type = value['output_type'] # The peptide mapping files from UCSC all assumed V10 hg19 if old_output_type in ['mPepMapGcFt', 'mPepMapGcUnFt', 'pepMapGcFt', 'pepMapGcUnFt']: value['genome_annotation'] = 'V10' value['assembly'] = 'hg19' elif old_output_type in ['ExonsEnsV65IAcuff', 'GeneEnsV65IAcuff', 'TranscriptEnsV65IAcuff']: value['genome_annotation'] = 'ENSEMBL V65' elif old_output_type in ['ExonsGencV3c', 'GeneGencV3c', 'TranscriptGencV3c', 'TssGencV3c']: value['genome_annotation'] = 'V3c' elif old_output_type in ['ExonsGencV7', 'GeneGenc7', 'TranscriptGencV7', 'TssGencV7']: value['genome_annotation'] = 'V7' elif old_output_type in ['ExonsGencV10', 'GeneGenc10', 'TranscriptGencV10', 'TssGencV10']: value['genome_annotation'] = 'V10' elif old_output_type in ['spike-ins'] and value['file_format'] == 'fasta': old_output_type = 'spike-in sequence' elif old_output_type in ['raw data'] and value['file_format'] in ['fastq', 'csfasta', 'csqual', 'fasta']: old_output_type = 'reads' elif old_output_type in ['raw data'] and value['file_format'] in ['CEL', 'tar']: old_output_type = 'CEL' elif old_output_type in ['raw data'] and value['file_format'] in ['rcc']: old_output_type = 'rcc' elif old_output_type in ['raw data'] and value['lab'] == '/labs/timothy-hubbard/': old_output_type = 'reference' elif old_output_type in ['raw data']: if 'These are protocol documents' in value.get('notes', ''): old_output_type = 'reference' elif old_output_type == 'sites' and value['file_format'] == 'tsv': old_output_type = 'interactions' elif old_output_type in ['Validation'] and value['file_format'] == '2bit': old_output_type = 'genome reference' value['output_type'] = output_mapping[old_output_type] # label the lost bedRnaElements files #2940 bedRnaElements_files = [ 'transcript quantifications', 'gene quantifications', 'exon quantifications' ] if ( value['output_type'] in bedRnaElements_files and value['status'] in ['deleted', 'replaced'] and value['file_format'] == 'bigBed' and value['file_format_type'] == 'unknown' ): value['file_format_type'] = 'bedRnaElements' # Get the replicate information if value.get('file_format') in ['fastq', 'fasta', 'csfasta']: context = system['context'] root = find_root(context) if 'replicate' in value: replicate = root.get_by_uuid(value['replicate']).upgrade_properties() if 'read_length' not in value: value['read_length'] = replicate.get('read_length') if value['read_length'] is None: del value['read_length'] run_type_dict = { True: 'paired-ended', False: 'single-ended', None: 'unknown' } if 'run_type' not in value: value['run_type'] = run_type_dict[replicate.get('paired_ended')] if value.get('paired_end') in ['2']: value['run_type'] = 'paired-ended' # Backfill content_md5sum #2683 if 'content_md5sum' not in value: md5sum_content_md5sum = system['registry'].get('backfill_2683', {}) if value['md5sum'] in md5sum_content_md5sum: value['content_md5sum'] = md5sum_content_md5sum[value['md5sum']] @upgrade_step('file', '5', '6') def file_5_6(value, system): # http://redmine.encodedcc.org/issues/3019 import re if value.get('output_type') in [ 'minus strand signal of multi-mapped reads', 'plus strand signal of multi-mapped reads', 'signal of multi-mapped reads', 'normalized signal of multi-mapped reads' ]: value['output_type'] = re.sub('multi-mapped', 'all', value['output_type']) @upgrade_step('file', '6', '7') def file_6_7(value, system): # http://redmine.encodedcc.org/issues/3063 if 'file_format_specifications' in value: value['file_format_specifications'] = list(set(value['file_format_specifications'])) if 'controlled_by' in value: value['controlled_by'] = list(set(value['controlled_by'])) if 'derived_from' in value: value['derived_from'] = list(set(value['derived_from'])) if 'supercedes' in value: value['supercedes'] = list(set(value['supersedes'])) if 'aliases' in value: value['aliases'] = list(set(value['aliases'])) @upgrade_step('file', '7', '8') def file_7_8(value, system): return @upgrade_step('file', '8', '9') def file_8_9(value, system): # http://redmine.encodedcc.org/issues/4183 if (value['file_format'] == 'fastq') and ('assembly' in value): value.pop('assembly') # http://redmine.encodedcc.org/issues/1859 if 'supercedes' in value: value['supersedes'] = value['supercedes'] value.pop('supercedes', None) def set_to_midnight(date_string): release_date = datetime.strptime(date_string, '%Y-%m-%d') min_pub_date_time = datetime.combine(release_date, time.min) return '{:%Y-%m-%dT%H:%M:%S.%f+00:00}'.format(min_pub_date_time) @upgrade_step('file', '9', '10') def file_9_10(value, system): # http://redmine.encodedcc.org/issues/5021 # http://redmine.encodedcc.org/issues/4929 # http://redmine.encodedcc.org/issues/4927 # http://redmine.encodedcc.org/issues/4903 # http://redmine.encodedcc.org/issues/4904 date_created = value.get('date_created') if date_created.find('T') == -1: value['date_created'] = set_to_midnight(date_created) # http://redmine.encodedcc.org/issues/4748 aliases = [] if 'aliases' in value and value['aliases']: aliases = value['aliases'] else: return aliases_to_remove = [] for i in range(0, len(aliases)): new_alias = '' if 'roadmap-epigenomics' in aliases[i]: if '||' in aliases[i]: scrub_parts = aliases[i].split('||') date_split = scrub_parts[1].split(' ') date = "-".join([date_split[1].strip(), date_split[2].strip(), date_split[5].strip()]) scrubbed_list = [scrub_parts[0].strip(), date.strip(), scrub_parts[2].strip()] if len(scrub_parts) == 4: scrubbed_list.append(scrub_parts[3].strip()) new_alias = '_'.join(scrubbed_list) parts = aliases[i].split(':') if not new_alias else new_alias.split(':') namespace = parts[0] if namespace in ['ucsc_encode_db', 'UCSC_encode_db', 'versionof']: # Remove the alias with the bad namespace aliases_to_remove.append(aliases[i]) namespace = 'encode' if namespace in ['CGC']: namespace = namespace.lower() rest = '_'.join(parts[1:]).strip() # Remove or substitute bad characters and multiple whitespaces import re if '"' or '#' or '@' or '!' or '$' or '^' or '&' or '|' or '~' or ';' or '`' in rest: rest = re.sub(r'[\"#@!$^&|~;`\/\\]', '', rest) rest = ' '.join(rest.split()) if '%' in rest: rest = re.sub(r'%', 'pct', rest) if '[' or '{' in rest: rest = re.sub('[\[{]', '(', rest) if ']' or '}' in rest: rest = re.sub('[\]}]', ')', rest) new_alias = ':'.join([namespace, rest]) if new_alias not in aliases: aliases[i] = new_alias if aliases_to_remove and aliases: for a in aliases_to_remove: if a in aliases: aliases.remove(a) @upgrade_step('file', '10', '11') def file_10_11(value, system): # http://redmine.encodedcc.org/issues/5049 # http://redmine.encodedcc.org/issues/5081 # http://redmine.encodedcc.org/issues/4924 if not value.get('no_file_available'): value['no_file_available'] = False # The above change also required the files whose values should be set to True # to also be upgraded or patched. The patch was applied post-release and # can be found in ./upgrade_data/file_10_to_11_patch.tsv @upgrade_step('file', '11', '12') def file_11_12(value, system): # https://encodedcc.atlassian.net/browse/ENCD-3347 return @upgrade_step('file', '12', '13') def file_12_13(value, system): # https://encodedcc.atlassian.net/browse/ENCD-3809 platform = value.get('platform', None) if platform and platform in [ "ced61406-dcc6-43c4-bddd-4c977cc676e8", "c7564b38-ab4f-4c42-a401-3de48689a998" ]: value.pop('read_length', None) value.pop('run_type', None) return @upgrade_step('file', '13', '14') def file_13_14(value, system): # https://encodedcc.atlassian.net/browse/ENCD-4613 output_type = value.get('output_type', None) if output_type and output_type == 'candidate regulatory elements': value['output_type'] = 'candidate Cis-Regulatory Elements' @upgrade_step('file', '14', '15') def file_14_15(value, system): # https://encodedcc.atlassian.net/browse/ENCD-4641 output_type = value.get('output_type', None) if output_type and output_type == 'optimal idr thresholded peaks': value['output_type'] = 'optimal IDR thresholded peaks' elif output_type and output_type == 'conservative idr thresholded peaks': value['output_type'] = 'conservative IDR thresholded peaks' elif output_type and output_type == 'pseudoreplicated idr thresholded peaks': value['output_type'] = 'pseudoreplicated IDR thresholded peaks' @upgrade_step('file', '15', '16') def file_15_16(value, system): # https://encodedcc.atlassian.net/browse/ENCD-4921 platform = value.get('platform', None) if platform == "e2be5728-5744-4da4-8881-cb9526d0389e": value.pop('read_length', None) value.pop('run_type', None) return @upgrade_step('file', '16', '17') def file_16_17(value, system): # https://encodedcc.atlassian.net/browse/ENCD-5050 platform = value.get('platform', None) if platform and platform in [ "6c275b37-018d-4bf8-85f6-6e3b830524a9", "8f1a9a8c-3392-4032-92a8-5d196c9d7810" ]: value.pop('read_length', None) value.pop('run_type', None) return
39.161342
109
0.572343
ca63131a835d1da99ec954b6d49b83db2b6e6e7a
4,724
py
Python
google/appengine/tools/cron_xml_parser.py
enpi/Test
5fb2055c7cfd4cc91ff97471c529b041f21abeb6
[ "Apache-2.0" ]
3
2019-01-28T03:57:20.000Z
2020-02-20T01:37:33.000Z
google/appengine/tools/cron_xml_parser.py
enpi/Test
5fb2055c7cfd4cc91ff97471c529b041f21abeb6
[ "Apache-2.0" ]
null
null
null
google/appengine/tools/cron_xml_parser.py
enpi/Test
5fb2055c7cfd4cc91ff97471c529b041f21abeb6
[ "Apache-2.0" ]
3
2019-01-18T11:33:56.000Z
2020-01-05T10:44:05.000Z
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Directly processes text of cron.xml. CronXmlParser is called with an XML string to produce a CronXml object containing the data from the XML. CronXmlParser: converts XML to CronXml objct Cron: describes a single cron specified in cron.xml """ from xml.etree import ElementTree from google.appengine.cron import groc from google.appengine.cron import groctimespecification from google.appengine.tools import xml_parser_utils from google.appengine.tools.app_engine_config_exception import AppEngineConfigException def GetCronYaml(unused_application, cron_xml_str): return _MakeCronListIntoYaml(CronXmlParser().ProcessXml(cron_xml_str)) def _MakeCronListIntoYaml(cron_list): """Converts list of yaml statements describing cron jobs into a string.""" statements = ['cron:'] for cron in cron_list: statements += cron.ToYaml() return '\n'.join(statements) + '\n' class CronXmlParser(object): """Provides logic for walking down XML tree and pulling data.""" def ProcessXml(self, xml_str): """Parses XML string and returns object representation of relevant info. Args: xml_str: The XML string. Returns: A list of Cron objects containing information about cron jobs from the XML. Raises: AppEngineConfigException: In case of malformed XML or illegal inputs. """ try: self.crons = [] self.errors = [] xml_root = ElementTree.fromstring(xml_str) if xml_root.tag != 'cronentries': raise AppEngineConfigException('Root tag must be <cronentries>') for child in xml_root.getchildren(): self.ProcessCronNode(child) if self.errors: raise AppEngineConfigException('\n'.join(self.errors)) return self.crons except ElementTree.ParseError: raise AppEngineConfigException('Bad input -- not valid XML') def ProcessCronNode(self, node): """Processes XML <cron> nodes into Cron objects. The following information is parsed out: description: Describing the purpose of the cron job. url: The location of the script. schedule: Written in groc; the schedule according to which the job is executed. timezone: The timezone that the schedule runs in. target: Which version of the app this applies to. Args: node: <cron> XML node in cron.xml. """ tag = xml_parser_utils.GetTag(node) if tag != 'cron': self.errors.append('Unrecognized node: <%s>' % tag) return cron = Cron() cron.url = xml_parser_utils.GetChildNodeText(node, 'url') cron.timezone = xml_parser_utils.GetChildNodeText(node, 'timezone') cron.target = xml_parser_utils.GetChildNodeText(node, 'target') cron.description = xml_parser_utils.GetChildNodeText(node, 'description') cron.schedule = xml_parser_utils.GetChildNodeText(node, 'schedule') validation_error = self._ValidateCronEntry(cron) if validation_error: self.errors.append(validation_error) else: self.crons.append(cron) def _ValidateCronEntry(self, cron): if not cron.url: return 'No URL for <cron> entry' if not cron.schedule: return "No schedule provided for <cron> entry with URL '%s'" % cron.url try: groctimespecification.GrocTimeSpecification(cron.schedule) except groc.GrocException: return ("Text '%s' in <schedule> node failed to parse," ' for <cron> entry with url %s.' % (cron.schedule, cron.url)) class Cron(object): """Instances contain information about individual cron entries.""" TZ_GMT = 'UTC' def ToYaml(self): """Returns data from Cron object as a list of Yaml statements.""" statements = [ '- url: %s' % self._SanitizeForYaml(self.url), ' schedule: %s' % self._SanitizeForYaml(self.schedule)] for optional in ('target', 'timezone', 'description'): field = getattr(self, optional) if field: statements.append(' %s: %s' % (optional, self._SanitizeForYaml(field))) return statements def _SanitizeForYaml(self, field): return "'%s'" % field.replace('\n', ' ').replace("'", "''")
33.267606
87
0.701524
73be989993e90d72912fc08516bce82d12deed07
3,896
py
Python
src/evaluation/evaluate.py
G-Simeone/Learning_Accident_Occurence_on_Dutch_Highways
1f3992a529fed70fd488811d68128a1e255fac5f
[ "MIT" ]
4
2018-11-09T16:18:28.000Z
2019-04-09T11:19:23.000Z
src/evaluation/evaluate.py
G-Simeone/Learning_Accident_Occurence_on_Dutch_Highways
1f3992a529fed70fd488811d68128a1e255fac5f
[ "MIT" ]
null
null
null
src/evaluation/evaluate.py
G-Simeone/Learning_Accident_Occurence_on_Dutch_Highways
1f3992a529fed70fd488811d68128a1e255fac5f
[ "MIT" ]
1
2020-05-28T18:48:17.000Z
2020-05-28T18:48:17.000Z
import os from utils.read_exp_utils import read_raw_y, read_results_for_experiment, read_empty_results, read_experiment_result_db, read_raw_y_db from utils.write_exp_utils import update_results_eval, update_raw_eval import sys import pandas as pd import numpy as np from sklearn.metrics import * import itertools from utils.misc_utils import connect_rds from psycopg2.extras import Json, DictCursor #ResultEvaluator: def filter_time(df_raw_scores, time): '''Return dataframe filter by time''' df=df_raw_scores.copy() if time == 'night': df['hour'] = pd.to_datetime(df['time']).apply(lambda x: x.hour) df = df.loc[(df['hour'] > 19) | (df['hour'] < 6)] elif time == 'day': df['hour'] = pd.to_datetime(df['time']).apply(lambda x: x.hour) df = df.loc[(df['hour'] < 19) & (df['hour'] > 6)] return df def tp_group(tp_group_df, k): """Function called to find the top k for each time group""" #take the top k from each group tp_group_df = tp_group_df.head(k) #return the total tp in each group return tp_group_df['y_true'].sum() def pr_at_k(df, k): """ Returns p/r for a specific result at a specific k df: pandas df with columns 'space', 'time', 'y_true', and 'y_pred' k: the number of obs you'd like to label 1 at each time """ #static traits of df universe = df['time'].nunique() p = df['y_true'].sum() #needs to be sorted by (time, y_pred) #group by time and find the num tp in the top k tp = df.groupby('time').pipe(tp_group, k) fp = (universe*k) - tp precision = tp/(tp+fp) recall = tp/p return precision, recall def pr_all_k(df): """ Returns all p/r for a specific result_id df: pandas df with columns 'space', 'time', 'y_true' and 'y_pred' """ space_universe = df['space'].nunique() precision_array = [] recall_array = [] for k in range(1, space_universe+1): precision, recall = pr_at_k(df, k) precision_array.append(precision) recall_array.append(recall) return precision_array, recall_array class EvaluationResultUpdater: def __init__(self,experiment_ids): self.experiment_ids = experiment_ids print('Evaluation Result Updater is ready.\n call update result_tables to write results to the database') def _fill_result_table_for_experiment(self, df, result_id:int): df_day = filter_time(df, 'day') df_night = filter_time(df, 'night') p8, r8 = pr_at_k(df_day, 8) p1, r1 = pr_at_k(df_night, 1) update_results_eval('p_8_dayshift', p8, result_id) update_results_eval('r_8_dayshift', r8, result_id) update_results_eval('p_1_nightshift', p1, result_id) update_results_eval('r_1_nightshift', r1, result_id) def _fill_raw_table_for_experiment(self, df, result_id:int): df_day = filter_time(df, 'day') df_night = filter_time(df, 'night') precision_d, recall_d = pr_all_k(df_day) precision_n, recall_n = pr_all_k(df_night) precision_a, recall_a = pr_all_k(df) pr_dict = Json({'recall_day': recall_d, 'precision_day': precision_d, 'recall_night': recall_n, 'precision_night': precision_n, 'recall_all': recall_a, 'precision_all': precision_a}) update_raw_eval(pr_dict, result_id) def update_result_tables(self): for experiment_id in self.experiment_ids: result_ids = read_results_for_experiment(experiment_id) for result_id in result_ids: df = read_raw_y(result_id) print('updating result tables for experiment:',experiment_id) self._fill_result_table_for_experiment(df, result_id) self._fill_raw_table_for_experiment(df, result_id)
32.198347
134
0.652977
5beb2c0035542aba0b34e6e62f70b5fc1dfd22e9
26,678
py
Python
jax/interpreters/partial_eval.py
david-waterworth/jax
f6e1d01f94936c992d9e63810eae5db69c06a026
[ "ECL-2.0", "Apache-2.0" ]
2
2020-02-26T16:05:11.000Z
2021-06-05T00:36:37.000Z
jax/interpreters/partial_eval.py
david-waterworth/jax
f6e1d01f94936c992d9e63810eae5db69c06a026
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/interpreters/partial_eval.py
david-waterworth/jax
f6e1d01f94936c992d9e63810eae5db69c06a026
[ "ECL-2.0", "Apache-2.0" ]
1
2020-03-03T21:29:13.000Z
2020-03-03T21:29:13.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools as it from collections import namedtuple, Counter, defaultdict import contextlib import threading from weakref import ref import numpy as onp from .. import core from .. import linear_util as lu from ..abstract_arrays import ShapedArray, ConcreteArray, raise_to_shaped from ..util import (unzip2, safe_zip, safe_map, toposort, partial, split_list, wrap_name, cache) from ..core import (Trace, Tracer, new_master, Jaxpr, Literal, get_aval, AbstractValue, unit, unitvar, abstract_unit, Primitive, call_p, TypedJaxpr, new_jaxpr_eqn) map = safe_map zip = safe_zip def identity(x): return x # A partial value (pval) is modeled as a pair (pv, const), as per # type PVal = (PV, Const) # data PV = Known | Unknown AbstractValue # type Const = MaybeTraced JaxType # where the Known arm, represented by a None, indicates a known (constant) value # and the Unknown arm, represented by an AbstractValue instance, indicates an # unknown value. # When the pv is an AbstractValue, then the const must be unit. class JaxprTrace(Trace): def pure(self, val): return self.new_const(val) def lift(self, val): return self.new_const(val) def sublift(self, val): return JaxprTracer(self, val.pval, FreeVar(val)) def new_const(self, val): if isinstance(val, Tracer) and val._trace.level == self.level: raise Exception return JaxprTracer(self, PartialVal((None, val)), unit) def new_instantiated_literal(self, val): return JaxprTracer(self, PartialVal((get_aval(val), unit)), Literal(val)) def new_instantiated_const(self, val): return JaxprTracer(self, PartialVal((get_aval(val), unit)), ConstVar(val)) def new_arg(self, pval): _, const = pval return JaxprTracer(self, pval, LambdaBinding()) def instantiate_const(self, tracer): pv, const = tracer.pval if isinstance(pv, AbstractValue): return tracer elif pv is None: if type(const) in core.literalable_types and onp.shape(const) == (): return self.new_instantiated_literal(const) else: return self.new_instantiated_const(const) else: raise TypeError(pv) def instantiate_const_abstracted(self, tracer): pv, const = tracer.pval if isinstance(pv, AbstractValue): return tracer elif pv is None: aval = raise_to_shaped(get_aval(const), onp.isscalar(const)) return JaxprTracer(self, PartialVal((aval, unit)), ConstVar(const)) else: raise TypeError(pv) def process_primitive(self, primitive, tracers, params): if primitive in custom_partial_eval_rules: return custom_partial_eval_rules[primitive](self, *tracers, **params) else: return self.default_process_primitive(primitive, tracers, params) def default_process_primitive(self, primitive, tracers, params): pvs, consts = unzip2(t.pval for t in tracers) if all(pv is None for pv in pvs): return primitive.bind(*consts, **params) tracers = map(self.instantiate_const, tracers) avals = [t.aval for t in tracers] out_aval = primitive.abstract_eval(*avals, **params) if primitive.multiple_results: out_tracers = [JaxprTracer(self, PartialVal((aval, unit)), None) for aval in out_aval] eqn = new_eqn_recipe(tracers, out_tracers, primitive, params) for t in out_tracers: t.recipe = eqn return out_tracers else: out_tracer = JaxprTracer(self, PartialVal((out_aval, unit)), None) out_tracer.recipe = new_eqn_recipe(tracers, [out_tracer], primitive, params) return out_tracer def process_call(self, call_primitive, f, tracers, params): name = params.get('name', f.__name__) if self.master.trace_type is StagingJaxprTrace: tracers = map(self.instantiate_const_abstracted, tracers) else: name = wrap_name(name, 'pe') params = dict(params, name=name) if call_primitive in call_partial_eval_rules: return call_partial_eval_rules[call_primitive](self, f, tracers, params) if call_primitive in map_primitives: return self.process_map(call_primitive, f, tracers, params) in_pvs, in_consts = unzip2([t.pval for t in tracers]) fun, aux = partial_eval(f, self, in_pvs) out_flat = call_primitive.bind(fun, *in_consts, **params) out_pvs, jaxpr, env = aux() env_tracers = map(self.full_raise, env) out_pv_consts, consts = split_list(out_flat, [len(out_flat)-len(jaxpr.constvars)]) const_tracers = map(self.new_instantiated_const, consts) lifted_jaxpr = convert_constvars_jaxpr(jaxpr) out_tracers = [JaxprTracer(self, PartialVal((out_pv, out_pv_const)), None) for out_pv, out_pv_const in zip(out_pvs, out_pv_consts)] new_params = dict(params, call_jaxpr=lifted_jaxpr) # The `jaxpr` already contains the env_vars at start of invars eqn = new_eqn_recipe(tuple(it.chain(const_tracers, env_tracers, tracers)), out_tracers, call_primitive, new_params) for t in out_tracers: t.recipe = eqn return out_tracers def process_map(self, map_primitive, f, tracers, params): in_pvs, in_consts = unzip2([t.pval for t in tracers]) reduced_pvs = [None if pv is None else _mapped_aval(pv) for pv in in_pvs] fun, aux = partial_eval(f, self, reduced_pvs) out_flat = map_primitive.bind(fun, *in_consts, **params) out_pvs_reduced, jaxpr, env = aux() out_pv_consts, consts = split_list(out_flat, [len(out_flat)-len(jaxpr.constvars)]) out_pvs = [None if pv is None else _unmapped_aval(params['axis_size'], pv) for pv in out_pvs_reduced] const_tracers = map(self.new_instantiated_const, consts) env_tracers = map(self.full_raise, env) lifted_jaxpr = convert_constvars_jaxpr(jaxpr) out_tracers = [JaxprTracer(self, PartialVal((out_pv, out_pv_const)), None) for out_pv, out_pv_const in zip(out_pvs, out_pv_consts)] # The `jaxpr` already contains the env_vars at start of invars new_params = dict(params, mapped_invars=tuple([True] * len(const_tracers) + [False] * len(env_tracers) + [True] * len(tracers)), call_jaxpr=lifted_jaxpr) eqn = new_eqn_recipe(tuple(it.chain(const_tracers, env_tracers, tracers)), out_tracers, map_primitive, new_params) for t in out_tracers: t.recipe = eqn return out_tracers def post_process_call(self, call_primitive, out_tracers, params): if call_primitive in map_primitives: return self.post_process_map(call_primitive, out_tracers, params) jaxpr, consts, env = tracers_to_jaxpr([], out_tracers) out_pvs, out_pv_consts = unzip2(t.pval for t in out_tracers) out = out_pv_consts + consts del consts, out_pv_consts master = self.master def todo(x): n = len(jaxpr.outvars) out_pv_consts, consts = x[:n], x[n:] trace = JaxprTrace(master, core.cur_sublevel()) const_tracers = map(trace.new_instantiated_const, consts) env_tracers = map(trace.full_raise, env) lifted_jaxpr = convert_constvars_jaxpr(jaxpr) out_tracers = [JaxprTracer(trace, PartialVal((out_pv, out_pv_const)), None) for out_pv, out_pv_const in zip(out_pvs, out_pv_consts)] new_params = dict(params, call_jaxpr=lifted_jaxpr) # The `jaxpr` already contains the env_vars at start of invars eqn = new_eqn_recipe(tuple(it.chain(const_tracers, env_tracers)), out_tracers, call_primitive, new_params) for t in out_tracers: t.recipe = eqn return out_tracers return out, todo def post_process_map(self, map_primitive, out_tracers, params): jaxpr, consts, env = tracers_to_jaxpr([], out_tracers) out_pvs_reduced, out_pv_consts = unzip2(t.pval for t in out_tracers) out_pvs = [None if pv is None else _unmapped_aval(params['axis_size'], pv) for pv in out_pvs_reduced] out = out_pv_consts + consts del consts, out_pv_consts master = self.master def todo(x): n = len(jaxpr.outvars) out_pv_consts, consts = x[:n], x[n:] trace = JaxprTrace(master, core.cur_sublevel()) const_tracers = map(trace.new_instantiated_const, consts) # The `jaxpr` already contains the env_vars at start of invars lifted_jaxpr = convert_constvars_jaxpr(jaxpr) out_tracers = [JaxprTracer(trace, PartialVal((out_pv, out_pv_const)), None) for out_pv, out_pv_const in zip(out_pvs, out_pv_consts)] new_params = dict(params, mapped_invars=tuple([True] * len(const_tracers) + [False] * len(env)), call_jaxpr=lifted_jaxpr) env_tracers = map(trace.full_raise, env) eqn = new_eqn_recipe(it.chain(const_tracers, env_tracers), out_tracers, map_primitive, new_params) for t in out_tracers: t.recipe = eqn return out_tracers return out, todo # This subclass is used just for its type tag, which switches the behavior of # process_call to stage out into the jaxpr any call primitives encountered # (rather than doing partial evaluation into the call). class StagingJaxprTrace(JaxprTrace): pass def _mapped_aval(aval): if aval is core.abstract_unit: return aval elif isinstance(aval, ShapedArray): # might be raising abstraction level from Concrete here return ShapedArray(aval.shape[1:], aval.dtype) else: raise TypeError(aval) def _unmapped_aval(size, aval): if aval is core.abstract_unit: return aval elif isinstance(aval, ShapedArray): return ShapedArray((size,) + aval.shape, aval.dtype) else: raise TypeError(aval) map_primitives = set() custom_partial_eval_rules = {} call_partial_eval_rules = {} def partial_eval(f, trace, pvs): f = trace_to_subjaxpr(f, trace.master, False) return partial_eval_wrapper(f, tuple(pvs)) @lu.transformation_with_aux def partial_eval_wrapper(avals, *consts): py_args = (map(PartialVal, zip(avals, consts)),) jaxpr, (out_pvals, consts, env) = yield py_args, {} out_pvs, out_consts = unzip2(out_pvals) out = tuple(out_consts) + tuple(consts) # TODO: can consts be traced? yield out, (out_pvs, jaxpr, env) def abstract_eval_fun(fun, *avals, **params): pvals_in = [PartialVal((a, unit)) for a in avals] _, pvals_out, _ = trace_to_jaxpr(lu.wrap_init(fun, params), pvals_in, instantiate=True) avals_out, _ = unzip2(pvals_out) for aval_out in avals_out: assert isinstance(aval_out, AbstractValue) # instantiate=True return avals_out class JaxprTracer(Tracer): __slots__ = ['pval', 'recipe'] def __init__(self, trace, pval, recipe): assert isinstance(pval, PartialVal) pv, const = pval if isinstance(const, Tracer) and const._trace.level >= trace.level: trace.escaped_tracer_error( "Tracer from a higher level: {} in trace {}".format(const, trace)) self._trace = trace self.pval = pval self.recipe = recipe def __repr__(self): return 'Traced<{}:{}>'.format(self.aval, self._trace) @property def aval(self): pv, const = self.pval return partial_val_aval(pv, const) @property def parents(self): if isinstance(self.recipe, JaxprEqnRecipe): return self.recipe.invars else: return [] def ispure(self): pv, _ = self.pval return pv is None # or pv is core.abstract_unit def full_lower(self): if self.ispure(): _, const = self.pval return core.full_lower(const) else: return self class PartialVal(tuple): def __new__(cls, xs): pv, const = xs if not core.skip_checks: # type checks assert isinstance(pv, valid_pv_types), xs assert isinstance(const, core.Tracer) or core.valid_jaxtype(const), xs # invariant checks if isinstance(pv, AbstractValue): assert const == core.unit, xs return tuple.__new__(cls, xs) valid_pv_types = (AbstractValue, type(None)) def merge_pvals(val, pval): pv, const = pval if isinstance(pv, AbstractValue): return val elif pv is None: return const else: raise TypeError(pv) def partial_val_aval(pv, const): if isinstance(pv, AbstractValue): return pv elif pv is None: return get_aval(const) else: raise TypeError(pv) def trace_to_jaxpr(fun, pvals, instantiate=False, stage_out_calls=False): """Traces a function, given abstract inputs, to a jaxpr.""" trace_type = StagingJaxprTrace if stage_out_calls else JaxprTrace with new_master(trace_type) as master: fun = trace_to_subjaxpr(fun, master, instantiate) jaxpr, (out_pvals, consts, env) = fun.call_wrapped(pvals) assert not env del master return jaxpr, out_pvals, consts @lu.transformation def trace_to_subjaxpr(master, instantiate, pvals): assert all([isinstance(pv, PartialVal) for pv in pvals]), pvals trace = JaxprTrace(master, core.cur_sublevel()) in_tracers = map(trace.new_arg, pvals) ans = yield in_tracers, {} instantiate = [instantiate] * len(ans) if type(instantiate) is bool else instantiate out_tracers = map(trace.full_raise, map(core.full_lower, ans)) out_tracers = map(partial(instantiate_const_at, trace), instantiate, out_tracers) jaxpr, consts, env = tracers_to_jaxpr(in_tracers, out_tracers) out_pvals = [t.pval for t in out_tracers] del trace, in_tracers, out_tracers yield jaxpr, (out_pvals, consts, env) def instantiate_const_at(trace, instantiate, tracer): assert type(instantiate) is bool if instantiate: return trace.instantiate_const(trace.full_raise(tracer)) else: return tracer FreeVar = namedtuple('FreeVar', ['val']) ConstVar = namedtuple('ConstVar', ['val']) LambdaBinding = namedtuple('LambdaBinding', []) JaxprEqnRecipe = namedtuple('JaxprEqnRecipe', ['eqn_id', 'invars', 'outvars', 'primitive', 'params']) def new_eqn_recipe(invars, outvars, primitive, params): """Constructs a new JaxEqnRecipe. Params: invars: the tracers for the primitive inputs. outvars: the tracers for the primitive outputs. primitive: the primitive. params: the primitive params """ if primitive.call_primitive: # TODO(necula): move these checks to core.check_jaxpr, and call it # in more places. assert "call_jaxpr" in params return JaxprEqnRecipe(object(), tuple(invars), map(ref, outvars), primitive, params) def recipe_to_eqn(unused_var, getvar, recipe): _, in_tracers, out_tracer_refs, primitive, params = recipe out_tracers = [t_ref() for t_ref in out_tracer_refs] invars = [getvar(t) for t in in_tracers] outvars = [unused_var() if t is None else getvar(t) for t in out_tracers] return new_jaxpr_eqn(invars, outvars, primitive, params) def tracers_to_jaxpr(in_tracers, out_tracers): """Constructs Jaxpr given tracers for inputs and outputs. Params: in_tracers: the tracers that were created for the function inputs out_tracers: the tracers that were output by the function. Returns: a triple of a `Jaxpr`, a list of constant values corresponding to the `constvars` in the returned Jaxps, and a list of environment values. The vars for the environment values have been pre-pended to the Jaxpr's `invars`. """ newvar = core.gensym('') t_to_var = defaultdict(newvar) getvar = lambda t: t_to_var[id(t)] sorted_tracers = toposort(out_tracers) invars = map(getvar, in_tracers) eqns = [] env = {} consts = {} const_to_var = defaultdict(newvar) processed_eqn_ids = set() for t in sorted_tracers: recipe = t.recipe if isinstance(recipe, JaxprEqnRecipe): if recipe.eqn_id not in processed_eqn_ids: eqns.append(recipe_to_eqn(newvar, getvar, recipe)) processed_eqn_ids.add(recipe.eqn_id) elif isinstance(recipe, LambdaBinding): if not any(t is in_tracer for in_tracer in in_tracers): t._trace.escaped_tracer_error("Tracer not among input tracers {}".format(t)) assert in_tracers, "Lambda binding with no args" elif isinstance(recipe, FreeVar): env[getvar(t)] = recipe.val elif isinstance(recipe, ConstVar): v = t_to_var[id(t)] = const_to_var[id(recipe.val)] consts[v] = recipe.val elif isinstance(recipe, Literal): t_to_var[id(t)] = recipe elif recipe is unit: t_to_var[id(t)] = unitvar else: raise TypeError(recipe) env_vars, env_vals = unzip2(env.items()) const_vars, const_vals = unzip2(consts.items()) # The env_vars are pre-pended to the invars jaxpr = Jaxpr(const_vars, list(it.chain(env_vars, invars)), list(map(getvar, out_tracers)), eqns) core.skip_checks or core.check_jaxpr(jaxpr) return jaxpr, const_vals, env_vals @cache() def convert_constvars_jaxpr(jaxpr): """Moves the constvars to the start of invars.""" core.skip_checks or core.check_jaxpr(jaxpr) lifted_jaxpr = Jaxpr(constvars=(), invars=jaxpr.constvars + jaxpr.invars, outvars=jaxpr.outvars, eqns=jaxpr.eqns) core.skip_checks or core.check_jaxpr(lifted_jaxpr) return lifted_jaxpr def partial_eval_jaxpr(jaxpr, unknowns, instantiate): f = lu.wrap_init(core.jaxpr_as_fun(jaxpr)) cell = [] def fun(*vals): pvals = [PartialVal((aval, unit)) if uk else PartialVal((None, val)) for aval, val, uk in zip(jaxpr.in_avals, vals, unknowns)] jaxpr_2, out_pvals_2, consts_2 = trace_to_jaxpr(f, pvals, instantiate=instantiate) out_pvs_2, out_consts_2 = unzip2(out_pvals_2) cell.append((out_pvs_2, jaxpr_2, len(consts_2))) return out_consts_2 + consts_2 pvals = [PartialVal((abstract_unit, unit)) if uk else PartialVal((aval, unit)) for aval, uk in zip(jaxpr.in_avals, unknowns)] jaxpr_1, out_pvals, consts_1 = trace_to_jaxpr(lu.wrap_init(fun), pvals, instantiate=True) (out_pvs_2, jaxpr_2, num_res), = cell assert len(jaxpr_2.constvars) == num_res # jaxpr :: a -> b # jaxpr_1 :: a1 -> [b1, res] # jaxpr_2 :: res | a2 -> b2 # jaxpr_2 :: [a2, res] -> b2 jaxpr_2 = convert_constvars_jaxpr(jaxpr_2) jaxpr_2.invars = jaxpr_2.invars[num_res:] + jaxpr_2.invars[:num_res] uk_out = [pv is not None for pv in out_pvs_2] in_avals_1, in_avals_2 = unzip2(map(_split_aval, unknowns, jaxpr.in_avals)) out_avals_1, out_avals_2 = unzip2(map(_split_aval, uk_out, jaxpr.out_avals)) # out_avals_1 and in_avals_2 need the residuals added out_pvs, _ = unzip2(out_pvals) res_avals = out_pvs[len(jaxpr.out_avals):] assert len(res_avals) == num_res out_avals_1 = out_avals_1 + res_avals in_avals_2 = in_avals_2 + res_avals typed_jaxpr_1 = TypedJaxpr(jaxpr_1, consts_1, in_avals_1, out_avals_1) typed_jaxpr_2 = TypedJaxpr(jaxpr_2, (), in_avals_2, out_avals_2) return typed_jaxpr_1, typed_jaxpr_2, uk_out def _split_aval(unknown, aval): return (abstract_unit, aval) if unknown else (aval, abstract_unit) remat_call_p = core.Primitive('remat_call') remat_call_p.call_primitive = True remat_call = partial(core.call_bind, remat_call_p) remat_call_p.def_custom_bind(remat_call) remat_call_p.def_impl(core.call_impl) remat_call_p.multiple_results = True def _remat_partial_eval(trace, f, tracers, params): concrete = params['concrete'] # Unlike JaxprTrace.process_call, we want to form a jaxpr for the entirety of # the function being called, not just for the unknown parts. To do that, we # instantiate all the input tracers as constants in the jaxpr being formed. # Those tracers might have concrete avals, and doing abstract interpretation # on concrete avals engenders a tradeoff: it allows data-dependent Python # control flow to work, but it can in some cases lead to redundant FLOPs (done # both in the `bind` call below and the `core.jaxpr_as_fun` call). We use the # `concrete` parameter to switch this behavior, and if `concrete` is False # then we raise the avals to the Shaped level. if concrete: instantiated_tracers = map(trace.instantiate_const, tracers) else: instantiated_tracers = map(trace.instantiate_const_abstracted, tracers) # Using the instantiated tracers, run call_bind like JaxprTrace.process_call. in_pvs, in_consts = unzip2(t.pval for t in instantiated_tracers) fun, aux = partial_eval(f, trace, in_pvs) if concrete: # TODO(mattjj): remove `remat_context` when confident no accidental FLOPs with remat_context(): out_flat = remat_call_p.bind(fun, *in_consts, **params) else: out_flat = remat_call_p.bind(fun, *in_consts, **params) out_pvs, jaxpr, env = aux() env = map(trace.full_raise, env) out_pval_consts1, consts = split_list(out_flat, [len(out_flat)-len(jaxpr.constvars)]) out_pvals1 = [PartialVal((pv, const)) for pv, const in zip(out_pvs, out_pval_consts1)] # Since we traced with everything marked as unknown, but we need to know which # outputs are known/unknown, we use partial_eval_jaxpr to get out_unknowns. in_avals = ([raise_to_shaped(partial_val_aval(*t.pval)) for t in env] + [raise_to_shaped(pv) for pv in in_pvs]) out_avals = [raise_to_shaped(pv if pv is not None else abstract_unit if var is unitvar else get_aval(var.val) if type(var) is Literal else get_aval(const)) for var, pv, const in zip(jaxpr.outvars, out_pvs, out_pval_consts1)] typed_jaxpr = core.TypedJaxpr(jaxpr, consts, in_avals, out_avals) in_unknowns = [t.pval[0] is not None for t in it.chain(env, tracers)] jaxpr_1, jaxpr_2, out_unknowns = partial_eval_jaxpr(typed_jaxpr, in_unknowns, False) num_res = len(jaxpr_1.out_avals) - len(jaxpr_2.out_avals) # First, we prune the jaxpr to be staged out not to have too many outputs. typed_jaxpr = _dce_jaxpr(typed_jaxpr, out_unknowns) # Next, we need values for the outputs that should be known. Since consts # weren't passed through Python for evaluation, we need to evaluate jaxpr_1, # minus the residual outputs that we don't need. When `concrete=True`, as an # optimization we can avoid redoing *some* redundant FLOPs, namely those that # produced concrete avals at the output, simply by using those as computed # values. For the use case of reverse-mode ad in op-by-op ("eager mode") # evaluation, all the primal outputs should be concrete (thus not recomputed). to_compute = [not uk and type(pv) is not ConcreteArray for uk, pv in zip(out_unknowns, out_pvs)] jaxpr_1_primals = _dce_jaxpr(jaxpr_1, to_compute + [False] * num_res) _, in_consts = unzip2(t.pval for t in it.chain(env, tracers)) out_pval_consts2 = core.jaxpr_as_fun(jaxpr_1_primals)(*in_consts)[:-num_res or None] out_pvals = map(_reconstruct_pval, out_pvals1, out_pval_consts2, out_unknowns) # Now that we have out_pvals, the rest is just like JaxprTrace.process_call. instantiated_tracers = env + instantiated_tracers const_tracers = map(trace.new_instantiated_const, consts) lifted_jaxpr = convert_constvars_jaxpr(typed_jaxpr.jaxpr) out_tracers = [JaxprTracer(trace, out_pval, None) for out_pval in out_pvals] new_params = dict(params, call_jaxpr=lifted_jaxpr) eqn = new_eqn_recipe(tuple(it.chain(const_tracers, instantiated_tracers)), out_tracers, remat_call_p, new_params) for t in out_tracers: t.recipe = eqn return out_tracers call_partial_eval_rules[remat_call_p] = _remat_partial_eval def _dce_jaxpr(typed_jaxpr, outputs): # This dead-code elimination is pretty rudimentary, and in particular doesn't # nontrivially DCE through scan, call, or other higher-order primitives. # TODO(mattjj): better DCE jaxpr = typed_jaxpr.jaxpr outvars, out_avals = jaxpr.outvars, typed_jaxpr.out_avals out_pairs = [(var, aval) if output else (unitvar, core.abstract_unit) for var, aval, output in zip(outvars, out_avals, outputs)] new_outvars, new_out_avals = unzip2(out_pairs) needed_vars = {v for v in new_outvars if type(v) is not Literal} new_eqns = [] for eqn in jaxpr.eqns[::-1]: if set(eqn.outvars) & needed_vars: new_eqns.append(eqn) needed_vars.update(v for v in eqn.invars if type(v) is not Literal) new_eqns = new_eqns[::-1] new_jaxpr = core.Jaxpr(jaxpr.constvars, jaxpr.invars, new_outvars, new_eqns) return core.TypedJaxpr(new_jaxpr, typed_jaxpr.literals, typed_jaxpr.in_avals, new_out_avals) def _reconstruct_pval(pval1, const2, unknown): pv1, const1 = pval1 if unknown or pv1 is None: return pval1 else: if type(pv1) is ConcreteArray: return PartialVal((None, pv1.val)) else: return PartialVal((None, const2)) # TODO(mattjj): for https://github.com/google/jax/pull/1749 we allowed # standard_abstract_eval to perform concrete evaluation (i.e. FLOPs), but we # don't think it should happen except for in a remat context @contextlib.contextmanager def remat_context(): try: prev_state = _thread_local_state.remat _thread_local_state.remat = True yield finally: _thread_local_state.remat = prev_state class _ThreadLocalState(threading.local): def __init__(self): self.remat = False _thread_local_state = _ThreadLocalState() def move_binders_to_front(typed_jaxpr, to_move): assert not typed_jaxpr.jaxpr.constvars assert len(typed_jaxpr.in_avals) == len(to_move) new_invars = _move_to_front(typed_jaxpr.jaxpr.invars, to_move) new_jaxpr = core.Jaxpr((), new_invars, typed_jaxpr.jaxpr.outvars, typed_jaxpr.jaxpr.eqns) new_in_avals = _move_to_front(typed_jaxpr.in_avals, to_move) new_typed_jaxpr = core.TypedJaxpr(new_jaxpr, typed_jaxpr.literals, new_in_avals, typed_jaxpr.out_avals) return new_typed_jaxpr def _move_to_front(lst, to_move): return ([elt for elt, move in zip(lst, to_move) if move] + [elt for elt, move in zip(lst, to_move) if not move])
40.238311
99
0.703688
a65c2015bee745f6c52b2667f26dc17e5598f3af
21,311
py
Python
keras/utils/layer_utils_test.py
mcx/keras
3613c3defc39c236fb1592c4f7ba1a9cc887343a
[ "Apache-2.0" ]
null
null
null
keras/utils/layer_utils_test.py
mcx/keras
3613c3defc39c236fb1592c4f7ba1a9cc887343a
[ "Apache-2.0" ]
null
null
null
keras/utils/layer_utils_test.py
mcx/keras
3613c3defc39c236fb1592c4f7ba1a9cc887343a
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for layer_utils.""" import collections import contextlib import multiprocessing.dummy import os import pickle import shutil import sys import time import timeit import numpy as np import tensorflow.compat.v2 as tf import keras from keras.utils import io_utils from keras.utils import layer_utils _PICKLEABLE_CALL_COUNT = collections.Counter() class MyPickleableObject(tf.__internal__.tracking.AutoTrackable): """Needed for InterfaceTests.test_property_cache_serialization. This class must be at the top level. This is a constraint of pickle, unrelated to `cached_per_instance`. """ @property @layer_utils.cached_per_instance def my_id(self): _PICKLEABLE_CALL_COUNT[self] += 1 return id(self) class LayerUtilsTest(tf.test.TestCase): def test_print_summary(self): model = keras.Sequential() model.add( keras.layers.Conv2D( filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv", ) ) model.add(keras.layers.Flatten(name="flat")) model.add(keras.layers.Dense(5, name="dense")) file_name = "model_1.txt" temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) fpath = os.path.join(temp_dir, file_name) writer = open(fpath, "w") def print_to_file(text): print(text, file=writer) try: layer_utils.print_summary(model, print_fn=print_to_file) self.assertTrue(tf.io.gfile.exists(fpath)) writer.close() reader = open(fpath, "r") lines = reader.readlines() reader.close() self.assertEqual(len(lines), 15) except ImportError: pass def test_print_summary_without_print_fn(self): model = keras.Sequential( [keras.layers.Dense(5, input_shape=(10,), name="dense")] ) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: layer_utils.print_summary(model) self.assertIn("dense (Dense)", printed.contents()) def test_print_summary_expand_nested(self): shape = (None, None, 3) def make_model(): x = inputs = keras.Input(shape) x = keras.layers.Conv2D(3, 1)(x) x = keras.layers.BatchNormalization()(x) return keras.Model(inputs, x) x = inner_inputs = keras.Input(shape) x = make_model()(x) inner_model = keras.Model(inner_inputs, x) inputs = keras.Input(shape) model = keras.Model(inputs, inner_model(inputs)) file_name = "model_2.txt" temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) fpath = os.path.join(temp_dir, file_name) writer = open(fpath, "w") def print_to_file(text): print(text, file=writer) try: layer_utils.print_summary( model, print_fn=print_to_file, expand_nested=True ) self.assertTrue(tf.io.gfile.exists(fpath)) writer.close() reader = open(fpath, "r") lines = reader.readlines() reader.close() check_str = ( 'Model: "model_2"\n' "_________________________________________________________________\n" # noqa: E501 " Layer (type) Output Shape Param # \n" # noqa: E501 "=================================================================\n" # noqa: E501 " input_3 (InputLayer) [(None, None, None, 3)] 0 \n" # noqa: E501 " \n" # noqa: E501 " model_1 (Functional) (None, None, None, 3) 24 \n" # noqa: E501 "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 "| input_1 (InputLayer) [(None, None, None, 3)] 0 |\n" # noqa: E501 "| |\n" # noqa: E501 "| model (Functional) (None, None, None, 3) 24 |\n" # noqa: E501 "||¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯||\n" # noqa: E501 "|| input_2 (InputLayer) [(None, None, None, 3)] 0 ||\n" # noqa: E501 "|| ||\n" # noqa: E501 "|| conv2d (Conv2D) (None, None, None, 3) 12 ||\n" # noqa: E501 "|| ||\n" # noqa: E501 "|| batch_normalization (BatchN (None, None, None, 3) 12 ||\n" # noqa: E501 "|| ormalization) ||\n" # noqa: E501 "|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n" # noqa: E501 "¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯\n" # noqa: E501 "=================================================================\n" # noqa: E501 "Total params: 24\n" "Trainable params: 18\n" "Non-trainable params: 6\n" "_________________________________________________________________\n" # noqa: E501 ) fin_str = "" for line in lines: fin_str += line self.assertIn(fin_str, check_str) self.assertEqual(len(lines), 25) except ImportError: pass def test_summary_subclass_model_expand_nested(self): class Sequential(keras.Model): def __init__(self, *args): super().__init__() self.module_list = list(args) if args else [] def call(self, x): for module in self.module_list: x = module(x) return x class Block(keras.Model): def __init__(self): super().__init__() self.module = Sequential( keras.layers.Dense(10), keras.layers.Dense(10), ) def call(self, input_tensor): x = self.module(input_tensor) return x class Base(keras.Model): def __init__(self): super().__init__() self.module = Sequential(Block(), Block()) def call(self, input_tensor): x = self.module(input_tensor) y = self.module(x) return x, y class Network(keras.Model): def __init__(self): super().__init__() self.child = Base() def call(self, inputs): return self.child(inputs) net = Network() inputs = keras.Input(shape=(10,)) outputs = net(inputs) model = keras.models.Model(inputs=inputs, outputs=outputs) file_name = "model_3.txt" temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) fpath = os.path.join(temp_dir, file_name) writer = open(fpath, "w") def print_to_file(text): print(text, file=writer) try: layer_utils.print_summary( model, line_length=120, print_fn=print_to_file, expand_nested=True, ) self.assertTrue(tf.io.gfile.exists(fpath)) writer.close() reader = open(fpath, "r") lines = reader.readlines() reader.close() # The output content are slightly different for the input shapes # between v1 and v2. if tf.__internal__.tf2.enabled(): self.assertEqual(len(lines), 39) else: self.assertEqual(len(lines), 40) except ImportError: pass def test_print_summary_show_trainable(self): model = keras.Sequential(name="trainable") untrained = keras.layers.Conv2D( filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv" ) model.add(untrained) model.add(keras.layers.Flatten(name="flat")) model.add(keras.layers.Dense(5, name="dense")) untrained.trainable = False file_name = "model_4.txt" temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) fpath = os.path.join(temp_dir, file_name) writer = open(fpath, "w") def print_to_file(text): print(text, file=writer) try: layer_utils.print_summary( model, print_fn=print_to_file, show_trainable=True ) self.assertTrue(tf.io.gfile.exists(fpath)) writer.close() reader = open(fpath, "r") lines = reader.readlines() reader.close() check_str = ( "Model: " '"trainable"\n____________________________________________________________________________\n' # noqa: E501 " Layer (type) Output Shape Param # " # noqa: E501 "Trainable " "\n============================================================================\n" # noqa: E501 " conv (Conv2D) (None, 2, 3, 2) 62 N" # noqa: E501 " \n" " " # noqa: E501 "\n flat (Flatten) (None, 12) 0 " # noqa: E501 "Y \n" " " # noqa: E501 "\n dense (Dense) (None, 5) 65 " # noqa: E501 "Y \n" " " # noqa: E501 "\n============================================================================\nTotal" # noqa: E501 " params: 127\nTrainable params: 65\nNon-trainable params: " "62\n____________________________________________________________________________\n" # noqa: E501 "____________________________________________________________________________\n" # noqa: E501 ) fin_str = "" for line in lines: fin_str += line self.assertIn(fin_str, check_str) self.assertEqual(len(lines), 15) except ImportError: pass def test_print_summary_expand_nested_show_trainable(self): shape = (None, None, 3) def make_model(): x = inputs = keras.Input(shape, name="input2") untrainable = keras.layers.Conv2D(3, 1) untrainable.trainable = False x = untrainable(x) x = keras.layers.BatchNormalization()(x) return keras.Model(inputs, x) x = inner_inputs = keras.Input(shape, name="input1") x = make_model()(x) inner_model = keras.Model(inner_inputs, x) inputs = keras.Input(shape, name="input3") model = keras.Model(inputs, inner_model(inputs)) file_name = "model_6.txt" temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) fpath = os.path.join(temp_dir, file_name) writer = open(fpath, "w") def print_to_file(text): print(text, file=writer) try: layer_utils.print_summary( model, print_fn=print_to_file, expand_nested=True, show_trainable=True, ) self.assertTrue(tf.io.gfile.exists(fpath)) writer.close() reader = open(fpath, "r") lines = reader.readlines() reader.close() check_str = ( "Model: " '"model_2"\n____________________________________________________________________________\n' # noqa: E501 " Layer (type) Output Shape Param # " # noqa: E501 "Trainable " "\n============================================================================\n" # noqa: E501 " input3 (InputLayer) [(None, None, None, 3)] 0 Y" # noqa: E501 " \n" " " # noqa: E501 "\n model_1 (Functional) (None, None, None, 3) 24 " # noqa: E501 "Y " "\n|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n|" # noqa: E501 " input1 (InputLayer) [(None, None, None, 3)] 0 Y" # noqa: E501 " |\n|" " " # noqa: E501 "|\n| model (Functional) (None, None, None, 3) 24 " # noqa: E501 "Y " "|\n||¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯||\n||" # noqa: E501 " input2 (InputLayer) [(None, None, None, 3)] 0 Y" # noqa: E501 " ||\n||" " " # noqa: E501 "||\n|| conv2d (Conv2D) (None, None, None, 3) 12 " # noqa: E501 "N ||\n||" " " # noqa: E501 "||\n|| batch_normalization (BatchN (None, None, None, 3) 12 " # noqa: E501 "Y ||\n|| ormalization)" " " "||\n|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|\n¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯\n============================================================================\nTotal" # noqa: E501 " params: 24\nTrainable params: 6\nNon-trainable params: " "18\n____________________________________________________________________________\n" # noqa: E501 "____________________________________________________________________________\n" # noqa: E501 ) fin_str = "" for line in lines: fin_str += line self.assertIn(fin_str, check_str) self.assertEqual(len(lines), 25) except ImportError: pass def test_property_cache(self): test_counter = collections.Counter() class MyObject(tf.__internal__.tracking.AutoTrackable): def __init__(self): super().__init__() self._frozen = True def __setattr__(self, key, value): """Enforce that cache does not set attribute on MyObject.""" if getattr(self, "_frozen", False): raise ValueError("Cannot mutate when frozen.") return super().__setattr__(key, value) @property @layer_utils.cached_per_instance def test_property(self): test_counter[id(self)] += 1 return id(self) first_object = MyObject() second_object = MyObject() # Make sure the objects return the correct values self.assertEqual(first_object.test_property, id(first_object)) self.assertEqual(second_object.test_property, id(second_object)) # Make sure the cache does not share across objects self.assertNotEqual( first_object.test_property, second_object.test_property ) # Check again (Now the values should be cached.) self.assertEqual(first_object.test_property, id(first_object)) self.assertEqual(second_object.test_property, id(second_object)) # Count the function calls to make sure the cache is actually being # used. self.assertAllEqual(tuple(test_counter.values()), (1, 1)) def test_property_cache_threaded(self): call_count = collections.Counter() class MyObject(tf.__internal__.tracking.AutoTrackable): @property @layer_utils.cached_per_instance def test_property(self): # Random sleeps to ensure that the execution thread changes # mid-computation. call_count["test_property"] += 1 time.sleep(np.random.random() + 1.0) # Use a RandomState which is seeded off the instance's id (the # mod is because numpy limits the range of seeds) to ensure that # an instance returns the same value in different threads, but # different instances return different values. return int( np.random.RandomState(id(self) % (2**31)).randint(2**16) ) def get_test_property(self, _): """Function provided to .map for threading test.""" return self.test_property # Test that multiple threads return the same value. This requires that # the underlying function is repeatable, as cached_property makes no # attempt to prioritize the first call. test_obj = MyObject() with contextlib.closing(multiprocessing.dummy.Pool(32)) as pool: # Intentionally make a large pool (even when there are only a small # number of cpus) to ensure that the runtime switches threads. results = pool.map(test_obj.get_test_property, range(64)) self.assertEqual(len(set(results)), 1) # Make sure we actually are testing threaded behavior. self.assertGreater(call_count["test_property"], 1) # Make sure new threads still cache hit. with contextlib.closing(multiprocessing.dummy.Pool(2)) as pool: start_time = ( timeit.default_timer() ) # Don't time pool instantiation. results = pool.map(test_obj.get_test_property, range(4)) total_time = timeit.default_timer() - start_time # Note(taylorrobie): The reason that it is safe to time a unit test is # that a cache hit will be << 1 second, and a cache miss is guaranteed # to be >= 1 second. Empirically confirmed by 100,000 runs with no # flakes. self.assertLess(total_time, 0.95) def test_property_cache_serialization(self): # Reset call count. .keys() must be wrapped in a list, because otherwise # we would mutate the iterator while iterating. for k in list(_PICKLEABLE_CALL_COUNT.keys()): _PICKLEABLE_CALL_COUNT.pop(k) first_instance = MyPickleableObject() self.assertEqual(id(first_instance), first_instance.my_id) # Test that we can pickle and un-pickle second_instance = pickle.loads(pickle.dumps(first_instance)) self.assertEqual(id(second_instance), second_instance.my_id) self.assertNotEqual(first_instance.my_id, second_instance.my_id) # Make sure de-serialized object uses the cache. self.assertEqual(_PICKLEABLE_CALL_COUNT[second_instance], 1) # Make sure the decorator cache is not being serialized with the object. expected_size = len(pickle.dumps(second_instance)) for _ in range(5): # Add some more entries to the cache. _ = MyPickleableObject().my_id self.assertEqual(len(_PICKLEABLE_CALL_COUNT), 7) size_check_instance = MyPickleableObject() _ = size_check_instance.my_id self.assertEqual(expected_size, len(pickle.dumps(size_check_instance))) if __name__ == "__main__": tf.test.main()
42.367793
275
0.49932
c691947f2362cc1d99855bb223faba82c541d1da
1,989
py
Python
python/vsi/test/test_dir_util.py
NoahRJohnson/vsi_common
e19e14bc276b20b9dcfd62e3e38abfd6f3487502
[ "MIT" ]
null
null
null
python/vsi/test/test_dir_util.py
NoahRJohnson/vsi_common
e19e14bc276b20b9dcfd62e3e38abfd6f3487502
[ "MIT" ]
null
null
null
python/vsi/test/test_dir_util.py
NoahRJohnson/vsi_common
e19e14bc276b20b9dcfd62e3e38abfd6f3487502
[ "MIT" ]
null
null
null
import os import unittest from vsi.tools.dir_util import ( find_file_in_path ) from vsi.test.utils import TestCase class DirTest(TestCase): pass class FindFileInPath(DirTest): def test_path_argument(self): # Empty lists self.assertIsNone(find_file_in_path('foo.txt', '')) self.assertIsNone(find_file_in_path('foo.txt', os.pathsep)) open(os.path.join(self.temp_dir.name, 'bar.txt',), 'wb').close() # Just the dir self.assertIsNone(find_file_in_path('foo.txt', self.temp_dir.name)) self.assertEqual(find_file_in_path('bar.txt', self.temp_dir.name), os.path.join(self.temp_dir.name, 'bar.txt')) # Multiple self.assertEqual(find_file_in_path('bar.txt', os.pathsep.join([ os.path.join(self.temp_dir.name, '1'), os.path.join(self.temp_dir.name, '2'), self.temp_dir.name, os.path.join(self.temp_dir.name, '3') ])), os.path.join(self.temp_dir.name, 'bar.txt')) def test_env(self): # Empty lists with unittest.mock.patch.dict(os.environ, {'PATH': ""}): self.assertIsNone(find_file_in_path('foo.txt')) with unittest.mock.patch.dict(os.environ, {'PATH': os.pathsep}): self.assertIsNone(find_file_in_path('foo.txt')) open(os.path.join(self.temp_dir.name, 'bar.txt',), 'wb').close() # Just the dir with unittest.mock.patch.dict(os.environ, {'PATH': self.temp_dir.name}): self.assertIsNone(find_file_in_path('foo.txt')) self.assertEqual(find_file_in_path('bar.txt'), os.path.join(self.temp_dir.name, 'bar.txt')) # Multiple dirs with unittest.mock.patch.dict(os.environ, {'PATH': os.pathsep.join([ os.path.join(self.temp_dir.name, '1'), os.path.join(self.temp_dir.name, '2'), self.temp_dir.name, os.path.join(self.temp_dir.name, '3')])}): self.assertEqual(find_file_in_path('bar.txt'), os.path.join(self.temp_dir.name, 'bar.txt'))
33.15
76
0.645048
5d5f5f4e6c3ad67e2d0bd90d5ed71f2a0c8b3700
868
py
Python
read_json_url_pyspark.py
arturosolutions/earthquakes
1afda35a373b3d31d6e912db4d17d3b66e70bc9c
[ "MIT" ]
null
null
null
read_json_url_pyspark.py
arturosolutions/earthquakes
1afda35a373b3d31d6e912db4d17d3b66e70bc9c
[ "MIT" ]
null
null
null
read_json_url_pyspark.py
arturosolutions/earthquakes
1afda35a373b3d31d6e912db4d17d3b66e70bc9c
[ "MIT" ]
null
null
null
import json from urllib.request import urlopen from pyspark.shell import spark, sqlContext url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_month.geojson" def load_json_data(json_url): """ :param json_url: :return: earthquakes json data """ response = urlopen(json_url) source = response.read().decode("utf-8") data = json.dumps(source) return json.loads(data) def main(): """ :return: Place and magnitude, where magnitude is greater than 1.0. """ df = sqlContext.read.json(load_json_data(url)) df.createOrReplaceTempView('earthquakes') earthquakes_df = spark.sql("SELECT properties.mag, properties.place " "FROM earthquakes " "WHERE properties.mag > 1.0") earthquakes_df.show() if __name__ == '__main__': main()
24.8
83
0.642857
ced1a0f64237267c1d2a4f4c925c4f5d38bf8016
12,038
py
Python
angr/procedures/definitions/win32_mrmsupport.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_mrmsupport.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_mrmsupport.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
# pylint:disable=line-too-long import logging from ...sim_type import SimTypeFunction, SimTypeShort, SimTypeInt, SimTypeLong, SimTypeLongLong, SimTypeDouble, SimTypeFloat, SimTypePointer, SimTypeChar, SimStruct, SimTypeFixedSizeArray, SimTypeBottom, SimUnion, SimTypeBool from ...calling_conventions import SimCCStdcall, SimCCMicrosoftAMD64 from .. import SIM_PROCEDURES as P from . import SimLibrary _l = logging.getLogger(name=__name__) lib = SimLibrary() lib.set_default_cc('X86', SimCCStdcall) lib.set_default_cc('AMD64', SimCCMicrosoftAMD64) lib.set_library_names("mrmsupport.dll") prototypes = \ { # 'CreateResourceIndexer': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypePointer(SimTypeBottom(label="Void"), offset=0), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["projectRoot", "extensionDllPath", "ppResourceIndexer"]), # 'DestroyResourceIndexer': SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0)], SimTypeBottom(label="Void"), arg_names=["resourceIndexer"]), # 'IndexFilePath': SimTypeFunction([SimTypePointer(SimTypeBottom(label="Void"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypePointer(SimTypeChar(label="Char"), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0), SimTypePointer(SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="IndexedResourceQualifier", pack=False, align=None), offset=0), label="LPArray", offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["resourceIndexer", "filePath", "ppResourceUri", "pQualifierCount", "ppQualifiers"]), # 'DestroyIndexedResults': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"name": SimTypePointer(SimTypeChar(label="Char"), offset=0), "value": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="IndexedResourceQualifier", pack=False, align=None), label="LPArray", offset=0)], SimTypeBottom(label="Void"), arg_names=["resourceUri", "qualifierCount", "qualifiers"]), # 'MrmCreateResourceIndexer': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["packageFamilyName", "projectRoot", "platformVersion", "defaultQualifiers", "indexer"]), # 'MrmCreateResourceIndexerFromPreviousSchemaFile': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["projectRoot", "platformVersion", "defaultQualifiers", "schemaFile", "indexer"]), # 'MrmCreateResourceIndexerFromPreviousPriFile': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["projectRoot", "platformVersion", "defaultQualifiers", "priFile", "indexer"]), # 'MrmCreateResourceIndexerFromPreviousSchemaData': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Byte"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["projectRoot", "platformVersion", "defaultQualifiers", "schemaXmlData", "schemaXmlSize", "indexer"]), # 'MrmCreateResourceIndexerFromPreviousPriData': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Byte"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["projectRoot", "platformVersion", "defaultQualifiers", "priData", "priSize", "indexer"]), # 'MrmIndexString': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "resourceUri", "resourceString", "qualifiers"]), # 'MrmIndexEmbeddedData': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Byte"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "resourceUri", "embeddedData", "embeddedDataSize", "qualifiers"]), # 'MrmIndexFile': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "resourceUri", "filePath", "qualifiers"]), # 'MrmIndexFileAutoQualifiers': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "filePath"]), # 'MrmIndexResourceContainerAutoQualifiers': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "containerPath"]), # 'MrmCreateResourceFile': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypeInt(signed=False, label="MrmPackagingMode"), SimTypeInt(signed=False, label="MrmPackagingOptions"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "packagingMode", "packagingOptions", "outputDirectory"]), # 'MrmCreateResourceFileInMemory': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypeInt(signed=False, label="MrmPackagingMode"), SimTypeInt(signed=False, label="MrmPackagingOptions"), SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer", "packagingMode", "packagingOptions", "outputPriData", "outputPriSize"]), # 'MrmPeekResourceIndexerMessages': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None), SimTypePointer(SimTypePointer(SimStruct({"severity": SimTypeInt(signed=False, label="MrmResourceIndexerMessageSeverity"), "id": SimTypeInt(signed=False, label="UInt32"), "text": SimTypePointer(SimTypeChar(label="Char"), offset=0)}, name="MrmResourceIndexerMessage", pack=False, align=None), offset=0), label="LPArray", offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["handle", "messages", "numMsgs"]), # 'MrmDestroyIndexerAndMessages': SimTypeFunction([SimStruct({"handle": SimTypePointer(SimTypeBottom(label="Void"), offset=0)}, name="MrmResourceIndexerHandle", pack=False, align=None)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexer"]), # 'MrmFreeMemory': SimTypeFunction([SimTypePointer(SimTypeChar(label="Byte"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["data"]), # 'MrmDumpPriFile': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmDumpType"), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexFileName", "schemaPriFile", "dumpType", "outputXmlFile"]), # 'MrmDumpPriFileInMemory': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="MrmDumpType"), SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["indexFileName", "schemaPriFile", "dumpType", "outputXmlData", "outputXmlSize"]), # 'MrmDumpPriDataInMemory': SimTypeFunction([SimTypePointer(SimTypeChar(label="Byte"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypePointer(SimTypeChar(label="Byte"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypeInt(signed=False, label="MrmDumpType"), SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["inputPriData", "inputPriSize", "schemaPriData", "schemaPriSize", "dumpType", "outputXmlData", "outputXmlSize"]), # 'MrmCreateConfig': SimTypeFunction([SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["platformVersion", "defaultQualifiers", "outputXmlFile"]), # 'MrmCreateConfigInMemory': SimTypeFunction([SimTypeInt(signed=False, label="MrmPlatformVersion"), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["platformVersion", "defaultQualifiers", "outputXmlData", "outputXmlSize"]), } lib.set_prototypes(prototypes)
171.971429
695
0.745971
13c9c188645002aa53364964f14ae72fff1a72c2
13,655
py
Python
sdk/python/pulumi_azure_native/network/v20201101/ddos_protection_plan.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20201101/ddos_protection_plan.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20201101/ddos_protection_plan.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = ['DdosProtectionPlanArgs', 'DdosProtectionPlan'] @pulumi.input_type class DdosProtectionPlanArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a DdosProtectionPlan resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] ddos_protection_plan_name: The name of the DDoS protection plan. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if ddos_protection_plan_name is not None: pulumi.set(__self__, "ddos_protection_plan_name", ddos_protection_plan_name) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="ddosProtectionPlanName") def ddos_protection_plan_name(self) -> Optional[pulumi.Input[str]]: """ The name of the DDoS protection plan. """ return pulumi.get(self, "ddos_protection_plan_name") @ddos_protection_plan_name.setter def ddos_protection_plan_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ddos_protection_plan_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class DdosProtectionPlan(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ A DDoS protection plan in a resource group. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] ddos_protection_plan_name: The name of the DDoS protection plan. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: DdosProtectionPlanArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A DDoS protection plan in a resource group. :param str resource_name: The name of the resource. :param DdosProtectionPlanArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DdosProtectionPlanArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, ddos_protection_plan_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DdosProtectionPlanArgs.__new__(DdosProtectionPlanArgs) __props__.__dict__["ddos_protection_plan_name"] = ddos_protection_plan_name __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_networks"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20201101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20180801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20180801:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181001:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181001:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181101:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20181201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20181201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190801:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20190901:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20190901:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20191101:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20191101:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20191201:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20191201:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200301:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200301:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200401:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200401:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200501:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200501:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200601:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200601:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200701:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200701:DdosProtectionPlan"), pulumi.Alias(type_="azure-native:network/v20200801:DdosProtectionPlan"), pulumi.Alias(type_="azure-nextgen:network/v20200801:DdosProtectionPlan")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DdosProtectionPlan, __self__).__init__( 'azure-native:network/v20201101:DdosProtectionPlan', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'DdosProtectionPlan': """ Get an existing DdosProtectionPlan resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DdosProtectionPlanArgs.__new__(DdosProtectionPlanArgs) __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["virtual_networks"] = None return DdosProtectionPlan(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the DDoS protection plan resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[str]: """ The resource GUID property of the DDoS protection plan resource. It uniquely identifies the resource, even if the user changes its name or migrate the resource across subscriptions or resource groups. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualNetworks") def virtual_networks(self) -> pulumi.Output[Sequence['outputs.SubResourceResponse']]: """ The list of virtual networks associated with the DDoS protection plan resource. This list is read-only. """ return pulumi.get(self, "virtual_networks")
53.54902
3,488
0.690809
d4b42f38f2dbf3b438ec751a66430a3f5ad9d24c
3,545
py
Python
TP_04/ejercicio_6/script_1/tokenizer.py
AgustinNormand/recuperacion-de-informacion
511ff6a83a929621792ee684aa5a55bcad512c9d
[ "MIT" ]
null
null
null
TP_04/ejercicio_6/script_1/tokenizer.py
AgustinNormand/recuperacion-de-informacion
511ff6a83a929621792ee684aa5a55bcad512c9d
[ "MIT" ]
null
null
null
TP_04/ejercicio_6/script_1/tokenizer.py
AgustinNormand/recuperacion-de-informacion
511ff6a83a929621792ee684aa5a55bcad512c9d
[ "MIT" ]
null
null
null
from constants import * from entity_extractor import Entity_Extractor from normalizer import Normalizer class Tokenizer: def __init__(self): self.vocabulary = {} self.inverted_index = {} self.index = {} self.palabras_vacias = [] self.load_empty_words() self.normalizer = Normalizer(STEMMING_LANGUAGE) if EXTRACT_ENTITIES: self.entities_extractor = Entity_Extractor(STEMMING_LANGUAGE) def load_empty_words(self): if EMPTY_WORDS_PATH: with open(EMPTY_WORDS_PATH, "r") as f: for line in f.readlines(): self.palabras_vacias.append(line.strip()) def valid_length(self, token): return len(token) >= MIN_TERM_LENGTH and len(token) <= MAX_TERM_LENGTH def palabra_vacia(self, token): for palabra_vacia in self.palabras_vacias: if palabra_vacia == token: return True if len(palabra_vacia) > len(token): return False return False def is_term(self, token): if not self.valid_length(token): return False return True def doc_id_present(self, term, doc_id): for stored_doc_id, _, _ in self.inverted_index[term]: if stored_doc_id == doc_id: return True return False def increment_frequency(self, term, doc_id, word_position): for value in self.inverted_index[term]: if value[0] == doc_id: value[1] += 1 value[2].append(word_position) def increment_index_frequency(self, doc_id, term): try: self.index[doc_id][term] += 1 except: self.index[doc_id][term] = 1 def add_term(self, term, doc_id, word_position): self.increment_index_frequency(doc_id, term) if term not in self.inverted_index.keys(): self.inverted_index[term] = [[doc_id, 1, [word_position]]] return if self.doc_id_present(term, doc_id): self.increment_frequency(term, doc_id, word_position) else: self.inverted_index[term].append([doc_id, 1, [word_position]]) def increment_vocabulary(self, file_terms): for term in file_terms: try: self.vocabulary[term] += 1 except: self.vocabulary[term] = 1 def tokenize_file(self, filename, doc_id): self.index[doc_id] = {} with open(filename, "r", encoding=CORPUS_FILES_ENCODING) as f: word_position = 0 for line in f.readlines(): if EXTRACT_ENTITIES: processed_line, entities = self.entities_extractor.extract_entities( line ) for entity in entities: self.add_term(entity, doc_id) else: processed_line = line for word in processed_line.split(): token = self.normalizer.normalize(word) if not self.palabra_vacia(token): #word_position += 1 #Antes lo había puesto aca if self.valid_length(token): word_position += 1 #Considero que va aca self.add_term(token, doc_id, word_position) self.increment_vocabulary(list(self.index[doc_id].keys())) def get_results(self): return [self.vocabulary, self.inverted_index]
34.754902
88
0.57433
33e56bcd81788bf507a779a7beabc0eea256f458
12,217
py
Python
px/px_ipc_map.py
walles/px
e513e51de56d581b8ea1483acebf24547caec86d
[ "MIT" ]
149
2016-03-27T20:39:37.000Z
2022-03-01T07:53:42.000Z
px/px_ipc_map.py
walles/px
e513e51de56d581b8ea1483acebf24547caec86d
[ "MIT" ]
85
2016-06-06T17:33:54.000Z
2022-02-14T06:06:58.000Z
px/px_ipc_map.py
walles/px
e513e51de56d581b8ea1483acebf24547caec86d
[ "MIT" ]
9
2016-05-05T11:22:13.000Z
2021-03-04T12:03:59.000Z
import sys if sys.version_info.major >= 3: # For mypy PEP-484 static typing validation from . import px_file # NOQA from . import px_process # NOQA from typing import Set # NOQA from typing import List # NOQA from typing import Dict # NOQA from typing import Text # NOQA from typing import AbstractSet # NOQA from typing import MutableMapping # NOQA from typing import Iterable # NOQA from typing import TypeVar # NOQA from typing import Optional # NOQA T = TypeVar("T") S = TypeVar("S") FILE_TYPES = ["PIPE", "FIFO", "unix", "IPv4", "IPv6"] class IpcMap(object): """ This is a map of process->[channels], where "process" is a process we have IPC communication open with, and a channel is a socket or a pipe that we have open to that process. After creating an IpcMap, you can access: * ipc_map.network_connections: This is a list of non-IPC network connections * ipc_map.keys(): A set of other px_processes this process is connected to * ipc_map[px_process]: A set of px_files through which we're connected to the px_process """ def __init__( self, process, # type: px_process.PxProcess files, # type: Iterable[px_file.PxFile] processes, # type: Iterable[px_process.PxProcess] is_root, # type: bool ): # type: (...) -> None # On Linux, lsof reports the same open file once per thread of a # process. Putting the files in a set gives us each file only once. files = set(files) self._own_files = list( filter(lambda f: f.pid == process.pid and f.fd is not None, files) ) # Only deal with IPC related files self.files = list(filter(lambda f: f.type in FILE_TYPES, files)) self.process = process self.processes = processes self.ipc_files_for_process = list( filter(lambda f: f.pid == self.process.pid, self.files) ) self._map = {} # type: MutableMapping[PeerProcess, Set[px_file.PxFile]] self._create_mapping() self.fds = self._create_fds(is_root) def _create_fds(self, is_root): # type: (bool) -> Dict[int, str] """ Describe standard FDs open by this process; the mapping is from FD number to FD description. The returned dict will always contain entries for 0, 1 and 2. In theory this method could easily be modified to go through all fds, not just the standard ones, but that can get us lots more DNS lookups, and take a lot of time. If you do want to try it, just drop all the "if fd not in [0, 1, 2]: continue"s and benchmark it on not-cached IP addresses. """ fds = dict() if not self._own_files: for fd in [0, 1, 2]: fds[fd] = "<unavailable, running px as root might help>" return fds for fd in [0, 1, 2]: fds[fd] = "<closed>" for file in self._own_files: if file.fd not in [0, 1, 2]: continue fds[file.fd] = str(file) if file.type in FILE_TYPES: excuse = "destination not found, try running px as root" if is_root: excuse = "not connected" name = file.name # type: Optional[str] if not name: name = file.device if name and name.startswith("->"): name = name[2:] fds[file.fd] = "[{}] <{}> ({})".format( file.type, excuse, name, ) # Traverse network connections and update FDs as required for network_connection in self.network_connections: if network_connection.fd is None: continue if network_connection.fd not in [0, 1, 2]: continue fds[network_connection.fd] = str(network_connection) # Traverse our IPC structure and update FDs as required for target in self.keys(): for link in self[target]: if link.fd is None: # No FD, never mind continue if link.fd not in [0, 1, 2]: continue # FIXME: If this is a PIPE/FIFO leading to ourselves we should say that # FIXME: If this is an unconnected PIPE/FIFO, we should say that name = link.name if name and name.startswith("->"): name = name[2:] fds[link.fd] = "[{}] -> {} ({})".format(link.type, str(target), name) return fds def _create_mapping(self): # type: () -> None self._create_indices() unknown = PeerProcess( name="UNKNOWN destinations: Running with sudo might help find out where these go" ) network_connections = set() for file in self.ipc_files_for_process: if file.type in ["FIFO", "PIPE"] and not file.fifo_id(): # Unidentifiable FIFO, just ignore this continue other_end_pids = self._get_other_end_pids(file) if not other_end_pids: if file.type in ["IPv4", "IPv6"]: # This is a remote connection network_connections.add(file) continue self.add_ipc_entry(unknown, file) continue for other_end_pid in other_end_pids: if other_end_pid == self.process.pid: # Talking to ourselves, never mind continue other_end_process = self._pid2process.get(other_end_pid) if not other_end_process: other_end_process = PeerProcess(pid=other_end_pid) self._pid2process[other_end_pid] = other_end_process self.add_ipc_entry(other_end_process, file) self.network_connections = network_connections # type: Set[px_file.PxFile] def _create_indices(self): # type: () -> None """ Creates indices used by _get_other_end_pids() """ self._pid2process = create_pid2process(self.processes) self._device_to_pids = {} # type: MutableMapping[str, List[int]] self._name_to_pids = {} # type: MutableMapping[str, List[int]] self._name_to_files = {} # type: MutableMapping[str, List[px_file.PxFile]] self._device_number_to_files = ( {} ) # type: MutableMapping[int, List[px_file.PxFile]] self._fifo_id_and_access_to_pids = {} # type: MutableMapping[str, List[int]] self._local_endpoint_to_pid = {} # type: MutableMapping[str, int] for file in self.files: if file.device is not None: add_arraymapping(self._device_to_pids, file.device, file.pid) if file.name: add_arraymapping(self._name_to_pids, file.name, file.pid) add_arraymapping(self._name_to_files, file.name, file) local_endpoint, remote = file.get_endpoints() if local_endpoint: self._local_endpoint_to_pid[local_endpoint] = file.pid device_number = file.device_number() if device_number is not None: add_arraymapping(self._device_number_to_files, device_number, file) if file.access is not None and file.type == "FIFO": fifo_id = file.fifo_id() if fifo_id: add_arraymapping( self._fifo_id_and_access_to_pids, fifo_id + file.access, file.pid, ) def _get_other_end_pids(self, file): # type: (px_file.PxFile) -> Iterable[int] """Locate the other end of a pipe / domain socket""" if file.type in ["IPv4", "IPv6"]: local, remote = file.get_endpoints() if remote is None: return [] pid = self._local_endpoint_to_pid.get(remote) if pid: return [pid] else: return [] name = file.name if name and name.startswith("->"): # With lsof 4.87 on OS X 10.11.3, pipe and socket names start with "->", # but their endpoint names don't. Strip initial "->" from name before # scanning for it. name = name[2:] file_device_with_arrow = None if file.device is not None: file_device_with_arrow = "->" + file.device pids = set() # type: Set[int] # The other end of the socket / pipe is encoded in the DEVICE field of # lsof's output ("view source" in your browser to see the conversation): # http://www.justskins.com/forums/lsof-find-both-endpoints-of-a-unix-socket-123037.html if name: matching_pids = self._device_to_pids.get(name) if matching_pids: pids.update(matching_pids) if file_device_with_arrow: matching_pids = self._name_to_pids.get(file_device_with_arrow) if matching_pids: pids.update(matching_pids) device_number = file.device_number() if device_number: matching_files = self._device_number_to_files.get(device_number) if not matching_files: matching_files = [] for candidate in matching_files: if candidate.name == file.name: pids.add(candidate.pid) fifo_id = file.fifo_id() if fifo_id and file.access and file.type == "FIFO": # On Linux, this is how we trace FIFOs opposing_access = {"r": "w", "w": "r"}.get(file.access) if opposing_access: name_and_opposing_access = fifo_id + opposing_access matching_pids = self._fifo_id_and_access_to_pids.get( name_and_opposing_access ) if matching_pids: pids.update(matching_pids) return pids def add_ipc_entry(self, process, file): # type: (PeerProcess, px_file.PxFile) -> None """ Note that we're connected to process via file """ if process not in self._map: self._map[process] = set() self._map[process].add(file) def keys(self): # type: () -> Iterable[PeerProcess] """ Returns a set of other px_processes this process is connected to """ return self._map.keys() def __getitem__(self, process): # type: (PeerProcess) -> Set[px_file.PxFile] """ Returns a set of px_files through which we're connected to the px_process """ return self._map.__getitem__(process) class PeerProcess(object): def __init__(self, name=None, pid=None): # type: (Optional[Text], Optional[int]) -> None if not name: if pid is None: raise ValueError("Either pid, name or both must be set") name = "PID " + str(pid) else: if pid is not None: name += "(" + str(pid) + ")" self.name = name # type: Text self.pid = pid # type: Optional[int] def __repr__(self): return self.name def __hash__(self): return self.name.__hash__() def __str__(self): return self.name def create_pid2process(processes): # type: (Iterable[px_process.PxProcess]) -> MutableMapping[int, PeerProcess] pid2process = {} # type: MutableMapping[int, PeerProcess] for process in processes: # Guard against duplicate PIDs assert process.pid not in pid2process pid2process[process.pid] = PeerProcess(name=process.command, pid=process.pid) return pid2process def add_arraymapping(mapping, key, value): # type: (MutableMapping[S, List[T]], S, T) -> None array = mapping.setdefault(key, []) array.append(value)
35.514535
95
0.569207
e617946da1fc64ae6a87bba9a763fabec813dc1f
3,848
py
Python
tests/test_hdf5.py
Pooppap/io
4ad8e0a4cdabf17f43c81cae0907ac4a1af8c251
[ "Apache-2.0" ]
10
2019-04-19T01:21:09.000Z
2021-11-17T11:25:52.000Z
tests/test_hdf5.py
Pooppap/io
4ad8e0a4cdabf17f43c81cae0907ac4a1af8c251
[ "Apache-2.0" ]
null
null
null
tests/test_hdf5.py
Pooppap/io
4ad8e0a4cdabf17f43c81cae0907ac4a1af8c251
[ "Apache-2.0" ]
2
2019-04-25T14:31:06.000Z
2019-06-25T03:47:34.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """Tests for HDF5Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow tensorflow.compat.v1.disable_eager_execution() from tensorflow import dtypes # pylint: disable=wrong-import-position from tensorflow import errors # pylint: disable=wrong-import-position from tensorflow import test # pylint: disable=wrong-import-position from tensorflow.compat.v1 import data # pylint: disable=wrong-import-position import tensorflow_io.hdf5 as hdf5_io # pylint: disable=wrong-import-position class HDF5DatasetTest(test.TestCase): """HDF5DatasetTest""" def test_hdf5_invalid_dataset(self): """test_hdf5_invalid_dataset""" filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_hdf5", "tdset.h5") filename = "file://" + filename dataset = hdf5_io.HDF5Dataset( [filename], ['/invalid', '/invalid2'], [dtypes.int32, dtypes.int32], [(1, 20), (1, 30)]) iterator = data.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) with self.assertRaisesRegexp( errors.InvalidArgumentError, "unable to open dataset /invalid"): sess.run(get_next) def test_hdf5_dataset_int32(self): """Test case for HDF5Dataset.""" filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_hdf5", "tdset.h5") filename = "file://" + filename columns = ['/dset1'] output_types = [dtypes.int32] output_shapes = [(1, 20)] dataset = hdf5_io.HDF5Dataset( [filename], columns, output_types, output_shapes) iterator = data.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): v0 = list([np.asarray([v for v in range(i, i + 20)])]) vv = sess.run(get_next) self.assertAllEqual(v0, vv) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def test_hdf5_dataset(self): """Test case for HDF5Dataset.""" filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_hdf5", "tdset.h5") filename = "file://" + filename columns = ['/dset2'] output_types = [dtypes.float32] output_shapes = [(1, 20)] dataset = hdf5_io.HDF5Dataset( [filename], columns, output_types, output_shapes, batch=1) iterator = data.make_initializable_iterator(dataset) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(30): v0 = list( [np.asarray([[i + 1e-04 * v for v in range(20)]], dtype=np.float32)]) vv = sess.run(get_next) self.assertAllEqual(v0, vv) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) if __name__ == "__main__": test.main()
34.981818
80
0.66684
79a70782d1a975f42b977419b8cecda4def2d1d3
51,613
py
Python
src/pyrad_proc/pyrad/prod/process_product.py
MeteoSwiss/pyrad
f733179075fdf3fcff475a5af8b6b71e9ac4379d
[ "BSD-3-Clause" ]
9
2021-02-22T15:34:37.000Z
2022-03-29T13:16:25.000Z
src/pyrad_proc/pyrad/prod/process_product.py
MeteoSwiss/pyrad
f733179075fdf3fcff475a5af8b6b71e9ac4379d
[ "BSD-3-Clause" ]
15
2021-02-08T10:16:41.000Z
2022-03-31T09:26:26.000Z
src/pyrad_proc/pyrad/prod/process_product.py
MeteoSwiss/pyrad
f733179075fdf3fcff475a5af8b6b71e9ac4379d
[ "BSD-3-Clause" ]
2
2021-02-08T09:44:40.000Z
2021-03-24T14:56:31.000Z
""" pyrad.prod.process_product ========================== Functions for obtaining Pyrad products from the datasets .. autosummary:: :toctree: generated/ generate_occurrence_products generate_cosmo_coord_products generate_cosmo_to_radar_products generate_sun_hits_products generate_qvp_products generate_ml_products generate_centroids_products """ from copy import deepcopy from warnings import warn import os import numpy as np import pyart from .process_vol_products import generate_vol_products from ..io.io_aux import get_fieldname_pyart from ..io.io_aux import get_save_dir, make_filename from ..io.read_data_sun import read_sun_retrieval from ..io.read_data_other import read_ml_ts from ..io.write_data import write_sun_hits, write_sun_retrieval from ..io.write_data import write_excess_gates, write_ts_ml, write_histogram from ..io.write_data import write_timeseries_point, write_centroids from ..graph.plots import plot_sun_hits, plot_histogram2, plot_scatter from ..graph.plots import plot_centroids from ..graph.plots_timeseries import plot_sun_retrieval_ts, plot_ml_ts from ..graph.plots_vol import plot_fixed_rng, plot_fixed_rng_sun from ..util.radar_utils import create_sun_hits_field, compute_histogram from ..util.radar_utils import create_sun_retrieval_field import matplotlib as mpl mpl.use('Agg') # Increase a bit font size mpl.rcParams.update({'font.size': 16}) mpl.rcParams.update({'font.family': "sans-serif"}) import matplotlib.pyplot as plt def generate_occurrence_products(dataset, prdcfg): """ generates occurrence products. Accepted product types: 'WRITE_EXCESS_GATES': Write the data that identifies radar gates with clutter that has a frequency of occurrence above a certain threshold. User defined parameters: quant_min: float Minimum frequency of occurrence in percentage to keep the gate as valid. Default 95. All the products of the 'VOL' dataset group Parameters ---------- dataset : tuple radar object and metadata dictionary prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ instant = False if 'instant' in prdcfg: instant = prdcfg['instant'] if not instant and not dataset['occu_final']: return None if prdcfg['type'] == 'WRITE_EXCESS_GATES': if not dataset['occu_final']: return None radar = dataset['radar_out'] if (('frequency_of_occurrence' not in radar.fields) or ('occurrence' not in radar.fields) or ('number_of_samples' not in radar.fields)): warn('Unable to create quantile excess gates file. ' 'Missing data') return None dssavedir = prdcfg['dsname'] if 'dssavename' in prdcfg: dssavedir = prdcfg['dssavename'] quant_min = 95. if 'quant_min' in prdcfg: quant_min = prdcfg['quant_min'] # get index of gates exceeding quantile freq_occu = radar.fields['frequency_of_occurrence'][ 'data'] ind_ray, ind_rng = np.where(freq_occu > quant_min) if ind_ray.size == 0: warn('No data exceeds the frequency of occurrence ' + str(quant_min)+' %') return None excess_dict = { 'starttime': dataset['starttime'], 'endtime': dataset['endtime'], 'quant_min': quant_min, 'ray_ind': ind_ray, 'rng_ind': ind_rng, 'ele': radar.elevation['data'][ind_ray], 'azi': radar.azimuth['data'][ind_ray], 'rng': radar.range['data'][ind_rng], 'nsamples': ( radar.fields['number_of_samples']['data'][ind_ray, ind_rng]), 'occurrence': ( radar.fields['occurrence']['data'][ind_ray, ind_rng]), 'freq_occu': freq_occu[ind_ray, ind_rng] } savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=dataset['endtime']) fname = make_filename( 'excess_gates', prdcfg['dstype'], prdcfg['prdname'], ['csv'], prdcfginfo='quant'+'{:.1f}'.format(quant_min), timeinfo=dataset['endtime']) fname = savedir+fname[0] fname = write_excess_gates(excess_dict, fname) if fname is not None: print('saved excess gates file: {}'.format(fname)) return fname field_name = get_fieldname_pyart(prdcfg['voltype']) if ((field_name == 'frequency_of_occurrence') and (not dataset['occu_final'])): return None if dataset['occu_final']: prdcfg['timeinfo'] = dataset['endtime'] return generate_vol_products(dataset, prdcfg) def generate_cosmo_coord_products(dataset, prdcfg): """ generates COSMO coordinates products. Accepted product types: 'SAVEVOL': Save an object containing the index of the COSMO model grid that corresponds to each radar gate in a C/F radial file. User defined parameters: file_type: str The type of file used to save the data. Can be 'nc' or 'h5'. Default 'nc' physical: Bool If True the data will be saved in physical units (floats). Otherwise it will be quantized and saved as binary compression: str For ODIM file formats, the type of compression. Can be any of the allowed compression types for hdf5 files. Default gzip compression_opts: any The compression options allowed by the hdf5. Depends on the type of compression. Default 6 (The gzip compression level). Parameters ---------- dataset : tuple radar object containing the COSMO coordinates prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ if prdcfg['type'] == 'SAVEVOL': radar_obj = dataset['radar_out'] ind_rad = dataset['ind_rad'] field_name = get_fieldname_pyart(prdcfg['voltype']) if field_name not in radar_obj.fields: warn( ' Field type ' + field_name + ' not available in data set. Skipping product ' + prdcfg['type']) return None file_type = prdcfg.get('file_type', 'nc') physical = prdcfg.get('physical', True) compression = prdcfg.get('compression', 'gzip') compression_opts = prdcfg.get('compression_opts', 6) new_dataset = deepcopy(radar_obj) new_dataset.fields = dict() new_dataset.add_field(field_name, radar_obj.fields[field_name]) savedir = prdcfg['cosmopath'][ind_rad]+'rad2cosmo/' fname = 'rad2cosmo_'+prdcfg['voltype']+'_'+prdcfg['procname']+'.nc' if file_type == 'nc': pyart.io.cfradial.write_cfradial( savedir+fname, new_dataset, physical=physical) elif file_type == 'h5': pyart.aux_io.write_odim_h5( savedir+fname, new_dataset, physical=physical, compression=compression, compression_opts=compression_opts) else: warn('Data could not be saved. ' + 'Unknown saving file type '+file_type) return None print('saved file: {}'.format(savedir+fname)) return fname warn(' Unsupported product type: ' + prdcfg['type']) return None def generate_cosmo_to_radar_products(dataset, prdcfg): """ generates COSMO data in radar coordinates products. Accepted product types: 'SAVEVOL': Save an object containing the COSMO data in radar coordinatesin a C/F radial or ODIM file. User defined parameters: file_type: str The type of file used to save the data. Can be 'nc' or 'h5'. Default 'nc' physical: Bool If True the data will be saved in physical units (floats). Otherwise it will be quantized and saved as binary compression: str For ODIM file formats, the type of compression. Can be any of the allowed compression types for hdf5 files. Default gzip compression_opts: any The compression options allowed by the hdf5. Depends on the type of compression. Default 6 (The gzip compression level). All the products of the 'VOL' dataset group Parameters ---------- dataset : tuple radar object containing the COSMO coordinates prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ time_index = prdcfg.get('cosmo_time_index', 0) if time_index > len(dataset)-1: warn( 'COSMO time index larger than available. Skipping product ' + prdcfg['type']) return None radar_dataset = dataset[time_index] if prdcfg['type'] == 'SAVEVOL': radar_obj = radar_dataset['radar_out'] ind_rad = radar_dataset['ind_rad'] field_name = get_fieldname_pyart(prdcfg['voltype']) if field_name not in radar_obj.fields: warn( ' Field type ' + field_name + ' not available in data set. Skipping product ' + prdcfg['type']) return None file_type = prdcfg.get('file_type', 'nc') physical = prdcfg.get('physical', True) compression = prdcfg.get('compression', 'gzip') compression_opts = prdcfg.get('compression_opts', 6) new_dataset = deepcopy(radar_obj) new_dataset.fields = dict() new_dataset.add_field(field_name, radar_obj.fields[field_name]) savedir = ( prdcfg['cosmopath'][ind_rad]+prdcfg['voltype']+'/radar/' + prdcfg['timeinfo'].strftime('%Y-%m-%d')+'/'+prdcfg['procname']+'/') fname = ( prdcfg['voltype']+'_RUN' + prdcfg['timeinfo'].strftime('%Y%m%d%H%M%S')+'_' + radar_dataset['dtcosmo'].strftime('%Y%m%d%H%M%S')+'.nc') if not os.path.isdir(savedir): os.makedirs(savedir) if file_type == 'nc': pyart.io.cfradial.write_cfradial( savedir+fname, new_dataset, physical=physical) elif file_type == 'h5': pyart.aux_io.write_odim_h5( savedir+fname, new_dataset, physical=physical, compression=compression, compression_opts=compression_opts) else: warn('Data could not be saved. ' + 'Unknown saving file type '+file_type) return None print('saved file: {}'.format(savedir+fname)) return fname return generate_vol_products(radar_dataset, prdcfg) def generate_sun_hits_products(dataset, prdcfg): """ generates sun hits products. Accepted product types: 'PLOT_SUN_HITS': Plots in a sun-radar azimuth difference-sun-radar elevation difference grid the values of all sun hits obtained during the processing period 'PLOT_SUN_RETRIEVAL': Plots in a sun-radar azimuth difference-sun- radar elevation difference grid the retrieved sun pattern 'PLOT_SUN_RETRIEVAL_TS': Plots time series of the retrieved sun pattern parameters User defined parameters: dpi: int The pixel density of the plot. Default 72 add_date_in_fname: Bool If true the year is added in the plot file name 'PLOT_SUNSCAN': Plots a constant range radar azimuth-elevation of the sunscan field data 'WRITE_SUN_HITS': Writes the information concerning possible sun hits in a csv file 'WRITE_SUN_RETRIEVAL': Writes the retrieved sun pattern parameters in a csv file. User defined parameters: add_date_in_fname: Bool If true the year is added in the csv file name 'WRITE_SUNSCAN': Writes the sunscan parameters in a csv file All the products of the 'VOL' dataset group Parameters ---------- dataset : tuple radar object and sun hits dictionary prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ dssavedir = prdcfg['dsname'] if 'dssavename' in prdcfg: dssavedir = prdcfg['dssavename'] prdcfg['timeinfo'] = dataset['timeinfo'] if prdcfg['type'] == 'WRITE_SUN_HITS': if 'sun_hits' not in dataset: return None savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=dataset['timeinfo']) fname = make_filename( 'info', prdcfg['dstype'], 'detected', ['csv'], timeinfo=dataset['timeinfo'], timeformat='%Y%m%d')[0] fname = savedir+fname write_sun_hits(dataset['sun_hits'], fname) print('saved sun hits file: {}'.format(fname)) return fname[0] if prdcfg['type'] == 'PLOT_SUN_HITS': if 'sun_hits_final' not in dataset: return None field_name = get_fieldname_pyart(prdcfg['voltype']) if prdcfg['voltype'] not in dataset['sun_hits_final']: warn( ' Field type ' + prdcfg['voltype'] + ' not available in data set. Skipping product ' + prdcfg['type']) return None savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=dataset['timeinfo']) fname_list = make_filename( 'detected', prdcfg['dstype'], prdcfg['voltype'], prdcfg['imgformat'], timeinfo=dataset['timeinfo'], timeformat='%Y%m%d') for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname field = create_sun_hits_field( dataset['sun_hits_final']['rad_el'], dataset['sun_hits_final']['rad_az'], dataset['sun_hits_final']['sun_el'], dataset['sun_hits_final']['sun_az'], dataset['sun_hits_final'][prdcfg['voltype']], prdcfg['sunhitsImageConfig']) if field is None: warn( 'Unable to create field '+prdcfg['voltype'] + ' Skipping product ' + prdcfg['type']) return None plot_sun_hits(field, field_name, fname_list, prdcfg) print('----- save to '+' '.join(fname_list)) return fname_list if prdcfg['type'] == 'WRITE_SUN_RETRIEVAL': if 'sun_retrieval' not in dataset: return None timeinfo = None timeformat = None if prdcfg.get('add_date_in_fname', False): timeinfo = dataset['timeinfo'] timeformat = '%Y' savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=None) fname = make_filename( 'info', prdcfg['dstype'], 'retrieval', ['csv'], timeinfo=timeinfo, timeformat=timeformat, runinfo=prdcfg['runinfo'])[0] fname = savedir+fname write_sun_retrieval(dataset['sun_retrieval'], fname) print('saved sun retrieval file: {}'.format(fname)) return fname if prdcfg['type'] == 'PLOT_SUN_RETRIEVAL': if 'sun_retrieval' not in dataset: return None field_name = get_fieldname_pyart(prdcfg['voltype']) par = None if field_name == 'sun_est_power_h': par = 'par_h' elif field_name == 'sun_est_power_v': par = 'par_v' elif field_name == 'sun_est_differential_reflectivity': par = 'par_zdr' if par not in dataset['sun_retrieval']: warn( ' Field type ' + prdcfg['voltype'] + ' not available in data set. Skipping product ' + prdcfg['type']) savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=dataset['timeinfo']) fname_list = make_filename( 'retrieval', prdcfg['dstype'], prdcfg['voltype'], prdcfg['imgformat'], timeinfo=dataset['timeinfo'], timeformat='%Y%m%d') for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if dataset['sun_retrieval'][par] is None: warn( ' Invalid retrieval parameters. Skipping product ' + prdcfg['type']) return None field = create_sun_retrieval_field( dataset['sun_retrieval'][par], field_name, prdcfg['sunhitsImageConfig'], lant=dataset['sun_retrieval']['lant']) if field is not None: plot_sun_hits(field, field_name, fname_list, prdcfg) print('----- save to '+' '.join(fname_list)) return fname_list if prdcfg['type'] == 'PLOT_SUN_RETRIEVAL_TS': if 'sun_retrieval' not in dataset: return None dpi = prdcfg.get('dpi', 72) timeinfo = None timeformat = None if prdcfg.get('add_date_in_fname', False): timeinfo = dataset['timeinfo'] timeformat = '%Y' savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdid'], timeinfo=None) fname = make_filename( 'info', prdcfg['dstype'], 'retrieval', ['csv'], timeinfo=timeinfo, timeformat=timeformat, runinfo=prdcfg['runinfo']) fname = savedir + fname[0] sun_retrieval = read_sun_retrieval(fname) if sun_retrieval[0] is None: warn( 'Unable to read sun retrieval file '+fname) return None if len(sun_retrieval[0]) < 2: warn( 'Unable to plot sun retrieval time series. ' + 'Not enough data points.') return None savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=None) fname_list = make_filename( 'retrieval_ts', prdcfg['dstype'], prdcfg['voltype'], prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat, runinfo=prdcfg['runinfo']) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname titl = (prdcfg['runinfo']+' Sun Retrieval ' + sun_retrieval[1][0].strftime('%Y%m%d')+'-' + sun_retrieval[1][-1].strftime('%Y%m%d')) figfname = plot_sun_retrieval_ts( sun_retrieval, prdcfg['voltype'], fname_list, titl=titl, dpi=dpi) if figfname is None: return None print('----- save to '+' '.join(fname_list)) return fname_list if prdcfg['type'] == 'WRITE_SUNSCAN': if 'sun_retrieval' not in dataset: return None text = [ "SunScan info", "sun_az: [deg] Azimuth sun position ", "sun_el: [deg] Elevation sun position", "noise_pwr: [dBm] Noise power", "sun_maxpwr_noise: [dBm]" " sun maximal power sample (including noise)", "sun_maxpwr_nonoise: [dBm]" " sun maximal power sample without noise", "sun_maxpwr_fit: [dBm]" " sun maximal fitted power (without noise)", "sun_maxpwr_toa: [dBm]" " sun maximal power at top of atmosphere", "az_offset: [deg]" " Azimuth shift of fitted maxima to sun azimuth", "el_offset: [deg]" " Elevation shift of fitted maxima to sun elevation", "az_phi3db: [deg]" " Half-power beam width in azimuth", "el_phi3db: [deg]" " Half-power beam width in elevation", "fit_stddev: [dBm]" " Standard deviation (fit to samples)", "num_samples: [#]" " Number of samples used for the sun power fitting" ] sunRdata = dataset['sun_retrieval'] if dataset['field_name'] == 'noisedBm_hh': data = { 'dstype': prdcfg['dstype'], 'unit': 'dBm', 'time': sunRdata['sunscan_time'], 'label': [ "sun_az", "sun_el", "noise_pwr", "sun_maxpwr_noise", "sun_maxpwr_nonoise", "sun_maxpwr_fit", "sun_maxpwr_toa", "az_offset", "el_offset", "az_phi3db", "el_phi3db", "fit_stddev", "num_samples"], 'value': [ sunRdata['sunpos_az'], sunRdata['sunpos_el'], sunRdata['noise_pwr'], sunRdata['sun_maxpwr_noise'], sunRdata['sun_maxpwr_nonoise'], sunRdata['dBm_sun_est'], sunRdata['dBm_sun_est_toa'], sunRdata['az_bias_h'], sunRdata['el_bias_h'], sunRdata['az_width_h'], sunRdata['el_width_h'], sunRdata['std(dBm_sun_est)'], sunRdata['nhits_h']] } elif dataset['field_name'] == 'noisedBm_vv': data = { 'dstype': prdcfg['dstype'], 'unit': 'dBm', 'time': sunRdata['sunscan_time'], 'label': [ "sun_az", "sun_el", "noise_pwr", "sun_maxpwr_noise", "sun_maxpwr_nonoise", "sun_maxpwr_fit", "sun_maxpwr_toa", "az_offset", "el_offset", "az_phi3db", "el_phi3db", "fit_stddev", "num_samples"], 'value': [ sunRdata['sunpos_az'], sunRdata['sunpos_el'], sunRdata['noise_pwr'], sunRdata['sun_maxpwr_noise'], sunRdata['sun_maxpwr_nonoise'], sunRdata['dBmv_sun_est'], sunRdata['dBmv_sun_est_toa'], sunRdata['az_bias_v'], sunRdata['el_bias_v'], sunRdata['az_width_v'], sunRdata['el_width_v'], sunRdata['std(dBmv_sun_est)'], sunRdata['nhits_v']] } else: warn('ERROR: No valid datatype for WRITE_SUNSCAN product.') savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], prdcfg['timeinfo']) fname1 = make_filename( 'ts', prdcfg['dstype'], dataset['field_name'], ['csv'], timeinfo=prdcfg['timeinfo'], timeformat='%Y%m%d', runinfo=prdcfg['runinfo'])[0] fname1 = savedir+fname1 write_timeseries_point(fname1, data, prdcfg['dstype'], text) print('saved sunscan file: {}'.format(fname1)) return fname1 if prdcfg['type'] == 'PLOT_SUNSCAN': radar = dataset['radar_out'] sun_hits = dataset['sun_hits'] field_name = dataset['field_name'] if field_name not in radar.fields: warn( ' Field type ' + field_name + ' not available in data set. Skipping product ' + prdcfg['type']) return None # user defined parameters azi_res = prdcfg.get('azi_res', None) ele_res = prdcfg.get('ele_res', None) vmin = prdcfg.get('vmin', None) vmax = prdcfg.get('vmax', None) angtol = prdcfg.get('ang_tol', 0.5) savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], prdcfg['timeinfo']) fname_list = make_filename( 'constr', prdcfg['dstype'], prdcfg['dsname'], prdcfg['imgformat'], prdcfginfo='rng'+'{:.1f}'.format( dataset['radar_out'].range['data'][0]), timeinfo=prdcfg['timeinfo'], runinfo=prdcfg['runinfo']) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname plot_fixed_rng_sun( radar, field_name, sun_hits, prdcfg, fname_list, azi_res=None, ele_res=None, ang_tol=angtol, vmin=vmin, vmax=vmax) print('----- save to '+' '.join(fname_list)) return fname_list if 'radar_out' in dataset: return generate_vol_products(dataset, prdcfg) return None def generate_qvp_products(dataset, prdcfg): """ Generates quasi vertical profile-like products. Quasi vertical profiles come from azimuthal averaging of polarimetric radar data. With the variable 'qvp_type' the user decides if the product has to be generated at the end of the processing period ('final') or instantaneously ('instant') Accepted product types: All the products of the 'VOL' dataset group Parameters ---------- dataset : dict dictionary containing the radar object and a keyword stating the status of the processing prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ qvp_type = 'final' if 'qvp_type' in prdcfg: qvp_type = prdcfg['qvp_type'] if qvp_type == 'final' and dataset['radar_type'] != 'final': return None prdcfg['timeinfo'] = dataset['start_time'] return generate_vol_products(dataset, prdcfg) def generate_ml_products(dataset, prdcfg): """ Generates melting layer products. Accepted product types: 'ML_TS': Plots and writes a time series of the melting layer, i.e. the evolution of the average and standard deviation of the melting layer top and thickness and the the number of rays used in the retrieval. User defined parameters: dpi: int The pixel density of the plot. Default 72 'SAVE_ML': Saves an object containing the melting layer retrieval information in a C/F radial file All the products of the 'VOL' dataset group Parameters ---------- dataset : dict dictionary containing the radar object and a keyword stating the status of the processing prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ dssavedir = prdcfg['dsname'] if 'dssavename' in prdcfg: dssavedir = prdcfg['dssavename'] if prdcfg['type'] == 'ML_TS': dpi = prdcfg.get('dpi', 72) savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=prdcfg['timeinfo']) csvfname = make_filename( 'ts', prdcfg['dstype'], 'ml', ['csv'], timeinfo=prdcfg['timeinfo'], timeformat='%Y%m%d')[0] csvfname = savedir+csvfname ml_bottom = dataset['ml_obj'].fields['melting_layer_height']['data'][ :, 0] ml_top = dataset['ml_obj'].fields['melting_layer_height']['data'][:, 1] ml_top_avg = np.ma.asarray(np.ma.mean(ml_top)) ml_top_std = np.ma.asarray(np.ma.std(ml_top)) thick = ml_top-ml_bottom thick_avg = np.ma.asarray(np.ma.mean(thick)) thick_std = np.ma.asarray(np.ma.std(thick)) nrays_valid = thick.compressed().size nrays_total = thick.size write_ts_ml( prdcfg['timeinfo'], ml_top_avg, ml_top_std, thick_avg, thick_std, nrays_valid, nrays_total, csvfname) print('saved CSV file: {}'.format(csvfname)) (dt_ml_arr, ml_top_avg_arr, ml_top_std_arr, thick_avg_arr, thick_std_arr, nrays_valid_arr, nrays_total_arr) = ( read_ml_ts(csvfname)) if dt_ml_arr is None: warn( 'Unable to plot time series. No valid data') return None figfname_list = make_filename( 'ts', prdcfg['dstype'], 'ml', prdcfg['imgformat'], timeinfo=dt_ml_arr[0], timeformat='%Y%m%d') for i, figfname in enumerate(figfname_list): figfname_list[i] = savedir+figfname titl = dt_ml_arr[0].strftime('%Y-%m-%d')+' melting layer time series' plot_ml_ts( dt_ml_arr, ml_top_avg_arr, ml_top_std_arr, thick_avg_arr, thick_std_arr, nrays_valid_arr, nrays_total_arr, figfname_list, labelx='Time UTC', titl=titl, dpi=dpi) print('----- save to '+' '.join(figfname_list)) return figfname_list if prdcfg['type'] == 'SAVE_ML': savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=prdcfg['timeinfo']) fname = make_filename( 'saveml', prdcfg['dstype'], 'ml_h', ['nc'], timeinfo=prdcfg['timeinfo'], runinfo=prdcfg['runinfo'])[0] fname = savedir+fname pyart.io.cfradial.write_cfradial(fname, dataset['ml_obj']) print('saved file: {}'.format(fname)) return fname return generate_vol_products(dataset, prdcfg) def generate_centroids_products(dataset, prdcfg): """ Generates centroids products. Accepted product types: 'HISTOGRAM': Plots the histogram of one of the variables used for centroids computation. User defined parameters: voltype : str The name of the variable to plot. Can be dBZ, ZDR, KDP, RhoHV, H_ISO0 and its standardized form (e.g. dBZ_std) write_data : Bool If true writes the histogram in a .csv file. Default True step : float bin size. Default 0.1 'HISTOGRAM2D': Plots the 2D- histogram of two of the variables used for centroids computation. User defined parameters: voltype_x, voltype_y : str The name of the variables to plot. Can be dBZ, ZDR, KDP, RhoHV, H_ISO0 and its standardized form (e.g. dBZ_std) step_x, step_y : float bin size. Default 0.1 'HISTOGRAM_LABELED': Plots the histogram of one of the variables used for centroids computation. Only plots labeled data. User defined parameters: voltype : str The name of the variable to plot. Can be dBZ, ZDR, KDP, RhoHV, H_ISO0 and its standardized form (e.g. dBZ_std) write_data : Bool If true writes the histogram in a .csv file. Default True step : float bin size. Default 0.1 'HISTOGRAM_CENTROIDS': Plots the histogram of one of the variables used for centroids computation corresponding to a particular hydrometeor type, the intermediate centroids and the final centroid User defined parameters: voltype : str The name of the variable to plot. Can be dBZ, ZDR, KDP, RhoHV, H_ISO0 and its standardized form (e.g. dBZ_std) hydro_type : str The name of the hydrometeor type. write_data : Bool If true writes the histogram in a .csv file. Default True step : float bin size. Default 0.1 'HISTOGRAM2D_CENTROIDS': Plots the 2D- histogram of two of the variables used for centroids computatio ncorresponding to a particular hydrometeor type, the intermediate centroids and the final centroid User defined parameters: voltype_x, voltype_y : str The name of the variables to plot. Can be dBZ, ZDR, KDP, RhoHV, H_ISO0 and its standardized form (e.g. dBZ_std) hydro_type : str The name of the hydrometeor type. step_x, step_y : float bin size. Default 0.1 'WRITE_CENTROIDS': Writes the final centroids in a .csv file. 'SAVE_DATA': Saves the data used to compute the centroids in an .npz file 'SAVE_LABELED_DATA': Saves the labeled data, the intermediate centroids and the final centroids in an .npz file Parameters ---------- dataset : dict dictionary containing the radar object and a keyword stating the status of the processing prdcfg : dictionary of dictionaries product configuration dictionary of dictionaries Returns ------- filename : str the name of the file created. None otherwise """ dssavedir = prdcfg['dsname'] if 'dssavename' in prdcfg: dssavedir = prdcfg['dssavename'] if prdcfg['type'] == 'HISTOGRAM': data_dict = dataset['data_dict'] # check if we have to plot the data hist_type = prdcfg.get('hist_type', 'cumulative') if hist_type == 'cumulative' and not data_dict['final']: return None if hist_type == 'instant' and data_dict['final']: return None voltype = prdcfg['voltype'] if voltype not in data_dict.keys(): warn( ' Field type ' + voltype + ' not available in data set. Skipping product ' + prdcfg['type']) return None write_data = prdcfg.get('write_data', 1) step = prdcfg.get('step', 0.1) timeformat = '%Y%m%d' timeinfo = data_dict['timeinfo'][0] titl = timeinfo.strftime('%Y-%m-%d')+'\n'+voltype data_vals = data_dict[voltype] if hist_type == 'instant': timeformat = '%Y%m%d%H%M%S' timeinfo = data_dict['timeinfo'][-1] titl = timeinfo.strftime('%Y-%m-%d %H:%M:%S')+'\n'+voltype nvols = data_dict['npoints'].size ind_start = np.sum(data_dict['npoints'][0:nvols-2]) data_vals = data_vals[ind_start:] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname_list = make_filename( 'histogram', prdcfg['dstype'], prdcfg['voltype'], prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if '_std' in voltype: bin_edges = np.arange(-1.-step/2., 1.+step/2+step, step) values = data_vals else: field_name = get_fieldname_pyart(voltype) bin_edges, values = compute_histogram( data_vals, field_name, step=step) bin_centers = bin_edges[1:]-step/2 hist, bin_edges = np.histogram(values, bins=bin_edges) plot_histogram2( bin_centers, hist, fname_list, labelx=voltype, labely='Number of Samples', titl=titl) print('----- save to '+' '.join(fname_list)) if write_data: fname = savedir+make_filename( 'histogram', prdcfg['dstype'], prdcfg['voltype'], ['csv'], timeinfo=timeinfo, timeformat=timeformat)[0] write_histogram(bin_edges, hist, fname, step=step) print('----- save to {}'.format(fname)) return fname return fname_list if prdcfg['type'] == 'HISTOGRAM2D': data_dict = dataset['data_dict'] # check if we have to plot the data hist_type = prdcfg.get('hist_type', 'cumulative') if hist_type == 'cumulative' and not data_dict['final']: return None if hist_type == 'instant' and data_dict['final']: return None voltype_x = prdcfg['voltype_x'] voltype_y = prdcfg['voltype_y'] if voltype_x not in data_dict.keys(): warn( ' Field type ' + voltype_x + ' not available in data set. Skipping product ' + prdcfg['type']) return None if voltype_y not in data_dict.keys(): warn( ' Field type ' + voltype_y + ' not available in data set. Skipping product ' + prdcfg['type']) return None step_x = prdcfg.get('step_x', 0.1) step_y = prdcfg.get('step_y', 0.1) timeformat = '%Y%m%d' timeinfo = data_dict['timeinfo'][0] titl = ( timeinfo.strftime('%Y-%m-%d')+'\n'+voltype_x+'-'+voltype_y) data_vals_x = data_dict[voltype_x] data_vals_y = data_dict[voltype_y] if hist_type == 'instant': timeformat = '%Y%m%d%H%M%S' timeinfo = data_dict['timeinfo'][-1] titl = ( timeinfo.strftime('%Y-%m-%d %H:%M:%S')+'\n'+voltype_x+'-' + voltype_y) nvols = data_dict['npoints'].size ind_start = np.sum(data_dict['npoints'][0:nvols-2]) data_vals_x = data_vals_x[ind_start:] data_vals_y = data_vals_y[ind_start:] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname_list = make_filename( '2Dhistogram', prdcfg['dstype'], voltype_x+'-'+voltype_y, prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if '_std' in voltype_x: bin_edges_x = np.arange(-1.-step_x/2., 1.+step_x/2+step_x, step_x) values_x = data_vals_x else: field_name_x = get_fieldname_pyart(voltype_x) bin_edges_x, values_x = compute_histogram( data_vals_x, field_name_x, step=step_x) if '_std' in voltype_y: bin_edges_y = np.arange(-1.-step_y/2., 1.+step_y/2+step_y, step_y) values_y = data_vals_y else: field_name_y = get_fieldname_pyart(voltype_y) bin_edges_y, values_y = compute_histogram( data_vals_y, field_name_y, step=step_y) hist_2d, bin_edges_x, bin_edges_y = np.histogram2d( values_x, values_y, bins=[bin_edges_x, bin_edges_y]) plot_scatter( bin_edges_x, bin_edges_y, np.ma.asarray(hist_2d), voltype_x, voltype_y, fname_list, prdcfg, rad1_name='', rad2_name='', titl=titl, cmap='viridis') print('----- save to '+' '.join(fname_list)) return fname_list if prdcfg['type'] == 'HISTOGRAM_LABELED': if 'labeled_data_dict' not in dataset: return None data_dict = dataset['labeled_data_dict'] voltype = prdcfg['voltype'] if voltype not in data_dict.keys(): warn( ' Field type ' + voltype + ' not available in data set. Skipping product ' + prdcfg['type']) return None write_data = prdcfg.get('write_data', 1) step = prdcfg.get('step', 0.1) timeformat = '%Y%m%d' timeinfo = data_dict['timeinfo'][0] titl = timeinfo.strftime('%Y-%m-%d')+'\n'+voltype data_vals = data_dict[voltype] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname_list = make_filename( 'histogram', prdcfg['dstype'], prdcfg['voltype'], prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if '_std' in voltype: bin_edges = np.arange(-1.-step/2., 1.+step/2+step, step) values = data_vals else: field_name = get_fieldname_pyart(voltype) bin_edges, values = compute_histogram( data_vals, field_name, step=step) bin_centers = bin_edges[1:]-step/2 hist, bin_edges = np.histogram(values, bins=bin_edges) plot_histogram2( bin_centers, hist, fname_list, labelx=voltype, labely='Number of Samples', titl=titl) print('----- save to '+' '.join(fname_list)) if write_data: fname = savedir+make_filename( 'histogram', prdcfg['dstype'], prdcfg['voltype'], ['csv'], timeinfo=timeinfo, timeformat=timeformat)[0] write_histogram(bin_edges, hist, fname, step=step) print('----- save to {}'.format(fname)) return fname return fname_list if prdcfg['type'] == 'HISTOGRAM_CENTROIDS': if 'labeled_data_dict' not in dataset: return None data_dict = dataset['labeled_data_dict'] voltype = prdcfg['voltype'] hydro_type = prdcfg['hydro_type'] if voltype not in data_dict.keys(): warn( ' Field type ' + voltype + ' not available in data set. Skipping product ' + prdcfg['type']) return None if hydro_type not in data_dict['medoids_dict']: warn('No medoids where found for hydrometeor class '+hydro_type) return None ind_hydro = np.where( np.array(data_dict['hydro_names']) == hydro_type)[0] ind_medoid = np.where( np.array(data_dict['var_names']) == voltype)[0] write_data = prdcfg.get('write_data', 1) step = prdcfg.get('step', 0.1) dpi = 72 if 'dpi' in prdcfg['ppiImageConfig']: dpi = prdcfg['ppiImageConfig']['dpi'] timeformat = '%Y%m%d' timeinfo = data_dict['timeinfo'][0] titl = timeinfo.strftime('%Y-%m-%d')+'\n'+voltype+' '+hydro_type data_vals = data_dict[voltype] data_vals = data_vals[data_dict['labels'] == ind_hydro] medoids = np.array(data_dict['medoids_dict'][hydro_type]) medoids = medoids[:, ind_medoid] if hydro_type not in data_dict['final_medoids_dict']: warn('No medoid for hydrometeor class '+hydro_type) fmedoid = None else: fmedoid = data_dict['final_medoids_dict'][hydro_type][ind_medoid] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname_list = make_filename( 'histogram', prdcfg['dstype'], hydro_type+_+prdcfg['voltype'], prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if '_std' in voltype: bin_edges = np.arange(-1.-step/2., 1.+step/2+step, step) values = data_vals else: field_name = get_fieldname_pyart(voltype) bin_edges, values = compute_histogram( data_vals, field_name, step=step) bin_centers = bin_edges[1:]-step/2 hist, bin_edges = np.histogram(values, bins=bin_edges) pos_medoids = [] for medoid in medoids: ind = np.where(bin_edges <= medoid)[0][-1] pos_medoids.append(hist[ind]) pos_medoids = np.array(pos_medoids) if fmedoid is not None: ind = np.where(bin_edges <= fmedoid)[0][-1] pos_fmedoid = hist[ind] fig, ax, = plot_histogram2( bin_centers, hist, fname_list, labelx=voltype, labely='Number of Samples', titl=titl, save_fig=False) ax.scatter(medoids, pos_medoids, c='g', marker='o') if fmedoid is not None: ax.plot(fmedoid, pos_fmedoid, c='r', marker='D') for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) print('----- save to '+' '.join(fname_list)) if write_data: fname = savedir+make_filename( 'histogram', prdcfg['dstype'], prdcfg['voltype'], ['csv'], timeinfo=timeinfo, timeformat=timeformat)[0] write_histogram(bin_edges, hist, fname, step=step) print('----- save to {}'.format(fname)) return fname return fname_list if prdcfg['type'] == 'HISTOGRAM2D_CENTROIDS': if 'labeled_data_dict' not in dataset: return None labeled_data_dict = dataset['labeled_data_dict'] voltype_x = prdcfg['voltype_x'] voltype_y = prdcfg['voltype_y'] hydro_type = prdcfg['hydro_type'] if voltype_x not in labeled_data_dict.keys(): warn( ' Field type ' + voltype_x + ' not available in data set. Skipping product ' + prdcfg['type']) return None if voltype_y not in labeled_data_dict.keys(): warn( ' Field type ' + voltype_y + ' not available in data set. Skipping product ' + prdcfg['type']) return None if hydro_type not in labeled_data_dict['medoids_dict']: warn('No medoids where found for hydrometeor class '+hydro_type) return None ind_hydro = np.where( np.array(labeled_data_dict['hydro_names']) == hydro_type)[0] ind_medoid_x = np.where( np.array(labeled_data_dict['var_names']) == voltype_x)[0] ind_medoid_y = np.where( np.array(labeled_data_dict['var_names']) == voltype_y)[0] step_x = prdcfg.get('step_x', 0.1) step_y = prdcfg.get('step_y', 0.1) timeformat = '%Y%m%d' timeinfo = labeled_data_dict['timeinfo'][0] titl = ( timeinfo.strftime('%Y-%m-%d')+'\n'+voltype_x+'-'+voltype_y + ' '+hydro_type) data_vals_x = labeled_data_dict[voltype_x] data_vals_y = labeled_data_dict[voltype_y] data_vals_x = data_vals_x[labeled_data_dict['labels'] == ind_hydro] data_vals_y = data_vals_y[labeled_data_dict['labels'] == ind_hydro] medoids = np.array(labeled_data_dict['medoids_dict'][hydro_type]) medoids_x = medoids[:, ind_medoid_x] medoids_y = medoids[:, ind_medoid_y] if hydro_type not in labeled_data_dict['final_medoids_dict']: warn('No medoid for hydrometeor class '+hydro_type) fmedoid_x = None fmedoid_y = None else: fmedoid_x = labeled_data_dict['final_medoids_dict'][hydro_type][ ind_medoid_x] fmedoid_y = labeled_data_dict['final_medoids_dict'][hydro_type][ ind_medoid_y] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname_list = make_filename( '2Dhistogram', prdcfg['dstype'], hydro_type+'_'+voltype_x+'-'+voltype_y, prdcfg['imgformat'], timeinfo=timeinfo, timeformat=timeformat) for i, fname in enumerate(fname_list): fname_list[i] = savedir+fname if '_std' in voltype_x: bin_edges_x = np.arange(-1.-step_x/2., 1.+step_x/2+step_x, step_x) values_x = data_vals_x else: field_name_x = get_fieldname_pyart(voltype_x) bin_edges_x, values_x = compute_histogram( data_vals_x, field_name_x, step=step_x) if '_std' in voltype_y: bin_edges_y = np.arange(-1.-step_y/2., 1.+step_y/2+step_y, step_y) values_y = data_vals_y else: field_name_y = get_fieldname_pyart(voltype_y) bin_edges_y, values_y = compute_histogram( data_vals_y, field_name_y, step=step_y) hist_2d, bin_edges_x, bin_edges_y = np.histogram2d( values_x, values_y, bins=[bin_edges_x, bin_edges_y]) plot_centroids( bin_edges_x, bin_edges_y, np.ma.asarray(hist_2d), voltype_x, voltype_y, fname_list, prdcfg, titl=titl, medoids_x=medoids_x, medoids_y=medoids_y, fmedoid_x=fmedoid_x, fmedoid_y=fmedoid_y, cmap='viridis') print('----- save to '+' '.join(fname_list)) return fname_list if prdcfg['type'] == 'WRITE_CENTROIDS': if 'labeled_data_dict' not in dataset: return None labeled_data_dict = dataset['labeled_data_dict'] timeformat = '%Y%m%d' timeinfo = labeled_data_dict['timeinfo'][0] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname = make_filename( 'centroids', prdcfg['dstype'], 'centroids', ['csv'], timeinfo=timeinfo, timeformat=timeformat)[0] fname = savedir+fname write_centroids( fname, labeled_data_dict['final_medoids_dict'], labeled_data_dict['var_names']) print('----- save to {}'.format(fname)) return fname if prdcfg['type'] == 'SAVE_DATA': data_dict = dataset['data_dict'] # check if we have to save the data if not data_dict['final']: return None timeinfo = data_dict['timeinfo'][0] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname = make_filename( 'data', prdcfg['dstype'], 'centroids_data', ['npz'], timeinfo=timeinfo)[0] fname = savedir+fname np.savez_compressed(fname, centroids_data=data_dict) print('----- save to {}'.format(fname)) return fname if prdcfg['type'] == 'SAVE_LABELED_DATA': if 'labeled_data_dict' not in dataset: return None data_dict = dataset['labeled_data_dict'] timeinfo = data_dict['timeinfo'][0] savedir = get_save_dir( prdcfg['basepath'], prdcfg['procname'], dssavedir, prdcfg['prdname'], timeinfo=timeinfo) fname = make_filename( 'labeled_data', prdcfg['dstype'], 'centroids_data', ['npz'], timeinfo=timeinfo)[0] fname = savedir+fname np.savez_compressed(fname, centroids_data=data_dict) print('----- save to {}'.format(fname)) return fname warn(' Unsupported product type: ' + prdcfg['type']) return None
35.767845
79
0.577374
619a62179d49d58520cf48ffa95d5fff061653f7
8,109
py
Python
acapy_plugin_toolbox/schemas.py
lynnbendixsen/aries-acapy-plugin-toolbox
c19c6c26486e8acdc3814b07e620f7a291754089
[ "Apache-2.0" ]
null
null
null
acapy_plugin_toolbox/schemas.py
lynnbendixsen/aries-acapy-plugin-toolbox
c19c6c26486e8acdc3814b07e620f7a291754089
[ "Apache-2.0" ]
null
null
null
acapy_plugin_toolbox/schemas.py
lynnbendixsen/aries-acapy-plugin-toolbox
c19c6c26486e8acdc3814b07e620f7a291754089
[ "Apache-2.0" ]
null
null
null
"""Define messages for schemas admin protocols.""" # pylint: disable=invalid-name # pylint: disable=too-few-public-methods from asyncio import shield from marshmallow import fields from aries_cloudagent.messaging.base_handler import BaseHandler, BaseResponder, RequestContext from aries_cloudagent.messaging.models.base_record import BaseRecord, BaseRecordSchema from aries_cloudagent.ledger.base import BaseLedger from aries_cloudagent.storage.error import StorageNotFoundError from aries_cloudagent.config.injection_context import InjectionContext from .util import generate_model_schema, admin_only PROTOCOL = 'did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/admin-schemas/0.1' SEND_SCHEMA = '{}/send-schema'.format(PROTOCOL) SCHEMA_ID = '{}/schema-id'.format(PROTOCOL) SCHEMA_GET = '{}/schema-get'.format(PROTOCOL) SCHEMA = '{}/schema'.format(PROTOCOL) SCHEMA_GET_LIST = '{}/schema-get-list'.format(PROTOCOL) SCHEMA_LIST = '{}/schema-list'.format(PROTOCOL) MESSAGE_TYPES = { SEND_SCHEMA: 'acapy_plugin_toolbox.schemas' '.SendSchema', SCHEMA_ID: 'acapy_plugin_toolbox.schemas' '.SchemaID', SCHEMA_GET: 'acapy_plugin_toolbox.schemas' '.SchemaGet', SCHEMA: 'acapy_plugin_toolbox.schemas' '.Schema', SCHEMA_GET_LIST: 'acapy_plugin_toolbox.schemas' '.SchemaGetList', SCHEMA_LIST: 'acapy_plugin_toolbox.schemas' '.SchemaList', } class SchemaRecord(BaseRecord): """Represents a Schema.""" RECORD_ID_NAME = "record_id" RECORD_TYPE = "schema" AUTHOR_SELF = "self" AUTHOR_OTHER = "other" STATE_UNWRITTEN = "unwritten" STATE_WRITTEN = "written" class Meta: """SchemaRecord metadata.""" schema_class = "SchemaRecordSchema" def __init__( self, *, record_id: str = None, schema_id: str = None, schema_name: str = None, schema_version: str = None, author: str = None, attributes: [str] = None, state: str = None, **kwargs): """Initialize a new SchemaRecord.""" super().__init__(record_id, state or self.STATE_UNWRITTEN, **kwargs) self.schema_id = schema_id self.schema_name = schema_name self.schema_version = schema_version self.author=author self.attributes = attributes @property def record_id(self) -> str: """Get the id.""" return self._id @property def record_value(self) -> dict: """Get record value.""" return {'attributes': self.attributes} @property def record_tags(self) -> dict: """Get tags for record.""" return { prop: getattr(self, prop) for prop in ( 'schema_id', 'schema_name', 'schema_version', 'state', 'author' ) } @classmethod async def retrieve_by_schema_id( cls, context: InjectionContext, schema_id: str) -> "SchemaRecord": """Retrieve a schema record by schema_id.""" return await cls.retrieve_by_tag_filter( context, {'schema_id': schema_id} ) class SchemaRecordSchema(BaseRecordSchema): """Schema to allow serialization/deserialization of Schema records.""" class Meta: """PoolRecordSchema metadata.""" model_class = SchemaRecord schema_id = fields.Str(required=False) schema_name = fields.Str(required=False) schema_version = fields.Str(required=False) author = fields.Str(required=False) attributes = fields.List(fields.Str(), required=False) SendSchema, SendSchemaSchema = generate_model_schema( name='SendSchema', handler='acapy_plugin_toolbox.schemas.SendSchemaHandler', msg_type=SEND_SCHEMA, schema={ 'schema_name': fields.Str(required=True), 'schema_version': fields.Str(required=True), 'attributes': fields.List(fields.Str(), required=True) } ) SchemaID, SchemaIDSchema = generate_model_schema( name='SchemaID', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=SCHEMA_ID, schema={ 'schema_id': fields.Str() } ) class SendSchemaHandler(BaseHandler): """Handler for received send schema request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received send schema request.""" ledger: BaseLedger = await context.inject(BaseLedger) async with ledger: schema_id = await shield( ledger.send_schema( context.message.schema_name, context.message.schema_version, context.message.attributes ) ) schema = SchemaRecord( schema_id=schema_id, schema_name=context.message.schema_name, schema_version=context.message.schema_version, attributes=context.message.attributes, state=SchemaRecord.STATE_WRITTEN, author=SchemaRecord.AUTHOR_SELF, ) await schema.save(context, reason="Committed to ledger") result = SchemaID(schema_id=schema_id) result.assign_thread_from(context.message) await responder.send_reply(result) SchemaGet, SchemaGetSchema = generate_model_schema( name='SchemaGet', handler='acapy_plugin_toolbox.schemas.SchemaGetHandler', msg_type=SCHEMA_GET, schema={ 'schema_id': fields.Str(required=True) } ) Schema, SchemaSchema = generate_model_schema( name='Schema', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=SCHEMA, schema=SchemaRecordSchema ) class SchemaGetHandler(BaseHandler): """Handler for received schema get request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received schema get request.""" try: schema_record = await SchemaRecord.retrieve_by_schema_id( context, context.message.schema_id ) schema_msg = Schema(**schema_record.serialize()) schema_msg.assign_thread_from(context.message) await responder.send_reply(schema_msg) return except StorageNotFoundError: pass ledger: BaseLedger = await context.inject(BaseLedger) async with ledger: schema = await ledger.get_schema(context.message.schema_id) schema_record = SchemaRecord( schema_id=schema['id'], schema_name=schema['name'], schema_version=schema['version'], attributes=schema['attrNames'], state=SchemaRecord.STATE_WRITTEN, author=SchemaRecord.AUTHOR_OTHER ) await schema_record.save(context, reason='Retrieved from ledger') schema_msg = Schema(**schema_record.serialize()) schema_msg.assign_thread_from(context.message) await responder.send_reply(schema_msg) SchemaGetList, SchemaGetListSchema = generate_model_schema( name='SchemaGetList', handler='acapy_plugin_toolbox.schemas.SchemaGetListHandler', msg_type=SCHEMA_GET_LIST, schema={} ) SchemaList, SchemaListSchema = generate_model_schema( name='SchemaList', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=SCHEMA_LIST, schema={ 'results': fields.List( fields.Nested(SchemaRecordSchema), required=True ) } ) class SchemaGetListHandler(BaseHandler): """Handler for get schema list request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle get schema list request.""" records = await SchemaRecord.query(context, {}) schema_list = SchemaList(results=records) schema_list.assign_thread_from(context.message) await responder.send_reply(schema_list)
30.144981
94
0.647305
aa66eadcfb9e09b73c7dc70b20bc7312992b14f2
4,191
py
Python
unit3_lesson_01_understanding_modules.py
RaviTejaKomma/learn-python
c9788b958371c013e19f2af289ebb4c5e4dd04ba
[ "MIT" ]
null
null
null
unit3_lesson_01_understanding_modules.py
RaviTejaKomma/learn-python
c9788b958371c013e19f2af289ebb4c5e4dd04ba
[ "MIT" ]
null
null
null
unit3_lesson_01_understanding_modules.py
RaviTejaKomma/learn-python
c9788b958371c013e19f2af289ebb4c5e4dd04ba
[ "MIT" ]
null
null
null
__author__ = 'Kalyan' notes = ''' modules are a abstraction feature which greatly aids in building large applications. modules are defined in .py file (socket.py, random.py, csv.py ...) and usually contain a set of function, data and class definitions which provide a specific functionality. This allows for easy reuse and discovery of functionality. e.g. you can be pretty sure that socket module exposes functionality related to communication using sockets. ''' notes_1 = ''' All these tests uses module1.py to module4.py. Take a look at them before starting the tests. ''' #this is a global import, generally you use only these. rarely will you use function level imports, but we are doing that #here for the sake of testing. import sys import placeholders from placeholders import * def test_module_without_import(): try: module1.greet("jack") except NameError : print 'module1 is not defined or u should import it' assert True def test_module_usage_needs_import(): import module1 assert "module1 says hi to jack" == module1.greet("jack") def test_module_usage_multiple(): import module1 import module2 assert "module1 says hi to jack" == module1.greet("jack") assert "module2 says hi to jack" == module2.greet("jack") def test_module_import_affects_current_namespace(): import module1 def inner_func(): import module2 assert True == ('module2' in locals()) return module2.greet("jack") assert "module1 says hi to jack" == module1.greet("jack") assert "module2 says hi to jack" == inner_func() assert False == ('placeholders' in locals()) assert True == ('placeholders' in globals()) assert True == ('module1' in locals()) assert False == ('module1' in globals()) assert False == ('module2' in locals()) assert False == ('module2' in globals()) def test_module_type(): assert "module" == type(placeholders).__name__ def test_module_is_an_object(): assert 9 == len(dir(placeholders)) ###['__', '___', '__all__', '__author__', '__builtins__', '__doc__', '__file__', '__name__', '__package__'] assert "placeholders" == placeholders.__name__ assert None == placeholders.__doc__ def test_module_from_import(): from module1 import greet assert False == ('module1' in locals()) assert True == ('greet' in locals()) try: module1.greet() except NameError as ne : pass assert "module1 says hi to jack" == greet("jack") def test_module_why_from_import_is_a_bad_idea(): from module1 import greet from module2 import greet ########### latest import statement will be taken into consideration assert "module2 says hi to jack" == greet("jack") def test_modules_are_cached(): import module1 import module1 as new_name def inner(): import module1 return module1.some_attr try: inner() #'module1' object has no attribute 'some_attr' except AttributeError as ae: # what exception do you get here? pass module1.some_attr = 10 assert 10 == inner() def inner2(): import module1 return module1.some_attr assert 10 == inner2() assert "dict" == type(sys.modules).__name__ assert True == (module1 is sys.modules['module1']) assert False == ('new_name' in sys.modules) assert True == (new_name is module1) assert True == (new_name is sys.modules['module1']) s1 = set() s2 = set() s3 = set() s1 = set(dir()) from module3 import * s2 = set(dir()) from module4 import * s3 = set(dir()) def test_module_star_import(): ###############DOUBT###################### # * imports are not allowed within functions, so we had to do it at global scope assert set(["m3_func2","m3_func1"]) == (s2 - s1) # what did module3 import bring in. assert set(["_m4_func3","m4_func1"]) == (s3 - s2) # what did module4 import bring in. notes_2 = ''' http://effbot.org/zone/import-confusion.htm ''' three_things_i_learnt = """ - - - """
30.151079
147
0.645669
c8025d8a01fec6071f49adb91e14661c071a49e9
1,191
py
Python
nm/code/tochenDeepSEA.py
wzthu/NeuronMotif
0f7f786e4b75916039388824d04d2041747fd299
[ "MIT" ]
null
null
null
nm/code/tochenDeepSEA.py
wzthu/NeuronMotif
0f7f786e4b75916039388824d04d2041747fd299
[ "MIT" ]
null
null
null
nm/code/tochenDeepSEA.py
wzthu/NeuronMotif
0f7f786e4b75916039388824d04d2041747fd299
[ "MIT" ]
2
2021-09-13T06:59:36.000Z
2021-11-10T00:17:25.000Z
import h5py import numpy as np import sys layer = str(sys.argv[1]) pfmsf = h5py.File('layer' + str(layer)+ '/allppm.h5','r') pfms=pfmsf['allppm'][:] act = pfmsf['act'][:] conact = pfmsf['conact'][:] spnumb = pfmsf['spnumb'][:] pfmsf.close() lines=[] for i in range(int(pfms.shape[0])): pfm = pfms[i,:,] if (pfm != 0.25).sum()==0: continue lines.append('>%04d_%d_%.4f_%.4f\n' %(i,spnumb[i], act[i], conact[i])) for j in range(pfm.shape[0]): lines.append('\t'.join(list(np.array(np.array(pfm[j,[0,2,1,3]]*1000,dtype=int),dtype=str))) + '\n') lines.append('\n') with open('layer' + str(layer)+'/ppm.chen' , 'w') as f: f.writelines(lines) import os os.mkdir('layer' + str(layer)+'/vis') for i in range(int(pfms.shape[0])): lines=[] pfm = pfms[i,:,] if (pfm != 0.25).sum()==0: continue lines.append('>%04d_%d_%.4f_%.4f\n' %(i,spnumb[i], act[i], conact[i])) for j in range(pfm.shape[0]): lines.append('\t'.join(list(np.array(np.array(pfm[j,[0,2,1,3]]*1000,dtype=int),dtype=str))) + '\n') lines.append('\n') with open('layer' + str(layer)+'/vis/'+str(i)+'.chen' , 'w') as f: f.writelines(lines)
27.068182
107
0.565911
0f965a87ebe914eb6690cea2d57593f7c32a36c3
21,109
py
Python
tests/tracer/test_span.py
ganeshkumarsv/dd-trace-py
0665507ecfd95a4c247c1d789321f9ab5004977f
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
tests/tracer/test_span.py
ganeshkumarsv/dd-trace-py
0665507ecfd95a4c247c1d789321f9ab5004977f
[ "Apache-2.0", "BSD-3-Clause" ]
9
2021-07-26T01:22:38.000Z
2022-03-21T19:20:53.000Z
tests/tracer/test_span.py
ganeshkumarsv/dd-trace-py
0665507ecfd95a4c247c1d789321f9ab5004977f
[ "Apache-2.0", "BSD-3-Clause" ]
1
2021-08-03T12:41:49.000Z
2021-08-03T12:41:49.000Z
# -*- coding: utf-8 -*- import re import sys import time from unittest.case import SkipTest import mock import pytest import six from ddtrace.constants import ANALYTICS_SAMPLE_RATE_KEY from ddtrace.constants import ENV_KEY from ddtrace.constants import SERVICE_VERSION_KEY from ddtrace.constants import SPAN_MEASURED_KEY from ddtrace.constants import VERSION_KEY from ddtrace.ext import SpanTypes from ddtrace.ext import errors from ddtrace.span import Span from tests.utils import TracerTestCase from tests.utils import assert_is_measured from tests.utils import assert_is_not_measured from tests.utils import override_global_config class SpanTestCase(TracerTestCase): def test_ids(self): s = Span(tracer=None, name="span.test") assert s.trace_id assert s.span_id assert not s.parent_id s2 = Span(tracer=None, name="t", trace_id=1, span_id=2, parent_id=1) assert s2.trace_id == 1 assert s2.span_id == 2 assert s2.parent_id == 1 def test_tags(self): s = Span(tracer=None, name="test.span") s.set_tag("a", "a") s.set_tag("b", 1) s.set_tag("c", "1") d = s.to_dict() assert d["meta"] == dict(a="a", c="1") assert d["metrics"] == dict(b=1) def test_numeric_tags(self): s = Span(tracer=None, name="test.span") s.set_tag("negative", -1) s.set_tag("zero", 0) s.set_tag("positive", 1) s.set_tag("large_int", 2 ** 53) s.set_tag("really_large_int", (2 ** 53) + 1) s.set_tag("large_negative_int", -(2 ** 53)) s.set_tag("really_large_negative_int", -((2 ** 53) + 1)) s.set_tag("float", 12.3456789) s.set_tag("negative_float", -12.3456789) s.set_tag("large_float", 2.0 ** 53) s.set_tag("really_large_float", (2.0 ** 53) + 1) d = s.to_dict() assert d["meta"] == dict( really_large_int=str(((2 ** 53) + 1)), really_large_negative_int=str(-((2 ** 53) + 1)), ) assert d["metrics"] == { "negative": -1, "zero": 0, "positive": 1, "large_int": 2 ** 53, "large_negative_int": -(2 ** 53), "float": 12.3456789, "negative_float": -12.3456789, "large_float": 2.0 ** 53, "really_large_float": (2.0 ** 53) + 1, } def test_set_tag_bool(self): s = Span(tracer=None, name="test.span") s.set_tag("true", True) s.set_tag("false", False) d = s.to_dict() assert d["meta"] == dict(true="True", false="False") assert "metrics" not in d def test_set_tag_metric(self): s = Span(tracer=None, name="test.span") s.set_tag("test", "value") assert s.meta == dict(test="value") assert s.metrics == dict() s.set_tag("test", 1) assert s.meta == dict() assert s.metrics == dict(test=1) def test_set_valid_metrics(self): s = Span(tracer=None, name="test.span") s.set_metric("a", 0) s.set_metric("b", -12) s.set_metric("c", 12.134) s.set_metric("d", 1231543543265475686787869123) s.set_metric("e", "12.34") d = s.to_dict() expected = { "a": 0, "b": -12, "c": 12.134, "d": 1231543543265475686787869123, "e": 12.34, } assert d["metrics"] == expected def test_set_invalid_metric(self): s = Span(tracer=None, name="test.span") invalid_metrics = [None, {}, [], s, "quarante-douze", float("nan"), float("inf"), 1j] for i, m in enumerate(invalid_metrics): k = str(i) s.set_metric(k, m) assert s.get_metric(k) is None def test_set_numpy_metric(self): try: import numpy as np except ImportError: raise SkipTest("numpy not installed") s = Span(tracer=None, name="test.span") s.set_metric("a", np.int64(1)) assert s.get_metric("a") == 1 assert type(s.get_metric("a")) == float def test_tags_not_string(self): # ensure we can cast as strings class Foo(object): def __repr__(self): 1 / 0 s = Span(tracer=None, name="test.span") s.set_tag("a", Foo()) def test_finish(self): # ensure span.finish() marks the end time of the span s = Span(None, "test.span") sleep = 0.05 time.sleep(sleep) s.finish() assert s.duration >= sleep, "%s < %s" % (s.duration, sleep) def test_finish_no_tracer(self): # ensure finish works with no tracer without raising exceptions s = Span(tracer=None, name="test.span") s.finish() def test_finish_called_multiple_times(self): # we should only record a span the first time finish is called on it s = Span(self.tracer, "bar") s.finish() s.finish() def test_finish_set_span_duration(self): # If set the duration on a span, the span should be recorded with this # duration s = Span(tracer=None, name="test.span") s.duration = 1337.0 s.finish() assert s.duration == 1337.0 def test_setter_casts_duration_ns_as_int(self): s = Span(tracer=None, name="test.span") s.duration = 3.2 s.finish() assert s.duration == 3.2 assert s.duration_ns == 3200000000 assert isinstance(s.duration_ns, int) def test_get_span_returns_none_by_default(self): s = Span(tracer=None, name="test.span") assert s.duration is None def test_traceback_with_error(self): s = Span(None, "test.span") try: 1 / 0 except ZeroDivisionError: s.set_traceback() else: assert 0, "should have failed" assert s.error assert "by zero" in s.get_tag(errors.ERROR_MSG) assert "ZeroDivisionError" in s.get_tag(errors.ERROR_TYPE) def test_traceback_without_error(self): s = Span(None, "test.span") s.set_traceback() assert not s.error assert not s.get_tag(errors.ERROR_MSG) assert not s.get_tag(errors.ERROR_TYPE) assert "in test_traceback_without_error" in s.get_tag(errors.ERROR_STACK) def test_ctx_mgr(self): s = Span(self.tracer, "bar") assert not s.duration assert not s.error e = Exception("boo") try: with s: time.sleep(0.01) raise e except Exception as out: assert out == e assert s.duration > 0, s.duration assert s.error assert s.get_tag(errors.ERROR_MSG) == "boo" assert "Exception" in s.get_tag(errors.ERROR_TYPE) assert s.get_tag(errors.ERROR_STACK) else: assert 0, "should have failed" def test_span_type(self): s = Span(tracer=None, name="test.span", service="s", resource="r", span_type=SpanTypes.WEB) s.set_tag("a", "1") s.set_meta("b", "2") s.finish() d = s.to_dict() assert d assert d["span_id"] == s.span_id assert d["trace_id"] == s.trace_id assert d["parent_id"] == s.parent_id assert d["meta"] == {"a": "1", "b": "2"} assert d["type"] == "web" assert d["error"] == 0 assert type(d["error"]) == int def test_span_to_dict(self): s = Span(tracer=None, name="test.span", service="s", resource="r") s.span_type = "foo" s.set_tag("a", "1") s.set_meta("b", "2") s.finish() d = s.to_dict() assert d assert d["span_id"] == s.span_id assert d["trace_id"] == s.trace_id assert d["parent_id"] == s.parent_id assert d["meta"] == {"a": "1", "b": "2"} assert d["type"] == "foo" assert d["error"] == 0 assert type(d["error"]) == int def test_span_to_dict_sub(self): parent = Span(tracer=None, name="test.span", service="s", resource="r") s = Span(tracer=None, name="test.span", service="s", resource="r") s._parent = parent s.span_type = "foo" s.set_tag("a", "1") s.set_meta("b", "2") s.finish() d = s.to_dict() assert d assert d["span_id"] == s.span_id assert d["trace_id"] == s.trace_id assert d["parent_id"] == s.parent_id assert d["meta"] == {"a": "1", "b": "2"} assert d["type"] == "foo" assert d["error"] == 0 assert type(d["error"]) == int def test_span_boolean_err(self): s = Span(tracer=None, name="foo.bar", service="s", resource="r") s.error = True s.finish() d = s.to_dict() assert d assert d["error"] == 1 assert type(d["error"]) == int @mock.patch("ddtrace.span.log") def test_numeric_tags_none(self, span_log): s = Span(tracer=None, name="test.span") s.set_tag(ANALYTICS_SAMPLE_RATE_KEY, None) d = s.to_dict() assert d assert "metrics" not in d # Ensure we log a debug message span_log.debug.assert_called_once_with( "ignoring not number metric %s:%s", ANALYTICS_SAMPLE_RATE_KEY, None, ) def test_numeric_tags_true(self): s = Span(tracer=None, name="test.span") s.set_tag(ANALYTICS_SAMPLE_RATE_KEY, True) d = s.to_dict() assert d expected = {ANALYTICS_SAMPLE_RATE_KEY: 1.0} assert d["metrics"] == expected def test_numeric_tags_value(self): s = Span(tracer=None, name="test.span") s.set_tag(ANALYTICS_SAMPLE_RATE_KEY, 0.5) d = s.to_dict() assert d expected = {ANALYTICS_SAMPLE_RATE_KEY: 0.5} assert d["metrics"] == expected def test_numeric_tags_bad_value(self): s = Span(tracer=None, name="test.span") s.set_tag(ANALYTICS_SAMPLE_RATE_KEY, "Hello") d = s.to_dict() assert d assert "metrics" not in d def test_set_tag_none(self): s = Span(tracer=None, name="root.span", service="s", resource="r") assert s.meta == dict() s.set_tag("custom.key", "100") assert s.meta == {"custom.key": "100"} s.set_tag("custom.key", None) assert s.meta == {"custom.key": "None"} def test_duration_zero(self): s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123) s.finish(finish_time=123) assert s.duration_ns == 0 assert s.duration == 0 def test_start_int(self): s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123) assert s.start == 123 assert s.start_ns == 123000000000 s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123.123) assert s.start == 123.123 assert s.start_ns == 123123000000 s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123.123) s.start = 234567890.0 assert s.start == 234567890 assert s.start_ns == 234567890000000000 def test_duration_int(self): s = Span(tracer=None, name="foo.bar", service="s", resource="r") s.finish() assert isinstance(s.duration_ns, int) assert isinstance(s.duration, float) s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123) s.finish(finish_time=123.2) assert s.duration_ns == 200000000 assert s.duration == 0.2 s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=123.1) s.finish(finish_time=123.2) assert s.duration_ns == 100000000 assert s.duration == 0.1 s = Span(tracer=None, name="foo.bar", service="s", resource="r", start=122) s.finish(finish_time=123) assert s.duration_ns == 1000000000 assert s.duration == 1 def test_set_tag_version(self): s = Span(tracer=None, name="test.span") s.set_tag(VERSION_KEY, "1.2.3") assert s.get_tag(VERSION_KEY) == "1.2.3" assert s.get_tag(SERVICE_VERSION_KEY) is None s.set_tag(SERVICE_VERSION_KEY, "service.version") assert s.get_tag(VERSION_KEY) == "service.version" assert s.get_tag(SERVICE_VERSION_KEY) == "service.version" def test_set_tag_env(self): s = Span(tracer=None, name="test.span") s.set_tag(ENV_KEY, "prod") assert s.get_tag(ENV_KEY) == "prod" @pytest.mark.parametrize( "value,assertion", [ (None, assert_is_measured), (1, assert_is_measured), (1.0, assert_is_measured), (-1, assert_is_measured), (True, assert_is_measured), ("true", assert_is_measured), # DEV: Ends up being measured because we do `bool("false")` which is `True` ("false", assert_is_measured), (0, assert_is_not_measured), (0.0, assert_is_not_measured), (False, assert_is_not_measured), ], ) def test_set_tag_measured(value, assertion): s = Span(tracer=None, name="test.span") s.set_tag(SPAN_MEASURED_KEY, value) assertion(s) def test_set_tag_measured_not_set(): # Span is not measured by default s = Span(tracer=None, name="test.span") assert_is_not_measured(s) def test_set_tag_measured_no_value(): s = Span(tracer=None, name="test.span") s.set_tag(SPAN_MEASURED_KEY) assert_is_measured(s) def test_set_tag_measured_change_value(): s = Span(tracer=None, name="test.span") s.set_tag(SPAN_MEASURED_KEY, True) assert_is_measured(s) s.set_tag(SPAN_MEASURED_KEY, False) assert_is_not_measured(s) s.set_tag(SPAN_MEASURED_KEY) assert_is_measured(s) @mock.patch("ddtrace.span.log") def test_span_key(span_log): # Span tag keys must be strings s = Span(tracer=None, name="test.span") s.set_tag(123, True) span_log.warning.assert_called_once_with("Ignoring tag pair %s:%s. Key must be a string.", 123, True) assert s.get_tag(123) is None assert s.get_tag("123") is None span_log.reset_mock() s.set_tag(None, "val") span_log.warning.assert_called_once_with("Ignoring tag pair %s:%s. Key must be a string.", None, "val") assert s.get_tag(123.32) is None def test_span_finished(): span = Span(None, None) assert span.finished is False assert span.duration_ns is None span.finished = True assert span.finished is True assert span.duration_ns is not None duration = span.duration_ns span.finished = True assert span.finished is True assert span.duration_ns == duration span.finished = False assert span.finished is False span.finished = True assert span.finished is True assert span.duration_ns != duration def test_span_unicode_set_tag(): span = Span(None, None) span.set_tag("key", u"😌") span.set_tag("😐", u"😌") span._set_str_tag("key", u"😌") span._set_str_tag(u"😐", u"😌") @pytest.mark.skipif(sys.version_info.major != 2, reason="This test only applies Python 2") @mock.patch("ddtrace.span.log") def test_span_binary_unicode_set_tag(span_log): span = Span(None, None) span.set_tag("key", "🤔") span._set_str_tag("key_str", "🤔") # only span.set_tag() will fail span_log.warning.assert_called_once_with("error setting tag %s, ignoring it", "key", exc_info=True) assert "key" not in span.meta assert span.meta["key_str"] == u"🤔" @pytest.mark.skipif(sys.version_info.major == 2, reason="This test does not apply to Python 2") @mock.patch("ddtrace.span.log") def test_span_bytes_string_set_tag(span_log): span = Span(None, None) span.set_tag("key", b"\xf0\x9f\xa4\x94") span._set_str_tag("key_str", b"\xf0\x9f\xa4\x94") assert span.meta["key"] == "b'\\xf0\\x9f\\xa4\\x94'" assert span.meta["key_str"] == "🤔" span_log.warning.assert_not_called() @mock.patch("ddtrace.span.log") def test_span_encoding_set_str_tag(span_log): span = Span(None, None) span._set_str_tag("foo", u"/?foo=bar&baz=정상처리".encode("euc-kr")) span_log.warning.assert_not_called() assert span.meta["foo"] == u"/?foo=bar&baz=����ó��" def test_span_nonstring_set_str_tag_exc(): span = Span(None, None) with pytest.raises(TypeError): span._set_str_tag("foo", dict(a=1)) assert "foo" not in span.meta @mock.patch("ddtrace.span.log") def test_span_nonstring_set_str_tag_warning(span_log): with override_global_config(dict(_raise=False)): span = Span(None, None) span._set_str_tag("foo", dict(a=1)) span_log.warning.assert_called_once_with( "Failed to set text tag '%s'", "foo", exc_info=True, ) def test_span_ignored_exceptions(): s = Span(None, None) s._ignore_exception(ValueError) with pytest.raises(ValueError): with s: raise ValueError() assert s.error == 0 assert s.get_tag(errors.ERROR_MSG) is None assert s.get_tag(errors.ERROR_TYPE) is None assert s.get_tag(errors.ERROR_STACK) is None s = Span(None, None) s._ignore_exception(ValueError) with pytest.raises(ValueError): with s: raise ValueError() with pytest.raises(RuntimeError): with s: raise RuntimeError() assert s.error == 1 assert s.get_tag(errors.ERROR_MSG) is not None assert "RuntimeError" in s.get_tag(errors.ERROR_TYPE) assert s.get_tag(errors.ERROR_STACK) is not None def test_span_ignored_exception_multi(): s = Span(None, None) s._ignore_exception(ValueError) s._ignore_exception(RuntimeError) with pytest.raises(ValueError): with s: raise ValueError() with pytest.raises(RuntimeError): with s: raise RuntimeError() assert s.error == 0 assert s.get_tag(errors.ERROR_MSG) is None assert s.get_tag(errors.ERROR_TYPE) is None assert s.get_tag(errors.ERROR_STACK) is None def test_span_ignored_exception_subclass(): s = Span(None, None) s._ignore_exception(Exception) with pytest.raises(ValueError): with s: raise ValueError() with pytest.raises(RuntimeError): with s: raise RuntimeError() assert s.error == 0 assert s.get_tag(errors.ERROR_MSG) is None assert s.get_tag(errors.ERROR_TYPE) is None assert s.get_tag(errors.ERROR_STACK) is None def test_on_finish_single_callback(): m = mock.Mock() s = Span(None, "test", on_finish=[m]) m.assert_not_called() s.finish() m.assert_called_once_with(s) def test_on_finish_multi_callback(): m1 = mock.Mock() m2 = mock.Mock() s = Span(None, "test", on_finish=[m1, m2]) s.finish() m1.assert_called_once_with(s) m2.assert_called_once_with(s) @pytest.mark.parametrize("arg", ["span_id", "trace_id", "parent_id"]) def test_span_preconditions(arg): Span(None, "test", **{arg: None}) with pytest.raises(TypeError): Span(None, "test", **{arg: "foo"}) def test_span_pprint(): root = Span(None, "test.span", service="s", resource="r", span_type=SpanTypes.WEB) root.set_tag("t", "v") root.set_metric("m", 1.0) root.finish() actual = root.pprint() assert "name='test.span'" in actual assert "service='s'" in actual assert "resource='r'" in actual assert "type='web'" in actual assert "error=0" in actual assert ("tags={'t': 'v'}" if six.PY3 else "tags={'t': u'v'}") in actual assert "metrics={'m': 1.0}" in actual assert re.search("id=[0-9]+", actual) is not None assert re.search("trace_id=[0-9]+", actual) is not None assert "parent_id=None" in actual assert re.search("duration=[0-9.]+", actual) is not None assert re.search("start=[0-9.]+", actual) is not None assert re.search("end=[0-9.]+", actual) is not None root = Span(None, "test.span", service="s", resource="r", span_type=SpanTypes.WEB) actual = root.pprint() assert "duration=None" in actual assert "end=None" in actual root = Span(None, "test.span", service="s", resource="r", span_type=SpanTypes.WEB) root.error = 1 actual = root.pprint() assert "error=1" in actual root = Span(None, "test.span", service="s", resource="r", span_type=SpanTypes.WEB) root.set_tag(u"😌", u"😌") actual = root.pprint() assert (u"tags={'😌': '😌'}" if six.PY3 else "tags={u'\\U0001f60c': u'\\U0001f60c'}") in actual root = Span(None, "test.span", service=object()) actual = root.pprint() assert "service=<object object at" in actual def test_manual_context_usage(): span1 = Span(None, "span1") span2 = Span(None, "span2", context=span1.context) span2.context.sampling_priority = 2 assert span1.context.sampling_priority == 2 span1.context.sampling_priority = 1 assert span2.context.sampling_priority == 1 assert span1.context.sampling_priority == 1
31.180207
107
0.605761
babe227403b3e4c5e4c798bc3ff786dcdfee37eb
21,018
py
Python
src/twisted/scripts/trial.py
muelli/twisted
eacc5964187aebf5c34fa255c7e0a3700eaab15a
[ "MIT", "Unlicense" ]
null
null
null
src/twisted/scripts/trial.py
muelli/twisted
eacc5964187aebf5c34fa255c7e0a3700eaab15a
[ "MIT", "Unlicense" ]
null
null
null
src/twisted/scripts/trial.py
muelli/twisted
eacc5964187aebf5c34fa255c7e0a3700eaab15a
[ "MIT", "Unlicense" ]
null
null
null
# -*- test-case-name: twisted.trial.test.test_script -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. import gc import inspect import os import pdb import random import sys import time import warnings from twisted.internet import defer from twisted.application import app from twisted.python import usage, reflect, failure from twisted.python.filepath import FilePath from twisted.python.reflect import namedModule from twisted import plugin from twisted.trial import runner, itrial, reporter # Yea, this is stupid. Leave it for command-line compatibility for a # while, though. TBFORMAT_MAP = { 'plain': 'default', 'default': 'default', 'emacs': 'brief', 'brief': 'brief', 'cgitb': 'verbose', 'verbose': 'verbose' } def _parseLocalVariables(line): """ Accepts a single line in Emacs local variable declaration format and returns a dict of all the variables {name: value}. Raises ValueError if 'line' is in the wrong format. See http://www.gnu.org/software/emacs/manual/html_node/File-Variables.html """ paren = '-*-' start = line.find(paren) + len(paren) end = line.rfind(paren) if start == -1 or end == -1: raise ValueError("%r not a valid local variable declaration" % (line,)) items = line[start:end].split(';') localVars = {} for item in items: if len(item.strip()) == 0: continue split = item.split(':') if len(split) != 2: raise ValueError("%r contains invalid declaration %r" % (line, item)) localVars[split[0].strip()] = split[1].strip() return localVars def loadLocalVariables(filename): """ Accepts a filename and attempts to load the Emacs variable declarations from that file, simulating what Emacs does. See http://www.gnu.org/software/emacs/manual/html_node/File-Variables.html """ with open(filename, "r") as f: lines = [f.readline(), f.readline()] for line in lines: try: return _parseLocalVariables(line) except ValueError: pass return {} def getTestModules(filename): testCaseVar = loadLocalVariables(filename).get('test-case-name', None) if testCaseVar is None: return [] return testCaseVar.split(',') def isTestFile(filename): """ Returns true if 'filename' looks like a file containing unit tests. False otherwise. Doesn't care whether filename exists. """ basename = os.path.basename(filename) return (basename.startswith('test_') and os.path.splitext(basename)[1] == ('.py')) def _reporterAction(): return usage.CompleteList([p.longOpt for p in plugin.getPlugins(itrial.IReporter)]) def _maybeFindSourceLine(testThing): """ Try to find the source line of the given test thing. @param testThing: the test item to attempt to inspect @type testThing: an L{TestCase}, test method, or module, though only the former two have a chance to succeed @rtype: int @return: the starting source line, or -1 if one couldn't be found """ # an instance of L{TestCase} -- locate the test it will run method = getattr(testThing, "_testMethodName", None) if method is not None: testThing = getattr(testThing, method) # If it's a function, we can get the line number even if the source file no # longer exists code = getattr(testThing, "__code__", None) if code is not None: return code.co_firstlineno try: return inspect.getsourcelines(testThing)[1] except (IOError, TypeError): # either testThing is a module, which raised a TypeError, or the file # couldn't be read return -1 # orders which can be passed to trial --order _runOrders = { "alphabetical" : ( "alphabetical order for test methods, arbitrary order for test cases", runner.name), "toptobottom" : ( "attempt to run test cases and methods in the order they were defined", _maybeFindSourceLine), } def _checkKnownRunOrder(order): """ Check that the given order is a known test running order. Does nothing else, since looking up the appropriate callable to sort the tests should be done when it actually will be used, as the default argument will not be coerced by this function. @param order: one of the known orders in C{_runOrders} @return: the order unmodified """ if order not in _runOrders: raise usage.UsageError( "--order must be one of: %s. See --help-orders for details" % (", ".join(repr(order) for order in _runOrders),)) return order class _BasicOptions: """ Basic options shared between trial and its local workers. """ longdesc = ("trial loads and executes a suite of unit tests, obtained " "from modules, packages and files listed on the command line.") optFlags = [["help", "h"], ["no-recurse", "N", "Don't recurse into packages"], ['help-orders', None, "Help on available test running orders"], ['help-reporters', None, "Help on available output plugins (reporters)"], ["rterrors", "e", "realtime errors, print out tracebacks as " "soon as they occur"], ["unclean-warnings", None, "Turn dirty reactor errors into warnings"], ["force-gc", None, "Have Trial run gc.collect() before and " "after each test case."], ["exitfirst", "x", "Exit after the first non-successful result (cannot be " "specified along with --jobs)."], ] optParameters = [ ["order", "o", None, "Specify what order to run test cases and methods. " "See --help-orders for more info.", _checkKnownRunOrder], ["random", "z", None, "Run tests in random order using the specified seed"], ['temp-directory', None, '_trial_temp', 'Path to use as working directory for tests.'], ['reporter', None, 'verbose', 'The reporter to use for this test run. See --help-reporters for ' 'more info.']] compData = usage.Completions( optActions={"order": usage.CompleteList(_runOrders), "reporter": _reporterAction, "logfile": usage.CompleteFiles(descr="log file name"), "random": usage.Completer(descr="random seed")}, extraActions=[usage.CompleteFiles( "*.py", descr="file | module | package | TestCase | testMethod", repeat=True)], ) fallbackReporter = reporter.TreeReporter tracer = None def __init__(self): self['tests'] = [] usage.Options.__init__(self) def getSynopsis(self): executableName = reflect.filenameToModuleName(sys.argv[0]) if executableName.endswith('.__main__'): executableName = '{} -m {}'.format(os.path.basename(sys.executable), executableName.replace('.__main__', '')) return """%s [options] [[file|package|module|TestCase|testmethod]...] """ % (executableName,) def coverdir(self): """ Return a L{FilePath} representing the directory into which coverage results should be written. """ coverdir = 'coverage' result = FilePath(self['temp-directory']).child(coverdir) print("Setting coverage directory to %s." % (result.path,)) return result # TODO: Some of the opt_* methods on this class have docstrings and some do # not. This is mostly because usage.Options's currently will replace # any intended output in optFlags and optParameters with the # docstring. See #6427. When that is fixed, all methods should be # given docstrings (and it should be verified that those with # docstrings already have content suitable for printing as usage # information). def opt_coverage(self): """ Generate coverage information in the coverage file in the directory specified by the temp-directory option. """ import trace self.tracer = trace.Trace(count=1, trace=0) sys.settrace(self.tracer.globaltrace) self['coverage'] = True def opt_testmodule(self, filename): """ Filename to grep for test cases (-*- test-case-name). """ # If the filename passed to this parameter looks like a test module # we just add that to the test suite. # # If not, we inspect it for an Emacs buffer local variable called # 'test-case-name'. If that variable is declared, we try to add its # value to the test suite as a module. # # This parameter allows automated processes (like Buildbot) to pass # a list of files to Trial with the general expectation of "these files, # whatever they are, will get tested" if not os.path.isfile(filename): sys.stderr.write("File %r doesn't exist\n" % (filename,)) return filename = os.path.abspath(filename) if isTestFile(filename): self['tests'].append(filename) else: self['tests'].extend(getTestModules(filename)) def opt_spew(self): """ Print an insanely verbose log of everything that happens. Useful when debugging freezes or locks in complex code. """ from twisted.python.util import spewer sys.settrace(spewer) def opt_help_orders(self): synopsis = ("Trial can attempt to run test cases and their methods in " "a few different orders. You can select any of the " "following options using --order=<foo>.\n") print(synopsis) for name, (description, _) in sorted(_runOrders.items()): print(' ', name, '\t', description) sys.exit(0) def opt_help_reporters(self): synopsis = ("Trial's output can be customized using plugins called " "Reporters. You can\nselect any of the following " "reporters using --reporter=<foo>\n") print(synopsis) for p in plugin.getPlugins(itrial.IReporter): print(' ', p.longOpt, '\t', p.description) sys.exit(0) def opt_disablegc(self): """ Disable the garbage collector """ self["disablegc"] = True gc.disable() def opt_tbformat(self, opt): """ Specify the format to display tracebacks with. Valid formats are 'plain', 'emacs', and 'cgitb' which uses the nicely verbose stdlib cgitb.text function """ try: self['tbformat'] = TBFORMAT_MAP[opt] except KeyError: raise usage.UsageError( "tbformat must be 'plain', 'emacs', or 'cgitb'.") def opt_recursionlimit(self, arg): """ see sys.setrecursionlimit() """ try: sys.setrecursionlimit(int(arg)) except (TypeError, ValueError): raise usage.UsageError( "argument to recursionlimit must be an integer") else: self["recursionlimit"] = int(arg) def opt_random(self, option): try: self['random'] = int(option) except ValueError: raise usage.UsageError( "Argument to --random must be a positive integer") else: if self['random'] < 0: raise usage.UsageError( "Argument to --random must be a positive integer") elif self['random'] == 0: self['random'] = int(time.time() * 100) def opt_without_module(self, option): """ Fake the lack of the specified modules, separated with commas. """ self["without-module"] = option for module in option.split(","): if module in sys.modules: warnings.warn("Module '%s' already imported, " "disabling anyway." % (module,), category=RuntimeWarning) sys.modules[module] = None def parseArgs(self, *args): self['tests'].extend(args) def _loadReporterByName(self, name): for p in plugin.getPlugins(itrial.IReporter): qual = "%s.%s" % (p.module, p.klass) if p.longOpt == name: return reflect.namedAny(qual) raise usage.UsageError("Only pass names of Reporter plugins to " "--reporter. See --help-reporters for " "more info.") def postOptions(self): # Only load reporters now, as opposed to any earlier, to avoid letting # application-defined plugins muck up reactor selecting by importing # t.i.reactor and causing the default to be installed. self['reporter'] = self._loadReporterByName(self['reporter']) if 'tbformat' not in self: self['tbformat'] = 'default' if self['order'] is not None and self['random'] is not None: raise usage.UsageError( "You can't specify --random when using --order") class Options(_BasicOptions, usage.Options, app.ReactorSelectionMixin): """ Options to the trial command line tool. @ivar _workerFlags: List of flags which are accepted by trial distributed workers. This is used by C{_getWorkerArguments} to build the command line arguments. @type _workerFlags: C{list} @ivar _workerParameters: List of parameter which are accepted by trial distributed workers. This is used by C{_getWorkerArguments} to build the command line arguments. @type _workerParameters: C{list} """ optFlags = [ ["debug", "b", "Run tests in a debugger. If that debugger is " "pdb, will load '.pdbrc' from current directory if it exists." ], ["debug-stacktraces", "B", "Report Deferred creation and " "callback stack traces"], ["nopm", None, "don't automatically jump into debugger for " "postmorteming of exceptions"], ["dry-run", 'n', "do everything but run the tests"], ["profile", None, "Run tests under the Python profiler"], ["until-failure", "u", "Repeat test until it fails"], ] optParameters = [ ["debugger", None, "pdb", "the fully qualified name of a debugger to " "use if --debug is passed"], ["logfile", "l", "test.log", "log file name"], ["jobs", "j", None, "Number of local workers to run"] ] compData = usage.Completions( optActions = { "tbformat": usage.CompleteList(["plain", "emacs", "cgitb"]), "reporter": _reporterAction, }, ) _workerFlags = ["disablegc", "force-gc", "coverage"] _workerParameters = ["recursionlimit", "reactor", "without-module"] fallbackReporter = reporter.TreeReporter extra = None tracer = None def opt_jobs(self, number): """ Number of local workers to run, a strictly positive integer. """ try: number = int(number) except ValueError: raise usage.UsageError( "Expecting integer argument to jobs, got '%s'" % number) if number <= 0: raise usage.UsageError( "Argument to jobs must be a strictly positive integer") self["jobs"] = number def _getWorkerArguments(self): """ Return a list of options to pass to distributed workers. """ args = [] for option in self._workerFlags: if self.get(option) is not None: if self[option]: args.append("--%s" % (option,)) for option in self._workerParameters: if self.get(option) is not None: args.extend(["--%s" % (option,), str(self[option])]) return args def postOptions(self): _BasicOptions.postOptions(self) if self['jobs']: conflicts = ['debug', 'profile', 'debug-stacktraces', 'exitfirst'] for option in conflicts: if self[option]: raise usage.UsageError( "You can't specify --%s when using --jobs" % option) if self['nopm']: if not self['debug']: raise usage.UsageError("You must specify --debug when using " "--nopm ") failure.DO_POST_MORTEM = False def _initialDebugSetup(config): # do this part of debug setup first for easy debugging of import failures if config['debug']: failure.startDebugMode() if config['debug'] or config['debug-stacktraces']: defer.setDebugging(True) def _getSuite(config): loader = _getLoader(config) recurse = not config['no-recurse'] return loader.loadByNames(config['tests'], recurse=recurse) def _getLoader(config): loader = runner.TestLoader() if config['random']: randomer = random.Random() randomer.seed(config['random']) loader.sorter = lambda x : randomer.random() print('Running tests shuffled with seed %d\n' % config['random']) elif config['order']: _, sorter = _runOrders[config['order']] loader.sorter = sorter if not config['until-failure']: loader.suiteFactory = runner.DestructiveTestSuite return loader def _wrappedPdb(): """ Wrap an instance of C{pdb.Pdb} with readline support and load any .rcs. """ dbg = pdb.Pdb() try: namedModule('readline') except ImportError: print("readline module not available") for path in ('.pdbrc', 'pdbrc'): if os.path.exists(path): try: rcFile = open(path, 'r') except IOError: pass else: with rcFile: dbg.rcLines.extend(rcFile.readlines()) return dbg class _DebuggerNotFound(Exception): """ A debugger import failed. Used to allow translating these errors into usage error messages. """ def _makeRunner(config): """ Return a trial runner class set up with the parameters extracted from C{config}. @return: A trial runner instance. @rtype: L{runner.TrialRunner} or C{DistTrialRunner} depending on the configuration. """ cls = runner.TrialRunner args = {'reporterFactory': config['reporter'], 'tracebackFormat': config['tbformat'], 'realTimeErrors': config['rterrors'], 'uncleanWarnings': config['unclean-warnings'], 'logfile': config['logfile'], 'workingDirectory': config['temp-directory']} if config['dry-run']: args['mode'] = runner.TrialRunner.DRY_RUN elif config['jobs']: from twisted.trial._dist.disttrial import DistTrialRunner cls = DistTrialRunner args['workerNumber'] = config['jobs'] args['workerArguments'] = config._getWorkerArguments() else: if config['debug']: args['mode'] = runner.TrialRunner.DEBUG debugger = config['debugger'] if debugger != 'pdb': try: args['debugger'] = reflect.namedAny(debugger) except reflect.ModuleNotFound: raise _DebuggerNotFound( '%r debugger could not be found.' % (debugger,)) else: args['debugger'] = _wrappedPdb() args['exitFirst'] = config['exitfirst'] args['profile'] = config['profile'] args['forceGarbageCollection'] = config['force-gc'] return cls(**args) def run(): if len(sys.argv) == 1: sys.argv.append("--help") config = Options() try: config.parseOptions() except usage.error as ue: raise SystemExit("%s: %s" % (sys.argv[0], ue)) _initialDebugSetup(config) try: trialRunner = _makeRunner(config) except _DebuggerNotFound as e: raise SystemExit('%s: %s' % (sys.argv[0], str(e))) suite = _getSuite(config) if config['until-failure']: test_result = trialRunner.runUntilFailure(suite) else: test_result = trialRunner.run(suite) if config.tracer: sys.settrace(None) results = config.tracer.results() results.write_results(show_missing=1, summary=False, coverdir=config.coverdir().path) sys.exit(not test_result.wasSuccessful())
33.57508
87
0.590161
990f6d9206d940139506ec36eee5338795b247e7
4,682
py
Python
backend/cvs.py
nhnb/postsai
6e906d9c332c7b2346abdb98f00264ced28c8e36
[ "MIT" ]
5
2016-02-19T19:51:33.000Z
2020-03-23T00:41:40.000Z
backend/cvs.py
nhnb/postsai
6e906d9c332c7b2346abdb98f00264ced28c8e36
[ "MIT" ]
37
2016-02-20T01:40:25.000Z
2018-07-03T22:22:09.000Z
backend/cvs.py
nhnb/postsai
6e906d9c332c7b2346abdb98f00264ced28c8e36
[ "MIT" ]
5
2016-02-19T19:51:37.000Z
2016-03-22T12:25:45.000Z
# The MIT License (MIT) # Copyright (c) 2016-2021 Postsai # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import cgi import json import sys import subprocess from backend.db import PostsaiDB def convert_to_builtin_type(obj): """return a string representation for JSON conversation""" return str(obj) class PostsaiCommitViewer: """Reads a commit from a repository""" def __init__(self, config): """Creates a PostsaiCommitViewer instance""" self.config = config def read_commit(self, form): """reads a commmit from the database""" db = PostsaiDB(self.config) db.connect() sql = """SELECT repositories.repository, checkins.ci_when, people.who, trim(leading '/' from concat(concat(dirs.dir, '/'), files.file)), revision, descs.description, commitids.hash, commitids.co_when, repository_url FROM checkins JOIN descs ON checkins.descid = descs.id JOIN dirs ON checkins.dirid = dirs.id JOIN files ON checkins.fileid = files.id JOIN people ON checkins.whoid = people.id JOIN repositories ON checkins.repositoryid = repositories.id JOIN commitids ON checkins.commitid = commitids.id WHERE repositories.repository = %s AND commitids.hash = %s """ data = [form.getfirst("repository", ""), form.getfirst("commit", "")] result = db.query(sql, data) db.disconnect() return result @staticmethod def format_commit_header(commit): """Extracts the commit meta information""" result = { "repository": commit[0][0], "published": commit[0][1], "author": commit[0][2], "description": commit[0][5], "commit": commit[0][6], "timestamp": commit[0][7] } return result @staticmethod def calculate_previous_cvs_revision(revision): """determine the CVS revision of the previous commit which might have been on a parent branch""" split = revision.split(".") last = split[len(split) - 1] if (last == "1" and len(split) > 2): split.pop() split.pop() else: split[len(split) - 1] = str(int(last) - 1) return ".".join(split) @staticmethod def dump_commit_diff(commit): """dumps the diff generates by invoking CVS to the browser""" for file in commit: if file[4] == "" or "." not in file[4]: sys.stdout.flush() print(("Index: " + file[3] + " deleted\r")) sys.stdout.flush() else: subprocess.call([ "cvs", "-d", file[8], "rdiff", "-u", "-r", PostsaiCommitViewer.calculate_previous_cvs_revision(file[4]), "-r", file[4], file[3]]) def process(self): """Returns information about a commit""" form = cgi.FieldStorage() commit = self.read_commit(form) print("Content-Type: text/plain; charset='utf-8'\r") print("Cache-Control: max-age=60\r") if form.getfirst("download", "false") == "true": print("Content-Disposition: attachment; filename=\"patch.txt\"\r") print("\r") print(("#" + json.dumps(PostsaiCommitViewer.format_commit_header(commit), default=convert_to_builtin_type))) sys.stdout.flush() PostsaiCommitViewer.dump_commit_diff(commit)
34.175182
116
0.607219
03d4789772bf6ace8c71d0931ed588307e190e5c
9,048
py
Python
tests/test_thread_twitter.py
berna1995/CovidDailyUpdate
b74c2b7340f1366cf510be352c05f7bca0078302
[ "MIT" ]
1
2020-05-17T17:58:06.000Z
2020-05-17T17:58:06.000Z
tests/test_thread_twitter.py
berna1995/CovidDailyUpdateBot
b74c2b7340f1366cf510be352c05f7bca0078302
[ "MIT" ]
null
null
null
tests/test_thread_twitter.py
berna1995/CovidDailyUpdateBot
b74c2b7340f1366cf510be352c05f7bca0078302
[ "MIT" ]
null
null
null
import unittest import random import string from unittest.mock import Mock from unittest.mock import create_autospec from bot.twitter import ThreadTwitter from bot.twitter import MediaType from twitter.api import CHARACTER_LIMIT class MockStatus: current_id = 0 def __init__(self, id): self.id = id @staticmethod def new(): mocked_status = MockStatus(MockStatus.current_id) MockStatus.current_id = MockStatus.current_id + 1 return mocked_status def side_effect(*args, **kwargs): return MockStatus.new() def create_mock(): tt = ThreadTwitter(None, None, None, None) mock = create_autospec( tt._ThreadTwitter__api.PostUpdate, side_effect=side_effect) tt._ThreadTwitter__api.PostUpdate = mock return tt, mock def random_string(string_length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(string_length)) class ThreadTwitterTest(unittest.TestCase): def setUp(self): MockStatus.current_id = 0 def test_set_header_too_long(self): tt, mock = create_mock() with self.assertRaises(ValueError): tt.set_header(random_string(ThreadTwitter.HEADER_MAX_LENGTH + 1)) def test_set_footer_too_long(self): tt, mock = create_mock() with self.assertRaises(ValueError): tt.set_footer(random_string(ThreadTwitter.FOOTER_MAX_LENGTH + 1)) def test_set_repeating_header(self): tt, mock = create_mock() hdr = "HEADER" line_1 = "First line" line_2 = "Second line" tt.set_header(hdr, repeat=True) tt.add_line(line_1) tt.add_line(line_2, force_new_tweet=True) tt.tweet() calls = mock.call_args_list self.assertEqual(2, len(calls)) self.assertTrue(hdr in calls[0].args[0]) self.assertTrue(calls[0].kwargs["in_reply_to_status_id"] is None) self.assertTrue(line_1 in calls[0].args[0]) self.assertFalse(line_2 in calls[0].args[0]) self.assertTrue(hdr in calls[1].args[0]) self.assertEqual(calls[1].kwargs["in_reply_to_status_id"], 0) self.assertFalse(line_1 in calls[1].args[0]) self.assertTrue(line_2 in calls[1].args[0]) def test_non_repeating_header(self): tt, mock = create_mock() hdr = "HEADER" line_1 = "First line" line_2 = "Second line" tt.set_header(hdr, repeat=False) tt.add_line(line_1) tt.add_line(line_2, force_new_tweet=True) tt.tweet() calls = mock.call_args_list self.assertEqual(2, len(calls)) self.assertTrue(hdr in calls[0].args[0]) self.assertTrue(calls[0].kwargs["in_reply_to_status_id"] is None) self.assertTrue(line_1 in calls[0].args[0]) self.assertFalse(line_2 in calls[0].args[0]) self.assertFalse(hdr in calls[1].args[0]) self.assertEqual(calls[1].kwargs["in_reply_to_status_id"], 0) self.assertFalse(line_1 in calls[1].args[0]) self.assertTrue(line_2 in calls[1].args[0]) def test_repeating_footer(self): tt, mock = create_mock() ftr = "FOOTER" line_1 = "First line" line_2 = "Second line" tt.set_footer(ftr, repeat=True) tt.add_line(line_1) tt.add_line(line_2, force_new_tweet=True) tt.tweet() calls = mock.call_args_list self.assertEqual(2, len(calls)) self.assertTrue(ftr in calls[0].args[0]) self.assertTrue(calls[0].kwargs["in_reply_to_status_id"] is None) self.assertTrue(line_1 in calls[0].args[0]) self.assertFalse(line_2 in calls[0].args[0]) self.assertTrue(ftr in calls[1].args[0]) self.assertEqual(calls[1].kwargs["in_reply_to_status_id"], 0) self.assertFalse(line_1 in calls[1].args[0]) self.assertTrue(line_2 in calls[1].args[0]) def test_non_repeating_footer(self): tt, mock = create_mock() ftr = "FOOTER" line_1 = "First line" line_2 = "Second line" line_3 = "Third line" tt.set_footer(ftr, repeat=False) tt.add_line(line_1) tt.add_line(line_2, force_new_tweet=True) tt.add_line(line_3, force_new_tweet=True) tt.tweet() calls = mock.call_args_list self.assertEqual(3, len(calls)) self.assertFalse(ftr in calls[0].args[0]) self.assertTrue(calls[0].kwargs["in_reply_to_status_id"] is None) self.assertTrue(line_1 in calls[0].args[0]) self.assertFalse(ftr in calls[1].args[0]) self.assertEqual(calls[1].kwargs["in_reply_to_status_id"], 0) self.assertTrue(line_2 in calls[1].args[0]) self.assertTrue(ftr in calls[2].args[0]) self.assertEqual(calls[2].kwargs["in_reply_to_status_id"], 1) self.assertTrue(line_3 in calls[2].args[0]) def test_tweet_splitting_correctly(self): tt, mock = create_mock() hdr = "HEADER" ftr = "FOOTER" long_msg_1 = random_string(ThreadTwitter.LINE_MAX_LENGTH) long_msg_2 = random_string(ThreadTwitter.LINE_MAX_LENGTH) tt.set_header(hdr, repeat=False) tt.set_footer(ftr, repeat=False) tt.add_line(long_msg_1) tt.add_line(long_msg_2) tt.tweet() calls = mock.call_args_list self.assertEqual(2, len(calls)) self.assertTrue(calls[0].kwargs["in_reply_to_status_id"] is None) self.assertTrue(hdr in calls[0].args[0]) self.assertFalse(ftr in calls[0].args[0]) self.assertTrue(long_msg_1 in calls[0].args[0]) self.assertFalse(long_msg_2 in calls[0].args[0]) self.assertEqual(calls[1].kwargs["in_reply_to_status_id"], 0) self.assertFalse(hdr in calls[1].args[0]) self.assertTrue(ftr in calls[1].args[0]) self.assertFalse(long_msg_1 in calls[1].args[0]) self.assertTrue(long_msg_2 in calls[1].args[0]) def test_ignoring_force_new_on_first_line(self): tt, mock = create_mock() tt.add_line("line") tt.tweet() calls = mock.call_args_list self.assertEqual(1, len(calls)) def test_tweet_limits(self): tt, mock = create_mock() hdr = random_string(ThreadTwitter.HEADER_MAX_LENGTH) ftr = random_string(ThreadTwitter.FOOTER_MAX_LENGTH) msg = random_string(ThreadTwitter.LINE_MAX_LENGTH) tt.set_header(hdr) tt.set_footer(ftr) tt.add_line(msg) tt.tweet() calls = mock.call_args_list self.assertEqual(1, len(calls)) self.assertLessEqual(len(calls[0].args[0]), CHARACTER_LIMIT) def test_tweet_with_media_only(self): tt, mock = create_mock() media_file_ref = "file1.jpg" tt.add_media(media_file_ref, MediaType.PHOTO) tt.tweet() calls = mock.call_args_list self.assertEqual(1, len(calls)) self.assertTrue("Service tweet" in calls[0].args[0]) self.assertTrue(media_file_ref in calls[0].kwargs["media"]) def test_tweet_with_more_media_than_text_tweets(self): tt, mock = create_mock() media1 = "file1.jpg" media2 = "file.mov" txt = "My Text Content" tt.add_line(txt) tt.add_media(media1, MediaType.PHOTO) tt.add_media(media2, MediaType.VIDEO) tt.tweet() calls = mock.call_args_list self.assertEqual(2, len(calls)) self.assertTrue(txt in calls[0].args[0]) self.assertTrue("Service tweet" in calls[1].args[0]) self.assertEqual(1, len(calls[0].kwargs["media"])) self.assertTrue(media1 in calls[0].kwargs["media"]) self.assertEqual(1, len(calls[1].kwargs["media"])) self.assertTrue(media2 in calls[1].kwargs["media"]) def test_subsequent_photo_aggregation(self): tt, mock = create_mock() media1 = "file1.jpg" media2 = "file2.jpg" media3 = "file3.jpg" media4 = "file.gif" media5 = "file4.jpg" tt.add_line("Line1") tt.add_line("Line2", force_new_tweet=True) tt.add_line("Line3", force_new_tweet=True) tt.add_line("Line4", force_new_tweet=True) tt.add_media(media1, MediaType.PHOTO) tt.add_media(media2, MediaType.PHOTO) tt.add_media(media3, MediaType.PHOTO) tt.add_media(media4, MediaType.GIF) tt.add_media(media5, MediaType.PHOTO) tt.tweet() calls = mock.call_args_list self.assertEqual(4, len(calls)) self.assertEqual(3, len(calls[0].kwargs["media"])) self.assertTrue(media1 in calls[0].kwargs["media"]) self.assertTrue(media2 in calls[0].kwargs["media"]) self.assertTrue(media3 in calls[0].kwargs["media"]) self.assertEqual(1, len(calls[1].kwargs["media"])) self.assertTrue(media4 in calls[1].kwargs["media"]) self.assertEqual(1, len(calls[2].kwargs["media"])) self.assertTrue(media5 in calls[2].kwargs["media"]) if __name__ == "__main__": unittest.main()
34.934363
77
0.643015
83ee51286bb11b3af3da07664b68ba907d707420
6,004
py
Python
form_api/models/combine_pdfs_data.py
DocSpring/formapi-python
69fe8b14f78cae57e07a888f97c0903d5f0f545c
[ "MIT" ]
2
2017-10-07T17:38:10.000Z
2017-10-10T06:14:13.000Z
form_api/models/combine_pdfs_data.py
FormAPI/formapi-python
69fe8b14f78cae57e07a888f97c0903d5f0f545c
[ "MIT" ]
null
null
null
form_api/models/combine_pdfs_data.py
FormAPI/formapi-python
69fe8b14f78cae57e07a888f97c0903d5f0f545c
[ "MIT" ]
null
null
null
# coding: utf-8 """ API v1 FormAPI is a service that helps you fill out and sign PDF templates. # noqa: E501 OpenAPI spec version: v1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class CombinePdfsData(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'test': 'bool', 'source_pdfs': 'list[object]', 'metadata': 'object', 'expires_in': 'int', 'delete_custom_files': 'bool' } attribute_map = { 'test': 'test', 'source_pdfs': 'source_pdfs', 'metadata': 'metadata', 'expires_in': 'expires_in', 'delete_custom_files': 'delete_custom_files' } def __init__(self, test=None, source_pdfs=None, metadata=None, expires_in=None, delete_custom_files=None): # noqa: E501 """CombinePdfsData - a model defined in OpenAPI""" # noqa: E501 self._test = None self._source_pdfs = None self._metadata = None self._expires_in = None self._delete_custom_files = None self.discriminator = None if test is not None: self.test = test self.source_pdfs = source_pdfs if metadata is not None: self.metadata = metadata if expires_in is not None: self.expires_in = expires_in if delete_custom_files is not None: self.delete_custom_files = delete_custom_files @property def test(self): """Gets the test of this CombinePdfsData. # noqa: E501 :return: The test of this CombinePdfsData. # noqa: E501 :rtype: bool """ return self._test @test.setter def test(self, test): """Sets the test of this CombinePdfsData. :param test: The test of this CombinePdfsData. # noqa: E501 :type: bool """ self._test = test @property def source_pdfs(self): """Gets the source_pdfs of this CombinePdfsData. # noqa: E501 :return: The source_pdfs of this CombinePdfsData. # noqa: E501 :rtype: list[object] """ return self._source_pdfs @source_pdfs.setter def source_pdfs(self, source_pdfs): """Sets the source_pdfs of this CombinePdfsData. :param source_pdfs: The source_pdfs of this CombinePdfsData. # noqa: E501 :type: list[object] """ if source_pdfs is None: raise ValueError("Invalid value for `source_pdfs`, must not be `None`") # noqa: E501 self._source_pdfs = source_pdfs @property def metadata(self): """Gets the metadata of this CombinePdfsData. # noqa: E501 :return: The metadata of this CombinePdfsData. # noqa: E501 :rtype: object """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this CombinePdfsData. :param metadata: The metadata of this CombinePdfsData. # noqa: E501 :type: object """ self._metadata = metadata @property def expires_in(self): """Gets the expires_in of this CombinePdfsData. # noqa: E501 :return: The expires_in of this CombinePdfsData. # noqa: E501 :rtype: int """ return self._expires_in @expires_in.setter def expires_in(self, expires_in): """Sets the expires_in of this CombinePdfsData. :param expires_in: The expires_in of this CombinePdfsData. # noqa: E501 :type: int """ self._expires_in = expires_in @property def delete_custom_files(self): """Gets the delete_custom_files of this CombinePdfsData. # noqa: E501 :return: The delete_custom_files of this CombinePdfsData. # noqa: E501 :rtype: bool """ return self._delete_custom_files @delete_custom_files.setter def delete_custom_files(self, delete_custom_files): """Sets the delete_custom_files of this CombinePdfsData. :param delete_custom_files: The delete_custom_files of this CombinePdfsData. # noqa: E501 :type: bool """ self._delete_custom_files = delete_custom_files def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CombinePdfsData): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.541284
124
0.589107
c47f0d9859b52311112ef7b2e4d136a421bd885c
569
py
Python
awx/main/tests/functional/test_execution_environments.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
2
2020-03-19T20:49:37.000Z
2020-05-04T14:36:11.000Z
awx/main/tests/functional/test_execution_environments.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
35
2021-03-01T06:34:26.000Z
2022-03-01T01:18:42.000Z
awx/main/tests/functional/test_execution_environments.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
null
null
null
import pytest from awx.main.models import ExecutionEnvironment @pytest.mark.django_db def test_execution_environment_creation(execution_environment, organization): execution_env = ExecutionEnvironment.objects.create( name='Hello Environment', image='', organization=organization, managed_by_tower=False, credential=None, pull='missing' ) assert type(execution_env) is type(execution_environment) assert execution_env.organization == organization assert execution_env.name == 'Hello Environment' assert execution_env.pull == 'missing'
37.933333
126
0.787346
3c7baff3932da6a158d55e7d402991802c7022a1
2,595
py
Python
leet/prefix/numMatrix.py
peterlamar/python-cp-cheatsheet
f9f854064a3c657c04fab27d0a496401bfa97da1
[ "Apache-2.0" ]
140
2020-10-21T13:23:52.000Z
2022-03-31T15:09:45.000Z
leet/prefix/numMatrix.py
stacykutyepov/python-cp-cheatsheet
a00a57e1b36433648d1cace331e15ff276cef189
[ "Apache-2.0" ]
1
2021-07-22T14:01:25.000Z
2021-07-22T14:01:25.000Z
leet/prefix/numMatrix.py
stacykutyepov/python-cp-cheatsheet
a00a57e1b36433648d1cace331e15ff276cef189
[ "Apache-2.0" ]
33
2020-10-21T14:17:02.000Z
2022-03-25T11:25:03.000Z
""" +-----+-+-------+ +--------+-----+ +-----+---------+ +-----+--------+ | | | | | | | | | | | | | | | | | | | | | | | | | | +-----+-+ | +--------+ | | | | +-----+ | | | | | = | | + | | | - | | +-----+-+ | | | +-----+ | | | | | | | | | | | | | | | | | | | +---------------+ +--------------+ +---------------+ +--------------+ sums[i][j] = sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] + matrix[i-1][j-1] +---------------+ +---------+----+ +---+-----------+ +---------+----+ +---+----------+ | | | | | | | | | | | | | | | (r1,c1) | | | | | | | | | | | | | | +------+ | | | | | | | +---------+ | +---+ | | | | | = | | | - | | | - | (r1,c2) | + | (r1,c1) | | | | | | | | | | | | | | | | +------+ | +---------+ | +---+ | | | | | | (r2,c2)| | (r2,c2)| | (r2,c1) | | | | | +---------------+ +--------------+ +---------------+ +--------------+ +--------------+ Range Sum Query 2D - Immutable Precompute - O(mn) lookup O(1) Space O(mn) """ class NumMatrix: def __init__(self, matrix: List[List[int]]): R = len(matrix) C = len(matrix[0]) self.dp = [[0 for i in range(C+1)] for j in range(R+1)] for r in range(1, R+1): for c in range(1, C+1): self.dp[r][c] = self.dp[r][c-1] + self.dp[r-1][c] - self.dp[r-1][c-1] + matrix[r-1][c-1] def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: row1 += 1 col1 += 1 row2 += 1 col2 += 1 return self.dp[row2][col2] - self.dp[row1-1][col2] - self.dp[row2][col1-1] + self.dp[row1-1][col1-1] # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)
48.055556
108
0.203083
e8caaae4d0e63caf6ebcbde83ffbb7087ee66092
850
py
Python
var/spack/repos/builtin/packages/perl-test-most/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2,360
2017-11-06T08:47:01.000Z
2022-03-31T14:45:33.000Z
var/spack/repos/builtin/packages/perl-test-most/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
13,838
2017-11-04T07:49:45.000Z
2022-03-31T23:38:39.000Z
var/spack/repos/builtin/packages/perl-test-most/package.py
LiamBindle/spack
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1,793
2017-11-04T07:45:50.000Z
2022-03-30T14:31:53.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PerlTestMost(PerlPackage): """Most commonly needed test functions and features.""" homepage = "https://metacpan.org/pod/Test::Most" url = "http://search.cpan.org/CPAN/authors/id/O/OV/OVID/Test-Most-0.35.tar.gz" version('0.35', sha256='9897a6f4d751598d2ed1047e01c1554b01d0f8c96c45e7e845229782bf6f657f') depends_on('perl-exception-class', type=('build', 'run')) depends_on('perl-test-differences', type=('build', 'run')) depends_on('perl-test-exception', type=('build', 'run')) depends_on('perl-test-warn', type=('build', 'run')) depends_on('perl-test-deep', type=('build', 'run'))
38.636364
94
0.703529
ecfcbd0bc8e1979f5a433c9fb9a9dde04000e5e5
60,167
py
Python
aidants_connect_web/tests/test_models.py
betagouv/Aidants_Connect
2329d41545912460c4a43b5b41c892189fc1df11
[ "MIT" ]
16
2019-05-13T08:32:40.000Z
2022-03-22T13:40:57.000Z
aidants_connect_web/tests/test_models.py
betagouv/Aidants_Connect
2329d41545912460c4a43b5b41c892189fc1df11
[ "MIT" ]
207
2019-05-15T16:30:52.000Z
2022-03-31T15:26:25.000Z
aidants_connect_web/tests/test_models.py
betagouv/Aidants_Connect
2329d41545912460c4a43b5b41c892189fc1df11
[ "MIT" ]
12
2019-11-08T13:44:35.000Z
2022-02-14T15:38:37.000Z
from os.path import join as path_join from datetime import date, datetime, timedelta from unittest.mock import Mock import mock from django.db.utils import IntegrityError from django.test import tag, TestCase from django.utils import timezone from django.conf import settings from django_otp.plugins.otp_totp.models import TOTPDevice from freezegun import freeze_time from pytz import timezone as pytz_timezone from aidants_connect_web.models import ( Aidant, Autorisation, Connection, HabilitationRequest, Journal, Mandat, Organisation, OrganisationType, Usager, ) from aidants_connect_web.tests.factories import ( AidantFactory, AttestationJournalFactory, AutorisationFactory, HabilitationRequestFactory, MandatFactory, OrganisationFactory, OrganisationTypeFactory, UsagerFactory, ) from aidants_connect_web.utilities import ( generate_attestation_hash, generate_file_sha256_hash, validate_attestation_hash, ) @tag("models") class ConnectionModelTests(TestCase): def test_saving_and_retrieving_connection(self): first_connection = Connection() first_connection.state = "aZeRtY" first_connection.code = "ert" first_connection.nonce = "varg" first_connection.usager = UsagerFactory(given_name="Joséphine") first_connection.save() second_connection = Connection() second_connection.state = "QsDfG" second_connection.usager = UsagerFactory(given_name="Fabrice") second_connection.save() saved_items = Connection.objects.all() self.assertEqual(saved_items.count(), 2) first_saved_item = saved_items[0] second_saved_item = saved_items[1] self.assertEqual(first_saved_item.state, "aZeRtY") self.assertEqual(first_saved_item.nonce, "varg") self.assertEqual(first_saved_item.usager.given_name, "Joséphine") self.assertEqual(second_saved_item.state, "QsDfG") self.assertEqual(second_saved_item.usager.gender, Usager.GENDER_MALE) @tag("models") class UsagerModelTests(TestCase): def test_usager_with_null_birthplace(self): first_usager = Usager() first_usager.given_name = "TEST NAME" first_usager.family_name = "TEST Family Name éèà" first_usager.preferred_username = "I prefer being called this" first_usager.birthdate = date(1902, 6, 30) first_usager.gender = Usager.GENDER_FEMALE first_usager.birthplace = None first_usager.birthcountry = Usager.BIRTHCOUNTRY_FRANCE first_usager.email = "user@test.user" first_usager.sub = "1233" first_usager.save() saved_items = Usager.objects.all() self.assertEqual(saved_items.count(), 1) def test_saving_and_retrieving_usager(self): first_usager = Usager() first_usager.given_name = "TEST NAME" first_usager.family_name = "TEST Family Name éèà" first_usager.preferred_username = "I prefer being called this" first_usager.birthdate = date(1902, 6, 30) first_usager.gender = Usager.GENDER_FEMALE first_usager.birthplace = "27681" first_usager.birthcountry = Usager.BIRTHCOUNTRY_FRANCE first_usager.email = "user@test.user" first_usager.sub = "1233" first_usager.save() second_usager = Usager() second_usager.given_name = "TEST SECOND NAME" second_usager.family_name = "TEST Family Name éèà" second_usager.preferred_username = "I prefer being called this" second_usager.birthdate = date(1945, 10, 20) second_usager.gender = Usager.GENDER_MALE second_usager.birthplace = "84016" second_usager.birthcountry = Usager.BIRTHCOUNTRY_FRANCE second_usager.email = "other_user@test.user" second_usager.sub = "1234" second_usager.save() saved_items = Usager.objects.all() self.assertEqual(saved_items.count(), 2) first_saved_item = saved_items[0] second_saved_item = saved_items[1] self.assertEqual(first_saved_item.given_name, "TEST NAME") self.assertEqual(str(first_saved_item.birthdate), "1902-06-30") self.assertEqual(second_saved_item.family_name, "TEST Family Name éèà") self.assertEqual(second_usager.sub, "1234") def test_normalize_birthplace(self): usager = UsagerFactory(birthplace="123") usager.normalize_birthplace() self.assertEqual(usager.birthplace, "00123") usager = UsagerFactory(birthplace="1234") usager.normalize_birthplace() self.assertEqual(usager.birthplace, "01234") usager = UsagerFactory(birthplace="12345") usager.normalize_birthplace() self.assertEqual(usager.birthplace, "12345") def test_active_usager_excludes_usager_with_revoked_mandats(self): usager = UsagerFactory() mandat_1 = MandatFactory(usager=usager) AutorisationFactory( mandat=mandat_1, demarche="justice", revocation_date=timezone.now() - timedelta(minutes=1), ) usagers = Usager.objects.all() self.assertEqual(usagers.count(), 1) self.assertEqual(usagers.active().count(), 0) def test_active_usager_excludes_usager_with_expired_mandats(self): usager = UsagerFactory() mandat_1 = MandatFactory( usager=usager, expiration_date=timezone.now() - timedelta(minutes=1) ) AutorisationFactory(mandat=mandat_1, demarche="justice") usagers = Usager.objects.all() self.assertEqual(usagers.count(), 1) self.assertEqual(usagers.active().count(), 0) @tag("models") class MandatModelTests(TestCase): @classmethod def setUpTestData(cls): cls.organisation_1 = OrganisationFactory() cls.aidant_1 = AidantFactory() cls.usager_1 = UsagerFactory() cls.mandat_1 = Mandat.objects.create( organisation=cls.organisation_1, usager=cls.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=1), ) AutorisationFactory( mandat=cls.mandat_1, demarche="justice", ) cls.usager_2 = UsagerFactory(sub="anothersub") cls.mandat_2 = Mandat.objects.create( organisation=cls.organisation_1, usager=cls.usager_2, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=1), ) AutorisationFactory( mandat=cls.mandat_2, demarche="argent", ) AutorisationFactory( mandat=cls.mandat_2, demarche="transport", ) def test_saving_and_retrieving_mandats(self): self.assertEqual(Mandat.objects.count(), 2) def test_mandat_can_have_one_autorisation(self): self.assertEqual(len(self.mandat_1.autorisations.all()), 1) def test_mandat_can_have_two_autorisations(self): self.assertEqual(len(self.mandat_2.autorisations.all()), 2) def test_active_queryset_method_exclude_fully_revoked_mandats(self): fully_revoked_mandat = Mandat.objects.create( organisation=self.organisation_1, usager=self.usager_2, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=1), ) AutorisationFactory( mandat=fully_revoked_mandat, demarche="papiers", revocation_date=timezone.now() - timedelta(minutes=1), ) AutorisationFactory( mandat=fully_revoked_mandat, demarche="loisirs", revocation_date=timezone.now() - timedelta(minutes=1), ) active_mandats = Mandat.objects.active().count() inactive_mandats = Mandat.objects.inactive().count() self.assertEqual(active_mandats, 2) self.assertEqual(inactive_mandats, 1) def test_active_queryset_method_include_partially_revoked_mandat(self): partially_revoked_mandat = Mandat.objects.create( organisation=self.organisation_1, usager=self.usager_2, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=1), ) AutorisationFactory( mandat=partially_revoked_mandat, demarche="papiers", revocation_date=timezone.now() - timedelta(minutes=1), ) AutorisationFactory( mandat=partially_revoked_mandat, demarche="loisirs", ) active_mandats = Mandat.objects.active().count() inactive_mandats = Mandat.objects.inactive().count() self.assertEqual(active_mandats, 3) self.assertEqual(inactive_mandats, 0) def test_active_queryset_method_excludes_expired_mandat(self): expired_mandat = Mandat.objects.create( organisation=self.organisation_1, usager=self.usager_2, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() - timedelta(days=1), ) AutorisationFactory( mandat=expired_mandat, demarche="papiers", ) active_mandats = Mandat.objects.active().count() inactive_mandats = Mandat.objects.inactive().count() self.assertEqual(active_mandats, 2) self.assertEqual(inactive_mandats, 1) def test_revocation_date_valid_mandate_valid_auths(self): mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) for procedure in ["transports", "logement"]: Autorisation.objects.create(mandat=mandate, demarche=procedure) self.assertEqual(mandate.revocation_date, None) def test_revocation_date_valid_mandate_one_revoked_auth(self): mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) Autorisation.objects.create( mandat=mandate, demarche="transports", revocation_date=timezone.now() ) Autorisation.objects.create(mandat=mandate, demarche="logement") self.assertEqual(mandate.revocation_date, None) def test_revocation_date_valid_mandate_all_revoked_auths(self): revocation_date = timezone.now() mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) for procedure in ["transports", "logement"]: Autorisation.objects.create( mandat=mandate, demarche=procedure, revocation_date=revocation_date ) self.assertEqual(mandate.revocation_date, revocation_date) def was_explicitly_revoked_valid_mandate_valid_auths(self): mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) for procedure in ["transports", "logement"]: Autorisation.objects.create(mandat=mandate, demarche=procedure) self.assertEqual(mandate.was_explicitly_revoked, False) def was_explicitly_revoked_valid_mandate_one_revoked_auth(self): mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) Autorisation.objects.create( mandat=mandate, demarche="transports", revocation_date=timezone.now() ) Autorisation.objects.create(mandat=mandate, demarche="logement") self.assertEqual(mandate.was_explicitly_revoked, False) def was_explicitly_revoked_valid_mandate_all_revoked_auths(self): revocation_date = timezone.now() mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=timezone.now() + timedelta(days=6), ) for procedure in ["transports", "logement"]: Autorisation.objects.create( mandat=mandate, demarche=procedure, revocation_date=revocation_date ) self.assertEqual(mandate.was_explicitly_revoked, True) def test__get_template_path_from_journal_hash_nominal(self): tpl_name = "20200511_mandat.html" procedures = ["transports", "logement"] expiration_date = timezone.now() + timedelta(days=6) attestation_hash = generate_attestation_hash( self.aidant_1, self.usager_1, procedures, expiration_date, mandat_template_path=path_join(settings.MANDAT_TEMPLATE_DIR, tpl_name), ) AttestationJournalFactory( aidant=self.aidant_1, organisation=self.aidant_1.organisation, usager=self.usager_1, demarche=",".join(procedures), attestation_hash=attestation_hash, ) mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=expiration_date, ) for procedure in procedures: Autorisation.objects.create(mandat=mandate, demarche=procedure) # Add another active mandate with auths so that we have a real life example other_mandate = MandatFactory( organisation=self.aidant_1.organisation, usager=self.usager_1 ) AutorisationFactory(mandat=other_mandate) result = mandate._get_mandate_template_path_from_journal_hash() self.assertEqual(result, f"aidants_connect_web/mandat_templates/{tpl_name}") def test__get_template_path_from_journal_hash_with_old_mandate(self): tpl_name = "20200511_mandat.html" procedures = ["transports", "logement"] expiration_date = timezone.now() - timedelta(days=6) creation_date = timezone.now() - timedelta(days=12) attestation_hash = generate_attestation_hash( self.aidant_1, self.usager_1, procedures, expiration_date, creation_date=creation_date.date().isoformat(), mandat_template_path=path_join(settings.MANDAT_TEMPLATE_DIR, tpl_name), ) AttestationJournalFactory( aidant=self.aidant_1, organisation=self.aidant_1.organisation, usager=self.usager_1, demarche=",".join(procedures), attestation_hash=attestation_hash, creation_date=creation_date, ) mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=creation_date, duree_keyword="SHORT", expiration_date=expiration_date, ) for procedure in procedures: Autorisation.objects.create( mandat=mandate, demarche=procedure, revocation_date=timezone.now() - timedelta(days=6), ) # Add another active mandate with auths so that we have a real life example other_mandate = MandatFactory( organisation=self.aidant_1.organisation, usager=self.usager_1 ) AutorisationFactory(mandat=other_mandate) result = mandate._get_mandate_template_path_from_journal_hash() self.assertEqual(result, f"aidants_connect_web/mandat_templates/{tpl_name}") def test__get_template_path_from_journal_hash_with_old_delegation(self): tpl_name = "20200511_mandat.html" procedures = ["transports", "logement"] expiration_date = timezone.now() + timedelta(days=6) attestation_hash = generate_attestation_hash( self.aidant_1, self.usager_1, procedures, expiration_date, mandat_template_path=path_join(settings.MANDAT_TEMPLATE_DIR, tpl_name), ) old_attestation_hash = generate_attestation_hash( self.aidant_1, self.usager_1, procedures, expiration_date, mandat_template_path=path_join( settings.MANDAT_TEMPLATE_DIR, "20200201_mandat.html" ), ) AttestationJournalFactory( aidant=self.aidant_1, organisation=self.aidant_1.organisation, usager=self.usager_1, demarche=",".join(procedures), attestation_hash=attestation_hash, ) AttestationJournalFactory( aidant=self.aidant_1, organisation=self.aidant_1.organisation, usager=self.usager_1, demarche=",".join(procedures), attestation_hash=old_attestation_hash, creation_date=timezone.now() - timedelta(weeks=1), ) mandate = Mandat.objects.create( organisation=self.aidant_1.organisation, usager=self.usager_1, creation_date=timezone.now(), duree_keyword="SHORT", expiration_date=expiration_date, ) for procedure in procedures: Autorisation.objects.create(mandat=mandate, demarche=procedure) # Add another active mandate with auths so that we have a real life example other_mandate = MandatFactory( organisation=self.aidant_1.organisation, usager=self.usager_1 ) AutorisationFactory(mandat=other_mandate) result = mandate._get_mandate_template_path_from_journal_hash() self.assertEqual(result, f"aidants_connect_web/mandat_templates/{tpl_name}") @tag("models") class AutorisationModelTests(TestCase): @classmethod def setUpTestData(cls): cls.aidant_marge = AidantFactory() cls.aidant_patricia = AidantFactory() cls.usager_homer = UsagerFactory() cls.usager_ned = UsagerFactory(family_name="Flanders", sub="nedflanders") cls.mandat_marge_homer_6 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_homer, expiration_date=timezone.now() + timedelta(days=6), ) cls.mandat_patricia_ned_6 = MandatFactory( organisation=cls.aidant_patricia.organisation, usager=cls.usager_ned, expiration_date=timezone.now() + timedelta(days=6), ) def test_saving_and_retrieving_autorisation(self): first_autorisation = AutorisationFactory( mandat=self.mandat_marge_homer_6, demarche="Carte grise", ) second_autorisation = AutorisationFactory( mandat=self.mandat_patricia_ned_6, demarche="Revenus", ) self.assertEqual(Autorisation.objects.count(), 2) self.assertEqual( first_autorisation.mandat.organisation, self.mandat_marge_homer_6.organisation, ) self.assertEqual(first_autorisation.demarche, "Carte grise") self.assertEqual(second_autorisation.mandat.usager.family_name, "Flanders") fake_date = datetime(2019, 1, 14, tzinfo=pytz_timezone("Europe/Paris")) @freeze_time(fake_date) def test_autorisation_expiration_date_setting(self): mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=self.usager_homer, expiration_date=timezone.now() + timedelta(days=3), ) autorisation = AutorisationFactory( mandat=mandat, demarche="Carte grise", ) self.assertEqual( autorisation.creation_date, datetime(2019, 1, 14, tzinfo=pytz_timezone("Europe/Paris")), ) self.assertEqual( autorisation.mandat.expiration_date, datetime(2019, 1, 17, tzinfo=pytz_timezone("Europe/Paris")), ) def test_was_separately_revoked_auth_not_revoked(self): mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=self.usager_homer, expiration_date=timezone.now() + timedelta(days=3), ) autorisation: Autorisation = AutorisationFactory( mandat=mandat, demarche="Carte grise", ) self.assertFalse(autorisation.was_separately_revoked) def test_was_separately_revoked_mandate_not_revoked(self): mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=self.usager_homer, expiration_date=timezone.now() + timedelta(days=3), ) AutorisationFactory( mandat=mandat, demarche="logement", ) autorisation: Autorisation = AutorisationFactory( mandat=mandat, demarche="papiers", revocation_date=timezone.now() ) self.assertTrue(autorisation.was_separately_revoked) def test_was_separately_revoked_mandate_revoked_false(self): mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=self.usager_homer, expiration_date=timezone.now() + timedelta(days=3), ) AutorisationFactory( mandat=mandat, demarche="logement", revocation_date=timezone.now() ) autorisation: Autorisation = AutorisationFactory( mandat=mandat, demarche="papiers", revocation_date=timezone.now() ) self.assertFalse(autorisation.was_separately_revoked) def test_was_separately_revoked_mandate_revoked_true(self): mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=self.usager_homer, expiration_date=timezone.now() + timedelta(days=3), ) AutorisationFactory( mandat=mandat, demarche="logement", revocation_date=timezone.now() ) autorisation: Autorisation = AutorisationFactory( mandat=mandat, demarche="papiers", revocation_date=timezone.now() - timedelta(days=1), ) self.assertTrue(autorisation.was_separately_revoked) @tag("models") class OrganisationModelTests(TestCase): def test_create_and_retrieve_organisation(self): self.assertEqual(OrganisationType.objects.count(), 12) o_type = OrganisationTypeFactory(name="CCAS") OrganisationFactory( name="Girard S.A.R.L", siret="123", type=o_type, address="3 rue du chat, 27120 Houlbec-Cocherel", ) self.assertEqual(Organisation.objects.count(), 1) self.assertEqual(OrganisationType.objects.count(), 13) organisation = Organisation.objects.all()[0] self.assertEqual(organisation.name, "Girard S.A.R.L") self.assertEqual(organisation.type, o_type) self.assertEqual(organisation.address, "3 rue du chat, 27120 Houlbec-Cocherel") def test_display_address(self): organisation_no_address = Organisation(name="L'Internationale") organisation_address = Organisation( name="COMMUNE D'HOULBEC COCHEREL", siret=123, address="45 avenue du Général de Gaulle, 27120 HOULBEC COCHEREL", ) organisation_no_address.save() organisation_address.save() self.assertEqual(organisation_no_address.display_address, "") self.assertNotEqual( organisation_no_address.display_address, Organisation._meta.get_field("address").default, ) self.assertEqual( organisation_address.display_address, organisation_address.address ) def test_deactivate_organisation(self): orga_one = OrganisationFactory(name="L'Internationale") orga_two = OrganisationFactory() aidant_marge = AidantFactory(organisation=orga_one) aidant_lisa = AidantFactory(organisation=orga_one) aidant_homer = AidantFactory(organisation=orga_two) self.assertTrue(orga_one.is_active) self.assertTrue(orga_two.is_active) orga_one.deactivate_organisation() orga_one.refresh_from_db() aidant_marge.refresh_from_db() aidant_lisa.refresh_from_db() aidant_homer.refresh_from_db() self.assertFalse(orga_one.is_active) self.assertTrue(orga_two.is_active) self.assertFalse(aidant_marge.is_active) self.assertFalse(aidant_lisa.is_active) self.assertTrue(aidant_homer.is_active) def test_deactivate_organisation_with_multistruct_aidant(self): orga_one = OrganisationFactory(name="Ouane") orga_two = OrganisationFactory(name="Tou") aidant_nour = AidantFactory(organisation=orga_one) aidant_nour.organisations.add(orga_two) self.assertTrue(orga_one.is_active) self.assertTrue(orga_two.is_active) self.assertTrue(aidant_nour.is_active) self.assertEqual(aidant_nour.organisation, orga_one) orga_one.deactivate_organisation() orga_one.refresh_from_db() aidant_nour.refresh_from_db() self.assertFalse(orga_one.is_active) self.assertTrue(orga_two.is_active) self.assertTrue(aidant_nour.is_active) self.assertEqual(aidant_nour.organisation, orga_two) def test_activate_organisation(self): orga = OrganisationFactory(name="L'Internationale", is_active=False) orga.activate_organisation() orga.refresh_from_db() self.assertTrue(orga.is_active) def test_set_empty_zipcode_from_address(self): organisation_no_address = Organisation(name="L'Internationale") organisation_no_address.save() self.assertEqual("0", organisation_no_address.zipcode) organisation_no_address.set_empty_zipcode_from_address() organisation_no_address.refresh_from_db() self.assertEqual("0", organisation_no_address.zipcode) organisation_with_address = Organisation( name="L'Internationale", address=" blaa 13013 Paris" ) organisation_with_address.save() self.assertEqual("0", organisation_with_address.zipcode) organisation_with_address.set_empty_zipcode_from_address() organisation_with_address.refresh_from_db() self.assertEqual("13013", organisation_with_address.zipcode) organisation_with_zipcode = Organisation( name="L'Internationale", zipcode="75015", address=" blaa 13013 Paris" ) organisation_with_zipcode.save() self.assertEqual("75015", organisation_with_zipcode.zipcode) organisation_with_zipcode.set_empty_zipcode_from_address() organisation_with_zipcode.refresh_from_db() self.assertEqual("75015", organisation_with_zipcode.zipcode) def test_count_mandats(self): def create_active_mandats(count, organisation): for _ in range(count): MandatFactory( organisation=organisation, expiration_date=timezone.now() + timedelta(days=6), ) def create_expired_mandats(count, organisation): for _ in range(count): MandatFactory( organisation=organisation, expiration_date=timezone.now() - timedelta(days=6), ) org_without_mandats = OrganisationFactory(name="Licornes") self.assertEqual(0, org_without_mandats.num_mandats) self.assertEqual(0, org_without_mandats.num_active_mandats) org_with_active_mandats = OrganisationFactory(name="Dragons") create_active_mandats(3, org_with_active_mandats) self.assertEqual(3, org_with_active_mandats.num_mandats) self.assertEqual(3, org_with_active_mandats.num_active_mandats) org_with_active_and_inactive_mandats = OrganisationFactory(name="Libellules") create_active_mandats(3, org_with_active_and_inactive_mandats) create_expired_mandats(4, org_with_active_and_inactive_mandats) self.assertEqual(7, org_with_active_and_inactive_mandats.num_mandats) self.assertEqual(3, org_with_active_and_inactive_mandats.num_active_mandats) def test_count_usagers(self): def create_6_mandats_for_2_usagers(organisation): thomas = UsagerFactory(given_name="Thomas") for _ in range(5): MandatFactory(organisation=organisation, usager=thomas) MandatFactory(organisation=organisation) organisation = OrganisationFactory() create_6_mandats_for_2_usagers(organisation=organisation) self.assertEqual(2, organisation.num_usagers) def test_count_aidants(self): orga_a = OrganisationFactory(name="A") orga_b = OrganisationFactory(name="Baker Street") for _ in range(2): aidant_a = AidantFactory(organisation=orga_a) aidant_a.organisations.set((orga_a, orga_b)) for _ in range(3): aidant_b = AidantFactory(organisation=orga_b) aidant_b.organisations.set((orga_a, orga_b)) for _ in range(4): aidant_c = AidantFactory(organisation=orga_a, is_active=False) aidant_c.organisations.set((orga_a, orga_b)) self.assertEqual(orga_a.num_active_aidants, 5) @tag("models", "aidant") class AidantModelTests(TestCase): @classmethod def setUpTestData(cls): cls.superuser_org = OrganisationFactory() def test_i_can_create_a_superuser(self): self.assertEqual(Aidant.objects.filter(is_superuser=True).count(), 0) Aidant.objects.create_superuser( username="admin", organisation=self.superuser_org ) self.assertEqual(Aidant.objects.filter(is_superuser=True).count(), 1) def test_what_happens_to_password_when_not_set(self): aidant = Aidant.objects.create( username="Marge", organisation=self.superuser_org ) self.assertEqual(aidant.password, "") def test_what_happens_when_username_not_set(self): aidant = Aidant.objects.create(organisation=self.superuser_org) self.assertEqual(aidant.username, "") def test_what_happens_when_an_aidant_tries_to_use_same_username(self): Aidant.objects.create(username="Marge", organisation=self.superuser_org) self.assertRaises(IntegrityError, Aidant.objects.create, username="Marge") def test_get_aidant_organisation(self): orga = OrganisationFactory( name="COMMUNE DE HOULBEC COCHEREL", siret=123, address="45 avenue du Général de Gaulle, 90210 Beverly Hills", ) aidant = AidantFactory(organisation=orga) self.assertEqual(aidant.organisation.name, "COMMUNE DE HOULBEC COCHEREL") def test_get_active_aidants(self): AidantFactory() AidantFactory(is_active=False) self.assertEqual(Aidant.objects.active().count(), 1) @tag("models", "aidant") class AidantModelMethodsTests(TestCase): @classmethod def setUpTestData(cls): # Aidants : Marge & Lisa belong to the same organisation, Patricia does not cls.aidant_marge = AidantFactory(validated_cgu_version="0.1") cls.aidant_lisa = AidantFactory( organisation=cls.aidant_marge.organisation, validated_cgu_version=settings.CGU_CURRENT_VERSION, ) cls.aidant_patricia = AidantFactory() # Juliette is responsible in the same structure as Marge & Lisa cls.respo_juliette = AidantFactory( organisation=cls.aidant_marge.organisation, ) cls.respo_juliette.responsable_de.add(cls.aidant_marge.organisation) # TOTP Device device = TOTPDevice(user=cls.aidant_marge) device.save() for _ in range(2): device = TOTPDevice(user=cls.aidant_patricia) device.save() # Active Usagers cls.usager_homer = UsagerFactory(given_name="Homer") cls.usager_ned = UsagerFactory(given_name="Ned") # Usager with no mandat cls.usager_bart = UsagerFactory(given_name="Bart") # Inactive Usagers cls.usager_sophie = UsagerFactory(given_name="Sophie") cls.usager_lola = UsagerFactory(given_name="Lola") # Mandats Marge cls.mandat_marge_homer_1 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_homer, expiration_date=timezone.now() - timedelta(days=6), ) AutorisationFactory( mandat=cls.mandat_marge_homer_1, demarche="Carte grise", ) cls.mandat_marge_homer_2 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_homer, expiration_date=timezone.now() + timedelta(days=6), ) AutorisationFactory( mandat=cls.mandat_marge_homer_2, demarche="Revenus", ) cls.mandat_marge_homer_3 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_homer, expiration_date=timezone.now() + timedelta(days=365), ) AutorisationFactory( mandat=cls.mandat_marge_homer_3, demarche="social", ) cls.mandat_marge_ned_1 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_ned, expiration_date=timezone.now() - timedelta(days=6), ) AutorisationFactory( mandat=cls.mandat_marge_ned_1, demarche="Logement", ) # Partially revoked mandat cls.mandat_marge_ned_2 = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_ned, expiration_date=timezone.now() + timedelta(days=6), ) AutorisationFactory( mandat=cls.mandat_marge_ned_2, demarche="transports", ) AutorisationFactory( mandat=cls.mandat_marge_ned_2, demarche="famille", ) AutorisationFactory( mandat=cls.mandat_marge_ned_2, demarche="social", ) AutorisationFactory( mandat=cls.mandat_marge_ned_2, demarche="travail", ) AutorisationFactory( demarche="papiers", mandat=cls.mandat_marge_ned_2, revocation_date=timezone.now(), ) # Expired mandat cls.mandat_marge_sophie = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_sophie, expiration_date=timezone.now() - timedelta(days=6), ) AutorisationFactory( mandat=cls.mandat_marge_sophie, demarche="transports", ) # Revoked mandat cls.mandat_marge_lola = MandatFactory( organisation=cls.aidant_marge.organisation, usager=cls.usager_lola, expiration_date=timezone.now() + timedelta(days=6), ) AutorisationFactory( demarche="papiers", mandat=cls.mandat_marge_lola, revocation_date=timezone.now(), ) # Mandat Patricia cls.mandat_marge_lola = MandatFactory( organisation=cls.aidant_patricia.organisation, usager=cls.usager_lola, expiration_date=timezone.now() + timedelta(days=6), ) AutorisationFactory( demarche="papiers", mandat=cls.mandat_marge_lola, ) def test_get_usagers(self): self.assertEqual(len(self.aidant_marge.get_usagers()), 4) self.assertEqual(len(self.aidant_lisa.get_usagers()), 4) self.assertEqual(len(self.aidant_patricia.get_usagers()), 1) def test_get_usager(self): usager_john = UsagerFactory() self.assertIsNone(self.aidant_marge.get_usager(usager_john.id)) self.assertEqual( self.aidant_marge.get_usager(self.usager_homer.id), self.usager_homer ) def test_active_usagers(self): usagers = Usager.objects.all() self.assertEqual(len(usagers), 5) active_usagers = usagers.active() self.assertEqual(len(active_usagers), 3) def test_get_usagers_with_active_autorisation(self): self.assertEqual( len(self.aidant_marge.get_usagers_with_active_autorisation()), 2 ) self.assertEqual( len(self.aidant_lisa.get_usagers_with_active_autorisation()), 2 ) self.assertEqual( len(self.aidant_patricia.get_usagers_with_active_autorisation()), 1 ) def test_get_active_autorisations_for_usager(self): self.assertEqual( len( self.aidant_marge.get_active_autorisations_for_usager(self.usager_homer) ), 2, ) self.assertEqual( len(self.aidant_marge.get_active_autorisations_for_usager(self.usager_ned)), 4, ) self.assertEqual( len( self.aidant_marge.get_active_autorisations_for_usager(self.usager_bart) ), 0, ) self.assertEqual( len( self.aidant_lisa.get_active_autorisations_for_usager(self.usager_homer) ), 2, ) self.assertEqual( len(self.aidant_lisa.get_active_autorisations_for_usager(self.usager_ned)), 4, ) self.assertEqual( len(self.aidant_lisa.get_active_autorisations_for_usager(self.usager_bart)), 0, ) self.assertEqual( len(self.aidant_lisa.get_active_autorisations_for_usager(self.usager_lola)), 0, ) self.assertEqual( len( self.aidant_patricia.get_active_autorisations_for_usager( self.usager_lola ) ), 1, ) def test_get_inactive_autorisations_for_usager(self): self.assertEqual( len( self.aidant_marge.get_inactive_autorisations_for_usager( self.usager_homer ) ), 1, ) self.assertEqual( len( self.aidant_marge.get_inactive_autorisations_for_usager(self.usager_ned) ), 2, ) self.assertEqual( len( self.aidant_marge.get_inactive_autorisations_for_usager( self.usager_bart ) ), 0, ) self.assertEqual( len( self.aidant_lisa.get_inactive_autorisations_for_usager( self.usager_homer ) ), 1, ) self.assertEqual( len( self.aidant_lisa.get_inactive_autorisations_for_usager(self.usager_ned) ), 2, ) self.assertEqual( len( self.aidant_lisa.get_inactive_autorisations_for_usager(self.usager_bart) ), 0, ) def test_get_active_demarches_for_usager(self): self.assertCountEqual( list(self.aidant_marge.get_active_demarches_for_usager(self.usager_homer)), ["Revenus", "social"], ) self.assertCountEqual( list(self.aidant_marge.get_active_demarches_for_usager(self.usager_ned)), ["famille", "social", "transports", "travail"], ) self.assertCountEqual( list(self.aidant_lisa.get_active_demarches_for_usager(self.usager_homer)), ["Revenus", "social"], ) self.assertCountEqual( list(self.aidant_lisa.get_active_demarches_for_usager(self.usager_ned)), ["famille", "social", "transports", "travail"], ) def test_get_valid_autorisation_method(self): # A valid mandat with one revoked autorisation usager_charles = UsagerFactory(given_name="Charles", sub="Charles") active_mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=usager_charles, ) valid_autorisation = AutorisationFactory( mandat=active_mandat, demarche="papiers", revocation_date=None, ) AutorisationFactory( mandat=active_mandat, demarche="transport", revocation_date=timezone.now() - timedelta(days=1), ) self.assertEqual( self.aidant_marge.get_valid_autorisation("papiers", usager_charles), valid_autorisation, ) self.assertEqual( self.aidant_marge.get_valid_autorisation("transport", usager_charles), None ) # An expired Mandat expired_mandat = MandatFactory( organisation=self.aidant_marge.organisation, usager=usager_charles, expiration_date=timezone.now() - timedelta(days=1), ) AutorisationFactory( mandat=expired_mandat, demarche="social", revocation_date=None, ) self.assertEqual( self.aidant_marge.get_valid_autorisation("social", usager_charles), None ) def test_is_in_organisation(self): self.assertTrue( self.aidant_marge.is_in_organisation(self.aidant_lisa.organisation), "Aidant.is_in_organisation devrait indiquer que la personne fait partie de " "sa propre organisation.", ) self.assertFalse( self.aidant_marge.is_in_organisation(OrganisationFactory()), "Aidant.is_in_organisation devrait indiquer que la personne ne fait pas " "partie d'une organisation étrangère.", ) def test_is_responsable_structure(self): # an aidant without further modification is not responsable structure self.assertFalse(self.aidant_lisa.is_responsable_structure()) # however Juliette is responsable structure self.assertTrue(self.respo_juliette.is_responsable_structure()) def test_can_see_aidant(self): self.assertTrue(self.respo_juliette.can_see_aidant(self.aidant_marge)) self.assertFalse(self.respo_juliette.can_see_aidant(self.aidant_patricia)) def test_must_validate_cgu(self): # an aidant without further modification must validate user conditions self.assertTrue(self.aidant_patricia.must_validate_cgu()) # an aidant who has validated current version of user conditions # does not need to revalidate them self.assertFalse(self.aidant_lisa.must_validate_cgu()) # an aidant who has validated an outaded version of CGU # must validate them again self.assertTrue(self.aidant_marge.must_validate_cgu()) def test_has_a_totp_device(self): self.assertFalse(self.aidant_lisa.has_a_totp_device) self.assertTrue(self.aidant_marge.has_a_totp_device) self.assertTrue(self.aidant_patricia.has_a_totp_device) def test_remove_user_from_organisation_deactivate_user(self): aidant: Aidant = AidantFactory() organisation: Organisation = aidant.organisation self.assertTrue(aidant.is_active, "L'aidant n'est pas actif") aidant.remove_from_organisation(aidant.organisation) self.assertFalse( aidant.is_active, "L'aidant est toujours actif après la tentative de suppression de son " "organisation.", ) self.assertSequenceEqual([organisation], list(aidant.organisations.all())) def test_remove_user_from_organisation(self): aidant: Aidant = AidantFactory() organisation: Organisation = aidant.organisation supplementary_organisation_1 = OrganisationFactory() supplementary_organisation_2 = OrganisationFactory() aidant.organisations.add( supplementary_organisation_1, supplementary_organisation_2 ) self.assertTrue(aidant.is_active, "L'aidant n'est pas actif") aidant.remove_from_organisation(supplementary_organisation_1) self.assertTrue( aidant.is_active, "L'aidant n'est plus actif après la tentative de suppression d'une " "organisation surnuméraire", ) self.assertSequenceEqual( [organisation, supplementary_organisation_2], list(aidant.organisations.order_by("id").all()), ) def test_remove_user_from_organisation_set_main_org(self): aidant: Aidant = AidantFactory() organisation: Organisation = aidant.organisation supplementary_organisation_1 = OrganisationFactory() supplementary_organisation_2 = OrganisationFactory() aidant.organisations.add( supplementary_organisation_1, supplementary_organisation_2 ) self.assertTrue(aidant.is_active, "L'aidant n'est pas actif") aidant.remove_from_organisation(organisation) self.assertTrue( aidant.is_active, "L'aidant n'est plus actif après la tentative de suppression d'une " "organisation surnuméraire", ) self.assertSequenceEqual( [supplementary_organisation_1, supplementary_organisation_2], list(aidant.organisations.order_by("id").all()), ) self.assertEqual( supplementary_organisation_1, aidant.organisation, "L'organisation principale de l'aidant n'a pas été remplacée par une " "organisation valide après que l'aidant en a été retiré", ) def test_remove_user_from_organisation_does_not_change_main_org(self): aidant: Aidant = AidantFactory() supplementary_organisation_1 = OrganisationFactory() supplementary_organisation_2 = OrganisationFactory() supplementary_organisation_to_remove = OrganisationFactory() aidant.organisations.add( supplementary_organisation_1, supplementary_organisation_2, supplementary_organisation_to_remove, OrganisationFactory(), OrganisationFactory(), OrganisationFactory(), ) aidant.organisation = supplementary_organisation_1 self.assertEqual(aidant.organisation, supplementary_organisation_1) aidant.remove_from_organisation(supplementary_organisation_to_remove) self.assertEqual(aidant.organisation, supplementary_organisation_1) @mock.patch("aidants_connect_web.models.aidants__organisations_changed.send") def test_remove_user_from_organisation_sends_signal(self, send: Mock): aidant: Aidant = AidantFactory() supplementary_organisation_1 = OrganisationFactory() aidant.organisations.add(supplementary_organisation_1) aidant.remove_from_organisation(supplementary_organisation_1) send.assert_called_once_with( sender=aidant.__class__, instance=aidant, diff={"removed": [supplementary_organisation_1], "added": []}, ) def test_set_organisations_raises_error_when_removing_everything(self): aidant: Aidant = AidantFactory() with self.assertRaises(ValueError) as err: aidant.set_organisations([]) self.assertEqual( "Can't remove all the organisations from aidant", f"{err.exception}" ) def test_set_organisations_correctly_sets_organisations(self): aidant: Aidant = AidantFactory() organisation_to_remove = OrganisationFactory() aidant.organisations.add(organisation_to_remove) organisation_to_set_1 = OrganisationFactory() organisation_to_set_2 = OrganisationFactory() self.assertSequenceEqual( [aidant.organisation, organisation_to_remove], list(aidant.organisations.order_by("id")), ) aidant.set_organisations( [aidant.organisation, organisation_to_set_1, organisation_to_set_2] ) self.assertSequenceEqual( [aidant.organisation, organisation_to_set_1, organisation_to_set_2], list(aidant.organisations.order_by("id")), ) def test_set_organisations_set_current_active_organisation_when_removed(self): aidant: Aidant = AidantFactory() organisation_to_set_1 = OrganisationFactory() organisation_to_set_2 = OrganisationFactory() aidant.set_organisations([organisation_to_set_1, organisation_to_set_2]) self.assertSequenceEqual( [organisation_to_set_1, organisation_to_set_2], list(aidant.organisations.order_by("id")), ) self.assertEqual(organisation_to_set_1, aidant.organisation) def test_set_organisations_does_not_change_main_org(self): aidant: Aidant = AidantFactory() supplementary_organisation_1 = OrganisationFactory() supplementary_organisation_2 = OrganisationFactory() supplementary_organisation_to_remove = OrganisationFactory() aidant.organisations.add( supplementary_organisation_1, supplementary_organisation_2, supplementary_organisation_to_remove, OrganisationFactory(), OrganisationFactory(), OrganisationFactory(), ) aidant.organisation = supplementary_organisation_1 self.assertEqual(aidant.organisation, supplementary_organisation_1) aidant.set_organisations( set(aidant.organisations.all()) - {supplementary_organisation_to_remove} ) self.assertEqual(aidant.organisation, supplementary_organisation_1) @mock.patch("aidants_connect_web.models.aidants__organisations_changed.send") def test_set_organisations_sends_signal(self, send: Mock): aidant: Aidant = AidantFactory() previous_organisation = aidant.organisation organisation_to_remove = OrganisationFactory() aidant.organisations.add(organisation_to_remove) organisation_to_set_1 = OrganisationFactory() organisation_to_set_2 = OrganisationFactory() aidant.set_organisations([organisation_to_set_1, organisation_to_set_2]) send.assert_called_once_with( sender=aidant.__class__, instance=aidant, diff={ "removed": [previous_organisation, organisation_to_remove], "added": [organisation_to_set_1, organisation_to_set_2], }, ) @tag("models", "journal") class JournalModelTests(TestCase): @classmethod def setUpTestData(cls): cls.aidant_thierry = AidantFactory( email="thierry@thierry.com", first_name="Thierry", last_name="Martin", organisation=OrganisationFactory(name="Commune de Vernon"), ) cls.journal_entry = Journal.objects.create( action="connect_aidant", aidant=cls.aidant_thierry, organisation=cls.aidant_thierry.organisation, ) cls.usager_ned = UsagerFactory(given_name="Ned", family_name="Flanders") cls.first_mandat = MandatFactory( organisation=cls.aidant_thierry.organisation, usager=cls.usager_ned, expiration_date=timezone.now() + timedelta(days=6), ) cls.first_autorisation = AutorisationFactory( mandat=cls.first_mandat, demarche="Revenus", ) Journal.log_autorisation_creation( cls.first_autorisation, aidant=cls.aidant_thierry ) cls.mandat_thierry_ned_365 = MandatFactory( organisation=cls.aidant_thierry.organisation, usager=cls.usager_ned, expiration_date=timezone.now() + timedelta(days=365), ) def test_a_journal_entry_can_be_created(self): # Aidant connects and first autorisation is created self.assertEqual(len(Journal.objects.all()), 2) def test_logging_of_aidant_conection(self): entry = Journal.log_connection(aidant=self.aidant_thierry) self.assertEqual(len(Journal.objects.all()), 3) self.assertEqual(entry.action, "connect_aidant") self.assertEqual(entry.aidant.id, self.aidant_thierry.id) def test_a_franceconnect_usager_journal_entry_can_be_created(self): entry = Journal.log_franceconnection_usager( aidant=self.aidant_thierry, usager=self.usager_ned, ) self.assertEqual(len(Journal.objects.all()), 3) self.assertEqual(entry.action, "franceconnect_usager") def test_log_autorisation_creation_complete(self): autorisation = AutorisationFactory( mandat=self.mandat_thierry_ned_365, demarche="logement", ) Journal.log_autorisation_creation(autorisation, self.aidant_thierry) journal_entries = Journal.objects.all() self.assertEqual(len(journal_entries), 3) last_entry = journal_entries.last() self.assertEqual(last_entry.action, "create_autorisation") self.assertEqual(last_entry.usager.id, self.usager_ned.id) self.assertEqual(last_entry.autorisation, autorisation.id) def test_log_autorisation_use_complete(self): entry = Journal.log_autorisation_use( aidant=self.aidant_thierry, usager=self.usager_ned, demarche="transports", access_token="fjfgjfdkldlzlsmqqxxcn", autorisation=self.first_autorisation, ) self.assertEqual(len(Journal.objects.all()), 3) self.assertEqual(entry.action, "use_autorisation") self.assertEqual(entry.demarche, "transports") def test_log_autorisation_cancel_complete(self): entry = Journal.log_autorisation_cancel( autorisation=self.first_autorisation, aidant=self.aidant_thierry ) self.assertEqual(len(Journal.objects.all()), 3) self.assertEqual(entry.action, "cancel_autorisation") def test_it_is_impossible_to_change_an_existing_entry(self): entry = Journal.log_autorisation_use( aidant=self.aidant_thierry, usager=self.usager_ned, demarche="transports", access_token="fjfgjfdkldlzlsmqqxxcn", autorisation=self.first_autorisation, ) entry.demarches = ["logement"] self.assertRaises(NotImplementedError, entry.save) self.assertEqual(Journal.objects.get(id=entry.id).demarche, "transports") def test_it_is_impossible_to_delete_an_existing_entry(self): entry = Journal.log_autorisation_use( aidant=self.aidant_thierry, usager=self.usager_ned, demarche="transports", access_token="fjfgjfdkldlzlsmqqxxcn", autorisation=self.first_autorisation, ) self.assertRaises(NotImplementedError, entry.delete) self.assertEqual(Journal.objects.get(id=entry.id).demarche, "transports") def test_a_create_attestation_journal_entry_can_be_created(self): demarches = ["transports", "logement"] expiration_date = timezone.now() + timedelta(days=6) mandat = MandatFactory() entry = Journal.log_attestation_creation( aidant=self.aidant_thierry, usager=self.usager_ned, demarches=demarches, duree=6, is_remote_mandat=False, access_token="fjfgjfdkldlzlsmqqxxcn", attestation_hash=generate_attestation_hash( self.aidant_thierry, self.usager_ned, demarches, expiration_date ), mandat=mandat, ) self.assertEqual(len(Journal.objects.all()), 3) self.assertEqual(entry.action, "create_attestation") attestation_string = ";".join( [ str(self.aidant_thierry.id), date.today().isoformat(), "logement,transports", expiration_date.date().isoformat(), str(self.aidant_thierry.organisation.id), generate_file_sha256_hash(f"templates/{settings.MANDAT_TEMPLATE_PATH}"), self.usager_ned.sub, ] ) self.assertTrue( validate_attestation_hash(attestation_string, entry.attestation_hash) ) @tag("models", "habilitation_request") class HabilitationRequestMethodTests(TestCase): @classmethod def setUpTestData(cls): pass def test_validate_when_all_is_fine(self): for habilitation_request in ( HabilitationRequestFactory(status=HabilitationRequest.STATUS_PROCESSING), HabilitationRequestFactory(status=HabilitationRequest.STATUS_NEW), ): self.assertEqual( 0, Aidant.objects.filter(email=habilitation_request.email).count() ) self.assertTrue(habilitation_request.validate_and_create_aidant()) self.assertEqual( 1, Aidant.objects.filter(email=habilitation_request.email).count() ) db_hab_request = HabilitationRequest.objects.get(id=habilitation_request.id) self.assertEqual( db_hab_request.status, HabilitationRequest.STATUS_VALIDATED ) def test_validate_if_aidant_already_exists(self): aidant = AidantFactory() habilitation_request = HabilitationRequestFactory( status=HabilitationRequest.STATUS_PROCESSING, email=aidant.email ) self.assertTrue(habilitation_request.validate_and_create_aidant()) self.assertEqual( 1, Aidant.objects.filter(email=habilitation_request.email).count() ) habilitation_request.refresh_from_db() self.assertEqual( habilitation_request.status, HabilitationRequest.STATUS_VALIDATED ) aidant.refresh_from_db() self.assertIn(habilitation_request.organisation, aidant.organisations.all()) def test_do_not_validate_if_invalid_status(self): for status in ( HabilitationRequest.STATUS_VALIDATED, HabilitationRequest.STATUS_REFUSED, HabilitationRequest.STATUS_CANCELLED, ): habilitation_request = HabilitationRequestFactory(status=status) self.assertEqual( 0, Aidant.objects.filter(email=habilitation_request.email).count() ) self.assertFalse(habilitation_request.validate_and_create_aidant()) self.assertEqual( 0, Aidant.objects.filter(email=habilitation_request.email).count() ) db_hab_request = HabilitationRequest.objects.get(id=habilitation_request.id) self.assertEqual(db_hab_request.status, status)
37.651439
88
0.654977
1e797652f0ff70a1f3c8e9b7e867c040a8a29da7
3,338
py
Python
transfers_skinkie-v1.py
bliksemlabs/rrrr
81b4afa1a5e1184a5ef31db4d6fd12f6ebf2ddb3
[ "BSD-2-Clause" ]
95
2015-01-03T18:16:19.000Z
2022-03-08T11:23:49.000Z
transfers_skinkie-v1.py
bliksemlabs/rrrr
81b4afa1a5e1184a5ef31db4d6fd12f6ebf2ddb3
[ "BSD-2-Clause" ]
55
2015-01-08T00:30:37.000Z
2019-04-03T19:13:57.000Z
transfers_skinkie-v1.py
bliksemlabs/rrrr
81b4afa1a5e1184a5ef31db4d6fd12f6ebf2ddb3
[ "BSD-2-Clause" ]
25
2015-01-03T10:13:39.000Z
2020-09-11T11:10:10.000Z
#!/usr/bin/python import math, sys from copy import copy # requires graphserver to be installed from graphserver.ext.gtfs.gtfsdb import GTFSDatabase verbose = False RADIUS = 2000 # meters OBSTRUCTION = 1.3 #factor to expand straight-line distance range_lat = RADIUS / 111111.111 if len(sys.argv) < 2 : print 'usage: transfers.py infile.gtfsdb [verbose]' exit(1) gtfsdb_file = sys.argv[1] try : with open(gtfsdb_file) as f : db = GTFSDatabase(gtfsdb_file) except IOError as e : print 'gtfsdb file "%s" cannot be opened' % gtfsdb_file exit(1) if len(sys.argv) > 2 and sys.argv[2] == "verbose" : verbose = True # we we are interested in all routes available on each stop all_query = """select stops.stop_id, stops.stop_name, stops.stop_lat, stops.stop_lon, routes from (select stop_id, group_concat(route_id, ',') as routes from (select distinct route_id, stop_id from trips, stop_times where trips.trip_id = stop_times.trip_id) as x group by stop_id) as y, stops where y.stop_id = stops.stop_id;""" near_query = """ select stop_id, stop_name, stop_lat, stop_lon from stops where stop_lat > (:lat - :range_lat) and stop_lat < (:lat + :range_lat) and stop_lon > (:lon - :range_lon) and stop_lon < (:lon + :range_lon) ORDER BY (((stop_lat - :lat) * (stop_lat - :lat)) + ((stop_lon - :lon) * (stop_lon - :lon))) ASC; """ # equirectangular / sinusoidal projection def distance (lat1, lon1, lat2, lon2) : avg_lat = (lat1 + lat2) / 2 xscale = math.cos(math.radians(avg_lat)) return distance (lat1, lon1, lat2, lon2, xscale) def distance (lat1, lon1, lat2, lon2, xscale) : dlon = lon2 - lon1 dlat = lat2 - lat1 dlon *= xscale d2 = dlon * dlon + dlat * dlat return math.sqrt(d2) * 111111.111 stops = {} for sid, sname, lat, lon, routes in db.execute(all_query) : stops[sid] = {'name': sname, 'lat': lat, 'lon': lon, 'routes': set(routes.split(','))} # can also compare squared distances in scaled meters transfers = [] n_processed = 0 for sid, param in stops.items(): if verbose : print sid, sname xscale = math.cos(math.radians(param['lat'])) range_lon = range_lat * xscale routes = copy(param['routes']) # print xscale, range_lat, range_lon for sid2, sname2, lat2, lon2 in db.execute(near_query, {'range_lat': range_lat, 'range_lon': range_lon, 'lat': param['lat'], 'lon': param['lon']}): if sid == sid2: continue d = distance (param['lat'], param['lon'], lat2, lon2, xscale) if d > RADIUS : continue if verbose : print " ", sid2, sname2, '%0.1f m' % d if sid2 in stops and len(stops[sid2]['routes'] - routes) > 0: routes = routes.union(stops[sid2]['routes']) transfers.append ( (sid, sid2, d * OBSTRUCTION) ) n_processed += 1; if n_processed % 1000 == 0 : print 'processed %d stops' % n_processed cur = db.get_cursor() cur.execute('delete from transfers;') # where transfer_type = 9;') cur.executemany('insert into transfers values (?,?,9,?);', transfers) cur.execute('create index if not exists transfers_from_stop_id ON transfers (from_stop_id)') print 'committing...' db.conn.commit() # print 'vacuuming...' # cur.execute('vacuum;') # db.conn.commit()
34.412371
163
0.644997
b63a9d22815b567142e121ddb848452852fd6213
19,802
py
Python
cinder/opts.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
1
2019-02-17T17:49:41.000Z
2019-02-17T17:49:41.000Z
cinder/opts.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
null
null
null
cinder/opts.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
3
2020-06-16T07:29:48.000Z
2020-06-21T10:22:57.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################### # WARNING! # # Do not edit this file directly. This file should be generated by # running the command "tox -e genopts" any time a config option # has been added, changed, or removed. ################################################################### import itertools from keystoneauth1 import loading from cinder import objects # noqa objects.register_all() from cinder.api import common as cinder_api_common from cinder.api.middleware import auth as cinder_api_middleware_auth from cinder.api.views import versions as cinder_api_views_versions from cinder.backup import api as cinder_backup_api from cinder.backup import chunkeddriver as cinder_backup_chunkeddriver from cinder.backup import driver as cinder_backup_driver from cinder.backup.drivers import ceph as cinder_backup_drivers_ceph from cinder.backup.drivers import gcs as cinder_backup_drivers_gcs from cinder.backup.drivers import glusterfs as cinder_backup_drivers_glusterfs from cinder.backup.drivers import nfs as cinder_backup_drivers_nfs from cinder.backup.drivers import posix as cinder_backup_drivers_posix from cinder.backup.drivers import swift as cinder_backup_drivers_swift from cinder.backup.drivers import tsm as cinder_backup_drivers_tsm from cinder.backup import manager as cinder_backup_manager from cinder.cmd import backup as cinder_cmd_backup from cinder.cmd import volume as cinder_cmd_volume from cinder.common import config as cinder_common_config import cinder.compute from cinder.compute import nova as cinder_compute_nova from cinder import context as cinder_context from cinder import coordination as cinder_coordination from cinder.db import api as cinder_db_api from cinder.db import base as cinder_db_base from cinder.image import glance as cinder_image_glance from cinder.image import image_utils as cinder_image_imageutils from cinder.keymgr import conf_key_mgr as cinder_keymgr_confkeymgr from cinder.message import api as cinder_message_api from cinder import quota as cinder_quota from cinder.scheduler import driver as cinder_scheduler_driver from cinder.scheduler import host_manager as cinder_scheduler_hostmanager from cinder.scheduler import manager as cinder_scheduler_manager from cinder.scheduler import scheduler_options as \ cinder_scheduler_scheduleroptions from cinder.scheduler.weights import capacity as \ cinder_scheduler_weights_capacity from cinder.scheduler.weights import volume_number as \ cinder_scheduler_weights_volumenumber from cinder import service as cinder_service from cinder import service_auth as cinder_serviceauth from cinder import ssh_utils as cinder_sshutils from cinder.transfer import api as cinder_transfer_api from cinder.volume import api as cinder_volume_api from cinder.volume import driver as cinder_volume_driver from cinder.volume.drivers.datera import datera_iscsi as \ cinder_volume_drivers_datera_dateraiscsi from cinder.volume.drivers.dell_emc.powermax import common as \ cinder_volume_drivers_dell_emc_powermax_common from cinder.volume.drivers.dell_emc.sc import storagecenter_common as \ cinder_volume_drivers_dell_emc_sc_storagecentercommon from cinder.volume.drivers.dell_emc.unity import driver as \ cinder_volume_drivers_dell_emc_unity_driver from cinder.volume.drivers.dell_emc.vnx import common as \ cinder_volume_drivers_dell_emc_vnx_common from cinder.volume.drivers.dell_emc.vxflexos import driver as \ cinder_volume_drivers_dell_emc_vxflexos_driver from cinder.volume.drivers.dell_emc import xtremio as \ cinder_volume_drivers_dell_emc_xtremio from cinder.volume.drivers.fujitsu.eternus_dx import eternus_dx_common as \ cinder_volume_drivers_fujitsu_eternus_dx_eternusdxcommon from cinder.volume.drivers.fusionstorage import dsware as \ cinder_volume_drivers_fusionstorage_dsware from cinder.volume.drivers.hpe import hpe_3par_common as \ cinder_volume_drivers_hpe_hpe3parcommon from cinder.volume.drivers.huawei import common as \ cinder_volume_drivers_huawei_common from cinder.volume.drivers.ibm import flashsystem_common as \ cinder_volume_drivers_ibm_flashsystemcommon from cinder.volume.drivers.ibm import flashsystem_iscsi as \ cinder_volume_drivers_ibm_flashsystemiscsi from cinder.volume.drivers.ibm import gpfs as cinder_volume_drivers_ibm_gpfs from cinder.volume.drivers.ibm.ibm_storage import ds8k_proxy as \ cinder_volume_drivers_ibm_ibm_storage_ds8kproxy from cinder.volume.drivers.ibm.ibm_storage import ibm_storage as \ cinder_volume_drivers_ibm_ibm_storage_ibmstorage from cinder.volume.drivers.ibm.storwize_svc import storwize_svc_common as \ cinder_volume_drivers_ibm_storwize_svc_storwizesvccommon from cinder.volume.drivers.ibm.storwize_svc import storwize_svc_fc as \ cinder_volume_drivers_ibm_storwize_svc_storwizesvcfc from cinder.volume.drivers.ibm.storwize_svc import storwize_svc_iscsi as \ cinder_volume_drivers_ibm_storwize_svc_storwizesvciscsi from cinder.volume.drivers import infinidat as cinder_volume_drivers_infinidat from cinder.volume.drivers.infortrend.raidcmd_cli import common_cli as \ cinder_volume_drivers_infortrend_raidcmd_cli_commoncli from cinder.volume.drivers.inspur.as13000 import as13000_driver as \ cinder_volume_drivers_inspur_as13000_as13000driver from cinder.volume.drivers.inspur.instorage import instorage_common as \ cinder_volume_drivers_inspur_instorage_instoragecommon from cinder.volume.drivers.inspur.instorage import instorage_iscsi as \ cinder_volume_drivers_inspur_instorage_instorageiscsi from cinder.volume.drivers.kaminario import kaminario_common as \ cinder_volume_drivers_kaminario_kaminariocommon from cinder.volume.drivers.lenovo import lenovo_common as \ cinder_volume_drivers_lenovo_lenovocommon from cinder.volume.drivers import linstordrv as \ cinder_volume_drivers_linstordrv from cinder.volume.drivers import lvm as cinder_volume_drivers_lvm from cinder.volume.drivers.macrosan import driver as \ cinder_volume_drivers_macrosan_driver from cinder.volume.drivers.netapp import options as \ cinder_volume_drivers_netapp_options from cinder.volume.drivers.nexenta import options as \ cinder_volume_drivers_nexenta_options from cinder.volume.drivers import nfs as cinder_volume_drivers_nfs from cinder.volume.drivers import nimble as cinder_volume_drivers_nimble from cinder.volume.drivers.prophetstor import options as \ cinder_volume_drivers_prophetstor_options from cinder.volume.drivers import pure as cinder_volume_drivers_pure from cinder.volume.drivers import qnap as cinder_volume_drivers_qnap from cinder.volume.drivers import quobyte as cinder_volume_drivers_quobyte from cinder.volume.drivers import rbd as cinder_volume_drivers_rbd from cinder.volume.drivers import remotefs as cinder_volume_drivers_remotefs from cinder.volume.drivers.san.hp import hpmsa_common as \ cinder_volume_drivers_san_hp_hpmsacommon from cinder.volume.drivers.san import san as cinder_volume_drivers_san_san from cinder.volume.drivers.sandstone import sds_driver as \ cinder_volume_drivers_sandstone_sdsdriver from cinder.volume.drivers import solidfire as cinder_volume_drivers_solidfire from cinder.volume.drivers import storpool as cinder_volume_drivers_storpool from cinder.volume.drivers.stx import common as \ cinder_volume_drivers_stx_common from cinder.volume.drivers.synology import synology_common as \ cinder_volume_drivers_synology_synologycommon from cinder.volume.drivers.veritas_access import veritas_iscsi as \ cinder_volume_drivers_veritas_access_veritasiscsi from cinder.volume.drivers.vmware import vmdk as \ cinder_volume_drivers_vmware_vmdk from cinder.volume.drivers import vzstorage as cinder_volume_drivers_vzstorage from cinder.volume.drivers.windows import iscsi as \ cinder_volume_drivers_windows_iscsi from cinder.volume.drivers.windows import smbfs as \ cinder_volume_drivers_windows_smbfs from cinder.volume.drivers import zadara as cinder_volume_drivers_zadara from cinder.volume import manager as cinder_volume_manager from cinder.volume.targets import spdknvmf as cinder_volume_targets_spdknvmf from cinder.wsgi import eventlet_server as cinder_wsgi_eventletserver from cinder.zonemanager.drivers.brocade import brcd_fabric_opts as \ cinder_zonemanager_drivers_brocade_brcdfabricopts from cinder.zonemanager.drivers.brocade import brcd_fc_zone_driver as \ cinder_zonemanager_drivers_brocade_brcdfczonedriver from cinder.zonemanager.drivers.cisco import cisco_fabric_opts as \ cinder_zonemanager_drivers_cisco_ciscofabricopts from cinder.zonemanager.drivers.cisco import cisco_fc_zone_driver as \ cinder_zonemanager_drivers_cisco_ciscofczonedriver from cinder.zonemanager import fc_zone_manager as \ cinder_zonemanager_fczonemanager def list_opts(): return [ ('backend', itertools.chain( [cinder_cmd_volume.host_opt], )), ('brcd_fabric_example', itertools.chain( cinder_zonemanager_drivers_brocade_brcdfabricopts. brcd_zone_opts, )), ('cisco_fabric_example', itertools.chain( cinder_zonemanager_drivers_cisco_ciscofabricopts. cisco_zone_opts, )), ('coordination', itertools.chain( cinder_coordination.coordination_opts, )), ('DEFAULT', itertools.chain( cinder_api_common.api_common_opts, [cinder_api_middleware_auth.use_forwarded_for_opt], cinder_api_views_versions.versions_opts, cinder_backup_api.backup_opts, cinder_backup_chunkeddriver.backup_opts, cinder_backup_driver.backup_opts, cinder_backup_drivers_ceph.service_opts, cinder_backup_drivers_gcs.gcsbackup_service_opts, cinder_backup_drivers_glusterfs.glusterfsbackup_service_opts, cinder_backup_drivers_nfs.nfsbackup_service_opts, cinder_backup_drivers_posix.posixbackup_service_opts, cinder_backup_drivers_swift.swiftbackup_service_opts, cinder_backup_drivers_tsm.tsm_opts, cinder_backup_manager.backup_manager_opts, [cinder_cmd_backup.backup_workers_opt], [cinder_cmd_volume.cluster_opt], cinder_common_config.api_opts, cinder_common_config.core_opts, cinder_common_config.auth_opts, cinder_common_config.backup_opts, cinder_common_config.image_opts, cinder_common_config.global_opts, cinder_common_config.compression_opts, cinder.compute.compute_opts, cinder_context.context_opts, cinder_db_api.db_opts, cinder_db_api.backup_opts, [cinder_db_base.db_driver_opt], cinder_image_glance.image_opts, cinder_image_glance.glance_core_properties_opts, cinder_image_imageutils.image_opts, cinder_message_api.messages_opts, cinder_quota.quota_opts, cinder_scheduler_driver.scheduler_driver_opts, cinder_scheduler_hostmanager.host_manager_opts, cinder_scheduler_manager.scheduler_manager_opts, [cinder_scheduler_scheduleroptions. scheduler_json_config_location_opt], cinder_scheduler_weights_capacity.capacity_weight_opts, cinder_scheduler_weights_volumenumber. volume_number_weight_opts, cinder_service.service_opts, cinder_sshutils.ssh_opts, cinder_transfer_api.volume_transfer_opts, [cinder_volume_api.allow_force_upload_opt], [cinder_volume_api.volume_host_opt], [cinder_volume_api.volume_same_az_opt], [cinder_volume_api.az_cache_time_opt], cinder_volume_driver.volume_opts, cinder_volume_driver.iser_opts, cinder_volume_driver.nvmet_opts, cinder_volume_driver.scst_opts, cinder_volume_driver.backup_opts, cinder_volume_driver.image_opts, cinder_volume_drivers_datera_dateraiscsi.d_opts, cinder_volume_drivers_fusionstorage_dsware.volume_opts, cinder_volume_drivers_infortrend_raidcmd_cli_commoncli. infortrend_opts, cinder_volume_drivers_inspur_as13000_as13000driver. inspur_as13000_opts, cinder_volume_drivers_inspur_instorage_instoragecommon. instorage_mcs_opts, cinder_volume_drivers_inspur_instorage_instorageiscsi. instorage_mcs_iscsi_opts, cinder_volume_drivers_sandstone_sdsdriver.sds_opts, cinder_volume_drivers_veritas_access_veritasiscsi.VA_VOL_OPTS, cinder_volume_manager.volume_manager_opts, cinder_wsgi_eventletserver.socket_opts, )), ('fc-zone-manager', itertools.chain( cinder_zonemanager_drivers_brocade_brcdfczonedriver.brcd_opts, cinder_zonemanager_drivers_cisco_ciscofczonedriver.cisco_opts, cinder_zonemanager_fczonemanager.zone_manager_opts, )), ('key_manager', itertools.chain( cinder_keymgr_confkeymgr.key_mgr_opts, )), ('service_user', itertools.chain( cinder_serviceauth.service_user_opts, loading.get_auth_plugin_conf_options('v3password'), loading.get_session_conf_options(), )), ('backend_defaults', itertools.chain( cinder_volume_driver.volume_opts, cinder_volume_driver.iser_opts, cinder_volume_driver.nvmet_opts, cinder_volume_driver.scst_opts, cinder_volume_driver.image_opts, cinder_volume_driver.fqdn_opts, cinder_volume_drivers_dell_emc_powermax_common.powermax_opts, cinder_volume_drivers_dell_emc_sc_storagecentercommon. common_opts, cinder_volume_drivers_dell_emc_unity_driver.UNITY_OPTS, cinder_volume_drivers_dell_emc_vnx_common.VNX_OPTS, cinder_volume_drivers_dell_emc_vxflexos_driver.vxflexos_opts, cinder_volume_drivers_dell_emc_xtremio.XTREMIO_OPTS, cinder_volume_drivers_fujitsu_eternus_dx_eternusdxcommon. FJ_ETERNUS_DX_OPT_opts, cinder_volume_drivers_hpe_hpe3parcommon.hpe3par_opts, cinder_volume_drivers_huawei_common.huawei_opts, cinder_volume_drivers_ibm_flashsystemcommon.flashsystem_opts, cinder_volume_drivers_ibm_flashsystemiscsi. flashsystem_iscsi_opts, cinder_volume_drivers_ibm_gpfs.gpfs_opts, cinder_volume_drivers_ibm_gpfs.gpfs_remote_ssh_opts, cinder_volume_drivers_ibm_ibm_storage_ds8kproxy.ds8k_opts, cinder_volume_drivers_ibm_ibm_storage_ibmstorage.driver_opts, cinder_volume_drivers_ibm_storwize_svc_storwizesvccommon. storwize_svc_opts, cinder_volume_drivers_ibm_storwize_svc_storwizesvcfc. storwize_svc_fc_opts, cinder_volume_drivers_ibm_storwize_svc_storwizesvciscsi. storwize_svc_iscsi_opts, cinder_volume_drivers_infinidat.infinidat_opts, cinder_volume_drivers_kaminario_kaminariocommon. kaminario_opts, cinder_volume_drivers_lenovo_lenovocommon.common_opts, cinder_volume_drivers_lenovo_lenovocommon.iscsi_opts, cinder_volume_drivers_linstordrv.linstor_opts, cinder_volume_drivers_lvm.volume_opts, cinder_volume_drivers_macrosan_driver.config.macrosan_opts, cinder_volume_drivers_netapp_options.netapp_proxy_opts, cinder_volume_drivers_netapp_options.netapp_connection_opts, cinder_volume_drivers_netapp_options.netapp_transport_opts, cinder_volume_drivers_netapp_options.netapp_basicauth_opts, cinder_volume_drivers_netapp_options.netapp_cluster_opts, cinder_volume_drivers_netapp_options.netapp_provisioning_opts, cinder_volume_drivers_netapp_options.netapp_img_cache_opts, cinder_volume_drivers_netapp_options.netapp_nfs_extra_opts, cinder_volume_drivers_netapp_options.netapp_san_opts, cinder_volume_drivers_netapp_options.netapp_replication_opts, cinder_volume_drivers_netapp_options.netapp_support_opts, cinder_volume_drivers_nexenta_options.NEXENTA_CONNECTION_OPTS, cinder_volume_drivers_nexenta_options.NEXENTA_ISCSI_OPTS, cinder_volume_drivers_nexenta_options.NEXENTA_DATASET_OPTS, cinder_volume_drivers_nexenta_options.NEXENTA_NFS_OPTS, cinder_volume_drivers_nexenta_options.NEXENTA_RRMGR_OPTS, cinder_volume_drivers_nexenta_options.NEXENTA_EDGE_OPTS, cinder_volume_drivers_nfs.nfs_opts, cinder_volume_drivers_nimble.nimble_opts, cinder_volume_drivers_prophetstor_options.DPL_OPTS, cinder_volume_drivers_pure.PURE_OPTS, cinder_volume_drivers_qnap.qnap_opts, cinder_volume_drivers_quobyte.volume_opts, cinder_volume_drivers_rbd.RBD_OPTS, cinder_volume_drivers_remotefs.nas_opts, cinder_volume_drivers_remotefs.volume_opts, cinder_volume_drivers_san_hp_hpmsacommon.common_opts, cinder_volume_drivers_san_hp_hpmsacommon.iscsi_opts, cinder_volume_drivers_san_san.san_opts, cinder_volume_drivers_solidfire.sf_opts, cinder_volume_drivers_storpool.storpool_opts, cinder_volume_drivers_stx_common.common_opts, cinder_volume_drivers_stx_common.iscsi_opts, cinder_volume_drivers_synology_synologycommon.cinder_opts, cinder_volume_drivers_vmware_vmdk.vmdk_opts, cinder_volume_drivers_vzstorage.vzstorage_opts, cinder_volume_drivers_windows_iscsi.windows_opts, cinder_volume_drivers_windows_smbfs.volume_opts, cinder_volume_drivers_zadara.zadara_opts, cinder_volume_manager.volume_backend_opts, cinder_volume_targets_spdknvmf.spdk_opts, )), ('nova', itertools.chain( cinder_compute_nova.nova_opts, cinder_compute_nova.nova_session_opts, cinder_compute_nova.nova_auth_opts, )), ]
53.088472
78
0.748308
682c944735a64e69ca54c3b93d66fcc8014fbacc
2,332
py
Python
tests/unit/types/request/test_request.py
yk/jina
ab66e233e74b956390f266881ff5dc4e0110d3ff
[ "Apache-2.0" ]
null
null
null
tests/unit/types/request/test_request.py
yk/jina
ab66e233e74b956390f266881ff5dc4e0110d3ff
[ "Apache-2.0" ]
null
null
null
tests/unit/types/request/test_request.py
yk/jina
ab66e233e74b956390f266881ff5dc4e0110d3ff
[ "Apache-2.0" ]
null
null
null
import pytest from google.protobuf.json_format import MessageToDict, MessageToJson from jina.excepts import BadRequestType from jina.helper import get_random_identity from jina.proto import jina_pb2 from jina.types.request import Request from jina.types.sets.document import DocumentSet from jina.types.sets.querylang import QueryLangSet @pytest.fixture(scope='function') def req(): r = jina_pb2.RequestProto() r.request_id = get_random_identity() r.index.docs.add() return r def test_init(req): assert Request(request=None) assert Request(request=req, copy=True) assert Request(request=req, copy=False) assert Request(request=MessageToDict(req)) assert Request(request=MessageToJson(req)) def test_init_fail(): with pytest.raises(BadRequestType): Request(request=5) def test_docs(req): request = Request(request=req, copy=False) docs = request.docs assert request.is_used assert isinstance(docs, DocumentSet) assert len(docs) == 1 def test_groundtruth(req): request = Request(request=req, copy=False) groundtruths = request.groundtruths assert request.is_used assert isinstance(groundtruths, DocumentSet) assert len(groundtruths) == 0 def test_request_type_set_get(req): request = Request(request=req, copy=False) request.request_type = 'search' assert request.request_type == 'SearchRequestProto' def test_request_type_set_get_fail(req): request = Request(request=req, copy=False) with pytest.raises(ValueError): request.request_type = 'random' def test_queryset(req): request = Request(request=req, copy=False) queryset = request.queryset assert request.is_used assert isinstance(queryset, QueryLangSet) def test_command(req): request = Request(request=req, copy=False) cmd = request.command assert request.is_used assert cmd assert isinstance(cmd, str) def test_as_pb_object(req): request = Request(request=req) request.as_pb_object assert request.is_used request = Request(request=None) assert request.as_pb_object assert request.is_used def test_as_json_str(req): request = Request(request=req) assert isinstance(request.to_json(), str) request = Request(request=None) assert isinstance(request.to_json(), str)
25.911111
68
0.738422
d12f85facd1a89f48b19e0f3d3448a479b4b7833
23,818
py
Python
calm/dsl/builtins/models/substrate.py
darshanpyadav93/calm-dsl
0c12474a26ea5aa9c800dea7f45b51da10d85041
[ "Apache-2.0" ]
null
null
null
calm/dsl/builtins/models/substrate.py
darshanpyadav93/calm-dsl
0c12474a26ea5aa9c800dea7f45b51da10d85041
[ "Apache-2.0" ]
3
2022-03-04T11:21:29.000Z
2022-03-04T12:14:33.000Z
calm/dsl/builtins/models/substrate.py
abhijeetkaurav1st/calm-dsl
6487a896967b3fd667b9320e2ad3a397c9960497
[ "Apache-2.0" ]
null
null
null
import sys from distutils.version import LooseVersion as LV from .entity import EntityType, Entity, EntityTypeBase, EntityDict from .validator import PropertyValidator from .readiness_probe import readiness_probe from .provider_spec import provider_spec from .ahv_vm import AhvVmType, ahv_vm from .client_attrs import update_dsl_metadata_map, get_dsl_metadata_map from .metadata_payload import get_metadata_obj from .helper import common as common_helper from calm.dsl.config import get_context from calm.dsl.constants import CACHE, PROVIDER_ACCOUNT_TYPE_MAP from calm.dsl.store import Cache from calm.dsl.store import Version from calm.dsl.log import get_logging_handle LOG = get_logging_handle(__name__) # Substrate class SubstrateDict(EntityDict): @staticmethod def pre_validate(vdict, name, value): if name == "readiness_probe": if isinstance(value, dict): rp_validator, is_array = vdict[name] rp_cls_type = rp_validator.get_kind() return rp_cls_type(None, (Entity,), value) return value class SubstrateType(EntityType): __schema_name__ = "Substrate" __openapi_type__ = "app_substrate" __prepare_dict__ = SubstrateDict ALLOWED_FRAGMENT_ACTIONS = { "__pre_create__": "pre_action_create", "__post_delete__": "post_action_delete", } def get_profile_environment(cls): """returns the profile environment, if substrate has been defined in blueprint file""" cls_bp = common_helper._walk_to_parent_with_given_type(cls, "BlueprintType") environment = {} if cls_bp: for cls_profile in cls_bp.profiles: for cls_deployment in cls_profile.deployments: if cls_deployment.substrate.name != str(cls): continue environment = getattr(cls_profile, "environment", {}) if environment: LOG.debug( "Found environment {} associated to app-profile {}".format( environment.get("name"), cls_profile ) ) break return environment def get_referenced_account_uuid(cls): """ SUBSTRATE GIVEN UNDER BLUEPRINT If calm-version < v3.2.0: 1. account_reference is not available at substrate-level, So need to read from project only If calm-version >= 3.2.0: 1. account_reference is available at substrate-level 1.a: If env is given at profile-level, then account must be whitelisted in environment 1.b: If env is not given at profile-level, then account must be whitelisted in project 2. If account_reference is not available at substrate-level 2.a: If env is given at profile-level, return provider account in env 2.b: If env is not given at profile-level, return provider account in project SUBSTRATE GIVEN UNDER ENVIRONMENT If calm-version < v3.2.0: 1. account_reference is not available at substrate-level, So need to read from project only If calm-version >= 3.2.0: 1. account_reference is available at substrate-level 1. account must be filtered at environment 2. If account_reference is not available at substrate-level 2.a: return provider account whitelisted in environment """ provider_account = getattr(cls, "account", {}) calm_version = Version.get_version("Calm") provider_type = getattr(cls, "provider_type") provider_account_type = PROVIDER_ACCOUNT_TYPE_MAP.get(provider_type, "") if not provider_account_type: return "" # Fetching project data project_cache_data = common_helper.get_cur_context_project() project_name = project_cache_data.get("name") project_accounts = project_cache_data.get("accounts_data", {}).get( provider_account_type, [] ) if not project_accounts: LOG.error( "No '{}' account registered to project '{}'".format( provider_account_type, project_name ) ) sys.exit(-1) # If substrate is defined in blueprint file cls_bp = common_helper._walk_to_parent_with_given_type(cls, "BlueprintType") if cls_bp: environment = {} for cls_profile in cls_bp.profiles: for cls_deployment in cls_profile.deployments: if cls_deployment.substrate.name != str(cls): continue environment = getattr(cls_profile, "environment", {}) if environment: LOG.debug( "Found environment {} associated to app-profile {}".format( environment.get("name"), cls_profile ) ) break # If environment is given at profile level if environment: environment_cache_data = Cache.get_entity_data_using_uuid( entity_type=CACHE.ENTITY.ENVIRONMENT, uuid=environment["uuid"] ) if not environment_cache_data: LOG.error( "Environment {} not found. Please run: calm update cache".format( environment["name"] ) ) sys.exit(-1) accounts = environment_cache_data.get("accounts_data", {}).get( provider_account_type, [] ) if not accounts: LOG.error( "Environment '{}' has no '{}' account.".format( environment_cache_data.get("name", ""), provider_account_type, ) ) sys.exit(-1) # If account given at substrate, it should be whitelisted in environment if provider_account and provider_account["uuid"] != accounts[0]["uuid"]: LOG.error( "Account '{}' not filtered in environment '{}'".format( provider_account["name"], environment_cache_data.get("name", ""), ) ) sys.exit(-1) # If provider_account is not given, then fetch from env elif not provider_account: provider_account = { "name": accounts[0]["name"], "uuid": accounts[0]["uuid"], } # If environment is not given at profile level else: # if provider_account is given, it should be part of project if not project_accounts: LOG.error( "No '{}' account registered to project '{}'".format( provider_account_type, project_name ) ) sys.exit(-1) if ( provider_account and provider_account["uuid"] not in project_accounts ): LOG.error( "Account '{}' not filtered in project '{}'".format( provider_account["name"], project_name ) ) sys.exit(-1) # Else take first account in project elif not provider_account: provider_account = {"uuid": project_accounts[0], "kind": "account"} # If substrate defined inside environment cls_env = common_helper._walk_to_parent_with_given_type(cls, "EnvironmentType") if cls_env: infra = getattr(cls_env, "providers", []) whitelisted_account = {} for _pdr in infra: if _pdr.type == PROVIDER_ACCOUNT_TYPE_MAP[provider_type]: whitelisted_account = _pdr.account_reference.get_dict() break if LV(calm_version) >= LV("3.2.0"): if provider_account and provider_account[ "uuid" ] != whitelisted_account.get("uuid", ""): LOG.error( "Account '{}' not filtered in environment '{}'".format( provider_account["name"], str(cls_env) ) ) sys.exit(-1) elif not whitelisted_account: LOG.error( "No account is filtered in environment '{}'".format( str(cls_env) ) ) sys.exit(-1) elif not provider_account: provider_account = whitelisted_account # If version is less than 3.2.0, then it should use account from poroject only, OR # If no account is supplied, will take 0th account in project (in both case of blueprint/environment) if not provider_account: provider_account = {"uuid": project_accounts[0], "kind": "account"} return provider_account["uuid"] def compile(cls): cdict = super().compile() readiness_probe_dict = {} if "readiness_probe" in cdict and cdict["readiness_probe"]: readiness_probe_dict = cdict["readiness_probe"] if hasattr(readiness_probe_dict, "compile"): readiness_probe_dict = readiness_probe_dict.compile() else: readiness_probe_dict = readiness_probe().compile() # Fill out os specific details if not found if cdict["os_type"] == "Linux": if not readiness_probe_dict.get("connection_type", ""): readiness_probe_dict["connection_type"] = "SSH" if not readiness_probe_dict.get("connection_port", ""): readiness_probe_dict["connection_port"] = 22 if not readiness_probe_dict.get("connection_protocol", ""): readiness_probe_dict["connection_protocol"] = "" else: if not readiness_probe_dict.get("connection_type", ""): readiness_probe_dict["connection_type"] = "POWERSHELL" if not readiness_probe_dict.get("connection_port", ""): readiness_probe_dict["connection_port"] = 5985 if not readiness_probe_dict.get("connection_protocol", ""): readiness_probe_dict["connection_protocol"] = "http" if cdict.get("vm_recovery_spec", {}) and cdict["type"] != "AHV_VM": LOG.error( "Recovery spec is supported only for AHV_VM substrate (given {})".format( cdict["type"] ) ) sys.exit("Unknown attribute vm_recovery_spec given") # Handle cases for empty readiness_probe and vm_recovery_spec if cdict["type"] == "AHV_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict[ "address" ] = "@@{platform.status.resources.nic_list[0].ip_endpoint_list[0].ip}@@" if cdict.get("vm_recovery_spec", {}): _vrs = cdict.pop("vm_recovery_spec", None) if _vrs: cdict["create_spec"] = ahv_vm( name=_vrs.vm_name, resources=_vrs.vm_override_resources ) cdict["recovery_point_reference"] = _vrs.recovery_point elif cdict["type"] == "EXISTING_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict["address"] = "@@{ip_address}@@" elif cdict["type"] == "AWS_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict["address"] = "@@{public_ip_address}@@" elif cdict["type"] == "K8S_POD": # Never used (Omit after discussion) readiness_probe_dict["address"] = "" cdict.pop("editables", None) elif cdict["type"] == "AZURE_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict[ "address" ] = "@@{platform.publicIPAddressList[0]}@@" elif cdict["type"] == "VMWARE_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict["address"] = "@@{platform.ipAddressList[0]}@@" elif cdict["type"] == "GCP_VM": if not readiness_probe_dict.get("address", ""): readiness_probe_dict[ "address" ] = "@@{platform.networkInterfaces[0].accessConfigs[0].natIP}@@" else: raise Exception("Un-supported vm type :{}".format(cdict["type"])) if not cdict.get("vm_recovery_spec", {}): cdict.pop("vm_recovery_spec", None) # Adding min defaults in vm spec required by each provider if not cdict.get("create_spec"): # TODO shift them to constants file provider_type_map = { "AWS_VM": "aws", "VMWARE_VM": "vmware", "AHV_VM": "nutanix_pc", # Accounts of type nutanix are not used after 2.9 "AZURE_VM": "azure", "GCP_VM": "gcp", } if cdict["type"] in provider_type_map: if cdict["type"] == "AHV_VM": # UI expects defaults. Jira: https://jira.nutanix.com/browse/CALM-20134 if not cdict.get("create_spec"): cdict["create_spec"] = {"resources": {"nic_list": []}} else: # Getting the account_uuid for each provider # Getting the metadata obj metadata_obj = get_metadata_obj() project_ref = metadata_obj.get("project_reference") or dict() # If project not found in metadata, it will take project from config ContextObj = get_context() project_config = ContextObj.get_project_config() project_name = project_ref.get("name", project_config["name"]) project_cache_data = Cache.get_entity_data( entity_type=CACHE.ENTITY.PROJECT, name=project_name ) if not project_cache_data: LOG.error( "Project {} not found. Please run: calm update cache".format( project_name ) ) sys.exit(-1) # Registered accounts project_accounts = project_cache_data["accounts_data"] provider_type = provider_type_map[cdict["type"]] account_uuids = project_accounts.get(provider_type, []) if not account_uuids: LOG.error( "No {} account registered in project '{}'".format( provider_type, project_name ) ) sys.exit(-1) # Adding default spec cdict["create_spec"] = { "resources": {"account_uuid": account_uuids[0]} } # Template attribute should be present for vmware spec if cdict["type"] == "VMWARE_VM": cdict["create_spec"]["template"] = "" # Modifying the editable object provider_spec_editables = cdict.pop("editables", {}) cdict["editables"] = {} if provider_spec_editables: cdict["editables"]["create_spec"] = provider_spec_editables # Popping out the editables from readiness_probe readiness_probe_editables = readiness_probe_dict.pop("editables_list", []) if readiness_probe_editables: cdict["editables"]["readiness_probe"] = { k: True for k in readiness_probe_editables } # In case we have read provider_spec from a yaml file, validate that we have consistent values for # Substrate.account (if present) and account_uuid in provider_spec (if present). # The account_uuid mentioned in provider_spec yaml should be a registered PE under the Substrate.account PC substrate_account_uuid = cls.get_referenced_account_uuid() spec_account_uuid = "" try: spec_account_uuid = cdict["create_spec"]["resources"]["account_uuid"] except (AttributeError, TypeError, KeyError): pass if substrate_account_uuid: account_cache_data = Cache.get_entity_data_using_uuid( entity_type="account", uuid=substrate_account_uuid ) if not account_cache_data: LOG.error( "Account (uuid={}) not found. Please update cache".format( substrate_account_uuid ) ) sys.exit(-1) account_name = account_cache_data["name"] if spec_account_uuid: if cdict["type"] == "AHV_VM": if ( not account_cache_data.get("data", {}) .get("clusters", {}) .get(spec_account_uuid) ): LOG.error( "cluster account_uuid (uuid={}) used in the provider spec is not found to be registered" " under the Nutanix PC account {}. Please update cache".format( spec_account_uuid, account_name ) ) sys.exit(-1) elif cdict["type"] != "EXISTING_VM": if spec_account_uuid != substrate_account_uuid: LOG.error( "Account '{}'(uuid='{}') not matched with account_uuid used in provider-spec (uuid={})".format( account_name, substrate_account_uuid, spec_account_uuid ) ) sys.exit(-1) else: # if account_uuid is not available add it if cdict["type"] == "AHV_VM": # default is first cluster account account_uuid = list(account_cache_data["data"]["clusters"].keys())[ 0 ] _cs = cdict["create_spec"] if isinstance(_cs, AhvVmType): # NOTE: We cann't get subnet_uuid here, as it involved parent reference subnet_name = "" cluster_name = "" _nics = _cs.resources.nics for _nic in _nics: _nic_dict = _nic.subnet_reference.get_dict() if not common_helper.is_macro(_nic_dict["name"]): subnet_name = _nic_dict["name"] cluster_name = _nic_dict["cluster"] break if subnet_name: account_uuid = common_helper.get_pe_account_uuid_using_pc_account_uuid_and_nic_data( pc_account_uuid=substrate_account_uuid, subnet_name=subnet_name, cluster_name=cluster_name, ) # Assigning the pe account uuid to ahv vm resources _cs.resources.account_uuid = account_uuid else: subnet_uuid = "" _nics = _cs.get("resources", {}).get("nic_list", []) for _nic in _nics: _nu = _nic["subnet_reference"].get("uuid", "") if _nu and not common_helper.is_macro(_nu): subnet_uuid = _nu break if subnet_uuid: account_uuid = common_helper.get_pe_account_uuid_using_pc_account_uuid_and_subnet_uuid( pc_account_uuid=substrate_account_uuid, subnet_uuid=subnet_uuid, ) cdict["create_spec"]["resources"]["account_uuid"] = account_uuid # Add account uuid for non-ahv providers if cdict["type"] not in ["EXISTING_VM", "AHV_VM", "K8S_POD"]: cdict["create_spec"]["resources"]["account_uuid"] = substrate_account_uuid cdict.pop("account_reference", None) cdict["readiness_probe"] = readiness_probe_dict return cdict def pre_compile(cls): """Adds Ahvvm data to substrate metadata""" super().pre_compile() # Adding mapping for substrate class in case of AHV provider types = EntityTypeBase.get_entity_types() AhvVmType = types.get("AhvVm", None) provider_spec = cls.provider_spec if isinstance(provider_spec, AhvVmType): ui_name = getattr(cls, "name", "") or cls.__name__ sub_metadata = get_dsl_metadata_map([cls.__schema_name__, ui_name]) vm_dsl_name = provider_spec.__name__ vm_display_name = getattr(provider_spec, "name", "") or vm_dsl_name sub_metadata[AhvVmType.__schema_name__] = { vm_display_name: {"dsl_name": vm_dsl_name} } update_dsl_metadata_map( cls.__schema_name__, entity_name=ui_name, entity_obj=sub_metadata ) @classmethod def pre_decompile(mcls, cdict, context=[], prefix=""): # Handle provider_spec cdict = super().pre_decompile(cdict, context, prefix=prefix) cdict["create_spec"] = provider_spec(cdict["create_spec"]) if "__name__" in cdict: cdict["__name__"] = "{}{}".format(prefix, cdict["__name__"]) return cdict @classmethod def decompile(mcls, cdict, context=[], prefix=""): if cdict["type"] == "K8S_POD": LOG.error("Decompilation support for pod deployments is not available.") sys.exit(-1) cls = super().decompile(cdict, context=context, prefix=prefix) provider_spec = cls.provider_spec if cls.provider_type == "AHV_VM": context = [cls.__schema_name__, getattr(cls, "name", "") or cls.__name__] vm_cls = AhvVmType.decompile(provider_spec, context=context, prefix=prefix) cls.provider_spec = vm_cls return cls def get_task_target(cls): return cls.get_ref() class SubstrateValidator(PropertyValidator, openapi_type="app_substrate"): __default__ = None __kind__ = SubstrateType def substrate(**kwargs): name = kwargs.get("name", None) bases = (Entity,) return SubstrateType(name, bases, kwargs) Substrate = substrate()
41.136442
123
0.531279
3992d814b825eb30b83133e3e3f52fa9311b2adf
2,643
py
Python
doc/sphinxext/github_link.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
50,961
2015-01-01T06:06:31.000Z
2022-03-31T23:40:12.000Z
doc/sphinxext/github_link.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
17,065
2015-01-01T02:01:58.000Z
2022-03-31T23:48:34.000Z
doc/sphinxext/github_link.py
MaiRajborirug/scikit-learn
c18d015372f7041099d19c215cd4c36ffd6fe5c5
[ "BSD-3-Clause" ]
26,886
2015-01-01T00:59:27.000Z
2022-03-31T18:03:23.000Z
from operator import attrgetter import inspect import subprocess import os import sys from functools import partial REVISION_CMD = "git rev-parse --short HEAD" def _get_git_revision(): try: revision = subprocess.check_output(REVISION_CMD.split()).strip() except (subprocess.CalledProcessError, OSError): print("Failed to execute git to get revision") return None return revision.decode("utf-8") def _linkcode_resolve(domain, info, package, url_fmt, revision): """Determine a link to online source for a class/method/function This is called by sphinx.ext.linkcode An example with a long-untouched module that everyone has >>> _linkcode_resolve('py', {'module': 'tty', ... 'fullname': 'setraw'}, ... package='tty', ... url_fmt='http://hg.python.org/cpython/file/' ... '{revision}/Lib/{package}/{path}#L{lineno}', ... revision='xxxx') 'http://hg.python.org/cpython/file/xxxx/Lib/tty/tty.py#L18' """ if revision is None: return if domain not in ("py", "pyx"): return if not info.get("module") or not info.get("fullname"): return class_name = info["fullname"].split(".")[0] module = __import__(info["module"], fromlist=[class_name]) obj = attrgetter(info["fullname"])(module) # Unwrap the object to get the correct source # file in case that is wrapped by a decorator obj = inspect.unwrap(obj) try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except Exception: fn = None if not fn: return fn = os.path.relpath(fn, start=os.path.dirname(__import__(package).__file__)) try: lineno = inspect.getsourcelines(obj)[1] except Exception: lineno = "" return url_fmt.format(revision=revision, package=package, path=fn, lineno=lineno) def make_linkcode_resolve(package, url_fmt): """Returns a linkcode_resolve function for the given URL format revision is a git commit reference (hash or name) package is the name of the root module of the package url_fmt is along the lines of ('https://github.com/USER/PROJECT/' 'blob/{revision}/{package}/' '{path}#L{lineno}') """ revision = _get_git_revision() return partial( _linkcode_resolve, revision=revision, package=package, url_fmt=url_fmt )
31.094118
85
0.614075
631c3195d17570d4a6766ca0b9fdd42be90b55d1
6,033
py
Python
cryptotools/ECDSA/secp256k1.py
ArtoLabs/cryptotools
cdb03d4900513d057391562af9d1255f81b79a30
[ "MIT" ]
155
2018-02-16T17:12:04.000Z
2022-03-17T08:27:12.000Z
cryptotools/ECDSA/secp256k1.py
djmuratb/cryptotools
51c641c8cd6b564d7c39cb3eaaee05d62e024147
[ "MIT" ]
22
2018-07-03T18:56:22.000Z
2022-03-23T12:05:39.000Z
cryptotools/ECDSA/secp256k1.py
djmuratb/cryptotools
51c641c8cd6b564d7c39cb3eaaee05d62e024147
[ "MIT" ]
61
2018-06-01T20:28:43.000Z
2022-03-25T04:11:51.000Z
import secrets from cryptotools import message from cryptotools import ECDSA from cryptotools.number_theory_stuff import mulinv, modsqrt from cryptotools.transformations import int_to_bytes, bytes_to_int, hex_to_int, bytes_to_hex, hex_to_bytes P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F # Generator G = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 # Order N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 CURVE = ECDSA.Curve(P, 0, 7, G, N, name='secp256k1') class Point(ECDSA.Point): def __init__(self, x, y): super().__init__(x, y, CURVE) class PrivateKey(message.Message): def __init__(self, bts): assert bytes_to_int(bts) < N, 'Key larger than Curve Order' super().__init__(bts) @classmethod def random(cls): key = secrets.randbelow(N) return cls.from_int(key) @classmethod def from_wif(cls, wif: str) -> 'PrivateKey': from cryptotools.BTC import base58, sha256 from cryptotools.BTC.network import network bts = base58.decode(wif) network_byte, key, checksum = bts[0:1], bts[1:-4], bts[-4:] assert sha256(sha256(network_byte + key))[:4] == checksum, 'Invalid Checksum' assert network_byte == network('wif'), 'Invalid Network byte' if key.endswith(b'\x01'): key = key[:-1] compressed = True # TODO else: compressed = False # TODO return cls(key) def wif(self, compressed=False) -> str: from cryptotools.BTC import base58, sha256 from cryptotools.BTC.network import network extended = network('wif') + self.bytes() + (b'\x01' if compressed else b'') hashed = sha256(sha256(extended)) checksum = hashed[:4] return base58.encode(extended + checksum) def to_public(self) -> 'PublicKey': point = CURVE.G * self.int() return PublicKey(point) def __repr__(self): return f"PrivateKey({self.msg})" def sign_hash(self, hash): e = hex_to_int(hash) if isinstance(hash, str) else bytes_to_int(hash) r, s = 0, 0 while r == 0 or s == 0: k = secrets.randbelow(N) point = CURVE.G * k r = point.x % N inv_k = mulinv(k, N) s = (inv_k * (e + r * self.int())) % N return message.Signature(r=r, s=s) class PublicKey: def __init__(self, point: Point): self.point = point def __eq__(self, other: 'PublicKey') -> bool: return self.point == other.point def __repr__(self) -> str: return f"PublicKey({self.x}, {self.y})" @classmethod def decode(cls, key: bytes) -> 'PublicKey': if key.startswith(b'\x04'): # uncompressed key assert len(key) == 65, 'An uncompressed public key must be 65 bytes long' x, y = bytes_to_int(key[1:33]), bytes_to_int(key[33:]) else: # compressed key assert len(key) == 33, 'A compressed public key must be 33 bytes long' x = bytes_to_int(key[1:]) root = modsqrt(CURVE.f(x), P) if key.startswith(b'\x03'): # odd root y = root if root % 2 == 1 else -root % P elif key.startswith(b'\x02'): # even root y = root if root % 2 == 0 else -root % P else: assert False, 'Wrong key format' return cls(Point(x, y)) @classmethod def from_private(cls, prv): key = PrivateKey.from_int(prv) if isinstance(prv, int) else prv return key.to_public() @classmethod def from_hex(cls, hexstring: str) -> 'PublicKey': return cls.decode(hex_to_bytes(hexstring)) @property def x(self) -> int: """X coordinate of the (X, Y) point""" return self.point.x @property def y(self) -> int: """Y coordinate of the (X, Y) point""" return self.point.y def encode(self, compressed=False) -> bytes: if compressed: if self.y & 1: # odd root return b'\x03' + int_to_bytes(self.x).rjust(32, b'\x00') else: # even root return b'\x02' + int_to_bytes(self.x).rjust(32, b'\x00') return b'\x04' + int_to_bytes(self.x).rjust(32, b'\x00') + int_to_bytes(self.y).rjust(32, b'\x00') def hex(self, compressed=False) -> str: return bytes_to_hex(self.encode(compressed=compressed)) def to_address(self, addrtype: str, compressed=False) -> str: from cryptotools.BTC.address import pubkey_to_address if compressed is True and addrtype == 'P2PKH': return pubkey_to_address(self.encode(compressed=True), addrtype) return pubkey_to_address(self, addrtype) def is_pubkey(hexstr): try: if isinstance(hexstr, bytes): PublicKey.decode(hexstr) else: PublicKey.from_hex(hexstr) except AssertionError: return False return True def generate_keypair(): private = PrivateKey.random() public = private.to_public() return private, public class Message(message.Message): def sign(self, private: PrivateKey): e = hex_to_int(self.hash()) r, s = 0, 0 while r == 0 or s == 0: k = secrets.randbelow(N) point = CURVE.G * k r = point.x % N inv_k = mulinv(k, N) s = (inv_k * (e + r * private.int())) % N return message.Signature(r=r, s=s) def verify(self, signature: message.Signature, public: PublicKey) -> bool: r, s = signature.r, signature.s if not (1 <= r < N and 1 <= s < N): return False e = hex_to_int(self.hash()) w = mulinv(s, N) u1 = (e * w) % N u2 = (r * w) % N point = CURVE.G * u1 + public.point * u2 return r % N == point.x % N
31.421875
138
0.59158
44f738869fbccdb1d607dd8b8353db8f579ab35a
18,429
py
Python
ikbtfunctions/ik_robots.py
mdecourse/IKBT
ed62fd027ca34a59067cf30a6c3ab58c356c14fb
[ "BSD-3-Clause" ]
null
null
null
ikbtfunctions/ik_robots.py
mdecourse/IKBT
ed62fd027ca34a59067cf30a6c3ab58c356c14fb
[ "BSD-3-Clause" ]
null
null
null
ikbtfunctions/ik_robots.py
mdecourse/IKBT
ed62fd027ca34a59067cf30a6c3ab58c356c14fb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # # Inverse Kinematics Classes # # Copyright 2017 University of Washington # Developed by Dianmu Zhang and Blake Hannaford # BioRobotics Lab, University of Washington # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sympy as sp #import numpy as np from ikbtbasics.kin_cl import * from ikbtfunctions.helperfunctions import * from ikbtbasics.ik_classes import * # special classes for Inverse kinematics in sympy # #### # # NOTE: due to an obscure sympy bug, you cannot use numerical values in any DH position. Use a symbolic constant # instead (like a_3 below), declare it in params, and give it your value in pvals # ##### def robot_params(name): pvals = {} # null for most robots List = ['UR5', 'Puma', 'Chair_Helper', 'Brad', 'ArmRobo', 'Wrist', 'Arm_3', 'MiniDD', 'Olson13','Stanford', 'Chair6DOF','Khat6DOF','Craig417'] if not (name in List): print('robot_params(): Unknown robot, ' + name ) print('Here are the defined robots: ') for n in List: print(' ', n) quit() if(name == 'ArmRobo'): # submitted by issue #15 # standardize on the order "alpha N-1, a N-1, d N, theta N' for the DH table columns. # Olson 2013 # DOF: 6 # methods to test: m5, m3, # Yb = d_1, Xb = d_2, L1 = l3, L2 = l4, L3 = l5 dh = sp.Matrix([ [sp.pi/2, 0., l_2, th_1], [0, l_1, 0., th_2], [sp.pi/2, 0., 0., th_3], [-sp.pi/2, 0., l_3, th_4], [sp.pi/2, 0., 0., th_5], [0, 0., d_6, 0.] ]) vv = [1, 1, 1, 1, 1, 0] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5), unknown(d_6)] params = [l_1, l_2, l_3] pvals = {l_1: 0.19681, l_2: 0.251, l_3:0.145423} #Big thanks for your help, really appreciate it. if(name == 'Arm_3'): # two link planar test (Issue #12) # dh = sp.Matrix([ [ 0 , a_1 , 0 , th_1 ], [ 0 , a_2 , 0 , th_2 ], [ 0 , a_3 , 0 , th_3 ], [ 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 ] ]) vv = [1,1,1,0,0,0] variables = [unknown(th_1), unknown(th_2), unknown(th_3)] params = [a_1, a_2, a_3] pvals = {a_1:1, a_2:1, a_3:1} if(name == 'Brad'): # 3-RRR articulated manipulator # Brad 2019 # DOF: 3 dh = sp.Matrix([ [0, 0., d_1, th_1], [sp.pi/2., l_2, 0., th_2], [0., l_3, 0., th_3], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.] ]) vv = [1, 1, 1, 0, 0, 0] variables = [unknown(th_1), unknown(th_2), unknown(th_3)] params = [d_1, l_2, l_3] pvals = {d_1: 0.06, l_2: 0.15, l_3: 0.15} if(name == 'UR5'): #Universal Robots - test case for 3 parallel axes dh = sp.Matrix([ [ 0 , 0 , d_1 , th_1 ], [ sp.pi/2 , 0 , 0 , th_2 ], [ 0 , a_2, 0 , th_3 ], [ 0 , a_3, d_4 , th_4 ], [ sp.pi/2 , 0 , d_5 , th_5 ], [ -sp.pi/2 , 0 , d_6 , th_6 ] ]) vv = [1,1,1,1,1,1] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5), unknown(th_6)] params = [a_2,a_3,d_1,d_4,d_5,d_6] pvals = {a_2: .425, a_3: .392, d_1:.089, d_4:.109, d_5:.095, d_6:.082} # meters if(name == 'Craig417'): dh = sp.Matrix([ [ 0 , 0 , 0 , th_1 ], [-sp.pi/2, 0 , 0 , th_2 ], [ sp.pi/4 , 0, d_2 , th_3 ], [ 0 , a_3, d_3 , th_4 ], [ 0 , 0 , 0, 0 ], [ 0 , 0 , 0, 0 ] ]) vv = [1,1,1,1,1,1] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4)] params = [d_2, d_3, a_3] pvals = {d_2:1, d_3:1, a_3:1} # meters # The famous Puma 560 (solved in Craig) # if(name == 'Puma'): dh = sp.Matrix([ [ 0 , 0 , d_1 , th_1 ], # Note: Puma is used for tests so mods to this table [-sp.pi/2 , 0 , 0 , th_2 ], # may break ikbtleaves.updateL.TestSolver007 [ 0 , a_2, d_3 , th_3 ], [-sp.pi/2 , a_3, d_4, th_4 ], [-sp.pi/2 , 0, 0 , th_5 ], [ sp.pi/2 , 0, 0 , th_6 ] ]) vv = [1,1,1,1,1,1] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5), unknown(th_6)] params = [d_1, a_2, a_3, d_3, d_4] pvals = {d_1:0.6,a_2:0.432, a_3:0.0203, d_3:0.1245, d_4:0.432} # meters if(name == 'Chair_Helper'): vv = [0,1,1,1,1,1] # must be length 5 since 5dof and 5 unks dh = sp.Matrix([ [ 0, 0, d_1 , 0 ], [ 0 , l_1, 0 , th_2 ], [ sp.pi/2, 0, l_2 , th_3 ], [ sp.pi/2 , 0, 0, th_4 ], # must fill remaining rows with zeros [-sp.pi/2 , 0, l_4, th_5 ], [ 0 , 0, 0, 0 ] ]) variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [l_1, l_2, l_4] pvals = {l_1: 2, l_2: 1, l_4: 3} # can change to values if(name == 'Wrist'): sp.var('A B C') ### These somewhat wierd DH params give you the ZYX Euler Angles # matrix of example 4.7 (don't ask how I got this!) dh = sp.Matrix([ [ 0, 0, 0, A ], [ -sp.pi/2, 0, 0, (sp.pi/2 + B) ], [ sp.pi/2 , 0, 0, (sp.pi/2 + C) ], # must fill remaining rows with zeros [ -sp.pi/2, 0, 0, -sp.pi/2 ], [ 0 , 0, 0, 0 ], [ 0 , 0, 0, 0 ] ]) vv = [1,1,1,1,1,1] variables = [unknown(A), unknown(B), unknown(C)] params = [] pvals = {} if(name == 'MiniDD'): # # UW BRL Mini Direct Drive Robot, 5-DOF # dh = sp.Matrix([ [ 0 , 0 , d_1 , 0 ], [ -sp.pi/2 , 0 , 0 , th_2 ], [ -sp.pi/2 , l_3 , 0 , th_3 ], [ -sp.pi/2 , 0 , l_4 , th_4 ], [ -sp.pi/2 , 0 , 0 , th_5 ], [ 0 , 0 , 0 , 0 ] ]) vv = [0,1,1,1,1] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5) ] params = [l_3, l_4] pvals = {l_3: 5, l_4:2} if(name == 'Olson13'): # standardize on the order "alpha N-1, a N-1, d N, theta N' for the DH table columns. # Olson 2013 # DOF: 6 # methods to test: m5, m3, # Yb = d_1, Xb = d_2, L1 = l3, L2 = l4, L3 = l5 dh = sp.Matrix([ [-sp.pi/2, 0., d_1, sp.pi/2], [sp.pi/2, 0., d_2, -sp.pi/2], [sp.pi/2, 0., l_3, th_3], [sp.pi/2, 0., 0., th_4], [0., l_4, 0., th_5], [sp.pi/2, 0., l_5, th_6] ]) vv = [0, 0, 1, 1, 1, 1] variables = [unknown(d_1), unknown(d_2), unknown(th_3), unknown(th_4), unknown(th_5), unknown(th_6)] params = [l_3, l_4, l_5] pvals = {l_3: 1, l_4: 4, l_5:2} if(name == 'Stanford'): sp.var('l_4 l_6') dh = sp.Matrix([ [-sp.pi/2, 0., l_1, th_1], [sp.pi/2, 0., l_2, th_2], [0, 0., d_3, -sp.pi/2], [-sp.pi/2, 0., l_4, th_4], [sp.pi/2, 0., 0., th_5], [0., 0., l_6, th_6] ]) vv = [1, 1, 0, 1, 1, 1] variables = [unknown(th_1), unknown(th_2), unknown(d_3), unknown(th_4), unknown(th_5), unknown(th_6)] params = [l_1, l_2, l_4, l_6] pvals = {l_1:1, l_2: 2, l_4:4, l_6:3} if(name=='Sims11'): # Sims 2011, # DOF: 5 # methods to test: m5, m3, m4, m6 print("looking at Sims11") sp.var('l_1 l_2 l_3') dh = sp.Matrix([ [0., 0., d_1, 0.], [sp.pi/2, 0., d_2, 0.], [sp.pi/2, l_1, 0., th_3], [sp.pi/2, 0., l_2, th_4], [sp.pi/2, l_3, 0., th_5], [0., 0., 0., 0.] ]) vv = [0, 0, 1, 1, 1, 1, 1] variables = [unknown(d_1), unknown(d_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [l_1, l_2, l_3] pvals = {l_1: 5, l_2:2, l_3:4} if(name == 'Srisuan11'): # Srisuan 2011, # DOF: 6 dh = sp.Matrix([ [0., 0., d_1, 0.], [0., 0., 0., th_2], [sp.pi/2, 0., l_1, th_3], [sp.pi/2, 0., d_4, sp.pi/2], [0., 0., 0., th_5], [sp.pi/2, 0., 0., th_6] ]) vv = [0, 1, 1, 0, 1, 1] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(d_4), unknown(th_5), unknown(th_6)] params = [l_1] pvals = {l_1:2} if(name == 'Axtman13'): # Axtman 2013sp, # DOF: 4 dh = sp.Matrix([ [0., 0., d_1, 0.], [sp.pi/2, 0., l_2, th_2], [sp.pi/2, 0., 0., th_3], [0., l_3, 0., th_4], [0., l_4, 0., 0.], [0., 0., 0., 0.], ]) sp.var('l_3 l_4') vv = [0, 1, 1, 1, 0, 0] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4)] params = [l_2, l_3, l_4] pvals = {l_2: 1, l_3:2, l_4:3} if(name == 'Mackler13'): # Mackler 2013sp # DOF: 5 dh = sp.Matrix([ [-sp.pi/2, h, d_1, 0.], [sp.pi/2, 0., l_1, th_2], [sp.pi/2, l_2, 0., th_3], [sp.pi/2, 0., l_3, th_4], [-sp.pi/2, 0., 0., th_5], [0, 0, 0, 0] ]) sp.var('l_3') vv = [0, 1, 1, 1, 1, 0] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [l_1, l_2, l_3] pvals = {l_1:2, l_2:2, l_3: 4} if(name == 'Minder13'): # Minder 2013sp # DOF: 4 dh = sp.Matrix([ [0., 0., d_1, 0.], [sp.pi/2, 0., l_2, th_2], [sp.pi/2, 0., 0., th_3], [sp.pi/2, 0., -l_3, th_4], [0., 0., 0., 0.], [0., 0., 0., 0.] ]) sp.var('l_3') vv = [0, 1, 1, 1, 0, 0] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4)] params = [l_2,l_3] pvals = {l_2: 1, l_3:2} if(name == 'Palm13'): # Palm 2013sp # DOF: 4 dh = sp.Matrix([ [sp.pi/2, 0., l_1, th_1], [sp.pi/2, 0., d_2, -sp.pi/2], [0., 0., 0., th_3], [-sp.pi/2, l_3, h, th_4], [0., 0, 0, 0.], [0., 0., 0., 0.] ]) sp.var('l_1 l_3 h') vv = [1, 0, 1, 1, 0, 0] variables = [unknown(th_1), unknown(d_2), unknown(th_3), unknown(th_4)] params = [l_1, l_3, h] pvals = {l_1:3, l_3: 1, h:2} if(name == 'Parkman13'): # Parkman 2013sp # DOF: 5 dh = sp.Matrix([ [0., 0., h, th_1], [sp.pi/2, 0., 0., th_2 ], [0., l_2, 0., th_3], [sp.pi, l_3, d_4, 0.], [sp.pi/2, 0., l_5, th_5], [0., 0., 0., 0.] ]) sp.var('h l_2 l_3 l_5') vv = [1, 1, 1, 0, 1, 0] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(d_4), unknown(th_5)] params = [h, l_2, l_3, l_5] pvals = {h: 1, l_2: 2, l_3:3, l_5:5} if(name == 'Frei13'): # Frei 13sp # DOF 5 dh = sp.Matrix([ [0., 0., d_1, 0.], [sp.pi/2, 0., 0., th_2], [sp.pi/2, 0., l_3, th_3], [sp.pi/2, 0., 0., th_4], [sp.pi/2, 0., l_5, th_5], [0., 0., 0., 0.] ]) sp.var('l_3 l_5') vv = [0, 1, 1, 1, 1, 0] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [l_3, l_5] pvals = {l_3: 6, l_5:3} if(name == 'Wachtveitl'): # Wachtveitl 2013sp # DOF: 5 dh = sp.Matrix([ [-sp.pi/2, 0., d_1, 0.], [sp.pi/2, 0., h, th_2], [sp.pi/2, 0., 0., th_3], [0., l_2, l_3, th_4], [sp.pi/2, 0., l_4, th_5], [0., 0., 0, 0.] ]) sp.var('h l_3 l_4') vv = [0, 1, 1, 1, 1, 0] variables = [unknown(d_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [h, l_2, l_3, l_4] pvals = {h:1, l_2:2, l_3:3, l_4:2} if(name == 'Bartell'): # Bartell 2013 # DOF: 5 dh = sp.Matrix([ [0., 0., l_1, th_1], [sp.pi/2, 0., d_2, 0.], [0., 0., 0., th_3], [sp.pi/2, 0., d_4, 0.], [0., 0., 0., th_5], [sp.pi/2, 0., 0., 0.] ]) vv = [1, 0, 1, 0, 1, 1] variables = [unknown(th_1), unknown(d_2), unknown(th_3), unknown(d_4), unknown(th_5)] params = [l_1] pvals = {l_1:2} if(name == 'DZhang'): # Dianmu Zhang # DOF 5 dh = sp.Matrix([ [0., 0., h, th_1], [sp.pi/2, l_1, 0, th_2], [0, l_3, 0, th_3], [sp.pi/2, 0., l_4, th_4], [sp.pi/2, 0., 0, th_5], [0, 0., 0., 0] ]) sp.var('h l_3 l_4') vv = [1, 1, 1, 1, 1, 1] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5)] params = [h, l_1, l_3, l_4] pvals = {h:1, l_1:1, l_3:3, l_4:4} if(name == 'Khat6DOF'): # # This is Kuka Model KR60 # ( as analyzed in Khatamian6DOF_IK2015.pdf) # unsolved, 6DOF dh = sp.Matrix([ ## This one requires sum-of-angles. [ 0, a_1 , l_1 , th_1 ], [ sp.pi/2, 0, 0 , th_2 ], [ 0 , a_2, 0 , th_3 ], [ sp.pi/2 , a_3, l_4, th_4 ], [-sp.pi/2 , 0, 0 , th_5 ], [ sp.pi/2 , 0, 0 , th_6 ] ]) vv = [1,1,1,1,1,1] variables = [unknown(th_1), unknown(th_2), unknown(th_3), unknown(th_4), unknown(th_5), unknown(th_6)] params = [a_1, l_1, a_2, a_3, l_4] pvals = {a_1: 1, l_1:2, a_2:4, a_3:2, l_4:5} ################## (all robots) ###################### ## make sure each unknown knows its position (index) i = 1 for v in variables: v.n = i i+=1 return [dh, vv, params, pvals, variables]
38.797895
757
0.397471
b221c5cc1a7d8dc6c02ef68bfa344545eb96b283
6,634
py
Python
tests/core/test_relayer.py
Jacobs4/pyatv
52956adf3b79198be52cc03649f3ddeee19f9e6c
[ "MIT" ]
null
null
null
tests/core/test_relayer.py
Jacobs4/pyatv
52956adf3b79198be52cc03649f3ddeee19f9e6c
[ "MIT" ]
null
null
null
tests/core/test_relayer.py
Jacobs4/pyatv
52956adf3b79198be52cc03649f3ddeee19f9e6c
[ "MIT" ]
null
null
null
"""Unit tests for pyatv.core.relayer.""" import pytest from pyatv import exceptions from pyatv.const import Protocol from pyatv.core.relayer import Relayer @pytest.fixture def relay_base_only(): relayer = Relayer(BaseClass, [Protocol.MRP]) relayer.register(SubClass1(), Protocol.MRP) yield relayer class BaseClass: def no_args(self): pass def with_args(self, arg): pass def with_kwargs(self, **kwargs): pass @property def prop(self): pass async def async_no_args(self): pass async def async_with_args(self, arg): pass async def async_with_kwargs(self, **kwargs): pass class SubClass1(BaseClass): def no_args(self): return "subclass1" def with_args(self, arg): return arg * 2 def with_kwargs(self, **kwargs): return kwargs["a"] * kwargs["b"] @property def prop(self): return 123 async def async_no_args(self): return "subclass1" async def async_with_args(self, arg): return arg * 2 async def async_with_kwargs(self, **kwargs): return kwargs["a"] * kwargs["b"] class SubClass2(BaseClass): def with_args(self, arg): return arg class SubClass3(BaseClass): def with_kwargs(self, **kwargs): return kwargs["a"] - kwargs["b"] class SubClass4(BaseClass): def __init__(self, ret_string): self.ret_string = ret_string def no_args(self): return self.ret_string @pytest.mark.asyncio async def test_base_cases(relay_base_only): assert relay_base_only.relay("no_args")() == "subclass1" assert relay_base_only.relay("with_args")(3) == 6 assert relay_base_only.relay("with_kwargs")(a=2, b=3) == 6 assert relay_base_only.relay("prop") == 123 assert await relay_base_only.relay("async_no_args")() == "subclass1" assert await relay_base_only.relay("async_with_args")(3) == 6 assert await relay_base_only.relay("async_with_kwargs")(a=2, b=3) == 6 def test_class_priority(): relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(SubClass1(), Protocol.AirPlay) relayer.register(SubClass3(), Protocol.MRP) relayer.register(SubClass2(), Protocol.DMAP) assert relayer.relay("no_args")() == "subclass1" assert relayer.relay("with_args")(3) == 3 assert relayer.relay("with_kwargs")(a=4, b=1) == 3 def test_relay_missing_instance_ignored_and_raises_not_found(): relayer = Relayer(BaseClass, [Protocol.MRP]) with pytest.raises(exceptions.NotSupportedError): relayer.relay("no_args") def test_relay_missing_target_raises(): relayer = Relayer(BaseClass, [Protocol.MRP]) relayer.register(SubClass2(), Protocol.MRP) with pytest.raises(exceptions.NotSupportedError): relayer.relay("no_args") def test_relay_method_not_in_interface_raises(): relayer = Relayer(BaseClass, [Protocol.MRP]) relayer.register(SubClass2(), Protocol.MRP) with pytest.raises(RuntimeError): relayer.relay("missing_method") def test_add_instance_not_in_priority_list_raises(): relayer = Relayer(BaseClass, [Protocol.MRP]) with pytest.raises(RuntimeError): relayer.register(SubClass1(), Protocol.DMAP) def test_relay_override_priority(): relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP]) relayer.register(SubClass1(), Protocol.DMAP) relayer.register(SubClass2(), Protocol.MRP) assert relayer.relay("with_args", [Protocol.MRP, Protocol.DMAP])(3) == 3 assert relayer.relay("with_args", [Protocol.DMAP, Protocol.MRP])(3) == 6 def test_main_instance(): instance2 = SubClass2() relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(SubClass1(), Protocol.DMAP) relayer.register(SubClass3(), Protocol.AirPlay) relayer.register(instance2, Protocol.MRP) assert relayer.main_instance == instance2 def test_main_instance_missing_instance_for_priority(): relayer = Relayer(BaseClass, [Protocol.MRP]) with pytest.raises(exceptions.NotSupportedError): relayer.main_instance def test_get_instance_of_type(): instance1 = SubClass1() instance2 = SubClass2() relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(instance1, Protocol.MRP) relayer.register(instance2, Protocol.DMAP) assert relayer.get(Protocol.MRP) == instance1 assert relayer.get(Protocol.DMAP) == instance2 assert relayer.get(Protocol.AirPlay) is None def test_takeover_and_release(): relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(SubClass4("airplay"), Protocol.AirPlay) relayer.register(SubClass4("mrp"), Protocol.MRP) relayer.register(SubClass4("dmap"), Protocol.DMAP) assert relayer.relay("no_args")() == "mrp" relayer.takeover(Protocol.AirPlay) assert relayer.relay("no_args")() == "airplay" relayer.release() assert relayer.relay("no_args")() == "mrp" def test_takeover_while_takeover_raises(): relayer = Relayer(BaseClass, [Protocol.AirPlay]) relayer.register(SubClass4("airplay"), Protocol.AirPlay) relayer.takeover(Protocol.DMAP) with pytest.raises(exceptions.InvalidStateError): relayer.takeover(Protocol.DMAP) def test_takeover_overrides_manual_priority(): relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(SubClass4("airplay"), Protocol.AirPlay) relayer.register(SubClass4("mrp"), Protocol.MRP) relayer.register(SubClass4("dmap"), Protocol.DMAP) relayer.takeover(Protocol.AirPlay) assert ( relayer.relay("no_args", [Protocol.DMAP, Protocol.MRP, Protocol.AirPlay])() == "airplay" ) def test_takeover_overrides_main_instance(): relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP]) relayer.register(SubClass4("mrp"), Protocol.MRP) relayer.register(SubClass4("dmap"), Protocol.DMAP) relayer.takeover(Protocol.DMAP) assert relayer.main_instance.no_args() == "dmap" def test_get_all_instances(): mrp = SubClass4("mrp") dmap = SubClass4("dmap") airplay = SubClass4("airplay") relayer = Relayer(BaseClass, [Protocol.MRP, Protocol.DMAP, Protocol.AirPlay]) relayer.register(mrp, Protocol.MRP) relayer.register(dmap, Protocol.DMAP) relayer.register(airplay, Protocol.AirPlay) instances = relayer.instances assert len(instances) == 3 assert mrp in instances assert dmap in instances assert airplay in instances
27.991561
83
0.702743
381f6b38713cc91451a23a7f06571962dce0bdb8
915
py
Python
tests/unit/test_simple.py
pyadorn/adorn
a34a9a20c1a80c7bdbee0fa641c2bd17e20e60e6
[ "Apache-2.0" ]
3
2021-12-11T03:52:57.000Z
2022-03-22T20:42:56.000Z
tests/unit/test_simple.py
pyadorn/adorn
a34a9a20c1a80c7bdbee0fa641c2bd17e20e60e6
[ "Apache-2.0" ]
12
2021-12-31T19:22:09.000Z
2022-03-21T03:49:13.000Z
tests/unit/test_simple.py
pyadorn/adorn
a34a9a20c1a80c7bdbee0fa641c2bd17e20e60e6
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Jacob Baumbach # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from adorn.orchestrator.orchestrator import Orchestrator from adorn.unit.simple import Simple def test__contains(): assert not Simple._contains(int, Orchestrator) def test__type_check(): assert Simple._type_check(int, Orchestrator, 1) is None def test__from_obj(): assert Simple._from_obj(int, Orchestrator, 1) is None
32.678571
74
0.769399
2e8a8659cfa29b1bb15672d44ddcb9d9044b4036
12,413
py
Python
cinderclient/tests/v1/test_auth.py
Acidburn0zzz/python-cinderclient
a58e14fc4f33e1f1eea7aa4ced3cf8976cb112c2
[ "Apache-1.1" ]
null
null
null
cinderclient/tests/v1/test_auth.py
Acidburn0zzz/python-cinderclient
a58e14fc4f33e1f1eea7aa4ced3cf8976cb112c2
[ "Apache-1.1" ]
null
null
null
cinderclient/tests/v1/test_auth.py
Acidburn0zzz/python-cinderclient
a58e14fc4f33e1f1eea7aa4ced3cf8976cb112c2
[ "Apache-1.1" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import json import mock import requests from cinderclient.v1 import client from cinderclient import exceptions from cinderclient.tests import utils class AuthenticateAgainstKeystoneTests(utils.TestCase): def test_authenticate_success(self): cs = client.Client("username", "password", "project_id", "http://localhost:8776/v1", service_type='volume') resp = { "access": { "token": { "expires": "12345", "id": "FAKE_ID", }, "serviceCatalog": [ { "type": "volume", "endpoints": [ { "region": "RegionOne", "adminURL": "http://localhost:8776/v1", "internalURL": "http://localhost:8776/v1", "publicURL": "http://localhost:8776/v1", }, ], }, ], }, } auth_response = utils.TestResponse({ "status_code": 200, "text": json.dumps(resp), }) mock_request = mock.Mock(return_value=(auth_response)) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): cs.client.authenticate() headers = { 'User-Agent': cs.client.USER_AGENT, 'Content-Type': 'application/json', 'Accept': 'application/json', } body = { 'auth': { 'passwordCredentials': { 'username': cs.client.user, 'password': cs.client.password, }, 'tenantName': cs.client.projectid, }, } token_url = cs.client.auth_url + "/tokens" mock_request.assert_called_with( "POST", token_url, headers=headers, data=json.dumps(body), allow_redirects=True, **self.TEST_REQUEST_BASE) endpoints = resp["access"]["serviceCatalog"][0]['endpoints'] public_url = endpoints[0]["publicURL"].rstrip('/') self.assertEqual(cs.client.management_url, public_url) token_id = resp["access"]["token"]["id"] self.assertEqual(cs.client.auth_token, token_id) test_auth_call() def test_authenticate_tenant_id(self): cs = client.Client("username", "password", auth_url="http://localhost:8776/v1", tenant_id='tenant_id', service_type='volume') resp = { "access": { "token": { "expires": "12345", "id": "FAKE_ID", "tenant": { "description": None, "enabled": True, "id": "tenant_id", "name": "demo" } # tenant associated with token }, "serviceCatalog": [ { "type": "volume", "endpoints": [ { "region": "RegionOne", "adminURL": "http://localhost:8776/v1", "internalURL": "http://localhost:8776/v1", "publicURL": "http://localhost:8776/v1", }, ], }, ], }, } auth_response = utils.TestResponse({ "status_code": 200, "text": json.dumps(resp), }) mock_request = mock.Mock(return_value=(auth_response)) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): cs.client.authenticate() headers = { 'User-Agent': cs.client.USER_AGENT, 'Content-Type': 'application/json', 'Accept': 'application/json', } body = { 'auth': { 'passwordCredentials': { 'username': cs.client.user, 'password': cs.client.password, }, 'tenantId': cs.client.tenant_id, }, } token_url = cs.client.auth_url + "/tokens" mock_request.assert_called_with( "POST", token_url, headers=headers, data=json.dumps(body), allow_redirects=True, **self.TEST_REQUEST_BASE) endpoints = resp["access"]["serviceCatalog"][0]['endpoints'] public_url = endpoints[0]["publicURL"].rstrip('/') self.assertEqual(cs.client.management_url, public_url) token_id = resp["access"]["token"]["id"] self.assertEqual(cs.client.auth_token, token_id) tenant_id = resp["access"]["token"]["tenant"]["id"] self.assertEqual(cs.client.tenant_id, tenant_id) test_auth_call() def test_authenticate_failure(self): cs = client.Client("username", "password", "project_id", "http://localhost:8776/v1") resp = {"unauthorized": {"message": "Unauthorized", "code": "401"}} auth_response = utils.TestResponse({ "status_code": 401, "text": json.dumps(resp), }) mock_request = mock.Mock(return_value=(auth_response)) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): self.assertRaises(exceptions.Unauthorized, cs.client.authenticate) test_auth_call() def test_auth_redirect(self): cs = client.Client("username", "password", "project_id", "http://localhost:8776/v1", service_type='volume') dict_correct_response = { "access": { "token": { "expires": "12345", "id": "FAKE_ID", }, "serviceCatalog": [ { "type": "volume", "endpoints": [ { "adminURL": "http://localhost:8776/v1", "region": "RegionOne", "internalURL": "http://localhost:8776/v1", "publicURL": "http://localhost:8776/v1/", }, ], }, ], }, } correct_response = json.dumps(dict_correct_response) dict_responses = [ {"headers": {'location': 'http://127.0.0.1:5001'}, "status_code": 305, "text": "Use proxy"}, # Configured on admin port, cinder redirects to v2.0 port. # When trying to connect on it, keystone auth succeed by v1.0 # protocol (through headers) but tokens are being returned in # body (looks like keystone bug). Leaved for compatibility. {"headers": {}, "status_code": 200, "text": correct_response}, {"headers": {}, "status_code": 200, "text": correct_response} ] responses = [(utils.TestResponse(resp)) for resp in dict_responses] def side_effect(*args, **kwargs): return responses.pop(0) mock_request = mock.Mock(side_effect=side_effect) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): cs.client.authenticate() headers = { 'User-Agent': cs.client.USER_AGENT, 'Content-Type': 'application/json', 'Accept': 'application/json', } body = { 'auth': { 'passwordCredentials': { 'username': cs.client.user, 'password': cs.client.password, }, 'tenantName': cs.client.projectid, }, } token_url = cs.client.auth_url + "/tokens" mock_request.assert_called_with( "POST", token_url, headers=headers, data=json.dumps(body), allow_redirects=True, **self.TEST_REQUEST_BASE) resp = dict_correct_response endpoints = resp["access"]["serviceCatalog"][0]['endpoints'] public_url = endpoints[0]["publicURL"].rstrip('/') self.assertEqual(cs.client.management_url, public_url) token_id = resp["access"]["token"]["id"] self.assertEqual(cs.client.auth_token, token_id) test_auth_call() class AuthenticationTests(utils.TestCase): def test_authenticate_success(self): cs = client.Client("username", "password", "project_id", "auth_url") management_url = 'https://localhost/v1.1/443470' auth_response = utils.TestResponse({ 'status_code': 204, 'headers': { 'x-server-management-url': management_url, 'x-auth-token': '1b751d74-de0c-46ae-84f0-915744b582d1', }, }) mock_request = mock.Mock(return_value=(auth_response)) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): cs.client.authenticate() headers = { 'Accept': 'application/json', 'X-Auth-User': 'username', 'X-Auth-Key': 'password', 'X-Auth-Project-Id': 'project_id', 'User-Agent': cs.client.USER_AGENT } mock_request.assert_called_with( "GET", cs.client.auth_url, headers=headers, **self.TEST_REQUEST_BASE) self.assertEqual(cs.client.management_url, auth_response.headers['x-server-management-url']) self.assertEqual(cs.client.auth_token, auth_response.headers['x-auth-token']) test_auth_call() def test_authenticate_failure(self): cs = client.Client("username", "password", "project_id", "auth_url") auth_response = utils.TestResponse({"status_code": 401}) mock_request = mock.Mock(return_value=(auth_response)) @mock.patch.object(requests, "request", mock_request) def test_auth_call(): self.assertRaises(exceptions.Unauthorized, cs.client.authenticate) test_auth_call() def test_auth_automatic(self): cs = client.Client("username", "password", "project_id", "auth_url") http_client = cs.client http_client.management_url = '' mock_request = mock.Mock(return_value=(None, None)) @mock.patch.object(http_client, 'request', mock_request) @mock.patch.object(http_client, 'authenticate') def test_auth_call(m): http_client.get('/') m.assert_called() mock_request.assert_called() test_auth_call() def test_auth_manual(self): cs = client.Client("username", "password", "project_id", "auth_url") @mock.patch.object(cs.client, 'authenticate') def test_auth_call(m): cs.authenticate() m.assert_called() test_auth_call()
36.616519
78
0.491662
90c0c95bdf40453feb4a39fc7b046c0c7f25357a
5,582
py
Python
src/admin_extra_buttons/handlers.py
saxix/django-admin-extra-buttons
7c72d0887ba71b4f7ae8bd2a1c0f8b78bf0fe6ca
[ "BSD-1-Clause" ]
null
null
null
src/admin_extra_buttons/handlers.py
saxix/django-admin-extra-buttons
7c72d0887ba71b4f7ae8bd2a1c0f8b78bf0fe6ca
[ "BSD-1-Clause" ]
null
null
null
src/admin_extra_buttons/handlers.py
saxix/django-admin-extra-buttons
7c72d0887ba71b4f7ae8bd2a1c0f8b78bf0fe6ca
[ "BSD-1-Clause" ]
null
null
null
import inspect from django.core.exceptions import PermissionDenied from django.http import HttpResponse from django.utils.functional import cached_property from .buttons import Button, ChoiceButton, LinkButton from .utils import HttpResponseRedirectToReferrer, check_permission, handle_basic_auth, labelize class BaseExtraHandler: def __init__(self, func, **kwargs): self.func = func self.func._handler = self self.config = kwargs self.model_admin = kwargs.get('model_admin', None) self.decorators = kwargs.get('decorators', []) self.login_required = kwargs.get('login_required', True) self._pattern = kwargs.get('pattern', None) self.permission = kwargs.get('permission') self.sig: inspect.Signature = inspect.signature(self.func) @cached_property def func_args(self): return list(self.sig.parameters) def __repr__(self): return f"<{self.__class__.__name__} {self.name}>" def get_instance(self, model_admin): """ return a 'clone' of current Handler""" return self.__class__(self.func, model_admin=model_admin, **self.config) @cached_property def name(self): return self.func.__name__ def __call__(self, model_admin, request, *args, **kwargs): obj = None if len(self.sig.parameters) > 2: pk = kwargs.get(list(self.sig.parameters)[2]) obj = model_admin.get_object(request, pk) if self.permission: check_permission(self.permission, request, obj) elif self.login_required and not request.user.is_authenticated: raise PermissionDenied ret = self.func(model_admin, request, *args, **kwargs) if not isinstance(ret, HttpResponse): return HttpResponseRedirectToReferrer(request) return ret class ViewHandler(BaseExtraHandler): def __init__(self, func, login_required=True, http_basic_auth=False, **kwargs): self.login_required = login_required self.http_basic_auth = http_basic_auth super().__init__(func, http_basic_auth=http_basic_auth, login_required=login_required, **kwargs) def __call__(self, model_admin, request, *args, **kwargs): if self.login_required and self.http_basic_auth and not request.user.is_authenticated: handle_basic_auth(request) return super().__call__(model_admin, request, *args, **kwargs) @cached_property def url_pattern(self): if self._pattern: return self._pattern else: pattern = '' for arg in list(self.sig.parameters)[2:]: pattern += f'<path:{arg}>/' pattern += f'{self.name}/' return pattern class ButtonMixin: def __init__(self, func, html_attrs=None, change_list=None, change_form=None, visible=True, enabled=True, **kwargs): self.change_form = change_form self.change_list = change_list self.visible = visible self.enabled = enabled self.html_attrs = html_attrs or {} super().__init__(func, change_form=change_form, change_list=change_list, html_attrs=html_attrs, enabled=enabled, visible=visible, **kwargs) def get_button_params(self, context, **extra): return {'label': self.config.get('label', labelize(self.name)), 'handler': self, 'html_attrs': self.html_attrs, 'change_list': self.change_list, 'change_form': self.change_form, 'visible': self.visible, 'enabled': self.enabled, 'context': context, 'login_required': self.login_required, 'permission': self.permission, **extra } def get_button(self, context): return self.button_class(**self.get_button_params(context)) class ButtonHandler(ButtonMixin, ViewHandler): """View handler for `@button` decorated views""" button_class = Button class LinkHandler(ButtonMixin, BaseExtraHandler): button_class = LinkButton url_pattern = None def __init__(self, func, **kwargs): self.href = kwargs.pop('href', None) super().__init__(func, href=self.href, **kwargs) def get_button_params(self, context, **extra): return super().get_button_params(context, href=self.href, url_pattern=self.url_pattern, **extra, ) def get_button(self, context): params = self.get_button_params(context) button = self.button_class(**params) self.func(self.model_admin, button) return button class ChoiceHandler(LinkHandler): button_class = ChoiceButton def __init__(self, func, **kwargs): self.href = kwargs.pop('href', None) self.choices = kwargs.pop('choices', None) self.selected_choice = None super().__init__(func, href=self.href, choices=self.choices, **kwargs) def get_button_params(self, context, **extra): return super().get_button_params(context, choices=self.choices, **extra, )
35.55414
96
0.596381
2706819b1900d5480ea950f6363b998984534291
197
py
Python
hmm/tests/utils.py
ondrejba/hmm
1e9fe47a6057d93e7c77614016a89d5d46959e97
[ "MIT" ]
null
null
null
hmm/tests/utils.py
ondrejba/hmm
1e9fe47a6057d93e7c77614016a89d5d46959e97
[ "MIT" ]
null
null
null
hmm/tests/utils.py
ondrejba/hmm
1e9fe47a6057d93e7c77614016a89d5d46959e97
[ "MIT" ]
null
null
null
def get_tensor_shape(tensor): shape = [] for s in tensor.shape: if s is None: shape.append(s) else: shape.append(s.value) return tuple(shape)
16.416667
33
0.532995
59b9b3bf50605e1e1ca2712745ccb1285a037fd9
678
py
Python
accounts/sitemaps.py
SarangWadode/medstore
07cb70661a8cba6f8dd090dfbd589bfacb7bf12a
[ "MIT" ]
2
2021-03-24T13:36:39.000Z
2022-02-10T13:51:59.000Z
accounts/sitemaps.py
SarangWadode/medstore
07cb70661a8cba6f8dd090dfbd589bfacb7bf12a
[ "MIT" ]
44
2021-01-05T01:51:38.000Z
2022-02-10T13:44:26.000Z
accounts/sitemaps.py
mukeshgurpude/medstore
498b76acbeb9727e7a61560e4016b3577c2706d2
[ "MIT" ]
1
2020-10-28T09:26:01.000Z
2020-10-28T09:26:01.000Z
""" Sitemap classes related to the account related views """ from django.contrib import sitemaps from django.urls import reverse class AccountSiteMap(sitemaps.Sitemap): """ Urls related to custom user model """ priority = .5 changeFreq = 'daily' def items(self): return ['profile', 'apply'] def location(self, item): return reverse(f'Account:{item}') class AllAuthSitemap(sitemaps.Sitemap): """ Sitemap urls for allauth account urls """ priority = .5 changeFreq = 'monthly' def items(self): return ['login', 'logout'] def location(self, item): return reverse(f"account_{item}")
19.941176
52
0.632743
ea9c958abe73ce21beb124d7c402204387de7e98
193
py
Python
code/comp_racine.py
christophesaintjean/IntroProgS1_2020
99555d1e3681d88ee023592a16caecdec6f7c0b4
[ "CC0-1.0" ]
null
null
null
code/comp_racine.py
christophesaintjean/IntroProgS1_2020
99555d1e3681d88ee023592a16caecdec6f7c0b4
[ "CC0-1.0" ]
null
null
null
code/comp_racine.py
christophesaintjean/IntroProgS1_2020
99555d1e3681d88ee023592a16caecdec6f7c0b4
[ "CC0-1.0" ]
null
null
null
import math import racine x = float(input('x ? ')) if abs(math.sqrt(x) - racine.racine_dicho(x)) < 1e-6: print("Les valeurs sont les mêmes") else: print("Roger, on a un problème !!!")
21.444444
53
0.642487